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Abstract

Although large-scale perturbations beyond a finite-volume survey region, called

“super-sample modes”, are not direct observables, these affect measurements of clus-

tering statistics of small-scale (sub-survey) perturbations in the large-scale structure,

compared with the ensemble average, via the mode-coupling effect. In this thesis

we show that large-scale tides (super-sample tidal modes) induced by scalar per-

turbations cause apparent anisotropic distortions in the observed power spectrum

of galaxies. Using the perturbation theory of structure formation, we derive a re-

sponse function of the power spectrum to large-scale tides. In particular, we find

that large-scale tides violates the statistical isotropy in the observed power spec-

trum and in the redshift-space power spectrum of galaxies this anisotropy depends

on an alignment between the tide, wavevector of small-scale modes, and line-of-sight

direction. We then quantify the impact of large-scale tides on estimation of cosmo-

logical distances (Alcock-Paczyński test) and the redshift-space distortion (RSD)

parameter via the measured redshift-space power spectrum for a hypothetical large-

volume survey, based on the Fisher information matrix formalism. We show that

a degradation in the parameter estimation of cosmological distortions is restored if

we employ the prior on the rms amplitude expected for the standard ΛCDM model.

We also discuss whether the super-sample tidal modes can be constrained and find

that the super-sample tides are detectable with an accuracy better than the ΛCDM

prediction without degrading the accuracy of measurements of other cosmological

distortions by using bipolar spherical harmonic (BipoSH) decomposition formalism

to characterize statistically anisotropic power spectra. In addition, we develop the

cosmological N -body simulation with the super-sample tidal modes to study effects

of the large-scale tides on nonlinear structure formation in deeply nonlinear regime

where the perturbation theory breaks down.
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Chapter 1

Introduction

The large-scale structure (LSS) of the universe offers a powerful tool for measur-

ing the cosmic expansion history of the universe. As the LSS keeps information on

the initial state of the universe, its measurements can also be used to probe sta-

tistical properties of cosmic fluctuations that are generated in the early universe,

as predicted by an inflationary scenario [1–4]. Actually, the LSS historically plays

an important role as one of the key probes of cosmology. In 1990s, Refs. [5–8] al-

ready suggested a positive cosmological constant Λ from LSS observations. From

the discovery of the evidence of Λ by Supernovae observations [9, 10] until the recent

Planck satellite, most prominent results came from cleaner probes such as the cosmic

microwave background (CMB) [11–13]. However, how to extract the cosmological

information from he CMB fluctuations has been extensively discussed. Further-

more, the CMB is limited on the two-dimensional sphere and its available Fourier

modes are NCMB
modes ∼ ℓ2max ∼ 107, while the LSS, distributed in three-dimensional

volume V , has lots of modes NLSS
modes ∼ V k3max ∼ 1011 for V ∼ (104Mpc/h)3 and

kmax ∼ 0.3h/Mpc. Given the great success of the SDSS III BOSS project [14], var-

ious next-generation galaxy surveys such as Prime Focus Spectrograph (PFS) [15],

Large Synoptic Survey Telescope (LSST) [16], Dark Energy Spectroscopic Instru-

ment (DESI) [17], Wide-Field Infrared Survey Telescope (WFIRST) [18], Euclid [19],

and Spectro-Photometer for the History of the universe, Epoch of Reionization, and

Ices Explorer (SPHEREx) [20] are being planned. Thus now, again, a new golden

age of the LSS will come.

For interpreting upcoming unprecedentedly high-quality data correctly, it is of

crucial importance to accurately model various nonlinear corrections imprinted in

the observed galaxy clustering: nonlinear gravitational instabilities [21], nonlinear

galaxy biases [22] and nonlinear redshift-space distortions [23]. The linear perturba-

tion theory can accurately describe the time evolution of large-scale perturbations in
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CHAPTER 1. INTRODUCTION

structure formation, based on the standard Λ and cold dark matter dominated cos-

mology with Gaussian adiabatic initial conditions (hereafter ΛCDM) [24], which suc-

cessfully reproduces the high-precision measurements of CMB anisotropies, yielding

stringent constraints on the cosmological parameters [13]. The linear theory, how-

ever, breaks down in the late-time universe, where galaxy surveys explore, because

the nonlinear structure formation induces a mode coupling between different Fourier

modes of the perturbations owing to the nature of nonlinear and long-range gravity.

As a result, the power spectrum of LSS probes, measured from a galaxy survey,

no longer carries the full information unlike CMB anisotropies and the statistical

properties display a substantial non-Gaussianity that is described by higher-order

correlation functions [25]. A better understanding of the nonlinear structure for-

mation is thus required in order to attain the full potential of wide-area galaxy

surveys.

Even though a wide-area galaxy survey is to cover a huge cosmological volume,

there is an unavoidable uncertainty in the statistical analysis of LSS probes arising

due to the finite survey volume as well as the nonlinear mode coupling, as stud-

ied in Refs. [26–39]. A finite-volume survey realization is generally embedded into

longer-wavelength perturbations than survey scales – which are called “super-sample

modes” [30, 33] (see Fig. 1.1). Although the super-sample modes are not directly

observable, have small amplitudes, and are well in the linear regime for a wide-area

galaxy survey, it causes a non-negligible effect on small-scale perturbations due to

the nonlinear mode coupling, compared with the statistical accuracies in measure-

ments of the small-scale perturbations. Hence, it is necessary to include the effects

in the cosmological analysis (e.g. [40]) in order not to have any biased estimation

in cosmological parameters as well as not to have too optimistic cosmological con-

straints.

Various works have studied the super-sample effects for cosmological observables

such as the weak lensing correlation functions [30–34, 41]. They focused on the

effects of the large-scale coherent overdensity, denoted by δb (see [30], for a unified

formulation of the effect). However, the effects of the large-scale coherent gravita-

tional tidal force on short-wavelength modes have yet to be fully studied. Since the

coherent overdensity and the coherent tidal force are both related to the Hessian of

the gravitational potential, it is expected that they have comparable amplitudes in

each realization. Therefore, the purpose of this thesis lies in investigating how the

super-sample coherent tidal force affects cosmological observables in galaxy redshift

surveys. We show that the super-sample coherent tidal force causes an apparent

anisotropic clustering in the galaxy distribution. Based on this result, firstly we

study the impact of the super-sample tidal field on the measurement of other cos-

2



Figure 1.1: A schematic picture describing the super-sample modes. What we can

directly measure in surveys are shorter-wavelength modes than the survey scale. The

super-sample modes are longer-wavelength modes than the survey scale and thus we

cannot measure those perturbations directly. However, due to the nonlinear mode-

coupling, the super-sample modes have an effect on all short-wavelength modes.

mological distortions, assuming the ΛCDM cosmology. In particular, we investigate

the effect on the measurement of the redshift-space distortion [42, 43] arising from

the peculiar velocities of LSS tracers as well as the Alcock-Paczyński (AP) distor-

tion [44–46] arising from the use of an incorrect cosmological model in the clustering

analysis. Then, we pursue another possibility to measure or reconstruct the large-

scale tidal field beyond the survey region from the short-wavelength observables

by making use of the anisotropic imprint of the super-sample modes on small-scale

modes without assuming the ΛCDM model, i.e., providing a tool to test the isotropy

of our universe in the regime where we cannot directly access.

Besides observational aspects, the super-sample modes are tricky to consider, be-

cause their effects vanish in N -body simulations with periodic boundary conditions

which have no contribution of long-wavelength modes outside the simulation box.

The effect of the super-sample density filed on sub-survey modes for ΛCDM cosmol-

ogy can be absorbed into an apparent curvature parameter of the local volume –– a

separate universe picture [27, 31, 35, 47–49]. This approach allows us to include the

fully nonlinear mode-coupling of long-wavelength modes with all short-wavelength

modes, by performing N -body simulations on a perturbed background correctly cap-

turing the local expansion. However, a technique to implement the large-scale tidal

filed beyond the simulation box has yet to be studied. In this thesis, we develop a

method to include the super-sample tidal field in N -body simulation by introducing

3



CHAPTER 1. INTRODUCTION

perturbed scale factors along each coordinate axis.

This thesis is laid out as follows. In Chapter 2, we give a brief summary of

the cosmological perturbation theory, including both the linear perturbation theory

and nonlinear perturbation theory for structure formation. Then we review obser-

vational effects which we have to consider in galaxy redshift surveys in Chapter 3.

In Chapter 4, following Refs. [37, 50, 51], we study the effect of the super-sample

tidal modes on the observed power spectrum and discuss its possible impact and

application. Chapter 5 is devoted to the discussion on the cosmological N -body

simulation with the large-scale tides. In Chapter 6 we summarize results with an

outlook.

4



Chapter 2

Cosmological perturbation theory

Contents

2.1 Linear perturbation theory . . . . . . . . . . . . . . . . . . 6

2.1.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Time evolution of density perturbations . . . . . . . . . . 7

2.1.3 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Linear matter power spectrum . . . . . . . . . . . . . . . 11

2.2 Nonlinear perturbation theory . . . . . . . . . . . . . . . 13

2.2.1 Standard perturbation theory . . . . . . . . . . . . . . . . 13

2.2.2 Mode-coupling between long- and short- wavelength per-

turbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter, we review the cosmological perturbation theory, especially the

dark matter perturbation, which is necessary to understand the following chapter.

On the first half, we describe the linear perturbation theory in general relativity.

On the latter half, we introduce the standard perturbation theory for structure

formation, which solves the nonlinear fluid equations in cosmological background in

Newtonian limit. Finally we discuss the momentum transfer from short-modes to

long-modes and vice versa.
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CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

2.1 Linear perturbation theory

We consider the perturbed flat FLRW metric in the conformal Newtonian gauge,

ds2 = a2(τ) [ηµν + hµν ] dx
µdxν

= a2(τ)
[
(−1− 2Φ(τ,x))dτ 2 + (1 + 2Ψ(τ,x))dx2

]
, (2.1)

where τ is the conformal time, a(τ) is the scale factor, Φ is the gravitatioanl potential

perturbation, and Ψ is the spatial curvature perturbation. In this thesis, we consider

only scalar perturbations. The goal of this section is to explain the shape of the

linear matter power spectrum.

2.1.1 Equations

The dynamics of our universe is governed by Einstein equation,

Rµ
ν −

1

2
Rδµν + Λδµν = 8πGT µ

ν , (2.2)

where T µ
ν is the energy momentum tensor. The background equations are given by

H2 =
8πG

3
a2ρ̄+

Λ

3
a2, (2.3)

H′ =− 4πG

3
a2
(
ρ̄+ 3P̄

)
+

Λ

3
a2, (2.4)

where ′ ≡ d/dτ ,H ≡ a′/a, ρ̄ is the mean energy density and P̄ is the mean pressure of

cosmic fluid. The conformal Hubble parameterH is related to the Hubble parameter

H ≡ da
dt
/a through H = aH with t being the physical time. Defining the energy

density parameters via

Ωi ≡
8πGa2ρ̄i
3H2

, (2.5)

and denoting its value at present as Ωi0, the Friedmann equation can be rewritten

as

H2 = H0

[
Ωr0

a4
+

Ωm0

a3
+ ΩΛ0

]
, (2.6)

with i = r,m,Λ refers to the radiation, the matter, and the cosmological constant,

respectively.

Given the metric Eq. (2.1), the 00-component and ij-component of linearly per-

turbed Einstein equations are calculated as

3H(HΦ−Ψ′) +∇2Ψ =− 4πGa2ρ̄δ, (2.7)

∇2(Φ + Ψ) + 3(H2 + 2H′)ϕ+ 3HΦ′ − 6HΨ′ − 3Ψ′′ =12πGa2δP , (2.8)

Φ + Ψ =− 8πGa2Π, (2.9)

6



2.1. LINEAR PERTURBATION THEORY

where we have introduced the perturbed energy momentum tensor

T̄ 0
0 + δT 0

0 =− ρ̄(1 + δ), (2.10)

δT 0
i =(ρ̄+ P̄)vi, (2.11)

δT i
0 =− (ρ̄+ P̄)vi, (2.12)

T̄ i
j + δT i

j =
(
P̄ + δP

)
δij +Πi

j, (2.13)

with Πi
j being the anisotropic stress and Π being its scalar component.

To solve these equations, we need to know the time evolution of the energy

momentum tensor. In order to follow the full dynamics, we have to consider the

Boltzmann equations. However, it is possible to extract the dynamics of each com-

ponent from the conservation of the energy-momentum tensor, ∇µT
µ
ν = 0, in the

limit where effects of the higher order moments (higher than two) can be neglected.

Although the higher order moments are important for photons and neutrinos, we

focus on dark matter, so we derive the evolution of each component from the the

conservation of the energy-momentum tensor: ∇µT
µ
ν = 0 yields

δ′ + (1 + w)(θ + 3Ψ′) =0, (2.14)

θ′ +H(1− 3w)θ +
w

1 + w
∇2δ +∇2Φ =0, (2.15)

where θ = ∇ivi is the velocity potential and w = P/ρ is the parameter for the

equation of state. For the photon w = 1/3 and dark matter w = 0, we obtain

δ′r +
4

3
θr + 4Ψ′ =0, (2.16)

θ′r +
1

4
∇2δr +∇2Φ =0, (2.17)

δ′m + θm + 3Ψ′ =0, (2.18)

θ′m +Hθ +∇2Φ =0. (2.19)

Since photons have interaction with baryons via Thomson scattering with electrons

and protons before the recombination, the energy momentum tensor of photons did

not actually conserve. In this thesis, however, we treat photons and baryons as a

single fluid component in a radiation-dominated era and δr and θr are interpreted

as the fluctuations of the photon-baryon fluid.

2.1.2 Time evolution of density perturbations

In this subsection, we derive the solutions of the gravitational potential Φ and the

fluctuations of dark matter δ and θ in radiation–dominated, matter-dominated, and

7



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

matter-and-Λ-dominated eras. In the following, we move to Fourier space. We define

the Fourier transformation as

Φ(x) =

∫
d3k

(2π)3
Φ̃(k)eik·x, (2.20)

Φ̃(k) =

∫
d3x Φ(x)e−ik·x, (2.21)

and similar to other quantities. Hereafter we omit the tilde on the quantities

in Fourier space for notational simplicity. Ignoring the effect of neutrinos, the

anisotropic stress Π can be neglected, so in the following we have Ψ = −Φ from

Eq. (2.9). Then, the Einstein equations reduce to

Φ′′ + 3(1 + w)HΦ + wk2Φ + Λa2(1 + w)Φ =0, (2.22)

3H2Φ + 3HΦ′ + k2Φ = −3

2
H2(δr + δm). (2.23)

In the radiation-dominated era where w = 1/3 and Λ = 0, the Friedmann

equation (2.3) gives

a ∝ τ, H =
1

τ
, (2.24)

so we have

Φ′′ +
4

τ
Φ′ +

k2

3
Φ =0. (2.25)

The solution for this equation is given by

Φ(τ, k) = Akj1(x) +Bkn1(x), (2.26)

with x ≡ kτ/
√
3, jn(x) being the n-th order spherical Bessel function, and nn(x)

being the n-th order spherical Neumann function. Neglecting the decaying solution,

we find

Φ =
9Φp

k2τ 2

[√
3

kτ
sin

kτ√
3
− cos

kτ√
3

]
, (2.27)

where Φp denotes the primordial value of the potential, which means Φ → Φp

in the superhorizon limit kτ → 0. In the subhohizon limit kτ ≫ 1, we have

Φ → −9Φp cos(kτ/
√
3)/(kτ)2, which means the gravitational potential follows the

damped oscillation. Given this solution, we can find a solution for δr via Eq. (2.23)

δr = −
2

3
(kτ)2Φ− 2τΦ′ − 2Φ. (2.28)

8



2.1. LINEAR PERTURBATION THEORY

Thus, while δr → −2Φp outside the horizon, in the subhorizon we have δr →
6Φp cos(kτ/

√
3). This oscillatory feature inside the horizon reflects the pressure of

the photon and leads to the so-called Baryon-Acoustic Oscillations (BAO). In order

to determine how to evolve the dark matter perturbation in the radiation-dominated

era, we use Eqs. (2.18) and (2.19). In the subhorizon limit, these equations reduce

to

δ′′m +Hδ′m + k2Φ = 0. (2.29)

As seen above, the gravitational potential Φ in the radiation-dominated era oscillates

rapidly inside the horizon so the time-averaged gravitational potential does not

contribute to the evolution of the density perturbations of the dark matter [52].

Therefore what we have to solve is δ′′m + δ′m/τ = 0 and the solution is found to be

δm ∝ ln τ ∝ ln a.

Next we consider the matter-dominated era. In the matter-dominated era, the

Friedmann equation (2.3) gives

a ∝ τ 2, H =
2

τ
, (2.30)

so the evolution of the gravitational potential is governed by

Φ′′ +
6

τ
Φ′ =0. (2.31)

Neglecting the decaying mode ∝ τ−5, the solution for Φ is

Φ = Φm ∝ τ 0, (2.32)

where Φm is a constant. Thus the gravitational potential remains constant in

the matter-dominated era for all scales. With this solution, δm is determined by

Eq. (2.23),

δm = −1

6
(kτ)2Φ− 2Φ. (2.33)

Thus δm does not evolve outside the horizon while δm → −(kτ)2Φ/6 ∝ a inside the

horizon.

Finally, let us focus on the matter-and-Λ-dominated universe. In this epoch, the

gravitational potential obeys

Φ′′ + 3HΦ′ + Λa2Φ = 0. (2.34)

By making use of the decaying mode solution Φ ∝ H3/a, we can construct the

growing mode solution as follows,

Φ = C
H3

a

∫ a

0

da

H3
, (2.35)

9



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

with C being a constant. Normalizing Φ→ Φm as a→ 0, we get C = 5ΦmΩm(a)aH2/2,

which leads to

Φ = Φm ×
5

2
Ωm(a)H5

∫ a

0

da

H3
. (2.36)

Since in the subhorizon limit the Poisson equation Eq. (2.23) becomes k2Φ =

−3H2δm/2, we have

δm = −2

3

k2

H2
Φ = −5

3
Φmk

2Ωm(a)H3

∫ a

0

da

H3
. (2.37)

We identify the time dependent part of this solution as the linear growth factor D(a)

with normalizing D(a)→ a as a→ 0:

D(a) ≡ 5

2
Ωm(a)H3

∫ a

0

da

H3
=

5

2
Ωm,0H0

H
a

∫ a

0

da

H3
, (2.38)

where we have used Ωm(a) = Ωm,0H
2
0/(aH2). Using the linear growth factor, δm =

−2k2ΦmD(a)/3. Given this expression, the velocity potential θm inside the hosizon

reads via Eq. (2.19)

θm = −δ′m =
2

3
k2ΦmHf(a)D(a) = −δmHf(a)D(a), (2.39)

where we have introduced the linear growth rate f(a) defined as

f(a) ≡ d lnD

d ln a
, (2.40)

which takes unity in the matter domination.

2.1.3 Initial conditions

According to the discussion in the previous subsection, the gravitational potential

is frozen on the superhorizon scales. So the initial condition is naturally given when

the wavelength of perturbations is longer than the horizon scale. It is useful to intro-

duce the comoving curvature perturbation R, which is related to the gravitational

potential as

R = −Φ− 2

3 + 3w

(
Φ′

H
+ Φ

)
k≪H→ 5 + 3w

3 + 3w
Φ, (2.41)

since the comoving curvature perturbation is gauge-invariant and conserved on the

superhorizon [53].

The initial condition for the structure formation is given only statistically, rather

than the specific value at a specific position. The standard (single-field slow-roll)

10



2.1. LINEAR PERTURBATION THEORY

inflation predicts that the initial fluctuation follows the Gaussian distribution and

its spectrum is scale-invariant, i.e., the initial condition is characterized by the power

spectrum of the comoving curvature perturbation,

∆2
R(k) =

k3PR(k)

2π2
= As

(
k

k∗

)ns−1

, (2.42)

where ⟨R(k)R(k′)⟩ = (2π)3δ3D(k + k′)PR(k), As is the amplitude of the primordial

curvature perturbation, ns is the spectral index, and k∗ is the pivot scale. The

observational constrains from the Planck satelite are consistent with As = 2.105 ×
10−9 and ns = 0.9665 for k∗ = 0.05 Mpc−1 [13].

2.1.4 Linear matter power spectrum

Here we summarize the results derived in the previous subsection. We show the

linear matter power spectrum at late time. The linear matter power spectrum fully

characterizes statistical properties of density perturbations in the linear regime for

the Gaussian initial conditions. The linear matter power spectrum is defined through

⟨δm(k; a)δm(k′; a)⟩ = (2π)3δ3D(k+ k′)Plin(k; a). (2.43)

In the linear perturbation theory, each Fourier mode evolves independently, so we

can simply relate the density perturbation at late time to the primordial one as

δm(k; a) =M(k, a)R(k), (2.44)

where M(k, a) is called the transfer function. Notice that the transfer function

depends on only amplitudes of wavenumber because of the isotropy of the FRLW

background. Using the transfer function, the linear matter power spectrum can be

written as

Plin(k; a) =M2(k, a)PR(k). (2.45)

Thus the shape of the linear matter power spectrum is determined by the spectrum

of the initial condition and the the transfer function.

The perturbation whose wavenumber k is smaller than keq ≡ H(τeq) with τeq

being the epoch of the matter-radiation equality enters the horizon when the universe

is matter dominated. Since in the matter-dominated era the gravitational potential

Φ does not change, its power spectrum remains scale-invariant PΦ(k) ∝ PR(k) ∝
kns−4. Thus for k < keq, via the Poisson equation, we have

Plin(k) ∝ k4 × kns−4 = kns . (2.46)

11



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

On the other hand, the Fourier modes with k > keq enters the horizon during the

radiation-dominated era. In that stage, neglecting the oscillation term, Φ follows

∝ 1/(kτ)2, which leads to

Plin(k) ∝ k4 × kns−4 × k−4 = kns−4. (2.47)

Fig. 2.1 shows the linear matter power spectrum computed from the Boltzmann

code CLASS [54]. As clearly seen, the asymptotic scaling of the linear matter power

spectrum changes around keq. The wiggly feature around k ∼ 0.1 h/Mpc is an

imprint of the BAOs.

10­3 10­2 10­1 100

k  [h/Mpc] 

102

103

104

105

P
li
n
(k

)

keq

Figure 2.1: The linear matter power spectrum at z = 0, computed by the CLASS [54].

The black-dashed line corresponds to keq = 0.0104 h/Mpc, around which the mat-

ter power spectrum turns over. Here we employ cosmological parameters that are

consistent with the Planck 2018 results [13].
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2.2. NONLINEAR PERTURBATION THEORY

2.2 Nonlinear perturbation theory

Unlike the CMB fluctuations, the nonlinear effect is of great importance in the

matter distribution at late times, so we have to take into account the nonlinear

evolution of density perturbations to compare theoretical prediction with observa-

tions. Fortunately, however, since the large-scale structure forms hierarchically from

small to large scales, density perturbation we are interested in lies in nonlinear but

subhorizon scales, so we can use Newtonian description to follow the nonlinear evo-

lution. Here we summarize the method to handle nonlinearities due to gravity in an

analytical way.

2.2.1 Standard perturbation theory

In this subsection, we review the standard perturbation theory for the structure

formation beyond the linear approximation [21]. We start from the collisionless

Boltzmann equation (or Vlasov equation) in non-relativistic limit,

df

dτ
=
∂f

∂τ
+
∂f

∂x
· dx
dτ

+
∂f

∂p
· dp
dτ

= 0, (2.48)

where x is comoving coordinate and

p ≡ am
dx

dτ
, (2.49)

dp

dτ
= −am∂Φ

∂x
, (2.50)

with Φ being the gravitational potential. By ”non-relativistic limit” we mean ig-

noring the higher order terms in the metric perturbations (see e.g. [55]). We thus

have

∂f

∂τ
+

p

am
· ∂f
∂x
− am∇Φ · ∂f

∂p
= 0. (2.51)

This is a six dimensional differential equation in phase space. Therefore it is very

challenging to solve this equation directly. One way to proceed is to take moments of

the Vlasov equation. The moments of the distribution function f(τ,x,p) is defined

as

ρ(τ,x) ≡m
a3

∫
d3p

(2π)3
f(τ,x,p), (2.52)

vi(τ,x) ≡
∫

d3p

(2π)3
pi

am
f(τ,x,p)

/∫ d3p

(2π)3
f(τ,x,p), (2.53)

σij(τ,x) ≡
∫

d3p

(2π)3
pipj

a2m2
f(τ,x,p)

/∫ d3p

(2π)3
f(τ,x,p)− vi(τ,x)vj(τ,x) (2.54)

13



CHAPTER 2. COSMOLOGICAL PERTURBATION THEORY

Then, taking the moments of Eq. (2.51) gives nonlinear fluid equations,

∂δ

∂τ
+

∂

∂xi
[
(1 + δ)vi

]
= 0, (2.55)

∂vi

∂τ
+Hvi + vj

∂vi

∂xj
= − ∂Φ

∂xi
− 1

ρ

∂σij

∂xj
. (2.56)

The gravitational potential Φ is determined by the Poisson equation,

∇2Φ =
3

2
H2Ωmδ. (2.57)

As cold dark matter has a negligible velocity dispersion, we work with the single

stream approximation, which means the velocity shear σij and other higher order

multipoles are simply neglected to truncate the Boltzmann hierarchy. Therefore our

perturbative description is no longer valid inside halos where multi stream motion

becomes important. Furthermore, we consider the matter-dominated era (Ωm = 1),

the main stage of the structure formation.

First, under these setups, we show that the vorticity is not generated even at

the nonlinear level unless there initially exists vorticity. The vorticity is the curl

component of the velocity, which is defined as

ωi ≡ ϵijk∂jvk, (2.58)

with ϵijk being the Levi-Chivita tensor. Taking the curl of the Euler equation

Eq. (2.56), we obtain

∂ωi

∂τ
+Hωi =

∂

∂xj
(
viωj − vjωi

)
. (2.59)

Thus the voticity remains zero when it is initially zero. Note however that the vor-

ticity is generated in highly nonlinear regime where the single stream approximation

is no longer valid.

We derive the second order solution in real space for clarity. Vanishing the

vorticity, the velocity potential θ ≡ ∂iv
i contains full information on the velocity

field,

vi =
∂i

∇2
θ, (2.60)

so we focus on the second order solution for δ and θ. Rewriting the time variable

from the conformal time τ to the scale factor a, the nonlinear equations for δ and θ

become

H
[
a2
∂2δ

∂a2
+

3

2
a
∂δ

∂a
− 3

2
δ

]
=H(a ∂

∂a
+ 1)α− β, (2.61)

θ = −aH∂δ
∂a

+ α, (2.62)
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where we introduced the nonlinear interaction terms

α ≡− ∂i(δvi) = −∂i
(
δ
∂i

∇2
θ

)
, (2.63)

β ≡− ∂i(vj∂jvi) = −∂i
(
∂j

∇2
θ
∂j∂

i

∇2
θ

)
. (2.64)

Because there are only quadratic nonlinear terms, in general the n-th order solutions

δ(n) and θ(n) can be found by following steps; (1) Substitute the lower order solutions

δ(m) and θ(m) (m < n) into the right-hand side of Eq. (2.61), (2) Constitute δ(n) by

using the Green’s function for Eq. (2.61) and (3) Compute θ(n) from Eq. (2.62).

To proceed, we need to calculate the retarded Green’s function for Eq. (2.61).

This Green’s function G(a, a′) solves Eq. (2.61) with replacing the right-hand side

with the Dirac delta function,

H
[
a2
∂2G(a, a′)

∂a2
+

3

2
a
∂G(a, a′)

∂a
− 3

2
G(a, a′)

]
= δD(a− a′), (2.65)

with the boundary condition G(a < a′, a′) = 0. The solution to this equation is

found to be

G(a, a′) =

0 (a < a′)

2
5H0

[
a
a′
−
(
a′

a

)3/2]
(a > a′),

(2.66)

where we have used H = H0/
√
a in matter dominated era.

Now we can get the second order solutions by following general procedure men-

tioned above. Recalling that in a matter-dominated era we have δ(1) ∝ D(a) = a

and θ(1) = −Hfδ(1) ∝ −H0

√
a at linear order, the second-order source term for

Eq. (2.61) is given by

S2(a) = H0a

[
5

2
∂i

(
δ(1)

∂i
∇2

δ(1)
)
+ ∂i

(
∂i
∇2

δ(1)
∂i∂j
∇2

δ(1)
)]

. (2.67)

Then, the second order solution for δ can be computed by

δ(2)(a) =

∫ a

0

da′G(a, a′)S2(a
′) =

2

7
a2
[
5

2
∂i

(
δ(1)

∂i
∇2

δ(1)
)
+ ∂i

(
∂i
∇2

δ(1)
∂i∂j
∇2

δ(1)
)]

=a2

[
5

7

(
δ(1)
)2

+

(
∂i
∇
δ(1)
)
∂iδ

(1) +
2

7

(
∂i∂j
∇2

δ(1)
)2
]
. (2.68)

The second order solution for θ is

θ(2)(a) =−Ha∂δ
(2)

∂a
− ∂i

(
δ(1)

∂i
∇2

θ(1)
)

=−Hfa2
[
3

7

(
δ(1)
)2

+

(
∂i
∇
δ(1)
)
∂iδ

(1) +
4

7

(
∂i∂j
∇2

δ(1)
)2
]
. (2.69)
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To interpret each term arisen in δ(2) physically, we define the displacement field

Ψi(x) and the gravitational tidal field sij(x) as

Ψi(x) ≡−
∂i
∇2

δ(1)(x) =

∫
d3q

(2π)3
iqi
q2
δ(1)(q)eiq·x, (2.70)

sij(x) ≡
(
∂i∂j
∇2
− 1

3
δij

)
δ(1)(x) =

∫
d3q

(2π)3

(
qiqj
q2
− 1

3
δij

)
δ(1)(q)eiq·x. (2.71)

We call Ψi(x) as the displacement field because Ψi(x) corresponds to the gradient

of the gravitatioanl potential ∂iΦ(x) or equivalently velocity field vi(x). The reason

why we call sij(x) as the tidal field is that sij(x) is equivalent to (∂i∂j−δij∇2/3)Φ(x).

In terms of Ψi(x) and sij(x), we can rewrite δ(x) with the second-order correction

as

δ(1)(x) + δ(2)(x) =δ(1)(x)−Ψi(x)∂
iδ(1)(x) +

17

21

(
δ(1)(x)

)2
+

2

7
sij(x)sij(x) (2.72)

≃δ(1)(x−Ψ) +
17

21

(
δ(1)(x)

)2
+

2

7
sij(x)sij(x), (2.73)

where we suppressed the time argument a for notational simplicity. From this ex-

pression, one can see the first term in the second-order correction describes the

displacement of the density field caused by the gravitatioanl potential sourced by

other perturbations, so this term is called as the shift term. The second term corre-

sponds to the nonlinear growth by the density fields and the third term represents

the nonlinear growth by interaction with the tidal fields.

In practice, we want to get the Fourier space expression for the nonlinear cor-

rection. Fourier transforms of Eqs. (2.68) and (2.69) are given by

δ(2)(k) = a2
∫

d3q1

(2π)3

∫
d3q2

(2π)3

[
5

7
+

(q1 · q2)

q21
+

2

7

(q1 · q2)
2

q21q
2
2

]
× δ(1)(q1)δ

(1)(q2)(2π)
3δ3D(q1 + q2), (2.74)

θ(2)(k) =−Hfa2
∫

d3q1

(2π)3

∫
d3q2

(2π)3

[
3

7
+

(q1 · q2)

q21
+

4

7

(q1 · q2)
2

q21q
2
2

]
× δ(1)(q1)δ

(1)(q2)(2π)
3δ3D(q1 + q2). (2.75)

These expression are not so convenient since these kernels are not symmetric in

momentum variables, q1 and q2. So it is common to use the symmetrized kernels,

F2(q1,q2) =
5

7
+

1

2

(
1

q21
+

1

q22

)
(q1 · q2) +

2

7

(q1 · q2)
2

q21q
2
2

, (2.76)

G2(q1,q2) =
3

7
+

1

2

(
1

q21
+

1

q22

)
(q1 · q2) +

4

7

(q1 · q2)
2

q21q
2
2

. (2.77)
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The higher order kernels can be obtained by iterating the steps described here.

Actually, there are recursion relation for Fn and Gn,

nFn(q1, · · · ,qn)−Gn(q1, · · · ,qn) =

n−1∑
i=1

α(q1···i, qi+1···n)Gi(q1, · · · ,qi)Fn−i(qi+1, · · · ,qn), (2.78)

3

2
Fn(q1, · · · ,qn)−

(
1

2
+ n

)
Gn(q1, · · · ,qn) =

−
n−1∑
i=1

β(q1···i, qi+1···n)Gi(q1, · · · ,qi)Gn−i(qi+1, · · · ,qn), (2.79)

where q1...i ≡ q1 + · · ·+ qi and α and β are the wavevectoer dependent parts of the

Fourier transform of Eq. (2.63) and Eq. (2.64),

α(q1,q2) =
q1 · (q1 + q2)

q21
, (2.80)

β(q1,q2) =
1

2
(q1 + q2)

2 q1 · q2

q21q
2
2

. (2.81)

From these relations, for instance, we find the symmetrized third order kernels are

expressed as

F3(q1,q2,q3) =
2q2123
54

[
q1 · q23

q21q
2
23

G2(q2,q3) + 2 permutations

]
+

7

54
q123 ·

[
q12

q212
G2(q1,q2) + 2 perms.

]
+

7

54
q123 ·

[
q1

q21
F2(q2,q3) + 2 perms.

]
, (2.82)

G3(q1,q2,q3) =
q123
9

[
q1 · q23

q21q
2
23

G2(q2,q3) + 2 permutations

]
+

1

18
q123 ·

[
q12

q212
G2(q1,q2) + 2 perms.

]
+

1

18
q123 ·

[
q1

q21
F2(q2,q3) + 2 perms.

]
. (2.83)

By making use of the n-th order kernels, the n-th order solutions in Fourier space

can be written as

δ(n)(k) =an
n∏

i=1

{∫
d3qi

(2π)3
δ(1)(qi)

}
Fn(q1, . . . ,qn)(2π)

3δ3D(k− q1...n), (2.84)

θ(n)(k) =an
n∏

i=1

{∫
d3qi

(2π)3
δ(1)(qi)

}
Gn(q1, . . . ,qn)(2π)

3δ3D(k− q1...n), (2.85)
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where we have used δ(n) ∝ an and θ(n) ∝ Hfan, which can be straightforwardly

shown by using the Green’s function Eq. (2.66).

As an application of the nonlinear perturbation theory, let us compute the tree-

level bispectrum and the nonlinear matter power spectrum with the one-loop cor-

rection. In the linear theory, the three point correlation function or bispectrum

vanishes since the initial condition predicted by the single field inflation is given

by the Gaussian random field. But nonlinear growth by gravity induces the non-

Gaussianity and generates a non-vanishing bispectrum. The leading order three

point function is given by

⟨δ(k1)δ(k2)δ(k3)⟩ =⟨δ(2)(k1)δ
(1)(k1)δ

(1)(k1)⟩+ 2 permutations

=(2π)3δ3D(k1 + k2 + k3) [F2(k2,k3)Plin(k2, a)Plin(k3, a) + perms.] ,

(2.86)

where we have used Wick’s theorem and Plin ∝ a2. The tree-level bispectrum

B211(k1,k2,k3) corresponds to the inside of the bracket.

The nonlinear two point function up to the one-loop correction is

⟨δ(k)δ(k′)⟩ =⟨δ(1)(k)δ(1)(k′)⟩+ ⟨δ(2)(k)δ(2)(k′)⟩+ 2⟨δ(1)(k)δ(3)(k′)⟩
=(2π)3δ3D(k+ k′) [Plin(k, a) + P22(k, a) + 2P13(k, a)] , (2.87)

where Plin(k, a) ∝ a2 and P22(k, a) ∝ P13(k, a) ∝ a4 and we call the inside of the

bracket as P1−loop(k). The explicit expressions of P22(k) and P13(k) are given by

P22(k) =

∫
d3q

(2π)3
Plin(q)Plin(|k− q|)|F2(q,k− q)|2, (2.88)

P13(k) =3Plin(k)

∫
d3q

(2π)3
Plin(q)F3(k,q,−q). (2.89)

Note that F2(k1,k2) kernel has a divergence in the squeezed limit, k1 ≪ k2,

F2(k1,k2) ≃
k1 · k2

2k1
≫ 1, (2.90)

while the bispectrum and one-loop power spectrum have no such divergence. In

the next subsection, we explicitly show the cancellation of the infrared divergence

for one-loop matter power spectrum. In general, when one wavevector in the argu-

ments of the kernels qi → 0, Fn and Gn have an infrared divergence ∝ qi/q
2
i , while

the correlators have no infrared divergence. This is a consequence of the so-called

consistency relations of the large-scale structure, which states that the equivalence

principle enforces the cancellation of the effect from long modes for equal-time cor-

relatiors [56–62]. This is because the long-wavelength gravitational potential Φ and
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2.2. NONLINEAR PERTURBATION THEORY

its derivative ∂iΦ ∼ qi/q
2 × δ(q), which corresponds to the divergent terms in Fn

and Gn kernels, can be eliminated by performing a local coordinate transformation

to choose a free-falling observer frame.

So far, we consider the matter-dominated era where the time evolution is simply

given by δ(n) ∝ an and θ(n) ∝ Hfan. It is natural to ask whether perturbative

solutions derived in this section can be useful for other cosmology, especially for

ΛCDM cosmology. The difference between the Einstein-de Sitter universe (Ωm = 1)

and other cosmology lies in only the time dependence; i.e., the form of equations

Eqs. (2.55)-(2.57) remains the same except for the time dependence of coefficients.

However, the time dependence for arbitrary cosmology can be almost captured by re-

placing an → Dn(a). This simple prescription gives a very good approximation [63].

2.2.2 Mode-coupling between long- and short- wavelength

perturbations

As shown in the previous subsection, the nonlinear interaction induces mode-couplings

among different Fourier modes. In contrast to the linear theory, taking into account

nonlinear effects, a perturbation of a given Fourier mode k is affected by other

Fourier mode q ̸= k. In this subsection, using the one-loop matter power spectrum,

we discuss impact of nonlinear mode-coupling effects on a featured perturbation

with a wavevector k from (1) a shorter-wavelength perturbation, i.e., k ≪ q and (2)

a longer-wavelength perturbation, i.e., k ≫ q.

First let us focus on the effect from short-wavelength perturbation. In the low-k

limit k ≪ q, we have

P22(k)
k≪q→ 9

98
k4
∫

d3q

(2π)3
P 2
lin(q)

q4
+O

(
k6/q6

)
, (2.91)

P13(k)
k≪q→ − 1

3
k2Plin(k)

∫
d3q

(2π)3
Plin(q)

q2

(
61

210
− 2

35

k2

q2

)
+O

(
k6/q6

)
. (2.92)

Thus in the standard cosmology, the leading order nonlinear correction induced by

short modes is suppressed by O(k2/q2). Furthermore, if one considers long modes

sourced by pure short modes, there appears an additional suppression. Suppose that

there are initially only short-wavelength perturbations but no long-wavelength per-

turbations, then P13(k) vanishes in k → 0 limit while P22(k) results in O(k4/q4) con-
tribution [64]. Therefore long-wavelength perturbations induced by short-wavelength

perturbations shows ∝ k4 scaling at leading order. This is a universal feature of self-

gravitating system and a consequence of the momentum conservation in large scales

as described below, following the discussion in Ref. [65].
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Imagine that matter is almost uniformly distributed at the initial time with

small short-wavelength fluctuations of scale ∼ 1/q but without long modes, i.e.,

δinit(k) = 0. Dividing space into cells of size ∼ Rn, in which the matter collapses

into a point particle with mass mn at the cell center of mass, we can write a final

density contrast as

δfin(k) =
1

ρ̄

∑
n

mne
ik·xn , (2.93)

where ρ̄ is the mean density. Denoting the initial density of n-th cell as ρn(x), the

mass in n-th cell is given by

mn =

∫
Rn

d3y ρn(xn + y), (2.94)

where−y corresponds to the displacement from the initial position x to final position

xn. No initial long mode means that there are initially no spatial correlations beyond

Rn; in other words, we choose Rn so that the spatial correlations beyond Rn vanish

initially. Therefore we can consider the Fourier transform of the initial density field

as the sum of each cells. This leads to

0 =
1

ρ̄

∫
d3x ρ̄ eik·x =

1

ρ̄

∑
n

∫
Rn

d3y ρn(xn + y) eik·(xn+y)

=
1

ρ̄

∑
n

eik·xn
[
mn + ikidin − kikjQij

n +O(k3/q3)
]
, (2.95)

where we have used y ∼ O(1/q) and defined the moments of the matter distribution

in the n-th cell as follows,

din =

∫
Rn

d3y yiρ(xn + y), (2.96)

Qij
n =

∫
Rn

d3y yiyjρ(xn + y). (2.97)

Using Eq. (2.93), we obtain

δfin(k) = −
iki

ρ̄

∑
n

dine
ik·xn +

kikj

ρ̄

∑
n

Qij
n e

ik·xn +O(k3/q3). (2.98)

Since y = x− xn, the first term on the right-hand side can be rewritten as∑
n

dne
ik·xn =

∑
n

mn

(
xCM
n − xn

)
eik·xn , (2.99)

where xCM
n denotes the center of mass position of each cell. In the absence of the

long-wavelength modes, which can generate the difference (xCM
n −xn) by the coherent
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momentum transfer over longer separations than the cell size Rn ∼ 1/q, (xCM
n −xn)

should be zero. In other words, the momentum in each cell should be conserved if

there is no the long-wavelength perturbation beyond cells. Therefore the remaining

contribution starts the second term on the right-hand side in Eq. (2.98), and hence

Pfin(k → 0) ∝ k4. (2.100)

Now we turn to consider the effect from long-wavelength perturbation on short-

wavelength one. The high-k limit k ≫ q of Eqs. (2.88) and (2.89) with Eqs. (2.76)

and (2.82) yields

P22(k)
k≫q→ 1

3
k2Plin(k)

∫
d3q

(2π)3
Plin(q)

q2

+

[
569

735
Plin(k)−

47

105
k
dPlin(k)

dk
+

1

10
k2
d2Plin(k)

dk2

] ∫
d3q

(2π)3
Plin(q)

+O
(
q2

k2

)
, (2.101)

P13(k)
k≫q→ − 1

6
k2Plin(k)

∫
d3q

(2π)3
Plin(q)

q2

+
58

415
Plin(k)

∫
d3q

(2π)3
Plin(q) +O

(
q2

k2

)
. (2.102)

We can see that the O(k2/q2) contribution in the first term in P22(k) exactly cancels

out with the first term in 2P13(k). Again, this is an example of the consistency

relation of large-scale structure, which is a consequence of the equivalence principle.

Thus, the leading order correction starts from O(k0/q0), so the nonlinear correction

is not suppressed by the small parameter q/k. Comparing this with the result in

the low-k limit, where the nonlinear correction is suppressed by k/q, this implies

the effect of the long modes is more important than the short modes. While here

we use the perturbation theory, the importance of the momentum transfer from the

long modes to the short modes is confirmed by the N -body simulations [66].
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Observational effects
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In this chapter, we describe several observational effects relevant to galaxy spec-

troscopic surveys such as the galaxy bias, redshift-space distortion, and Alcock-

Paczyński effect. These effects make it difficult to interpret observed data. At the

same time, however, these also provide probes of cosmological information. For in-

stance, the primordial non-Gaussianity introduces the scale-dependent bias [67] at

least on large scales, so we can extract the dynamics during the inflation by measur-

ing this bias. As discussed below, the redshift-space distortion contains the infor-

mation on the velocity field, or equivalently the growth rate. Anisotropies induced

by Alcock-Paczyński effect can be used to calibrate the distance measurements.
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3.1. GALAXY BIAS

3.1 Galaxy bias

In this section, we discuss the so-called galaxy bias issues, following a comprehensive

review [22]. Basically, the bias is a statistical relation between the observed distri-

bution of tracers (e.g. galaxies) and the underlying matter fluctuations. Because we

cannot yet understand or simulate the formation of galaxies from the first principles,

we need to introduce nuisance parameters that model the relation — the so-called

galaxy bias parameters. Then we need to derive cosmological constraints from clus-

tering observables after marginalizing over the galaxy bias parameters. Here we

are limited to the case where the initial fluctuations obeys the Gaussian and our

discussion focuses on the halo bias since on large scales the description of the halo

biases can be applied to galaxies. Indeed, the derived relations is valid for actual

galaxy surveys such as Ref [14]. Thus, in the following we identify halos as galaxies.

3.1.1 Simple model: the peak theory in Lagrangian space

First, let us consider the bias expansion in Lagrangian space in which we specifies

the initial positions of dark matter particles and halos. We denote the Lagrangian

position by q. In the simple peak theory, we assume that dark matter halos are

formed in overdense regions in Lagrangian space, that is, peaks above a threshold

of dark matter fluctuations collapse to form halos, in which galaxies are formed.

Because the dark matter density field in Lagrangian space δ(q) corresponds to the

initial density field, δ(1)(q) is to be close to uniform. Hence, the volume of a halo

with mass M in Lagrangian space can be identified as M/ρ̄m and we can define the

Lagrangian radius R of halos through R(M) ≡ (3M/4πρ̄m)
1/3. Then, in order to

characterize the thresholed regions, it is natural to introduce the smoothed density

field with R,

δ
(1)
R ≡

∫
d3q WR(q)δ

(1)(q), (3.1)

with WR(q) being the filter function that smooths out small-scale fluctuations less

than R. Here we denote the Lagrangian density field with subscript (1) to stress that

this field is the linear density field. Although the top-hat or the Gaussian function

is commonly used for WR(q), the choice of the filter function is not important for

the bias. Using this filtered density field δR, we define the comoving Lagrangian

number density of halos as

ng(q) ≡ NΘH(δ
(1)(q)− δcr), (3.2)

where we introduce a density threshold δcr, ΘH is the Heaviside step function and N

is a normalization factor, which does not affect the calculation of the bias. This num-
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ber density ng(q) corresponds to cumulative number density of halos with masses

larger than M .

Since the initial condition is supposed to obey the Gaussian distribution, the

statistics of the random field δ
(1)
R are completely specified by the two-point correla-

tion function:

ξR,lin(r) = ⟨δ(1)R (q)δ
(1)
R (q+ r)⟩. (3.3)

The expectation values of Eq. (3.2) gives the mean number density of halos:

n̄g = ⟨ng(q)⟩ = N

∫
dδ N [δ]ΘH(δ − δcr) =

N

2
erfc

[
νc√
2

]
, (3.4)

where N [δ] is the Gaussian distribution function and we define the normalized

threshold νc ≡ δcr/σR with the variance σ2
R ≡ ⟨δ2R⟩ = ξR,lin(0) of the smoothed

density field. This shows that the high-peak (massive) limit νc ≫ 1 corresponds

to rare objects. The two-point correlation function of halos in Lagrangian space is

defined by [21, 65]

1 + ξg(r) ≡
⟨ng(q)ng(q+ r)⟩

⟨ng⟩2
=
N2

n̄2
g

∫
dδ1dδ2 N [δ1, δ2]ΘH(δ1 − δcr)ΘH(δ2 − δcr),

(3.5)

where N [δ1, δ2] denotes the joint Gaussian distribution function with the covariance

Cov =

(
σ2
R ξR,lin(r)

ξR,lin(r) σ2
R

)
. (3.6)

Using these expressions, we get

ξg(r) =

√
2

π

[
erfc

(
νc√
2

)]−2 ∫ ∞

νc

dν e−ν2/2 exp

 νcσ
2
R − νξR,lin(r)√

2(σ4
R − ξ2R,lin(r))

− 1. (3.7)

Notice that r-dependence of ξg(r) is characterized only by ξR,lin(r). Then, if the

smoothed two-point function ξR,lin(r) is small, we can expand Eq. (3.7) in terms of

ξR,lin(r),

ξg(r) =
∞∑

N=1

1

N !
(bLN)

2 [ξR,lin(r)]
N , (3.8)

where bLN are called as the Lagrangian bias parameters, which are r-independent

constants and the subscript L means these bias parameters are defined with respect
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to the Lagrangian density field. bLN can be calculated by comparing Eq. (3.7) to

Eq. (3.8):

bLN =

√
2

π

[
erfc

(
νc√
2

)]−1
e−νc/2

σN
R

HN−1(νc)
νc≫1
=

νNc
σN
R

+O(νN−1
c ), (3.9)

where HN(νc) is the N -th order Hermite polynomial. In the high-park limit, we

obtain the simple relation bLN = νNc /σ
N
R , which implies that the rare (or equivalently

massive) object has a high bias [68, 69]. Conversely, in the low-mass limit which

correspondsR→ 0 we have σR →∞ leading to bLN → 0. This incorrect result implies

the simple description for halos Eq. (3.2) is not valid for low-mass objects due to the

miscounting the number of low-mass clumps, which is called as the “cloud-in-cloud”

problem [70].

In reality, fluctuations of matter density field become small on large scales in the

standard cosmology, so we can use the first few terms in Eq. (3.8) to describe the

halo two-point correlation function or the power spectrum on large scales.

The same result can be obtained from more general ansatz [71]. In fact, suppose

that δg(q) ≡ ng(q)/n̄g−1 is a functional of the smoothed matter density fluctuations

δR(q), then we can formally expand in a series of δ
(1)
R (q),

δg(q) = F [δ(1)R (q)] =

(
∂F
∂δR

)
δR=0

δ
(1)
R (q) +

1

2

(
∂2F
∂δ2R

)
δR=0

([
δ
(1)
R (q)

]2
− σ2

R

)
+ · · ·

=
∞∑

N=1

1

N !
bLN

([
δ
(1)
R (q)

]N
− ⟨
[
δ
(1)
R (q)

]N
⟩
)
. (3.10)

Here we introduce σ2
R and ⟨

[
δ
(1)
R (q)

]N
⟩ terms to guarantee ⟨δg(q)⟩ to be zero for all

orders. Then, Eq. (3.8) holds for this ansatz. Furthermore, using this ansatz, we

can easily predict not only two-point function but also N -point function of halos.

This expansion is called as the local Lagrangian bias since the halo density field is

determined only by the local overdensity field δR(q) and does not depends on the

non-local quantities such as the tidal field sij(q).

3.1.2 Bias expansion in Eulerian space

In the previous subsection, we consider the Lagrangian bias, i.e., the relation between

density field of halos and matter fluctuations in Lagrangian space. In practice,

however, we observe galaxies in Eulerian coordinates, not in Lagrangian coordinates

where the Lagrangian coordinates are the initial positions of particles while the

Eularian coordinates roughly correspond to the final positions of halos. Therefore

we want to determine the bias expansion in Eulerian space, which requires the

discussion of the gravitational evolution.
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In order to find out the relation between the Lagrangian and Eulerian bias, let

us start with the relation between the Eulerian and Lagrangian coordinates,

x = q+Ψ(q), (3.11)

where Ψ(q) is the displacement field. The number conservation of dark matter and

halos gives

[1 + δ(x)] d3x = d3q,
[
1 + δEg (x)

]
d3x =

[
1 + δLg (q)

]
d3q, (3.12)

where the subscript E and L depict the “Eulerian” and “Lagrangian” respectively.

These two equations lead to the following relation,

δEg (x) = δLg (q) + δLg (q)δ(x) + δ(x). (3.13)

With the local Lagrangian bias expansion Eq. (3.10), at the first order in the per-

turbation theory, we find

δE,(1)g (x) = δL,(1)g (x) + δ(1)(x) =
[
bL1 + 1

]
δ(1)(x) = bE1 δ

(1)(x), (3.14)

where we set x = q from Eq. (3.11). Hence,

bE1 = 1 + bL1 . (3.15)

At second order, Eqs. (3.11) and (3.13) yield

δE,(2)g (x) = δL,(2)g (x)−Ψ(1) · ∇δL,(1)g (x) + δL,(1)g (x)δ(1)(x) + δ(2)(x), (3.16)

where we have used δ
L,(2)
g (q) = δ

L,(2)
g (x − q) = δ

L,(2)
g (x) −Ψ(1) · ∇δL,(1)g (x). Recall

that the second-order density is given by Eq. (2.72):

δ(2)(x) =
17

21

(
δ(1)(x)

)2 −Ψ(1) · ∇δ(1)(x) + 2

7
sij(x)sij(x). (3.17)

Then, we obtain

δE,(2)g (x) =
1

2
bL2
(
δ(1)
)2 − bL1Ψ(1) · ∇δ(1) + bL1

(
δ(1)
)2

+ δ(2)

=

[
1

2
bL2 +

4

21
bL1

] (
δ(1)
)2

+
[
bL1 + 1

]
δ(2) − 2

7
bL1

(
s
(1)
ij

)2
=
1

2
bE2
(
δ(1)(x)

)2
+ bE1 δ

(2)(x) +
1

2
bEs2
(
s
(1)
ij (x)

)2
, (3.18)

where we define the second-order Eulerian bias parameters

bE2 = bL2 +
8

21
bL1 , bEs2 = −

4

7
bL1 , (3.19)
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where bEs2 is called the tidal bias. Up to the second order, we thus have

δEg (x) = bE1
(
δ(1)(x) + δ(2)(x)

)
+

1

2
bE2
(
δ(1)(x)

)2
+

1

2
bEs2
(
s
(1)
ij (x)

)2
. (3.20)

Notice that even when assuming local Lagrangian bias Eq. (3.10), due to the non-

linear gravitational evolution, there appears the non-local bias bEs2 which describes

the dependence of halo overdensity field on the tidal field [72]. Indeed, there is

evidence for the tidal bias from N -body simulations [73, 74]. As long as the local

Lagrangian bias ansatz is valid, Eqs. (3.15) and (3.19) give rise to the consistency

between higher Eulerian bias parameters, bEs2 = −4
7
(bE1 − 1), which can be used as

the prior for higher-order bias.

Similarly to the discussion in the local Lagrangian bias, these results can be

derived from the effective field theory approach [75, 76]. Assuming that the galaxy

formation is solely determined by gravity, which is a reasonable ansatz in large scale

limit, the galaxy density field can be considered as a functional of the large-scale

gravitational potential. Here a relevant symmetry is the equivalent principle, which

states the local physics does not depends on the gradient of the long-wavelength

gravitational potential. Thus, the galaxy density field consists of the second (and

higher) derivatives of the gravitational potential, which can be decomposed into its

trace part δKij ∂
i∂jΦ ∝ δ and its traceless part (∂i∂j− δKij /3)Φ ∝ sij. At linear order,

galaxy density field δg does not depend on the tidal field sij because δg is a scalar

while sij is a tensor. At second order, however, δg can depend on the trace of the

product of sij, i.e., sijsij. These consideration leads to

δg(x) =F [∂i∂jΦL(x), . . . ]

=

(
∂F
∂δ

)
δ=0

δ(x) +
1

2

(
∂2F
∂δ2

)
δ=0

δ2(x) +
1

2

(
∂2F
∂(sij)2

)
sij=0

s2ij(x) + · · · .

(3.21)

This gives the same results as Eq. (3.20).

3.1.3 Galaxy power spectrum and bispectrum

To sum up, at leading order, the galaxy power spectrum is simply given by

Pg(k) = b21Plin(k). (3.22)

In order to consider the next-to-leading order power spectrum of galaxies, we have to

include not only the second order biases but also the third-order biases. In addition,

at one-loop order we have to renormalize the biases [77–80] and its explicit form is
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found in Refs. [78, 80]. The tree-level galaxy bispectrum in real space is given by

Bggg(k1,k2,k3) =2b21

[(
b1F2(k1,k2) +

b2
2
+
bs2

2

[
k1 · k2

k1k2
− 1

3

])
Plin(k1)Plin(k2)

+ perms.], (3.23)

and the galaxy-galaxy-matter bispectrum, which is defined via ⟨δg(k1)δg(k2)δm(k3)⟩ =
(2π)3δ3D(k1 + k2 + k3)Bggm(k1,k2,k3), is explicitly given by

Bggm(k1,k2,k3) =2

[
b21

(
b1F2(k1,k2) +

b2
2
+
bs2

2

[
k1 · k2

k1k2
− 1

3

])
Plin(k1)Plin(k2)

+ b1

(
b1F2(k2,k3) +

b2
2
+
bs2

2

[
k2 · k3

k2k3
− 1

3

])
Plin(k2)Plin(k3)

+b1

(
b1F2(k1,k3) +

b2
2
+
bs2

2

[
k1 · k3

k1k3
− 1

3

])
Plin(k1)Plin(k3)

]
.

(3.24)
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3.2 Redshift-space distortion

In this section, we give a brief summary on the redshift-space distortion effect.

3.2.1 The linear Kaiser formula

In a redshift galaxy survey, the radial position of each galaxy needs to be inferred

from its observed redshift, by using the fact that it is dominated by the Hubble flow.

However, it can be modified by a peculiar velocity of galaxy through the Doppler

effect, causing an apparent displacement of the inferred galaxy position from the

true position:

s = x+
v∥(x)

H(z)
n̂, (3.25)

where s is the inferred position of galaxy in redshift space, x is the comoving true

position in real space, v∥ = v · n̂ is the radial component of peculiar velocity, H(z)
is the comoving Hubble rate, and n̂ is the unit vector of the line-of-sight direc-

tion. With this coordinate transformation, the density field in redshift space can be

expressed as

ρs(s) =

∫
d3x ρ(x) δ3D

(
s− x−

v∥(x)

H(z)
n̂

)
, (3.26)

where ρs(s) or ρ(x) denotes the redshift- or real-space density field of galaxies,

respectively. In the following quantities with subscript “s” denote their redshift-

space quantities. Fourier-transforming Eq. (3.26),
∫
d3s eik·s, yields

δ3D(k) + δs(k) =

∫
d3x [1 + δg(x)]e

−ik·x−i(k·n̂)
v∥
H . (3.27)

This transformation is exact even if multiple galaxies are mapped to the same po-

sition in redshift space, which can happen, e.g. in a nonlinear high-density region.

Such multi-streaming regions are beyond the scope of this thesis, and we ignore the

effects in this thesis for simplicity. Then we can rewrite Eq. (3.27) as

δs(k) =

∫
d3x

[
1 + δg(x)−

∣∣∣∣ ∂si∂xj

∣∣∣∣] e−ik·x−i(k·n̂)
v∥
H

≃
∫
d3x

[
δg(x)−

1

H(z)
∂v∥
∂n̂
· n̂
]
e−ik·x−i(k·n̂)

v∥
H , (3.28)

where we kept the peculiar velocity up to the linear order in an expansion of the Ja-

cobian, |∂si/∂xj|, assuming |v∥/H| ≪ 1. In the absence of vorticity, from Eq. (2.39)

the linear velocity is expressed as,

vi(k, z) =
iki
−k2

θ(k, z) =
iki
k2
δm(k, z)H(z)f(z). (3.29)
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CHAPTER 3. OBSERVATIONAL EFFECTS

Substituting this into Eq. (3.28) , at leading order we find [42]

δs(k) ≃
(
b1 + fµ2

)
δm(k), (3.30)

where we have used δg = b1δm and µ = k · n̂/k is the directional cosine of the

wavevector and the line-of-sight. Note that here we assume that there is no velocity

bias, i.e., vg = vm, which is valid at large scales. Given Eq. (3.30), the galaxy power

spectrum in redshift space yields

Ps(k, µ) =
(
b1 + fµ2

)2
Plin(k). (3.31)

This is the Kaiser formula that describes the observed power spectrum of galaxies on

large scales. Notice that there appears the anisotropy called as the redshift-space

distortion (RSD). This Kaiser anisotropy represents the infall motion. At linear

order, this anisotroy is proportional to the linear growth rate f . This implies that

by measuring anisotropic signals on large scales we can infer f , or the velocity field.

Compared to the general relativity, alternative gravity theories predict different

values for f , so we can use the RSD to test theories of gravity.

In practice, to measure the anisotropic power spectrum we use its Legendre

coefficients;

Ps(k, µ) =
∑
ℓ

Pℓ(k)Lℓ(µ), (3.32)

where Lℓ(µ) is the ℓ-th order Legendre polynomial. The Kaiser formula Eq. (3.31)

contains the monopole, quadrupole and hexadecapole power spectra as follows:

P0(k) =

(
b21 +

2

3
b1f +

1

5
f 2

)
Plin(k), (3.33)

P2(k) =

(
4

3
b1f +

4

7
f 2

)
Plin(k), (3.34)

P4(k) =
8

35
f 2Plin(k). (3.35)

Because f < 1 in the nearby universe, the amplitudes of the multipole power spec-

tra follows P0(k) > P2(k) > P4(k) and thus most of information comes from the

monopole and quarupole power spectra.
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3.2. REDSHIFT-SPACE DISTORTION

3.2.2 Nonlinear RSD in the standard perturbation theory

In order to obtain the higher order perturbative results beyond linear theory, we

expand the exponent in Eq. (3.28),

δs(k) =
∞∑
n=1

n∏
m=1

{∫
d3qm

(2π)3

}
δ3D(k− q1···n)

[
δg(k1)− fµ2θ(k1)

]
× (fµk)n−1

(n− 1)!

n∏
m=2

{
µm

qm
θ(qm)

}
, (3.36)

where µm ≡ qm · n̂/qm. Using the perturbative results for δg(k) and θ(k), we can

write the redshift-space density field as the power series of the linear matter density

field as follows

δs(k) =
∞∑
n=1

n∏
i=1

{∫
d3qi

(2π)3
δ(1)(qi)

}
δ3D(k− q1···n)Zn(q1, · · · ,qn), (3.37)

where Zn(q1, · · · ,qn) is the n-th redshift-space kernel function, which reads from

Eqs. (3.36) and (2.76)-(2.77),

Z1(k) =b1 + fµ2, (3.38)

Z2(q1,q2) =b1F2(q1,q2) +
b2
2
+
bs2

2

(
q1 · q2

q1q2
− 1

3

)
+ fµ2G2(q1,q2)

− fµk

2

[
µ1

q1
(b1 + fµ2

1) +
µ2

q2
(b1 + fµ2

2)

]
. (3.39)

Here we have consistently included both the nonlinear biases and nonlinear gravi-

tational evolution up to the second order.

Using these kernels, the tree-level bispectrum in redshift space can be written as

Bsss(k1,k2,k3) = 2 [Z1(k1)Z1(k2)Z2(k1,k2)Plin(k1)Plin(k2) + perms.] , (3.40)

and the galaxy-galaxy-matter bispectrum in redshift space, which is define through

⟨δs(k1)δs(k2)δm(k3)⟩ = (2π)3δ3D(k1 + k2 + k3)Bssm(k1,k2,k3), as

Bssm(k1,k2,k3) = 2 [Z1(k1)Z1(k2)Z2(k1,k2)Plin(k1)Plin(k2)

+ Z1(k2)Z2(k2,k3)Plin(k2)Plin(k3)

+Z1(k1)Z2(k1,k3)Plin(k1)Plin(k3)] . (3.41)
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3.3 Alcock-Paczyński test

The two-point correlation function of galaxies is measured as a function of the

separation lengths between paired galaxies. To measure this separation, the position

of each galaxy needs to be inferred from the measured redshift and angular position

by means of the angular diameter distance and the Hubble law. Then the separation

lengths perpendicular and parallel to the line-of-sight direction from the measured

quantities are given as

x⊥ =(1 + z)DA(z)∆θ, (3.42)

x∥ =
1 + z

H(z)
∆z, (3.43)

with ∆θ and ∆z being the differences between the angular positions and the redshifts

of the paired galaxies and

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
. (3.44)

To convert the observables (∆θ, ∆z) to the comoving quantities (x⊥, x∥), one has

to assume a fiducial cosmological model. If the fiducial cosmological model we

use differs from the underlying true cosmological model, the relation between the

comoving true distance and observed distance is given by

x⊥,true =
DA(z)

DA,fid(z)
x⊥,obs, (3.45)

x∥,true =
Hfid(z)

H(z)
x∥,obs, (3.46)

where the quantities with subscript “true” refer to the underlying true values and the

quantities with “obs” are obtained from the assumed fiducial cosmological model.

In terms of the wavevector, this transformation results in

k⊥,true =
DA,fid(z)

DA(z)
k⊥,obs, (3.47)

k∥,true =
H(z)

Hfid(z)
k∥,obs. (3.48)
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Then the magnitude and line-of-sight component of the comoving wavevector be-

come

ktrue =
√
|⃗ktrue⊥ |2 + |⃗ktrue∥ |2 =

√(
Dfid

A

DA

)2

|⃗kobs⊥ |2 +
(
H

Hfid

)2

|⃗kobs∥ |2

=kobs

√(
Dfid

A

DA

)2

(1− µ2
obs) +

(
H

Hfid

)2

µ2
obs

≡ kobs

α(Dfid
A , H

fid, µobs)
, (3.49)

µtrue =
ktrue∥

ktrue
= α(Dfid

A , H
fid, µobs)

H

Hfid

kobs∥

kobs

=
αH

Hfid
µobs. (3.50)

This leads to the observed power spectrum in redshift space,

Pobs(k
obs, µobs) =

H

Hfid

(
Dfid

A

DA

)2

P (ktrue, µtrue), (3.51)

where we have used Pobs(k
obs)d3kobs = P (ktrue)d3ktrue.

Since the fiducial cosmological model we assume generally differs from the under-

lying true cosmology and DA(z) and H(z) depend on the cosmological parameters

differently, an apparent geometrical distortion is caused in the two-dimensional pat-

tern of galaxy clustering. In principle, this distortion could be measured using

only the isotropy of clustering statistics, the so-called Alcock-Paczyński (AP) test

[44, 81, 82], but a more robust measurement of bothDA(z) andH(z) can be obtained

by searching for the “common” BAO scales in the pattern of galaxy clustering, as

the standard ruler, in combination with the CMB constraints [45, 46]. This is be-

cause the AP effect anisotropically alters the characteristic scales imprinted on the

power spectrum, as shown in Eq. (3.49), k → k/α [14, 83, 84].

Eq. (3.51) implies that there appear the higher-order multipoles than ℓ = 4 if the

fiducial cosmology deviates from the underlying true cosmology. In general, the AP

effect makes the galaxy clustering anisotropic even in the absence of the RSD. Notice

that, however, the generated anisotropic signals are confined into the line-of-sight

direction and there is no anisotropic distortion in the plane perpendicular to the line-

of-sight due to the AP effect. In other words, the AP effect leaves the redshift-space

power spectrum two-dimensional one, which still respects the three-dimensionally

rotational symmetry around the observer.
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According to the discussion in Section 2.2, the nonlinear growth of the LSS

produces the mode-coupling of different scales. The mode-coupling naturally pre-

dicts that long-wavelength fluctuations beyond a given survey region may affect

the observed galaxy clustering within a finite survey region, which is known as the

super-sample or super-survey effect [30, 33]. We cannot directly measure these long-

wavelength fluctuations (called as the super-sample or super-survey modes) in a

finite volume survey. However, through the non-linear mode coupling between dif-

ferent Fourier modes, the super-sample modes change both the amplitude and the

comoving scale of the short-wavelength fluctuations, which is known as the growth

and dilation effect, respectively [26, 28, 31].

The effects of the super-sample modes on the real-space power spectrum have

been extensively studied in Refs. [26, 29–32, 37, 41]. The uncertainty of the ampli-

tude of the super-sample modes forces us to add a new term to the power spectrum

covariance, dubbed as the super-sample covariance [30, 31, 41]. Physical effects of

the super-sample modes originate from the second derivatives of large-scale gravi-

tational potential, which can be decomposed into the trace (mean overdensity) and

the traceless (large-scale tidal field) parts [37]. Thus, there are super-sample tidal

components that are expected to be of the same order of magnitude as those of

isotropic ones, whereas previous studies have focused on the isotropic super-sample

mode because the impact of super-sample tidal components on the real-space power

spectrum vanishes after the spherical average.

As discussed in Section 3.2 and 3.3, however, in spectroscopic surveys what we

observe is not the real-space power spectrum but redshift-space power spectrum.

The super-sample tidal mode is likely to produce similar anisotropic effects. Hence,

the purpose of this chapter is to study the effects of the large-scale tides on the

redshift-space power spectrum, based on the perturbation theory. To do this, in

Sections 4.2-4.4 we derive response functions of the power spectrum to super-sample

modes, which describe how the super-sample modes in a given survey realization

affect the power spectrum, after giving the definition of the super-sample modes in

Section 4.1. We then discuss the impact of the large-scale tide on estimation of cos-

mological distances and the redshift-space distortion parameter via a measurement

of the redshift-space power spectrum for a hypothetical large-volume galaxy survey,

using the Fisher matrix formalism in Section 4.5. We further explore the possibility

to treat the super-sample tidal modes as a new signal in Section 4.6.
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4.1 Observed density field and the super-sample

modes

The number density field of galaxies observed in a finite-volume survey region can

be expressed, using the survey window function W (x), following the formulation in

Ref.[30]

δW (x) = W (x)δ(x), (4.1)

where δW (x) is the observed density field, δ(x) is the underlying true density field,

and the survey window is defined such that W (x) = 1 if x is inside the survey

geometry, and otherwise W (x) = 0. Throughout this thesis we assume that a

survey window is given in the background comoving coordinate. The survey volume

V is defined in terms of the survey window as

V =

∫
d3x W (x). (4.2)

In the following we do not consider effects of masks that might cause additional

mode-coupling between high-k modes in the observed power spectrum. The Fourier

transform of the density field is

δW (k) =

∫
d3q

(2π)3
W (q)δ(k− q), (4.3)

where we distinguish real-space quantities from their Fourier transforms by their

arguments. The Fourier transform of the survey window W (k) is nonvanishing for

k ≪ 1/L while W (k) ≃ 0 for k ≫ L, where L ∼ V 1/3 is a typical scale of the

survey volume. The equation above explicitly shows that the Fourier transform of

the observed field has a contribution from long-wavelength modes beyond a survey

window, i.e. super-sample or super-survey modes, via a convolution with the survey

window.

An estimator of the three-dimensional power spectrum for a given survey window

is defined as

P̂obs(k) ≡
1

V

∫
k′∈k

d3k′

Vk
δW (k′)δW (−k′), (4.4)

where the integration is done over a volume element around the mode k (a target

wavevector for the power spectrum measurement), and Vk is the volume: Vk ≡∫
k′∈k d

3k′. If a bin width around the bin k is given by ∆k, Vk ≃ (∆k)3. This defi-

nition does not include an angle average of d2k̂, unlike a definition of the monopole

power spectrum. Hence, at this point, the power spectrum P̂ (k) is given as a
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function of the three-dimensional vector, k. This is because the large-scale tides

generally cause anisotropic distortions in the clustering pattern of galaxies in all

three-dimensional directions. Note that the power spectrum estimator satisfies a

parity invariance:

P̂obs(k) = P̂obs(−k). (4.5)

Given the definition of the power spectrum ⟨δ(k)δ(k′)⟩ ≡ (2π)3δ3D(k + k′)P (k),

the ensemble average of the estimator (Eq. (4.4)) is found to be an unbiased esti-

mator of the underlying power spectrum for modes with k ≫ 1/L:⟨
P̂obs(k)

⟩
=

1

V

∫
k∈k′

d3k′

Vk

∫
d3q

(2π)3
|W (q)|2 P (k′ − q)

≃ 1

V

∫
k∈k′

d3k′

Vk
P (k′)

∫
d3q

(2π)3
|W (q)|2

≃P (k)
V

∫
d3q

(2π)3
|W (q)|2 = P (k). (4.6)

Here we have used P (k′ − q) ≃ P (k′) over the integration rage of d3q which the

window function supports and assumed that P (k) is not a rapidly varying function

within the k-bin. In addition, we have used the general identity for the window

function [30]:

V =

∫
d3x W n(x) =

[
n∏

i=1

∫
d3qi

(2π)3
W (qi)

]
(2π)3δ3D(q1...n), (4.7)

where q1...n ≡ q1 + q2 + · · ·+ qn.

The super-sample modes we focus on are the large-scale density contrast (cor-

responding to the background density fluctuation) and the large-scale tides, defined

in terms of the linear matter density fluctuation field as

δb ≡
1

V

∫
d3x W (x)δlinm (x) =

1

V

∫
d3q

(2π)3
δlinm (q)W (−q),

τij ≡
1

4πGρ̄ma2V

∫
d3x W (x)

[
∂i∂jΦ(x)−

δKij
3
∇2Φ(x)

]

=
1

V

∫
d3q

(2π)3

(
q̂iq̂j −

δKij
3

)
δlinm (q)W (−q), (4.8)

where q̂i ≡ qi/q, q̂iq̂
i = 1, δKij is the Kronecker delta and Φ(x) is the gravitational

potential field. The window function picks up the longer-wavelength fluctuations

than a typical scale of survey volume. Throughout this thesis, we assume that

a given survey volume is so large that the matter density fields contributing the
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super-sample modes are in the linear regime, denoted as δlinm (x). Under this setting,

|δb|, |τij| ≪ 1. These super-sample modes are not direct observables and vary with

survey realizations, because the super-sample modes depend on the position and

shape of specific surveys. For a given survey realization, δb and τij are constant.

Although δb and τij are related through τij = ∂i∂j∂
−2δb in real space, the values of

τij cannot be inferred from δb due to the non-local nature of a tidal field (suggested

by the appearance of inverse Laplacian ∂−2, see Refs. [35, 36] for details). The ex-

pectation values of the super-sample modes, i.e. the averages over different, possible

survey realizations for a fixed volume, are ⟨δb⟩ = ⟨τij⟩ = 0 and the variances are

computed if the linear matter power spectrum at long wavelengths for super-sample

modes, Plin(k), is given for a given cosmological model:

σ2
b ≡ ⟨δ2b⟩ =

1

V 2

∫
d3q

(2π)3
Plin(q) |W (q)|2 , (4.9)

⟨δbτij⟩ =
1

V 2

∫
d3q

(2π)3

(
q̂iq̂j −

1

3
δKij

)
Plin(q) |W (q)|2 , (4.10)

⟨τijτlm⟩ =
1

V 2

∫
d3q

(2π)3

(
q̂iq̂j −

1

3
δKij

)(
q̂lq̂m −

1

3
δKlm

)
Plin(q) |W (q)|2 . (4.11)

In this thesis we consider an isotropic window for simplicity; W (q) = W (q). In

this case the variances of large-scale tides are simplified as

⟨δbτij⟩ =0, (4.12)

⟨τijτℓm⟩ =
1

V 2

∫
d3q

(2π)3

(
q̂iq̂j −

1

3
δKij

)(
q̂ℓq̂m −

1

3
δKℓm

)
Plin(q)|W (q)|2

=

(
− 2

45
δKij δ

K
ℓm +

3

45
δKiℓ δ

K
jm +

3

45
δKimδ

K
jℓ

)
σ2
b, (4.13)

σ2
τ ≡⟨(τ11)2⟩ = ⟨(τ22)2⟩ = ⟨(τ33)2⟩ =

3

4
⟨(τij)2⟩i ̸=j =

4

45
σ2
b. (4.14)
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4.2 Response and the squeezed bispectrum

We now consider how super-sample modes affect the power spectrum observed in

a finite-volume survey. These long-wavelength perturbations affect the small-scale

clustering due to the nonlinear mode-coupling by gravity. Following the discussion

in Refs. [30, 37], in the presence of super-sample modes (δb, τij) for a given survey

realization, the “observed” power spectrum is formally expressed, up to the first

order of super-sample modes, as

Pobs(k; δb, τij) = P (k)|δb=0,τij=0 +
∂P (k)

∂δb
δb +

∂P (k)

∂τij
τij. (4.15)

Here we explicitly denote that the observed spectrum Pobs(k; δb, τij) depends on the

super-sample modes of a given survey realization, and the first term in the right-

hand side is the power spectrum without the super-sample modes. The functions

∂P (k)/∂δb and ∂P (k)/∂τij are so-called “response” functions describing a response

of the power spectrum to the super-sample modes via mode couplings in the nonlin-

ear structure formation. We again stress that the super-sample modes, δb and τij, are

“constant” numbers for a particular survey realization. Hence, the above equation

assumes that a shift in the power spectrum due to all modes with wavelengths longer

than a size of survey volume is described by the product of the response function

and δb or τij. Furthermore, the response function is given as a function of sub-survey

modes, even down to an arbitrary large k in the deeply nonlinear regime, if it is not

non-vanishing. That is, we assume that, as long as the super-sample modes are in

the linear regime (a survey volume is sufficiently large) and if the response func-

tion is obtained, the effects on all the small-scale modes are described by the above

equation. Thus Eq. (4.15) rests on a non-trivial assumption, but is quite useful if

Eq. (4.15) holds a good approximation, which is indeed the case for δb as shown by

many works e.g.[31].

Now we derive the response function using the perturbation theory. The simplest

way to do this is considering a squeezed-limit bispectrum that arises from correla-

tions between two short modes and one long mode (corresponding to super-sample

modes) [85]. More specifically, let us consider a correlation of P̂obs(k) (Eq. (4.4))

with the large-scale matter density field, δlinm (q) = δ(1)(q) (q is the long mode):⟨
P̂obs(k)δ

(1)
m (q)

⟩
=

1

V

∫
k′∈k

d3k′

Vk

∫
d3q1

(2π)3
d3q2

(2π)3
⟨δ(k′ − q1)δ(−k′ − q2)δ(q)⟩W (q1)W (q2)

=
1

V

∫
k′∈k

d3k′

Vk

∫
d3q1

(2π)3
d3q2

(2π)3
B(k′ − q1,−k′ − q2,q)(2π)

3δ3D(q12 − q)

×W (q1)W (q2),

(4.16)
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where we have used the definition of the bispectrum:

⟨δ(k1)δ(k2)δ(q)⟩ ≡ B(k1,k2,q)(2π)
3δ3D(k1 + k2 + q). (4.17)

Due to the window function, the contribution of the above integrand comes when

q1, q2 ≪ k if we are interested in k ≫ 1/L. For the case that k ≫ q1, q2, q, the

bispectrum in the above equation arises from so-called squeezed triangles where

two sides are nearly equal and in opposite direction. To see this, we can make the

variable changes k′ − q1 ↔ k′ and q1 + q2 ↔ q under the delta function condition

q12 + q = 0 and the approximation that k ≪ q. The bispectrum we are interested

in reads

lim
q→0

B(k′,−k′ − q,q). (4.18)

In this limit,⟨
P̂obs(k)δ

(1)
m (q)

⟩
=

1

V

∫
k′∈k

d3k′

Vk
B(k′,−k′ − q,q)

∫
d3q1

(2π)3
W (q1)W (q− q1)

=
B(k,−k− q,q)W (q)

V
, (4.19)

where we have used ∫
d3q1

(2π)3
W (q1)W (q− q1) = W (q), (4.20)

which is followed from W 2(x) = W (x) in real space. On the other hand, correlating

Eq. (4.15) with δ(1)(q) results in⟨
P̂obs(k; δb, τij)δ

(1)
m (q)

⟩
=P (k)

⟨
δ(1)(q)

⟩
+
∂P (k)

∂δb

⟨
δbδ

(1)(q)
⟩
+
∂P (k)

∂τij

⟨
τijδ

(1)(q)
⟩
.

=
1

V

∫
d3q′

(2π)3

[
∂P (k)

∂δb
+
∂P (k)

∂τij

(
q̂′iq̂

′
j −

δKij
3

)]
×
⟨
δ(1)(q′)δ(1)(q)

⟩
W (−q′)

=
1

V

[
∂P (k)

∂δb
+
∂P (k)

∂τij

(
q̂iq̂j −

δKij
3

)]
Plin(q)W (q). (4.21)

Thus, the triangle configuration describes how the power spectrum P (k) is modu-

lated by the super-sample mode δ(1)(q). Comparing Eq. (4.19) with Eq. (4.21), the

squeezed bispectrum can be described by the response of P (k) to the super-sample

modes as

lim
q→0

B(k,−k− q,q) =

[
∂P (k)

∂δb
+

(
q̂iq̂j −

1

3
δKij

)
∂P (k)

∂τij

]
Plin(q). (4.22)
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From Eq. (4.22), we can derive the response function ∂P (k)/∂δb from the angle

average of the squeezed bispectrum over d3q as

∂P (k)

∂δb
Plim(q) ≃ lim

q→0

∫
d2q̂

4π
B(k,−k− q,q). (4.23)

With this derivation, the response to the large-scale tide, ∂P (k)/∂τij, can be found

from

∂P (k)

∂τij
←− coefficients in

(
q̂iq̂j −

δKij
3

)
Plin(q) in lim

q→0
B(k,−k− q,q). (4.24)

Therefore, we can predict the response function by computing the squeezed bispec-

trum using the perturbation theory.

Eq. (4.15) implies that we can also extract the response function from the col-

lapsed trispectrum (4-point function)
⟨
P̂obs(k)P̂obs(k

′)
⟩
, which is related to the co-

variance. The derivation of the response function through the collapsed trispectrum

is presented in Appendix B. In the following, we calculate the response function

from the squeezed bispectrum.
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4.3 Real space results

In this section, using the standard perturbation theory we give an expression of the

response function in matter and galaxy power spectrum in real space.

4.3.1 Growth and dilation effects

The response of the matter power spectrum in real space is the simplest case. What

we need to consider is the squeezed matter bispectrum Eq. (2.86), which at leading

order is given by

Bmmm(k,−k− q,q) ≃2F2(k,q)Plin(k)Plin(q) + 2F2(−k− q,q)Plin(|k+ q|)Plin(q)

≃
[
13

7
+

8

7

(
k̂ · q̂

)2
−
(
k̂ · q̂

)2 d lnPlin(k)

d ln k

]
Plin(k)Plin(q).

(4.25)

Thus we have

∂Pm(k)

∂δb
=

[
47

21
− 1

3

d lnPlin(k)

d ln k

]
Plin(k), (4.26)

∂Pm(k)

∂τij
=

[
8

7
− d lnPlin(k)

d ln k

]
k̂ik̂jPlin(k). (4.27)

Notice that while the response to the isotropic super-sample mode δb can depend

only on the magnitude of the wavevector due to the symmmetry, the response to

the large-scale tides τij has the angular dependence.

Next we consider the response function of the galaxy power spectrum in real

space. To derive that, we should consider the galaxy-galaxy-matter bispectrum

Eq. (3.24). This bispectrum in sqeezed limit yeilds

Bggm(k,−k− q,q) ≃
[
13

7
b21 + 2b1b2 −

2

3
b1bs2 +

(
8

7
b21 + 2b1bs2

)(
k̂ · q̂

)2
−b21

(
k̂ · q̂

)2 d lnPlin(k)

d ln k

]
Plin(k)Plin(q),

(4.28)

which leads to

∂Pg(k)

∂δb
=

[
47

21
b21 + 2b1b2 −

1

3
b21
d lnPlin(k)

d ln k

]
Plin(k), (4.29)

∂Pg(k)

∂τij
=

[
8

7
b21 + 2b1bs2 − b21

d lnPlin(k)

d ln k

]
k̂ik̂jPlin(k). (4.30)

The expressions above exhibit the physical effects of the super-sample modes on

small-scale fluctuations. There are two types of the super-sample effects. First, the
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super-sample modes enhance or suppress the growth of the short-modes depending

on the sign of the super-sample modes and directions of small-scale fluctuations:

speeding up the growth in the denser region and slowing down in the less dense

region. As for τij, if the large-scale tide along a particular direction is positive, say

τii > 0, the expansion of a local volume along the direction is slower than that

of the global universe, so the growth of short modes with k along the direction

can be enhanced. This growth effect corresponds to the terms with no derivatives.

Second, the super-sample modes cause a dilation of the comoving scale since the local

expansion history is altered by the super-sample modes. The comoving wavelengths

which an observer infers are modulated by the super-sample modes, which imprints a

modulation in the power spectrum. This dilation effect is described by the derivative

terms. While the mean density mode δb generates an isotropic shift for all scales,

the tidal modes τij cause an ellipsoidal expansion in a local region and this leads to

an anisotropic shift. Thus the large-scale tides cause modifications in the clustering

pattern along all the three directions.

In particular, this dilation leaves a characteristic imprint on the BAOs feature

in the power spectrum. Specifically, the isotropic super-sample mode shifts the

observed BAO scale in an isotropic way, whereas the anisotropic super-sample modes

shift in an anisotropic way. Neglecting the growth terms, we can rewrite the real-

space galaxy power spectrum with responses as

Pg(k; δb, τij) =b
2
1Plin(k) + b21

(
−1

3
δb − k̂ik̂jτij

)
∂Plin(k)

∂ ln k

≃b21Plin

(
k/α(k̂)

)
, (4.31)

where

α(k̂) =

[
1− 1

3
δb − k̂ik̂jτij +O(δ2b, τ 2ij)

]−1

≃1 + 1

3
δb + k̂ik̂jτij (4.32)

parameterizes the direction-dependent shift in the BAO peak. When there is no

BAO peak shift, α = 1 holds. From this expression, one can easily see that the

large-scale tides generate three-dimensionally anisotropic distortions in the BAO

peak position, while the large-scale mean density causes only isotropic distortion.

4.3.2 Modulation of the mean galaxy overdensity

In the previous subsection, we implicitly assume that the overdensity field of galaxies

is defined to the global (background) mean number density of galaxies. In a spectro-

scopic survey of galaxies, however, we measure the overdensity field defined to the
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“local” mean number density in the survey region. Because the super-sample modes

behave like the background in the local survey area, these also make a difference

between the “local” mean number density n̄global
g and the “global” mean number

density n̄global
g such that n̄local

g = n̄global
g (1 + δgb) with δ

g
b being the mean galaxy over-

density in the specific survey due to the super-sample modes. In a galaxy redshift

survey, therefore, the observed number density fluctuation of galaxies δlocalg (k) which

is defined through ng(k) = n̄local
g [1+δlocalg (k)] is related to that defined to the “global”

mean density through ng(k) = n̄global
g [1 + δglobalg (k)] as follows [29],

δlocalg (k) =
δglobalg (k)

1 + δgb
+

1

1 + δgb
≃ (1− δgb)δ

global
g (k), (4.33)

where we omit the constant contribution because the Fourier transform of the con-

stant is not relevant for k ̸= 0 modes. Eq. (4.33) results in

P local
g (k) ≃ (1− 2δgb)P

global
g (k). (4.34)

Since δgb = b1δb in real space, we finally obtain

P local
g (k) ≃(1− 2δgb)

[
Pg(k) +

∂Pm(k)

∂δb
δb +

∂Pm(k)

∂τij
τij

]
≃b21Plin(k) + Plin(k)

[
5

21
b21 + 2b1b2 −

1

3
b21
d lnPlin(k)

d ln k

]
δb

+ Plin(k)

[
8

7
b21 + 2b1bs2 − b21

d lnPlin(k)

d ln k

]
k̂ik̂jτij, (4.35)

where we have replaced Pg(k) with b
2
1Plin(k), which is valid at leading order. Note

that the response to δb suffers from the modulation of the mean galaxy density and

the growth term almost cancels out, but the response to τij does not suffer in real

space. Note also that the effect from τij vanishes if one considers the monopole

power spectrum.
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4.4 Redshift space results

As discussed in the previous section, the large-scale tidal field does not have an

effect on the monopole power spectrum in real space. In redshift space, however,

anisotropic signals indueced by the large-scale tidal field mimics cosmological dis-

tortions such as the RSD and AP effect.

4.4.1 The responses in full three-dimensional redshift-space

power spectrum

In order to derive the response functions in redshift space, we compute the galaxy-

galaxy-matter bispectrum Eq. (3.41) in the squeezed limit,

Bssm(k,−k− q,q) ≃2Z1(k+ q)Z2(k+ q,−q)Plin(|k+ q|)Plin(q)

+ 2Z1(k)Z2(k,q)Plin(k)Plin(q)

=

[
13

7
b21 + 2b1b2 −

2

3
b1bs2 +

18

7
b1fµ

2
k + 2b21fµ

2
k

+2b2fµ
2
k −

2

3
bs2fµ

2
k +

5

7
f 2µ4

k + 2b1f
2µ4

k

]
Plin(k)Plin(q)

+

[
8

7
b21 + 2b1bs2 +

24

7
b1fµ

2
k + 2bs2fµ

2
k −

16

7
f 2µ2

k − f 2µ4
k

−
(
b21 + 2b1fµ

2
k + f 2µ4

k

) d lnPlin(k)

d ln k

]
(k̂ · q̂)2Plin(k)Plin(q)

+
[
4b1f

2µ3
k + 4f 3µ5

k

−
(
b21 + 2b1fµ

2
k + f 2µ4

k

)
fµk

d lnPlin(k)

d ln k

]
µq(k̂ · q̂)Plin(k)Plin(q)

+
(
b21 − f 2µ4

k

)
fµ2

qPlin(k)Plin(q), (4.36)

where µk = k̂ · n̂ and µq = q̂ · n̂. Substituting this result into Eqs. (4.23) and

(4.24), the response of the redshift-space galaxy power spectrum to the large-scale

overdensity δb is read off as [50]

∂Ps(k, µ)

∂δb
=

[
47

21
b1 + 2b2 −

1

3
b1
d lnPlin(k)

d ln k

]
b1Plin(k)

+

[
1

3
b21 + µ2

(
26

7
b1 + 2b21 + 2b2

)
− µ2

3
b1(2 + b1)

d lnPlin(k)

d ln k

]
fPlin(k)

+

[
1

21
(31 + 70b1)−

1

3
(1 + 2b1)

d lnPlin(k)

d ln k

]
f 2µ4Plin(k)

+

[
1

3
(4µ2 − 1)− 1

3
µ2d lnPlin(k)

d ln k

]
f 3µ4Plin(k), (4.37)
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and to the large-scale tides τij as [50]

∂Ps(k, n̂)

∂τij
=

[
8

7
b1 + 2bs2 − b1

d lnPlin(k)

d ln k

]
k̂ik̂jb1Plin(k)

+

[
b21n̂in̂j +

(
24

7
b1 + 2bs2

)
µ2k̂ik̂j − b1µ

(
2µk̂ik̂j + b1hij

) d lnPlin(k)

d ln k

]
fPlin(k)

+

[
16

7
µk̂ik̂j + 4b1hij −

(
µk̂ik̂j + 2b1hij

) d lnPlin(k)

d ln k

]
µ3f 2Plin(k)

+

[
(4µhij − n̂in̂j)− µhij

d lnPlin(k)

d ln k

]
µ4f 3Plin(k), (4.38)

where hij ≡ k(inj) =
1
2
(kinj + nikj). These are the full expressions of the responses

of redshift-space power spectrum to the large-scale perturbations. Compared with

the results in real space Eq. (4.30), there are additional effects of the super-sample

modes on the redshift-space power spectrum, that is, there are terms including

the couplings between the large-scale tide τij and the line-of-sight direction n̂ as

expected. In the limit f → 0, the above equations reduce to the real-space results

Eqs. (4.29) and (4.30) and the response function for δb, ∂Ps(k, µ)/∂δb, agrees with

Eq. (65) in Ref. [86] if we set b1 = 1 and b2 = bs2 = 0 in the above equation. Notice

that the response to the isotropic super-sample mode δb can depend on only k and

µ because it preserves the rotational symmetry around the observer.

From Eq. (4.38) we can find several types of anisotropies in the redshift-space

power spectrum: the standard RSD effect µ2 = k̂ik̂jn̂in̂j (Kaiser factor), and the

effects due to τij that have dependences of τij k̂ik̂j, τij k̂in̂j, and τijn̂in̂j, respectively.

First, let us remind of the physical origin of the Kaiser factor. It comes from ∂ivjn̂in̂j

(see Eq. (3.28)). This means that the Kaiser anisotropy reflects the projection of

the velocity shear (∂(ivj), in Fourier space ∝ k̂ik̂j) onto the line-of-sight direction. In

other words, since the velocity shear corresponds to the tidal field, the Kaiser factor

can be interpreted as the projection of the short-mode tidal field onto the line-of-sight

direction. The terms proportional to τij k̂ik̂j represent a coupling between the large-

scale tide τij and the small-scale tide, where the latter has directional dependences

given by ∝
(
k̂ik̂j − 1

3
δKij

)
. The terms of τijn̂in̂j are like the Kaiser factor, that is,

the projection of the large-scale tide τij onto the line-of-sight direction. Note that

the terms proportional to hij always appear with µ = k̂ · n̂, because of the parity

invariance of the power spectrum, i.e. Ps(k) = Ps(−k). Then, τij k̂in̂jµ = τij k̂ik̂ℓn̂jn̂ℓ

is a consequence of the projection of the coupling between the large-scale tide τij

and the small-scale velocity ∝ k̂i onto the line-of-sight direction.

Finally, let us consider the mean density modulation effect in redshift space. In

redshift space, the Kaiser formula Eq. (3.30) tells that δgb is related to the super-
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sample modes,

δgb =
[
b1 + f(q̂ · n̂)2

]
δb =

(
b1 +

1

3
f

)
δb + fτijn̂

in̂j, (4.39)

at lowest order. After all, at leading order of the super-sample modes, the observed

power spectrum of galaxies with the effects of the super-sample modes is expressed

as

P local
s (k, n̂) ≃(1− 2δgb)P

global
s (k, n̂)

=(b1 + fµ2)2Plin(k)

+

[
−2
(
b1 +

1

3
f

)
(b1 + fµ2)Plin(k) +

∂Ps(k, µ)

∂δb

]
δb

+

[
−2f(b1 + fµ2)2Plin(k)n̂

in̂j +
∂Ps(k, n̂)

∂τij

]
τij. (4.40)

We use this power spectrum in the Fisher analysis.

4.4.2 The large-scale mode effects on the two-dimensional

redshift-space power spectrum: P 2D
s (k∥, k⊥)

One of the main purposes of this thesis is to estimate the impact of super-sample

modes on the RSD measurements as well as the Alcock-Paczyński (AP) test through

a measurement of the redshift-space power spectrum. To do this, we employ the

standard approach used in an analysis of the redshift-space power spectrum. Since

the RSD and AP effect are only along the line-of-sight direction and does not affect

the clustering pattern in the two-dimensional plane perpendicular to the line-of-sight

direction, a usual way to measure the redshift-space power spectrum is making the

angle average given as

P 2D
s (k∥, k⊥; δb, τij) ≡

∫ 2π

0

dφk⊥

2π
Ps(k; δb, τij), (4.41)

where we have set the line-of-sight direction as z-axis, n̂i = δKi3 and used the

decomposition of wavevector, k = (k⊥ cosφk⊥ , k⊥ sinφk⊥ , k∥) with the conditions

(k⊥, k∥) = k
(√

1− µ2, µ
)
.
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By inserting Eqs.(4.40) and (4.37)-(4.38) into Eq. (4.41) we can find

P 2D
s (k⊥, k∥; δb, τij) =(b1 + fµ2)2Plin(k)

+

[
−2
(
b1 +

1

3
f

)
(b1 + fµ2)Plin(k) +

∂Ps(k, µ)

∂δb

]
δb

+ b1

[(
8

7
b1 + 2bs2

)
Plin(k)− b1

dPlin(k)

d ln k

]
3µ2 − 1

2
τ33

+ f

[{
b21 +

(
12

7
b1 + bs2

)
µ2(3µ2 − 1)

}
Plin(k)

−b1µ2
{
b1 + (3µ2 − 1)

} dPlin(k)

d ln k

]
τ33

+ f 2µ4

[{
4b1 +

8

7
(3µ2 − 1)

}
Plin(k)

−
(
2b1 +

3µ2 − 1

2

)
dPlin(k)

d ln k

]
τ33

+ f 3µ4

[(
4µ2 − 1

)
Plin(k)− µ2dPlin(k)

d ln k

]
τ33, (4.42)

where we have used the following identities under the presence of the line-of-sight

direction ∫ 2π

0

dφk⊥

2π
k̂ik̂j =

1− µ2

2
δKij +

3µ2 − 1

2
n̂in̂j,∫ 2π

0

dφk⊥

2π
k̂i = µn̂i, (4.43)

with the trace-less condition of τij, i.e. τijδ
K
ij = 0. Notice that while τij has the five

degrees of freedom there remains only one component, τ33, in the two-dimensional

power spectrum after the angle average. Eq. (4.42) shows that the large-scale den-

sity field and large-scale tide cause an additional anisotropic clustering in the two-

dimensional redshift-space power spectrum in addition to the Kaiser distortion. The

super-smaple modes cause anisotropic distortions up to the order of µ6, while the

standard Kaiser RSD effect causes distortions up to µ4 (Multipole power spectra

are presented in Appendix C). The amount of the distortion depends on δb and

the line-of-sight component of the tide, τ33, in a given survey realization. Thus the

super-sample modes in a given survey realization cause a bias in the redshift-space

power spectrum. There are two ways to take into account the effect. One way is to

include the effect as an additional noise in the error covariance matrix of the power

spectrum as studied in Ref. [31, 37]. An alternative approach, which we adopt in

this thesis, is to treat the effect as an additional parameter rather than noise [32].

We can model this effect by treating the bias as a purely systematic additive shift
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in the redshift-space power spectrum, where an amount of the bias is given by the

power spectrum response multiplied by a free parameter δb and τ33. In the next sub-

section, we study how the large-scale tide could cause a degradation in cosmological

parameters.
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4.5 Impact on the estimation of cosmological pa-

rameters

In this section, following Refs. [45] and [46], we study how the large-scale tide affects

the BAO and RSD measurements in the redshift-space power spectrum, based on

the Fisher information matrix formalism. In the following we focus on τ33, and we

do not consider the response for δb because the effect of δb can be estimated by

lensing surveys [31, 32].

4.5.1 Fisher information matrix for the two-dimensional power

spectrum

As a theoretical template of the power spectrum, taking into account the RSD and

AP effect, we use the following redshift-space galaxy power spectrum measured in

a hypothetical survey realization in linear regime,

P 2D
s,obs(k∥,obs, k⊥,obs; τ33) =

D2
A,fidH

D2
AHfid

P 2D
s

(
k∥, k⊥; τ33

)
+ Psn, (4.44)

where P 2D
s,obs is the “observed” or “estimated” power spectrum from a given sur-

vey realization, P 2D
s on the right-hand side is the underlying true power spectrum

(Eq. (4.42)), measured if an observer employs the true cosmological model, and Psn

is a parameter (constant number) to model a possible contamination of a residual

shot noise to the power spectrum measurement.

The Fisher information matrix for the two-dimensional power spectrum is given

by

Fαβ = −
⟨
∂2 logL

∂θα∂θβ

⟩
=
∑
kk′

∑
µµ′

∂P 2D
s,obs(k, µ)

∂θα
Cov−1

[
P 2D
s,obs(k, µ), P

2D
s,obs(k

′, µ′)
] ∂P 2D

s,obs(k
′, µ′)

∂θβ
, (4.45)

where L is the likelihood, θα is the α-th parameter of interest and ∂P 2D
s,obs/∂θα is

the partial derivative of the galaxy power spectrum (Eq. (4.44)) with respect to the

α-th parameter around the fiducial cosmological model. The Cramér-Rao bound

states that the minimum possible errors on parameter α, marginalized over all other

parameters, are given by the square root of the diagonal components of the inverse

of the Fisher matrix as

∆θα ≥
√

(F−1)αα, (4.46)
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while the unmarginalized ones are given by ∆θα = 1/
√
Fαα. The cross-correlation

coefficients cαβ are defined through

cαβ =
(F−1)αβ√

(F−1)αα(F−1)ββ
. (4.47)

The covariance matrix for the two-dimensional redshift-space power spectrum of

galaxies is given in the Gaussian limit as [87]

Cov
[
P 2D
s,obs(k, µ), P

2D
s,obs(k

′, µ′)
]
=

2

Nk

[
P 2D
s,obs(k, µ) +

1

n̄g

]2
δ3D(k− k′), (4.48)

where Nk = 4πk2∆kV/(2π)3 is the number of modes with survey volume V and the

interval between each Fourier mode ∆k, n̄g is the mean number density of galaxies

and 1/n̄g term represents the Poisson shot noise. Then, taking the continuum limit,

the Fisher information matrix can be rewritten as

F galaxy
αβ =

∫ 1

−1

dµ

2

∫ kmax

kmin

k2dk

4π2

∂ lnP 2D
s,obs(k, µ; zi)

∂θα

∂ lnP 2D
s,obs(k, µ; zi)

∂θβ

×Veff(k; zi) exp
[
−k2Σ2

⊥ − k2µ2(Σ2
∥ − Σ2

⊥)
]
, (4.49)

where the effective survey volume Veff is defined as

Veff(k, µ; zi) ≡

[
n̄g(zi)P

2D
s,obs(k, µ; zi)

n̄g(zi)P 2D
s,obs(k, µ; zi) + 1

]2
V (zi), (4.50)

with V (zi) being the comoving volume of a galaxy survey centered at redshift zi

and the exponential damping factor we have introduced outside of the derivatives

of P 2D
s,obs in Eq. (4.49) explains the smearing effect, which arises from the highly

nonlinear gravitational evolution. Here the Lagrangian displacement fields Σ∥ and

Σ are given as

Σ⊥(z) ≡ crecD(z)Σ0, (4.51)

Σ∥(z) ≡ crecD(z)(1 + f)Σ0, (4.52)

where Σ0 is the Lagrangian linear displacement field at the present, computed as

Σ0 = 11h−1Mpc for σ8 = 0.8, and crec is a parameter to control the BAO recon-

struction method, which is briefly explained below [88].

The nonlinear gravitational evolution pushes galaxies from their initial position,

which erases the higher harmonics of the BAO feature in the power spectrum [89].

However, since the large-scale velocity field of galaxies resided in the large-scale

structure can be inferred from the measured galaxy density field via the continuity

equation, by using this inferred velocity field, we can pull back each galaxy to its
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position at an earlier epoch and thereby reconstruct the galaxy distribution more in

the linear regime. With this reconstructed field, we can correct to some extent the

smearing effect in Eq. (4.49) and sharpen the acoustic peaks in the galaxy power

spectrum. This is called as the BAO reconstruction method and now commonly

implemented in an analysis of galaxy survey [90], which shows that in the recon-

structed field the nonlinear smoothing scale is reduced from Σnl = 8.1 h−1Mpc

to Σnl = 4.4 h−1Mpc, about a factor of 2 reduction. Thus in the Fisher matrix

calculation we use crec = 0.5 as a default choice [90].

We include the parameter for the large-scale tide for the survey volume, i.e., τ33

in addition to the cosmological parameters, the distances in each redshift slice, and

other nuisance parameters:

θα ={τ33, DA(z), H(z), b1(z), β(z), Psn(z),Ωm0, As, ns, αs,Ωm0h
2,Ωb0h

2}, (4.53)

where β = f/b1 and As, ns and αs are parameters of the primordial power spectrum;

As is the amplitude of the primordial curvature perturbation, and ns and αs are the

spectral tilt and the running spectral index. The set of cosmological parameters

determines the shape of the linear power spectrum. Since the effect of the higher-

order bias, b2 and bs2 , on the power spectrum is of the order of O
(
(δ(1))2

)
, compared

with the O((δ(1))) effect in b1, we ignore the higher order bias for simplicity. For the

k-integration, we set kmin = 10−4h/Mpc and kmax = 0.5 h/Mpc, but the exponential

factor in Eq. (4.49) suppresses the information from the nonlinear scales. The Fisher

parameter forecasts depend on the fiducial cosmological model for which we assumed

the model being consistent with the WMAP 7-year data [12]. In this section, we

consider a single redshift slice, and then consider 12 parameters in total in the Fisher

analysis.

In the following forecast, we consider the combination of the galaxy spectroscopic

survey with the CMB constraints expected from the Planck experiment:

F = F CMB + F galaxy, (4.54)

where F CMB is the Fisher matrix for the CMB measurements. To compute the CMB

Fisher matrix, we employ the method developed in Ref. [91].

4.5.2 Results

As a working example, we consider a hypothetical survey that is characterized by

the central redshift z = 0.5, the comoving volume V = 1 (Gpc/h)3, the mean

number density of galaxies n̄g = 10−3 (h/Mpc)3 and linear bias parameter b1 = 2,

respectively. For simplicity we consider a single redshift slice. In reality, when a
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Figure 4.1: 68% CL error ellipse for the parameters, τ33, DA, H and β, including

marginalization over other parameters in the Fisher analysis (see Section 4.5.1 for

details). The inner black contour in each panel shows the result when στ33 = 1.04×
10−3 is employed as the τ33 prior, which is taken from the rms value expected for

the ΛCDM model and the assumed galaxy survey that is characterized by V =

1 (Gpc/h)3, n̄g = 10−3 (h/Mpc)3 and b1 = 2.

galaxy redshift survey probes galaxies over a wide range of redshifts, one can use

the clustering analysis in multiple redshift slices and then combine their cosmological

information.

In Fig. 4.1 we show the marginalized 68% CL error contours in each of two-

dimensional sub-space that include either two of the large-scale tidal parameter, τ33,

the distance parameters, DA or H, or the RSD parameter β, where the contours

include marginalization over other parameters. Note that τ33 has no correlations

with other parameters. More quantitatively, the cross-correlation coefficients cij

with i = τ33, after the CMB Fisher matrix is added, is almost unity for either one

of these three parameters is taken for j, while the cross-coefficients are smaller for

other parameters, less than O(0.2). The contours in each panel of Fig. 4.1 show

how an uncertainty in τ33 causes a degeneracy with estimation of other parameter.

Since the large-scale tide causes apparent anisotropies in the observed clustering of

galaxies as the radial AP anisotropy and the RSD effect do, allowing τ33 to freely

vary in the parameter estimation causes significant degeneracies with β and H. The
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Figure 4.2: A zoom-in version of Fig. 4.1, around the fiducial model for the Fisher

analysis.

degeneracy between τ33 and DA arises from the trace-less nature of τij; changing τ33

leads to a change in τ11+ τ22(= −τ33) and therefore causes an apparent distortion in

the k⊥-direction, which mimics the cosmological distortion due to a change in DA.

However, if adding the prior on τ33 assuming the ΛCDM model, i.e., τ33 = 0 for

the expectation value and στ33 = 1.04× 10−3 for the rms value for V = 1 (Gpc/h)3,

which can be computed from Eq. (4.14), it lifts the degeneracies, recovering a high-

precision measurement for each cosmological parameter. Fig. 4.2 shows a zoom-in

version of the contours around the central value (the input model in the Fisher anal-

ysis) and shows that the prior of τ33 efficiently breaks the parameter degeneracies.

In particular, even if an actual value of τ33 in a given survey realization is off from

zero by more than a few στ33 , it does not seem to cause a significant bias in other

parameters. Therefore, as long as the ΛCDM model is assumed, its effect is negli-

gible. It should be noted that the range of marginalized error of τ33 in Figures 4.1

and 4.2 is sufficiently smaller than unity, for a hypothetical measurement of the

redshift-space power spectrum for a volume of 1 (Gpc/h)3. Thus our assumption

that the super-sample modes are in the linear regime is safely satisfied.

Instead of treating the super-sample effect as a new error source, it is interesting

to ask whether a measurement of redshift-shift power spectrum of galaxies can be

used to constrain the large-scale tide, τ33, rather than employing the prior computed

from the ΛCDM model, if one can include the information up to the larger k beyond

the weakly nonlinear regime. As can be seen from Fig. 4.1 and Fig. 4.2, marginalized

1σ error range of the τ33 without prior is still small enough to take only the leading

order in the Taylor expansion for the long-mode, while this error range is bigger than

the rms of the τ33 expected from ΛCDM. This means that our formulation is valid

for not assuming ΛCDM for the super-sample modes. To address this possibility,

we need to know the response of the redshift-space power spectrum to the tide,

∂Ps(k)/∂τ33, in the nonlinear regime where the perturbation theory breaks down.

To estimate the response function in the nonlinear regime requires to develop a
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Figure 4.3: The marginalized error on the estimation of τ33,
√
(F−1)ττ , as a function

of the maximum wavenumber kmax up to which the redshift-space power spectrum

information is included in the Fisher analysis (see text for the details). The different

solid curves show the results when any prior on other parameters (DA, H and β)

are not employed or when some or all the parameters are fixed to their values for

the ΛCDM model. The horizontal dashed curve is the rms value, στ33 , expected for

the ΛCDM model and the survey volume. Note that we did not impose any prior

on other parameters (Eq. (4.53)), although the CMB information is added.

separate universe simulation where the large-scale tidal effect is included in the

background expansion, similarly to the method used for estimating the response

for the mean density modulation, ∂P (k)/∂δb, in Refs. [31, 32, 49, 92]. This issue

is discussed in Chapter 5, so here we simply assume that the response function

derived using the perturbation theory holds in the nonlinear regime. Furthermore,

to include the effect of the large-scale tide up to the nonlinear regime, we set Σ = 0

for the BAO smearing factor in the Fisher analysis. In practice, the smearing factor

also depends on nonlinear structure formation, and therefore would depend on τ33.

While we ignore the smearing effect and use the prediction from the perturbation

theory, we consider that the following result gives a rough estimation of the genuine

effect.

Fig. 4.3 shows how an accuracy of the τ33 estimation is improved when including

the redshift-space power spectrum information up to a given maximum wavenumber

kmax. Without any prior, τ33 is estimated to about 1% accuracy for a survey volume

of V = 1 (Gpc/h)3. When fixing other parameters to their values for the ΛCDM

model, the accuracy of the estimation of τ33 is dramatically improved. In particular,
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when all the distortion parameters, DA, H and β, are fixed, the τ33 parameter could

be determined to an accuracy better than the rms for the ΛCDM model, if the

redshift-space power spectrum information is included up to kmax ≳ 0.25 h/Mpc.

This result implies that the anisotropic clustering information in such a nonlinear

regime could be used to infer the large-scale tide for a given survey realization, if we

can separate the anisotropic signals from the super-sample tidal modes from other

cosmological distortions.
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4.6 The bipolar spherical harmonic expansion (Bi-

poSH) and the super-sample signal

As discussed in Section 4.5, we can obtain the information on the super-sample tidal

modes whose wavelength is beyond the survey scale, if the parameter degeneracies

between the large-scale tides and RSD and AP effects are resolved. To break the

parameter degeneracy, we would like to use extra degrees of freedom of the observed

galaxy power spectrum, i.e., violation of statistical isotropy.

The super-sample tidal perturbation generates a preferred direction in a given

local survey region and breaks statistical isotropy [37, 38, 50, 93]. The anisotropic

distortion induced by the RSD and AP effects, where the statistical isotropy still

holds, is characterized by an angle between the wave vector k and the line-of-sight

(LOS) unit vector n̂ and thus can entirely be decomposed using the Legendre polyno-

mials Lℓ(k̂ ·n̂). In order to extract information on the breaking of statistical isotropy

due to the super-sample tidal modes, Ref. [94] proposed an expansion scheme of the

three-dimensional power spectrum with spherical harmonics functions. The authors

decomposed the k-dependence according to Ps(k, n̂) =
∑

ℓm Pℓm(k)Yℓm(k̂) after the

LOS direction n̂ is defined as a z-axis. Note that the m = 0 mode corresponds

to the coefficient in the normal Legendre expansion scheme since Yℓ0 ∝ Lℓ. They

found that the signals due to the RSD effect are confined to m = 0, while the tidal

perturbation creates non-vanishing m ̸= 0 modes. The authors further performed

a Fisher matrix computation and showed that their decomposition formalism can

break the degeneracy between the RSD effect and the super-sample tidal one except

for its LOS component.

In this section, we examine the distinguishability between the super-sample tidal

effect and the other two ones (the RSD and AP effects) by employing a more general

decomposition based on bipolar spherical harmonics (BipoSH) {Yℓ(k̂) ⊗ Yℓ′(n̂)}LM
[95]. This was recently applied to probing primordial statistical anisotropy induced

by some sort of vector inflation models [96–98]. 1

Through this decomposition, statistically anisotropic signals are confined to the

L ̸= 0 BipoSH coefficients. We here follow the methodology developed in Ref. [96],

and, differently from Ref. [94], we do not fix n̂ to any specific direction. This

treatment is reasonable for actual data analysis because it is impossible to determine

a global LOS direction n̂ in observed galaxy samples. In Ref. [97], the BipoSH

formalism was already applied to observed galaxy samples in order to constrain

1The BipoSH decomposition was initially introduced for dealing with the wide-angle effect in

the power spectrum [99–103]. For an application to the galaxy bispectrum analysis, See Ref. [104].
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statistically anisotropic signals. There, the effects of observational systematics, e.g.,

artificial asymmetries due to specific survey geometry, were also decomposed and

hence properly subtracted. The same data analysis pipeline will also be applicable

to the measurements of the super-sample tidal modes.

4.6.1 Formalism of the bipolar spherical harmonic expan-

sion

The power spectrum which depends upon two directions, k̂ and n̂, can be expressed

using the following coordinates:

k =k(sin θk cosϕk, sin θk sinϕk, cos θk), (4.55)

n̂ =(sin θn cosϕn, sin θn sinϕn, cos θn). (4.56)

In general, to get the multiple moments that have no angular dependence requires a

four-multiple integration, which is the case for the BipoSH expansion as we will see

in the next section. Note that the reason why we usually need only one-dimensional

integral for the power spectrum multipoles in redshift space is that the usual RSD

anisotropy still preserves the three-dimensionally rotational symmetry around the

observer. In that case, the four-multiple integration reduces to one-dimensional

integral thanks to the rotational symmetry. We here emphasis that, differently from

Ref. [94], throughout this thesis, the LOS direction is not set to the global one

although the local plane-parallel approximation is adopted.

To capture the violation of the three-dimensional rotational symmetry, the three-

dimensional power spectrum Ps(k, n̂; δb, τij) in redshift space should be expanded

using the bipolar spherical harmonic (BipoSH) basis XLM
ℓℓ′ [96],

Ps(k, n̂; δb, τij) =
∑
LMℓℓ′

πLM
ℓℓ′ (k; δb, τij)X

LM
ℓℓ′ (k̂, n̂), (4.57)

where the BipoSH basis is defined as [95]

XLM
ℓℓ′ (k̂, n̂) = {Yℓ(k̂)⊗ Yℓ′(n̂)}LM =

∑
mm′

CLMℓmℓ′m′Yℓm(k̂)Yℓ′m′(n̂) (4.58)

=
∑
mm′

(−1)ℓ−ℓ′+M
√
2L+ 1

(
ℓ ℓ′ L

m m′ −M

)
Yℓm(k̂)Yℓ′m′(n̂), (4.59)

with CLMℓmℓ′m′ being the Clebsch-Gordan coefficients and
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)
being the Wigner

3j symbol. The inverting translation is given by

πLM
ℓℓ′ (k) =

∫
d2k̂

∫
d2n̂ Ps(k, n̂)[X

LM
ℓℓ′ (k̂, n̂)]∗, (4.60)
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owing to the orthogonal property of the XLM
ℓℓ′ basis:∫

d2k̂

∫
d2n̂ XL1M1

ℓ1ℓ′1
(k̂, n̂)[XL2M2

ℓ2ℓ′2
(k̂, n̂)]∗ = δKL1L2

δKM1M2
δKℓ1ℓ2δ

K
ℓ′1ℓ

′
2
. (4.61)

To relate the coefficients of the bipolar spherical harmonic expansion with those

of usual Legendre expansion, let us introduce the reduced coefficients defined in

Refs. [96, 97]

PLM
ℓℓ′ (k) ≡ πLM

ℓℓ′ (k)(−1)L
√

(2L+ 1)(2ℓ+ 1)(2ℓ′ + 1)

4π
Hℓℓ′L, (4.62)

where Hℓ1ℓ2ℓ3 ≡
(
ℓ1 ℓ2 ℓ3
0 0 0

)
and Hℓℓ′L = 0 when ℓ + ℓ′ + L is odd. In our case, πLM

ℓℓ′

vanishes for ℓ+ℓ′+L = odd and hence PLM
ℓℓ′ is sufficient to capture all information of

three-dimensional power spectrum. The explicit relationships between the reduced

coefficients PLM
ℓℓ′ (k) and the usual Legendre coefficients Pℓ(k) and between PLM

ℓℓ′ (k)

and the coefficients obtained via the expansion scheme of Ref. [94] are presented in

Appendix C.2.

The advantages of employing the BipoSH expansion are two following aspects:

(1) The BipoSH can extract the full three-dimensional anisotropic power spectrum

and (2) we need not set the LOS to the z-axis. The reason why the point (1) is impor-

tant is that the RSD and AP distortions generate only two-dimensional asymmetry;

i.e., anisotropic signature appears only about the LOS direction, characterized by

the radial components of the wave vector, k̂∥ = n̂, whereas the super-sample tidal

effect sources the full three-dimensional asymmetry; i.e., anisotropic imprint appears

not only about the LOS direction but also in the transverse plane, characterized by

both k̂∥ and k̂⊥ = k̂− k∥.

To put the point (2) another way, the use of the BipoSH expansion requires

the multiple LOS directions as implied by the integration of the LOS direction (see

Eq. (4.60)). Thus, the BipoSH expansion can be applied to all-sky or wide-area

surveys. In fact, different LOS directions are essential to break the degeneracies

between the super-sample tidal effect and other anisotropic effects. The point is that

the RSD and AP distortion respect the rotational symmetry around the observer,

whereas the super-sample tidal modes violate the rotational invariance.

To elucidate this point further, let us consider a simplified situation where we

have two different LOS; n̂1 = (1, 1, 1)/
√
3 and n̂2 = (−1,−1, 1)/

√
3 (see Fig. 4.4).

Under the local plane-parallel approximation, we observe the galaxy pairs on the

tangential plane for each LOS (the red planes in Fig. 4.4). For both n̂1 and n̂2

direction, we should measure the same power spectrum in the absence of τij because

in that case the apparent anisotropy in the power spectrum depends only µ =

(k̂ · n̂), which is rotationally invariant around the observer. On the other hand,
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Figure 4.4: A schematic picture for an all-sky galaxy survey. The observer is at

the origin. n1 = (1, 1, 1)/
√
3 and n2 = (−1,−1, 1)/

√
3 depict different line-of-sight

(LOS) direction. In the local plane parallel approximation, the pairs of galaxies are

measured in each red plane, which is the tangential plane to each LOS direction.

the terms with super-sample tidal modes violate this rotational symmetry. For

example, let us consider the term of τijn̂in̂j. This anisotropy appears with the form

of 2(τ12 + τ13 + τ23)/3 for n̂1 and 2(τ12 − τ13 − τ23)/3 for n̂2, which means that

we would observe the power spectrum with the different radial distortion for each

different LOS. The separation of P 00
ℓℓ and P 2M

ℓℓ′ originates from this fact as we will

see in the next subsection.

In summary, if one performs the angler average in each tangential plane by

which the two-dimensional power spectrum is obtained and set n̂ = ẑ, only the

information on the radial distortion is left, and the fact that τijn̂
i
1n̂

j
1 ̸= τijn̂

i
2n̂

j
2

obliges us to introduce different parameters which describe the super-sample tides

for various LOS. On the other hand, since the BipoSH expansion captures the full

three-dimensional power spectrum including the information of the distortion on the

tangential planes and taking into account the non-parallel LOS, it is expected to

alleviate the degeneracies between the super-sample tidal effect and other anisotropic

effects. Notice that here τ33 is no longer the LOS component of τij; i.e., τ33 ̸= τijn̂
in̂j,

but merely the zz component in the observer’s coordinates; τ33 = τij ẑ
iẑj.
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4.6.2 BipoSH coefficients of the response functions

By making use of the BipoSH formalism, we can decompose Eq. (4.40) into the

following reduced coefficients defined in Eq. (4.62):

P 00
ℓℓ′ (k) = δKℓℓ′ [Pℓ(k) +Dℓ(k)Plin(k)δb] , (4.63)

P 20
ℓℓ′ (k) = Tℓℓ′(k)Plin(k)τ33, (4.64)

P 2±1
ℓℓ′ (k) = Tℓℓ′(k)Plin(k)

√
2

3
(∓τ13 + iτ23), (4.65)

P 2±2
ℓℓ′ (k) = Tℓℓ′(k)Plin(k)

1

2

√
2

3
(τ11 − τ22 ∓ 2iτ12), (4.66)

where Pℓ(k) is the Legendre coefficients for the Kaiser formula Eqs. (3.33)-(3.35) and

we have introduced Dℓ(k) and Tℓℓ′(k) as the BipoSH coefficients for the response

to the super-sample density mode and the tidal mode, respectively. We stress here

that the isotropic signal is confined in the L = 0 modes (P 00
ℓℓ (k)) which do not suffer

from the tidal mode and the L = 2 modes (P 2M
ℓℓ′ (k)) successfully extracts the full

five degrees of freedom of the super-sample tides. The explicit expressions of Dℓ(k)

and Tℓℓ′(k) are given by

D0(k) =

[
−2b31 +

47

21
b21 + 2b1b2 −

1

3
b21
d lnPlin(k)

d ln k

]
+

[
26

21
b1 − b21 +

2

3
b2 −

1

9
b1(2 + b1)

d lnPlin(k)

d ln k

]
f

+

[
31

105
− 8

45
b1 −

1

15
(1 + 2b1)

d lnPlin(k)

d ln k

]
f 2

+

[
− 1

105
− 1

21

d lnPlin(k)

d ln k

]
f 3, (4.67)

D2(k) =

[
52

21
b1 −

4

3
b21 +

4

3
b2 −

2

9
b1(2 + b1)

d lnPlin(k)

d ln k

]
f

+

[
124

147
− 8

63
b1 −

4

21
(1 + 2b1)

d lnPlin(k)

d ln k

]
f 2

+

[
4

63
− 10

63

d lnPlin(k)

d ln k

]
f 3, (4.68)

D4(k) =

[
248

735
+

32

105
b1 −

8

105
(1 + 2b1)

d lnPlin(k)

d ln k

]
f 2 +

[
72

385
− 8

77

d lnPlin(k)

d ln k

]
f 3,

(4.69)

D6(k) =
16

693

[
4− d lnPlin(k)

d ln k

]
f 3, (4.70)
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T20(k) =

[
8

7
b21 + 2b1bs2 − b21

d lnPlin(k)

d ln k

]
+

[
8

7
b1 +

2

3
bs2 −

1

3
(2b1 + b21)

d lnPlin(k)

d ln k

]
f

+

[
16

35
+

4

5
b1 −

1

5
(1 + 2b1)

d lnPlin(k)

d ln k

]
f 2 +

[
16

35
− 1

7

d lnPlin(k)

d ln k

]
f 3,

(4.71)

T02(k) =

[
16

35
b1 − b21 +

4

15
bs2 −

1

15
b1(4 + 5b1)

d lnPlin(k)

d ln k

]
f

+

[
64

245
− 8

15
b1 −

1

35
(4 + 14b1)

d lnPlin(k)

d ln k

]
f 2

+

[
13

35
− 1

7

d lnPlin(k)

d ln k

]
f 3, (4.72)

T22(k) =

[
32

49
b1 +

8

21
bs2 −

1

21
b1(8 + 7b1)

d lnPlin(k)

d ln k

]
f

+

[
128

343
+

20

147
b1 −

2

49
(4 + 11b1)

d lnPlin(k)

d ln k

]
f 2

+

[
76
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d lnPlin(k)

d ln k

]
f 3, (4.73)

T42(k) =

[
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245
b1 +
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35
bs2 −
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35
b1
d lnPlin(k)

d ln k

]
f

+

[
1152

1715
+
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72

245
(1 + b1)

d lnPlin(k)

d ln k

]
f 2

+

[
144

245
− 8

49

d lnPlin(k)

d ln k

]
f 3, (4.74)

T24(k) =

[
256

1715
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245
b1 −

8
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(2 + 9b1)

d lnPlin(k)

d ln k

]
f 2 +

[
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245
− 8

49

d lnPlin(k)

d ln k

]
f 3,

(4.75)

T44(k) =

[
512

3773
+
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49
b1 −

8

539
(4 + 11b1)

d lnPlin(k)

d ln k

]
f 2

+

[
2048

5929
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d lnPlin(k)

d ln k

]
f 3, (4.76)

T64(k) =

[
128

539
− 8

77

d lnPlin(k)

d ln k

]
f 2 +

[
160

847
− 40

847

d lnPlin(k)

d ln k

]
f 3, (4.77)

T46(k) =

[
72

847
− 40

847

d lnPlin(k)

d ln k

]
f 3, (4.78)

T66(k) =

[
32

363
− 8

363

d lnPlin(k)

d ln k

]
f 3. (4.79)

Note that all the other BipoSH coefficients are zero. Details of derivations of the

above expressions, are summarized in Appendix D.
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Figure 4.5: The response functions for the super-sample tides, Tℓℓ′(k), in terms of

the BipoSH multipoles. Negative values are plotted with the dashed lines. Note

that Tℓℓ′(k) is normalized by the matter power spectrum, i.e., Tℓℓ′(k) =
∂P 20

ℓℓ′
∂τ33

/Plin.

We assume cosmological parameters of the Planck satellite results [13] to compute

Plin(k) and for the linear growth rate and galaxy biases we use the following values:

f(z = 0.8) = 0.84, b1 = 1.5, b2 = 0.3, and bs2 = −0.29.

In Fig. 4.5 we show the BipoSH multipole representation of the response func-

tions for the super-sample tides, Tℓℓ′(k), which are normalized by the matter power

spectrum, i.e.,
∂P 20

ℓℓ′
∂τ33

/Plin. We find that T20(k) has the highest magnitude, and T02(k),

T22(k) and T42(k) have smaller magnitudes than T20(k). In general, there is a hier-

archy of magnitudes; |P 2M
20 | > |P 2M

02 | ∼ |P 2M
22 | ∼ |P 2M

42 | > |P 2M
24 | ∼ |P 2M

44 | ∼ |P 2M
64 | >

|P 2M
66 |, reflecting the power of the velocity. Therefore P 2M

20 has a dominant contri-

bution in the signal-to-noise ratio, similar to the usual Legendre multipole case in

which P0 is more dominant than P2. The wiggly feature in the response function

results from the BAO phase shift described by the dilation terms as explained in

Section 4.3.1.

4.6.3 Fisher information matrix for the BipoSH multipoles

In the following subsection, with the BipoSH expansion, we study the degeneracies

between the super-sample tidal modes and other cosmological anisotropies and the

possibility to detect the super-sample tidal modes based on the Fisher information

matrix formalism.
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We employ the Fisher matrix formalism in order to assess the correlations be-

tween the anisotropic signals that appear in the observed power spectrum of galaxies.

In terms of the reduced BipoSH coefficient PLM
ℓ1ℓ2

(k), the Fisher matrix is written as

Fαβ = −
⟨
∂2 logL

∂θα∂θβ

⟩
=
∑
kk′

∑
ℓ1ℓ′1ℓ2ℓ

′
2

∑
LL′MM ′

∂[PLM
ℓ1ℓ2

(k)]∗

∂θα
Cov−1

[
[PLM

ℓ1ℓ2
(k)]∗, PL′M ′

ℓ′1ℓ
′
2
(k′)
] ∂PL′M ′

ℓ′1ℓ
′
2
(k′)

∂θβ
,

(4.80)

To give an expression of the covariance matrix for the reduced BipoSH coefficients

PLM
ℓ1ℓ2

(k), we start from the covariance for the 3D redshift-space power spectrum of

galaxies P s(k; n̂) in the Gaussian limit,

Cov
[
P s(k; n̂), P s(k′; n̂′)

]
=4π

δKk,k′

Nk

[∑
J

P
(O)
J (k)LJ(k̂ · n̂)

]2
×
[
δ(2)(k̂ + k̂′) + δ(2)(k̂ − k̂′)

]
4πδ(2)(n̂− n̂′),

(4.81)

where Nk = 4πk2∆kV/(2π)3 is the number of modes with survey volume V and the

interval between each Fourier mode ∆k and LJ(x) is the Legendre polynomial. The

Legendre coefficients with subscript (O) denote P
(O)
0 (k) = P0(k) + 1/n̄g, P

(O)
2 (k) =

P2(k), P
(O)
4 (k) = P4(k) and P

(O)
1 (k) = P

(O)
3 (k) = P

(O)
J≥5(k) = 0 with n̄g being the

local number density of galaxies. By making use of the formulae in Appendix A, the

covariance above leads to the following expression of the covariance for the reduced

BipoSH coefficients [96],

Cov
[
[PLM

ℓ1ℓ2
(k)]∗, PL′M ′

ℓ′1ℓ
′
2
(k′)
]
= δKL,L′δKM,M ′

δKk,k′

Nk

ΘL
ℓ1,ℓ2,ℓ′1,ℓ

′
2
(k), (4.82)

where

ΘL
ℓ1,ℓ2,ℓ′1,ℓ

′
2
(k) =(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ′1 + 1)(2ℓ′2 + 1)(2L+ 1)(−1)ℓ1

[
1 + (−1)ℓ′1

]
×Hℓ1ℓ2LHℓ′1ℓ

′
2L

∑
JJ ′

P
(O)
J (k)P

(O)
J ′ (k)

∑
L1L2

(2L1 + 1)(2L2 + 1)

×Hℓ1JL1Hℓ2JL2Hℓ′1J
′L1
Hℓ′1J

′L2

{
L L1 L2

J ℓ2 ℓ1

}{
L L1 L2

J ′ ℓ′2 ℓ′1

}
,

(4.83)

with
{

L1 L2 L3
L4 L5 L6

}
being the Wigner 6j symbol. The covariance matrix is therefore

block-diagonalized for L, M and k. Further, the reality of the covariance means the

matrix is also block-diagonalized for real part and imaginary part.
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4.6.4 Results

In this subsection, we use the following cosmological parameters that are consistent

with the Planck 2018 results [13]: h = 0.6766, Ωch
2 = 0.1193, Ωbh

2 = 0.0224,

As = 2.105 × 10−9 and ns = 0.9665. We compute the Fisher matrix Eq. (4.80) for

the following parameter set,

θα = {b1, b2, bs2 , f,DA(z), H(z), δb, τ33, τ11, τ12, τ13, τ23} . (4.84)

As a working example, we assume a SPHEREx-like survey where we set the fiducial

values of the central redshift z = 0.8, the comoving survey volume V = 4.0 (Gpc/h)3,

the mean number density of galaxies n̄g = 4.0 × 10−3 (h/Mpc)3, the linear bias

b1 = 1.5, the quadratic bias b2 = 0.3, the tidal bias bs2 = −4
7
(b1 − 1) = −0.29 (See

Eq. (3.19)), and the linear growth rate f(z = 0.8) = 0.84 [20]. Here we consider a

single redshift slice for simplicity and the corresponding redshift width is ∆z ∼ 0.1.

We assume that in this thin redshift slice the galaxy biases, the linear growth rate,

and the distance parameters can be treated as effectively constants. Our results can

be extended to include multiple redshift slice, although one should take into account

the light-cone projection effect. Notice also that because the super-sample modes

δb(zi) and τij(zi) depend on the specific survey region one should treat the δb(zi)

and τij(zi) as independent variables for each redshift slice, unless one considers the

super-sample modes that straddle multiple survey regions.

Two comments are in order. First, since the higher-order biases, b2 and bs2 ,

are only in the response functions at tree level calculation, then information is not

sufficient to determine these higher-order biases. Therefore we employ 3σ Gaussian

priors for b2 and bs2 with σb2 = σbs2 = 1 in order to make the Fisher matrix invert-

ible. Second, because the isotropic component of the super-sample modes δb is to

degenerate with the linear bias b1 in spectroscopic surveys [32, 94], we also add a 3σ

Gaussian prior to δb with σb computed from Eq. (4.9) and focus on investigating the

degeneracies and detectability of τij. Note however that it is possible to constrain

δb in lensing surveys where the global mean density is relevant [32].

Fig. 4.6 shows the marginalized 68% error contours for the anisotropic signals

{f,DA, H, τ33} in each of two-dimensional sub-space when adopting the minimum

wavenumber kmin = 5.0× 10−3 h/Mpc, which is larger than the fundamental modes

kF ∼ 2π/V 1/3, and the maximum wavenumber kmax = 0.2 h/Mpc. We only present

the results of τ33 because the results are identical for τ11, τ12, τ13, and τ23 in the

BipoSH expansion. For comparison of the BipoSH expansion with the Legendre

expansion, both expansion scheme cases are plotted. We use Eqs. (C.11)-(C.14) as

the Legendre multipoles.
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Figure 4.6: 1σ (68%) error contour for joint τ33 and cosmological distortion param-

eter, f,DA and H, estimation with the maximum wavenumber kmax = 0.2 h/Mpc.

The inner blue curves in each panel show the results when employing the BipoSH

expansion, which carries the full information of the three-dimensional power spec-

trum. The outer black curves in each panel correspond to the results when using the

Legendre expansion, which contains only two-dimensional information of the power

spectrum. For these two curves we do not use the prior knowledge on the super-

sample tidal mode, τ33. The red curves in each panel are the results when using the

Legendre decomposition but adding the 3σ prior for τ33 with στ33 = 6.4× 10−3.
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Fig. 4.6 implies that the BipoSH decomposition formalism enables us to evade the

super-sample tidal effect on the measurements of other distortion parameters, as the

degradation is restored by adding the prior on τ33 in the analysis with the Legendre

multipoles. As clearly demonstrated in Fig. 4.6, the super-sample tidal modes have

little impact on the estimation of other parameters in the BipoSH expansion. More

quantitatively, the absolute values of the cross-correlation coefficients between the

τ33 and other parameters β = {b1, f,DA, H}, cτβ, are less than O(0.1). Notice that

employing the BipoSH decomposition restores the degradation without assuming

ΛCDM model.

Mathematically this is a consequence of the following facts. First, in the BipoSH

expansion f,DA and H are confined into the isotropic L = 0 BipoSH multipoles,

P 00
ℓℓ , wheres the tidal signals τij are confined into the L = 2 BipoSH multipoles, P 2M

ℓℓ′ .

Second, the covariance for the BipoSH coefficients (Eq. (4.82)) is block diagonal for

L. Then f,DA and H are constrained mainly from P 00
ℓℓ (k), to which τij do not

contribute. On the other hand, in the Legendre expansion f,DA, H and τ33 all

appear in the same multipoles, Pℓ(k). Accordingly, changing the AP parameters,

DA and H, leads to both the growth-like and dilation-like effect on the Legendre

multipoles [83], and changing the RSD parameter f mimics the growth effect due

to the super-sample mode. Hence, these parameters degenerate with each other in

the Legendre expansion.

The vanishing correlation between τij and other distortion parameters suggests

that the large-scale tides τij can be measured from the galaxy redshift-space power

spectrum if using the BipoSH expansion, and therefore it is worthwhile to explore the

possibility of whether a spectroscopic survey can detect τij when including higher

kmax. Fig. 4.7 shows the 1σ constraint on τ33 as a function of kmax. Again, the

constraints on other super-sample tidal modes are equivalent, so we only present the

τ33 estimation. We find that the BipoSH expansion enables us to determine τ33 with

an accuracy better than the rms of τ33 expected for ΛCDM model, simultaneously

measuring the RSD and AP distortion, if P 20
ℓℓ′ (k) is included up to kmax ≳ 0.3 h/Mpc.

Although the inclusion of high kmax, in general, requires to accurately model the

nonlinear effect, the nonlinear evolution cannot generate the azimuthal asymmetry

about the LOS, and therefore P 2M
ℓℓ′ (k). Hence, the fact that the appearance of

P 2M
ℓℓ′ (k) is a distinctive feature of τij allows us to use high kmax value. In practice,

the highest kmax value we can use is limited by our knowledge of the response of

the redshift-space power spectrum to the large-scale tides, ∂P (k, n̂)/∂τij, in the

nonlinear regime where the perturbation theory breaks down. As mentioned in the

previous section, to know the form of ∂P (k, n̂)/∂τij in the nonlinear regime, we need

to run N -body simulations with the large-scale tidal field, which is developed in the
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Figure 4.7: 1σ (68%) error for τ33 as a function of the maximum wavenumber kmax.

The orange curve corresponds to the 1σ constraint on τ33 when marginalized over

other parameters,
√
(F−1)ττ . The horizontal dashed line represents the rms value,

στ33 = 6.4× 10−3, expected for ΛCDM cosmology and the survey volume.

next chapter. Here again we simply assume that the response function derived from

the tree-level calculation of perturbation theory holds in the nonlinear regime.
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In Chapter 4, we derive the response function to the super-sample tidal modes,

using the perturbation theory, which is no longer valid on small scales. To obtain

the functional form of the response function on nonlinear regime we need to run

cosmological N -body simulations with long-wavelength perturbations. In practice,

however, N -body simulations usually employ periodic boundary conditions to use

the FFT algorithm so that longer-wavelength perturbations than the simulation
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box size are not included. A näıve way to take into account long-wavelength per-

turbations in simulations is to run simulations in larger and larger simulation box.

However to run large-box simulations requires a lot of memory and this direction

will never end.

In the past few years people have started to use an alternative novel way to

include the super-box mode in N -body simulation, namely, “separate universe sim-

ulation”. A basic observation behind this method is that the super-box mode is

effectively constant over the relevant scales rather than fluctuation. This allow us

to absorb the super-box mode into the background quantities. How to implement

the super-box density perturbation in N -body simulation is extensively studied in

Refs. [27, 31, 47–49]. Since the super-box density mode is isotropic, taking the

super-box density mode in the cosmological background holds isotropy; i.e, absorb-

ing the super-box density mode into N -body simulations results in running simula-

tion with a different FRLW background from the original FRLW cosmology. Thus

what we have to do is just to run the same simulation code with different cosmo-

logical parameters. The separate universe simulation technique makes it possible to

calibrate various effects such as the super-sample covariance [31] and the local halo

bias [92, 105, 106], without running a large number of huge box simulations.

However, since the super-box tidal perturbation is anisotropic, taking the super-

box tidal mode in the cosmological background breaks the isotropy in the back-

ground. Therefore, for the super-box tidal modes, we cannot use the same method

as the density modes. Nevertheless, we show the super-box tidal modes can be ab-

sorbed into the background expansion based on the similar idea. These anisotropic

simulations require modifications of N -body codes, which are presented in Section

5.2 and 5.3, after reviewing “separate universe simulation” technique in Section

5.1. As an application, we show the measurement of the growth response of the

super-sample tidal modes on the sub-survey modes in Section 5.4.
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5.1 Separate universe simulation

Here we briefly review the so-called “separate universe simulation” in which the

large-scale density field beyond the simulation box is absorbed into the cosmological

background, following the discussion in Ref. [31]. In this section we use the physical

time t.

5.1.1 Separate universe technique

Suppose that a local region is embedded in the mean density fluctuation δb(t) with

the “global” background density ρ̄m,G. The fact that this long wavelength density

perturbation can be seen as an effective background in the local patch tempts us to

define the “local” background density as

ρ̄m,L = ρ̄m,G(1 + δb), (5.1)

where the subscript G and L represent global and local quantities respectively. Then

we can treat the local patch as the “separate” universe. In terms of the cosmological

parameters,

Ωm0,Lh
2
L

a3L
=

Ωm0,Gh
2
G

a3G
(1 + δb). (5.2)

As lim
t→0

δb(t) = 0, we get the initial condition for the local scale factor,

lim
t→0

aL(aG(t), δb(t)) = aG. (5.3)

Thus at high redshift Eq. (5.2) reduces to

Ωm0,Lh
2
L = Ωm0,Gh

2
G. (5.4)

Substituting this into Eq. (5.2) yields

aL =
aG

(1 + δb)1/3
≃ aG

(
1− 1

3
δb

)
, (5.5)

at an equal physical time. The difference between the global and local scale factors

naturally leads to a different expansion rate as

H2
L −H2

G ≃ −
2

3
HG

dD

dt

δb0
D0

, (5.6)

where δb0 is the present-day value of δb and we have used δb = (D/D0)δb0 with D

being the linear growth function. Using Eq. (2.38) , we find

HG
dD

dt
=

Ωm0,GH0,G

2a2G

[
5

D(t)
− 3

aG
− 2ΩK0,G

Ωm0,G

]
D(t), (5.7)
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where we have included the curvature parameter ΩK0. On the other hand, assuming

that the Friedmann equation holds in each universe we have

H2
L =H2

0,L

[
Ωm0,L

a3L
+ ΩΛ0,L +

ΩK0,L

a2L

]
, (5.8)

H2
G =H2

0G

[
Ωm0,G

a3G
+ ΩΛ0,G +

ΩK0,G

a2G

]
, (5.9)

where we have defined the Hubble constant in the local separate universe as

H0,L ≡ HL|aL=1 ̸= HL|aG=1 . (5.10)

Eqs. (5.8) and (5.9) yields

H2
L −H2

G ≃
H2

0,L −H2
0,G

a2G
+H2

0,G

[
Ωm0,G

a3G
+

2

3

ΩK0,G

a2G

]
δb. (5.11)

where we have used Eqs. (5.4) and (5.5) and the fact that ΩΛ0,Gh
2
G = ΩΛ0,Lh

2
L, which

means the physical density of the cosmological constant is constant. Comparing

Eq. (5.11) with Eq. (5.6) we obtain the local Hubble constant in terms of the global

quantities as

δh

hG
≡ H0,L −H0,G

H0,G

≃ −5Ωm0,G

6

δb(t)

D(t)
. (5.12)

Other local cosmological parameters are found to be

δΩm0

Ωm0,G

=
δΩΛ0

ΩΛ0,G

≃ −2 δh
hG
. (5.13)

Note that even when the global universe is flat the separate universe has a spatial

curvature,

ΩK0,L =1− Ωm0,L − ΩΛ0,L (5.14)

=1− (Ωm0,G + ΩΛ0,G)

(
1 +

5Ωm0,G

3

δb(t)

D(t)

)
̸= 0. (5.15)

Thus in general the flat FLRW universe with the long-wavelength density perturba-

tion corresponds to a curved FLRW universe effectively without the long-wavelength

density perturbation.

5.1.2 Growth and dilation in separate universe picture

With a couple of separate universe simulations, we can measure the response of the

power spectrum to the large-scale density field δb. That is, the response ∂ lnP (k)/∂δb

can be evaluated as

∂ lnP (k)

∂δb

∣∣∣∣
k

≃ lnP (k; δb = +ϵ)− lnP (k; δb = −ϵ)
2ϵ

, (5.16)
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where we measure P (k; δb = ±ϵ) in separate universe simulations with ϵ≪ 1. One of

advantages of this technique lies in the fact that we can use the same initial seeds to

run respective separate universe simulations. Since the initial condition is given by

the Gaussian random field, the sample variances inevitably exist in measurements of

the power spectrum. The separate universe technique reduces this stochasticity by

sharing the initial seeds in separate universe simulations in which we take difference.

However, there are subtleties as for the comparison of the power spectra of dif-

ferent separate universes, since different separate universes have different units and

comoving scales as discussed in the previous subsection. Cosmological N -body codes

usually use the unit h Mpc−1 rather than Mpc−1 in k. To avoid confusion arisen

from the difference in the units, we work with the dimensionless power spectrum

∆2(k) = k3P (k)/2π2. When we compare the power spectra of different cosmologies

at some scales, this comparison is done at different scale factors given by Eq. (5.5).

The fact that the physical scales should be unchanged in different cosmologies,

aGxG = aLxL, implies that

kL =
aL
aG
kG ≃

(
1− 1

3
δb

)
kG. (5.17)

After all, by using the chain rule the response Eq. (5.16) is rewritten as

∂ ln∆2
L(kL)

∂δb

∣∣∣∣
kG

=
∂ ln∆2

L(kL)

∂δb

∣∣∣∣
kL

+
∂ ln∆2

L(kL)

∂ ln kL

∂ ln kL
∂δb

=
∂ ln∆2

L(kL)

∂δb

∣∣∣∣
kL

− 1

3

∂ ln∆2
L(kL)

∂ ln kL

=
∂ ln∆2

L(kL)

∂δb

∣∣∣∣
kL

− 1

3

∂ ln∆2
G(kG)

∂ ln kG
, (5.18)

where the first and second terms correspond to the growth and dilation term re-

spectively. Eq. (5.18) shows that the dilation term can be obtained by replacing

the linear power spectrum in the perturbation theory prediction with the nonlinear

one. Thus to evaluate the dilation term does not need to run separate universe

simulations. On the other hand, Eq. (5.18) also shows that the growth term can be

measured by taking the difference of the power spectra at fixed separate universe

comoving scales kL. Several studies have already measured the response of the mat-

ter or halo power spectrum to the long-wavelength isotropic perturbation δb. They

found that the small-scale growth is enhanced compared to the perturbation theory

predictions which are given by Eqs. (4.26) and (4.29) [31, 92]. We use a similar

technique to calibrate the response to the large-scale tidal field.
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5.2 Methodology

5.2.1 Peculiarity-background split

In this subsection, we show that in the Newtonian cosmology the effect of infinitely

long-wavelength tidal mode on dark matter particles can be absorbed by a coordinate

transformation.

Consider a generalized relation between the physical and comoving coordinates,

ri = aijxj (i, j = 1, 2, 3), (5.19)

where ri is the physical coordinates of the dark matter particle and aij is a symmetric

matrix that absorbs the large-scale stress due to the long modes so that the large-

scale displacement is isotropic in the xi coordinate. We normalize aij to the scale

factor of global expansion a δKij in the absence of any long mode, when xi reduces

to the usual comoving coordinates. From Eq. (5.19) we can immediately separate

the physical velocity ui into the expansion of a local background and a peculiar

component

ui ≡ ṙi = Hijrj + vi, (5.20)

where the overdot denotes physical time derivative, Hij ≡ ȧik[a
−1]kj describes a local

anisotropic Hubble expansion, and vi ≡ aijẋj is the peculiar velocity.

The dark matter particle follows the Newtonian equation of motion

u̇i = −
∂

∂ri
(Φ + ϕ). (5.21)

Plugging Eq. (5.20) into Eq. (5.21), the acceleration also splits into a local back-

ground expansion and a peculiar piece, which are respectively driven by an effective

background potential ϕ and a peculiar potential Φ

äik[a
−1]kjrj = −

∂ϕ

∂ri
, (5.22)

Hijvj + v̇i = −
∂Φ

∂ri
, (5.23)

where we have used Ḣij +HikHkj = äik[a
−1]kj. One can identify Eq. (5.22) with a

modified Friedmann equation. The background potential ϕ absorbs the large-scale

stress due to the long modes, so that the peculiar potential should be sourced only

by the local structures

∇2
rΦ = 4πGρ̄m(1 + ∆0)δ, (5.24)

where ∇2
r is the Lapracian in the physical coordinates, ρ̄m is the (global) mean

density of matter, ∆0(= δb) is the local mean overdensity relative to ρ̄m

1 + ∆0 ≡
a3

det aij
, (5.25)
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5.2. METHODOLOGY

and δ denotes the overdensity with respect to the local background density ρ̄m(1 +

∆0).

Without loss of generality, we can simplify the equations (and the numerical

implementation) by performing a rotation to align the principal axes of the long

tide with the Cartesian axes (of the simulation box), so that aij = aiδ
K
ij and Hij =

Hiδij = ȧiδ
K
ij /ai with their off-diagonal degrees of freedom eliminated. Let us define

∆i as the fractional perturbation to ai

1 + ∆i ≡
ai
a
, i = 1, 2, 3. (5.26)

Therefore

Hi = H + ∆̇i. (5.27)

In order to determine the evolution of ∆i in the presence of the large-scale tides

τij = diag(τ1, τ2, τ3), we consider the effective background potential as

ϕ =
2

3
πG(ρ̄+ 3P̄)r2i +

2

3
πGρ̄mτir

2
i , (5.28)

where the second term corresponds to the potential sourced by the long-wavelength

tidal mode. One can easily verify substituting the first term into Eq. (5.22) gives

rise to the usual Friedmann equation Eq. (2.4). Plugging Eq. (5.28) into Eq. (5.22)

and using the usual Friedmann equation Eq. (2.4), we derive

∆̈i + 2H∆̇i = −
4

3
πGρ̄mτi(1 + ∆i). (5.29)

Thus given that τi = (D(t)/D0)τi0 we can compute the anisotropic scale factor by

solving this equation. At linear order, we get

∆i = −τi. (5.30)

Defining the conjugate momenta of xi as Pi ≡ a2imẋi, the equation of motion for

the peculiar part takes a simple form of

Ṗi = −
∂Φ

∂xi
, (5.31)

for the unit mass.

5.2.2 Lagrangian perturbation theory in an anisotropic back-

ground

The initial conditions for the cosmological N -body simulation are generated by mak-

ing use of the second-order Lagrangian perturbation theory [107]. In the presence
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of long modes, we have to solve the anisotropic perturbations to the Lagrangian

displacement with the second-order Lagrangian perturbation theory.

Let us start with the Zel’dovich approximation (or linear Lagrangian pertur-

bation theory) [108]. The displacement field Ψ(q) is a mapping from a particle’s

Lagrangian position qi to its Eulerian position xi:

xi = qi +Ψi(q), (5.32)

whose determinant is related to overdensity by

δ =
∣∣∣∂x
∂q

∣∣∣−1

− 1 ≃ −Ψ(1)
i,i , (5.33)

where Ψi,j ≡ ∂Ψi/∂qj, and we have only kept the leading order term in the second

equality. Substituting Eq. (5.32) into Eq. (5.23) leads to

Ψ̈
(1)
i + 2HiΨ̇

(1)
i = − 1

ai

∂Φ

∂ri
. (5.34)

Take gradient of xi on both sides and then sum over i:

Ψ̈
(1)
i,i + 2HiΨ̇

(1)
i,i ≃ −∇2

rΦ ≃
3

2
H2Ωm(1 + ∆0)Ψ

(1)
i,i , (5.35)

in which we have used Eqs. (5.24), (5.33), and the fact that at leading order

∂Ψ
(1)
i /∂xi ≃ Ψ

(1)
i,i . In the linear order the vorticity in Ψ

(1)
i,j decays, so the displace-

ment is a potential flow Ψ
(1)
i = −∂ψ(1)/∂qi ≡ −ψ(1)

,i with the displacement potential

ψ(1) sourced by the overdensity in Lagrangian space:

∇2
qψ

(1) ≃ δ(1). (5.36)

Rewriting Eq. (5.35) with ψ in Fourier space yields

ψ̈(1) + 2Hik̂
2
i ψ̇

(1) − 3

2
Ωm(a)(1 + ∆0)ψ

(1) = 0, (5.37)

where k̂i denotes the unit vector of the wavevector in the Lagrangian space. The

above equation describes the linear growth of the displacement field, on which the

effect of the long modes manifests in the quadrupolarly direction-dependent Hubble

drag and the coefficients that depend on the growth history of the long modes ∆i.

Apparently without the long modes the evolution described by Eq. (5.37) reduces

to that of the usual linear growth function D(a) Eq. (2.38). In the presence of the

long modes, the growth function D
(1)
L (a, k̂) receives corrections of order O(∆i). The

subscript L here denotes locally averaged quantities. Let ϵ(1)(a, k̂) ≡ D
(1)
L −D(1). It

follows

ϵ̈(1) + 2Hϵ̇(1) − 3

2
Ωmϵ

(1) ≃ −2Ḋ(1)k̂2i ∆̇i +
3

2
ΩmD

(1)∆0. (5.38)

76



5.2. METHODOLOGY

To solve this equation we can first decompose it as

ϵ(1)(a, k̂) = k̂2i ϵ
(1)
i (a), (5.39)

with each component ϵ
(1)
i (a) solves

ϵ̈
(1)
i + 2Hϵ̇

(1)
i −

3

2
Ωmϵ

(1)
i = −2Ḋ(1)∆̇i +

3

2
ΩmD

(1)∆0. (5.40)

For the simplest scenarios we assume that the universe has been matter dominated

(H = 2/3t and Ωm = 1) for long enough and that the long modes are well sub-

horizon (∆0,∆i ∝ D), so that at the Zel’dovich approximation we can set up the

initial conditions of the linear growth equations Eqs. (2.38) and (5.40) as

D(1) =
dD(1)

d ln a
= aini,

ϵ
(1)
i =

1

2

d ϵ
(1)
i

d ln a
= −4

7
∆iD

(1) +
3

7
∆0D

(1), (5.41)

at aini deep in the matter-dominated era.

At the second order, we have to come back to the master equation for the La-

grangian perturbation theory in the anisotropic background, which is given by∣∣∣∂x
∂q

∣∣∣−1

[δij +Ψi,j]
−1
[
Ψ̈i,j + 2HiΨ̇i,j

]
=

3

2
H2Ωm(a)(1 + ∆0)δ. (5.42)

Keeping up to the second-order terms, we find∣∣∣∂x
∂q

∣∣∣−1

≃ 1 + Ψ
(1)
i,i +Ψ

(2)
i,i +

1

2

[(
Ψ

(1)
i,i

)2
−Ψ

(1)
i,j Ψ

(1)
j,i

]
, (5.43)

[δij +Ψi,j]
−1 ≃ δij −Ψ

(1)
i,j , (5.44)

leading to the second-order equation

Ψ̈
(2)
i,i + 2HiΨ̇

(2)
i,i −

3

2
H2Ωm(a)(1 + ∆0)Ψ

(2)
i,i

= −Ψ(1)
i,i

[
Ψ̈

(1)
j,j + 2HiΨ̇

(1)
j,j

]
+Ψ

(1)
i,j

[
Ψ̈

(1)
i,j + 2HiΨ̇

(1)
i,j

]
+

3

2
H2Ωm(a)(1 + ∆0)

[
1

2

(
Ψ

(1)
i,i

)2
− 1

2
Ψ

(1)
i,j Ψ

(1)
j,i

]
. (5.45)

Similar to the linear order, we introduce the second-order displacement potential

thruough Ψ
(2)
i = ∂ψ

(2)
L /∂qi ≡ ψ

(2)
L,i . In the absence of the long modes, the equation

for ψ(2) reduces to

ψ̈
(2)
,ii + 2Hψ̇

(2)
,ii −

3

2
H2Ωm(a)ψ

(2)
,ii = −3

2
H2Ωm

[
1

2

(
ψ

(1)
,ii

)2
− 1

2
ψ

(1)
,ij ψ

(1)
,ji

]
, (5.46)
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where we have used the linear equation Eq. (5.37) without long modes. In this usual

case, we denote the time-dependent part of ψ(2) as D(2), which obeys

D̈(2) + 2HḊ(2) − 3

2
H2ΩmD

(2) = −3

2
H2Ωm

(
D(1)

)2
. (5.47)

In the matter dominated era, we have D(2) = −3
[
D(1)

]2
/7. The correction induced

by the long modes, which is expressed by ϵ(2)(t,q) ≡ ψ
(2)
L (t,q)− ψ(2)(t,q), follows

ϵ̈
(2)
,ii + 2Hϵ̇

(2)
,ii −

3

2
H2Ωmϵ

(2)
,ii =

− 2ψ̇
(2)
,ii ∆̇i + 2∆̇iψ̇

(1)
,ij ψ

(1)
,ji −

3

2
H2Ωmϵ

(1)
,jjψ

(1)
,ii + ψ

(1)
,ij

[
ϵ̈
(1)
,ij + 2Hϵ̇

(1)
,ij

]
+

3

2
H2Ωm∆0

[
ψ

(2)
,ii +

1

2

(
ψ

(1)
,ii

)2
− 1

2
ψ

(1)
,ij ψ

(1)
,ji

]
, (5.48)

where ϵ(1)(t,q) =
∫

d3k
(2π)3

ϵ(1)(t, k̂)eik·q and we neglect O(∆2
i ) terms. Notice that ϵ(1)

is O(∆i). For the matter dominated era the solution for Eq.(5.48) is given by

ϵ
(2)
,ii (q) =

1

4

[
−16

9
ψ

(2)
,ii (q) +

8

9
ψ

(1)
,ij (q)ψ

(1)
,ji (q)

]
∆i

+
1

6

[
ψ

(2)
,ii +

1

2

(
ψ

(1)
,ii

)2
− 1

2
ψ

(1)
,ij ψ

(1)
,ji

]
∆0

+
1

4

[
−2

3
ψ

(1)
,ii (q)ϵ

(1)
,jj (q) +

20

9
ψ

(1)
,ij (q)ϵ

(1)
,ij (q)

]
. (5.49)

Although the modified second-order growth factor, D
(2)
L , due to the long modes can

be identified as D
(2)
L (t,k) = D(2)(1 + ∆0/6− 4k̂2i∆i/9), the local gravitational tides

cannot be neglected at the second order.
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5.3 Numerical implementation

In this section, we describe how to modify the comsmological N -body simulation

code L-Gadget2 [109], to perform the cosmological simulation in an anisotropic

expanding universe.

5.3.1 Forces

The TreePM method splits the gravity into the long-range and short-range pieces

Φ = ΦPM + ΦT, (5.50)

which are handled by the PM and tree algorithms, respectively [110, 111]:

ΦPM(k) = −4πGρ̄ma2
δ(k)

k2
e−k2x2

s , (5.51)

ΦT(x) = −Gm
a

∑
n

1

|x− xn|
erfc
( |x− xn|

2xs

)
, (5.52)

where xs is the comoving scale of force splitting, xn denotes the position of the n-th

particle, m represents the mass of the particle, and

ρ̄m
(
1 + δ(x)

)
=
m

a3

∑
n

δ3D(x− xn). (5.53)

Since the Fourier transform of e−k2x2
s/k2 is erf(x/xs)/4πx, one can verify the force

splitting with the convolution theorem. The acceleration due to the tree force is

− ∂ΦT

∂xi
= −Gm

a

∑
n

[x− xn]i
|x− xn|3

[
erfc
( |x− xn|

2xs

)
+
|x− xn|
xs
√
π

exp
(
−|x− xn|2

4x2s

)]
.

(5.54)

Now let us consider how this conventional TreePM algorithm is modified in an

anisotropically expamding universe. The modified Poisson equation Eq. (5.24),

(1 + ∆i)
−2 ∂

2

∂x2i
ΦPM = 4πGρ̄ma

2(1 + ∆0)δ, (5.55)

leads us to modify the TreePM potentials as

ΦPM(k) = −4πGρ̄ma2(1 + ∆0)
(1 + ∆i)

2δ(k)

k2
e
− k2

(1+∆i)
2 x

2
s , (5.56)

ΦT(x) = −Gm
a

∑
n

a

|r− rn|
erfc
( |r− rn|

2axs

)
, (5.57)

Note that to avoid anisotropic artificial features, we split the force isotropically in

physical scales, i.e., anisotropically in local comoving scales. Given that the PM
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grid is now anisotropic in physical scale, having xs bigger than the grid size helps to

suppress any effect due to such anisotropic smoothing over the grid scale. The tree

acceleration is now

− ∂ΦT

∂xi
= −Gm

a

∑
n

aai[r− rn]i
|r− rn|3

[
erfc
( |r− rn|

2axs

)
+
|r− rn|
axs
√
π

exp
(
−|r− rn|2

4a2x2s

)]
,

(5.58)

We adopt the same spline kernel in L-Gadget2 to soften the force with replace-

ment x→ r/a.

5.3.2 Time integration

In simulations [109, 112], the kick and drift leapfrog operators

Kick :
P

m
→ P

m
−∇xφ

∫ t+∆t

t

dt

a
, (5.59)

Drift : x→ x+
P

m

∫ t+∆t

t

dt

a2
, (5.60)

are derived from canonical transformation. P ≡ a2mẋ is the canonical momentum

of the Hamiltonian

H =
∑
n

P 2
n

2ma2
+
∑
n̸=n′

m2φ(xn − xn′)

2a
, (5.61)

in which φ is the potential of a unit-mass particle:

∇2
xφ = 4πG

(
δ3D(x− x′)− 1

L3

)
. (5.62)

Notice that Φ and φ are related through Φ = m2φ/a.

For the anisotropic system, the Hamiltonian leading to the modified EoM Eq. (5.31)

is

H =
∑
n

3∑
i=1

P 2
n,i

2ma2i
+
∑
n ̸=n′

m2φ(xn − xn′)

2a
. (5.63)

Thus we have

Kick :
P

m
→ P

m
−∇xφ

∫ t+∆t

t

dt

a
, (5.64)

Drift : xi → xi +
Pi

m

∫ t+∆t

t

dt

a2i
. (5.65)

Note that since we have already considered effects of the anisotropic expansion on

force (or potential) calculations in the previous subsection, we can use the same

kick operators. On the other hand, the drift operator should be modified due to the

modified canonical momentum.
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5.4 Growth response from simulations

In this section, we show the measurement of the growth term in the response of

the real-space matter power spectrum with respect to the large-scale tides from

anisotorpic cosmological simulations.

5.4.1 Estimator of the growth response

Recall that in the presence of the large-scale tidal field τij the power spectrum is

modified as

P (k; τij) = P (k)

[
1 +

∂ lnP (k)

∂τij
τij

]
, (5.66)

where ∂ lnP (k)/∂τij is called the response function. In general, the response func-

tion of the real-space power spectrum to the large-scale tides takes a form of

∂ lnP (k)

∂τij
=

[
G(k)− ∂ lnP (k)

∂ ln k

]
k̂ik̂j, (5.67)

where G(k) represents the growth term and the second term in the parenthesis

represents the dilation term. As discussed in Sec. 5.1.2, the latter term arises from

the coordinate transformation, namely, the difference of the expansion history in the

global and local universes, which now leads to

kL,i =
aL,i
aG,i

kG,i ≃ (1 + ∆i) kG,i ≃ (1− τi) kG,i. (5.68)

Note that due to the traceless nature of the tidal field,
∑3

i=1 τi = 0, there is no

difference in the units for different cosmologies after angle-averaging. Thus now we

can work with P (k) not ∆2(k) and to evaluate the growth response, G(k), we just

compare the power spectrum of anisotropic simulations at fixed comoving scales.

We run anisotropic simulations with the eigenvalues of the tidal tensor at z = 0

given by

(τx, τy, τz) =

(
−1

2
, −1

2
, 1

)
ϵ, (5.69)

with ϵ = 0.01≪ 1. In this case, the angular dependence of the response becomes

k̂ik̂jτij =ϵD(a)
3k̂2z − 1

2

=ϵD(a)L2(k̂ · ẑ). (5.70)

81



CHAPTER 5. COSMOLOGICAL SIMULATION IN AN ANISOTROPIC
BACKGROUND UNIVERSE

Therefore to extract the growth response we find

G(k) =

⟨
[P (k; τz = +ϵ)− P (k; τz = −ϵ)]L2(k̂ · ẑ)

⟩
angle

2D(a)ϵ
⟨
P (k; τi = 0)L2

2(k̂ · ẑ)
⟩
angle

, (5.71)

where ⟨· · · ⟩angle represents angle-averaging and the power spectrum in the denomi-

nator is measured from the usual isotropic simulation.

5.4.2 Simulation setup and results

Here we summarize our simulation setup. As discussed in the previous subsection, to

calibrate the growth response, we run three simulations, two of which were performed

in an anisotropic universe with ϵ = ±0.1 and one of which was performed in the usual

isotropic universe. These three simulations start from zinit = 49 where the initial

conditions are generated from the same initial seed, i.e., the same initial amplitudes

and phases, and computed by the modified second-order Lagrangian perturbation

theory. We choose the initial fluctuations that are consistent with the Planck 2018

result [13]. Then, we run modified L-Gadget2 with 5123 particles, 5123 PM grid in

the simulation box length L = 250 h−1Mpc. In measuring the power spectrum, we

used the cloud-in-cell (CIC) assignment to 10243 grid.

Fig. 5.1 shows the growth response to the large-scale tides measured from the

anisotropic N -body simulations at z = 0 and z = 1. We also plot the perturbation-

theory prediction, namely, G(k) = 8/7 by the black-dashed line. On large scales

where the nonlinearities is still small, the measuredG(k) follows the the perturbation-

theory (PT) prediction value as expected. On the other hand, on small scales, the

response deviates from the PT prediction because of the nonlinear structure forma-

tion.

In contrast to the response to the large-scale density perturbation, which is

enhanced than the PT prediction on small scales [31, 49] because in overdense region

more matter accumulates and then more halos are formed than in underdense region,

we find the response to the large-scale tides decreases monotonically. Furthermore,

the lower the redshift is, the less the growth response is on small scales. This

suppression can be attributed to two factors. First, the suppression in intermediate

scales is due to the fact that halo number density does not change at linear order

of the tidal field (recall that the tidal bias starts at second order), whereas the

long-wavelength density mode does. Second, the decrease in smaller scales suggests

that the inner structures of halos is not significantly affected by outer tidal fields,

because the inner regions of halos are virialized and thus they no longer remember
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Figure 5.1: Growth response G(k) of the matter power spectrum to the large-scale

tides measured from tidal separate universe simulations. The dashed line depicts

the tree-level perturbation theory prediction Eq. (4.27). The solid and dashdot lines

depict nonlinear response at z = 1 and z = 0, respectively.

the memory of the external tidal fields. This implies that on the smallest scales the

total response ∂ lnP (k)/∂τij goes to zero, which results in

G(k)→ ∂ lnP (k)

∂ ln k
≃ −2. (5.72)

The transition from the positive values to the negative of G(k) seems to agree with

this expectation, although to confirm this conjecture needs to run higher-resolution

simulations.
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Chapter 6

Conclusions

In this thesis, using the standard perturbation theory, we derived the response func-

tions of both the real-space and redshift-space power spectrum to super-sample tidal

modes. Since a given survey realization is generally embedded in the presence of

super-sample modes, δb and τij, they alter the statistically averaged quantities in

observations, compared with the ensemble average expectation for an infinite vol-

ume. There are two effects. First, the presence of the super-sample modes changes

the growth of small-scale fluctuations via the nonlinear mode coupling. Secondly, it

causes a dilation effect, the modulation of a short comoving distance scale due to

the change of the local expansion factor in the finite volume region. In particular we

showed that the large-scale tide, τij, causes apparent anisotropic clustering in the

redshift-space power spectrum, where the effect has directional dependence deter-

mined by an alignment of the large-scale tide, the directions of small-scale modes,

and the line-of-sight direction. This effect mimics the anisotropic clustering due to

the redshift-space distortion effect of the small-scale peculiar velocities of galaxies

as well as the apparent cosmological distortion caused by the use of an incorrect

cosmological model in the clustering analysis.

To assess a possible impact of τij on parameter estimation from a measurement

of the redshift-space power spectrum in a given survey realization, we used the

Fisher information matrix formalism. To do this, we considered the two-dimensional

redshift-space power spectrum, P 2D
s (k⊥, k∥; τ33) as an observable, which is obtained

from the azimuthal angle average of the redshift-space power spectrum estimator

in the two-dimensional plane perpendicular to the line-of-sight direction under the

global plane-parallel approximation. In this case, the effects of the large-scale tide

are modeled by a single quantity, τ33, the line-of-sight component of the tide. We

showed that, if allowing τ33 to freely vary, it causes a significant degradation in the

parameters, DA, H and β, due to almost perfect degeneracies between τ33 and the
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parameters in the power spectrum. If one adopts a prior on τ33 assuming the rms ex-

pected for a ΛCDM model, it efficiently lifts the parameter degeneracies and restores

an accuracy of the cosmological parameters that are expected for a galaxy survey

without the super-sample mode. Thus the impact of the large-scale tide on the

redshift-space power spectrum is not as large as the impact of the large-scale den-

sity contrast, δb, on the real-space power spectrum such as the weak lensing power

spectrum [30, 31, 41], as long as the large-scale tide obeys the ΛCDM expectation.

We have also addressed whether a measurement of redshift-space power spectrum

can be used to constrain the super-sample tidal modes τij in the survey realization,

rather than treating τij as a nuisance parameter. To do so, it is essential to notice the

fact that τij breaks the statistical isotropy of the observed galaxy power spectrum.

The BipoSH formalism we employed characterizes statistical anisotropic signals via

a multipole index L in the BipoSH basis {Yℓ(k̂)⊗Yℓ′(n̂)}LM , and non-zero L modes

mean the presence of statistical anisotropy; in other words, we can single out only

the statistical anisotropic signal by measuring the L ̸= 0 mode. The super-sample

tidal components result in the L = 2 mode in which all degrees of freedom of τij are

extracted. We showed emplying the BipoSH formalism τij can be well constrained at

an accuracy better than the rms for the ΛCDM model, with unbiased estimations on

f , H and DA. This is an interesting possibility, because the method gives an access

to such a large-scale tide from a measurement of the small-scale fluctuations. One of

possible applications is to confirm the matter-radiation equality bump in the power

spectrum that is predicted in the linear cosmological perturbation theory. Assuming

that there is no decrease in the power spectrum at low k unlike the ΛCDMmodel, the

super-sample tides predicted from Eq. (4.14) should become larger than the ΛCDM

prediction. To put it another way, a non-detection of such large tides can rule out the

model that has no matter-radiation equality bump in the power spectrum. Related

to this direction, another application lies in exploring the large-scale anomaly such

as the quintessential isocurvature [113], tensor-fossils [114, 115] and super-curvature

fluctuation [116], which may have a connection with the CMB large-scale anomaly.

In order to detect non-ΛCDM models unambiguously, we should take into account

other effects such as the survey geometry, the position dependence of biases, the

selection effect, and the general relativistic effects when applying this method to an

actual survey data.

In the last part in this thesis, we developed a methodology of cosmological N -

body simulation with the super-box tidal field by realizing the anisotropic back-

ground expansion into which the super-box tidal field is absorbed. By using this

tidal separate universe simulation, we can study various effects of τij on nonlinear

structures, although here we presented only the measurement of the growth response
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to the super-sample tides. First, tidal separate universe can be used to accurately

measure the non-local (tidal) bias of halos, bs2 , as the usual separate universe sim-

ulations are used for measuring local halo biases b1 and b2 [92, 105, 106]. Since

biases can be seen as a “response” of the galaxy (or halo) number density to the

large-scale perturbations [79], one can measure bs2 with sets of the tidal separate

universe simulations; bs2 = ∂ lnnh/∂(τij)
2. Second, the the correlation between τij

and shapes of halos, which is known as the intrinsic alignments [117, 118], is also

worth investigating. These applications require the modifications of a halo finder,

and are our future works.
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Appendix A

Useful identities

In this appendix, we summarize the useful properties of the spherical harmonics and

the wigner symbols.

The addition theorem of the spherical harmonics tells us that

Lℓ(k̂ · x̂) =
4π

2ℓ+ 1

∑
m

Yℓm(k̂)Y
∗
ℓm(x̂), (A.1)

where Lℓ(µ) is the ℓ-th Legendre polynominal. The orthogonality for the spherical

harmonics are ∫
d2k̂ Yℓm(k̂)Y

∗
ℓ′m′(k̂) = δKℓℓ′δ

K
mm′ , (A.2)∑

ℓm

Yℓm(k̂)Y
∗
ℓm(k̂

′) = δ
(2)
D (k̂ − k̂′). (A.3)

The complex conjugate of the spherical harmonics becomes

Y ∗
ℓm(k̂) = (−1)mYℓ−m(k̂). (A.4)

A unit vector is written by the spherical harmonics [119]

k̂i =
∑
m

αm
i Y1m(k̂), (A.5)

αm =

√
2π

3

−m(δKm,1 + δKm,−1)

i(δKm,1 + δKm,−1)√
2δKm,0

 , (A.6)

and the coefficient vector αm satisfies the following relations,

(αm)∗ = (−1)mα−m, (A.7)

αm ·αm′
=

4π

3
(−1)mδKm,−m′ , (A.8)∑

m

αm
i (α

m
j )

∗ =
4π

3
δKij . (A.9)
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A product of two spherical harmonics which have the same variable is reduced to a

spherical harmonics

Yℓ1m1(k̂)Yℓ2m2(k̂) =
∑
LM

√
(2ℓ1 + 1)(2ℓ2 + 1)(2L+ 1)

4π

×

(
ℓ1 ℓ2 L

0 0 0

)(
ℓ1 ℓ2 L

m1 m2 M

)
Y ∗
LM(k̂)

≡
∑
LM

hℓ1ℓ2L

(
ℓ1 ℓ2 L

m1 m2 M

)
Y ∗
LM(k̂). (A.10)

The orthogonalities for the Wigner 3-j symbol are

∑
ℓm

(2ℓ+ 1)

(
ℓ1 ℓ2 ℓ

m1 m2 m

)(
ℓ1 ℓ2 ℓ

m′
1 m′

2 m

)
= δKm1m′

1
δKm2m′

2
, (A.11)

∑
m1m2

(
ℓ1 ℓ2 ℓ

m1 m2 m

)(
ℓ1 ℓ2 ℓ′

m1 m2 m′

)
=
δKℓℓ′δ

K
mm′

2ℓ+ 1
. (A.12)

The angular momentum coupling implies

∑
m

(−1)ℓ−m

(
ℓ ℓ L

m −m M

)
=
√
2L+ 1δL,0δM,0. (A.13)

The wigner 6-j symbol is defined as{
ℓ1 ℓ2 ℓ3

ℓ4 ℓ5 ℓ6

}(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
≡

∑
m4m5m6

(−1)
∑6

i=4(ℓi−mi)

×

(
ℓ5 ℓ1 ℓ6

m5 −m1 −m6

)(
ℓ6 ℓ2 ℓ4

m6 −m2 −m4

)(
ℓ4 ℓ3 ℓ5

m4 −m3 −m5

)
.

(A.14)
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Appendix B

Super-sample covariance

In this appendix, we provide the derivation of the response function by computing

the collapsed trispectrum. The covariance matrix of the power spectrum estimator

(Eq. 4.4) is defined as

C(k,k′) =
⟨
P̂ (k)P̂ (k′)

⟩
− P (k)P (k′). (B.1)

Inserting Eq. (4.15) into the above equation leads us to find a formal expression of

the super-sample covariance due to δb and τij:

CSSC(k,k′) = σ2
b

∂P (k)

∂δb

∂P (k′)

∂δb
+ ⟨τijτℓm⟩

∂P (k)

∂τij

∂P (k′)

∂τℓm
, (B.2)

where we have assumed ⟨δbτij⟩ ≃ 0 for a reasonably symmetric survey window. Fol-

lowing the formulation in Refs. [30, 32], we advocate that the squeezed trispectrum

can be characterized by the responses of the power spectrum to the super-sample

modes as

lim
q→0

[T (k,−k+ q,k′,−k− q)− T (k,−k,k′,−k′)]

≃Plin(q)

[
∂P (k)

∂δb
+
∂P (k)

∂τij

(
q̂iq̂j −

1

3
δKij

)][
∂P (k′)

∂δb
+
∂P (k′)

∂τℓm

(
q̂ℓq̂m −

1

3
δKℓm

)]
,

(B.3)

where the Fourier modes q are super-sample modes satisfying k, k′ ≫ q. Then we

can realize that the super-sample covariance is found to be

CSSC(k,k′) =
1

V 2

∫
d2q

(2π)3
|W (q)|2 [T (k,−k+ q,k′,−k′ − q)− T (k,−k,k′,−k′)] ,

(B.4)

where T (k1,k2,k3,k4) is the tree-level trispectrum, defined as

⟨δ(k1)δ(k2)δ(k3)δ(k4)⟩c = (2π)3δ3D(k1234)T (k1,k2,k3,k4). (B.5)
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Using the perturbation theory [21], the tree-level trispectrum is given by

T (k1,k2,k3,k4) =4 [F2(k13,−k1)F2(k13,k2)Plin(k13)Plin(k1)Plin(k2) + 11 perms.]

+ 6 [F3(k1,k2,k3)Plin(k1)Plin(k2)Plin(k3) + 3 perms.] , (B.6)

with the Fourier kernels defined in Eqs. (2.76) and (2.82).

Inserting Eq. (B.6) into Eq. (B.4) leads to

CSSC(k,k′) ≃ 1

V 2

∫
d3q

(2π)3
|W (q)|24Plin(q) [Plin(k)F2(q,−k) + Plin(|k− q|)F2(q,k− q)]

× [Plin(k
′)F2(q,k

′) + Plin(|k′ + q|)F2(−q,k′ + q)] ,

(B.7)

where we have used the fact that the window function supports q ≪ k, k′ so the only

squeezed trispectrum contribution is relevant. To further proceed the calculation, we

need to care the fact that the mode coupling kernel F2 has a pole. More especially,

under the fact k, k′ ≫ q, we need to use the following expansion such as

Plin(|k− q|)F2(q,k− q) ≃
[
Plin(k)−

∂P (k)

∂k
(k · q)

]
×
[
5

7
+

1

2

(
1

q2
+

1

k2

)(
k · q− q2

)
+

(k · q− q2)2

q2k2

]
.

(B.8)

Then we can find that the super-sample covariance can be computed as

CSSC(k,k′) ≃σ2
b

[
47

21
− 1

3

∂ lnPlin(k)

∂ ln k

] [
47

21
− 1

3

∂ lnPlin(k
′)

∂ ln k′

]
Plin(k)Plin(k

′)

+ ⟨τijτℓm⟩ k̂ik̂j k̂′ℓk̂′m
[
8

7
− ∂ lnPlin(k)

∂ ln k

] [
8

7
− ∂ lnPlin(k

′)

∂ ln k′

]
Plin(k)Plin(k

′),

(B.9)

where k̂ = k/k. To arrive at this equation, we have used the following identities for
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the q-integration:∫
d3q

(2π)3
|W (q)|2Plin(q) =σ

2
b, (B.10)∫

d3q

(2π)3
|W (q)|2Plin(q)q̂iq̂j =

∫
d3q

(2π)3
|W (q)|2Plin(q)

[(
q̂iq̂j −

δKij
3

)
+
δKij
3

]

= ⟨δbτij⟩+
δKij
3
σ2
b

≃
δKij
3
σ2
b, (B.11)∫

d3q

(2π)3
|W (q)|2Plin(q)q̂iq̂j q̂ℓq̂m ≃

∫
d3q

(2π)3
|W (q)|2Plin(q)

×

[(
q̂iq̂j −

δKij
3

)(
q̂ℓq̂m −

δKlm
3

)
+
δKij δ

K
lm

9

]

= ⟨τijτℓm⟩+
δKij δ

K
ℓm

9
σ2
b. (B.12)

Note that we have also used the fact that terms involving the moments with an

odd power of q̂i or equivalently an odd power of k̂i are vanishing under the parity

invariance conditions of k↔ −k and k′ ↔ −k′.

Comparing Eqs. (B.2) and (B.9) leads us to find that the power spectrum re-

sponse can be given as

P (k; δb, τij) ≃ P (k)+δb

[
47

21
− 1

3

∂ lnPlin(k)

∂ ln k

]
Plin(k)

+k̂ik̂jτij

[
8

7
− ∂ lnPlin(k)

∂ ln k

]
Plin(k), (B.13)

This matches Eqs. (4.26) and (4.27), which are derived from the squeezed bispec-

trum.
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Muitipole power spectra
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C.1. MULTIPOLE POWER SPECTRA IN THE REDSHIFT-SPACE POWER
SPECTRUM

C.1 Multipole power spectra in the redshift-space

power spectrum

Here, we show the multipole expansion of 2D power spectrum in redshift space. The

multipole power spectrum are defined as

P ℓ
s,obs(k; δb, τ33) ≡ (2ℓ+ 1)

∫ 1

−1

dµ

2
P 2D
s,obs(k, µ; δb, τ33)Lℓ(µ), (C.1)

where Lℓ(µ) is the Legendre polynomial. Making the use of Eq. (4.37) and Eq. (4.42),

the multipole power spectra in redshift space can be calculated as

∂P ℓ=0
s,obs

∂δb
=

(
47

21
b21 + 2b2 +

26

21
b1f +

2

3
b2f + b21f +

31

105
f 2 +

2

3
b1f

2 +
13

105
f 3

)
P (k)

−
(
1

3
b21 +

2

9
b1f +

1

9
b21f +

1

15
f 2 +

2

15
b1f

2 +
1

21
f 3

)
∂P (k)

∂ ln k
, (C.2)

∂P ℓ=2
s,obs

∂δb
=

(
52

21
b1f +

4

3
b21f +

4

3
b2f +

124

147
f 2 +

40

21
b1f

2 +
4

9
f 3

)
P (k)

−
(
4

9
b1f +

2

9
b21f +

4

21
f 2 +

8

21
b1f

2 +
10

63
f 3

)
∂P (k)

∂ ln k
, (C.3)

∂P ℓ=4
s,obs

∂δb
=

(
248

735
f 2 +

16

21
b1f

2 +
56

165
f 3

)
P (k)

−
(

8

105
f 2 +

16

105
b1f

2 +
8

77
f 3

)
∂P (k)

∂ ln k
, (C.4)

∂P ℓ=6
s,obs

∂δb
=

64

693
f 3P (k)− 16

693
f 3∂P (k)

∂ ln k
, (C.5)

∂P ℓ=0
s,obs

∂τ33
=

(
16

35
b1f +

4

15
b21f +

8

15
b1bs2f +

64

245
f 2 +

4

5
b1f

2 +
13

35
f 3

)
P (k)

−
(

4

15
b1f +

1

3
b21f +

4

35
f 2 +

2

5
b1f

2 +
1

7
f 3

)
∂P (k)

∂ ln k
, (C.6)

∂P ℓ=2
s,obs

∂τ33
=

(
8

7
b21 + 2b1bs2 +

88

49
b1f +

22

21
b21f +

44

21
b1bs2f +

48

49
f 2 +

16

7
b1f

2 +
4

3
f 3

)
P (k)

−
(
b21 +

22

21
b1f +

2

3
b21f +

3

7
f 2 +

8

7
b1f

2 +
10

21
f 3

)
∂P (k)

∂ ln k
, (C.7)

∂P ℓ=4
s,obs

∂τ33
=

(
288

245
b1f +

48

35
b1bs2f +

2176

2695
f 2 +

32

35
b1f

2 +
56

55
f 3

)
P (k)

−
(
24

35
b1f +

136

385
f 2 +

16

35
b1f

2 +
24

77
f 3

)
∂P (k)

∂ ln k
, (C.8)
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∂P ℓ=6
s,obs

∂τ33
=

(
128

539
f 2 +

64

231
f 3

)
P (k)

−
(
128

539
f 2 +

16

231
f 3

)
∂P (k)

∂ ln k
. (C.9)
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C.2. RELATIONSHIP BETWEEN THE BIPOSH AND THE OTHER EXPANSION
SCHEMES

C.2 Relationship between the BipoSH and the

other expansion schemes

In this appendix, we give the connection between our formalism and other schemes

to decompose anisotropic signals.

C.2.1 Relationship between the BipoSH and the Legendre

expansion

The relationship between the BoPoSH and the usual Legendre expansion with the

line-of-sight n̂ setting ẑ is

Pℓ(k) =(2ℓ+ 1)

∫
d2k̂

4π

∫
d2n̂

4π
P s(k, n̂; δb, τij)Lℓ(k̂ · n̂)(4π)δ(2)D (n̂− ẑ)

=
∑
LMℓ′

πLM
ℓℓ′ (k; δb, τij)(−1)ℓ−ℓ′+M

√
(2ℓ+ 1)(2ℓ′ + 1)(2L+ 1)

(4π)2

(
ℓ ℓ′ L

0 0 −M

)
=
∑
Lℓ′

PL0
ℓℓ′ (k; δb, τij), (C.10)

where we used Yℓm(ẑ) =
√

(2ℓ+ 1)/(4π)δm0. Notice that the summation of L and

ℓ′ is limited by the Wigner 3j symbol ( ℓ ℓ′ L
0 0 0 ). For instance,

Pℓ=0(k) =P
00
00 (k) + P 20

02 (k), (C.11)

Pℓ=2(k) =P
00
22 (k) + P 20

20 (k) + P 20
22 (k) + P 20

24 (k), (C.12)

Pℓ=4(k) =P
00
44 (k) + P 20

42 (k) + P 20
44 (k) + P 20

46 (k), (C.13)

Pℓ=6(k) =P
20
64 (k) + P 20

66 (k)., (C.14)

(C.15)

This reproduces the result presented in Eqs. (C.2)-(C.9).

C.2.2 Relationship between the BipoSH and the single spher-

ical harmonic expansion

In Ref. [94], the authors defined the spherical multipole expansion,

Pgg(k; n̂ ∥ ẑ) =
∑
ℓm

Pgg;ℓm(k)Yℓm(k̂), (C.16)

Pgg;ℓm(k) =

∫
d2k̂ Pgg(k; n̂ ∥ ẑ)Y ∗

ℓm(k̂). (C.17)
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The transformation from the BipoSH expansion to the spherical multipole expansion

is

Pgg,ℓm(k) =

∫
d2k̂

4π

∫
d2n̂

4π
P s(k, n̂; δb, τij)Y

∗
ℓm(k̂)(4π)δ

(2)
D (n̂− ẑ)

=
∑
Lℓ′

πLm
ℓℓ′ (k; δb, τij)(−1)ℓ−ℓ′+m

√
(2ℓ′ + 1)(2L+ 1)

(4π)3

(
ℓ ℓ′ L

m 0 −m

)
.

(C.18)
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BipoSH coefficients for the

super-samle modes
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In this appendix, we provide how to derive the explicit expressions of the Bi-

poSH coefficients for the responses to the super-sample modes, especially, we give a

derivation of each BipoSH coefficient for each type of the anisotropic terms. Using

the resultant BipoSH coefficients for each type of the anisotropic terms, we finally

show how to compute Dℓ(k) and Tℓℓ′(k).
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D.1 BipoSH coefficients from (k̂ · n̂)λ terms

For later convenience, we decompose (k̂ · n̂)λ into the spherical harmonic basis as

(k̂ · n̂)λ =
λ∑

n=0

AnλLn(k̂ · n̂) =
λ∑

n=0

4πAnλ

2n+ 1

∑
ν

Ynν(k̂)Y
∗
nν(n̂), (D.1)

where

Anλ =
2n+ 1

2

∫ 1

−1

dµ µλLn(µ)

=
2n+ 1

2
[(−1)n+λ + 1]

∫ 1

0

dµ µλLn(µ)

=
2n+ 1

2

(−1)n+λ + 1

2n
Γ(λ+ 1)Γ(λ−n+3

2
)

Γ(λ− n+ 2)Γ(λ+n+3
2

)
Θλ≥n, (D.2)

with Θλ≥n ≡

{
1 : λ ≥ n

0 : λ < n
being the step function. Then, the BipoSH coefficients

from (k̂ · n̂)λ terms are calculated as

πLM
ℓℓ′ (k) =

∫
d2k̂

∫
d2n̂ (k̂ · n̂)λ

∑
mm′

CLMℓmℓ′m′Y ∗
ℓm(k̂)Y

∗
ℓ′m′(n̂)

=
4πAℓλ

2ℓ+ 1
δKℓℓ′
√
2L+ 1(−1)ℓ

∑
m

(−1)ℓ−m

(
ℓ ℓ L

m −m M

)
=

4πAℓλ√
2ℓ+ 1

(−1)ℓδKL0δKM0δ
K
ℓℓ′ . (D.3)
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D.2. BIPOSH COEFFICIENTS FROM (K̂ · N̂)λτIJK̂IK̂J TERMS

D.2 BipoSH coefficients from (k̂ · n̂)λτijk̂ik̂j terms

(k̂ · n̂)λτij k̂ik̂j =
λ∑

n=0

4πAnλ

2n+ 1

∑
ν

Y ∗
nν(k̂)Ynν(n̂)

τij ∑
mimj

αmi
i Y1mi

(k̂)α
mj

j Y1mj
(k̂)


=

λ∑
n=0

4πAnλ

2n+ 1

∑
ν

Y ∗
nν(k̂)Ynν(n̂)τij

×
∑
mimj

αmi
i α

mj

j

∑
ℓ3m3

h11ℓ3Y
∗
ℓ3m3

(k̂)

(
1 1 ℓ3

mi mj m3

)

=
λ∑

n=0

4πAnλ

2n+ 1
τij
∑
ν

Ynν(n̂)
∑
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D.3 BipoSH coefficients from (k̂ · n̂)λτijn̂in̂j terms
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D.5 Dℓ(k) and Tℓℓ′(k)

Since the response to δb depends only on µ = (k̂ · n̂), Dℓ(k) are computed as

Dℓ(k) = (coefficients to µλ in the response to δb)× Aℓλ

√
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The response to τij includes three types of angular dependence, µ
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λτijn̂in̂j,

and µλτij k̂in̂j and therefore Tℓℓ′(k) are computed as

Tℓℓ′(k) =(coefficients to µλτij k̂ik̂j in the response to τij)

× Aℓ′λ

√
2ℓ+ 1√

2ℓ′ + 1
τijHℓℓ′2

∑
mimj

αmi
i α

mj

j

(
1 1 2

mi mj −M

)
h112hℓℓ′2

+ (coefficients to µλτijn̂in̂j in the response to τij)

× Aℓλ

√
2ℓ′ + 1√

2ℓ+ 1
τijHℓℓ′2

∑
mimj

αmi
i α

mj

j

(
1 1 2

mi mj −M

)
h112hℓℓ′2

+ (coefficients to µλτij k̂in̂j in the response to τij)

×
λ∑

n=0

Anλ

2n+ 1
(−1)n+M5 ·

√
(2ℓ+ 1)(2ℓ′ + 1)τij

∑
mimj

αmi
i α

mj

j hn1ℓhn1ℓ′

×

(
1 1 2

mi mj −M

){
1 1 2

ℓ′ ℓ n

}
. (D.11)

102



Bibliography

[1] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without

Singularity, Phys. Lett. B91 (1980) 99.

[2] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the

Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467.

[3] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and

Flatness Problems, Phys. Rev. D23 (1981) 347.

[4] V. F. Mukhanov and G. V. Chibisov, Quantum Fluctuations and a Nonsingular

Universe, JETP Lett. 33 (1981) 532.

[5] E. L. Turner, Gravitational lensing limits on the cosmological constant in a flat

universe, Astrophys. J. 365 (1990) L43.

[6] G. Efstathiou, W. J. Sutherland and S. J. Maddox, The cosmological constant

and cold dark matter, Nature 348 (1990) 705.

[7] M. Fukugita and E. L. Turner, Gravitational lensing frequencies: Galaxy

cross-sections and selection effects, Mon. Not. Roy. Astron. Soc. 253 (1991) 99.

[8] M. Fukugita and P. J. E. Peebles, Visibility of gravitational lenses and the

cosmological constant problem, astro-ph/9305002.

[9] Supernova Cosmology Project collaboration, Measurements of Ω and Λ

from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565

[astro-ph/9812133].

[10] Supernova Search Team collaboration, Observational evidence from

supernovae for an accelerating universe and a cosmological constant, Astron. J.

116 (1998) 1009 [astro-ph/9805201].

[11] COBE collaboration, Structure in the COBE differential microwave

radiometer first year maps, Astrophys. J. 396 (1992) L1.

103

https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1086/185884
https://doi.org/10.1038/348705a0
https://arxiv.org/abs/astro-ph/9305002
https://doi.org/10.1086/307221
https://arxiv.org/abs/astro-ph/9812133
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://arxiv.org/abs/astro-ph/9805201
https://doi.org/10.1086/186504


BIBLIOGRAPHY

[12] WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192

(2011) 18 [1001.4538].

[13] Planck collaboration, Planck 2018 results. VI. Cosmological parameters,

1807.06209.

[14] BOSS collaboration, The clustering of galaxies in the completed SDSS-III

Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12

galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [1607.03155].

[15] PFS Team collaboration, Extragalactic science, cosmology, and Galactic

archaeology with the Subaru Prime Focus Spectrograph, Publ. Astron. Soc. Jap.

66 (2014) R1 [1206.0737].

[16] LSST Science, LSST Project collaboration, LSST Science Book, Version

2.0, 0912.0201.

[17] DESI collaboration, The DESI Experiment Part I: Science,Targeting, and

Survey Design, 1611.00036.

[18] D. Spergel et al., Wide-Field InfraRed Survey Telescope-Astrophysics Focused

Telescope Assets WFIRST-AFTA Final Report, 1305.5422.

[19] EUCLID collaboration, Euclid Definition Study Report, 1110.3193.
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