
DOCTORAL DISSERTATION
博士論文

Quantum estimation theory for continuous data

（連続的データの量子推定理論）

A Dissertation Submitted for the Degree of Doctor of Philosophy
December 2019

令和元年 12月博士（理学）申請

Department of Physics, Graduate School of Science,
The University of Tokyo

東京大学大学院理学系研究科物理学専攻

Naoto Kura
久良　尚任



Distinguishing the signal from the noise requires both scientific knowledge and
self-knowledge: the serenity to accept the things we cannot predict, the courage to
predict the things we can, and the wisdom to know the difference. — Nate Silver



Abstract

Quantum metrology, a field of study aimed at efficient measurements on quantum
systems, has led to the distinctive separation between classical and quantum mea-
surement resources: While the measurement error is bounded from below by the
classical statistics, this bound can be surpassed by utilizing the quantum nature of
the system and the measurement device. The classical limit is called the standard
quantum limit (SQL), and is O(N−1/2) where N generically represents the amount
of resource. With quantum resource, the error can be lower than the SQL, but
not below the Heisenberg limit of O(N−1).

Continuous data, on the other hand, appears in many situations. In particular,
time series and graphical images continuously vary over time and space, respec-
tively, where novel, interesting phenomena may be found through measurements.
However, quantum metrology is far from well established for the measurement on
continuous data, which involves infinitely many parameters unlike the conventional
cases. In this thesis, we explore the theory of quantum estimation on continuous
data. We especially study when and how quantum metrology still benefits for the
estimation on systems with unknown functions.

We begin by a preliminary study on the multiparameter estimation, which de-
velops the author’s master thesis. We show that the Heisenberg limit on multipa-
rameter estimation can equivalently be achieved by two distinct schemes: namely,
the sequential scheme and the parallelized scheme. In other words, we may mea-
sure a single system over many times, or we may measure an extensive number of
systems in parallel; in either way, the total resource required is the same up to a
constant factor independent of the complexity of the system.

We next develop a fundamental study on function estimation by quantum
metrology, which constructs a framework for continuous data handling in the
quantum world. We first set up the function estimation problem as the metrology
on the position-dependent phase-shift gate. Then, we restrict the target function
to a certain class of continuity, which is based on the Hölder continuity in the
function analysis. We consider two measurement strategies: one localized in po-
sition and the other localized in wavenumber. We show that the quantum limits
with these strategies are shown to be equivalent to each other, which suggests the
quantum counterpart of Nyquist’s sampling theorem. Furthermore, by using the
results of the preliminary study mentioned above, we show that these quantum
limits are actually optimal for any possible strategies.

We finally extend our fundamental theory to the more practical problem of edge
detection. Edge detection is one of the most important techniques in continuous
data processing, where edges can be located as the extrema of the wavelet trans-
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formation. In order to detect an edge of a given continuous data, We propose the
direct measurement of wavelet coefficients by modifying the measurement tech-
nique called ghost imaging. In this method, a wave packet is probed through the
phase-shift gate and the momentum is measured; therefore, the measurement er-
ror is bounded by the fixed wavelet scale and the uncertainty relation. Notably,
although the quantum limits for a single wavelet scale are the same as those of
the multiparameter estimation, it is consistent with the function estimation when
all wavelet scales are taken into consideration.

In this thesis, we connect multiparameter quantum metrology to our theory of
the function estimation, and then to its application for the edge detection. These
form a series of theoretical studies on how far quantum mechanics can be exploited
for the better estimation of continuous data in the real world.
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Chapter 1

Introduction

1.1 Quantum metrology

Since the discovery of quantum mechanics, its counterintuitive nature has at-
tracted scientists across the world, many of whom have sought for its impact on the
practical application. Quantum information processing is considered a prospec-
tive application, since it allows various operations that are forbidden in classical
statistics. There are three different, but mutually related, directions of quantum
information processing: computation [1–3], cryptography [4–6], and metrology [7,
8]. In this thesis, we focus on quantum metrology, a field of study for measuring
physical quantities with accuracy beyond the known classical limits.

The process of measurement is crucial to the understanding of the world we live
in. It is not a trivial process in which we see the nature as it is, but a complex
operation in which we obtain a mixture of desired signals and unwanted noises.
The process of measurement can be described in the language of statistics, which
tells us how and how far the measurement devices and algorithms become efficient.
In particular, the central limit theorem has shown that the asymptotic error of
ordinary parameter estimation approaches to the Gaussian noise with ∼ N−1/2

standard deviation for N trials of measurements. In quantum metrology, however,
one can exploit quantum dynamics to attain ∼ N−1 errors for N measurements.
The “classical” error scaling ∼ N−1/2 is called the standard quantum limit (SQL),
also known as the shot-noise limit, and the “quantum” error scaling ∼ N−1 is
referred to as the Heisenberg limit.

Quantum system limited by SQL limited by HL Ref.
Qubits separate |+〉 states generalized GHZ state [7]

Cold atoms Nondegenerate ensemble Bose-Einstein condensate [9]
Optical mode single-photon state N00N state [10]

coherent beam squeezed beam [11]

Table 1.1: Brief examples of quantum systems that provide different er-
ror bounds according to the form of probe states. The amount of re-
source can be measured by the average number of qubits, particles or
photons.
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Chapter 1 Introduction

The Heisenberg limit can be reached when coherent dynamics are to be esti-
mated with quantum-correlated probe states. A minimal example of Heisenberg-
limited measurement is estimation of a one-qubit gate eiθσz , where the entangled
state 1√

2(|0〉⊗N + |1〉⊗N ) can be chosen as the probe state [7]. We briefly show
in Table 1.1 various examples of quantum systems where Heisenberg limits can
be reached. A similar argument leads to the benefit of quantum correlation for a
general system with one unknown parameter. This covers common simple models
including atomic clocks [12–14] and interferometry [11, 15–17], by which we can
measure such physical properties as an optical path length and an excitation en-
ergy. We note that quantum correlations in the probe do not always appear as
entanglement, as typified by squeezed beams in an optical system [11, 18].

However, physical systems in reality are often more complicated than a mere
one-paraemter system. In particular, the system may contain unwanted noises
and/or more than one parameter. For example, under certain noise models,
the accuracy is known to decline from the Heisenberg limit to the SQL [19] or
some intermediate limits [20–23]. Although the Heisenberg limit is still present in
multiple-parameter estimation [24], there is another problem that the error bounds
scales not only by the amount of resource but also by the size of the model. It is
hence important to know how and how far quantum mechanics can be exploited
in such complicated systems.

The error bounds on multiparameter estimation problems have been calculated
in the cases of multiple-phase estimation [25] and unitary channel estimation [26],
but there has not been a theory that quantitatively evaluates the size dependency
of these quantum limits. In the master course, the author have established a
general framework for multiparameter quantum metrology as the Hamiltonian es-
timation [27]. Multiparameter estimation problems are modeled as the estimation
of a Hamiltonian characterized by a set of unknown parameters, which we regard
as a parameter vector. The error bounds on such Hamiltonian models have been
derived by using the information-geometrical analysis [28, 29]. For the case of
spherical Hamiltonian models1, that include both multiple-phase estimation and
unitary channel estimation as subclasses, we have formulated the size dependence
of the error bounds, which depends only on the dimensions of the Hilbert space
and the parameter vector. As a result, the benefit of the Heisenberg limit is still
present in the estimation of large-sized models, but a stronger correlation relative
to the model size is required to attain the Heisenberg limit.

The methodology for attaining quantum limits has also been discussed. In
particular, it is worthwhile to ask whether quantum metrology can be parallelized:
If it is allowed to distribute the quantum resource over multiple systems, the
total time of estimation may be reduced. An existing study [30] suggested that
parallelization is costly in the estimation of larger Hamiltonians. The analysis in

1We formally define a Hamiltonian model Hθ with the parameter vector θ to be spherical if∫
(Hθ)2µ(dθ) ∝ I, where µ is the Haar measure over a hypersphere. Intuitively, the sphericality

indicates the uniformity of energy variance over all probe states.
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1.2 Continuous data analysis

the author’s master thesis [31] remained inconclusive, since the chaotic effect of
the long-time evolution was not successfully handled.

1.2 Continuous data analysis

Estimation of a parameter, may it be a scalar or a vector, relies on the principle
of uniformity: The same setup of a system and the same measurement should
give identical results, no matter when or where we measure it. This does not
hold in the true sense; essentially any signal depends on the time and position
of the source, which makes any physical variable a function of spacetime rather
than a parameter. For example, a time series of measurement outcomes is a
one-dimensional function and images formed by spatially distributed intensity
are a two-dimensional function. Such functional variations are often targets of
observation rather than just negligible noises. Synchronization of clocks is a typical
example [12, 32], since the reference clock may not tick regularly and thus needs
continuous monitoring. Alluring phenomena such as a gravitational wave [33] or
an event horizon [34, 35] are also detected as an unusual surge in time series or a
hole in an two-dimensional image.

Functions are also a common target of estimation in classical statistics. De-
spite the usefulness of parametric model fitting, not every signal source comes up
with any model in the first place. In this case, we need to estimate a probability
distribution over the real line. The property of the estimation of a cumulative dis-
tribution has been revealed by Donsker’s theorem [36], where the limiting behavior
is described by a Gaussian process. For the estimation of a probability density,
there exists a standard algorithm called kernel density estimation [37, 38].

Studies in continuous data requires the mathematics of function analysis and
stochastic processes. This is due to the infinite degrees of freedom of functions:
When continuous data is seen an infinite number of independent variables, finite
number of measurement outcomes cannot lead to any conclusion about the data.
Hence, in order to estimate a function with finite error, smoothness of the function
must be quantitatively assumed. The smoothness of a function can be defined
by various measures, and the choice of measure is directly related to the error
bound. Informally speaking, the smoother functions one tries to estimate, the
more accurate estimation one can achieve. In this sense, function estimation
requires advanced treatments beyond the multiparameter estimation, though the
technique of multiparameter estimation can be applied.

In recent studies, the Bayesian approaches have been employed in quantum
theory of signal detection [39–43]. Bayesian analysis imposes a certain stochastic
process as the prior distribution, and the target function is considered to be drawn
from that process. With a stationary process, the smoothness of sample functions
are characterized by the power spectrum, and error bounds can be achieved by
an optimally designed smoothing algorithm. The error bounds on Bayesian signal
estimation has been analyzed in recent studies, where the SQL and the Heisenberg
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Chapter 1 Introduction

limit are modified according to the ultraviolet behavior of the power spectrum.
However, the assumption of stochastic behaviour of a function is not granted

in all cases. In particular, when the functional behavior reflects the variation of
physical properties in the system, it is more natural to consider a deterministic
system rather than a stochastic one. It is also unclear whether the Bayesian
approach covers unlikely events in the stochastic process, such as a sudden rise
and fall of the signal. Hence, a non-Bayesian approach will be of potential use for
estimating a deterministic function encoded in physical systems.

On the other hand, detection of continuous data is not the ultimate goal of
our analysis. We aim to find certain functional structures that mark interest-
ing phenomena of physical systems. Various approaches can be taken to extract
meaningful features out of a function, such as signal separation [44] and model
decision [45]. Among the most basic algorithms is edge detection [46], which
identifies the positions at which the function is rapidly changing. Many differ-
ent algorithms have developed for the feature extraction problem, some of which
make use of simulated annealing [47] or neural networks [48, 49]. Hence, we expect
that such continuous data analysis can also be enhanced by quantum metrology,
regarding its usefulness in continuous data detection.

A straightforward application of quantum metrology for continuous data detec-
tion is simple: If we measure the system with sufficient quantum resource to obtain
the well approximated function, upon which the classical algorithm can be per-
formed. However, since the process of feature extraction usually discards a large
part of the continuous data, the measurement on the entire function is possibly
redundant. In quantum metrology, it is more desirable to measure only pieces of
information that are significant in further analysis regarding, among othre things,
the high difficulty of the Heisenberg-limited measurement.

In respect of edge detection, the theory of multiscale analysis provides a math-
ematical framework to efficiently extract information out of continuous data. In
fact, we can locate the edges by a method on the basis of the wavelet transforma-
tion of a function [50, 51], which contains information of a given length scale from
the continuous data. In other words, the function can be divided into multiple
components, each of which corresponds to the edges of its own lengthscale.

1.3 Structure of this thesis
In this thesis, we establish a series of theories on quantum estimation for contin-
uous data, and show to what extent the quantum benefit can be exploited. We
present the reviews in Chapters 2 and 3, the main contents in Chapters 4–6, and
the conclusion in Chapter 7.

Chapter 2 is dedicated for a brief review of the conventional theories of quan-
tum metrology in parameter estimation. In Sec. 2.1, we introduce classical and
quantum information theories based on the Fisher information. In Sec. 2.2, we
reproduce the derivation of error bounds on quantum metrology, where several ex-
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1.3 Structure of this thesis

amples of Heisenberg-limited quantum measurements are explained. Section 2.3
is on the multiparameter extension of quantum metrology and the theoretical
bounds on error derived from the Fisher-information analysis. This section covers
the author’s master thesis, and further results will be developed in Chapter 4.

Chapter 3 introduces the basic concepts of function analysis and signal estima-
tion, on which our analytical results in Chapters 5 and 6 rely. In Sec. 3.1, the
regularity of function is defined by various types of norms including the Hölder
norm and its square-integrability version, which comes into play in this thesis. In
Sec. 3.2, we review the signal estimation in terms of Bayesian analysis, where we
see that the regularity of the sample function is governed by the power spectrum.

Chapter 4 is on a new results on the multiparameter Hamiltonian estimation, in
which we compare the efficiency of the sequential and parallel schemes concerning
the multiparameter quantum metrology. In particular, we discuss how far we
can circumvent chaotic behavior in the adaptive procedure by operator-algebraic
calculation. We are led to the conclusion that the cost of parallelization does not
depend on the size of the Hamiltonian model, contrary to the implication by a
previous study [30].

Chapter 5 develops the framework of function estimation by quantum metrology,
where we set up the system as a position-dependent phase-shift gate in a one-
dimensional interval. Here, our analysis is based on the non-Bayesianism in which
the functions are regularized by the vector norm rather than the stochastic process.
In Sec. 5.1, we describe the fundamental setup of the problem. In Sec. 5.2, we
present two estimation strategies: The probe states are localized in real space
in one strategy, while they are localized in the wavenumber space in the other.
Despite the clear difference between these strategies, both achieve the same error
bounds up to a constant factor. We find that these error bounds are actually
optimal; in Sec. 5.3, we derive the theoretical error bounds on function estimation
with the help of the results from the multiparameter estimation in Chapter 4.
We find two quantum limits corresponding to the SQL and the Heisenberg limit,
which are weaker than the conventional quantum limits due to the behavior of
functions.

In Chap. 6, we address the practical application of edge detection by quan-
tum metrology. In Sec. 6.1, we propose the direct quantum measurement on the
wavelet coefficients of the function, which can be performed by a modified ver-
sion of ghost imaging [52–54]. In Sec. 6.2, we approximately derive the error
bounds on the edge detection for a fixed lengthscale, which results in the SQL
and the Heisenberg limit of parameter estimation. In Sec. 6.3, we also present
the analytical derivation on the edge detection according to the regularity of the
functions, where we obtain the quantum limits consistent with those of function
estimation. The main analysis is on Gaussian wavefunction withdistinguishable
particles Gaussian wavefunction, while we also provide preliminary results on non-
Gaussian wavefunctions and indistinguishable photons in Sec. 6.4.

Some of the intricate mathematical topics are relegated to the Appendices.
Appendix A contains operator-algebraic discussion for the evaluation of operator
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norms used in the main chapters. Appendix B is dedicated for the notion of Hölder
continuity, which resembles the Cq-class differentiability regarding functions but
supposes non-integer q.
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Chapter 2

Quantum Estimation and Metrology

2.1 Estimation theory and Fisher information

2.1.1 Classical estimation theory

We begin with a parameter-estimation problem in classical statistics. The goal
here is to accurately estimate parameters θ = (θ1, . . . , θm) from some observation
X, whose probability density pθ(X) depends on the parameter θ. Here, it is more
convenient to consider a single parameter vector θ ranging over a convex region
Θ ⊂ Rm rather than to consider m independent parameters θ1, . . . ,θm. In this
way, the estimation problem is characterized by the family of probability densities
{pθ}θ∈Θ called a stochastic model. Moreover, a solution to this estimation problem
can be represented by an estimator θ∗ = θ∗(X), which is the mapping from the
observation X to the estimate of the parameter vector θ∗ ∈ Θ.

Given the true parameter vector θ, the stochastic behavior of the estimator θ∗

can be described by its mean value µθ and the covariance matrix Vθ:

µθ = 〈θ∗〉θ, Vθ = 〈(θ∗ − µθ)(θ∗ − µθ)T〉, (2.1)

where 〈A〉θ =
∫
A(X)pθ(X)dX denotes the expected value of A with respect to

the distribution pθ. The overall error δ can be defined by the root mean square
(RMS) of the Euclidean norm ‖θ∗ − θ‖:

δ2 =
〈
‖θ∗ − θ‖2〉

θ
. (2.2)

In fact, this statistics can be computed in terms of the mean µθ and the covariance
Vθ as

δ2 =
〈
‖(µθ − θ) + (θ∗ − µθ)‖2〉

θ

= ‖µθ − θ‖2 + 2〈(µθ − θ) · (θ∗ − µθ)〉θ +
〈
‖θ∗ − µθ‖2〉

θ

= ‖µθ − θ‖2 + trVθ. (2.3)

Therefore, the estimator is accurate when µθ is close to θ and the positive-
semidefinite matrix Vθ is close to zero.

If n independent and identically distributed (i.i.d.) observations X1, . . . , Xn are
available, an estimator is given by the average of the estimators for all observations

17
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1 ≤ i ≤ n:

θ∗
n = 1

n

n∑
i=1

θ∗(Xi). (2.4)

This estimator distributes around the mean µθ and the covariance matrix 1
nVθ.

In this case, the RMS error δ can be described as

δ2 = ‖µθ − θ‖2 + 1
n

trVθ. (2.5)

We note that when n tends to infinity, the first term in Eq. (2.5) remains
nonzero unless µθ = θ while the second term 1

n trVθ vanishes. In this sense, the
term ‖µθ − θ‖ is referred to as the bias and the term trVθ is called the variance.

We say that the estimator θ∗ is unbiased if µθ = θ holds for all θ ∈ Θ. An
unbiased estimator is desirable in the sense that the RMS error δ in Eq. (2.5)
tends to zero in the limit of n → ∞.

In general, an observation X may occur from any parameter θ with positive
probability pθ(X) > 0, implying the impossibility of zero-error estimation. In
fact, when the estimator θ∗ is unbiased, the variance trVθ has a positive lower
bound, no matter how we choose the estimator θ∗. This can be shown from a
matrix inequality between the covariance matrix Vθ and the inverse of the Fisher
information matrix Jθ, the definition of which follows.

Definition 2.1 We assume that a stochastic model {pθ} is differentiable with
respect to the parameter θ. More precisely, we assume the existence of the log-
arithmic derivative Lpθ = (L1pθ, . . . , Lmpθ) as a vector of measurable functions:

Lαpθ(X) = ∂

∂θα
log pθ(X) = 1

pθ(X)
∂pθ(X)
∂θα

. (2.6)

Then, the Fisher information matrix Jθ of this model is defined as

[Jθ]αβ = 〈LαpθLβpθ〉θ

=
∫
Lαpθ(X)Lβpθ(X)pθ(X)dX

=
∫
∂pθ(X)
∂θα

∂pθ(X)
∂θβ

dX

pθ(X)
. (2.7)

Theorem 2.2 (Cramér–Rao inequality [55]) Suppose that the Fisher information
matrix Jθ in Def. 2.1 is positive semidefinite. For any unbiased estimator θ∗ with
covariance matrix Vθ, we have the matrix inequality Vθ ≥ J−1

θ .

Regarding Eq. (2.3), the RMS error δ of an unbiased estimator is bounded from
below by the Fisher information as:

δ ≥ (trVθ)1/2 ≥ (tr J−1
θ )1/2. (2.8)

For the later convenience, we show a more generalized form of the Cramér–Rao
(CR) inequality which can also be used for biased estimators. We define a matrix
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2.1 Estimation theory and Fisher information

Dθ by Dθ = ∇θµT
θ , which equals the Jacobian of the map θ 7→ µθ. We note that

when θ∗ is unbiased, the matrix Dθ = ∇θµT
θ is equal to the identity matrix I.

Proposition 2.3 We consider an estimator θ∗ with mean µθ and covariance
matrix Vθ. Then, we have the matrix inequality Vθ ≥ DθJ

−1
θ DT

θ , where the matrix
Dθ is defined as Dθ = ∇θµT

θ .

Proof. First, we show the following identity for an arbitrary estimator θ∗:

〈Lpθ(θ∗ − µθ)T〉θ = ∇θµT
θ . (2.9)

This identity can be derived as follows:

〈Lpθ(θ∗ − µθ)T〉θ =
∫ ∇θpθ(X)

pθ(X)
[θ∗(X) − µθ]Tpθ(X)dX

=
∫

∇θpθ(X)[θ∗(X) − µθ]TdX

= ∇θ

∫
pθ(X)[θ∗(X)]TdX −

[
∇θ

∫
pθ(X)dX

]
µT

θ

= ∇θµT
θ − (∇θ1)µT

θ = ∇θµT
θ . (2.10)

Now, let x,y ∈ Rm be arbitrary nonzero vectors. By the Cauchy-Schwartz
inequality, we obtain

(xTVθx)(yTJθy) = 〈xT(θ∗ − µθ)(θ∗ − µθ)Tx〉θ · 〈yT(Lpθ)(Lpθ)Ty〉θ

≥ 〈xT(θ∗ − µθ)(Lpθ)Ty〉2
θ = (xTDθy)2. (2.11)

Substituting y = J−1
θ DT

θ x in Eq. (2.11), we finally obtain

xTVθx ≥ xTDθJ
−1
θ DT

θ x. (2.12)

The desired inequality follows since x 6= 0 is arbitrary.

The CR inequality Vθ ≥ J−1
θ does not necessarily hold when the estimator is not

unbiased. In fact, Vθ = 0 can be achieved by setting θ∗ = θ0. Such an estimator
can be described as “extremely biased,” since the estimator blindly assumes θ = θ0
regardless of the outcome.

Compared to the unbiased case, we may reduce the variance when the matrix
Dθ is smaller than the identity. However, keeping the bias µθ − θ within a small
value requires the matrix ∇θDθ be close to the identity, and vice versa. This
leads to the tradeoff relation between the bias and the variance, which we discuss
in Chapter 5.
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Chapter 2 Quantum Estimation and Metrology

2.1.2 Quantum estimation theory
The efficiency of quantum information processing may be enhanced by the use of
appropriate quantum states instead of stochastic variables, owing to the presence
of non-diagonal entries in quantum density matrices. Nonetheless, the problem of
estimating quantum states can be treated in parallel to the classical estimation
problem.

A quantum state model is a family of density matrices {ρθ} parametrized by
a parameter vector θ ∈ Θ ⊂ Rn. Quantum states, however, are not equipped
with a stochastic variable X; instead, we need to obtain a stochastic outcome by
performing some quantum measurement of our choice.

In a general formulation, a quantum measurement is represented by a positive-
operator-valued measure (POVM) M [56]. Let us denote by X the set of all
possible measurement outcomes, and the POVM maps every event E ⊂ X to
a nonnegative operator M(E). When a density operator ρ is to be measured,
the measurement outcome falls in E with probability tr[ρM(E)]. In particular,
M(X ) = I is required since tr[ρM(X )] = 1 must hold regardless of the state ρ.

Therefore, if we measure the quantum state ρθ with a POVM M, the probability
density pM

θ (X) of the measurement outcome X can be defined as

pM
θ (X)dX = tr[ρθM(dX)], (2.13)

where dX refers to an infinitesimal volume around X. If we denote by JM
θ the

Fisher information concerning the stochastic model {pM
θ }, any unbiased estimator

θ∗ computed from this measurement outcome is bounded by Vθ ≥ (JM
θ )−1.

Now, the question is whether the covariance matrix has a lower bound that
is independent of the choice of the quantum measurement. The answer is yes,
and there exists a matrix Jθ depending only on the quantum state model {ρθ},
which satisfies JM

θ ≤ Jθ for all POVM M. This matrix Jθ is called a quantum
Fisher inforamtion (QFI) matrix of the model {ρθ}.1 The QFI has infinitely many
variants due to the non-commutativity of operators [57], some of which are listed
in Ref. [58]. In this thesis, we consider quantum dynamics without dissipative
noises, in which case an analysis on pure states is sufficient. A pure state can be
represented by a unit vector |q〉 in a Hilbert space H instead of the density matrix
ρ = |q〉〈q|.

Notably, the QFI matrix on a pure quantum state model {|qθ〉} can be uniquely
determined [59, 60]:

[Jθ]αβ = 4 Re
〈
∂qθ

∂θα

∣∣∣∣(I − |qθ〉〈qθ|
)∣∣∣∣∂qθ

∂θβ

〉
. (2.14)

Theorem 2.4 (Quantum Cramér–Rao inequality) Let {|qθ〉} be a quantum state
model consisting only of pure states in a Hilbert space H, and Jθ be the QFI

1There exists additional properties required for QFI matrices: (i) monotonicity under the trans-
formation by quantum channels and (ii) consistency with the classical Fisher information for
diagonal quantum states.
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2.1 Estimation theory and Fisher information

matrix of this model defined by Eq. (2.14). Then, under any measurement M
on this model, the Fisher information matrix JM

θ of the measurement outcome
satisfies JM

θ ≤ Jθ.

Proof. The goal is to show

xTJM
θ x ≤ xTJθx (2.15)

for an arbitrary nonzero vector x ∈ Rm. Let Dx =
∑m

α=1 xα
∂

∂θα
denote the

directional differentiation along x. Then, Eq. (2.15) is equal to

∫ [Dxp
M
θ (X)]2

pM
θ (X)

dX ≤ 4〈Dxqθ|
(
I − |qθ〉〈qθ|

)
|Dxqθ〉, (2.16)

where pM
θ (X) is the probability density of the measurement outcome.

We take the directional derivative Dx in Eq. (2.13) to obtain

Dxp
M
θ (X)dX = Dx

(
〈qθ|M(dX)|qθ〉

)
= 2 Re〈qθ|M(dX)|Dxqθ〉. (2.17)

In fact, we can replace |Dxqθ〉 with |vθ〉 =
(
I − |qθ〉〈qθ|

)
|Dxqθ〉:

Dxp
M
θ (X)dX = 2 Re

[
〈qθ|M(dX)|Dxqθ〉 − 〈qθ|M(dX)|qθ〉〈qθ|Dxqθ〉

]
= 2 Re〈qθ|M(dX)|vθ〉, (2.18)

because 〈qθ|qθ〉 = 1 and thus 〈qθ|Dxqθ〉 is pure imaginary.
Furthermore, by the Cauchy-Schwartz inequality, we have

[Dxp
M
θ (X)dX]2 ≤ 4

∣∣〈qθ|M(dX)|vθ〉
∣∣2

≤ 4〈vθ|M(dX)|vθ〉 · 〈qθ|M(dX)|qθ〉
= 4〈vθ|M(dX)|vθ〉pM

θ (X)dX. (2.19)

Since the POVM M(dX) yields I when integrated over all outcomes, we obtain

∫ [Dxp
M
θ (X)]2

pM
θ (X)

dX ≤ 4
∫

〈vθ|M(dX)|vθ〉 = 4〈vθ|vθ〉, (2.20)

which is the desired inequality (2.16).

By Theorem 2.4, both the CR inequality (Th. 2.2) or its generalization (Prop. 2.3)
can be applied to a pure-state model, with the Fisher information matrix replaced
by the QFI matrix in Eq. (2.14).
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2.1.3 Additivity of Fisher information
Let us consider the estimation problem when independent observations X1, . . . , Xn

are available. Then, the stochastic model {pθ} for the combined observation X• =
(X1, . . . , Xn) will be

pθ(X•) = p1,θ(X1) · · · pn,θ(Xn). (2.21)

Then, the Fisher information of this model can be calculated as follows:

[Jθ]αβ =
∫

· · ·
∫
∂ log pθ(X•)

∂θα

∂ log pθ(X•)
∂θβ

pθ(X•)dX1 · · · dXn

=
∫

· · ·
∫ (

∂

∂θα

n∑
i=1

log pi,θ(Xi)
)(

∂

∂θα

n∑
j=1

log pj,θ(Xj)
)
pθ(X•)dX1 · · · dXn

=
n∑

i=1

∫
∂ log pi,θ(Xi)

∂θα

∂ log pi,θ(Xi)
∂θβ

pi,θ(Xi)dXi

+
∑
i 6=j

∫∫
∂ log pi,θ(Xi)

∂θα

∂ log pj,θ(Xj)
∂θβ

pi,θ(Xi)pj,θ(Xj)dXidXj . (2.22)

Here, the second-to-the-last line in (2.22) corresponds to the Fisher information
matrix [Ji,θ]αβ with respect to the ith stochastic model {pi,θ}, whereas the sum-
mand in the last line can be rewritten as

∂

∂θα

∫
pi,θ(Xi)dXi · ∂

∂θβ

∫
pj,θ(Xj)dXj = ∂1

∂θα

∂1
∂θβ

= 0. (2.23)

In this way, the additivity of the Fisher information matrix is shown:

Jθ = J1,θ + · · · + Jn,θ. (2.24)

We can use the same formulation even when more than two observations are
available. In particular, where the n observations are i.i.d., the Fisher information
matrix is

Jθ = nJ1,θ. (2.25)

Let θ∗ be an arbitrary unbiased estimator from n i.i.d. observations, which may
not necessarily be written be as Eq. (2.4). Then, the bound on the RMS error in
Eq. (2.8) becomes

δ ≥ (tr J−1
θ )1/2 ≥ n−1/2(tr J−1

1,θ )1/2, (2.26)

indicating the universal error scaling δ ≥ O(n−1/2). In fact, the inequality (2.26)
can be asymptotically achieved in the limit of large n by the maximum-likelihood
estimator [55].

The same thing can be said for quantum estimation problem. When we have n
separate pure states:

|qθ〉 = |q1,θ〉 ⊗ · · · ⊗ |qn,θ〉, (2.27)
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2.1 Estimation theory and Fisher information

the QFI matrix Jθ for {qθ} is the sum of QFI matrices Ji,θ of {qi,θ} over 1 ≤ i ≤ n.
In fact, [Jθ]αβ is 4 times the inner product of the following two vectors:

(
I − |qθ〉〈qθ|

)∣∣∣∣∂qθ

∂θα

〉
=

n∑
i=1

[
|q1,θ〉 ⊗ · · · ⊗

(
I − |qi,θ〉〈qi,θ|

)∣∣∣∣∂qi,θ

∂θα

〉
⊗ · · · ⊗ |qn,θ〉

]
,

(
I − |qθ〉〈qθ|

)∣∣∣∣∂qθ

∂θβ

〉
=

n∑
j=1

[
|q1,θ〉 ⊗ · · · ⊗

(
I − |qj,θ〉〈qj,θ|

)∣∣∣∣∂qj,θ

∂θβ

〉
⊗ · · · ⊗ |qn,θ〉

]
.

(2.28)
We see that the inner product can be written as the summation over 1 ≤ i, j ≤ n.
Each of the summand with i = j is equal to [Ji,θ]αβ, while the summands with
i 6= j vanish owing to the projection operator I − |qi,θ〉〈qi,θ|. Hence, we obtain the
same results as Eq. (2.24) for the quantum case:

Jθ = J1,θ + · · · + Jn,θ. (2.29)

Consequently, Eqs. (2.25) and (2.26) can also be used for the QFI matrix for
n identical quantum states. Note, however, that the asymptotic saturation of
this lower bound is not guaranteed in the quantum case, unlike the maximum-
likelihood estimator in the classical estimation problem.

2.1.4 Quantum state tomography
The quantum state tomography (QST) is another topic in the quantum estima-
tion [56], where target is an arbitrary quantum state in a Hilbert space H = Cd.
In this thesis, we only consider estimation of a pure state |q〉 ∈ H rather than a
possibly mixed state. The estimator of the QST is represented as a state |q∗〉 ∈ H,
and the quality of the estimation can evaluated by the avarage quantum fidelity
F = 〈|〈q|q∗〉|2〉.2 The fidelity takes value in 0 ≤ F ≤ 1 with F = 1 indicates the
perfect estimation. Therefore, we often consider quantum infidelity

I = 1 − F = 1 − 〈|〈q|q∗〉|2〉 (2.30)

as a measure of error in the estimation.
Let us analyze the QST in terms of the parameter estimation. We assume

that the target quantum state is |0〉, and consider a local coordinate in θ =
(θ1, . . . , θ2(d−1)) for the quantum state in proximity to |q0〉 = |0〉:

|qθ〉 =
√

1 − ‖θ‖2|0〉 +
d−1∑
k=1

(θ2k + iθ2k+1)|k〉, (2.31)

where
{
|0〉, . . . , |d− 1〉

}
forms a basis of H = Cd. Then, the QFI matrix at the

target parameter θ = 0 is [J0]αβ = 4δαβ. By the quantum CR inequality (Th. 2.4),
we obtain a lower bound on the RMS error δ ≥

√
d−1
2n for n copies of the quantum

2We note that the average 〈·〉 is taken over the stochastic behavior of the estimator.
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state. Furthermore, if we describe the estimator |q∗〉 in terms of the parametric
representation |qθ∗〉 in Eq. (2.31), we see that the quantum infidelity in Eq. (2.30)
is equivalent to the mean-square error:

I = 1 −
〈∣∣〈qθ∗ |q0〉

∣∣2〉 = 〈‖θ∗‖2〉 = δ2. (2.32)

Therefore, we obtain the quantum CR bound on the infidelity: I ≥ d−1
2n

On the other hand, the minimal fidelity for estimating an arbitrary quantum
state can be computed by using the geometrical symmetry of the pure state space,
which yields [60]:

I ≥ d− 1
n+ d

. (2.33)

which is larger than the CR bound with an additional factor 2 in the limit of
n → ∞. Hence, this is especially the case in which the quantum CR inequality
cannot be attained, while the asymptotic scaling is the same. We note that the
minimal infidelity in Eq. (2.33) is lower than the CR bound for n ≤ d because,
with such small n, the bias term dominates in the coordinate of θ.

2.2 Quantum Metrology

2.2.1 A minimal problem

In the previous section, we have seen that both classical and quantum estimation
problems have an error bound scaling of O(n−1/2) with respect to the amount of
resource n. In other words, as far as separable states are concerned, there is no
distinct advantage in the quantum estimation problem compared with the classical
one.

However, quantum mechanics takes a unique role in quantum metrology, which
aims at measurements on parameters in a quantum system rather than a specific
quantum state. Since such parameters can be only seen through the dynamics of
the system, one must first prepare a quantum state called the probe state for time
evolution in that system. After the evolution, the profile of the probe state will
depend on the parameters that govern the dynamics, which one can estimate by
measuring the probe state.

We set ℏ = 1 for the rest part of this chapter. Then, a pure state is driven by
a unitary operator U = e−itH , where H is the Hamiltonian and t is the evolution
time. A minimalist example is H = ω0σz with the Pauli matrix σz = ( 1 0

0 −1 ) in a
two-level system H = C2. Let θ = −2ω0t be a dimensionless parameter, and the
unitary operator Uθ can be parametrized as Uθ =

(
eiθ/2 0

0 e−iθ/2

)
.

Now, we consider estimating the parameter θ, and prepare a probe state for the
estimation. Noting that Uθ alters the eigenstates |0〉 and |1〉 only by the phase
factor, we need to prepare the superposition of these eigenstates; in particular, we
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consider the eigenstates |±〉 of the Pauli matrix σx:

|±〉 = 1√
2
(
|0〉 ± |1〉

)
, σx =

(
0 1
1 0

)
. (2.34)

We take the initial probe state to be |+〉. After the evolution, the state will be
|q1,θ〉 = Uθ|+〉 = 1√

2
(
eiθ/2|0〉 + e−iθ/2|1〉

)
, which can be measured with the basis

{|+〉, |−〉}. In fact, the probabilities for observing + and − are

p1,θ(±) = |〈±|qθ〉|2 = 1 ± cos θ
2

. (2.35)

Therefore, the Fisher information J1,θ on this stochastic model can be computed
as

J1,θ = 1
p1,θ(+)

[
dp1,θ(+)
dθ

]2
+ 1
p1,θ(−)

[
dp1,θ(−)
dθ

]2
(2.36)

= 1 − cos θ
2

+ 1 + cos θ
2

= 1, (2.37)

indicating the CR bound δ ≥ 1.
Next, we consider the case in which n probe states evolve according to Uθ. This

situation can be represented by a system consisting of n identical subsystems,
where the combined unitary evolution is represented by the tensor product of n
copies of Uθ:

U⊗n
θ = Uθ ⊗ · · · ⊗ Uθ︸ ︷︷ ︸

n times

. (2.38)

One idea for the probe states is just preparing n copies of the probe state |+〉,
one for each subsystem, and separately measure the probe state after the evolution.
This yields n i.i.d. stochastic variables subject to Eq. (2.35), where the CR bound
can be computed from Eq. (2.25) as

δ ≥ n−1/2J
−1/2
1,θ = n−1/2. (2.39)

On the other hand, we do not necessarily need to prepare separate states in the
n systems. In fact, we may set the combined probe state to what is called the
Greenberger–Horne–Zeilinger state (GHZ state):

|GHZ〉 = 1√
2
(
|0〉⊗n + |1〉⊗n). (2.40)

This quantum states evolves according to the combined unitary operator U⊗n into

|qθ〉 = U⊗n|GHZ〉 = 1√
2
(
einθ/2|0〉⊗n + e−inθ/2|1〉⊗n), (2.41)

where we note that each unitary operator has shifted the phase of |0〉⊗n by θ/2 and
|1〉⊗n by −θ/2. The quantum state model in Eq. (2.41) can simply be estimated by

25



Chapter 2 Quantum Estimation and Metrology

measuring the first (or any) subsystem with the basis {|+〉, |−〉}. The probabilities
of observing + or − are:

pθ(±) = 〈qθ|
[
|±〉〈±| ⊗ I⊗(n−1)]|qθ〉 = 1 ± cosnθ

2
. (2.42)

Now, the Fisher information Jθ for this stochastic model is

Jθ = 1
pθ(+)

[
dpθ(+)
dθ

]2
+ 1
pθ(−)

[
dpθ(−)
dθ

]2

= n2(1 − cosnθ)
2

+ n2(1 + cosnθ)
2

= n2. (2.43)

This Fisher information results in the CR bound δ ≥ n−1, which is n1/2 times
smaller than that in Eq. (2.39).

In this way, if we introduce an entangled state such as the GHZ state, one can
reduce the estimation error by a significant factor compared with the estimation
by separate probes.

2.2.2 General one-parameter metrology
We generalize the previous problem of quantum metrology, and consider the esti-
mation of a parameter θ in the unitary dynamics:

Uθ = eiθH . (2.44)

Here, H is a Hermitian operator with discrete eigenvalues λ1 ≤ · · · ≤ λd. We
would like to derive the lower bound on this metrology problem, which must be
independent of the choice of the probe state, following Ref. [7].

Let us denote by |q〉 the initial probe state, which evolves into

|qθ〉 = Uθ|q〉 = eiθH |q〉. (2.45)

Regarding {|qθ〉} as the quantum state model, the QFI Jθ can be directly computed
as

Jθ = 4
〈
dqθ

dθ

∣∣∣∣(I − |qθ〉〈qθ|
)∣∣∣∣dqθ

dθ

〉
= 4〈qθ|(−iH)

(
I − |qθ〉〈qθ|

)
(iH)|qθ〉

= 4
[
〈qθ|H2|qθ〉 − 〈qθ|H|qθ〉2], (2.46)

which is found to be four times the energy variance of |qθ〉 with respect to the
Hamiltonian H. Since the unitary evolution eiθH preserves the energy distribution
of |q〉, the QFI is maximal when the probe state |q〉 is the equal superposition of
the eigenstates |λ1〉 and |λd〉, in which case

Jθ = (λd − λ1)2. (2.47)
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θ∗

|q1〉 Uθ

|q2〉 Uθ

|qn〉 Uθ

...
...

M

(a)

θ∗M

Uθ

Uθ

Uθ

|q〉
...

...

(b)

Figure 2.1: Schematic images for contrasting the classical and the quan-
tum schemes. (a) Classical scheme, in which n separate probe states are
evolved by the unitary dynamics Uθ. (b) Quantum scheme, in which n
probes may be entangled together. In either scheme, the measurement
process M is not restricted; it may be performed comprehensively in
the combined system or individually in each of the subsystems. We also
allow ancillary systems for the input probes, which are not shown.

That is, the QFI is upper bounded by the squared difference between the maximum
and the minimum eigenvalues of H.

We can prepare probe states and perform measurement in the same manner
as the two-level system in the last subsection, with |0〉 and |1〉 replaced by |λ1〉
and |λd〉. Moreover, the Fisher information in Eq. (2.47) is preserved by the
measurement with the basis {|+〉, |−〉}:

|±〉 = 1√
2

(|λ1〉 ± |λd〉). (2.48)

Hence, the CR bound on the RMS error can be written as

δ ≥ (λd − λ1)−1. (2.49)

2.2.3 Standard Quantum Limit and Heisenberg Limit

Next, we consider the case in which we have n identical subsystems with unitary
dynamics Uθ in Eq. (2.44). First, we consider what we call the classical scheme
in this thesis, which is schematically depicted in Fig. 2.1 (a). We prepare the
separate probe state |q1〉 ⊗ · · · ⊗ |qn〉 and perform measurement M on the state
after the evolution:

|qθ〉 = |q1,θ〉 ⊗ · · · ⊗ |qn,θ〉, |qi,θ〉 = Uθ|qi〉. (2.50)

Since each QFI Ji,θ for the quantum state model {|qi,θ〉} is subject to the upper
bound in Eq. (2.47), the overall error is lower-bounded by using the additivity of
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QFI (Eq. (2.29)):

Jθ = J1,θ + · · · + Jn,θ ≤ n(λd − λ1)2,

δ ≥ n−1/2(λd − λ1)−1. (2.51)

The scaling O(n−1/2) is consistent with the classical and quantum estimation
problems, and the error bound is called the standard quantum limit (SQL).

On the other hand, the input probe may not necessarily separated; as depicted
in Fig. 2.1 (b), we may consider an entangled state for the probe state. We call
this scheme as the quantum scheme3. To derive the error bound in the quantum
scheme, we rewrite the combined unitary operator as follows:

U⊗n
θ = (eiθH)⊗n = eiθ{H}n , (2.52)

where the operator {H}n can be defined as

{H}n =
n∑

i=1
I ⊗ · · · ⊗ H︸︷︷︸

ith

⊗ · · · ⊗ I. (2.53)

Since Eq. (2.52) again assumes the form of Eq. (2.44), we may apply the same
analysis as we did for a single system. The eigenvalues of {H}n can be written as
λj1 + · · · + λjn , with the corresponding eigenvectors |λj1〉 ⊗ · · · ⊗ |λjn〉 Therefore,
the maximum and minimum eigenvalues of {H}n are nλ1 and nλd, from which
the CR bounds on the QFI and the RMS error follow:

Jθ = n2(λd − λ1)2, (2.54)
δ ≥ n−1(λd − λ1)−1. (2.55)

We observe that the scaling O(n−1) of the error bound in Eq. (2.55) decreases
faster than the SQL, and is achievable provided that we can prepare the n-body
entangled states 1√

2
(
|λ1〉⊗n + |λd〉⊗n

)
. This bound is called the Heisenberg limit.

To summarize this section, quantum mechanics can be advantageous in quantum
metrology, where an input probe state may be entangled between subsystems. In
the classical scheme, there is no such entanglement and the error is bound by
the standard quantum limit O(n−1/2). In the quantum scheme, the Heisenberg
limit O(n−1) becomes the new error bound, which can be reached by utilizing the
entangled state.

Regarding the analysis, two remarks are in order:

• The bounds given in this section is unaltered even if an ancillary systems
are available. In fact, we may extend the unitary operator into the ancillary
space: Ũθ = eiθ(H⊗IA), where IA denotes the identity operator in the ancil-
lary space. Since H and H⊗ IA shares the same eigenvalues if with different
multiplicity, we arrive at the same conclusion.

3In the next section, we will refer to this scheme as the parallel scheme, because we will introduce
other types of quantum schemes.
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• Use of mixed probe states instead of pure ones are useless in improving the
bound. A mixed state can always be regarded as a pure state by a procedure
called purification [56], which introduces an ancillary system and discards
the ancillary system in the measurement process.

2.3 Multiparameter quantum metrology

The analysis presented in the last section shows the optimal error bound for a
general class of quantum metrology, but with only one parameter to be estimated.
However, many physical systems have more than one parameter in question, which
makes the problems more complicated. In this section, we review some existing
results on multiparameter quantum metrology, including the Hamiltonian estima-
tion problem proposed in the author’s master thesis.

2.3.1 Estimation of a unitary gate

Given a d-dimensional Hilbert space HS = Cd, any non-dissipative dynamics is
equivalent to a unitary gate, which can be described as a unitary operator with
unit determinant4. Such operators constitute the special unitary group SU(d),
whose dimension is known to be d2 − 1. Therefore, quantum metrology on a
completely unknown unitary gate Uθ ∈ SU(d) involves estimation of as many as
d2 − 1 parameters.

The estimation error of the parameter θ, of course, depends on the parametriza-
tion of the unitary matrix Uθ. For the purpose of normalization, we assume that
Uθ is locally parameterized so that

tr[XαXβ] = δαβ, Xα = i
∂Uθ

∂θα
U †

θ . (2.56)

This normalization has a geometrical meaning: The parameter θ = (θ1, . . . , θd)
can be regarded as the local coordinate of the compact Lie group SU(d), which
is equipped with an SU(d)-invariant Riemannian metric. Equation (2.56) is such
an invariant metric, and is unique up to a constant factor. Therefore, Eq. (2.56)
indicates that the parameter is consistent with the orthogonal coordinates with
which SU(d) is naturally equipped. See Ref. [61] for detail, which covers geomet-
rical aspects of Lie groups. We also note that −iXα belongs to the Lie algebra
su(d), meaning that Xα is Hermitian and traceless.

With the help of an ancillary system, in fact, estimation of a unitary gate can
be efficiently mapped to the problem of quantum state estimation. We set the
probe state to the maximally entangled state (MES) |M〉HS

, which is defined as
follows: let HA = Cd be the ancillary Hilbert space of the same dimension as HS ,

4We ignore the ambiguity of the global phase by multiples of 2π/d, since such discrete ambiguity
does not affect the parameter estimation.
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and the MES can be written as

|M〉HS
= 1√

d

d∑
k=1

|k〉S ⊗ |k〉A, (2.57)

where {|1〉X , . . . , |d〉X} is a basis of HX for X = S,A. With the unitary gate Uθ

on H, this state will evolve into

|qθ〉 = (Uθ ⊗ IA)|q〉SA = 1√
d

d∑
k=1

Uθ|k〉S ⊗ |k〉A

= 1√
d

d∑
k=1

d∑
l=1

[Uθ]kl|l〉S ⊗ |k〉A. (2.58)

Thus, each coefficient of the basis |l〉S ⊗|k〉A corresponds to an entry of the unitary
matrix Uθ. In fact, this procedure gives a one-to-one correspondence between
quantum channels and quantum states, which is called the Choi-Jamio lkowski
isomorphism [62, 63]. The QFI matrix of the probe state in Eq. (2.58) can be
calculated as

[Jθ]αβ = 4
d

Re tr[XαXβ] − trXα trXβ = 4
d
δαβ, (2.59)

where we have used the assumption (2.56).
Now, we consider n copies of the identical unitary channel U⊗n

θ , which acts on
the combined Hilbert space Hcom = H⊗n

S . If we are to estimate U⊗n
θ as a uni-

tary channel on Hcom, we would prepare the MES |M〉Hcom in the dn-dimensional
Hilbert space Hcom. Noting that

i
∂(U⊗n

θ )
∂θα

(U⊗n
θ )† = {Xα}n, (2.60)

the Fisher information in this case can be calculated in the same way as Eq. (2.59):

[Jcom
θ ] = 4

dim Hcom
Re tr

[
{Xα}n{Xβ}n

]
= 4
dn

(ndn−1 tr[XαXβ]) = 4n
d
δαβ. (2.61)

This QFI matrix is n times the QFI matrix (2.59) for the one-channel estimation.
In fact, the MES in the combined system is nothing more than separate MES’s in
the subsystems: |M〉Hcom = |M〉⊗n

HS
, and thus this estimation method is actually

in the classical scheme. This is consistent with the fact that the QFI matrix in
Eq. (2.61) implies the SQL δ = O(n−1/2).

Then, can we attain the error δ = O(n−1) in the quantum scheme? The answer
is yes, and such a method can be found by using representation theory. We focus
on the fact that the unitary operator U⊗n

θ preserves the symmetry between the
subsystems. This symmetry splits the Hilbert space Hcom = H⊗n

S into several
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invariant subspaces, the classification of which was given in 1900 by Young [64].
In particular, the largest irreducible subspace is the completely symmetric space
Hsym, which consists of vectors that are invariant under all permutations of the
subsystems. If we begin with the MES |M〉Hsym of this subspace, the QFI matrix
is given as

[J sym
θ ]αβ = 4

dim Hsym
Re tr[Psym{Xα}n{Xβ}n], (2.62)

where we denote by Psym the projection operator onto Hsym. Both the dimension
and the trace in Eq. (2.62) can be computed:

dim Hsym = (n+ d− 1)!
n!(d− 1)!

, (2.63)

tr[Psym{Xα}n{Xβ}n] = (n+ d)!
(n− 1)!(d+ 1)!

tr[XαXβ] (2.64)

and therefore
[J sym

θ ]αβ = 4n(n+ d)
d(d+ 1)

δαβ, (2.65)

which is n+d
1+d times larger than Eq. (2.61). For a sufficiently large number of

subsystems: n ≥ d, we obtain the scaling O(n2) in the QFI matrix, implying the
Heisenberg limit of O(n−1). We refer to Ref. [26] for further discussions regarding
the optimality of the probe state |M〉Hsym and the attainability of the Heisenberg
limit.

2.3.2 Hamiltonian estimation

We have seen that owing to geometry and symmetry, quantum metrology on
arbitrary unitary gate has met its optimal error bound. These error bounds cannot
necessarily be applied to the estimation of unitary gates with a special property,
such as a diagonalized matrix in a certain basis [65]. Thus, it will be convenient
if there exists a model of quantum metrology with less specification on the target
of estimation.

For this purpose, we consider the Hamiltonian Hθ itself rather than the unitary
gate Uθ. When we use n copies of the unitary gate e−iτHθ with evolution time τ ,
the total resource of the estimation is evaluated as T = nτ . It is also possible to
use unitary gates with different evolution times, in which case the total resource
T is the sum of all evolution times.

The general estimation scheme can be described as Fig. 2.2 (a), which we shall
call the quantum general scheme. Between the applications of unitary gates Uθ =
e−iτHθ , one is allowed to apply arbitrary control gates, which can be represented
by unitary operators over the main and the ancillary systems. The quantum state
after a series of operations will be

|qθ〉 = (Uθ ⊗ IA)Vn−1(Uθ ⊗ IA)Vn−2 · · · (Uθ ⊗ IA)V1|q〉, (2.66)
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Uθ Uθ Uθ· · ·

θ∗M

controls

|q〉

(a)

θ∗M

Uθ

Uθ

Uθ

|q〉
...

...

(b)

θ∗M

Uθ Uθ Uθ

|q〉

(c)

Figure 2.2: Schematic diagrams for contrasting the parallel and the gen-
eral schemes. For simplicity, we denote by Uθ = e−iτHθ the unitary
evolution for the fixed time τ . (a) General scheme, where an arbitrary
unitary operation is allowed at each of the “controls.” (b) Parallel
scheme, which is the same as Fig. 2.1 (b). Note that ancillary systems
are omitted. (c) Emulation of the parallel scheme (b) by the corre-
sponding general scheme (a). The bottom two lines are regarded as an
ancillary system.

where Vj denotes the jth control unitary operator.
The quantum general scheme is more powerful than the quantum parallel scheme

in Fig. 2.2 (b), which we have considered in the previous section. In fact, the
combination of an ancillary system and unitary operations are sufficient to describe
an arbitrary physical dynamics [66, 67], including stochastic processes, partial
measurements and feedbacks. In particular, a parallel scheme can be emulated
within a general scheme as shown in Fig. 2.2 (c). Therefore, theoretical lower
bounds on the estimation error in the quantum general scheme also apply to the
parallel quantum scheme, but not vice versa.

2.3.3 Lower error bounds in Hamiltonian estimation

Before we set up the parameter dependence of the Hamiltonian Hθ, we note that
imposing trHθ = 0 does not lose any generality, since adding cI (c ∈ R) to the
Hamiltonian makes no difference in the dynamics.

We assume a Hamiltonian Hθ that linearly depends on Hermitian operators
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X1, . . . , Xm:

Hθ =
m∑

j=1
θjXj . (2.67)

Hamiltonians that can be written in form of Eq. (2.67) constitute anm-dimensional
vector space with matrix basis {X1, . . . , Xm}. In order to fix the scale of the pa-
rameter θ = (θ1, . . . , θm), we adopt the orthonormal matrix basis:

trXjXk = δjk. (2.68)

Such a matrix basis can always be taken by linearly transforming the parameter
vector θ with the help of the Gram–Schmidt algorithm.

Here are some practical choices of the matrix bases:

(1) The full model, in which an arbitrary Hamiltonian Hθ on a d-dimensional
Hilbert space can be estimated. The generalized Gell–Mann matrices can
be used as the matrix basis:

σk,l
x = 1√

2
(
|k〉〈l| + |l〉〈k|

)
(1 ≤ k < l ≤ d);

σk,l
y = i√

2
(
|k〉〈l| − |l〉〈k|

)
(1 ≤ k < l ≤ d);

σk
z = 1√

k(k+1)

(
k|k + 1〉〈k + 1| −

∑k
l=1|l〉〈l|

)
(1 ≤ k < d− 1).

(2.69)

(2) The multiple-phase model, in which the Hamiltonian is diagonal with re-
spect to a certain known eigenbasis. The matrix basis can be chosen as
{σ1

z , . . . , σ
d−1
z } from the generalized Gell–Mann matrices in Eq. (2.69). This

model leads to the estimation of only diagonal Hamiltonians.

(3) Tensor products of Pauli matrices are often useful in qubit and spin systems.
We may consider a matrix basis consisting of matrices of the form

σ(1) ⊗ σ(2) ⊗ · · · ⊗ σ(N), (2.70)

where each of {σ(1), σ(2), . . . , σ(N)} is σx, σy, σz or I, but all of them cannot
be I. We note that not all matrices are necessarily included in the basis.
In fact, the model becomes equivalent to the full model if we consider all
4N − 1 matrices, and to the multiple-phase model if σx and σy are excluded
from the choice.

With the assumption above, one can show an upper bound on the QFI matrix
by an arbitrary procedure in the general scheme:

Proposition 2.5 Let |qθ〉 be the probe state after the evolution over time T in the
quantum general scheme. Then, the QFI matrix Jθ of the quantum state model
{|qθ〉} satisfies

tr Jθ ≤ 4cT 2, (2.71)

where c = ‖X‖ is defined as the operator norm of X =
∑m

j=1X
2
j .
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Proof. Let |qθ(t)〉 be the probe state after the evolution over time t, and Jθ(t)
be the corresponding QFI matrix. Since the unitary operator Vj in the control
gate does not depend on the parameter θ, the control gate keeps the QFI matrix
unaltered. Therefore, we only need to pursue the time derivative of the QFI matrix
Jθ(t) during the Hamiltonian evolution.

By using the Schrödinger equation, the time derivative of an diagonal entry
Fj(t) = [Jθ(t)]jj can be evaluated as

dFj(t)
dt

= 8 Im
〈
∂qθ(t)
∂θj

∣∣∣∣[1 − |qθ(t)〉〈qθ(t)|
]
Xj

∣∣∣∣qθ(t)
〉

(2.72)

≤ 8
∥∥∥∥[1 − |qθ(t)〉〈qθ(t)|

]∣∣∣∣∂qθ(t)
∂θj

〉∥∥∥∥ ·
∥∥Xj

∣∣qθ(t)
〉∥∥ (2.73)

= 4
√
Fj(t)

√〈
qθ(t)

∣∣X2
j

∣∣qθ(t)
〉

(2.74)

and therefore

d

dt

(
tr Jθ(t)

)
=

n∑
j=1

dFj(t)
dt

≤ 4
n∑

j=1

√
Fj(t)

√〈
qθ(t)

∣∣X2
j

∣∣qθ(t)
〉

(2.75)

≤ 4
[ n∑

j=i

Fi(t)
n∑

j=1

〈
qθ(t)

∣∣X2
j

∣∣qθ(t)
〉]1/2

(2.76)

= 4[(tr Jθ(t))
〈
qθ(t)

∣∣X∣∣qθ(t)
〉
]1/2 ≤ 4c

√
tr Jθ(t), (2.77)

where we have used the Cauchy–Schwartz inequality in deriving Eq. (2.76). The
differential inequality d

dt(tr Jθ(t)) ≤ 4c
√

tr Jθ(t) can be solved and has the maxi-
mal solution, which is tr Jθ(t) = 4ct2. We note that the QFI matrix at t = 0 is
zero, since the initial probe state |q〉 does not depend on the parameter vector θ.
By substituting t = T , we obtain the desired inequality (2.71).

From the Prop. 2.5 and the quantum CR inequality (Th. 2.4), we can bound
the RMS error δ of an unbiased estimator as

δ ≥ (tr[J−1
θ ])1/2 ≥ m

(tr Jθ)1/2 ≥ m

2c1/2T
, (2.78)

in which we have applied the Cauchy–Schwartz inequality again: tr[J−1] · tr J ≤
(tr I)2 = m2.

Aside from the number m of parameters, the lower bound in Eq. (2.78) contains
the model-dependent constant c. Noting that tr X = m follows from the orthonor-
mal condition (2.68), the minimum possible value is found to be c = m/d, which
is the case when X is in proportion to the identity matrix.

Proposition 2.6 Let us call a Hamiltonian model in Eq. (2.67) spherical if and
only if

∑m
j=1X

2
j = m

d I holds. In this case, the quantum CR bound on the RMS
error is given as

δ ≥ (md)1/2

2T
. (2.79)
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The spherical model indicates that, when the parameter vector θ is subject to
a stochastic distribution with spherical symmetry, the variance of the energy does
not depend on the probe state. The examples (1)–(3) on p. 33 are all spherical
models.

2.3.4 Adaptive estimation method
An important problem arises when we consider a concrete estimation procedure:
More than one candidate of parameter vector θ may correspond to the same
probe state after evolution. As the simplest case, we consider a one-parameter
problem Hθ = θσz. The unitary gate Uθ = e−iτHθ becomes the identity if θ
is a multiple of π/τ . Hence, one cannot distinguish between the candidates θ =
0,±π/τ,±2π/τ, . . . , since the distribution of the measurement outcomes is exactly
the same for any of the candidates.

This problem is inevitable when we consider the parameter in the unbounded
space Rm. To circumvent this problem, we must assume that the parameter vector
θ belongs to a certain bounded domain in the first place. More particularly, we
introduce a parameter E > 0 such that the inequality

‖θ‖ ≤ E (2.80)

is provided before the estimation. We note that under the normalization (2.68),
the parameter θ has the dimension of frequency or energy, whence E may be
regarded as the energy scale. Under the assumption (2.80), the correspondence
between the unitary gate Uθ = e−iτHθ and the parameter θ becomes one-to-one
as long as τ ≤ 1/E. Conversely, if τ is larger than O(1/E), such a one-to-one
correspondence becomes impossible.

Let us fix the total time resource T . In the classical scheme, we prepare n
separate probe states and let them evolve over τ = T/n. As long as τ ≤ 1/E,
the inequality in Prop. 2.5 can be satisfied up to a model-independent constant
factor:

tr J1,θ = O(cτ2), (2.81)

where J1,θ denotes the QFI matrix for one probe state. Consequently, the QFI for
n probe states satisfy tr Jθ = O(cnτ2) = O(cTτ), indicating that the evolution
time τ per gate should be as large as possible. Since τ must be in the order of
O(1/E), we obtain tr Jθ = O(cT/E) and

δ = O
(
m(E/cT )1/2). (2.82)

Here, the scaling O(T−1/2) with respect to the total time resource T corresponds
to the SQL as expected.

In the quantum general scheme, on the other hand, the theoretical bound
on the RMS error δ = O

(
m/(c1/2T )

)
in Eq. (2.78), whose order is O(T−1)

and corresponds to the Heisenberg limit. Although no methods that satisfy
δ = O

(
m/(c1/2T )

)
are currently known, we can attain an O(T−1) error by what
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is called the adaptive estimation [13, 68]. In the adaptive estimation, we compute
a series of estimators θ∗

0,θ
∗
1, . . . ,θ

∗
K one by one such that the inequality

‖θ − θ∗
k‖ ≤ 2−kE (2.83)

is satisfied with a sufficiently large probability. We begin with θ∗
0 = 0, where

the inequality (2.83) is satisfied because of Eq. (2.80). When an estimator θ∗
k is

obtained, we continue the estimation by adjusting the control gates depending
on the value of θ∗

k. With this control, we can regard the system as Hamiltonian
estimation with energy scale 2−kE, owing to which the effective per-gate evolu-
tion time can be increased: τ = O(2k/E). Since larger τ implies more efficient
estimation, we obtain a new estimator θ∗

k+1 with much better accuracy.
After K iterations of this procedure, the RMS error of the last estimator θ∗

K

is approximately δ = 2−KE, whence an arbitrarily small error can be attained.
By adjusting the schedule on which the total evolution time T is consumed for
each estimator, this error becomes O(T−1) as desired. We refer to Sec. 4.1 for the
detailed mathematics regarding this adaptive technique.

In the author’s master thesis, the adaptive estimation in the quantum parallel
scheme has also been presented. While it has been suggested that the estimation
error in the parallel scheme is the same up to a constant factor as the non-parallel
counterpart, a rigorous proof for this conjecture had remained open due to the
chaotic behavior involved. In this thesis, this issue has been successfully handled
in Sec. 4.2.
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Chapter 3

Reviews on function estimation

In this chapter, we will review classical estimation theory for continuous data,
which can be formulated as functions in mathematics. Among other forms of con-
tinuous data, estimation of time-dependent signal has been especially important in
history, which is why many important technique has developed in signal detection
theory. Here, we will focus on two problems: In the first section, we discuss how
to restore the entire function from discretely sampled data, which can be solved
by using local linear smoothing (LLS) [69–72]. In the second section, we introduce
signal detection theory for continuously observed signals, where filters can be used
to cancel stochastic noises.

3.1 Restoring functions

3.1.1 Significance of regularity

Compared with parameter estimation, the most significant characteristics of func-
tion estimation is the infinite degrees of freedom. In fact, given samples yi at finite
sample points x1 < x2 < · · · < xn, there are infinitely many functions f satisfying
yi = f(xi) for i = 1, . . . , n. Furthermore, the value f(x) can be arbitrarily large in
positive or negative if, say, x1 < x < x2. Knowing that the function f is contin-
uous, we can anticipate that f(x) is close to the neighboring samples y1 = f(x1)
or y2 = f(x2). However, since sole continuity does not provide any quantitative
information, there is no way to estimate the value of f(x) within a finite error
without any further assumptions.

Therefore, the function estimation necessarily involves the quantitative assump-
tion on the target function, which we refer to as the regularity. The simplest as-
sumption is that the function be differentiable, and that its derivative f ′(X) be
uniformly bounded:

|f ′(x)| ≤ M (3.1)

for some positive constant M . With this assumption, one can estimate the value
f(x) as, e.g., y1 − M |x− x1| ≤ f(x) ≤ y1 + M |x− x1|. By taking sufficiently
many samples, one can estimate the function value f(x) at an arbitrary point x.

Equation (3.1) is not the only form of regularity. In particular, we may bound
the derivative f ′(x) in terms of the root mean square (RMS) instead of uniformity:
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1
b− a

∫ b

a
|f ′(x)|2dx ≤ M2, (3.2)

where we have denoted the domain of the function f(x) by a ≤ x ≤ b. This is
useful especially when we consider the RMS error by analogy with the parameter
estimation problem. Let f∗ be the estimator for the function f , and the RMS
error δ is defined as

δ2 =
〈 1
b− a

∫ b

a
|f∗(x) − f(x)|2dx

〉
, (3.3)

where the expectation value 〈·〉 is taken over the stochastic behavior of the esti-
mator f∗.

We can also assume that the function f is differentiable more than once. In this
case, different regularity can be defined by using the mth derivative f (m)(x):

|f (m)(x)| ≤ M (3.4)

or
1

b− a

∫ b

a

∣∣f (m)(x)
∣∣2 ≤ M2. (3.5)

In some circumstances, such regularity can help us perform estimation with better
accuracy, although the procedure of the estimation becomes more intricate.

3.1.2 Local linear smoothing

The goal of this section is to restore the entire function f(x) (x ∈ R) from the
discrete samples yi = f(xi) by performing the LLS. Here, we assume that the
sample points xj = jh (j ∈ Z) is taken with an equal spacing h.

An estimator of this function can be defined as

f∗(x) =
∑
j∈Z

yjϕ

(
x− xj

h

)
, (3.6)

by choosing an appropriate function ϕ(x). For the summation in Eq. (3.6) to be
essentially finite, the function ϕ must be zero outside a finite interval. One choice
of such function ϕ is

ϕ(z) =


1 + z (−1 ≤ z ≤ 0);
1 − z (0 ≤ z ≤ 1);
0 (otherwise),

(3.7)

which results in a linear interpolation between each points:

f∗(θxj + (1 − θ)xj+1
)

= θyj + (1 − θ)yj+1 (0 ≤ θ ≤ 1). (3.8)
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This linear interpolation serves as a second-order approximation of the function
f(x); when the function f is equipped with the regularity |f ′′(x)| ≤ M , the
estimation error can be evaluated as |f∗(x) − f(x)| ≤ h2M

2 .
In general, the LLS can be performed on the basis of an mth-order approxima-

tion by choosing the function ϕ as follows:

Definition 3.1 If a function ϕ : R → R satisfies∑
j∈Z

P (j)ϕ(z − j) = P (z) (3.9)

for an arbitrary polynomial P with degree at most m, the function ϕ is called
an LLS kernel of degree m. Furthermore, if ϕ(x) = 0 holds for x > s

2 for some
positive integer s, the LLS kernel ϕ is said to have support s.

Let us see that such an LLS kernel can be constructed for s ≥ m+ 1. We define
the function ϕ as a piecewise polynomial function:

ϕ(x) =
{
ϕk(z − k) (k − 1

2 ≤ z < k + 1
2);

0 (otherwise),
(3.10)

where ϕk(z) (k = − s−1
2 ,− s−3

2 , . . . , s−1
2 ) are polynomials with degree at most m.

Then, ϕ is an LLS kernel of degree m if and only if

s−1
2∑

k=− s−1
2

klϕk(z) = zl, ∀ l = 0, 1, . . . ,m, (3.11)

which can be interpreted as a system of linear equations. Since the coefficient
matrix of this system is a Vandermonde matrix, this system has at least one
solution as long as s ≥ m+ 1. We show in Fig. 3.1 LLS kernels ϕ constructed in
this way for s = m+ 1 and m = 0, 1, 2. In particular, the LLS kernel with m = 1
corresponds to the linear-interpolating function in Eq. (3.7). We note that the
functions are not necessarily continuous; we can also choose smoother functions
by taking a larger s [72].

We use an LLS kernel ϕ of degree m − 1 with support s. To evaluate the
estimation error f∗(x) − f(x), we first remind the Taylor expansion f(x′) =
Px(x′) + Rx(x′) with the polynomial part Px and the residual part Rx defined
as

Px(x′) =
m−1∑
l=0

f (l)(x)(x′ − x)l

l!
, (3.12)

Rx(x′) =
∫ x′

x

(x′ − t)m−1

(m− 1)!
f (m)(t)dt. (3.13)
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Figure 3.1: Plots of local linear smoothing kernels ϕ(x) (−2 ≤ x ≤ 2) of
degree m with support s, where (m, s) = (0, 1), (1, 2), and (2, 3).

Substitution of the Taylor expansion into Eq. (3.6) yields

f∗(x) =
∑
j∈Z

ϕ

(
x− xj

h

)
f(xj) =

∑
j∈Z

ϕ

(
x

h
− j

)
[Px(xj) +Rx(xj)]

= Px(x) +
∑
j∈Z

ϕ

(
x

h
− j

)
Rx(xj), (3.14)

and hence

f∗(x) − f(x) = f∗(x) − Px(x) =
∑
j∈Z

ϕ

(
x− xj

h

)
Rx(xj). (3.15)

When the target function f is equipped with the regularity in Eq. (3.4), we obtain

|f∗(x) − f(x)| ≤
∑
j∈Z

∣∣∣∣ϕ(x− xj

h

)∣∣∣∣ · |xj − x|m

m!
M. (3.16)

Here, ϕ
(x−xj

h

)
is nonzero only if |x− xj | ≤ sh

2 , which can be satisfied by at most
s instances of j. By using these facts, the estimation error can be bounded as
follows:

Theorem 3.2 If φ is an LLS kernel of degree m − 1 and has support s, any
function f with |f (m)(x)| ≤ M can be estimated by the LLS within error

|f∗(x) − f(x)| ≤ ChmM, (3.17)

where the constant C is set to be C = sm+1

2mm! maxz|φ(z)|.

In other words, the error decreases down to the order O(hm) as the spacing h
of the sample points gets smaller.

3.1.3 Hölder continuity
At this point, we assume the differentiability to the mth order as the regularity of
the function, which results in the O(hm) scaling of the estimation error. However,
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3.1 Restoring functions

we may also define the regularities corresponding to a positive number q instead
of an integer m, by which we can attain a finer scaling law. In particular, we
may define the regularities with 0 < q < 1, which provide the means to evaluate
estimation errors for less smooth functions than the differentiable ones.
Definition 3.3 (Hölder continuity [73]) Let 0 < σ ≤ 1. A function f : I → R
defined over a real interval I is said to be σ-Hölder continuous if and only if there
exists a number M ≥ 0 such that

|f(x′) − f(x)| ≤ M |x′ − x|σ (3.18)

for any x, x′ ∈ I. The minimum of such a number M is said to be the σ-Hölder
norm of the function f .

A typical example of a σ-Hölder continuous function is f(x) = α|x|σ +β, whose
σ-Hölder norm equals |α|. A function f(x) = x defined over a finite interval [a, b] is
also σ-Hölder continuous function, whose Hölder norm is (b−a)1−σ. However, the
same function f(x) = x defined over R is not σ-Hölder continuous unless σ = 1,
because the said Hölder norm diverges for b− a → ∞.

Any positive number q can be decomposed into the sum of a nonnegative integer
m ≥ 0 and a number 0 < σ ≤ 1. By combining the differentiability and the Hölder
continuity, we can establish what can be regarded as the differentiability to the
qth order.
Definition 3.4 A function f : I → R is said to be of class Cm,σ if its mth deriva-
tive f (m) is σ-Hölder continuous. A regularity corresponding to this class can be
defined as

|f (m)(x′) − f (m)(x)| ≤ M |x′ − x|σ. (3.19)
The estimation error for the function with regularity (3.19) can be derived as

follows: We consider an LLS kernel φ(z) of degree m and support s, and deform
Eqs. (3.12) and (3.13) in the Taylor expansion:

Px(x′) =
m∑

l=0
f (l)(x)(x′ − x)l

l!
, (3.20)

Rx(x′) =
∫ x′

x

(x′ − t)m−1

(m− 1)!
[f (m)(t) − f (m)(x)]dt. (3.21)

Since the equation (3.15) also holds for this case, we can bound the estimation
error in a similar manner to Th. 3.2.
Theorem 3.5 If φ is an LLS kernel of degree m and support s, any function f
with the regularity (3.19) can be estimated by the LLS within error

|f∗(x) − f(x)| ≤ ChqM, (3.22)

where q = m+ σ and the constant C is set to be C = sq+1

2qq(m−1)! maxz|φ(z)|.
We also note that the 1-Hölder continuity, also known as the Lipschitz continu-

ity, is a generalized concept of the differentiability. The estimation error for the
Lipschitz continuous functions are the same as that for the differentiable functions.
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3.2 Canceling stochastic noises

3.2.1 Power-spectrum analysis

In this section, we consider a prior distribution of a continuous signal s(t) according
to Bayesianism. Such a family of real-parametrized stochastic variables {s(t)}t∈R
is called a stochastic process, and plays a central role in probabilistic theory.

In this review, we assume two basic properties of the signal as follows:

〈s(t)〉 = 0, (3.23)
〈s(t)s(t′)〉 = Cs(t− t′). (3.24)

The former equation (3.23) implies that we assume the signal tends to be neither
positive nor negative. The latter equation (3.24) indicates the stationarity of the
stochastic process, by which we mean that the process remains invariant under the
translation of time. Therefore, the signal can be characterized by the correlation
function Cs(t), which describes the second-order statistics of the signal s(t). We
may optionally assume that s(t) is a Gaussian process, i.e., if any combination
of snapshots

(
s(t1), . . . , s(tn)

)
is subject to a multivariate Gaussian distribution.

In this case, the stochastic process is completely determined by the correlation
function Cs(t).

Let us consider the (unitary) Fourier transform of the signal s(t) within a finite
range:

sT (ω) = 1√
T

∫ T/2

−T/2
s(t)eiωtdt. (3.25)

The power spectrum of the stochastic process {s(t)} is defined by the T → ∞ limit
of the expected square amplitude of sT (ω):

Is(ω) = lim
T →∞

〈
|sT (ω)|2

〉
. (3.26)

The Wiener–Khinchin theorem states that Is(ω) is equal to the Fourier transform
of the correlation function [74]:

Is(ω) =
∫ ∞

−∞
Cs(t)eiωtdt, (3.27)

which can be confirmed by substituting Eq. (3.25) in Eq. (3.26). We also note
that the power spectrum Is(ω) is nonnegative and symmetric by definition.

The power spectrum describes the typical behavior of the signal s(t) more clearly
than the correlation function. That is, the number Is(ω) denotes the weight of
the fluctuation with frequency ω, which is integrated to give the total fluctuation:∫∞

−∞ I(ω)dω = 〈|s(t)|2〉. Since fluctuations at large frequencies lead to rapid vari-
ation of the sample function, the typical smoothness of the signal is determined
by the speed at which the power spectrum decays in the limit |ω| → ∞. Hence,
we assume a power-law decay Is(ω) ∼ |ω|−p (p > 1) of the power spectrum at
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3.2 Canceling stochastic noises

|ω| → ∞, with large p corresponding to a smoother signal. For the computational
purpose, the power spectrum is often parametrized as [43]

Is(ω) = κ2(ω2
0 + ω2)−p/2, (3.28)

where κ > 0 and ω0 > 0 characterizes the global amplitude and frequency of the
signal, respectively.

In the next section, we also introduce the stochastic process of the noise n(t)
that affects the observation of the signal. We assume that the signal and noise are
mutually independent, and thus free of the cross-correlation term: 〈s(t)n(t′)〉 = 0.

The correlation function Cn(t) and the power spectrum In(ω) of the noise can
be determined similarly. A common type of noise is the white noise, which is
defined via its power spectrum

In,white(ω) = σ2. (3.29)

The corresponding correlation function involves Dirac’s delta function: Cn,white(t) =
σ2δ(t), indicating that the correlation 〈n(t)n(t′)〉 is zero for t 6= t′ and infinite for
t = t′. Due to this divergence, a white-noise process only appears as the theo-
retical limit of a physical stochastic process. An actual process is limited by the
frequency cutoff Ω, which originates from the physical processes of the noise gen-
eration. The corresponding power spectrum satisfies In(ω) = σ2 only within the
frequency |ω| ≤ Ω and must rapidly decay for |ω| > Ω. Since the time resolution
of the physical measurement process is much larger than the timescale Ω−1 of the
noise, the actual noise can be regarded as white, despite its unphysical nature.

3.2.2 Filtering

We suppose that a signal s(t) is continuously measured, but suffers from stochastic
noise n(t). Therefore, the observed function r(t) is

r(t) = s(t) + n(t). (3.30)

The goal is to estimate the signal s(t) from r(t), given the power spectra Is(ω)
and In(ω) of the signal and the noise.

The linear estimator provides a simple way to perform this estimation, and is
optimal for the Gaussian signal and noise [74].

Definition 3.6 A linear estimator s∗(t) of this signal can be obtained as the
convolution of the observation r(t) and a fixed function h(t):

s∗(t) = h(t) ∗ r(t) =
∫ ∞

−∞
h(t′)r(t− t′)dt′. (3.31)

The function h(t) is called the filter. If h(t) is zero for negative t, the filter h(t) is
called causal; otherwise, h(t) is called non-causal.
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The value of the filter function h(t′) represents the contribution of the observa-
tion r(t− t′) to the estimator s∗(t) at t′ time later. Therefore, we can obtain the
estimator s∗(t) without having to wait for further observation after time t if and
only if the filter is causal. In this review, we assume the use of non-causal filters,
although the pursuit for causal filters is also important for the practical use.

Let us determine the optimal filter function h(t). The error of the linear esti-
mator e(t) can be written as

e(t) = s∗(t) − s(t) = h(t) ∗ [s(t) + n(t)] − s(t)
= [h(t) − δ(t)] ∗ s(t) + h(t) ∗ n(t). (3.32)

The correlation function of e(t) can be calculated as

Ce(t) = 〈e(t) ∗ e(−t)〉
= [h(t) − δ(t)] ∗

〈
s(t) ∗ s(−t)

〉
∗ [h(−t) − δ(−t)]

+ 2[h(t) − δ(t)] ∗
〈
s(t) ∗ n(−t)

〉
∗ h(−t)

+ h(t) ∗
〈
n(t) ∗ n(−t)

〉
∗ h(−t)

= [h(t) − δ(t)] ∗ Cs(t) ∗ [h(−t) − δ(−t)] + h(t) ∗ Cn(t) ∗ h(−t). (3.33)

By the Fourier transform, the power spectrum of the error can be obtained:

Ie(ω) = [H(ω) − 1]Is(ω)[H(ω) − 1] +H(ω) ∗ In(ω)H(ω)
= |H(ω) − 1|2Is(ω) + |H(ω)|2In(ω), (3.34)

where H(ω) is defined as the Fourier transform of the filter h(t). We notice from
Eq. (3.34) that the optimal filter is a compromise between two extremal choices
H(ω) = 0 (h(t) = 0) and H(ω) = 1 (h(t) = δ(t)). In the former case, we
completely discard the observed signal to avoid picking up any noise; in the latter
case, we just trust the observation without considering the noise.

Since the RMS error δ is obtained as the integral δ2 =
∫∞

−∞ Ie(ω)dω, the optimal
filter is obtained by minimizing Eq. (3.34) for each ω:

H(ω) = Is(ω)
Is(ω) + In(ω)

, (3.35)

in which case the error is given as

δ2 =
∫ ∞

−∞

Is(ω)In(ω)
Is(ω) + In(ω)

dω = 2
∫ ∞

0

Is(ω)In(ω)
Is(ω) + In(ω)

dω. (3.36)

The linear filter is useful even when we do not precisely know the power spectra
Is(ω) and In(ω). In fact, an interesting choice of the filter is:

H(ω) =
{

1 (|ω| ≤ Ω);
0 (|ω| > Ω).

(3.37)
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3.2 Canceling stochastic noises

This corresponds to a sinc function h(t) = t−1 sin 2Ωt, whence the name sinc filter.
This result in the estimation error

δ2 = 2
∫ Ω

0
In(ω)dω + 2

∫ ∞

Ω
Is(ω)dω. (3.38)

In most cases, the power spectrum of the signal Is(ω) vanishes in the ω → ∞
limit faster than that of the noise In(ω). Hence, a suboptimal sinc filter can be
obtained by choosing such a frequency Ω that In(Ω) = Is(Ω). In fact, we can show
that the RMS is at most

√
2-time larger than the optimal filter:

δ2 = 2
∫ ∞

0
min{Is(ω), In(ω)}dω ≤ 4

∫ ∞

0

Is(ω)In(ω)
Is(ω) + In(ω)

dω. (3.39)

In particular, when we have Is(ω) ≈ κ2ω−p for ω � 1 and In(ω) = σ2, the
optimal error is in the order O

(
(κσ1−p)2/p

)
.

3.2.3 Connection to the function estimation
We recall the function class Cm,σ (Def. 3.4), which introduces a wide variety of
function regularities which are continuously parametrized by q = m + σ > 0.
For the last part of this section, we see that a signal s(t) with power spectrum
Is(ω) ∼ |ω|−p can roughly be regarded as a function of class Cm,σ, where p and q
are related to each other by p = 2(m+ σ) + 1 = 2q+ 1. This suggests an abstract
relation between the estimation of deterministic functions and that of stochastic
processes, which appears as the same scaling law of estimation error in quantum
metrology in Chapter 5.

Let us assume that the power spectrum Is(ω) of the stochastic process {s(t)}
satisfies

Is(ω) ≤ min{I0, κ
2|ω|−p} (3.40)

for p > 1 and κ, I0 > 0. If 1 < p < 3, the mean-square difference of the signal at
two times t, t′ with τ = |t− t′| satisfies〈

|s(t′) − s(t)|2
〉

= 2Cs(0) − 2Cs(τ)

= 2
π

∫ ∞

0
Is(ω)(1 − cosωτ)dω

≤ 2
π

∫ ∞

0

κ2ω−p

2
min{(ωτ)2, 4}dω

= 1
2π
κ2τp−1

∫ ∞

0
z−p min{z2, 4}dz ≤ Cτp−1, (3.41)

where
C = 22−pκ2

π(3 − p)(p− 1)
. (3.42)

This indicates that the signal s(t) satisfies σ-Hölder continuity in a stochastic
manner:

|s(t′) − s(t)| ≲ const. × |t′ − t|(p−1)/2 (t′ − t → 0). (3.43)
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When p = 3, however, an analysis similar to Eq. (3.41) necessarily involves a
logarithmic correction:〈

|s(t′) − s(t)|2
〉

≤ C ′|t′ − t|2 log|t′ − t|−1, (3.44)

which is known to be inevitable [75].
For p > 3, it is known that the derivative ṡ(t) = ds

dt (t) of the signal can be
defined for almost all t ∈ R with probability one. When {ṡ(t)} is seen as a
stochastic process, its correlation function is

Cṡ(t′ − t) = 〈ṡ(t)ṡ(t′)〉 = ∂2

∂t∂t′
〈s(t)s(t′)〉 = −C ′′

s (t′ − t) (3.45)

and its power spectrum becomes

Iṡ(ω) = ω2Is(ω). (3.46)

Therefore, when 3 < p ≤ 5, the signal s is almost surely differentiable and the
derivative ṡ is endowed with the mean-square p−3

2 -Hölder continuity (3.41) except
for p = 5, which leads to its corrected version (3.44).

The general theory for p = 2(m+ σ) + 1 can be obtained by repeating this ar-
gument; the mth derivative s(m) is defined and satisfies the mean-square σ-Hölder
continuity (with a logarithmic correction for σ = 1), which roughly corresponds
to the Cm,σ class.

We note that, although the stochastic Hölder continuity of the signal s(t) holds,
a typical signal s(t) may not be Hölder continuous. However, if we compromise
by an arbitrarily small ϵ > 0 assume power spectrum I0(ω) ∼ |ω|−p−ϵ, the signal
s(t) belongs to the class Cm,σ with probability one and satisfies the regularity in
Eq. (3.19) for an appropriately chosen M > 0. For more advanced and complete
discussions, please see Refs. [75, 76].
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Chapter 4

On parallelization of multiparameter quantum
metrology

In this chapter, we derive the estimation errors for two methods of Hamiltonian
estimation. One method is in the sequential scheme, in which the Hamiltonian
acts in only one system without quantum memory, and the other method is in
the parallel scheme, in which the Hamiltonian acts in many subsystems in parallel
without quantum control. They both exhibit the Heisenberg limit O(T−1) with
respect to the evolution time T (we note that the time is multiplied by the number
of subsystems in the parallel scheme). In Ref. [30], both methods has already been
shown to be optimal in terms of the Cramér–Rao (CR) bound, and the error bound
on the sequential method was found to be O(d1/2) times smaller than that on the
parallel method.

However, the comparison with the same evolution time T is not appropriate,
since whether or not the CR bound is attainable may depend on T . Therefore, we
compute the optimal error with the attainability of the CR bound in consideration,
and show that both methods require the same amount of resource up to a constant
factor, regardless of the size of the Hamiltonian model. This means that the
evolution time required for the Heisenberg-limited Hamiltonian estimation can be
efficiently reduced by preparing many copies of a given physical system.

The first section is dedicated for the hierarchical estimation, an organized frame-
work of adaptive estimation that can provide an upper bound on the estimation
error. Then, we perform rigorous analysis on the estimation errors in both se-
quential and parallel schemes in the second section.

4.1 Hierarchical estimation

Let us recall how the adaptive estimation helps the Heisenberg-limited measure-
ment.Following Sec. 2.3.2, We consider a spherical model in the Hamiltonian es-
timationm where the parameter vector θ ∈ Rm is estimated from a Hamiltonian
Hθ =

∑m
j=1 θjXj over the d-dimensional Hilbert space HS = Cd. The matrix basis

{X1, . . . , Xm} is taken to be traceless and orthonormal as in Eq. (2.68):

trXj = 0, trXjXk = δjk, (4.1)
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and satisfies
∑m

j=1X
2
j = (m/d)I. Furthermore, the Euclidean norm of the param-

eter θ is bounded by the energy scale E:

‖θ‖ ≤ E. (4.2)

The study on the quantum Fisher inforamtion (QFI) matrix has revealed that a
longer time of quantum evolution leads to a smaller quantum CR bound. However,
as the evolution time T become longer, the dependence of the unitary operator
Uθ = e−iT Hθ on the parameter θ becomes chaotic. In fact, given two parameters
θ,θ∗, the difference in the unitary operators∥∥e−iT Hθ − e−iT Hθ∗

∥∥ =
∥∥I − eiT Hθe−iT Hθ∗

∥∥ (4.3)

becomes unpredictable for an extremely large T — it may be very small or as large
as the unity depending on the small variation of θ∗, which makes the estimation
infeasible [77, 78]. For the behavior of Eq. (4.3) to be predictable, the evolution
time T must be at most of the order of E−1 for the energy scale E. However, with
the help of the adaptive estimation, one can gradually decrease the effective energy
scale Eeff based on the previous measurement, which leads to a longer evolution
time.

As explained in Sec. 2.3.4, the basic idea is to compute a series of estimators
θ∗

1, . . . ,θ
∗
J one by one, where the estimation error becomes half on each iteration.

As the number J of iterations increases, the estimation error decreases as O(2−J)
while the required amount T of resource increases as O(2J). The estimation
error δ is hence in inverse proportion to the amount T of resource, resulting in the
Heisenberg limit δ = O(T−1). The main problem here is to derive a rigorous bound
on the root mean square (RMS) error, in which we need to take into consideration
the failure in early iterations of the adaptive estimation.

Let us consider the estimation of a parameter vector θ ∈ Rm in a ball-shaped
domain ‖θ‖ ≤ E. The hierarchical estimation employs a series of stochastic
processes that compute the estimator θ∗

j from the previous one θ∗
j−1 (1 ≤ j ≤ J).

Mathematically, this can be described by a Markov chain with the conditional
probability distributions p(θ∗

j | θ∗
j−1). This stochastic process must satisfy

‖θ∗
j−1 − θ‖ ≤ Ej−1 =⇒

〈
‖θ∗

j − θ‖2〉 ≤
(1

4
Ej

)2
, (4.4)

where Ej = 2−jE is the magnitude of the error of θ∗
j . In other words, the es-

timation error of θ∗
j is bounded as long as the input θ∗

j−1 is sufficiently close to
the target parameter θ. In particular, the premise of Eq. (4.4) is automatically
satisfied if we set θ∗

0 = 0.
We further suppose that each attempt to compute the estimator θ∗

j requires
as much resource as Tj = 2j−1T . The goal of the hierarchical estimation is to
compute a new estimator θ̃∗, where the RMS error and the cost are comparable
to EJ and TJ , respectively.
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4.1 Hierarchical estimation

We begin by introducing the Chernoff bound [79], which bounds the probabil-
ity of a tail event1 from above with an exponentially decreasing quantity in the
number of independent trials. In the particular case of a binomial distribution,
the Chernoff bound appears as a result of the Chernoff–Hoeffding theorem.

For the rest of this chapter, we use P to denote the probability of an event.

Theorem 4.1 (Chernoff–Hoeffding theorem [80]) We consider n independent tri-
als each of which succeeds with probability p, and let k be the number of successful
trials. In other words, k is a stochastic variable distributed as the binomial dis-
tribution B(n, p). Then, for any 0 < r < p, we have the following inequality:

P[k ≤ nr] ≤ e−nD(r,p), (4.5)

where D(r, p) = r log r
p + (1 − r) log 1−r

1−p .

See Ref. [80] for the proof of this theorem. The law of large number ensures
that k/n stochastically converges to p in the limit of n → ∞, Theorem 4.1 reveals
that only with an exponentially small probability in n may k/n take a value
significantly smaller than p.

We use this theorem to bound the probability of the estimation error being
significantly large.

Lemma 4.2 Let θ∗ ∈ Rm be an estimator of a parameter vector θ ∈ Rm, whose
estimation error is bounded as 〈

‖θ∗ − θ‖2〉 ≤ a2. (4.6)

Then, for any s > 1, there exists another estimator θ̃∗ that can be obtained from
n = d7 log se independent instances of θ∗ such that

P
[
‖θ̃∗ − θ‖ ≤ 4a

]
≥ 1 − s−1. (4.7)

Here, dαe indicates the minimal integer not less than α.

Proof. Let us say an estimator θ∗ is successful if and only if ‖θ∗ − θ‖ ≤ 2a holds.
Then, the probability of success is bounded by Chebyshev’s inequality:

P
[
‖θ∗ − θ‖ ≤ 2a

]
= P

[
‖θ∗ − θ‖2 ≤ 4a2] ≥ 1 − a2

4a2 = 3
4
. (4.8)

Now, we consider n independent instances θ∗(1), . . . ,θ∗(n) of the estimator θ∗. Let
k be the number of successful estimators among the n independent trials. By
Th. 4.1, more than n/2 are successful with probability

P[k > n/2] = 1 − P[k ≤ n/2]

≥ 1 − e−nD( 1
2 , 3

4 ) = 1 − s−1, (4.9)
1“Tail event” is a term referring to an event that significantly differs from the expected behavior.

49



Chapter 4 On parallelization of multiparameter quantum metrology

where we note D(1
2 ,

3
4) = 1

2 log 4
3 ≥ 1

7 .
We define the new estimator θ̃∗ such that

‖θ̃∗ − θ∗(j)‖ ≤ 2a (4.10)

is satisfied for more than n/2 instances of j.
If more than n/2 estimators are successful, such θ̃∗ can be taken; moreover, the

new estimator satisfies ‖θ̃∗ − θ‖ ≤ 4a since at least one successful estimator θ∗(j)

satisfies Eq. (4.10). Therefore, the statement of this lemma follows from Eq. (4.9)
and the trigonometric inequality.

In the hierarchical estimation, the sequence of estimators θ̃∗
0, θ̃

∗
1, . . . , θ̃

∗
J are cal-

culated according to the following procedure:

(1) We set θ̃∗
0 = 0.

(2) When θ̃∗
j−1 is calculated, we compute nj = d(21 log 2)(J+1−j)e independent

instances of the estimator θ∗
j by setting the previous estimator to θ̃∗

j−1.

(3) Following the assumption (4.4) and Lem. 4.2, we compute θ̃∗
j from the nj

instances of estimators such that

‖θ̃∗
j−1 − θ‖ ≤ Ej−1 =⇒ P[‖θ̃∗

j − θ‖ ≤ Ej ] ≥ 1 − 8−(J+1−j). (4.11)

(4) After the calculation of θ̃∗
J , the new estimator θ̃∗ is computed such that

‖θ̃∗ − θ̃∗
j ‖ ≤ Ej ∀ j = 0, 1, . . . , j′ (4.12)

is satisfied for as large j′ as possible.

Now, we estimate the RMS error δ and the total cost of this estimator θ̃∗. The
total cost can be calculated as

J∑
j=1

njTj ≤
J∑

j=1
[(21 log 2)(J + 1 − j) + 1]2j−1T

≤ (42 log 2 + 1)2JT ≤ 61TJ . (4.13)

Let us say that the estimation is successful at the kth iteration if and only if

‖θ̃∗
j − θ‖ ≤ Ej ∀ j = 0, 1, . . . , k (4.14)

is satisfied. We note that the estimation is always successful at the 0th iteration.
Let pk be the probability of the estimation being not successful at the kth iter-

ation. Then, by virtue of Eq. (4.11), the probability with which the kth iteration
not being successful can be written as

pk ≤
k∑

j=1
8−(J+1−j). (4.15)
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Suppose that the estimation is successful at the kth iteration but not at the
(k + 1)th iteration, which occurs with probability pk+1 − pk. Then, we find that
the number j′ in Eq. (4.12) is at least k, since Eq. (4.12) can be satisfied by setting
θ̃∗ = θ̃. Therefore, we obtain ‖θ̃∗ − θ‖ ≤ 2Ek by the trigonometric inequality.
Similarly, if the estimation is successful at the Jth (i.e., last) iteration, we have
‖θ̃∗ − θ‖ ≤ 2EJ . Therefore, the RMS error can be calculated as

δ2 =
〈
‖θ̃∗ − θ‖2〉

≤
J∑

k=1
(pk − pk−1)(2Ek−1)2 + (1 − pJ)(2EJ)2.

=
J∑

k=1
4pk(E2

k−1 − E2
k) + 4E2

J . (4.16)

Noting that Ek < Ek−1 are all positive for 1 ≤ k ≤ J , we can substitute Eq. (4.15)
in Eq. (4.16):

δ2 ≤
J∑

k=1
4
( k∑

j=1
8−(J+1−j)

)
(E2

k−1 − E2
k) + 4E2

J

=
J∑

k=1
4 · 8−(J+1−k)E2

k−1 + 4
(

1 −
J∑

j=1
8−(J+1−j)

)
E2

J

≤ 4
J∑

k=0
8−(J−k)E2

k =
J∑

k=0
22(1−k)−3(J−k)E2

≤ 2(3−2J)E2 = 8E2
J . (4.17)

To summarize, the estimation error and the cost of the estimator θ̃∗ are the
same up to a constant factor to those of the last estimator θ∗

J in the process.
Unlike θ∗

J , however, the estimator θ̃∗ only relies on the initial condition ‖θ‖ ≤ E,
which is the advantage of the hierarchical estimation.

We note that although the Euclidean norm ‖·‖ is adopted to measure the es-
timation error, it can be replaced by any metric endowed with the trigonometric
inequality. In that sense, our approach provides a general and rigorous framework
for adaptive estimation.

4.2 Errors of Hamiltonian estimation methods
We consider estimation of a Hamiltonian Hθ =

∑m
j=1 θjXj in a spherical Hamilto-

nian model, the definition of which we describe in Sec. 2.3.2. A lower bound on the
estimation error is demonstrated in Prop. 2.6, is a lower bound applicable for any
estimation method, which can be drawn in the quantum general scheme. However,
whether or not this error bound can be attained is an open problem, owing to the
huge degree of freedom in the general scheme. Hence, we focus on two specific
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schemes of the Hamiltonian estimation, within which actual Heisenberg-limited
methods have been found in the previous literature.

One of the schemes is the quantum parallel scheme, which we have already
introduced in Sec. 2.2. The other is the quantum sequential scheme, in which the
estimation methods consists of state preparations, local operations and quantum
measurements. In other words, no quantum memory should be generated except
for the preparation of entangled states between the system HS and the ancilla HA.

Uθ Uθ Uθ· · ·
θ∗

N times

M

(a) Sequential scheme

θ∗M

Uθ

Uθ

Uθ

N subsystems ...
...

(b) Parallel scheme

Figure 4.1: Schematic images of optimal estimation methods in term of
the quantum CR bound. We note that Uθ = e−iτHθ is the unitary
evolution over time τ , so that the total time T of the Hamiltonian
evolution by Hθ is T = Nτ . (a) Method in the sequential scheme,
where the initial state is the MES of the system Hilbert space HS.
(b) Method in the sequential scheme, where the initial state is the
MES of the completely symmetric space ⊗N

symHS.

Optimal estimation methods in term of the quantum CR bound δCR is known
in both of the parallel and the sequential schemes, which are as simple as Fig. 4.1.
The optimal quantum CR bounds are [30, 59]:

δCR = m1/2d1/2

Nτ
(sequential scheme); (4.18)

δCR = m1/2d

Nτ
(parallel scheme). (4.19)
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Since Eq. (4.18) is O(d1/2) times lower than Eq. (4.19), the sequential scheme
is seemingly advantageous over the parallel scheme for Hamiltonians in a large
Hilbert space.

However, the quantum CR bounds described above cannot be attained for an
arbitrarily large N . If we denote by E the energy scale of the Hamiltonian Hθ,
the attainability of the quantum CR bound relies on the linear approximation
e−iNτE ≈ 1 − iNτE. Hence, the number r of unitary gates allowed in each
measurement is at most r = O

(
1/(τE)

)
, meaning that the Heisenberg limit δ ∝

T−1 is not attainable when T � rτ .
In fact, this problem can be solved by introducing adaptive estimation in the

two methods. As explained in Sec. 2.3.4, the benefit of adaptive estimation is intu-
itively understood as the reduction of the energy scale E, but no rigorous analysis
has been performed for multiparameter Hamiltonian estimation. In this thesis,
we compute the maximum number r of unitary gates that can be employed in the
quantum measurement. Then, by using hierarchical estimation in the previous
section, we derive the optimal error of the two methods of Hamiltonian estima-
tion, which is equivalent up to a constant factor independent of the size of the
Hamiltonian.

4.2.1 Classical scheme

First, we briefly review the basic idea of the Hamiltonian estimation in the classical
scheme, which has already been studied in the author’s master thesis. For an
operator A, we denote by ‖A‖ its operator norm and define the Hilbert–Schmidt
norm by ‖A‖HS = (trA†A)1/2. We note that ‖Hθ‖HS = ‖θ‖ always holds due to
the orthonormal condition (4.1).

Following the unitary gate estimation (Sec 2.3.1), the probe state is set to the
MES |M〉HS

of the system Hilbert space HS . By using an ancillary Hilbert space
HA, the MES can be written as

|M〉HS
= 1√

d

d∑
k=1

|k〉S ⊗ |k〉A, (4.20)

where {|k〉S} and {|k〉A} are orthonormal bases of HS and HA. For any operator
A acting on HS , a direct consequence of Eq. (4.20) is

〈M|A|M〉HS
= 1
d

trA (4.21)

and ∥∥A|M〉HS

∥∥2 = 1
d

trA†A = 1
d

‖A‖2
HS. (4.22)

After the evolution with the Hamiltonian Hθ over time τ , the probe state |M〉HS

evolves into
|qθ〉 = e−iτHθ |M〉HS

≈ (I − iτHθ)|M〉HS
, (4.23)
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where the approximation is taken up to the first order in τ . In fact, the approxi-
mation error can be bounded from above as∥∥|qθ〉 − (I − iτHθ)|M〉HS

∥∥ =
∥∥(e−iτHθ − I + iτHθ)|M〉HS

∥∥
= 1√

d

∥∥e−iτHθ − I + iτHθ

∥∥
HS

≤ τ2

2
√
d

(trH4
θ)1/2 ≤ τ2E2

2
√
d

(4.24)

and hence is negligible when α = τE is sufficiently small. For the rest of this
section, the number α should be a sufficiently small number that does not depend
on the other variables such as m and d.

Let H′
S ⊂ HS ⊗ HA be the (m+ 1)-dimensional subspace spanned by

|M〉HS
, X1|M〉HS

, . . . , Xm|M〉HS
. (4.25)

Then, the right-hand side of Eq. (4.23) belongs to H′
S regardless of the parameter

θ. Hence, we consider the projection measurement {P, 1 −P} with the projection
operator P onto H′

S , and discard the probe state corresponding to 1−P . This post-
selection yields the quantum state |q̃θ〉 ∝ P |qθ〉, which is close to (I− iτHθ)|M〉HS

and belongs to the (m + 1)-dimensional Hilbert space H′
S . We note that the

fraction of discarded probe states is negligible.
Therefore, we expect that the parameter θ can be accurately estimated by

the quantum state tomography (QST) on the postselected state |q̃θ〉. In fact,
the following proposition has been proved in the master thesis of the present
author [27]:

Proposition 4.3 When α = τE is a sufficiently small, there exists c1 > 0
such that the quantum infidelity between two quantum states |q̃θ∗〉 and |q̃θ〉 can
be bounded from below as

1 −
∣∣〈q̃θ∗

∣∣q̃θ

〉∣∣2 ≥ c1τ
2

d
‖θ∗ − θ‖2. (4.26)

We note that this proposition relies on the fact that the approximation error in
Eq. (4.24) is negligible. Although the proof involves a series of complicated ana-
lytical calculations, the bound given in Prop. (4.26) is equivalent to the quantum
CR bound, indicating the optimality. Here is a more refined version of Prop. 4.3:

Proposition 4.4 Suppose that three constants 0 < c1 < 1, c2 ≥ 1, and c3 ≥ 1 are
given. Then, there exists a constant α > 0 such that following statement holds:
Let 0 < b ≤ c3, and {Hθ} be a Hamiltonian model in d-dimensional Hilbert space
such that

1
d trH2

θ = b2‖θ‖2, 1
d trH4

θ ≤ c2
2b

2‖θ‖4. (4.27)
Then, the postselected state |q̃θ〉 satisfies

1 −
∣∣〈q̃θ∗

∣∣q̃θ

〉∣∣2 ≥ c1b
2τ2‖θ∗ − θ‖2 (4.28)

for arbitrary ‖θ∗‖, ‖θ‖ ≤ α/τ .
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Proposition 4.3 is the special case where b = d−1/2. Owing to this proposition,
the RMS error can be bounded from above by Eq. (2.33)2. With n copies of such
probe states, we obtain

δ2 =
〈
‖θ∗ − θ‖2〉

≤ d

c1τ2

〈
1 −

∣∣〈q̃θ∗
∣∣q̃θ

〉∣∣2〉
= d

c1τ2
(m+ 1) − 1
(m+ 1) + n

≤ md

c1τ2n
, (4.29)

where we note that m+ 1 is the dimension of the Hilbert space H′
S .

Under the constraint by the assumption in Prop. 4.3 and the total resource
T = nτ , the error is minimized when we set τ = αE−1. Consequently, the
estimation error exhibits the standard quantum limit (SQL) δ = O(T−1/2):

δ ≤
(
mdE

c1αT

)1/2
. (4.30)

4.2.2 Quantum sequential scheme

In Fig. 4.2, we show how to introduce adaptive feedback in the optimal estimation
method (Fig. 4.1 (a)) in the sequential scheme.

Uθ Uθ Uθ· · ·
θ∗j θ∗j+1

r times

U †θ∗

M

Figure 4.2: Schematic image for the adaptive estimation in the sequen-
tial quantum scheme. During the computation of the next estimator
θ∗

j+1, each unitary evolution Uθ is followed by a control gate U †
θ∗ based

on the previous estimator θ∗ = θ∗
j .

Suppose that we have obtained an estimator θ∗ = θ∗
j such that

‖θ∗ − θ‖ ≤ Ej = 2−jE (4.31)

holds with a high probability. In the next iteration, we repeatedly apply the
unitary evolution given by Uθ = e−iτHθ for r times. Furthermore, each unitary
evolution is followed by a control unitary gate U †

θ∗ . Since the control operation is

2The equality in Eq. (2.33) can be satisfied by the optimal QST, which we adopt here.
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local to the system HS and based only on the outcome of the previous measure-
ments, this method is free of quantum memory and still in the quantum sequential
scheme.

Now, we compute the maximum number r of subsystems such that the quantum
CR bound in Prop. 4.4 can be attained. If we define the Hermitian operator Kθ

such that
U †

θ∗Uθ = exp(iτHθ∗) exp(−iτHθ) = exp(−iτKθ), (4.32)
The entire evolution can be regarded as the Hamiltonian evolution by Kθ over
time rτ :

(U †
θ∗Uθ)r = exp(−irτKθ). (4.33)

Such Kθ is known as the Floquet Hamiltonian, and can be approximated as

Kθ = Hθ −Hθ∗ +O(τ) = Hθ−θ∗ +O(τ) (4.34)

for small τ . The residual term can be evaluated by the Baker–Campbell–Hausdorff
formula: For small operators X,Y such that ‖X‖, ‖Y ‖ ≤ 1

6 , there exists an oper-
ator Z satisfying eXeY = eZ and∥∥Z − (X + Y )

∥∥
HS ≤ cB

∥∥[X,Y ]
∥∥

HS, (4.35)

where the constant factor can be set to cB = 2.24 . . . . We may assume α ≤ 1
6

without loss of generality, in which case we may substitute X = τHθ, Y = −τHθ∗

to obtain

‖Kθ −Hθ−θ∗‖HS ≤ cBτ
∥∥[Hθ,Hθ∗ ]

∥∥
HS = cBτ

∥∥[Hθ,Hθ−θ∗ ]
∥∥

HS
≤ 2cBτEEj = 2cBαEj , (4.36)

where we have used Eq. (4.31). Therefore, the Floquet Hamiltonian Kθ can be
approximated by Hθ−θ∗ when α = τE is sufficiently small. By Eqs. (4.24) and
(4.36), the approximation error in the sequential scheme can be bounded as∥∥|qθ〉 − (I − irτHθ−θ∗)|M〉HS

∥∥ = 1√
d

∥∥e−irτKθ − I + irτHθ−θ∗
∥∥

HS

≤ 1√
d

(∥∥e−irτKθ − I + irτKθ∗
∥∥

HS + rτ‖Kθ −Hθ−θ∗‖HS

)
≤ 1

2
√
d

[
r2τ2(trK4

θ)1/2 + 2cBrτ
2(tr(i[Hθ,Hθ−θ∗ ])2)1/2] (4.37)

≤ 1
2
√
d

(
r2τ2E2

j + 4cBrτ
2EEj

)
= α2

2
√
d

(
2−2jr2 + 4cB2−jr

)
. (4.38)

Therefore, Prop. 4.4 can be applied as long as the number of unitary gate r is at
most comparable to 2j .

We set r = c4 · 2j with a constant c4, which depends on c3 and cB. Then, an
upper bound on the estimation error is given by Eq. (4.29) with τ replaced by rτ :

δ2 ≤ md

c1(rτ)2n
= md

c1c2
422jτ2n

. (4.39)
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By setting n = 64md
c1c2

4α2 , the estimation error can be further bounded by

δ2 ≤ md

c1c2
422jτ2n

≤ 2−2j−6E2 =
(1

4
Ej+1

)2
, (4.40)

implying that the adaptive estimation satisfies Eq. (4.4). The total resource re-
quired for this iteration is

Tj+1 = nrτ = 2j · 64md
c1c4αE

. (4.41)

By the hierarchical estimation, the estimation error δ =
√

8EJ =
√

8 · 2−JE

can be attained with resource at most T = 61TJ = 61 · 2J 64md
c1c4αE = 3904

√
8

c1c4α mdδ−1.
Therefore, we obtain the Heisenberg limit

δ = 3904
√

8
c1c4α

mdT−1 = O(mdT−1), (4.42)

which is consistent with the result obtained in the master thesis of the present
author.

4.2.3 Quantum parallel scheme

A rigorous error bound for the optimal method in the quantum parallel scheme
is given in this thesis for the first time. The main obstacle is to derive the error
bound on the approximation similar to Eq. (4.23), which is impossible without
an intricate investigation into the extended Hilbert space. First, we consider the
case without adaptive estimation (or equivalently, the first step of the adaptive
estimation), and compute maximum number r of unitary gates such that the
quantum CR bound can be attained. After that, we introduce adaptive estimation
and derive the estimation error.

We recall that, in the parallel scheme, each subsystem undergoes unitary evo-
lution with Uθ = e−iτHθ . The unitary evolution in the entire system is

U⊗r
θ = (e−iτHθ )⊗r = e−iτ{Hθ}r , (4.43)

{A}r =
r∑

i=1
I ⊗ · · · ⊗ A︸︷︷︸

ith

⊗ · · · ⊗ I. (4.44)

Analogously to the unitary gate estimation (Sec 2.3.1), the Heisenberg limit can
be attained when we set the probe state to be the MES |M〉Hsym in the completely
symmetric space Hsym ⊂ H⊗r

S . In this case, postselection is performed onto the
(m+ 1)-dimensional subspace

|M〉Hsym , {X1}r|M〉Hsym , . . . {Xm}r|M〉Hsym . (4.45)
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We have seen in Sec 2.3.1 that the QFI matrix is r(r+d)
1+d times larger than that

in the classical scheme. In accordance with this fact, we must set b2 = r(r+d)
1+d in

Prop. 4.4 so that
1
D

tr[Psym{Hθ}2
r ] = b2‖θ‖2. (4.46)

In this case, the error bound in Eq. (4.29) is replaced by

δ2 ≤ m

c1τ2b2n
= md(1 + d)
c1τ2r(r + d)n

. (4.47)

Therefore, we need to choose a large number as r in order to reduce this error
bound. The question is the maximal number r of subsystems that does not break
the approximation

|qθ〉 := e−iτ{Hθ}r |M〉Hsym ≈
(
I − iτ{Hθ}r

)
|M〉Hsym . (4.48)

In fact, the approximation (4.48) can be bounded in a way similar to Eq. (4.24):

∥∥|qθ〉 −
(
I − iτ{Hθ}r

)
|M〉Hsym

∥∥ ≤ τ2

2
√
D

(
tr[Psym{Hθ}4

r ]
)1/2

, (4.49)

where D = (r+d−1)!
r!(d−1)! is the dimension of Hsym and Psym is the projection operator

onto Hsym. The right-hand side of Eq. (4.49) can be bounded by the following
proposition:

Proposition 4.5 For an arbitrary traceless operator X, the following identity
holds:

1
D

tr[Psym{X}4
r ] = r(r + d)(6r2 + 6dr + d2 − d)

d(d+ 1)(d+ 2)(d+ 3)
trX4

+ 3r(r + d)(r − 1)(d+ r + 1)
d(d+ 1)(d+ 2)(d+ 3)

(trX2)2. (4.50)

In fact, we have found an algorithm to calculate

tr[Psym{X}m
r ] (4.51)

in terms of trX, . . . , trXm for general m, where X is not necessarily traceless.
The derivation of this algorithm uses the grand partition function of a free boson
as the generating function of Eq. (4.51). To avoid a digression from the main
argument, we refer to Appendix A for the detail.

We focus on the fact that the coefficients on the right-hand side of Eq. (4.50) is
both O

(
(r/d)4) for r ≥ d. In fact, we have

1
D

tr[Psym{Hθ}4
r ] ≤ 9

16

(
1 + 2r

d

)4
‖θ‖4. (4.52)
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Therefore, the approximation error can be bounded as

∥∥|qθ〉 −
(
I − iτ{Hθ}r

)
|M〉Hsym

∥∥ ≤ 3
8

(
1 + 2r

d

)2
τ2E2, (4.53)

whence we can choose r = O(d) for the number of subsystems.
Now, we introduce the adaptive estimation in the parallel scheme, the schemat-

ics of which is shown in Fig. 4.3.

θ∗j+1

θ∗j

M

Uθ

Uθ

Uθ

r subsystems
...

...

U †θ∗

Figure 4.3: Schematics for the adaptive estimation in the parallel quan-
tum scheme. The control gates U †

θ∗ are applied only once per each
subsystem, which can be regarded as a part of the measurement pro-
cess. The control gates on the (j+ 1)th sector depends on the previous
estimator θ∗ = θ∗

j .

Suppose that we have obtained an estimator θ∗ = θ∗
j such that

‖θ∗ − θ‖ ≤ Ej = 2−jE (4.54)

holds with a high probability.
In the next iteration, the unitary evolution (e−iτHθ )⊗r is followed by a control

unitary gate (eiτHθ∗ )⊗r right before the measurement. As described in Fig. 4.3,
the control unitary gate can be regarded as a part of the quantum measurement.
Moreover, the evolution by the Hamiltonian Hθ can be performed before any
of the measurement. Therefore, this estimation method is still in the quantum
parallel scheme without any feedback protocol, despite the measurement itself
being adaptive.

In this case, the unitary evolution can also be described by the same Floquet
Hamiltonian Kθ as in (4.32):

|qθ〉 = eiτ{Hθ∗ }re−iτ{Hθ}r |M〉Hsym = e−iτ{Kθ}r |M〉Hsym . (4.55)
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The approximation error in the adaptive estimation can be evaluated in a way
similar to Eq. (4.37):∥∥|qθ〉 − (I − iτ{Hθ−θ∗}r)|M〉HS

∥∥
≤ 1

2
√
D

[
τ2(trPsym{Kθ}4

r)1/2 + 2cBrτ
2(trPsym{i[Hθ,Hθ−θ∗ ]}2

r

)1/2] (4.56)

≤ 3
8

(
1 + 2r

d

)2
τ2E2

j + 2cB

(
1 + 2r

d

)
τ2EEj

= α2
[3

8

(
1 + 2r

d

)2
2−2jr2 + 2cB

(
1 + 2r

d

)
2−jr

]
, (4.57)

whence we may choose r = c5 · 2jd for some constant c5 > 0. The estimation error
in Eq. (4.47) then becomes

δ2 ≤ md(1 + d)
c1τ2r(r + d)n

= m

c1c2
5τ

222jn
, (4.58)

which becomes
(1

4Ej+1
)2 if we set n = 64m

c1c2
5α2 . Finally, the total cost required in

this iteration is

Tj+1 = nrτ = 64m
c1c2

5α
2 · c52jd · τ = 2j · 64md

c1c5αE
, (4.59)

which is equivalent to (4.41) up to a constant factor. Therefore, with the hier-
archical estimation, the estimation error in the parallel scheme reaches the same
Heisenberg limit as the sequential scheme:

δ = 3904
√

8
c1c5α

mdT−1 = O(mdT−1). (4.60)

The crucial point of the parallel scheme is that the number r of unitary gates
in the quantum scheme involves a factor O(d), which does not appear in the se-
quential scheme. This marks an essential distinction of our work from a preceding
study by Yuan [30], in which a common number r of unitary gates are consid-
ered in comparing these two schemes. Yuan’s analysis results in the advantage of
sequential scheme by an O(d−1/2) factor of estimation error.

We, on the other hand, consider a common energy scale E between both
schemes, which appears to be a more natural situation. This assumption re-
quires an analysis beyond the simple CR bound, which we have resolved by the
adaptive estimation with a decreasing energy scale Ej . By calculating the op-
timal number r of unitary gates regarding the energy scale Ej , we have found
that the parallel scheme can make use of more unitary gates than the sequential
scheme. Finally, the advantages of both schemes in different aspects compensate
each other, resulting in the same estimation error up to a constant factor.
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Chapter 5

Quantum Metrology for Function Estimation

In this chapter, we provide a fundamental framework for quantum estimation
of a continuously varying quantity, namely a function. As the first attempt to
establish function estimation in quantum metrology, we work on a simple model
of phase function estimation, which we introduce in Sec. 5.1. It is a minimal yet
fundamental model in which the phase shift φ(x) depends on the position x in a
one-dimensional interval [0, L]. We define the regularity of the function φ(x) by a
mean-square variant of the Hölder continuity of order q, and the estimation error
is also measured by the mean-square error (MSE).

The error of the function estimation is calculated in the three situations. The
first two situations use specific estimation methods (Sec. 5.2), while the last situ-
ation does not specify the method (Sec. 5.3):

• Estimation error for a method that we call the position-state (PS) method,
in which the probe state is localized in position. In this method, we consider
all regularity (q > 0), although periodicity of the phase must be taken in
consideration for q > 1; in the latter case, we introduce additional regularity
(a uniform upper bound on φ′(x)) and use the mean-square periodic error
(MSPE) as the error measure, .

• Estimation error for a method that we call the wavenumber-state (WS)
method, in which the probe state is localized in wavenumber. In this method,
we only consider regularity with 0 < q ≤ 1, because this method is not ap-
plicable for q ≥ 1. We also use the mean-square periodic error (MSPE) as
the error measure.

• Lower bound on the estimation error independent of the estimation method.
In the quantum scheme, however, we assume some additional assumption
on the initial probe state. Instead of arbitrarily entangled N particles, we
assume that n1 groups of n2 entangled particles in a unique symmetric sec-
tor. We hypothesize that the Heisenberg limit is unaltered by clearing this
assumption.

In any case of the above, all yields the same scaling laws: δ = O
(
(LM1/qN−1)q/(2q+1))

without entanglement and δ = O
(
(LM1/qN−1)q/(q+1)) with entanglement.

In Sec. 5.4, we consider two types of extension of our model. One is the esti-
mation of functions over an infinite-length interval, where we find the relation to
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the previous studies on Gaussian process estimation. The other is the estimation
of multivariate functions, where a hypothesis on the error bounds is presented.

5.1 Phase function estimation
5.1.1 Physical system and resource
We adopt a phase-shift gate as our target of estimation, which respects the min-
imal model of quantum metrology for parameter estimation. Here we consider a
situation in which the phase φ(x) varies with the position x.

In this setting, the physical system must be interpreted as a system of particles.
If a particle at position x, the unitary dynamics Uφ shifts its phase by φ(x). In the
Hilbert space of one particle, let us denote by |x;m〉 the simultaneous eigenstate
of position x and internal state m, where the inner product of two eigenstates is
defined as

〈x;m|x′;m′〉 = δ(x− x′)δmm′ . (5.1)

We note that |x;m〉 is not an physical state since it is unnormalizable. Informally,
the norm |x;m〉 can be regarded as a vector of length 1√

dx
, where dx represents

the infinitesimal length. Furthermore, we consider two internal states1 “+” and
“−”. The particles in the + state are phase-shifted by the unitary dynamics, while
those in the − state remain unchanged. Then, the action of the unitary dynamics
Uφ can formally be written as

Uφ|x; +〉 = eiφ(x)|x; +〉, Uφ|x; −〉 = |x; −〉. (5.2)

The resource of quantum metrology is the number N of particles that are used
for the probe. The standard quantum limit (SQL) refers to the fundamental bound
on the estimation error in the classical scheme, which precludes entanglement
between the particles. We allow interparticle entanglement in the quantum scheme,
on the other hand, which will lead to the Heisenberg limit on the estimation error.

To simplify discussions, we consider a one-dimensional system confined in a
finite interval 0 ≤ x ≤ L with the boundary condition φ(x + L) = φ(x). In
Sec. 5.4, we briefly discuss phase function estimation in other types of systems
such as the infinite length limit L → ∞ and systems with higher dimensions.

5.1.2 Error measure and regularity
As we have explained in Sec. 3.1.1, function estimation involves the choice of an
appropriate regularity. This is also true even with quantum metrology. In fact,
function estimation involves infinite degrees of freedom, which causes the quantum
Cramér–Rao (CR) bound to diverge when seen as a multiparameter estimation
problem.

1We do not exclude the possibility of other degrees of freedom about the particle. For example,
the exchange symmetry of the particles may or may not exist.
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5.1 Phase function estimation

We also note that there are multiple ways to measure an estimation error.
Hence, we must choose the regularity and the error measure that are appropriate
for quantum metrology.

It is convenient to introduce some function norms. For example, if we employ
the uniform norm ‖·‖∞ defined as2

‖u‖∞ = sup
x

|u(x)|, (5.3)

the statement of Th. 3.2 can be written as follows:

‖f (m)‖∞ ≤ M =⇒ ‖f∗ − f‖∞ ≤ ChmM. (5.4)

In this formula, the premise (left of ⇒) represents the regularity and the conclusion
(right of ⇒) provides an error bound.

In quantum metrology, on the other hand, it is more suitable to use the L2 norm
‖·‖2:

‖u‖2 =
[∫ L

0

dx

L
|u(x)|2

]1/2
. (5.5)

In fact, we find that L2 norm is compatible to the Euclidean distance in multi-
parameter estimation, and therefore we can employ the quantum CR inequality
to give a suitable error bounds. Moreover, an L2 norm naturally appears as the
metrics of a Hilbert space, which is directly connected to the quantum mechanics.

A candidate of the error measure is therefore the mean-square error :

MSE(φ∗, φ) = ‖φ∗ − φ‖2
2 =

∫ L

0

dx

L
|φ∗(x) − φ(x)|2. (5.6)

Finally, the estimation error δ is given as the stochastic average over the estimator
φ∗:

δ2 =
〈
MSE(φ∗, φ)

〉
. (5.7)

Since the error is measured by using the L2 norm, the regularity of the function
should also be described by using the L2 norm of the mth derivative (see Eq. (3.5)):

‖φ(m)‖2 ≤ M. (5.8)

As we have explained in Sec. 3.1.3, it is more desirable to take a broad class of
functions in consideration. In that sense, we generalize Eq. (5.8) to an L2 coun-
terpart of the class Cm,σ regularity (Def. 3.4), so that the degrees of smoothness is
continuously parametrized by q = m+σ. The definition of the σ-Hölder continuity
in Def. 3.3 can be rewritten as

sup
ε6=0

‖∆εf‖∞
|ε|σ

≤ M, (5.9)

2More strictly, we need to ignore values in a set of measure zero when taking the supremum in
Eq. (5.3), which is called the essential supremum.
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where we have employed a finite difference denoted by ∆ε:

∆εf(x) = f(x+ ε) − f(x). (5.10)

Therefore, the L2 counterpart of the Hölder continuity is given as follows:

Definition 5.1 A function f is said to be weakly σ-Hölder continuous if there
exists some constant M ≥ 0 such that

sup
ε6=0

‖∆εf‖2
|ε|σ

≤ M, (5.11)

or more explicitly,

sup
ε6=0

∫ L

0

dx

L

|f(x+ ε) − f(x)|2

|ε|2σ
≤ M2. (5.12)

The minimum of such M is called the weak σ-Hölder norm of f .

Using the definition above, we define the L2 counterpart of the class Cm,σ

regularity as follows:

Definition 5.2 Let us set q = m + σ with an integer m ≥ 0 and a number
0 < σ ≤ 1. When a function φ is m-time differentiable, and the mth derivative
φ(m) is weakly σ-Hölder continuous with norm M , we say that the function φ is
(q,M)-regular. In other words, the function φ is (q,M)-regular if and only if

sup
ε 6=0

∫ L

0

dx

L

|φ(m)(x+ ε) − f (m)(x)|2

|ε|2σ
≤ M2. (5.13)

Although the (q,M)-regularity is complicated in appearance, it is indeed suit-
able to handle function estimation in quantum metrology. To summarize, the goal
of the function phase estimation is to evaluate the estimation error defined in (5.7)
under the assumption of the (q,M)-regularity.

5.2 Methods of function estimation
Before entering the general theory, let us begin with specific methods of phase
function estimation. We present two methods with significantly different process
of estimation. We call them the position-state method and the wavenumber-state
method, since the probe states used in these methods are localized in position
and wavenumber, respectively. Moreover, the position-state method employs the
local linear smoothing (LLS), a classical algorithm introduced in Sec. 3.1, while
the wavenumber-state method uses the quantum state tomography (QST), the
quantum estimation technique introduced in Sec. 2.1.4. Despite these significant
differences, the error bounds become equivalent up to a constant factor between
both methods, may it be in the classical scheme or quantum one.
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5.2 Methods of function estimation

5.2.1 Position-state method

The first method uses the quantum version of the LLS. We take n1 sample points
0 ≤ x1 < x2 < · · · < xn1 < L and estimate each phase φ(xj) by using n2 particles,
so that N = n1n2 particles are used in total. These sample points are distributed
with the equal spacing h = L/n1.

We call this method the position-state method because the probe states are
localized in the position:

|q〉 ∝ 1√
2
(
|xj ; +〉 + |xj ; −〉

)
. (5.14)

We note that the completely localized state in position written in Eq. (5.14) is not
a physical state. Rather, a physical quantum state is approximately described by
a linear superposition state over a finite width l > 0, say,

|q〉 = 1√
2l

∫ xi+l/2

xi−l/2
dx
(
|x; +〉 + |x; −〉

)
. (5.15)

With sufficiently small l � h, we may assume that the probe state is given by
Eq. (5.14), which can be used to measure the phase θj = φ(xj) at the sample point
xj . Let us assume n2 separable particles in this probe state, and θ∗

j be the optimal
unbiased estimator for θj . Then, the problem is equivalent to the estimation of a
single phase, where the estimation error is given by the SQL in Sec. 2.2.1:〈

|θ∗
j − θj |2

〉
= n2

−1. (5.16)

We consider an LLS kernel β of degree m with support s. Regarding the periodic
boundary condition of [0, L], the estimator φ∗ for the entire function is calculated
as

φ∗(x) =
n1∑

j=1
θ∗

j

∑
d∈Z

β

(
x− xj + Ld

h

)
. (5.17)

We note that the summation over d is essentially finite. In fact, when n1 > s, the
value β

(x−xj+Ld
h

)
becomes nonzero for at most one instance of d ∈ Z per every j.

The stochastic average of the estimator φ∗ is

φLLS(x) =
n1∑

j=1
θj

∑
d∈Z

β

(
x− xj + Ld

h

)
. (5.18)

Then, by a straightforward calculation, we can decompose the squared error δ2

into two terms:

δ2 =
〈
MSE(φ∗, φ)

〉
= δ2

det + δ2
stat, (5.19)

δ2
det := MSE(φLLS, φ), δ2

stat :=
〈
MSE(φ∗, φLLS)

〉
, (5.20)
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where δ2
det originates from the LLS and δ2

stat is due to the stochastic nature of the
measurement. In this sense, Eq. (5.19) is regarded as a decomposition into the
bias and the variance similar to Eq. (2.5).

First, we calculate the statistical term δ2
stat. As long as n1 > s, this term is

found to be independent of n1. In fact,

δ2
stat =

〈
MSE(φ∗, φLLS)

〉
=
〈∫ L

0

dx

L

∣∣φ∗(x) − φLLS(x)
∣∣2〉 (5.21)

=
n1∑

j=1
〈|θ∗

j − θj |2〉
∫ L

0

dx

L

∣∣∣∣∑
d∈Z

β

(
x− xj + Ld

h

)∣∣∣∣2 (5.22)

= n1n
−1
2

∫ s/2

−s/2

hdz

L
|β(z)|2 = ‖β‖2

2n
−1
2 . (5.23)

Next, we evaluate the deterministic term δ2
det. In principle, the scaling of this

error is the same as the one derived in Th. 3.5; however, the derivation is rather
complicated because of the difference in the error measure.

Proposition 5.3 Suppose that β is an LLS kernel of degree m with support s.
Then, for any (q,M)-regular function φ (cf. Def. 5.2), the function φLLS in
Eq. (5.18) satisfies √

MSE(φLLS, φ) ≤ ChqM, (5.24)

where q = m+ σ and C =
√

2
2σ+1

sq+1

2q(m−1)! supz|β(z)|.

The proof of this proposition will be given at the end of this subsection.
So far, we have obtained the two terms of error:

δ2
stat = ‖β‖2

2n
−1
2 , δ2

det = C2h2qM2 = C2L2qn−2q
1 M2. (5.25)

Noting that N = n1n2, there exists a trade-off relation between the bias and the
variance. The optimal balance between n1 and n2 is

n1 = O
(
(L2qM2N)1/(2q+1)), n2 = O

(
(L−2qM−2N2q)1/(2q+1)), (5.26)

where we attain the SQL by the position-state method in the classical scheme:

δSQL = O
(
(LM1/qN−1)q/(2q+1)). (5.27)

The corresponding Heisenberg limit is obtained if we consider n2 entangled par-
ticles instead of separable ones. The optimal state is the generalized Greenberger–
Horne–Zeilinger state (GHZ state):

|q〉 ∝ 1√
2
(
|xj ; +〉⊗n2 + |xj ; −〉⊗n2

)
, (5.28)
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where we achieve
〈
|θ∗

j − θj |2
〉

= n2
−2 instead of Eq. (5.16). This alters the expo-

nent of n2 in Eq. (5.25) accordingly:

δ2
stat = ‖β‖2

2n
−2
2 , δ2

det = C2L2qn−2q
1 M2. (5.29)

which results in the optimal error

δHL = O
(
(LM1/qN−1)q/(q+1)). (5.30)

Proof of Prop. 5.3. We can use the same argument as the proof of Th. 3.5 to
derive

φLLS(x) − φ(x) =
n1∑

j=1

∑
d∈Z

β

(
x− xj + Ld

h

)
Rx(xj − Ld), (5.31)

where Rx(x′) is the residual of the Taylor expansion:

Rx(x′) =
∫ x′

x

(x′ − t)m−1

(m− 1)!
[φ(m)(t) − φ(m)(x)]dt. (5.32)

When x ≤ x′ ≤ x+ sh/2, this residual term can be bounded from above as

∣∣Rx(x′)
∣∣2 ≤ (x′ − x)

∫ x′

x

∣∣∣∣(x′ − t)m−1

(m− 1)!
[φ(m)(t) − φ(m)(x)]

∣∣∣∣2dt
≤ (sh/2)2m−1

[(m− 1)!]2
∫ x′

x

∣∣φ(m)(t) − φ(m)(x)
∣∣2dt

≤ (sh/2)2m−1

[(m− 1)!]2
∫ x+sh/2

x−sh/2

∣∣φ(m)(t) − φ(m)(x)
∣∣2dt

≤ (sh/2)2m−1

[(m− 1)!]2
∫ sh/2

−sh/2

∣∣∆εφ
(m)(x)

∣∣2dε, (5.33)

where the first inequality results from the Cauchy–Schwartz inequality. The same
bound also holds for x− sh/2 ≤ x′ ≤ x.

Let us set B = supz|β(z)|. We restrict the pairs (j, d) in the summation (5.31)
such that the value β

(x−xj+Ld
h

)
is nonzero. This condition is satisfied only if

|x− xj + Ld| ≤ sh/2, and there exist at most s instances of such (j, d). Hence,

∣∣φLLS(x) − φ(x)
∣∣2 =

∣∣∣∣∑
j,d

β

(
x− xj + Ld

h

)
Rx(xj − Ld)

∣∣∣∣2

≤
∑
j,d

∣∣∣∣β(x− xj + Ld

h

)∣∣∣∣2 ·
∑
j,d

∣∣∣∣Rx(xj − Ld)
∣∣∣∣2

≤ sB2 · s(sh/2)2m−1

[(m− 1)!]2
∫ sh/2

−sh/2

∣∣∆εφ
(m)(x)

∣∣2dε. (5.34)
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By integrating both hands over 0 ≤ x ≤ L, we obtain

MSE(φLLS, φ) =
∫ L

0

dx

L

∣∣φLLS(x) − φ(x)
∣∣2

≤ s2B2 (sh/2)2m−1

[(m− 1)!]2
∫ sh/2

−sh/2
M2ε2σdε

≤ 2s2B2M2 (sh/2)2m+2σ

(2σ + 1)[(m− 1)!]2
= C2M2.

5.2.2 A caveat: the phase periodicity problem
In the estimation of a phase function, however, we need to consider the 2π-
periodicity of the phase. For this reason, we measure the distance between two
phases θ and θ′ by ignoring the difference of an integer multiple of 2π:

[θ′ − θ]2π = min
n∈Z

|θ′ − θ − 2πn|. (5.35)

On the estimation of a single phase θj , we only need to replace the absolute value
with [·]2π:

〈[θ∗
j − θj ]22π〉 = O(n−1

2 ) (5.36)

for separable probe states and

〈[θ∗
j − θj ]22π〉 = O(n−2

2 ) (5.37)

for entangled probe states [81].
For m ≥ 1, however, the phase periodicity problem have a serious effect on the

LLS. Although each phase θj can be estimated modulo 2π, the entire function
φ∗(x) in Eq. (5.17) cannot be determined even modulo 2π, since the coefficients
β
(x−xj

h

)
is not an integer in general. This does not apply to the case of m = 0,

since the kernel β(z) can always be an integer for this case.
In order to circumvent this problem, we require an additional regularity on the

phase function φ. One such regularity is a uniform bound on the first derivative:

‖φ′‖∞ ≤ M1, (5.38)

in which case |θj+1 − θj | ≤ π/2 holds for sufficiently large n1. Then, except for a
rare event with probability exponentially small in n2, we can estimate the relative
angle θ∗

j+1 − θ∗
j within the error of π/2. Therefore, we can calculate the estimator

without being annoyed by the phase periodicity.
We note that, even with Eq. (5.38), the estimator φ∗(x) is still determined

modulo 2π. Therefore, a pertinent error measure can be defined by replacing the
absolute value in the mean-square error (5.6) with [·]2π:

MSPE(φ∗, φ) :=
∫ L

0

dx

L
[φ∗(x) − φ(x)]22π, (5.39)
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which is called the mean-square periodic error in Ref. [82]. Then, the estimation
error δ is described by

δ2 =
〈
MSPE(φ∗, φ)

〉
, (5.40)

which are bounded by the SQL (5.27) or the Heisenberg limit (5.30) in their
respective schemes.

A yet simpler solution is to restrict the phase function within a finite range,
e.g., |φ(x)| ≤ π/2, in which case the phase periodicity problem is no longer exists,
and the estimation error may be given by Eq. (5.7).

5.2.3 Wavenumber-state method

In this section, we introduce another method of function estimation, which turns
out to be only applicable for 0 < q ≤ 1, i.e. m = 0. The one-particle probe state
is set to

|q〉 = 1√
2L

∫ L

0
dx
(
|x; +〉 + |x; −〉

)
, (5.41)

which is completely delocalized in position as opposed to Eq. (5.14). In fact, this
state is the eigenstate for the wavenumber k = 0, whence we call this method the
wavenumber-state method. We note that all N particles should be in this identical
state in the classical scheme.

After the unitary evolution by Uφ, this state will evolve into

|qφ〉 = 1√
2L

∫ L

0
dx
(
eiφ(x)|x; +〉 + |x; −〉

)
. (5.42)

Therefore, if we can completely identify the wavefunction of |qφ〉, we can retrieve
the target function φ. Of course, the quantum state |qφ〉 can be accessed only
through a finite number of measurements, which restricts the amount of informa-
tion available. The quantum state |qφ〉 can be approximately reconstructed via
the QST introduced in Sec. 2.1.4. However, the error bound is known to diverge
when the dimension of the Hilbert space is infinite, which is the case with the
function estimation.

Therefore, in the wavenumber-state method, we take the following strategy:

• We choose an appropriate subspace H of the Hilbert space of the particle,
whose dimension D = dim H is finite.

• We perform the projection measurement with the POVM generated by
{P, I − P}, where P denotes the projection operator onto H.

• We discard the probe state if the measurement outcome corresponds to I−P .
This postselection yields the quantum state |q̃φ〉 ∝ P |qφ〉 ∈ H.

• We perform the QST on |q̃φ〉, and the estimator φ∗ is retrieved from the
reconstructed state |q∗〉 so that |qφ∗〉 is the closest to the state |q∗〉.
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The estimation error by this method can be bounded by the quantum infidelity
I
(
|q∗〉, |qφ〉

)
between the reconstructed state |q∗〉 and the original probe state |qφ〉,

where the quantum infidelity is generally defined as

I
(
|q〉, |q′〉

)
= 1 −

∣∣〈q|q′〉
∣∣2. (5.43)

In fact, the mean-square periodic error in Eq. (5.39) can be bounded from above
by the infidelity. First, the inequality

I
(
|φ〉, |qφ∗〉

)
≤ 2

[
I
(
|q∗〉, |qφ〉

)
+ I

(
|q∗〉, |qφ∗〉

)]
≤ 4I

(
|q∗〉, |qφ〉

)
(5.44)

follows from the definition of the estimator φ∗, thus we have

4I
(
|q∗〉, |qφ〉

)
≥ I

(
|qφ∗〉, |qφ〉

)
= 1 −

∣∣∣∣ 1
2L

[∫ L

0
dxe−iφ∗(x)eiφ(x) +

∫ L

0
dx · 1

]∣∣∣∣
≥ 1 − 1

2L

∫ L

0
dx
∣∣ei[φ(x)−φ∗(x)] + 1

∣∣
= 1
L

∫ L

0
dx

(
1 − cos 1

2
[φ(x) − φ∗(x)]

)
≥ 1
π2L

∫ L

0
dx[φ(x) − φ∗(x)]22π = 1

π2 MSPE(φ∗, φ). (5.45)

Therefore, the estimation error can be decomposed into two parts:

δ2 ≤ 4π2〈I(|q∗〉, |qφ〉
)〉

≤ 8π2(δ2
PS + δ2

QST), (5.46)
δ2

PS := I
(
|q̃φ〉, |qφ〉

)
, δ2

QST :=
〈
I
(
|q∗〉, |q̃φ〉

)〉
. (5.47)

On the right-hand side of Eq. (5.46), δPS is a deterministic value arising from
the postselection, while δQST is a stochastic value owing to the QST. In this sense,
Eq. (5.46) may be interpreted as the bias–variance decomposition similar to (5.19).

The estimation error depends on the choice of the Hilbert space H. We will
see that the estimation error can be efficiently bounded when H consists of the
quantum state with a small wavenumber.

First, we express this state in terms of the basis consisting of wavenumber
eigenstates:

|qφ〉 = 1√
2

(∑
k∈Z

uk|ek〉 + |f0〉
)
, (5.48)

|f0〉 =
∫ L

0

dx√
L

|x; −〉, |ek〉 =
∫ L

0

dx√
L
e2πikx/L|x; +〉. (5.49)

The coefficients uk are determined by the Fourier transform of the function

u(x) := eiφ(x) =
∑
k∈Z

uke
2πikx/L. (5.50)
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Since |∆εu(x)| = |eiφ(x+ε)−iφ(x)| ≤ |φ(x+ ε) − φ(x)| = |∆εφ(x)|, we see that the
regularity of the phase function φ is inherited to the function u:3

sup
ε 6=0

‖∆εu‖2
|ε|σ

≤ sup
ε 6=0

‖∆εφ‖2
|ε|σ

≤ M. (5.51)

Next, we use the following theorem:

Theorem 5.4 Let us set 0 < q ≤ 1. We consider an arbitrary function u : [0, L] →
C with the periodic boundary condition, and define its Fourier transform {uk}k∈Z
by

u(x) :=
∑
k∈Z

uke
2πikx/L. (5.52)

Then, there exists a real number Cq > 0 such that if u is (q,M)-regular, the
high-wavenumber components of {uk} can be bounded as

∞∑
k=K

(|uk|2 + |u−k|2) ≤ CqM
2
(
L

K

)2q

(5.53)

for an arbitrary integer K > 0.

The proof of this theorem is given in Appendix B, which is based on Ref. [83].
Now, let H be the Hilbert space spanned by |f0〉, |e−K+1〉, |e−K+2〉, . . . , |eK−1〉.

This Hilbert space has a finite dimension dim H = 2K, and contains quantum
states with wavenumbers less than 2πK/L. Moreover, we can use Th. 5.4 to
bound the probability p of failure in the postselection:

p =
∥∥(1 − P )|qφ〉

∥∥2 =
∑

k=K

1
2

(|uk|2 + |u−k|2) ≤ 1
2
CqM

2
(
L

K

)2q

, (5.54)

indicating that p is negligible for sufficiently large K. In fact, the postselection
infidelity is also equal to p:

δ2
PS = I

(
|q̃φ〉, |qφ〉

)
= 1 −

∣∣〈qφ

∣∣q̃φ
〉∣∣2

= 1 −
∣∣∣∣〈qφ| P |qφ〉

‖P |qφ〉‖

∣∣∣∣2 = 1 − ‖P |qφ〉‖2

= p = O(K−2qL2qM2). (5.55)

On the other hand, the QST infidelity δ2
QST depends on the dimension 2K of

the Hilbert space and the number N of particles used in the estimation4. The
optimal fidelity follows from Eq. (2.33):

δ2
QST =

〈
I
(
|q∗〉, |q̃φ〉

)〉
= 2K − 1
N + 2K

= O(KN−1), (5.56)

3the similar relation does not hold for m ≥ 1, which is why we have restricted q to 0 < q ≤ 1
for the wavenumber-state method.

4Since postselection may fail, (1−p)N particles are actually available for QST on average. This
does not affect the error evaluation as p remains small for sufficiently large N .
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where we note that K � N is required for small infidelity.
Finally, the optimal error δ2 =

〈
MSPE(φ∗, φ)

〉
is obtained by the trade-off

between Eqs. (5.55) and (5.56). This is attained by setting the cutoff wavenumber
K to K = O

(
(L2qM−2N)1/(2q+1)). In this case, when

δSQL = O
(
(LM1/qN−1)q/(2q+1)) (5.57)

is obtained.

5.2.4 Amplified estimation
In the quantum scheme, the wavenumber-state method is not so straightforward
as the position-state method. In order to exploit n2-particle entanglement for
n2 > 1, the wavenumber eigenstate in Eq. (5.41) should be replaced with the
multipartite Einstein–Podolsky–Rosen state (EPR state):

|q(n2)〉 ∝ 1√
2L

∫ L

0
dx
(
|x; +〉⊗n2 + |x; −〉⊗n2

)
. (5.58)

This state will evolve into

|qφ(n2)〉 ∝ 1√
2L

∫ L

0
dx
(
einφ(x)|x; +〉⊗n2 + |x; −〉⊗n2

)
(5.59)

by the unitary evolution U⊗n2
φ . By comparing Eq. (5.59) with Eq. (5.42), we find

that the amplified phase function ψ(x) = n2φ(x) can be estimated by performing
the postselective measurement and the QST on the probe state (5.59). Since φ is a
(q,M)-regular function, the amplified function ψ is found to be (q, n2M)-regular.

By preparing n1 copies of this probe state, we can obtain the estimator ψ∗ for the
amplified function ψ. Therefore, we expect that the estimator φ∗ for the original
phase function be obtained by φ∗(x) = 1

n2
ψ∗(x). We note that this expectation is

not entirely correct; ψ∗(x) can be calculated only modulo 2π in the wavenumber-
state method, leading to the ambiguity of φ∗(x) by an integer multiple of 2π/n2.
We will show the how to remove this ambiguity problem later.

For the amplified estimator ψ∗, the postselection and QST infidelities can be
calculated similarly to Eqs. (5.55) and (5.56):

δPS = O(K−qLqn2M), δQST = O

((
1 + n1

K

)−1/2)
. (5.60)

We note that, in order to remove the phase ambiguity in φ∗, the original error in
ψ∗ must be below some constant, say π

3 . This implies that the number n1 must
be comparable with K, in which case we may simply write δQST = O(K1/2n

−1/2
1 ).

Now, we suppose that φ∗(x) can be calculated without ambiguity. For the
estimator φ∗ of the original function φ based on φ∗(x) = 1

n2
ψ∗(x), each component

of the error should be multiplied by n−1
2 :

δPS = O(K−qLqM), δQST = O(K1/2n
−1/2
1 n−1

2 ) = O(K1/2n
1/2
1 N−1), (5.61)
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where N = n1n2 is the total number of particles. Equation (5.61) indicates that
n1 should be as small as possible, which yields n1 = O(K). Therefore, the optimal
error is obtained as the trade-off relation between

δPS = O(K−qLqM) and δQST = O(KN−1). (5.62)

The terms δPS and δQST become the same order of magnitude when K is set to
O
(
(LqMN)1/(q+1)), which leads to the Heisenberg limit:

δHL = O
(
(LM1/qN−1)q/(q+1)). (5.63)

Because n1 = O(K) and n1n2 = N , the parameters n1 and n2 should be chosen
so that

n1 = O
(
(LqMN)1/(q+1)), n2 = O

(
(L−qM−1N q)1/(q+1)). (5.64)

Now, we explain how to remove the ambiguity concerning the estimator φ∗.
This can be done by an idea similar to the hierarchical estimation in Sec. 4.1.

We choose an integer J > 0 such that 4c12J = (L−qM−1N q)1/(q+1) for suf-
ficiently large c1, and consider a sequence of estimators ψ∗

j (j = 0, 1, . . . , J) by
setting the parameters

K = c2(LqMN)1/(q+1),

n1 = c1(J + 1 − j)(LqMN)1/(q+1) = 1
4(J + 1 − j)2−JN,

n2 = 2j .

(5.65)

Then, each ψ∗
j becomes an estimator for the amplified function ψj(x) = 2jφ(x),

and the final estimator j = J corresponds to the Heisenberg limit in Eq. (5.63).
Moreover, this is consistent with the number N of particles; in fact, the total
number of particles needed in the estimation is

J∑
j=0

n1n2 =
J∑

j=0

1
4

(J + 1 − j)2j−JN = [1 − 2−J(J + 1)]N, (5.66)

and does not exceed N .
The expected error of the estimator is

〈
MSPE(ψ∗

j , ψj)
〉

= O(1), which can be
arbitrarily small by setting sufficiently large c1 and c2. Furthermore, the factor
J + 1 − j in n1 can be utilized for the Chernoff bound (Th. 4.1), in which the
probability of a significant failure in QST becomes exponentially small in J+1−j.
In fact, for sufficiently large c1, we have

P
[
MSPE(ψ∗

j , ψj) ≥
(
π

3

)2]
≤ 8−(J−j), (5.67)

where P denotes the probability of the event. Hence, if we define a subset Xn of
the interval [0, L] by

In = {0 ≤ x ≤ L | [ψ∗
j (x) − ψj(x)]2π ≥ π/3}, (5.68)

73



Chapter 5 Quantum Metrology for Function Estimation

its Lebesgue measure |In| is at most 8−(J−j)L on average.
Finally, we define the estimator φ∗(x) for every x so that

[ψ∗
j (x) − 2jφ∗(x)]2π <

π

3
, ∀ j = 1, . . . ,m (5.69)

holds for as large m as possible. Such φ∗(x) can be taken as long as x /∈ I0 ∪ I1 ∪
· · · ∪ Im because of Eq. (5.68). Once Eq. (5.69) is satisfied, the phase ambiguity
is resolved up to modulo 2π

2m and the value [φ∗(x) − φ(x)]2π is at most 2π
3·2m .

Therefore, the error of the estimator φ∗ can be calculated as

δ2 =
〈∫ L

0

dx

L
[φ∗(x) − φ(x)]22π

〉

≤
〈J−1∑

j=0

|Ij |
L

( 2π
3 · 2m

)2
+
( 2π

3 · 2J

)2〉

≤
J∑

j=0

4π2

9 · 4j
· 8(j−J) = 8π2

9 · 4J
= 128π2c2

1
9

(L−qM−1N q)2/(q+1), (5.70)

which is the Heisenberg limit with an additional factor.
The SQL and the Heisenberg limit for the wavenumber-state method have been

obtained in Eqs. (5.57) and (5.70). These are exactly the same order of magnitude
as the error bounds for the position-state method (Eqs. (5.27) and (5.30)). In
fact, the trade-off relations in the position- and wavenumber-state methods can
be mapped to each other by setting the parameter K to the number n1 of the
sample points or vice versa.

This relation resembles the Nyquist–Shannon sampling theorem in signal detec-
tion theory. This theorem states that low-pass filtering with cutoff wavenumber
f is informationally equivalent to sampling with the sampling rate 2f . Since the
cutoff wavenumber is 2πK/L and the sampling rate is n1/L in our setting, it can
be intuitively understood from the sampling theorem that the parameters K and
n1 are equivalent up to a constant factor.

5.3 Theoretical lower bounds
So far, we have presented two complementary methods of function estimation:
the position-state method and the wavenumber-state method. In both methods,
however, our analysis leads to the same order of the SQL and the Heisenberg limit

δSQL = O
(
(LM1/qN−1)q/(2q+1)), δHL = O

(
(LM1/qN−1)q/(q+1)). (5.71)

In the q → ∞ limit, the exponents in Eq. (5.71) become identical to those in the
error bounds of parameter estimation:

δSQL = O
(
N−1/2), δHL = O

(
N−1). (5.72)
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For a finite q, however, the error bounds of function estimation decrease slower
than the error bounds of parameter estimation. This is due to the bias in function
estimation, which is inevitable because we cannot fully explore the infinite degrees
of freedom within finite time. As a result, we are forced to spend some of the
resource to decrease the bias, leading to the slower decrease. This behavior is
also known in other problems of classical function estimation, e.g., density kernel
estimation [84].

In fact, Eq. (5.71) give error bounds regardless of the method of estimation,
and hence the position- and wavenumber-state methods both provide optimal
error bounds up to a constant factor. In this section, we prove these rigorous
error bounds by using the analysis of multiparameter quantum metrology.

5.3.1 Reduction to multiparameter estimation
Since we are interested in a lower bound on the estimation error, we may replace
the phase function estimation problem with an easier one. More formally, we
may consider an unknown parameter vector θ ∈ Rm such that any method of
estimating phase function φ can be used for the estimation of θ, and that〈

MSE(φ∗, φ)
〉

≤ δ2 =⇒
〈
‖θ∗ − θ‖2〉 ≤ (cδ)2 (5.73)

holds for some constant c > 0.
Following Sec. 2.3.2, we consider estimation of a Hamiltonian Hθ =

∑2K
j=1 θjXj

with

Xk = −
∫ L

0
dx sin 2πkx

L
|x; +〉〈x; +|, (5.74)

XK+k = −
∫ L

0
dx cos 2πkx

L
|x; +〉〈x; +|. (5.75)

By defining

φθ(x) =
K∑

k=1

(
θk sin 2πkx

L
+ θK+k cos 2πkx

L

)
, (5.76)

we can write the Hamiltonian Hθ and its evolution over unit time as

Hθ =
2K∑
j=1

θjXj = −
∫ L

0
dxφθ(x)|x; +〉〈x; +|, (5.77)

e−iHθ =
∫ L

0
dx
[
eiφθ(x)|x; +〉〈x; +| + |x; −〉〈x; −|

]
(5.78)

= Uφθ
. (5.79)

Therefore, if we can somehow estimate the phase function φ, we can use the same
method for estimating θ via the relation (5.76). Furthermore, the estimation error
of θ coincides with that of φ:

MSE(φθ∗ , φθ) = ‖φθ∗−θ‖2
2 = 1

2
‖θ∗ − θ‖2, (5.80)
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which follows from Perseval’s equality.
We note that the function φθ must satisfy the regularity condition. This means

that the range of the parameter vector θ must be restricted as well. In particular,
we need to fix an energy scale E as the upper bound on the Euclid norm of θ:

‖θ‖ ≤ E, (5.81)

which can be determined by the following theorem:

Theorem 5.5 Let us set q = m + σ with an integer m ≥ 0 and a real number
0 < σ ≤ 1. We consider an arbitrary m-time differentiable function u : [0, L] → C
with the periodic boundary condition, and define its Fourier transform {uk}k∈Z by

u(x) :=
∑
k∈Z

uke
2πikx/L. (5.82)

Then, there exists a real number C ′
q > 0 such that if

∞∑
k=1

( |k|
L

)2q

(|uk|2 + |u−k|2) ≤ C ′
qM

2 (5.83)

holds for M > 0, the function u is (q,M)-regular.

We give the proof of this theorem in Appendix B. Since the Fourier coefficients
of u(x) = φθ(x) are

uk =


1
2(θK+k − iθk) (k = 1, . . . ,K);
1
2(θK+|k| + iθ|k|) (k = −K, . . . ,−1);
0 (otherwise),

(5.84)

a sufficient condition for φθ to be (q,M)-regular is

K∑
k=1

(
k

L

)2q |θk|2 + |θK+k|2

2
≤ C ′

qM
2, (5.85)

or yet more simply, (
K

L

)2q ‖θ‖2
2

2
≤ C ′

qM
2. (5.86)

Therefore, the (q,M)-regularity of the function φθ is ensured by choosing the
energy scale E of the order O(K−qLqM).

5.3.2 Standard quantum limit

We derive the SQL of the multiparameter metrology for θ ∈ R2K . As explained
in Sec. 2.3.3, a lower bound δ of an unbiased estimator θ∗ of a parameter vector
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θ ∈ Rm is given by the quantum CR inequality. According to Eq. (2.78), we have

δ ≥ (tr[J−1
θ ])1/2 ≥ m

(tr Jθ)1/2 , (5.87)

where Jθ is the quantum Fisher inforamtion (QFI) matrix of the probe state.
Therefore, a uniform bound on the error of an unbiased estimator is given as

δUUB = inf
‖θ‖≤E

m

(tr Jθ)1/2 , (5.88)

where UUB denotes the “Uniform Unbiased Bound.”
On the other hand, such an uniform upper bound cannot be given on the error

of an possibly biased estimator; the error is possibly zero at a specific instance
of θ (See an example in Sec. 2.1.1). Instead, there exists an error bound on the
worst-case error δ defined by

δ2 = sup
‖θ‖≤E

〈
‖θ∗ − θ‖2〉. (5.89)

In fact, we have the following inequality:

Proposition 5.6 Let us define δWBB > 0 by

1
δWBB

= 1
δUUB

+ 1
E
. (5.90)

Then, the worst-case error δ in Eq. (5.89) satisfies δ ≥ δWBB.

The proof is at the end of this subsection. Proposition 5.6 means that we can
find some instance of θ in the region ‖θ‖ ≤ E at which the estimation error
exceeds δWBB. Here, WBB denotes the “Worst-case Biased Bound.”

Now, we calculate δUUB first. The sum of the square of the matrices in Eqs. (5.74)
and (5.75) can be calculated as

X :=
2K∑
j=1

X2
j =

K∑
j=1

(X2
k +X2

K+k) = K

∫ L

0
dx|x; +〉〈x; +|, (5.91)

whose operator norm is K. Let J1,θ be the QFI matrix of a one-particle probe
state. With evolution time T = 1, the trace of J1,θ can be bounded from above
by Prop. 2.5:

tr J1,θ ≤ 4KT 2 = 4K. (5.92)

For the QFI matrix Jθ of an N -particle probe state, we have an upper bound
tr Jθ ≤ 4NK, which is independent of the parameter θ. Therefore, the uniform
bound δUUB in Eq. (5.88) is bounded from below as

δUUB ≥ inf
‖θ‖≤E

2K
(tr Jθ)1/2 ≥

(
K

N

)1/2
. (5.93)
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Combining this fact with E = O(K−qLqM), the worst-case error in (5.90) is
found to be maximal when E and δUUB are comparable to each other, i.e., K =
O
(
(L2qM−2N)1/(2q+1)) and

δSQL = O
(
(LM1/qN−1)q/(2q+1)). (5.94)

This coincides with the SQL in Sec. 5.2.

Proof of Prop. 5.6. Let us denote by µθ the stochastic average of a possibly biased
estimator θ∗. The variance Vθ is bounded from below as

trVθ ≥ tr[DθJ
−1
θ DT

θ ] ≥ (trDθ)2

(tr Jθ)
≥ m−2(trDθ)2δ2

UUB, (5.95)

where the matrix Dθ is defined by ∇θµT
θ . The first inequality in Eq. (5.95) is due

to Prop. 2.3, while the second and the third inequalities follow from the Cauchy–
Schwartz inequality and Eq. (5.88), respectively. Hence, the estimation error is
bounded from below as〈

‖θ∗ − θ‖2〉 = ‖µθ − θ‖2 + trVθ ≥ ‖µθ − θ‖2 +m−2(trDθ)2δ2
UUB, (5.96)

where the matrix Dθ is defined by ∇θµT
θ .

Let us assume the contrary of this proposition, i.e.,

sup
‖θ‖≤E

〈
‖θ∗ − θ‖2〉 < δ2

WBB. (5.97)

Then, Eq. (5.96) suggests that both of the following inequalities must hold:

sup
‖θ‖≤E

‖µθ − θ‖ < δWBB = EδUBB
δUBB + E

, (5.98)

sup
‖θ‖≤E

m−1 trDθ <
δWBB
δUBB

= E

δUBB + E
. (5.99)

Now, we consider the integral of m−1 trDθ over the region ‖θ‖ ≤ E:

A =
∫

‖θ‖≤E
m−1 trDθdθ (5.100)

If we denote by V the volume of an m-dimensional hyperball with unit radius, we
obtain

A = V Em · sup
‖θ‖≤E

m−1 trDθ <
V Em+1

δUBB + E
(5.101)

from Eq. (5.99). On the other hand, we may apply the divergence theorem to
represent A by the integral over the (m − 1) dimensional hypersphere ‖θ‖ = E
with area mV Em−1:

A =
∫

‖θ‖≤E
m−1(∇θ · µθ)dθ =

∫
‖θ‖=E

m−1(nθ · µθ)dSθ, (5.102)
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where dSθ is the infinitesimal area and nθ is the normal vector of the hypersphere.
Furthermore, from Eq. (5.98) we obtain

nθ · µθ = nθ · θ + nθ · (µθ − θ)

≥ ‖θ‖ − ‖µθ − θ‖ > E − EδUBB
δUBB + E

. (5.103)

Hence,

A > mV Em−1 ·m−1
(
E − EδUBB

δUBB + E

)
= V Em+1

δUBB + E
. (5.104)

The proposition is proved since Eqs. (5.101) and (5.104) lead to contradiction.

5.3.3 Heisenberg limit
To derive the Heisenberg limit, we assume a simple picture on the initial probe
state. The first assumption is that the N -particle probe state splits into n1 sep-
arate groups such that each group contains n2 entangled particles (N = n1n2).
Within each group, the probe state undergoes unitary evolution by U⊗n2

φ . As we
have seen in Sec. 2.3.1, the n2-particle Hilbert space can be divided into invariant
sectors due to the symmetry under the permutation group. Upon each sector, the
unitary gate behaves as Un

φ with an integer 0 ≤ n ≤ n2. Therefore, the estima-
tion in each sector is equivalent to the estimation of an amplified phase function
ψ(x) = nφ(x), with the maximum amplification n = n2 is attained when the par-
ticles are in a completely symmetric state. Hence, the second assumption is that,
the probe state is in a symmetric sector where the unitary evolution acts as the
phase shift by ψ(x) = nφ(x).

Now, let us derive the Heisenberg limit in the aforementioned picture; we hy-
pothesize that the Heisenberg limit will be the same for a more general class of
entangled states. We begin with the SQL for the estimation error of the amplified
function ψ = nφ, where M and N in Eq. (5.94) are replaced by nM and n1,
respectively:

δSQL,n ≥ O
(
(Ln1/qM1/qn−1

1 )q/(2q+1)). (5.105)
We can calculate the estimator of the original function φ only if the error δSQL,n

does not exceed a certain constant in the order of unity. Therefore, n must be
small enough that

n ≤ O(L−qM−1nq
1), (5.106)

in which case the estimation error of the original function can be bounded from
below as

δ ≥ n−1δSQL,n ≥ O
(
(LM1/qn−2n−1

1 )q/(2q+1)). (5.107)
Noting that the total number of particles is N = n1n2 ≥ n1n, we obtain

n2n1 = [(nn1)2q+1(nn−q
1 )]1/(q+1)

≤ [N2q+1 ·O(L−qM−1)]1/(q+1) = O
(
(L−qM−1N2q+1)1/(q+1)), (5.108)
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where we have used Eq. (5.106). By substituting Eq. (5.108) into Eq. (5.107), we
obtain a lower bound on the estimation error

δHL = O
(
(LM1/qN−1)q/(q+1)), (5.109)

which is of the same order of magnitude as the Heisenberg limit in Sec. 5.2.
In fact, the wavenumber K in this section plays the same role as the wavenum-

ber K in the wavenumber-state method (Sec. 5.2.3); if we replace E and δUUB with
δPS and δQST, respectively, the trade-off relation (5.90) corresponds to Eq. (5.46).
Actually, the wavenumber-state method is designed with intention to asymptoti-
cally satisfy the quantum CR inequality in the theoretical analysis, although this
attempt is successful only for the case of 0 < q ≤ 1.

5.4 Some remarks on the phase function estimation
5.4.1 Long-range limit and Gaussian process
First, we consider the limit in which the domain of the function L tends to infinity.
We claim that in our notation, the constant M in the (q,M)-regularity and the
estimation error δ are both intensive quantities while the number N of particles
is extensive.

In fact, given a (q,M)-regular function φ and its estimator φ∗ with estimation
error δ, we may regard them as periodic functions over [0, nL] for any positive
integer n. However, even when the domain is extended to [0, nL], the function
φ is also (q,M)-regular and the estimation error of φ∗ is δ. This is due to our
definition of the (q,M)-regularity (Def. 5.2) and the mean-square (periodic) error
(Eqs. (5.6) and (5.39)), in which the integral over [0, L] is divided by L.

Let N = N/L be the number of particles per unit length of the domain, so that
all concerning quantities become intensive. Then, the SQL and the Heisenberg
limit can be described in a way independent of L:

δSQL = O
(
(M1/qN −1)q/(2q+1)), δHL = O

(
(M1/qN −1)q/(q+1)). (5.110)

These results are natural in the sense that the number of particles required for
the estimation is in proportion to L.

The L → ∞ limit also corresponds to a generalization of the preceding studies
by Berry et al. [39–41, 43, 68, 85] of quantum metrology for Gaussian signals. They
have applied the filtering theory (Sec. 3.2) and quantum-optical measurements to
a signal {s(t)}t∈R with the power spectrum Is(ω) ∼ |ω|−p. As a result, they have
obtained the SQL and the Heisenberg limit:

δSQL = O
(
N −(p−1)/2p), δHL = O

(
N −(2p−1)/(2p+1)). (5.111)

By setting p = 2q+1, we find that the exponents in Eq. (5.111) becomes the same
as those in Eq. (5.110). In fact, the signal s(t) satisfies the condition of (q,M)-
regularity with probability one unless p is an odd number. When 1 < p < 3, for
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example, Eq. (3.41) implies the stochastic σ-Hölder continuity:〈
|∆εs(t)|2

〉
=
〈
|s(t+ ε) − s(t)|2

〉
≤ C|ε|p−1 = C|ε|2q (5.112)

for every t ∈ R. Therefore, the long-time average ‖∆εs‖2
2 =

∫ T
0

dt
T |∆εs(t)|2 con-

verges to C|ε|2q, and thus becomes almost surely (q,M)-regular for M > C1/2.

5.4.2 Extension to higher dimensions
For the final remark of this chapter, we consider a phase function φ(x) defined over
a D-dimensional box x ∈ [0, L]D with the periodic boundary condition. The error
measure and the regularity of the function estimation for the one-dimensional case
can be generalized in a straightforward way. In fact, the error can be measured
on the basis of the mean-square error

MSE(φ∗, φ) =
∫
dDx

LD
|φ∗(x) − φ(x)|2. (5.113)

For q = m + σ, the phase function φ(x) is (q,M)-regular if every mth partial
derivative f of φ satisfies the weak σ-Hölder continuity:

sup
ε6=0

∫
dDx

LD

|f(x + ε) − f(x)|2

‖ε‖2σ
≤ M2. (5.114)

We conjecture that the SQL and the Heisenberg limit for D-dimensional phase
functions are given by

δSQL = O
(
(LDMD/qN−1)q/(2q+D)), δHL = O

(
(LDMD/qN−1)q/(q+D)). (5.115)

In fact, we expect that the position-state method is applicable to the multidimen-
sional case, in which the nD

1 sample points must be taken from the box [0, L]D
and the total number of particles is N = nD

1 n2. If we suppose that the optimal
error can be obtained from the trade-off relation in Eqs. (5.25) and (5.29), we can
obtain Eq. (5.115).

We also expect that the wavenumber-state method is applicable as well. If this
is the case, the wavenumber becomes a D-dimensional integer vector, and the
Hilbert space H satisfies dim H = O(KD). Therefore, the QST error must be
generalized to δQST = O(KD/2N−1/2) in Eq. (5.56) and δQST = O(KD/2n

−1/2
1 ) in

Eq. (5.60), which also yields Eq. (5.115).
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Chapter 6

Quantum edge detection

In this chapter, we propose a practical application of quantum metrology for
the estimation of continuous data. In particular, we provide a physical setup
of quantum measurement that can efficiently detect edges of a phase function.
We also calculate the error bounds of the measurement, where we show that
the error can be significantly reduced by quantum correlation. We note that we
basically consider probe states with distinguishable particles, (e.g. photons labeled
with different time) whose wavefunctions are Gaussian, while we also provide
preliminary results on non-Gaussian wavefunctions and indistinguishable photons.

This means that the signal-to-noise ratio can be significantly reduced by use
of an appropriate quantum probes. Since edges mark anomalous structures in
functions, we argue that quantum correlations in edge detection may help us
efficiently discover new phenomena.

Edge detection is not only of practical importance but also of theoretical inter-
est. We show that in the quantum edge detection, error can be bounded by the
uncertainty relation between position and momentum, which is one of the funda-
mental characteristics in quantum mechanics. Moreover, we apply the theory of
function estimation in Chapter 5 to the quantum edge detection to demonstrate
that the quantum scheme reaches the Heisenberg limit only in the region where
the number of photon is scarce and the lengthscale is sufficiently small.

6.1 Physical Setup

6.1.1 Edges and wavelets

First, we mathematically define edges by using the concept of wavelets following
Refs. [50, 51]. In a one-dimensional function φ(x), edges appear as a large change
of its value when viewed with a fixed lengthscale s. To discard unwanted fluctu-
ations at lengthscales shorter than s, we first consider smoothing the function by
the convolution:

φs(x) = φ(x) ∗ ρs(x) =
∫ ∞

−∞
dxφ(y)ρs(x− y). (6.1)

For the rest of this section, the limits of the integral are set to be ±∞ unless
otherwise specified.
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The function ρs is called a smoothing function at scale s. We require that the
smoothing function ρs is a probability density function with mean 0 and variance
s2. The family of scaling functions {ρs}s>0 is obtained from rescaling the unit-scale
function ρ1:

ρs(x) = s−1ρ1(s−1x). (6.2)

A classic example of smoothing function is a Gaussian function:

ρs(x) = 1√
2πs

e− x2
2s2 . (6.3)

After obtaining the smoothed function φs, edges are located as the positions at
which φs changes more rapidly than elsewhere. This can be found as the extrema
of the first derivative of φs:

φ′
s(x) = ρ′

s(x) ∗ φ(x), (6.4)

or the zeroes of the second derivative:

φ′′
s(x) = ρ′′

s(x) ∗ φ(x). (6.5)

These derivatives can be directly calculated by convolving the function φ with ρ′
s

or ρ′′
s without referring to the smoothed function φs.

Here, we focus on the first derivative ρ′
s. A family of functions {ψs}s>0 can be

defined by
ψs(x) = csρ

′
s(x), (6.6)

where cs > 0 is some normalization constant depending on s. Such ψs is called a
wavelet function at scale s, and the result of convolution

Ws[φ](x) = φ(x) ∗ ψs(x), (6.7)

is referred to as the wavelet transform of φ. Therefore, the edges of scale s can be
detected if we can find the extrema of the wavelet transform Ws[φ].

As a side note, the second derivatives ρ′′
s(x) of the smoothing function are also

often used as wavelets, especially in computational signal analysis. In this case,
the edges correspond to the zeroes of the wavelet transform, which are easier to
handle on computers than the extrema.

6.1.2 Measurement of wavelet transform
Let us consider the phase function φ(x) in a unitary evolution Uφ:

Uφ|x〉 = eiφ(x)|x〉. (6.8)

In this chapter, the particles in this systems are considered to be photons, which
are the most commonly used in imaging. Furthermore, we do not introduce in-
ternal states as we did in Chapter 5, since the internal state |x; −〉 in Eq. (5.2) is
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6.1 Physical Setup

not necessary for the purpose of this chapter. The goal is to estimate the wavelet
transform Ws[φ](x) by quantum measurements, where the wavelet function ψs can
be written in terms of the smoothing function ρs as in Eq. (6.6).

We set the wavefunction q(x) of a one-photon probe state as follows:

q(x) =
√
ρs(x0 − x). (6.9)

The wavefunction of the probe state |qφ〉 = Uφ|q〉 after the evolution is

qφ(x) = eiφ(x)q(x). (6.10)

Now, we measure the momentum p∗ = p∗(x0) of a probe state |qφ〉. The ex-
pected momentum 〈p∗〉 can be straightforwardly calculated as

〈p∗〉 = −iℏ
∫
dxqφ(x)q′

φ(x)

= −iℏ
∫
dxq(x)[iφ′(x)q(x) + q′(x)]

= −iℏ
∫
dxq(x)q′(x) + ℏ

∫
dxφ′(x)|q(x)|2. (6.11)

Here, the first term in the last line in Eq. (6.11) vanishes since q(x)q′(x) =
−1

2ρ
′
s(x0 − x) and the smoothing function ρs(x) vanishes at x → ±∞. Hence,

the expected momentum of the output probe is

〈p∗〉 = ℏ(ρs ∗ φ′)(x0) = ℏ(ρ′
s ∗ φ)(x0) = ℏ

cs
(ψs ∗ φ)(x0), (6.12)

which is in proportion to the wavelet transform Ws[φ](x0).
In general, we can prove the following proposition:

Proposition 6.1 (Wavelet measurement) If the initial probe state is chosen such
that (i) the position distribution is ρs(x0 − x) and (ii) the expected momentum is
0, the expected momentum after the unitary evolution by Uφ is in proportion to
the wavelet transform Ws[φ](x0).

This can be easily confirmed from Eq. (6.11). Although a pure probe state is
preferred for an accurate measurement, this proposition holds even for a mixed
probe state. Furthermore, multiple photons with quantum correlation may also
be used as the probe state, which we will show in Sec. 6.2.3.

6.1.3 Wavelet measurement by imaging techniques
We illustrate in Fig. 6.1 (a) the physical implementation of the wavelet measure-
ment, which is similar to imaging by a scanner in Fig. 6.1 (b). In both cases, the
beam source is moved to various positions x0, where the measurement outcome
corresponds to the function value at x0.
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Source

lensimage
φ(x)

CCD array

p∗(x0)x0

(a) Wavelet measurement

Source
φ∗(x0)

image
φ(x)

bucket
detector

x0

(b) Imaging by a scanner

Source φ∗(x0)

x0

image
φ(x)

bucket
detector

CCD array

(c) Ghost imaging

Figure 6.1: Optical settings explained in Sec. 6.1.3. (a) Wavelet mea-
surement. The beam is localized at various positions x0 and the momen-
tum p∗ = p∗(x0) is measured by the Fraunhofer diffraction. (b) Imaging
by a scanner, on which the wavelet measurement is based. The output
signal collected by the bucket detector yields an estimator of the func-
tion value φ(x0). (c) A more sophisticated setup called ghost imaging,
where the source is split into two correlated beams and one of them
is measured by a CCD array. The estimator of the function φ can be
obtained by synthesizing the outputs of both the CCD array and the
bucket detector.
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6.2 Estimation Error of Wavelet Measurement

There are two differences between the wavelet measurement in Fig. 6.1 (a)
and the imaging in Fig. 6.1 (b). One of them is relatively minor; the beam in
the wavelet measurement is considered to have a finite beamwidth s, while it is
regarded as a zero-width beam in the ordinary measurement. The other, major
difference is the measurement device; in the ordinary imaging, we employ a bucket
detector that measures the intensity of the beam, from which the original function
φ(x0) can be estimated. In the wavelet measurement, we need to resolve the
momentum of the beam to obtain the wavelet coefficient Ws[φ](x0). A simple way
to measure the momentum is to condense the beam with a lens at a sufficiently
large distance and measure the position by a CCD array. The detected position
corresponds to the momentum by virtue of the Fraunhofer diffraction.

For better spatial resolution, we may incorporate ghost imaging, an imaging
technique to localize the probe beam at an accurate position [52, 86], which has
also been utilized in the experiment of quantum metrology [53]. In ghost imag-
ing, we use a pair of correlated photons, which may be classical correlation [87]
or quantum correlation [86]. As illustrated in Fig. 6.1 (c), one of the pair is in-
jected into the physical image and detected by the bucket detector, while the other
photon is captured by a scanning detector such as a CCD array. Owing to the cor-
related positions of the two photons, the probe beam through the physical image
is conditioned by the output of the CCD array, which results in a localized beam.
In this way, one can combine the intensity resolution of the bucket detector and
the spatial resolution of the CCD array to obtain an accurate image. We expect
that the same conditional probe beam can be used in the wavelet measurement.

6.2 Estimation Error of Wavelet Measurement
6.2.1 Probability density of the measured momentum
In this section, we derive the estimation error of the measured momentum p∗,
which characterizes the precision of the wavelet measurement. We begin by the
case in which the initial state consists of only one photon, and obtain the er-
ror by directly calculating the probability density of p∗ by means of the Wigner
distribution. First, we denote the Fourier transformation F and its inverse F−1

as

Fp→x[f(p)] =
∫
dpe−ipx/ℏf(p), (6.13)

F−1
x→p[g(x)] =

∫
dx

2πℏ
eipx/ℏg(x). (6.14)

Then, the Wigner function Wq associated with the wavefunction q(x) is

Wq(x, p) = F−1
y→p

[
q

(
x− y

2

)
q

(
x+ y

2

)]
. (6.15)

Now, we focus on the Wigner function associated with the wavefunction qφ(x) =
eiφ(x)q(x) after the unitary evolution. Here, we recall the convolution theorem:
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The product and the convolution exchange their roles via the Fourier transform.
To be more specific, we have

Fp→x[f(p) ∗ g(p)] = Fp→x[f(p)]Fp→x[g(p)], (6.16)

where ∗ is the convolution with respect to the variable p.
Then, starting from the definition, we obtain

Wqφ(x, p) = F−1
y→p

[
eiφ(x− y

2 )q

(
x− y

2

)
e−iφ(x+ y

2 )q

(
x+ y

2

)]
= F−1

y→p

[
ei[φ(x− y

2 )−φ(x+ y
2 )]q

(
x− y

2

)
q

(
x+ y

2

)]
= F−1

y→p

[
ei[φ(x− y

2 )−φ(x+ y
2 )]] ∗ F−1

y→p

[
q

(
x− y

2

)
q

(
x+ y

2

)]
= Wφ(p|x) ∗Wq(x, p), (6.17)

where we have defined

Wφ(p|x) = F−1
y→p

[
ei[φ(x− y

2 )−φ(x+ y
2 )]]. (6.18)

Therefore, the momentum p∗ of the wavefunction qφ(x) is distributed according
to the density

P (p∗) =
∫
dxWqφ(x, p∗) =

∫∫
dxdpWq(x, p∗ − p)Wφ(p|x). (6.19)

In this way, the probability density of p∗ is expressed in an integral form, in which
the dependencies on the initial wavefunction q(x) and the phase function φ(x) are
separated from each other.

The problem becomes even simpler if the Wigner function Wq(x, p) is a direct
product of the position and the momentum distributions. As far as pure states
are concerned, this happens only when q(x) is Gaussian [88]. To be more specific,
if we set

q(x) =
√
ρs(x0 − x), ρs(x) = 1√

2πs
e−x2/2s2

, (6.20)

the corresponding Wigner function is

Wq(x, p) = 1
2πℏ

exp
[
−(x− x0)2

2s2

]
exp

[
−s2p2

2ℏ2

]
= ρs(x0 − x)ρℏ/2s(p). (6.21)

Then, the probability density P (p∗) can be expressed as

P (p∗) =
∫∫

dxdpρℏ/2s(p∗ − p)Wφ(p|x)ρs(x0 − x). (6.22)

In Eq. (6.22), the measured momentum p∗ appears to be the outcome of the
composition of three stochastic processes: The first process x 7→ x0 and the last
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6.2 Estimation Error of Wavelet Measurement

process p 7→ p∗ are the addition of Gaussian noises with standard deviation s and
ℏ/2s, respectively. The second process can be regarded as a Markovian process
x 7→ p with the transition probability density Wφ(p|x).

The second process x 7→ p, however, is not a stochastic process in the true sense.
Although the function Wφ(p|x) is normalized with respect to p as∫

dpWφ(p|x) = lim
y→0

ei[φ(x− y
2 )−φ(x+ y

2 )] = 1, (6.23)

the nonnegativity Wφ(p|x) ≥ 0 does not hold unless the phase function φ(x) is
constant. In this respect, we call the mapping x 7→ p a quasi-Markovian process
with the transition quasiprobability density Wφ(p|x), which is not necessarily, and
in general is not, positive.

6.2.2 Error bound for one-photon probe states
Let us recall the probability density of the measured momentum p∗ in Eq. (6.19):

P (p∗) =
∫∫

dxdpWq(x, p∗ − p)Wφ(p|x). (6.24)

The statistical error δ of the measured momentum p∗ is

δ2 =
∫
dp∗(p∗ − 〈p∗〉

)2
P (p∗)

=
∫∫∫ (

p∗ − 〈p∗〉
)2
dp∗dxdpWq(x, p∗ − p)Wφ(p|x)

=
∫∫∫ (

p′ + p− 〈p∗〉
)2
dp′dxdpWq(x, p′)Wφ(p|x). (6.25)

Here, we encounter the first and the second moments of the quasi-stochastic vari-
able p subject to the quasiprobability density Wφ(p|x). In fact, these moments
can be analytically calculated:∫

pdpWφ(p|x) = lim
y→0

(
iℏ
∂

∂y
ei[φ(x− y

2 )−φ(x+ y
2 )]
)

= ℏφ′(x); (6.26)∫
p2dpWφ(p|x) = lim

y→0

(
−ℏ2 ∂

2

∂y2 e
i[φ(x− y

2 )−φ(x+ y
2 )]
)

= [ℏφ′(x)]2. (6.27)

This implies that the variance of p is zero, which marks the oddness of the quasi-
stochastic variable. Hence, Eq. (6.25) becomes

δ2 =
∫∫ (

p′ + ℏφ′(x) − 〈p∗〉
)2
dp′dxWq(x, p′)

=
∫∫ (

p+ ℏφ′(x) − 〈p∗〉
)2
dxdpWq(x, p). (6.28)

With a Gaussian probe in Eq. (6.20), p∗ is regarded as the output of a chain of
quasi-Markovian processes: x0 7→ x 7→ p 7→ p∗, where the second process x 7→ p
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does not contribute to the statistical error. Hence, the error can be decomposed
into two parts:

δ2 = E2
p + E2

x, (6.29)

E2
p =

∫
p2dpρℏ/2s(p) = ℏ2

4s2 , (6.30)

E2
x =

∫
[ℏφ′(x) − 〈p∗〉]2dxρs(x− x0). (6.31)

Here, Ex is originated from the process x0 7→ x and Ep is originated from the
process p 7→ p∗; we call these terms the x-error and the p-error, respectively.

Furthermore, if we assume that the phase function φ is sufficiently smooth and
the linear approximation ℏφ′(x) = φ′(x0) + (x−x0)φ′′(x0) is valid, we also obtain
the x-error as

E2
x ≈

∫
[ℏφ′′(x0)]2(x0 − x)2dxρs(x− x0) = [ℏφ′′(x0)s]2. (6.32)

Therefore, an overall error is given by the sum of Eqs. (6.30) and (6.32), and
the magnitude of the second derivative |φ′′(x0)| determines which of them is the
dominant term1. Intuitively, the second derivative φ′′(x0) should be small near the
edges, since an edge at x0 corresponds to a zero of the smoothed second derivative
φ′′(x) ∗ ρs(x). Hence, we consider that the p-error dominates over the x-error
in precisely located edges, i.e. when we search for the extrema of the wavelet
transform. This idea will be numerically tested in Sec. 6.2.4.

In the previous section, the error of the wavelet measurement for a single-photon
probe has been calculated. In this section, we extend this analysis to a general
multiple-photon source, where the presence of quantum correlation conditionally
reduces the estimation error.

6.2.3 Wavelet measurement with distinguishable N photons

The wavelet measurement so far explained can be naturally extended to multi-
photon probe states in a natural way. We consider the case in which the probe state
consists of N photons that are always distinguishable (e.g. when they are labeled
with distinct time or frequency). In Sec. 6.4.2, we show preliminary analysis on
indistinguishable photons, where similar results are derived.

For distinguishable N photons, the initial state can be written in term of the
joint wavefunction q(x) = q(x1, . . . , xN ).

We require that each measured momentum p∗
j corresponds to the same wavelet

transform:
〈p∗

j 〉 = ℏ
cs

(ψs ∗ φ)(x0) = ℏ
cs
Ws[φ](x0). (6.33)

1We note that s is given as the wavelet scale and fixed.
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6.2 Estimation Error of Wavelet Measurement

By Prop. 6.1, this is satisfied if the initial expected momenta are all zero and the
marginal distribution of the position xj coincides with ρs:∫

RN−1
dx 6=j

∣∣q(x1, . . . , xN )
∣∣2 = ρs(x0 − xj), (6.34)

where we denote by dx 6=j the integration over x1, . . . , xN save for xj . Then, the
ultimate estimator p∗ can be obtained as their arithmetic mean:

p∗ = p∗
1 + · · · + p∗

N

N
= 1
N

1Tp∗, 1 = (1, . . . , 1). (6.35)

The joint probability of the measured momenta p∗ = (p∗
1, . . . , p

∗
N ) can be rep-

resented similarly to Eq. (6.19):

P (p∗) =
∫∫

RN ×RN
dxdpW (n)

q (x,p∗ − p)W (n)
φ (p|x), (6.36)

where the Wigner functions are extended to their joint versions:

W (n)
q (x,p) = F−1

y→p

[
q

(
x − y

2

)
q

(
x + y

2

)]
, (6.37)

W (n)
φ (p|x) = Wφ(p1|x1) · · ·Wφ(pN |xN ). (6.38)

We consider the case in which the joint wavefunction is an N -variate Gaussian
function:

q(x) =
√
ρ(x0 − x;Cx), (6.39)

where x0 = (x0, . . . , x0) and ρ(x;C) is the probability density of the N -variate
Gaussian distribution with the covariance matrix C:

ρ(x;C) = [(2π)N detC]−1/2 exp
[
−1

2
xTC−1x

]
. (6.40)

We investigate the optimal error of the estimator p∗ in Eq. (6.35) in the classical
scheme and the quantum scheme: In the former case, photons are uncorrelated
and the covariance matrices Cx and Cp are both diagonal; in the latter case, any
correlated probe with positive covariance matrices is possible.

Equation (6.34) corresponds to the requirement that the diagonal entries in Cx

be all s2. Furthermore, since the uncertainty relation is satisfied for the Gaussian
wavefunction, the covariance matrix for the momenta is equal to Cp = ℏ2

4 C
−1
x .

The joint Wigner function for the Gaussian wavefunction is simply the product of
position and momentum distribution:

W (n)
q (x,p) = ρ(x0 − x;Cx)ρ(p;Cp). (6.41)

Hence, the joint distribution in Eq. (6.36) can be written as

P (p∗) =
∫∫

RN ×RN
dxdpρ(p∗ − p;Cp)W (n)

φ (p|x)ρ(x0 − x;Cx) (6.42)
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This can be regarded a chain of quasi-Markovian processes x0 7→ x 7→ p 7→ p∗,
where the Gaussian noises in x0 7→ x and p 7→ p∗ are correlated in the quantum
scheme.

The estimation error of the measured momenta p∗ is given by the covariance
matrix [V ]jk =

〈(
p∗

j − 〈p∗〉
)(
p∗

k − 〈p∗〉
)〉
, which can also be decomposed into two

parts originated from the momentum variance and position variance of the initial
probe. A similar argument to the single-photon case leads to

V = Vx + Vp, (6.43)

[Vp]jk =
∫
pjpkdpρ(p;Cp) = [Cp]jk, (6.44)

[Vx]jk =
∫

[ℏφ′(xj) − 〈p∗〉][ℏφ′(xk) − 〈p∗〉]dxρ(x − x0;Cx)

≈ ℏ2|φ′′(x0)|2[Cx]jk. (6.45)

Recalling that the estimator p∗ is the arithmetic mean of theN momenta (Eq. (6.35)),
the estimation error δ can be expressed as

δ2 =
〈(
p∗ − 〈p∗〉

)2〉 = 1
N2 1TV 1 = E2

x + E2
p , (6.46)

where the x-error Ex and the p-error Ep are defined by

E2
x = 1

N2 1TVx1 ≈ ℏ2|φ′′(x0)|2

N2 1TCx1,

E2
p = 1

N2 1TVp1 = 1
N2 1TCp1.

(6.47)

This implies that the estimation error can be suppressed by negative off-diagonal
entries in the covariance matrices. However, this effect cannot be simultaneously
exploited for both positions and momenta; in fact, the uncertainty relation Cp =
ℏ2

4 C
−1
x implies

(1TCx1) · (1TCp1) ≥ (1TC1/2
p C1/2

x 1)2 = ℏ2N2

4
. (6.48)

Now, we consider how small the p-error can be, assuming that |φ′′(x0)| is suf-
ficiently small. In the classical scheme, the only possibility is Cx = s2I and
Cp = ℏ2

4s2 I. The p-error is

E2
p = ℏ2

4s2N
, (6.49)

which exhibits the standard quantum limit (SQL) Ep = O(N−1/2). This result is
also evident from the p-error for a single photon in Eq. (6.30), since the statistical
variance is reduced by a factor of N−1 by taking the arithmetic mean of N i.i.d.
estimators.
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6.2 Estimation Error of Wavelet Measurement

In the quantum scheme, the maximum correlation in the x-error is found to be

1TCx1 = tr[11TCx] ≤ ‖11T‖(trCx) ≤ N2s2, (6.50)

in which case the minimum p-error is obtained from Eq. (6.48):

E2
p = 1

N2 1TCp1 ≥ 1
N2 · ℏ2N2

4N2s2 = ℏ
4s2N2 . (6.51)

In fact, if we set the off-diagonal elements to rs2 for some 0 ≤ r < 1, namely

[Cx]jk = s2[(1 − r)δjk + r], (6.52)

we can calculate the momentum covariance matrix Cp and the p-error Ep:

[Cp]jk = ℏ2

4s2(1 − r)

[
δjk − r

(1 − r) +Nr

]
, E2

p = ℏ2

4s2[(1 − r) +Nr]
. (6.53)

We note that Eq. (6.51) becomes an equality in the limit of r → 1. Therefore, as
long as we ignore the x-error, the Heisenberg limit δ = O(N−1) of the parameter
estimation is attainable.

On the other hand, the effect of x-error becomes a serious problem as the p-error
approaches the Heisenberg limit. In fact, Eq. (6.48) suggests that the Heisenberg-
limited p-error Ep = O(N−1) forces the x-error to be of the order of unity, which
is much worse than the SQL. In Sec. 6.3.1, we perform a more rigorous analysis
on the Heisenberg limit with the x-error taken into consideration.

6.2.4 Numerical calculation

Here, we numerically investigate the influence of the x-error for the wavelet detec-
tion of a smooth function φ(x) (0 ≤ x ≤ 10), which is displayed in Fig. 6.2 along
with its wavelet transforms. We assume that the input probe has a multivariate
Gaussian wavefunction, where the position covariance matrix Cx can be expressed
as in Eq. (6.52). Therefore, we have three parameters in the setting: the number
N of photons, the wavelet scale s, and the quantum correlation coefficient r.

The näıve calculation of the probability density of the momenta involves 2N -
dimensional integration, which becomes intractable even with small N , say, N = 5.
This combinatorial explosion can be circumvented by the Monte-Carlo method,
especially because the Gaussian wavefunction is considered in our case. However, a
large number of samples are required if we are to calculate the probability density
of the N -dimensional vector p∗. Rather than that, we directly calculate the mean
momentum p∗ = p∗

1+···+p∗
N

N by using the characteristic function, i.e., the Fourier
transform of the probability density:

χp∗(y) = Fp∗→y[P (p∗)]. (6.54)
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Figure 6.2: A smooth function employed in the numerical calculation
and its wavelet transforms. The original function is displayed in the
bottom-right pane as well as indicated in the background color of the
other panes. In the wavelet transforms, a large maximum emerges
around x = 5 regardless of the wavelet scale.
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6.2 Estimation Error of Wavelet Measurement

Starting from (6.42), we obtain

χp∗(y) =
∫
RN

dxρ(x0 − x;Cx)Fp→y[ρ(p;Cp) ∗W (n)
φ (p|x)]

=
∫
RN

dxρ(x0 − x;Cx)Fp→y[ρ(p;Cp)]Fp→y[W (n)
φ (p|x)]

=
∫
RN

dxρ(x0 − x;Cx)e− 1
2 yTCxy

N∏
j=1

ei[φ(xj− 1
2 yj)−φ(xj+ 1

2 yj)]. (6.55)

Since the mean momentum p∗ is linearly dependent on p∗, the characteristic func-
tion of p∗ can be calculated from Eq. (6.55) as

χp∗(y) = χp∗

(
y

N
, · · · , y

N

)

=
∫
RN

dxρ(x0 − x;Cx)e− y2
2 (1TCx1)

N∏
j=1

ei[φ(xj− y
2N

)−φ(xj+ y
2N

)]

=
∫
RN

dxρ(x;Cx)e− y2

2N2 (1TCx1)
N∏

j=1
ei[φ(x0−xj− y

2N
)−φ(x0−xj+ y

2N
)], (6.56)

which can be calculated by the Monte Carlo method on the N -variate Gaussian
variable x. The probability density P (p∗) can be calculated by taking the inverse
Fourier transform of the characteristic function.

We have calculated the probability density for positions x0 away from the edge
points2. The product in Eq. (6.56) can be efficiently calculated for multiple in-
stances of x0 by a vector processor.

The relative error δ/Ep is obtained by taking the ratio of the statistical error
δ to the theoretical p-error Ep in Eq. (6.53), so that the x-error is negligible if
the relative error is close to the unity. The relative error is plotted in Fig. 6.3 for
various configurations of (N, s, r). This figure indicates the conditions with which
the x-error becomes significant:

• The x-error is negligible where |φ′′(x)| is very small, which can be typically
observed in the region 0 ≤ x ≤ 3 and around x = 5. We particularly note
that the edge around x = 5 can be efficiently detected without suffering from
a large x-error. Conversely, the x-error becomes significant where |φ′′(x)| is
large, which is mainly observed in the peaks of the original function around,
e.g. x = 4 or x = 6.

• Where the x-error is significant, the relative error increases with the number
n of photons and/or the quantum correlation r. This is indicated by the
fact that the x-error becomes large as the p-error approaches the Heisenberg
limit.

2We have also checked that the bias of the mean momentum was negligible compared with the
variance, indicating that the number of samples used for the Monte Carlo method is sufficient.
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(a)

(b)

Figure 6.3: Position dependence of relative errors δ/Ep, where (a) the
wavelet scale s and the quantum correlation r are varied while the
number of photon is fixed to n = 4, and (b) the wavelet scale s and the
number n of photons are varied while the quantum correlation is fixed
to r = 0.9. The original function φ(x) is displayed in the bottom-right
panes as well as indicated by the background color in the other panes.
The dashed line indicates the unity; the relative error tends to be on
this line in the region where the x-error is negligible.
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• As the wavelet scale s increases, the x-error begins to dominated in a wider
region, resulting in a notably large error as a whole. For such a large scale
as s = 0.5, not only the relative error δ/Ep but the absolute error δ itself
becomes large by increasing the quantum correlation. This suggests that the
Heisenberg limit can be observed only when the wavelet scale s is relatively
small, depending on the magnitude of the quantum correlation.

6.3 Function Analysis on Wavelet Measurement

6.3.1 Regularity and the x-error

In Sec. 6.2, we have investigated the effect of quantum correlation on the precision
of the edge detection both analytically and numerically. We have found that the
statistical error can be decomposed into two parts: the x-error and the p-error.
The p-error is subject to the SQL Ep = O(N−1/2) for the classical scheme and the
Heisenberg limit Ep = O(N−1) for the quantum scheme. On the other hand, we
have also found the drawback of the wavelet measurement: the x-error behaves
complemetarily with the p-error, and the x-error can grow intolerably large as the
p-error approaches to the Heisenberg limit. Therefore, we need to ensure how far
the quantum enhancement can be exploited in the wavelet measurement by using
the functional analysis similar to Chap. 5.

For a single-photon probe, the x-error Ex can be calculated from Eq. (6.31):

E2
x = R(x0) :=

∫
[ℏφ′(x) − 〈p∗〉]2dxρs(x0 − x), (6.57)

which involves the nonlinear transformation of the Gaussian distribution, making
the analytical calculation intractable in general. However, by replacing 〈p∗〉 with
ℏφ′(x0) in Eq. (6.57), we obtain an upper bound on R(x0):

R(x0) ≤ ℏ2
∫

[φ′(x) − φ′(x0)]2dxρs(x0 − x)

= ℏ2
∫

[φ′(x0 + ε) − φ′(x0)]2dερs(ε). (6.58)

Hence, the x-error depends on the magnitude of the difference |φ′(x0 + ε) − φ′(x0)|
when ε is typically of the order of s. This can be quantified by recourse to an
appropriate regularity on the function φ(x).

Let us consider the function φ(x) over an arbitrary interval 0 ≤ x ≤ L under
the periodic boundary condition. The appropriate regularity of the function φ is
(1 + σ,M)-regularity for some 0 < σ ≤ 1 (See Def. 5.2):

sup
ε6=0

∫ L

0

dx

L

|φ′(x+ ε) − φ′(x)|2

|ε|2σ
≤ M2, (6.59)
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where we obtain∫ L

0

dx0
L
R(x0) ≤ ℏ2

∫ L

0

dx

L

∫
dε
∣∣φ′(x0 + ε) − φ′(x0)

∣∣2ρs(ε)

≤ ℏ2
∫
dεM2|ε|2σρs(ε) =

Γ(σ + 1
2)

√
π

ℏ2M2s2σ. (6.60)

We consider the squared x-error E2
x averaged over the interval 0 ≤ x ≤ L. By

combining Eqs. (6.57) and (6.60), we find that this average is bounded from above
as E2

x ≤ ℏ2C2M2s2σ, where C = π−1/4[Γ(σ + 1
2)]1/2.

For the multi-photon probe with position covariance matrix Cx, the x-error can
be written as

E2
x =

∫ [
ℏ
φ′(x1) + · · · + φ′(xN )

N
− 〈p∗〉

]2
dxρ(x0 − x;Cx) (6.61)

instead of Eq. (6.57). Here, we assume the following approximation:

E2
x ≈ 1TCx1

s2N2 R(x0), (6.62)

where R(x0) is defined in Eq. (6.57). In fact, this approximation can be justified
when Cx is a block-diagonal matrix whose nonzero entries are all close to s2:

Cx = s2



1 1 − ϵ · · · 1 − ϵ

1 − ϵ 1 . . . ... 0
... . . . . . . 1 − ϵ

1 − ϵ · · · 1 − ϵ 1
. . .

1 1 − ϵ · · · 1 − ϵ

1 − ϵ 1 . . . ...

0 ... . . . . . . 1 − ϵ
1 − ϵ · · · 1 − ϵ 1



. (6.63)

In particular, we obtain the the equality E2
x = 1TCx1

s2N2 R(x0) when x1, . . . , xN are
mutually independent (i.e., Cx = s2I) or when x1, . . . , xN is completely correlated
(i.e., Cx = s211T). We note that assuming such a special matrix as in Eq. (6.62)
does not affect the error bound except for an additional factor of 2; see Appendix D
for the rigorous proof.

With the approximation (6.62) in mind, the root mean square (RMS) x-error
over the interval 0 ≤ x ≤ L is evaluated as

E2
x :=

∫ L

0

dx0
L
E2

x ≲ ℏ2C2M2 1TCx1
N2s2−2σ

. (6.64)
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On the other hand, the p-error in Eq. (6.49) is uniform regardless of the function
φ or the position x0:

E2
p = 1TCp1

N2 . (6.65)

Therefore, the upper bound on the estimation error is

δ2 = E2
p + E2

x ≲ 1
N2

(
ℏ2C2M2 1TCx1

s2−2σ
+ 1TCp1

)
. (6.66)

In the classical scheme, the two terms 1TCx1 = s2N and 1TCp1 = ℏ2

4s2N are
fixed. Therefore, the error of the wavelet measurement is

δ2 ≲ ℏ2

4s2N
(1 + 4C2M2s2+2σ), (6.67)

from which we see that the error is dominated by Ep only if the scale is sufficiently
small such that s1+σ ≤ 2CM . Regardless of the scale s, the N -dependency of the
error is the same as the SQL for parameter estimation: δ = O(N−1/2).

In the quantum scheme, on the other hand, the two terms 1TCx1 and 1TCp1 are
free variables while they are subject to the constraints (6.48) and (6.50). Suppose
that the equality in Eq. (6.50) holds. Then, we have

δ2 ≲ ℏ2

4s2

( 1
N2 + 4C2M2s2+2σ

)
. (6.68)

Hence, the Heisenberg limit δ2 ≈ ℏ2

4s2N2 derived in Sec. 6.2 holds only if s ≤ scr,
where the critical scale scr is given by s1+σ

cr = 2CMN−1. Since scr becomes smaller
as the number N of photons gets larger, the Heisenberg limit δ = O(N−1) does
not hold in the limit of N → ∞. This qualitatively explains the numerical results
that the statistical error deteriorates from the Heisenberg limit for large N .

When s ≥ scr, we need to consider the tradeoff relation between E2
x and E2

p

to derive the optimal error. In other words, the quantum correlation must be
adjusted so that the x-error and the p-error are comparable to each other. By
using Eq. (6.48), we obtain the optimal error

δ2 ≈ ℏ2 CM

Ns1−σ
. (6.69)

Therefore, the error eventually becomes the SQL δ = O(N−1), while they are
better than Eq. (6.67) by a constant factor.

6.3.2 Edge detection and function estimation
We have seen the existence of the SQL δ = (N−1/2) and the Heisenberg limit
δ = O(N−1) in the wavelet measurement for a fixed wavelet scale s. In this
subsection, we consider the edge detection for multiple scales s and establish the
results consistent with the function estimation in Chap. 5.
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In order to locate the edges in the function φ(x), one needs to perform the
wavelet measurements for various locations x0 and search for the extrema. No
general strategy for searching extrema exists, although some useful heuristics are
known such as Canny’s algorithm [46] and the kernel method [89].

Here, we consider the brute-force search where all possible locations x0 are
searched. Noting that an edge of scale s should be located with precision at most
O(s), we need to check O(s−1) locations per unit length. Hence, the total number
of photons consumed per unit length can be written as

N = O(s−1N). (6.70)

Mallat and Zhong [50, 51] have shown that the entire function φ can be restored
from the locations x0 and strengths Ws[φ](x0) of edges, where the lengthscale s
is taken geometrically:

s = 2js0 (j ∈ Z). (6.71)

Let us recall that the wavelet function ψs is defined as ψs(x) = csρ
′
s(x) with the

smoothing function ρs and a constant cs > 0. For the measured momentum p∗,
the wavelet transform can be calculated as

Ws[φ](x0) = cs

ℏ
〈p∗〉. (6.72)

For the purpose of the next theorem, we need to set cs = s. Here, we apply
results from Ref. [50, 51], while we omit mathematically rigorous assumptions and
formulations:

Proposition 6.2 The following statements can be found in Refs. [50, 51]:

(1) There exists an algorithm to reconstruct the function φ(x) within the mean-
square error δ2 from the wavelet strengths Ws[φ](x0) estimated with accuracy
O(δ), where x0 is taken over all edges of scale s and the scale s = 2js0 is
taken for every j ∈ Z.

(2) When the function φ is (1 + σ,M)-regular, the wavelets of scale s for con-
tributes to the mean-square error by at most O(M2s2(1+σ)) in the function
reconstruction.

By using the statement above, the function φ(x) can be reconstructed as follows:
We perform the edge detection for scales s = 2js0 for integer j ≥ 0 and reconstruct
the function φ(x) according to the algorithm described in (1). Here, we ignore the
edges with a scale less than s0, which contributes little to the RMS error owing
to (2).

Let us neglect the x-error, in which case the momentum p∗ can be measured
with statistical error

δ2 = ℏ2

4s2NX
, (6.73)
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where X = 1 for the classical scheme and X = 2 for the quantum scheme. Since
p∗ is linearly related to the wavelet transform Ws[φ](x0) by (6.72) with cs = s,
the statistical error for the wavelet strength Ws[φ](x0) for a single edge x0 is

δ2 =
(
s

ℏ

)2 ℏ2

4s2NX
= 4
NX

. (6.74)

Therefore, the number N of photons per unit length is of the order O(s−1N) =
O(s−1δ−2/X). Owing to the nature of the geometric series, the summation for
s = s0, 2s0, 22s0, . . . becomes of the order

N = O(s−1
0 δ−2/X). (6.75)

On the other hand, the lack of edge detection with scale less than s0 contributes
to the RMS error at most O(M2s

2(1+σ)
0 ), which must be at most comparable to

δ2. Therefore, the lengthscale s0 must be chosen such that

δ = O(Ms1+σ
0 ). (6.76)

Combining this equation with (6.75), we can establish the scaling relation between
N , δ, and M :

δ = O
(
(MN 1+σ)− 1

(X/2)(1+σ)+1
)

=

O
(
(MN 1+σ)− 1

2(1+σ)+1
)

(classical);
O
(
(MN 1+σ)− 1

(1+σ)+1
)

(quantum),
(6.77)

which coincides with the SQL and the Heisenberg limit of the function estimation
in Eq. (5.110) with q = 1 + σ. This fact indicates that the wavelet measurement
is an efficient way to extract the information of the entire function φ(x), which
can be performed separately on each lengthscale s.

In a practical situation, however, the wavelet measurement is hindered by the
x-error as we have seen in the previous subsection, making the function restoration
algorithm less efficient than the direct methods we have described in Chap 5.

6.4 Wavelet detection with more general states
6.4.1 Possibility of non-Gaussian probes
As we have seen in the previous sections, the x-error stands in the way of the effi-
cient wavelet measurement, without which the Heisenberg limit δ = O(N−1) can
be unconditionally attained. For the last part of this chapter, we discuss whether
the statistical error in the wavelet measurement can be reduced by introducing a
non-Gaussian probe.

We consider the single photon detection for brevity, although the analysis is
parallel for the multiple photon detection. We return to Eq. (6.25):

δ2 =
∫∫ (

p+ ℏφ′(x) − 〈p∗〉
)2
dxdpWq(x, p), (6.78)
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which is the variance of the operator p̂+ ℏφ(x̂). Since the variance of x̂ is s2, the
Heisenberg uncertainty relation due to the commutation relation

[x̂, p̂+ ℏφ(x̂)] = iℏ (6.79)

bounds the statistical error from below:

δ ≥ ℏ
2s
, (6.80)

which coincides with the bound on the p-error Ep1 in the Gaussian case. This
suggests that, for a general probe state, the x-error can be eliminated and only
the p-error remains.

This is confirmed by setting the probe wavefunction to

q(x) ∝ ei[p0x−φ0(x)]e− (x0−x)2

4s2 , (6.81)

where p0 is chosen so that the initial expected momentum is zero. If the unknown
function φ(x) coincides with φ0(x), it can be straightforwardly checked that the
momentum p∗ is subject to the Gaussian distribution with variance ℏ2

4s2 , attaining
the equality in Eq. (6.80).

This strategy cannot be applied in the real situation, of course, as we do not
know the function φ(x) in question in the first place. In fact, the statistical error
cannot be reduced from the Gaussian case if the function φ(x) is unknown. To
see this, let us consider an alternate case in which the phase function is −φ(x).
The statistical error for this case can be written as

δ2 =
∫∫ (

p− ℏφ′(x) + 〈p∗〉
)2
dxdpWq(x, p), (6.82)

where 〈p∗〉 indicates the expected value when the phase function is φ(x) rather
than −φ(x). By taking the mean between Eqs. (6.78) and (6.82), we obtain

δ2 =
∫∫

p2dxdpWq(x, p) +
∫∫ (

ℏφ′(x) − 〈p∗〉
)2
dxdpWq(x, p). (6.83)

In the right-hand side of Eq. (6.83) the first term is the variance of p and the second
term is the variance of φ′(x). These terms can be regarded as the p-error and the
x-error, whence δ2 is bounded by the same tradeoff relation as the Gaussian case.

It is possible, though, to modify the probe state on the basis of some previous
measurements on φ(x). This approach is outside the scope of our study, how-
ever, since this requires more than the measurement on the wavelet transform
Ws[φ](x0).

6.4.2 Preliminary results on indistinguishable photons
So far, the situation was limited to the case in which the probe beam consists of a
definite number of distinguishable photon states. In order to apply our theory to
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more general photon states such as coherent states and multimode squeezed state,
we rewrite the system in the second-quantized formulation.

Let us denote by âp the annihilation operator of a photon with momentum p.
Then, the annihilation operator âx of a photon localized at position x can formally
be defined as

âx = 1√
2πℏ

∫
eipx/ℏâp. (6.84)

The unitary evolution Uφ of the system in Eq. (6.8) can be written as Uφ =
e−iHφ , where Hφ is defined as

Hφ = −
∫
dyφ(y)â†

yây. (6.85)

Owing to the commutation relation [Hφ, âx] = φ(x)âx, the unitary evolution Ûφ

can be expressed in the Heisenberg picture as

U †
φâxUφ = eiφ(x)âx, (6.86)

which corresponds to the Schrödinger picture of Uφ in Eq. (6.8).
In the second quantization, we can describe the wavelet measurement using a

probe state with an indefinite photon number. For example, the probe state can be
a coherent state |α〉, where α(x) is a square-integrable function, which is defined
as a simultaneous eigenstate of the annihilation operators: âx|α〉 = α(x)|α〉. A
coherent state can be obtained as |α〉 = D(α)|0〉 from the vacuum |0〉, where we
have used the displacement operator

D(α) = exp
[∫

dxα(x)â†
x − h.c.

]
. (6.87)

By Eq. (6.86), we see that the unitary operator Uφ lets a coherent state |α〉 evolve
into another coherent state |αφ〉, αφ(x) = eiφ(x)α(x).

Now, we consider a general probe state |qφ〉 = Uφ|q〉 for the wavelet measure-
ment. We first derive the precision bound on the basis of one-photon detection,
which yields a similar result to Sec. 6.2. Instead of the probability distribution
P (p∗), we consider the photon flux I(p∗) [90, 91] with respect to the measured
momentum p∗:

I(p∗) = 〈qφ|â†
p∗ âp∗ |qφ〉. (6.88)

In other words, I(p∗)dp corresponds to the number of photons whose momenta
fall into an infinitesimal interval [p∗, p∗ + dp].

The number density I(p∗) can be calculated in the same way as we did in
Sec. 6.2.1. We may define the Wigner function Wq(x, p) by

Wq(x, p) = 〈q|Î(x, p)|q〉, (6.89)

Î(x, p) = F−1
y→p

[
â†

x+ y
2
âx− y

2

]
=
∫

dy

2πℏ
eipy/ℏâ†

x+ y
2
âx− y

2
. (6.90)
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In fact, integration of Wq(x, p) by one variable yields∫
dpWq(x, p) = 〈q|â†

xâx|q〉 =: I(x); (6.91)∫
dxWq(x, p) = 〈q|â†

pâp|q〉 =: I(p), (6.92)

which correspond to the photon fluxes with respect to position and momentum,
respectively. The Wigner functions Wqφ(x, p) and Wq(x, p) are related in the same
way as Eq. (6.17):

Wqφ(x, p) = F−1
y→p

[
〈qφ|â†

x+ y
2
âx− y

2
|qφ〉

]
= F−1

y→p

[
〈q|U †

φâ
†
x+ y

2
âx− y

2
Uφ|q〉

]
= F−1

y→p

[
ei[φ(x− y

2 )−φ(x+ y
2 )]〈q|â†

x+ y
2
âx− y

2
|q〉
]

= Wqφ(x, p) = Wq(x, p) ∗Wφ(p|x). (6.93)

Hence, the photon flux in Eq. (6.88) can be calculated as

I(p∗) =
∫
dxWqφ(x, p∗) =

∫∫
dxdpWq(x, p∗ − p)Wφ(p|x), (6.94)

which can be treated in the same way as the probability density in Eq. (6.19) if
we normalize it by the total photon number I =

∫
dp∗I(p∗). In particular, the

statistical error derived in this section holds when the Winger function Wq(x, p) of
the probe state is Gaussian, e.g. the coherent state |α〉 with α(x) ∝ e−(x0−x)2/4s2 .

Next, we will investigate the effect of correlated photons on the basis of N -
photon detection. The photon flux with respect to the simultaneously detected
momenta p∗ = (p∗

1, . . . , p
∗
N ) can be described as

I(p∗
1, . . . , p

∗
N ) = 〈qφ|â†

p1 · · · â†
pN
âpN · · · âp1 |qφ〉. (6.95)

When the photons are indistinguishable (i.e. commutation relations [a†
pi
, apj ] =

δ(pi −pj) holds even for different i and j), the event of detection is invariant under
the permutation of the momenta (p∗

1, . . . , p
∗
N ). For example, the detection of two

photons of momenta (p∗
1, p

∗
2) contributes not only to the flux I(p∗

1, p
∗
2) but also to

the flux I(p∗
2, p

∗
1).3 The photon flux can also be rewritten as

I(p∗
1, . . . , p

∗
N ) = I(p∗

1) · · · I(p∗
N )g(N)(p∗

1, . . . , p
∗
N ), (6.96)

where g(N) is known as the correlation function of order N [91]:

g(N)(p1, . . . , pN ) =
〈qφ|â†

p1 · · · â†
pN
âpN · · · âp1 |qφ〉

〈qφ|â†
p1 âp1 |qφ〉 · · · 〈qφ|â†

pN âpN |qφ〉
. (6.97)

3This means that every N -photon detection contributes to the total flux over N ! times, since
the momenta p∗

1, . . . , p∗
N can be regarded as distinct. It is meaningless to ask for individual values

with non-unique momenta, such as I(p, p, . . . ), because the photon flux yields the photon number
only when it is integrated over p∗.
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The intercorrelation of photons is indicated by g(N) 6= 1, which may alter the
statistical error for simultaneous N -photon detection.

Similarly to the analysis in Sec. 6.3.1, we can extend Eq. (6.94) into the multi-
dimensional version:

I(p∗) =
∫∫

dxdpW (N)
q (x,p∗ − p)W (N)

φ (p|x). (6.98)

Here, the extended Wigner function W
(N)
q (x,p) is defined as

W (N)
q (x,p) = 〈q|:Î(x1, p1) · · · Î(xN , pN ):|q〉, (6.99)

where the products between colons are so-called normally ordered, i.e. rearranged
such that the creation operators always comes before the annihilation operators.
Hence, the statistical error with simultaneous detection of N photons can be
calculated in the same way as in Sec. 6.2.3.

Since g(N) = 1 holds for a coherent state |α〉, the measured momenta of N
photons are mutually independent and we obtain the same SQL as Eq. (6.49).
To obtain a different result, we consider the multimode squeezing of the coherent
state [91–93]:

|α, ζ〉 = S(ζ)D(α)|0〉, (6.100)

where ζ(y1, y2) is a symmetric square-integrable function and the squeezing oper-
ator S(ζ) is defined as

S(ζ) = exp 1
2

[∫∫
dy1dy2ζ(y1, y2)â†

y1 â
†
y2 − h.c.

]
. (6.101)

Such squeezing can be introduced by parametric down-conversion [94–96]. When
the squeezing is weak, the correlation function of order 2 can be approximated
as [97, 98]:

g(2)(p1, p2) ≈ 1 + 2 Re ζ̃(p1, p2)
α̃(p1)α̃(p2)

, (6.102)

where α̃ and ζ̃ are the Fourier transforms of α and ζ. Therefore, the covariance
matrix Cp of the momenta can be changed by the squeezing function ζ, which
may be used to the break the SQL. It is left as an open problem how far the error
can be reduced by using squeezed beams, which requires calculation beyond weak
squeezing.
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Chapter 7

Summary and Outlook

7.1 Summary

In this thesis, we have developed the theory of quantum estimation on continuous
data.

In Chapter 2, we have reviewed quantum information theory and quantum
metrology, where we have explained two different types of quantum limits, the
standard quantum limit (SQL) and the Heisenberg limit. In quantum estimation
theory, the estimation error δ has a lower bound called the quantum Cramér–Rao
(CR) bound, which is obtained by geometrically evaluating the local structure
of the quantum state space in terms of the Fisher information metric. In the
classical scheme, the probe states are assumed to have no correlation, and the
quantum CR bound yields a lower bound called the SQL: δ ≥ O(N−1/2), where
N indicates the amount of resource. This can be regarded as a classical error
bound in the sense that it is consistent with the central limit theorem. The SQL
can be surpassed, however, when nonclassical correlation in the measurement is
introduced. The quantum CR bound for the general case is the Heisenberg limit:
δ ≥ O(N−1), and the equality δ = O(N−1) can be achieved by, e.g., a generalized
Greenberger–Horne–Zeilinger state (GHZ state).

In Chapter 3, we have reviewed the existing studies of function estimation and
signal estimation, where we make use of functional analysis. We have introduced
the notion of the Hölder condition, which quantifies the smoothness of a given
function by some parameter q. The Hölder condition can be used to estimate
a function supported on a continuous spacetime, which is called the local linear
smoothing (LLS). This estimation method uses a point-spread function called the
“kernel” to reduce discrete observations to a continuous function, which best ap-
proximates the function when the width of the function is set to be optimal. As a
result, the approximation error is bounded from above by a quantity depending on
q, which indicates that smoother function can be approximated more efficiently.

For the sake of completeness, we have also reviewed the related work on signal
estimation. There, stochastic signals was shown to be estimated by use of filtering,
which is based on the power-spectrum analysis of a stochastic process. This tech-
nique roughly corresponds to the LLS in that we need to set the optimal timescale
of smoothing according to the shape of the power spectrum, which represents the
typical smoothness of the signal.
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In Chapter 4, we have presented a comprehensive study on a multiparameter
quantum metrology, which extends the previous studies in the author’s master
thesis. On the basis of the quantum limits upon linear Hamiltonian models derived
in the master thesis, the sequential and parallel schemes are compared with each
other. After a series of operator-algebraic arithmetics, we have shown that the
asymptotic costs of estimation for both schemes are equivalent. This implies that
quantum metrology can be parallelized by a constant factor of overhead regardless
of the size of the Hamiltonian model.

In Chapter 5, we have derived the theoretical limits on function estimation
incorporated with quantum metrology. We consider an unknown phase function
φ(x) in a quantum system, whose dynamics is described by the phase factor e−iφ(x)

depending on the position x. In the estimation of the phase function φ(x), the
accuracy is measured by the root-mean-square error. The theoretical limits are
derived by reducing the problem to that of the multiparameter estimation. Under
the assumption of a bounded q-Hölder condition, a lower bound on the error is
found to be O(N−q/(2q+1)) with classical scheme, while quantum scheme allows
the error of the order of O(N−q/(q+1)). These error scalings can be stated as the
SQL and the Heisenberg limit on function estimation. While their dependences
on N are weaker than the counterparts on parameter estimation, the latter can
be reproduced from the former by formally taking the smooth limit q → ∞.

We have also investigated the methodology to attain the quantum limits. No-
tably, one may choose either position- or momentum-localized states for the probes:
The local linear smoothing can be used for the localized states; the postselected
quantum tomography can be used for the momentum-localized states. Both strate-
gies lead to the SQL or the Heisenberg limit, except that the estimation method
by momentum-localized states is ensured only for 0 < q ≤ 1.

In Chapter 6, we have applied the theory of function estimation to the edge
detection. Continuing with the quantum system with a phase function φ(x), we
consider a problem of estimating the wavelet transform of the function φ, which
can be used to locate the edges of a given length scale. We have proposed a
modified version of ghost imaging as a physical implementation of the wavelet
measurement. In this strategy, one uses a wave packet as a probe state, and the
wavelet transform can be measured by detecting the momentum of the output
state. We have shown that the probability density function of the momentum is
described by a chain of quasi-Markovian processes, no matter whether the probe
state consists of a single photon or multiple photons. Furthermore, the estimation
error can be decomposed into the momentum variance (“p-error”) and the trans-
formed position variance (“x-error”), whence we could analytically evaluate the
error bounds from the position-momentum uncertainty relation. The Heisenberg-
limited edge detection is found to be performed by a Gaussian beam with negative
quantum correlations in the momentum space.

We have also demonstrated the consistency with the function estimation. It
is known that the entire function φ(x) can be restored by measuring the lo-
cation and strength of each edge with various length scales s. As long as we
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ignore the x-errors, the estimation error in restoring the function is subject to
the SQL O(N−q/(2q+1)) and the Heisenberg limit O(N−q/(2q+1)), depending on
whether or not the quantum correlation is permitted. This suggests that the
wavelet measurement is an efficient way to extract the information from a given
function.

7.2 Outlook
This thesis rigorously shows a potential impact of quantum mechanics on the
estimation of continuous data by analytically calculating the estimation error. In
particular, we have derived the optimal error in the estimation of an unknown
function encoded in a quantum system, which depends on the smoothness of the
function to be estimated.

Some problems are open for discussion, however, when we consider practical
applications of our studies. First, there exists many techniques for continuous
data analysis, such as signal separation [44] or model prediction [99]. How should
we apply these techniques to continuous data encoded in quantum systems? One
näıve way is to estimate the entire function as described in Chapter 5, and then
conduct classical algorithms for further analysis. On the other hand, it would
be more efficient if we can perform the continuous data analysis via some special
quantum measurement, circumventing the function estimation itself. The edge
detection disucussed in Chapter 6 is one such example, since it detects the wavelet
coefficient rather than the entire function. However, it still involves a brute-
force search for finding the extrema, which is essentially as costly as the function
estimation.

This leads us to the second perspective beyond this thesis: the possibility to
combine rigorous quantum metrology and heuristic algorithms in edge detection.
For example, kernel regression [69, 89, 100] will be useful for quantum metrology
because it is a common optimization algorithm to reduce the number of costly
measurements. For two-dimensional images, quantum metrology may be combined
with the Canny algorithm [46], which is based on the qualitative assumption that
edge extends in some one-dimensional region.

The third perspective is for the theoretical interest. We have seen that the
quantum limits on function estimation can be reached by various probes: In Chap-
ter 5, we have seen the optimality of position- and momentum-localized probes.
Wave packets can be regarded as lying between these extremes, but they are still
quantum-limited as seen in Chapter 6. These facts suggest that almost any type
of probe states can be used for the optimal estimation, no matter how they are
localized in the position or momentum space. However, the general theory about
this methodology is yet to be known.
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Appendix A

Trace in the Symmetric Tensor-product Space

Here, we show Proposition 4.5 in Chapter 4 by proposing an algorithm to calculate

tr[Psym{X}m
r ], {X}r =

r∑
i=1

I ⊗ · · · ⊗ X︸︷︷︸
ith

⊗ · · · ⊗ I. (A.1)

in terms of trX, . . . , trXm for general m. This requires a few preparatory steps
concerning combinatorial mathematics.

A.1 Preparation: Bell Polynomials

Definition A.1 A sequence of positive numbers λ = (λ1, . . . , λh) is said to be a
partition of n if λ1 ≥ · · · ≥ λh ≥ 1 and λ1 + · · · + λh = n. The number h is
said to be the height of λ. Given a partition λ of n, the corresponding monomial
pλ(x1, x2, . . . ) can be defined by

pλ(x1, . . . , xλ1) = xλ1 · · ·xλh
. (A.2)

We may equivalently write this as

pλ(x1, . . . , xλ1) = xj1
1 · · ·xjλ1

λ1
, (A.3)

where jk is the number of k contained in the sequence λ.

Example A.2 λ = (4, 2, 2, 2, 1, 1) is a partition of 12 with height 6. The corre-
sponding monomial is pλ(x1, x2, x3, x4) = x2

1x
3
2x4.

We consider partitioning a set S = {1, . . . , n} into h subsets so that the sizes
of the subsets are λ1, . . . , λh. We note that subsets of the same size is mutually
indistinguishable. If we denote by bλ the number of the ways of such partitioning,
it can be calculated as

bλ = n!
λ1! · · ·λh!

· 1
j1! · · · jλ1 !

. (A.4)

Here, the integers j1, . . . , jλ1 are the same as the ones defined in Def. A.1.
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Example A.3 We consider the partition λ = (2, 2, 1) of 5. The number of ways
to partition the set {1, 2, 3, 4, 5} into subsets of size 2, 2, 1 is

5!
2!2!1!

· · · 1
1!2!

= 15, (A.5)

which can be directly enumerated as

{{1, 2}, {3, 4}, {5}}, {{1, 3}, {2, 4}, {5}}, {{1, 4}, {2, 3}, {5}},
{{1, 2}, {3, 5}, {4}}, {{1, 3}, {2, 5}, {4}}, {{1, 5}, {2, 3}, {4}},
{{1, 2}, {4, 5}, {3}}, {{1, 4}, {2, 5}, {3}}, {{1, 5}, {2, 4}, {3}},
{{1, 3}, {4, 5}, {2}}, {{1, 4}, {3, 5}, {2}}, {{1, 5}, {3, 4}, {2}},
{{2, 3}, {4, 5}, {1}}, {{2, 4}, {3, 5}, {1}}, {{2, 5}, {3, 4}, {1}}.

Definition A.4 The partial Bell polynomials Bn,h(x1, . . . , xn−k+1) are defined as

Bn,h(x1, . . . , xn−k+1) =
∑

λ`(n,h)
bλp

λ(x1, . . . , xλ1), (A.6)

where we denote by λ ` (n, h) that λ is the partition of n with height h. The total
Bell polynomials Bn(x1, . . . , xn) are defined as

Bn(x1, . . . , xn) =
n∑

h=1
Bn,h(x1, . . . , xn−k+1) =

∑
λ`n

bλp
λ(x1, . . . , xλ1), (A.7)

where λ ` n means that λ is the partition of n with any height.

Example A.5 Let us consider B5,3. There are two partitions of 5 with height
3: one is λ = (2, 2, 1), which have appeared in Example A.3, and the other is
µ = (3, 1, 1). Hence, the partial Bell polynomial is

B5,3(x1, x2, x3) = bλp
λ(x1, x2) + bµp

µ(x1, x2, x3) = 15x1x
2
2 + 10x2

1x3. (A.8)

The total Bell polynomial B5 can be obtained by considering all 7 partitions:

B5(x1, x2, x3, x4, x5) = x5
1+10x3

1x2+15x1x
2
2+10x2

1x3+10x2x3+5x1x4+x5. (A.9)

The Bell polynomials are useful in several situations, including one in which
we calculate higher derivative of a composite function. This is known as Faà di
Bruno’s formula:

Lemma A.6 (Faà di Bruno’s formula [101, 102]) If f(x) and g(x) are both n-time
differentiable functions of x, the n-th derivative of the composite function f

(
g(x)

)
is given by

dn

dxn
f
(
g(x)

)
=

n∑
h=1

Bn,h

(
g′(x), . . . , g(n−h+1)(x)

)
f (h)(g(x)

)
. (A.10)

In particular, for f(x) = ex,
dn

dxn
eg(x) = Bn

(
g′(x), . . . , g(n)(x)

)
eg(x). (A.11)
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For later convenience, let us define the homogeneity and the weighted homo-
geneity:

Definition A.7 A polynomial P (x1, x2, . . . , xm) is homogeneous polynomial of
degree h if and only if

P (tx1, tx2, . . . , txm) = thP (x1, x2, . . . , xm). (A.12)

Similarly, a polynomial P (x1, x2, . . . , xm) is weighted-homogeneous polynomial of
degree n if and only if

P (tx1, t
2x2, . . . , t

mxm) = tnP (x1, x2, . . . , xm). (A.13)

It can straightforwardly be seen that a partial Bell polynomial Bn,h is homoge-
neous of degree h as well as weighted-homogeneous of degree n. More generally,
the following proposition holds:

Proposition A.8 A polynomial P (x1, . . . , xm) is homogeneous of degree h and
weighted-homogeneous of degree n and if and only if it can be written in the form

P (x1, . . . , xm) =
∑

λ`(n,h)
aλp

λ(x1, . . . , xλ1) (A.14)

for some constants aλ.

A.2 Derivation of the trace

We consider a system of free particles subject to the Bose–Einstein statistics.
We regard the operator X on the d-dimensional Hilbert space HS = Cd as the
Hamiltonian for a system one particle. If there are N particles in the system, the
corresponding Hamiltonian is represented by

Psym{X}N , (A.15)

where Psym denotes the projection onto the symmetric Fock space. The partition
function of this system is

Z(N, β) = tr
[
e−βPsym{X}N

]
=

∞∑
m=0

(−β)m

m!
tr
[
Psym{X}m

N

]
. (A.16)

On the other hand, if the system is in equilibrium with a particle bath with
chemical potential µ, the system is described by the grand partition function

Ξ(µ, β) =
∞∑

N=0
eµβNZ(N, β) =

∞∑
m=0

∞∑
N=0

eµβN (−β)m

m!
tr
[
Psym{X}m

N

]
. (A.17)
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By taking t = −β and s = eβµ, we may write

Ξ(s, t) =
∞∑

m=0

∞∑
N=0

sN tm

m!
tr
[
Psym{X}m

N

]
. (A.18)

Hence, the desired trace (A.1) can be obtained by expanding the grand partition
function Ξ(s, t) in the powers of s and t. In particular, the terms in proportion to
tm

m! can be extracted by the differentiation

∂n

∂tn
Ξ(s, t = 0) =

∞∑
N=0

sN tr
[
Psym{X}m

N

]
. (A.19)

If we denote the eigenvalues of X by ϵ1, . . . , ϵd, the grand partition function can
also be written as

Ξ(s, t) =
d∏

j=1

1
1 − eβ(µ−ϵj) =

d∏
j=1

1
1 − setϵj

. (A.20)

Hence, the logarithm ξ(s, t) = log Ξ(s, t) can be expanded as

ξ(s, t) =
d∑

j=1
− log(1 − setϵj ) = tr

[
− log

(
1 − setX)]

= tr
[ ∞∑

j=1

(setX)j

j

]
=

∞∑
j=1

sj

j
tr[ejtX ]. (A.21)

Extracting the terms in proportion to tk

k! yields

∂k

∂tk
ξ(s, t = 0) =

∞∑
j=1

sj

j
tr[(jX)k]

=
∞∑

j=1
jk−1sj tr[Xk] = sAk−1(s)

(1 − s)k
tr[Xk], (A.22)

where we have introduced the following polynomials.

Definition A.9 (Eulerian polynomials [103, 104]) The Eulerian polynomials Ak(x)
(k = 0, 1, . . . ) is defined by the formal power series

Ak(x) = (1 − x)k+1
∞∑

j=1
jkxj−1. (A.23)

In fact, Ak(x) becomes a polynomial with finite degree; the degree of Ak(x) is
k − 1 for k ≥ 1.
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The fact that Ak(x) are finite-degree polynomials can be confirmed as follows.
For k ≥ 1, we have

d

dx
[xAk−1(x)] = d

dx

[
(1 − x)k

∞∑
j=1

jk−1xj
]

= −k(1 − x)k−1
∞∑

j=1
jk−1xj + (1 − x)k

∞∑
j=1

jkxj−1

= Ak(x) − kxAk−1(x)
1 − x

, (A.24)

from which we obtain the recurrence relation

Ak(x) = (1 − x) d
dx

[xAk−1(x)] + kxAk−1(x). (A.25)

Therefore, starting from

A0(x) = (1 − x)
∞∑

j=1
xj−1 = 1, (A.26)

we can recursively compute the Eulerian polynomials:

A0(x) = A1(x) = 1, A2(x) = x+ 1, A3(x) = x2 + 4x+ 1,
A4(x) = x3 + 11x2 + 11x+ 1, A5(x) = x4 + 26x3 + 66x2 + 26x+ 1,

and so on. In particular, it can be shown by induction that the highest-degree
term of Ak(x) is xk−1 for k ≥ 1.

Let us return to Eq. (A.22). If we apply Faà di Bruno’s formula (Lem. A.6) to
the grand partition function Ξ(s, t) = eξ(s,t), we obtain

∂m

∂tm
Ξ(s, t = 0) = ∂m

∂tm
eξ(s,t=0)

= eξ(s,t=0)Bm

(
∂

∂t
eξ(s,t=0), . . . ,

∂m

∂tm
eξ(s,t=0)

)
= e−d log(1−s)Bm

(
sA0(s)
(1 − s)

trX, . . . , sAm−1(s)
(1 − s)m

trXm
)

= 1
(1 − s)d

Bm

(
sA0(s)
(1 − s)

trX, . . . , sAm−1(s)
(1 − s)m

trXm
)
. (A.27)

By using the fact that the Bell polynomial Bm is weighted-homogeneous of degree
m, we obtain

∂m

∂tm
Ξ(s, t = 0) = 1

(1 − s)m+d
Bm

(
sA0(s) trX, . . . , sAm−1(s) trXm)

= 1
(1 − s)m+d

m∑
l=1

slSm,l

(
trX, . . . , trXm), (A.28)
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where we define the polynomials Sm,l(x1, . . . , xm) by

Bm
(
sA0(s)x1, . . . , sAm−1(s)xm

)
=

m∑
l=1

slSm,l(x1, . . . , xm). (A.29)

The desired trace (A.1) is the coefficient of sN in the last line of Eq. (A.28). We
recall that the fraction 1

(1−s)m+d can be represented by a power series of s as

1
(1 − s)m+d

=
∞∑

l=0

(
m+ d+ l − 1
m+ d− 1

)
sl, (A.30)

where
(n

m

)
is the binomial coefficient. Therefore, the desired trace can be identified

as

tr
[
Psym{X}m

N

]
=

m∑
l=1

(m+ d+N − l − 1)!
(m+ d− 1)!(N − l)!

Sm,l

(
trX, . . . , trXm), (A.31)

which can be systematically calculated from Eq. (A.29) by using the Bell and the
Eulerian polynomials.

Now, let us substitute m = 4 to prove Prop. 4.5. The corresponding Bell
polynomial is

B4(x1, x2, x3, x4) = x4
1 + 4x3x1 + 3x2

2 + 6x2x
2
1 + x4

1 (A.32)

and Eq. (A.29) becomes

B4
(
sx1, sx2, s(s+ 1)x3, s(s2 + 4s+ 1)x4

)
= sx4 + s2(3x2 + 4x1x3 + 4x4) + s3(6x2

1x2 + 4x1x3 + x4) + s4x4
1, (A.33)

from which the polynomials S4,l(x1, x2, x3, x4) (l = 1, 2, 3, 4) can be identified.
Now, the trace in question can be calculated as

tr
[
Psym{X}4

r

]
=

4∑
l=1

(
r + d+ 3 − l

d+ 3

)
S4,l(trX, trX2, trX3, trX4). (A.34)

Noting that trX = 0 is assumed in Prop. 4.5, this equation can be expanded as

tr
[
Psym{X}4

r

]
=
(
r + d+ 2
d+ 3

)
trX4

+
(
r + d+ 1
d+ 3

)
[3(trX2)2 + 4 trX4]

+
(
r + d

d+ 3

)
trX4. (A.35)
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If we divide both sides by D =
(r+d−1

d−1
)
, this equation becomes

1
D

tr
[
Psym{X}4

r

]
= (r + d+ 2)(r + d+ 1)(r + d)r

d(d+ 1)(d+ 2)(d+ 3)
trX4

+ (r + d+ 1)(r + d)r(r − 1)
d(d+ 1)(d+ 2)(d+ 3)

[3(trX2)2 + 4 trX4]

+ (r + d)r(r − 1)(r − 2)
d(d+ 1)(d+ 2)(d+ 3)

trX4, (A.36)

which yields Prop. 4.5.
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Fourier Transform of Regular Functions

Here, we prove two theorems 5.4 and 5.5 that have appeared in Chapter 5. Both
theorems provide conditions for a function u(x) to be (q,M)-regular on the basis
of its Fourier coefficients, where Th. 5.4 yields a necessary condition and Th. 5.5
yields a sufficient condition. Before proving these theorems, we present a lemma
that characterizes the behavior of the Fourier coefficients of a (q,M)-regular func-
tion:

Lemma B.1 Let us set q = m + σ with an integer m ≥ 0 and a real number
0 < σ ≤ 1. We consider an m-time differentiable function u : [0, L] → C with the
periodic boundary condition, and define its Fourier transform {uk}k∈Z by

u(x) :=
∑
k∈Z

uke
2πikx/L. (B.1)

Then, the function u is (q,M)-regular if and only if the inequality

∞∑
k=1

(|uk|2 + |u−k|2)
(
k

L

)2m

sin2 πkε

L
≤ M2|ε|2σ

(2π)2m
(B.2)

holds for an arbitrary ε.

Proof. The Fourier transform of the mth derivative u(m) is calculated as

u(m)(x) =
∑
k∈Z

(2πik
L

)m

uke
2πikx/L (B.3)

and therefore

∆εu(x) = u(x+ ε) − u(x) =
∑
k∈Z

(2πik
L

)m

uk[e2πik(x+ε)/L − e2πikx/L]

=
∑
k∈Z

(2πik
L

)m

uk(e2πikε/L − 1)e2πikx/L. (B.4)
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Hence, by the Perceval inequality, we have

‖∆εu‖2
2 =

∫ L

0

dx

L
|u(x+ ε) − u(x)|2

=
∑
k∈Z

∣∣∣∣(2πik
L

)m

uk(e2πikε/L − 1)
∣∣∣∣2

=
∑
k∈Z

|uk|2
(2πk
L

)2m

sin2 πkε

L

=
∞∑

k=1
(|uk|2 + |u−k|2)

(2πk
L

)2m

sin2 πkε

L
. (B.5)

We recall that the (q,M)-regularity is defined by the inequality

sup
ε 6=0

‖∆εu
(m)‖2

|ε|σ
≤ M, (B.6)

which is equivalent to
∀ε ‖∆εu

(m)‖2
2 ≤ M2|ε|2σ. (B.7)

The desired inequality Eq. (B.2) is obtained by substituting Eq. (B.5) into the
left-hand side of Eq. (B.7).

Now, we prove the two theorems in Chapter 5.

Theorem B.2 (Theorem 5.5 in the main text) Let us set q = m + σ with an
integer m ≥ 0 and a real number 0 < σ ≤ 1. We consider an arbitrary m-time
differentiable function u : [0, L] → C with the periodic boundary condition, and
define its Fourier transform {uk}k∈Z by

u(x) :=
∑
k∈Z

uke
2πikx/L. (B.8)

Then, there exists a real number C ′
q > 0 such that if

∞∑
k=1

(
k

L

)2q

(|uk|2 + |u−k|2) ≤ C ′
qM

2 (B.9)

holds for M > 0, the function u is (q,M)-regular.

Proof. Let us define a continuous function f(t) over t ≥ 0 by

f(t) = |sin πt|
tσ

. (B.10)

We note that the right-hand side converges in the limit t → +0 since 0 < σ ≤ 1.
Moreover, for t ≥ 1

2 we have f(t) ≤ t−σ ≤ 2σ = f(1
2). Therefore, the function
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f(t) has a maximum a = maxt≥0 f(t) at somewhere in 0 ≤ t ≤ 1
2 . Using this

maximum, we may write

sin2 πkε

L
=
(
πkε

L

)2σ[
f

(
πk|ε|
L

)]2
≤ a2

(
πk|ε|
L

)2σ

. (B.11)

Therefore, if u satisfies the assumption (B.9), we have

∞∑
k=1

(|uk|2 + |u−k|2)
(
k

L

)2m

sin2 πkε

L
≤

∞∑
k=1

(|uk|2 + |u−k|2)
(
k

L

)2m

a2
(
πk|ε|
L

)2σ

=
∞∑

k=1
(|uk|2 + |u−k|2)

(
k

L

)2q

a2(π|ε|)2σ

≤ a2(π|ε|)2σC ′
qM

2. (B.12)

Therefore, if we set C ′
q to be

C ′
q = [(2π)2mπ2σa2]−1 = (2mπqa)−2, (B.13)

the function u(t) becomes (q,M)-regular by virtue of Lem. B.1.

Theorem B.3 (Theorem 5.4 in the main text) Let us set 0 < q ≤ 1. We consider
an arbitrary function u : [0, L] → C with the periodic boundary condition, and
define its Fourier transform {uk}k∈Z by

u(x) :=
∑
k∈Z

uke
2πikx/L. (B.14)

Then, there exists a real number Cq > 0 such that if u is (q,M)-regular, the
high-wavenumber components of {uk} can be bounded as

∞∑
k=K

(|uk|2 + |u−k|2) ≤ CqM
2
(
L

K

)2q

(B.15)

for an arbitrary integer K > 0.

Proof. By Lem. B.1, a (q,M)-regular function u(x) satisfies

∞∑
k=1

(|uk|2 + |u−k|2) sin2 πkε

L
≤ M2|ε|2q, (B.16)

where we note that 0 < q ≤ 1 leads to m = 0 and σ = q. We restrict ε to a
positive number and divide by ε2q+1 to obtain

∞∑
k=1

(|uk|2 + |u−k|2)
sin2 πkε

L

ε2q+1 ≤ M2

ε
. (B.17)
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Now, we fix some positive numbers β > α > 0 and integrate Eq. (B.17) over
αL
K ≤ ε ≤ βL

K to obtain

∫ βL
K

αL
K

dε
∞∑

k=1

(
|uk|2 + |u−k|2

)sin2 πkε
L

ε2q+1 ≤
∫ βL

K

αL
K

dε
M2

ε
= M2 log β

α
. (B.18)

We rewrite the leftmost-hand side of Eq. (B.18) by replacing ε with t = L
K ε:∫ βL

K

αL
K

dε
∞∑

k=1

(
|uk|2 + |u−k|2

)sin2 πkε
L

ε2q+1 =
∫ β

α

(
K

L

)2q

dt
∞∑

k=1

(
|uk|2 + |u−k|2

)sin2 πkt
K

t2q+1

=
(
K

L

)2q ∞∑
k=1

(
|uk|2 + |u−k|2

) ∫ β

α
dt

sin2 πkt
K

t2q+1

=
(
K

L

)2q

F

(
k

K

) ∞∑
k=1

(
|uk|2 + |u−k|2

)
, (B.19)

where we have defined
F (s) =

∫ β

α
dt

sin2(πst)
t2q+1 . (B.20)

The function F (s) is continuous and positive for s ≥ 1. Furthermore, we also
find that F (s) does not vanish in the limit of s → ∞ by virtue of the Riemann–
Lebesgue lemma:

lim
s→∞

F (s) = lim
s→∞

∫ β

α
dt

1 − cos(2πst)
2t2q+1 =

∫ β

α

dt

2t2q+1 > 0. (B.21)

Therefore, the infimum m = infs≥1 F (s) must be a positive number.
Combining Eqs. (B.18) and (B.19), we obtain(

K

L

)2q ∞∑
k=K

m
(
|uk|2 + |u−k|2

)
≤
(
K

L

)2q

F

(
k

K

) ∞∑
k=1

(
|uk|2 + |u−k|2

)
≤ M2 log β

α
. (B.22)

By setting Cq = 1
m log β

α , the desired inequality (B.15) is obtained.
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Appendix C

Proof of Prop. 4.4
In this appendix, we prove Prop. 4.4, which bounds from below the infidelity of
the postselected state in the Hamiltonian estimation.

Let us recall the basic notation regarding this problem. Hθ =
∑m

j=1 θjXj is a
Hamiltonian in a d-dimensional Hilbert space HS = Cd that linearly depends on
the vector θ ∈ Rm. The initial state |M〉 = |M〉HS

is set to be the maximally
entangled state (MES) in HS ⊗ HA, where the ancilla HA is also d-dimensional.
For an arbitrary operator O on HS , the MES satisfies

〈M|O|M〉 = 1
d

trO (C.1)

and particularly, ∥∥O|M〉
∥∥ = 1

d1/2 ‖O‖HS = 1
d1/2

(
tr[O†O]

)1/2
. (C.2)

The probe state |qθ〉 = e−iτHθ |M〉 is obtained by the Hamiltonian evolution on
the MES over time τ . Them, we consider the projection operator P onto the
(m+ 1)-dimensional subspace spanned by

|M〉, X1|M〉, . . . , Xm|M〉, (C.3)

and perform postselection onto this subspace:

|q̃θ〉 = P |qθ〉
‖P |qθ〉‖

. (C.4)

Then, the proposition in question is stated as follows:

Proposition C.1 (Proposition 4.4 in the main text) Suppose that three constants
0 < c1 < 1, c2 ≥ 1, and c3 ≥ 1 are given. Then, there exists a constant α > 0
such that following statement holds: Let 0 < b ≤ c3, and {Hθ} be a Hamiltonian
model in d-dimensional Hilbert space such that

1
d

trH2
θ = b2‖θ‖2,

1
d

trH4
θ ≤ c2

2b
2‖θ‖4. (C.5)

Then, the postselected state |q̃θ〉 satisfies

1 −
∣∣〈q̃θ∗

∣∣q̃θ

〉∣∣2 ≥ c1b
2τ2‖θ∗ − θ‖2 (C.6)

for arbitrary ‖θ∗‖, ‖θ‖ ≤ α/τ .
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Proof. From the definition in Eq. (C.4), we obtain

1 −
∣∣〈q̃θ∗

∣∣q̃θ

〉∣∣2 = 〈qθ|P |qθ〉〈qθ∗ |P |qθ∗〉 − |〈qθ|P |qθ∗〉|2

〈qθ|P |qθ〉〈qθ∗ |P |qθ∗〉
≥ 〈qθ|P |qθ〉〈qθ∗ |P |qθ∗〉 − |〈qθ|P |qθ∗〉|2

= 〈qθ|P |qθ〉〈∆q|P |∆q〉 − |〈qθ|P |∆q〉|2, (C.7)

where |∆q〉 = |qθ∗〉 − |qθ〉. The primary goal is to show the approximations

|qθ〉 ≈ |q′
θ〉 := (I − iτHθ)|M〉 (C.8)

|∆q〉 ≈ |∆q′〉 := (−iτ∆H)|M〉 (∆H = Hθ∗ −Hθ) (C.9)

in a quantitative manner. To be more specific, we bound the errors

ϵ1 =
∥∥|qθ〉 − |q′

θ〉
∥∥, ϵ2 =

∥∥|∆q〉 − |∆q′〉
∥∥. (C.10)

In fact, with these approximations, the rightmost-hand side of Eq. (C.7) becomes

〈q′
θ|P |q′

θ〉〈∆q′|P |∆q′〉 − |〈q′
θ|P |∆q′〉|2,

= 1
d

‖I − iτHθ‖2
HS · 1

d
‖−iτ∆H‖2

HS −
∣∣∣∣1d tr(I − iτHθ)†(−iτ∆H)

∣∣∣∣2
=
(
1 + τ2b2‖θ‖2)(τ2b2‖θ∗ − θ‖2)−

(
τ2b2‖θ‖ · ‖θ∗ − θ‖

)2
= τ2b2‖θ∗ − θ‖2, (C.11)

where we have used ‖θ‖ ≤ α/τ .
First, let us show Eq. (C.8). Since |e−α − 1 + iα|2 ≤ fracα22, we have

ϵ1 =
∥∥|qθ〉 − |q′

θ〉
∥∥ =

∥∥|qθ〉 − (I − iτHθ)|M〉
∥∥

=
∥∥(e−iτHθ − I + iτHθ)|M〉

∥∥
= 1
d1/2 tr

[
|e−iτHθ − I + iτHθ|2

]
= 1
d1/2

(
tr
[
|e−iτHθ − I + iτHθ|2

])1/2

≤ 1
d1/2

(
τ4

4
tr[H4

θ ]
)1/2

≤ 1
d1/2

(
τ4c2

2b
2

4
‖θ‖4

)1/2
≤ c2bα

2

2
. (C.12)

Next, we treat the approximation in Eq. (C.9). First, the vector |∆q〉 can be
rewritten as

|∆q〉 = (e−iτHθ∗ − e−iτHθ )|M〉

= −i
∫ τ

0
dte−itHθ∗ (Hθ∗ −Hθ)e−i(τ−t)Hθ |M〉 (C.13)
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and hence

|∆q〉 − |∆q′〉 = −i
∫ τ

0
dt
[
e−itHθ∗ ∆He−i(τ−t)Hθ − ∆H

]
|M〉. (C.14)

Here, the Hilbert-Schmidt norm can be evaluated by the Hölder inequality as∥∥e−itHθ∗ ∆He−i(τ−t)Hθ − ∆H
∥∥

HS

≤
∥∥(e−itHθ∗ − I)∆He−i(τ−t)Hθ

∥∥
HS +

∥∥e−itHθ∗ ∆H(e−i(τ−t)Hθ − I)
∥∥

HS

≤
(
tr[|e−itHθ∗ − I|4]

)1/4(tr[(∆H)4]
)1/4 +

(
tr[(∆H)4]

)1/4(tr[|e−i(τ−t)Hθ − I|4]
)1/4

≤
(
tr[t4H4

θ∗ ]
)1/4(tr[(∆H)4]

)1/4 +
(
tr[(∆H)4]

)1/4(tr[(τ − t)4H4
θ ]
)1/4

≤ d1/2tc2b‖θ∗‖ · ‖θ∗ − θ‖ + d1/2(τ − t)c2b‖θ‖ · ‖θ∗ − θ‖
≤ d1/2c2bα‖θ∗ − θ‖. (C.15)

Therefore,

ϵ2 =
∥∥|∆q〉 − |∆q′〉

∥∥ = 1
d1/2

∥∥∥∥∫ τ

0
dt
[
e−itHθ∗ ∆He−i(τ−t)Hθ − ∆H

]∥∥∥∥
HS

≤ τ

d1/2 · d1/2c2bα‖θ∗ − θ‖ = c2bατ‖θ∗ − θ‖. (C.16)

Now, we evaluate the approximation error of Eq. (C.11) in terms of e ϵ1 and ϵ2:∣∣∣〈qθ|P |qθ〉〈∆q|P |∆q〉 − 〈q′
θ|P |q′

θ〉〈∆q′|P |∆q′〉
∣∣∣

≤ 〈qθ|P |qθ〉
∣∣〈∆q′|P |∆q′〉 − 〈∆q|P |∆q〉

∣∣+ ∣∣〈q′
θ|P |q′

θ〉 − 〈qθ|P |qθ〉
∣∣〈∆q′|P |∆q′〉

≤ ϵ2(2
∥∥|∆q′〉

∥∥+ ϵ2) + ϵ1(2 + ϵ1)
∥∥|∆q′〉

∥∥2

≤ c2α

(
2 + c2α+ bα+ c2b

2α3

4

)
τ2b2‖θ∗ − θ‖2; (C.17)∣∣∣|〈qθ|P |∆q〉|2 − |〈q′

θ|P |∆q′〉|2
∣∣∣

≤
∣∣∣|〈qθ|P |∆q〉|2 − |〈qθ|P |∆q′〉|2

∣∣∣+ ∣∣∣|〈qθ|P |∆q′〉|2 − |〈q′
θ|P |∆q′〉|2

∣∣∣
≤ ϵ2(2

∥∥|∆q′〉
∥∥+ ϵ2) + ϵ1(2 + ϵ1)

∥∥|∆q′〉
∥∥2

≤ c2α

(
2 + c2α+ bα+ c2b

2α3

4

)
τ2b2‖θ∗ − θ‖2. (C.18)

Combining Eqs. (C.7), (C.11), (C.17), and (C.18), we finally obtain

1 −
∣∣〈q̃θ∗

∣∣q̃θ

〉∣∣2 ≥ 〈qθ|P |qθ〉〈∆q|P |∆q〉 − |〈qθ|P |∆q〉|2

≥ τ2b2‖θ∗ − θ‖2 − 2c2α

(
c2α+ 2 + bα+ c2b

2α3

4

)
τ2b2‖θ∗ − θ‖2

≥
[
1 − 2c2α

(
2 + c2α+ c3α+ c2c

2
3α

3

4

)]
τ2b2‖θ∗ − θ‖2

≥ c1τ
2b2‖θ∗ − θ‖2 (C.19)

by taking sufficiently small α > 0.
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Appendix D

Bounds on x-error for multi-photon probe
states

D.1 Rigorous upper bound for general Gaussian states

We recall the assumption in Sec. 6.3.1. The function φ(x) is a (q,M)-regular
function with q = 1 + σ, and hence

f(x) := ℏφ′(x) (D.1)

becomes a (σ, ℏM)-regular function. Moreover, the initial state has an N -variate
Gaussian wavefunction whose position covariance Cx and momentum covariance
Cp satisfies the uncertainty relation Cp = (ℏ/2)C−1

x .
For N = 1, the x-error Ex is defined in Eq. (6.57) by

E2
x = R(x0) :=

∫
[f(x) − 〈p∗〉]2dxρs(x0 − x)

=
∫

[f(x+ ϵ) − 〈p∗〉]2dϵρs(ϵ) (D.2)

where 〈p∗〉 =
∫
f(x+ϵ)dϵρs(ϵ). In this case, we can bound the mean-square x-error

from above:

E2
x =

∫ L

0

dx0
L
R(x0) ≤ C2ℏ2M2s2σ, C2 = π−1/2Γ

(
σ + 1

2

)
. (D.3)

owing to the (σ, ℏM)-regularity of f (see Eq. (6.60)).
In the multi-photon case, the x-error is defined from E2

x = N−21TVx1, where
the matrix Vx is defined in Eq. (6.45):

[Vx]jk =
∫

[f(xj) − 〈p∗〉][f(xk) − 〈p∗〉]dxρ(x − x0;Cx). (D.4)

If we denote by Σ the 2 × 2 covariance matrix with respect to xj and xk:

Σ :=
(

[Cx]jj [Cx]jk

[Cx]kj [Cx]kk

)
, (D.5)
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the matrix entries [Vx]jk can be rewritten as

[Vx]jk =
∫∫

[f(x0 + ϵj) − 〈p∗〉][f(x0 + ϵk) − 〈p∗〉]dϵjdϵkρ(ϵj , ϵk; Σ). (D.6)

We note that [Cx]jj = [Cx]kk = s2 is required since we measure the wavelet of
lengthscale s.

Lemma D.1 The magnitude of each entry in the covariance matrix Vx can be
bounded from above by ∣∣[Vx]jk

∣∣ ≤ [R(x0)R̃(x0)]1/2. (D.7)

Here, R̃(x0) is defined by the following equations:

R̃(x0) =
∫

[f̃(x+ ϵ) − 〈p∗〉]2dϵρs1(ϵ), (D.8)

f̃(x) =
∫
dx′f(x′)ρs2(x− x′), (D.9)

s1 =
∣∣[Cx]jk

∣∣
s

, s2 =
(
s2 − s2

1
)1/2

. (D.10)

First, we show the following lemma:

Proof. We begin with Eq. (D.6). The pair of variables (ϵj , ϵk) are subject to the
Gaussian distribution with covariance Σ. By defining ϵk = s1

s ϵj + ϵ′k, ϵj and ϵ′k
becomes independent Gaussian variables with respective variance s2 and s2

2. Hence
we may write

[Vx]jk =
∫∫

[f(x0 + ϵj) − 〈p∗〉][f(x0 + s1
s ϵj + ϵ′k) − 〈p∗〉]dϵjdϵ′kρs(ϵj)ρs2(ϵ′k)

=
∫

[f(x0 + ϵj) − 〈p∗〉][f̃(x0 + s1
s ϵj) − 〈p∗〉]dϵjρs(ϵj). (D.11)

Therefore, from the Schwartz inequality, we have∣∣[Vx]jk

∣∣2 ≤
∫

[f(x0 + ϵj) − 〈p∗〉]2dϵjρs(ϵj)
∫

[f̃(x0 + s1
s ϵj) − 〈p∗〉]dϵjρs(ϵj)

=
∫

[f(x0 + ϵ) − 〈p∗〉]2dϵρs(ϵ)
∫ [
f̃(x0 + ϵ′) − 〈p∗〉

]2
dϵ′ρs1(ϵ′)

= R(x0)R̃(x0).

In this lemma, the magnitude of covariance is bounded byR(x0) and its analogue
R̃(x0), with f and s replaced by f̃ and s1 defined in Eqs. (D.9) and (D.10). We
also note that 〈p∗〉 is invariant with this replacement:

〈p∗〉 =
∫
f(x+ ϵ)dϵρs(ϵ) =

∫
f̃(x+ ϵ′)dϵ′ρs1(ϵ′). (D.12)

With these facts in mind, the average covariance Vx can be evaluated.
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Proposition D.2 Let Vx =
∫ L

0
dx0
L Vx be the average of the covariance matrix Vx

over [0, L]. Then, we have ∣∣Vx

∣∣ ≤ C2ℏ2M2∣∣[Cx]jk

∣∣σ. (D.13)

Proof. First, we show that f̃ is also (σ, ℏM)-regular:∫ [
f̃(x+ ϵ) − f̃(x)

]2
dx ≤

∫ ∣∣∣∣∫ [f̃(x+ ϵ+ ϵ′) − f̃(x+ ϵ′)
]
ρs2(ϵ′)dϵ′

∣∣∣∣2dx
≤
∫∫ ∣∣f̃(x+ ϵ+ ϵ′) − f̃(x+ ϵ′)

∣∣2ρs2(ϵ′)dϵ′dx

≤
∫∫ ∣∣f̃(x′ + ϵ) − f̃(x′)

∣∣2ρs2(ϵ′)dϵ′dx ≤ M2σ2σ. (D.14)

Therefore, the average of R̃(x0) can be bounded from above form the same argu-
ment as (D.3), when we obtain∫ L

0

dx0
L
R̃(x0) ≤ C2ℏ2M2s2σ

1 . (D.15)

Finally, Lemma D.1 yields∣∣Vx

∣∣ ≤
∫
dx0
L

[R(x0)R̃(x0)]1/2

≤
[∫

dx0
L
R(x0)

∫
dx0
L
R̃(x0)

]1/2

≤ CℏMsσ · CℏMsσ
1 = C2ℏ2M2∣∣[Cx]jk

∣∣σ, (D.16)

where we have employed Eqs. (D.3) and (D.15).

Now, recalling that E2
x = N−21TVx1, we derive the following inequality:

E2
x = N−21TVx1 ≤ C2ℏ2M2

N2

N∑
j,k=1

∣∣[Cx]jk

∣∣σ. (D.17)

In this way, we have a rigorous upper bound on the mean-square x-error for the
multi-photon Gaussian states. Furthermore, this upper bound optimal in the
leading term of s. In fact, the inequality in Eq. (D.17) can be asymptotically
saturated in the limit s → 0 by setting φ(x) to be a piecewise quadratic function.

D.2 Restriction to specific Gaussian states
In the main text, the estimation error is optimized in terms of two variables 1TCp1
and 1TCx1 under the following constraints:

(1TCp1) · (1TCx1) ≤ ℏ2N2

4
, (D.18)

(1TCx1) ≤ N2s2. (D.19)
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Furthermore, since we are interested in the benefit of quantum correlation, we may
exclude the case in which the momentum is positively correlated and the position
is negatively correlated, since such states result in larger error than separable
probe states. This implies [Cx]jk ≥ 0 for every j, k, and particularly,

Ns2 ≤ 1TCx1 ≤ N2s2. (D.20)

Therefore, we would like to evaluate the upper bound in Eq. (D.17) in terms of
1TCx1 =

∑
j,k[Cx]jk. In fact, by using the fact that 0 ≤ [Cx]jk ≤ s2 for every j, k,

a lower bound and an upper bound can be found:

s2(σ−1)(1TCx1) ≤
N∑

j,k=1
[Cx]σjk ≤ N2(1−σ)(1TCx1)σ. (D.21)

In fact, either inequality can be saturated up to the leading term in N . Intu-
itively speaking, the lower bound is saturated (i.e. the best cases) when the probe
state consists of small separate groups of strongly correlated photons, and the up-
per bound is saturated (i.e. the worst cases) when the entire photons are weakly
correlated.

When the lower bound in Eq. (D.21) is saturated, the approximate inequality
in Eq. (6.64) becomes the exact inequality:

E2
x ≤ ℏ2C2M2 1TCx1

N2s2−2σ
. (D.22)

On the other hand, when the upper bound in Eq. (D.21) is saturated, we only
obtain a looser upper bound on the mean-square x-error:

E2
x ≤ ℏ2C2M2 (1TCx1)σ

N2σ
. (D.23)

This implies that the exponent in N is different between the best case and the
worst case. Since we are interested in the least estimation error possible, we would
like to restrict the position covariance Cx such that the lower bound is saturated.

Now, we require that the covariance matrix be written in a diagonal block from,
with each block Jn(ε) being

Jn(ε) =


1 1 − n

n−1ε · · · 1 − n
n−1ε

1 − n
n−1ε 1 . . . ...
... . . . . . . 1 − n

n−1ε

1 − n
n−1ε · · · 1 − n

n−1ε 1

 (n× n matrix).

(D.24)
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In particular, we assume that Cx consists of l blocks of Jn−1(ε) and k − l blocks
of Jn(ε):

Cx = s2



Jn−1(ε)
. . . 0

Jn−1(ε)
Jn(ε)

0 . . .
Jn(ϵ)


, (D.25)

Here, the integers n, k, l must satisfy N = nk − l. In fact, the lower bound in
Eq. (D.21) can be saturated in the limit ε → 0.

However, this type of restriction of the covariance matrix causes a problem:
We may not treat 1TCp1 and 1TCx1 as free variables satisfying Eqs. (D.18) and
(D.20), as we did in the main text. To be more specific, let η be a number between
1 and N . We expect that there exists a covariance matrix Cx such that

1TCx1 = Nηs2, 1TCp1 = ℏ2N

4ηs2 (D.26)

hold, but this is not always possible for arbitrary η. This problem can be solved
by compromising with an additional factor of 2:

Theorem D.3 Let 1 ≤ η ≤ N . There exists a matrix Cx such that

E2
x ≤ C2ℏ2M2

N2

N∑
j,k=1

∣∣[Cx]jk

∣∣σ ≤ 2 · C
2ℏ2M2ηs2σ

N
, (D.27)

E2
p = 1TCp1

N2 ≤ 2 · ℏ2

4Nηs2 . (D.28)

This implies that the approximated inequalities in Eq. (6.67) is broken by at most
a factor of 2 by choosing an appropriate Gaussian state.

Proof. Let k be an integer such that k ≤ N/η < k + 1, and n, l be integers such
that N = nk− l and 0 ≤ l < k. Such n can be determined from n− 1 < N/k ≤ n,
which implies n < η+1. We consider the covariance matrix Cx in Eq. (D.25) with
such integers n, k, l.

The number of nonzero entries in Cx is at most

l2(n− 1)2 + (k − l)2n2 ≤ n[(n− 1)l + n(k − l)] = nN ≤ (η + 1)N. (D.29)

Therefore, we obtain

N∑
j,k=1

∣∣[Cx]jk

∣∣σ ≤ (η + 1)Ns2σ ≤ 2ηNs2σ, (D.30)
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which yields Eq. (D.27).
Next, we consider the momentum covariance:

Cx = ℏ2

4s2



J−1
n−1(ε)

. . . 0
J−1

n−1(ε)
J−1

n (ε)

0 . . .
J−1

n (ϵ)


. (D.31)

It can be straightforwardly checked that the matrix J−1
n (ε) satisfies 1TJ−1

n (ε)1 =
1

1−ε , and therefore

1TCp1 = ℏ2

4s2 · k

1 − ε
. (D.32)

When η = N , we have k = 1 and k
1−ε = 1

1−ε ≤ 2 for ε ≤ 1
2 . When 1 ≤ η < N , we

have k < N/η + 1 and

1TCp1 = k

1 − ε
<

1
1 − ε

(
N

η
+ 1

)
≤ 2N

η
(D.33)

for sufficiently small ε. In either case, the inequality (D.28) has been shown to
hold.
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