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Abstract

In this dissertation, nonequilibrium dynamics of periodically driven self-propelled col-
loids was studied experimentally and numerically. In the last two decades, studies on
self-propelled particles have been intensively conducted including numerical simulations
and experiments of collective motion as a nonequilibrium physics. Many studies dealt with
self-propelled particles moving unidirectionally by constant propulsion forces. In contrast,
time-dependent propulsions and various ways of self-propulsions such as apolar, recipro-
cating, run-and-tumble, and helical motions have been experimentally realised. Especially
in these cases, not only the collective dynamics but the single-particle dynamics has been
of interest. In this study, reciprocating motions were focused on. For example, Myzxo-
coccus ranthus are known to reciprocate in nature. Self-propelling droplets reciprocate
spontaneously at their natural frequencies. In these systems, the frequency and phase of
the reciprocation cannot be controlled. In the systems driven by global external fields, the
time-dependent propulsions were mostly on-off signals. To investigate sinusoidally driven
self-propelled particles which are expected to reciprocate, Quincke rollers, which are di-
electric particles driven by electrorotation induced in conducting liquid, were selected and
studied experimentally with an AC field.

First, the single-particle dynamics of a Quincke roller under an AC field was inves-
tigated. The periodicity in the velocity at the frequency of the external field below the
Maxwell-Wagner frequency was confirmed. Then, the reciprocation of the particle was
numerically explained by a generalisation of the theory on the Quincke roller under the
DC field to that under the AC field. It was found that the peak at the external frequency
and its odd higher harmonic peaks appeared in the velocity power spectrum both exper-
imentally and numerically. The periodic motion was confirmed to be a limit cycle in a
wide range of frequency values. Also, the existence of peaks at frequency lower than the
external frequency and anomalous MSD behaviour were discovered experimentally, which
were considered to be due to a DC component of the velocity.

Secondly, the locomotion of a doublet and a triplet which appeared spontaneously as
a part of dynamic clustering in the AC experiment was studied. Not only the periodicities
in the velocities at the frequency of the external field and the odd higher harmonics but
also even harmonics were found, which is considered to be a result of the dipolar-dipolar
interaction. Furthermore, periodic changes of configuration within typical interparticle
distances were observed in the doublet and the triplet. Also, heterogeneity of the mean
propulsion angle around a particle was revealed. This research can be an experimental
example of periodic self-propelled particles and highlight characteristics of multi-particle
dynamics made of a small number of interacting particles.
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Chapter 1

General introduction

1.1 Active matter physics

In nature, there are plenty of motile objects, such as animals, bacteria, cars and so on.
They move by consuming ”food” or their internal energy. In the last two decades, physi-
cists have been fascinated and studied such a nonequilibrium system which is so called
"active matter”. We call such moving particles as ”self-propelled particles” (SPPs).

Let us briefly explain what are the self-propelled particles. First, the moving directions
are not determined by only the directions of external fields. Their propelling direction are
typically determined by their internal degrees of freedom such as their polarity or shape.
Secondly, they need to consume some kinds of energy to convert their motilities. Thus, it is
remarkable that the examples in the following are not SPPs. Objects rolling on an inclined
plane from the horizon, which just move homogeneously, are not SPPs. Another example
of non-SPPs is charged particles by electrophoresis. The situation that all particles just
moves to the parallel/antiparallel direction of the external field is not usually considered
as SPPs. However, SPPs are not necessarily living. Some kinds of SPPs are driven by
consuming a chemical energy or external energy sources which will be explained in the
next chapter.

Why we study active matter? Active matter is one of the fields of nonequilibrium
physics. As is well known, equilibrium thermodynamics and statistical mechanics succeed
in describing equilibrium systems which is called ” passive particles” in contradistinction to
active particles. Then, some of nonequilibrium systems have been studied and understood
somewhat such as the perturbation from equilibrium, nonequilibrium steady states, and
fluctuation in small systems. Unlike the nonequilibrium steady states like heat or electric
conductions, self-propelled particles are driven not by the boundary but the bulk. Thus,
self-propelled particles are nonequilibrium systems, which should be studied as a new kind
of nonequilibrium states.

To seek universalities in active matter, many efforts have been intensively conducted
theoretically, numerically and experimentally. One of the main topics on SPPs is collective
properties such as phase transitions and order or pattern formations as we can see in flocks
of birds, schools of fish, lanes of humans in a crowded passage, and so on.

Inspired from the nature, the coarse-grained models for interacting SPPs were intro-
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duced. For example, there is the Vicsek model [1]:

0;(t+1) = arg Y O 4t (1.1)
xkj<R
wi(t+1) = a;(t) + vofg,r+1), (1.2)

where 0;(t), x;(t) represent the propulsion angle and the position of the j-th particle at
time ¢. The unit vector fg, ;1) means the direction as 7y, (;11) = (cos 0;(t +1),sin6;(t +
1)). n;(t) is a white noise uniformly distributed on [-n/2, +7/2] (n > 0). The interaction is
represented by the first term of Eq. (1.1), which gives the average direction of the particles
at the smaller interparticle distances than R between particle j and k. This model gives
ordered phase when the number density is large or the noise is small, and the disorder-
order transition is first-order as confirmed by Grégoire et al. [2]. The model did not only
bear the phase transition but also predict the existence of Giant Number Fluctuation
(GNF) which is AN « (N)® (a > 0.5), while equilibrium systems and random systems
give a« = 0.5 because of the central limit theorem. It was supported by the continuum
theory on active matter which is called the Toner-Tu theory [3].

The Vicsek-like models such as active nematics [4, 5] and self-propelled rods [6] were
also established. In active nematics, a particle moves to apolar directions, that is, forward
or backward at the probability of 1/2 with changing the axis’ direction by noise. The
interaction of the model is nematic, which ignores 7-rotation symmetry in two-dimensional
plane. This gives a nematic order phase. Another Vicsek-like model, self-propelled rod
moves one direction of the longer axis and interact nematically [6].

Experimentally, the polar order was realised by vibrated bipolar disks [7], Quincke
rollers [8], the actomyosin motility assay [9] and so on, though these were inhomogeneous.
The nematic order was realised by elongated bacteria [10] experimentally. Not only the
order formations but pattern formations such as vortex formations [11-13] and dynamic
clustering [14] in experiments was reported and modelled. Also, mesoscale turbulent
structures which are also one of the topics on SPPs were realised [15,16].

These experimental SPPs used above are presented in the next chapter.

Diffusion properties Not only the collective properties, diffusion properties of single
particle is one of the interests in active matter. In equilibrium, a brownian particle fluc-
tuates and displaces with the mean square displacement (MSD)

MSD(7;t) == ((z(t + 1) — =(t))?) = 4D, (1.3)

in two-dimensional case. Here x(t) represents the position of a particle at time ¢. As is well
known, it is diffusive (MSD(7) is proportional to 7) except for the extremely short time
interval 7p; = m/~ ~ us, where m and « are the mass of the pariticle and the damping
coefficient. The more precise MSD follows [17, 18]

4kpT

MSD(7) = 4D7 + T2 (e7T/™ — 1), (1.4)

where kg and T are the Boltzmann constant and temperature. In equilibrium, the (trans-
lational) diffusion coefficient D is

D_ kT ’

6man

(1.5)
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which is determined by the fluctuation dissipation theorem. Here a and 7 are the radius
of the particle and the viscosity of the fluid.

In contrast, an active brownian particle which is propelled with constant speed vy and
displaced by a white gaussian translational noise (expressed by a translational diffusion
coefficient D) and a white gaussian rotational noise (expressed by a rotational diffusion
coefficient Dy) [18,19] yields

2
2v

“ (e Pom — 1 4 Dygr).

MSD(7) = 4D7 + B2

(1.6)
In the very short-time range 7 < 1/Dy, it is diffusive due to the translational diffusion.
In intermediate time scales, it is ballistic (MSD(7) o 72) while it is diffusive in the
long-time range 7 > 1/Dy. This diffusion property: ”diffusive — ballistic — diffusive”
is typical in many models of active brownian particles [18,19], because many models
assumed constant unidirectional propulsion with noises. In fact, the typical behaviour was
experimentally confirmed, though the diffusion coefficients were dependent on parameters
such as propulsion speeds [19, 20].

However, the diffusion property was changed if the way of single-particle self-propulsion
were changed like apolar or reciprocating, run-and-tumble and helical. Grofimann et
al. considered a model of reciprocating self-propulsion with a probabilistic directional
reversal [21]. To model the motion of bacteria Myzococcus zanthus which reverse their
direction probabilistically, they used a clock model that the reversal occurs after M-times
occurrence of Poissonian events. Fig. 1.1 shows the MSD of their model. If M = 1,
which means that the directional reversal happens simply by a Poisson process, it gives
the typical diffusion properties of active brownian particles like the above as depicted in
Fig. 1.1. No oscillatory behaviour appeared in the MSD. In contrast, in the cases of large
M, the reciprocating feature appears in the MSD. Although they do not mention directly,
the plot of M = 100 in Fig. 1.1 shows that the exponent of MSD(7)ox 77 becomes both
larger than 2 (superballistic) and less than 0 according to the time length. However, the
oscillatory behaviour of MSD has not been measured in Myzococcus zanthus [21] as they
remarked that this oscillation can be overlooked when the time resolution was not fine
enough.

Dy =0.1

L MSD (|r(t) — r(0)%) 4 101% MSD {|r(t) — r(0)[*)

Pl "“_: 10”% é

100 b R «
o<

1072 [

10-2 - M=1 ] 3 - M=1
5 --- M =10 1072 - M =10
~t — M =100 ; M =100
]0*" ! I ! I 10*'1 I I I
0.01 0.1 1 10 100 0.01 0.1 1 10

time ¢

time ¢

Figure 1.1: MSD of the probabilistic reciprocating model by Grofimann et al. [21] (The

mean frequency of the Poisson process was set to 1.)

In another model by Babel et al. [22], they considered several kinds of time-dependent
self-propulsion particles with rotational and translational noises. They also did not men-



4 Chapter 1. General introduction

tion the exponent 8 of MSD(7)ox 77 explicitly, but the exponent oscillated in the sinusoidal
self-propulsion case and includes the time scales which are superballistic.

In this way, changing of the ways of single-particle self-propulsion alters their diffusion
properties greatly, which means that MSD is worth calculating for an unknown behaviour
of SPPs.

1.2 Experimental realisation of self-propelled particles

In this section, various experimental systems of SPPs are introduced which include sys-
tems using biological materials and non-biological systems. Let us focus on two points of
view. The first one is the ways of self-propulsion. Many of the SPPs in the following move
persistently in their polarity direction with constant propulsions, though the actual ve-
locities were varied by translational/rotational diffusion-like noises and their interactions.
Some of the SPPs below propel in apolar or reciprocating, run-and-tumble and helical
ways, in which case their single-particle properties were also of interests.

The second point of view is diffusion property. Not all the experiments measured the
diffusion properties of the single particle especially for polar motions with constant speeds,
which gives the typical diffusion properties of Eq. (1.6).

1.3 Biological self-propelled particles

Let us start from the most intuitive one: living things whose propelling mechanisms are
mechanical motions consuming their energy. One example is the fish which were confined
in a shallow water tank to observe two-dimensional motions of the SPPs [12]. However,
the majority of biological SPPs experimentally used were not the m-size objects but pym-
size objects such as bacteria and cells for many reasons such as the easiness of preparing
macroscopic systems and controllability.

Bacteria Bacillus subtilis [13,15,23] and E. coli [10,24,25] have been often used in many
researches on SPPs. By choosing strains and appropriate processes, the single bacterium
move in polar direction with a constant speed and with a noise. For example, Fig. 1.2
shows trajectories of E. coli which did run-and-tumble motion (left) and polar motion
(right). The run-and-tumble motion means that a single body moves straight for a time
interval and then reorientates suddenly, which appears in wild type E. coli. Another
example is elongated E. coli which do not tumble and move with a constant speed made
nematic order phase which was realised by Nishiguchi et al. [10].

Moreover, there are the bacteria Myzococcus ranthus which reciprocate by changing of
their gliding directions as a single-cell level with a certain waiting time distribution [26].



1.3. Biological self-propelled particles )

AW405 4 CheC497
Wild type ot Nonchemotactic mutant
29.56 X 7.25
26 runs . vy 1 run
Mean speed 21.2 ym/s Mean speed 31.3 um/s
SOpm. ; SOum L
! '
I = )
[N '
. | 1
1 |
R ! I
i | 1
o J H |
i 1 1
1 . I
K ! : !
- ! < !
' '
' '
' '

Figure 1.2: Run-and-tumble motion and polar motion [24] (These were three-dimensionally
captured, and the projections were shown.)

Figure 1.3: Nematic order of elongated bacteria [10]
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Motility assay Another type of biological SPPs are motility assay. Motility assay is
originally a technique to investigate the motility of single molecular motor. By attaching
molecular motors to a substrate, it is regarded that filaments move on the substrate as
shown in (a) of Fig. 1.4. Schaller et al. used the assay system with kinesin motors and
actin filaments [9], which realised the polar density wave by the single motion straight and
the local alignment interaction as presented in (b) of Fig. 1.4. Sumino et al. used the
assay system with dynein motors and microtubules [11], which realised the vortex lattice
formation by the single motion with constant speed and a typical finite curvature and
the local alignment interaction as shown in Fig. 1.5. In these experiments, the speed of
self-propulsion can be controlled by the density of motors in certain ranges.

Density waves

a Fluorescently labelled F-actin ATP

Unlabelled F-actin

Flow direction

180s

[Coverslip

(a) Schematic of a motility assay system (b) Density wave of polar filaments
in high density

Figure 1.4: Self-propelling polar filaments in the motility assay system [9]

Figure 1.5: Vortex lattice formation by polar filaments moving with constant a speed and
a typical finite curvature [11]
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1.4 Artificial self-propelled particles

Let us move on the experimental realisations of artificial SPPs. Generally, the propulsion
mechanisms of artificial SPPs are not obvious except for robots which have motors and
batteries inside, so particles need to be given energy externally to propel.

Shaken disks, rods and droplets One of the most intuitive artificial SPPs is the
object driven by vibration such as the polar disk [7] in Fig. 1.6. The disks on a plate
are vibrated vertically so that they propel their polar direction which are inherent to the
individuals. Note that the directions of propulsions are not relevant to the external global
force.

Figure 1.6: Polar disk propelling one direction (left below) and its collective motion [7].

Rods on a plate vibrating are also SPPs, but the motion is apolar: The particle moves
forward or backward with changing the axis’ direction by noise, which was realised by
Narayan et al. [27]. It was modelled by active nematics [4,5] which was mentioned in
Section 1.1.
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Another type of SPPs by vibrations is the swimming droplet floating on a liquid bath

and driven by a surface wave of the bath [28]. Various kinds of motions such as zig-

zag, reciprocation and irregular polygonal turning motion in Fig. 1.7 were observed by
changing the acceleration and frequency.

(@) (©) 05 (d) i i "
‘ 0 2 Zigzag 1

VAV AV V VoV VY, V)
0.43s Polygonal turning 90"
° - |
935 ~
g1 :
>

0.5 Polygonal turning 60"

128 1
6 -0.5 0 0.5
— cm

X (cm)

Figure 1.7: Zig-zag, reciprocation and irregular polygonal turning motion of the swimming
droplet [28]
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Janus particles The Janus particles hold asymmetries in the physical property of the
single particle. The energy sources of Janus particles are various such as chemical com-
pounds [14,29-32], light (heat) [33-37] and electric field [16]. Let us see them one by one
in the following.

The bimetallic Au — Pt nanorod immersed in HyOs propels to the Pt side due to the
osmotic pressure accompanying with the local chemical gradient around the particle which
is caused by the asymmetric chemical reaction as depicted in (a) of Fig. 1.8.

The Janus particle with the asymmetry in the heat conductivities is driven by the
diffusion’s asymmetry around the individual particle by a homogeneous light exposure
[33,34,37]. An example of the particle is shown in (b) of Fig. 1.8.

The Janus particle with the asymmetry in the permittivities is driven by the asym-
metric flow induced by the electric field [16, 38] as shown in (c) of Fig. 1.8. The flow is
called the induced charge electro osmotic flow.

In the Janus particles above, the external field or energy source are given globally.
The propulsion direction is determined a priori by the polarity of the particle which is
not relevant to the direction of the external field. For example, in the case of (¢) of Fig.
1.8, the propulsion direction is perpendicular to the electric field applied, which is totally
different from electrophoresis. This enables us to consider the Janus particles as SPPs.

The diffusion properties of the Janus particles with polar motions in the above were
the typical one: ”ballistic to diffusive” [19,20].

H'/H,0
P Au
0+ 4H" + e — 2H,0
H,02 — Op+2H"+2e  H0; + 2H" + 2e — 2H,0 A
. , metal
oxidation reduction —
(a) Chemical energy driven particle (b) Light (heat) (¢) Electric field driven par-
[30] driven particle [34] ticle [16](The figure was pro-

vided by Dr. Nishiguchi.)

Figure 1.8: Examples of Janus particles

The run-and-tumble motion like E. coli were also realised using Janus particles [36,39].
Lozano et al. used time-dependent light energy input of on/off-sequences so that a particle
"tumble” by thermal rotation diffusion [36], in which they obtained oscillatory MSDs.
Mano et al. used chirally coated Janus particles which were rotated by an electric field
deterministically, which is similar to tumbling [39].
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Marangoni droplets Droplets with the asymmetry of its surface tension are known to
move in/on fluid by the Marangoni flow [40], which have been intensively investigated. In
some experiments like [41-44], droplets propelled to their polar direction, back-and-forth,
or circularly, which were spontaneously occurred. Also, helical motions were reported
using liquid crystal droplets [45,46].

Quincke rollers The Quincke rollers [8,47-49] are dielectric colloids rolling on a lower
electrode by electrorotation due to the Quincke effect under a DC electric field as shown in
Fig. 1.9. The individual particle moves straight with constant speed and with a rotational
noise. All particles move perpendicular to the electric fields. The speed is controlled by the
magnitude of the applied electric field. Though the typical velocity is large ~ 1mm/s, the
inertia of particles can be neglected (See Appendix B). In this thesis, the Quincke rollers
were used and investigated, so detail mechanism and explanation are done in Chapter 2.

Figure 1.9: Quincke roller under a DC field [§]

By changing the simple DC field to a DC square pulse sequence in (a) of Fig. 1.10, not
only a straight motion (shown in the most right figure of (b) of Fig. 1.10) but run-and-
tumble motion (shown in the most left figure of (b) of Fig. 1.10) was realised [50]. Here is
the memory time myw of the particle’s polarisation which determines the propulsion di-
rection. When a DC field applied, the steady polarisation is made in the time myw. Thus,
if the rest time 7 with no field is larger than the memory time myw, the propelling direc-
tion is not conserved, which realise a run-and-tumble motion. In contrast, the direction is
conserved when the rest is small enough. In the left two in (b) of Fig. 1.10, the diffusive
property is typical: ”ballistic to diffusive”, which was also theoretically supported.

By changing the distribution of the rest times 77 from an exponential to power-law,
they produced run-and-tumble motion and then Lévy walk as shown in Fig. 1.11. The
figure shows that the run-and-tumble particle shows typical diffusive property: ”ballistic
to diffusive”. In contrast, the Lévy-walk particle shows superdiffusive in the long-time
range, which was also supported in theory.

In this section, various experimental realisation of SPPs are explained, which includes
not only the straight motion but various motions such as apolar, reciprocating, helical, run-
and-tumble motion, and so on. Also, theoretical models exist which give a reciprocating
motion [51] and a circular/helical motion [52-54] by active deformation of the particle. In
this way, Not only collective motions but even single-particle motions are of interests and
have been investigated.
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(b) Single-particle motions depending on the rest time 7r and the memory time mvw

Figure 1.10: The Quincke rollers driven by the DC pulse sequence [50]

(b)

t/7

Figure 1.11: Run-and-tumble (top) and Lévy walk (bottom) realised by a Quincke roller
[50]
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1.5 Motivation

Many experimental systems reviewed in the above section such as non-tumbling bacteria
[10,13,15,23], motility assay systems [9,11], vibrated polar disks [7], swimming droplets by
a surface wave [28], Janus particles [14,16,29-35], Marangoni droplets [41,42,44] mainly
dealt with the polar motions with constant speeds and with noises. In the case, the speeds
were controlled in some range by globally changing parameters.

In contrast, various ways of self-propulsion such as apolar, reciprocating, helical, run-
and-tumble motion have been realised experimentally as mentioned in the previous section.
Some of them have the time-dependent properties except noises in nature (e.g. tumbling
E. coli [24], reciprocating Myzococcus zanthus [26]), and others express the properties
spontaneously (e.g. Swimming droplets by a surface wave [28], Marangoni droplets [40—
42,44-46]). The rests of them were realised by applying time-dependent external fields
such as the on/off switching of a light [36] and an electric field [39,50]. These time-
dependent propulsive systems produced run-and-tumble motions and or a Lévy walk.
Here the question that how the system of SPPs with reciprocating motions by a time-
dependent global external field is realised arises. The above on/off switching did not give
a reversal of the propulsion direction. Although Janus particles can reverse the propelling
direction without a physical rotation in a high frequency region for an electric field driven
system [38,55] or in a high intensity region for a light driven system [33,35], switchings of
the propulsion direction with periods comparable to the running time seems to be difficult.

In this viewpoints, the Quincke roller whose propelling direction is not a priori de-
termined, because the particle is just a spheric dielectric particle. The polarisation can
be changed without a physical rotation. Therefore, the propelling direction of a Quincke
roller is expected to be reversible by changing the external field. This is the reason to use
Quincke rollers for the research on this thesis. Also, time-dependent self-propulsions by
a global external field has been limited to the on/off [36,39,50] experimentally, so a si-
nusoidal self-propulsion is worth investigating. Therefore, the experiments of the Quincke
rollers under a AC field were conducted in this thesis. Is the reciprocate motion expected
experimentally realised? What is the properties of the reciprocating motion? Especially,
what is the diffusion property? In what extent can the experimental results be explained
in theory? How is the collective motion?
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1.6 Organisation of the thesis

In the following of this thesis is divided into two parts. The first part Chapter 2 is
the review on the Quincke roller which is usually driven by a DC electric field. Some
experiments using the roller are also reviewed in Chapter 2. From the Chapter 3 to 5,
the main results of this thesis is written. In Chapter 3, the experimental setup of the
Quincke roller is explained mainly. In Chapter 4, the results on a single-particle dynamics
experimentally and theoretically are presented and compared with each other. In Chapter
5, the experimental results on dynamic clustering are presented. Lastly, in Chapter 6, this
thesis is concluded with the possible future perspective.
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Chapter 2

An artificial self-propelled
particle: the Quincke roller

In this chapter, researches on and around the Quincke roller are reviewed in detail. First,
the Quincke effect which is the mechanism of the self-propulsion of the Quincke roller
is described in Section 2.1. Secondly, other researches related to the Quincke effect are
briefly mentioned in Section 2.2. Finally, the results of the Quincke roller under a DC
field are reviewed in Section 2.3 which include collective motions of the Quincke rollers in
experiments.

2.1 The Quincke effect

The Quincke effect is a rotating mechanism of particles which was discovered by G. Quincke
in 1896 as an electrohydrodynamic effect [56]. Let us assume that a dielectric particle with
dielectric permittivity €, is in the liquid with permittivity € and electric conductivity o;.
Consider the situation that the relaxation time of ions in liquid 7; := ¢;/0; is smaller than
that on the surface of particle 7, When an electric field applied, the charges accumulate
on the surface of the particle which makes the effective polarisation antiparallel to the field
(Fig. 2.1 b)). This configuration is unstable because a small parallel perturbation of the
polarisation is enlarged by the electric torque P x E (Fig. 2.1 c¢)). Therefore, if the torque
surpasses the viscous torque, it starts to rotate spontaneously, which is the Quincke effect.

Before the quantitative derivation of the rotation, it is notable that the polarisation
is not molecular polarisation but Maxwell-Wagner-Sillars polarisation (often abbreviated
Maxwell-Wagner polarisation) [58] which is resulted from interfacial charges accumulation
under the existence of the electric field.

Another remark is that the relaxation time for charges is generally determined as
7 = <, where € and o are dielectric permittivity and electric conductivity. This relaxation
is easily understood by the equation

dp _ p
il (2.1)

which is derived by the combination of the Gauss’ law, Ohm’s law and conservation of
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Figure 2.1: The Quincke effect [57] In a), no motion occurs. In b), it starts to rotate by a
small perturbation that is illustrated in c).

charges:
dve = ° (2.2)
€
J = oF (2.3)
Op .
— = 0. 2.4
8t+leJ 0 (2.4)

2.2 Researches around the Quincke effect

Although the Quincke effect was discovered many years ago, related researches around
the effect are still performed [57,59-62]. One example is that the effective conductivity
of a suspension increased by the Quincke rotation [57]. Another example is the chaotic
rotation of the cylinder with a negligible inertia driven by the Quincke effect [59], which
was experimentally realised and theoretically explained by Lorenz equation-like model.

2.3 The Quincke roller driven by the DC field

The Quincke roller is a dielectric colloid immersed in a conducting liquid and driven by
a DC electric field as was mentioned in Section 1.2. The electrodes sandwiching the sus-
pension are placed perpendicularly to gravity. The sedimented colloid rolls on the lower
electrode by the rotation caused by the Quincke effect in the direction of an initial horizon-
tal nonzero polarisation by fluctuation. Thus, the propulsion direction is not determined
a priori unlike many other SPPs. The directions are totally random in the two dimension
by the symmetry breaking. The important point is that all particles move perpendicular
to the vertical electric field. Similarly to the Janus particle driven by a electric field [16],
the Quincke roller is considered as one of the SPPs.

In this section, the quantitative description of the Quincke effect and the Quincke roller
are reviewed. What is to be derived is the differential equation for the (Maxwell-Wagner)
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Figure 2.2: Gauss’ law at the interface Figure

) " 2.3: t x ¢ is the direction going
between particle and liquid

out from region 9.5 along its surface.

polarisation defined by
P = dSqsr, (2.5)

surface
which is integrated over the surface of a particle. Here, g; and # are the local surface
density of charges and the unit vector of r.
The polarisation obeys the following equation:

The equation from electrodynamics

E N 1 p_ _27‘(‘60(13
dt TMW TMW

Eo+ Q x (P — 4mwega®x® Ey). (2.6)

Here, mvw is the Maxwell-Wagner time:

(2.7)

Derivation of the polarisation dynamics Here the derivation of Eq. (2.6) which is
basically from the supplementary information of Bricard et al.’s [8] was reviewed. First,
assume the infinitesimally a small cylinder across a particle and the fluid as illustrated in
Fig. 2.2, and apply the Gauss’ law:

qs = (qu — €pEp) . TA“|7«:a, (2.8)
where E; and E) are the electric field in liquid and particle. Here E;(r > a) is

P-r
4drers

E = Eo—V( ), (2.9)

because P makes the potential %. On the other hand, E,(r < a) is

P

E,=FE)y— ——~ 2.10
p 0 47T€[G3 ( )
By substituting Eq. (2.9) and Eq. (2.10) to Eq. (2.8), Gauss’ law is rewritten as
2
= p g (2.11)

dmeal
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\mtation

Figure 2.4: Schematic of surface divergence  Figure 2.5: Observation in the lab frame

Let us consider the current density determined on a point of the surface j4(7) whose
direction can be any direction in three-dimension. The charge conservation law on the
surface is written as

3th + vs : js = 07 (212)

where Vj - j, means surface divergence which physically indicates the outgoing element
from the area with attaching the surface. Here the surface divergence of F' is defined as

V.- F = 1tot(f x F). (2.13)

To understand the meaning of it, write the Stokes theorem for G = = x F"

/(rotG) -rdS = t- Gds, (2.14)
S oS

where t is the unit vector along the boundary of area S anticlockwise as shown in Fig. 2.3.
For the equation Eq. (2.14), the right-hand side is transformed as

(r.h.s.) = fi‘)si. (7 x F)ds (2.15)
= f (t x ) - Fds. (2.16)
as

Hence t x # is perpendicular to dS and the surface, the (r.h.s.) is the sum of the outgoing
vectors (Fig. 2.4). On the other hand, the (L.h.s) of Eq. (2.14) corresponds to

(l.h.s.) = /S(rot(f" x F) x )dS (2.17)

= / V, - FdS. (2.18)
S

Thus the surface divergence is the element of a vector field F' outgoing from the closed
area on the particle surface.
Now let us consider Ohm’s law in the lab frame (See Fig. 2.5): 1

Js = 0B+ qs(82 x ar) (2.19)

Finally, by combining Gauss’ law (Eq. (2.11)), the charge conservation law (Eq. (2.12))
and Ohm'’s law (Eq. (2.19)), Eq. (2.6) is obtained.

1

op = 0 is assumed for dielectric particles
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The dynamics of a roller The equation of motion of a sphere is written by

9 =L(Px Ey) — u. ' (2.20)
€0
Here the inertia I is small enough to neglect for colloidal particles. (For example,
I = Ma? ~ 10727 for polystyrene beads of 5um.) Then the dynamics of P is obtained as
follows:
~ The dynamics of P under the external field Eq

~
P 1
A e
= Tyt L[ 1PPEy - (8o PP
—4rega*x>® (P - Eg)Eq + 4nega® x| Eo|* P (2.21)
NS J

The polarisation is divided into the instantaneous part (dielectric polarisation)P¢ and the
polarisation due to charges on the surface of the particle P7:

P =P+ P, (2.22)

and only P? has nontrivial dynamics.

PG’

E(t) -

Figure 2.6: PJ is the component parallel to the electric field

Therefore, by decomposing into parallel and z component shown in Fig. 2.6, these two
equations:

-~ The equations for polarisation dynamics for the DC field ~
W L pe Y pprpr 2.23
& T = TR (2.23)
dP? 1 4 3
S e Ly B Py — 0 (% 1 1/2) B (2.24)
L t ™MW €0 T™MW Py

are obtained (They are Eqgs. (S6) and (S7) in [8]).

A DC roller in unbounded liquid If Ey > Eg, where the threshold electric field Eq

is
1

- VAmeoad (x>® + 1/2)

Eg (2.25)
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the equation for a DC roller Eq. (2.23) and Eq. (2.24) have the unique steady and stable
solution:

P(DC)(SS) _po (DC)(SS) _ € 1 Ey

—_— )2 _1 2.26
I I e prraw|Eol EQ) (2:26)

1 €
pP° (DC) SS) = -\ —— . £7 2.27
? (58) prraw Eo € (220
Here,
1
P;DC)(SS) _ P; (DC)(SS) + P;’ (DC)(SS) _ 47‘(‘60(13XOOE(] _ . @7 (2.28)

wrrawEo €

including the instantaneous part.

Note on the properties Let us make a deeper understanding of the steady solution
above. Suppose the deviation of P, is much slower than that of P||. Because P, is constant,
Eq. (2.24) is deduced as

Amega’

P; = —TMW |:EZ,LLTE0P|T—2 — (XOO + 1/2)EU:| . (229)
0

T™MW

Thus P obeys

dPIT €l 2 o3 3 00 1 2 1 o
— = —(—wuEp) 7'MWPH + |4ma’pure (X + 5 ) Ef — P||
dt €0 2 TMW
€l - 1 o
= *(%MTEO)%’MWPH P dma® e (X + 5)(E§ — EQ) P/ (2.30)

The sign of the first order of Plf in the r.h.s. changes its stability (supercritical pitchfork
bifurcation). The initial direction of P“’ which is chosen arbitrary in xy— space is invariant

over time till steady states. Let us consider the three cases as follows:

1. If By = Eq,
P“"(SS) = 0 is the sole stable point. The relaxation is slow as t~'/2. By Eq. (2.29),

PZSS = 2mepa®Ey. The angular velocity in steady state vanishes: Q%5 = 0, which
means the particle keep stationary.

2. If By < EQ,
P“"(SS) = 0 is the stable fixed point. The relaxation is exponential. By Eq. (2.29),

PSS = _2meqa® Ey, and still Q55 = 0.

3. If By > EQ,
P“"(SS) = 0 is the unstable fixed point. The relaxation is exponential. In the stable

fixed point, the polarisations are Egs. (2.26) and (2.27) in the former paragraph. I
would like to note that P,(SS) can alter its sign: Set Ey = Ef, when P,(SS) = 0.

Then
1 1

= >
Vareoadx>®u,m  \/Ameoad(x® + 1/2)u,T
When Eq < Ey < Ep, P,(SS) <0. When Ey > Ep,, P(SS) > 0.

Ej = Eo. (2.31)
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Translation motion by rolling on electrode Torque balance of a roller (Eq. (S4)

of [8]):
v/a wl A 0 aF
Q = —mA pI O i (2.32)
Q, 0 0 nl TZE
0 1 . L . e
where A = { 10 ) which means —7/2 rotation in xy-plane. The electric force F

and the electric torque T are written as

¢ = P V)E (2.33)
€0

¢ = 9pxE, (2.34)

I o

Eq. (2.32) is valid also for non-steady state.
Here the electric force by net charge by the surface of the particle is assumed to be
zero (F¢ = 0), so

v = AT (2.35)
= LuLAP x E 2.36
€0 H
= LuuAP] x Eq (2.37)
€0
€ ~ o
= ——apEPy. (2.38)
€0

OT°
the Q‘ilincke effect
KN\

E| U I

figure for Ep > 0

Figure 2.7: The Quincke roller under the DC field in steady states (Fy > 0)

Here, (i effectively includes the effects of the surface roughness’ of the electrode and
the particle and the lubrication layer. The surface friction fi; logarithmically increases
as the lubrication layer decreases [8,63]. In the DC case [8], the lubrication layer was
assumed 10-100nm.

Using the steady solution of P of Eq. (2.26), the translation speed in steady state vy

is

~ E 2

vy = 1 <0> ~1. (2.39)
prrvw |\ EQ
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T L M Q
1/Dy a

50E0a2

1
ur Do

Table 2.1: Unit for nondimensionalisation

For computing the time evolutions of Eq. (2.23) and Eq. (2.24) numerically, they were
nondimensionalised using the unit in Table. 2.1 as follows: (assuming adding rotational
noises in 2D cases) Thus,

t = Dyt (2.40)

- P

P = —— 2.41
oL (2.41)

The tilde indicates the dimensionless value here. Note that ”polarisation” P = [ d?sqs7rs
with the dimension of QL3. Therefore, Eq. (2.23) and Eq. (2.24) are nondimensionalised
as follows:

P pe apepr 242
G e = AR (2.42)
dPe 1 - - 4
24 pr= AP~ (> 4 1/2) (2.43)
dt TMW I TMW

Here A and 7w are the dimensionless values which are defined as

. E2 3
A = ’“‘EZTOG (2.44)
Amw = 7Dp. (2.45)

Then the dimensionless version of Eq. (2.38) (dimensionless translation velocity) is written
as

o=-"tapy. (2.46)
Practically, velocity is expressed using dimensionless values as

v=——T  njwAPr, (2.47)
Hr TMW

including the sign.

Numerical solution of transient dynamics To know the transient dynamics before
steady states, the numerical solutions of Eq. (2.23) and Eq. (2.24) (or the dimensionless
counterparts: Eq. (2.42) and Eq. (2.43)) appeared in Fig. 2.8.

For our numerical calculation, the parameters were set as follows:
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s Parameter for numerical calculation ~
e Electric field: Fy = 7.1 x 10 V/m

e Eg~95x10°V/m, Vg ~ 28V

e Channel width: 30pm

e Radius of a particle: a =2.5 x 107 m
o ¢ ~ 2¢ [8,57]

e x> =10.001°

e Viscosity: 7 = 2mPa -s~!

e Rotational friction is calculated by u, = ﬁ
o T\w ~ lms [8,57]

e Dy is just the unit of time as far as 1D motions are considered.

“This is an assumption. x™ < 1/2 when Ey < 3Eq is supported by [57], though it was assumed
for also Eg > 3Eq.

N J
Wa% = 82.1um/s was assumed for a reason of consistency to our experiment of AC
system discussed later in Section 4.4. In the literature [8,47], they use 2mm/s in theory
assuming the lubrication layer underneath the particle to be the order of 10-100nm or
1.5mm/s for the coefficient % of Eq. (2.39) by fitting from their DC experiments.
Hence the material of particle, the channel width, and the electric field are different from

our experiment, there is no reason to coincide.

For comparison, the parameters set by Bricard et al. [8] were the following:

e Electric field: Ey=1.39FE

e Eg~1.0x10°V/m, Vg ~2x10°V
e Channel width: 220pm

e Radius of a particle: a = 2.4 x 1076 m
o ¢ ~ 2¢ [8,57]

o X <<1/2

e Viscosity: 7 = 2mPa s~}

o T\w ~ lms [57]

This nondimensionalisation did not appear in these literature [8,47]. Especially, Dy
appears as just the unit of time in this one-dimensional case.

Polarisations oscillate at ~ 7w and go to the constant values, though this non-
steady oscillation was not mentioned in [8,47]. It is remarkable that this constant value
corresponds to the fixed points which only depend on the initial sign of P, as it is seen
in Eq. (2.30). Another remark is that P never alters its sign.
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Figure 2.8: Polarisations (only the interfacial part) relax to constant. (initial conditions:
P””(O) = 0.1, P7(0) =0.1)

The velocity and the position as functions of ¢ are shown in Fig. 2.9. After a short
transient time, the velocity reach to a constant value whose sign is inverse of the sign of
Pﬁ’ when Ey > 0 (Fig. 2.7), so the position almost grows linear in time. In the transient
time, the velocity oscillates at ~ 7w though the velocity do not change its sign. This
oscillation is due to the reconfiguration time of the surface charges. Since the displacement
during the transient time and time length are small, there is no experimental report to
capture this oscillation yet.

In the DC case, there is the rigorous expressions of steady solution Eq. (2.26) and
Eq. (2.27), for the electric field Ey = 7.07 x 105, for example, Pﬁ’(SS):O.G, P?Z(SS)=-0.06
(dimensionless values) if the initial P is positive.
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Figure 2.9: Velocity (left), position (right). (initial conditions: ]5|(|7(0) =0.1,P7(0) =0.1)

Lastly, it can be checked that the nondimensionalised inertia is also sufficiently small:

I =p,IDg~107". (2.48)
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2.3.1 A simple model for a roller on a plane

Because a Quincke roller moves with constant speed in steady states, they simply modelled
the motion in a 2D-plane by adding rotational diffusion noise.

& = von(t) (2.49)

0 = \/2DyE(t) (2.50)
n(t) = (cosé(t),sinf(t)) is the propelling direction vector. The noises satisfy (£(¢)) = 0
and (£(t)&(t')) = 0(t — t'), which means a white Gaussian noise.

The time autocorrelation of velocity is

(v(t1) - v(t2)) = vie Peltr—t2l (2.51)

The inverse of the rotation diffusion constant measured by dilute experiment [47] was
DgDC)_l = 0.3140.02s which is apparently smaller than the time scale of thermal rotation
diffusion (~ 10%s)(See appendix Eq. (B.4)).

For this model, the MSD is calculated as follows:

2
_ 2v3

MSDP€(r,t) = MSDPC(7) = o7
0

(e=Po™ — 1 4+ Dyr). (2.52)

2.3.2 Interaction between the Quincke rollers under the DC field

The interactions between the Quincke rollers are two kinds: electrostatic interaction of
the polarisation P and hydrodynamic interaction.

Electrostatic interaction First, let us consider electrostatic interaction. The parallel
component of the electric disturbance field produced at x; by the particle j is
3 2 ad

SEY (. ) = i~ Ph (5hid —T) 4+ O 253
I (x4, 1) 27(60%% zi; zLij xzzj 172 (5@ ) + (xg,]) ) ( )

where x;; and &;; are the relative vector between particles 7 and j and its unit vector. I
is the identity matrix. The disturbance field is illustrated in Fig. 2.10.

For Ey > 0, the velocity and the parallel component of the polarisation is antiparallel,
so A of Fig. 2.10 indicates the repulsion between particles. p means the propelling
direction of the particle at the centre of the figure. B of Fig. 2.10 is a dipolar field. It
suggests that a particle tend to move in the same direction as that of the centre at the front
and the back relatively. That is to say, particles tend to align when their configuration is
long in their moving direction and do not align in the other configuration.

Hydrodynamic interaction Secondly, the hydrodynamic interaction is discussed as
follows. The flow field at a; produced by the particle j is u(?). When we consider the
effect of the flow to the particle rotation, z-direction differentiation of the parallel flow
field is relevant. This was calculated as Eq. (2.54):

%U ﬁ(A'. /\». /\,. f .. H
: a0 (T - &45) T orzi; < H/m
0D (@ = o E T T ’ (2.54)

611, 2 JN
I z=0 H;Zt Uo%’ﬂj . (23%'331‘3' — I) for Tij > H/ﬂ',
]
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Figure 2.10: Electrostatic disturbance by a roller [8]. A: the isotropic part which corre-
sponds to the first term of Eq. (2.53). B: the unisotropic part of Eq. (2.53).

where n; is the unit vector of the propelling direction which is denoted as p in the Figs.
2.10 and 2.11.

The flow is visualised in Fig. 2.11 for each range. In short-range of z;; < H /7, there
is the alignment flow depicted in A of Fig. 2.11. In the range of x;; > H/m, the dipolar
flow is created so that the alignment of particles is to be destroyed.
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Figure 2.11: Hydrodynamic flow by a roller [8]

The Eq. (2.54) was derived by assuming a point torque exists at the distance of the
particle radius from the lower electrode. The flow field produced by a point torque in the
vicinity of plane is known as the calculation by Blake et al. [64]. This is applied to the
case that a point torque existing between two planes by Hackborn [65], which was used
for obtaining Eq. (2.54).

In the paper by Bricard et al. [8], they assumed particles do not change their speeds
but only change the directions by interactions. Though they succeeded to reproduce
the collective motions which they experimentally observed under this assumption with
bipartite interactions, another research reported that the speeds of the Quincke roller can
be changed by interactions [66].
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2.3.3 Collective motion of the Quincke rollers driven by the DC field

The Quincke rollers under a DC field collectively migrate because of the interaction ex-
plained above [8,47]. In the two literature [8,47], the channel width H was large as
H = 220pum so that the short-range hydrodynamic interaction in the left of Fig. 2.11
dominated. Thus, the particles tended to align their propelling directions if the number
density was large. The Fig. 2.12 shows the appearance of macroscopic directed motions
in the race track shape boundary. In the low number density, particles’ directions were
isotropic. In the middle range of the number density, the band in which the particles
were migrating in one direction appeared. In the large number density, the polar liquid
phase which consists of particles aligning their propelling directions but their positions are
liquid-like were appeared [8].

Polar bands

Isotropic gas

108 . 1072 107 %o

Figure 2.12: Macroscopic directed motion [8]. The width of the track was Imm.
Another situation is the confinement in a circular region [47]. Similarly to the above

case, a rotating vortex appeared when the number density was large enough as shown in
Fig. 2.13 thanks to the alignment interactions.

Figure 2.13: Vortex formed along the circular boundary [47]. The radius of the region was
Imm.
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The Quincke rollers driven by a DC pulse sequence As explained in Section
1.2, the switchings of the DC electric field in (a) of Fig. 1.10 bare the changes of the
single-particle motion [50]. Collective motions which depend on the rest time 7 and the
running time 7 were also reported in this system [50] as shown in Fig. 2.14 Surprisingly,
the particles form various types of dynamic clusters as shown in Fig. 2.14.

static disordered
cluster disordered cluster

3 I polar
[ |
O

[cluster
O rotating

10 20
7r (ms)

(a) Phase diagram of the collective motions

(b) Collective motions (Scale bar=1mm)

Figure 2.14: Collective motions of the Quincke roller driven by the DC pulse sequence [50]

In their single-particle analysis, 7p/myw =~ 2 is the boundary of the memory-effect
existence.

2.4 Summary on the researches on the Quincke rollers

In summary, the Quincke roller is the SPP rolling on an electrode by the electrohydro-
dynamic effect called the Quincke effect [56,67]. The effect occurs to dielectric particles
dispersed in a conducting liquid when a sufficiently large DC electric field is applied. The
single-particle dynamics is ruled by the polarisation dynamics on the surface of the par-
ticle, which is nonlinear differential equations [8]. They have the stable steady solution
which corresponds to the motion with a constant speed. The particles interact by the
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electrostatic interaction of the polarisations and the hydrodynamic interaction. Experi-
mentally, not only the single-particle straight motion but also collective motion such as
the polar liquid and the vortex along the confined region were reported [8,47]. By apply-
ing the DC pulse sequences, various collective motions including cluster formations were
realised [50].
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Chapter 3

Experimental setup: the Quincke
rollers under the AC field

In this chapter, the experimental setup and the procedures of the Quincke rollers under
the AC electric field are illustrated.

3.1 Experimental setup

The Quincke rollers are realised by applying the electric field vertically to the suspension
sandwiched by two electrodes as shown in Fig. 3.1. The colloidal particles sediment on
the lower electrode of the Quincke cell which is explained in the following paragraph. The
electric apparatus’ used and the data acquisition is explained in the next paragraph.

high speed camera

suspension
colloidal particles (polystyrene, ®5 um) microscope
in AOT/hexadecane 0.15mol/L ITO coat

\e{slides

|
\ 30;3m
e} O 0 000 O O ‘ l ,T‘
|

Figure 3.1: Experimental setup

The Quincke cell preparation Here, how to prepare the Quincke cell are explained.
The solution is chemically same as what Bricard et al. [8,47] used. Before dispersing
colloids to the solution, rinsing of particles is needed as follows:

e The protocol to rinse colloidal particles

1. Make the solution AOT! /hexadecane 0.15mol/L.

Lsurfactant. di-2-ethylhexyl sodium sulfosuccinate, minus ion in water. The chemical formula is shown
in Fig. A.1.
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2. Centrifuge polystyrene beads dispersed in water (GS0500, Thermo Scientific)
which was taken into a microtube?. The diameter is 5pum.

. Remove the supernatant.

3
4. Add the solution 1 to the microtube and make it disperse.
5. Centrifuge it.

6

. Repeat the procedure from 3 to 5 six times.
e ITO coated slide glasses® were washed using alkaline cleaner SDNU-A1 (As One).

e The rinsed particles were suspended in the solution (AOT /hexadecane 0.15mol/L).
Then the suspension was sandwiched by the ITO coated slide glasses using double-
sided tapes (width=30um)* as a spacer.

Because of the density difference (Cf. Appendix A), polystyrene colloids are on the lower
electrode as illustrated in Fig. 3.1 in equilibrium. The channel width was set to 30um,
which is smaller than that set in the literature [8,47]. This can change that the far-field
effective hydrodynamic field in Fig. 2.11 B become more dominant than A. More precisely,
for the short-range of the interparticle distance » < 10um (=twice the particle’s diameter),
the alignment flow A is dominant, while dipolar flow B is dominant for r > 10um.

Electrical circuit and data acquisition Then, the AC electric field was applied to
the prepared Quincke cell using function/arbitrary waveform generator 33220A, 20MHz
(Agilent) with amplification by the power amplifier TA120 (NF). The electric field applied
to the cell was continuously measured by a digital multimeter: 34401A (Hewlett Packard).
The motions were captured via a bright-field inverted microscope I1X70 (Olympus) with
objective lens’” LUCPlanFL 40x/0.60 co/0 — 2 or UPlanF1 10x/0.30 co/- and a high speed
camera (Fastcam mini AX (Photron)®). The capture rate (fps) was set to the multiple of
the applied frequencies. (Typically 10 or 20 slices per period)

3.2 Image analysis

In this setup, all images obtained were 1.32um/pixel (0.756 pixel/pm) in x10 and 0.314pm /pixel

(3.18 pixel/pum) in x40. Before the analysis, particles on the lower electrode that did not
stick to other particles were carefully chosen, because some particles exist above the lower
electrode under the electric field or aggregate perpendicularly or horizontally. After the
selection by eye, the positions of particles were tracked via binarisation of images using
MATLAB or imageJ (Mosaic Particle Tracker [68]) by the following procedures basically:

1. Subtract the time average background image if it is necessary.
2. Enhance the contrast of it.

3. Binarise it. Then a particle became an annulus.

2Simfort T330-7LST

830 x 60 x 1.1 (mm), ITO thickness 50nm.

4NITTO, No.5603, PET with acrylic adhesive.

Sfull resolution: 1024 x 1024 pixels. 4000fps is the upper limit which is possible for the full resolution.
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4. Fill holes. The particle became a circular disk.
5. Perform segmentation by watershed transformation if it is necessary.

The necessity of the procedures and the thresholds for binarisation depended on movies.
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Chapter 4

A single Quincke roller under the

AC field

In this chapter, the dynamics of a single Quincke roller is focused on. First, the experi-
mental results are shown in Sections 4.1 and 4.2. Then the polarisation dynamics under
the DC field in Section 2.3 is generalised to the AC field in Sections 4.3 and shown in
Section 4.4.

4.1 Overview of Experimental results

Before showing experimental results in detail, let us overview behaviours of the Quincke
rollers under the AC field in our experiments.

Because AC electric voltages are applied, there are two parameters: effective value
of voltage and frequency. In theory, the Quincke rollers are always staying on the two-
dimensional plane (=the lower electrode) in any effective values over a threshold and
any frequencies smaller than ~ 1/mw. However, the particles stayed on the plane with
only a small range of the parameter space experimentally. In the other range, the colloidal
particles levitated, so they did not stay the two dimensional plane even though the density
of the particle is larger than the liquid. Under those parameters, particles assembled and
dissembled three-dimensionally and periodically.

In this thesis, the range of parameters which yields two-dimensional motions was fo-
cused on. The AC electric field are applied to dilute suspensions initially dispersed. After
a moment, some particles made clusters and others did not as shown in Fig. 4.1. The
cluster was like ”dynamic clustering” [32] in the sense that clusters assemble and disassem-
ble temporally, though the clusters was persistent during the time scale over 100 periods.
Typically, the persistent clusters are made of two or three particles. Here they are named
a doublet and a triplet for a two-particle cluster and a three-particle cluster. Population
of doublets is larger than that of triplets. More than three-particle clusters were observed
as well, which were rare compared to triplets. The trajectories in Fig. 4.1 are for 1.0
seconds (=200 periods) captured stroboscopically at the frequency of the external field.

In Section 4.2 of this chapter, single particle motions were analysed and discussed. In
Chapter 5, the dynamic clustering was analysed and discussed.

Lastly for the overview, let us remark an experimental situation. When the AC field
with DC elements were applied, the Quincke cell burned after applying voltages for around
30 minutes and particles are gradually aggregated on the edge of the double-sided tape as
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O,
@

100 pm

Figure 4.1: Dynamic Clustering (x10, 200Hz, 150Vg). Trajectories for 1.0s (=200 peri-
ods). The blue, red, and green circles are doublets, triplets, and the clusters made of more
than three particles.

the spacer. Therefore, it is difficult to measure with many parameters using the same cell
and in the same number density of particles, though the available time of cells is enough
for producing collective motion as realised by Bricard et al. [8,47].

In contrast, the zero DC element of voltage avoids the cell burning, so that a Quincke
cell can be used repeatedly. However, similarly to the DC case, it is difficult to maintain
the number density of particles for a long time. Hence the number density affect collective
motion as well as in the DC case [8,47], a single cell cannot be used repeatedly.
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4.2 Experimental results: motions of a single particle in
dilute suspension

In this section, motions of an isolated single particle in dilute suspension which was ob-
tained experimentally are focused on. The typical distance from other particles was more
than 100pm. First, the external parameter: effective voltage and frequency are fixed to
Ve = 150V and 300Hz. Here the motion is captured at 3000fps (one period=10 slices)
and by x40 objective lens.

4.2.1 Typical dynamics

Typical trajectory and velocity A typical trajectory of the Quincke roller under the
AC field for long-time range is shown in (a) of Fig. 4.2. The time length 3.639s corresponds
to approximately 1091 periods. For the comparison of the Quincke particle under the AC
field to Brownian particles, the typical trajectory of a particle in the Quincke setup but
with no electric field is depicted in (b) of Fig. 4.2 (captured at 4000fps). The trajectory
of the Quincke roller is random-like, but it moved much more than the Brownian particle.

To see the typical changes in position and velocity, position z(t), y(¢) and veloc-
ity vg(t), vy(t) for a short-time range are shown in (a) and (b) of Fig. 4.3, where
the indice x,y mean z,y-components. The root mean square velocity is measured as

vrMS = \/v2(t) ~ 6 x 102um/s, where the overline indicates the average over the whole
time series for 3.639 seconds. For reference, the velocity(¢) of a Brownian particle for a
short-time range is shown in (c) of Fig. 4.3. From the measurement, the root mean square

velocity vrms = \/v2(t) ~ 2 x 10?um/s, whereas VA(0?) g = VEBT/m = 2.4 X 10%um/s,
from the equipartition law in equilibrium (cf. Appendix B). (m is the mass of a particle.)
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Figure 4.2: Typical trajectories of the Quincke roller under AC and a Brownian motion
((a)(c): short-time, (b)(d): full-time length)
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Power spectrum of the velocity In (a) of Fig. 4.3, the apparent periodicity is not
observed. To investigate the velocity more, the power spectrum of the velocity time series
is calculated along both z-axis and y-axis which are denoted as Sy, v, , Sv,»,, and shown
in (a) of Fig. 4.4.! There is a peak at the external frequency f, so the periodicity in the
velocity time series is observed.

To average the heterogeneity in x and y, ”the velocity amplitude” which is the square
root of the sum of normalised power in Fig. 4.4 is depicted in Fig. 4.5.

In (a) of Fig. 4.4 and Fig. 4.5, there is no peak at higher harmonics.

Moreover, small peaks are observed in the low frequency region (<10Hz) presented
in (b) of Fig. 4.4, which corresponds the slow persistent motion of ~ 0.1 — 1s. Though
these peaks are smaller than noisy components in high frequencies, they do not seems to
be noises because there is the trend of larger noise in higher frequencies. In addition, the
frequencies and magnitudes of these peaks can deviate slightly in the range 0~10Hz by
changing the data length unlike the peak at f.

These low frequency peaks were observed in more than ten samples including non-
isolated particles. In these samples, the frequencies and magnitudes of these peaks were
different in samples and data lengths, though the low frequency regions having peaks were
approximately same.

It is not trivial based on the following facts. The translational diffusion only bears
the constant baseline of the spectrum. If there is a DC velocity, the peak at 0Hz appears.
This phenomena will be considered more in Section 4.5.

For the comparison to the Brownian motion, the velocity power spectrum of the Brow-
nian particle is shown in Fig. 4.6. There is no peak, and there is the tendency of larger
noise in higher frequency similarly to the Quincke particle. The spectra increase as the
frequency increases. It is because the particle sticked to the substrate, because the velocity
power spectrum of a Brownian motion in a harmonic potential is proportional to #wg,
where w, wy is the angular frequency and wy = k/~: the ratio of the spring constant k and
the damping factor v. (b) of Fig. 4.6 shows that there is no peak in low frequency region
whereas the spectra of the AC roller in Fig. 4.4 had such peaks.

!The accuracy of the frequency axis ~0.3Hz.
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Figure 4.4: Power spectra of v,(t),vy(t) (300Hz, 150V )
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Figure 4.5: Velocity amplitude (300Hz, Veg)
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Figure 4.6: Power spectra of v,(t),vy(t) (No electric field was applied)
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On the other hand, the power spectrum of the speed time series |v(t)| shown in Fig.
4.7 has no peak at the external frequency f (=300Hz). Therefore, it means the directional
changes tend to be periodic. The reason why the speed periodicity cannot be observed is
supposed to be the low accuracy of the speed due to the high-speed capturing.

106 4

104 .

Sw () [(um/s)?]

10—2 4

0 300 600 900 1200 1500
f[HZ]

Figure 4.7: Power spectrum of |v(¢)| (300Hz, 150V )

More directly, the angle change after a half period is worth calculating. Here, define the
k-th half period displacement vector Ad(k) = z(to+ 5T) — x(tg+ £51T), where the initial
time t( was set the value satisfies 0 < ¢y < % and gave the largest |Ad(k)| on average over
k by the measurement. The angle between Ad(k) and the subsequent vector Ad(k + 1)
for every k = 1,2,... is denoted by Af. The histogram of angle changes after a half
period A# is shown in Fig. 4.8. The typical angle change Af = 7, which means that the
directional reversal tend to occur. The persistent index which is defined by the ensemble
average of its cosine is (cos Af) ~ —0.5, which is larger than -1 in perfect reversal. In
summary, the Quincke roller under AC field tend to reciprocate at the frequency of the
external field.

0 /2 n 3n/2
A6 [rad]

Figure 4.8: Histogram of angle changes after a half period Af (300Hz, 150V o)
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Let us consider another particle (denoted as ”particle 2”) which existed 177-198m
away from the particle analysed above (denoted as ”particle 17) in the whole observation
time. Each velocity correlation is shown in Fig. 4.9. It is remarkable that they were
not clustered apparently. (a) of Fig. 4.9 shows the particle 2 moved periodically as well
as particle 1. The particle 2 has also low frequency peaks as shown in (b) of Fig. 4.9.
However, the peaks do not coincide with those of the particle 1, though the frequency
ranges of the peaks are approximately same. It means that the two particles apart were
not globally vibrated, which might have caused the low frequency peaks correspondent
with the long-time persistent motion.
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4.2.2 Estimation of the effective rotational diffusion coefficient Dy

The reciprocating motion that was observed in the last subsection was not perfect. To
investigate the axis changes of the reciprocating motion, the effective rotational diffusion
constant is calculated. The velocity autocorrelations v(t 4+ 7) - v(t) of three samples are
shown in Fig. 4.10, where the overline indicates that the average was taken for t. The
figure indicates that the correlation quickly decay but have peaks at the integer multiples
of the period.?

1.0
0.8 1
0.6
0.4
0.2

o.o—MMM&WMﬂ&MM

_02 4

Velocity autocorrelation (normalized)

—0.4

0.00 0.02 0.04 0.06 0.08 0.10
time [s]

Figure 4.10: Velocity autocorrelation v(t + 7) - v(t) for AC 300Hz, 150Vg (three samples)
For the green line, the integer multiples of the period (=multiples of 1/300 s) are plotted
by red points.

To estimate the rotational diffusion, the absolute values of the correlations at the
integer multiples of the period 7 = 0,7,2T, ... are displayed in Fig. 4.11 which is needed
for an exponential fitting. The correlation is averaged over three different particles.

It decays fast in short time around 0.1 seconds and then decrease slowly, so the ex-
ponent of the fast decay is obtained by the linear fitting to the semilog plot Fig. 4.11 as
Dy ~ 3 x10%s7! (Db-,_1 ~0.03s)? The time scale of the angular changes is smaller than 0.3
seconds which was obtained for DC rollers in [8]. Similarly to the DC case, it is much
faster than that of thermal rotational diffusion in equilibrium (D, ' ~ 2 x 10% s).

2The reason why it decay so quickly is that the correlations between the same value (7 = 0) and between
different values (7 # 0) make a serious difference for noisy signals.
3The fitting was executed to the time interval [0, 0.1].
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Figure 4.11: Velocity autocorrelation v(t + 7) - v(¢) plotted for only 7 = nT (AC 300Hz,
150V, ensemble average of three particles)
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4.2.3 Mean square displacement

To characterise the dynamics of the Quincke roller, the mean square displacement (MSD)
is calculated and shown in Fig. 4.12 comparing to that of the Brownian particle which
experimentally acquired and shown in Subsection 4.2.1.
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Figure 4.12: MSD for AC 300Hz, 150V.q (averaged for three samples) and a Brownian
particle (one particle). (Time is until one forth of whole time series. 1 error bar = 1
standard error.)

The Brownian particle is diffusive (MSD(7) o 7) as is well known. The translational
diffusion coefficient is D ~ 2um? /s from the slope. This translational diffusion coefficient
D is larger than the value calculated by the fluctuation and dissipation theorem in equi-
librium (See Appendix B.), which was probably caused by the sticking of the particle and
the substrate. In contrast, the Quincke particle is diffusive in small-time scale, then the
exponent increases and then decreases.

To clarify the exponent of the MSD, the exponent (1) of MSD(7)ox 77 is calculated
by
d(log MSD(7))

d(log T) (4.1)

B(r)

and shown in Fig. 4.13. The left and right figures of Fig. 4.13 show the long-time and
short-time behaviour of the exponent. (The different colours mean different particles.) One
of the striking features is that the exponent grows dramatically around 10 periods and
the maximum exponent is over 2, which means superballistic. This anomalous behaviour
is not understood easily, so it will be discussed in Section 4.5. Another feature is that
there is the periodicity in the exponent, which the right figure shows. The exponent in
the long-time region obtained is still ballistic. It might be because the observation time is
too small to the appearance of the diffusive region.
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Figure 4.13: The exponent 3(7) of MSD(7)ox 77 for AC 300Hz, 150V.g. (Three samples
are plotted.) left: long-time behaviour, right: short-time behaviour

4.2.4 Summary and discussion of the experimental results

In this section, the motion of a single Quincke roller under the fixed voltage (300Hz,
150Vg) is analysed. It reciprocates at the frequency of the external field with noisy com-
ponents in high frequencies and small peaks at low frequencies. The directional reversal
tends to occur every half period, and the directional axis changes at ~ 0.03s which is
approximately 10 times of the period. The exponent of the MSD grows periodically from
diffusive and reaches a peak which is superballistic then decreases.
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4.3 Generalised model on the dynamics of one Quincke roller
under the AC field

In the above sections in this chapter, the behaviours of the Quincke roller under the AC
field experimentally were notated. To understand the behaviour quantitatively, the model
of the Quincke roller explained in Chapter 2 is generalised to the AC regime in this section.

For the beginning, E is substituted to Eycoswt in the equation Eq. (2.21). Decom-
pose Eq. (2.21) into z and parallel components. Then, decompose the polarisations into
the instantaneous part and the surface part by

Pi(t) = P{()+Pi(t) (42)
P(t) = PI(t)+P](t)
Here, P€(t) is determined by the electric field the particle feels at time ¢ instantaneously

(dielectric polarisation):
PE(t) = 4mega’ x> Ey cos wt (4.4)

Pi(t) =0 (4.5)

Conversion to dimensionless values Now nondimensionalisation are conducted by
using the unit in Table. 2.1 as

,uralEgaE}
A = —— 4.
o (46)
™mw = TmwDe (4.7)
t = Dt (4.8)
- P
P = —— 4.9
60E0a3 ( )

Therefore, nondimensionalised equations are the followings (For brevity, the tilde is
omitted.):

r The equations of the polarisation with angular frequency w ~
dpP? 1 d t A (x> +1/2
=+ P7 +4mx™ (coset) + T+ 1/ )coswt
dt  m™aw dt TMW
= AP|‘|’2 cos wt (4.10)
il
— + By = —AcoswtP] Py (4.11)
L dt TMW )

By introducing a variable ¢ defined by c(th = w and ¢(0) = 0, it can be seen as a

three-dimensional autonomous dynamical system:
dpPy 1

II _ loa a a
F = _TMWPH — ACOS SOPZ _P” (412)

dpP? 1 4 ©+1/2
zZ P — Arx*wsin p + —W(X +1/2)
di ™MW T™MW

cos ¢ + APﬁ’2 Cos ¢ (4.13)



52 Chapter 4. A single Quincke roller under the AC field

The translation velocity (with dimension) expressed via values with dimension is
v(t) = —Lagi B cos(wt) Py (1) (4.14)
€0

The translation velocity (with dimension) expressed using dimensionless values as Eq.
(2.47) is

u(t) = — L i AP cos(wt), (4.15)
Hr TMW

which is useful in numerical simulation.

4.4 Numerical results

4.4.1 Physical values used for the calculation

The parameters were set using the parameter list in Section 2.3 basically to compare
our experimental results. It was assumed ‘:fl‘viw = 82.1um/s to draw the figure for the
DC regime. This was assumed by the following reasons. First, this can be determined
experimentally also in our system by DC experiments with a few voltages like in [8,47]
but independently to them. However, it is doubtful to correspond to the value under the
AC field. Therefore, it is used an idea to approximate from only AC experimental data

as follows: First, numerically, it was found that vgyg = \/W is proportional to the
electric field (the effective voltage) as shown later in Fig. 4.20 with little dependency on
frequencies. On the other hand, vrms can be calculated experimentally, so that the root
mean square velocity coincides by tuning the coefﬁ(nent ‘“ in simulation.

Here vrpg ~ 6 X 1~02 pm/s was set when the electric Voltage is 300Hz and 150V, so
that it is assumed —%%— = 82.1um/s globally*.

Hr TMW

4.4.2 Dynamics

Let us fix the amplitude of the voltage first. The dynamics (P i 7(t), PZ(t)) under several
frequencies are shown in Fig. 4.14. (P, i 7(t), PZ(t)) reach periodic states whose frequencies
corresponds external frequencies,® though they include many higher harmonics. The initial
value is set ( |‘|’(O),PZU (0)) = (0.1,0.1) (dimensionless values) to plot these figures. It is
notable that P does not change its sign when time develops. Another remark is that the
periodic state is invariant with changes in initial values except for the sign of By (0).

4The DC element was eliminated from experimental vrms, which does not affect the one significant
figure.
S5For this calculation, the time interval for numerical calculation is 100000-time steps for one period.
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Figure 4.14: Time series of polarisation in each frequency
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In order to observe the periodic states more clearly, P|‘|’P2‘,’ — trajectories projected
along ¢ = wt are shown in Fig. 4.15. Here (P|‘|7(0), P?Z(0)) = (0.1,0.1). In each frequency,
the trajectory goes to the red closed loop that is correspondent to one period. Because a
state relaxes to the frequency-dependent closed loop independent on initial states (aside
from the sign of A7 (0)), the closed loop can be understood as the limit cycle. The limit
cycle is symmetric to Pf" axis. For negative initial Pﬁ’(O) < 0, the limit cycles are the
mirror symmetries of those for P7(0) > 0 to P; axis, which is similarly to the DC case.
The limit cycles tend to be simpler as frequencies increase.

In high frequencies like 1200Hz and 1500Hz, the limit cycles (the red closed loops in Fig.
4.15) do not have finite P’ component. It is because the time scale of external frequencies
are comparable to that of Maxwell-Wagner polarisation so that the field reversal occurs
before interfacial charges rearrange, which causes no motion.
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Velocity and position By using Eq. (4.14) or Eq. (4.15), the velocity and position
were obtained as a function of time ¢ as shown in Fig. 4.16. This figure shows that the
velocity periodically changes and the particle reciprocates at the frequency of the external
field. In high frequencies in Fig. 4.17, the particle becomes stationary in the periodic
state, as expected from having zero P|‘|’ in Fig. 4.15.

Therefore, as illustrated in Fig. 4.18, a particle reciprocates but the parallel component
of polarisation Pjj(= P|‘|’) do not alter its sign even in the periodic state.
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Figure 4.16: Velocity and position in each frequency
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Figure 4.18: B7 does not change its sign, but v(t) does. (figure for P(0) > 0)
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4.4.3 Parameter dependency

Here the frequency dependencies of the reciprocating amplitude and the root mean square

velocity vpms := 4/ v(t)? averaged only in the periodic states after transient states are

argued and presented in Fig. 4.19. (from 50 to 1090Hz, every 10Hz)
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Figure 4.19: Frequency dependency of reciprocating amplitude and velocity vrms after
transient states (calculated every 10Hz)

First, the amplitude of reciprocating motion in periodic states is approximately propor-
tional to the inverse of frequency. This relationship occurs when the velocity is sinusoidal.

Secondly, the root mean square of velocity vrng is almost constant for small frequencies
but fluctuate in intermediate frequencies. In high frequency, the vgmg drops.”

Until now, only the frequency of the electric field are changed. Let us briefly argue the
amplitude of electric voltage dependency.

Unlike in the DC case, the relationship between the amplitude of electric voltage (or

effective voltage of alternative current Veg (= 2‘/\‘}%)) and the propelling velocity is not given

a single equation like Eq. 2.39. Therefore, the propelling velocity-related value which is
one-to-one correspondent with Vg should be clarified numerically.

Then it is found that vpmg is proportional to effective voltage Veg for the range of
frequencies from 50 to 350Hz which includes the parameters in the later experiment as
shown in Fig. 4.20, although other values such as 2xamplitude and the peak-to-peak
velocity vpp, fail to have one-to-one correspondence as depicted in Fig. 4.21.

The real transition frequency is over 1090Hz (around 1130Hz). Because the relaxation time to periodic

states become longer, the frequency range was limited here to calculate amplitude and vgms in periodic
states.



60

Chapter 4. A single Quincke roller under the AC field

700 -
600 - #
500 - ol
=
= #
€ 400+
= # *  50Hz
=
& 300 100Hz
¥ *  150Hz
*  200Hz
2001 # *  250Hz
*  300Hz
100 A 350Hz
50 90 130 170
Veff [V]

Figure 4.20: vgms is proportional to effective voltage Veg.
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4.4.4 Properties of power spectrum

In the periodic states, the polarisations and velocities include higher harmonics. Here the
power spectra of P“"(t), P,(t) and v(t) are calculated as shown in Fig. 4.22.

In periodic states, P“" only has even harmonics including the DC component, while P,
has only odd harmonics. Thus, the velocity which is determined by Eq. (4.14) only has

odd harmonics, which means no net motion in this one-dimensional dynamics.
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each frequency
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4.4.5 Method for obtaining Lyapunov exponents numerically

To check whether the dynamics go to limit cycles at all frequencies or not, the Lyapunov
exponents was calculated. Here the method for obtaining Lyapunov exponents are ex-
plained, and the result is shown in the next subsection.

To derive Lyapunov exponents, the differential equations of the polarisation Eq. (C.9)
and Eq. (C.10) were solved with the time evolution of the vectors in tangent space which
is explained in the following.

For a dynamical system & = F(x), a variation from the orbit w follows this equation:

u = (Z—Z(T%o)u (4.16)
where T satisfies x(t) = T'xq. xo is the initial state.

Here, a vector x is set to

‘2
The equation of the tangent space Eq. (4.4.5) can be written as

—1/maw — AP cosp —AF] cosg APJ P7 sin g
u = 2AP|‘|’ cos —1/mqw  Arx™wcosp + 4”(%;;1/2) sin ¢ — AP|‘|72 sing | u
0 0 0

(4.18)
v is marginally stable, so one of the Lyapunov exponent is zero. Therefore u is considered
as a two-dimensional vector from now. The vector set {e;(t)} (i = 1,2) evolve with

-1 — AP? —AP?
o ( /TMW 7 COS 7 cosp ) “. (4.19)

2AP|‘|’ COs ¢ —1/maw
where u is redefined as a 2x1 vector.

Numerical calculation of Lyapunov exponents by the Shimada-Nagashima method
The Shimada-Nagashima method is a numerical method to calculate Lyapunov exponents.

In this method, whole time length is divided into the time intervals of time length 7 (Here

7 = 27 /w). Consider the time evolution of the ordinary differential equation and the dif-
ferential equations for the tangential space which explained above. The initial orthonormal
vector can be set the orthonormal vector set {e;(0) , e2(0)}= {(1,0), (0,1)} whose choice is
arbitrary. Then the orthonormal vector set evolves from ¢ = 0 to 7. e;(7) and ex(7) might
shrink or expand with changing their directions. Then, the Gram-Schmidt orthonormali-
sation:

/ _ 61(7—)
e(r) = Tex ()] (4.20)
o _ealr) — (es(r) - &4 (r))ef ()
2(7) = lea(r) ~ (ea(r) - 4 () ey ()] (4.21)
‘

1
are performed, so that the new orthonormal set {€e}(7),e5(7)} is prepared. This is the
first step.

€2
€2
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As the second step or later (j-th step, j = 2, 3,4...), the initial state is inherited from the
final state of the step before (Pﬁ’((] —1)7),PZ((j—1)7)), but the initial orthonormal vector
set is the new orthonormal vector set {€]((j —1)7),e5((j —1)7)}. Then the state and the
new vector set evolve with time length 7. The last vector set is denoted {e;(j7),ea(j7)}
which is not orthogonal nor normal in general. This set of vectors is used for the initial
set of the next (j + 1)-th step after the Gram-Schmidt orthonormalisation.

In this way, e;(j7) is obtained, so that the Lyapunov exponents \; (A1 > Ag >...) are
calculated via

= lim —Zln”el J7)| (4.22)

n—oo NT

Practically, the exponent A can be obtained by the value -1 > j—1Inlle;(j7)| saturated
for n sufficiently large.

4.4.6 Lyapunov exponents

Here is the result for calculating the Lyapunov exponents. By introducing ¢ in Egs.
(4.12) and (4.13), one of the three Lyapunov exponents is zero by definition. Therefore,
the problem is calculating the remaining two exponents.
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Figure 4.23: Lyapunov exponents [s™] (Veg = 150V, calculated every 10Hz.)

The result for Veg = 150V (Eg = 7.07 x 10V /m) is shown in Fig. 4.23, where
A1,2 are the Lyapunov exponents (A; > Ag) except for zero.The maximum value of A; is
approximately -7.3 which is still negative. In summary, the state collapse to limit cycle
overall frequencies including the states with no motion in the high frequency region.

Furthermore, the amplitude dependency of the electric field is also investigated and
presented in Fig. 4.24. In this voltage range, the Lyapunov exponents A; 2 are all negative,
which means that all states are periodic.
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4.4.7 Brief summary of the numerical results of the generalised model

The dynamics of (P‘("(t), P?(t)) was obtained by the generalisation from the DC to the
AC field. In each parameter of the voltages, it goes to the periodic state with the external
frequency independent on the initial value with the exception of the sign of P. P”U(t)
and PZ(t) have even and odd harmonics, so the velocity has only odd harmonics. The
velocity also becomes periodic so that the reciprocating motion occurs. As the frequency
f increases and gets close to ~ 1/7yw, the amplitude of the reciprocating motion decrease
as 1/f. By calculating the Lyapunov exponents, it was found that the system is the limit

cycle which physically means the reciprocating motion in any frequencies we investigated.
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4.5 Discussion: Comparison of the experimental results and
the numerical results

In this section, the experimental results appeared in Sections 4.1 and 4.2 and the model
and the numerical results appeared in Sections 4.3 and 4.4 are compared and discussed.
Note that in the model, only one-dimensional motion is considered.

Though the experimental velocity was noisy, both the velocities obtained experimen-
tally and numerically have the periodicity of the external frequency f. The odd high
harmonics appeared only in numerical results. Because the peaks at high harmonics are
more than ten times smaller than that at f, it is considered that the high harmonics
buried in noise. The peaks in the low frequencies in (b) of Fig. 4.4 did not appear in the
numerical result. The differences in the low frequency peaks of the two particles apart
and non-clustered (See (b) of Fig. 4.9) indicate that this low frequency peaks are not due
to a global vibration.

How can the low frequency (0-10Hz) peaks arise in principle? Is the surface viscosity
related with? In Section 4.3, the translation velocity is expressed as

u(t) = —ﬂaﬂtEo cos(wt) Py (1),
€0

which already appeared in Eq. (4.14). Theoretically, Eycos(wt)P(t) includes only odd
peaks. To have 0 f :=0-10 Hz peaks in v(t), iy should include peaks at f + 0 f (~ 300-310
Hz). If the f + df signal is assumed, v(¢t) must include also (f +3f)+ f = 2f + 0 f peaks.
However it was not observed. This means that the time dependency of fi; (due to possible
effects by vibration and surface friction) was NOT the reason for the low frequency peaks.
The possible reasons for the low frequency peaks are follows: First, the reciprocating
motion is physically asymmetric, because the the horizontal polarisation P do not alter
its sign while the velocity do. There is a possibility to exist other unincorporated effect by
this asymmetry. Secondly, the single particle was not completely isolated; it is possible to
deviate by interactions with other particles away from it. By the later results in Chapter 5,
the electrostatic interaction between the single particle and others seems to be negligible,
because the single particle had no even peak. In contrast, the hydrodynamic interaction
can affect to the single-particle motion. In fact, the slow time scale corresponding to the
low frequency peaks is comparable to the time scale of interparticle distance changes of
the clusters as shown later in Chapter 5.

As for the rotational diffusion, the time scale was D, 1 ~0.03s in the experiment. The
coefficient can be approximated from neither the one-dimensional model nor theory. The
propelling axis is determined by the first moment of the surface charge distribution, so
that the direction can be changed easily by the fluctuation of the distribution. This can
be also affected by the shape of particles which is assumed to be spheres. Remind that the
time scale of the angular changes for the DC rollers was 0.3 seconds in the literature [8]
which used the particle of the similar material and the radius. It might be considered that
the big difference in Dy came from the difference in velocities.

To discuss the results of the MSD, a two-dimensional model is required. Thus a simple
model is proposed in the next subsection.

4.5.1 A simple model for a roller reciprocating

Let us simplify the velocity of the Quincke roller under the AC field. To explore the
possibility of the origin of the peaks in the low frequencies in (b) of Fig. 4.4, the existence of
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a DC component of velocity is tentatively assumed. Consider a particle driven periodically
with the DC component and with a translational diffusion and a rotational diffusion noise.
Let « and 6 be the position and the propelling axis. The equations follows

& = v(t)n(t) +n(t) (4.23)

0 = \/2DgE(t). (4.24)
Here, n(t) = (cosf(t),sinf(t)) is the propelling direction vector. The noises are white

gaussian: (1;(t)n;(t')) = 2D6(t —t')dij, (ni(t)) = 0, (€(H)E(t')) = 6(t — '), and (£(t)) =0
for arbitrary ¢,¢. Here let us assume velocity v(t) to be sinusoidal with a DC element:
v(t) = v + vy coswt.

4.5.2 The velocity autocorrelation of the simple model in Subsection
4.5.1

Velocity autocorrelation is calculated as follows.

(v(t1) - v(t2)) = v(t)o(t2)(n(t1) - n(t2)) +2D(t1 — t2)
= w(t1)v(te){cosO(t1) cosO(ta) + sin@(t1) sinO(t2)) + 4D (t1 — t2)
= wv(t1)v(tz){cos(0(t1) — 0(t2))) +4D5(ty — to)
= v(t1)v(t2){cos(A¢ —1,0)) +4D6(t1 — ta), (4.25)

where the average (...) means ensemble average. (cos(A.0)) is angle deviation during
time length 7. The probablhty which holds A0 = 0 is defined P(0, 1), and its character-
istic function is ¢(s,t) := [*_dOP(0,t)e i0s — ¢=Dos’t For 7> 0,

(cos(AL0)) = /P(G,T)COSQdH

¢(17 T) + ¢(_17 T)
2
= e Dom, (4.26)

Therefore, with the exception of the translation diffusion, the velocity autocorrelation is
calculated as

(v(t1) - v(t2))
= o(t)v(ta)e Dottt
= [U(Q) + vy {cos(wty) + cos(wtz)} + v cos(wty) cos(wtz)] e~ Polti=tal (4 97)

which cannot be expressed as a function of (¢; — t2). That is to say, (v(t1) - v(t2)) #
(v(t1 = 12) - v(0)).

Furthermore, the period-averaged velocity autocorrelation C(7) obtained by the aver-
age over a period for ¢ of (v(t) - v(t+ 7)) (7 > 0) (denoted by an overline) is

C(r) = (v(t) - v(t+71)) = (U(Q] + v¥cos(wt) cos(w(t + 7'))) e Dor

2
= (vg + %(Cos(Zwt +wT) + COS(WT))) e~ Dom

2
= (v% + %1 cos(cw)) e Dot (4.28)
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The correlations Eq. (4.28) is displayed in Fig. 4.25, when DC: (vg,v1) = (100,0),
oscillation: (vg,v1) = (0,100), and DC+oscillation: (vg,v1) = (100,100). (The unit for
velocity is pm/s.) In the DC regime, the correlation is an exponential decay, and a damped
oscillation in the oscillation regime. In the DC+oscillation regime, it is also the damped
oscillation biased by the DC element.
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Figure 4.25: (Periodically averaged) velocity time correlation C(7). (Dp=25s"1, w/2m =
300Hz)

Practically, velocity autocorrelation calculated from experimental data for time series
length 7 is

1 ty—7
VelCor(7;ty) = P / (v(t) -v(t+71)) (4.29)
F=7Jo
2 . .
vg sin(2wt — wr) — sinwr _Dgr
_ % 4.
5 ( 2olt; —7) + coswr)e : (4.30)

which is deviated from Eq. (4.28), but it is a damped oscillation similarly.

Comparison to the experiment The correlation is strongly dependent on the veloc-
ity’s function form generally, it is not suitable to compare the experimental data in Fig.
4.10 directly. Instead of that, the decay rate for the periodic points can be compared to
that estimated from Fig. 4.11: Dy ~ 3 x 10%s71.
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4.5.3 The power spectrum of velocity of the simple model in Subsection
4.5.1

The power spectrum of the velocity time series is calculated by Fourier transformation of
the velocity autocorrelation (v(t)-v(t+7)) generally. In this periodic model, (v(t)-v(t+7))
cannot be expressed as a function of only 7, so periodically averaged velocity correlation
C(7) Eq. (4.28) is used for obtaining the following power spectra. (If v; = 0, it corresponds
(v(t) - v(t+71)).) A

The power spectrum of the velocity C(€2) at the external angular frequency w is

R 2Dy v? 2Dy 2Dy
QO 2 1
c@) (D§+(w+§z)2+D§+(w—Q)2>’

:vngJrQ?Jr 4

(4.31)

when the translational diffusion is neglected. The power spectrums are illustrated in Fig.
4.26, when DC: (vg,v1) = (100,0), oscillation: (vg,v1) = (0,100), and DC+oscillation:
(vo,v1) = (100,100). (The unit for velocity is pm/s.) As understood from Eq. (4.31), the

800 —— DC
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* DC+oscillation
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100 -
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frequency [Hz]

Figure 4.26: Power spectrum of velocity C/(Q). (Dy=25s"", w/2r = 300Hz)

peak ratio of the DC element to w is approximated by
C(0) _ 4v}

G = (4.32)

because the each tail is negligible. Therefore, the peaks at 0Hz and the external frequency
w are determined by vy and v;. Until now, the translational diffusion has been neglected.
If there is a translational diffusion, the constant value 4D is added to the spectrum.

Furthermore, the vy and Dy dependencies are visualised in Fig. 4.27. The left figure
in Fig. 4.27 shows that the DC element of velocity vy determined the zero component of
the spectrum. The right figure in Fig. 4.27 depicts that the peak width at w originates
from Dy.

For the information, the velocity autocorrelation C() and the power spectrum C/(€2)
in the simple model is summarised in Table 4.1.
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Figure 4.27: Power spectrum of velocity C(Q) (w/2m = 300Hz). left: Dy = 255!, right:
(vo,v1) = (10, 100) [m/s])

Table 4.1: Velocity autocorrelation C(7) and power spectrum C(€2) in the simple model

Brownian” constant self-prop. oscillation
with rot. diff. with rot. diff.
v(t) 0 Vo vy cos wt
2
C(7) Amd(T) vge~Doll %L coswre Dol
A 2 2Dy vl 2Dy 2Dy
Q) 4D Y0 pzraz 1 (D§+(w+9)2 + D§+(w—Q)2>
constant and sinusoidal self-prop.
v(t) vo + v1 coswt
2, v —Dg|7|
C(1) vg + 5 cos(wT) ) e” 70

2 2D, vl 2Dy 2Dy
C) voprme + 1 (i T reo?
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Comparison to the experiment Based on this model, let us reconsider the experi-
mental power spectrum in Fig. 4.5. First, the constant value in the spectrum by the DC
element is smaller than the baseline of the spectrum. The peak at f naturally comes from
the sinusoidal velocity. The peaks at small frequencies in (b) of Fig. 4.4 are all at smaller
than 7.5 Hz, so they can be in the tail of the DC peak whose peak width ~ Dy (~ 30H z).
Though it cannot be concluded that the small-frequency peaks experimentally observed
originated from the DC components of velocity, it is a possible reason. In this case, the
DC peak appears 4 times larger than the peak at f (Eq. (4.32)), so vg is smaller than
v/ (the maximum value of the peaks) /4 ~ 10pum/s.




74 Chapter 4. A single Quincke roller under the AC field

4.5.4 The Mean Square Displacement of the simple model in Subsection
4.5.1

The mean square displacement is defined as MSD(7;t) = ((x(t + 1) — «(t))?). Let us
consider the MSD of the simple model in Subsection 4.5.1. By using the result Eq. (4.27),

MSD(7;t)
t+1 t+1
/ dt, / dta(v(t1) - v(t2))
= MSD®(7;1) + MSD! (73 1) + MSD' (r; £) +- MSD("*) (7 ¢) (4.33)

Here, MSD™" means the part of MSD which came from the products of n-th and m-th
component of velocity. MSD(ta%8) ig the term from the translation diffusion.

MSDWans) (7 ¢) = 4Dr (4.34)
00 208 . _Dyr
MSD™(7;t) = D2 (e — 1+ Dyr) (4.35)
MSD% (7;¢)
t+7 t+1
= / dt; / dtavovy (cos(wty) + cos(wty))e Poltr—t2l (4.36)
t t
2 2D} 4 w?
= DQU:)_ULQ [ i");—dw (sinw(t+ 1) —sinwt) — (coswt + cosw(t + 7))
0
+e Dot {(cos wt +cosw(t+ 7)) — Di(sinw(t +7) —sin wt)}] (4.37)
0
MSDM (7;¢)
t+7 t+1
= / dtq / dtgvg cos(wty) cos(wty)ePolti—tel (4.38)
t t
— 2 [ Dy De
' D2+ w2 (D2 + w?)?
26—D97’
+m(Dg coswt + wsinwt)(Dg cos(w(t + 7)) — wsin(w(t + 7)))
0

1
_W { Dy sin 2wt + w cos 2wt + w cos(2w(t + 7)) — Dy sin(2w(t + 7))}

(4.39)

For a fixed t, it contains the linear term, decaying oscillation (with w) and 2w oscilla-
tion.

Consider the periodically averaged MSD in the same way as Eq. (4.28).

periodic average of MSD (; 7) for ¢:

MSDP(7) = MSDY(7; 1) (4.40)
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MSDY (1) =0 (4.41)

Because the second column of Eq. (4.39) is transformed as

2e~Pom [ D2 9
i 7(cos(2wt + wT) + coswT) — Dyw sin wr — w?(coswr — cos(2wt + wT))} ,
[4

(4.42)
the periodic average of MSD (¢; ) for ¢ is
—T D9 wQ _ D2
MSD! = 2 b
(7) T DEre?” * (DZ + w?)?
e—DQT
+W((D§ — w2) cos wT — 2Dgw sin wr)] .

It includes linear term and damped oscillation with w. Therefore, the periodic average of
MSD which is naturally obtained from experimental data is

MSD(r) — 2% Dot _
MSD(r) = 5 (e 1+ DyT)
D9
Dy w? — Dg
2 5T+ 2 212
Dj +w (Dj + w?)
e—De’T

—i—v%
+W((D§ - wz) cos wT — 2Dgw sin wt)
+4DTt (4.44)
In the short-time limit (7 — 0), MSD is
2

MSD(r) ~ 4D7 + (v2 + %)72 +O(r). (4.45)

It indicates the diffusive part originates only from translational diffusion.
On the contrary, the long-time limit (7 — oo), MSD is

Msnmz(vww?—Dz) 2v8> (zva<Dz+w2>+v%D3

(D D; e LI
which consists of a constant and a proportional term of 7.

The theoretical MSD and the exponent are illustrated in Figs. 4.28 and 4.29. The
MSD deviates from the Brownian by increasing v; and clearly includes the oscillatory
feature. In the short-time limit, the exponent varies from 1 by enhancing the oscillation.
The periodicity in the exponent is observed. By increasing the oscillatory component vy,
the exponent can be larger than 2 or smaller than 0. The comparison of the green and
red line in the left of Fig. 4.29 shows the difference in vy which changes the averaged line
of the periodic change. In the long-time limit, the exponent goes to 1 in all cases.

Comparison to the experiment Let us compare the MSD of the model to that of the
experiment in Figs. 4.12 and 4.13. The MSD of the simple model cannot fit perfectly to
that of the experiment by multi-parameter fitting, so let us discuss by extract the feature
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Figure 4.28: Theoretical MSD of the simple reciprocating model (Dy = 30s™!, D =
2um? /s, 300Hz)
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Figure 4.29: Theoretical exponent of the MSD in the model (Dy = 30s™!, D = 2um?/s,
300Hz)
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of both MSDs. The diffusivity in the short-time limit is due to the translational diffusion,
although it can deviate from 1 by increasing the oscillation theoretically. The periodicity
of the exponents come from the velocity’s periodicity observed in both experimentally
and theoretically. Though the exponent of the experiment cannot be reproduced, the
superballistic behaviour is possible for the large oscillation regime. The averaged line of
the periodic change in experimental exponents grows until about 7 periods and then decay,
which is similar to the plots for the large DC velocity vy = 100um/s. It suggests that the
model with the DC element is more suitable to understand the experimental MSD, which
the tentative assumption of the DC element was adopted in Subsection 4.5.1.
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4.6 Summary on the single particle dynamics

In this chapter, the single-particle motion of the Quincke roller under the AC field was
investigated experimentally and theoretically. The particle reciprocates at the frequency of
the external field experimentally and theoretically, but the experiment included with noisy
components especially in high frequencies. In addition, the small peaks at low frequencies
were observed only in the experiment. In place of the one-dimensional theory, the simple
model which has the velocity with a DC and a sinusoidal component was introduced. It
showed that the theory with a non-zero DC component matched with the experimental
results better than the model without a DC component in terms of the exponent of the
MSD. The exponent of the MSD grows periodically from diffusive and reaches a peak
which is superballistic then decreases, which appeared experimentally and theoretically
though the exponents do not correspond quantitatively.
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Chapter 5

Dynamic clustering of the Quincke
rollers under the AC field

The dynamics of the single Quincke roller under the AC field was discussed in the previous
chapter basically. In Section 4.1, the dynamic clustering of the Quincke rollers under the
AC field in the experiment was introduced. In this chapter, the analysis of the dynamic
clustering is reported focusing on the doublet and triplet intensively. Each cluster is 100um
away from other particles at least. Although the isolation of clusters is not complete, there
is no particle existing at the comparable distance to the interparticle distances inside a
cluster. In that sense, it is reasonable to analyse only clustering particles: a doublet and
a triplet in the following.

5.1 Experimental Results: typical dynamics of a doublet

The data captured by the high magnification (x40) and at the high capture rate 3000fps
is analysed here to investigate the dynamics comparison to the single reciprocation. The
voltage was fixed at Vg = 150V and 300Hz the same as Section 4.2. It should be remarked
that the low magnification (x10) like Fig. 4.1 did not capture the reciprocating motion
even with the high fps.

Let us focus on a doublet in a dilute suspension.

5.1.1 Typical trajectories and velocities

The trajectories of a doublet for long-time range is shown in Fig. 5.1. The trajectories
are similar to that of the non-clustering particle in Section 4.2. Also, they keep the
interparticle distance within some range even over 1091 periods.

To see the typical changes in the position and velocity, positional change(t) and
velocity(t) for a short-time range are shown in (a) and (b) of Fig. 5.2. z;,y; mean
the x,y-coordinate of i-th particle’s position (i = 1,2), and vj,, v4y is the x,y-coordinate of
the velocity of i-th particle.

The root mean square velocity was vpms =~ 1/v%(t) ~ 4 x 10%um/s for the both
particles. The time average is taken for 3.639 seconds (~1091 periods).
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Figure 5.1: Trajectories of a doublet for 3.639 s (300Hz, 150Vg). The black dots are the
initial positions.
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Figure 5.2: Positional and velocity changes of particle 1 and 2 of the doublet (300Hz,
150V gr)
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5.1.2 Power spectra of the velocities

First, to clarify the properties of the velocities, the power spectra are calculated along
both z,y-axis and shown in Fig. 5.3 which are denoted as S, Sonyony (N =1,2).1
There is the peak at the external frequency f in the both spectra similarly to the single-
particle case. They have also the small peak at the third harmonic, which was expected
by the result on the single-particle model in Section 4.4. However, they also have the
second harmonic in both spectra, which does not appear in the single-particle theory. It

is considered due to the dipolar-dipolar interaction.
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Figure 5.3: Power spectra of vi;(t),viy(t) of the particle i = 1,2 of the doublet (300Hz,
150V ogr)

To average the heterogeneity in x,y, "the velocity amplitude” which is the square root
of the sum of normalised power in Fig. 5.3 is depicted in Fig. 5.4. This shows the two
particles of the doublet behave equally.
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Figure 5.4: Velocity amplitude of particle 1 and 2 of the doublet (300Hz, 150V )

!The accuracy of the frequency axis ~0.3Hz.
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Next, the close view in the low frequency region of Fig. 5.3 is illustrated in Fig. 5.5.
As was observed in the single-particle case in Section 4.2, the small peaks are observed in
the low frequency region (<10Hz).
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Figure 5.5: The close view in the low frequency region of Fig. 5.3

Then the power spectra of the speed time series |v;(t)| (i = 1,2) are shown in Fig. 5.6.
Unlike the single-particle case, the small peaks at f and 2f are observed, which means
the speed periodicity. However, the ratio of the peak and the baseline is ~ 10 which is
much smaller than that in the velocity power spectrum ~ 103. Thus, the periodicity of
the speed is much weaker than that of the directional change.
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Figure 5.6: Power spectra of |v;(t)| of particle i = 1,2 of the doublet (300Hz, 150V )
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To show the reciprocating tendency more directly, the angle change after a half period
Af is shown in Fig. 5.7 similarly to the single-particle case in Fig. 4.8. The typical angle
change A6 = 7, which means that the directional reversal tend to occur. The persistent
indices (cos Af) are approximately -0.6 and -0.7 respectively, which are closer to perfect
reversal than the single-particle system.
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Figure 5.7: Histograms of angle changes after a half period for the doublet (300Hz, 150V o)
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Figure 5.8: (a)(b)(c) Velocity autocorrelations v;(t + 7) - v;(t) of each particle in three
doublets. (d) Long-time behaviour of the correlation plotted only for integer multiples of
the period 7 = nT (300Hz, 150V)

5.1.3 Estimation of the effective rotational diffusion coefficient D,

Similarly to the single-particle case, the velocity autocorrelations v;(t + 7) - v;(t) of parti-
cle i = 1,2 are calculated and shown in Fig. 5.8. (a), (b) and (c) are the autocorrelations
of three doublets: the doublet 1, doublet 2 and doublet 3. In all samples, the correla-
tions of the particle 1 and 2 similarly decay and oscillate at the period of the external
frequency, which is shown by the red and blue dots. Comparing to the correlation of the
single-particle in Fig. 4.10, the oscillation of the doublet is clearer. The correlation at
7 =nT (n = 1,2,...) is positive for small n, but that at 7 = nT for large n can be
negative, as understood by the reversal of the reciprocating axis.

(d) of Fig. 5.8 shows the correlation at only integer multiples of the period of each
particle in the three samples. The long-time (~ 0.1s) periodic structure is observed in
the correlations, which did not appear in the single-particle correlation in Fig. 4.11.
To estimate the rotational diffusion coefficient Dy, the autocorrelation averaged over six
correlations is plotted in Fig. 5.9. To show in the semilog plot, the absolute values were
taken. The fast decay rate in less than 0.08s is obtained Dy ~ 6 x 10%s™1 (D(;1 ~0.02s).
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doublets (plotted only for 7 = nT") (300Hz, 150V )



86 Chapter 5. Dynamic clustering of the Quincke rollers under the AC field

5.1.4 Configuration of the doublet and Two-particle correlation

In this subsection, the configurational change and correlation between two particles that
consist of a doublet are discussed. Consider the situation which is illustrated in Fig. 5.10.

Figure 5.10: Notation for the configuration of particle 1 and 2 of a doublet

Let x;, v; and 60; are the position, velocity and propulsion angle of i-th particle. The
relative position vector is defined as @91 = @9 — @7.

Configuration (a) and (b) of Fig. 5.11 shows the time series of the distance between
two particles in the doublet |91 (¢)| and the power spectrum of the time-average subtracted
distance. The interparticle distance varies within 7 ~ 20um, where the minimum distance
physically possible is 5um which means the contact. The time average of the interparticle
distance is 12.24+3.3um. The other particles away from the doublet were located at the
distances ~ 100um. Thus, the interparticle distance of the doublet is sufficiently smaller
than the distance to other particles. Since the dipole-dipole interaction and the hydro-
dynamic interaction are proportional to 1/r3 and 1/r? (See Eqs. (2.53) and (2.54).), the
hydrodynamic interaction with the particles outside the cluster is more likely to affect the
motion of the doublet, yet it is not larger than the interaction inside the cluster.

As for the power spectrum, there are peaks around ~1Hz. The time scale of the largest
peak is 0.4s, which is the long-time changes seen in the time series (a). The inset figure
shows the smaller peaks at f and high harmonics, which indicates the periodicity of the
interparticle distance.

Next, the angle between the relative position vector x2;(t) and the positive direction
of x-axis is shown in (c) of Fig. 5.11. The power spectrum of the time-average subtracted
angle is also presented in (d) of Fig. 5.11. The angle changes slowly (approximately
same time scale as the changes of the interparticle distance) in accompany with the small
periodic variation at f.
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Figure 5.11: Configuration change of the doublet (300Hz, 150V )
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V21 = V2 — V1

(a) Configuration in the rotating frame (b) Configuration in the moving frame
keeping direction of particle 1 to the x-axis with particle 1
positive

Figure 5.12: Notation for the configuration of particle 1 and 2 of a doublet

Pair correlation To elucidate the effect of interactions, the two-particle correlation is
computed. Let us consider the following two coordinate systems. One is the rotating
frame keeping the direction of the particle 1 to the x-axis positive and the position of the
particle 1 is set as the origin. ((a) of Fig. 5.12) The other is the moving frame with the
1st particle. ((b) of Fig. 5.12)

In the rotating frame, the velocity of i-th particle is changed to v} = R(—0;)v;, where
R(0) is the 2x2 rotation matrix of the rotation angle 6. The relative angle is 69 = 0 — 0.
The relative position of the second particle follows

' = R(=01)(x2 — x1). (5.1)

In the moving frame, the second particle at @21 simply moves with the relative velocity
Vo1 = Vg — V7.

First let us see the density correlation. The probability density existing the second
particle at 7’ in the rotating frame P(7’) corresponds the positional pair correlation func-
tion up to the normalisation. The (a) of Fig. 5.13 shows the result. Though the particle
exists isotropically at the typical distance ~ 12um, the propensity to exist the front and
back is more frequent. Here the positive direction of x-axis is called ”front”.
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Figure 5.13: (a)Probability density and (b) Probable propulsion angle of the second par-
ticle in the rotating frame (The particle 1 always propels positive direction of x-axis.)
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Secondly, let us calculate the correlation of the propulsion directions. Although the
correlation is the time average of cosfs; at every points r’ over the whole time series in
the rotating frame, the time average of 697 is used for indicating the most probable angle
of the particle 2. Here let ©(7’) be the most probable angle at 7/, and it is shown in (b)
of Fig. 5.13. It indicates that the particle 2 front tends to align the propelling direction,
while the particle 2 at the right/left of the particle 1 tends to move diagonally backward
right /left.

On the other hand, Fig. 5.14 shows the trajectory of the particle 2 in the moving
frame with particle 1, that is @91 (). The trajectory does not cover the surrounding area
isotropically.

15 1

10 1

ylum]

—10

Figure 5.14: The trajectory of the particle 2 in the moving frame with particle 1 xo; ().
The black star is the fixed position of the particle 1.
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5.1.5 Mean square displacement

Similarly to the single-particle case, the mean square displacement (MSD) is calculated
and shown in Fig. 5.15. As the figure shows, the two particles of the doublet behave
equally. The exponent of the MSD is shown in Fig. 5.16. The left and right figure show
the long-time and short-time behaviour of the exponent 3(7) calculated by Eq. (4.1).
There is a peak around 5 periods with the superballistic values that the single-particle
MSD also had. The periodicity of the exponent in the short-time region shown in the
right figure of Fig. 5.15 is observed similarly to the single-particle case.

1054 @ particlel
1 @ nparticle2
104 E
103
E 1024
a ]
‘£ 10! 3
10°
] °
1071 4 ®
®
10_2_: '."""l T T T T T T T T AL |
1073 1072 1071 100

time [s]

Figure 5.15: MSDs of each particle consists a doublet for AC 300Hz, 150Veg. (Time is
until one forth of whole time series. 1 error bar = 1 standard error.)
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Figure 5.16: The exponent 3(7) of MSD(7)x 77 for AC 300Hz, 150Vg. left: long-time
behaviour, right: short-time behaviour
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Because the two particles move similarly, the MSD of the c.o.m. (centre of mass) of
the doublet is worth calculating. The MSDs of three doublets under the same voltage
is shown in Fig. 5.17, and the exponents of the MSDs is presented in Fig. 5.18. The
long-time behaviours (>0.2 seconds) differ in the samples, but the short-time is similar:
The periodicity of the exponents and the peak of the exponent around 5 periods appear.
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Figure 5.17: MSDs of the c.o.m.’s of three doublets (AC 300Hz, 150Vg). (Time is until
one forth of whole time series.)
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Figure 5.18: The exponent 3(7) of MSD(7)x 77 for AC 300Hz, 150Vg. left: long time
behaviour, right: short time behaviour
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5.2 Experimental Results: typical dynamics of a triplet

In this section, the motion of a triplet which appeared in Section 4.1 is investigated.

5.2.1 Typical trajectories and velocities

The data captured by the high magnification (x40) and at the high capture rate 3000fps
is analysed here to investigate the dynamics comparison to the single reciprocation. The
voltage was fixed at Veg = 150V and 300Hz the same as Section 4.2.

The trajectories of a triplet for long-time range is shown in Fig. 5.19. More accurately,
the Particle 1 approached to the particle 2 and 3, and they make the triplet which keep
the triplet over 500 periods.
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Figure 5.19: Trajectories of a doublet for 3.639 s (300Hz, 150Vg). The black dots are the
initial positions.

To see the typical changes in the position and velocity, position(t) and velocity(t) for
a short-time range are shown in (a) and (b) of Fig. 5.20 by extracting the first 10 periods
from the whole time series 3.639s. x;,y; mean the x,y-coordinate of i-th particle’s position
(i = 1,2,3), and vz, vy is the x,y-coordinate of the velocity of i-th particle. Seeing the
positional change (a) of Fig. 5.20, the reciprocation is clearer than those of the single-
particle and the doublet, yet it is not obvious. The reciprocation of the particle 1 is not
so clear compared to those of the particle 2 and 3, which seems to stem from the longer
interparticle distance.

Moreover, the periodicity of the velocities is clearer than those of the single-particle

and the doublet. The root mean square velocity was vrms =~ \/v2(t) ~ 3 x 102um/s for
all particles. The time average is taken for 3.639 seconds (~1091 periods).
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Figure 5.20: Positional and velocity changes of the particle 1, 2 and 3 of the triplet (300Hz,
150V ogr)
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5.2.2 Power spectra of the velocities of the triplet

First, to clarify the properties of the velocities, the power spectra are calculated along
both z, y-axis and shown in Fig. 5.21.2 There is the peak at the external frequency f in
the both spectra similarly to the single-particle case. They have also the small peaks at
the second and third and probably fourth harmonics. The odd harmonics was expected
by the result on the single-particle model in Section 4.4. The even harmonics is considered
to originate from the electrostatic interaction.
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Figure 5.21: Power spectra of velocity(t) of the particle 1, 2 and 3 of the triplet and their
close view in low frequency (300Hz, 150V )

To average the heterogeneity in z,y, the velocity amplitude is depicted in (a) of Fig.
5.22. This shows the three particles of the triplet behave similarly. Next, the close view
in the low frequency region of (a) of Fig. 5.22 is illustrated in (b) of Fig. 5.22. As was
observed in the single-particle and doublet cases in Sections 4.2 and 5.1, the small peaks
are observed in the low frequency region (<10Hz).

Then the power spectra of the speed |v;(t)| (i = 1,2, 3) are shown in Fig. 5.23. Unlike
the single-particle case, the small peaks at f, 2f, 3f and 4f are observed, which means
the speed periodicity. The periodicity of the speed is clearer than that of a doublet.

2The accuracy of the frequency axis ~0.3Hz.
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Figure 5.22: Velocity amplitudes of the particle 1, 2 and 3 of the triplet (300Hz, 150V )
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Figure 5.23: Power spectra of |v;(t)| of particle i = 1,2, 3 of the triplet (300Hz, 150V o)

To show the reciprocating tendency more directly, the angle change after a half period
A0 is shown in Fig. 5.24 similarly to the single-particle case in Fig. 4.8. The typical angle
change Af = 7, which means that the directional reversal tend to occur. The directional
changes tend to be 7, which means the directional reversal. The persistent indices (cos Af)
of the particle 1, 2 and 3 are approximately -0.4, -0.8, -0.8 respectively.
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Figure 5.24: Histograms of angle changes after a half period for the triplet (300Hz, 150V )
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5.2.3 Estimation of the effective rotational diffusion coefficient D,

Similarly to the single-particle and doublet cases, the velocity autocorrelations of particle
1, 2 and 3 of the doublet are calculated and shown in Fig. 5.25. They similarly decay
with oscillation at the period of the external frequency. As is the case of the doublet, the
correlation at 7 = nT (n =1,2,...) is positive for small n, but that at 7 = nT for large
n can be negative. It is because the oscillatory axis is inverted by the rotational diffusion.
The long-time behaviours of the correlation at 7 = nT shown in (a) of Fig. 5.26 have
the long-time periodic structure similarly seen in Fig. 5.9, which is characteristic in the
clustering. The absolute value of the average correlation over three particles is presented
in (b) of Fig. 5.26. The fast decay rate obtained by the fitting to a exponential® is obtained
Dy~ 5 x 10%7 (D, ! ~0.02s).
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Figure 5.25: Velocity autocorrelations v;(t + 7) - v;(t) of particle 1, 2 and 3 of the triplet
(300Hz, 150Veg) The correlation at integer multiples of the period 7 = nT' only for the
particle 3 is plotted by the yellow dots.

3The time less than 0.04s is used



98 Chapter 5. Dynamic clustering of the Quincke rollers under the AC field

1.0 ® particle 1 10°

4 ® periodic points
® particle 2
10-1 4
[ ]
F [
hd " M

0.8 ® particle 3
1072 4

0.6

0.2

10-3 4
0.0

Velocity autocorrelation (normalised)
o
IS

Velocity autocorrelation (normalised)

—02 1074
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time [s] time [s]

(a) Velocity autocorrelations of the triplet (b) Averaged velocity autocorrelation over the triplet
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5.2.4 Configuration and Pair correlation of the triplet

In this subsection, the configurational change and pair correlation of the triplet are dis-
cussed.

Configuration Consider the situation which is illustrated in Fig. 5.27 with inner angles
a1, ag and ag of the triangle.

C OF

Figure 5.27: Notation for the configuration of the particle 1, 2 and 3 of a triplet

(a) and (b) of Fig. 5.28 shows the time series of the distances between two particles in
the triplet |z;;(t)| and the power spectra of the time-average subtracted distances. The
distances change gradually with the long time scale 0.4s and the smaller periodicity which
the inset figure shows.

Similarly to the doublet case, the other particles away from the doublet were located
at the distances ~ 100um. The interparticle distances of the triplet is smaller than the
distance to other particles outside the triplet. In this triplet, one particle was away from
the other two particles at first. Here we consider the triplet was formed after the all
interparticle distances became comparable (¢t > 1.5s). The typical interparticle distance
is ~ 30pm. Comparing to the doublet analysed in the above section, the effect by the
interaction with the particles outside the cluster became larger, yet it is not dominant
compared to the interaction inside the cluster. Next, the angles of the relative position
vector x;;(t) and its power spectrum are presented in (c) and (d) of Fig. 5.28. The angles
do not alter so much during this time length but they change in accompany with the small
periodic variation at f.

The changes of the inner angle «; of the triangle are calculated and shown in (e) of
Fig. 5.28. The value d which characterises the ”distance” from an equilateral triangle are
calculated as

1 T
— - . )2
0=1l3 Z(az 5) (5.2)
=1
which shown in (f) of Fig. 5.28. § = 0 means an equilateral triangle. Obtuse triangles
have § > m/6 ~ 0.523, so the triplet makes an obtuse triangle configuration for almost all
the times of observation.
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Figure 5.28: Configuration change of the triplet (300Hz, 150V )
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Pair correlation To elucidate the effect of interactions, the pair correlation is computed
in the same way as in Subsection 5.1.4.

First, the behaviours of the particle 2, 3 and 1 in the moving frame of the particle 1,
2, and 3 respectively appear in Fig. 5.29 .
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Figure 5.29: Trajectories of the relative vectors xo1, 32 and x13 for 3.639s superimposed.
The black star is the origin. (300Hz, 150V )

On the other hand, let us consider the rotating frame introduced in Subsection 5.1.4.
The probability density existing the second particle at 7’ in the rotating frame of the first
particle is P(r’). Each combination of the probability densities is shown in (a), (¢) and (e)
of Fig. 5.30, using the time series after 1.700s out of 3.639s. Though the second particle
exists isotropically to the front of the first particle, the three particles are not equivalent.
It is considered because the observation time was limited.

Secondly, let us calculate the correlation of the propulsion directions. The most prob-
able angles of the particle 2 to the particle 1 are shown in (b), (d) and (f) of Fig. 5.30,
using the time series after 1.700s out of 3.639s in which the distances are kept smaller
than 50um. It indicates that the particle 2 at the front of the particle 1 tends to align
the propelling direction, while the particle at the right/left of the particle 1 tends to move
diagonally backward right/left assuming the propelling direction of the particle 1 to be
front. However, the particle 3 at the left of the particle 2 tends to align the propelling
direction, while the particle 3 at the right tends to move to the opposite direction. More-
over, the particle 1 at the diagonally backward right of the particle 2 tends to align the
propelling direction, while the particle at the diagonally forward left tends to move to the
opposite direction.

In principle, the correlation of the propulsion directions should be symmetric with
respect to the x-axis as was observed in (b) of Fig. 5.13, when the two-body interaction
is assumed. In (b), (d) and (f) of Fig. 5.30, they clearly break the symmetry to x-axis,
which is considered to be the result by the three-body interaction.
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5.2.5 Mean square displacement

Similarly to the single-particle and doublet cases, the mean square displacement (MSD)
is calculated and shown in Fig. 5.31.

As the figure shows, the three particles of the triplet behave equivalently for the small-
time interval. The exponent of the MSD of Fig. 5.31 is shown in Fig. 5.32. The left
and right figure show the long-time and short-time behaviour of the exponent. There is
a peak around 5 periods with the superballistic values that the single-particle MSD also
had. The periodicity of the exponent in the short-time region shown in the right figure of
Fig. 5.32 is observed similarly to the single-particle and doublet cases.
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Figure 5.31: MSDs of each particle consists a doublet for AC 300Hz, 150V og.
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5.3 Discussion about the dynamic clustering

In the above two section, the experimental results of the dynamic clustering were described.
However, it is not known that why the dynamic clustering happens. The interaction of
the Quincke roller under the DC field calculated by Bricard et al. [8] was explained in
Subsection 2.3.2. They only considered the propulsion angle change by interaction. In
their DC case, there is an isotropic repulsion so that they do not make any clusters.
Similarly to the DC case, suppose only the angle change of the propulsion is caused by the
electrostatic interaction in the AC case. The P, of Eq. (2.53) is changed from the constant
value to the oscillation with f, so the time average is zero. The P of Eq. (2.53) is changed
from the constant value to another constant value with the oscillation of 2f around the
constant value, whose average is constant. Thus, this simple argument supports that there
is no reason for the clustering when the only angle change is considered. Probably, the
changes in the magnitude of the velocity should be taken into account in addition to the
directional changes by the interaction to describe the dynamic clustering.

Clusterings of the Quincke rollers in another situation were experimentally realised
by Karani et al. [50], which means the clustering seems to be robust under unknown
conditions. They recently reported that many kinds of moving clusters appeared when
the square pulse (DC) was intermittently applied [50]. (Already introduced in Fig. 2.14)
The time interval between the two sequential pulses 77 defined in their paper [50] (See Fig.
1.10) seems to correspond to the frequency in the AC system to some extent. Therefore,
the reason why the clustering occurred might be possibly similar or relevant, whereas the
reason for the clustering was not mentioned in the paper.

5.3.1 Attractive/Repulsive Interaction of the polarisations

To discuss the velocity changes by the electrostatic interaction, let us consider the con-
stant horizontal polarisations of the two Quincke roller. Although the polarisations are
also changed by the interaction in reality, how the c.o.m.’s are changed by the constant
interaction is discussed for brevity here.

Here bipartite dipolar-dipolar interaction for constant two-dimensional polarisations
P; =1 and P, =1 is considered. (PH of particle 1 is abbreviated as P;.)

Interaction energy is

U = e PuPaleos( — ) = cos(61 — ) cos(62 = 9) (53)
where ¢1, ¢3 is the directions of polarisation of the particle 1 and 2, and ¢ is the angle of
relative vector @9 — 1 to the x-axis direction.

The gradient of the interaction energy Eq. (5.3) is shown in Fig. 5.33 according to
the relative angle of two polarisations. It indicates that the two particles can be attrac-
tive or repulsive depending on both the relative configuration and the relative propulsion
angle. Since the force field always changes together with the configuration changes and
the propulsion direction changes, it is not concluded that whether the occurrence of the
dynamic clustering observed above is necessary or not without a multi-particle simulation.
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5.4 Summary on the dynamic clustering

In this chapter, the dynamics of a doublet and a triplet in the dynamic clustering under the
AC field was explained. FEach particle reciprocated periodically at the external frequency
similarly to the single-particle case. The periodicity of the clustered particle was larger
than that of the single particle. In addition to that, the power spectra of each particle had
not only the odd peaks but also the even peaks which is considered to originate from the
dipolar-dipolar interaction. The typical time scale for changing the propulsion axis D, !
was the same order as the single-particle’s.

As for the configurations of the doublet and triplet, there were typical interparticle
distances. Moreover, in the doublet, one particle tended to align the propelling direction
when it was at the front of another particle or anti-align near the back of another par-
ticle. In the triplet, the alignment and anti-alignment region around one of the particles
depended on the individual particle.

Similarly to the single-particle case, the exponent of the MSDs grew with the periodic
trend from diffusive and reached a peak which is superballistic then decreases.
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Chapter 6

Conclusion and perspective

In this dissertation, nonequilibrium dynamics of periodically driven self-propelled colloids
were studied experimentally, as an artificial self-propelled particle with a controllable time-
dependent velocity. In the following, the principal results on each chapter are summarised.

In Chapter 4, the single-particle dynamics of the Quincke roller under the AC field
were investigated. There was the periodicity of the propelling velocity at the frequency of
the external field experimentally due to the angle reversal tendency at every half period.
The reciprocating features of the single particle were explained by the generalisation of
the theory on the Quincke roller under the DC field to that under the AC field. Although
it was impossible to observe two-dimensional motions under various voltage amplitudes
and frequencies due to the occurrence of vertical motions, the numerical results of the
generalisation included the parameter dependency. Especially, the periodic state was a
limit cycle in a wide-range of parameters, whose periodic state only depended on the sign of
the horizontal polarisation. The theoretically unexpected features, which are the presence
of low-frequency peaks and the anomalous MSD behaviour were found experimentally.

In Chapter 5, the locomotion of the doublet and the triplet which appeared sponta-
neously as a part of dynamic clustering of the rollers under the AC field was analysed.
Each particle of the clusters reciprocated clearer than the single particle by the periodic
velocity with not only odd harmonics but also even harmonics because of the dipolar-
dipolar interactions. The configurations were dynamically changed with the periodicity
but conserved within typical interparticle distances. Moreover, the alignment and anti-
alignment regions of the second particle around the first particle were separated depending
on the relationship between relative positional vector and the direction of the first particle,
which can enhance the synchronisation of propelling direction in parallel or antiparallel.

However, to understand the dynamic clustering, the multi-particle simulation incor-
porating the velocity changes by the interactions should be performed. It can be the
generalisation of the DC roller’s simulation by Bricard et al. [8,47] which solved the dy-
namics of the polarisations and positions simultaneously, or a simpler model which is
similar to active nematics [5] but with the periodic velocity and a coarse-grained interac-
tion. Another interesting point of view is the long-time behaviour which is observed in
the low magnification. Because the reciprocation is small and fast, only the net motion
can be observed in the setup. Instead, the long-time positional changes of the clusters can
be captured so that the relationship between the configuration change and the motion of
the cluster’s c.o.m. is to be clarified. Also, the collective properties such as the cluster
size distribution and the number fluctuation can be measured.
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For the theoretical point of view on the single-particle, the reason why the low-
frequency peaks appeared in the velocity power spectra was not explained. Also, the
anomalous MSD behaviour was possible but do not have the perfect fitting to the experi-
ment.

Overall, it is hoped that the study stimulates the researches on self-propelled particles
by presenting an experimental example of periodic propulsions. Furthermore, the multi-
particle experimental results were rare compared to the results on single-particle systems
and collective systems, so that it enables us to understand how the effect of interactions
can change the self-propulsions and the configuration change.
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Material data

The material data of the particles used in this research and the previous research [8] is
shown in Table A.1, where €,, 0 and p are the relative permittivity, electric conductivity
and density respectively. Also the data of the fluid used in this research is shown in
Table A.2 comparing to other fluids. Here, n and v = n/p are the viscosity and kinetic
viscosity. The density of AOT /hexadecane (0.15mol/L) in Table A.2 was calculated when
the volume change by dissolution was neglected. Thus, polystyrene and PMMA beads
sink in the liquid of AOT /hexadecane.

€r o (2 tm™1) p (kg/m?) refractive index
PMMA 3.5~45 <1078 1.18x10? -
Polystyrene(PS) 2.4~3.3 <1074 1.04~1.09x103 1.6

Table A.1: Data table of particles

€r o (Q tm™ p (kg/m?)

hexadecane 2.08 (5 x 10~%: Dodecane [57)) 7.735x10?

AOT /hexadecane (0.15mol/L) - - 8.37 x10?

Water 80.4 - 1.0x10°
Air 1.00059 - 1.2

n (Pa-s) v (m?/s) refractive index

hexadecane [§] 2x1073 3x107° 14
Water 1x1073 1x107° 1.3
Air 1.8 x107° 1.5x107° 1

Table A.2: Data table of fluids
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About materials

e AOT (Bis(2-ethylhexyl) sulfosuccinate sodium, Docusate sodium)

A surfactant, molecular weight=444.56. The chemical formula is shown in Fig. A.1.

Figure Al AQT (Docusate sodium) Figure
https://en.wikipedia.org/wiki/Docusate

e ITO (Indium Tin Oxide; transparent conducting film)

is from
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Appendix B

Physical values of the
experimental system

e Debye length Ap
Let ¢, T, ng and Z be the permittivity of liquid, temperature, the number density
of ions and the valency number of ions. The Debye length is

ElkBT
AD =573 B.1
b 2710(26)2’ ( )

where kp and e are the Boltzmann constant and the elementary electrical charge.

In a Quincke roller system,
Ap ~ 10 (nm). (B.2)

e Diffusion coefficient
Diffusion coefficient of beads is calculated using the radius @ = 2.5 x 107¢ m, (dy-
namic) viscosity of hexadecane = 2 x 1073 Pa-s and T = 293 K assuming the
Fluctuation Dissipation Theorem (FDT) in equilibrium.

Translational diffusion coefficient:

kT 1.38 - 10723 x 293

D= = — 4% 107 (m? B.3
6ran 6w x 2.5-1076 x 2.10-3 X (m*/s) (B.3)

Rotational diffusion coefficient:

kT 1.38-107% x 293 3, -1
D = = = T = N 1 B4
o 8madn 8w x (2.5-106)3 x 2103 5x107 () (B4
Dyt~ 2x10%(s) (B.5)

e Péclet number (= (advection) / (diffusion)”)

Péclet number is defined as
vL

D
with the typical speed v, the typical length (like a particle diameter) L and the
translational diffusion coefficient D. Even assuming the lower speed than a Quincke
roller v = 10um/s = 107° m/s,

vL  107° x5-107°

=D 4x10-14 0 (B.7)

Pe = (B.6)
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Thus, the thermal diffusion can be neglected.

e Reynolds number
The typical speed of Quincke roller v is 100 ~ 1000um/s. Typical length is L =
2a ~ 10~°m and kinetic viscosity is v = 3 x 1076 (m?/s). Even assuming high speed
of a Quincke roller v = lmm/s= 1073 m/s,

VL 107?x5-107°

-3
=g Vx0T (B.8)

Re

Thus, the inertia is neglected.
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Appendix C

An extended model taking into
account with the effect by the
existence of lower electrode

In this appendix, the equations of the single Quincke roller under an AC field [8] (Egs.
(2.23) and (2.24)) and the generalised versions Egs. (C.9) and (C.10) are reconsidered if
the effect by the existence of lower electrode is taken into account.

The DC case Only the effect from the lower electrode is incorporated as the first mirror
image of P to the lower equipotential surface. The reason is that the disturbance from
the upper electrode o r—3 and sufficiently small, when the channel width is five times of
particle’s diameter. The image dipole P* is usually defined as

P*=P.é. — Py (C.1)

The unperturbed solution (the solution of Eqs. (2.23) and (2.24)) is P(¥), which makes
its image dipole:
PO = p¢, — P (C.2)

The image dipole varies the electric field from Eq to Eg + 0 E*, where

. PO* .
0BT = -V <W> ’rzaéz (C-3)
_ 1 ©0) o p(0)
= 47reoa3(PH , 2P (C.4)

If the unperturbed solution P%) is assumed to be the steady solutions Eqs. (2.23) and
(2.24) in the DC case, the transformation

Ey, — Eo—i—(SE* (05)

is just a shift of the constant value. Thus, Eqs. (2.23) and (2.24) are still valid in this DC
case, which means that the particle moves with constant speed in steady states.
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The AC case In DC case, the effect of the electrode can appear as the constant shift of
the electric field. However, in the AC case, it can change the form of equations as follows.
Let us start with Eq. (2.21).

The electric field disturbance § E* becomes time-dependent. The time-dependent un-
perturbed solution PO (t) is displaced at z = —a as a image polarisation to the lower
electrode. In Eq. (2.21),

Ey — Ejcoswt+ E*(t) (C.6)
- (6E’H*(t), Eo coswt + 5E;(t)) (C.7)
_ L 50 (0)
= (47T€0a3 P, (t), Eo coswt + Srmeoa’ P (t) (C.8)

where P(©)(#) means the unperturbed solution.
Decompose Eq. (2.21) into z and parallel component with the notion in Eq. (C.7):

dP, 1
_|_ JE—
dt TMW
2rea’ "
=— (Ep coswt + JEZ(t))
™MW

+Mrﬂ [(P“2 + P2)(Eg coswt + §EX(t)) — {(EO coswt + 0F%(t)) P, + 5EWP||} P,
€0

z

—4megad ™ {(Eo coswt + 0E%(t)) P, + (5E‘TP||} (Ep coswt + §E%(t))
megady™ {(EO coswt + 6EX(t))% + (5E|’|*)2} PZ] (C.9)
ar, 1

dt + TMW

By

2 3
__2rmea 5Eﬁ(t)
TMW

€
mé [(P“2 + P2)SEf(t) — {(Eo coswt + SE* ()P, + 5EWP||} P

—ameoax™ { (Bo coswt + SB2(0)P. + 5] Py } B (1)

+4megad > {(EO coswt + 0EX(t))? + (5Eﬁ)2} PII} (C.10)

Here, decompose the polarisations into the instantaneous part and the surface part by

B = P (C.11)
E(t) = P+ P () (C.12)
P¢(t) is determined by the electric field the particle feels at time ¢ instantaneously (dielec-

tric polarisation):
PE(t) = dmepa’ > (Eg coswt + SEX(t)) (C.13)
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Pf(t) = 4meoa’x S B} (1) (C.14)
Then,

dPe 1 dPs 1
PU 4 PE
dt +TMW =t dt +TMW #
2 3
_ T (Ep coswt + §E%(t))
™MW

€
jLW:l [(PITQ + (P? + PZE)2)(E0 coswt + 0E%(t))
0

- {(Eo coswt + SE*(t))(P + P¢) + 6EﬁPﬁ’} (P? + Pf)
R {( Eo coswt + SEX(t))(P + P + 5Eﬁpﬁf} (o coswt + 6E*(t))

Fmegady™ {(Eo coswt + SEX(t))? + (5Eﬁ)2} (P7 + p;)] (C.15)

+ur% [(Pﬁﬂ + (P2 + P5)*)SE](t) — {(EO coswt + SEZ (1)) (PZ + Pf) + 5EWP|<|7} P
—4meoa’x> {(Eo coswt + SEX(t))(P7 + PS) + 5EWP|(|7} SE (1)

+4megad x> {(Eo coswt + 0EX(t))? + (5Eﬁ)2} Pﬁ’] (C.16)

For unperturbed solution,

A = A7) (C.17)
PO@)y = POt + PO(t) (C.18)
= dmwega®x X Ey coswt + PO(1) (C.19)

hold.
Convert to dimensionless values by

LLTEZE(Q)GS

A = Do (C.20)
™mw = TvmwDy (C.21)
t = Dyt (C.22)

- P
P pu— —_— .2
£0E0a3 (C 3)
SE* = O0E*/E, (C.24)

where the values with tilde are dimensionless. Therefore, nondimensionalised equations
are following (For brevity, tilda is omitted.):



Chapter C. An extended model taking into account with the effect by the existence of
116 lower electrode

e The equation of polarisation solved perturbatively ~

dpP? 1 d(coswt + 0E%(t))

PU 4 [ee] z

dt + ™WwW amx dt

+47T(XOO +1/2)
T™W

= A {Pﬁﬂ(cos wt+ 0E(t)) — 5E*P|‘|7PZ‘7] (C.25)

(coswt + dEZ(1))

dry 1 dOE (1) ar(y>™ +1/2
|| et dmyee L (x> + /)5Eﬁ(t)
dt TMW

=A {P‘l’QcSE*(t) — (coswt + 5E§(t))P§P‘|’] (C.26)

dt TMW

For 6E*(t), Eq. (C.8) is substituted with the unperturbed solution which can be
numerically calculated through these equations Egs. (C.25) and (C.26) with 6 E*(t) =
0 and Egs. (C.13) and (C.14) or simply through Egs. (C.9) and (C.10).

J
The translation velocity is modified from Eq. (2.38) as
o(t) = LamAP(t) x E(t) (C.27)
€0
- —:—laﬂt {(E0 coswt + G2 () Py (t) — Pz(t)cSEﬁ(t)} : (C.28)
0

which is determined by both P and P..
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