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Chapter 1

Overview

A purpose of this thesis is to propose a methodology for the identification and estimation

of nonseparable models. A common practice when estimating many economic models is to

use additive models such as Y = g(X)+ϵ. However, in an economic model, it is rarely the

case that the unobserved variables influence the dependent variables in an additive way.

For example, if we consider the return to education, then additive models imply that the

effect of education on earnings does not depend on the unobserved variables that include

ability or family background. Hence, additive models cannot capture the unobserved het-

erogeneity. On the contrary, nonseparable models, Y = g(X, ϵ), capture the unobserved

heterogeneity effect of explanatory variables on outcomes because these models allow the

derivative of the structural function to depend on the unobserved variables.

This thesis provides novel methods for the identification and estimation of nonsepara-

ble models. First, we consider the partial identification of the nonseparable model using

binary instruments. Second, we propose the identification and estimation approach of

nonseparable panel data models. Finally, we generalize the nonseparable model proposed

by Athey and Imbens (2006) and propose a tractable estimator of the quantile treatment

effects. The organization of this thesis is as follows.

In Chapter 2, we explore the partial identification of nonseparable models with con-

tinuous endogenous and binary instrumental variables. We show that the structural func-

tion is partially identified when it is monotone or concave in the explanatory variable.

D’Haultfœuille and Février (2015) and Torgovitsky (2015) prove the point identification

of the structural function under two key assumptions: (1) the conditional distribution

functions of the endogenous variable for different values of the instrumental variables

have intersections and (2) the structural function is strictly increasing in the scalar un-

observable variable. We demonstrate that, even if these two assumptions do not hold,

monotonicity and concavity provide identifying power. Point identification is achieved

when the structural function is flat or linear with respect to the explanatory variable over
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a given interval.

In Chapter 3, we explore the identification and estimation of nonseparable panel data

models. We show that the structural function is nonparametrically identified when it

is strictly increasing in a scalar unobservable variable, the conditional distributions of

unobservable variables do not change over time, and the joint support of explanatory

variables satisfies some weak assumptions. To identify the target parameters, existing

studies assume that the structural function does not change over time, and that there are

“stayers”, namely individuals with the same regressor values in two time periods. Our

approach, by contrast, allows the structural function to depend on the time period in an

arbitrary manner and does not require the existence of stayers. In the estimation part,

we propose parametric and nonparametric estimators that implement our identification

results. Monte Carlo studies indicate that our parametric estimator performs well in finite

samples. Finally, we extend our identification results to models with discrete outcomes,

and show that the structural function is partially identified.

In Chapter 4, we explore the identification and estimation of the quantile treatment

effects (QTE) by using panel data. We generalize the change-in-changes (CIC) model

proposed by Athey and Imbens (2006) and propose a tractable estimator of the QTE. The

CIC model allows for the estimation of the potential outcomes distribution and captures

the heterogeneous effects of the treatment on the outcomes. However, there are two

problems with the CIC model: (1) there is a lack of a tractable estimator in the presence of

covariates and (2) the CIC estimator does not work when the treatment is continuous. Our

model allows the presence of covariates and the continuous treatment. We propose a two-

step estimation method based on the quantile regression and minimum distance method.

We then show the consistency and asymptotic normality of our estimator. Monte Carlo

studies indicate that our estimator performs well in finite samples. We use our method

to estimate the impact of an insurance program on quantiles of household production.
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Chapter 2

Partial Identification of

Nonseparable Models using Binary

Instruments∗

2.1 Introduction

In this chapter, we examine the identification of a system of structural equations that

takes the following form:

Y = g(X, ϵ)

X = h(Z, η),
(2.1)

where Y ∈ R is a scalar response variable, X ∈ R is a continuous endogenous variable,

Z ∈ {0, 1} is a binary instrument, and ϵ and η are unobservable scalar variables. For

simplicity, we assume that X is a scalar variable. This specification is nonseparable in the

unobservable variable ϵ and captures the unobserved heterogeneity in the effect of X on

Y . Such models have also been considered by, for example, D’Haultfœuille and Février

(2015) and Torgovitsky (2015).

D’Haultfœuille and Février (2015) and Torgovitsky (2015) show that g is point iden-

tified when g(x, e) and h(z, v) are strictly increasing in e and v and Z is independent of

(ϵ, η). Their results are important for empirical analyses in which many instruments are

binary or discrete, such as the intent-to-treat in a randomized controlled experiment or

quarter of birth used by Angrist and Krueger (1991). For nonparametric models with

a continuously distributed X, several point identification results require Z to be contin-

uously distributed. See, for example, Newey, Powell, and Vella (1999) and Imbens and

Newey (2009).

∗This chapter is based on Ishihara (2017).
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D’Haultfœuille and Février (2015) and Torgovitsky (2015) use two key assumptions

when establishing point identification for g. First, FX|Z(x|0) and FX|Z(x|1) have inter-

sections. Second, g(x, e) is strictly increasing in e. However, many empirically important

models do not satisfy these assumptions. For example, FX|Z(x|0) and FX|Z(x|1) do not

have an intersection when Z has a strictly monotonic effect on X such as linear models

X = β0 + β1Z + η. Further, in many applications, instrumental variables have a strictly

monotonic effect on endogenous variables (e.g. the LATE framework proposed by Imbens

and Angrist (1994)). For example, as in Macours, Schady, and Vakis (2012), cash trans-

fer programs have been implemented in several countries. As such, if we use treatment

indicator Z as the instrumental variable for income X, Z has a strictly monotonic effect

on X, which violates the intersection assumption. Hence, FX|Z(x|0) and FX|Z(x|1) never
have an intersection in this example. Actually, in Section 2.5, we show that FX|Z(x|0) and
FX|Z(x|1) do not have an intersection in the real data. When Y is discrete or censored,

g(x, e) is not strictly increasing in e. Moreover, many problems in economics involve

dependent variables that are discrete or censored. For example, development economists

may want to analyze the effects of income changes on child education. If school atten-

dance is used as a dependent variable, then Y is discrete. As another example, assume

that we want to analyze the effects of income changes on education expenditure. Then,

education expenditure is censored at zero when children do not attend school.

This study shows that, when g(x, e) is monotone or concave in x, we can partially

identify g, even if FX|Z(x|0) and FX|Z(x|1) have no intersection and g(x, e) is not strictly

increasing in e. g(x, e) is monotone or concave in x in many economic models. For

example, the demand function is decreasing in price if the income effect is negligible, and

economic analyses of production often suppose that the production function is monotone

and concave in inputs. In general, the demand function is not decreasing in price. For

instance, Hoderlein (2011) employs nonseparable models and analyzes consumer behavior

without the monotonicity assumption. Many studies employ monotonicity or concavity

to identify the target parameters (e.g., Manski (1997), Giustinelli (2011), D’Haultfoeuille,

Hoderlein, and Sasaki (2013), and Okumura and Usui (2014)). Specifically, Manski (1997)

imposes these assumptions and shows that the average treatment response is partially

identified. The partial identification approach using the concavity assumption in this

study is somewhat similar to that considered by D’Haultfoeuille et al. (2013).

In this model, monotonicity and concavity provide identifying power. D’Haultfœuille

and Février (2015) and Torgovitsky (2015) show that when FX|Z(x|0) and FX|Z(x|1) have
intersections, g(x′, g−1(x, y)) is identified for all x, x′, and y, where g−1(x, y) is the inverse

of g with respect to its last component. Then, g is point identified under appropriate

normalization. By contrast, when FX|Z(x|0) and FX|Z(x|1) do not have intersections,

7



we only identify g(x′, g−1(x, y)) for some x and x′. Although this information restricts

the functional form of g, it does not provide the informative bounds of g. In this case,

monotonicity and convexity allow us to interpolate or extrapolate g(x′, g−1(x, y)) and

provide the informative bounds of g(x′, g−1(x, y)). For example, if g(x′, g−1(x, y)) is iden-

tified and x̃ ≥ x′, monotonicity implies g(x̃, g−1(x, y)) ≥ g(x′, g−1(x, y)), and hence, we

obtain a lower bound of g(x̃, g−1(x, y)). Using these bounds, we can achieve the partial

identification of g.

There is a rich literature on the identification of nonseparable models using the control

function approach. For example, Chesher (2007), Hoderlein and Mammen (2007), Flo-

rens, Heckman, Meghir, and Vytlacil (2008), Imbens and Newey (2009), Hoderlein and

Mammen (2009), Hoderlein (2011), Kasy (2011), and Blundell, Kristensen, and Matzkin

(2013) consider the identification of nonseparable models using the control function ap-

proach. Particularly, Imbens and Newey (2009) consider models similar to (2.1). Their

study allows ϵ to be multivariate, showing that the quantile function of g(x, ϵ) is point

identified, while in this analysis, ϵ is imposed as scalar. Their results need continuous in-

struments, whereas those of D’Haultfœuille and Février (2015), Torgovitsky (2015), and

the present study do not.

We assume that the instrumental variable Z is binary. D’Haultfœuille and Février

(2015) consider the case in which the instrumental variable takes more than two values,

thus showing point identification can be achieved using group and dynamical systems

theories even when FX|Z(x|z) and FX|Z(x|z′) have no intersection.

Caetano and Escanciano (2017) provides alternative results for the identification of

nonseparable models with continuous endogenous variables and binary instruments. To

this end, they use the observed covariates to identify the structural function. Although

their approach does not require FX|Z(x|z) and FX|Z(x|z′) to intersect, they assume the

structural function does not depend on the observed covariates. By contrast, our iden-

tification approach does not require the existence of covariates and allows the structural

function to depend on the observed covariates.

The remainder of this study is organized as follows. Section 2.2 introduces the assump-

tions employed in the analysis. Sections 2.3 and 2.4 demonstrate the partial identification

of g under the monotonicity and concavity assumptions when conditional distributions

have no intersections. Section 2.5 computes the bounds using real data. Section 2.6 ex-

tends the result in Section 2.3 to a more general case, where we allow Y to be discrete or

censored. Section 2.7 concludes the paper.

8



2.2 Model

For any random variable U and random vector W , let FU |W (u|w) denote the conditional

distribution function of U conditional on W . In some places, we interchangeably use

the notation FU |W=w(u) instead of FU |W (u|w). Let X , Xz, and Yx,z denote the interiors

of the support of X, X|Z = z, and Y |X = x, Z = z, respectively. The following two

assumptions are the same as those in D’Haultfœuille and Février (2015) and Torgovitsky

(2015):

Assumption 2.1. The instrument is independent of the unobservable variables: Z ⊥⊥(ϵ, η).

Assumption 2.2. (i) Function g is continuous and g(x, e) is strictly increasing in e for

all x ∈ X . (ii) For all z ∈ {0, 1}, h(z, v) is continuous and strictly increasing in v.

Assumptions 2.1 and 2.2 (ii) are typically employed when using the control function

approach. See, for example, Imbens and Newey (2009), D’Haultfœuille and Février (2015),

and Torgovitsky (2015). Although Assumption 2.2 (i) is strong, it is necessary for our

identification approach. Hoderlein and Mammen (2007), Hoderlein and Mammen (2009),

Hoderlein (2011), and Imbens and Newey (2009) do not employ this assumption. We

relax part of Assumption 2.2 (i) in Section 2.6, where we assume g(x, e) is nondecreasing

in e.

The next assumption regarding the conditional distributions of X conditional on Z

differs from that of D’Haultfœuille and Février (2015) and Torgovitsky (2015).

Assumption 2.3. (i) FX|Z(x|z) is continuous in x for all z ∈ {0, 1} and FX|Z(x|0) <
FX|Z(x|1) for all x ∈ X . (ii) X0 = (x0, x0), X1 = (x1, x1), and −∞ < x1 < x0 < x1 <

x0 <∞.

Conditions (i) and (ii) above imply that FX|Z(x|z) is strictly increasing and continuous

in x conditional on Xz. Further, condition (i) implies that FX|Z(x|0) and FX|Z(x|1) do

not have any intersection on the support of X and X|Z = 0 stochastically dominates

X|Z = 1. Therefore, Z has a strictly monotonic effect on X. D’Haultfœuille and Février

(2015) and Torgovitsky (2015) rule out this case because they assume FX|Z(x|0) and

FX|Z(x|1) have intersections on X .

When we have X0 = X1 = (x, x), then FX|Z(x|0) and FX|Z(x|1) must have intersec-

tions at the boundary points of the support of X. However, in this case, g is not identified

unless g(x, e) (or g(x, e)) exists and g(x, e) (or g(x, e)) is strictly increasing in e. Torgov-

itsky (2015) shows that the point identification of g holds when FX|Z(x|0) and FX|Z(x|1)
intersect at a boundary point x, and g(x, e) exists and is strictly increasing in e.

Next, we impose restrictions on the conditional distributions of Y conditional on X

and Z.
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Assumption 2.4. (i) For all (z, x, y) ∈ {0, 1} × Xz × Yx,z, FY |X,Z(y|x, z) is continuous

in x and y. (ii) For all (z, x) ∈ {0, 1}×Xz, we have Yx,z = Y = (y, y), where −∞ ≤ y <

y ≤ ∞.

D’Haultfœuille and Février (2015) and Torgovitsky (2015) also assume condition (i)

but not condition (ii). Both conditions imply that FY |X,Z(y|x, z) is strictly increasing and

continuous in y on Y . Hence, the conditional quantile function of Y conditional on X and

Z is the inverse of FY |X,Z(y|x, z). Condition (ii) is not necessary for this study’s results

but, without it, deriving the results can become cumbersome. Further, we relax condition

(i) in Section 2.6 and allow Y to be discrete or censored.

Finally, we impose the normalization assumption on unobservable variables and sup-

port condition of ϵ|X = x, Z = z.

Assumption 2.5. (i) ϵ ∼ U(0, 1) and η ∼ U(0, 1). (ii) For all (z, x) ∈ {0, 1} × Xz, the

interior of the support of ϵ|X = x, Z = z is (0, 1).

Condition (i) is the usual normalization in a nonseparable model (see Matzkin (2003)).

Torgovitsky (2015) does not use this normalization, while D’Haultfœuille and Février

(2015) normalize ϵ to be uniformly distributed. Condition (ii) implies that g(x, e) ∈
(y, y) = Y for all (x, e) ∈ X × (0, 1). Condition (ii) is necessary because, if the support

of ϵ|X = x, Z = z is [0, ē] for some 0 < ē < 1, then the conditional support of Y given

X = x and Z = z is equal to {g(x, e) : e ∈ [0, ē]} and we have g(x, e) ̸∈ Y for e > ē. This

implies that we can not identify g(x, e) for e > ē.

Example 2.1 (Cash Transfer Programs). Cash transfer programs have been conducted in

many countries and many papers estimate their impacts on early childhood development

by using randomized experiments. For example, Macours et al. (2012) analyze the impact

of a cash transfer program on early childhood cognitive development. In this program,

participants were randomly assigned to either the treatment or control groups. As such,

we can consider the following model:

Y = g(X, ϵ),

X = Z̃h1(η) + (1− Z̃)h0(η),

where Y is the child’s outcome of cognitive development, X is the total expenditure, and

Z̃ is the treatment indicator of the program. Because cash transfers usually increase

total expenditure, we can assume h1(η) − h0(η) > 0. When participants are randomly

assigned to either the treatment or control groups, Z ≡ 1− Z̃ is independent of (ϵ, η) and

hence Assumption 2.1 is satisfied. Because Z is independent of η, we have FX|Z(x|1) =
P (h0(η) ≤ x) and FX|Z(x|0) = P (h1(η) ≤ x). Since h1(η) > h0(η), we have FX|Z(x|0) <
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FX|Z(x|1) for all x. In this case, Assumption 2.3 is satisfied, that is, FX|Z(x|0) and

FX|Z(x|1) have no intersection. In Section 2.5, we show this assumption actually holds

for the data used by Macours et al. (2012).

2.3 Partial Identification through Monotonicity

Let Y be the closure of Y . We establish the partial identification of g by showing we

can identify functions TU
x′,x(y) : Y → Y and TL

x′,x(y) : Y → Y and they are (i) strictly

increasing in y, (ii) surjective, that is, TU
x′,x

(
[y, y]

)
= TL

x′,x

(
[y, y]

)
= [y, y], and (iii) satisfy

the following inequalities:

g(x′, e) ≤ TU
x′,x (g(x, e)) , (2.2)

g(x′, e) ≥ TL
x′,x (g(x, e)) . (2.3)

From (2.2) and (2.3), TU
x′,x(y) and T

L
x′,x(y) are the upper and lower bounds of g(x′, g−1(x, y)),

respectively. If TU
x′,x(y) is identified for all x, x′ ∈ X , we can obtain the lower bound

of the structural function g(x, e) in the following manner. Here, we define GL
x (u) ≡∫

FY |X=x′
(
TU
x′,x(u)

)
dFX(x

′). If TU
x′,x(y) satisfying (2.2) is obtained for all x, x′ ∈ X , then

we have

GL
x (g(x, e)) =

∫
FY |X=x′

(
TU
x′,x (g(x, e))

)
dFX(x

′)

≥
∫
FY |X=x′ (g(x′, e)) dFX(x

′)

=

∫
P (g(x′, ϵ) ≤ g(x′, e)|X = x′)dFX(x

′)

=

∫
P (ϵ ≤ e|X = x′)dFX(x

′) = e, (2.4)

where the first inequality follows from (2.2) and the third equality follows from the strict

monotonicity of g(x, e) in e. Furthermore, GL
x (u) is invertible because TU

x′,x(y) is strictly

increasing in y. Because TU
x′,x(y) is surjective, we have GL

x

(
[y, y]

)
= [0, 1]. Hence, for all

e ∈ (0, 1), we have

g(x, e) ≥
(
GL

x

)−1
(e). (2.5)

Similarly, we define GU
x (u) ≡

∫
FY |X=x′

(
TL
x′,x(u)

)
dFX(x

′), and thus, we have

g(x, e) ≤
(
GU

x

)−1
(e).

Next, we explain how to construct functions TU
x′,x(y) and TL

x′,x(y) that satisfy (2.2)

and (2.3). For any random variable U and random vector W , let QU |W (τ |w) denote the

conditional τ -th quantile of U conditional on W = w, that is, QU |W (τ |w) ≡ inf{u :
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FU |W (u|w) ≥ τ}. As in Torgovitsky (2015), we define π(x) : X0 → X1 and π−1(x) : X1 →
X0
∗ as:

π(x) ≡ QX|Z
(
FX|Z(x|0)|1

)
,

π−1(x) ≡ QX|Z
(
FX|Z(x|1)|0

)
.

(2.6)

Figure 2.1 illustrates functions π(x) and π−1(x). The following result is essentially proven

by D’Haultfœuille and Février (2015) (Theorem 1). However, we state this result as a

proposition because it plays a central role in the following and our assumptions differ

somewhat from those of D’Haultfœuille and Février (2015).

Proposition 2.1. Assume that π(x) and π−1(x) exist. Define

T̃ (1)
x (y) ≡ QY |X,Z

(
FY |X,Z (y|x, 0) |π(x), 1

)
,

T̃ (−1)
x (y) ≡ QY |X,Z

(
FY |X,Z (y|x, 1) |π−1(x), 0

)
.

Then, under Assumptions 2.1–2.5, we have

g (π(x), e) = T̃ (1)
x (g(x, e)) ,

g
(
π−1(x), e

)
= T̃ (−1)

x (g(x, e)) .

In the first step of the proof, we show that

P (ϵ ≤ e|X = x, Z = 0) = P (ϵ ≤ e|X = π(x), Z = 1). (2.7)

We then define

V ≡ FX|Z(X|Z). (2.8)

This is called “control variable” in Imbens and Newey (2009). From Assumptions 2.1 and

2.5 (i), we obtain V = η. Because FX|Z(x|z) is continuous and strictly increasing in x, we

obtain

Fϵ|X,Z(e|x, z) = Fϵ|V,Z(e|FX|Z(x|z), z).

By Assumption 1, this implies Fϵ|X,Z(e|x, z) = Fϵ|V (e|FX|Z(x|z)). Hence, we obtain (2.7)

by the definition of π(x).

In the second step, we show that (2.7) implies g (π(x), e) = T̃
(1)
x (g(x, e)). It follows

from (2.7) and the strict monotonicity of g that

FY |X,Z(g(x, e)|x, 0) = P (g(x, ϵ) ≤ g(x, e)|X = x, Z = 0)

= P (ϵ ≤ e|X = x, Z = 0)

= P (ϵ ≤ e|X = π(x), Z = 1)

= FY |X,Z(g(π(x), e)|π(x), 1).
∗These functions correspond to sij in D’Haultfœuille and Février (2015).
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Hence, we obtain g (π(x), e) = T̃
(1)
x (g(x, e)). Similarly, we also obtain g (π−1(x), e) =

T̃
(−1)
x (g(x, e)).

By definition, if π(x) and π−1(x) exist, T̃
(1)
x (y) and T̃

(−1)
x (y) are strictly increasing,

T̃
(1)
x ([y, y]) = [y, y], and T̃

(−1)
x ([y, y]) = [y, y]. If πn(x) exists for n ∈ N, we define πn(x) ≡

π ◦ · · · ◦ π(x). Because the domain of π is X0, π
n(x) does not exist when πn−1(x) ̸∈ X0.

If πn(x) exists, we obtain g(πn(x), e) = T̃
(1)

πn−1(x) ◦ · · · ◦ T̃
(1)
x (g(x, e)). We define T̃

(n)
x (y) ≡

T̃
(1)

πn−1(x) ◦ · · · ◦ T̃
(1)
x (y) if πn(x) exists. Then, if πn(x) exists, we have

g(πn(x), e) = T̃ (n)
x (g(x, e)) ,

T̃
(n)
x (y) is strictly increasing in y, and T̃

(n)
x ([y, y]) = [y, y]. Similarly, we define π−n(x) ≡

π−1 ◦ · · · ◦ π−1(x) and T̃
(−n)
x (y) ≡ T̃

(−1)
π−(n−1)(x)

◦ · · · ◦ T̃ (−1)
x (y) if π−n(x) exists. If π−n(x)

exists, we have

g(π−n(x), e) = T̃ (−n)
x (g(x, e)) ,

T̃
(−n)
x (y) is strictly increasing in y, and T̃

(−n)
x ([y, y]) = [y, y]. For all x ∈ X , we define

T̃
(0)
x (y) ≡ y and π0(x) ≡ x.

These results imply that, if πn(x) exists, we have T̃
(n)
x (y) = g (πn(x), g−1(x, y)), where

g−1(x, y) is the inverse function of g(x, e) with respect to e. Hence, we can identify

g (πn(x), g−1(x, y)) if πn(x) exists. This information restricts the functional form of g.

However, as in Remark 1, it does not provide the informative bounds of g without other

restrictions.

Here, we examine the properties of π(x) and π−1(x). Because FX|Z(x|0) < FX|Z(x|1)
for x ∈ X , we have

π(x) = QX|Z
(
FX|Z(x|0)|1

)
< QX|Z

(
FX|Z(x|1)|1

)
= x,

π−1(x) = QX|Z
(
FX|Z(x|1)|0

)
> QX|Z

(
FX|Z(x|0)|0

)
= x.

(2.9)

Figure 1 illustrates this intuitively. Because X|Z = 0 stochastically dominates X|Z = 1

and functions π(x) and π−1(x) satisfy (2.28), the inequalities hold.

To facilitate the illustration of our identification results, we first review the iden-

tification approach of D’Haultfœuille and Février (2015) and Torgovitsky (2015) when

x0 = x1 = ξ, although Assumption 2.3 rules out the case of x0 = x1 = ξ. Additionally,

we assume that g(ξ, e) exists and is strictly increasing in e.

D’Haultfœuille and Février (2015) and Torgovitsky (2015) use function Tx′,x(y) that

satisfies g(x′, e) = Tx′,x (g(x, e)). This function corresponds to Qx′x in D’Haultfœuille and

Février (2015). We define

Gx(u) ≡
∫
FY |X=x′ (Tx′,x(u)) dFX(x

′).
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Then, similar to (2.4), we have Gx (g(x, e)) = e, and hence g(x, e) = (Gx)
−1 (e). If we

can identify a function Tx′,x(y) for all x and x′, we then can point identify the structural

function g.

Pick an initial point x0 ∈ X (i.e., x0 > ξ) and form a recursive sequence xn+1 = π(xn)

for n > 0. Because x0 = x1 = ξ implies X1 ⊂ X0, we have π(x) ∈ X0 for all x ∈ X and

there exists a sequence {πn(x)}∞n=1. The sequence {xn} is decreasing by (2.9) and xn > ξ

for all n ≥ 0 by the definition of π(x). Hence, sequence {xn} converges to a limiting point.

Because (2.28) implies

FX|Z(xn+1|1) = FX|Z(xn|0)

and FX|Z(x|z) is continuous in x, we have FX|Z(limn→∞ xn|1) = FX|Z(limn→∞ xn|0). Be-
cause FX|Z(x|0) < FX|Z(x|1) for all x ∈ (ξ, x0) and FX|Z(ξ|0) = FX|Z(ξ|1) = 0, the

sequence {xn} converges to ξ for any initial point x0 ∈ X . Figure 2.2 illustrates this in-

tuitively. We define T̃
(∞)
x (y) ≡ limn→∞ T̃

(n)
x (y), which is strictly increasing and invertible

in y. From the continuity of g, we obtain, for all x ∈ X ,

T̃ (∞)
x (g(x, e)) = lim

n→∞
g(πn(x), e) = g(ξ, e).

Because T̃
(∞)
x (g(x, e)) = T̃

(∞)
x′ (g(x′, e)) holds for any x, x′, we have

g(x′, e) =
(
T̃

(∞)
x′

)−1 (
T̃ (∞)
x (g(x, e))

)
.

We define Tx′,x(y) ≡
(
T̃

(∞)
x′

)−1 (
T̃

(∞)
x (y)

)
. Then, Tx′,x(y) is strictly increasing and satisfies

g(x′, e) = Tx′,x (g(x, e)). This implies that g(x′, g−1(x, y)) is identified for all x and x′.

Hence, as previously discussed, g is point identified.

This approach is not available under Assumption 2.3 because a convergent sequence

{πn(x)}∞n=1 does not exist. When FX|Z(x|0) and FX|Z(x|1) have no intersections, πn(x)

lies in X1 ∩X c
0 = (x1, x0] when n is sufficiently large. If πn(x) is in X1 ∩X c

0 , then π
n+1(x)

does not exist. From the proof of Lemma 2.1, for all x ∈ X , {n : πn(x) exists.} is a finite

set under Assumption 2.3. For example, in Figure 2.1, π(x), π−1(x), and π−2(x) exist but

π2(x) and π−3(x) do not.

Remark 2.1. If we do not impose additional restrictions, the identified set of g(x, e) can

become unbounded under Assumption 2.3. To show this, we derive the identified set of g.

We define

G ≡ {g̃ : X × (0, 1) → R : g̃(x, e) is continuous and strictly increasing in e.} .

Torgovitsky (2015) derives the identified set of g under another normalization assumption.

Similarly, we obtain the following identified set:

GI ≡
{
g̃ ∈ G : (g̃−1(X,Y ), V )⊥⊥Z and g̃−1(X, Y ) ∼ U(0, 1)

}
,
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where g̃−1 is the inverse of g̃ with respect to its last component and V is defined as in (2.8).

The independence condition in the identified set is equivalent to the following condition:

P (Y ≤ g̃(X, e)|V = v, Z = 0) = P (Y ≤ g̃(X, e)|V = v, Z = 1) for all v ∈ (0, 1).

From the definition of V , for all v ∈ (0, 1), we have

FY |X,Z (g̃(xv,0, e)|xv,0, 0) = FY |X,Z (g̃(xv,1, e)|xv,1, 1) ,

where xv,z ≡ QX|Z(v|z). Hence, we can rewrite GI as

GI =
{
g̃ ∈ G : g̃−1(X,Y ) ∼ U(0, 1) and

g̃
(
xv,1, g̃

−1(xv,0, ·)
)
= QY |X,Z

(
FY |X,Z(·|xv,0, 0)|xv,1, 1

)
for all v.

}
. (2.10)

This expression implies that g (xv,1, g
−1(xv,0, y)) is identified for all v. Proposition 2.1

provides the same result. The sharp lower and upper bounds of g(x, e) are obtained by

inf g̃∈GI g̃(x, e) and supg̃∈GI g̃(x, e).

To show that the bounds of g(x, e) can be unbounded, we consider the following simple

model:

Y = Φ−1(ϵ),

X = Z(η − 1) + (1− Z)η,

where Φ(·) is the standard normal distribution function, ϵ ∼ U(0, 1), η ∼ U(0, 1), Z is a

random Bernoulli variable with p = 0.5, and (ϵ, η, Z) are mutually independent. Then, it

follows from (2.10) that g̃ ∈ GI if and only if

g̃(v, e) = g̃(v − 1, e) for all e, v ∈ (0, 1), (2.11)

P (Y ≤ g̃(X, e)) = e for all e ∈ (0, 1). (2.12)

We construct g̃M as follows. First, we define

g̃M(x, 0.5) ≡



Φ−1 (4M(x+ 1) + 0.5−M) , −1 < x ≤ −0.5

Φ−1 (−4M(x+ 0.5) + 0.5 +M) , −0.5 < x ≤ 0

Φ−1 (4Mx+ 0.5−M) , 0 < x ≤ 0.5

Φ−1 (−4M(x− 0.5) + 0.5 +M) , 0.5 < x ≤ 1

,

where −0.5 < M < 0.5. Second, for e ̸= 0.5, we define g̃M(x, e) as

g̃M(x, e) ≡

Φ−1 (2eΦ(g̃(x, 0.5))) , 0 < e < 0.5

Φ−1 (1− 2(1− e){1− g̃(x, 0.5)}) , 0.5 < e < 1
.
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Then, we confirm that g̃M satisfies (2.11) and (2.12) for all −0.5 < M < 0.5. Hence,

g̃M is an element of GI for all −0.5 < M < 0.5. Because g̃M(0, 0.5) = Φ−1(0.5 −M),

the lower and upper bounds of g(0, 0.5) are −∞ and +∞, respectively. Therefore, in this

setting, the identified set of g can be unbounded.

If we do not impose additional restrictions, we cannot construct strictly increasing

functions TU
x′,x(y) and T

L
x′,x(y) that satisfy (2.2) and (2.3). First, we show that a set ΠM

x′,x

defined below is nonempty and finite, when FX|Z(x|0) and FX|Z(x|1) have no intersec-

tions. Second, we show that we can partially identify g(x, e) using ΠM
x′,x when g(x, e) is

nondecreasing in x.

For (x, x′) ∈ X × X , we define ΠM
x′,x as

ΠM
x′,x ≡ {(n,m) : n,m ∈ Z, πn(x′) and πm(x) exist, and πn(x′) ≤ πm(x).} .(2.13)

In Figure 2.1, ΠM
x′,x = {(−1,−2), (0,−2), (0,−1), (1,−2), (1,−1), (1, 0)}. The following

lemma shows that ΠM
x′,x is nonempty and finite when FX|Z(x|0) and FX|Z(x|1) have no

intersections.

Lemma 2.1. Under Assumptions 2.1–2.5, ΠM
x′,x, as defined by (2.13), is nonempty and

finite for all (x, x′) ∈ X × X .

Under Assumptions 2.1–2.5, for any x ∈ X the set {n ∈ Z : πn(x) exists.} is finite from

the proof of Lemma 2.1. Hence, g cannot be point identified using the method proposed

by D’Haultfœuille and Février (2015) and Torgovitsky (2015)).

We impose the following assumption:

Assumption 2.6 (Monotonicity). For all e ∈ (0, 1), g(x, e) is nondecreasing in x.

The monotonicity assumption holds for many economic models. For example, the

demand function is ordinarily decreasing in price if the income effect is negligible, and

economic analyses of production often assume that the production function is monoton-

ically increasing in input. Monotonicity assumptions of this type have been employed

in many studies. For example, Manski (1997) imposes a monotonicity assumption on a

response function and shows that the average treatment response is partially identified.

If (n,m) ∈ ΠM
x′,x, Assumption 2.6 implies that

T̃
(n)
x′ (g(x′, e)) = g(πn(x′), e) ≤ g(πm(x), e) = T̃ (m)

x (g(x, e)) .

Because T̃
(n)
x′ (y) is strictly increasing in y and T̃

(n)
x′

(
[y, y]

)
= [y, y], we have g(x′, e) ≤(

T̃
(n)
x′

)−1 (
T̃

(m)
x (g(x, e))

)
for (n,m) ∈ ΠM

x′,x. Hence, we have

g(x′, e) ≤ min
(n,m)∈ΠM

x′,x

(
T̃

(n)
x′

)−1 (
T̃ (m)
x (g(x, e))

)
.
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Define

TMU
x′,x (y) ≡ min

(n,m)∈ΠM
x′,x

(
T̃

(n)
x′

)−1 (
T̃ (m)
x (y)

)
,

TML
x′,x (y) ≡ max

(n,m)∈ΠM
x,x′

(
T̃

(m)
x′

)−1 (
T̃ (n)
x (y)

)
.

(2.14)

Then, TMU
x′,x (y) is strictly increasing and satisfies

g(x′, e) ≤ TMU
x′,x (g(x, e)) . (2.15)

Similarly, TML
x′,x (y) is strictly increasing and satisfies

g(x′, e) ≥ TML
x′,x (g(x, e)) . (2.16)

As already mentioned, the functions that satisfy (2.2) and (2.3) are the upper and lower

bounds of g(x′, g−1(x, y)), respectively. Hence, for any (n,m) ∈ ΠM
x′,x,

(
T̃

(n)
x′

)−1 (
T̃

(m)
x (y)

)
becomes the upper bound of g(x′, g−1(x, y)). This implies that TMU

x′,x (y) is the lowest upper

bound of g(x′, g−1(x, y)) in the sense that TMU
x′,x (y) is lower than

(
T̃

(n)
x′

)−1 (
T̃

(m)
x (y)

)
for

any (n,m) ∈ ΠM
x′,x. Similarly, TML

x′,x (y) is the largest lower bound of g(x′, g−1(x, y)).

We define

GML
x (u) ≡

∫
FY |X=x′

(
TMU
x′,x (u)

)
dFX(x

′),

GMU
x (u) ≡

∫
FY |X=x′

(
TML
x′,x (u)

)
dFX(x

′),

BML(x, e) ≡ sup
y:y≤x

{(
GML

y

)−1
(e)
}
,

BMU(x, e) ≡ inf
y:y≥x

{(
GMU

y

)−1
(e)
}
.

GML
x (u) and GMU

x (u) provide the lower and upper bounds of g(x, e) on the basis of argu-

ments (2.4) and (2.5). BML(x, e) and BMU(x, e) strengthen these bounds.

Theorem 2.1. Under Assumptions 2.1–2.6, for all (x, e) ∈ X × (0, 1), we have

BML(x, e) ≤ g(x, e) ≤ BMU(x, e).

In the first step, we show that
(
GML

x

)−1
(e) ≤ g(x, e) ≤

(
GMU

x

)−1
(e). In the second

step, we strengthen these bounds to BML(x, e) ≤ g(x, e) ≤ BMU(x, e). Figure 2.3 intu-

itively illustrates this proof. The idea is similar to that of Manski (1997), who considers

the case in which response function y(t) is increasing, where y(t) is a latent outcome with

treatment t. He then uses the monotonicity of y(t) to partially identify average response

function E[y(t)] when the support of the outcome is bounded. By contrast, our bounds

are bounded even when the support of the outcome is unbounded.
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Simulation 2.1. To illustrate Theorem 2.1, we consider the following example:

Y = h(X)exp
(
α+ βΦ−1(ϵ)

)
X = (0.2 + η)Z + (1− Z){(2− ρ)(η − 1) + 2.2},

(2.17)

where h(x) is an increasing function specified below, Φ(·) is the standard normal distri-

bution function, Z is a random Bernoulli variable with p = 0.5, and (α, β) = (0.5, 0.5).

Suppose that

ϵ = Φ(U)

η = Φ(V )

(U, V ) ∼ N

((
0

0

)
,

(
1 0.3

0.3 1

))
.

Then, ϵ ∼ U(0, 1) and η ∼ U(0, 1). In this example, FX|Z(x|1) = x − 0.2 for x ∈ [0.2, 1]

and FX|Z(x|0) = 1
2−ρ(x − 2.2) + 1 for x ∈ [ρ + 0.2, 2.2]. These functions are depicted

in Figure 4. Conditional distribution functions FX|Z(x|0) and FX|Z(x|1) do not intersect

when ρ > 0. When ρ = 0, these functions intersect at x = 0.2. Torgovitsky (2015) shows

that g is point identified when ρ = 0.

We calculate the bounds of g(x, 0.5) using Theorem 2.1 when h(x) = h1(x) ≡ x or h(x) =

h2(x) ≡ 2 exp(4(x − 1.2))/{1 + exp(4(x − 1.2))} + 0.2. Figures 2.5 and 2.6 show these

bounds for three different choices of ρ: 0.01, 0.1, and 0.3. For h1 and h2, the bounds

become tighter as ρ become smaller. In particular, the bounds are very close to the true

function when ρ = 0.01. This implies that BML(x, e) and BMU(x, e) converge to g(x, e)

as ρ → 0. When ρ = 0.01 and 0.1, the bounds of h2 are tighter than that of h1. This

result is caused by h2(x) being flatter than h1(x) over a particular interval. As discussed

later, Theorem 2.2 shows that g is point identified when g(x, e) is flat with respect to x

over a given interval.

The bounds become tighter as the difference between g(x′, e) and TU
x′,x (g(x, e)) (or

TL
x′,x (g(x, e))) decreases. The following theorem shows that, if g(x, e) is flat in x over a

given interval, inequalities (2.2) and (2.3) become equalities and structural function g is

point identified.

Theorem 2.2. Under Assumptions 2.1–2.6, if there exists x̃ ∈ X0 ∩ X1 such that x 7→
g(x, e) is constant on [π(x̃), π−1(x̃)] for each e ∈ (0, 1), then BML(x, e) and BMU(x, e)

coincide with g(x, e) for all (x, e) ∈ X × (0, 1). Hence, g is point identified. This result

holds even when the interval [π(x̃), π−1(x̃)] is unknown.

In the first step, we show that, for all x ∈ X , n ∈ Z exists such that πn(x), πn+1(x) ∈
[π(x̃), π−1(x̃)]. In the second step, we show g is point identified. Because g(x, e) is
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constant in x conditional on [π(x̃), π−1(x̃)], we have g(x′, e) = TMU
x′,x (g(x, e)) and g(x′, e) =

TML
x′,x (g(x, e)) for all x, x′ ∈ X and e ∈ (0, 1). Hence, BML(x, e) and BMU(x, e) coincide

with g(x, e) because inequalities (2.15) and (2.16) become equalities.

Simulation 2.2. To illustrate Theorem 2.2, we consider model (2.17). We set h(x) =

max{0, x− δ}+ 0.5 and ρ = 0.3. Figures 2.7–2.9 show BML(x, 0.5) and BMU(x, 0.5) for

three different choices of δ: 0.4, 0.55, and 1.2. In this model, g(x, e) is constant on [0.2, δ].

Because π(0.5) = 0.2 and π−1(0.5) = 1.01, interval [0.2, δ] covers [π(0.5), 0.5] when δ =

0.55 and covers [π(0.5), π−1(0.5)] when δ = 1.2. Hence, the condition of Theorem 2.2

is satisfied only when δ = 1.2. In Figure 2.9, BML(x, 0.5) and BMU(x, 0.5) coincide

with g(x, 0.5) when δ = 1.2. By contrast, when δ = 0.4 and 0.55, g(x, 0.5) is not point

identified.

Remark 2.2. The bounds of Theorem 2.1 are sharp in the sense that there can exist

data generating processes that satisfy the conditions of the theorem such that the bounds

are attained. As shown in Theorem 2.2, if g(x, e) is flat with respect to x over a given

interval, we have g(x, e) = BML(x, e) = BMU(x, e). This implies that g is point identified.

Therefore, in this case, BML(x, e) and BMU(x, e) are sharp bounds of g(x, e).

Remark 2.3. Although our bounds may not be sharp in general, we can derive the iden-

tified set of g under Assumption 2.6. We define

GM ≡ {g̃ ∈ G : g̃(x, e) is nondecreasing in x.}.

Then, similar to (2.10), the identified set of g under Assumption 2.6 is obtained by

GM
I =

{
g̃ ∈ GM : g̃−1(X, Y ) ∼ U(0, 1) and

g̃
(
xv,1, g̃

−1(xv,0, ·)
)
= QY |X,Z

(
FY |X,Z(·|xv,0, 0)|xv,1, 1

)
for all v.

}
.

Hence, the sharp lower and upper bounds of g(x, e) are inf g̃∈GMI g̃(x, e) and supg̃∈GMI
g̃(x, e),

respectively. However, these bounds may not coincide with BML(x, e) and BMU(x, e).

Actually, in some settings,
(
GML

x

)−1
(e) and

(
GMU

x

)−1
(e) are not nondecreasing in x.

This implies that
(
GML

x

)−1
(e) and

(
GMU

x

)−1
(e) are not sharp in general.

It is difficult to compute GM
I because GM is infinite dimensional. By contrast, BML(x, e)

and BMU(x, e) have closed-form expressions and are hence computable. In Simulations

2.1 and 2.2, we compute BML(x, e) and BMU(x, e) in some settings, and in Section 2.5,

we show that we can obtain informative bounds in real data.

2.4 Partial Identification through Concavity

In this section, we propose a method to construct the lower and upper bounds of g(x, e)

when g(x, e) is concave in x.
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First, we show that a set ΠC
x′,x defined below is nonempty and finite. Second, we show

that we can partially identify g using ΠC
x′,x when g(x, e) is concave in x.

For (x, x′) ∈ X × X , we define ΠC
x′,x as

ΠC
x′,x ≡

{
(n,m) : n,m ∈ Z, πn(x′), πn−1(x) and πm(x) exist,

and πn(x′) ≤ πm(x) ≤ πn−1(x′).
}
. (2.18)

In Figure 2.1, ΠC
x′,x = {(0,−1), (1, 0)}. The following lemma shows that ΠC

x′,x is nonempty

and finite, similar to Lemma 2.1.

Lemma 2.2. Under Assumptions 2.1–2.5, ΠC
x′,x as defined by (2.18) is nonempty and

finite for all (x, x′) ∈ X × X .

Similar to Section 2.3, we impose the following assumption.

Assumption 2.7 (Concavity). For all e ∈ (0, 1), g(x, e) is concave in x.

The concavity assumption holds in many economic models. For example, economic

analyses of production often assume that the production function is concave in inputs.

For instance, Manski (1997) assumes concavity and shows that the average treatment

response is partially identified. Further, D’Haultfoeuille et al. (2013) achieves the partial

identification of the average treatment on the treated effect using a locally concavity

assumption.

As in Section 2.3, if we identify functions TU
x′,x(y) and T

L
x′,x(y) that are strictly increas-

ing in y, surjective, and satisfy (2.2) and (2.3), we can obtain the lower and upper bounds

of g(x, e). Hence, we consider constructing functions TU
x′,x(y) and T

L
x′,x(y) that are strictly

increasing in y, surjective, and satisfy (2.2) and (2.3).

If (n,m) ∈ ΠC
x′,x, from Assumption 2.7, we have[

tx′,x(n,m)T̃
(n)
x′ + (1− tx′,x(n,m))T̃

(n−1)
x′

]
(g(x′, e)) ≤ T̃ (m)

x (g(x, e)) ,

where
[
tx′,x(n,m)T̃

(n)
x′ + (1− tx′,x(n,m))T̃

(n−1)
x′

]
(y) = tx′,x(n,m)T̃

(n)
x′ (y)+ (1− tx′,x(n,m))

T̃
(n−1)
x′ (y) and tx′,x(n,m) = (πn−1(x′)− πm(x)) / (πn−1(x′)− πn(x′)). Because T̃

(n)
x′ (y) and

T̃
(n−1)
x′ (y) are strictly increasing in y, T̃

(n)
x′

(
[y, y]

)
= [y, y], and T̃

(n−1)
x′

(
[y, y]

)
= [y, y], we

have

g(x′, e) ≤ min
(n,m)∈ΠC

x′,x

[
tx′,x(n,m)T̃

(n)
x′ + (1− tx′,x(n,m))T̃

(n−1)
x′

]−1 (
T̃ (m)
x (g(x, e))

)
.

We define

TCU
x′,x(y) ≡ min

(n,m)∈ΠC
x′,x

[
tx′,x(n,m)T̃

(n)
x′ + (1− tx′,x(n,m))T̃

(n−1)
x′

]−1 (
T̃ (m)
x (y)

)
,

TCL
x′,x(y) ≡ max

(n,m)∈ΠC
x,x′

(
T̃

(m)
x′

)−1 ([
tx,x′(n,m)T̃ (n)

x + (1− tx,x′(n,m))T̃ (n−1)
x

]
(y)
)
.
(2.19)
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Then, TCU
x′,x(y), as defined in (2.19), is strictly increasing and satisfies

g(x′, e) ≤ TCU
x′,x (g(x, e)) . (2.20)

Similarly, TCL
x′,x(y), as defined in (2.19), is strictly increasing and satisfies

g(x′, e) ≥ TCL
x′,x (g(x, e)) . (2.21)

We define

GCL
x (u) ≡

∫
FY |X=x′

(
TCU
x′,x(u)

)
dFX(x

′),

GCU
x (u) ≡

∫
FY |X=x′

(
TCL
x′,x(u)

)
dFX(x

′),

BCL(x, e) ≡ sup
y,y′:y<x<y′

{(
x− y

y′ − y

)(
GCL

y′

)−1
(e) +

(
y′ − x

y′ − y

)(
GCL

y

)−1
(e)

}
,

BCU(x, e) ≡ min
[
infy,y′:x<y<y′

{(
x−y
y′−y

)
BCL(y′, e) +

(
y′−x
y′−y

) (
GCU

y

)−1
(e)
}
,

infy,y′:y′<y<x

{(
y−x
y−y′

)
BCL(y′, e) +

(
x−y′
y−y′

) (
GCU

y

)−1
(e)
}]

.

GCL
x (u) and GCU

x (u) provide the lower and upper bounds of g(x, e) as per (2.4) and (2.5).

BCL(x, e) and BCU(x, e) strengthen these bounds.

Theorem 2.3. Under Assumptions 2.1–2.5 and 2.7, for all (x, e) ∈ X × (0, 1), we have

BCL(x, e) ≤ g(x, e) ≤ BCU(x, e).

Similar to Theorem 2.1, we can show that
(
GCL

x

)−1
(e) ≤ g(x, e) ≤

(
GCU

x

)−1
(e). We

strengthen the bounds to BCL(x, e) ≤ g(x, e) ≤ BCU(x, e) using the concavity of g(x, e)

in x. Figure 2.10 intuitively illustrates this proof. A similar approach is used by Manski

(1997), namely utilizing the concavity of the response function to partially identify the

average response function when the support of the outcome is bounded. However, our

approach does not require information on the infimum and supremum of the support of

the outcome.

This identification approach is somewhat similar to that of D’Haultfoeuille et al.

(2013), who study the identification of nonseparable models with continuous, endoge-

nous regressors, using repeated cross sections. Specifically, they consider the following

model:

Yt = gt(Xt, At), t = 1, · · · , T,

where At is an unobserved heterogeneous factor. They show that, under the assumptions

that At|Vt ≡ FXt(Xt) = v ∼ As|Vs ≡ FXs(Xs) = v and gt(x, a) = mt(g(x, a)), the
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average treatment on treated effect ∆ATT (x, x′) ≡ E[gT (x,AT ) − gT (x
′, AT )|XT = x] is

identified when FXT
(x) = FXt(x

′). Under this assumption, ∆ATT (x, x′) is not identified

if FXT
(x) ̸= FXt(x

′) for all t ∈ {1, · · · , T − 1}. However, they show that ∆ATT (x, x′) is

partially identified if x 7→ g(x, a) is locally concave.

In several cases, such as the production function, we can assume that both Assump-

tions 2.6 and 2.7 hold. Then, it follows from Theorems 2.1 and 2.3 that

max{BML(x, e), BCL(x, e)} ≤ g(x, e) ≤ min{BMU(x, e), BCU(x, e)}. (2.22)

In this case, we can obtain tighter bounds in the following manner. We define

TMCU
x′,x (y) ≡ min{TMU

x′,x (y), T
CU
x′,x(y)},

TMCL
x′,x (y) ≡ max{TML

x′,x (y), T
CL
x′,x(y)},

GMCL
x (u) ≡

∫
FY |X=x′

(
TMCU
x′,x (u)

)
dFX(x

′),

GMCU
x (u) ≡

∫
FY |X=x′

(
TMCL
x′,x (u)

)
dFX(x

′).

Similarly to the above arguments, we have g(x′, e) ≤ TMCU
x′,x (g(x, e)) and g(x′, e) ≥

TMCL
x′,x (g(x, e)), and hence we can obtain(

GMCL
x

)−1
(e) ≤ g(x, e) ≤

(
GMCU

x

)−1
(e).

Define

B̃MCL(x, e) ≡ sup
y:y≤x

{(
GMCL

y

)−1
(e)
}
,

B̃MCU(x, e) ≡ inf
y:y≥x

{(
GMCU

y

)−1
(e)
}
,

B̂MCL(x, e) ≡ sup
y,y′:y<x<y′

{(
x− y

y′ − y

)(
GMCL

y′

)−1
(e) +

(
y′ − x

y′ − y

)(
GMCL

y

)−1
(e)

}
,

B̂MCU(x, e) ≡ min
[
infy,y′:x<y<y′

{(
x−y
y′−y

)
B̂MCL(y′, e) +

(
y′−x
y′−y

) (
GMCU

y

)−1
(e)
}
,

infy,y′:y′<y<x

{(
y−x
y−y′

)
B̂MCL(y′, e) +

(
x−y′
y−y′

) (
GMCU

y

)−1
(e)
}]

.

Then, from the above results, both B̃MCU(x, e) and B̂MCU(x, e) are upper bounds of

g(x, e). Similarly, both B̃MCL(x, e) and B̂MCL(x, e) are also lower bounds of g(x, e).

Therefore, we can obtain

max{B̃MCL(x, e), B̂MCL(x, e)} ≤ g(x, e) ≤ min{B̃MCL(x, e), B̂MCL(x, e)}. (2.23)

Clearly, these bounds are tighter than (2.22).

Similar to Theorem 2.2, the following theorem shows that, if g(x, e) is linear in x over

a particular interval, inequalities (2.20) and (2.21) become equalities, and BCL(x, e) and

BCU(x, e) coincide with g(x, e).
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Theorem 2.4. Under Assumptions 2.1–2.5 and 2.7, if x̃ ∈ X exists such that g(x, e) is

linear in x on [π(x̃), π−1(x̃)], then BCL(x, e) and BCU(x, e) coincide with g(x, e). Hence,

g is point-identified. This result holds even if interval [π(x̃), π−1(x̃)] is unknown.

Example 2.2 (Quantile regression models). Assume g(X, ϵ) = θ0(ϵ) + θ1(ϵ)X, where

θ0(e)+ θ1(e)x is strictly increasing in e for all x ∈ X . This model is a quantile regression

model with endogeneity. The τ -th quantile function of g(x, ϵ) is θ0(τ) + θ1(τ)x. In this

case, structural function g(x, e) = θ0(e)+θ1(e)x is linear in x. Hence, Theorem 2.4 shows

that θ0(e) and θ1(e) are identified if binary instruments are available.

In this case, we can identify θ0
(
Qϵ|η(τ |v)

)
] and θ1

(
Qϵ|η(τ |v)

)
by another approach.

As in Section 2.3, we obtain ϵ|X = QX|Z(v|z), Z = z ∼ ϵ|η = v for all v ∈ (0, 1) and

z ∈ {0, 1}. This implies that

QY |X,Z

(
τ |QX|Z(v|0), 0

)
= θ0

(
Qϵ|η(τ |v)

)
+ θ1

(
Qϵ|η(τ |v)

)
×QX|Z(v|0),

QY |X,Z

(
τ |QX|Z(v|1), 1

)
= θ0

(
Qϵ|η(τ |v)

)
+ θ1

(
Qϵ|η(τ |v)

)
×QX|Z(v|1).

Because QX|Z(v|0) ̸= QX|Z(v|1) under Assumption 2.3, for all τ ∈ (0, 1) and v ∈ (0, 1),

we can obtain θ0
(
Qϵ|η(τ |v)

)
and θ1

(
Qϵ|η(τ |v)

)
from the above equations. This result is

similar to the identification results of Chesher (2003) and Jun (2009).

The above model is a special case of the linear correlated random coefficients (CRC)

model. Masten and Torgovitsky (2016) consider the linear CRC model and show that

the expectations of coefficients are identified. In this model, we can also identify the ex-

pectations of coefficients as E[θj(ϵ)]. Let U be a uniformly distributed random variable.

Then, it follows from Qϵ|η(U |v) ∼ ϵ|η = v that
∫ 1

0
θj
(
Qϵ|η(τ |v)

)
dτ = E

[
θj
(
Qϵ|η(U |v)

)]
=

E[θj(ϵ)|η = v]. Hence, since η is uniformly distributed, we have
∫ 1

0

∫ 1

0
θj
(
Qϵ|η(τ |v)

)
dτdv =

E[θj(ϵ)].

2.5 Calculating Bounds using Real Data

Here, we compute the bounds defined in Theorem 2.1 using the data in Macours et al.

(2012) and show that our bounds are informative using real data. Specifically, Macours

et al. (2012) analyze the income effects on early childhood cognitive development by using

the Atención a Crisis program, which is a cash transfer program implemented in rural

areas in Nicaragua. As in Example 2.1, we focus on the income effects on early childhood

cognitive development.

In the analysis, we use only children between 5 and 7 years of age to control for age

effects. The sample size for this analysis is 447, the size of the treatment group is 206, and

that of the control group is 241. Following Macours et al. (2012), we use a standardized
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test score of receptive vocabulary (TVIP) as the outcome of a child’s cognitive devel-

opment. The average test score is 0.449 and the standard deviation 1.212. We use the

logarithm of total consumption per capita as X, and let Z denotes the control indicator.

We then estimate the conditional distribution and quantile functions and compute the

bounds defined in Theorem 2.1 by treating these estimates as true functions.

Figure 2.11 shows the estimates of FX|Z(x|0) and FX|Z(x|1). This shows that these

functions do not have any intersections. Hence, Assumption 2.3 is satisfied. Since the

estimates of the tail of probability distributions are not reliable, we only use the estimates

of FX|Z(x|0) and FX|Z(x|1) between 0.1 and 0.9. We thus compute BML(x, 0.5) and

BMU(x, 0.5) by using these estimates. Figure 2.12 shows the bounds. This implies that we

can obtain informative bounds by using our identification approach. The average length

of the difference is 0.045, which is rather small compared with the standard deviation

of Y . These bounds show that the structural function is flat in x when x is low. As in

Simulations 2.1 and 2.2, it is expected that this fact provides informative bounds of g.

2.6 Extension: General Models

In this section, we extend the results in Section 2.3 to more general models and allow Y

to be discrete or censored. If outcomes are discrete or censored, then Assumptions 2.2

and 2.4 are not satisfied. Hence, we replace these assumptions with the following ones:

Assumption 2.2’. (i) Function g(x, e) is nondecreasing in e for all x ∈ X . (ii) For all

z ∈ {0, 1}, h(z, v) is continuous and strictly increasing in v.

Assumption 2.4’. For all (z, x) ∈ {0, 1} × Xz, we have Yx,z = Y. Here, we define

y ≡ sup{y : y ∈ Y} and y ≡ inf{y : y ∈ Y}.

Assumption 2.2’ (i) differs from Assumption 2.2 (i). Assumption 2.2 (i) imposes the

strict monotonicity of g(x, e) in e, while Assumption 2.2’ (i) requires only the weak mono-

tonicity of g(x, e) in e. For example, if we consider

g(x, e) = 1{e > (1 + exp(β0 + β1x))
−1},

then g(x, e) is not strictly increasing in e. Chesher (2010) and Shaikh and Vytlacil (2011)

also employ a weak monotonicity condition. Assumption 2.4 implies that Y is continuously

distributed, while Assumptions 2.2’ and 2.4’ allow outcomes that are discrete or censored.

D’Haultfœuille and Février (2015) and Torgovitsky (2015) do not consider the case in

which the outcomes are discrete or censored because they assume that g(x, e) is strictly

increasing in e. Chesher (2010) and Shaikh and Vytlacil (2011) consider instrumental
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variable models for the discrete outcome. They also show that the structural or average

structural functions are partially identified using instruments.

We show that g(x, e) is partially identified under Assumptions 2.1, 2.2’, 2.3, 2.4’, 2.5,

and 2.6.

We define

F+
Y |X,Z(y|x, z) ≡ P (Y ≤ y|X = x, Z = z),

F−Y |X,Z(y|x, z) ≡ P (Y < y|X = x, Z = z),

Q+
Y |X,Z(τ |x, z) ≡ sup{y : F−Y |X,Z(y|x, z) ≤ τ} ∧ y,

Q−Y |X,Z(τ |x, z) ≡ inf{y : F+
Y |X,Z(y|x, z) ≥ τ} ∨ y.

F+
Y |X,Z(y|x, z) and Q

+
Y |X,Z(τ |x, z) are right continuous in y and τ , and F−Y |X,Z(y|x, z) and

Q−Y |X,Z(τ |x, z) are left continuous in y and τ . Under Assumptions 2.2’ and 2.4’, Proposi-

tion 2.1 does not hold. Instead, we show the following proposition.

Proposition 2.2. Define

T̂ (1)
x (y) ≡ Q−Y |X,Z

(
F−Y |X,Z(y|x, 0)

∣∣∣π(x), 1) ,
Ť (1)
x (y) ≡ Q+

Y |X,Z

(
F+
Y |X,Z(y|x, 0)

∣∣∣π(x), 1) ,
T̂ (−1)
x (y) ≡ Q−Y |X,Z

(
F−Y |X,Z(y|x, 1)

∣∣∣π−1(x), 0) ,
Ť (−1)
x (y) ≡ Q+

Y |X,Z

(
F+
Y |X,Z(y|x, 1)

∣∣∣π−1(x), 0) .
Then, under Assumptions 2.1, 2.2’, 2.3, 2.4’, and 2.5, we have

g (π(x), e) ≥ T̂ (1)
x (g(x, e)) ,

g (π(x), e) ≤ Ť (1)
x (g(x, e)) ,

g
(
π−1(x), e

)
≥ T̂ (−1)

x (g(x, e)) ,

g
(
π−1(x), e

)
≤ Ť (−1)

x (g(x, e)) .

This approach is similar to the identification approaches of Athey and Imbens (2006)

and Chesher (2010). Specifically, Athey and Imbens (2006) show that the counterfactual

distribution is partially identified using right and left continuous quantile functions when

outcomes are discrete. Chesher (2010) uses a result in which the weak monotonicity of

h(x, u) in u implies {u : h(x, u) ≤ h(x, τ)} ⊃ {u : u ≤ τ} and {u : h(x, u) < h(x, τ)} ⊂
{u : u < τ} and shows that structural function h is partially identified.

When the outcome is binary, this result is similar to Lemma 2.1 in Shaikh and Vytlacil

(2011). They consider the following model:

Y = 1{v1(D,X) ≥ ϵ1},

D = 1{v2(Z) ≥ ϵ2},
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where (X,Z)⊥⊥(ϵ1, ϵ2). They then show that the sign of v1(1, x
′) − v1(0, x) is identified

under the appropriate support condition. Similarly, we can obtain the sign of g(x, e) −
g(π(x), e) from Proposition 2.2. When P (Y = 0|X = x, Z = 0) > P (Y = 0|X =

π(x), Z = 1), we have T̂
(1)
x (1) = 1 and T̂

(1)
x (0) = 0. It follows from Proposition 2.2 that

g(π(x), e) ≥ g(x, e). Hence, we can identify the sign of g(x, e)− g(π(x), e).

We define T̂
(n)
x (y) ≡ T̂

(1)

πn−1(x) ◦ · · · ◦ T̂
(1)
x (y) and Ť

(n)
x (y) ≡ Ť

(1)

πn−1(x) ◦ · · · ◦ Ť
(1)
x (y) if πn(x)

exists. Then, we have

g(πn(x), e) ≥ T̂ (n)
x (g(x, e)) ,

g(πn(x), e) ≤ Ť (n)
x (g(x, e)) .

Similarly, we define T̂
(−n)
x (y) ≡ T̂

(−1)
π−(n−1)(x)

◦ · · · ◦ T̂ (−1)
x (y) and Ť

(−n)
x (y) ≡ Ť

(−1)
π−(n−1)(x)

◦ · · · ◦
Ť

(−1)
x (y) if π−n(x) exists. Then, we have

g(π−n(x), e) ≥ T̂ (−n)
x (g(x, e)) ,

g(π−n(x), e) ≤ Ť (−n)
x (g(x, e)) .

We define T̂
(0)
x (y) = y and Ť

(0)
x (y) = y for any x ∈ X .

If (n,m) ∈ ΠM
x′,x, then Assumption 2.6 implies that

T̂
(n)
x′ (g(x′, e)) ≤ g(πn(x′), e) ≤ g(πm(x), e) ≤ Ť (m)

x (g(x, e)) .

If also define (
T̂

(n)
x′

)→
(u) ≡ sup{y : T̂

(n)
x′ (y) ≤ u} ∧ y,

we have
(
T̂

(n)
x′

)→ (
T̂

(n)
x′ (y)

)
= sup{y′ : T̂ (n)

x′ (y′) ≤ T̂
(n)
x′ (y)} ∧ y ≥ y for all y ∈ Y . Hence,

we obtain

g(x′, e) ≤ min
(n,m)∈ΠM

x′,x

(
T̂

(n)
x′

)→ (
Ť (m)
x (g(x, e))

)
.

If defining TGU
x′,x(y) ≡ min(n,m)∈ΠM

x′,x

(
T̂

(n)
x′

)→ (
Ť

(m)
x (y)

)
, then TGU

x′,x(y) satisfies

g(x′, e) ≤ TGU
x′,x (g(x, e)) . (2.24)

Similarly, if we define TGL
x′,x(y) ≡ max(n,m)∈ΠM

x,x′

(
Ť

(m)
x′

)← (
T̂

(n)
x (y)

)
and

(
Ť

(m)
x′

)←
(u) ≡

inf{y : Ť
(m)
x′ (y) ≥ u} ∨ y, then TGL

x′,x(y) satisfies

g(x′, e) ≥ TGL
x′,x (g(x, e)) . (2.25)
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We define

GGL
x (u) ≡

∫
F+
Y |X

(
TGU
x′,x(u)|x′

)
dF (x′),

GGU
x (u) ≡

∫
F−Y |X

(
TGL
x′,x(u)|x′

)
dF (x′),

BGL(x, e) ≡ sup
y:y≤x

{
inf{u : GGL

y (u) ≥ e}
}
∨ y,

BGU(x, e) ≡ inf
y:y≥x

{
sup{u : GGU

y (u) ≤ e}
}
∧ y,

where F+
Y |X(y|x) ≡ P (Y ≤ y|X = x) and F−Y |X(y|x) ≡ P (Y < y|X = x). GGL

x (u) and

GGU
x (u) provide the lower and upper bounds of g(x, e) by an argument similar to (2.4)

and (2.5). BGL(x, e) and BGU(x, e) strengthen these bounds.

Theorem 2.5. Under Assumptions 2.1, 2.2’, 2.3, 2.4’, 2.5, and 2.6, for all (x, e) ∈
X × (0, 1), we have

BGL(x, e) ≤ g(x, e) ≤ BGU(x, e).

2.7 Conclusions

In this chapter, we consider the partial identification of nonseparable models using binary

instruments. We show that partial identification can be achieved when g(x, e) is monotone

or concave in x, even if X is continuous and Z is binary. D’Haultfœuille and Février

(2015) and Torgovitsky (2015) show that g is point identified without monotonicity and

concavity. They use two key assumptions to establish the point identification of g. First,

FX|Z(x|0) and FX|Z(x|1) have intersections and second, g(x, e) is strictly increasing in a

scalar unobservable. However, there are many empirically important models that do not

satisfy these assumptions. As such, we provide bounds for structural functions without

the use of these assumptions.
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2.8 Appendix: Proofs

Proof of Proposition 2.1. Step.1 We show that, for all e ∈ (0, 1) and x ∈ X0,

P (ϵ ≤ e|X = x, Z = 0) = P (ϵ ≤ e|X = π(x), Z = 1). (2.26)

First, we examine variable V ≡ FX|Z(X|Z). This is called “control variable” in Imbens

and Newey (2009). Let h−1(z, x) be the inverse function of h(z, v) with respect to v. We

thus have, for all (z, x) ∈ {0, 1} × Xz,

FX|Z(x|z) = P (h(z, η) ≤ x|Z = z)

= P
(
η ≤ h−1(z, x)|Z = z

)
= P

(
η ≤ h−1(z, x)

)
= h−1(z, x),

where the second equality follows from the strict monotonicity of h(x, v) in v and the

third equality follows from Z ⊥⊥(ϵ, η). Therefore, we obtain

V = h−1(Z,X) = η.

Next, we show that the conditional distribution of ϵ conditional on (X,Z) = (x, z)

is the same as that of ϵ conditional on V = FX|Z(x|z). Because (x, z) → (FX|Z(x|z), z)
is one-to-one and FX|Z(x|z) is continuous in x, the σ-field generated by X and Z is the

same as that generated by V and Z. Hence, we have

P (ϵ ≤ e|X = x, Z = z) = P
(
ϵ ≤ e|V = FX|Z(x|z), Z = z

)
.

It follows from Z ⊥⊥(ϵ, η) and V = η that

P (ϵ ≤ e|X = x, Z = z) = P
(
ϵ ≤ e|V = FX|Z(x|z)

)
. (2.27)

Hence, the conditional distribution of ϵ conditional on X and Z solely depends on V =

FX|Z(X|Z).
By definition, functions π(x) and π−1(x) satisfy

FX|Z(π(x)|1) = FX|Z(x|0),

FX|Z(π
−1(x)|0) = FX|Z(x|1).

(2.28)

Hence, events {X = x, Z = 0} and {X = π(x), Z = 1} have the same V = FX|Z(X|Z),
and (2.26) follows from (2.27).

Step.2 We show that (2.26) implies g (π(x), e) = T̃
(1)
x (g(x, e)). For all (x, e) ∈ X0× (0, 1),
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we have

T̃ (1)
x (g(x, e)) = QY |X=π(x),Z=1

(
FY |X=x,Z=0 (g(x, e))

)
= QY |X=π(x),Z=1 (P (ϵ ≤ e|X = x, Z = 0))

= QY |X=π(x),Z=1 (P (ϵ ≤ e|X = π(x), Z = 1))

= QY |X=π(x),Z=1

(
FY |X=π(x),Z=1 (g(π(x), e))

)
= g(π(x), e),

where the third equality follows from (2.26).

Similarly, we can prove g (π−1(x), e) = T̃
(−1)
x (g(x, e)).

Proof of Lemma 2.1. Observe that, if πn(x) exists and πn(x) ∈ X0, then πn+1(x) also

exists from (2.6). Suppose that there does not exist n ∈ N ∪ {0} such that πn(x) ∈
X1 ∩ X c

0 = (x1, x0]. Then, there exists sequence {xn}∞n=0 such that xn = πn(x). By (2.9),

{xn}∞n=0 is a decreasing sequence. Because xn > x0, {xn}∞n=0 converges to x∞ ∈ [x0, x
0).

It follows from (2.28) that

FX|Z(xn+1|1) = FX|Z(xn|0),

meaning we have FX|Z(x∞|1) = FX|Z(x∞|0) by the continuity of FX|Z . However, this

equation violates Assumption 2.3. Hence, for all x ∈ X , there exists n ∈ N ∪ {0} such

that πn(x) ∈ X1 ∩ X c
0 . Consequently, πn′

(x) does not exist for n′ > n. Similarly, for

all x ∈ X , we have π−m(x) ∈ X0 ∩ X c
1 for some m ∈ N ∪ {0}. Then, π−m

′
(x) does

not exist for m′ > m. Therefore, ΠM
x′,x is finite for all (x, x′) ∈ X × X because the set

{(n,m) ∈ Z× Z : πn(x′) and πm(x) exist.} is finite.

We proceed to show the nonemptiness of ΠM
x′,x. For all x, x

′ ∈ X , (n,m) ∈ Z×Z exists

such that πn(x′) ∈ X1 ∩ X c
0 = (x1, x0] and πm(x) ∈ X0 ∩ X c

1 = [x1, x0). It follows from

Assumption 2.3 (ii) that πn(x′) < πm(x).

Proof of Theorem 2.1. As discussed in Section 2.3, it suffices to show that TML
x′,x (y) and

TMU
x′,x (y) are strictly increasing in y and surjective. If πn(x) exists, T̃

(n)
x (y) is strictly

increasing in y. Hence, TML
x′,x (y) and T

MU
x′,x (y) are strictly increasing in y because ΠM

x′,x is

finite by Lemma 2.1. If πn(x) exists, we obtain T̃
(n)
x ([y, y]) = [y, y]. Because ΠM

x′,x is finite,

we have TML
x′,x (y) and T

MU
x′,x (y) are surjective.
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Proof of Theorem 2.2. Step.1 First, we show that, for all x ∈ X , there exists n∗ ∈ Z such

that πn∗
(x) and πn∗+1(x) are well defined and πn∗

(x), πn∗+1(x) ∈ [π(x̃), π−1(x̃)]. If πn(x)

and πn(y) are well defined, because πn(·) is strictly increasing, we can obtain

x ≤ y ⇒ πn(x) ≤ πn(y). (2.29)

We consider the following four cases: (i) π(x̃) ≤ x ≤ x̃, (ii) x̃ ≤ x ≤ π−1(x̃), (iii) x < π(x̃),

and (iv) x > π−1(x̃). In case (i), it follows from (2.29) that π(x̃) ≤ x ≤ x̃ ≤ π−1(x) ≤
π−1(x̃). In case (ii), it follows from (2.29) that π(x̃) ≤ π(x) ≤ x̃ ≤ x ≤ π−1(x̃). In case

(iii), it follows from the proof of Lemma 2.1 that n ∈ N exists such that π−n(x) ∈ X0∩X c
1 .

This implies that π−1(x), ..., π−n(x) exist. By the definition of π, we have π(x̃) ∈ X1, and

hence x < π(x̃) < π−n(x). Therefore, there exists n∗ ∈ Z such that πn∗+2(x) ≤ π(x̃) ≤
πn∗+1(x) and we can obtain π(x̃) ≤ πn∗+1(x) ≤ x̃ ≤ πn∗

(x) ≤ π−1(x̃) from (2.29).

Similarly, in case (iv), there exists n∗ ∈ Z such that πn∗
(x), πn∗+1(x) ∈ [π(x̃), π−1(x̃)].

Step.2 Next, we show that g is point identified. From step 1, for all x, x′ ∈ X , there exists

n,m ∈ Z such that πn(x′), πn+1(x′), πm(x), πm+1(x) ∈ [π(x̃), π−1(x̃)]. Then, from (2.29),

we have either πn+1(x′) ≤ πm+1(x) ≤ πn(x′) ≤ πm(x) or πm+1(x) ≤ πn+1(x′) ≤ πm(x) ≤
πn(x′). If πn+1(x′) ≤ πm+1(x) ≤ πn(x′) ≤ πm(x), then we have (n + 1,m + 1), (n,m) ∈
ΠM

x′,x. If πm+1(x) ≤ πn+1(x′) ≤ πm(x) ≤ πn(x′), then we have (n + 1,m) ∈ ΠM
x′,x. Hence,

there exists a pair (n∗,m∗) ∈ ΠM
x′,x such that πn∗

(x′), πm∗
(x) ∈ [π(x̃), π−1(x̃)]. As g(x, e)

is constant on [π(x̃), π−1(x̃)], we obtain

T̃
(n∗)
x′ (g(x′, e)) = T̃ (m∗)

x (g(x, e)) .

Therefore, g(x′, e) = TMU
x′,x (g(x, e)). Hence,

(
GML

x

)−1
(e) coincides with g(x, e) because

(2.15) becomes an equality. This implies that BML(x, e) coincides with g(x, e). Similarly,

BMU(x, e) coincides with g(x, e).

Proof of Lemma 2.2. From the proof of Lemma 2.1, ΠC
x′,x is finite. Hence, we prove the

nonemptiness of ΠC
x′,x. From the proof of Lemma 2.1, for all x, x′ ∈ X , there exist n,m ∈ Z

such that πm(x), πn(x′) ∈ X1∩X c
0 . Without loss of generality, we assume πn(x′) ≤ πm(x).

Then, πm−1(x) and πn−1(x′) exist because πm(x), πn(x′) ∈ X1. Because π
m(x) ∈ X1 ∩ X c

0

and πn−1(x′) ∈ X0, we have π
n(x′) ≤ πm(x) ≤ πn−1(x′) ≤ πm−1(x) from (2.29), and hence

(n,m) ∈ ΠC
x′,x. Therefore, Π

C
x′,x is nonempty.

Proof of Theorem 2.3. Similar to the proof of Theorem 2.1, we can obtain(
GCL

x

)−1
(e) ≤ g(x, e) ≤

(
GCU

x

)−1
(e).
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Because g(x, e) is concave in x, if x = ty′+ (1− t)y and t ∈ (0, 1), then we have g(x, e) ≥
tg(y′, e) + (1− t)g(y, e) ≥ t

(
GCL

y′

)−1
(e) + (1− t)

(
GCL

y

)−1
(e). Hence, we have

g(x, e) ≥ sup
y,y′:y<x<y′

{(
x− y

y′ − y

)(
GCL

y′

)−1
(e) +

(
y′ − x

y′ − y

)(
GCL

y

)−1
(e)

}
.

Because g(x, e) is concave in x, if x = ty′ + (1 − t)y and t < 0, then we have g(x, e) ≤
tg(y′, e)+ (1− t)g(y, e). Because BCL(x, e) ≤ g(x, e) ≤

(
GCU

x

)−1
(e), t < 0, and 1− t > 0,

we have g(x, e) ≤ tBCL(y′, e) + (1 − t)
(
GCU

y

)−1
(e). Similarly, if x = ty + (1 − t)y′ and

t > 1, then we have g(x, e) ≤ tg(y, e) + (1− t)g(y′, e) ≤ t
(
GCU

y

)−1
(e) + (1− t)BCL(y′, e).

Hence, we have

g(x, e) ≤ min
[
infy,y′:x<y<y′

{(
x−y
y′−y

)
BCL(y′, e) +

(
y′−x
y′−y

) (
GCU

y

)−1
(e)
}
,

infy,y′:y′<y<x

{(
y−x
y−y′

)
BCL(y′, e) +

(
x−y′
y−y′

) (
GCU

y

)−1
(e)
}]

.

Proof of Theorem 2.4. Similar to Theorem 2.2, for all x, x′ ∈ X , there exist (n,m) ∈ ΠC
x′,x

such that πn(x′), πn−1(x′), and πm(x) are in [π(x̃), π−1(x̃)]. Because g(x, e) is linear in x,

we have [
tx′,x(n,m)T̃

(n)
x′ + (1− tx′,x(n,m))T̃

(n−1)
x′

]
(g(x′, e)) = T̃ (m)

x (g(x, e)) .

Similarly, for all x, x′ ∈ X , there exist (n,m) ∈ ΠC
x,x′ such that

T̃
(m)
x′ (g(x′, e)) =

[
tx,x′(n,m)T̃ (n)

x + (1− tx,x′(n,m))T̃ (n−1)
x

]
(g(x, e)) .

Hence, as described above, BCL(x, e) and BCU(x, e) coincide with g(x, e) because inequal-

ities (2.20) and (2.21) become equalities.

Proof of Proposition 2.2. Because g(x, e) is nondecreasing in e, we have

F−Y |X,Z (g(x, e)|x, 0) = P (g(x, ϵ) < g(x, e)|X = x, Z = 0)

≤ P (ϵ < e|X = x, Z = 0)

= P (ϵ ≤ e|X = π(x), Z = 1)

≤ P (g (π(x), ϵ) ≤ g (π(x), e) |X = π(x), Z = 1)

= F+
Y |X,Z (g(π(x), e)|π(x), 1) , (2.30)

where the first inequality follows from {ϵ : g(x, ϵ) < g(x, e)} ⊂ {ϵ : ϵ < e} and the second

from {ϵ : ϵ ≤ e} ⊂ {ϵ : g(x, ϵ) ≤ g(x, e)}. From the definition of Q−Y |X,Z(τ |x, z), it follows
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that Q−Y |X,Z

(
F+
Y |X,Z(y|x, z)

∣∣∣x, z) = inf{y′ : F+
Y |X,Z(y

′|x, z) ≥ F+
Y |X,Z(y|x, z)} ∨ y ≤ y for

all y ∈ Y . Hence, inequality (2.30) implies that

T̂ (1)
x (g(x, e)) = Q−Y |X,Z

(
F−Y |X,Z(g(x, e)|x, 0)

∣∣∣π(x), 1)
≤ Q−Y |X,Z

(
F+
Y |X,Z (g(π(x), e)|π(x), 1)

∣∣∣π(x), 1)
≤ g(π(x), e).

Similarly, because g(x, e) is nondecreasing in e, we have

F+
Y |X,Z (g(x, e)|x, 0) ≥ F−Y |X,Z (g(π(x), e)|π(x), 1) .

Because Q+
Y |X,Z

(
F−Y |X,Z(y|x, z)

∣∣∣x, z) = sup{y′ : F−Y |X,Z(y
′|x, z) ≤ F−Y |X,Z(y|x, z)} ∧ y ≥ y

for all y ∈ Y , we have

g(π(x), e) ≤ Ť (1)
x (g(x, e)) .

Similarly, we have two inequalities: g(π−1(x), e) ≥ T̂
(−1)
x (g(x, e)) and g(π−1(x), e) ≤

Ť
(−1)
x (g(x, e)).

Proof of Theorem 2.5. First, we show that

inf{u : GGL
x (u) ≥ e} ∨ y ≤ g(x, e) ≤ sup{u : GGU

x (u) ≤ e} ∧ y. (2.31)

Because TGU
x′,x(y) satisfies (2.24), we have

GGL
x (g(x, e)) =

∫
F+
Y |X=x′

(
TGU
x′,x(g(x, e))

)
dF (x′)

≥
∫
F+
Y |X=x′ (g(x

′, e)) dF (x′)

=

∫
P (g(x′, ϵ) ≤ g(x′, e)|X = x′) dF (x′)

≥
∫
P (ϵ ≤ e|X = x′) dF (x′) = e,

where the second inequality follows from {ϵ : ϵ ≤ e} ⊂ {ϵ : g(x′, ϵ) ≤ g(x′, e)}. Because

g(x, e) ≥ y, we can obtain g(x, e) ≥ inf{u : GGL
x (u) ≥ e} ∨ y. Similarly, because TGL

x′,x(y)

satisfies (2.25), we have

GGU
x (g(x, e)) ≤

∫
F−Y |X=x′ (g(x

′, e)) dF (x′)

=

∫
P (g(x′, ϵ) < g(x′, e)|X = x′) dF (x′)

≤
∫
P (ϵ < e|X = x′) dF (x′) = e,
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where the second inequality follows from {ϵ : g(x′, ϵ) < g(x′, e)} ⊂ {ϵ : ϵ < e}. Hence, we
can obtain g(x, e) ≤ sup{u : GGU

x (u) ≤ e} ∧ y.
Because g(x, e) is nondecreasing in x and (2.31) holds, similar to Theorem 2.1, we

have BGL(x, e) ≤ g(x, e) ≤ BGU(x, e).

33



2.9 Appendix: Figures

Figure 2.1: The case where Assumption 2.3 holds.
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Figure 2.2: The case where Assumption 2.3 does not hold.

Figure 2.3: The dashed lines denote
(
GML

x

)−1
(e) and

(
GMU

x

)−1
(e). The solid lines denote

BML(x, e) and BMU(x, e).
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Figure 2.4: FX|Z(x|0) and FX|Z(x|1) for Simulation 2.1.

Figure 2.5: h(x) = h1(x). The solid line denotes g(x, 0.5). The dashed, dotted, and dash-

dotted lines denote BML(x, 0.5) and BMU(x, 0.5) when ρ = 0.3, 0.1, and 0.01, respectively.
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Figure 2.6: h(x) = h2(x). The solid line denotes g(x, 0.5). The dashed, dotted, and dash-

dotted lines denote BML(x, 0.5) and BMU(x, 0.5) when ρ = 0.3, 0.1, and 0.01, respectively.

Figure 2.7: δ = 0.4. The dashed line denotes g(x, 0.5). The solid lines denote BML(x, 0.5)

and BMU(x, 0.5).
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Figure 2.8: δ = 0.55. The dashed line denotes g(x, 0.5). The solid lines denote BML(x, 0.5)

and BMU(x, 0.5).

Figure 2.9: δ = 1.2. The dashed line denotes g(x, 0.5). The solid lines denote BML(x, 0.5)

and BMU(x, 0.5).
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Figure 2.10: The dashed lines denote
(
GCL

x

)−1
(e) and

(
GCU

x

)−1
(e). The solid lines denote

BCL(x, e) and BCU(x, e).

Figure 2.11: The right-hand line denotes FX|Z(x|0) and the left-hand one denotes

FX|Z(x|1).
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Figure 2.12: The lower line denotes BML(x, 0.5) and the upper one denotes BMU(x, 0.5).
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Chapter 3

Identification and Estimation of

Time-Varying Nonseparable Panel

Data Models without Stayers†

3.1 Introduction

In this chapter, we consider the identification and estimation of the following nonseparable

panel data model:

Yit = gt(Xit, Uit), i = 1, · · · , n, t = 1, · · · , T, (3.1)

where Yit ∈ R is a scalar response variable, Xit ∈ Rk is a vector of explanatory variables,

and Uit ∈ R is a scalar unobservable variable. Suppose that Yi = (Yi1, · · · , YiT ) and

Xi = (X ′i1, · · · , X ′iT ) are observable. Many widely used panel data models fall into this

category. For example, this specification contains the textbook linear panel data model

Yit = X ′itβ + αi + ϵit,

because we can regard αi + ϵit as Uit. Furthermore, it contains the following nonlinear

panel data models:

Yit = h−1(X ′itβ + γt + αi + ϵit), (3.2)

Yit = c(U(αi, ϵit)) +X ′itβ(U(αi, ϵit)), (3.3)

where (3.2) is the transformation model proposed by Abrevaya (1999), and (3.3) is the

random effects quantile regression model proposed by Galvao and Poirier (2017).

†This chapter is based on Ishihara (2019).
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The importance of unobserved heterogeneity when modeling economic behavior is

widely recognized. Nonseparable models capture the unobserved heterogeneity effect of

explanatory variables on outcomes because these models allow the derivative of the struc-

tural function to depend on an unobserved variable. Indeed, there is extensive literature

on nonseparable panel data models including Altonji and Matzkin (2005),Evdokimov

(2010), Hoderlein and White (2012), Chernozhukov, Fernández-Val, Hahn, and Newey

(2013), D’Haultfoeuille et al. (2013), and Chernozhukov, Fernandez-Val, Hoderlein, Holz-

mann, and Newey (2015).

This study shows that we can nonparametrically identify gt(x, u) when gt(x, u) is

strictly increasing in u, the conditional distributions of Uit are the same over time, and the

support of Xi satisfies some weak assumptions. To identify the target parameters, many

nonseparable panel data models assume that the structural function does not change over

time, and require the existence of “stayers”, namely individuals with the same regressor

values in two time periods. By contrast, our approach allows gt to depend on the time

period t in an arbitrary manner and does not require the existence of stayers.

Although modeling time trends is important in research on panel data, existing nonsep-

arable panel data models assume that the structural function does not change over time or

impose some restrictions on these time trends. For instance, Altonji and Matzkin (2005)

do not allow gt to depend on time period t; Evdokimov (2010) and Hoderlein and White

(2012) use additive time effects; and Chernozhukov et al. (2013) and Chernozhukov et al.

(2015) use additive location time effects and multiplicative-scale time effects. Moreover,

Chernozhukov et al. (2015) assume that gt(x, u) can be written as µt(x) + σt(x)ϕ(x, u).

Thus, time effects are linearly conditional on explanatory variables in this model, and as

such it does not allow for nonlinear time effects. Indeed, D’Haultfoeuille et al. (2013) allow

for nonlinear time effects by assuming that gt(x, u) can be written asmt(h(x, u)), wheremt

is a monotonic transformation. While this transformation extends the typical additive lo-

cation time effects and captures macro-shocks, it does not allow the effect of macro-shocks

to depend directly on an unobserved variable, and stipulates that ∇xgt(x, u)/∇ugt(x, u)

does not depend on time. For example, consider the relationship between consumption

and income. We write the Engel function of the i-th household as

Yit = ϕ(Xit,Mt, Uit),

where Yit is consumption, Xit is income, Uit is the scalar unobserved heterogeneity that

represents preference, and Mt is a macroeconomic variable. However, such a model does

not satisfy D’Haultfoeuille et al. (2013) since ∇xϕ(x,Mt, u)/∇uϕ(x,Mt, u) depends on

Mt. By contrast, our assumptions can accommodate this model, because we can rewrite

this as (3.1) by treating ϕ(x,Mt, u) as gt(x, u).
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Many nonseparable panel data models require the existence of stayers: Evdokimov

(2010), Hoderlein and White (2012), and Chernozhukov et al. (2015) require stayers in

order to identify the structural functions or derivatives of the average and quantile struc-

tural functions. In particular, to identify the structural function, Evdokimov (2010)

requires the support of (Xi1, Xi2) contains (x, x) for all x. Many empirically important

models do not satisfy this assumption. For example, in standard difference-in-differences

(DID) models, there are no individuals treated during both time periods. Our approach

does not require the existence of stayers and allows the support condition employed in

standard DID models.

Our identification approach is based on the conditional stationary condition, that is,

the conditional distribution function of Uit given Xi does not change over time. Similar

assumptions are employed in all the aforementioned papers except for Altonji and Matzkin

(2005). Indeed, Manski (1987), Abrevaya (1999), Athey and Imbens (2006), Hoderlein and

White (2012), Graham and Powell (2012), Chernozhukov et al. (2013), and Chernozhukov

et al. (2015) essentially make the same assumption. Whereas Evdokimov (2010) does

not impose this assumption explicitly, a similar assumption is made by considering the

following model: Yit = m(Xit, αi) + Uit. In this model, the unobservable variable αi

automatically satisfies the conditional stationarity because αi does not depend on t. By

contrast, D’Haultfoeuille et al. (2013) do not assume the conditional stationarity of Uit

given Xi because they consider the identification of nonseparable models using repeated

cross-sections. Rather, they assume that the conditional distribution of Uit given Vit ≡
FXt(Xit) does not depend on time.

In the literature on nonseparable panel data models, many papers allow the unobserv-

able variable to be a vector or do not impose monotonicity on the structural function, for

example, Altonji and Matzkin (2005), Evdokimov (2010), Hoderlein and White (2012),

Chernozhukov et al. (2013), and Chernozhukov et al. (2015). On the other hand, our

model assumes that the unobservable variable is scalar, and that the structural function

is strictly increasing in the unobservable variable. These assumptions are restrictive but

crucial for our identification results.

In estimation part of the paper, we propose parametric and nonparametric estima-

tion methods. We develop estimators based on the conditional stationary condition. Our

parametric method is similar to that of Torgovitsky (2017). This estimator is obtained

by minimizing the distance between the conditional distributions of Ui1 and Ui2. We then

prove consistency and asymptotic normality of this estimator. Because the asymptotic

variance is complicated, we also show the validity of the nonparametric bootstrap. Our

nonparametric estimator is obtained by using a kernel function, and we show consis-

tency of this nonparametric estimator. Monte Carlo studies indicate that our parametric
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estimator performs well in finite samples.

Finally, we extend our identification results to models in which outcomes are discrete.

This class of models includes many empirically important models such as binary choice

panel data models. Models in this class cannot point-identify gt, but can partially identify

it by using the suggestion developed in Chesher (2010). We also allows gt to depend on

the time period t in an arbitrary manner and does not require the existence of stayers.

However, the support condition becomes stronger than it is in models with continuous

outcomes.

The remainder of the paper is organized as follows. Section 3.2 demonstrates the

nonparametric identification of gt when outcome variables are continuous. In Section 3.3,

we propose the estimator under the parametric assumption and discuss its consistency,

asymptotic normality, and bootstrap. Section 3.4 reports the results of several Monte

Carlo simulations. In Section 3.5, we consider the case where Yit is discrete and show

the partial identification of gt. Section 3.6 offers concluding remarks. The proofs of the

theorems and auxiliary lemmas are collected in the Appendix.

3.2 Identification

First, for notational convenience we drop the subscript i and let T = 2. It is straight-

forward to extend the results to the case with T ≥ 3. For any random variables V and

W , let FV |W and QV |W denote the conditional distribution function and the conditional

quantile function, respectively. Xt, X12, and Ut denote, respectively, the supports of Xt,

(X1, X2), and Ut.

First, we assume gt(x, u) is strictly increasing in u, and Ut is continuously distributed.

Assumption 3.I1. (i) For all t, the function gt(x, u) is continuous and strictly increasing

in u for all x. If Xt is continuously distributed, then gt(x, u) is also continuous in x. (ii)

For all t, Ut|X = x is continuously distributed for all x.

Assumption 3.I2. For all t and x ∈ X12, the conditional distribution of the Yt conditional

on X = x is continuous and strictly increasing.

Many nonseparable panel data models do not employ the strict monotonicity assump-

tion, for example, Altonji and Matzkin (2005), Hoderlein andWhite (2012), Chernozhukov

et al. (2013), and Chernozhukov et al. (2015). These models allow for unobserved vari-

ables to be multivariate. Hence, our model is more restrictive than theirs. However, as

noted in the previous section, our model covers many widely used panel data models, such

as typical linear fixed-effects models.
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Assumptions 3.I1 and 3.I2 rule out the case where outcomes are discrete. In Section

3.5, we relax the strict monotonicity assumption by allowing gt(x, u) to be flat inside the

support of Ut, and consider the case where outcomes are discrete.

Next, we impose the normalization assumption.

Assumption 3.I3. For some x̄ ∈ X1, we have g1(x̄, u) = u for all u.

Assumption 3.I3 is a normalization assumption common in nonseparable models (see,

e.g., Matzkin (2003)). Because we assume U1|X = x
d
= U2|X = x below, it is sufficient to

normalize g1(x, u) exclusively. The functions gt(x, u) and distributions of Ut depend on

the choice of x̄. However, we can construct an alternative structural function that does

not depend on the choice of x̄ as the following:

ht(x, τ) ≡ gt(x,QUt(τ)).

Nevertheless, we can normalize this model in an alternative way.

Assumption 3.I3’. For all t, the marginal distribution of Ut is uniform on [0, 1].

Under this normalization and additional assumptions, we can regard this structural

function as the quantile function of the potential outcome considered by Chernozhukov

and Hansen (2005). They refer to Ut as the rank variable. As they show, under the

rank invariance or rank similarity assumption, we can think of the function gt(x, u) as the

quantile function of the potential outcome. It is easy to show that the function gt(x, τ)

under Assumption 3.I3’ is the same as the function ht(x, τ) under Assumption 3.I3.

Hereafter, we use Assumption 3.I3, but we can replace Assumption 3.I3 with Assump-

tion 3.I3’ and identify the structural function gt, as we show below.

We assume the conditional stationarity of Ut by following Manski (1987), Abrevaya

(1999), Athey and Imbens (2006), Hoderlein and White (2012), Graham and Powell

(2012), Chernozhukov et al. (2013), and Chernozhukov et al. (2015).

Assumption 3.I4. (i) The conditional distributions of the unobservable Ut conditional

on X is the same across t. That is, for all x ∈ X12, we have

U1|X = x
d
= U2|X = x, (3.4)

which implies that U1 = U2 ≡ U . (ii) For all t, the conditional support of Ut|X = x is U .

When we can decompose Ut into time-variant and time-invariant parts, this assumption

does not impose any restrictions on the dependence between the time-invariant part and

X. To see this, let Ut = U(α, ϵt), where α is time-invariant and ϵt is time-variant. Then,

Assumption 3.I4 holds, if

ϵ1|α = a,X = x
d
= ϵ2|α = a,X = x. (3.5)
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Because condition (3.5) allows α to be correlated with X arbitrarily, Assumption 3.I4

imposes no restrictions on the time-invariant unobservable variables.

Indeed, Evdokimov (2010) and D’Haultfoeuille et al. (2013) employ similar assump-

tions, although the former does not make this assumption explicitly. By considering the

model Yit = m(Xit, αi) + Uit, the unobservable variable αi automatically satisfies the

conditional stationarity. Moreover, since D’Haultfoeuille et al. (2013) consider the identi-

fication using repeated cross-sections, they do not impose this assumption. Instead, they

impose the following:

U1|V1 = v
d
= U2|V2 = v,

where Vt ≡ (FXt,1(Xt,1), · · · , FXt,k
(Xt,k)) and v ∈ (0, 1)k.

To show the identification of gt, we introduce the following sets. Define S1
0 ≡ {x̄},

S2
0 ≡ {x ∈ X2 : (x̄, x) ∈ X12}, namely the cross-section of X12 at X1 = x. For m ≥ 1,

define

S1
m ≡ {x ∈ X1 : there exists x2 ∈ S2

m−1 such that (x, x2) ∈ X12.},

S2
m ≡ {x ∈ X2 : there exists x1 ∈ S1

m such that (x1, x) ∈ X12.}.

Figure 3.1 illustrates these sets. Because U1|X = x
d
= U2|X = x, for all (x1, x2) ∈ X12, we

have

FY1|X (g1(x1, u)|x1, x2) = P (g1(x1, U1) ≤ g1(x1, u)|X1 = x1, X2 = x2)

= P (U1 ≤ u|X1 = x1, X2 = x2)

= P (U2 ≤ u|X1 = x1, X2 = x2)

= P (g2(x2, U2) ≤ g2(x2, u)|X1 = x1, X2 = x2)

= FY2|X (g2(x2, u)|x1, x2) .

Because FYt|X(y|x1, x2) is invertible in y for all (x1, x2) ∈ X12, we obtain

g1(x1, u) = QY1|X
(
FY2|X (g2(x2, u)|x1, x2) |x1, x2

)
g2(x2, u) = QY2|X

(
FY1|X (g1(x1, u)|x1, x2) |x1, x2

)
. (3.6)

Equations (3.6) imply that if g1(x1, u) (or g2(x2, u)) is identified and (x1, x2) ∈ X12,

then g2(x2, u) (or g1(x1, u)) is also identified. First, we can identify g1(x̄, u) because

g1(x̄, u) = u holds by Assumption 3.I3. Hence, we can identify g2(x, u) for all x ∈ S2
0 ,

because g2(x, u) = QY2|X
(
FY1|X (g1(x̄, u)|x̄, x) |x̄, x

)
= QY2|X

(
FY1|X (u|x̄, x) |x̄, x

)
. We

now turn to identifying g1(x, u) for x ∈ S1
1 .

First, we fix x ∈ S1
1 . According to the definition of S1

1 , there exists x2 ∈ S2
0 such that

(x, x2) ∈ X12. Then, it follows from (3.6) that

g1(x, u) = QY1|X
(
FY2|X (g2(x2, u)|x, x2) |x, x2

)
,
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and hence, g1(x, u) is identified because g2(x2, u) is already identified. Similarly, by using

(3.6), we can identify g2(x, u) for all x ∈ S2
1 . Repeating this argument provides the

following theorem.

Theorem 3.1. Suppose that Assumptions 3.I1, 3.I2, 3.I3, and 3.I4 are satisfied. For all

t, if we have Xt = ∪∞m=0St
m, then the structural function gt(x, u) is identified for all x ∈ Xt

and u ∈ U .

We also show the identification of gt under Assumption 3.I3’ instead of 3.I3.

Corollary 3.1. Suppose that Assumptions 3.I1, 3.I2, 3.I3’, and 3.I4 are satisfied. For

all t, if Xt = ∪∞m=0St
m holds for some x ∈ X1, then the function gt(x, u) is identified for

all x ∈ Xt and u ∈ U .

This identification approach is similar to that of D’Haultfœuille and Février (2015),

Torgovitsky (2015), and Ishihara (2017), who all identify nonseparable models using the

discrete instrumental variable. D’Haultfœuille and Février (2015) and Ishihara (2017)

use the same normalization as Assumption 3.I3’. D’Haultfœuille and Février (2015) show

that under appropriate assumptions, if for all x and x′, we identify the function Tx′,x(y)

that is strictly increasing in y and satisfies

g(x′, u) = Tx′,x(g(x, u)),

then we can identify the structural function g(x, u). We can also construct similar func-

tions and show that gt is point identified.

We next introduce some examples that satisfy this support condition.

Example 3.1 (DID model). In standard DID models, if Xt is a treatment indicator,

then we have X12 = {(0, 0), (0, 1)}. Because X1 = {0}, we assume x̄ = 0. That is,

g1(0, u) = u for all u. Hence, we identify g1(x, u) for all x ∈ X1 and u ∈ U . Then,

because S2
0 = {0, 1} = X12, the support condition of Theorem 3.1 holds and we can

identify g2(x, u) for all x ∈ X2 and u ∈ U .
Our identification approach does not require the joint distribution of (Y1, Y2). Hence,

if we can observe D ≡ 1{X2 = 1}, then we can identify the structural function gt by

using repeated cross-sections. If the potential outcome Yt(x) is equal to gt(x, Ut), then this

setting is similar to Athey and Imbens (2006).

Similar to Athey and Imbens (2006), we can also identify the counterfactual distribu-

tion even when X12 ̸= {(0, 0), (0, 1)}. Let Yt(x) ≡ gt(x, Ut) denote the potential outcomes.

Then, we can identify FY2(x)|X2(y|x′), where x ̸= x′. Suppose that there exists x1 ∈ X1
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such that (x1, x), (x1, x
′) ∈ X12. In this case, it follows from (3.6) that

FY1|X=(x1,x′)

(
QY1|X=(x1,x)(FY2|X=(x1,x)(y))

)
= FY1|X

(
g1(x1, g

−1
2 (x, y))|x1, x′

)
= P

(
g1(x1, U1) ≤ g1(x1, g

−1
2 (x, y))|X1 = x1, X2 = x′

)
= P (g2(x, U1) ≤ y|X1 = x1, X2 = x′)

= P (Y2(x) ≤ y|X1 = x1, X2 = x′) .

Hence, we can obtain FY2(x)|X2(y|x′) by integrating out x1. The left-hand side is similar to

the counterfactual distribution of Athey and Imbens (2006). When X12 = {(0, 0), (0, 1)},
this result is same as their result.

Example 3.2 (connected support). When the interior of X12 is connected, the support

condition of Theorem 3.1 holds. Because the interior of X12 is connected, for any x ∈
X1, there exists a series (x01, x

0
2), (x

1
1, x

0
2), (x

1
1, x

1
2), (x

2
1, x

1
2), (x

2
1, x

2
2) · · · such that x01 = x̄,

(xm1 , x
m
2 ), (x

m+1
1 , xm2 ) ∈ X12 for all m = 0, 1, · · · , and limm→∞ x

m
1 = x. Figure 3.2 illus-

trates this result intuitively. From the definition of S1
m, x

m
1 ∈ Sm

1 for all m. Hence, we

have x ∈ ∪∞m=0S1
m, and the support condition of Theorem 3.1 holds.

The support condition of Theorem 3.1 rules out the case where X1 = X2. Hence, if the

explanatory variables do not vary across time periods, such as sex or race, this support

condition does not hold.

If we have panel data with more than two periods, we can relax this support condition.

Similar to the case where T = 2, we define the following sets. Define S̃1
0 ≡ {x̄}, S̃t

0 ≡
{x ∈ Xt : (x̄, x) ∈ supp(X1, Xt)}, t = 2, · · · , T , and for m ≥ 1 and t = 1, · · · , T ,

S̃t
m ≡

∪
s̸=t

{x ∈ Xt : there exists xs ∈ S̃s
m−1 such that (xs, x) ∈ supp(Xs, Xt).}.

Then, we show that gt(x, u) is point-identified under a similar support condition to that

of Theorem 3.1.

Corollary 3.2. Suppose Assumptions 3.I1, 3.I2, 3.I3, and 3.I4 are satisfied for T ≥ 3.

For t = 1, · · · , T , if Xt = ∪∞m=0S̃t
m, then the function gt(x, u) is identified for all x ∈ Xt

and u ∈ U .

3.3 Estimation and Inference

In this section, we propose parametric and nonparametric estimation methods. In Sections

3.3.1–3.3.4, we assume that the admissible collection of structural functions is indexed by
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a finite-dimensional parameter, and propose a parametric estimation method based on the

conditional stationary condition. In Section 3.3.5, we propose a nonparametric estimation

method and show the consistency of this estimator. Throughout Section 3.3, we assume

that {(Yi,Xi)}ni=1 are independent and identically distributed.

3.3.1 Parametric Estimation

Consider the following parametric model:

Yit = gt(Xit, Uit; θ0) i = 1, · · · , n, t = 1, · · · , T. (3.7)

The outcome functions are parameterized by θ ∈ Θ ⊂ Rdθ , where θ0 ∈ Θ is the true

parameter.

Indeed, Torgovitsky (2017) consider a similar setting, and develop an estimator based

on the identification result of Torgovitsky (2015). Following Torgovitsky (2017), we de-

velop a minimum distance estimator based on our identification results.

The following assumptions are the parametric versions of Assumptions 3.I1, 3.I2, 3.I3,

and 3.I4.

Assumption 3.P1. (i) For all t, the function gt(x, u; θ) is continuous and strictly in-

creasing in u for all θ ∈ Θ. (ii) For all t, Uit|Xi = x is continuously distributed for all

x.

Assumption 3.P2. For all t and x ∈ supp(X), the conditional distribution of Yit condi-

tional on Xi = x is continuous and strictly increasing.

Assumption 3.P3. (i) For some x̄ ∈ X1, g1(x̄, u; θ) = u holds for all u ∈ U and θ ∈ Θ.

(ii) For all θ, θ′ ∈ Θ with θ ̸= θ′, we have gt(·, ·; θ) ̸= gt(·, ·; θ′) for some t.

Assumption 3.P4. (i) For all x ∈ supp(X) and s, t ∈ {1, · · · , T}, we have Uis|Xi =

x
d
= Uit|Xi = x. (ii) The support of Uit|Xi = x is U .

These assumptions are similar to the assumptions in Section 3.2. Assumption 3.P3

(ii) allows that gt(x, u; θ) does not depend on some part of θ. For example, consider

θ = (θ1, θ2, · · · , θT ). Then, this condition allows that gt depends exclusively on θt.

Similar to Section 3.2, we suppose T = 2. Under Assumptions 3.P1–3.P4 and the

support condition of Theorem 3.1, we have

Ui1,θ|Xi = x
d
= Ui2,θ|Xi = x for all x ⇔ θ = θ0, (3.8)

where Uit,θ ≡ g−1t (Xit, Yit; θ), t = 1, 2. Therefore, (3.8) implies that the function

Dθ(v) ≡ P (Ui1,θ ≤ vu, Xi ≤ vx)− P (Ui2,θ ≤ vu, Xi ≤ vx)

= E [(1{Yi1 ≤ g1(Xi1, vu; θ)} − 1{Yi2 ≤ g2(Xi2, vu; θ)})1{Xi ≤ vx}] (3.9)
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is zero for all v = (vx, vu) ∈ V ≡ X12 × U if and only if θ = θ0. Let ∥ · ∥µ denote the

L2-norm with respect to a probability measure with support V . Then, we have ∥Dθ∥µ ≥ 0

and

∥Dθ∥µ = 0 ⇔ θ = θ0. (3.10)

Hence, θ0 is the value that provides a global minimum for ∥Dθ∥µ.
We construct the estimator D̂n,θ(v) of Dθ(v) as a sample analogue of (3.9):

D̂n,θ(v) ≡
1

n

n∑
i=1

(1{Yi1 ≤ g1(Xi1, vu; θ)} − 1{Yi2 ≤ g2(Xi2, vu; θ)})1{Xi ≤ vx}. (3.11)

This is a natural estimator of Dθ(v). We can obtain the estimator θ̂n by minimizing

∥D̂n,θ∥µ. That is,
θ̂n = argmin

θ∈Θ
∥D̂n,θ∥µ. (3.12)

This estimator is similar to the estimators proposed by Brown and Wegkamp (2002) and

Torgovitsky (2017). They prove the consistency and the asymptotic normality of their

estimators, and also show the consistency of the nonparametric bootstrap. In what follow,

we likewise prove the consistency and the asymptotic normality of our estimator, and show

that the nonparametric bootstrap is consistent.

First, we collect the observable data together into a single vector, Wi = (Yi,Xi) =

(Yi1, Yi2, Xi1, Xi2). Next, we define

Av
θ(w) ≡ [1{y1 ≤ g1(x1, vu; θ)} − 1{y2 ≤ g2(x2, vu; θ)}]1{x ≤ vx},

where w = (y1, y2, x1, x2). Then, D̂n,θ(v) =
1
n

∑n
i=1A

v
θ(Wi).

3.3.2 Consistency and Asymptotic Normality

First, we demonstrate the consistency of θ̂n. Under condition (3.10), the following as-

sumptions are sufficient for θ̂n to be consistent.

Assumption 3.C1. θ̂n satisfies ∥D̂n,θ̂n
∥µ = infθ∈Θ ∥D̂n,θ∥µ.

Assumption 3.C2. Θ is compact.

Assumption 3.C3. For all θ′, θ, |gt(x, u; θ′)− gt(x, u; θ)| ≤ ḡ(x)∥θ′ − θ∥ holds for some

strictly positive ḡ(x) with E[ḡ(Xt)] ≤ K, where 0 < K <∞.

Assumption 3.C4. For all t, Yit is absolutely continuously distributed given Xi, with a

conditional pdf fYt|X(y|x) that is uniformly bounded above and continuous in y.

Assumption 3.C5. For all t, there exists an integer Jt and functions {βj}Jtj such that

for every θ ∈ Θ and u ∈ U there is an αt(θ, u) ∈ RJt with gt(x, u) =
∑Jt

j=1 α
t
j(θ, u)βj(x).
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Assumption 3.C1 entails that θ̂n minimizes ∥D̂n,θ∥µ. Assumptions 3.C3 and 3.C4

imply that ∥Dθ∥µ is continuous in θ. Assumption 3.C5 ensures that a class of functions,

{Av
θ : θ ∈ Θ, v ∈ V}, is P -Glivenko–Cantelli. Hence, we show that ∥D̂n,θ∥µ uniformly

convergences to ∥Dθ∥µ almost surely. Brown and Wegkamp (2002) and Torgovitsky (2017)

also make similar assumptions. From these results and the compactness of Θ, we show the

consistency from the usual arguments of extremum estimators (e.g., Newey and McFadden

(1994)).

Theorem 3.2. Under Assumptions 3.P1–3.P4, 3.C1–3.C5, and (3.10), we have θ̂n →a.s.

θ0.

Next, we show the asymptotic normality of θ̂n. Because the objective function ∥D̂n,θ∥µ
is not differentiable in θ, our approach follows from Pakes and Pollard (1989). Similarly,

although D̂n,θ(v) is not differentiable in θ, we also assume Dθ(v) is differentiable in θ. We

let ∇xf denote the column vector of partial derivatives of f with respect to x. We define

Γθ(v) ≡ ∇θDθ(v) and Γ0(v) ≡ Γθ0(v).

Assumption 3.N1. θ0 is an interior point of Θ.

Assumption 3.N2. For all t, gt(x, u; θ) is continuously differentiable in θ in the neighbor-

hood of θ0. In the neighborhood of θ0, |∇θgt(x, u; θ)| is bounded by some positive function

∇ḡ(x) with E|∇ḡ(Xt)| <∞.

Assumption 3.N3. (i) There exists c > 0 such that ∥Γ0(v)
′a∥µ ≥ c∥a∥ for all a ∈ Rdθ .

(ii) {Γθ(v) : v ∈ V} is equicontinuous in θ at θ0. (iii)
∫
∥Γ0(v)∥2dµ(v) <∞.

Assumption 3.N1 is a standard assumption. Combined with Assumption 3.C4, As-

sumption 3.N2 implies that Dθ(v) is continuously differentiable in θ in the neighborhood

of θ0. Assumption 3.N3 (i) is a rank condition that corresponds to Assumption D4 in

Torgovitsky (2017). Assumption 3.N3 (ii) implies that Γ0(v)
′(θ− θ0) approximates Dθ(v)

in the neighborhood of θ0 uniformly over v.

Theorem 3.3. Under Assumptions 3.P1–3.P4, 3.C1–3.C5, 3.N1–3.N3, and (3.10),

√
n(θ̂n − θ0)⇝ N(0,∆−10 Σ0∆

−1
0 ),

where ∆0 ≡
∫
Γ0(v)Γ0(v)

′dµ(v) and

Σ0 ≡
∫ ∫

V×V
{Ψ(v, v′)Γ0(v)Γ0(v

′)′} dµ(v)dµ(v′)

with Ψ(v, v′) ≡ E[Av
θ0
(W )Av′

θ0
(W )].
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The proof of Theorem 3.3 is similar to the proof in Pakes and Pollard (1989) for their

Theorem (3.3).

The asymptotic distribution of
√
n(θ̂n − θ0) depends on the probability measure µ.

Carrasco and Florens (2000) consider the generalized method of moments (GMM) pro-

cedure with a continuum of moment conditions, obtaining the optimal estimator. They

consider the following type of GMM estimator to minimize∫ ∫
D̂n,θ(v)an(v, v

′)D̂n,θ(v
′)dvdv′,

where an(v, v
′) converges to a kernel a(v, v′). As in Torgovitsky (2017), we consider only

the special case where an(v, v
′) = a(v, v′) and a(v, v′) = 0 for v ̸= v′. Although our

setting appears to be similar to that of Carrasco and Florens (2000), their approach is

not directly applicable because their objective function is smooth. Hence, we do not

pursue this problem.

3.3.3 Bootstrap

Let {W ∗
in}ni=1 denote a bootstrap sample drawn with replacement from {Wi}ni=1. That is,

{W ∗
in}ni=1 are independently and identically distributed from the empirical measure Pn,

conditional on the realizations {Wi}ni=1. We define

D̂∗n,θ(v) ≡
1

n

n∑
i=1

Av
θ(W

∗
in)

as the bootstrap counterpart to D̂n,θ(v). Next, we suppose that θ̂∗n satisfies

∥D̂∗
n,θ̂∗n

∥µ = inf
θ∈Θ

∥D̂∗n,θ∥. (3.13)

Then, we can obtain the following theorem.

Theorem 3.4. Suppose that θ̂∗n satisfies (3.13). Under the assumptions of Theorem 3.3,
√
n(θ̂∗n − θ̂n) converges weakly to the limit distribution of

√
n(θ̂n − θ0) in probability.

The proof of this theorem is similar to the proof of Theorem 6 in Brown and Wegkamp

(2002). From Theorem 3.3, we show that

θ̂n − θ0 = γn + op(n
−1/2),

where γn = ∆−10

1

n

∑n
i=1

∫
Γ0(v)(A

v
θ0
(Wi) − E[Av

θ0
(Wi)])dµ(v). By using the bootstrap

stochastic equicontinuity due to Giné and Zinn (1990), we show that

√
n∥θ̂∗n − θ̂n − γ∗n∥
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converges to zero in probability, conditional on almost all samples, where γ∗n is the boot-

strap counterpart of γn. The term γ∗n has the same limiting distribution as γn according

to the bootstrap theorem for the mean in Rdθ . Hence, we show that
√
n(θ̂∗n− θ̂n) converges

weakly to the limit distribution of
√
n(θ̂n − θ0) in probability.

3.3.4 Nonparametric Estimation

In this section, we propose a nonparametric estimation method that uses a kernel function.

We assume that X1 and X2 are compact and X12 = X1×X2. This implies that the support

condition of Theorem 1 is satisfied. Then, under Assumptions I3 and I4, for all x ∈ X2,

g2(x, u) satisfies

E[{1{Yi1 ≤ u} − 1{Yi2 ≤ g2(x, u)}}|Xi1 = x̄, Xi2 = x] = 0.

Hence, we can obtain an estimator of g2(x, u) by

ĝn,2(x, u) = argmin
ξ

∣∣∣∣∣1n
n∑

i=1

{1{Yi1 ≤ u} − 1{Yi2 ≤ ξ}}K
(
Xi1 − x̄

hn

)
K

(
Xi2 − x

hn

)∣∣∣∣∣ ,
where K(·) is a kernel function and hn is a bandwidth. Then, this estimator can be

written as

ĝn,2(x, u) = argmin
ξ

∣∣∣F̂Y1|X(u|x̄, x)− F̂Y2|X(ξ|x̄, x)
∣∣∣ , (3.14)

where

F̂Yt|X(y|x1, x2) ≡

∑n
i=1 1{Yit ≤ y}K

(
Xi1−x1

hn

)
K
(

Xi2−x2

hn

)
∑n

i=1K
(

Xi1−x1

hn

)
K
(

Xi2−x2

hn

) .

From Assumption I4, for all x1 ∈ X1 and x2 ∈ X2, we have

E[{1{Yi1 ≤ g1(x1, u)} − 1{Yi2 ≤ g2(x2, u)}}|Xi1 = x1, Xi2 = x2] = 0.

Hence, similarly, we can obtain an estimator of g1(x, u) by

ĝn,1(x, u) = argmin
ξ

∫ ∣∣∣F̂Y1|X(ξ|x, x2)− F̂Y2|X(ĝn,2(x2, u)|x, x2)
∣∣∣2 dµX2(x2), (3.15)

where µX2 is a probability measure with support X2.

Let U be a subset of U . We impose the following assumptions.

Assumption 3.NP1. Let u ∈ U . For any ϵ > 0, there exists δ > 0 such that |gt(xt, u)−
y| > ϵ implies infx1,x2

∣∣FYt|X(gt(xt, u)|x1, x2)− FYt|X(y|x1, x2)
∣∣ > δ for all t.

Assumption 3.NP2. For all u ∈ U , {FYt|X(y|x)} is equicontinuous in y at y = gt(xt, u).
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Assumption 3.NP3. We have supy,x1,x2

∣∣∣F̂Yt|X(y|x1, x2)− FYt|X(y|x1, x2)
∣∣∣ = op(1) for

all t.

Assumptions 3.NP1 and 3.NP2 imply that for u ∈ U , FYt|X(y|x) is strictly increas-

ing and continuous in y at y = gt(x, u) uniformly. Assumption 3.NP3 implies that

F̂Yt|X(y|x1, x2) uniformly converges to FYt|X(y|x1, x2) in probability.

Theorem 3.5. We assume that X1 and X2 are compact and X12 = X1×X2. Then, under

Assumptions 3.I1–3.I4, 3.NP1–3.NP3, for all (x1, x2) ∈ X12 and u ∈ U , we have

ĝn,1(x1, u) →p g1(x1, u) and ĝn,2(x2, u) →p g2(x2, u),

where ĝn,1(x1, u) and ĝn,2(x2, u) are defined in (3.15) and (3.14).

3.4 Simulations

To evaluate the finite sample performance of our estimator, we conducted two Monte

Carlo experiments.

Simulation 3.1. The outcome equation is given by

g1(x, u) = u+ (θ1 + θ2u)(x− x̄),

g2(x, u) = u+ (θ1 + θ3u)(x− x̄),

where x̄ = 0. Because g1(x̄, u) = u for all x, Assumption 3.I3 is satisfied. We assume

Xt = 4Φ(Zt) t = 1, 2,

Ut = α + ϵt t = 1, 2,

where Φ(·) is the standard normal distribution function and

(Z1, Z2, α) ∼ N


 0

0

0

 ,

 1.0 0.3 0.6

0.3 1.0 0.5

0.6 0.5 1.0


 ,

(ϵ1, ϵ2) ∼ N

((
0

0

)
,

(
(0.3)2 0

0 (0.3)2

))
.

Because the correlations between α and (Z1, Z2) are not zero, X1 and X2 are correlated

with Ut. Because ϵ1|X = x, α = a
d
= ϵ2|X = x, α = a, the conditional stationarity

assumption holds. We used µ = Unif(0, 4)×Unif(0, 4)×N(0, 1) as the integrating measure.

We considered the following two settings: (i) (θ1, θ2, θ3) = (0.5, 1.0, 0.7), (ii) θ2 = θ3

and (θ1, θ2) = (0.5, 1.0). Under Setting (i), we cannot use estimation methods of other
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papers, because their time effects depend on Ut. On the other hand, under Setting (ii),

there are no time effects. Hence, we can estimate E [∇xgt(Xt, Ut)|X1 = X2 = x] by using

the method proposed in Hoderlein and White (2012) because there are stayers. Thus, we

estimated E [∇xgt(Xt, Ut)|X1 = X2 = 2] using our method and their method and compared

the results of both. Under Setting (ii), we have E [∇xgt(Xt, Ut)|X1 = X2 = 2] = θ1 +

θ2E[Ut|X1 = X2 = 2] = 0.5. Hence, we estimated E [∇xgt(Xt, Ut)|X1 = X2 = 2] by using

θ̂1 + θ̂2Ê[Ut|X1 = X2 = 2].

Table 3.1 contains the results under Setting (i) for sample sizes of 400, 800, and 1600.

The number of replications was set to 1000 throughout. Table 3.1 shows the bias, standard

deviation, and the mean squared error (MSE) of the estimates of (θ1, θ2, θ3), highlighting

that the standard deviation and MSE decrease as the sample size increases. In some cases,

the biases of the estimates do not decrease. However they are relatively small under all

settings.

Table 3.2 contains the results under Setting (ii) for sample sizes of 500 and 1000.

Table 3.2 shows that the standard error of our estimator is smaller than that of Hoderlein

and White (2012) for all settings. Although the bias of our estimator is larger than their

estimator, the MSE of our estimator is smaller.

Simulation 3.2 (DID model). We considered the case where X12 = {(0, 0), (0, 1)}. The

outcome equation is given by

g1(x, u) = u

g2(x, u) = (θ1 + θ2u)(1− x) + (θ3 + θ4u)x,

where (θ1, θ2, θ3, θ4) = (0.5, 0.7, 0.5, 1.2). Because g1(x, u) does not depend on x, Assump-

tion 3.I3 holds for any x̄ ∈ X1. We assumed

X2 = 1{Z > 0},

Ut = α + ϵt t = 1, 2,

where Φ(·) is the standard normal distribution function and

(Z, α) ∼ N

((
0

2.0

)
,

(
1.0 0.6

0.6 1.0

))
,

(ϵ1, ϵ2) ∼ N

((
0

0

)
,

(
(0.3)2 0

0 (0.3)2

))
.

Because ϵ1|X2 = x
d
= ϵ2|X2 = x for all x, Assumption 3.I4 holds. When X2 = 0, we have

Y2 = g2(0, U2) = θ1 + θ2U2, and when X2 = 1, we have Y2 = g2(1, U2) = θ3 + θ4U2. This

specification is similar to that of a typical DID model. However, letting Yt(x) = gt(x, U2)
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be potential outcomes, this model does not satisfy the parallel trend assumption if θ2 ̸= 1,

because E[Y2(0) − Y1(0)|X2 = x] = θ1 + (θ2 − 1)E[U1|X2 = x] holds by the conditional

stationarity of Ut. Hence, we cannot estimate the average treatment effect on the treated

(ATT) or the average treatment effect (ATE) by using a standard DID method. Under

this setting, we have

ATE ≡ E[Y2(1)− Y2(0)] = 1.00,

QTE25 ≡ QY2(1)(0.25)−QY2(0)(0.25) ≒ 0.65,

QTE50 ≡ QY2(1)(0.50)−QY2(0)(0.50) = 1.00,

QTE75 ≡ QY2(1)(0.75)−QY2(0)(0.75) ≒ 1.35.

We also estimated ATE and QTE as follows:

ˆATE =
(
θ̂3 + θ̂4Ê[Û ]

)
−
(
θ̂1 + θ̂2Ê[Û ]

)
,

ˆQTE100τ =
(
θ̂3 + θ̂4Q̂Û(τ)

)
−
(
θ̂1 + θ̂2Q̂Û(τ)

)
,

where Ê[Û ] is a sample average of Û ≡ (Yi1, · · · , Yin, g−12 (X12, Y12; θ̂), · · · , g−12 (Xn2, Yn2; θ̂)),

and Q̂Û(τ) is a sample τ -th quantile of Û . Because X1 = 0 and X2 is discrete, we used

Av
θ(w) = (1{y1 ≤ vu} − 1{y2 ≤ g2(x2, vu; θ)})1{x2 = vx},

where v = (vx, vu). We used µ = Ber(0.5)×N(Ȳ1, sY1) as the integrating measure, where

Ȳ1 is the sample average of Y1 and sY1 is the standard deviation of Y1. Table 3.3 contains

the results of this experiment for sample sizes of 400, 800, and 1600. The number of

replications was set to 1000 throughout. Table 3.3 shows the bias, standard deviation, and

MSE of the estimates of parameters, the ATE, and QTE, highlighting that the standard

deviation and MSE of estimates decrease as the sample size increases. The biases of the

estimates of parameters, the ATE, and QTE50 are relatively small, whereas the biases of

the estimates of QTE25 and QTE75 are large. This may be caused by the fact that the

sample quantiles are biased.

3.5 Discrete Outcomes

In this section, we consider the case where outcomes are discrete. In the case of discrete

outcomes, we cannot point-identify gt(x, u). This is likewise true in Athey and Imbens

(2006), Chesher (2010), and Ishihara (2017). They consider the case where outcomes are

discrete, and instead show partial identification of the structural function. Hence, in this

section, we also consider partial identification of gt(x, u).
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First, we drop the i subscript and let T = 2, as in Section 3.2. Let Yt denote the

support of Yt. The assumptions employed in Section 3.2 do not allow the outcomes to be

discrete. Hence, we impose the following assumptions.

Assumption 3.D1. (i) For all t ∈ {1, 2}, the function gt(x, u) is weakly increasing in u

for all x. (ii) For all t ∈ {1, 2}, Ut|X = x is continuously distributed for all x.

Assumption 3.D2. (i) For all t ∈ {1, 2}, Yt is discretely distributed. (ii) Y1 = Y2 ≡ Y
with y ≡ inf Y and y ≡ supY.

Assumption 3.D3. For all t ∈ {1, 2}, the marginal distribution of Ut is uniform on

[0, 1].

Assumption 3.D4. (i) For all x ∈ X12, U1|X = x
d
= U2|X = x holds. (ii) The support

of Ut|X = x is [0, 1].

Assumption 3.I1 (i) stipulates that gt(x, u) is strictly increasing in u. If Ut is contin-

uously distributed, then Yt must be continuously distributed under Assumption 3.I1 (i).

Hence, in this section, we relax Assumption 3.I1 by allowing gt to be flat inside the support

of Ut. Athey and Imbens (2006) and Chesher (2010) also employ this weakly monotonic

assumption in models with discrete outcomes. Furthermore, when outcomes are discrete,

we cannot use Assumption 3.I3, because Ut is continuously distributed. Hence, we use

another normalization assumption. Assumption 3.D4 is identical to Assumption 3.I4.

We can thus obtain the following theorem.

Theorem 3.6. Suppose that Assumptions 3.D1, 3.D2, 3.D3, and 3.D4 are satisfied. For

all t ∈ {1, 2}, if X12 = X1 ×X2 holds, then we have

gt(x, u) ≥ gLt (x, u) ≡ inf{y ∈ [y, y] : GL
t,x(y) ≥ u},

gt(x, u) ≤ gUt (x, u) ≡ sup{y ∈ [y, y] : GU
t,x(y) ≤ u},

where GL
t,x and GU

t,x are defined by (3.24) and (3.27), respectively.

This identification approach is similar to that in Ishihara (2017), who considers the

identification of nonseparable models with binary instruments and shows that the struc-

tural functions are partially identified when outcomes are discrete.

In Theorem 3.6, we assume that X12 = X1×X2. Although this support condition does

not require stayers, it is nevertheless stronger than that of Theorem 3.1. Indeed, we can

relax this condition and partially identify gt under a weaker support condition. However,

if we do, then the bounds of gt may be looser.

To illustrate Theorem 3.6, we introduce two examples.
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Example 3.3 (DID model with binary outcomes). Suppose that the outcomes are binary

and X12 = {(0, 0), (0, 1)}. Then, X12 = X1 × X2, where X1 = {0} and X2 = {0, 1}. This

is the usual DID setting. Define D ≡ 1{X2 = 1}. We consider the partial identification

of g2(0, u) and g2(1, u).

In this case, we have

GL
2,0(y) = P (D = 1)F+

Y2|D=1(T
U
2,1,0(y)) + P (D = 0)F+

Y2|D=0(T
U
2,0,0(y)),

where TU
2,1,0(y) = Q+

Y2|D=1 ◦ F
+
Y2|D=1 ◦ Q

+
Y1|D=0 ◦ F

+
Y1|D=0(y) and TU

2,0,0(y) = y. We define

pt(d) ≡ P (Yt = 1|D = d), then

GL
2,0(y) =


P (D = 1, Y2 ≤ 1{p2(1) ≥ p1(1)}) if y < 0

P (D = 1, Y2 ≤ 1{p2(1) ≥ p1(1) or p1(0) ≥ p2(0)}) + P (D = 0, Y2 = 0) if 0 ≤ y < 1

1 if y ≥ 1

.

Therefore, we can obtain a lower bound

gL2 (0, u) =

1{u > P (Y2 = 0)} if p1(1) > p2(1) and p1(0) < p2(0)

1{u > P (Y2 = 0) + P (D = 1, Y2 = 1)} if p1(1) ≤ p2(1) or p1(0) ≥ p2(0)
.

Similarly, we can obtain the following functions:

gL2 (1, u) =

1{u > P (Y2 = 0)} if p1(1) < p2(1) and p1(0) > p2(0)

1{u > P (D = 0) + P (D = 1, Y2 = 0)} if p1(1) ≥ p2(1) or p1(0) ≤ p2(0)

gU2 (0, u) =

1{u ≥ P (D = 0, Y2 = 0)} if p1(1) ≥ p2(1) or p1(0) ≤ p2(0)

1{u ≥ P (Y2 = 0)} if p1(1) < p2(1) and p1(0) > p2(0)

gU2 (1, u) =

1{u ≥ P (D = 1, Y2 = 0)} if p1(1) ≤ p2(1) or p1(0) ≥ p2(0)

1{u ≥ P (Y2 = 0)} if p1(1) > p2(1) and p1(0) < p2(0)

If we define the potential outcomes as Yt(x) = gt(x, Ut), we can partially identify the

ATE. Because gL2 (x, u) and gU2 (x, u) respectively denote the lower and upper bounds of

g2(x, u), we have

E[gL2 (x, U)] ≤ E[Y2(x)] ≤ E[gU2 (x, U)], for x = 1, 2,

where U ∼ Unif(0, 1). Hence, we have

E[gL2 (1, U)]− E[gU2 (0, U)] ≤ µATE ≤ E[gU2 (1, U)]− E[gL2 (0, U)],

where µATE ≡ E[Y2(1)− Y2(0)].
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Hence, above bounds of g2 imply that the lower (upper) bound of ATE is not larger

(smaller) than 0. Actually, when p1(1) < p2(1) and p1(0) > p2(0), that is E[Y1(0)|D =

1] < E[Y2(1)|D = 1] and E[Y1(0)|D = 0] > E[Y2(0)|D = 0], a lower bound of ATE

becomes 0. This situation implies that the mean of the treated group increases, although

the time trend effect is negative. Hence, in this case, it is intuitive that the ATE is larger

than 0. Contrarily, when p1(1) > p2(1) and p1(0) < p2(0), that is E[Y1(0)|D = 1] >

E[Y2(1)|D = 1] and E[Y1(0)|D = 0] < E[Y2(0)|D = 0], an upper bound of ATE becomes

0. This situation implies that the mean of the treated group decreases, although the time

trend effect is positive. Hence, in this case, it is intuitive that the ATE is smaller than 0.

As an example, we consider the following case:

E[Y1|D = 1] = 0.4, E[Y1|D = 0] = 0.3,

E[Y2|D = 1] = 0.5, E[Y1|D = 0] = 0.2,

P (D = 1) = 0.5.

In this case, we can obtain

gL2 (0, u) = 1{u > 0.9},

gL2 (1, u) = 1{u > 0.65},

gU2 (0, u) = 1{u > 0.65},

gU2 (1, u) = 1{u > 0.25}.

Hence, in this case, ATE is smaller than 0.65 and larger than 0. As discussed above,

because E[Y1|D = 1] < E[Y2|D = 1] and E[Y1|D = 0] > E[Y2|D = 0], a lower bound of

ATE becomes 0.

Example 3.4. We consider the following model:

Yt = gt(Xt, Ut) = 1{Ut > (1 + exp(αt + βtXt))
−1}, t = 1, 2,

where Ut = Φ(ϵt) and

(X1, X2, ϵt) ∼ N


 0

0

0

 ,

 1.0 0.6 0.4

0.6 1.0 0.4

0.4 0.4 1.0


 .

Hence, Ut ∼ Unif(0, 1) for all t and U1|X = x
d
= U2|X = x for all x. We set

(α1, α2, β1, β2) = (0, 0.3, 0.5, 0.6). Under this setting, we calculate gLt (x, u) and gUt (x, u)

defined by Theorem 3.5 for x = −2,−1, 0, 1, 2. Table 3.4 shows gLt (x, u), g
U
t (x, u), and

gt(x, u) at x = −2,−1, 0, 1, 2.
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When x is small, the lower (upper) bounds are uninformative (informative). Contrar-

ily, when x is large, lower (upper) bounds are informative (uninformative). In this model,

there is a positive time trend because g1(x, u) ≤ g2(x, u). These bounds reflect this fact.

That is, they also satisfy gL1 (x, u) ≤ gL2 (x, u) and g
U
1 (x, u) ≤ gU2 (x, u).

We can extend Theorem 3.6 to panel data with more than two periods.

Corollary 3.3. Suppose Assumptions 3.D1, 3.D2, 3.D3, and 3.D4 are satisfied for T ≥ 3.

For t = 1, · · · , T , if supp(X) = X1 × · · · × XT , then we have

gt(x, u) ≥ gLt (x, u) ≡ inf{y ∈ [y, y] : GL
t,x(y) ≥ u},

gt(x, u) ≤ gUt (x, u) ≡ sup{y ∈ [y, y] : GU
t,x(y) ≤ u},

where GL
t,x(y) and G

U
t,x(y) are defined by (3.32).

3.6 Conclusion

In this chapter, we explored the identification and estimation of nonseparable panel data

models. We showed that the structural function is nonparametrically identified when the

structural function gt(x, u) is strictly increasing in u, the conditional distributions of Uit

are the same over time, and the joint support of Xi satisfies weak assumptions. Many

nonseparable panel data models assume that the structural function does not change over

time and that stayers exist. By contrast, our approach allows the structural function to

depend on the time period in an arbitrary manner, and it does not require the existence

of stayers. In estimation part of the paper, we propose parametric and nonparametric

estimators that implement our identification results. Monte Carlo studies indicated that

our parametric estimator performs well with finite samples. Finally, we extended our

identification results to models with discrete outcomes and showed that the structural

function is partially identified.
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3.7 Appendix: Proofs

Proof of Theorem 3.1. First, we show that gt(x, u) is identified for all x ∈ ∪∞m=0St
m. By

the monotonicity of gt and (3.4), equations (3.6) hold for all (x1, x2) ∈ X12. First, we can

identify g1(x, u) = u by Assumption 3.I3. We can also identify g2(x2, u) for all x2 ∈ S2
0

because (x̄, x2) ∈ X12 and we have

g2(x2, u) = QY2|X
(
FY1|X (g1(x̄, u)|x̄, x2) |x̄, x2

)
= QY2|X

(
FY1|X (u|x̄, x2) |x̄, x2

)
.

We now turn to identifying g1(x1, u) for x1 ∈ S1
1 . Fix x1 ∈ S1

1 . According to the definition

of S1
1 , there exists x2 ∈ S2

0 such that (x1, x2) ∈ X12. Then, it follows from (3.6) that

g1(x1, u) = QY1|X
(
FY2|X (g2(x2, u)|x1, x2) |x1, x2

)
,

and hence, g1(x1, u) is identified because g2(x2, u) is already identified. Similarly, by

using (3.6), we can identify g2(x, u) for all x ∈ S2
1 . Repeating this argument gives the

identification of gt(x, u) for all x ∈ ∪∞m=0St
m.

Next, we show that gt(x, u) is identified for all x ∈ Xt. We fix x′ ∈ Xt\ (∪∞m=0St
m). Since

Xt = ∪∞m=0St
m, there exists a sequence {xm}∞m=1 ⊂ ∪∞m=0St

m such that limm→∞ x
m = x′.

By the continuity of gt, we have limm→∞ gt(x
m, u) = gt(x

′, u) for all u ∈ U . Hence, we

can also identify gt(x
′, u) because gt(x

m, u) is identified for all m.

Proof of Corollary 3.1. First, we show that if for all x, x′ ∈ Xt, we can identify the strictly

increasing function Tt,x′,x(y) that satisfies

gt(x
′, u) = Tt,x′,x (gt(x, u)) , (3.16)

then, gt(x, u) is point identified. We define Gt
x(y) ≡

∫
FYt|Xt (Tt,x′,x(y)|x′) dFXt(x

′), and

then we have

Gt
x (gt(x, u)) =

∫
FYt|Xt (gt(x

′, u)|x′) dFXt(x
′)

=

∫
P (Ut ≤ u|Xt = x′) dFXt(x

′)

= P (Ut ≤ u) = u,

where the last equality follows from Assumption 3.I3’. Because Tt,x′,x(y) is strictly in-

creasing in y, Gt
x(y) is invertible. Hence, we obtain gt(x, u) = (Gt

x)
−1

(u). This implies

that gt(x, u) is identified if we can construct Tt,x′,x(y) for all x, x
′ ∈ Xt.

To construct Tt,x′,x(y), we show that for all x ∈ Xt, we can identify the strictly in-

creasing function T ∗t,x(y) that satisfies

gt(x, u) = T ∗t,x(g1(x̄, u)). (3.17)
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For all x ∈ ∪∞m=0St
m, the proof of Theorem 3.1 implies that we can construct T ∗t,x(y)

that satisfies (3.17). Because FYt|X and QYt|X are strictly increasing, T ∗t,x(y) is strictly

increasing in y for all x ∈ ∪∞m=0St
m. We fix x′ ∈ Xt\ (∪∞m=0St

m). Since Xt = ∪∞m=0St
m, there

exists a sequence {xm}∞m=1 ⊂ ∪∞m=0St
m such that limm→∞ x

m = x′. By the continuity

of gt and (3.17), we have limm→∞ T
∗
t,xm

(g1(x, u)) = gt(x, u). Because gt(x, u) is strictly

increasing in u, limm→∞ T
∗
t,xm

(y) is also strictly increasing in y. Hence, for all x ∈ Xt, we

can identify the strictly increasing function T ∗t,x(y) that satisfies (3.17).

By using T ∗t,x(y), we identify Tt,x′,x(y) that satisfies (3.16). Because, for x, x
′ ∈ Xt, we

have

gt(x
′, u) = T ∗t,x′

(
(T ∗t,x)

−1(gt(x, u))
)
,

we can construct the function Tt,x′,x(y) that satisfies gt(x
′, u) = Tt,x′,x(gt(x, u)). Therefore,

we can identify gt(x, u).

Proof of Corollary 3.2. The proof is the same as that for Theorem 3.1.

Proof of Theorem 3.2. We fix δ > 0. By Lemma 3.1, 3.C2, and (3.10), there exists ϵ > 0

such that ∥θ − θ0∥ ≥ δ implies ∥Dθ∥µ ≥ ϵ. Therefore, we have

∥Dθ̂n
∥µ < ϵ ⇒ ∥θ̂n − θ0∥ < δ

and it will suffice to show that ∥Dθ̂n
∥µ →a.s. 0. By (3.33), we have

sup
θ

∥D̂n,θ −Dθ∥µ ≤ sup
θ,v

|D̂n,θ(v)−Dθ(v)| = oa.s.(1). (3.18)

By the triangle inequality and 3.C1,

∥Dθ̂n
∥µ ≤ ∥D̂n,θ̂n

−Dθ̂n
∥µ + ∥D̂n,θ̂n

∥µ
≤ ∥D̂n,θ̂n

−Dθ̂n
∥µ + ∥D̂n,θ0∥µ.

By the uniform convergence (3.18), ∥D̂n,θ̂n
− Dθ̂n

∥µ = oa.s.(1) and ∥D̂n,θ0∥µ = ∥D̂n,θ0 −
Dθ0∥µ = oa.s.(1). Hence, we can show that θ̂n →a.s. θ0.

Proof of Theorem 3.3. First, we prove the
√
n-consistency of θ̂n. As seen in the previous

theorem, θ̂n is a consistent estimator of θ0. Because θ̂n is consistent, we can select a

sequence {δn} that converges to zero sufficiently slowly to ensure

P (∥θ̂n − θ0∥ ≥ δn) → 0.
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For this sequence, the supremum in (3.35) runs over a range that includes θ̂n. Hence, by

the triangle inequality and Lemma 3.4, we have

∥Dθ̂n
∥µ − ∥D̂n,θ̂n

∥µ − ∥D̂n,θ0∥µ ≤ ∥D̂n,θ̂n
−Dθ̂n

− D̂n,θ0∥µ = op(n
−1/2).

From Assumption 3.C1,

∥Dθ̂n
∥µ ≤ op(n

−1/2) + 2∥D̂n,θ0∥µ.

Because E[Av
θ0
(W )] = 0 for all v and E|Av

θ0
(W )Av′

θ0
(W )| ≤ 1 for all v and v′, we have

√
nD̂n,θ0(v) =

1
n

∑n
i=1A

v
θ(Wi)⇝ N(0,Ψ(v, v)). Since the proof for Lemma 3.2 shows that

{Av
θ0

: v ∈ V} is a Donsker class, {
√
nD̂n,θ0(v) : v ∈ V} converges weakly in l∞(V) to

a mean-zero Gaussian process with covariance function Ψ(v, v′) and we have ∥D̂n,θ0∥µ =

Op(n
−1/2). Hence, we have

∥Dθ̂n
∥µ = Op(n

−1/2).

Because Dθ0(v) = 0 for all v, Lemma 3.3 implies that for all θ in a neighborhood of θ0,

∥Dθ∥µ = ∥Γ0(v)
′(θ − θ0)− (Dθ(v)−Dθ0(v)− Γ0(v)

′(θ − θ0)) ∥µ
≥ ∥Γ0(v)

′(θ − θ0)∥µ − ∥Dθ(v)−Dθ0(v)− Γ0(v)
′(θ − θ0)∥µ

≥ (c− o(1))× ∥θ − θ0∥.

Therefore, ∥θ̂n − θ0∥ ≤ 1
c−op(1)∥Dθ̂n

∥µ = Op(n
−1/2).

Next we establish the asymptotic normality of
√
n(θ̂n − θ0) by approximating D̂n,θ(v)

as the linear function

L̂n,θ(v) ≡ Γ0(v)
′(θ − θ0) + D̂n,θ0(v).

We have

∥D̂n,θ̂n
− L̂n,θ̂n

∥µ ≤ ∥D̂n,θ̂n
−Dθ̂n

− D̂n,θ0∥µ + ∥Dθ̂n
(v)− Γ0(v)

′(θ̂n − θ0)∥µ
≤ op(n

−1/2) + op(∥θ̂n − θ0∥) = op(n
−1/2),

where the second inequality follows from Lemma 3.3 and Lemma 3.4, and the last equality

follows from the
√
n-consistency of θ̂n.

Let θ̃n be the value that provides a global minimum for ∥L̂n,θ∥. Then, Γ0(·)′(θ̃n−θ0) is
the L2(µ)-projection of −D̂n,θ0(·) onto the subspace of L2(µ) spanned by the components

of Γ0(·). Because ∆0 =
∫
Γ0(v)Γ0(v)

′dµ(v) is finite and invertible by 3.N3, we have

√
n(θ̃n − θ0) = −∆−10

∫
Γ0(v)

√
nD̂n,θ0(v)dµ(v). (3.19)

63



Then, we have∫
Γ0(v)

√
nD̂n,θ0(v)dµ(v) =

1√
n

n∑
i=1

∫
Av

θ0
(Wi)Γ0(v)dµ(v)

=
1√
n

n∑
i=1

ξi,

for ξi ≡
∫
Av

θ0
(Wi)Γ0(v)dµ(v). By Fubini’s theorem, E[ξi] =

∫
E[Av

θ0
(Wi)]Γ0(v)dµ(v) = 0,

and

E[ξiξ
′
i] =

∫ ∫
V×V

{
E[Av

θ0
(Wi)A

v′

θ0
(Wi)]Γ0(v)Γ0(v

′)′
}
dµ(v)dµ(v′)

=

∫ ∫
V×V

{Ψ(v, v′)Γ0(v)Γ0(v
′)′} dµ(v)dµ(v′),

where all elements of E[ξξ′] are finite. Hence,
√
n(θ̃n − θ0)⇝ N(0,Σ0) by (3.19). Conse-

quently, θ̃n = θ0 +Op(n
−1/2), and {δn} can be assumed to satisfy P (∥θ̃n − θ0∥ ≥ δn) → 0.

Because θ0 is an interior point of Θ, θ̃n lies in Θ with probability approaching one. To

simplify the argument, we assume that ∥θ̃n − θ0∥ < δn and θ̃n always belongs to Θ.

Because |Dθ(v)| ≤ |Γ0(v)
′(θ − θ0)| + o(∥θ − θ0∥) uniformly over v by Lemma 3.3, we

have

∥D(θ̃n)∥µ ≤ ∥Γ0(v)
′(θ̃n − θ0)∥µ + op(∥θ̃n − θ0∥) = Op(n

−1/2).

By the triangle inequality and Lemma 3.4, we have ∥D̂n,θ̃n
∥µ − ∥Dθ̃n

∥µ − ∥D̂n,θ0∥µ =

op(n
−1/2), and hence ∥D̂n,θ̃n

∥µ = Op(n
−1/2). Then, we can argue as for θ̂n to deduce that

∥D̂n,θ̃n
− L̂n,θ̃n

∥µ = op(n
−1/2).

Above, we showed that ∥D̂n,θ̂n
− L̂n,θ̂n

∥µ = op(n
−1/2) and ∥D̂n,θ̃n

− L̂n,θ̃n
∥µ = op(n

−1/2).

Therefore, we have

∥L̂n,θ̂n
∥µ − op(n

−1/2) ≤ ∥D̂n,θ̂n
∥µ

≤ ∥D̂n,θ̃n
∥µ + op(n

−1/2)

≤ ∥L̂n,θ̃n
∥µ + op(n

−1/2).

That is,

∥L̂n,θ̂n
∥µ = ∥L̂n,θ̃n

∥µ + op(n
−1/2),

and by squaring both sides, we have

∥L̂n,θ̂n
∥2µ = ∥L̂n,θ̃n

∥2µ + op(n
−1),
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where the cross product term is absorbed into op(n
−1) because ∥L̂n,θ̃n

∥µ = Op(n
−1/2).

Because L̂n,θ̃n
(·) and Γ0(·) are orthogonal according to the definition of θ̃n, we can obtain

∥L̂n,θ∥2µ = ∥L̂n,θ̃n
(v) + Γ0(v)

′(θ − θ̃n)∥2µ
= ∥L̂n,θ̃n

∥2µ + ∥Γ0(v)
′(θ − θ̃n)∥2µ.

By making θ equal to θ̂n, we have

op(n
−1) = ∥Γ0(v)(θ̂n − θ̃n)∥2µ ≥ c2∥θ̂n − θ̃n∥2.

Hence,
√
n(θ̂n − θ0) =

√
n(θ̃n − θ0) + op(1)⇝ N(0,∆−10 Σ0∆

−1
0 ).

Suppose that each Wi is a coordinate function of (
∏∞

i=1 S,
∏∞

i=1 σ(S),
∏∞

i=1 P ). Let ω

denote one of the realizations ofWi, and let (W ∗
n1, · · · ,W ∗

nn) denote the bootstrap sample.

Following Hahn (1996), we introduce the following notations. Let {ζ∗n} be a sequence of

some bootstrap statistic: each ζ∗n is some function fn(W
∗
n1, · · · ,W ∗

nn) of the bootstrap

sample. We write ζ∗n = Oω
p (an) if ζ

∗
n, when conditioned on ω, is Op(an) for almost all ω.

If ζ∗n, when conditioned on ω, is op(an) for almost all ω, we write ζ∗n = oωp (an). We write

ζ∗n = OB(1) if, for a given subsequence {n′}, there exists a further subsequence {n′′} such

that ζ∗n′′ = Oω
p (1). If for any subsequence {n′} there is a further subsequence {n′′} such

that ζ∗n′′ = oωp (1), we write ζ∗n = oB(1). Note that ζ∗n = oB(1) if and only if ζ∗n converges

weakly to zero in probability.

Proof of Theorem 3.4. The proof is similar to that of Brown and Wegkamp (2002). First,

we define

M(θ) ≡
∫
Dθ(v)

2dµ(v),

Mn(θ) ≡
∫
D̂n,θ(v)

2dµ(v),

M∗
n(θ) ≡

∫
D̂∗n,θ(v)

2dµ(v).

Then, for any θ → θ0, we have

M∗
n(θ)−Mn(θ) =

∫
(D̂∗n,θ(v)− D̂n,θ(v))

2dµ(v) + 2

∫
D̂n,θ(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v)

=

∫
(D̂∗n,θ0(v)− D̂n,θ0(v))

2dµ(v) +

[∫
(D̂∗n,θ(v)− D̂n,θ(v))

2dµ(v)

−
∫

(D̂∗n,θ0(v)− D̂n,θ0(v))
2dµ(v)

]
+ 2

∫
Dθ(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v)

+2

∫
(D̂n,θ(v)−Dθ(v))(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v).
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Suppose that ∥θ − θ0∥ ≤ δn for δn ↓ 0. By Lemma 3.6, we obtain ∥
√
n(D̂∗n,θ − D̂n,θ)∥µ −

∥
√
n(D̂∗n,θ0 − D̂n,θ0)∥µ = oB(1). Hence,∫

(D̂∗n,θ(v)− D̂n,θ(v))
2dµ(v)−

∫
(D̂∗n,θ0(v)− D̂n,θ0(v))

2dµ(v) = oB(n
−1).

Similarly, by the Donsker property of {Av
θ : θ ∈ Θ, v ∈ V},∫

(D̂n,θ(v)−Dθ(v))(D̂
∗
n,θ(v)− D̂n,θ(v))dµ(v)

=

∫
D̂n,θ0(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v) + op(n

−1).

Therefore, we have

M∗
n(θ)−Mn(θ) =

∫
(D̂∗n,θ0(v)− D̂n,θ0(v))

2dµ(v) + 2

∫
D̂n,θ0(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v)

+2

∫
Dθ(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v) + oB(n

−1)

=

∫
(D̂∗n,θ0(v)− D̂n,θ0(v))

2dµ(v) + 2

∫
D̂n,θ0(v)(D̂

∗
n,θ(v)− D̂n,θ(v))dµ(v)

+2(θ − θ0)
′
∫

Γ0(v)(D̂
∗
n,θ(v)− D̂n,θ(v))dµ(v)

+oB(n
−1/2∥θ − θ0∥+ n−1).

Consequently, for θ → θ0 and η → θ0,

M∗
n(θ)−M∗

n(η)

= [(M∗
n −Mn)(θ)− (M∗

n −Mn)(η)] + [(Mn −M)(θ)− (Mn −M)(η)] + [M(θ)−M(η)]

= 2(θ − η)′
∫

Γ0(v)
[
(D̂∗n,θ0(v)− D̂n,θ0(v))− (D̂n,θ0(v)−Dθ0(v))

]
dµ(v)

+

∫
[(θ − θ0)

′Γ0(v) + o(∥θ − θ0∥)]2 dµ(v)−
∫

[(η − θ0)
′Γ0(v) + o(∥η − θ0∥)]2 dµ(v)

+oB(n
−1/2∥θ − θ0∥+ n−1/2∥η − θ0∥+ n−1)

= 2(θ − η)′
∫

Γ0(v)
[
(D̂∗n,θ0(v)− D̂n,θ0(v))− (D̂n,θ0(v)−Dθ0(v))

]
dµ(v)

+(θ − θ0)
′∆0(θ − θ0)− (η − θ0)

′∆0(η − θ0)

+oB(∥θ − θ0∥2 + ∥η − θ0∥2 + n−1/2∥θ − θ0∥+ n−1/2∥η − θ0∥+ n−1). (3.20)

We define

γn ≡ ∆−10

∫
Γ0(v)(D̂n,θ0(v)−Dθ0(v))dµ(v),

γ∗n ≡ ∆−10

∫
Γ0(v)(D̂

∗
n,θ0

(v)− D̂n,θ0(v))dµ(v).
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Then, we can rewrite (3.20) by

M∗
n(θ)−M∗

n(η) = 2(θ − η)′∆0(γn + γ∗n) + (θ − θ0)
′∆0(θ − θ0)− (η − θ0)

′∆0(η − θ0)

+oB(∥θ − θ0∥2 + ∥η − θ0∥2 + n−1/2∥θ − θ0∥+ n−1/2∥η − θ0∥+ n−1).

We take θ = θ̂∗n and η = θ0 − (γn + γ∗n). Observe that η ∈ Θ for n is sufficiently large,

because θ0 is an interior point of Θ. Hence, we have

0 ≥ M∗
n(θ̂
∗
n)−M∗

n(θ0 − (γn + γ∗n))

= 2
[
(θ̂∗n − θ0) + (γn + γ∗n)

]′
∆0(γn + γ∗n)

+(θ̂∗n − θ0)
′∆0(θ̂

∗
n − θ0)− (γn + γ∗n)

′∆0(γn + γ∗n)

+oB(∥θ̂∗n − θ0∥2 + ∥γn + γ∗n∥2 + n−1/2∥θ̂∗n − θ0∥+ n−1/2∥γn + γ∗n∥+ n−1)

=
[
(θ̂∗n − θ0) + (γn + γ∗n)

]′
∆0

[
(θ̂∗n − θ0) + (γn + γ∗n)

]
+oB(∥θ̂∗n − θ0∥2 + ∥γn + γ∗n∥2 + n−1/2∥θ̂∗n − θ0∥+ n−1/2∥γn + γ∗n∥+ n−1).

By the same argument in Theorem 3.4, we have ∥θ̂∗n−θ̂n∥ = OB(n
−1/2). Hence, ∥θ̂∗n−θ0∥ ≤

∥θ̂∗n− θ̂n∥+∥θ̂n−θ0∥ = OB(n
−1/2)+OP (n

−1/2). Since γn = Op(n
−1/2) and γ∗n = OB(n

−1/2),

we have

n∥θ̂∗n − θ0 + (γn + γ∗n)∥2 = oB(1).

Because it follows from Theorem 3.4 that

θ̂n − θ0 = −γn + op(n
−1/2),

and we can obtain θ̂∗n − θ̂n = −γ∗n + oB(n
−1/2). The term γ∗n has the same limiting

distribution as γn by the bootstrap theorem for the mean in Rdθ . This concludes the

proof.

Proof of Theorem 3.5. Fix u ∈ U . First, we show consistency of ĝn,2(x, u). We define

ψ(x, u; ξ) ≡ FY1|X(u|x̄, x)− FY2|X(ξ|x̄, x),

ψ̂n(x, u; ξ) ≡ F̂Y1|X(u|x̄, x)− F̂Y2|X(ξ|x̄, x).

Assumptions 3.I3 and 3.I4 imply that ψ(x, u; ξ) = 0 at ξ = g2(x, u). By Assumptions

NP1, for any ϵ > 0, there exists δ > 0 such that for all x ∈ X2,

|g2(x, u)− ξ| > ϵ ⇒ |FY2|X(g2(x, u)|x̄, x)− FY2|X(ξ|x̄, x)| > δ.

This implies that for all x ∈ X2, we have

|g2(x, u)− ξ| > ϵ ⇒ |ψ(x, u; ξ)| > δ.
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Hence, if supx∈X2
|ψ (x, u; ĝn,2(x, u))| = op(1), we can show supx∈X2

|ĝn,2(x, u)−g2(x, u)| =
op(1). It suffices to show supx∈X2

|ψ (x, u; ĝn,2(x, u))| = op(1). It follows from Assumption

3.NP3 that

sup
x, ξ

|ψ̂n(x, u; ξ)− ψ(x, u; ξ)| = op(1). (3.21)

We have

sup
x

|ψ (x, u; ĝn,2(x, u))| ≤ sup
x

∣∣∣ψ̂n (x, u; ĝn,2(x, u))− ψ (x, u; ĝn,2(x, u))
∣∣∣

+sup
x

∣∣∣ψ̂n (x, u; ĝn,2(x, u))
∣∣∣

≤ sup
x

∣∣∣ψ̂n (x, u; ĝn,2(x, u))− ψ (x, u; ĝn,2(x, u))
∣∣∣

+sup
x

∣∣∣ψ̂n (x, u; g2(x, u))− ψ (x, u; g2(x, u))
∣∣∣

= 2 sup
x, ξ

|ψ̂n(x, u; ξ)− ψ(x, u; ξ)| = op(1),

where the second equality follows from the definition of ĝ2,n(x, u) and ψ (x, u; g2(x, u)) =

0, and the last equality follows from (3.21). Therefore, we have supx∈X2
|ĝn,2(x, u) −

g2(x, u)| = op(1).

Next, we show consistency of ĝn,1(x, u). We define

ϕ(x, u; ξ) ≡
{∫ ∣∣FY1|X(ξ|x, x2)− FY2|X(g2(x2, u)|x, x2)

∣∣2 dµX2(x2)

}−1/2
,

ϕ̂n(x, u; ξ) ≡
{∫ ∣∣∣F̂Y1|X(ξ|x, x2)− F̂Y2|X(ĝn,2(x2, u)|x, x2)

∣∣∣2 dµX2(x2)

}−1/2
.

By Assumption 3.I4, we have ϕ(x, u; g1(x, u)) = 0 for all x ∈ X1. Similar to the above

argument, if ϕ(x, u; ĝ1,n(x, u)) = op(1), then we can show ĝ1,n(x, u) →p g1(x, u). It follows

from uniform consistency of ĝ2,n(x, u) and Assumptions 3.NP2 and 3.NP3 that

sup
x, ξ

|ϕ̂n(x, u; ξ)− ϕ(x, u; ξ)|

≤ sup
x, ξ

{∫ ∣∣∣(F̂Y1|X(ξ|x, x2)− FY1|X(ξ|x, x2)
)

+
(
F̂Y2|X(ĝn,2(x2, u)|x, x2)− FY2|X(ĝn,2(x2, u)|x, x2)

)
+
(
FY2|X(ĝn,2(x2, u)|x, x2)− FY2|X(g2(x2, u)|x, x2)

)∣∣2 dµX2(x2)
}−1/2

= op(1). (3.22)

Similar to the above argument, by (3.22), we have

sup
x
ϕ (x, u; ĝn,1(x, u)) ≤ sup

x

∣∣∣ϕ̂n (x, u; ĝn,1(x, u))− ϕ (x, u; ĝn,1(x, u))
∣∣∣

+sup
x

∣∣∣ϕ̂n (x, u; g1(x, u))− ϕ (x, u; g1(x, u))
∣∣∣

= op(1).
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Therefore, we obtain ĝ1,n(x, u) →p g1(x, u) for all x ∈ X1.

Proof of Theorem 3.6. We establish the partial identification of gt by showing that we

can identify functions TU
t,x′,x : R → R and TL

t,x′,x : R → R that satisfy

gt(x
′, u) ≤ TU

t,x′,x (gt(x, u)) ,

gt(x
′, u) ≥ TL

t,x′,x (gt(x, u)) . (3.23)

If TU
x′,x is identified for all x, x′, then we can obtain a lower bound of the function g as

follows. For any random variables V,W , we define

F+
V |W (v|w) ≡ P (V ≤ v|W = w) ,

F−V |W (v|w) ≡ P (V < v|W = w) ,

where F+ is an usual distribution function. In addition, we define

GL
t,x(y) ≡

∫
F+
Yt|Xt=x′

(
TU
t,x′,x(y)

)
dFXt(x

′). (3.24)

Then, we have

GL
t,x (gt(x, u)) =

∫
F+
Yt|Xt=x′

(
TU
t,x′,x (gt(x, u))

)
dFXt(x

′)

≥
∫
F+
Yt|Xt=x′ (gt(x

′, u)) dFXt(x
′)

=

∫
P (gt(x

′, Ut) ≤ gt(x
′, u)|Xt = x′) dFXt(x

′)

≥
∫
P (Ut ≤ u|Xt = x′) dFXt(x

′) = u, (3.25)

where the first inequality follows from (3.23). Because gt(x, u) is weakly increasing in

u, we have {Ut ≤ u} ⊂ {gt(x, Ut) ≤ gt(x, u)} and the second inequality of (3.25) holds.

Hence, because GL
t,x (gt(x, u)) ≥ u, we can obtain a lower bound

gt(x, u) ≥ inf{y ∈ [y, y] : GL
t,x(y) ≥ u}. (3.26)

Similarly, we define

GU
t,x(y) ≡

∫
F−Yt|Xt=x′

(
TL
t,x′,x(y)

)
dFXt(x

′). (3.27)

Then, we have

GU
t,x (gt(x, u)) =

∫
F−Yt|Xt=x′

(
TL
t,x′,x(gt(x, u))

)
dFXt(x

′)

≤
∫
F−Yt|Xt=x′ (gt(x

′, u)) dFXt(x
′)

=

∫
P (gt(x

′, Ut) < gt(x
′, u)|Xt = x′) dFXt(x

′)

≤
∫
P (Ut < u|Xt = x′) dFXt(x

′) = u. (3.28)
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Owing to the weak monotonicity of gt, we have {gt(x, Ut) < gt(x, u)} ⊂ {Ut < u} and the

second inequality of (3.28) holds. Hence, similarly, we can obtain an upper bound

gt(x, u) ≥ sup{y ∈ [y, y] : GU
t,x(y) ≤ u}. (3.29)

We here describe the construction of the functions TU
t,x′,x(y) and T

L
t,x′,x(y) that satisfy

(3.23). We define

Q+
Yt|X(τ |x) ≡ sup{y ∈ [y, y] : F−Yt|X(y|x) ≤ τ},

Q−Yt|X(τ |x) ≡ inf{y ∈ [y, y] : F+
Yt|X(y|x) ≥ τ}.

Because {Ut : Ut ≤ u} ⊂ {Ut : gt(x, Ut) ≤ gt(x, u)} and {Ut : gt(x, Ut) < gt(x, u)} ⊂ {Ut :

Ut < u}, for all (x1, x2) ∈ X12 and t, s ∈ {(1, 2), (2, 1)}, we have

F−Yt|X (gt(xt, u)|x1, x2) = P (gt(xt, Ut) < gt(xt, u)|X1 = x1, X2 = x2)

≤ P (Ut < u|X1 = x1, X2 = x2)

= P (Us < u|X1 = x1, X2 = x2)

≤ P (gs(xs, Us) < gs(xs, u)|X1 = x1, X2 = x2)

= F+
Ys|X (gs(xs, u)|x1, x2) .

For t ̸= s, we define

T̃U,t,s
xt,xs

(y) ≡ Q+
Yt|(Xt,Xs)=(xt,xs)

(
F+
Ys|(Xt,Xs)=(xt,xs)

(y)
)

T̃L,t,s
xt,xs

(y) ≡ Q−Yt|(Xt,Xs)=(xt,xs)

(
F−Ys|(Xt,Xs)=(xt,xs)

(y)
)
.

Then, we have

gt(xt, u) ≤ T̃U,t,s
xt,xs

(gs(xs, u)) ,

because Q+
Yt|X(F

−
Yt|X(y|x)|x) = sup{y′ ∈ [y, y] : F−Yt|X(y

′|x) ≤ F+
Yt|X(y|x)} ≥ y. Hence, if

(x′, x̃) ∈ supp(Xt, Xs) and (x, x̃) ∈ supp(Xt, Xs), then we have

gt(x
′, u) ≤ T̃U,t,s

x′,x̃ ◦ T̃U,s,t
x̃,x (gt(x, u)) . (3.30)

Similarly, we have

gt(x
′, u) ≥ T̃L,t,s

x′,x̃ ◦ T̃L,s,t
x̃,x (gt(x, u)) . (3.31)

We define

TU
t,x′,x(y) ≡

inf x̃{T̃U,t,s
x′,x̃ ◦ T̃U,s,t

x̃,x (y)} if x ̸= x′

y if x = x′

TL
t,x′,x(y) ≡

supx̃{T̃
L,t,s
x′,x̃ ◦ T̃L,s,t

x̃,x (y)} if x ̸= x′

y if x = x′
.

Then, these functions satisfy (3.23).
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Corollary 3.3. Similarly to (3.30) and (3.31), for t ̸= s, we have

gt(x
′, u) ≤ T̃U,t,s

x′,x̃ ◦ T̃U,s,t
x̃,x (gt(x, u)) ,

gt(x
′, u) ≥ T̃L,t,s

x′,x̃ ◦ T̃L,s,t
x̃,x (gt(x, u)) ,

where

T̃U,t,s
xt,xs

(y) ≡ inf
x−(t,s)

Q+
Yt|(Xt,Xs,X−(t,s))=(xt,xs,x−(t,s))

(
F+
Ys|(Xt,Xs,X−(t,s))=(xt,xs,x−(t,s))

(y)
)
,

T̃L,t,s
xt,xs

(y) ≡ sup
x−(t,s)

Q−Yt|(Xt,Xs,X−(t,s))=(xt,xs,x−(t,s))

(
F−Ys|(Xt,Xs,X−(t,s))=(xt,xs,x−(t,s))

(y)
)
,

and X−(t,s) denotes a vector of X except Xt and Xs. Hence,

T̂U
t,x′,x(y) ≡

infs ̸=t,x̃∈Xs{T̃
U,t,s
x′,x̃ ◦ T̃U,s,t

x̃,x (y)} if x ̸= x′

y if x = x′

and

T̂L
t,x′,x(y) ≡

sups̸=t,x̃∈Xs
{T̃L,t,s

x′,x̃ ◦ T̃L,s,t
x̃,x (y)} if x ̸= x′

y if x = x′

satisfy inequality (3.23). Define

ĜL
t,x(y) ≡

∫
F+
Yt|Xt=x′

(
T̂U
t,x′,x(y)

)
dFXt(x

′),

ĜU
t,x(y) ≡

∫
F−Yt|Xt=x′

(
T̂L
t,x′,x(y)

)
dFXt(x

′). (3.32)

By a similar argument to the proof for Theorem 3.2, we have gt(x, u) ≥ inf{y ∈ [y, y] :

GL
t,x(y) ≥ u} and gt(x, u) ≤ sup{y ∈ [y, y] : GU

t,x(y) ≤ u}.
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3.8 Appendix: Auxiliary Lemmas

Lemma 3.1. Under Assumptions 3.C3 and 3.C4, ∥Dθ∥µ is continuous in θ.

Proof. By Assumption 3.C4, the density fYt|X(y|x) is bounded above by a constant C.

For any θ′, θ and v, we have

|Dθ′(v)−Dθ(v)|

≤ 2max
t

|E [(1{Yt ≤ gt(Xt, vu; θ
′)} − 1{Yt ≤ gt(Xt, vu; θ)})1{X ≤ vx}] |

≤ 2max
t

|E
[(
FYt|X (gt(Xt, vu; θ

′)|X)− FYt|X (gt(Xt, vu; θ)|X)
)
1{X ≤ vx}

]
|

≤ 2max
t

∫ ∣∣∣∣∣
∫ gt(xt,vu;θ′)

gt(xt,vu;θ)

fYt|X(y|x)dy

∣∣∣∣∣ dFX(x)

≤ 2Cmax
t

∫
|gt(xt, vu; θ′)− gt(xt, vu; θ)| dFXt(xt) ≤ 2CK∥θ′ − θ∥.

Hence, |∥Dθ′∥µ − ∥Dθ∥µ| ≤ ∥Dθ′ −Dθ∥µ ≤ 2CK∥θ′ − θ∥, which implies the continuity of

∥Dθ∥µ.

Lemma 3.2. Under Assumptions 3.C3, 3.C4, and 3.C5,

sup
θ,v

∣∣∣D̂n,θ(v)−Dθ(v)
∣∣∣ = oa.s.(1), (3.33)

and for any δn ↓ 0

sup
v∈V,∥θ−θ0∥<δn

∣∣∣√n(D̂n,θ(v)−Dθ(v)
)
−
√
n
(
D̂n,θ0(v)−Dθ0(v)

)∣∣∣ = op(1). (3.34)

Proof. The collection of indicator functions {x 7→ 1{x ≤ vx} : vx ∈ X12} is a VC-class. By
Assumption 3.C5, the collection of indicator functions for subgraphs of {gt(·, vu; θ) : θ ∈
Θ, vu ∈ U} is also a VC-class. By reference to Examples 2.10.7 and 2.10.8 in van der Vaart

and Wellner (1996), {Av
θ : θ ∈ Θ, v ∈ V} is P -Donsker, and also P -Glivenko–Cantelli.

Hence, we have (3.33) and for any δn ↓ 0

sup
(θ,v),(θ′,v′):P(Av

θ−A
v′
θ′ )

2<δn

|GnA
v
θ −GnA

v′

θ′ | = op(1)

⇒ sup
v,θ,θ0:P(Av

θ−A
v
θ0

)2<δn

|GnA
v
θ −GnA

v
θ0
| = op(1).
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Then, we have

P(Av
θ − Av

θ0
)2

≤ E [{(1{Y1 ≤ g1(X1, vu; θ)} − 1{Y1 ≤ g1(X1, vu; θ0)})

−(1{Y2 ≤ g2(X2, vu; θ)} − 1{Y2 ≤ g2(X2, vu; θ0)})}2
]

≤ 4max
t
E [|1{Yt ≤ gt(Xt, vu; θ)} − 1{Yt ≤ gt(Xt, vu; θ0)}|]

= 4max
t
E [|1{gt(Xt, vu; θ0) < Yt ≤ gt(Xt, vu; θ)}+ 1{gt(Xt, vu; θ)} < Yt ≤ gt(Xt, vu; θ0)}|]

≤ 8max
t

∫ ∣∣FYt|X (gt(xt, vu; θ)|x)− FYt|X (gt(xt, vu; θ0)|x)
∣∣ dFX(x)

≤ 8CK∥θ − θ0∥.

Because ∥θ − θ0∥ → 0 implies that P(Av
θ − Av

θ0
)2 → 0, we have (3.34).

Lemma 3.3. Under Assumptions 3.C4, 3.N2, and 3.N3, Dθ(v) is continuously differ-

entiable in θ in a neighborhood of θ0 for all v, and |Dθ(v) − Dθ0(v) − Γ0(v)
′(θ − θ0)| =

o(∥θ − θ0∥) uniformly over v.

Proof. First, we show continuous differentiability of Dθ(v). For all v and θ in the neigh-

borhood,

∇θDθ(v) = ∇θE
[(
FY1|X(g1(X1, vu; θ)|X)− FY2|X(g2(X2, vu; θ)|X)

)
1{X ≤ vx}

]
= ∇θ

∫
{x≤vx}

(
FY1|X(g1(x1, vu; θ)|x)− FY2|X(g2(x2, vu; θ)|x)

)
dFX(x).

Let C be a constant such that fYt|X(y|x) ≤ C. Because |fYt|X(gt(xt, vu; θ)|x)∇θgt(xt, vu; θ)|
is bounded by the integrable function C∇ḡ(xt), we can interchange a differential operator

with an integral. Hence, we have

∇θDθ(v) = E[fY1|X(g1(X1, vu; θ)|X)∇θg1(X1, vu; θ)1{X ≤ vx}]

−E[fY2|X(g2(X2, vu; θ)|X)∇θg2(X2, vu; θ)1{X ≤ vx}].

According to the dominated convergence theorem, ∇θDθ(v) is continuous in θ in a neigh-

borhood of θ0 for all v.

Next, we show the second statement. Because Dθ(v) is continuously differentiable in

θ, for θ in a neighborhood of θ0, there exists θ̄v between θ and θ0 such that

|Dθ(v)−Dθ0(v)− Γ0(v)
′(θ − θ0)| = |{Γθ̄v(v)− Γ0(v)}(θ − θ0)|

≤ ∥θ − θ0∥ × sup
v∈V

∥Γθ̄v(v)− Γ0(v)∥

It follows from Assumption 3.N3 (ii) that supv∈V ∥Γθ̄v(v)− Γ0(v)∥ → 0 as ∥θ − θ0∥ → 0.

Hence, we have |Dθ(v)−Dθ0(v)− Γ0(v)
′(θ − θ0)| = o(∥θ − θ0∥) uniformly over v.
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Lemma 3.4. Under Assumptions 3.C3 and 3.C5, for every sequence {δn} of positive

numbers that converges to zero,

sup
∥θ−θ0∥<δn

∥D̂n,θ −Dθ − D̂n,θ0∥µ = op(n
−1/2). (3.35)

Proof. Note that

sup
∥θ−θ0∥<δn

∥D̂n,θ −Dθ − D̂n,θ0∥µ ≤ sup
v∈V,∥θ−θ0∥<δn

∣∣∣D̂n,θ(v)−Dθ(v)− D̂n,θ0(v)
∣∣∣ .

By Lemma 3.2, the right-hand side is op(n
−1/2). Hence, (3.35) holds.

Lemma 3.5. Under the assumptions for Theorem 3.3, θ̂∗ →a.s θ0 for almost all samples

W1, · · · ,Wn.

Proof. By the triangle inequality, for almost all samples W1, · · · ,Wn, we have

sup
θ

∥D̂∗n,θ −Dθ∥µ ≤ sup
θ

∥D̂∗n,θ − D̂n,θ∥µ + sup
θ

∥D̂n,θ −Dθ∥µ

≤ sup
θ,v

|D̂∗n,θ(v)− D̂n,θ(v)|+ sup
θ,v

|D̂n,θ(v)−Dθ(v)| →a.s. 0,

since {Av
θ : θ ∈ Θ, v ∈ V} is a Donsker class. The reminder of the proof is same as for

Theorem 3.3.

Lemma 3.6. Suppose that the assumptions of Theorem 3.4 hold. For every sequence {δn}
of positive numbers that converges to zero,

sup
∥θ−θ0∥<δn

∥
√
n(D̂∗n,θ − D̂n,θ)−

√
n(D̂∗n,θ0 − D̂n,θ0)∥µ = oB(1). (3.36)

Proof. The left-hand side of (3.36) is dominated above by

sup
v,∥θ−θ0∥<δn

|
√
n(D̂∗n,θ(v)− D̂n,θ(v))−

√
n(D̂∗n,θ0(v)− D̂n,θ0(v))|.

The bootstrap equicontinuity due to Giné and Zinn (1990) implies that this random

variable is oB(1). Hence, we can obtain (3.36).
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3.9 Appendix: Figures and Tables

Figure 3.1: Description of St
m.
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Figure 3.2: Connected support.
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Table 3.1: Results of Simulation 3.1(i)

N = 400 N = 800 N = 1600

bias 0.0262 0.0195 0.0125

θ1 std 0.1991 0.1709 0.1121

mse 0.0403 0.0296 0.0127

bias 0.0657 0.0733 0.0363

θ2 std 0.1751 0.1375 0.1045

mse 0.0350 0.0243 0.0122

bias 0.0472 0.0605 0.0320

θ3 std 0.1158 0.1069 0.0889

mse 0.0231 0.0171 0.0089

Table 3.2: Results of Simulation 3.1(ii)

N = 500 N = 1000

bias 0.0101 0.0087

Our method std 0.0978 0.0745

mse 0.0097 0.0056

bias 0.0042 0.0017

Hoderlein and White std 0.1175 0.0855

mse 0.0138 0.0073

77



Table 3.3: Results of Simulation 3.2

N = 400 N = 800 N = 1600

bias -0.0025 -0.0031 0.0005

θ1 std 0.0875 0.0604 0.0418

mse 0.0077 0.0037 0.0018

bias 0.0020 0.0022 0.0001

θ2 std 0.0522 0.0351 0.0244

mse 0.0027 0.0012 0.0006

bias -0.0082 0.0004 -0.0044

θ3 std 0.1837 0.1256 0.0886

mse 0.0338 0.0158 0.0079

bias 0.0043 0.0001 0.0023

θ4 std 0.0839 0.0562 0.0398

mse 0.0071 0.0032 0.0016

bias -0.0025 -0.0014 -0.0011

ATE std 0.0972 0.0673 0.0457

mse 0.0095 0.0045 0.0021

bias -0.0333 -0.0303 -0.0343

QTE25 std 0.1148 0.0814 0.0565

mse 0.0143 0.0075 0.0044

bias -0.0017 -0.0016 -0.0009

QTE50 std 0.0994 0.0685 0.0474

mse 0.0099 0.0047 0.0022

bias 0.0306 0.0292 0.0328

QTE75 std 0.1324 0.0896 0.0618

mse 0.0185 0.0089 0.0049

Table 3.4: Lower and upper bounds for Example 3.4

x gL1 (x, u) gU1 (x, u) gL2 (x, u) gU2 (x, u) g1(x, u) g2(x, u)

−2 1{u > 0.99} 1{u > 0.47} 1{u > 0.99} 1{u > 0.41} 1{u > 0.73} 1{u > 0.71}
−1 1{u > 0.98} 1{u > 0.35} 1{u > 0.98} 1{u > 0.30} 1{u > 0.62} 1{u > 0.57}
0 1{u > 0.85} 1{u > 0.13} 1{u > 0.82} 1{u > 0.10} 1{u > 0.50} 1{u > 0.43}
1 1{u > 0.64} 1{u > 0.02} 1{u > 0.59} 1{u > 0.01} 1{u > 0.38} 1{u > 0.29}
2 1{u > 0.53} 1{u > 0.01} 1{u > 0.47} 1{u > 0.01} 1{u > 0.27} 1{u > 0.18}
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Chapter 4

Panel Data Quantile Regression for

Treatment Effect Models

4.1 Introduction

In the literature of program evaluation, it is important to learn about the distributional

effects beyond the average effects of the treatment. Policy-makers are likely to prefer a

policy that tends to increase outcomes in the lower tail of the outcome distribution to

one that tends to increase outcomes in the middle or upper tail of the outcome distribu-

tion. One way to capture such effects is to compute the quantiles of the distribution of

treated and control potential outcomes. Then, the parameter of interest is the quantile

treatment effects (QTE) or the quantile treatment effects on the treated (QTT). For ex-

ample, Abadie, Angrist, and Imbens (2002) estimates the distributional impacts of the

Job Training Partnership Act (JTPA) program on earnings. They show that for women,

the JTPA program had the largest proportional impact at low quantiles, but for men,

the training impact was largest in the upper half of the distribution, with no significant

effect on lower quantiles. Their result could not have been revealed using mean impact

analysis. Empirical researchers estimated the distributional effects such as QTE or QTT

in many areas of empirical economic research: e.g. Chernozhukov and Hansen (2004)

estimate the QTE of participation in a 401(k) plan on several measures of wealth; James,

Lahti, and Hoynes (2006) estimate the QTE of welfare reforms on earnings, transfers, and

income; Martincus and Carballo (2010) estimate the QTE of trade promotion activities;

and Havnes and Mogstad (2015) and Kottelenberg and Lehrer (2017) estimate the QTT

of universal child care.

There is a rich literature on the identification and estimation of the QTE and QTT.

Firpo (2007) shows the identification and estimation of the QTE parameters under un-

confoundedness. Abadie et al. (2002), Chernozhukov and Hansen (2005), Chernozhukov
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and Hansen (2006), and Frölich and Melly (2013) show how instrumental variables can be

used to identify the QTE. Athey and Imbens (2006), Melly and Santangelo (2015), and

Callaway and Li (2017) provide the identification and estimation results for the QTT in

the difference-in-differences (DID) setting by using repeated cross sections or panel data.

In this chapter, we consider the identification and estimation of the QTE by using

panel data. We show that the QTE is identified under the rank invariance and rank

stationarity assumptions. Our model corresponds to the change-in-changes (CIC) model

proposed by Athey and Imbens (2006) in the DID setting. We generalize the CIC model

and propose a tractable estimator of the QTE.

Athey and Imbens (2006) suggest the CIC model as an alternative to the DID model.

The CIC model allows for the estimation of the potential outcomes distribution and

captures the heterogeneous effects of the treatment on the outcomes. However, there are

two problems with the CIC model. First, there is a lack of a tractable estimator in the

presence of covariates. According to Lechner (2011) and Kottelenberg and Lehrer (2017),

there have been a few applications of the CIC model for this reason. Second, the CIC

estimator does not work when the treatment is continuous. Although Athey and Imbens

(2006) provide extensions to settings with multiple groups and multiple time periods, they

do not consider the case where the treatment is continuous.

Athey and Imbens (2006) provide nonparametric and semiparametric strategies in

the presence of covariates. If the dimensionality of the observed covariates is high, the

nonparametric strategy would be difficult to implement. Although the semiparametric

strategy is more tractable, it assumes that the effects of the observed covariates do not

depend on the unobserved factor, and the observed covariates are independent of the

unobserved factor conditional on the treatment. On the contrary, our estimation method

allows the effects of the observed covariates to depend on the unobserved factor and

does not require the conditional independence between the observed covariates and the

unobserved factor.

Melly and Santangelo (2015) and Kottelenberg and Lehrer (2017) also consider the

estimation of the CIC model in the presence of covariates. Melly and Santangelo (2015)

suggest a flexible semiparametric estimator based on quantile regression. They estimate

the conditional distribution of outcomes for both treatment and control groups and both

periods by using quantile regression, and then apply the changes-in-changes transforma-

tions. Kottelenberg and Lehrer (2017) rely on Firpo (2007)’s extension to quantiles of the

inverse propensity scores method.

Athey and Imbens (2006) do not consider the case where the treatment variable is

continuous. There are, however, many empirical applications where the treatment is

continuous. For example, many researchers estimated the effects of class size on children’s
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test score by using panel data. In this case, the policy maker may be interested in the

effect of class size on the lower tail of the distribution of children’s test score. Since Athey

and Imbens (2006) only consider the DID setting, we cannot extend their estimation

approach to the continuous treatment case directly.

We employ two key assumptions: the rank invariance and rank stationarity assump-

tions. The rank invariance assumption is introduced by Chernozhukov and Hansen (2005).

This assumption implies that a scalar unobserved factor determines the potential outcomes

across treatment states. As discussed in Chernozhukov and Hansen (2005), although the

rank invariance is restrictive, we can relax this assumption. The rank stationarity assump-

tion implies that the conditional distribution of the unobserved factor given explanatory

variables and covariates does not change over time. In the literature of nonseparable panel

data models, similar assumptions are employed by Athey and Imbens (2006), Hoderlein

andWhite (2012), Graham and Powell (2012), D’Haultfoeuille et al. (2013), Chernozhukov

et al. (2013), Chernozhukov et al. (2015), and Ishihara (2019). Our identification approach

is essentially the same as that of Ishihara (2019).

We propose a two-step estimation method based on the quantile regression and mini-

mum distance method. Ishihara (2019) considers a similar model and proposes a minimum

distance estimator. However, the optimization of that estimator is computationally de-

manding when the dimensionality of covariates is high. To solve this problem, we use

the quantile regression in the first step. Using the quantile regression, we can obtain the

second stage estimator by optimizing the objective function over low dimensional param-

eters. This two-step estimation method is similar to the instrumental variable quantile

regression proposed by Chernozhukov and Hansen (2006).

There is an alternative approach that estimates the distributional effects by using

panel data. Callaway and Li (2017) provide the identification and estimation results

for the QTT under a straightforward extension of the most common DID assumption.

To identify the QTT, they employ two key assumptions, the Distributional Difference-

in-Differences Assumption and the Copula Stability Assumption. The first assumption

means the distribution of the change in potential untreated outcomes does not depend on

whether or not the individual belongs to the treatment or the control group. The second

assumption means the copula between the change in the untreated potential outcomes for

the treated group and the initial untreated outcome for the treated group is stable over

time.

The rest of the paper is organized as follows. Section 4.2 introduces the assumptions

employed in this study and shows that our model is nonparametrically identified. In

Section 4.3, we propose a two-step estimator and discuss its consistency and asymptotic

normality. Section 4.4 contains the results of several Monte Carlo simulations. Section
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4.5 illustrates the use of the derived estimator through a brief empirical example. Section

4.6 concludes. The proofs of the theorems and auxiliary lemmas are collected in the

Appendix.

4.2 Model and Identification

First, in Section 4.2.1, we introduce the CIC model proposed by Athey and Imbens (2006)

and discuss their estimation strategy. Next, in section 4.2.2, we propose the identification

of the generalized CIC models.

Throughout this paper, for any random variables V and W , let FV |W denote the

conditional distribution function of V conditional on W .

4.2.1 The Change-in-Changes Model

First, we introduce the CIC model proposed by Athey and Imbens (2006). We assume

that an individual belongs to a group G ∈ {0, 1} (where group 1 is the treatment group)

and is observed in period T ∈ {0, 1}. Then, only individuals in group 1 in period 1 are

treated. Hence, I ≡ G×T is an indicator for the treatment. Let Y N denote the potential

outcome if the individual does not receive the treatment, and let Y I denote the potential

outcome if the individual receives the treatment. Then, the realized outcome Y satisfies

the following equation:

Y = Y N · (1− I) + Y I · I.

Athey and Imbens (2006) impose the following four assumptions:

Assumption AI1. The outcome of an individual in the absence of intervention satisfies

the relationship Y I = h(U, T ).

Assumption AI2. h(u, t) is strictly increasing in u for t ∈ {0, 1}.

Assumption AI3. We have U ⊥⊥T |G.

Assumption AI4. We have supp(U |G = 1) ⊂ supp(U |G = 0).

Under these assumptions, Athey and Imbens (2006) show that the distribution of

Y N |G = 1, T = 1 is identified and

FY N |G=1,T=1(y) = FY |G=1,T=0

(
F−1Y |G=0,T=0

(
FY |G=0,T=1(y)

))
, (4.1)

where F−1Y |G=g,T=t is the conditional quantile function.

If we are interested in the effect of the intervention on the treated, we need to impose

some additional assumptions. Similar to (4.1), Athey and Imbens (2006) show that in
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addition to Assumptions AI1–AI3, if we have Y I = hI(U, T ), hI(u, t) is strictly increasing

in u, and supp(U |G = 1) = supp(U |G = 0), then the distribution of Y I |G = 0, T = 1 is

identified and

FY I |G=0,T=1(y) = FY |G=0,T=0

(
F−1Y |G=1,T=0

(
FY |G=1,T=1(y)

))
. (4.2)

Therefore, we can identify the QTE and easily estimate the QTE by using a sample

analogue.

4.2.2 Assumptions and Identification

In this section, we propose a model that generalizes the CIC model and introduce the

assumptions employed in this paper. We consider the following potential outcome frame-

work. Potential outcomes are indexed against the potential values x of the treatment

variable Xit ∈ RdX , and denoted by Yit(x). Then, we cannot observe Yit(x) directly, and

the observed outcome is Yit ≡ Yit(Xt). We consider the following model of potential

outcomes:

Yit(x) = qt(x, Zit, Uit), i = 1, · · · , n, t = 1, · · · , T,

where qt(x, z, τ) is strictly increasing in τ , Zit ∈ RdZ+1 is a vector of covariates that

are independent of Uit, and Uit ∈ R has the marginal uniform distribution. The CIC

model considers the case of repeated cross sections and hence treats the time period as

a random variable. However, in this model, we treat the time period as a fixed value

because we are considering a case with panel data. Suppose that Yi = (Yi1, · · · , YiT )′,
Xi = (X ′i1, · · · , X ′iT )′, and Zi = (Z ′i1, · · · , Z ′iT )′ are observable. DefineWit ≡ (Yit, X

′
it, Z

′
it)
′

and Wi ≡ (W ′
i1, · · · ,W ′

iT )
′. Let Xt, Zt, X1,··· ,T , and Z1,··· ,T denote the support of Xit, Zit,

Xi, and Zi.

Remark 4.1 (Connection with the CIC model). In the standard DID setting, this model

is essentially the same as the CIC model. To see this, we consider the same setting as that

of Section 4.2.1. Then, the support of (Xi0, Xi1) becomes {(0, 0), (0, 1)}, and a variable

Gi ≡ Xi1 denotes an indicator of the treatment group. We assume that there are no

covariates. In this setting, Yit(0) and Yit(1) correspond to Y N and Y I , respectively. This

implies that

Y N |T = t
d
= qt(0, Ut),

Y I |T = t
d
= qt(1, Ut).

Hence, by assuming that U |T = t
d
= Ut, h(u, t) = qt(0, u), and h

I(u, t) = qt(1, u), we can

think of this model as the CIC model introduced in the previous section.
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First, we impose the following two assumptions.

Assumption 4.1 (Unobservable variables). (i) For all t, Uit is uniformly distributed on

(0, 1) conditional on Zit. (ii) For all t, x, and z, the support of Uit|Xi = x, Zit = z is

[0, 1].

Assumption 4.2 (Continuous variable). For all t, the quantile function qt(x, z, τ) is

continuous and strictly increasing in τ for all x ∈ Xt and z ∈ Zt. If Xit is a continuous

variable, then we assume that qt(x, z, τ) is continuous in x.

As seen above, Assumption 4.1 (i) implies that the conditional τ -th quantile of Yit(x)

given Zit = z is equal to qt(x, z, τ). Athey and Imbens (2006) do not assume that the

unobserved variable is uniformly distributed. However, when the unobserved variable is

continuous, this is a normalization, not a restriction (see, e.g. Matzkin (2003)). Assump-

tion 4.2 rules out the case where outcomes are discrete or censored. Although Athey and

Imbens (2006) consider the discrete outcomes, we do not consider the discrete outcome

case in this study.

Assumption 4.3 (τ -th rank stationarity). For all t ̸= s, x, and z, we have Pr(Uit ≤
τ |Xi = x, Zit = z) = Pr(Uis ≤ τ |Xi = x, Zis = z).

This assumption implies that the probability that the ranking variable Uit is less than

τ does not change across time conditional on Xi and Zit.

Assumption 4.3 is a quantile version of the identification condition of the following

conventional linear panel data model:

Yit = X ′itα+ Ai + ϵit, E[Xisϵit] = 0 for all t and s,

where Ai is a fixed effect and ϵit is a time-variant unobserved variable. Let Ē[·|Xi] denote

the linear projection on Xi, as in Chamberlain (1982). Chernozhukov et al. (2013) show

that above equation is satisfied if and only if there is ϵ̃it with

Yit = X ′itα + ϵ̃it, Ē[ϵ̃it|Xi] = Ē[ϵ̃is|Xi] for all t and s.

On the contrary, if the quantile function is linear and there are no covariates, then we can

rewrite the model to

Yit = X ′itα(τ) + ϵit(τ),

where ϵit(τ) = X ′it(α(Uit)−α(τ)). Then, under Assumption 4.3, ϵit(τ) satisfies Fϵt(τ)|X(0|x) =
Fϵs(τ)|X(0|x) for all t ̸= s and x. Hence, this assumption is a quantile version of the iden-

tification condition of the conventional linear panel data model.

If Assumption 4.3 holds for all τ ∈ (0, 1), then the following assumption is satisfied:
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Assumption 4.3’ (Rank stationarity). For all t ̸= s, x, and z, we have Uit|Xi = x, Zit =

z
d
= Uis|Xi = x, Zis = z.

In the literature of nonseparable panel data models, similar assumptions are employed

by Athey and Imbens (2006), Hoderlein and White (2012), Graham and Powell (2012),

D’Haultfoeuille et al. (2013), Chernozhukov et al. (2013), Chernozhukov et al. (2015),

and Ishihara (2019). Chernozhukov et al. (2013) refer to these assumptions as “time is

randomly assigned” or “time is an instrument”.

Remark 4.2 (Connection with the CIC model (continued)). Consider the standard DID

setting in Remark 1. When τ = 0.5, Assumption 4.3 implies P (Yi0(0) ≤ med(Yi0(0))|Gi =

g) = P (Yi1(0) ≤ med(Yi1(0))|Gi = g) for all g = 0, 1, where med(Yit(0)) is the me-

dian of Yit(0). This does not imply that P (Yit(0) ≤ med(Yit(0))|Gi = 0) = P (Yit(0) ≤
med(Yit(0))|Gi = 1), and hence this allows that the treatment group contains more high-

ability people than the control group.

Assumption 4.3’ is equivalent to Assumption AI3. Assumption AI3 is satisfied if and

only if we have U |T = 0, G = g
d
= U |T = 1, G = g for all g. On the contrary, Assumption

4.3’ implies that Uit|Gi = 0
d
= Uit|Gi = 1 for all t. Because we have U |T = t

d
= Uit,

Assumption 4.3’ is the same as Assumption AI3.

Define the sets Sm
t (x) in the following manner. First, define S0

t (x) ≡ {x}. For m =

1, 2, · · · , we define

Sm
t (x) ≡ {x ∈ Xt : there exist (xt, xs) ∈ Xt,s

such that xt ∈ Sm−1
t (x) and (x, xs) ∈ Xt,s.}.

When T = 2, we have

S1(x) =
∪

x2∈X2(x)

X1(x2),

where X1(x) and X2(x) are the support of Xi1|Xi2 = x and Xi2|Xi1 = x, respectively.

Assumption 4.4 (Support condition). (i) For all t, ∪∞n=0Sn
t (x) = Xt holds for some

x ∈ Xt. (ii) The support of Xi|Zit = z is equal to X1,··· ,T for all z ∈ Zt, and Zt = Z for

all t.

Assumption 4.4 (i) rules out the case where the endogenous variable does not change

over time, but this assumption is satisfied in many cases. For example, Ishihara (2019)

shows that this assumption holds when X1,2 = {(0, 0), (0, 1)} or the interior of X1,2 is

connected. Assumption 4.4 (ii) does not require that exogenous variables change over

time. Therefore, we can include the time-invariant variables into the covariates.

Under these assumptions, we can show that qt(x, z, τ) is nonparametrically identified.

The following proposition is essentially the same as Corollary 1 in Ishihara (2019).
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Proposition 4.1. Suppose that Yit = qt(Xit, Zit, Uit) holds. Under Assumptions 4.1, 4.2,

4.3, and 4.4, qt(x, z, τ) is point identified for all x ∈ Xt and z ∈ Zt. Furthermore, under

Assumptions 4.1, 4.2, 4.3’, and 4.4, qt is point identified.

Remark 4.3 (Connection with the CIC model (continued)). Consider the standard DID

setting with covariates. Then, under Assumptions 4.1, 4.2, 4.3’, and 4.4, we have the

following equations:

FY1(0)|G=1,Z1=z(y) = FY0|G=1,Z0=z

(
F−1Y0|G=0,Z0=z

(
FY1|G=0,Z1=z(y)

))
,

FY1(1)|G=0,Z1=z(y) = FY0|G=0,Z0=z

(
F−1Y0|G=1,Z0=z

(
FY1|G=1,Z1=z(y)

))
.

(4.3)

These results are essentially the same as (4.1) and (4.2).

4.3 Estimation and Inference

4.3.1 A Two-Step Estimator

We focus on the following linear-in-parameters model:

qt(x, z, τ) = x′α(τ) + z′βt(τ). (4.4)

Hence, the model is written as

Yit = X ′itα(Uit) + Z ′itβt(Uit), Uit|Zit ∼ U(0, 1).

If Uit is independent of Xit and Zit, then this model becomes a standard linear quantile

regression model. In this model, we allow Uit to be correlated with Xit. This model

is similar to the IV quantile regression model proposed by Chernozhukov and Hansen

(2006).

By Theorem 1, we can estimate α(τ) and βt(τ) by using the following conditions:

FYt|X,Zt(x
′
tα(τ) + z′βt(τ)|x, z) = FYs|X,Zs(x

′
sα(τ) + z′βs(τ)|x, z) (4.5)

FYt−X′
tα(τ)−Z′

tβt(τ)|Zt(0|z) = τ, (4.6)

where x ≡ (x1, · · · , xT )′. Hence, we can construct an estimator by using the minimum

distance approach. Ishihara (2019) uses a similar identification approach and provides a

minimum distance estimator. However, if the dimensionality of the observed covariates

is high, the optimization is quite difficult. Hence, we cannot directly apply the minimum

distance approach.
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We propose the following two-step estimator based on the quantile regression and

minimum distance method. Fix τ ∈ (0, 1). In the first step, we define β̃t(a, τ) as

β̃t(a, τ) ≡ arg min
bt∈Bt

1

n

n∑
i=1

ρτ (Yit −X ′ita− Z ′itbt)

= arg min
bt∈Bt

1

n

n∑
i=1

Rτ (Wit; a, bt), (4.7)

where ρτ (u) ≡ (τ − 1{u < 0})u, Bt is a parameter space of βt(τ), and Rτ (Wit; a, bt) ≡
ρτ (Yit −X ′ita− Z ′itbt). This is an ordinary quantile regression of Yit −X ′ita on Zit. Then,

from (4.6), β̃t (α(τ), τ) becomes a consistent estimator of βt(τ).

In the second step, we construct estimators of α(τ) and βt(τ) using the minimum

distance approach. Define

gt(Wi; a, b, vz) ≡ 1{Yit ≤ X ′ita+ Z ′itbt}1{Zit ≤ vz}

−1/T
T∑

s=1

1{Yis ≤ X ′isa+ Z ′isbs}1{Zis ≤ vz},

where b = (b′1, · · · , b′T )′. Then, it follows from (4.5) that for all vz and vx we have

E [gt(Wi;α(τ), β(τ), vz)1{Xi ≤ vx}] = 0, (4.8)

where β(τ) ≡ (β1(τ)
′, · · · , βT (τ)′)′. Let ∥·∥µ to be the L2-norm with respect to a probabil-

ity measure µ with support V ≡ X1,··· ,T ×Z, that is, ∥f(vx, vz)∥2µ =
∫
f(vx, vz)

2dµ(vx, vz).

Using this norm, we obtain the following estimator of α(τ):

α̂(τ) ≡ argmin
a∈A

1

T

T∑
t=1

∥∥∥∥∥ 1n
n∑

i=1

gt(Wi; a, β̃(a, τ), vz)1{Xi ≤ vx}

∥∥∥∥∥
2

µ

= argmin
a∈A

1

T

T∑
t=1

∥D̂t
n(v; a, β̃(a, τ))∥2µ, (4.9)

where D̂t
n(v; a, b) ≡ 1

n

∑n
i=1 gt(Wi; a, b, vz)1{Xi ≤ vx}, v = (v′x, v

′
z)
′, and A is a parameter

space of α(τ). Because β̃t (α(τ), τ) is a consistent estimator of βt(τ), we can estimate

βt(τ) by β̂t(τ) ≡ β̃t(α̂t(τ), τ).

Our estimator is similar to the estimator proposed by Chernozhukov and Hansen

(2006). They consider the IV quantile regression for heterogeneous treatment effect mod-

els and simultaneous equations models with nonadditive errors. Similar to Chernozhukov

and Hansen (2006), our estimator is attractive from a computational point of view. Since

the ordinary quantile regressions are obtained by convex optimization, our first step es-

timation (4.7) is computationally convenient. Our second step estimation (4.9) requires
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non-convex optimization, and hence it seems to be computationally demanding. However,

we can obtain (4.9) by optimizing the objective function over α-parameter (typically one-

dimensional). Therefore, this optimization problem is not so computationally expensive.

Remark 4.4 (Existing estimators of the CIC model with covariates). Athey and Imbens

(2006) provide nonparametric and semiparametric strategies in the presence of covariates.

Their nonparametric strategy is based on equations (4.3), and hence they estimate the

QTT by estimating the conditional distribution and quantile functions nonparametrically.

However, if the dimensionality of covariates is high, the nonparametric strategy would be

difficult to implement. In their semiparametric strategy, they assume the following model:

Y I = h(T, U) + Z ′β, Z ⊥⊥(U, T )|G.

This model assumes that the effects of the observed covariates do not depend on the un-

observed factor, and the observed covariates are independent of the unobserved factor

conditional on the group. On the contrary, our model allows the effect of Zit on the

outcome to depend on time and the unobserved variable, and does not require statistical

independence between Uit and Zit conditional on Gi.

Melly and Santangelo (2015) also consider the estimation of the CIC model with covari-

ates. They suggest a flexible semiparametric estimator based on quantile regression. They

estimate the conditional distribution of outcomes for both treatment and control groups and

both periods by using quantile regression, and then apply the changes-in-changes transfor-

mations (4.3). Hence, they assume that the conditional quantile function of observed

outcomes is linear in covariates, that is,

F−1Yt|G=g,Zt
(τ |z) = z′βg

t (τ).

On the contrary, our model does not assume that the conditional quantile functions are

linear. In model (4.4), we have

F−1Yt|G=g,Zt
(τ |z) = gα(Qt(τ |g, z)) + z′βt(Qt(τ |g, z)),

where Qt(τ |g, z) ≡ F−1Ut|G=g,Zt=z(τ). Hence, our model does not require the linearity of the

conditional quantile functions because we allow the conditional distribution of Uit|Di =

d, Zit = z to depend on z.

4.3.2 Consistency and Asymptotic Normality

First, we show that α(τ) and β(τ) = (β1(τ)
′, · · · , βT (τ)′)′ uniquely solves the limit prob-

lem. Define

βt(a, τ) ≡ arg min
bt∈Bt

E[Rτ (Wit; a, bt)], (4.10)
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and

α∗(τ) ≡ argmin
a∈A

1

T

T∑
t=1

∥Dt(v; a, β(a, τ))∥2µ,

where β(a, τ) ≡ (β1(a, τ)
′, · · · , βT (a, τ)′)′ and Dt(v; a, b) ≡ E[gt(Wi; a, b, vz)1{Xi ≤ vx}].

Hence, we show that α∗(τ) = α(τ) and βt(α
∗(τ), τ) = βt(τ) for all t.

Define et(a, τ, z) ≡ P (Yit ≤ X ′ita + Z ′itβt(a, τ)|Zit = z). We impose the following

assumption:

Assumption 4.5. (i) For all t, if a, ã ∈ A, bt, b̃t ∈ Bt, and (a, bt) ̸= (ã, b̃t), then x
′a+z′bt

is not equal to x′ã+ z′b̃t for some x and z. (ii) E[|Yit|] and E[∥(X ′it, Z ′it)′∥] are finite for

all t. (iii) For all a, τ , and t, βt(a, τ) uniquely solves (4.10).

Assumption 4.6. For all t and a ∈ A, et(a, τ, z) = τ for some z ∈ Z.

Assumption 4.5 (i) is a usual identification condition. Assumption 4.6 is a technical

condition. This assumption is satisfied for many situations. By the proof of Theorem 4.2 in

Angrist, Chernozhukov, and Fernández-Val (2006), it follows from the first order condition

of (4.7) that E [(1{Yit ≤ X ′ita+ Z ′itβt(a, τ)} − τ)Zit] = 0. Hence, E[et(a, τ, Zit)] = τ holds

because Zit contains a constant. If {et(a, τ, z) : z ∈ Z} is an interval, then et(a, τ, z) = τ

for some z ∈ Z. When Zit has continuous covariates and et(a, τ, z) is continuous in z, it

is natural to assume that {et(a, τ, z) : z ∈ Z} is an interval. Even when all covariates are

discrete, if the model is saturated, that is the cardinality of Z is equal to the dimension

of βt(a, τ), then we have et(a, τ, z) = τ for all z ∈ Z.

Theorem 4.1. Suppose that (4.4) and Assumptions 4.1, 4.2, 4.3’, 4.4, 4.5, and 4.6 hold.

Then, for all τ ∈ (0, 1), α(τ) and β(τ) uniquely solve the limit problems. That is, we have

1

T

T∑
t=1

∥Dt(v; a, β(a, τ))∥2µ = 0 and a ∈ A ⇔ a = α(τ). (4.11)

Next, we show the consistency of α̂(τ) and β̂(τ). Let T be a finite subset of (0, 1),

and we define J b
t (a, τ) ≡ E

[
fYt−X′

ta|Zt(Z
′
itβt(a, τ)|Zit)ZitZ

′
it

]
and J b

t (τ) ≡ J b
t (α(τ), τ). For

example, T = {0.1, · · · , 0.9}.

Assumption 4.7. (i) {Wi}ni=1 are independent and identically distributed. (ii) A and Bt

are compact for all t. (iii) For all t, E[|Yit|] <∞ and X1,··· ,T , and Z are compact. (iv) For

all a, τ , and t, βt(a, τ) uniquely solves (4.10). (v) The conditional density fYt−X′
ta|Zt(y|z)

exists for all a ∈ A and t, and fYt−X′
ta|Zt(y|z) is continuous in y and bounded above. (vi)

For all t and τ , J b
t (a, τ) is full rank uniformly over a ∈ A, and J b

t (a, τ) is continuous in

a at α(τ). (vii) For all t, FYt|X,Zt(y|x, z) is uniformly continuous in y. (viii) a 7→ β(a, τ)

is continuous for all τ ∈ T .
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Let µ̃ be a product measure µ×µT , where µT ({t}) = 1/T for all t ∈ {1, · · · , T}. Similar

to ∥ · ∥µ, let ∥ · ∥µ̃ denote the L2-norm with respect to µ̃. Then, we have ∥Dt(v; a, b)∥2µ̃ =
1
T

∑T
t=1 ∥Dt(v; a, b)∥2µ and ∥D̂t

n(v; a, b)∥2µ̃ = 1
T

∑T
t=1 ∥D̂t

n(v; a, b)∥2µ

Theorem 4.2. Suppose that (4.11) holds for all τ ∈ T . Under Assumption 4.7, we have

∥α̂(τ)− α(τ)∥ →p 0 and ∥β̂(τ)− β(τ)∥ →p 0 for all τ ∈ T .

For all t and τ , define

Ja
t (τ) ≡ E[fYt|Xt,Zt(X

′
itα(τ) + Z ′itβt(τ)|Xit, Zit)ZitX

′
it],

Γt
1(v; a, τ) ≡ E[fYt|X,Zt(X

′
ita+ Z ′itbt|Xi, Zit)1{Xi ≤ vx, Zit ≤ vz}(Xit +Bt(a, τ)

′Zit)]

− 1

T

T∑
s=1

E[fYs|X,Zs(X
′
isa+ Z ′isbs|Xi, Zis)1{Xi ≤ vx, Zis ≤ vz}(Xis +Bs(a, τ)

′Zis)],

γt,s2 (v; a, b) ≡

T−1
T
E[fYt|X,Zt(X

′
ita+ Z ′itbt|Xi, Zit)1{Xi ≤ vx, Zit ≤ vz}Zt], if s = t

− 1
T
E[fYs|X,Zs(X

′
isa+ Z ′isbs|Xi, Zis)1{Xi ≤ vx, Zis ≤ vz}Zis], if s ̸= t

,

Γt
2(v; a, b) ≡ (γt,12 (v; a, b)′, · · · , γt,T2 (v; a, b)′)′,

Γt
1(v; τ) ≡ Γt

1(v;α(τ), τ), Γ
t
2(v; τ) ≡ Γt

2(v;α(τ), β(τ)), and Bt(a, τ) ≡ ∂
∂a′
βt(a, τ).

Assumption 4.8. (i) For all τ ∈ T and a ∈ A, α(τ) and βt(a, τ) are inner points

of A and Bt, respectively. (ii) {y 7→ fYt−X′
ta|Zt(y|z) : a ∈ A} is equicontinuous for all

z ∈ Z. (iii) The conditional density fYt|X,Zt(y|x, z) exists, and fYt|X,Zt(y|x, z) is uniformly

continuous in y and bounded above. (vi) For all t and τ ∈ T , βt(a, τ) is continuously

differentiable in a. (v) For all τ ∈ T , there exists c > 0 such that ∥Γt
1(v; τ)

′a∥µ̃ ≥ c∥a∥
for all a ∈ RdX .

Theorem 4.3. Suppose that (4.11) holds for all τ ∈ T . Under Assumptions 4.7 and 4.8,

√
n(α̂(τ)− α(τ)) = −∆1(τ)

−1 1√
n

n∑
i=1

{ξ(Wi; τ)−∆12(τ)l(Wi; τ)}+ op(1),(4.12)

and

√
n(β̂t(τ)− βt(τ)) = op(1) + J b

t (τ)
−1

{
1√
n

n∑
i=1

rτ (Wit;α(τ), βt(τ))

− Ja
t (τ)∆1(τ)

−1 1√
n

n∑
i=1

(ξ(Wi; τ)−∆12(τ)l(Wi; τ))

}
, (4.13)

where

ξ(Wi; τ) ≡ 1

T

T∑
t=1

[∫
Γt
1(v; τ)1{X ≤ vx, Zt ≤ vz}dµ(v)

]
1{Yit ≤ X ′itα(τ) + Z ′itβt(τ)},

l(Wi; τ) ≡ (J b
1(τ)

−1rτ (Wi1;α(τ), β(τ))
′, · · · , J b

T (τ)
−1rτ (WiT ;α(τ), β(τ))

′)′,
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rτ (Wit; a, bt) ≡ (τ − 1{Yit ≤ X ′ita+ Z ′itbt})Zit, ∆1(τ) ≡ 1
T

∑T
t=1

∫
Γt
1(v; τ)Γ

t
1(v; τ)

′dµ(v),

and ∆12(τ) ≡ 1
T

∑T
t=1

∫
Γt
1(v; τ)Γ

t
2(v; τ)

′dµ(v).

The proof of this theorem is based on the argument of Brown and Wegkamp (2002),

Chen, Linton, and Van Keilegom (2003), and Torgovitsky (2017).

When T = {τ1, · · · , τJ}, Theorem 4.3 implies that

√
n


α̂(τ1)− α(τ1)

...

α̂(τJ)− α(τJ)

⇝ N




0
...

0

 ,


Σ(τ1, τ1) · · · Σ(τ1, τJ)

...
. . .

...

Σ(τJ , τ1) · · · Σ(τJ , τJ)


 ,

where

Σ(τ, τ ′) ≡ ∆1(τ)
−1V (τ, τ ′)∆1(τ

′)−1

and V (τ, τ ′) ≡ E
[
(ξ(Wi; τ)−∆12(τ)l(Wi; τ)) (ξ(Wi; τ

′)−∆12(τ
′)l(Wi; τ

′))′
]
. For ex-

ample, we consider the case where T = 2, Xit and Zit are scalar, and the covariates are

time invariant, that is, Zit = Zi. In this case, we have

ξ(Wi; τ) =
1

4

[∫
γ1(v; τ)1{Xi ≤ vx, Zi ≤ vz}dµ(v)

]
(1{Ui1 ≤ τ} − 1{Ui2 ≤ τ}),

∆12(τ)l(Wi; τ) =
1

4

[∫
γ1(v; τ)γ

1
2(v; τ)dµ(v)

]
J b
1(τ)

−1(τ − 1{Ui1 ≤ τ})Zi

−1

4

[∫
γ1(v; τ)γ

2
2(v; τ)dµ(v)

]
J b
2(τ)

−1(τ − 1{Ui2 ≤ τ})Zi,

where

γ1(v; τ) ≡ E
[{
fY1|X,Z(Yi1(τ)|Xi, Zi)(Xi1 +B1(α(τ), τ)Zi)

−fY2|X,Z(Yi2(τ)|Xi, Zi)(Xi2 +B2(α(τ), τ)Zi)
}
1{Xi ≤ vx, Zi ≤ vz}

]
and γt2(v; τ) ≡ E

[
fYt|X,Z(Yit(τ)|Xi, Zi)1{Xi ≤ vx, Zi ≤ vz}Zi

]
for t = 1, 2. By definition,

we have J b
t (τ) > 0, and γ12(v; τ) and γ22(v; τ) have the same sign. Hence, when Ui1 and

Ui2 are positively correlated, the variance of ξ(Wi; τ) and ∆12(τ)l(Wi; τ) become small.

In the extreme case, when Ui1 = Ui2, ξ(Wi; τ) is equal to zero.

4.4 Simulations

Simulation 4.1. The outcome equation is given by

Yi1 = (α1 + α2Ui1)Xi1 + β11Zi,1 + β12Zi,2 + Ui1,

Yi2 = (α1 + α2Ui2)Xi2 + β21Zi,1 + β22Zi,2 + Ui2,
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where (α1, α2, β11, β12, β21, β22) = (1, 0.5, 1, 1, 1.5, 1.5), Xit = X̃2
it, Zi,1 and Zi,2 are time-

invariant covariates, and Uit = Ai + Ũit. We assume that Zi ≡ (Zi,1, Zi,2) ∼ N(µZ ,ΣZ),

(X̃i1, X̃i2, Ai) ∼ N(0,ΣXA), and Ũit ∼ N(0, 1− ρ2), where ρ ∈ [0, 1], µZ = (1, 1)′,

ΣZ =

(
1 0.5

0.5 1

)
, and ΣXA =

 1 0.5 0.6ρ

0.5 1 0.4ρ

0.6ρ 0.4ρ ρ2

 .

Then, we have Corr(U1, U2) = ρ2. Hence, Ui1 and Ui2 are uncorrelated when ρ = 0,

and Ui1 and Ui2 are perfectly correlated when ρ = 1. In this setting, α(0.25) = 0.66,

α(0.5) = 1, and α(0.75) = 1.34.

Table 4.1 contains the results of this experiment for three different choices of ρ2, 0.1,

0.5, and 0.9, and two different choices for the sample size, 1000 and 2000. The number

of replications is set at 1000 throughout. Table 4.1 shows the bias, the standard deviation,

and MSE of the estimates of α(τ), τ = 0.25, 0.5, and 0.75. Table 4.1 shows that the bias,

the standard deviation, and MSE decrease in all experiments as the sample size increases.

As expected, as ρ increases, the standard deviation decreases.

Table 4.2 contains the coverage probabilities for nonparametric bootstrap confidence

intervals of α(τ) when N = 1000 and ρ2 = 0.5. These experiments are the result of

1000 replications with 500 bootstrap samples for each replication. Table 4.2 shows that the

nominal and actual coverage probabilities are similar for all settings.

Simulation 4.2. We consider the following model. Following usual DID settings, we

assume that X1,2 = {(0, 0), (0, 1)}, that is Xi1 = 0 for all i. The potential outcome is

generated from

Yi1(0) = Ui1 + (1 + 0.5Ui1)Zi1,1 + (1 + 0.5Ui1)Zi,2,

Yi2(x) = (0.5 + αUi2)x+ (1 + 0.5Ui2) + (1 + 0.5Ui2)Zi2,1 + (1 + 0.5Ui2)Zi,2,

where Xi2 = 1{X̃i ≤ 0}, Zit,1 = Z̃2
it,1, Zi,2 = Z̃2

i,2, and Uit = Ai + Ũit. Define Z̃i ≡
(Z̃i1,1, Z̃i2,1, Z̃i,2)

′ and Di ≡ Xi2. We assume that (X̃i, Ai) ∼ N(0,ΣXA), Z̃i ∼ N(0,ΣZ),

and Ũit ∼ N(0, 1− ρ2), where µZ = (0.5, 0.5, 0.5)′,

ΣXA =

(
1 0.5ρ

0.5ρ ρ2

)
, ΣZ =

 1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 ,

and ρ ∈ [0, 1]. In this setting, Di and Uit are correlated unless δ = 0, and α(τ) = 0.5+(θ2−
θ1)Φ

−1(τ). Define Zit ≡ (Zit,1, Zi,2)
′ for all t. Because Ui1|D = d, Zi1

d
= Ui1|D = d, Zi2

for all d = 0, 1, we obtain

F−1Yi2(0)|D=d,Zi2
(τ |Zi2)− F−1Yi2(0)|D=d,Zi1

(τ |Zi1) = h2(0, Q(τ |d, Zi2))− h1(0, Q(τ |d, Zi1))

= 1 + (θ1 − 1)Q(τ |d, Zi1),
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where Q(τ |d, z) ≡ F−1Ui1|D=d,Zi1
(τ |z) = F−1Ui2|D=d,Zi2

(τ |z). Hence, when θ1 = 1, this model

satisfies the quantile parallel trend assumption. When θ1 ̸= 1, we can not estimate the

quantile treatment effects on the treated by using the quantile difference-in-differences

methods.

Table 4.3 contains the results of this experiment for three different choices of ρ2, 0.1,

0.5, and 0.9, and two different choices for the sample size, 1000 and 2000. The number

of replications is set at 1000 throughout. Table 4.3 shows the bias, the standard deviation,

and MSE of the estimates of α(τ), τ = 0.25, 0.5, and 0.75. The results are similar to that

of Simulation 4.1.

Simulation 4.3. To compare our estimation method with that of Athey and Imbens

(2006), we consider the following model. We assume X1,2 = {(0, 0), (0, 1)} and the poten-

tial outcome is generated from

Yi1(0) = Ui1,

Yi2(x) = (0.5 + αUi2)x+ (1 + 0.5Ui2),

where α = 1, Xi2 = 1{X̃i ≤ 0}, and Uit = Ai+Ũit. We assume that (X̃i, Ai) ∼ N(0,ΣXA)

and Ũit ∼ N(0, 1−ρ2), where ΣXA is defined in Simulation 2 and ρ ∈ [0, 1]. In this setting,

α(τ) = 0.5 + Φ−1(τ).

Athey and Imbens (2006) show that we can estimate FY2(0)|D=1(y) and FY2(1)|D=0(y) by

F̂Y2(0)|D=1(y) ≡ F̂Y1|D=1

(
F̂−1Y1|D=0

(
F̂Y2|D=0(y)

))
and

F̂Y2(1)|D=0(y) ≡ F̂Y1|D=0

(
F̂−1Y1|D=1

(
F̂Y2|D=1(y)

))
,

where F̂Yt|D=d(·) and F̂−1Yt|D=d(·) are the empirical distribution and quantile. By using these

estimators and empirical distributions of Y2|D = 0 and Y2|D = 1, we can estimate the

distributions of Y2(0) and Y2(1). Hence, we can obtain an estimator of the QTE. We use

this estimator as Athey and Imbens (2006)’s (AI) estimator.

Table 4.4 shows the bias, the standard deviation, and MSE of our estimator and the

AI estimator for three different choice of ρ2, 0.1, 0.5, and 0.9. For all settings, the MSE

of our estimator is similar to that of the AI estimator. Hence, our estimation method is

not worse than that of Athey and Imbens (2006).

4.5 Application

In this section, we use our method to study the impact of an agricultural insurance

program on household production. We use the data employed by Cai (2016) to estimate

the QTE of insurance provision on tobacco production.
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The empirical analysis is based on data obtained from 12 tobacco production counties

in Jiangxi province of China. Across these 12 counties, only tobacco farmers in the county

of Guangchang were eligible to buy the tobacco insurance policy. In 2003, the People’s

Insurance Company of China (PICC) designed and offered the first tobacco production

insurance program to households in Guangchang. Hence, we use this county as a treatment

group.

The sample includes information on around 3,400 tobacco households during the year

2002 and 2003. Table 1 provides summary statistics for the year 2002. Table 4.5 shows

that treatment regions are quite different from control regions in terms of their observed

characteristics. For example, control regions include more educated people than treatment

regions. The proportion of high school or college educated people in treatment regions

is 0.025, but that in control regions is 0.257. This implies that tobacco households in

treatment regions are quite different from those in control regions. Hence, controlling

the observed characteristics is important to adjust the difference between treatment and

control regions.

We estimate the following linear-in-parameter model:

Yi,2002 = Z ′iβ2002(Ui,2002),

Yi,2003 = Diα(Ui,2003) + Z ′iβ2003(Ui,2002),

where Yit is the area of tobacco production (mu), Di a treatment indicator equal to one

for treatment regions and zero for control regions, and Zi is a control variable with a

constant term. We estimate α(τ) at τ = 0.1, ..., 0.9. Following Cai (2016), we employ

the age of the head of the household, household size, and indicators of education level as

control variables.

The main results from using our method are presented in Figure 1. The DID estimate

is 0.239, and the 95 % confidence interval is [0.084, 0.389]. We use bootstrap to generate

this confidence interval. Figure 4.1 shows that the estimates of α(τ) differ across τ , and

the QTE is increasing in τ . The impact of insurance provision is nearly zero at the lower

and middle quantiles, and positive at the upper quantiles. The 95 % confidence intervals

of the QTEs contain zero when τ ≤ 0.7.

Cai (2016) analyzes the welfare impact of the insurance program by using a calibra-

tion. The values of the parameters of the production function are chosen to match the

DID (or triple difference) estimate. From this analysis, he concludes that providing a

heavily subsidized compulsory insurance program has a positive welfare impact on ru-

ral households. However, our result shows that the insurance program does not change

households’ investment behavior so much at the lower and middle quantiles, and hence it

may not affect household welfare at such quantiles.
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4.6 Conclusion

In this chapter, we explore the identification and estimation of the QTE by using panel

data. We generalize the CIC model and propose the tractable estimator of the QTE. Athey

and Imbens (2006) suggest the CIC model as an alternative to the DID model. The CIC

model allows for the estimation of the potential outcomes distribution and captures the

heterogeneous effects of the treatment on the outcomes. However, there are two problems

in the CIC model: (1) there is a lack of a tractable estimator in the presence of covariates

and (2) the CIC estimator does not work when the treatment is continuous. Our model

allows the presence of covariates and the continuous treatment. We propose the two-

step estimation method based on the quantile regression and minimum distance method.

We then show the consistency and asymptotic normality of our estimator. Monte Carlo

studies indicate that our estimator performs well in finite samples. We use our method

to estimate the impact of an insurance program on quantiles of household production.
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4.7 Appendix: Proofs

Proof of Proposition 4.1. It is enough to show the first statement. First, we show that, if

for all x, x′ ∈ Xt and z ∈ Zt, we can identify the strictly function Qt
x′,x|z(y) that satisfies

qt(x
′, z, τ) = Qt

x′,x|z(qt(x, z, τ)), (4.14)

then qt(x, z, τ) is identified for all x ∈ Xt and z ∈ Zt. Define

Gt
x|z(y) ≡

∫
FYt|Xt,Zt(Q

t
x′,x|z(y)|x′, z)dFXt|Zt(x

′|z).

It follows from (4.14) that

Gt
x|z(qt(x, z, τ)) =

∫
FYt|Xt,Zt(qt(x

′, z, τ)|x′, z)dFXt|Zt(x
′|z)

=

∫
P (Uit ≤ τ |Xit = x′, Z̃it = z)dFXt|Zt(x

′|z)

= P (Uit ≤ τ |Zit = z) = τ.

Hence we have qt(x, z, τ) = (Gt
x|z)
−1(τ). This implies that qt(x, z, τ) is point identified for

all x ∈ Xt.

Next, we show that for all x, x′ ∈ Xt and z ∈ Zt, we can identify the strictly increasing

function Qt
x′,x|z(y) that satisfies (4.14). Observe that for x = (x′1, · · · , x′T ) ∈ X1,··· ,T and

z ∈ Z,

FYt|X,Zt(qt(xt, z, τ)|x, z) = P (Uit ≤ τ |Xi = x, Zit = z)

= P (Uis ≤ τ |Xi = x, Zis = z)

= FYs|X,Zs(qs(xs, z, τ)|x, z), (4.15)

where the second equality holds by Assumptions 4.1 (ii) and 4.2. By Assumption 4.3,

we have qs(xs, z, τ) = F−1Ys|X,Zs

(
FYt|X,Zt(qt(xt, z, τ)|x, z)|x, z

)
. Hence, we can identify the

strictly increasing function Q̃s,t
xs,xt|z(y) such that

qs(xs, z, τ) = Q̃s,t
xs,xt|z (qt(xt, z, τ)) . (4.16)

Fix z ∈ Z. We show that for all x′ ∈ S1
t (x) we can identify the strictly increasing function

Q̃t
x′,x|z(y) such that

qt(x
′, z, τ) = Q̃t

x′,x|z (qt(x, z, τ)) . (4.17)

By the definition of S1
t (x), there exist xs ∈ Xs such that (x, xs), (x

′, xs) ∈ Xt,s. Thus, by

(4.16), we have

qt(x
′, z, τ) = Q̃t,s

x′,xs|z

(
Q̃s,t

xs,x|z (qt(x, z, τ))
)
.
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Similarly, for all x′ ∈ Sn
t (x), we can identify the strictly increasing function Q̃t

x′,x|z(y) that

satisfy (4.17). By the continuity of qt, for all x
′ ∈ ∪∞n=0Sn

t (x), we can identify the strictly

increasing function Q̃t
x′,x|z(y) that satisfy (4.17). Because we have

qt(x
′, z, τ) = Q̃t

x′,x|z

((
Q̃t

x,x|z

)−1
(qt(x, z, τ))

)
,

we can identify the strictly increasing function Qt
x′,x|z(y) that satisfies (4.14). Therefore,

we can point identify qt(x, z, τ).

Proof of Theorem 4.1. It follows from the usual argument of quantile regression that

βt(α(τ), τ) = βt(τ). Because ∥Dt(v; a, β(a, τ))∥2µ ≥ 0, it is sufficient to prove that

1

T

T∑
t=1

∥Dt(v; a, β(a, τ))∥2µ = 0 ⇔ a = α(τ). (4.18)

Suppose that a = α(τ). Because βt(α(τ), τ) = βt(τ), we have Dt(v; a, β(a, τ)) =

Dt(v;α(τ), β(τ)) = 0 for all v and t.

Suppose that a∗ ∈ A satisfies 1
T

∑T
t=1 ∥Dt(v; a∗, β(a∗, τ))∥2µ = 0. Then, it follows from

the definition of Dt(v; a, b) that for all t, s, x ∈ X1,··· ,T , and z ∈ Z,

P (Yit ≤ X ′ita
∗ + Z ′itβt(a

∗, τ)|Xi = x, Zit = z)

= P (Yis ≤ X ′isa
∗ + Z ′isβs(a

∗, τ)|Xi = x, Zis = z). (4.19)

Define q̃t(x, z, τ ; a
∗) ≡ x′a∗ + z′βt(a

∗, τ), then we have

FYt|X,Zt (q̃t(xt, z, τ ; a
∗)|x, z) = FYs|X,Zs (q̃s(xs, z, τ ; a

∗)|x, z) ,

where x = (x1, · · · , xT )′ ∈ X1,··· ,T . Similar to the proof of Proposition 4.1, by (4.19), for

all x, x̃ ∈ Xt we have

q̃t(x̃, z, τ ; a
∗) = Qt

x̃,x|z (q̃t(x, z, τ ; a
∗)) ,

whereQt
x̃,x|z(y) are defined in the proof of Proposition 4.1. We defineGt

x|z(y) ≡
∫
FYt|Xt,Zt

(
Qt

x̃,x|z(y)
)
dFXt|Zt(x̃|z),

then we have

Gt
x|z (q̃t(x, z, τ ; a

∗)) =

∫
FYt|Xt,Z̃t

(q̃t(x̃, z, τ ; a
∗)|x̃, z) dFXt|Zt(x̃|z)

= P (Yit ≤ X ′ita
∗ + Z ′itβt(a

∗, τ)|Zit = z) = et(a
∗, τ, z).

By the proof of Proposition 4.1,
(
Gt

x|z

)−1
(τ) = qt(x, z, τ). Hence, we obtain

q̃t(x, z, τ ; a
∗) = qt(x, z, et(a

∗, τ, z)) = x′α(et(a
∗, τ, z)) + z′βt(et(a

∗, τ, z)).

By Assumptions 4.4 (ii) and 4.5 (i), this implies that a∗ = α(et(a
∗, τ, z)) holds for all

z ∈ Z. Hence, it follows from Assumption 4.6 that a∗ = α(τ).
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Proof of Theorem 4.2. To prove the consistency of α̂(τ), we show the consistency of

∥Dt(v; a, b)∥µ̃ in a and b. Then, we observe that

|Dt(v; a, b)−Dt(v; ã, b̃)|

=
∣∣∣E [(E[gt(W; a, b, vZ)|X]− E[gt(W; ã, b̃, vZ)|X])1{X ≤ vx}

]∣∣∣
≤ 2max

s
E
[
|FYs|X,Zs(X

′
sa+ Z ′sbs|X, Zs)− FYs|X,Zs(X

′
sã+ Z ′sb̃s|X, Zs)|

]
.

Hence, {(a, b) 7→ Dt(v; a, b) : v ∈ V} is equicontinuous by continuity of the conditional

distribution. This implies that ∥Dt(v; a, b)∥µ̃ is continuous in a and b.

Fix τ ∈ T . We show the consistency of α̂(τ) and β̂(τ). By Lemma 4.2 and the

definition of α̂(τ), we have∥∥∥Dt
(
v; α̂(τ), β̃(α̂(τ), τ)

)∥∥∥
µ̃

=
∥∥∥D̂t

n

(
v; α̂(τ), β̃(α̂(τ), τ)

)∥∥∥
µ̃
+ op(1)

≤
∥∥∥D̂t

n

(
v;α(τ), β̃(α(τ), τ)

)∥∥∥
µ̃
+ op(1)

=
∥∥∥Dt

(
v;α(τ), β̃(α(τ), τ)

)∥∥∥
µ̃
+ op(1). (4.20)

Because FYt|X,Zt(y|x, z) is uniform continuous in y, it follows from Lemma 4.2 that

∥Dt(v; a, β̃(a, τ))∥µ̃ = ∥Dt(v; a, β(a, τ))∥µ̃ + op(1).

Hence, (4.20) implies that∥∥Dt (v; α̂(τ), β(α̂(τ), τ))
∥∥
µ̃
≤
∥∥Dt (v;α(τ), β(τ))

∥∥
µ̃
+ op(1). (4.21)

Pick any δ > 0. Then, by (4.11), Assumption 4.7 (ii), and continuity of ∥Dt(v; a, β(a, τ))∥µ̃,
we obtain

inf
a∈A,∥a−α(τ)∥>δ

∥Dt(v; a, β(a, τ))∥µ̃ > ∥Dt(v;α(τ), β(τ))∥µ̃.

By (4.21), wp → 1 we have∥∥Dt (v; α̂(τ), β(α̂(τ), τ))
∥∥
µ̃
< inf

a∈A,∥a−α(τ)∥>δ
∥Dt(v; a, β(a, τ))∥µ̃.

Hence, we obtain ∥α̂(τ)− α(τ)∥ →p 0. Because β(a, τ) is continuous in a, it follows from

Lemma 4.2 that ∥β̂(τ)− β(τ)∥ →p 0.

Proof of Theorem 4.3. For b : A× (0, 1) 7→ RT (dZ+1), define

M t(v; a, b, τ) ≡ Dt(v; a, b(a, τ)),

M t
n(v; a, b, τ) ≡ D̂t

n(v; a, b(a, τ)).
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For f : A× (0, 1) 7→ Rd, define ∥f∥∞ ≡ supa∈A,τ∈T ∥f(a, τ)∥.
Fix τ ∈ T . First, we prove

√
n-consistency of α̂(τ). Because ∥α̂(τ)− α(τ)∥ →p 0 and

∥β̃ − β∥∞ →p 0 holds by Theorem 4.2 and Lemma 4.2, we choose a positive sequence

δn = o(1) such that P (∥α̂(τ)− α(τ)∥ ≥ δn, ∥β̃ − β∥∞ ≥ δn) → 0. It follows from Lemma

4.6 that

∥M t(v; α̂(τ), β, τ)∥µ̃ + op(∥α̂(τ)− α(τ)∥) ≥ ∥Γt
1(v; τ)

′(α̂(τ)− α(τ))∥µ̃.

By Assumption 8 (v), we obtain

∥M t(v; α̂(τ), β, τ)∥µ̃ ≥ (c− op(1))× ∥α̂(τ)− α(τ)∥. (4.22)

Because M t
n(v;α(τ), β, τ) = Op(n

−1/2) uniformly over v ∈ V , ∥M t(v; α̂(τ), β, τ)∥µ̃ is

bounded above by

∥M t(v; α̂(τ), β, τ)−M t(v; α̂(τ), β̃, τ)∥µ̃
+ ∥M t(v; α̂(τ), β̃, τ)−M t

n(v; α̂(τ), β̃, τ) +M t
n(v;α(τ), β, τ)∥µ̃

+ ∥M t
n(v; α̂(τ), β̃, τ)∥µ̃ +Op(n

−1/2),

where Op(n
−1/2) is uniform over τ ∈ T . Because {rτ (w; a, b) : a ∈ A, b ∈ B} is Donsker,

it follows from Lemma 4.4 and 4.6 that

∥M t(v; α̂(τ), β, τ)−M t(v; α̂(τ), β̃, τ)∥µ̃
≤

∥∥∥M t(v; α̂(τ), β̃, τ)−M t(v; α̂(τ), β, τ)− Γt
2(v, α̂(τ), τ)

′[β̃(α̂(τ), τ)− β(α̂(τ), τ)]
∥∥∥
µ̃

+
∥∥∥(Γt

2(v, α̂(τ), τ)− Γt
2(v, α(τ), τ)

)′
[β̃(α̂(τ), τ)− β(α̂(τ), τ)]

∥∥∥
µ̃

+
∥∥∥Γt

2(v, α(τ), τ)
′
(
[β̃(α̂(τ), τ)− β(α̂(τ), τ)]− [β̃(α(τ), τ)− β(α(τ), τ)]

)∥∥∥
µ̃

+
∥∥∥Γt

2(v, α(τ), τ)
′[β̃(α(τ), τ)− β(α(τ), τ)]

∥∥∥
µ̃

≤ op(∥β̃ − β∥∞) + op(1)× ∥β̃ − β∥∞ +Op(n
−1/2) = Op(n

−1/2). (4.23)

By Lemma 4.3, we obtain

∥M t(v; α̂(τ), β̃, τ)−M t
n(v; α̂(τ), β̃, τ) +M t

n(v;α(τ), β, τ)∥µ̃ = op(n
−1/2).

Hence, by (4.22) and (4.23), we have

(c− op(1))× ∥α̂(τ)− α(τ)∥ ≤ Op(n
−1/2) + ∥M t

n(v; α̂(τ), β̃, τ)∥µ̃. (4.24)

99



By definition of α̂(τ),

∥M t
n(v; α̂(τ), β̃, τ)∥µ̃

≤ ∥M t
n(v;α(τ), β̃, τ)∥µ̃

≤
∥∥∥M t

n(v;α(τ), β̃, τ)−M t(v;α(τ), β̃, τ)−M t
n(v;α(τ), β, τ)

∥∥∥
µ̃

+
∥∥∥M t(v;α(τ), β̃, τ)− Γt

2(v; τ)
′[β̃(α(τ), τ)− β(α(τ), τ)]

∥∥∥
µ̃

+
∥∥∥Γt

2(v; τ)
′[β̃(α(τ), τ)− β(α(τ), τ)]

∥∥∥
µ̃
+
∥∥M t

n(v;α(τ), β, τ)
∥∥
µ̃

≤ op(n
−1/2) + op(∥β̃ − β∥∞) +Op(n

−1/2) = Op(n
−1/2).

Therefore, by (4.24), we have ∥α̂(τ)− α(τ)∥ ≤ Op(n
−1/2).

Next we show (4.12) by approximating M t
n(v; a, β̃, τ) as

Lt
n(v; a, τ) ≡M t

n(v;α(τ), β, τ) + Γt
1(v; τ)

′(a− α(τ)) + Γt
2(v; τ)

′[β̃(α(τ), τ)− β(α(τ), τ)].

Let ᾱ(τ) be the value that provides a global minimum for ∥Lt
n(v; a, τ)∥µ̃. Then, Γt

1(v; τ)
′(ᾱ(τ)−

α(τ)) is the L2(µ̃)-projection of −M t
n(v;α(τ), β, τ)−Γt

2(v; τ)
′[β̃(α(τ), τ)−β(α(τ), τ)] onto

the subspace of L2(µ) spanned by Γt
1(v; τ). Hence,

√
n(ᾱ(τ)− α(τ))

= −∆1(τ)
−1√n

∫
Γt
1(v; τ)

{
M t

n(v;α(τ), β, τ) + Γt
2(v; τ)

′[β̃(α(τ), τ)− β(α(τ), τ)]
}
dµ̃(v, t),

where ∆1(τ) ≡ 1
T

∑T
t=1

∫
Γt
1(v; τ)Γ

t
1(v; τ)

′dµ(v). Here, we have

√
n

∫
Γt
1(v; τ)M

t
n(v;α(τ), β, τ)dµ̃(v, t)

=
1√
nT

n∑
i=1

T∑
t=1

∫
Γt
1(v; τ)gt(Wi;α(τ), β(τ), vz)1{Xi ≤ vx}dµ(v).

Define Yit(τ) ≡ X ′itα(τ) + Z ′itβt(τ). Because
∑T

t=1 Γ
t
1(v; τ) = 0, we have

1

T

T∑
t=1

∫
Γt
1(v; τ)gt(Wi;α(τ), β(τ), vz)1{Xi ≤ vx}dµ(v)

=
1

T

T∑
t=1

∫
Γt
1(v; τ)1{Xi ≤ vx, Zit ≤ vz}dµ(v)1{Yit ≤ Yit(τ)}

− 1

T 2

T∑
t=1

T∑
s=1

∫
Γt
1(v; τ)1{Xi ≤ vx, Zis ≤ vz}dµ(v)1{Yis ≤ Yit(τ)}

=
1

T

T∑
t=1

∫
Γt
1(v; τ)1{Xi ≤ vx, Zit ≤ vz}dµ(v)1{Yit ≤ Yit(τ)}.
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It follows from Lemma 4.4 that
√
n(β̃(α(τ), τ) − β(α(τ), τ)) = −1/

√
n
∑n

i=1 l(Wi; τ).

Therefore, we obtain

√
n

∫
Γt
1(v; τ)Γ

t
2(v; τ)

′[β̃(α(τ), τ)− β(α(τ), τ)]dµ̃(v, t)

= − 1√
nT

n∑
i=1

T∑
t=1

[∫
Γt
1(v; τ)Γ

t
2(v; τ)

′dµ(v)

]
l(Wi; τ) + op(1).

This implies that
√
n(ᾱ(τ)−α(τ)) = −∆1(τ)

−1 [1/
√
n
∑n

i=1 {ξ(Wi; τ)−∆12(τ)l(Wi; τ)}]+
op(1), and hence it is sufficient to show that ∥ᾱ(τ)− α̂(τ)∥ = op(n

−1/2).

Because ∥α̂(τ)− α(τ)∥ = Op(n
−1/2), we have

∥M t
n(v; α̂(τ), β̃, τ)− Lt

n(v; α̂(τ), τ)∥µ̃
≤ ∥M t(v; α̂(τ), β̃, τ)−M t(v; α̂(τ), β, τ)− Γt

2(v; α̂(τ), τ)
′[β̃(α̂(τ), τ)− β(α̂(τ), τ)]∥µ̃

+
∥∥∥Γt

2(v; α̂(τ), τ)
′
{
[β̃(α̂(τ), τ)− β(α̂(τ), τ)]− [β̃(α(τ), τ)− β(α(τ), τ)]

}∥∥∥
µ̃

+
∥∥∥{Γt

2(v; α̂(τ), τ)− Γt
2(v;α(τ), τ)

}′
[β̃(α(τ), τ)− β(α(τ), τ)]

∥∥∥
µ̃

+∥M t(v; α̂(τ), β, τ)− Γt
1(v; τ)

′(α̂(τ)− α(τ))∥µ̃
+∥M t

n(v; α̂(τ), β̃, τ)−M t(v; α̂(τ), β̃, τ)−M t
n(v;α(τ), β, τ)∥µ̃

≤ op(∥β̃ − β∥∞) + op(∥α̂(τ)− α(τ)∥) + op(n
−1/2) = op(n

−1/2). (4.25)

Similarly, we have

∥M t
n(v; ᾱ(τ), β̃, τ)− Lt

n(v; ᾱ(τ), τ)∥µ̃ = op(n
−1/2). (4.26)

Hence, it follows from (4.25) and (4.26) that

∥Lt
n(v; α̂(τ), τ)∥µ̃ − op(n

−1/2) ≤ ∥M t
n(v; α̂(τ), β̃, τ)∥µ̃

≤ ∥M t
n(v; ᾱ(τ), β̃, τ)∥µ̃

≤ ∥Lt
n(v; ᾱ(τ), τ)∥µ̃ + op(n

−1/2).

By definition of ᾱ(τ), we have ∥Lt
n(v; α̂(τ), τ)∥µ̃ = ∥Lt

n(v; ᾱ(τ), τ)∥µ̃ + op(n
−1/2). Because

∥Lt
n(v; ᾱ(τ), τ)∥µ̃ = Op(n

−1/2), we have

∥Lt
n(v; α̂(τ), τ)∥2µ̃ = ∥Lt

n(v; ᾱ(τ), τ)∥2µ̃ + op(n
−1).

Because Lt
n(v; ᾱ(τ), τ) is orthogonal to Γt

1(v; τ), we obtain

∥Lt
n(v; ᾱ(τ), τ)∥2µ̃ = ∥Lt

n(v; a, τ)− Γt
1(v; τ)

′(a− ᾱ(τ))∥2µ̃
= ∥Lt

n(v; a, τ)∥2µ̃ + ∥Γt
1(v; τ)

′(a− ᾱ(τ))∥2µ̃.

Hence, ∥α̂(τ)− ᾱ(τ)∥ = op(n
−1/2) holds, and we obtain (4.12).
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Finally, we show asymptotic normality of β̂(τ). By the proof of Lemma 4.4, we have

O(1/
√
n) = Gnrτ (Wt;α(τ), βt(τ)) + op(1) +

√
nErτ (Wt; α̂(τ), β̂t(α̂(τ), τ))

= Gnrτ (Wt;α(τ), βt(τ)) + op(1) + (Ja
t (τ) + op(1))

√
n(α̂(τ)− α(τ))

+(J b
t (τ) + op(1))

√
n(β̂(τ)− β(τ)).

Hence,

√
n(β̂(τ)− β(τ)) = −J b

t (τ)
−1

{
1√
n

n∑
i=1

rτ (Wit;α(τ), βt(τ))

−Ja
t (τ)∆1(τ)

−1 1√
n

n∑
i=1

(ξ(Wi; τ) + ∆12(τ)l(Wi; τ))

}
+ op(1),

and we obtain (4.30).

4.8 Appendix: Auxiliary Lemmas

Lemma 4.1. Under the assumptions of Theorem 4.2, for all τ ∈ T , we have

sup
a∈A,bt∈Bt

∣∣∣∣∣ 1n
n∑

i=1

Rτ (Wit; a, bt)− E[Rτ (Wit; a, bt)]

∣∣∣∣∣ = oa.s.(1), (4.27)

sup
a∈A,b∈B,

v∈V

∣∣∣D̂t
n(v; a, b)−Dt(v; a, b)

∣∣∣ = oa.s.(1). (4.28)

Proof. By definition of Rτ (w; a, bt), the collection of functions {Rτ (·; a, bt) : a ∈ A, bt ∈
Bt} is a VC-class. Hence, {Rτ (·; a, bt) : a ∈ A, bt ∈ Bt} is Donsker, and also Glivenko-

Cantelli. This implies (4.27).

Because {(x, z) 7→ x′a+ z′bt : a ∈ A, bt ∈ Bt} is a VC-class, {w 7→ gt(w; a, b, vz)1{x ≤
vx} : a ∈ A, b ∈ B, v ∈ V} is also Donsker by Example 2.10.7 and 2.10.8 of van der Vaart

and Wellner (1996). Therefore, we have (4.28).

Lemma 4.2. Under the assumptions of Theorem 4.2, for all τ ∈ T , we have

sup
a∈A

∥∥∥β̃t(a, τ)− βt(a, τ)
∥∥∥ = op(1). (4.29)

Proof. Fix τ ∈ T . Lemma 4.1 implies that uniformly in a,

E[Rτ (Wit; a, β̃t(a, τ))] =
1

n

n∑
i=1

Rτ (Wit; a, β̃t(a, τ)) + op(1)

<
1

n

n∑
i=1

Rτ (Wit; a, βt(a, τ)) + op(1)

= E[Rτ (Wit; a, βt(a, τ))] + op(1).
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Pick any δ > 0. Let {Bδ(a, τ) : a ∈ A} be a collection of balls with diameter δ > 0,

each centered at βt(a, τ). Because ρτ (u) − ρτ (u
′) ≤ |u − u′|, we have E[Rτ (Wit; a, bt)] −

E[Rτ (Wit; ã, b̃t)] ≤ C∥(a′, b′t)′ − (ã′, b̃′t)
′∥. Hence, the function bt 7→ E[Rτ (Wit; a, bt)] is

continuous uniformly over a ∈ A. Because ∂2

∂bt∂b′t
E[Rτ (Wt; a, bt)]|bt=βt(a,τ) = Jt(a, τ), it

follows from Assumption 4.7 (iv) that

inf
a∈A

[
inf

bt∈Bt\Bδ(a,τ)
E[Rτ (Wit; a, bt)]− E[Rτ (Wit; a, βt(a, τ))]

]
> 0.

Uniformly in a ∈ A, wp → 1 we have

E[Rτ (Wit; a, β̃t(a, τ))] < inf
bt∈Bt\Bδ(a,τ)

E[Rτ (Wit; at, bt)].

Therefore, wp → 1 we have supa∈A ∥β̃t(a, τ)− βt(a, τ)∥ ≤ δ.

Lemma 4.3. Define f(Wt; a, bt, τ) ≡ (τ − 1{Yt ≤ X ′ta+ Z ′tbt})Zt. Under the assump-

tions of Theorem 4.3, for any sequence of positive numbers {δn} that converges to zero,

we have

sup
∥ã−a∥≤δn,∥b̃t−bt∥≤δn

∣∣∣Gnf(Wt; ã, b̃t, τ)−Gnf(Wt; a, bt, τ)
∣∣∣ = op(1),

sup
∥ã−a∥≤δn,∥b̃−b∥≤δn,

v∈V

∣∣∣√n(D̂t
n(v; ã, b̃)−Dt(v; ã, b̃))−

√
n(D̂t

n(v; a, b)−Dt(v; a, b))
∣∣∣ = op(1).

Proof. Because {w 7→ f(w; a, bt, τ) : a ∈ A, bt ∈ Bt, τ ∈ T } and {w 7→ gt(w; a, b, vz)1{x ≤
vx} : a ∈ A, b ∈ B, v ∈ supp(µ)} are Donsker, we prove the statements of this lemma.

Lemma 4.4. Under the assumptions of Theorem 4.3, we have

√
n(β̃t(a, τ)− βt(a, τ)) = −J b

t (a, τ)
−1 1√

n

n∑
i=1

rτ (Wit; a, βt(a, τ)) + op(1), (4.30)

where op(1) is uniform over a ∈ A.

Proof. By the computational properties of the ordinary quantile regression estimator (see

Theorem 3.3 in Koenker and Bassett (1978)), we obtain

O(1/
√
n) =

1√
n

n∑
i=1

rτ (Wit; a, β̂t(a, τ))

uniformly over a ∈ A. By Lemma 3, we have

O(1/
√
n) =

√
nEnrτ (Wt; a, β̂t(a, τ))

= Gnrτ (Wt; a, βt(a, τ)) + op(1) +
√
nErτ (Wt; a, β̂t(a, τ)), (4.31)
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where the term op(1) is uniform over a ∈ A. Because Erτ (Wt; a, βt(a, τ)) = 0 by first

order condition, we obtain

Erτ (Wt; a, β̂t(a, τ)) =

[
∂

∂b′t
Erτ (Wt; a, bt)

∣∣∣
bt=b̄ta,τ

]
(β̂t(a, τ)− βt(a, τ))

= E
[
fYt−X′

ta|Zt(Z
′
tb̄

t
a,τ |Zt)ZtZ

′
t

]
(β̂t(a, τ)− βt(a, τ)),

where b̄ta,τ is between β̂t(a, τ) and βt(a, τ). Because {y 7→ fYt−X′
ta|Zt(y|z) : a ∈ A} is

equicontinuous for all z, we have

E
[
fYt−X′

ta|Zt(Z
′
tb̄

t
a,τ |Zt)ZtZ

′
t

]
= J b

t (a, τ) + op(1) uniformly over a ∈ A.

Therefore, it follows from (4.31) that

√
n(β̂t(a, τ)− βt(a, τ)) = −J b

t (a, τ)
−1Gnrτ (Wt; a, βt(a, τ)) + op(1),

where the term op(1) is uniform over a ∈ A.

Lemma 4.5. Under the assumptions of Theorem 4.3, Dt(v; a, β(a, τ)) is continuously

differentiable in a, Dt(v, a, b) is continuously differentiable in b, and

∂

∂a
Dt(v; a, β(a, τ)) = Γt

1(v; a, τ),

∂

∂bs
Dt(v; a, b) = γt,s2 (v; a, b).

Proof. First, we show the continuous differentiability of Dt(v; a, β(a, τ)) and Dt(v, a, b).

We observe that

Dt(v; a, b) = E[1{Yt ≤ X ′ta+ Z ′tbt}1{X ≤ vx, Zt ≤ vz}]

− 1

T

T∑
s=1

E[1{Ys ≤ X ′sa+ Z ′sbs}1{X ≤ vx, Zs ≤ vz}]

= E[FYt|X,Zt(X
′
ta+ Z ′tbt|X, Zt)1{X ≤ vx, Zt ≤ vz}]

− 1

T

T∑
s=1

E[FYs|X,Zs(X
′
sa+ Z ′sbs|X, Zs)1{X ≤ vx, Zs ≤ vz}].

Because we have

∂

∂bt
E[FYt|X,Zt(X

′
ta+ Z ′tbt|X, Zt)1{X ≤ vx, Zt ≤ vz}]

= E[fYt|X,Zt(X
′
ta+ Z ′tbt|X, Zt)1{X ≤ vx, Zt ≤ vz}Zt],
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Dt(v; a, b) is continuously differentiable in b and (∂/∂bs)D
t(v; a, b) = γt,s2 (v; a, b). Simi-

larly, we have

∂

∂a
E[FYt|X,Zt(X

′
ta+ Z ′tβt(a, τ)|X, Zt)1{X ≤ vx, Zt ≤ vz}]

= E[fYt|X,Zt(X
′
ta+ Z ′tβt(a, τ)|X, Zt)1{X ≤ vx, Zt ≤ vz}(Xt +Bt(a, τ)

′Zt)].

Hence,Dt(v; a, β(a, τ)) is also continuously differentiable in a and (∂/∂a)Dt(v; a, β(a, τ)) =

Γt
1(v; a, τ).

Lemma 4.6. Under the assumptions of Theorem 4.3, for any sequence of positive numbers

{δn} that converges to zero, for all τ ∈ T , we have

sup
∥a−α(τ)∥≤δn

∥M t(v; a, β, τ)− Γt
1(v; τ)

′(a− α(τ))∥µ̃ = o(δn), (4.32)

and

sup
a∈A,∥b−β∥∞≤δn

∥∥M t(v; a, b, τ)−M t(v; a, β, τ)

−Γt
2(v; a, τ)

′[b(a, τ)− β(a, τ)]
∥∥
µ̃
= o(δn). (4.33)

Proof. First, we show (4.32). Because M t(v; a, β, τ) = Dt(v; a, β(a, τ)) is continuously

differentiable in a for all τ , there exists atv,τ between α(τ) and a such that

M t(v; a, β, τ)−M t(v;α(τ), β, τ) = Γ1(v; a
t
v,τ , τ)

′(a− α(τ)).

Because M t(v;α(τ), β, τ) = 0, we have

∥M t(v; a, β, τ)− Γt
1(v;α(τ), τ)

′(a− α(τ))∥µ̃
=

∥∥∥(Γ1(v; a
t
v,τ , τ)− Γt

1(v;α(τ), τ)
)′
(a− α(τ))

∥∥∥
µ̃

≤ max
t

sup
v∈V

∥Γ1(v; a
t
v,τ , τ)− Γt

1(v;α(τ), τ)∥ × ∥a− α(τ)∥.

Then, we have

∥Γ1(v; a
t
v,τ , τ)− Γt

1(v;α(τ), τ)∥

≤ 2max
s
E
[
∥fYs|X,Zs(X

′
sa

s
v,τ + Z ′sβ(a

s
v,τ , τ)|X, Zs)(Xs +Bs(a

s
v,τ , τ)

′Zs)

−fYs|X,Zs(X
′
sα(τ) + Z ′sβs(α(τ), τ)|X, Zs)(Xs +Bs(α(τ), τ)

′Zs)∥
]
.

Because fYt|X,Zt(y|x, z) and Bt(a, τ) is continuous in y and a respectively, we obtain (4.32).

Next, we show (4.33). Because Dt(v; a, b) is continuously differentiable in b, there

exists bv,a,τ between b̃(a, τ) and β(a, τ) such that

Dt(v; a, b̃(a, τ))−Dt(v; a, β(a, τ)) = Γt
2(v; a, b

t

v,a,τ )
′[b̃(a, τ)− β(a, τ)].
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Hence, we have ∣∣∣M t(v; a, b̃, τ)−M t(v; a, β, τ)− Γ2(v; a, τ)
′[b̃(a, τ)− β(a, τ)]

∣∣∣
=

∣∣∣(Γt
2(v; a, bv,a,τ )− Γt

2(v; a, β(a, τ))
)′
[b̃(a, τ)− β(a, τ)]

∣∣∣
≤ sup

v∈V
∥Γt

2(v; a, bv,a,τ )− Γt
2(v; a, β(a, τ))∥ × ∥b̃(a, τ)− β(a, τ)∥.

Similarly to (4.32), supa∈A,v∈V ∥Γt
2(v; a, bv,a,τ ) − Γt

2(v; a, β(a, τ))∥ = o(1) by the uniform

continuity of fYt|X,Zt(y|x, z) in y. Therefore, we obtain (4.33).
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4.9 Appendix: Figures and Tables

Table 4.1: Results of Simulation 1
N = 1000 N = 2000

ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9 ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9

bias 0.0211 0.0085 0.0055 0.0182 0.0104 0.0125

τ = 0.25 std 0.2609 0.2087 0.1440 0.1797 0.1534 0.1042

mse 0.0685 0.0436 0.0208 0.0327 0.0236 0.0110

bias 0.0091 -0.0017 0.0037 0.0056 0.0076 -0.0033

τ = 0.50 std 0.2274 0.1981 0.1226 0.1677 0.1404 0.0873

mse 0.0518 0.0392 0.0150 0.0282 0.0198 0.0076

bias -0.0264 -0.0130 -0.0014 -0.0141 -0.0095 -0.0060

τ = 0.75 std 0.2550 0.2114 0.1326 0.1771 0.1559 0.1052

mse 0.0657 0.0449 0.0176 0.0316 0.0244 0.0111

Table 4.2: Results of Simulation 1
τ a = 0.9 a = 0.95 a = 0.99

0.25 0.882 0.934 0.974

N = 1000 0.50 0.900 0.930 0.954

0.75 0.874 0.938 0.982
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Table 4.3: Results of Simulation 2
N = 1000 N = 2000

ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9 ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9

bias 0.0020 0.0016 -0.0033 -0.0030 -0.0022 0.0015

τ = 0.25 std 0.2078 0.1858 0.1516 0.1508 0.1364 0.1088

mse 0.0432 0.0345 0.0230 0.0227 0.0186 0.0118

bias 0.0078 0.0082 0.0084 -0.0018 -0.0003 0.0024

τ = 0.50 std 0.1832 0.1573 0.1218 0.1309 0.1168 0.0847

mse 0.0336 0.0248 0.0149 0.0171 0.0136 0.0072

bias 0.0107 0.0119 0.0078 0.0010 0.0018 0.0006

τ = 0.75 std 0.2071 0.1793 0.1462 0.1477 0.1308 0.1039

mse 0.0430 0.0322 0.0214 0.0218 0.0171 0.0108

Table 4.4: Results of Simulation 3, N = 1000

Our method Athey and Imbens

ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9 ρ2 = 0.1 ρ2 = 0.5 ρ2 = 0.9

bias 0.0056 0.0015 0.0009 -0.0031 -0.0107 -0.0150

τ = 0.25 std 0.1304 0.1261 0.0932 0.1288 0.1238 0.0900

mse 0.0170 0.0159 0.0087 0.0166 0.0154 0.0083

bias 0.0000 0.0008 0.0002 -0.0097 -0.0094 -0.0119

τ = 0.50 std 0.1160 0.0980 0.0733 0.1165 0.1002 0.0760

mse 0.0134 0.0096 0.0054 0.0137 0.0101 0.0059

bias 0.0006 -0.0042 0.0001 -0.0203 -0.0286 -0.0269

τ = 0.75 std 0.1191 0.1013 0.0749 0.1226 0.1061 0.0812

mse 0.0142 0.0103 0.0056 0.0154 0.0121 0.0073
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Table 4.5: Summary Statistics

Treatment Control Diff P-val on Diff

Number of households 1260 2128

Area of tobacco production (mu) 5.578 4.874 0.705 0.000

Age 41.119 41.522 -0.403 0.173

Household size 4.877 4.665 0.212 0.000

Education (Primary) 0.367 0.323 0.044 0.009

Education (Secondary) 0.602 0.338 0.263 0.000

Education (High school or College) 0.025 0.257 -0.232 0.000

Figure 4.1: The estimates of the QTE and the 95 % confidence intervals. The dashed line

denotes the DID estimate.
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