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Abstract

We study the gravitational waves (GWs) induced by scalar perturbations in the early
Universe. Scalar perturbations can induce not only fluctuations of cosmic microwave
background (CMB) and the large scale structures (LSSs), but also GWs through their
non-linear interactions. Observations of the induced GWs enable us to access small-scale
(k 2> 1Mpc™!) scalar perturbations, which are difficult to measure through CMB or LSS
observations. For this reason, many authors have focused on the induced GWs recently.

In this thesis, we discuss the induced GWs in terms of the amplitude of the small-scale
perturbations and the effects of an early matter-dominated (eMD) era on the induced
GWs.

As for the amplitude of the small-scale perturbations, we derive existing and expected
limits on the amplitude of the small-scale perturbations using induced GWs. To this end,
we use accurate methods to calculate the induced GWs and carefully take into account
the sensitivities of different experiments to the induced GWs and the profile of the power
spectrum of the scalar perturbations.

As for the effects of an eMD era, we discuss how the existence of an eMD era, preceding
the radiation dominated (RD) era, changes the spectrum of the induced GWs. We
carefully take into account the evolution of the scalar perturbations before, during, and
after the transition from an eMD era to the RD era. To make the discussion concrete, we
consider two scenarios for the transition: the gradual transition and the sudden transition.
In the gradual (sudden) transition scenario, the transition from an eMD era to the RD
era occurs with the timescale comparable to (much shorter than) the Hubble timescale
at that time. As a result, we find that the induced GWs are suppressed in the gradual
transition scenario, or on the other hand are much enhanced in the sudden transition
scenario. In particular, in the sudden transition scenario, the enhanced GWs could be
detected by future observations and be used to determine the reheating temperature.
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Chapter 1

Introduction

On February 11, 2016, the first direct detection of gravitational waves (GWs) from the
merger of black holes was announced by the LIGO and Virgo Scientific Collaboration [1].
The existence of GWs was first predicted by Albert Einstein in 1916 [2] and indirectly
proved by the observation of the binary pulsar system PSR B1913+16 in 1974 [3,4]. The
first direct detection is the dawn of a new era of astronomy and cosmology with GWs.

In this thesis, we discuss GWs in the aspect of the early Universe.

Historically, in 1950’s and 60’s, there were two remarkable models for the early Uni-
verse: the Big Bang cosmology [5] and the steady-state cosmology [6,7]. The Big Bang
cosmology claims that the Universe started from the high-temperature state, has been
expanding since then, and has finally become a present low-temperature state. On the
other hand, the steady-state cosmology claims that the Universe expands, but the en-
ergy density of the Universe remains constant with the assumption that the matter is
continually created by some mechanism. In 1965, the detection of the cosmic microwave
background (CMB) [8,9] decided the winner, supporting the Big Bang cosmology. Since
then, the Big Bang cosmology has been widely accepted by many researchers. In the
Big Bang cosmology, the abundances of light elements, such as “*He, *He, D, and "Li, are
mainly determined a few minutes after the birth of the Universe, which is called the Big
Bang Nucleosynthesis (BBN) [10-12]. The observations of the light elements in the Uni-
verse are almost consistent with the prediction of the BBN theory, which also supports
the Big Bang cosmology (see Ref. [13] for a recent review of BBN).! In this sense, the
Big Bang cosmology succeeds in explaining the early Universe from a few minutes after
the birth of the Universe to the present.

However, the Big Bang cosmology has some problems, such as the horizon problem [14,
15] and the flatness problem [16]. The horizon problem is a difficulty in realizing the
current homogeneous and isotropic Universe. In the Big Bang cosmology, the universe
naturally becomes inhomogeneous and anisotropic at present because many parts of the
universe cannot interact with each other before they enter the observable universe due to
the causality. To realize the observed homogeneous and isotropic Universe, we need a fine-
tuning, which is a problem. The flatness problem? is a difficulty in realizing the current
flat Universe. If we do not assume fine-tuning, the Big Bang cosmology predicts that
the contribution of the metric curvature to the evolution of the Universe is much larger

IThere is a discrepancy between the theoretical prediction and observations in the abundance of “Li,
which is called the lithium problem [13].

2This problem can be reinterpreted as the longevity problem of the Universe, which is a difficulty of
letting the Universe live much longer than the Planck time.
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than that of the matter components, such as radiation and non-relativistic matter, at
present. However, the observation of the current Universe indicates that the contribution
of the curvature is zero or very small [17]. The inflation theory elegantly solves the
problems and therefore has been studied by many authors since it was invented in 1980
and 1981 [18-22]. In the inflation theory, the early Universe experiences the accelerating
expansion before the Big Bang, which makes the Universe homogeneous, isotropic and
flat. After the inflation era, the Universe is reheated and smoothly connected to that in
the Big Bang cosmology.

The inflation theory automatically includes the mechanism for the production of the
perturbations from the quantum fluctuations, which can be the origins of the CMB fluc-
tuations and the large scale structures (LSSs), and the properties of the perturbations
depend on the detail of the inflation models. In this sense, the perturbations have im-
portant information about the inflation theory. In particular, the scalar perturbations
on the large scale (k < 1 Mpc™!, k: wavenumber of the perturbations) have already been
measured by the observations of the CMB and LSSs. To be concrete, we have already
known the amplitude and tilt of the power spectrum of the scalar perturbations on the
large scale as Py ~ 2.1 x 107°(k/0.05 Mpc™')~0% [17], which means the energy density
perturbation on the large scale is given as dp/p ~ O(107°).

The connection between the early Universe and GWs has been studied by many
authors. For example, the primordial GWs originating from the quantum fluctuations
during the inflation era are closely related to the inflation energy scale [23], which are the
targets of the CMB B-mode observation [24-26]. Furthermore, GWs can also be produced
from the cosmological topological defects [27-29], the bubble collisions originating from
the first-order phase transition [30-33], and the preheating [34-37]. In this thesis, we
focus on another kind of GWs, which are induced by the scalar perturbations. The scalar
perturbations can induce GWs through the non-linear interaction between the scalar per-
turbations and tensor perturbations [38—44]. Since we already know that there exist scalar
perturbations in the Universe, the induced GWs necessarily exist. In some cases, the in-
duced GWs are enhanced and could be a target of the current and future observations,
such as pulsar timing array (PTA) experiments (EPTA [45], PPTA [46], NANOGrav [47],
SKA [48,49]), ground-based GW detectors (advanced LIGO (aLIGO) [50], Virgo [51],
KAGRA [52], Einstein Telescope [48,53,54], Cosmic Explorer [55]), and space-based GW
detectors (LISA [48,53,56], DECIGO [57,58], BBO [58,59]).

Throughout this thesis, we discuss the GWs induced by the scalar perturbations as a
probe of the early Universe. In particular, we study the induced GWs from two points
of view.

Investigation of the amplitude of small-scale perturbations

One viewpoint is the investigation of the amplitude of small-scale perturbations with
the use of the induced GWs. Unlike the large-scale scalar perturbations, the small-scale
perturbations (k = 1Mpc™!) are difficult to investigate through the CMB or LSS obser-
vations. This is due to the diffusion (or Silk) damping [60,61] for the CMB observations
and the resolution limit of the Lyman-« forest for the LSS observations [62—64]. There-
fore, the current constraints on the amplitude of the small-scale perturbations are much
weaker than those on the large-scale ones.

The amplitudes of the scalar perturbations, including those on the small scales, are
related to the details of the inflation models. Some inflation models predict the large
amplitude of the small-scale perturbations [65-68], being consistent with the results on the
large scale. If the small-scale perturbations have the large amplitude, they could produce
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some unique compact objects, such as primordial black holes (PBHs) (see Ref. [69] for
a recent review) and ultracompact minihalos (UCMHs) [70-73]. In particular, PBHs
have recently been studied by a number of authors because PBHs are one of the good
candidates for dark matter (DM) [74-76] and the black holes observed through the direct
detection of GWs [77-79]. In these senses, the investigation of the amplitude of the
small-scale perturbations is one of the hottest topics in modern cosmology.

The large-amplitude scalar perturbations on the small scales can also produce large-
amplitude GWs through the interaction between them at the second-order level, which
can be a target of the current and future GW projects. For this reason, the induced GWs
have attracted a lot of attention recently, especially in the context of PBHs [80-102]. In
this thesis, we discuss how much the current and future GW projects could measure or
constrain the amplitude of the small-scale perturbations.

Effects of an early matter-dominated era on induced gravitational waves

The other viewpoint is the effects of an early matter-dominated era on the induced GWs.
In some scenarios, there is a matter-dominated era preceding the radiation-dominated
(RD) era, during which the BBN occurs. The matter-dominated era is often called an
early matter-dominated (eMD) era. An eMD era might be realized by the coherent
oscillation of an inflaton [103], which is a field causing inflation with its vacuum energy
during the inflation era. An eMD era ends with the decay of the massive field to radiation,
which is called the reheating, and the RD era begins. Therefore the investigation of an
eMD era might reveal the properties of the inflaton. In addition, we also mention that
PBHs could also be produced during an eMD era [104] and their properties are different
from those of PBHs produced during the RD era [105,106]. Since the existence of an
eMD era has not been proved yet, it is meaningful to discuss how to extract information
about an eMD era from observations.

Since the small-scale perturbations can enter the horizon during an eMD era and
behave differently from those during the RD era, the induced GWs might be enhanced [81,
107,108]. To probe the existence of an eMD era with the use of the induced GWs, we
need to know the spectrum of the GWs induced by the scalar perturbations that have
experienced an eMD era. In this thesis, we revisit the effects of an eMD era on the
induced GWs taking into account how the scalar perturbations evolve before, during,
and after the transition from an eMD era to the RD era. Then, we show the previous
results are not correct and the spectrum of the induced GWs strongly depends on the
timescale of the transition.

Organization of this thesis

This thesis is divided into two parts: review part (Part I) and part on our original works
(Part II).

In Part I (Chaps. 2-4), we review the formulas used in Part II. We divide the review
part into Chaps. 2-4 depending on the level of perturbations. In Chap. 2, we discuss
the evolution of the Universe without considering the perturbations (zeroth order in
perturbations). In Chap. 3, we review the cosmological perturbations at the linear level
(first order in perturbations). In Chap. 4, we derive the basic formulas to calculate the
GWs induced by the scalar perturbations through the second-order interaction between
scalar and tensor perturbations (second order in perturbations). In Part I, we use the
Mathematica package xPand [109] for some calculations.
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In Part II (Chaps. 5 and 6), we show our original works, using the formulas derived in
Part 1. In Chap. 5, we reveal how much the future or current GW projects can investigate
the amplitude of the small-scale perturbations through the observation of the induced
GWs. In Chap. 6, we revisit the effects of an eMD era on the induced GWs. To be
concrete, in Sec. 6.1, we discuss the effects in the case where the eMD era ends with the
gradual reheating, whose timescale is comparable to the Hubble timescale at that time.
In Sec. 6.2, contrary to Sec. 6.1, we discuss the induced GWs in the case of the sudden
reheating, whose timescale is much shorter than the Hubble timescale at that time.

We devote Chap. 7 to the conclusions of this thesis.

Notations and Conventions

Before closing this chapter, we summarize the notations and conventions which are used
in this thesis unless otherwise noted.

e When we use the Greek characters, such as u, v, p, and o, for super/subscripts,
they indicate the space-time coordinates. In other words, they run over the set
{0,1,2,3}.

e When we use the Latin characters, such as i, j, k, and [, for super/subscripts, they
indicate the space coordinates. In other words, they run over the set {1, 2, 3}.

e We adopt the Einstein summation convention, such as a'b; = a'b; + a®by + a3bs.

e We adopt the relativistic units 7 = ¢ = 1, where h is the reduced Planck constant
and c is the speed of light.

e We use the reduced Planck mass Mp; = 1/v/87G instead of the gravitational con-
stant.

e We take the signature (—, +,+, +) for metric, which means the Minkowski metric
is expressed as

ds® = —dt? + da? + dy? + dz*%. (1.1)

e For the Fourier transform of f(x) in d-dimension, we take the following normaliza-

tions:
o= [ 5 e, a2
fk) = /ddxf(:v)e““'x. (1.3)
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Chapter 2

Expanding Universe: zeroth order in
perturbations

Modern cosmology is based on the Cosmological principle, which states that the spatial
distribution of matter in the Universe is homogeneous and isotropic when the matter
is averaged on the scale larger than the LSS, which leads to the Friedmann-Lemaitre—
Robertson-Walker (FLRW) metric. In addition, the flatness of the Universe is measured
with the combination of the CMB and baryon acoustic oscillation (BAO) data as Qx =
0.0007109057 [17], where Q is the energy density parameter for the spatial curvature. In
this chapter, we review the evolution of background quantities in the flat FLRW Universe.

2.1 Basic formulas

In this section, we summarize the basic formulas to describe the expansion of the Universe.
We start from the flat FLRW metric, given as

ds®> = g, dz"da”, (2.1)
—a(n)?* (p=v=0)

g = qam)?®  (n=v=1i), (22)
0 (otherwise)

where a is the scale factor, which depends on time, and z°(= 7) is the conformal time,
defined as n = [ dt/a.

The evolution of all quantities in the Universe should satisfy the Einstein equations,
given as

1

G+ Ny =—T,.,, (2.3)
% w M}2>1 u
where A is the cosmological constant, T}, is the energy-momentum tensor, and G, is
the Einstein tensor, defined as G, = R, — %ng,. The Ricci tensor and the Ricci scalar

are defined as
_ A A
R/Ll/ e F [LZ/,A - F N’Aﬂ/

R=¢"R,,,

+ FN;U/FA/{)\ - FKMAF)\W{? (24)



where the subscript “, 4”7 means the derivative with respect to the spacetime and the
Christoffel symbol is defines as
|

jng g)\p(gp,u,zz + gpu,u - g,uu,p)- (26)

DO | —

Note that the inverse metric g"” is defined with the relation g"”g,, = 0¥, where 4 is the
unit tensor. Then, we can explicitly write g*” as

(1
_Ci(n)g (,u =V= O)a ( )
g =9 L 2.7
a(n)g (:u - )7
0 (otherwise).

Hereafter, the transformation between the superscript and subscript in the 4-dimensional
spacetime is performed with g* or g,, as T", = g"*T),. In the flat FLRW metric, the
Christoffel symbols are given as

/! /

0, = % Ty, = —5’ o — %51-]-, o =T% =T, =0, (2.8)

iJ %

where the prime represents the derivative with respect to the conformal time. Then, the
Ricci tensor and scalar can be expressed as

a’ a 2
Roo = —3— +3 (g) ; (2.9)
Ro; =0, (2.10)
6 a”

On the other hand, since the matter can be approximated as a perfect fluid on large
scales, we can express the energy-momentum tensor as

Tow = (p+ Pty + Pg, (2.13)
where p and P are the energy density and the pressure of matter and u, is 4-velocity,
which satisfies u#u, = —1. In the homogeneous universe, which we consider here, the
4-velocities are given as u* = é(l, 0,0,0) and u, = —a(1,0,0,0) in the background level

(zeroth order in perturbations).
From the {00} and {ij} components in Eq. (2.3), we obtain the following equations:

d\?>  a?p  Ad?
el - 4,77 2.14
(a) 3MP2’1 - 3 ( )
a1 /(d\? Ad? a’P
A e e 2.15
a 2 (a) + 2 2M32, ( )

These equations are often called the Friedman equations. From these equations, we can
see that the contribution from the cosmological constant can be regarded as that from the

10



matter whose equation-of-state parameter is given as w = Py /py = —1, where py = M3 A
and Py = —MZA. Substituting Eq. (2.14) into Eq. (2.15), we derive

a//

= — 3(P + Py))ad>. 2.16
- 6M§1(p+pA (P4 Py))a (2.16)

To get insights of the evolution of the Universe, we rewrite Eqgs. (2.14) and (2.16) with
the physical time ¢ as

L\ 2

a 1

Z) = - 2.1
a 1
—-—= 3(P+ P 2.18

where the dot represents the derivative with respect to the physical time. From these
equations, we can see that the matter with w < —1/3 accelerates the expansion.

From the Bianchi identity, the covariant derivative of the energy-momentum tensor
should be zero as

T‘fjm =0, (2.19)
where the covariant derivative is defined as
T, =Th , +T" 1), -1, T". (2.20)

Substituting Eqs. (2.8) and (2.13) into Eq. (2.19), we get the energy conservation law as

/

o= —3%(p +P). (2.21)

Note that, we can also derive this equation from Eqs. (2.14) and (2.15) without using
1", , = 0. To be concrete, substituting the derivative of Eq. (2.14) into (2.15), we

can obtain Eq. (2.21). This means that there are only two independent equations in
Egs. (2.14), (2.15), and (2.21).

2.2 Evolution of the Universe

Here, we discuss the evolution of the Universe. As we will see in the following, the
evolution of the Universe depends on the equation-of-state parameter (w = P/p) of the
dominant matter at that time.

First, we discuss the era during which the Universe is dominated by the matter with
w # —1. We can derive the scale-factor dependence of the energy density through
Eq. (2.21) as

p ox 30w, (2.22)

We can also derive the time dependence of the scale factor substituting this equation into
Eq. (2.17) and solving the differential equation. As a result, we find

2 2

a o< t30+w) o nT+sw (for w 7§ —1) (223)
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Here, we derive the expressions for realistic matters, such as radiation and non-
relativistic matter. Since the equation-of-state parameter is given as w = 1/3 during
a RD era or w = 0 during a (non-relativistic) matter-dominated (MD) era', we can
derive the following expressions:

a* (RD era)

2.24
P {a_3 (MD era)’ (2:24)
o {t1/2 oxn (RD era)

. 2.25
t?3 cn? (MD era) (2:25)

For later convenience, we define the Hubble parameter and the conformal Hubble param-
eter as

(1
4 % (RD era)
H=-= , (2.26)
a 2
— (MD era)
\ 3t
(1
, — (RD era)
a n
H=—= 5 . (2.27)
a
— (MD era)
\ 7]
Next, we discuss the case of w = —1. This case corresponds to the era during which

the Universe is dominated by the cosmological constant (AD era) or the vacuum energy
of the inflaton (inflation era). Here, we consider the AD era. In this case, we can see from
Eq. (2.21) that the dominant component of the energy density py(= MAA) is constant
with time. Then, from Eq. (2.17), we get

a o< exp <\/§t> (AD era). (2.28)

To characterize the amount of energy, we define the energy density parameters as

_ Pa Pa
000 = BMZHD (2:29)
where pio; means the total energy density, the subscript “a” indicates the each component,
and the subscript “0” represents the present value. In particular, Hy is the Hubble
constant, defined as Hy = a/ali—y, (to: the present time of the Universe). From the
Planck CMB observation [17], the present values of cosmological parameters for matter
and cosmological constant are measured as

Qo = 0.3153 + 0.0073, (2.30)
Q0 = 0.6847 + 0.0073. (2.31)

Although the energy density parameter of radiation is not explicitly shown in Ref. [17], we
can derive the energy density parameter from the CMB temperature Teyp = 2.7255 K [110].

In the context of cosmology, the matter with w = 0 is often simply called “matter” in contrast to
radiation. In this thesis, we follow this convention.
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Here, we assume the neutrinos are massless for simplicity. Then, we derive the mean value
of the parameter as

Q. 0h? = 4.183 x 107°, (2.32)
where h is the dimensionless parameter, which is related to the Hubble constant as
Hy =100 hkms™* Mpc ™. (2.33)
The Planck CMB observation determines the dimensionless parameter as [17]*
h = 0.6736 = 0.0054. (2.34)

From the present values of the energy density parameters (Eqgs. (2.30), (2.31), and
(2.32)) and the scale factor dependence of the energy density (Eq. (2.24)), we can predict
the evolution of the Universe as follows. At first, the Universe is dominated by radiation.
After a while, the Universe experiences the transition from the RD era to MD era at
z ~ 3400 [17] (2: the redshift parameter) and then, the Universe gets dominated by the
non-relativistic matter. Finally, the Universe is dominated by the cosmological constant.
This picture of the Universe is consistent with the current observations, such as CMB/LSS
observations and light element observations. Note that, however, we do not know much
about how the Universe evolved before the BBN due to the lack of observational data.
For example, there could exist an eMD era, which ends and is smoothly connected to the
RD era before the BBN begins. We consider this case in Sec. 2.3.2.

2.3 Transition between RD era and MD era

In this section, we discuss the evolution of the quantities during the transition between
a RD era and a MD era.

2.3.1 Transition from RD era to MD era

First, we consider the transition from the RD era to the MD era, which happened at
z ~ 3400. We assume that there are only radiation and matter in the Universe and the
other components are negligible, which is the case in the early Universe. Then, the total
energy density can be written as

3 4
p:pmm:@((@) +(@) ) (2.35)
2 a a

where the subscript “tot” is omitted and the subscript “eq” means the value at the
equality time, when p,, = p, holds. From Eq. (2.16), we can derive

" 1

— 3
a = m—]wglpeqaeq. (236)

2Note that there is a tension between the values of the Hubble parameter measured through the CMB
observation and the local measurement of Cepheids and Type la supernovae. The most recent result for
the local measurement is h = 0.7403 4 0.0142 [111]. This tension might come from the systematics in
the CMB result considering the fact that the WMAP9 result shows h = 0.700 £ 0.022 [112].
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Solving this equation, we obtain

1

_ 3 .2
a(n) = mpeqaeqn + Cn, (2.37)

where C' is one of the integration constants and we kill the other integration constant
imposing a(n — 0) = 0. Here, we determine the value of C. When a < aeq, from
Egs. (2.35) and (2.37), we find

12

@(@f 2.38
p=— ) (2.38)
a/

12
Q
o
0
L

Substituting these equation into Eq. (2.14), we get

1 1/2
4
O = <6—}2)1peqaeq) . (240)

Then, we can rewrite Eq. (2.37) as

a(n) = aeq ((nﬁf +2 (nﬁ)) , (2.41)

where 7), is defined as

1 ~1/2 0
x — e e 2 — « . 242
! (24M}2>1p qaeq) V2-1 (242

From the Planck result, the conformal equality time is measured as [17]

Teq = 113.14 4 0.91 Mpc, (2.43)

where we have used the relation keq = teqHeq = (4 — 2v/2) /1eq [113].

2.3.2 Transition from MD era to RD era

Next, we consider the transition from a MD era to the RD era, which could happen in
the early Universe. For example, a coherent oscillation of a purely massive scalar field
could realize a MD era preceding the RD era and the decay of the scalar field leads to
the transition from a MD era to the RD era [103]. Here, we consider the case where the
matter decays to radiation with a decay rate of I', which can be applied to a coherently

oscillating field [114].% In this case, the energy-momentum conservation can be expressed
as [116,117]

T =TT s (2.44)
T, =TT (2.45)

3In most cases, the thermalization instantaneously occurs after/during the decay of the oscillating
field in the early Universe [115]. Therefore, we assume the instantaneous thermalization throughout this
thesis.
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where the subscript “m” and “r” represent the matter and radiation components, respec-
tively. Note that I' is the decay rate of the matter per unit proper time of the matter
and therefore the decay rate appears with uy,,. The total energy-momentum tensor is
given as Tt,,, = T#, + T*, and the energy-momentum conservation law is satisfied for
the total tensor as T}y ,., = 0. In the early Universe, the interaction between radiations
are very strong and the radiation fluid can be regarded as the perfect fluid, as well as the
matter fluid.* Substituting Eq. (2.13) into Eqgs. (2.44) and (2.45), we derive the following

equations:

Py + 3Hpm = —al'pm, (2.46)
Py + 4Hp, = alpp,. (2.47)
Note T2, = —pm in our notation. Unfortunately, there are no analytical solutions for

these equations and we need to perform a numerical calculation to solve them, as we do
in Sec. 6.1.

For later convenience, we introduce the expression for the scale factor that experiences
the sudden transition from a MD era to a RD era at ng. In this case, the scale factor

dependence of the energy density instantaneously changes from p oc a2 to p oc a™*.
Then, from Eq. (2.14), we obtain
2
1 (n <nr)
am) ] \ne (2.48)
a(ng) n ’
2——1 (n=nr)
IR

where we have imposed the scale factor and its derivative are continuous at ng because
the energy density does not change during the sudden transition. From this expression
for the scale factor, we can express the conformal Hubble parameter as

g (n < nr)
H=9"T (2.49)

w72

4The temperature dependence of the diffusion length, coming from the anisotropic stress of radiation
fluid, is calculated in Ref. [118]. In the reference, we can see that the diffusion length is much smaller
than the horizon scale in the early Universe, which means that the anisotropic stress can be neglected
at least in our analysis of the induced GWs.
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Chapter 3

Cosmological Perturbations: first
order in perturbations

In this chapter, we review the cosmological perturbations. Throughout this chapter,
we focus on the scalar perturbations because the vector perturbation decays even on
superhorizon scales [119] and the tensor perturbation can be expected to be smaller than
the scalar perturbations from the constraints on the tensor-to-scalar ratio, 7 < 0.065 [17]."
In this chapter, we take into account the perturbations up to first order. We discuss the
second-order perturbations in the next chapter. Note that some parts of this chapter are
based on the discussion in Ref. [119].

3.1 Basic quantities in perturbations

In this section, we summarize the basic quantities in perturbations.
The metric with the perturbations can be expressed as

d5” = (G + 69 (2] (3.1)

where g, is the background value, given as Eq. (2.2), and |dg,,| < |gu| is satisfied
except for the case of g,, = 0 such as g, §oi;, and g;; with ¢ # j. The scalar metric
perturbations can be expressed as

(5g00 = —2&2(1), (32)
8g0i = a* B, (3.3)
59@' = 20'2(_\1151']' + E,ij)7 (34)

where ®, B, ¥, and F are the scalar perturbations. We can explicitly write the metric
with the perturbations as

ds® = a(n)*(—(1 4 2®)dn* + 2B,dnda’ + ((1 — 2W)8;; + 2E,;;)dz*da?). (3.5)

!The blue-tilted primordial GWs can be realized in some models, such as kinetically-driven G-
inflation [120,121] and inflation with the nonminimal coupling to the Gauss-Bonnet term [122-125].
This means the tensor perturbation on the small scales could be larger than that on the large scales,
constrained by the CMB B-mode observation. However, the study on the GWs induced by the blue-tilted
primordial GWs is beyond the scope of this thesis and we do not consider this case.
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Then, the perturbations of the Christoffel symbols can be written as

5F000 - ®/7 (3-6)
a’

(SFOOZ- == (I)ﬂ' + EB’Z" (37)
i a !

(SF 00 — gB’z + B,i + (I)’i, (38)
0 o i a’ / a !

017 = —2—®0"; — Bij — 2— W0y — W0y + 2—E i + B, (3.9)

5Fi0j = —W'5;; + E,/z'ja (3.10)

/

The perturbed Einstein tensor is given as

1 I\ 2 / r ' o
0G° == [6 <3> O+ 620 +22 " —out 2% pi | (3.12)
a a a a ’ a
0 1 a/ !
0G" == | —2—9, -2V, ), (3.13)
a a ’
) 1 a 2 a a
a a a a ’
) 1 ’ " N\ 2 A /
06" =— [(QQ—@ +450 -2 (3) O+t 4+ 450 420"
a a a a ’ a
. 4 . . / . .
U, + QCL_B’Zi + BJi/ + QZE%I - E,l"”) 0ij
’ a ’ a ’
a/ / a, ! 1! 7i
+(-®+VV-2—B-B' +2—FE' +F (3.15)
a a A
7]

Note that the transformation between the superscript and subscript in the 3-dimensional
space is performed by d;; because we consider the flat universe.

For the perturbations of the energy-momentum tensor, substituting p = p+ dp, P =
P+6P, u* = (1/a+ 6u®, 6u’), and u, = (—a + dug, du;) into Eq. (2.13), we derive

5T = —dp, (3.16)
1 _

6T = a(p + P)du (3.17)
. 1 _

T, = a(ﬁ + P) (aB; — du;), (3.18)

6T, = —6P0', (3.19)

where the overline indicates the background value and we have expressed the velocity
perturbation du; with the scalar perturbation du as du; = du; because we neglect the
vector perturbation. Note that, from the normalization condition g"’u,u, = —1, we can
obtain

dug = —ad. (3.20)
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3.2 (Gauge transformation

Here, we explain the gauge transformation of the perturbations.
When we transform the coordinates as

ot =t =t +Er (3.21)
the spacetime metric in the coordinates z# is given as
- ox? 0z° o e
G () = @%gw(fx ) = G () + 0G0 — Guo€s — gpugﬁu (3.22)

where &" is the infinitesimal small function and the contributions from second-order
perturbations are neglected. In other words, “~” in this equation means that the equality
holds in the first-order level. Hereafter in this section, we use “=" in the sense that the
equality holds in the first-order level. Here, we divide g, into the background and the
perturbation as

G (%) = G (T%) + 0G0 (3.23)
Comparing Eqgs. (3.22) with (3.23), we can see that the coordinate transformation given
by Eq. (3.21) leads to the transformation of the metric perturbation as

09 = 0w = 09w — Guv,p€” — GupS’, — Gl (3.24)
where we have used the relation given as
Gur(2%) = G () = G (3.25)
Similarly, the matter quantities, such as dp, 6 P, and du, are transformed as
6p = 0p=256p— puc, (3.26)
6P — 0P = 6P — P ,&", (3.27)
ouy, — 0ty = Ouy — Uy, 87 — w8, (3.28)

From Egs. (3.24) and (3.26)-(3.28), we can see that if the coordinates are transformed,
the perturbations are also transformed. This kind of transformation of the perturba-
tions, originating from the coordinate transformation, is called the gauge transformation.
The gauge transformation comes from the freedom on how to divide the quantities into
backgrounds and perturbations.

Taking advantage of the gauge transformation, we can kill the redundant freedom of
the perturbations, which makes the calculation simple. Here, we show the advantage
concretely. From Eqgs. (3.24) and (3.26)-(3.28), we can derive the gauge transformation
law for the metric and matter perturbations as

® &= —(as). (
a
B—B=B-x+¢&, (
N e ) (
a
E—E=F—y, (
dp — 6p=0dp— ple, (3.33
6P — 6P = 6P — P'¢°, (
(SUQ — 5&0 = (SU[) -+ (aé’o)', (
Su — 01 = du + a&’, (
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where we express the components of the infinitesimal function as &# = (£°,6%x ;). Taking
appropriate £ and x, we can kill two degrees of freedom in the scalar perturbations. For
example, the gauge satisfying B = E = 0 is called the conformal Newtonian gauge or
longitudinal gauge, and that satisfying ® = B = 0 is called the synchronous gauge. In
particular, ® in the conformal Newtonian gauge is often called the gravitational poten-
tial.?

Combining the perturbations, we can make gauge-invariant quantity. For example,
we can define the curvature perturbation in the conformal Newtonian gauge as

op

= U4+ 3.38
¢ 3(p+ P) (3:38)
and this quantity is gauge invariant. This is often used to characterize the primordial
perturbation because it is constant on superhorizon scales for the adiabatic perturbation.

The gauge-invariant curvature perturbation can also be defined with du as
R = -V + Hou. (3.39)

This becomes the same as ( on superhorizon scales as we will see in the next section.

3.3 Evolution of perturbations in one fluid

In this section, we discuss the evolution of the perturbations in one fluid.
From the Einstein equation, the perturbations of the Einstein tensor and the energy-
momentum tensor satisfy
1
where we have neglected the cosmological constant because we focus on the early Universe
throughout this thesis. Here, we write the concrete expressions of the perturbed Einstein
equation. From the {00} component, given by Eqgs. (3.12) and (3.16), we can derive

1 I\ 2 / ro 4 ro
~ [6 (“—) O+ 6 +22B" — 20t 2Lt = ). (3.41)
a a a a ’ ’ a ’

From the {0i} component, given by Eqgs. (3.13) and (3.17), we can derive

1 a’ 1 _
—(-2—®, -2V | = 0+ P)ou ;. 3.42
(2% -20) = e P (3.42)

From the {i0} component, given by Egs. (3.14) and (3.18), we can derive

1 a\? a” a’ 1 _
—|4(—) B, —2—B,;+2—®,; +2V. | = 0+ P)(aB; — du;). 3.43
2 1(5) Brm e 2te 2 ) - S P eBi - 0w). B4

2For example, we can write the Schwarzschild metric as

2GM dr?
2 _(+_ 2 20102 1 win2 A A2
ds® = (1 . )dt + 1—2GM/T+T (d6* + sin” 6dp~), (3.37)

where G is the gravitational constant and M is the mass of the point mass located at r = 0. Comparing
this metric with Eq. (3.5), we can see that ® corresponds to the gravitational potential —GM/r.
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From the {ij} component, given by Egs. (3.12) and (3.16), we can derive

1

a?

/ " 7\ 2 ) /
[(23@ +429 -2 <a—) D+ ", + 150 1 20"
a a a ’ a

i a i il a il il
U 4+ 2B+ B, +2—E;, —E; |0
) a ’ ’ a ’ ’

— L 5P, (3.44)

/ / )
+ (—@+@—2“-B—B'+23E’+E"> S
a a y Mg,

In the rest of this section, to understand evolution of the perturbations concretely, we
take the conformal Newtonian gauge. In the conformal Newtonian gauge, Eqs. (3.41),
(3.42), and (3.44) can be expressed as

2

a
AT — 3(U + HP) = —— 4
(V' + HP) QM%M, (3.45)
a _
U+ HD), = ——— (5 + P)ou, 4
( +H )»l 2M]?>1 (p+ )5u77/’ (3 6)
1 1 2
O+ (20 + D) + (2H + H)D + “A@ — )| 5y — =(B— W), = ———6P, (347
2 2 CANEY Ve

where A indicates the Laplacian as AA = A’i,i. From Eq. (3.47), we can derive

(®—W),; =0
= &=, (3.48)

Then, we can rewrite Eqgs. (3.41), (3.43), and (3.44) as

2

, o a
AD = 3H(@' + HE) = 575 b, (3.49)
2
(a®); = —M(P + P)du, (3.50)
2
O+ IHY + (2H + H)D = —— 5P, (3.51)
OMZ,

Substituting Eq. (3.50) into Eq. (3.49), we can relate dp to du as

a2

op

AD = 2%(,3 + P)su. (3.52)

Using this relation, we can derive the relation between the two curvature perturbations
defined in Eqs. (3.38) and (3.39) as

2MEAD

(=R+ 325+ D)’ (3.53)

From this equation, we can see that ( ~ R is satisfied on superhorizon scales. Since
we consider one fluid, the pressure perturbations can be expressed with energy density
perturbations as

§P = c2dp, (3.54)
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=

where ¢, is the sound speed. Substituting this equation into Eq. (3.51) and using
Eq. (3.49), we can derive

D" +3(1+ A)YHP — AP + (2H + (1 + 32)H?)P = 0. (3.55)

In the following, we discuss the evolution of the perturbations specifying the era of
the Universe.

3.3.1 Matter-dominated era: ¢? =0

Here, we consider the perturbations during a MD era, which corresponds to the case of
¢2 = 0. In this case, Eq. (3.55) becomes

6
"+ -9 =0, (3.56)

n
where we have used the relation H = 2/n given in Eq. (2.27). Solving this equation, we
obtain
CQ (33)

s

where C and C5 only depend on the space coordinates. From this equation, we can see
that if the decaying mode (o< 1/7°) is neglected, ® is always constant during a MD era
whether on superhorizon scales or on subhorizon scales. Substituting this solution of ¢
into Eq. (3.49), we get the solution for the energy density perturbation as

: (3.57)

) 1 1
;p =3 {(ACan —12C)) + (ACy* + 1802)$} . (3.58)
In the Fourier space, this equation becomes
) 1 1
% = 6 [(—Clk(k’n)2 — 1201k) + (—Czk(k?n)2 + 1802k)$} , (359)

where the subscript “k” indicates the Fourier modes of perturbations.
On superhorizon scales (kn < 1), the perturbation is approximated as
4]
D~ 20y, (kn < 1), (3.60)
where we have neglected the decaying mode. From this equation, we can see that the

energy density perturbation is constant on superhorizon scales. On the other hand, the
perturbation on subhorizon scales (kn > 1) is approximated as

J 1
LN —gClk(k‘n)Q xa (kn>1), (3.61)

p
where we have neglected the decaying mode again. This equation means that the energy
density perturbation grows proportionally to the scale factor on subhorizon scales during
a MD era.

For later convenience, we mention the velocity potential du on superhorizon scales.
From Eq. (3.50), we can derive the expression of du which is valid only on superhorizon
scales as

ou
Tk ~ —gcbk (kn < 1). (3.62)
This condition is used as the initial condition when we calculate the perturbations nu-

merically in Sec. 6.1.
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3.3.2 Radiation-dominated era: ¢ =1/3

Here, we discuss the case of ¢ = 1/3, which corresponds to a RD era. In this case, we
can express Eq. (3.55) in the Fourier space as

2

4 3
oY+ 5c1>;c + 5P =0, (3.63)

Note that H = 1/n during a RD era. Solving this equation, we finally obtain

_ 33

T

P

|Cuis(@/V3) + Conan (/V/3)| (3.64

where z = kn and j; and y; are the second spherical Bessel functions, defined as

SiInx — xCcosx

@) = ——F—, (3.65)

T

cosx +xrsinx
pi(w) = -SETEEE (3.66)

Substituting the expression of ® into Eq. (3.49), we derive

5% :653”“ [m(mQ — 6) cos(z/V/3) — 2v/3(2% — 3) sin@;/\/ﬁ)}
653% [x(xQ — 6) sin(x/V3) + 2V3(2* — 3) cos(x/\/g)] : (3.67)

Since ji(z — 0) = /3 and y; (xz — 0) = —oo, we discard the C term in Eq. (3.67) in the
rest of this section on the basis of the initial conditions. Then, the gravitational potential
on superhorizon scales can be expressed as

O~ Oy, (k< 1). (3.68)

On subhorizon scales, the gravitational potential is expressed as

By ~ — 2Ok o2 /VE) (k> 1). (3.69)

12

From this equation, we can see that the gravitational potential oscillates and decays
proportionally to 1/z% on subhorizon scales during a RD era, unlike the gravitational
potential during a MD era, discussed in the previous subsection.

From Eq. (3.67), we can express the energy density perturbations on superhorizon
scales as

0Pk

F ~ —2C, (kn<1). (3.70)
On subhorizon scales, the energy density is given as
o
% ~ 6C cos(z/V3) (kn>> 1). (3.71)

From this equation, we can see that the energy density perturbation does not grow on
subhorizon scales during a RD era, unlike the perturbation during a MD era. This is
because of the radiation pressure.

From Eq. (3.50), we can derive the expression for the velocity perturbation on super-

horizon scales as
du N

— =0 (k 1). 72
ol (k< 1) (372)

This relation shows the initial condition of the velocity perturbation during a RD era.
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3.3.3 Conservation of curvature perturbations

In this subsection, we show that the curvature perturbations are conserved on superhori-
zon scales in the case of one fluid. Here, to give a general discussion, we do not assume
that the sound speed is constant. When the Universe experiences the transition between
the eras, the sound speed depends on the time.

First, we define the quantity v as

v = exp (g / (1+ cgmdn) P (3.73)

(] (o o o

where we have used the relation ¢3(= 6P/dp) = P'/p, valid only on superhorizon scales,
and H = —p'/(3(p + P)) (see Eq. (2.21)). Substituting ® = (p + P)/?v into Eq. (3.55),
we obtain

(p+ P)V*" — (p+ P)V22Av
(p+P)  3((p

5 1 5 + L(p+
— (p+ P)? [—a2(ﬁ+P)+’H - o — 2y =0. (3.75)
Mg, (p+P) 4 (p+P)? 2(p+P)
Finally, we can rewrite Eq. (3.55) as
9//
A Vi 0, (3.76)

where 0 is defined as

E (1 _ ;{_;)} o (3.77)

In the Fourier space, Eq. (3.76) becomes

9//
vy + kP, — 5= 0. (3.78)
Since the goal of this subsection is to show the conservation of the curvature perturbations
on superhorizon scales, we focus on the case of ¢;kn < 1. Then, Eq. (3.78) can be
approximated as
0//

vy — 5 Uk = 0 (cskn < 1). (3.79)

The curvature perturbation R, defined in Eq. (3.39) can be expressed with v and 6 as

Ri =

_2V3Mp (“_k) (3.80)

3 0

where we have used the relation ® = ¥. The derivative of 0%(vs/0)’ satisfies

[92 (%’“)] iy (v;; - %Uk> ~ 0. (3.81)



Then, we can see that the curvature perturbations become constant on superhorizon
scales (Ry, =0 (kn < 1)).

Finally, we mention the relation between the curvature perturbations and ¢. Using
Eq. (3.50), we can also express the curvature perturbation without du as

C2H DL+ Dy,

Ry —
k 3 14w

— &p. (3.82)
Since @}, = 0 on superhorizon scales, we can express the following relation

5+ 3w —2®;,  (MD ecra)

Rip o~ (o me — oW g ,
k= G 3(1+w) * —20;, (RD era)

(3.83)
where this relation is valid only on superhorizon scales. From this relation, we can see
that @ is suppressed by the factor 9/10 during the transition from the RD era to the MD
era.

3.4 Equations for perturbations experiencing the tran-
sition from a MD era to a RD era

In this section, we derive the equations for the perturbations that experiences the tran-
sition from a MD era to a RD era, which will be used in Chap. 6. Here, we consider
the case where non-relativistic matter decays to radiation, as we mentioned in Sec. 2.3.2.
In this case, as we have seen in Sec. 2.3.2, the energy-momentum conservation can be
expressed as [116,117]**

T =TT s (2.44)
T¢ =TTt . (2.45)

3Since there is only the (non-relativistic) matter fluid well before the decay of the non-relativistic mat-
ter, the perturbation can be regarded as an adiabatic perturbation on superhorizon scales. Therefore,
the curvature perturbations on superhorizon scales are conserved even during the transition. However,
on subhorizon scales, the perturbations of matter and radiation behave differently (or the entropy per-
turbation appears) and therefore the evolution cannot be described with the one-fluid formulation, given
in the previous section.

4One might wonder if collision terms between the massive particle and radiation could appear in the
right-hand side of Egs. (2.44) and (2.45). Here, assuming that the massive particle decays through the
Yukawa interaction, we naively discuss the condition that we can neglect the collision terms. In this case,
the order of the decay rate is given as I' ~ y?m (y: Yukawa coupling constant, m: mass of the massive
particle decaying to radiation). Then, the number density of the massive particle can be approximated
around the transition as ng,, ~ ?;MFZ,II‘2 /m o~ y4MF2,1m, where note that the transition occurs around
I' ~ H. Since the order of the cross section between the massive particle and radiation is given as
o ~ yt/m? (or could be smaller for high-momentum radiation (p > m)) [126], the mean scattering
time between the massive particle and radiation can be estimated as tsc = (nmo) ™! ~ (y3 M3, /m)~L.
Comparing the mean scattering time with the Hubble timescale at that time (H~! ~ I'"!), we can
find that if yGMlg1 /m? < 1 holds, the mean scattering time becomes larger than the Hubble timescale
and the collision terms can be negligible. Note that the long-lasting eMD era, which we focus on in
Chap. 6, leads to a small coupling constant. From this result, we can naively expect that if the massive
particle decays through the Planck-suppressed operator, the collision terms can be neglected. Hereafter,
we assume that the interaction between the massive particle and radiation is weak enough that we can
neglect the collision terms.
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The goal of this section is to derive the formulas for the perturbations from these equa-
tions. The perturbations of the covariant derivative of the energy-momentum tensor can
be written as

o(T,,) = 6T, , + " 61", — I, 67" + 61" 17, — o1, T, (3.84)
Substituting Eqgs. (3.6)-(3.11) and (3.16)-(3.19) into this expression, we get
. a’ a’ . L .
8(T"%,,,) =0T + 6Ty, + 355T00 — 0T = 01"y P = 01" gp

1 _ / / 3
== 60/ + (7 + P)(aAB — Adu) - 3%@ - 3%513 (=3 + AE) (5 + P),

(3.85)
5(T% ) =6T% o+ 617 ; + 3 5T0 — —5TZ + 0T, P + 6T, p
1, - , 4a’ = =
:a((p + P)ou,)' +0P; + ?(p + P)ou;+ (p+ P)P,. (3.86)
For later convenience, we write down the expressions for (0(7},))" as
| _ 4a’ _ _
((T%,))" = =((p+ P)Adu) + ASP + a—‘;(p + P)Adu + (p + P)AD. (3.87)

The perturbation of the right-hand side in Eqs. (2.44) and (2.45) can be written as

NI TE gtmpu) = a0l py + al'dpyy + al'p, @, (3.88)

S(CTE umpy) = =T POt i, (3.89)

(ST TE )" = =T pmAduny, (3.90)

where we have used the relation duy = —a®, given in Eq. (3.20). Note that we take into

account the perturbation of the decay rate because the decay rate can depend on a scalar
field and be perturbed by the perturbations of the scalar field in some models, such as
the models given in Appendix A.

3.4.1 Equations for matter perturbations

In this subsection, we focus on the equations for matter perturbations (P, = d P, = 0).
From Egs. (3.85) and (3.88), we can derive the equations for the energy density
perturbation as

1 /
—0p. + —pm(aAB — Aduy,) — 3a—5pm — (=30 + AE)pm = a0l py, + al'dpy, + al pp .
a a
(3.91)
Dividing both sides by py,, we obtain
6p, — (AB — 0y) + (=3V' + AE") = —adl’ — al'®, (3.92)

where we have defined § = dp/p and 8 = T°*/(p + P) = L Au for later convenience.
From Egs. (3.87) and (3.90), we can derive the equations for the velocity divergence as

/

4
() + %@nem + G AD = —aT fnOn. (3.93)
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Dividing both sides by py,, we obtain
a/
0+ —0,+AD=0. (3.94)
a

Egs. (3.92) and (3.94) are consistent with the equations given in Ref. [127].

3.4.2 Equations for radiation perturbations

Here, we derive the equations for the radiation perturbations (P, = p,/3, P, = dp:/3).
From Egs. (3.85) and (3.88), we obtain

4 ! 4
—0p, + 3—ﬁr(aAB — Adu,) — élgépr — g(—3\11' + AE"p, = — (a0l py + al'dpy + al py®).
a a
(3.95)

Dividing both sides by p,, we obtain

4 4 r
5+ g(AB —0,) — g(—S\I/’ + AE'") = “Z—m <5? + 6m — 6 + <I>) : (3.96)

From Egs. (3.87) and (3.90), we can derive the equations for the velocity divergence as

4 | 4 4q/ 4
~ 0.0, “AOp, + —— 5.0, + —p, AP = al' b, 3.97
<3p)+3 prt 3Pl t op al'p (3.97)
Dividing both sides by %ﬁr, we obtain
1 3p 4
"L A8, + AP = al’ — 0. ). .
0. + I S + a e <9m 39r) (3.98)

Egs. (3.96) and (3.98) are consistent with the equations given in Ref. [127].
We will show the numerical solutions of Eqgs. (3.92), (3.94), (3.96), and (3.98) in
Fig. 6.2.
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Chapter 4

Induced Gravitational Waves:
second order in perturbations

In this chapter, we review the formulas for the GWs induced by scalar perturbations.
Although scalar perturbations are independent of tensor perturbations at the linear order,
scalar perturbations can be sources of tensor perturbations at the second order. Therefore,
we focus on the second-order interaction between scalar and tensor perturbations in this
chapter. Note that some parts of this chapter are based on the discussion in Ref. [81].

4.1 Equation of motion for the induced GWs

Similarly to Chaps. 2 and 3, we start from the Einstein equation and derive the equations
describing the induced GWs.

Up to second order, metric perturbations in the conformal Newtonian gauge can be
expressed as

ds? = a*(n) [—(1 + 200 4+ 20@)dp? + 2V P dnds’
1 . .
+ {(1 — 20 —20®@)5,; + Ehff)} dxzdxﬂ} : (4.1)

where the superscript “(1)” and “(2)” represent the 1st-order and 2nd-order perturbations
and we neglect hﬁ}) and V;(l) to spotlight the GWs induced by scalar perturbations.

For later convenience, we mention the Fourier transformation of the tensor perturba-
tions here. The tensor perturbations can be expressed with the polarization tensors and
the Fourier modes as

ha@) = 3 [ e b (12

A=+, X

where k = k/|k|. The polarization tensors are defined as

R B
(k) = 75 [exlR)ey(B) — (R (R)] (4.3)
5 () = = [elRyes () +eulyes ()] (1.4)



where e; and €; are the unit vectors perpendicular to k. By definition, the polarization
tensors satisfy the following equations:

kief‘j =0, e* =0, e’\ijef‘j/ = . (4.5)

Note again the transformation between the superscript and the subscript is done by d;;.
When we take k£ as z-axis and e; and €; as the unit vectors along z-axis and y-axis
respectively, the polarization tensors are explicitly given as

L (1 0 0 L (010
ef =— [0 =1 0], ex=—[1 0 0 (4.6)
1] ’ i

V2o 0 o v2\0 0 0

In the second-order level, the Einstein tensor can be written as

1
66 =7 (nG" + 2mn)" — 232 — aH'h) — An) + 2000 + 4000l

+ (@@, v@, Vi(2) terms ) + ( diagonal part ) 5; (4.7)

The energy-momentum tensor in the second order is given by

0T®,; = (p+ P)ou'Vou’) + PP g,; + 6PWsg ) + Pogl. (4.8)
From the background equations given by Eq. (2.15), the background pressure can be
written as
_ 2M2 1
P =— a2P1 (Hl + §,HQ> ) (49)

where we have used the relation H' = a”/a —H?* and neglected the cosmological constant.
From Eq. (3.42), we can express the velocity perturbation as
2
sull) = 2Mp1 (H«b<1) + \1:0)’) . (4.10)
" a(p+ P) i
To focus on the induced GWs, we apply the projection operator to both sides of the
Einstein equation as

Tr; eGP = — 7 msT? (4.11)

where 7:’\” Im is the projection operator onto the traceless-transverse space. The projec-
tion operator can be expressed explicitly as

. d3k . R .
Im o ik-x A\ Alm
T " A () = /WG e (k)e” ™ (k) Aun(k), (4.12)
where Ay, (k) = [ &2 Ay (a)e =
From Eqs. (4.7) - (4.11), we obtain the formulas for the tensor perturbations induced
by scalar perturbations as

P @ n Q’Hh?j@), _ Ahfj@) _ —47:’\@' mg, . (4.13)

)
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The source term S;; comes from the second-order scalar perturbations and can be ex-
pressed as

_axM s 1 4
Sy =200 + 400!

= s P et £ w ), (4a)

In the Fourier space, Eq. (4.13) can be written as

n + 21 + Kh) = 48Nk, 7). (4.15)
The source function S*(k,n) is defined as
S*(k,m) = =M (k) Sim (k)

35 .
= [ e R | 200 ()

(2m)3
+ ﬁ (Cbk’(n) + \Ij;;';n)) ((I)k—kf(n) + M)]

where we have used the relation e*¥(k)k; = 0 and omitted the superscripts indicating
the order of perturbations for simplicity.

4.2 Solution for tensor perturbations

Here, we solve Eq. (4.15) using the Green functions. We can rewrite Eq. (4.15) as

"

(ahy)" + <k2 — %) (ahy) = 4aS*(k,n). (4.17)
Then, we obtain the solution as

4 n
w0 = [ dnGutos a(n)s (k. 1), (1.18)
where Gy, is the causal Green function being the solution of following equation:
a//
e+ (k‘z—;> Gr=0(n—mn). (4.19)
Note that the prime means the derivative with respect to 7, not 7. The explicit expression

for the Green function depends on the era. During a RD era, the scale factor is written
as a o< n and therefore the causal Green function is given as

kG (n;7) = ©(n — 1) sin(z — 2), (4.20)

where x = kn and Z = k7] and ©(n) is the step function defined as

o) = {é (n i 0; | (4.21)



During a MD era, the Green function is given by

KGYP () = =O(n — M)z (ju(2)y1(7) — 1 @)y (2)), (4.22)

where we have used the relation a oc n?, which is valid during a MD era.

For later convenience, we introduce the Green function for the tensor perturbations
that are induced during a MD era and experience the transition to a RD era. Here, we
assume that the scale factor changes as

0 2
a(n) (77_> (n <nr) /
)~ nR , (2.48)

2——1 (n=>nr)
IR

where we have derived this expression in Chap. 2 and ng is the conformal time at the
transition. Since the Green function should be expressed with sinx and cosz during a
RD era, we need two conditions to match the Green function during a MD era, given
in Eq. (4.22), to the Green function during the RD era. One condition is the continuity
of the Green function at the transition. We need one more condition to determine the
coefficients. In the following, we show the derivative of GG should also be continuous at
the transition. The source-free equation of motion for the Green function can be written

<a2 (%)/)/ = —a’k? <%) . (4.23)

If we integrate both sides between ng — € and ng + € and take e — 0, the right-hand side
becomes zero because Gy, and a are continuous at nr. Then, we can see that a?(Gy/a) =
aG), — a’ Gy, should be continuous. Since H (and therefore a') are continuous, G, should
also be continuous. Imposing that G, and G, are continuous at ng, we finally derive the
Green function that experiences the transition from a MD era to a RD era as

kGYMPRD (2 73) = kG (ng; 77) cos(a — ag) + kG (r; 77) sin(z — zg)
= C(z,2r)Zj1(T) + D(x, 2r) Ty (7), (4.24)

where 77 < nr and C(z,zg) and D(z,xR) are defined as

sinx — 2xgr(cos T + xg sinx) + sin(z — 2zR)

C(JI, .TR> = ’ (425)

2
2rg

D(x, g) = (2234 — 1) cosz — 2xg sinx + cos(x — 2xR)

. (4.26)
202

Note that the Green function GMP~RP is defined only in 1 > 5.

4.3 Energy density of induced GWs

In this section, we derive the energy density of the induced GWs because it is often used
to parametrize the amplitude of the induced GWs. Here, we assume that the frequencies
of the GWs are much larger than the Hubble parameter (and therefore k& > ). Since
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GWs oscillate on subhorizon scales, the leading contribution to the energy density comes
from the second-order tensor perturbations (linear x linear). The leading contribution
to the Einstein tensor is given as

(5G00|2nd—0rder tensor — W (§h;jh’ﬁjl + 4Hhijh1]/ _ ZhijAh” + hij,khlkd - ihij"khlj’k) .
(4.27)
Then, the energy density of GWs is given as [128§]
PGW = Mlgl <5G00’2nd-order tensor> ) (428)

where the bracket means the expectation value and the overline indicates the time average
over the oscillation period (~ 1/k). The power spectrum of the tensor perturbations are

defined as

’ /27T2
(hhi) = (2m)%0(k + KO =2 Pu(k, n). (4.29)

Substituting Eq. (4.2) into Eq. (4.28), we obtain

powln) = [ S (% @m) , (430

where we have neglected the second term in Eq. (4.27) because we focus on the GWs
whose frequencies are much larger than the Hubble parameter. For later convenience, we
define the energy density of GWs per logarithmic interval of £ as

per(n k) = 20 (5> Palen). (431)

Using this parameter, we also define the energy density parameter of GWs as

paw(mk) 1 [\’ =———
Q =—"-"*-"=— | — k.n). 4.32
aw(n, k) o o (%) Pr(k,mn) (4.32)

4.4 Formulas for GW spectrum

In this section, we derive the formulas for P}, and Qgw, defined in Egs. (4.29) and (4.32).
In the following, we neglect the anisotropic stress and take ¥ = .

4.4.1 General expression

In this subsection, we derive the general expressions for the induced GWs. Note that we
do not assume any specific era in this subsection.
First, we define the transfer function of the gravitational potential as

Dy (1) = dr®(kn), (4.33)

where we normalize the transfer function as ®(x — 0) — 1 and then ¢, corresponds to
the amplitude of the gravitational potential on superhorizon scales, e.g. ¢ ~ O(1079)
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for Pr = 2.1 x 1077, Substituting Eq. (4.15) into the left-hand side of Eq. (4.29), we can
rewrite the expectation value of the Fourier modes as

’ ].6 n 77 !/
(highye) = ;/ dm/ dna a(m)a(n) Gy (m; m) G (m;m2) (S (k,m)S™ (K, m2)) . (4.34)
The expectation value of the source terms can be written as

smsion = [ SH0E

x f(k, |k —K|,m)f(k, |k —k'|,n2) ($xbp_ P i),  (4.35)

where f(ky, ka,n) is the source function, including the transfer functions as

o) + 00 ) (wlhon) + T
(4.36)

e (k) ik ™ (k) ki,

Throughout this thesis, we assume that ¢, follows the Gaussian distribution for simplic-
ity.! The power spectrum of the gravitational potential is given as

(Prdl) = (2m)°6 (K + k')?ﬂb(’?) (4.37)
Then, we can express the expectation value of the scalar perturbations with their power
spectra as

(PP kO Pr i) = (PiPrr) (k&P i) T (PP i) (P Pir)

272

= (2m)35(k + k) (2n)%0(k — k + k' — 15’)2;2%(12) " l%’\f”%('k/ — K|
()6 + K — B)(27)8(k — o + k')2i37>¢(12;> 2T D).
" b (4.38)
Here, we express the wave vector with the spherical coordinates as
k = (ksinf cos @, ksin O sin o, k cosf), (4.39)
where k is along z-axis. Then, we get the following expressions:
e (k)kik; = 7 sin® @ cos2p, e "(k)kik; = 7 sin” 0 sin 2. (4.40)

Integrating with respect to the azimuthal angle ¢, we obtain

ston ) = @it + 9 g [Tk [ e

x f(|k— k| k ;) f(lk— k’| ki 7]2)77c1>( )Pas(|k — k’|)

/ (1 + wp) 212
= (27)? 6(k+k)k3 < 5+3wh> / dk:/ d,u‘k k|3 (1—p%)
x f(|k = k|, k,m) f(1k — K| &, 72) P (k )P<(|’z?4 4f)l)

IThe effects of the non-Gaussianity on the induced GWs are discussed in Refs. [82,85,129,130].
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where the relation between ( and ® on superhorizon scales, given in Eq. (3.83), has
been used and p is the cosine function with the angle between k and k, defined as
w=k- I::/(k/%) We also used the relation f(ky,ks,n) = f(ko,k1,m).? Note that wy, in
Eq. (4.41) represents the equation-of-state parameter when the scalar perturbations enter
the horizon. We can rewrite Eq. (4.41) with u = |k — k|/k and v = k/k instead of k and

[ as

(kIS o) = e w5 2 (ML)

/ 4o /|1+v| |:4U2 _ (1 + ,02 _ u2)2:| 2
1 duv

X f(uk,vk,m)f(uk, vk, ne)Pc(uk)P:(vk),
(4.42)

where we have used the relation g = (1 + v? — u?)/2v. Comparing this equation with
Eq. (4.34), we obtain the expressions for the power spectrum of the induced GWs as

B (1 + wy |1+v| — (1 + 02 — u?)? 2
Pr(n k) =4 ( 57 3w, ) / dv/|1 ) [ Tow
x I*(u,v, )P (uk)Pe(vk), (4.43)

where I(u,v,z) is defined as

L TC P
I(u,’u,x):/ dxmka(n,n)f( U, T). (4.44)

Note that we have rewritten the arguments of f as f(u,v,z) = f(uk,vk,7), which can
be expressed as

1

f(%vaf):m

(2(5 4 3w)®(uz)®(vE) + 4H (P (uz) D (vT) + D (uz)P' (vT))
HAH P (uz) P’ (vT)) , (4.45)

where H means H(77) and the prime means the derivative with respect to 7 (not z).
Here, we mention another choice of the variables. If we use the variablest =u+v—1
and s = u — v instead u and v, we can rewrite Eq. (4.43) as

B 1+ wy,) 2+t)(s2—1) 17
73’1(77’16)2<5+3wh> / dt/ [1—s+t)(1+s+t)
x I (u, v, 2) P (uk)Pe(vk), (4.46)

where u and v are given with s and t asu=(t+s+1)/2andv=(t —s+1)/2.

2Although the function f(ki, ke, n) defined in Eq. (4.36) is symmetric under the exchange of k; and
ks, we can make f(k1,ke,n) asymmetric under the exchange if we perform the Fourier transform of
Eq. (4.14) to make the integrand in Eq. (4.16) asymmetric with respect to k and k — k’. However, in
that case, the integrand in Eq. (4.41) includes f(k, |k —k|, )3 (f(k, |k — K|, n2)+ f(|k— K|, k, 12)) instead
of f(k,|k — k|,m)f(k,|k — k|,n2), which means that the asymmetric part does not contribute to the
induced GWs.
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Finally, we can rewrite the energy density of the induced GWs (Eq. (4.32)) as
1 /31 +wp))" k 2
Q k)=—=| ——— —
|1+v| (1 2 ,2y272
/ dv/u { ( 425 =) I*(u, v, 2)Pe(uk) P (vk).

! (4.47)

4.4.2 GWs induced by scalar perturbations entering horizon
during RD era

In this subsection, we focus on the GWs induced by the scalar perturbations entering the

horizon during a RD era. Note that we do not take into account the effects of the late

MD era in this subsection, which will be discussed in Sec. 4.5.

The transfer function of the gravitational potential during a RD era is given by (see
Eq. (3.64))

9 (sin(x/v3)
d(r) = — | —L== — cos(x/V3) | . 4.48
(@) = ( 3 (x/V3) (4.48)
Substituting this equation and w = 1/3 into Eq. (4.45), we obtain

27

w3326

VT

f "3

+ (54 — 6(u” + v*)2® + v*v®x") sin —= sin —

V3 V3

frp(u,v,x) = (18uvm cos —

+ 2\/§ux 22?2 — 9) cos ur sin o

+2v/3vz(u?z? —9)sm\/_ f/ai) (4.49)

where we have used the relation H~! = 7, given in Eq. (2.27).
Then, we perform the integral in Eq. (4.44) from 0 to z and finally obtain®

27 4 uw v
Irp(u,v,z) = =T6uiis _E uv(u?® + v* — 3)z® sinw — 6uva? cos%cosﬁ
+ 6v/3ux cos — +6\/_vx sin —
\/' f \/3 ﬁ

—3(6 + (u* +v* — 3)2?) sin 7 sin \/_>

+ (u® + 0% = 3)? (Sinx <Ci [(1 - “\;;) x] +Ci [(1 + 2 _32”) x}
afl- o)

o (55 5[5

3To perform the integral, we need to use the trigonometric addition theorem and perform the inte-
gration by parts (see Appendix B.1).
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sl

where Si and Ci are the sine integral and cosine integral, defined as

smmilﬂya,am:—/‘%?@ (4.51)

In the late-time limit (z > 1), we get
—m(u® +v* = 3)0(v+u—V3) cosas) :

(4.52)

27(u? + v* — 3)
16u3vdx

3— (u+v)?

Irp(u, v, — 00) = Fyyp—

(Sinx (—4uv + (u? +v* — 3)log

The late time behavior of (o< a™!) represents the redshift of the induced GWs (h;;
3 — (u+wv)?
3— (u—v)?

a~'). Using this equation, we can write the oscillation average of I? as
) 2
+ 72 (u® +v* — 3)’0(v +u — \/g))

1[27(u® +v* - 3)\?
Bo(u,v,0 — 00) = = ( T+ 3)> ((—4uv + (u® 4+ v* — 3)log
(4.53)

2 16u3v3x

If we use the variables t(= u + v — 1) and s(= u — v) instead of u and v, we get

1458(—5 + s + t(2 + ¢))?
22(1—s+t)5(1+s+1)8

X (12(—5 + 2+ t2+1)%0( — (V3 -1))

o (u,v, 2 — 00) =

4
+<—(t—s+1)(t+8—i—1)

22+ 1)

1 2
+§(—5+s +t(2+t))log‘ T

)2). (4.54)

The energy density parameter of the GWs induced during a RD era can be expressed as

8 (kN [ Ml T4 — (1402 —u?)?]?
ontr) 5 (50) [ o[ [

|
X I2p(u, v, )P (uk)Pe(vk). (4.55)

Note that the x dependence of I3}, at late time (I3 oc 72) is canceled by the factor
(k/H)? and Qqw finally becomes constant during a RD era.

Here, to understand the scale dependence of the induced GWs, we assume the delta-
function peak of the power spectrum as an example, which is defined as

Pr = Asé(logk — log k), (4.56)
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where A, is the amplitude and the k, is the peak scale. Substituting this power spectrum
into Eq. (4.55), we derive the energy density parameter in the late-time limit (n > 1/k)
as

3A? (4 — |2
Qaw (1, B) lyps1/6 =~ (

oL 1 > E*(3k* — 2)?
X <7r —2(3k* — 2)%0(2 — V3k)

1—

4+ (3k% = 2)1 —
—l—(—i—( )log e

>2> 02 — k), (4.57)

where k = k/k,. Figure 4.1 shows the wavenumber dependence of the energy density
parameter. The peak is located at k = \%k* and the factor 1/ V3 comes from the sound
speed of the radiation fluid. The cutoff of Qgw is given as k = 2k,, which comes from
the wavenumber conservation.

10

2
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Qaw/A
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Figure 4.1: The energy density parameter for the GWs induced by the delta-function power
spectrum, defined as Eq. (4.56). The parameter is normalized by A2 and the analytical expres-
sion is given in Eq. (4.57). Note that this result is first shown in Ref. [43].

If we consider the scale-invariant spectrum as another example, the energy density
parameter in the late-time limit is given as

Qaw (0, k) lps/k ~0.822243, (4.58)

where the power spectrum of curvature perturbations is assumed as Pr = A;.

4.5 Late time evolution

During a RD era, the gravitational potential decays as ® oc =2 on subhorizon scales

(see Eq. (3.64)) and the production of GWs stops while after the perturbations enter the
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horizon. Once GWs are produced and decouple from the source, the energy density of the
induced GWs behave like that of radiation and therefore Qgw finally becomes constant
during the RD era, as we have seen in Sec. 4.4.2. Here, we define 7. as the conformal
time when the energy density parameter becomes constant, which is the same order of
magnitude as the conformal time at the horizon entry of the scalar perturbations.

Since the energy density of the induced GWs is proportional to a™*, we can express
the current energy density as

v, ) = (—) (0. ). (159)

Note that the subscripts “c” and “0” mean the values at 7, and 7y (the present time),
respectively. Then, we can express the current value of the energy density parameter as

Qaw (no, k)h* = (%)4 (%)ZQGW(%)h2~ (4.60)

Qo

Here, let us mention the relation between a, H, and €, . The ratio between p, o and p; .
can be written as

pro _ 90T
Pre  Gueld
Qr,O B H(?g*,OT04
Qe Hig. .TY

=

(4.61)

where g, is the effective degrees of freedom for the radiation energy density and T repre-
sents the temperature of the photon. From the entropy conservation, we can relate the
temperature to the scale factor as

gs*,OagTé3 - gs*,ca3T3 (462)

c—Tc?

where g, is the effective degrees of freedom of the entropy density. From this equation
and Eq. (4.61), we derive

Ac * Hc 2 . Q1r,0 ang g*,c

o Hy) — QcadTy g

4/3
= Qo (—gs*’“) Gre. (4.63)
gs*,c g*,O

where (), . = 1 because we assume that the GW production stops during a RD era here.
Since we focus on the GWs induced in the early Universe throughout this thesis, we take
Jssc = gxc. Finally, we obtain

o \-1/3
Qaw(no, k)h* = 0.39 (ﬁ) Qroh*Qaw (e, k), (4.64)

where we have substituted g.p = 3.36 and gs.o = 3.91 [131] assuming three massless
neutrino species.

Since the degrees of freedom are often given as the function of the photon temperature,
it is useful to derive the relation between the conformal time and the temperature. From
the Friedman equation, we obtain

aH a P
= — : 4.65
aequq Qeq 2,0r,eq ( )
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Then, we can get the following equation:

1 1 ( Goreq 1/3 g 2

= — - , (4.66)
keqn \/§ Gsx Jeq Teq
where note that the subscript “eq” represents the value at the late-time equality time
(z ~ 3400) and keq = aeqHeq [113]. From the Planck result, ke, is given as keq =

0.0103Mpc™ [17]. In addition, we take gieq = 3.36(= gs0), Gsreq = 3-91(= gsxp), and
Toq = 8.0 x 107" MeV throughout this thesis [17,131,132].
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Chapter 5

Investigation of the amplitude of
small-scale perturbations

Now, we are in a position to discuss the early Universe in terms of the GWs induced by
the scalar perturbations. In this chapter, we discuss the possibility that the amplitudes
of scalar perturbations on the small scales could be measured or constrained by the
observation of the induced GWs.

Although it is difficult to investigate the amplitude of the small-scale perturbations,
as we mentioned in Chap. 1, some constraints have been put on the small-scale per-
turbations so far. For example, the power spectrum of the small-scale perturbations
has been constrained from non-detection of the CMB spectral distortion (P, < 107*
on k < 10*Mpc™! [72,133,134]), the consistency between the theoretical prediction of
the BBN and the observational results of the light element abundances (P; < 1072 on
10"°Mpc™! < k < 105Mpe™! [118, 135, 136]), non-detection of the gamma rays emitted
from the annihilation of DM particles in the UCMH (P; < 107% on & < 10"Mpce ™! [137]),
and non-detection of PBHs' (P; < 1072 over a wide range of scales [139-141]). However,
some of them have large uncertainties in their results. For example, the constraints from
UCMHs strongly depend on the properties of DM [73,137] and if the DM is axion, we
cannot obtain the constraints from UCMHs. The constraints from PBHs also have un-
certainties coming from the ambiguities in the relation between the PBH abundance and
the amplitude of the curvature perturbations [142—-145]. Therefore, it is meaningful to
discuss the small-scale perturbations in terms of the induced GWs.

The study on the amplitude of the small-scale perturbations from the viewpoint of the
induced GWs was first done by Assadullahi & Wands in Ref. [146]. However, since then,
the formulas for the induced GWs have been corrected. The energy density parameter
of the induced GWs calculated with the formulas that the authors used is different from
that calculated with the latest formulas by an order of magnitude even if the same power
spectrum of the curvature perturbations are assumed, as we will mention in Sec. 5.2.
Since many future GW projects are expected to observe GWs in the near future, it is
worth revisiting the possibility of the measurement of the induced GWs and deriving the
amplitude and scale of the small-scale perturbations which can be accessed by the future
GW observations more precisely.

Note that this chapter is mainly based on our previous work [87].

!The possibility that the OGLE project might detect PBHs with Mppy ~ 107°M, is discussed in
Ref. [138].
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5.1 Constraints on induced GWs

In this section, we briefly summarize the formulas and the sensitivity curves to discuss
the measurement of the induced GWs. Since the induced GWs are stochastic, we fol-
low the analysis in Ref. [147], which discusses the sensitivity curves for the stochas-
tic GW backgrounds. Throughout this section, we use the frequencies of GWs in-
stead of their wavenumbers for convenience, which are related to each other as f =
1.546 x 107'°(k/1Mpc ') Hz.

If the noises of the multiple detectors or pulsars are uncorrelated, we can take ad-
vantage of the cross-correlation technique to look for the induced GWs. In this case,
the signal-to-noise ratio of the GW observation with a collection of detectors or pulsars
labeled by I and J is given as [148]

1/2
fmax PQ
SNR = /2T s d ” , 5.1
Vot | [ap oy pDS) (5.)

fmin I=1 J>I Py

where M is the number of detectors or pulsars, Ty, is the observation time, P, is the
noise power spectrum, I';; is the overlap reduction function between I-th and J-th de-
tectors or pulsars, fiax and fuin are the maximum and minimum observation frequencies
respectively, and .S}, is the power spectral density of the induced GWSs, which are related
to the energy density parameter as Qaw (o, f)Hg = 272 f3S,(f)/3. Note that the signal
defined in Eq. (5.1) assumes the weak-signal limit [149], which may not be applied to
PTA experiments, depending on projects. We will mention the refined signal-to-noise
ratio for the PTA experiments later in this section. The effective sensitivity curve for the
energy density parameter is defined as

—-1/2

Qaw.er(f)HF = (5.2)

Then, we can rewrite Eq. (5.1) with this effective sensitivity curve as

Pur(f)Pus(f)

[ ()] 6

min

SNR = /2T s

In Fig. 5.1, we plot QGWﬁffhz/ VTonsf/10 as the benchmark of the effective sensitiv-
ity curves for PTA experiments and projects with interferometers. In the figure, we
take Tops = 18 years for EPTA [45], Tops = 20 years for SKA, T,,s = 4 months for
aLIGO(02) [50], and Ty,s = 1 year for the others as fiducial values. We ignore the
notches of the sensitivity curves, which come from the spikes of the overlap function for
simplicity. Since we are interested in the signal-to-noise ratio, defined with the integral
over [ fumin, fmax), the notches are not expected to affect our results. In addition, we show
the constraints on Qgwh? from CMB, LSS, and BBN in Fig. 5.1, which do not use de-
tectors of GWs or pulsars and therefore are different from Qgw gh?, as we will explain
later. We also plot the foreground that comes from extragalactic binary white dwarfs
and main sequence stars.

In the following, we explain in detail the sensitivity curve or the constraint for each
observation and foreground, plotted in Fig. 5.1.
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Figure 5.1: The effective sensitivities for the stochastic GWs of the future GW detectors and
the current constraints on the GWs. Note that, except for the plots labeled as CMB & LSS and
BBN, we plot QGW,eﬁhQ /\/Tobs /10 as benchmarks of the effective sensitivities, where Qqw es
is defined as Eq. (5.2) in the weak-signal limit. Hence, these curves should be distinguished from
the power-law integrated curves derived in Ref. [147]. We include a current PTA observation
by EPTA [45], a future PTA observation by SKA [48,49], a second-generation ground-based
GW interferometer (aLIGO, for which both the limits from the O2 run and design sensitivity
are shown [50, 147, 150]), space-based GW interferometers (LISA [48, 56, 147], BBO [58, 59,
147], DECIGO [151]), and finally third-generation ground-based GW interferometers (Einstein
Telescope (ET) [48,53,54]). We also plot other constraints coming from the observations of CMB
and LSS [152], as well as BBN [81], which should be noted to be current limits on stochastic
GWs. We take the observation time To,s as 18 years for EPTA [45], 20 years for SKA, 4 months
for aLIGO(02) [50], and 1 year for the others. The shaded regions are already excluded by the
current observational data. We also show the foreground from extragalactic binary white dwarfs
and main sequence stars (Extragalactic foreground) [153]. See text for more details about each
project and foreground.
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Advanced LIGO. The effective sensitivity curve for the design sensitivity of aLIGO
is derived in Ref. [147]. They consider the cross-correlation between the detectors in
Hanford and Livingston. For the latest results of the O2 run, we obtain an approximation
of Qawesr by renormalizing the amplitude of and rescaling the frequency dependence
of Qagwex for the design sensitivity so that the minimum of the power-law integrated
curve [147] calculated from the approximation reproduces the minimum of the power-law
integrated curve for the O2 run presented in Ref. [50]. If the sensitivities of Virgo and
KAGRA reach the same level as that of aLIGO in the near future, we could add the Virgo
and KAGRA detectors to the cross-correlation analysis, which is expected to improve the
sensitivity.

Space-based interferometers. The effective sensitivity curve for DECIGO is de-
rived in Refs. [151,154], which is calculated with the cross-correlation between the Michel-
son interferometers located at opposite positions of the hexagonal form. The sensitivity
curve for BBO is also derived in Ref. [147]. Since the sensitivity of BBO is expected to
be similar to that of DECIGO [58], we extrapolate the sensitivity curve of BBO given in
Ref. [147] to cover the same frequency range as that of DECIGO shown in Ref. [151].

Unlike LIGO, BBO, and DECIGO, we cannot apply the cross-correlation technique
to LISA due to its triangle configuration [147,155]. However, some other techniques have
been invented to discriminate the stochastic GW signals from the instrumental noise using
its configuration [156-159]. To estimate the benchmark of LISA, we assume instrumental
noise is removed perfectly, as the authors of Ref. [147] did. Then, we can redefine the
effective sensitivity curve for LISA as [147]

w113 = V22 12 0) (5.4

where T'(f) is the transfer function of the detector and P,(f) is the noise power spectrum.
The factor v/2 in this equation comes from the fact that LISA corresponds to a single
GW detector.

Third-generation ground-based interferometers. The configuration of Einstein
Telescope (ET) is proposed to be the triangle shape, similar to that of LISA. Therefore, we
expect that the technique of the noise subtraction, invented for LISA, can also be applied
to ET. Then, we assume the perfect removal of the instrumental noise, as we did for LISA,
and use Eq. (5.4) to obtain Qgw e, with the sensitivity curve given in Refs. [48,53, 54].
On the other hand, the configuration of Cosmic Explorer (CE) is proposed to be the
L-shaped geometry and we cannot use the technique for noise removal. For this reason,
we do not plot Qgw s for CE in Fig. 5.1. However, note that we could take advantage
of the data of CE for cross-correlation analysis with other detectors, such as aLIGO and
ET. In this sense, CE would improve the sensitivity curves on the induced GWs.

PTA. We can investigate the induced GWs by measuring residuals in arrival times
of pulsar signals for a long time (O(10) years). In this case, each pulsar corresponds to
each detector for GWs and therefore we can take cross-correlation between the pulsars.
Unlike the observations using the interferometers, the inverse of the observation time of
the PTA experiments is the same order of magnitude as the target frequencies. This
means that the frequency integral in Eq. (5.1) does not increase the signal-to-noise ratio
much. Therefore, the weak-signal limit might not be valid in the PTA experiments.”

2In Fig. 5.1, just for comparison, we plot Q.gh? for EPTA and PTA, defined as Eq. (5.2) in the
weak-signal limit.
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Here, we assume that all pulsars have the same noise characteristics for simplicity. Then,
we redefine the signal-to-noise ratio for the PTA experiments as [149, 160, 161]

1/2

M M V2 Qo 2
SNR = /2T s (ZZ;&,) [/f df (Qn(f>+s(2£)w(f))] , (5.5)

I=1 J>I min

where x;; is the Hellings and Downs coefficient for pulsars I and J [162] (see e.g. Eq. (13)
in Ref. [161] for the concrete expression). When we discuss the signal-to-noise ratio for
the PTA experiments, we assume the homogeneous distribution of pulsars and take the
average over the angle between the pulsars.® The variable €2, is the energy density
parameter for noise of each pulsar, given by

(/)1 = 2 1250(f), (5.6

where S,(f) is the power spectral density for noise and can be expressed with the noise
power spectrum, P,(f), as S,(f) = 127%f?P,(f). Here, we assume the noise power
spectrum is mainly determined by the white timing noise as P,(f) ~ 2Atc? [147], where
1/At is the cadence of the measurements and o is the timing precision. Recent PTA
experiments have been performed by the following projects: EPTA [45], PPTA [46],
and NANOGrav [47]. Since their constraints on the GWs are almost the same, we take
the EPTA results as a fiducial example for current constraints from PTA. Following the
observational result of EPTA in Ref. [45], we take the parameters, M = 6, T,y = 18
years, At = 14 days, and o = 1us for EPTA.* For a future PTA project, we consider
SKA as a concrete example. We take the parameters, M = 100, T,,s = 20 years, At = 14
days, and o = 30ns for SKA [48].

CMB, LSS, and BBN. We also mention the other constraints, which are related
to CMB, LSS, and BBN. The induced GWs behave as an additional component of the
radiation and could change the prediction of CMB, LSS, and BBN. Imposing the consis-
tency between the prediction and the observation, we can put constraints on the GWs.
The constraint from CMB and LSS is Qewh? < 6.9 x 107° [152] and from BBN is
Qawh? < 1.8 x 107% [81]. Since they are constraints on the total GW energy density, not
the GW energy density per logarithmic interval Qgw/(f), we must compare the constraints
with the induced GWs integrated over frequency, [ fo dInf Qaw(f). The variable fey is
the lower cutoff of the constraint, which corresponds to 107® Hz for the constraint from
CMB and LSS, and 10~ Hz for that from BBN.

Extragalactic foreground. Finally, we explain foreground coming from extragalac-
tic binary white dwarfs and main sequence stars. Since it is difficult to identify the
extragalactic binaries and subtract the extragalactic foreground, the foreground could

3 After taking the average over the angle, we obtain

M M
1 _ ) 1 M(M —1)
E/d¢sm9d9 E g x1,(0) = s 2

I1=1J>1

4Strictly speaking, since our analysis is based on the assumption of the homogeneous distribution of
pulsars and the same noise characteristics for all pulsars, the current constraints from EPTA in Figs. 5.3
and 5.4 are rough estimates. However, we have checked that the constraints are almost the same as those
that we derive imposing that Qgw for the induced GWs should not touch the constraint curve given by
the black dashed line in Fig.1 in Ref. [45].
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affect the sensitivities of LISA, DECIGO, and BBO [153, 163, 164]. The foreground is
dominated by stochastic GWs from the binary main sequence stars in f < 10~% Hz and
dominated by those from the binary white dwarfs in 107*Hz < f < 107'Hz [153]. Al-
though the foreground might be removed with the use of its spectral shape [159], we plot
the extragalactic foreground in Fig. 5.1 for comparison [153]. The region below the brown
line in the figure could be contaminated by the extragalactic foreground.

5.2 Constraints on curvature perturbations

In this section, we derive the amplitude of the small-scale perturbations that can be
measured by the current and future observations. Throughout this chapter, we assume
that GWs are induced by the scalar perturbations entering the horizon during the RD
era.” We discuss the effects of an eMD era on the induced GWs in the next chapter.
Then, we use the following formulas for the energy density parameter of the induced

GWs:
\1+v| (14 0? —u?)?
el k) =z (1 ) [raf ot

x 120 (u, v, ) Pe(uk) P (vk), (4.55)

2

where I3, (u,v,x) in the late-time limit can be expressed as Eq. (4.53). Note that we
have explained how to obtain this equation in Chap. 4.

The induced GWs depend on the scale-dependence of the power spectrum of the
curvature perturbations. Since the induced GWs have attracted a lot of attention in the
context of PBHs, which are often related to the peak-like profile of the power spectrum [75,
165,166], we parametrize the profile of the power spectrum as

Pe(k) = Arexp (—(logk _— kp)z) , (5.7)

o

where A, represents the amplitude of the curvature perturbations, &, is the peak wavenum-
ber, and o corresponds to the width of the peak. Using Eq. (4.55), we calculate Qgw (7, k)
with this spectrum. In Fig. 5.2, we plot the squared power spectrum of curvature per-
turbations, 773, and the quantity Qaw(k,n.), both of which are normalized by A2 In
the figure, we take 0 = 0.5, 0 = 1, and 0 = 2 as examples. We can see that the peak
height of the induced GWs, Qaw(kp, 7)), is the same order of magnitude as A% This
relation (Qaw(kp, 1) ~ A?) is different from the previous relation used in the pioneering
work (Qaw(kp, 1) ~ 30A42) [146] by an order of magnitude.” We can see that the scale
dependence of Qaw(k, 7.) is very similar to that of P on the scales smaller than the peak
scale (k; ). Meanwhile, on larger scales, the GWs decay as Qaqwh? o< k? even though the
power spectrum of curvature perturbations decays more rapidly.”

5The scales potentially affected by an eMD era, preceding the RD era, could overlap the scales we
consider in this chapter (O(10)Mpc=t < k < O(10%°)Mpc~1), if the reheating temperature is less than
roughly 10'3GeV.

6The work of Ref. [146] is based on the numerical result for a scale-invariant power spectrum (P¢(k) =
Ay) in Ref. [41], which indicates Qaw (k,n.) ~ 33.342. However, the latest result, which our analysis is
based on, gives Qaw(k,n.) =~ 0.8222A2 for the scale-invariant power spectrum [81].

"The wavenumber dependence of Qqwh? o k% on the large scale can be interpreted as the result
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Figure 5.2: Normalized, squared power spectra of curvature perturbations (Pg(k) /A% dashed)
and induced GWs (Qaw (k,1.)/A2, solid). The power spectrum of the curvature perturbation
is given by Eq. (5.7) and o = 0.5 (blue), 0 = 1 (green), and o = 2 (orange) are assumed. Note
that the quantity Qqw(k,n.) here does not reflect the late-time evolution of induced GWs (see

Sec. 4.5).

We derive (expected) limits on A for each o and k, by finding the value of Aj
which yields the signal-to-noise ratio, given by Eq. (5.3) for interferometer experiments
or Eq. (5.5) for PTA observations, unity, taking into account Qgw g for each observation
discussed above, except for the CMB and BBN constraints. As we do in Fig. 5.1, we take
Tops = 18 years for EPTA | T, = 20 years for SKA, Typs = 4 months for aLIGO (02) [50],
and T,,s = 1 year for the others as fiducial values. For CMB and BBN constraints, we
derive the limits by finding the value of A, which makes the integral [ dInf Qaw(f) equal
to the Qgw constraints, plotted in Fig. 5.1.

Figure 5.3 shows the limits on A, for o = 0.5,1 and 2.° We also show the parameter
region that could be contaminated by the extragalactic foreground, which is derived
simply imposing that the foreground at &, should hold

Qaw, foregrounah? < 0.39(gu/106.75) 7130, 0h? 0.8222 42, (5.8)

where Qqw, foregrounth is plotted with a brown solid line in Fig. 5.1 and the right-hand
side comes from Eqs. (4.58) and (4.64)”. The parameter space of the primordial spectrum
that can be constrained by GW experiments is wider when o is larger, due to the spread
of the GW spectrum as shown in Fig. 5.2. The shaded regions show the constraints from
the existing data of current observations. In particular, the current PTA observations

of the Poisson fluctuations of tensor perturbations on superhorizon scale at the GW production [167].
The similar wavenumber dependence is also explained with the correlation function in Ref. [168] (see
Eqgs. (26) and (27) in the reference).

8When we obtain the plots in Fig. 5.3, we find that, for SKA curves, both results based on Egs. (5.3)
and (5.5) are almost the same, which means the weak-signal limit is a good approximation. This is
mainly because a large number of pulsars increases the signal-to-noise ratio sufficiently so that SNR =1
is reached in the weak-signal regime.

9Note that, since the value of 0.39(g. ./1056.75)~1/3Q, sh? 0.8222A2 is based on the result of the scale
invariant spectrum, the foreground in Fig. 5.3 is a rough estimate.
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constrain the perturbations as Ay, < O(1072) on k ~ O(10°)Mpc~'. The noticeable scale
dependence of constraints from CMB and BBN is due to the change in the relativistic
degrees of freedom and the frequency cutoff of the constraints. As to future prospects, the
amplitude of the curvature perturbations could be investigated over a wide range of scales.
In particular, the curvature perturbations with P, = O(107*)—0O(107°) could be observed
or constrained by SKA, LISA, BBO, or ET. Note that, although we assume the concrete
values of observation times and signal-to-noise ratio to derive Fig. 5.3, the parameter
dependence of the constraints in the weak-signal limit is given by A, oc (SNR)Y2T, (;bi/ 4,
which we can easily see from Eq. (5.3).
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Figure 5.3: Limits on curvature perturbations with o = 0.5 (upper left figure), o = 1 (upper
right figure) and o = 2 (lower figure). The vertical axis is As and the lower horizontal axis is kp,
which are defined in Eq. (5.7). The upper horizontal axis shows the frequency corresponding to
kp. The colors and styles of the curves here correspond to those in Fig. 5.1 (e.g. the blue solid
lines show the constraints from the current PTA observation, EPTA). The shaded regions are
excluded by the current observations, as in Fig. 5.1.

5.3 Discussion

In this section, we discuss our results in this chapter.
As we mention at the beginning of this chapter, the constraints on the curvature
perturbations from the induced GWs were also discussed in Ref. [146].!° Here, let us

10A related paper [86] appeared when we were finalizing our paper [87], which this chapter is mainly
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stress the updates that we have performed. Our updates are roughly divided into two
parts. First, we have used updated equations for the induced GWs. The induced GWs
predicted by these updated equations differ from those predicted by the equation used in
the previous study by an order of magnitude. Second, we have performed a more precise
analysis when we derive the constraints on the power spectrum of curvature perturbations
from the sensitivity curves of the GW experiments. To take into account the frequency
dependence of the induced GWs and sensitivity curves correctly, we have calculated
the signal-to-noise ratio, defined in Eq. (5.3) or Eq. (5.5). We have also discussed the
dependence of the limits on the profile of the power spectrum.

Next, let us discuss the foreground. The future observations might detect the stochas-
tic GWs of astrophysical origins, or stochastic GWs of cosmological origins that are
different from the induced GWs we have considered, such as those from quantum vac-
uum fluctuations during inflation, first-order phase transitions, or cosmic strings (see e.g.
Ref. [169] for review). In such a case, the limits on the curvature perturbation would be
affected, and a discussion about this issue depends on the experiment. For instance, at
relatively low frequencies, relevant to SKA, stochastic GWs from mergers of supermas-
sive black holes would be important. Although an estimation of such GWs inevitably
involves uncertainties stemming from complex astrophysical processes, the amplitude of
Qawh? ~ 10711 (£/1078Hz)?/3 was noted to be a conservative lower limit [169], based on
Refs. [170,171]. If stochastic GWs from supermassive-black-hole mergers are indeed de-
tected, stochastic GWs of cosmological origins, including induced GWs, would be buried,
and this implies less information obtained about the early Universe. For instance, the
limits on the curvature perturbation based on induced GWs would be weaker than those
obtained from the null detection of stochastic GWs. Naively, in this case, one may con-
strain the curvature perturbation by requiring induced GWs to be less than the detected
GW background from supermassive-black-hole-binary mergers. We may do a bit better
than that by making use of the anisotropy of stochastic GWs from supermassive black
holes, which is at the level of ~ 20% of the isotropic component [172-175]. In the case
of BBO or DECIGO, there are foregrounds coming from binary neutron stars and black
holes besides that from extragalactic binary white dwarfs and main sequence stars. Un-
like the case of the extragalactic foreground from white dwarfs and main sequence stars,
it may be possible to identify and subtract out ~ 3 x 10° merging binaries composed of
neutron stars and/or black holes, out to z ~ 5 [176]. If cosmological and stochastic GWs
are indeed detected as a result of the successful subtraction of astrophysical foregrounds,
differentiating between different kinds of cosmological GWs with the use of their prop-
erties such as the spectrum and chirality [169] would be crucial. In this case, if we fail
to identify the source of the detected cosmological GW background, one would obtain
the limit on the curvature perturbation by simply requiring induced GWs to be less than
the detected GWs. Instead, if we can reliably exclude the possibility that the detected
GWs are induced GWs, one may obtain limits tighter than that, possibly making use of
the spectrum of the GWs. If we can conclude that the detected GWs are induced GWs,
we would be able to determine the power spectrum of curvature perturbation. See also
Ref. [177] for the subtraction of astrophysical foregrounds to detect cosmological GWs
by ground-based detectors.

In Fig. 5.4, we summarize the current and future expected limits on the small-scale

based on. Although the authors focus on PBHs, the limits on the power spectrum from the induced
GWs are also shown. However, they included only current and future PTA and LISA and also did not
perform the analysis that we have done with the calculation of the signal-to-noise ratio in this chapter.
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curvature perturbations. In this figure, for the constraints from the induced GWs, the
vertical and the horizontal axis should be understood as A, and k&, which corresponds
to the amplitude and the wavenumber of a peak of the power spectrum we have used in
this chapter. This makes a simple comparison of different limits possible, which would
be instructive. We take 0 = 0.5 to show conservative constraints. In addition to the
constraints from the induced GWs, we also plot the conventional constraints from CMB
and LSS observations, CMB distortions, and acoustic reheating. We derive the constraints
from CMB distortions performing the integration of Eq. (10) in Ref. [134] with the profile
of the power spectrum given in Eq. (5.7) in this chapter, using the limits on the p and y
parameters obtained by COBE/FIRAS, which are p S 9x107° and y < 1.5 x 107° [178].
We do not show constraints from UCMHs and PBHs because the constraints from such
objects have some uncertainties, as we mentioned at the beginning of this chapter. Note
again that, throughout this chapter, we assume that the induced GWs are induced by
the scalar perturbations entering the horizon during the RD era. If there is an eMD era
in the early Universe, the constraints could be changed. In the next chapter, we focus
on the effects of an eMD era on the induced GWs, though we leave the analysis for the
constraints on the curvature perturbations with an eMD era for future work. Note also
that we have implicitly assumed the standard thermal history (no entropy production
after reheating) in this chapter. If entropy production occurs after GWs are induced by
the scalar perturbations, the constraints would be weaker.
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Figure 5.4: Existing and expected limits on the small-scale power spectrum of the curvature
perturbation. The constraints from the induced GWs are the same as those shown in Fig. 5.3
(0 =0.5). In addition to the constraints derived in this chapter, the constraints from acoustic
reheating (AR) [136] (pink, see also [118] and [135]), CMB spectral distortions [72,134] (brown),
and CMB/LSS observations on large scales [179] (dark green) are also plotted. The shaded re-
gions are excluded by the current observations, whereas expected limits from future experiments
are shown by the dashed and dotted lines.

Before closing this chapter, let us comment on the gauge dependence of the tensor
perturbations induced by the scalar perturbations, following the discussion in Ref. [180].
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At the second order, tensor perturbations depend on the gauge, though we take the
Newtonian gauge throughout this thesis. The gauge dependence of the second-order
tensor perturbation has been discussed in Refs. [181-184]. However, if we consider the
GW induced by the small-scale perturbations, the gauge dependence is not a problem.
In the Newtonian gauge (B = FE = 0), the synchronous gauge (® = B = 0), and the
uniform curvature gauge (E = ¥ = (), the tensor perturbation finally becomes the freely-
propagating tensor perturbation, whose time dependence is expressed with sin(kn)/a or
cos(kn)/a, in the subhorizon limit during the RD era. It is already shown that the amount
of the induced GWs calculated in the gauges coincides with each other [180, 184-186].
On the other hand, the tensor perturbation calculated in the comoving gauge (E =
du = 0) is different from those calculated in the other gauges even in the subhorizon
limit [184]. However, this does not necessarily mean that the induced GWs are gauge
dependent. According to Eq. (65) in Ref. [184], the time dependence of the difference
between the comoving gauge and the other gauges is described with cos ((u +v)kn/ \/§)
or sin ((u £ v)kn/v/3), not sin(kn) or cos(kn). This means that the difference is in the
part of tensor perturbations coupling with the scalar perturbations, not in the freely-
propagating tensor perturbations. In addition, the small-scale scalar perturbations finally
disappear due to the diffusion damping (see e.g. Ref. [118] for the time dependence of the
damping scale). Since the difference between the tensor perturbations in different gauges
should be written with the square of scalar perturbations, the gauge dependence should
disappear after the diffusion damping of the small-scale perturbations. Therefore, the
tensor perturbations should finally become unique (the same as the ones in the Newtonian
gauge). On the other hand, the gauge dependence of the tensor perturbations induced by
large-scale scalar perturbations does not disappear because the large-scale perturbations
remain until now. The observation for this kind of tensor perturbation might require the
discussion about which gauge is correct for each observation [180]. Note again that we
consider the GWs induced by the small-scale perturbations throughout this thesis and
therefore we do not need to worry about the gauge dependence of the induced GWs.
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Chapter 6

Effects of an early matter-dominated
era on induced gravitational waves

In this chapter, we discuss the effects of an early matter-dominated (eMD) era on the
induced GWs.

There could exist an eMD era, preceding the RD era, in the early Universe, as we
have mentioned in Chap. 1. An eMD era ends with the decay of the dominant massive
particles to radiation, which is called “reheating”. Since an eMD era could be related to
the coherent oscillation of inflaton, the study of an eMD era is important to understand
the early Universe. As we have seen in Chap. 3, unlike during a RD era, the gravitational
potential, the source of the induced GWs, does not decay even on subhorizon scales during
a MD era. Therefore, we expect that the existence of an eMD era affects the spectrum
of the induced GWs, which could shed light on the properties of the eMD era.

The effects of an eMD era on induced GWs were discussed in Refs. [81,107,108]. In the
previous works, they assume that the gravitational potential is constant on subhorizon
scales during an eMD era up to the moment of reheating. In addition, they implicitly
assume that an eMD era ends suddenly and the amplitude of tensor perturbations does
not change at the transition from an eMD era to the RD era. However, in realistic
situations, the reheating occurs gradually and the tensor perturbations could change
during the gradual reheating. Even if the reheating occurs suddenly, we need to care
about the GWs induced after the sudden reheating.

In this chapter, we revisit the effects of an eMD era on the induced GWs. Since the
effects depend on the detail of the transition, we consider them assuming two scenarios.
In Sec. 6.1, we discuss the effects of the eMD era in the case of the gradual transition,
whose timescale is comparable to the Hubble timescale at that time. To be concrete, we
assume that the reheating is caused by the perturbative decay of the massive particles.
This section is mainly based on our previous work [94]. In Sec. 6.2, we discuss the effects
in the case of the sudden transition, whose timescale is much shorter than the Hubble
timescale at that time. We carefully take into account the GWs induced after the sudden
transition. This section is mainly based on our previous work [95]. Note that, throughout
this chapter, we basically focus on the GWs induced by the scalar perturbations entering
the horizon during an eMD era because the effects of an eMD era on induced GWs are
mainly due to the behaviors of the perturbations on subhorizon scales during an eMD
era, which are different from those during the RD era.
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6.1 Gradual transition

In this section, we consider the gradual transition. Throughout this section, we assume
the massive particles, dominant during an eMD era, decay to radiation with a constant
decay rate I'. This situation corresponds to the standard perturbative decay of massive
particles. In this case, a large difference from the previous works [81,107, 108] comes
from the evolution of gravitational potential during the gradual transition, which was
not taken into account in the previous works.

6.1.1 Evolution of gravitational potential

In this subsection, we discuss the evolution of the gravitational potential around the
gradual transition, which has large impacts on the resultant GWs. Since we assume
a constant decay rate I' in this section, we can use the formulas derived in Secs. 2.3.2
and 3.4 with 6T' = 0.? Then, the evolution of the energy densities is described by

o= —BH + al’) pu, (2.46)
ph = —4Hp, + al'pp, (2.47)

where note again the subscripts “m” and “r” represent the matter and radiation, respec-
tively. From Egs. (3.92), (3.94), (3.96), and (3.98), we can write down the equations for
perturbations in the Fourier space as

8l = —0, + 30’ — al'®, (6.1)
0, = —Hbm + K20, (6.2)
4 m
b, = —5 (60— 39 + anp—(5m — 5, + ), (6.3)
k2 3pm (4
0 =5, + k2 —al L2 (26, — 0, =
b=t a4 (3 ) : (6.4)

where we have taken the Newtonian gauge and omitted the bar indicating the background
quantity for simplicity. From Eq. (3.49), we can express the derivative of ® as

B+ 310 + 31 (225, + 26, )
B 3H ’

IThe effects of the decrease in the gravitational potential during a gradual transition and the resultant
incomplete enhancement of induced GWs were also discussed in a talk by S. Kuroyanagi [187], though
they neglected the difference between the evolution of the perturbations of matter and radiation. Some
qualitative features of our results including the shape of the spectrum Qgw are somewhat different from
theirs.

2Strictly speaking, the perturbations of the coherently oscillating scalar field behave differently from
the dust-like fluid for k£ 2 vam# (m: mass of the oscillating field) [188,189] (see also Refs. [116,117,190]).
However, for the perturbations that enter the horizon during an eMD era, which we focus on in this
chapter, we can regard the fluid of the oscillating field as the dust-like fluid (even for the perturbations
of the oscillating field). The reason is as follows. The comoving horizon scale at the beginning of the
eMD era is given as ~ (am)~! at that time because the inflaton starts to oscillate and the eMD era
begins when H ~ am. Then, the wavenumber of the perturbation entering the horizon during the eMD
era satisfies k < mali—t.p sure < VOMH (teMbD start: the start time of the eMD era), considering the fact
that vam?# is proportional to a'/* during the eMD era. Therefore, we can regard the fluid dominant
during an eMD era as the dust-like fluid, whether or not the fluid is realized by the coherently-oscillating
field.

P = (6.5)
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where prot = pm + pr-

Figure 6.1 shows the numerical results for the evolution of the background quantities,
such as a, pm, pr, and w(= P/p). We define 7., as the conformal time when p, = p;
in this section. Note that there is one-to-one correspondence between I' and 7, and
hence this and the subsequent figures do not depend on the specific choice of I'. As an
approximation formula for the scale factor, we also plot

aapp(n) _ (%)2 (77 < nR)v (66)
alm) |22 -1 (n>m),

where we take ng = 0.837, in Fig. 6.1. This formula is derived in Eq. (2.48) with the
assumption of the sudden transition from a MD era to a RD era. For a fitting formula
for the equation-of-state parameter, we also plot

Wiy = % (1 —exp (—0.7 <niq)3>) . (6.7)

We can see that both the formulas (Egs. (6.6) and (6.7)) fit the numerical results very
well. We have checked the errors are less than 10%. The fact that the approximation
formula for the scale factor fits the numerical result well may indicate that using the
exact solutions for the Green functions experiencing the sudden transition from a MD
era to a RD era, given in Eq. (4.24), is a good approximation. This is because the Green
functions are determined by the time dependence of the scale factor (see Eq. (4.19)).
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Figure 6.1: Time dependences of the scale factor, the energy densities, normalized by their
values at 7 = 7¢q, and the equation-of-state parameter. a,pp is given by Eq. (6.6) with ng =
0.831cq and wgy is given by Eq. (6.7). Note that pmeq = pr,eq by definition.

Figure 6.2 shows the numerical results of the evolution of the perturbations. Following
Sec. 3.3.1, we have assumed the following adiabatic initial conditions:
4 k*n

5111 ini — _2q)ini7 5r ini — _5111 iniy Qm ini — er ini = _q)ini- 6.8
| T (6:5)
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Note that we study the linear regime, and thus the overall normalization of perturbations
does not matter in the figures, hence we take ®;,; = 1, or equivalently we plot the transfer
function. In Fig. 6.2, we can see that for perturbation modes that entered the horizon
well before the transition (k> 1/1.), the gravitational potential ® exponentially decays
soon after the equality time, and after a while, ® starts to oscillate due to radiation
pressure, with the amplitude decaying less rapidly (oc n72).

108
1000.00} ]
-\~
001 —— @] (k = 1/1eq)
|(I)| ( - 30/776(1)
1077} === | (k = 450/7eq)
Om
| | (k = 450/779(1
10—12 L pngeq
PO (1~ 450/m)
17 Prieq
1077}
""" - (Dﬁt (T]R = 0.8377eq)
0.1 0.5 1

n/ Teq

Figure 6.2: Evolution of transfer functions for the gravitational potential and the energy
density perturbations. The approximate formula ®g¢, given by Eq. (6.9), is also plotted.

Here, we explain how to derive an approximation formula of ® which describes its
exponential decay. The formula will be used to calculate the induced GWs. First, from

Eq. (6.5), ® can be approximated to be k*® ~ —37{2 ( -0 + -Lé ) in the subhorizon

limit. For modes with k > 1/n, during 1/k < 7 < eq, 5m grows but ¢, does not.
Therefore, even after 7, the evolution of ® is dominated by pm,d,, for a while. During
this phase, p, decays exponentially and then we can expect ® is proportional to pp,.
Radiation density perturbations p,d, also decay following the decay of ® around this
phase. After a while, the evolution of ® is dominated by p.d, and then ® starts to
oscillate. Neglecting this radiation term and the expansion of the Universe during the
transition for simplicity, we can approximate ® as

g / -

T
e (-3 (2)) (1 < )

exp [ —2 <<n3>2 -1+ %)) (n>ng)

where we have used Eq. (6.6) and assumed a(ng)l’ = H(nr)(= 2/nR).
Figure 6.3 is an enlarged view of the evolution of ® for several modes around the
transition. From this figure, we can see that, for k 2 30/7e,, the exponential decay of
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® can be fitted by Eq. (6.9). We have checked that the error of the fitting formulas for
k = 30/neq is less than 15% in n < 2n and, for smaller scales, the error becomes smaller.

1 B i
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o050 Ik =10/meq)
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Figure 6.3: Evolution of ® with different wave numbers (10/7eq < k < 450/1¢q) and the fitting
formula given in Eq. (6.9).

6.1.2 Suppression of induced GWs

Ultimately, to calculate the induced GWs precisely, we need to know the exact evolution
for all quantities such as a, G, and ®. Unfortunately, however, we have not been able
to find exact analytic solutions of these quantities. In addition, obtaining numerical
solutions and plugging them into the formula for the induced GWs to do the relevant
integrations require high computational costs. Hence, in this section, we try to calculate
the induced GWs approximately as the first step toward a more rigorous analysis.

First, we briefly summarize the formulas for the induced GWs, which we use through-
out this section. From Eq. (4.47), the energy density parameter is given as

|1+”‘ Av? — (14 0% —u?)2]?
Saw(n, k) = 1250 ( > / d"’/|1 . { duv
X I%(u, v, x, )P (uk)Pc(vk), (6.10)

where we have substituted wy, = 0 into Eq. (4.47) because we consider the GWs induced
by the scalar perturbation entering the horizon during an eMD era. From Eq. (4.44),
I(u,v,z,zR) is defined as

_ [ _@ ) flu,v,z,x
I(u,v,x,zR) :/ dxa(n)ka(n,n)f( LU, T, TR), (6.11)
where f(u,v,z,zg) is given as (see Eq. (4.45))
Flu, 0,7, 25) = m (25 + 30)B(u)B(u7) + 4H-1 (P (uT)B(05) + Duz) ¥ (v7))
+AH 2V (uz) P’ (v)) - (6.12)
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The second argument of ® is abbreviated in Eq. (6.12) for compact notation, that is,
®(uzx) actually means ®(uz,uzrr) and ®(vzx) should be understood similarly. ®(z,zg)
is the transfer function of the gravitational potential, which satisfies ®(z — 0,zg) = 1.
The prime here denotes a differentiation with respect to 7. Here, we assume that the
scale factor is given by Eq. (6.6) because the approximation formula fits the numerical
result well. Then, in n < ngr, I(u,v,z,rR) is expressed as

T 7\ 2
I(U,’U,l’,ﬂ?R) = / dz (;) kGZMD(n;ﬁ)f(u,v,i,xR). (fOI' n < 77R> (613)
0

The Green function is given as (see Eq. (4.22))

KGR (n:7) = =27 (ju(2)y1(7) — j1(@)ya(2)) | (6.14)

where we have omitted the step function because 7 < 1. On the other hand, in n > ng,
we obtain®

I(u,v,x,xzR) :/OIR dz <(;> <£) KGEMDRD (1 53 £ (u, 0, 7, )

2(x/zr) — 1) \zr

v (2(%/zR) D ,
+ /IR dz (W) kGRP (n:7) f(u, v, Z, 2R). (for n > (77R) )
6.15

As we can see from Egs. (6.12) and (6.15), the induced GWs sensitively depend on the
evolution of the gravitational potential ®. In Refs. [107,108], they assume that the grav-
itational potential remains unity until ng and that the second line in Eq. (6.15), repre-
senting the contributions after ng, is subdominant and hence can be neglected. However,
the gravitational potential gradually changes around the transition and therefore we need
to take into account the evolution of the gravitational potential more carefully. The con-
tributions after ng also turn out to have non-negligible impacts on the induced GWs.
These are the main issues we address in this section.
The Green functions in Eq. (6.15) are expressed as (see Egs. (4.20) and (4.24))

KGR (s 7) = sin(z — 7), 6.16)
KGR () = C(a, 2r)751(Z) + D(w, 2r) 71 (T), (6.17)
where the step function is omitted and C(z, zgr) and D(x,xR) are defined as
(o, 2m) = sinx — 2zg(cosx + $R23in x) + sin(x — 295R)7 (4.25)
27y
D(r, ) = (223 — 1)cosz — 2ngsinx + cos(z — 2xR). (4.26)
2x
Here, we consider the power spectrum given by
Pe = A;O(k — 30/7eq)O(kmax — k), (6.18)

where A, represents the amplitude. We focus on modes with k£ > 30/7.q so that we can
use the fitting formula for ®, given in Eq. (6.9). In addition, we have introduced the

3Eq. (6.15) refines the relevant formula in Ref. [81]. In the limit of z — oo, the contribution of the
first term to Qgw decreases by 1/4 compared to the previous result.
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cutoff scale k... This cutoff scale corresponds to the horizon scale at the start of an
eMD era, or the scale that is entering the non-linear regime at ng, i.e., the amplitude of
matter density perturbations on such a scale becomes unity at ng.* Since the formulas
shown above are invalid in the non-linear regime, we need to introduce this cutoff scale
to limit our analysis to the linear regime when there exist scales that enter the non-linear
regime before nr. From Eq. (6.5), the matter density perturbation during an eMD era
on subhorizon scales is related to the gravitational potential as

2
Om —gk%—?@mi. (6.19)

Since the power spectrum of the gravitational potential is related to that of the curvature
perturbations as Py = %734, the initial value ®;,; can be estimated as |®j,;| ~ %772/ 2,
Then, we can rewrite Eq. (6.19) as

1 291/2
5l ~ 5 (k)P (6.20)

where we have used the relation H = 2/, satisfied during a MD era. From this equation,
the non-linear scale, on which the matter density perturbation becomes unity at the
reheating, can be approximated as

ke ~ V1003 P ~ 470 /g, (6.21)

where we have substituted P, = 2.1 x 107 [17] to obtain the final expression. Therefore
our calculations are valid only for k., < 470/nr. To make the differences from the
previous works look clear, we take kp.x = 450/ng in the following.

To calculate induced GWs, we substitute the fitting formulas of w and ® for a gradual
transition, given in Eqgs. (6.7) and (6.9), into Eq. (6.12), thereby taking into account the
graduality of the transition. Note that we neglect contributions from the oscillation
phases of ® because the oscillation amplitude is very small for & > 30/, noting that
the power spectrum of the induced GWs is basically proportional to the fourth power
of . For example, in Fig. 6.2, we can see that ® with & = 30/n., starts to oscillate
with the amplitude ® ~ O(107%). Figure 6.4 shows the numerical results for the induced
GWs. From this figure, we can see that the induced GWs (black solid line) are suppressed
compared to those derived with the setups in the previous works (brown dotted line).

6.1.3 Discussion

Here, we discuss the result of the induced GWs in the gradual transition, given in Fig. 6.4.

From Fig. 6.4, we can see the suppression of the induced GWs with kg < k < kpax,
which corresponds to the modes entering the horizon before the transition. To see how the
suppression of the induced GWs arises, we show the time dependence of z|I| in Fig. 6.5.
We use the concrete expression of I, given in Eqs. (6.13) and (6.15). Note that the
time dependence of the energy density parameter is finally given as Qgw o< 22I2. From
Fig. 6.5, we can see that xI grows when 1 < ng, but around the transition (n ~ ng),
xl stops growing and starts to decrease due to the decay of ®. After the transition

4 Strictly speaking, since the transition is gradual, there is an uncertainty on the start of an eMD
era. In this section, we regard nr as the conformal at the start of the eMD era for simplicity because
the scale factor can be fitted with the formula given in Eq. (6.6) well.
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Figure 6.4: Spectrum of induced GWs at 1 = 1, associated with a gradual transition from an
eMD era to the RD era (see Sec. 4.5 for the definition of 7.). For all the plots, kmax = 450/1r
is assumed and the primordial power spectrum is given in Eq. (6.18). Our result for Qgw is
shown by a black solid line. The brown dotted line shows the result using Ref. [81], additionally
taking into account the factor 1/4 mentioned in footnote 3, with the same assumptions as in
Refs. [107], under which ® = 1 until = nr and there is no GW source (® = 0) for n > ng. In
other words, we neglect the second line in Eq. (6.15) to derive the brown dotted line. Reduction
from the brown dotted line to the black solid line shows the effects of the gradual transition.

(n > O(1)nr), xl oscillates with its amplitude being almost constant, which indicates
that Qgw becomes constant. Since the evolution of I corresponds to that of the tensor
perturbations, the behavior of I can be interpreted as follows. During an eMD era, since
the source term in Eq. (4.15) is almost constant, the amplitude of the tensor perturbation
is given as hy ~ 453 /k? in the subhorizon limit [42,107]. Here, we consider a gradual
transition from an eMD era to the RD era and therefore the amplitude of the tensor
perturbations decays on subhorizon scales, following the gradual decay of the source
during the transition, which corresponds to the decay of xI around n ~ ng. After a while,
the tensor perturbations decouple from the source and behave as free-propagating GWs,
which corresponds to the oscillation of zI for n > O(1)ngr. Note that, to obtain Fig. 6.5,
we use the approximation formula ®g; for & and neglect the oscillation behavior of ® after
its exponential decay. This also implies that the oscillation behavior of x/ in Fig. 6.5
(already present before 1 = 21 =~ 2.47g)) has nothing to do with the oscillation behavior
of ® in Fig. 6.2 (appearing after n = 2ne,), and the contributions from the oscillations of
® can be neglected because of its small amplitude if we consider k£ > 30/7.q, as we have
already mentioned.

We stress that the main difference between the result in previous works [81,107,108]
and our result comes from the decay of the tensor perturbations during the gradual
transition, which we have taken into account for the first time.

For the large-scale tensor perturbations with k£ < kg in Fig. 6.4, they feel that the
transition occurs suddenly because the transition timescale (O(ng)) is much shorter than
the oscillation timescale of the tensor perturbations (1/k). Thus, the large-scale tensor
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perturbations do not experience the suppression during the transition, which occurs for
the small-scale tensor perturbations. This is why the difference between this work and
previous works is small on the large scales in Fig. 6.4. We can also see the oscillation
behavior of the GW spectrum with 0.01 < k/kp.x in Fig. 6.4. Since the oscillation
frequency in wavenumber, defined as kosc, satisfies koscfeq ~ O(1), we can naively expect
that the oscillation behavior comes from some resonances between the wavenumber of
the tensor perturbations and the timescale of the gradual transition.

100

0.01

x|I(z, xR)|

Figure 6.5: Time dependences of z|I(x,zR)|, defined in Eq. (6.11). We omit the arguments u
and v because we approximate ® as ®gq, defined in Eq. (6.9), and hence I does not depend on
u or v.

Before closing this section, we mention some uncertainties on our results. Throughout
this section, to spotlight the effects of an eMD era on induced GWs, we have focused on
the GWs induced by the perturbations entering the horizon during an eMD era. However,
we have neglected the contributions from the perturbations entering the horizon during
an eMD era but relatively near the transition (1/nr < k < 30/7¢q) to avoid high computa-
tional costs. If we consider the scale-invariant spectrum of curvature perturbations, these
perturbations could produce GWs in addition to the results in Fig. 6.4. We leave the
analysis of these additional effects of an eMD era for future work. Besides, we have not
considered the GWs induced by the perturbations entering the horizon much before the
transition (k > 470/ng). If we consider the scale-invariant spectrum and a long-lasting
eMD era, the perturbations on k > 470/nr could also induce additional GWs. Such per-
turbations may have become non-linear during the eMD era and our formula, based on
the linear perturbation theory, cannot be applied. Although there are works discussing
GWs induced by non-linear scalar perturbations in this context [191,192], there are still
some uncertainties about the predictions [191,192]. Therefore, the amount of the induced
GWs predicted in this section can be regarded as lower bounds on the total induced GWs.

39



6.2 Sudden transition

In the previous section, we have found that if we carefully take into account the evolution
of the gravitational potential around the transition from an eMD era to the RD era,
the predictions for the induced GWs can change. In particular, we have shown that the
induced GWs can be significantly suppressed for a gradual transition, whose timescale
is comparable to the Hubble timescale at that time. In some cosmological scenarios (see
Appendix A), however, the transition from an eMD era to the RD era occurs suddenly, i.e.
the timescale of the transition (or reheating) is much shorter than the Hubble timescale
at that time. The purpose of this section is to study the induced GWs in such sudden
transition cases. The situation is different from the case of the gradual transition. The
effects of a sudden transition on the induced GWs mainly come from the contributions of
the GWs induced after the sudden transition, which are ignored in the previous works [81,
107,108]. In this section, we point out that, in sudden-reheating scenarios, GWs induced
during the RD era can be larger than the induced GWs predicted in the previous works
by several orders of magnitude. We also discuss the possibility of the determination of
the reheating temperature with the use of the enhanced induced GWs.

6.2.1 Formulas for induced GWs

Here, we briefly review the equations for induced GWs that we use in this section. We
assume that an eMD era ended suddenly with the Universe entering into the RD era at a
conformal time 1 = nr. Similarly to Sec. 6.1, the scale factor and the conformal Hubble
parameter are given by (see also Sec. 2.3.2)

(ﬁ>2 (n < m)
aln) _ )\ , (2.48)

()
" 211 (12 m)
2 (1< m)
H=1" : (2.49)
gz 2

The energy density parameter of GWs per logarithmic interval in k is given by

27 (kN7 [ M T4 — (1402 —u?)?
Q0 L d d
aw(n k) = 1555 (H> /0 U/ll_v u[ duv

X I2(u, v, x, xR)Pc(uk)Pe(vk). (6.10)

2

I(u,v,z,xRr) in n > ng is given as

I(u,v,x,zR) :/OxR dz (%;) (i) kGMP=RD (p-7) f(u, v, T, oR)

x/xg)—1/) \zr
+/ dz (%) KGR (n: ) f(u, 0, %, 7m) (6.15)
=loup(u, v, x, 2R) + Irp(u, v, T, TR), (6.22)
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where we have defined the first and second lines of Eq. (6.15) as Ieup(u, v, x,xgr) and
Irp(u, v, z, TR), respectively. The concrete expressions of f and Gy, are given in previous
section (see Egs. (6.12), (6.16), and (6.17)). Note again f(u,v,Z,zg) in Eq. (6.15) is
given with the transfer function of the gravitational potential as
1
f(u,v,Z,2R) = ) (2(5 4 3w)®(uz)®(vE) + 4H (P (uz) P (vT) + P(uz)P' (vT))
w
+AH 2V (uz) P’ (v)) - (6.12)

We approximate I%(u, v, x,zgr) in Eq. (6.10) as

I(u,v,z,2R) ~ I3 (u,v, 2, 2R) + 3y (u, v, 2, 2R). (6.23)

As we will see in the next subsection, in the case of the sudden reheating, -G%L_D > I
is satisfied. However, since the contribution from I, corresponds to the induced GWs

predicted in the previous works [81,107,108], we leave I in Eq. (6.23) just for later
use, though we neglect the contribution from Ievp/rp (<K E). Correspondingly, we
approximately split Qaqw into two parts as Qgw ~ Qaw.emp + Qaw rp, Where Qaw emp
and Qqwrp are calculated from % and IPZ{_D, respectively. Note that Qqw emp is the
same as the energy density parameter calculated in the previous works [81,107,108] up
to factor of 1/4 (see footnote 4 in Sec. 6.1).

The main difference between this section and the previous section comes from the
evolution of the gravitational potential around the transition. From Eq. (3.55), the
evolution equation for the transfer function of the gravitational potential is given as

6
(I)” + E(I)/ = 0, (’17 < ’I]R) (624)

k‘2
D" + AN + 52=0, (n > nR) (6.25)

where we have used the relation H' = —H? in n > nr (see Eq. (2.49)). By solving this
equation, we find

O(x,zR) = {

1 (for z < xR),
A(zr)J (z) + B(zr)Y(z) (for x > zg),
where we have dropped the decaying mode for n < ng. The functions J(z) and Y(x)

are the independent solutions of Eq. (6.25), defined with the first and second spherical
Bessel functions, ji(z) and yi(x), as

(6.26)

3V3 51 <—x—\:;1§/2>

J(@) =——— Py (6.27)
3V3uy xixg/Q
Vw) =— _(xR/g ) , (6.28)

and the coefficients A(zg) and B(xr) are determined so that ®(z) and ®'(z) are contin-
uous at x = rg:

1
A IR) = 5 6.29
" T = o o
__TR) 0
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Figure 6.6: Evolution of the transfer function of the gravitational potential in a sudden-
transition scenario, which is given by Eq. (6.26).

In Appendix A, we introduce a model realizing a sudden-reheating transition and check
that the above analytic expression for ® with these connection conditions coincides well
with the numerical solution for ® calculated in that model. Figure 6.6 shows the evolution
of the transfer function of the gravitational potential, given by Eq. (6.26). We can see
that, after the transition, the gravitational potential with & > 1/nr starts to oscillate
rapidly compared to the Hubble timescale at that time.

In Ref. [81], the authors derive the analytic formulas for I,yp and Irp with the
expression of ® given as Eq. (6.26). In the reference, they adopt an implicit assumption
that GWs induced during the RD era by the perturbations having entered the horizon
during an eMD era, which we focus on in this section, are subdominant compared to the
GWs 1) which are induced during the eMD era (2gwemp) and 2) which are induced by
the perturbations entering the horizon after the reheating. However, this assumption is
not true in realistic situations. In Sec. 6.1, we consider a gradual reheating transition
and show that the contributions from Igzp play an important roll for the suppression of
induced GWs (though we do not explicitly define Irp there). In addition, in a sudden-
reheating scenario, the dominant contribution comes from Igp as we will show in the
next subsection.

When we discuss the current value of the energy density parameter of the induced
GWs, we take into account the late-time evolution as

e —-1/3
Qw(m, F)h? =039 (£252) 7 Qb Qe (1, b), (4.64)

where note again 7. is the conformal time when qw becomes constant after their pro-
duction, but much before the late matter-radiation equality time (see Sec. 4.5 for details).

6.2.2 Enhancement of induced GWs

Using the above equations and the analytic formulas in Ref. [81], we calculate induced
GWs. To be specific, we assume the following power spectrum of the curvature pertur-
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bation:

Pe(k) = Ok — k) A, (kf) o (6:31)

where A, is the amplitude at the pivot scale k, and n, is the tilt of the power spectrum.
We introduce k.. as the cutoff scale of the power spectrum. Similarly to the case in
Sec. 6.1.2, the cutoff scale corresponds to the horizon scale at the start of the eMD era or
the scale where the matter perturbations become unity at the sudden reheating. To ensure
the validity of our analysis, we limit our analysis to cases with kp.x < 450/ng. That is,
we do not take into account GWs that are generated from non-linear perturbations, and
this means our analysis would lead to conservative estimations of the GW spectrum.

Figure 6.7 shows the scale dependence of the spectrum of induced GWs. In this figure,
we take ny = 1 for simplicity. We can see that Qgw rp is much larger than Qgw emp.
This is because the GWs induced during the RD era by the subhorizon perturbations
that entered the horizon during an eMD era, neglected in the previous works but taken
into account in this work, are significant. For comparison, we also plot the GW spectra
induced by the power spectra of P(k) = O(kmax — k)O(k — 0.7Tkmax)As and P(k) =
O(0.7Tkmax — k)O(k — 0.4kpax)As with blue and red lines. As shown in the figure, the
contributions from the smallest scales (blue dashed line) are the dominant contributions
to the total spectrum (solid black line) except for the large-scale-side tail of the sharp
peak (0.3 < k/kmax S 1). This sharp peak is due to the resonance effect, which is a
characteristic feature of GWs induced during the RD era [41], when the gravitational
potential oscillates (see also Fig. 4.1). The tail of the sharp peak is formed by the
envelope of the resonance effects on these scales (see the red dot-dashed line). In this
way, the spectrum of the induced GWs is produced dominantly by the smallest scales,
and the resonant amplification plays a key role. This understanding becomes clearer in
Appendix B, where we derive approximate analytic formulas for induced GWs for sudden-
reheating scenarios. On much larger scales, the contributions from the perturbations
entering the horizon after the reheating dominate induced GWs, whose spectrum becomes
scale invariant Qaw (1, k) >~ 0.8222A2 [81]. This can be observed in the GW spectrum
for k < 10°Mpc~! in Fig. 6.8, though in that figure a slightly scale-dependent primordial
spectrum is assumed, leading to a slight scale dependence of Qgqw.

The main reason why induced GWs are enhanced is that the gravitational potential ®
with large k (> 1/nr) is constant until n = ng and, after the reheating, it oscillates with
the timescale ~ 1/k, much shorter than its decay timescale ~ ng (see Fig. 6.6). Due to the
fast oscillations of perturbations with unsuppressed amplitudes, which remained constant
until the moment of the reheating, induced GWs are significantly enhanced.” Note that
the dominant contributions come from the last term in Eq. (6.12), which involves two
time derivatives of the gravitational potential. This is because, at the beginning of
the RD era, the last term can be approximated as H2®'®" ~ (kngr)?®? > ®? for the
perturbations that entered the horizon well before the sudden reheating. In other words,
the factor (kngr)? in the source term and the amplitude of ® that remained constant until
the reheating are the main causes for the enhancement.

In addition to numerical solutions, we also obtain approximate analytic formulas of
Qcwrp in Appendix B, with Qgw rp given by the sum of Egs. (B.71) and (B.73). Using

5 Although the perturbations entering the horizon during the RD era also oscillate with the timescale
much shorter than their decay timescale well after (not soon after) the horizon entry, the amplitudes of
the perturbations start to decay soon after the horizon entry, unlike during an eMD era, and therefore
the enhancement is not caused by the perturbations entering the horizon during the RD era.
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Figure 6.7: Energy density parameters of GWs, for each logarithmic interval of wavenumber,
induced during the RD era (Q2gw rp(7c, k)) and during an eMD era (Qgw.emD(7c, k), as well
as the power spectrum P¢(k) of curvature perturbations. They are normalized by A2 or A,
respectively, and we take ng = 450/kmnax. The black lines are derived from P¢(k) = O (kmax —
k)A,. For comparison, the blue and red lines are also shown, which are derived from P¢(k) =
O (kmax — k)O(k — 0.7Tkmax) As and P¢(k) = ©(0.7kmax — k)O(k — 0.4knax) As, respectively. Note
that the black dashed line (Qgw,emp(7c, k)) is the same as the brown dashed line in Fig. 6.4.

these expressions, the GW spectrum is roughly expressed as

(0.8 (vr 5 1502,
Qe (e, 1) 3x 107 2] e n (150xm2)/(3R Sar < 1)
I = LU 10 g (1< an S ol ) : (6.32)
s 3 X 10771'17% (xfnaxR ~ TR 5 Lmax R)
 (sharp drop) (Tmaxk S TR < 2TmaxR)

neglecting a logarithmic factor for the second line.

6.2.3 Determination of reheating temperature

In the previous subsection, we have shown that the induced GWs can be much larger than
those previously reported [81,107,108]. In the following, we consider the GWs induced
by the almost scale-invariant power spectrum, given in Eq. (6.31), with A, = 2.1 x 1077,
k. = 0.05 Mpc™!, and n, = 0.96 [17]. Figure 6.8 shows the sensitivity curves of current
and future GW experiments and plots for Qgw of the GWs induced by the power spectrum
with kmax = 10Mpc~!. This figure shows that the induced GWs associated with a
sudden transition from an eMD era to the RD era could in principle be observable by
future projects. Since the height and scale of the peak are determined by the scale of the
reheating and the cutoff k.., we discuss what range of the reheating temperature could
be probed by future observations searching for GWs.

Following the procedure and using the effective sensitivity curves in Chap. 5, we
derive the cutoff scale and reheating temperature to make the signal-to-noise ratio unity
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Figure 6.8: Effective sensitivities to stochastic GWs of current and future experiments. Note
that we plot QGW7effh2 /v Tobsf/10 as a sensitivity curve for each experiment and the foreground.
We consider the same experiments and foreground and take the same parameters as in Fig. 5.1.
See the section for details about the sensitivity curve of each experiment and the foreground.
Black lines show the energy density parameters of the GWs induced by the power spectrum of
Pe(k) = 2.1 x 1072(k/0.05 Mpc ™) 70940 (kpax — k). We take kmax = 1014Mpc~! for all these
three lines and ng = 450/ kmax, MR = 200/kmax and nr = 100/kmax for each line, respectively.
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(SNR = 1) for each project. The numerical results are shown in Fig. 6.9. When we
derive the curves, we use the approximation formulas given in Egs. (B.71), (B.73), and
(B.75) to save the computational time. In this figure, we take Typs = 20 years for SKA
and T,,s = 1 year for the other projects and assume no foreground for simplicity. When
we obtain these plots, we have used the following relation between the conformal time
and the temperature (see Sec. 4.5)

1 1 e 1/3 . 1/2 T
_ 1 (gs , q) (9 > (4.66)
keqn \/§ Gsx Jeq Teq
-1
R _( s )1/3< g >—1/2 TR
N — — -t ) . 6.33
10~4Mpc 106.75 106.75 1.2 x 107GeV (6:33)

We also plot the parameter region that could be contaminated by the extragalactic fore-
ground, imposing that the energy density parameter of the foreground should be smaller
than that of the induced GWs at the peak scale. Note again that the peak scale of the
induced GWs corresponds to k ~ kpax, not k ~ 1/ng. Figure 6.9 shows that, in the
case of knaxnr = 450, the ranges of reheating temperature that future observations could
investigate are Tg < 7 x 1072 GeV for SKA, 20GeV < Tr < 4 x 102 GeV for LISA,
20GeV < Tg <1 x 107 GeV for DECIGO, 20 GeV < Tg < 2 x 107 GeV for BBO, and
4 x10°GeV < Tg < 2 x 107GeV for ET. Note that we have implicitly assumed the
standard thermal history (no entropy production after the sudden reheating) in this sec-
tion, as we do in Chap. 5. If entropy production occurs after the GWs are induced, the

parameter region in Tg and kn.xmr that can be investigated would become smaller.

6.2.4 Discussion

In this subsection, we discuss the results.

Since the enhancement of the induced GWs we find is so significant, one may wonder
whether the backreaction, which we have not taken into account, is important or not. We
have seen that the energy density of the induced GWs is Qaw(n.) ~ 10'2A2 ~ O(107°)
even for kpaxnr = 450 and Py = 2.1x 107, Since the tensor perturbations are expected to
be produced dominantly soon after the sudden transition, the power spectrum of the ten-
sor perturbations soon after the transition is roughly estimated as P, ~ O(10 Qgw(7.))
(see Eq. (4.32)). The induced tensor perturbations can affect the evolution of the scalar
perturbations only with the non-linear interactions. In our case, since the amplitude of
the scalar perturbation ®(~ O(107°)) is the same order of magnitude as the second-
order (first x first) tensor perturbations (~ Py, ~ O(107°)), the backreaction could affect
the evolution of the scalar perturbations for ky.nr = 450, the analysis of which is beyond
the scope of this thesis. However, since we restrict ourselves to the case of ky.xnr < 450
to avoid the non-linear effects, we can expect the backreaction does not affect our result
so much.

Next, we mention how the induced GWs depend on the amplitude of the curvature
perturbations. Throughout this section, we assume that the curvature perturbations have
almost scale-invariant spectrum. However, the curvature perturbations could be enhanced
on the small scales, which are often discussed in the context of PBHs. In addition to
the fact that the induced GWs depend on the amplitude of the scalar perturbations, the
cutoff scale also depends on the amplitude. That is, the larger amplitude of the curvature
perturbation leads to the larger cutoff scale (smaller kyp,), which limits us to the case
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Figure 6.9: Relation between the cutoff scale multiplied by ng and the reheating temperature
that can be probed by the future observations. We take Typs = 20 years for SKA and Ty = 1
year for the others. The curves correspond to the values of kxR required to reach the signal-
to-noise ratio of unity (SNR = 1) for the experiments at each reheating temperature. The
regions above the dotted and dashed lines are accessible by the future observations. The brown
shaded region is already excluded by the BBN and the Planck data [193]. The brown solid

line shows the foreground and the region below the solid line could be contaminated by the
foreground.

of shorter length of an eMD era. Here, we roughly estimate the maximum height of
the GW spectrum that we can predict with the linear theory taking into account the
dependence of non-linear cutoff scale on the amplitude of the curvature perturbations.
From Eq. (6.21), we can see that the non-linear scale is related to the power spectrum

as knLmr X 774_1/4. Then, from Eq. (6.32), we find that the maximum height of the GW
spectrum is related to the power spectrum as

1 7
Qaw (ke e) ~ O(10') ( ZggR> P?

D 1/4
~ O(1079) <21><—<10—9> . (6.34)

Note again that, as we mentioned in Sec. 6.1.3, if the eMD era lasts long, the non-linear
structures could also induce the GWs, which cannot be calculated with the linear theory.
In this sense, our predictions for the induced GWs in this section are conservative.
Finally, we comment on the relation between the reheating temperature, the inflation
energy scale, and the length of an eMD era. Here, we assume that an eMD era starts right
after the inflation era due to the oscillation of the inflaton. Since the energy density decays

proportionally to a3 o< ¢ during an eMD era, the energy density at the reheating (pr)
is related to that during the inflation (pi.¢) as

6
,O_R - (neMD,start) : (635)
Pinf R
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where Nemp start 15 the conformal time at the beginning of the eMD era. In the case
where the duration of the eMD era is given as ng ~ O(100)Nemp start; Which we mainly
consider throughout this section, the energy density at the reheating can be expressed as

PR ™~ 0(10_12pinf)-
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Chapter 7

Conclusion

In this thesis, we have discussed the GWs induced by scalar perturbations in the early
Universe. In Part [ (Chaps. 2-4), we have derived the basic formulas for the induced GWs
from the Einstein equation. Using the derived formulas, we have studied the induced GWs
from two aspects in Part [I. One is the aspect of the amplitude of small-scale perturbations
(Chap. 5) and the other is the aspect of the effects of an eMD era on the induced GWs
(Chap. 6).

In Chap. 5, we have discussed the constraints on the small-scale perturbations with
the use of the induced GWs. Although the small-scale perturbations could produce
PBHs and therefore have drawn attention from many authors, the amplitude of the
small-scale perturbations are difficult to measure from CMB or LSS observations. On
the other hand, if the small-scale scalar perturbations are large, the induced GWs also
could become so large that the future GW detectors can measure the GWs. From this
fact, we have derived the amplitude of the scalar perturbations that the future detectors
can investigate (Fig. 5.4). Since Assadullahi & Wands studied this topic in Ref. [146], we
briefly emphasize what is new in our work again. First, we have updated the formulas
for the induced GWs because the formulas have been corrected since the previous work
appeared. Second, we have improved the analyses taking into account the profile of
the power spectrum of the curvature perturbations and the signal-to-noise ratio for each
future observation, which have not been considered in the previous work.

In Chap. 6, we have studied the effects of an eMD era on the induced GWs. Although
the effects of an eMD era are discussed in the previous works [81, 107, 108], we have
shown that the results in the previous works are not correct, taking into account the
evolution of the perturbations before, during, and after the transition from an eMD era
to the RD era carefully. As concrete examples, we have considered two cases. One is the
gradual transition, whose timescale is comparable to the Hubble timescale at that time,
and the other is the sudden transition, whose timescale is much shorter than the Hubble
timescale.

In Sec. 6.1, we have discussed the effects in the case of the gradual transition. To be
concrete, we have considered the case where the massive particles dominating the Universe
during the eMD era decay to radiation with a constant decay rate. Then, we have found
that the gravitational potential decays gradually during the transition (Fig. 6.2) and it
leads to the decay of tensor perturbations during the transition (Fig. 6.5). We have taken
into account the decay of tensor perturbations during the transition for the first time and
shown the induced GWs are suppressed compared to the previous results (Fig. 6.4).

In Sec. 6.2, we have considered the case of the sudden transition. In this case, the
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GWs are mainly induced by the scalar perturbations that entered the horizon during
an eMD era, whose contributions have been implicitly ignored in the previous works.
After the sudden transition, the scalar perturbations start to oscillate with the timescale
much shorter than the Hubble timescale at that time. This fast oscillation of the scalar
perturbation enhances the induced GWs much (Fig. 6.7). The enhanced GWs could
be detected by future observations (Fig. 6.8) and enable us to determine the reheating
temperature (Fig. 6.9).

Before closing this thesis, we stress that the results in this thesis can be a platform
to discuss the early Universe in terms of the induced GWs. From our results, we can say
that a detection or null detection of the induced GWs with the future detectors could
shed light on the evolution of the early Universe from the viewpoints of the amplitude of
small-scale perturbations or the reheating following an eMD era.
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Appendix A

A model that realizes a
sudden-reheating transition

In this appendix, we build a concrete model in which the reheating happens in a timescale
much shorter than the Hubble timescale at that time. This ensures that ® does not decay
during the reheating transition, leading to the enhancement of induced GWs, shown in
Sec. 6.2.

Our idea for a sudden reheating is to initially block the decay of the field ¢, dominating
the energy density in the eMD era, into relativistic daughter particles, collectively denoted
by x, for some reason related to kinematics or symmetry, and then to remove the cause
of the blocking in a dynamical manner. For this purpose, we introduce a field 7, which
dynamically triggers the decay of ¢ into y. We dub such a field 7 ‘triggeron’. In the
models we discuss below, the mass of y is dependent on the field value of 7 and a quick
change of that field value causes a sudden decay of ¢ to x, which we identify as a sudden
reheating.

A.1 A scenario for a sudden reheating triggered by
a fast-rolling field

The main ideas of this model are as follows. At first, the initial triggeron value is suffi-
ciently large so that the decay of ¢ into two y particles is kinematically forbidden. When
the Hubble parameter becomes comparable to the triggeron mass m, the triggeron starts
to roll down its potential quickly, and it passes through some critical value at which the
decay channel of ¢ opens. If the decay rate is much larger than the Hubble scale, the
reheating transition completes quickly.

We consider a simple model that involves three canonically normalized real scalar fields
¢, 7, and x to demonstrate the ideas. One can easily generalize this model by considering
e.g. complex scalar fields, fermions, or gauge bosons. The Lagrangian density we assume
is

1 1 1
L=— 58’%0,@ — 58“)(8,»( — 58“7‘8“7 -V, (A.1)
Lo, 1 o9 Ay 2
V:§M¢ +§m7 +Z7’X +§M¢X, (A.2)

where M and m denote the masses of ¢ and 7, respectively, satisfying M? > m?, and
A and ¢ are dimensionless coupling constants. The third term in the potential can be
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interpreted as the 7-dependent mass term for y, and the last term provides the decay
channel of ¢ into 2 x particles, once the decay becomes kinematically allowed. The decay
rate of ¢ into 2 y particles is [126]

02M m2 T
= —/1- X0 (M? —4m? A3
321 17270 ( Mier) (4-3)
where m? o = (A7?/2) is the effective mass squared of y and it is determined by the

time-dependent expectation value of 7, as mentioned above. Note that the decay rate
is non-zero only when the decay is kinematically possible, i.e., m, ¢ < M/2, otherwise,
it vanishes. The critical value of triggeron field at which the decay channel opens is
Te = M/V2\.!

There are some conditions for this scenario to work. Obviously, the initial field value
of triggeron 7y should be large enough to satisfy 75 > 7.. (We may assume 75 > 0 without
loss of generality.) To make the reheating transition quick, the speed of 7 needs to be
sufficiently large when it passes through the critical point 7., hence we assume 75 > 7.
On the other hand, the triggeron field should not dominate the energy density, and so 7
should be much less than the reduced Planck mass Mp. Thus, the required condition for
To 18

Te K 7o K Mp. (A4)

Second, once the decay becomes kinematically possible, the typical decay rate should be
much larger than the Hubble scale, I' > H. This requires ¢?M > m. We also assume
that 7 eventually decays into radiation before it would dominate the energy density.

Let us present the time evolution of the gravitational potential ® to show how this
model works. Figure A.1 shows the evolution of ®. We have used the equations for
perturbations given in Sec. 3.4 to take into account the decay of ¢ to x. This figure
shows that the analytical expression of ®, given in Eq. (6.26), is satisfactorily accurate
in sudden-reheating scenarios.

Since ¢ and 7 are independent degrees of freedom, fluctuations in 7 will introduce
additional curvature perturbations and non-Gaussianity due to the modulated reheating
mechanism [195-199]. To estimate those quantities, let us first note that the time evo-
lution of the triggeron is given by 7 = 79sin(mt)/(mt). The time when it reaches the
minimum (7 = 0) is mt = 7, but it reaches the critical value slightly before. The decay
time is thus estimated to be

mt =n (1 - E) . (A.5)

To

ITo follow the evolution of the mass of the daughter particles x after the decay of ¢, we need to take
into account the backreaction of the particle production effect to the dynamics of 7, whose dedicated
analysis is beyond the scope of this thesis. Once most of the energy density in ¢ has been converted to
a large number of x particles when they are almost massless, energy conservation implies that 7 cannot
move significantly. A similar backreaction effect is discussed in the context of preheating [194]. We
expect that 7 is trapped around the origin and assume that the daughter particles x remain relativistic
in the following analyses. Even if the daughter particles do not behave as relativistic particles due to its
varying mass, the sudden reheating is realized in the case where the daughter particles decay or annihilate
to other light particles, including the Standard Model particles, within a timescale much shorter than
the Hubble timescale at that time.
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Figure A.1: Numerical results for the evolution of the gravitational potential ®. We also plot
the analytical formula of ®, given by Eq. (6.26), with the black dotted line. We take A = 0.1,
c= 0.1, and 7p = 1000M.

As discussed e.g. in Ref. [200], the e-folding number is related to the decay time as
eV o /9. (A.6)

Thus, we can calculate N’ = (1/6)t'/t and N” = (1/6)(t"/t — (¢'/t)?) where the prime
denotes differentiation with respect to 7y, and ¢ is evaluated at the decay time. Explicitly,

Te
~—s,
675

Tc

N// ~ _ _ <
~ 3>
37

N (A.7)

noting 7. < 71y. Using these values, we obtain

2 2
P v & (2 (B’ "

To 21T

where ¢(7) is the contribution to the total curvature perturbation (¢ ) from 7. We can
see that if 7o > 7. is satisfied, we can naively expect Py~ < P¢. We also mention the
non-Gaussianity parameter fyi,, which is related to the three-point correlation function
as [200]

6 272 272 ) .
(Choy Chos Cres) = (2m)*5(Koy + Ko + k3)5fNL [k—%Pg(kl)k—gpg(kg) + cyclic permutations| .
(A.9)
Using Eq. (A.7), we obtain
5 73<<r) 2 N Pg(r) 2 7o
=— — ~ —10 —. A.10
rog (50) =0 (50) 7 (r10
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Note that fxr, appears to contain a large factor 7y/7., but the above expression implicitly
contains the inverse of this factor with a higher power in (73<<T> / PC)Q. Hence, fx1, can be
sufficiently small. We conclude that non-Gaussianity can be small enough to be consistent
with observations provided that 7y > 7 is satisfied.

Let us interpret the above model. It is quite natural that the decay of a field is
prohibited by some symmetry. For example, the lightest particle charged under some
unbroken symmetry is absolutely stable. This is usually applied to dark matter model
building to explain its stability [201]. Thus, we assume that the dominant field ¢ is
charged under some symmetry. If the scalar field is real, as in the above toy model, the
possible charge assignment is limited, and so the scalar fields will be complex in a more
realistic situation. In this context, the trigger field 7 must be assumed to be a singlet
(non-charged) with respect to the symmetry that protects ¢’s stability because otherwise
its initial nonzero expectation value spontaneously breaks the symmetry. The daughter
particle x can be interpreted as some charged particle, initially heavier than ¢ due to its
T-dependent mass. However, it subsequently becomes lighter than ¢, which triggers the
¢ decay. For example, we can assign ¢ charge +2 and y charge —1. Or, we can assign
¢ and x the same charge and introduce a chargeless field x’ with an interaction such as
ox'x’. In this way, various generalizations of our simple model would be possible. The
produced relativistic y particles and antiparticles are assumed to produce a thermal bath
containing Standard Model particles through scattering and annihilation, which reheats
the Universe.

Alternatively, we may interpret 7 as some symmetry breaking field. When a symmetry
is broken, it is often the case that charged fields (corresponding to x) become massive.
For example, the Higgs mechanism makes gauge bosons massive. In the Standard Model,
it also makes fermions massive through Yukawa interactions. One of the flat directions
in the minimal supersymmetric standard model [202] would be a good candidate for this
purpose since most of the fields in the theory (corresponding to y) can be massive when
it obtains a finite expectation value. In this case, all the possible decay channels of ¢
must be kinematically blocked or sufficiently suppressed.

A.2 Another sudden-reheating scenario realized by
a field that experiences a first-order phase tran-
sition

Suppose that ¢ is protected by a symmetry from decaying, without any decay channels
of ¢ to lighter particles. Let us further assume that 7 is charged under the symmetry
and is too heavy for ¢ to decay into. There may be an interaction term of the form

L=ctoxx+..., (A.11)

where ¢ is a coupling constant. Suppose that initially the field value of 7 is zero, to be
contrasted with the previous model. Then the decay of ¢ becomes possible once T acquires
a finite vacuum expectation value, thereby spontaneously breaking the symmetry.

Such a symmetry-breaking phase transition can occur suddenly if the phase transition
is first order. The transition occurs through the tunneling effect, and the tunneling rate
is exponentially sensitive to the cosmic temperature (to be more precise, the temperature
of the thermal bath to which 7 is coupled), and hence such a transition is sudden [203].
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After the transition, ¢ becomes able to decay into x particles. Provided that this decay
rate is much larger than the Hubble parameter, the decay completes within a timescale
much shorter than the Hubble timescale at that time. Associated with the decay of
¢, the temperature increases, which may restore the symmetry temporarily. Thus, the
importance of the backreaction to the decay of ¢ requires a further study. Eventually,
the temperature decreases and 7 settles to the symmetry-breaking vacuum.

One way to suppress the backreaction may be to assume that the initial thermal bath
is made up of a hidden sector with 7 being a portal to the visible sector. Then, the
increase in the temperature felt by 7 would not be significantly affected by the decay of

o.
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Appendix B

Approximate analytic formulas for
induced gravitational waves

In this Appendix, we derive approximate analytic formulas for the spectrum of induced
GWs in sudden-reheating scenarios.

B.1 General integral formulas for GWs induced dur-
ing RD era
First, we briefly summarize the general integral formulas to calculate GWs induced during

a RD era, derived in Ref. [81].

For convenience, we consider the following quantity

To 5

IRD(U, v, T, .I'Q) = / d:? i’(C Slnf -+ D COS i)fRD(U/’ v, j)’@(:f):?)\/g(Aﬁ(j/\/§)+By1(i/\/§))/j7
1

(B.1)

where A and B are coefficients that might depend on k and 7, and C' and D are coefficients
that might depend on k and 7,. The function frp is defined as’

frp(u, v, 7) = 30(uz)®(vE) + 7(P' (uz)P(vZ) + O(uz)®' (vT)) + TP (uz) P (vZ). (B.2)

Since we introduce the coefficients A and B, frp can be different from frp, defined in
Eq. (4.49). After substituting ®(7) = 3v/3(A5,(Z/V3) + By1(%/+/3))/Z, we derive

f 7 9 COS,v—U (U — u)j Sinv—1u . ('U - U).CE
fro(u, v, T) = iBuigo (E Cos 7 +FE sin 7
(v+u)z ~ . @+uﬁ)
+Ecos,v+u COS + Es1n,v+u sin , B.3
V3 V3 (B:3)

"Note that the coefficients in frp are different from those in frp in Ref. [81] because the normalization
of f in this thesis is different from that adopted in Ref. [81].
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where the functions E are given as

Feosv—u — (zf (A()B(v) — A(w)B(u))(u — v)7(9 + uvi?)
+(A(w)A(v) + B(u)B(v))(54 — 6(u* 4+ v* — 3uv)z* + u’v’z")) (B.4)

B = — 6 (2v/3(A(u)B(v) + A(o) B(w)) (u + v)5(~9 + uvz?)

(A(w)A(v) — B(u)B(v))(54 — 6(u* 4+ v* + 3uv)z® + v*v°z")), (B.5)
2vV3(A(u)A(v) + B(u)B(v))(u — v)Z(9 + uwvz?)

(A(v)B(u) — A(u)B(v))(54 — 6(u* + v* — 3uv)z® + u’v°z")), (B.6)
print <2\/§(A(U)A(U) Buw)B())(u + v)T(~9 + uvi?)
+(A(u)B(v) + A(v)B(u))(—=54 4 6(u® + v* + 3uv)z* — v*v’z")), (B.7)

Esin,v—u =—6

+ "o +

where we explicitly write the arguments v and v for A and B because they might depend
on k. To perform the integral in Zgp with Mathematica, we rearrange the integrand as

5
9 T2 Mcos,—— o Mcos,+— 3 Mcos,——l— 3
Trp(u, v, 21, T0) = — dz g m cosy 4+ 2 cosytT + —2—cosy *
m m m
4 /., — z z z
MCOS,—H— Msin,—— Msin,+—
+ " cosytt 4+ 2 siny " + siny™™
xm xm
sin,—-+ sin,+-+
m ; —+ m ; ++
+ Pt + P > : (B.8)

where the coefficient M,, is independent of # and the function y is given as y** =
(1 + ”i“> T,eg y T = <1 — ”“‘) Z. The concrete expressions of M, are given by

V3 V3
M = % o (B.9)
pes _6\/5?%2— V) - (B.10)
M 18(u? —uijgv + U2)H“, (B.11)
peos — _54\/3533— v) (B.12)
M = %H--, (B.13)
MES = % [l (B.14)
pss 6\/%5;;; v) pee (B.15)
e LI TEL P -
pes 54\/§§ZS— 0) e (B.17)
g = 192 e (B.18)
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Mios,——i— —

cos,—+ __
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cos,++ __
M = —
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MC0S1++ _
3 =

Mcos,++ .
4 =

cos,++
M = —

Mlsin,—— _
MQsin,ff _
M;in,ff _
M:in,—— _
M;in,ff _
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Mzinﬁr* —_
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sin,—+
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EH—Jr
uw ’
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Y

uw
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9
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uw
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Y
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(B.19)
(B.20)
(B.21)
(B.22)
(B.23)
(B.24)
(B.25)
(B.26)
(B.27)
(B.28)
(B.29)
(B.30)
(B.31)
(B.32)
(B.33)
(B.34)
(B.35)
(B.36)
(B.37)
(B.38)
(B.39)
(B.40)

(B.41)



~ 54v3(u+ )

M = = H™, (B.42)
M = %I* (B.43)
M = %ﬁﬂ (B.44)
M = —WH**, (B.45)
M _18(u2+31;1)+112)]++, (B.46)
Mzin ++ %HJH: (B47)
M = %]** (B.48)
where I and H are defined as
H™™ =(A(uw)A(v) + B(u)B(v))D + (A(u)B(v) — A(v)B(u))C, (B.49)
H* =(A(u)A(v) + B(u)B(v))D + (A(v)B(u) — A(u)B(v))C, (B.50)
H " =—((A(u)A(v) — B(u)B(v))D + (A(u)B(v) + A(v)B(u))C (B.51)
H™ =~ ((A(w)A(v) — B(u)B(v))D — (A(u)B(v) + A(v)B(u))C) (B.52)
I™7 =(A(u)A(v) + B(u)B(v))C + (A(v)B(u) — A(u)B(v))D, (B.53)
I =(A(u)A(v) + B(u)B(v))C + (A(u) B(v) — A(v)B(u))D, (B.54)
I"" == ((A(u)A(v) = B(u)B(v))C = (A(u)B(v) + A(v) B(v)) D), (B.55)
I' =— ((A(u)A(v) — B(u)B(v))C + (A(u)B(v) + A(v)B(u))D). (B.56)

To simplify the expression for m > 2, we use the integration by parts given as

9 . _ m—2 . 2
[tz so) [Z ot ek in (e o+ B ) xm]

xm
k=0
m—1 z2 1 1

Finally, we derive

27
IRD(U7U>$1,$2) :W {

1

= (F~cosy ~ + Ft cosy™ + F Tcosy "+ F'cosytt

+G TsinyT T + G osiny '
+G Fsiny™t + G siny ™)
[H=Ci(y ")+ H* Ci(y")
+ H " Ci(ly™"]) + HCi(y™™)
+ 17 Si(y) + I Si(y™)
HISi(y ™) + TSIyt (B.58)

27(u? + v* — 3)?
16u3v3
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where the functions F' and G are given as

=1 (18(—1 + V3w — )T + (=3 + V3(u — v))((u +v)? 3)53)

—H - (54 ~3(3 4+ + 0? — 6uv + 2/3(v — u))7 ) (B.59)
Fr =+ (18(1+\/_(u—v)):x+ (3+V3(u—v))((u+v)?— ):L«B)

_Ht (54 ~3(3 4+ 0? — 6uv + 2v/3(u — v))7 ) (B.60)
Fr=—1 +(18(1+\/_(u—|—v))x+(3+\/_(u—|—v))((u V)2 — )5;3)

~H" +(54 3(3 + u? + 2 —|—6uv+2\/—(u+v)x2> (B.61)

)
FHt=rtt (18(—1+\/§(u+v))az+( 34+ V3(u+v)((u—v)?—3)z )
e (54 3(3 + w2 + 02 + 6uv — 2v/3(u + v)):ﬂ) (B.62)

G~ =—H" (18(—1 + V3w — )7 + (=3 + V3(u— ) ((u+v)2 — 3)@3)

I (54 —3(3 4+ + v? — 6uv + 2v/3(v — u))at~2> , (B.63)
Gt =H*" (18(1 + V3w — )T + (3+ V3(u —v))((u+v)? — 3)@3)

It (54 —3(3 4+ 1 + % — 6uv + 2v/3(u — v))a‘:2> , (B.64)
G =H* (18(1 +VBu+0)Z + 3+ V3(u+v))((u—0v)2 — 3)@3)

e (54 —3(3+u® + 02 + 6uv + 2v/3(u + v)):i“2> : (B.65)
Gtt =— H+F <18(—1 +V3(u+v)7 4+ (=3 + V3(u+v))((u—v)? — 3)923>

By (54 — 3(3 + u? + v? + 6uv — 2v/3(u + v))EQ) . (B.66)

Note that if we substitute A =1, B=0, C = —cosxz, D = sinxz, xr1 — 0, and 25, = x
into Eq. (B.58), we can see that lim, ,..z ' Zgp reproduces Eq. (4.52).

B.2 Analytical formulas for sudden reheating
Now, we discuss the case of the sudden reheating. As we can see in Fig. A.1, ® can be

well approximated by Eq. (6.26) in sudden-reheating scenarios. The explicit forms of the
coefficients A and B in Eqgs. (6.29) and (6.30) are

2 TR 3 IR
N TR \/_ IR

We substitute the above A and B as well as C' = — cos(x — 2r/2) and D = sin(z — xr/2)
into Eq. (B.58) with z; and x5 replaced by zr/2 and x — xR /2, respectively. The function
I is split into two terms as in Eq. (6.22). The contribution generated during an eMD
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era, Ioup, has been derived in Ref. [107] and revised in Ref. [81], and so we here mainly
discuss the contribution generated during the RD era, Irp. As explained in Sec. 6.2,
this behaves very differently from the counterpart for a pure RD era, which is obtained
in the limit g — 0, because of fast oscillations of the modes that are already inside
the horizon at the reheating transition. Extracting the redshift factor from the function,
Ixp = WIRD, we first calculate Zrp, which can be expressed as Eq. (B.58).

Below, we use two different approximations to obtain two main contributions. The
first approximation is valid for the large-scale modes with k < k., and the second
approximation extracts the resonant contributions at k < 2knax/ v/3. The sum of these
two contributions turns out to explain the results of numerical integrations well.

B.2.1 Large-scale approximation

As long as the scale k~! under consideration is much larger than the smallest scale k! |
the integrations over u and v, wavenumbers in units of k, are dominated by the large
t(=u+v—1) region (t ~ Tmaxr/Tr), hence trg ~ Tmaxr > 1. After taking the late-time
(x > 1) oscillation average and changing variables from u and v to t and s(= u — v), we
find

%2%<W + 7 COS%—FQC (7_;:67%)2+2C( ;3%)2
+2ﬂsinm7§(01(x_3 ;?7_) Ci(%_%»
—27r(1—|—cosm7§> <Si(x7R ;f/%) S'(m_R ;f/%))
+4sin%(01<%—f7%)81(%+%>

a3 ein)s (5 5s))
2 2
(3 an) ()
wws{maa ) o

where we have kept only terms with highest powers of . When we vary s, the above
quantity varies approximately by a factor of two at most. However, the angular factor
(the factor in front of I* in Eq. (4.46)) in the large ¢ limit is (s* — 1), which suppresses
the nonzero s part, and so it turns out that setting s = 0 is a good approximation for
calculating Qgw with 10% errors at most. If we set s = 0, it is simplified as

o (4Ci () + (r — 281 (%))
1179648 '

T2plsm0 =~ (B.70)

This expression is so simple that we can analytically integrate it over ¢ and s. The
integration region is 0 < s < land 0 <t < —s + ZZBT—;R — 1 for zr < Tmaxr, and
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0<s< 2‘70”‘;?R —land 0<t < —s5+ 2‘73"9‘5—1;"]R — 1 for og > Tmaxr. For each case, there is

also an integration region obtained by the replacement s — —s, but the symmetry under

this inversion ensures that the total result is obtained by doubling the result obtained

from the integration region with s > 0. Then the GW spectrum under the large-scale

(LS) approximation is given as

a2 e\ 2

o )~ LB ()
’ 86016000000

(@(xmax,R — 2R) (5376 — 17640k + 23760k — 16425%° + 5825+ — 847'155)

2.3.5
As ‘TRxmaX,R X

L6 — T )F (2 B 75)6 (4 — 8% — 9k% + 1353 + 49754)> :
(B.71)

where k = TR/ Tmax R = K/Fmax-

B.2.2 The resonant peak contributions

Here, we focus on a specific contribution in sudden-reheating scenarios which corresponds
to the resonance-like peak (logarithmic divergence) at ¢t = /3 — 1 in the case of the
monochromatic source in a pure RD era (see Sec. 4.4.2). The origin of the peak is the
limit zg — 0 of the Ci function. In the present case, we do not take the limit g — 0,
but instead, we focus on contributions from the region where the integration variable ¢
hits the zero of the Ci function, possibly causing an enhancement. For this purpose, we
do not take the large ¢ limit. Instead, we can take the large xg limit since it turns out
that this effect is most efficient for the smallest-scale modes (see Sec. 6.2.2).

We focus on the terms containing the Ci function whose argument can vanish, ne-
glecting the other terms. Furthermore, we take the late-time limit z — oo as well as the
oscillation average. With these approximations, we find

(=5 + s% + 2t + )12}
1179643(1 — s + O)2(1 + 5 1 1)

_ . )
Iip ~ ;Ci(yD)”, (B.72)
where y = (t — v/3 + Dag/(2v/3). We focus on spiky contributions around y = 0
or equivalently t = /3 — 1. Except for the argument of the Ci function, we may set
t = v/3—1, which enables us to do the integration over s. Then, the resonant contribution
to the GW spectrum is

so(zr) 1 — g2)2 1 9
Qoo v (71 k) = / d uA?fL’% X 2 / OlyCi(y)2i§

won) 81920000 ; o
2.30285
=Tom00000 Y 3Aswso(wr) x (15 = 10sj(vx) + 3s5(2r)) . (B.73)
where
2:Dmax,
solim) = 4 2555 — VB T <o < S (B.74)
0 wlil/igx,R S ./L‘R
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In the first equality in Eq. (B.73), we have changed the integration variable from ¢ to
y with the Jacobian factor 2y/3/xg. This integration is for the spiky part, and so we
limit the integration region to |y| < 1. The choice of the integration boundary here is
somewhat arbitrary, and this causes uncertainties of order unity.

o2l — numerical result |
(LS)
N QGW,RD(TICv k:)/Ai
= Qe (e, k) /A2
> 1010 LS res :
- B - (Q(GVV),RD(nca k) + Q(G%V),RD(nca k))/A2
=
= ==
=
B” o= i
o | ==
G
106 ~
0.001 0.005 0.010 0.050 0:100 0.500 1
k/kmax

Figure B.1: Comparison of the analytic and numerical results for the induced GWs. The blue
solid line shows the numerical result. The orange dotted, greed dashed, and red dot-dashed
lines show the large-scale approximation [Eq. (B.71)], the resonant contribution [Eq. (B.73)],
and their sum, respectively. We take the power spectrum given in Eq. (6.31) with kpax = 450/1r
and ng = 1.

The total spectrum is approximated by the contribution produced after the reheating
transition, Qgw =~ Qew rp, which is given by the sum of Egs. (B.71) and (B.73):

Qcw,rD ~ Q%\?\I),RD + Qg%?/),RD' (B.75)

This is compared with the numerical result in Fig. B.1. From this figure, we can see that
those approximate analytic formulas fit the numerical result very well.

The k dependence of Qqw is summarized as follows. It is proportional to k3, neglecting
a logarithmic factor, for & < 1/ng, then it scales as k for k = 1/nr. The slope of the
resonant contribution is k7, which peaks at k ~ k... Finally, it decreases sharply and
vanishes at k = 2k, This behavior is summarized in Eq. (6.32).
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