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Abstract
The axial Ward identity and its dependence on the Schwinger mechanism are exam-
ined in parity breaking homogeneous background fields. The importance of vacuum
asymptotic states on the nature of observables under the vacuum unstable Schwinger
mechanism is elucidated. We find expectation values found under scattering ma-
trix element in-out vacuum states are consistent with those under an equilibrated
Euclidean metric. Whereas expectation values found under in-in vacuum states pre-
dict an out-of-equilibrium scenario, which agrees with a heuristic picture of chirality
generation under the Schwinger mechanism–clarifying key issues on the mechanism’s
contributions to the axial Ward identity. In-out expectation values associated with
the chiral anomaly thought sourced by the Schwinger mechanism, and anomaly
related phenomena such as the chiral magnetic e�ect, are found to vanish. How-
ever, in-in expectation values possess an exponentially suppressed quadratic mass
term consistent with Schwinger pair production. The absence of the chiral anomaly
in an equilibrated Euclidean setting whereas its manifestation out-of-equilibrium
motivates a new understanding of the anomaly and its dependence on a vacuum in-
stability. Calculations are performed using worldline methods, and in-out and in-in
observables are one-loop exact.

Applications to the axial Ward identity and chiral magnetic e�ect are also ex-
plored with in-out and in-in vacuum state expectation values. These include chiral
density fluctuations as well as the chiral condensate. Real-time chiral density fluc-
tuations, similar to the cases of the axial Ward identity and chiral magnetic e�ect,
and in contrast to the equilibrated case, were found to possess linear time depen-
dence and also had a characteristic exponential suppression due to the Schwinger
mechanism. The chiral condensate was found to melt for the large electric field,
small mass case, prompting a new outlook for magnetic catalysis and a dynamically
generated mass.
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Chapter 1

Introduction

1.1 Motivation and Outstanding Issues
An anomaly is said to be present when a symmetry realized at the classical level
is broken at the quantum level. This phenomenon is ever-present in relativistic
fermionic systems for a chiral symmetry. At first glance theories with massless
fermions seem to possess a chiral symmetry–allowing a break-up into left and right-
handed parts. However, due to quantum e�ects [1] the chiral anomaly resides and
no such break-up is possible. The breaking of the chiral symmetry has impacted
all realms of physics, and it is notably responsible for giving rise to the bulk of
the visible mass in the universe [2, 3]. It is, therefore, an essential task to directly
observe the chiral anomaly, and an important manifestation of the anomaly that
may help achieve the task is the chiral magnetic e�ect.

The chiral magnetic e�ect (CME) arises as an electromagnetic current when a
net chirality is present in conjunction with a magnetic field [4]. See Fig. 1.1. In
the left diagram of Fig. 1.1 the chiral anomaly is represented in a topologically
non-trivial quantum chromodynamic background as causing a net chirality di�er-
ence. Here massless particles are assumed, therefore particle chirality and helicity
are similar. However, according to our conventions–see also Ref. [4]–anti-particles
possess an opposite chirality to their helicity. This amounts to a measure of chiral-
ity di�erence as being the number of particles plus anti-particles with right minus
left-handed helicity. And a right (left)-handed helicity is indicted with an align-
ment (anti-alignment) of momentum and spin vectors. In the right diagram, if one
were to examine the same scenario as in the left diagram but with an added strong
magnetic field, one could see an electromagnetic current develop along the direction
of the magnetic field; this is the CME. This phenomenon is due to the magnetic
field projecting the particles’ spins in the direction of the magnetic field, or rather
ensuring that only the lowest Landau level is occupied.

The electromagnetic current associated with the CME was thought to be ob-
served in a Dirac semimetal [5]. Indeed, in 2D and 3D condensed matter analog
systems such as Weyl and Dirac semimetals, fermionic relativistic dispersion rela-
tions are producible [6–9]. However, the CME has yet to be observed in quantum
chromodynamics (QCD). Even so, a distinct feature of the CME, a strong magnetic
field, is present in o�-central heavy-ion collisions where it is thought the CME may
be observable. For a particle beam collision in which the two beams are o�set (a
non-central collision) a transient strong magnetic field is thought to form perpen-

1



2 Chapter 1. Introduction

Figure 1.1: Anomaly and CME diagrams. (Left) The chiral anomaly relates a non-
conservation of chirality due to a parity violating field; e.g., the field depicted here
could come from a quantum chromodynamic (QCD) topology. Green (red) arrows
depict the vector of spin (kinetic momentum), and here a particle (anti-particle)
is represented with a positive (negative) sign. The diagram shows a net chirality
di�erence of �N5 = 4. (Right) Consider the same setup as in the left figure however
with a background electromagnetic magnetic field applied. Here owing to the net
chirality di�erence caused by the anomaly, and the magnetic field polarizing the
particles’ spins, an electromagnetic current along the direction of the magnetic field
will be generated, and this is the chiral magnetic e�ect.

dicular to the reaction plane. In fact, the magnetic field in heavy-ion collisions is
the strongest known terrestrial one, thought to reach magnitudes of eB ≥ m

2
fi
, for

the mass of the pion [10]. Even so, identifying the CME in colliders is a challenging
task, and to this end, there are outstanding theoretical issues in need of clarification:

1. The finite generation of a chirality imbalance is an essential feature of the
CME. Many studies rely on an artificial insertion of a net chirality by hand.
For example, it is common practice to introduce a chiral chemical potential
to a system under a magnetic field to produce the CME. While this practice
is a useful theoretical construct, there are many applications in which this
treatment is not just, we will elaborate later in the thesis. One such example
is provided by highly un-equilibrated systems, such as in heavy-ion collision
experiments.

2. How do the CME and related anomaly applications behave in and out-of-
equilibrium? And, how could one characterize such observables in and out-
of-equilibrium? This problem is transparent in heavy-ion collisions where just
after the collision a dense gluonic state called the glasma [11, 12] forms and
is thought to give rise to parity-violating flux tube configurations that may
predict the CME [13]. However, this formation by its transient nature is highly
un-equilibrated, necessitating an out-of-equilibrium description of the CME in
colliders.

3. Last, how does a fermion mass a�ect the CME and anomaly? In the ab-
sence of mass the helicity and chirality are indistinguishable (as is common
in high energy applications–and which has even prompted a redefinition in
chemistry [14]). Yet, in many high energy applications, a mass is frequently
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Figure 1.2: Cartoon of Schwinger mechanism process from intuitive perspective.
Pairs of particles tunnel from the vacuum and are accelerated in the direction of
the electric field with strength E. Consider a virtual pair, depicted above as two
overlapping circles. Then from a classical analogy, if one were to apply a strong
enough electric field, imparting work to the pair, a particle anti-particle pair may
be produced. Here, the blue lines represent the direction of momentum.

dismissed. This dismissal, we will argue, is however not suitable–particularly
for anomalous physics applications.

1.2 Anticipations
How might one furnish a net chirality and explore the e�ects of a fermion mass?
The Schwinger mechanism is thought to provide an answer [13]. In the presence
of a strong background electric field, the quantum field theory (QFT) vacuum is
unstable against the spontaneous creation of particle anti-particle pairs in what
is known as the Schwinger mechanism [15]. See Fig. 1.2 for a cartoon, where we
have made use of a classical analogy: an electric field separating a virtual particle
anti-particle pair (representative of the vacuum). The background electric field, it
is thought, makes possible tunneling from the vacuum allowing the production of
a particle (excitation) and anti-particle (hole). The QCD analog, namely chromo-
electric flux tube breaking, is also thought to exist in heavy-ion collisions leading to
hadronization [16].

From the Schwinger mechanism, then, how might one anticipate an anomalous
generation of chirality? This is made possible through a strong magnetic field–
parallel to the electric field so that the background be parity violating. Then, as
foreshadowed earlier, the strong magnetic field will polarize the produced particle
anti-particle’s spins, yielding a net chirality [13]; see Fig. 1.3 for a cartoon of the
Schwinger mechanism process with a magnetic field. Again we make use here of
a classical picture of a virtual particle anti-particle pair being separated with an
electric field; also note that since a magnetic field cannot impart work, no Schwinger
pair production is permissible solely from a magnetic field. Here in addition to blue
lines depicting momentum, the spin vector is shown with red lines.

One should expect to see a net chirality di�erence due to the Schwinger mecha-
nism in parallel fields, and an unambiguous means of accessing a chirality indi�er-
ence is provided through the axial Ward identity [17, 18]. The axial Ward identity
famously predicts the non-conservation of chiral charge density not only due to
quantum e�ects, (in essence the chiral anomaly), but also explicitly due to a mass
through the pseudoscalar condensate. Then to quantify the above picture of chirality
generation one ought to calculate an expectation value of the axial Ward identity.
The problem is–we will show–using traditional QFT calculation methods lead to
such observables surprisingly vanishing. Most prominent, we find is a vanishing of
the divergence of the chiral current, in other words, no anomaly. And chirality would



4 Chapter 1. Introduction

Figure 1.3: Cartoon of Schwinger mechanism process from an intuitive perspective
with the inclusion of a strong parallel magnetic field with strength B. Pairs of
particles are created from vacuum and are accelerated in the direction of the electric
field, as shown in Fig. 1.2. Overlapping circles are depictive of a virtual particle anti-
particle pair. Blue (red) lines represent momentum (spin) vectors. Due to a parallel
strong magnetic field, particle anti-particle pairs will have their spins polarized in the
direction of the magnetic field–setting up a net chirality; here given by �N5 = 2,
c.f., Fig. 1.1. Alternatively, only the lowest Landau level will be occupied. Note
that while here the E π B condition–for later convenience–has been given, our
final calculations do not rely on such an approximation.

be conserved! Yet this picture is at odds with the heuristically motivated scenario
just described. Then in addition to the issues raised above, one must ask: Why
do expectation values of the CME and axial Ward identity using traditional QFT
methods not coincide with our heuristic picture of Schwinger pair production? Or
rather, why do they seem to vanish?

1.3 Issue Resolutions
The resolution to these issues we find is a clear identification of vacuum states [19].
Depending on whether one uses in-in or in-out vacuum states, the expectation values
di�er markedly and predict di�erent physical scenarios.

Traditional QFT methods involve the usage of an in-out matrix element expec-
tation value. This scenario we argue represents a Euclidean observable in equilib-
rium. However, the Schwinger mechanism is inherently an out-of-equilibrium pro-
cess; therefore expectation values derived using an in-out matrix element we argue
simply do not give rise to any produced pairs–and this outcome is similar to what
one would measure for a Euclidean observable in equilibrium. What is more here
are the implications for anomalous physics: We find that the anomaly, as well as the
CME, do not exist in equilibrium. This has profound implications both for theories
built on anomalous physics and for their experimental detection.

On the other hand, we find–as anticipated above–the anomaly and CME do
exist out-of-equilibrium and such observables are furnished using in-in vacuum ex-
pectation values. Indeed, we find a characteristic mass dependence indicative of the
Schwinger mechanism for the real-time out-of-equilibrium case. The mass depen-
dence associated with the Schwinger mechanism is highly suppressed, however, and
then we expect the chirality generation brought on by parity-violating backgrounds,
too, to be highly suppressed. This, as well, has deep implications for theories built
on the anomaly, such as theories of baryogenesis driven by a parity-violating infla-
tion [20]). This also has implications for the measurement of the CME in heavy-ion
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collisions as well–where now one would expect an approximately similar exponential
suppression with small quark masses and chromo-electric field strengths.

With a new perspective on the physics of the anomaly in hand, we also ad-
dress important extensions to the study of anomalous physics. These are the chiral
condensate and fluctuations in chirality.

The breaking of the chiral symmetry can be characterized by a non-vanishing
chiral condensate in QCD, analogous to cooper pairs in a superconductor. However,
it then begs the question: how else may one drive a non-vanishing chiral condensate?
The answer is with a magnetic field. Much like temperature and density, one may
make use of a background magnetic field as a tunable parameter for a theory. The
enhancement of the chiral condensate, or a dynamically driven mass, in a magnetic
field is referred to as magnetic catalysis [21–23]. However, while it is well understood
how the chiral condensate behaves under a magnetic field, how it does so under an
electric field–or rather parallel electric and magnetic field–is unknown. We find
an electric field serves to diminish the condensate and, in fact, for the emergence of
Schwinger pairs can even negate the chiral condensate all together. This “melting” of
the chiral condensate in an electric field could play an important role in conjunction
with chiral symmetry breaking in QCD.

In the formation of flux tubes, even though we argued to give rise to a net chiral-
ity through the Schwinger mechanism, the global chirality ought to be zero, however
locally this is not thought to be the case [24, 25]. One way one might measure a
local chirality violation is through fluctuations in chirality. Therefore it is an impor-
tant task to calculate, using our in-out and in-in formalisms, chiral fluctuations. We
found as expected there is a non-zero value for either case. However, for the out-of-
equilibrium case using an in-in setup, we moreover found an exponential quadratic
mass suppression associated with the Schwinger mechanism and linear time depen-
dence. Before embarking on a more through explanations let us outline the thesis
as a whole while also introducing our notations.

1.4 Notations and Outline
We have o�ered a cursory look at a chirality production via the Schwinger mech-
anism above, however to capture a more complete understanding of the physics to
come let us explain the backgrounds of the CME and Schwinger mechanism, as
well as related phenomena in Ch. 2. Then we cover relevant methods in Ch. 3,
where we introduce past results on the enhancement of the Schwinger mechanism
in inhomogeneous fields. The main contents of the thesis begin in Ch. 4, where we
outline the importance of vacuum states, from which we can then find propagators
and Green’s functions using both a standard in-out, Sec. 4.2, representation as well
as an in-in representation in Sec. 4.3. And the di�erences between both observables
are discussed in Sec. 4.4. The primary observables related to chirality are calculated
and discussed in Ch. 5; this includes the pseudoscalar, Sec. 5.1, and chiral density,
Sec. 5.2, examined both in and out-of-equilibrium or rather in Euclidean equilib-
rium and real-time. Then applications to the axial Ward identity including the
chiral magnetic e�ect, Ch. 6, and chiral density fluctuations, Ch. 7, are introduced
and sought in and out-of-equilibrium as well. Last, we look at the chiral condensate
too for both for in-out and in-in vacuum states in Ch. 8. The conclusions are finally
presented in Ch. 9.
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Throughout the thesis the following notations are adopted: A metric g =
diag(+, ≠, ≠, ≠) is used, and wherever appropriate a condensed notation for con-
traction of Lorentz indicies is used, i.e. AµB

µ =: AB. Covariant derivatives are
Dµ = ˆµ + ieAµ. We also use units such that c = ~ = 1. And we use a Weyl
representation for the gamma matrices:

“
0 =

A

I2
I2

B

, “
i =

A

‡̨

≠‡̨

B

, “5 =
A

≠I2
I2

B

. (1.1)

‡̨ are the usual Pauli matrices. And the spin tensor is ‡µ‹ = i

2 [“µ, “‹ ]. Point split
observables are understood using a half point definition for Heaviside functions, i.e.
◊(x æ 0) = 1/2.

In contrast to the above, in Sec. 3.3 a Euclidean metric is used. There we
have g = ” = (+, +, +, +). The magnetic and electric fields are defined from their
Minkowski equivalent such that Fij = ‘ijkBk and F4i = ≠iEi with both B and E

real functions. Therefore F4i is given as a purely imaginary function for Minkowski
real fields, but is given as a purely real function for Euclidean real fields. And for
the gamma matrices a Euclidean Weyl representation is used:

“
i

E
=

A

≠i‡̨

i‡̨

B

, “
4
E

=
A

I2
I2

B

. (1.2)

for i = 1 ≠ 3; all “
µ

E
are Hermitian.



Chapter 2

Background

2.1 Chiral Anomaly
To gain a better perspective of the CME, (an electromagnetic current in the direction
of a magnetic field driven by a chirality imbalance), let us first touch on some aspects
of the anomaly. The importance of anomalies in the analysis of quantum theories can
hardly be understated. An anomaly can be responsible for constraints on conserved
currents, symmetries of the theory both global and gauged, and the spectrums of the
theory. An instance of the anomaly most clearly demonstrated through experiment
is provided by the decay of a neutral pion, a pseudoscalar, into two photons, of
which the underlying broken chiral symmetry makes up the basis of this thesis.

The QCD Lagrangian possesses not only a color SU(3) gauged symmetry but also
a SU(2)L◊SU(2)R chiral symmetry in the massless limit, (a good approximation for
up and down quarks). The neutral pion is one of the Goldstone bosons associated
with the spontaneous breaking of a chiral symmetry brought on by the formation of
a dynamically driven condensate[2, 3]. And the neutral pion is a psuedoscalar whose
decay into photons created unrest as classically the transition was forbidden. The
loop diagram associated with the neutral pion decay can be formulated in terms of
a background pseudoscalar calculation whose classical expectation values predicts

ˆµ È�| Â̄“
µ
“5Â |�Í = 0 . (2.1)

The vacuum states are not arbitrary, or generally equivalent, we will argue in the
coming pages. However, for the purposes here why this expectation value takes
on a nonzero value underscores the significance of the anomaly. The calculation of
the decay rate was first achieved at the diagrammatic level [17], yet Schwinger first
presented the calculation in a manifestly gauge invariant way through his proper time
formalism[15]1. Including quantum e�ects yields the famous axial Ward identity2

which predicts a one-loop exact quantity associated with a broken chiral symmetry
and the non-conservation of chirality:

ˆµ È�| Â̄“
µ
“5Â |�Í = ≠

e
2

(4fi)2 ‘µ‹–—F
µ‹

F
–—

. (2.2)

1Please see the discussion in Section 2.3.2
2Again, here a discussion of appropriate vacuum states here markedly augments this expectation

value. However, independent of vacuum states, the axial Ward identity at the operator level is
exact.

7
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That the two, Eq. (2.1) and Eq. (2.2), di�er highlights the fact that classical and
quantum prescriptions di�er and an anomaly is present.

A more modern treatment of the calculation of the anomaly is provided by
Fujikawa [1] through an analysis of the path integral measure under chiral rotations.
There U(1)A axial rotations, while at the Lagrangian level for massless fermions
reproduce Eq. (2.1) and a conserved chiral current, when incorporated in the path
integral measure, associated with quantum e�ects, shows chiral nonconservation,
Eq. (2.2). Besides the simplicity of the calculation and it’s robustness, one may
infer a host of anomalies which must cancel for a symmetry to be a symmetry in a
QFT.

For example, for the SU(3)C ◊ SU(2)W ◊ U(1)Y color, weak, and hypercharge
symmetry of the standard model, (mixed) anomaly cancellation requires that the
electron and proton charges be equivalent. In turn, one may also find that while
the baryon number and lepton number are separately anomalous, the baryon minus
lepton number is not. And this with Sakharov’s conditions [26], permit matter-
antimatter asymmetry, or baryogenesis, in the universe. However, the amount of
matter-antimatter asymmetry permissible by the standard model and what is ob-
served in the universe remains a mystery.

Let us characterize the anomaly and we will soon find the CME through a topo-
logical term. A Lorentz invariant topological term is permissible in the QCD La-
grangian which violates both P (parity) and CP (charge-parity):

◊

32fi
‘µ‹–—G

µ‹a
G

–—a
. (2.3)

a sums over the group, SU(3)C , generators for the gluon fields, with G being the
field strength. However, experimentally this topological term is found to vanish;
specifically according to neutron dipole experiments, an electric dipole moment re-
striction as low as |dn| < 2.9◊10≠26

e cm was found in Ref. [27]. There CP violating
electroweak contributions have been included. In spite of this, there is no compelling
theoretical reason why such a topological term should be absent. This great mys-
tery is one of the last problems of the standard model and is coined the “strong CP

problem.”
For highly equilibrated scenarios such as for a neutron electric dipole measure-

ment, it is reasonable to expect no topological e�ect. Yet, if such a term is per-
missible then it is a reasonable question to ask would such a term vanish for all
cases even those which are highly out-of-equilibrium. This is believed to be the
case for a quark-gluon plasma (QGP); there the topological angle may di�er at
di�erent space-time points [28]. This phenomenon is also predicted to take place
in sphaleron transitions, which are instanton-like thermal transitions between dif-
ferent vacua–these are thought to elicit baryogenesis for electroweak interactions.
Therefore we find that the topological ◊ term in Eq. (2.3) may not only represent
a constant but may, in fact, depend on space-time, as for an axion-like term. A
ramification of which permits a topologically dependent (chromo)electromagnetic
current called the chiral magnetic e�ect.
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2.1.1 Chiral Magnetic E�ect
We may find a space-time dependent ◊ term clearly through Fujikawa’s path integral
measure method [1]. Performing a UA(1) space-time dependent axial transforma-
tion3 in the Lagrangian one would find the addition of a topological term [29],
Eq. (2.3), only with ◊ æ ◊(x). With a space-time dependent ◊ one can perform an
integration by parts in the topological term to find a term which couples a pseudo-
vector to the (chromo)electromagnetic gauge. Then, the classical equations of mo-
tion for the gauge field are modified to find a correction to the three-dimensional
(chromo)electromagnetic current, called the chiral magnetic e�ect (CME):

jµ = ≠
e

2

4fi2 µ5‘0µ–—F
–—

, (2.4)

µ5 := ˆ0◊ . (2.5)

µ5 is the chiral chemical potential. Also, here we have depicted the Abelian case for
uniformity with later results; the CME is non-vanishing for the non-Abelian case as
well. jµ is the electromagnetic current.

One may intuitively understand the CME as a polarization of the net chirality
by an external magnetic field brought on by the topological structure, which sets up
an electromagnetic current in the direction of the magnetic field. A diagrammatic
example of the CME phenomenon was shown in Fig. 1.1.

One may also envision the CME as originating from the Dirac sea and
anomaly [28]; here we consider massless fermions. Due to a conserved chirality
owing to massless fermions the Fermi levels for both left and right-handed particles
will be distinct and separate. Then let us consider what happens when an external
parallel electric and magnetic field is turned on. The electric field will set up a
longitudinal force, aligning (opposing) the anti-fermions (fermions) in the direction
of the electric field and in turn projecting the fermions’ momentum. Likewise, the
magnetic field will align the spins’ of the fermions. Therefore, the combination of
the electric and magnetic fields will set up a net chirality and moreover the CME
will be born from the net current projected along the direction of the magnetic field.
Actually, the basis of this Dirac sea explanation underlies the Schwinger mechanism
to be discussed below. The net chirality increase is characterized through an
increase in the Fermi momentum from the electric field, and also from the magnetic
field an increase in the density of the Landau levels in the transverse direction,

d
4
NR

dTdV
= e

2

4fi2 EB . (2.6)

Here NR is the number of right-handed fermions for a given volume, V , and time,
T [28]. We may also do the same for the left-handed fermions and then we can find
that the total chirality change is given by

d
4(NR ≠ NL)

dTdV
= e

2

2fi2 EB . (2.7)

3One may also allow an infinitesimal axial transformation with vanishing space-time dependence
to find Eq. (2.3).
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c.f. Eq. (2.2); we see that the relationship indicative of the axial anomaly has been
reproduced. Note, to achieve this connection one must perform an integration over
space-time. Also, as in the topological axial anomaly case, here too we find that
the change of chirality is discrete and so too must be a non-zero discrete topological
term.

While the above demonstration made use of an electric field let us emphasize that
the CME exists even in the vanishing electric field case. This may be the case for a
hot QCD environment with a non-trivial topology or non zero space-time dependent
◊ angle. Then along with an external magnetic field and a basic requirement for the
CME are fulfilled as is defined in Eq. (2.4).

Experimental e�orts have been and are currently underway to observe the CME.
Notably, in a semimetal, the CME was thought to be observed [5]. Also, enormous
e�ort has been carried out in heavy-ion collision experiments such as at the large
hadron collider (LHC) at CERN and the relativistic heavy ion collider (RHIC) at the
Brookhaven National Laboratory, however, the CME still has not been confirmed
in colliders. However let us first examine the CME in the context of a condensed
matter environment.

2.1.2 Chiral Magnetic E�ect in Condensed Matter
A relativistic fermionic dispersion relation is a requirement to study chirality and
indeed the chiral anomaly and magnetic e�ects, and there are a number of di�erent
condensed matter systems in which such a dispersion is visible. Some include Weyl
and Dirac semimetals, graphene, and spin-orbit coupled atomic gases. However,
here let us focus on semimetals. A semimetal’s valence and conduction band lie
between those of a conductor and an insulator and posses a small overlap–in contrast
with a semiconductor where it is separated. This small overlap permits interesting
electronic and transport properties. With the discovery of graphene [30], a 2 (space)
+ 1 (time) dimensional analog of a semimetal, it was found a relativistic massless
quasiparticle excitation, a Weyl-like fermion, was present. Then with an extension
to 3+1 for certain solid-state crystals [6, 7, 31, 32], it was found as well, a Weyl/Dirac
spectrum was present with small to vanishing gap.

Chirality in a semimetal is governed by Weyl nodes serving as topological charges
stemming from a Berry’s phase in crystal quasi-momentum space [33, 34]. Chiral
quasiparticle behavior was detected along with the discovery of 3-dimensional Dirac
semimetal [6, 7, 31, 32], and has paved the way for testing of the chiral anomaly
in condensed matter systems. Indeed in addition to the CME, the chiral anomaly
was thought to be observed [35] in Weyl semimetals. Let us see how the chiral
anomaly appears in such systems. We confine our attention to the physics of a Weyl
semimetal with linear dispersion relation whose Hamiltonian is H̃ = p̨ · ‡̨; in this
section we use a tilde over variables so as to contrast with the rest of the thesis.
Berry’s phase represents a non-holonomic addition to the phase of the wavefunction.
Here we are in momentum space, and we can determine the phase through a unitary
transformation of the Hamiltonian, i.e.,

H̃
Õ = U

†
H̃U ≠ iU

†(ÒpU
dp̨

dt
) , (2.8)
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where Berry’s phase is iU
†
ÒpU ; however only Berry’s curvature, a monopole in

momentum space, is observable. The unitary phase can be chosen so as to yield a
diagonal (in spinor space) Hamiltonian, and an approximate adiabatic evolution of
the Hamiltonian around momentum space is assumed. Then in the presence of an
electromagnetic field4–we take Ę · B̨ ”= 0–one may solve the equations of motion of
Eq. (2.8) to find an invariance in phase space leading to the anomaly [36], namely

ˆñ5
ˆt

= e
2

4fi2 Ę · B̨ . (2.9)

What is interesting here is although the equations of motion are classical, a quantum
non-conservation of chirality is obtainable with Berry’s phase. Let us now see how
one might inspect the CME in a semimetal with the anomaly driven by a finite Ę ·B̨.

The most recognizable signature of the CME in a semimetal is a quadratic mag-
netic field dependence in the conductivity, or a negative magnetoresistence [37]. Let
us illustrate how this occurs at a cursory level. First, one must outfit the anomaly
relation stemming from a Berry’s phase, Eq. (2.9), with a subtractive chirality-
changing scattering time, t‹ , which is di�erent from the real time, x0. This amounts
to adding a ñ5/t‹ to Eq. (2.9). One can then predict the amount of chiral density
growth as (for small chirality-changing scattering times [5]–this in e�ect negates the
e�ects of ˆ0ñ5)

ñ5 Ã Ę · B̨t‹ . (2.10)

And furthermore, one can characterize a many-body system possessing a net chiral
density with a chiral chemical potential [4] as

µ̃5 ≥ ñ5 , (2.11)

where an assumption of small chiral chemical potential to chemical potential and
temperature has been made. Now applying the above relation to the defining chiral
magnetic e�ect current, Eq. (2.4), we can find in addition to Ohm’s current, a non-
zero addition to the electromagnetic current. Then in electric and magnetic fields
with strengths E and B respectively, specifically one would find

j̃
i = ‡̃

ij
Ex̂

j
. (2.12)

And for the case of parallel electric and magnetic fields, one would then find the
conductivity

‡̃
ii

Ã B
2

, (2.13)

for magnetic field also in the x
j direction; see Ref. [5] for details. Indeed such

a quadratic magnetic field dependence was thought to be observed in zirconium
pentatelluride, ZrTe5 [5]. However, let us mention here that like the case of the
CME in QCD in heavy ion collisions, there is discussion as to whether the quadratic
magnetoresistance is solely coming from the CME or something else. In any case,
however, observation of the CME in QCD and colliders is a more delicate task–one
still not completed.

4One actually only needs a magnetic field. Note, however that without an electric field we
would not have an anomaly. Also as a side note, in the absence of an electromagnetic field the
equations of motion found from Eq. (2.8) would have no Berry’s phase contributions [36].
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2.1.3 Chiral Magnetic E�ect in Heavy Ion Collisions
In o�-central heavy-ion collision experiments, an enormous out of plane magnetic
field resides, in fact, it possesses the strongest terrestrial value comparable to that
of the pion mass or B ≥ m

2
fi
. The fluid, or QGP, in the resulting high density and

temperature environment, possesses many other interesting properties too, such as
non-vanishing vorticity [38, 39]. With such a strong magnetic field the CME is
thought to appear in conjunction with a net local (as described above) chirality
through local parity violation.

While fluctuations in chirality or topology are not directly observable in heavy-
ion collisions, one can make use of the azimuthal direction in the transversal plane
in which the magnetic field develops to extract meaningful experimental data. No-
tably, a charge asymmetries of event-by-event correlations can be measured [40].
Groups STAR at the RHIC [41] and ALICE at the LHC [42] have carried out such
measurements. While the measurements are consistent with the finding of what a
local parity violation and CME are thought to produce, whether the measurements
are exclusively coming from the CME or from background e�ects cannot be di�eren-
tiated at this time [40]. However, with exacting theoretical analysis of all processes
at play, one might be able to di�erentiate the proper signal of the CME leading
to its discovery. To this end, there are still several theoretical shortcomings of the
anomaly and CME which require elucidation.

Whether in a condensed matter environment or in a heavy-ion collision a key
ingredient in the theoretical analysis of the CME is the insertion of chirality by
hand. This could take the form of a spacetime dependent topological ◊(x)–and by
extension the chiral chemical potential, µ5; see Eq. (2.5)–or even a straightforward
imbalance of chiral density. A noteworthy example lies with the usage of Berry’s
phase of Weyl fermions to illicit the chiral anomaly and CME [36]. While useful for
analytic purposes assuming a finite chiral chemical potential as an initial state we
go on to describe is artificial. And if the CME were visible in QFT then one needn’t
rely on anything but the Dirac equation. Another at-first-glance separate but we
will later show a related issue with the CME’s analysis is the e�ects of a fermion
mass. A fermion mass is seemingly troublesome as it will mix both left and right
parts of the wavefunction but we have in any case Lorentz covariant expectation
values with chirality at our disposal. The resolution to both the issue of insertion
of chirality by hand and the e�ects of a fermion mass is provided by the relativistic
analog of tunneling in quantum mechanics: the Schwinger mechanism.

2.2 Background Electric Field
2.2.1 Schwinger Mechanism
The Schwinger mechanism predicts the generation of particle anti-particle pairs from
the QFT vacuum in the presence of a strong electric field [15, 43, 44]. The Schwinger
mechanism can be classified as a QFT vacuum instability; others include Hawking
radiation [45], the Unruh e�ect [46], pair creation from inflation (for example in a
Robertson Walker metric), and spontaneous symmetry breaking [47]. The Schwinger
mechanism arose as a solution to the Klein paradox [48], which is an application
of the Dirac equation to a non-relativistic barrier scattering quantum mechanical
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Figure 2.1: Dirac sea picture of the Schwinger mechanism. Dirac spectrum is shown
against the coordinate associated with the direction of the homogeneous electric
field. Excitations represent particles tunneling from the Dirac sea, whereas their
accompanying holes represent anti-particles. The electric field tilts the spectrum
enabling a tunneling from the QFT vacuum. The picture of tunneling (as is com-
monly used) in momentum space is given in Fig. 2.2, with a magnetic field present.

problem. And this finding highlighted the particle number non-conserving nature
of relativistic quantum field theories. However, the Schwinger mechanism has still
not been observed. Even so, the mechanism lies close to experimental verifiability.
In fact, despite the strong homogeneous QED electric fields required, combinations
of time-dependent fields, (notably those interpolating between strong and slow and
weak and fast electric fields: dynamically assisting electric fields [49]), may reduce
the experimental threshold. See Sec. 3.3 for more details. The discovery of the
Schwinger mechanism could shed light on other vacuum instability physics purely
non-perturbative in nature. For instance, acceleration in a very strong electric field
could mimic gravitational e�ects in Unruh and Hawking radiation [50].

The Schwinger mechanism in fact provides a physically translucent picture of a
vacuum instability process. To that end let us make use of a Dirac sea interpretation;
see Fig. 2.1. A background electric field with strength E, (here homogeneous in the
x3 direction), tilts the Dirac spectrum Ex3 enabling quantum tunneling from the
Dirac sea to the continuum, leaving an anti-particle (hole) in its place. Here we see
a characteristic tunneling length must be penetrated, which we will see is related
to a critical electric field. An important feature here is also the traversal of a mass
gap. Interesting we may liken the tunneling behavior of the Schwinger mechanism
to a Landau Zener crossing in quantum mechanics.

One may also make use of a classically motivated picture in which the vacuum
is characterized by a particle anti-particle pair as a condensate. Then a background
electric field imparts work to the pair splitting them apart. More generally, but
also relevant to the condensate picture, we can picture the Schwinger mechanism
process quite simply from a pair, created from the vacuum instability at some point
in space-time, then accelerated due to the electric field; see Fig. 1.2 shown earlier.
What is more, is we can see a background magnetic field cannot impart work to a
particle anti-particle pair and thus we should not expect to see pair production from
a sole magnetic field.
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Not only for QED but also more generally for Yang-Mills theories can one see
Schwinger pair production [51–53]. The Schwinger mechanism is thought to underlie
the chromoelectric flux tube breaking leading to hadronization in nucleus-nucleus
collisions such as the RHIC and LHC experiments. An Abelian approximation for
non-Abelian Schwinger pair production is frequently evoked and this is justified
for flux tubes thought formed in colliders with finite topological charge. Thus,
here we work in QED, however, with suitable homogeneous chromoelectromagnetic
fields, i.e. G

µ‹

a
= F

µ‹
na where n

2 = 1 for Ga a Yang-Mills field, Fna, an Abelian
projection, we may infer pertinent QCD pair production physics. Furthermore, of
noted interest are field configurations with finite topological charge, ‘µ‹‡⁄F

µ‹
F

‡⁄,
thought present in HIC[11, 12]. Then upon Lorentz transformation, we find parallel
(chromo)electric and magnetic fields. Such a field configuration presents an optimal
study of pair production with topological e�ects, yet without being encumbered by
technical details, and serves as the (Abelian) background examined in depth in this
thesis. Even with homogeneous fields, the study of the Schwinger mechanism is
challenging due to its inherent nonperturbative nature.

The nonperturbative nature of a vacuum instability such as the Schwinger mech-
anism is most clearly demonstrated through the e�ective action in Schwinger proper
time.5 A vacuum instability is then characterized by inequivalent vacuum states,
Èin| ”= Èout| at tin and tout, usually taken to ≠Œ and Œ respectively. That a vac-
uum instability is present is most easily seen through a calculation of the S matrix
element describing an in to an out vacuum transition, |Èout|inÍ|

2. Then the alter-
native, namely that something besides the vacuum appears in the out state, (most
commonly a pair of particles), is described by,

P := 1 ≠ |Èout|inÍ|
2

, (2.14)

or the probability that out state contains an excitation. This prediction is referred
to as the vacuum non-persistence. But, Èout|inÍ is simply the partition function

cv := Èout|inÍ =
⁄

DÂ̄DÂ exp{i

⁄

d
4
x[Â̄(i /D ≠ m)Â]} , (2.15)

here for fermions in some background, non-dynamical, gauge field6. The partition
function can also be characterized by an e�ective action,

cv := e
i�

. (2.16)
5Schwinger proper time is a functional means of expressing full QFT Green’s functions and

e�ective actions in terms of a quantum mechanical-like 4+1 dimensional setup; for path integral
manifestations see Refs. [54, 55].

6Background fields typically solve the homogeneous Maxwell equations for the above QED
case and a Yang-Mills homogeneous equation for the non-Abelian equivalent. However, we will
also explore more complicated background field types that could be had with the inhomogeneous
Maxwell equations.

Let us also mention that if one was to introduce dynamical gauge fields to the above, the
prescription would be to replace Aµ

æ Aµ +aµ, where a is a dynamical field, and to integrate over
the dynamical field, amounting to the addition of Da in the partition function with gauge fixing
terms as well. However, in this work, we restrict our attention to sole background fields. Thus our
setup is one-loop exact.
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Then we can see that the vacuum non-persistence is

P ¥ 2Im[�] , (2.17)

for a small imaginary part of the e�ective action. This is the simplest measure
of a vacuum instability and Schwinger pair production predicts to lowest order
the probability of a particle anti-particle pair appearing. Turning our attention
to homogeneous fields, with a characteristic electric field strength E and fermion
mass, m, one can calculate the e�ective action to find [15]

P Ã
≥ exp

3

≠fim
2
c

3

eE~

4

. (2.18)

This is the probability of a single pair of particles to be produced from a constant
electric field due to the Schwinger mechanism. SI units have been explicitly shown
here to emphasize the scale of the electric field required to traverse the vacuum mass
gap; while significant methods to surpass the critical electric field are underway as
explained before. The exponential suppression above, Eq. (2.18), to quadratic order
in mass is the defining expression of the Schwinger mechanism and should appear
in all final expectation values where the Schwinger mechanism plays a role. Also,
notice the placement of the gauge coupling constant, e, in Eq. (2.18), it is in the
denominator and therefore the exponential suppression cannot be seen to any order7

in a perturbative theory. Nonperturbative methods are needed. One such state-of-
the-art method lies with a quantum mechanical-like worldline formulation discussed
in Sec. 3.2. The Schwinger mechanism promises a fundamental non-perturbative
outlook on QFTs and has a basis in many important phenomena, and therefore
there have been numerous experimental studies.

The Schwinger mechanism has been sought in many experimental setups includ-
ing but not limited to condensed matter analog environments and high powered
lasers.

2.2.2 Schwinger Mechanism in Condensed Matter
The appeal of utilizing an analog condensed matter environment to study the
Schwinger mechanism is readily apparent in that the critical electric field strength re-
quired for tunneling is dramatically reduced [57]. The analogy of Schwinger pair pro-
duction in condensed matter is facilitated through a Landau Zener transition [58, 59],
where in place of the positive continuum and the Dirac sea are the conduction band
and valence band, respectively:

Schwinger mechanism ¡ Landau Zener tunneling
positive continuum ¡ conduction band

Dirac sea ¡ valence band .

Some examples environments include Dirac / Weyl semimetals, semiconductors,
and graphene, (the 2+1 dimensional corollary to a 3+1 semimetal). The semimetals

7If all orders in a perturbation theory are kept, resurgence theory [56] promises to resolve this
issue. Then one may connect the nonperturbative and perturbative sectors of a theory through a
Borel transformation.
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and graphene possess little or no energy gap in their dispersion relations. However,
one could construct a semimetal with e�ective quasi-particle mass in the form of
a doped semimetal, with impurities acting as a gap, or even construct a tunable
gap [60]. Then in analogy with the QFT case, let us consider a gap �. Then one
might find in the case of a gapped dispersion the following form for the exponential
suppression in Schwinger’s formula [61]

PLZ ¥ exp
3

≠
fi�2

vF~eE

4

. (2.19)

The advantage of using gapped materials is that a clear indication of Landau
Zener transitions is available through the characteristic exponential suppression fac-
tor, however using gapped materials come with at a cost. As the signal for the
transitions would be highly suppressed with a gap, observing a meaningful signal
might pose a challenge. And for the gapless case, it could become unclear whether
signals of breakdown are genuinely from Landau Zener tunneling or from some com-
peting mechanism.

The Schwinger mechanism in inhomogeneous fields in semiconductors was ana-
lyzed in Ref. [57]. Also gapless dispersions were investigated in graphene in Refs. [62,
63], as well as in semimetals with more realistic dynamics in Ref. [64]. Not only in
condensed matter but also in QED the Schwinger mechanism is thought observable.

2.2.3 Schwinger Mechanism in High Powered Lasers
The clearest theoretical study of Schwinger pair production lies in QED and as such,
the most important task is its direct observation in strong electromagnetic field, and
the strongest pure background fields8 are obtainable with high powered lasers. One
can both directly measure the e�ects of pair production through the sole use of lasers
or indirectly through the collision of a laser beam with particles. Many such facilities
devoted to the study of strong QED–the study of QED in strong electromagnetic
fields–have been established including the Extreme Light Infrastructure (ELI) and
the X-ray Free-Electron Laser Facility (XFEL) in DESY; see Refs. [50, 65, 66] for
specific experimental outlooks. However, still the largest peak electric field, E ≥

10≠2
Ecrit, is still orders of magnitude below the critical electric field strength [67,

68], Ecrit ≥ 1.3 ◊ 1018 V/m. In the coming, we illustrate how this is surpassable
with inhomogeneous fields, and therefore verification (or falsification) is expected in
the near future. Even with a favorable laser configuration, the realistic modeling
of a high powered laser is highly non-linear and requires sophisticated numerical
implementation through particle-in-cell simulations [69]. Additionally, backreaction
e�ects are also important. When a pair is spontaneously produced energy is taken
from the background field and this too must be simulated accordingly. Furthermore,
higher-order e�ects, beyond 1-loop, become important too. While direct observation
from high-powered lasers is at hand, in fact, indirect observation of the Schwinger
mechanism in the collision of a particle beam with a high powered laser has been
observed at SLAC E-144 laser experiment [70]. There, a low-intensity optical laser
was collided with incoming electrons creating high-intensity photons which then

8The electromagnetic fields generated in nucleus-nucleus are greater, however, di�erentiating a
non-perturbative characteristic mass gap from other observables is challenging.
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recombined with the optical laser producing pair production. It is of great interest
to confirm the Schwinger mechanism directly in high powered lasers, and to this end,
it has been found that certain background field shapes theoretically better illicit pair
production than others.

2.2.4 Inhomogeneous Fields
Homogeneous fields provide an unobstructed with technical detail picture of the
Schwinger mechanism process; this is invaluable for theoretical studies. Indeed we
primarily use homogeneous fields for addressing Schwinger mechanism mass e�ects
to the chiral anomaly. We can gather physical insight not obtainable with inho-
mogeneous field backgrounds. However, there are compelling reasons for analyzing
inhomogeneous fields: Background fields capable of approaching electric (chromo-
electric) field strengths relevant to the Schwinger pair production process in QED (in
high powered lasers) and QCD (in heavy-ion collisions) are highly inhomogeneous,
and therefore to properly model background in such environments it is essential to
go beyond inhomogeneous fields. Furthermore, with certain background field types,
such as for a temporally inhomogeneous electric field, the threshold for pair pro-
duction is, in fact, lessened. As there still is no direct observation of the Schwinger
mechanism, the study of inhomogeneous fields that enhance pair production is highly
desirable.

Electromagnetic field configurations produced in high powered alternating lasers
such as at ELI and XFEL stem from beams of a given frequency and modulation,
and as such always contain some inhomogeneity [50, 65, 66]. To properly model
such scenarios one must use numerical techniques, such as particle-in-cell simula-
tions [69], and there is generally always spatio-temporal inhomogeneity in both the
magnetic and electric fields [71]. Thus it is a crucial task to study more compli-
cated QED backgrounds. Also, by the very transient nature of heavy-ion collisions,
chromo-electromagnetic fields generated there are highly inhomogeneous [72, 73].
For example, it was found in a study of the LHC and RHIC that for o�-central
collision the magnetic field was highly spatially inhomogeneous [74]. Even though
the study of inhomogeneous fields is valuable for realistic scenarios, it is at the
present experimentally mandatory as the engineering of optical shapes can reduce
the threshold for pair production.

In very early studies by Keldysh it was found a temporally inhomogeneous elec-
tric field was more likely to illicit Schwinger pair production than a homogeneous
one [75]. However, in contrast to a homogeneous field the mechanism for Schwinger
pair production is not entirely non-perturbative; coined a “dynamical pair produc-
tion” pairs generated are dependent on a specific electric field characteristic fre-
quency. A famous example of a temporally inhomogeneous electric field is provided
by a Sauter potential, or rather a pulsed electric field in time; here the character-
istic frequency is a measure of the width of the pulse in time. In contrast to a
temporal inhomogeneity, a spatially inhomogeneous electric field is known to inhibit
Schwinger pair production in comparison to a homogeneous field [76, 77]. With the
above field types considered it then becomes natural to ask how pair production
behaves under a magnetic field, whether spatially or temporally inhomogeneous, or
combinations of fields. Indeed such a discipline is widely being researched. Let us
visit one important combination of fields first.
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Motivated by Keldysh’s work [75] employing a dynamical mechanism, and also
by unique engineered pulse shapes as used in strong field atomic physics, Schutzhold
et al. discovered a combinatory electric field configuration that significantly reduced
the threshold for pair production coined the “dynamical assisted Schwinger mecha-
nism [49].” There both a strong and slow electric field (essentially a homogeneous
one) was superimposed with a fast but weak one (a Sauter potential [43]); specifi-
cally, they used

A(x4) = ≠iEx4 ≠ iÁ tan(wx4) , (2.20)

where x4 is a Euclidean time, x0 = ≠ix4, Á is a measure of the amplitude of the
small peaked field with characteristic frequency w, and E is the strength of the
slow (approximately homogeneous) field. In essence, the weak fast field acts as an
optical trap in e�ect reducing the tunneling length required for pair production.
Equipped with more mathematical machinery, we may better describe this process
later in Sec. 3.2. Several related works have also been done: The usage of strong
spatially modulated and a weak temporally modulated electric fields was examined
in Ref. [78]. Also, a quantum kinetic theory extension employing the dynamically
assisted mechanism [79], as well as an analysis of the momenta spectra [80], were
researched. Then it becomes an interesting question to ask how might one further
enhance (or avoid an inhibitability) the Schwinger mechanism process. We find a
magnetic field for specific configurations may provide an answer.

2.3 Background Magnetic Field
Above we have looked at the basic e�ects of a background electric field in a quantum
field theoretic system, then it is a natural question to ask how might the above theo-
ries be augmented under the influence of a magnetic field. QFTs under a background
magnetic field have rich application and also span a wide breadth of application; one
of the more prominent examples is the CME, discussed above. In addition to play-
ing an important role in QGPs in heavy-ion collision experiments, magnetic fields
are also important in astrophysical contexts such as for neutron stars. For example,
magnetars are neutron stars which decay from a very strong magnetic field, 1015

G–to put this in context, consider the previous example of an o�-central heavy-ion
collision; there a magnetic field of 1018 G [10] can be generated. It is quite amazing
the magnetic field in colliders is so strong. Also, in early universe applications, a
magnetic field is thought important. Non-dynamical processes like inflation may in
fact seed a primordial magnetic field at the universe’s beginnings [81]. Furthermore,
enormous e�ort is being spent on the makeup of a phase diagram in QCD [82],
where the nature of QCD under a finite temperature and baryon chemical potential
is sought. Not only using such statistical properties but also using a magnetic field
as a tunable parameter one can explore symmetry breaking/restoring characteristics
of QCD; this is referred to magnetic catalysis [21–23]. While a sole background mag-
netic field has received considerable attention, in part due to theoretical di�culties
the study of a magnetic field with an electric field has received too little attention.
And one of the most interesting applications in this research thrust indeed lies with
the Schwinger mechanism.
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2.3.1 Schwinger Mechanism with Magnetic Field
Into a background electric field let us introduce a parallel magnetic field; the mag-
netic field gives rise to curious rich new chiral physics, notably chirality generated
through the Schwinger mechanism. Let us begin our examination of spawned chi-
rality with a cursory look at Schwinger pair production under the Lowest Landau
Level Approximation (LLLA). Parallel homogeneous fields are the simplest pos-
sible, (yet unencumbered with technical di�culties), optical field setup which is
parity-violating. It is known such fields out-of-equilibrium yield a net chiral density
through the Schwinger formula–elaborated below [13]. Even in the highly unequi-
librated ion-ion collision scenario chromoelectomagnetic flux tubes are thought to
form in the glasma, with features resembling those of parallel Abelian homogeneous
fields [11, 12]. And thus parallel fields provide us with an ideal theoretical setup to
study both chirality and Schwinger pair production (due to the electric field).

First, let us remark on Schwinger’s formula in parallel fields. The vacuum insta-
bility manifests itself in the cleanest physical interpretation as an imaginary piece of
the e�ective action of the QFT partition function, Eq. (2.17). And here let us limit
our discussion to the probability of only a single pair of particles being produced.
Then accounting for a space-time volume measure, V t in the e�ective action, one
can find the probability of a single particle anti-particle pair9 to be produced is
roughly

2Im[�] ¥ V t Ê , (2.21)

with Ê being the probability density per unit time. Note here that Ê is the lowest
order in pair production value of the non-persistence probability given in Eq. (2.17).

We select homogeneous parallel electric and magnetic fields with respective
strength E and B in the 3-axis direction,

B = B x̂3, E = E x̂3 . (2.22)

Then, the imaginary piece of the e�ective action is famously known, (for a compre-
hensive review, see Ref. [84]), and Schwinger’s formula for the pair production rate
reads

Ê = e
2
EB

4fi2 coth
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eE

4

. (2.23)

The parallel magnetic field slightly increases the probability of pair production. Also,
even with the magnetic field the characteristic exponential suppression, Eq. (2.18), is
present. Note that here all the Landau levels are kept; the levels are characterized by
the coth(Bfi

E
) function above which may be expanded out in an series of exponential

terms with the n = 0 (LLLA) case given by for large magnetic field coth(Bfi

E
) = 1.

Even with the LLLA we can see the the magnetic field enhances pair production but
only to a linear order whereas the electric field suppresses it exponentially. Most
significant about Schwinger’s formula, Eq. (2.23), is its connection to chirality.

9The e�ective action contains information on any number of pairs to be produced. Though,
we limit our discussion in this section to only the probability of a single pair to be produced.
Furthermore, let us note higher orders in the e�ective action are not directly correlated with a
higher number of pairs produced [83]. Afterward, all orders will be considered.
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We may use Schwinger’s formula in parallel fields to motivate a heuristic calcula-
tion of chirality generation through Schwinger pair production. Intuitively, one could
consider the scenario of an approximately massless particle anti-particle pair under
the influence of a strong magnetic field. There the particles’ spins would project
to the magnetic field in such a way as to set up a net chirality. Then under the
influence of an electric field, the particle pair would accelerate in opposite directions.
One ought to measure a net chirality in such a circumstance. See Fig. 1.3 introduced
before. Indeed, it was found such a picture was originally found to generate a net
chirality in Ref. [13]. Note that this picture also holds in the massive fermion case
as well. For a strong enough magnetic field, only the lowest Landau level states will
be occupied and this would produce an e�ective dimensional reduction simulating
a system with fixed chirality.

Let us also note that not only the chirality directly but also the CME naturally
appears in the context of parallel fields with the Schwinger mechanism. Consider
again Fig. 1.3; since the particles are being accelerated due to the electric field, which
is parallel to the magnetic field, then a current will be generated along the magnetic
field; this is the CME current. While a classically motivated picture provides is
indeed helpful, it is imperative to more quantitatively address the phenomena of
chirality generation via the Schwinger mechanism, and we can do this through the
axial Ward identity.

2.3.2 Axial Ward Identity
A key component of an anomaly, specifically the chiral anomaly, is the existence
of the QFT vacuum, which supplies an infinite number of participants from the
Dirac sea, making possible the non-conservation of a classical symmetry when an
instability may be present [85]. To illustrate this we make use of the anomaly’s
quintessential Dirac sea interpretation. Previously, we examined the Dirac spectrum
in a quasiclassical picture in coordinate, x3, space where the levels were perturbed
by a background electric field by eEx3. This was shown in Fig. 2.1. The key point
is that the electric field, through the Schwinger mechanism, enabled a tunneling of
the mass gap. Let us then see how the same process unfolds with the addition of a
parallel magnetic field. Here however, it is instructive to make use of the momentum
representation of the Dirac sea picture–as is more commonly utilized.

The Dirac sea energy dispersion relation for a massive, with mass, m, fermion
in parallel electric and magnetic fields can be seen in Fig. 2.2. The magnetic field
is strong and a lowest Landau level approximation (LLLA) is assumed. This is
an important point, as for massive particles, only the lowest Landau level may
contribute to the chirality, and this is due to the virtue of a definite projection of
helicity. The LLLA here amounts to an e�ective 1+1 dimensional reduction. Then
we turn on a parallel electric field, strong enough such that pair production may
take place and the mass gap be traversable; a particle (excitation) may tunnel from
the Dirac sea, leaving an anti-particle (hole) in its place. Now, due to the strong
magnetic field and the LLLA, only chiral right-handed particles and left-handed
anti-particles can be produced. We end up with chirality non-conservation in what
manifests itself as the axial Ward identity. Since we have an infinite Dirac sea,
conservation of chirality can be broken. This is an essential point. Particle non-
conservation gives rise to the anomaly from a vacuum instability. Indeed, such a
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Figure 2.2: Schematic picture of Schwinger pair production and the axial Ward
identity in a reduced 1+1 dimensional system due to a LLLA. A Dirac sea dispersion
relation is shown in momentum space; particles (anti-particles) are represented as
excitations (holes). A strong magnetic field makes possible the LLLA in e�ect
dimensional reducing the system to 1+1. And the Schwinger mechanism makes
possible tunneling of the mass gap. Right-handed particles and left-handed anti-
particles, and thus a net chirality, are generated from the tunneling mechanism.
(Note, pairs produced at higher longitudinal momenta are shown only for illustrative
purposes, yet are actually highly suppressed.)

picture is frequently invoked to describe the anomaly for massless particles in a 1+1
dimensional system.10 However, the problem–we go on to show later in the thesis–is
conventional QFT tools are inadequate for treating a vacuum instability.

Turning our attention once again to the vacuum non-persistence we may quantify
the rate of chirality generation via the Schwinger mechanism. In the instance of a
single pair being produced under the LLLA the chirality would be incremented by
two, (one right particle and one left anti-particle),

Ê = e
2
EB

4fi2 exp
A

≠
fim

2

eE

B

≥
1
2ˆ0n5 , (2.24)

as was found in Ref. [13]. Here, the chiral density, n5, is an expectation value11 of
the time component of the axial current

j
µ

5 := Â̄“
µ
“5Â . (2.25)

The nonconservation of chirality is famously predicted through the axial Ward iden-
tity:

ˆµj
µ

5 = ≠
e

2

16fi2 ‘
µ‹–—

Fµ‹F–— + 2mÂ̄i“5Â , (2.26)

10Note, the picture depicted in Fig. 2.2 relies on tunneling, not a spectral flow, to describe the
anomaly and this is a necessary feature for massive systems.

11The precise meaning of this expectation value we will elucidate later.
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and is exact at the operator level as depicted above. With parallel homogenous
electric and magnetic fields, Eq. (2.22), we have ‘

µ‹–—
Fµ‹F–— = ≠8EB. Also, as will

be shown below, Èj
i

5Í = 0. Accordingly, one would expect the chirality production
heuristically found in Eq. (2.24) to follow as

ˆ0Èj
0
5Í = e

2
EB

2fi2 + 2mÈÂ̄i“5ÂÍ . (2.27)

However, in fact the pseudoscalar condensate in parallel homogeneous fields was
calculated by Schwinger when studying the neutral meson and proton using proper
time methods, Ref. [15], and was found to be

P̄ := ÈÂ̄i“5ÂÍ = ≠
e

2
EB

4fi2m
. (2.28)

Using the above we find the enigma

n5 ”= Èj
0
5Í . (2.29)

The chirality found using standard proper time methods, Eq. (2.28), does not agree
with the heuristic picture provided in Eq. (2.24). In fact,

ˆ0n̄5 = 0 , (2.30)

for any m even the case of m æ 0. The massless limit is frequently evoked in
literature to drop mÈÂ̄i“5ÂÍ. However, it is prudent to find the mass dependence in
the pseudoscalar first before such limits can be taken. Indeed, an Abelian massless
theory may di�er quite markedly from one in which the m æ 0 limit is taken, notably
the former possesses a completely shielded electric charge [86]. The resolution to
the enigma we find is provided through identification of vacuum states. Indeed
depending on which vacuum states are utilized di�erent vacuum expectation values
(VEV) can be found.

However, before addressing VEVs under di�ering vacuum expectation values
let us go over some basics of the concept of dynamical symmetry breaking due to
a magnetic field in QCD, of which the e�ects including an electric field and the
Schwinger mechanism we go onto elucidate.

2.3.3 Magnetic Catalysis
Symmetries, and their breaking, make up a generous part of our understanding in
QFTs. A notable example–as outlined above–lies with the chiral symmetry. The
chiral symmetry o�ers a Lorentz invariant topology [29], Eq. (2.3), leading to the
axial anomaly. Then we found for certain parity-violating non-trivial topologies one
can find the CME, Eq. (2.4). In turn, breaking of the chiral symmetry is highly
important as the mechanism leads to the forming of the bulk of the visible mass in
the universe [2, 3]. Not only directly from a dynamical symmetry breaking, forming
a condensate in QCD, but also through the addition of a magnetic field can the
dynamical mass, or chiral condensate, be a�ected. This process is commonly known
as magnetic catalysis [21–23].
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The magnetic catalysis can be essentially understood as a catalyzing e�ect on
a fermion anti-fermion condensate in the presence of a magnetic field [23]. The
e�ect is tantamount to an enhancement of a dynamically generated mass. When a
condensate forms, a symmetry (in this case the chiral symmetry) is broken which
leads to a dynamically generated mass. Before explaining magnetic catalysis from a
dimensionally reduced field theoretic standpoint let us motivate the process through
a condensed matter analogy in superconductivity [87].

Indeed, the analogy of superconductivity to QCD was exploited in the explana-
tion of dynamical symmetry breaking [2, 3]. In superconductivity, a condensate is
also formed, known as a Cooper pair between two fermions–in contrast to a fermion
and anti-fermion for the chiral condensate–due to an electron-phonon interaction.
Analogous to QCD a mass forms, or rather an energy gap in BCS theory. However,
let us not press the analogy further as there are notable di�erences. While in QCD
the chiral condensate is strengthened due to a magnetic field, the Cooper pair is
weakened. This is due to the magnetic moment anti-alignment of the Cooper pair;
while one electron’s spin is aligned with the magnetic field the other is stuck in
a frustrated state–leading to weakening of the condensate as well as the Meissner
e�ect. In contrast, the chiral condensate is charge neutral, both constituents of the
condensate are aligned with the magnetic field, and no Meissner e�ect is present.
Let us more formally describe the enhancement of the condensate and dynamical
mass in magnetic catalysis.

Here we examine magnetic catalysis in 3 (space) + 1 (time) dimensions–here
there is no proper time dimension in contrast to the rest of the thesis; however,
with the strong magnetic field the physics is similar to a dimensionally reduced 1+1
system. The dynamical mass, M , can be defined directly from the formed chiral
condensate in a magnetic field, B, with bare mass, m (which is later taken to zero):

M(m, B) = ≠G ÈÂ̄ÂÍ . (2.31)

G is a coupling constant defined in the Nambu-Jona-Lasinio (NJL) model [88], whose
value describes a weak interaction with 2nd order terms bilinear in the Dirac fields.
In the NJL model in 3+1 dimensions this would amount to the addition of the terms,
G/2[(Â̄Â)2 +(Â̄i“5Â)2], into the Dirac Lagrangian, depicted in the partition function
Eq. (2.15). Note, the coupling G is distinct from the electromagnetic coupling e.
Then the dynamical mass, Eq. (2.31) is determined from integrating out the higher-
order terms and constructing a gap equation; see Refs. [21–23] for more details.
The chiral condensate is easily solvable, which we do in Sec. 8 with the addition
of an electric field, with Schwinger proper time techniques. There is a non-trivial
non-vanishing solution to the above for a vanishing pole mass, m æ 0 [21–23]:
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; (2.32)

the dynamical mass here is similar to an e�ective mass found in BCS theory. What
is more, we see here too the influence of the magnetic field is non-perturbative
in nature; c.f. the characteristic Schwinger mechanism exponential suppression is
exp(≠m

2
fi

eE
).

Dimensional reduction from 3+1 to 1+1 is a characteristic feature of magnetic
catalysis and can be used to explain pertinent physics. In a background magnetic
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Figure 2.3: Example of inequivalent vacuum state background field: Sauter poten-
tial. Ez(t) = E cosh≠2(t) and Az(t) = ≠E tanh(t) + E. The field E(t) does indeed
vanish at t æ ±Œ. However the gauge, Az(t) does not. Note we use homogeneous
fields and not the above Sauter potential in the evaluation of expectation values
under Schwinger pair production. However, the extension to inhomogeneous fields
is motivated in Sec. 3.3 later.

field the eigenvalues of the Dirac equation in 3+1 dimensions follow as [23]:

En = ±

Ò

m2 + 2eBn + p
2
Î . (2.33)

n = 0, 1, 2... and counts the Landau levels. pÎ is momentum parallel to the magnetic
field. Then for a su�ciently strong magnetic field only the lowest Landau level,
n = 0, will be occupied; however, the resulting lowest Landau level expression
is identical to the 1+1 spectrum. We can understand this process simply from a
classically motivated picture. A strong magnetic field will polarize an electron’s spin
and will also restrict motion to a cyclotron orbit, only allowing motion in a parallel
to the magnetic field direction, e�ectively reducing the dimensionality. Then, using
the classical analogy, one can visualize an energetically favorable configuration of
spin alignment of a particle anti-particle pair in the presence of a strong magnetic
field, in e�ect enhancing the condensate.

While our understanding of magnetic catalysis and dynamical symmetry break-
ing under a strong magnetic field is complete, a fascinating extension lies with the
addition of an electric field. As we saw before with an electric field, the vacuum
is unstable against the production of pairs. And this process mars our concept of
equivalent vacuum states, which one may typically take for granted. Then for the
processes leading up to a dynamical mass, Eq. (2.31), under the influence of an
electric field how should one even define a meaningful dynamical mass? We address
this question in Ch. 8. Let us first address a simpler question: How should one
define expectation values under a vacuum instability, such as from Schwinger pair
production?

2.4 Observables under a Vacuum Instability
The key observation here is that even if the background field vanishes in the asymp-
totic t æ ±Œ limits for configurations which yield Schwinger pair production the
gauge does not. A simple example of this is provided by a Sauter electric field po-
tential [43]; see Fig. 2.3. Therefore as our many-body vacuum states are determined
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in their asymptotic limits in time as well, the vacuum states are indeed a�ected by
the background field. We must have |inÍ ”= |outÍ, as was described as a definition of
Schwinger pair production, Eq. (2.14). Then, a näıve usage of the di�ering in and
out vacuum states for the determination of mean expected value would then entail
a di�erent (but physical) observable. Let us emphasize that many standard QFT
calculations techniques make use of in-out vacuum states. And in the presence of
an electric field then, the physical interpretation of those results is changed. This
is true using even worldline or Schwinger proper time methods as well. We find the
näıve approach of vacuum states has been employed in Eq. (2.28) when trying to
confirm the intuitive process for chirality generation, Eq. (2.24), with concrete cal-
culations. There is nothing physically wrong with the expectation values calculated
in Eq. (2.28) using in-out vacuum states; a simple but profound interpretation is
merited we will show. How might one perform a calculation in agreement with our
physical intuition predicting a mean expected value12?

We find mean expectation values can be had with the usage of similar vacuum
states. While vacuum states at any time are permissible, it is simplest to employ
asymptotic states for their transparent particle pictures; hence in-in vacuum states
can be used. Such observables found using in-in vacuum states are consistent with
the postulates of quantum mechanical expectation values. And in-in expectation
values would coincide with intuition: If one were to turn on an electric field in
volume, V , for time, T , and make measurements of an operator O, then the average
of all measurement would indeed be Èin|O|inÍ. Let us go ahead and at this point
introduce the following notation to contrast both in-out and in-in expectation values
for some given time-dependent operator O(t) in the Heisenberg representation:

ÈOÍ := Èout|O(t)|inÍ/cv , ÈÈOÍÍ := Èin|O(t)|inÍ (2.34)

Our in (out) states is defined at some time tin(tout), which we later take to negative
infinity (positive infinity), whereby we can expand the Dirac operators in terms
of creation and annihilation operators acting on either vacuum state. Given the
importance of vacuum states for expectation values in unstable QFTs then it is
mandatory to address the physical implications of such values.

The Schwinger mechanism, much like other vacuum instabilities, is an inher-
ently out-of-equilibrium phenomenon. Then we find, too, that expectation values
consistent with quantum mechanical definitions also describe a situation inherently
out-of-equilibrium. And this concept we address with greater mathematical rigor
in Ch. 4. Such in-in expectation values are consistent with a Schwinger Keldysh
out-of-equilibrium formalism. However, if in-in expectation values represent their
mean values in an experiment then what is one to make of in-out expectation values.

The question of an in-out expectation value we can better address with more
theoretical results at our disposal. However, we can provide a cursory explanation
using arguments laid out for the Schwinger mechanism in Sec. 2.2.1. There we found
that the product of the partition function with its Hermitian conjugate, | Èout|inÍ |

2

in Eq. (2.14), described the probability that the vacuum would stay a vacuum and
nothing (particle or otherwise) be produced in the out-state. Then from the above

12Here, we have temporarily made use of the vocabulary introduced in Ref. [89] for in-in ob-
servables. Note, also in Ref. [89] in-out observables are denoted as causal observables in regard to
the causality of the in-out Green’s function. However, we go to explain in-out (in-in) observables
should be likened to a scenario of (out-of) equilibrium.
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analogy, one could motivate an in-out expectation value as describing a scenario
where nothing appears in the out-state. In other words, if an in-in observable, which
contains all the contributions of any number of pairs being produced in the out-state,
describes a state out-of-equilibrium, then an in-out observable, which describes a
state where no pairs are produced, should describe a situation of equilibrium. One
may also reason this by noting that the Minkowski partition function, Eq. (2.15),
resembles a Euclidean partition function at zero temperature; see Sec. 4.4 for details.
Having put forth the machinery to contrast the two observables we would be in a
better position to illustrate the nature of in-out expectation values.

In light of the above arguments, it becomes a prudent question to ask how do the
axial anomaly and related quantities behave under in-in or in-out vacuum states.
As we have outlined, it is true that the axial anomaly is exact at the operator
level, Eq. (2.26). However, a clear recognition of the anomaly’s behavior under
vacuum unstable conditions has been woefully absent. Before embarking on these
calculations let us illustrate some basic elements of the in-in formalism making ties
to its out-of-equilibrium description.



Chapter 3

Methods

3.1 In-In Formalism and the Schwinger Keldysh
Closed Time Path

Having exposed the importance of inequivalent vacuum states in the determination
of expectation values, let us further discuss the relationship between the vacuum
states and their in or out-of-equilibrium origins. To achieve this let us illustrate the
simplest example of a defining in-in expectation value, whose formulation naturally
can be connected to an out-of-equilibrium Schwinger Keldysh closed time path. This
object we can show is an ordinary expectation value in quantum mechanics. The
essential feature of a closed time path formalism is the involvement of two histories
or two time paths in the determination of the expectation value of operators [90].
Let us take for example for a general operator, O, the following expectation value:

ÈÂ(ti)| O |Â(ti)Í =
⁄

dx O| Èx|Â(ti)Í |
2

, (3.1)

valid at some (initial) time, here labeled ti, and in the Schrödinger representation.
Then we express the wavefunction as a path integral shifted to some later time, tf ,

Èy|Â(tf )Í =
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x
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Õ
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[p·xÕ≠H]
, (3.2)

for the Hamilitonian, H, of the Schrödinger equation. Using the path integral form
of the wavefunction in the expectation value, Eq. (3.1), we can find that two paths
are integrated over, from ti to tf then back to ti:

ÈÂ(tf )| O |Â(tf )Í =
⁄

dx+dx≠ O

⁄

Dx+Dx≠Dp+Dp≠ Èx+|Â(ti)Í ÈÂ(ti)|x≠Í

◊ exp
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[p+ · x+ ≠ H+] + i

⁄
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tf

[p≠ · x≠ ≠ H≠]
<

. (3.3)

Here the closure of the time paths is referred to as the “closed time path” formulation
and is often attributed to Schwinger [91] and Keldysh [92]. The above formulation is
also referred to as a real-time formalism, so as to contrast it with the imaginary time

27
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formalism where time is Wick rotated to imaginary values descriptive of equilibrated
setups.1

The extension to a QFT is simple. First let us generalize the above to include
quantum statistical information. Consider a density matrix of a given quantum
theory that contains all the quantum and statistical information of the theory [93,
94], c.f., Eq. (3.1),

ÈO(t)Í = Tr[fl(t)O]
Tr[fl(t)] . (3.4)

For a quantum mechanical setup, fl(t) = q

n pn |Ân(t)Í ÈÂn(t)|, with pn being the
probability of finding the system in n quantum state. Also, we assume Tr[fl] = 1
and the probabilities, pn, must add up to unity. Then, one may expect the states
to evolve in time according to the unitary evolution operator,

U(tf , ti) = T exp
5

≠
i

~

⁄

tf

ti

dt
Õ
H

6

, (3.5)

T indicates a time ordering in the matrix exponential. The density matrix, Eq. (3.4),
then evolves in time accordingly,

fl(tf ) = U(tf , ti) fl(ti) U(ti, tf ) . (3.6)

Applying the above to expectation values we can see

ÈO(t)Í = Tr[fl(tf )O]
= Tr[fl(ti) U(ti, t) O U(t, ti)]
= Tr[fl(ti) U(ti, t) O U(t, tf )U(tf , ti)] , (3.7)

where we have made use of the cyclicity of the trace and product identities of the
unitary evolution operator. The time evolution of the density matrix also satisfies
a quantum Louiville equation. Note here as well, even without a path integral
formulation, the two time paths in the evolution operators, Eq. (3.6), depicting a
closed time path are manifest. Furthermore, upon looking at the expectation value,
Eq. (3.7), we can see that the operator at an intermediate time, ti < t < tf , can be
viewed as being inserted along either path on the closed loop.

Let us extend the above to a quantum many-body system. To do so of course
one may formulate the above in the Heisenberg notation. Also, let us take the initial
and final time to their respective asymptotic limits i.e., [ti , tf ] æ [≠Œ , Œ]. Taking
the limits is important so that a well-defined Fock state may be established. As
before we assume “in” and “out” ground states are found at ti æ ≠Œ and tf æ Œ

respectively. With these steps one may write the above expectation value as

ÈO(t)Í = Èin| O(t) |inÍ . (3.8)
1One may in fact combine imaginary time with a Schwinger Keldysh contour so as to contrast

real-time e�ects against a system at finite temperature. The extended contour penetrates into the
imaginary time plane. We will see an example of this in the worldline formalism with the critical
electric field strength playing the role of the proper time-like temperature; see Eq. (4.45).
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Figure 3.1: Schwinger Keldysh contour C over x
0 including sections going from in

to out, C+, out to in, C≠, and the connecting piece spanning imaginary time, Cfl.
Note that C+ corresponds to the time ordered (conventional) path appearing in the
QFT partition function–a bilinear in fermion fields placed on the path too would
correspond to an in-out value in the absence of a vacuum instability. C≠ corresponds
to the anti-time ordered path. Last, Cfl, (representing the boundary condition at
x

0 = Œ), is non-trivial in the presence of a vacuum instability.

Here we have made explicit the use of the ground state at tin = ≠Œ as È�| = Èin|.
We have found an in-in expectation value. Thus, one may directly relate the above
Schwinger Keldysh formalism with that of an in-in prescription.

For the purposes of calculating various observables it is convenient to introduce
sources to a general partition function with which to find correlation functions. Also,
for later convenience at this point we go ahead and narrow our focus to fermions in
a QED background. The generating functional for a Schwinger-Keldysh contour or
for an in-in prescription is

Z[÷, ÷̄] =
⁄

DÂ̄DÂ exp
5

i

⁄

C
dx

0
⁄

d
3
x[Â̄(i /D ≠ m)Â + ÷̄Â + Â̄÷

6

. (3.9)

Using the above we may also construct a correlation function with time ordering on
the entire contour:

SSK(x, y) = i Èin| TCÂ(x)Â̄(y) |inÍ

= ◊C(x0
≠ y

0)i Èin| Â(x)Â̄(y) |inÍ ≠ ◊C(y0
≠ x

0)i Èin| Â̄(y)Â(x) |inÍ

= i

5

(≠i
”

”÷̄(x))(i ”

”÷(y))Z[÷, ÷̄]
6

÷=÷̄=0

O

Z[÷, ÷̄]|÷=÷̄=0 , (3.10)

The Green’s function here can be understood as possessing a matrix structure with
elements depicting which part of the contour is being examined. Also the vacuum
states are normalized such that Z[÷, ÷̄]|÷=÷̄=0 = 1. Let us label parts of the contour2

as
⁄

C
dx

0 =
⁄ Œ+i‘

≠Œ+i‘

dx
0
+ +

⁄ Œ≠i‘

Œ+i‘

dx
0
fl ≠

⁄ Œ≠i‘

≠Œ≠i‘

dx
0
≠ , (3.11)

depicted in Fig. 3.1. The theta function along the real time contour reads
2Let us point out here again that one could extend the Schwinger-Keldysh contour so as to

include an imaginary portion corresponding to an equilibrium temperature given in the initial den-
sity matrix. Thus there is no KMS condition given for the Green’s function, Eq. (3.10). (Addition
of which, i.e. a finite temperature worldline path integral, would entail a sum over the coordinate
path integrals for each periodicity.)
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0
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0
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(3.12)

The Schwinger-Keldysh propagator satisfies the following di�erential equation, (for
/D acting on x represented by /Dx),

(i /Dx ≠ m)SSK(x, y) = ≠”C(x ≠ y) . (3.13)

Let us pause here to emphasize that while the above generating functional
is in fact reminiscent of the product of two separate generating functionals, c.f.,
Eq. (2.15), the Schwinger Keldysh formalism is valid for non-trivial vacuum in-
stabilities as well as presented in the previous sections. To illustrate this let us
demonstrate the connection to the above from an in-in treatment [95]. We begin
with an empty vacuum state and insert in a complete set of out states such that

Èin|inÍ =
ÿ

–

Èin|out, –Í Èout, –|inÍ ; (3.14)

here – runs over all possible combinations of out coherent states. Then to express
the above in its path integral formulation let us note that the complete set can be
expressed in a functional integral form,

Èin|inÍ =
⁄

DÂ̄flDÂflDÂ̄+DÂ+DÂ̄≠DÂ≠

◊ exp
5

i

⁄

d
4
x+[Â̄+(i /D ≠ m)Â+] ≠ i

⁄

d
4
x≠[Â̄≠(i /D ≠ m)Â≠]

6

, (3.15)

so long as the following boundary conditions on a common spacelike hypersurface
at tout æ Œ be met

Â+(tout) = Â≠(tout) = Âfl . (3.16)

Notice in the above that so long as inserted operators at t are placed such that
t < tout for either contour, then we see there is no explicit dependence on the
out state. Therefore we may absorb the functional integral of Âfl into an overall
normalization constant for the path integral so long as the boundary condition,
Eq. (3.16), be met. This is Eq. (3.9), (with the addition of sources). And we have

Èin|inÍ = Z[÷, ÷̄]|÷=÷̄=0 (3.17)

as anticipated.
Now that we have observed that a Schwinger Keldysh contour is good for cal-

culating a vacuum instability let us round out our previous discussion and address
the various individual Green’s functions the Schwinger Keldysh propagator contains.
The propagator, Eq. (3.10), in matrix notation reads

(i /Dx ≠ m) ¢

3

S
c

in
(x, y) ≠S

<

in
(x, y)

S
>

in
(x, y) S

c̄

in
(x, y)

4

=
3

≠”(x ≠ y) 0
0 ”(x ≠ y)

4

. (3.18)
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Let us define each propagator separately as the following

S
c

in
(x, y) = i Èin| ◊(x0 ≠ y0)Â(x)Â̄(y) ≠ ◊(y0 ≠ x0)Â̄(y)Â(x) |inÍ , (3.19)

S
c̄

in
(x, y) = i Èin| ◊(y0 ≠ x0)Â(x)Â̄(y) ≠ ◊(x0 ≠ y0)Â̄(y)Â(x) |inÍ , (3.20)

S
>

in
(x, y) = i Èin| Â(x)Â̄(y) |inÍ , (3.21)

S
<

in
(x, y) = i Èin| Â̄(y)Â(x) |inÍ . (3.22)

The propagator S
c

in
is the usual time-ordered propagator used in most QFT appli-

cations and will serve us for bulk of our discussion hereafter.
While the above set of propagators provide us with all the dynamical and quan-

tum information of the system it is also convenient to introduce the statistical
and spectral propagators [96] to round out our discussion here. To do so note
the Schwinger Kelydsh propagator may be expressed as

SSK(x, y) = F (x, y) + i

2fl(x, y)(◊C(z0) ≠ ◊C(≠z0)) , (3.23)

F (x, y) = i

2 Èin| [Â(x), Â̄(y)] |inÍ , (3.24)

fl(x, y) = Èin| {Â(x), Â̄(y)} |inÍ , (3.25)

where F and fl are the spectral and statistical propagators respectively. Then using
the expression S

c

in
+ S

c̄

in
= S

<

in
≠ S

>

in
we can construct

F (x, y) = 1
2(Sc

in
+ S

c̄

in
), (3.26)

fl(x, y) = i(S<

in
+ S

>

in
) . (3.27)

Note that the statistical and spectral equations satisfy the following di�erential
equations

(i /Dx ≠ m) F (x, y) = 0 , (3.28)
(i /Dx ≠ m) fl(x, y) = 0 . (3.29)

With the addition of dynamical gauge boson in addition to the background field,
the above two could be supplemented with collisional e�ects in a 2PI formalism. To
this end one would need in addition to the generating Lagrangian given in Eq. (3.10)
an additional 2 point source term in fermions and gauge bosons along with a single
gauge boson generator. However, as a first approximation let us ignore dynamical
gauge bosons. For the strong background fields required to surpass the Schwinger
critical electric field strength, this approximation is just.

Having presented a suitable formalism for calculating in-in observables we
are tasked with non-perturbative and intractable problems in chirality and the
Schwinger mechanism. Let us also point out that the Schwinger mechanism
was first studied under non-equilibrium settings in Ref. [97] applying Keldysh’s
techniques [91, 98]. Let us also mention that the Schwinger mechanism under a
Schwinger Keldysh contour has also been examined in Refs. [99, 100]. However,
with further modification, we can apply well established mathematical techniques,
worldline techniques, to address the Schwinger mechanism and chirality generation
out-of-equilibrium.
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3.2 Worldline Formalism
Above, we have looked at a nonequilibrium setting for a QFT in the form of a
distorted and closed time path and how this may be interpreted as an equivalent,
e.g., “in-in,” vacuum state formulation. However, we are tasked with performing
chirality and Schwinger pair production-related calculations impregnable to usual
methods. This is where the worldline formalism comes in. Early applications of the
worldline formalism include topics in chirality and the Schwinger mechanism thus its
usage here is intuitive. However, the combination of worldline methods with an in-in
prescription will be reserved for later topics in the thesis. Here we introduce essential
findings of the worldline formalism including a terse derivation of the worldline path
integral and Schwinger’s formula3, Eq. (2.23), as well as worldline instantons and
their relationship to pair production.

Feynman, in two groundbreaking papers, Ref. [101, 102], laid out what would
become the underlying structure of QED. While largely second quantization was
used, (and predominantly adopted later), in Feynman’s papers, relegated to the ap-
pendix, a first quantized path integral formulation appeared. This first quantized
formulation is what would become the worldline formalism. While the worldline ap-
proach had until recently received little attention, in part due to its ease in handling
intractable calculations, e.g. diagrammatic multi-loop QCD, has found renewed in-
terest. Let us present here the clearest example of the worldline method with an
abbreviated proof, (later we will derive the Green’s function on the worldline in its
entirety), of the QED e�ective action in a background field.

Let us begin with the QED e�ective action defined after integrating out the
fermions from the QED partition function, Eq. (2.15):

i�[A] = Tr ln(i /D ≠ m) . (3.30)

Note, more generally the above e�ective action includes the energy associated with
the background gauge field, i

s

d
4
x

1
4Fµ‹F

µ‹ . Also moreover, the e�ective action is
defined such that infinite volume terms in the absence of fields are subtracted, i.e.
Tr[ln(i /D ≠ m) ≠ ln(i /̂ ≠ m)]. The trace here indicates a summation over Dirac as
well as functional degrees of freedom. Then consider the insertion of “5 into the
functional trace. Using the anticommutative property of “5 with “

µ and the cyclic
property of the trace, we may also consider

i�[A] = Tr ln(≠i /D ≠ m)

= 1
2 Tr ln[(i /D ≠ m)(≠i /D ≠ m)] . (3.31)

Then using the Laplace transform,

ln[O ≠ i‘] = ≠

⁄ Œ

0

ds

s
exp[≠i(O ≠ i‘)s] , (3.32)

3Schwinger has many attributed formulae; here we refer to Schwinger’s formula as the approx-
imated rate of pair production in parallel fields.
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where we require the use of an implicit small imaginary piece in the mass term for
convergence, we find the e�ective action becomes

i�[A] = ≠
1
2 Tr

⁄ Œ

0

ds

s
exp[≠i( /D

2 + m
2)s] . (3.33)

Then, let us interpret the functional trace in coordinate space such that

i�[A] = ≠
1
2 tr

⁄

d
4
x

⁄ Œ

0

ds

s
Èx| exp[≠i( /̂D

2 + m
2)s] |xÍ . (3.34)

Here we denote functional operators with a hat, i.e., Ô; also here the trace, tr, acts
only on the Dirac indices. The above illustrates the novelty of the Schwinger proper
time method, namely we have reduced a quantum field theory problem to a quantum
mechanical-like 4+1 dimensional problem with time replaced with proper time.

It is physically illuminating to view the above kernel within the e�ective action
in a path integral form. We present this transformation in detail in the next section.
Briefly, however, let us make use of the relationship between the operator and path
integral representations,

Èx|e
≠iĤs

|yÍ =
⁄

x(s)=x

x(0)=y

Dx Pe
i

s s

0 d·L
, (3.35)

where Ĥ here is the Hamiltonian of our 4+1 quantum mechanical-like system with
accompanying Lagrangian, L, found using a Legendre transformation. Using the
above we can find the e�ective action becomes in its path integral form

i�[A] = ≠
1
2

⁄ Œ

0
ds e

≠im
2
s

j

Dx exp
;

≠i

⁄

s

0
d·

Ë1
4 ẋµẋ

µ + eAµẋ
µ

È

<

�(x) (3.36)

�(x) = tr P exp
;

≠i

⁄

s

0
d·

e

2‡µ‹F
µ‹

<

. (3.37)

Most significant in the above we see is the replacement of ordinary time with proper
time, · , as the time in our quantum mechanical path integral, and hence why the
above is coined the worldline formalism. Owing to the functional trace we see
the above e�ective action depicts the sum over closed worldline loops and hence
i

Dx =
s

dx
s

Dx
Õ for the boundary condition x

Õ(0) = x
Õ(s) = x. �(x(·)) is the spin

factor and contains all the information dealing with the gamma matricies. Further-
more, we can see the path integral for fermions above factors into a Boson portion
and spin factor portion, but is connected through the s integral. Further conven-
tions are listed below in Sec. 1.4. Upon expanding about the gauge field, here only
considered as a background field, we find the e�ective action describes perturba-
tively a 1-loop calculation as in Fig. 3.2. While such a perturbative expansion is
physically illuminating, for the purposes of studying the Schwinger mechanism a
non-perturbative treatment is needed. To that end let us digress into a nonpertur-
bative treatment of the e�ective action which highlights the tunneling nature of the
Schwinger mechanism; that is using worldline instantons.

Worldline instantons are found from a steepest descent approximation to the
e�ective action in Euclidean spacetime. After making a Wick rotation to a Euclidean
metric, and making a change of variables in the proper time, · æ ·s, we expand
about x æ x + ÷ for fluctuations, ÷, about the classical value. We find worldline
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Figure 3.2: E�ective action, �[A], expanded about the gauge, A. For sole back-
ground fields, the e�ective action is 1-loop exact with any number of background
photons. Note, the diagram with no lines represents an infinite volume term, and
is assumed to be removed through regularization; however, imaginary pieces in �,
such as due to the Schwinger mechanism, are insensitive to regularization and thus
regularization will be a non-issue in this work.

Figure 3.3: Worldline instanton sample trajectory in homogeneous fields. n, the
worldline instanton winding number is related to the number of pairs of produced
particles. Periodic, (and circular for homogeneous electric fields), paths are a prod-
uct of periodic boundary conditions. x4 is a Euclidean time, and hence worldline
instantons describe a tunneling phenomenon.

instantons must satisfy the following Lorentz force equation4 in Euclidean spacetime
for periodic boundary conditions[103, 104]:

ẍµ = ≠
ie|ẋ|

m
Fµ‹ ẋ

‹
. (3.38)

Such solutions are worldline instantons. Multiple solutions exist for |ẋ| = Ô
ẋµẋµ.

For the case of homogeneous fields worldline instantons trace out circles periodic in
the direction of the electric field and Euclidean time, x4; see Fig. 3.3. Worldline
instantons o�er an intuitive interpretation of Schwinger pair production: at some
point in spacetime a particle is created for forward times and an antiparticle is
created for backward times forming a loop in spacetime. We may interpret this as a
pair of particles being spontaneously created from the vacuum. And the number of

4Note here that the spin factor, Eq. (3.37), has been excluded from the equations of motion
under the assumption that it weakly contributes. It does not contribute for the case of homogeneous
fields, and the treatment is exact.
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loops of the instanton approximately corresponds to the number of particles being
produced. Inserting the worldline instantons into the e�ective action one can readily
find the imaginary part of the e�ective action, i.e., the real part of the Euclidean
e�ective action, at the classical level as

≠ Re[�Euclidean] = Im[�Minkowski] Ã
≥ exp

1

≠
m

2
fi

eE

2

, (3.39)

which is Schwinger’s formula for pair production, Eq. (2.14). In fact, if we evalu-
ate the imaginary part of the e�ective action by steepest descents using worldline
instantons we can arrive at the exact imaginary part of the e�ective action. See
Ref. [105] for explicit calculations; note for homogeneous fields fluctuations in the
fields are at most quadratic order and therefore steepest descents is exact.

Armed with the worldline instanton technique we can better explain qualita-
tively the dynamically assisted Schwinger mechanism with configuration given in
Eq. (2.20). For homogeneous fields, the periodic paths traced by the worldline in-
stanton in x4(0) = x4(s) follow along with an e�ective potential set by the gauge.
However with the addition of a weak pulsed field, poles, due to the tangent functions
in Eq. (2.20), constrict the motion of the instanton creating a tightened instanton
path in e�ect reducing the tunneling length required for Schwinger pair production.

The worldline formalism is not only useful for QED but also non-Abelian gauge
fields as well. The extension is intuitive. The worldline representation of a non-
Abelian gauged scalar one-loop e�ective action is given as a simple replacement of
the Wilson loop, with Aµ(x) = A

a

µ
(x)T a and T

a being the generators of the gauge
group:

exp
Ó

≠ie

⁄

s

0
d·Aµẋ

µ
Ô

æ tr P exp
Ó

≠ig

⁄

s

0
d·gAµẋ

µ
Ô

. (3.40)

We have simply acquired a trace over the gauge group and a path ordering. Note that
the extension to non-Abelian fields is somewhat more involved for fermions, however,
essentially the only di�erence lies in the replacement of the field strength in the spin
factor, Eq. (3.37), with its equivalent, that is Fµ‹ æ Gµ‹ = ˆµA‹ ≠ˆ‹Aµ+ig[Aµ, A‹ ].
Also, the path ordering encompasses the spin factor as well. To a large extent the
discussions in this thesis will be limited to homogeneous fields. For homogeneous
fields in color space an Abelian rotation can always be performed allowing the fields,
F , and gauge, A, to be diagonal and hence omit the path ordering. Thus QED
is a good approximation of the behavior of non-Abelian QFT’s in homogeneous
Abelianized fields. Let us note in passing that non-Abelian homogeneous fields may
also be found from a non-spacetime dependent gauge. For example for SU(2) let
A1 Ã ‡1 and A2 Ã ‡2, then one can see F Ã ‡3. However, this configuration does
not produce pair production as there is no time dependence in the background field
and therefore we confine our attention to the Abelian-like case of A Ã x

a
T

a

diagonal
.

We have explored the utility of worldline methods for treating the Schwinger
mechanism, particularly looking at the worldline instanton method. The instan-
tons are capable of treating inhomogeneous background fields otherwise intractable
through other means. Let us explore this formalism along with a parallel inhomo-
geneous magnetic field in an interesting application to the generation of chirality.
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3.3 Schwinger Mechanism Enhancement in Inho-
mogeneous Parallel Fields

In the previous chapters we have outlined the necessary physics and techniques to
understand chirality generation via the Schwinger mechanism. Before analyzing con-
crete applications of an out-of-equilibrium in-in formalism and a traditional QFT
in-out formalism, let us apply the heuristic picture of chirality production intro-
duced in Sec. 2.3.2 to inhomogeneous fields. We will indeed find that the heuristic
picture is a correct one describing an out-of-equilibrium spontaneous production
of chirality. The usage of inhomogeneous fields, as alluded to earlier, lessens the
Schwinger mechanism threshold for pair production for certain field shapes, and
from the heuristic picture one may also infer an enhancement of the production of
chirality. We found chirality production can be had from the imaginary part of the
e�ective action predicting Schwinger pair production, Eq. (2.14). Using the vacuum
non-persistence at lowest order (again Eq. (2.14)) one may count the net chirality
change induced from a single particle anti-particle pair produced. Therefore for
inhomogeneous fields we focus our e�orts, rather, on finding the lowest order contri-
butions to the imaginary part of the e�ective action. Then, based on non-persistence
we motivate likely observable setups in heavy-ion colliders and Dirac semimetals;
this is done in Sec. 3.3.4 below. Let us first here look at the e�ective action in in-
homogeneous fields, specifically we discuss spatially inhomogeneous magnetic fields
and temporally inhomogeneous electric fields.

Let us mention that the contents of this chapter are not central to our main
arguments and results of chirality production through a vacuum state identification,
and thus for a first reading of this thesis may be passed over. The discussion of
vacuum unstable states and observables continues in Sec. 4.

3.3.1 Electric and Magnetic Field Kernels
We are primarily concerned with background fields in QED (and non-Abelian ex-
tensions) that are parity violating, i.e. ones with ‘µ‹‡⁄F

µ‹
F

‡⁄
”= 0. And these field

types, specifically the parallel electric and magnetic field variety, admit a major sim-
plification: the worldline kernel, Eq. (3.35) is factorizable into separate electric and
magnetic field parts. More specifically we restrict field types such that the electric
and magnetic fields are parallel in the x3 direction,

E(x) = E(A4(x3), A3(x4))x̂3 , B(x) = B(A1(x2), A2(x1))x̂3 . (3.41)

First, it proves convenient to introduce a Euclidean metric here as we employ the
worldline instanton method, Eq. (3.38), which would require complex solutions in a
Minkowski metric, unnecessarily complicating matters. See Sec. (1.4) for notations.
The Euclidean worldline e�ective action is given in Eq. (3.36). Let us also note
that upon performing a Wick rotation the imaginary part of the e�ective action in
Minkowski spacetime is given in Euclidean spacetime as

Ê = 2Im(�Minkowski|n=1) = ≠2Re(�Euclidean|n=1) , (3.42)

and here we make explicit the approximation of a single pair of particles produced
from the vacuum with n = 1; see also Eq. (2.17). In the Euclidean convention no
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i‘ factor is present and rather the quadratic mass term ensures convergence. Also,
to avoid confusion with the Minkowski expression listed later, we use T for the
proper time parameter in Euclidean spacetime. The e�ective action in contrast to
the propagators always has periodic boundary conditions over paths in coordinate
space, xµ(0) = xµ(T ).

Under the condition of parallel field types given in Eq. (3.41) one can find that
similar to the case of homogeneous fields, Eq. (4.24), the spin factor, Eq. (3.37),
diagonalizes and the path ordering is subsequently removed. Moreover, we can find
that the kernel can be factored into electric and magnetic parts:

�[A] = ≠2
⁄ Œ

0

dT

T
e

≠m
2
T
KBKE, (3.43)

KB(T ; A1, A2) :=
j

Dx1Dx2 cosh
A

e

⁄

T

0
d·B(x)

B

◊ exp
I

≠

⁄

T

0
d·

C

1
4

33

dx1
d·

42
+

3

dx2
d·

424

+ ieA1
dx1
d·

+ ieA2
dx2
d·

DJ

, (3.44)

KE(T ; A3, A4) :=
j

Dx3Dx4 cos
A

e

⁄

T

0
d·E(x)

B

◊ exp
I

≠

⁄

T

0
d·

C

1
4

33

dx3
d·

42
+

3

dx4
d·

424

+ ieA3
dx3
d·

+ ieA4
dx4
d·

DJ

. (3.45)

Let us point out that although both kernels factor they are connected through
the proper time, T , integral. It is also convenient to make use of the functional
representation, where here too the worldline Hamiltonian may be separated into
electric and magnetic parts. The functional representation reads

KB = Tr exp
;5

≠(ˆ1 + ieA1)2
≠ (ˆ2 + ieA2)2

6

T

<

cosh
1

eB(x)T
2

, (3.46)

KE = Tr exp
;5

≠(ˆ3 + ieA3)2
≠ (ˆ4 + ieA4)2

6

T

<

cos
1

eE(x)T
2

. (3.47)

Furthermore, the separation in the kernel is also convenient in the sense that
Schwinger pair production is solely associated with the electric field, and hence
the imaginary pieces found in the proper time integral can be found by restricting
our attention to the electric field contour, Eq. (3.45). This important step permits
steepest descents (the worldline instanton approximation Refs. [103, 104]) in the
worldline integral for parts associated with the electric field. As expected since
there are no imaginary pieces in the e�ective action associated with homogeneous
magnetic fields, there too are no instantons in the path integral formalism [106].

As a first step of the calculational techniques, we first examine homogeneous
fields, then having benchmarked the technique we move onto inhomogeneous fields.

For the case of homogeneous fields the magnetic kernel, Eq. (3.44), can be easily
solved using either its path integral form or functional form. Specifically the gauge
we use is A1 = ≠(B/2)x2 and A2 = (B/2)x1. The steps are similar to those
performed in Sec. 4.2. If one were to apply functional methods, Eq. (3.46) may
be readily solved by simply summing over the eigenvalues of the Dirac equation in
a magnetic field in a reduced dimension system–essentially just the Landau levels.
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Ultimately we find the exact result, using path integral techniques, of

KB = eB

4fi
coth(eBT ) . (3.48)

For a homogeneous electric field, one may find an analogous, albeit complex, solu-
tion using similar techniques. However, we perform the worldline instanton approx-
imation which requires more steps but allows calculation of more complicated field
types.

We begin with the worldline instanton method by first performing the Laplace
method in proper time, T . This first step is not mandatory [107], and one may
first take steepest descents in coordinate space associated with the electric field,
however doing so simplifies matters and makes more explicit the physical picture
of the instantons. Before performing the Laplace method let us take · æ Tu in
Eq. (3.43), rescaling the kernels. We also use the notation ẋµ = dxµ/du. We find
the electric field kernel, Eq. (3.45), becomes

KE =
j

Dx3Dx4 exp
I

≠

⁄ 1

0
du

3 1
4T

ẋ
2 + ieA3ẋ3 + ieA4ẋ4

4

J

cos
3

eT

⁄ 1

0
duE

4

.

(3.49)
We may go ahead and take the Laplace method in proper time above. T then is
minimized as a function of the mass, m, and the coordinates, ẋ3 and ẋ4: T

ú =
Ò

s

du
1

4m2 (ẋ2
3 + ẋ

2
4). Note here that the electric field contributions arising from the

spin factor will not contribute to minimum as they are purely imaginary. Also,
the magnetic field contributions to the stationary point are assumed to be small.
Therefore, stationary points, T

ú in proper time are the same for the fermionic as
well as bosonic cases. The total e�ective action, Eq. (3.43), becomes–here we still
have not introduced the homogeneous electric field5:

Re� ƒ
≠2
m

j

Dx3Dx4

Ú

fi

T ú cos
3

eT
ú

⁄ 1

0
duE

4

e
≠SwKB(T ú) , (3.50)

Sw = m

Û

⁄ 1

0
du(ẋ2

3 + ẋ
2
4) +

⁄ 1

0
du(ieA3ẋ3 + ieA4ẋ4) . (3.51)

Sw is a dimensionally reduced worldline action, c.f., Eq. (4.28). Performing steepest
descents in x3 and x4 coordinate space will yield a reduced dimension Lorentz force
equation in Euclidean spacetime,

m
ẍi

Ò

s

ẋ
2
3 + ẋ

2
4

= ie(ˆiAj ≠ ˆjAi)ẋj (3.52)

for i, j = 3, 4. c.f., Eq. (3.38) for the 4+1 dimensional case. Periodic solutions to
Eq. (3.52) are worldline instantons [103, 104]. For the case of homogeneous fields
the worldline instantons read

x3(u) = m

eE
cos (2finu), x4(u) = m

eE
sin (2finu) , (3.53)

5While homogeneous fields have been provided for homogeneous fields, Eq. (3.48), we may
evaluate the kernel before taking the Laplace approximation in proper time for any give magnetic
field so long as the stationary points are not appreciably changed.
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whose paths trace out circles in x3 and x4; see Fig. 3.3 in the background. n is the
worldline instanton number and coincides with the pole number in proper time of
the in-out propagator. Worldline instantons in homogeneous electric fields are the
simplest solution depicting the Schwinger mechanism tunneling behavior. At some
given point in spacetime–owing to the isotropy of homogeneous fields any point will
do–a particle anti-particle pair are produced. The particle going forward in time
and the anti-particle backwards in time, which is depicted in the wordline instanton
trajectory upon switching to Minkowski spacetime, and also letting u æ iu. This
is reflected in periodic paths in a Euclidean metric. Similarly we also found for
the in-in propagator a dependence on imaginary time for the pieces associated with
pair production even though we were in Minkowski spacetime; thus imaginary time
solutions or tunneling are essential features of the Schwinger mechanism.

Using the worldline instanton solutions, Eq. (3.53), in homogeneous fields one
may evaluate the e�ective action, Eq. (3.50), exactly. As was illustrated before in
Sec. 4.2, since the path integral is quadratic steepest descents is exact. Here calcula-
tions are also similar to those carried out in Sec. 4.2, and if we include contributions
from a fluctuation prefactor, c.f., Eq. (4.28), then we can find to lowest order in
Schwinger pair production, n = 1, Schwinger’s formula for the probability for a sin-
gle particle anti-particle pair to be produced or Eq. (2.23). Since it was confirmed
that the separation of kernels into electric and magnetic field parts was valid for
homogenous fields, let us move onto the inhomogeneous case. Here, we first explore
spatially inhomogeneous magnetic fields both for the pulsed case in space and some
novel setups.

3.3.2 Spatially Inhomogeneous Magnetic Field
An important background magnetic field that approximates well realistic setups is
one with a spatial inhomogeneity. It has been argued in o� central heavy-ion colli-
sions at the LHC and RHIC the magnetic field may be highly spatially inhomoge-
neous [74]. Also, we find for specific inhomogeneous background magnetic fields the
threshold for Schwinger pair production may be lessened [105], which is interesting
since for perpendicular magnetic field types the threshold decreases.

Fortunately the Dirac equation is exactly solvable for a Sauter-type magnetic
field peaked in space. Specifically we analyze

B(x) = B sech2(Ÿx1)x̂3 . (3.54)

Refs. [108, 109] have solved the above in both 3+1 and 4+1 dimensions exactly. We
employ similar methods, however, making use of a worldline formalism as outlined
above. An important limit is for a small inhomogeneity, Ÿ æ 0, which becomes a
constant magnetic field. It is convenient to express the magnetic kernel, Eq. (3.46),
in functional form to the following:

KB =
ÿ

±

1
2 Tr exp(≠H

±
B

T ) , (3.55)

H
±
B

:= ≠ˆ
2
1 ≠

5

ˆ2 + ieB

Ÿ
tanh(Ÿx1)

62
± eB sech2(Ÿx1) , (3.56)
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where we have introduced two e�ective Hamiltonians. The appeal of doing so is ap-
parent in that we have reduced the problem to a set of one-dimensional Schrödinger-
like equations. No approximation is required to split up the Hamiltonian. However,
we are restricted to only parallel inhomogeneous electric and magnetic fields. An-
other drawback is that the background field, aside from homogeneous fields and
other exclusions, can only satisfy the inhomogeneous Maxwell equations. And the
solutions of which are simply hypergeometric equations. From which one may apply
the method of resolvents [108, 109] to determine the eigenspectrum. The eigenvalues
of the e�ective Hamiltonians, Eq. (3.56), are

⁄
±
n

= p
2
2

C

1 ≠
(eB)2

(Ÿ2ñ ≠ |Ÿ2/2 ± eB|)2

D

û eB ≠
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(Ÿñ)2
≠ 2ñ

-

-

-

-

Ÿ
2

2 ± eB

-

-

-

-

+ Ÿ
2

4

B

,

n œ

C

0,

-

-

-

-

1
2 ±

eB

Ÿ2

-

-

-

-

≠
1
2 ≠

Û

p2eB

Ÿ3

B

; (3.57)

ñ = n + 1/2. In contrast to the constant magnetic field case, the eigenspectrum
is finite and moreover has a transverse momentum dependence. One can verify
that the eigenspectrum once summed over as a trace of eigenvalues in the kernel,
Eq. (3.46), in the small inhomogeneity limit, Ÿ æ 0, one can correctly reproduce
the constant field case given in Eq. (3.48).

We next proceed by looking for the dominant contributions to the magnetic
kernel and these are provided by the lowest eigenvalues, the ground state eigenvalue
and the lowest excited states. It can be verified that as in the constant field case
the lowest eigenvalue is zero–the lowest Landau level. What is fascinating and
non-trivial here is the contributions to the eigenspectum given by the transverse
momentum, p2, for higher excited states. These contributions we will show in fact
lower the Schwinger pair production threshold moreso than does constant fields.
Again, however, the exponential suppression given by the electric field provides the
dominant contribution to pair production. Let us begin elaborating on this reduction
by first writing the magnetic kernel as a sum over eigenvalues, specifically we use
Eq. (3.57), summing over both sets of eigenvalues:

KB =
⁄ Œ

≠Œ

dp2
2fi

ÿ

n

e
≠⁄nT

. (3.58)

We restrict our attention to weakly varying inhomogeneous fields such that 2eB >

Ÿ
2. Then we can find for large enough transverse momentum in Eq. (3.58) the bound

state will disappear. Thus we introduce a transverse momentum cuto� at ±p
max

2 .
After taking the transverse momentum integral we find dominant contributions to
the magnetic kernel occur at p

max

2 and these are at the eigenvalues, Eq. (3.57),
evaluated at p

max

2 , which reduce to

⁄
+
n

= 4n
2
Ÿ

2
≠

4n
3
Ÿ

4

eB
+

3

n
2
Ÿ

3

eB

42
, (3.59)

⁄
≠
n

= 4(n + 1)2
Ÿ

2
≠

4(n + 1)3
Ÿ

4

eB
+

3(n + 1)2
Ÿ

3

eB

42
. (3.60)

The eigenspectrum is dipicted in Fig. 3.4 for the first five eigenvalues or Landau
levels. And for the case of a small inhomogeneity parameter in contrast to the
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Figure 3.4: Graph of first five eigenvalues (Landau levels) for both the homogeneous
case, blue dots, and the inhomogeneous case, red dots. For both cases, a strength
of B = 10m

2 is used, and for the inhomogeneous case, Ÿ
2 = 0.2m

2. Eigenvalues
too are given in units of dimension mass squared. Lower (upper) values denote spin
alignment (anti-alignment) with the magnetic field, with the inhomogeneous case
lower (upper) values are given in Eq. (3.60) ((3.59)). Notice the collapse of the
excited Landau level for even a small inhomogeneity.

magnetic field strength, B ∫ Ÿ
2, we find the spectrum is shifted as

m
2

æ m
2 + 4n

2
Ÿ

2
. (3.61)

Therefore, we find that the excited Landau level states, that remain, are significantly
lowered for even a small inhomogeneity. This e�ect is thought important in the ob-
servability of the Schwinger mechanism in that both the probability for Schwinger
pair production is increased, and because inhomogeneous magnetic fields are more
applicable to realistic settings. Let us point out that, similar to the homogeneous
case, no spatially inhomogeneous magnetic field can produce Schwinger pair pro-
duction in isolation–an electric field is required. Also, the only field type discussed
here is a magnetic field parallel to the electric field.

Considering the above shift in mass, Eq. (3.61), it is a curious question to ask if
one could engineer the magnetic field profile so as to find a negative shift. Indeed we
can find such profiles. At a cursory level, let us consider the analytic continuation in
inhomogeneity such that Ÿ æ iŸ, then the above could read m

2
æ m

2
≠4n

2
Ÿ

2. Such
a magnetic field profile would resemble a Sauter-potential but inverted, specifically

B(x1) = B sec2(Ÿx1)x̂3 , (3.62)

A2(x1) = B

Ÿ
tan(Ÿx1) . (3.63)

Let us analyze the small transverse momentum case, p2 æ 0, then the magnetic
Hamiltonian becomes approximately

H
±
B

= ≠ˆ
2
1 +

3

B

Ÿ

425

sec2(Ÿx1) ≠ 1
6

± B sec2(Ÿx1) . (3.64)
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Then we look at the specific case in which B = Ÿ
2, for a strong inhomogeneity. Then

we find for the spin aligned case

H
≠
B

= ≠ˆ
2
1 ≠ Ÿ

2
, (3.65)

which clearly has a negative eigenvalues at

⁄ = ≠Ÿ
2

. (3.66)

Motivated by such an inverted field, let us analyze another concrete example
displaying a similar structure and which also possesses a negative eigenvalue. It
is one reminiscent of a Coulomb potential in one dimension. Specifically we use a
Coulomb-like magnetic field well:

B(x1) = B

Ÿ2x2
1
x̂3 , (3.67)

A2(x1) = ≠
B

Ÿ2x1
. (3.68)

This resembles a Coulomb potential found in hydrogen; however, Ÿ in our context
serves to ensure proper dimensions in the potential. With a decreasing Ÿ one would
see a contracted well in one dimension. And as expected for the case of a Coulomb
potential in hydrogen, there are indeed bound states, negative eigenvalues, for the
magnetic well case. We have for the magnetic Hamiltonian, which can be likened to
a one-dimensional Schrödinger equation,

H
±
B

= ≠ˆ
2
1 + p

2
2 ≠

2p2b

x1
+ b

2

x
2
1

±
b

x
2
1

. (3.69)

Here b := eB/Ÿ
2 is used in analogy to a Coulomb potential in hydrogen and in

fact takes on quantized values for bound states. Specifically in analogy with orbital
angular quantum number for our magnetic well case we find bound states for b(b±1)
with b Ø 2 œ Z

+. Bound eigenvalues of Eq. (3.69) for the “+” Hamiltonian can be
readily found as

⁄n = ≠

53

b

n

42
≠ 1

6

p
2
2 . (3.70)

We find here, as well as was found for the Sauter-like magnetic field case, a large
transverse momentum negates the bound state. As before we therefore introduce a
cuto�. Going through similar procedures as done for the Sauter-like magnetic field
above, we find for the maximum transverse momentum p

max

2 ≥ eB/Ÿ. And we find
for the bound states at maximum transverse momenta the following eigenvalues

⁄n = ≠

53

b

n

42
≠ 1

63

eB

Ÿ

42
. (3.71)

Once again we see the appearance of negative eigenvalues or bound states for the
magnetic portion of our kernel.

Having discovered several examples of spatially inhomogeneous magnetic fields
which may reduce the threshold for pair production assuming a parallel electric field,
let us turn our attention to the electric field itself. We confine our attention here,
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however, to the known case of the “dynamically assisted Schwinger mechanism [49]”
profiles.

3.3.3 Temporally Inhomogeneous Electric Field
Before, when dealing with the magnetic kernel we largely used the functional form
as a trace over the magnetic Hamiltonian’s eigenvalues. However, in fact the merit
of introducing a path integral notation for the kernel, Eq. (3.45), is that one may
apply the worldline instanton technique to analyze field configurations which would
otherwise be unsolvable. This is readily apparent with the “dynamically assisted
Schwinger mechanism [49].” The specific form of the gauge field was introduced in
Sec. 2.2.4 as Eq. (2.20), and is repeated here for convenience: A3(x4) = ≠iEx4 ≠

iÁ tan(wx4), where we have E, w ∫ Á. The field configuration is one of a strong but
slowly varying pulse combined with a weak but fast one.

Then as anticipated earlier with the homogeneous field case, while both kernels
are factorizable they are still connected through the proper time integral. More-
over, in the execution of the worldline instanton method, the magnetic field only
contributes as an e�ective mass shift,

m
2

æ Êm
2 = m

2 + ⁄n , (3.72)

where ⁄n is given from the magnetic kernel listed in the previous section. The
worldline instanton technique is reliant on a weak electric field or large mass ap-
proximation [104] therefore we assume that with a magnetic eigenvalue (especially
one that is negative) that m

2 + ⁄n ∫ 0. All eigenvalues of the magnetic kernel are
then summed over as in Eq. (3.58).

Let us examine the dynamical mechanism profile with the worldline instanton
equation, Eq. (3.52). Let us first note that ẋ

2
3 + ẋ

2
4 = C for some constant C that is

quantized in periodicity of instanton solutions. Then inserting the profile, Eq. (2.20),
into Eq. (3.52) we find the following di�erential equation:

ẋ
2
4 = C

2
C

1 ≠

3

eÁ

Êmw

423

Ewx4
Á

+ tan(wx4)
42D

. (3.73)

We can find approximated periodic solutions to the above di�erential equa-
tion; these are solutions that are bound by the poles in the weak fast Sauter field,
tan(wx4). See Fig. 3.5. We can reflect the instanton path in the worldline action,
Eq.(3.51), through an augmentation of the proper time parameter as

Sw ƒ
4Êm

C

⁄

uú

0
duẋ

2
4 , (3.74)

where uú is the turning point, the wall, of the instanton and it is given as

uú = 1
2fin

arcsin
A

fi

2“

B

, (3.75)

“ =
Êmw

eE
. (3.76)
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Figure 3.5: Dynamically assisting electric field mechanism. An e�ective potential is
set up by the gauge fields. The green line represents the weak fast field contribution
to the e�ective potential, and the blue line represents both the weak fast and strong
slow fields’ contributions to the e�ective potential. The fast weak field sets up
walls at ± tan(Êx4) by which the instanton solutions are bounded in between for
periodic solutions. The path in between the weak fast field follows along that of a
homogeneous electric field.

Here “ is an adiabaticity parameter, inspired by Keldysh [75]. The worldline action
becomes

S(Ÿ, w) ƒ
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_
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fi
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fi
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for “ Ø
fi

2 .
(3.77)

One can see that for a large adiabaticity parameter the threshold for Schwinger pair
production is drastically reduced; see Ref. [49] for more details.

Then approximating the spin factor of the magnetic kernel and the fluctuation
prefactor with that of a homogeneous field we find the following final form for the
non-persistence of the vacuum:

Ê(Ÿ, w) = e
2
EB

(2fi)2
ÿ

⁄n

exp(≠S(Ÿ, w)) . (3.78)

c.f. Eq. (2.23); there we use w to represent the non-persistence in homogeneous
fields. In this way, we have shown that we can implement chirality generation under
more complex fields to further improve the Schwinger mechanism as well as chirality
generation.

3.3.4 Enhancement Comparison
Enhancements to Schwinger pair production for the case of a spatially inhomoge-
neous Sauter-like magnetic pulse are small. This enhancement is, as was shown in
Eq. (3.61), the result of augmentation to the higher excited Landau levels. However,
motivated by the profile of an inverted field, we found cases that possessed a bound
state, Eqs. (3.66) and (3.71). The enhancement provided by such cases is signifi-
cantly greater and we illustrate here the enhancement due to both the dynamically
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assisted Schwinger mechanism characterized by w and the spatial inhomogeneity, Ÿ.
For the case of a bound state, we illustrate the mass shift found in Eq. (3.66). Let
us examine two background field strength cases thought relevant for high energy
collisions and high powered lasers and semimetals. The former is predicted to easily
furnish Schwinger pair production and has strengths E = B = m

2, whereas for the
latter only weak fields are obtainable and we use E = B = 10≠2

m
2. We plot both

cases as a function of Ÿ and w in Fig. 3.6 for strong fields and Fig. 3.7 for weak
fields. Ê is the probability of pair production per unit time and volume. It can be
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Figure 3.6: Comparative plot of Schwinger mechanism enhancement from both a
spatially inhomogeneous magnetic field, characterized with inhomogeneity Ÿ, and
a temporally inhomogeneous electric field, w. Here the case of strong fields, B =
E = m

2, is given, which are thought relevant in nucleus-nucleus collisions. The
enhancement attributed to Ÿ does not saturate for strong fields, and thus it is a
robust feature in heavy ion collisions.
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Figure 3.7: Here the case of weak fields, B = E = 10≠2
m

2, is given, which are
thought relevant in high powered lasers as well as semimetal applications. For large
w, it can be seen the enhancement from the dynamical electric field is dominant,
and it is therefore of greater applicability in high powered lasers.

seen that the enhancement coming from Ÿ does not saturate at high field strengths
as does w. Thus we consider the spatial enhancement from magnetic fields to be a
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robust feature for strong fields. For weak fields however it can be seen the dynami-
cal mechanism is dominant for large w. We have established several inhomogeneous
profiles that may improve the probability to observe Schwinger pair production. Let
us now, using the heuristic picture highlighted earlier, explore some environments
that may be applicable; these are in heavy-ion collisions and Dirac semimetals.

In the heuristic picture we discovered that the generated chirality was twice the
non-persistence probability, Eq. (2.24). Then for a large chirality changing scattering
time [5], t, we can find for the chiral charge density

n5 ƒ 2tÊ(Ÿ, w) . (3.79)

It helps to relate the above in terms of the chiral chemical potential, µ5, which
is a�ected by thermodynamic variables [4], so as to see the chiral magnetic e�ect.
It has been found [5] for chemical potential, µ, and temperature, T , the following
relationship exists for the chiral chemical potential

n5 ƒ
µ5
3

3

T
2 + µ

2

fi2

4

. (3.80)

This hold under the conditions |eB| < µ
2
5, µ5 π µ, T , and for large particle momen-

tum to the particle mass. Inverting the above for µ5 one can find the chiral chemical
potential. While the above is a valid description in either heavy-ion collisions or
semimetals we find how the chirality is generated di�ers.

For the heavy-ion collision case, the non-persistence probability is generated en-
tirely through the chromo-electromagnetic fields. Whereas the magnetic field in the
equation for the chiral magnetic e�ect, Eq. (2.4), is the out-of-plane electromagnetic
field generated in o�-central collisions. Schematically the process can be seen in
Fig. 3.8. Thus we can find for the case of a heavy-ion collider the following formula

Figure 3.8: How chirality, n5 and hence the chiral chemical potential µ5 in Eq. (3.80),
is generated in heavy ion colliders and in Dirac semimetals di�ers. For the former
case the chirality is generated solely through chromoelectromagnetic fields and the
magnetic field of the CME is perpendicular to the plane of interaction; there are
two fields. For the case of the Dirac semimetal only one field is present, the elec-
tromagnetic field. Both the chirality generation and the magnetic field of the CME
are driven by the same electromagnetic fields. Also for the semimetal case, the field
sourcing the anomaly and the CME are parallel.

for chirality generated by the Schwinger mechanism leading to the CME as

j
cme

ƒ
3te

2

2fi2 Ê(Ÿ, w)B(x)
3

T
2 + µ

2

fi2

4≠1
. (3.81)
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B is the out-of plane magnetic field given in (bold) cartesian coordinates.
For the case of a Dirac semimetal the major di�erence is given by the fact that

both the chirality and the CME are generated by the same background electromag-
netic field. See the schematic in Fig. 3.8. It can be seen for the construction of
parallel fields that both the electric and magnetic fields contribute to the anomaly,
and also the same magnetic field sources the CME. For the semimetal let us con-
sider a highly magnetoresistive layered orthorhombic crystal structure semimetal
such as ZrTe5 [110–112]. There instead of the mass of an electron we have an e�ec-
tive quasiparticle mass due to spin splitting driven by magnetic impurities [112], �.
And we also have for the Fermi velocity, vf . To contrast this with the speed of light
among other variables we use S.I. variables here. While most of our above analysis
remains valid in the semimetal environment we must change the worldline action in
homogeneous fields to S0 = fi

vf~eE

Ë

�2
≠ (2~vfŸ)2

È

, and therefore the action with the
dynamically assisted Schwinger mechanism reads
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(3.82)

with new adiabaticity parameter ’ = w

Ô
�2≠(2~vf Ÿ)2

evf E
. Finally with the above substi-

tutions the vacuum non-persistence and the CME current can be found as

Ê(Ÿ, w) = e
2
EB

(2fi~)2c
coth

3

fiB

cE

4

exp (≠S(Ÿ, w)) , (3.83)
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Here as expected we can clearly see the emergence of the characteristic quadratic
magnetic field [37, 113]. Like the case of the heavy-ion collision indeed the CME
current is enhanced for the same field configurations that also enhance the Schwinger
mechanism. Usage of the special inhomogeneous fields may o�er a method to observe
the CME with mass e�ects.

We have seen that the enhancement of the Schwinger mechanism elicits an en-
hancement to the produced chirality for parity violating fields using the heuristic
picture. However, we still must explain the heuristic production of chirality from a
more concrete theoretical standpoint. To do so, we find, one must make use of an
identification of vacuum states.
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Vacuum States and Observables

It was introduced in Sec. 2.4 the importance of vacuum states for expectation values.
Even the simplest of case such as homogeneous fields or a pulsed field the concept
of equivalent vacuum states at t æ ±Œ is invalid. We saw in Sec. 3.1 that an in-in
prescription is identifiable with an out-of-equilibrium Schwinger Keldysh contour.
And in Sec. 3.2 we showed the ease of worldline methods in handling the non-
perturbative phenomena such as the Schwinger mechanism. Here, let us join the two,
that is a non-equilibrium worldline prescription. However, to do so it is worthwhile
to first address the equilibrium in-out propagator in the worldline form. Before
doing so let us specifically characterize the definition of our Dirac operators in an
external field and contrast the operator’s in-in and in-out propagators.

Our in (out) states is defined at some time tin(tout), which we later take to
negative infinity (positive infinity), whereby we can expand the Dirac operators in
terms of creation and annihilation operators. Specifically

Â(x) =
ÿ

n

a
in

n
„

in

+n
(x) + b

in †
n

„
in

≠n
(x)

=
ÿ

n

a
out

n
„

out

+n
(x) + b

out †
n

„
out

≠n
(x) . (4.1)

Both representation are valid over all time. Eigenvectors of the Dirac equation are
denoted with positive energy solutions as „+n, with eigenvalue n, or negative energy
solutions as „≠n, also with eigenvalue n. Note here the eigenvalues may run over
momentum and thus the summation here implicitly includes the relevant integral.
an and bn respectively represent annihilation operators for a fermion (here in the in
basis) such that

a
in

n
|inÍ = b

in

n
|inÍ = Èin| a

in †
n

= Èin| b
in †
n

= 0 , (4.2)

with anti-commutation relations, {a
in

n
, a

in †
m

} = {b
in

n
, b

in †
m

} = ”nm which also hold for
the out representation.

All of our expectation values are assumed to be in the Heisenberg representation
and thus an implicit time ordering will be present1. Therefore, the qualitative
and quantitative di�erences between the in-in(out) expectation values can be best
captured through an in-depth look at their respective propagators, in fact their

1Alternatively in the path integral representations either for the in-out, Eq.(2.15), or Schwinger
Keldysh, Eq. (3.10), cases a time ordering too will be implicitly present in expectation values.
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causal propagators (here we make explicit the time ordering):

S
c(x, y) = iÈTÂ(x)Â̄(y)Í , (4.3)

S
c

in
(x, y) = iÈÈTÂ(x)Â̄(y)ÍÍ . (4.4)

Both satisfy the following di�erential equation

≠ (i /Dx ≠ m)S(x, y) = ”(x ≠ y) . (4.5)

Yet the properties and boundary conditions of both propagators di�er markedly.
The expectation values derived from the in-in propagator are Hermitian and real
and can be written as a sum over respective eigenvectors of the Dirac equation
whose solutions predict similar particle types. In contrast, expectation values de-
rived from the in-out propagator are not Hermitian and may contain imaginary
pieces. However, in contrast to the in-in propagator the in-out propagator permits
an expansion about the gauge one may characterize using functional methods; this
enables the worldline method directly, simplifying matters. Let us first examine
the in-out propagator. However, before doing so let us spell out our main results
concerning chirality generation via the Schwinger mechanism using both the in-out
and in-in formalisms. Doing so will give context to parts of the following technical
discussions in the coming pages.

4.1 Summary of Chirality Production Results
Using both the in-out, Eq. (4.3), and in-in, Eq. (4.4), propagators we can directly
calculate their corresponding expectation values. First let us begin with the in-out
values. After some steps outlined below we find for the pseudoscalar condensate,
axial Ward identity, and vector currents (associated with the CME) as

ÈÂ̄i“5ÂÍ = ≠ lim
yæx

tr[“5S
c(x, y)]

= ≠
e

2
EB

4fi2m
, (4.6)

ˆµÈÂ̄“
µ
“5ÂÍ = 0 , (4.7)

ÈÂ̄“
µ
ÂÍ = 0 . (4.8)

We find the pseudoscalar condensate contributions have exactly cancelled the
anomaly contributions in the axial Ward identity, and hence why the divergence of
the chiral current is zero. Likewise we have also discovered that the current has
vanished.

However, when we calculate the same observables but in the in-in representation
we find very di�erent values for the pseudoscalar condensate, axial Ward identity,
and vector currents:

ÈÈÂ̄i“5ÂÍÍ = ≠ lim
yæx

tr[“5S
c
in(x, y)]

= ≠
e

2
EB

4fi2m

5

1 ≠ e
≠fim

2
/(eE)

6

, (4.9)
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ˆµÈÈÂ̄“
µ
“5ÂÍÍ = e

2
EB

2fi2 e
≠fim

2
/(eE) (4.10)

ÈÈÂ̄“
µ
ÂÍÍ = e

2
EB t

2fi2 coth
1fiB

E

2

e
≠fim

2
/(eE)

”
µ

3 . (4.11)

The contributions to the Schwinger mechanism for the in-in case are manifest.
Moreover, we find agreement to the heuristically motivated picture introduced in
Sec. 2.3.1.

We may understand the contrast between both the in-out and in-in observables
from an in and out-of-equilibrium description. An in-out description is formally
equivalent, after taking a Wick rotation to Euclidean time, to a zero temperature
equilibrated system. On the other hand, as explained in Sec. 3.1, in-in observables
capture out-of-equilibrium phenomena. Therefore we can understand the anomaly
and CME as being inherently out-of-equilibrium. Or rather, they do not exist in
equilibrium. Likewise we can also see an exponential suppression of quadratic mass
in the in-in quantities indicative of the Schwinger mechanism. Therefore, we can
see how the axial Ward identity and the CME behave under a finite mass. We
elaborate in depth these points in the coming pages. Notably, after the in-out and
in-in formalism are established, at the end of this chapter in Sec. 4.4, we illustrate the
di�erences between both formalisms. Then in Secs. 5 and 6 the above summarized
anomaly and CME respectively are elaborated.

4.2 In-Out Propagator
Let us begin our discussion of vacuum state dependent propagators with the in-out
case. As outlined before this represents a matrix element with unique and di�erent
ground states at asymptotic times: t æ ≠Œ for the in state and t æ Œ for the out
state. The in-out propagator enjoys a simple transformation to Schwinger proper
time or the worldline. Let us first represent the propagator, Eq. (4.3), formally as:

S
c(x, y) = Èx|

≠1
i /̂D ≠ m

|yÍ

= (i /Dx + m) Èx|
1

/̂D2 + m2
|yÍ (4.12)

Brakets with positions denote space-time states. Information about the time order-
ing and direction of the in and out ground states are conveniently captured with an
implicit small imaginary portion in the mass term, m

2
æ m

2
≠ i‘. The small imag-

inary piece guarantees convergence in the infrared limit. Also notice in Eq. (4.12),
one may expand about the external gauge field to find the in-out propagator rep-
resents the sum over all external photon contributions as in Fig. 4.1; c.f., see the
expansion of e�ective action in Fig. 3.2.

Also let us contrast the above with the e�ective action, Eq. (3.31), presented in
Sec. 3.2. Similar to there, one may use a Laplace transform,

Ô
≠1 = i

⁄ Œ

0
ds exp(≠iÔs) , (4.13)
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Figure 4.1: Expansion of in-out propagator, S
c, about the gauge field, A. Propagator

is the sum over all external photon lines and is exact to one loop.

to make the transformation to Schwinger proper time. Then we can clearly see the
emergence of a quantum mechanical-like 4+1 dimensional system–space and time
give us 4 dimensions with proper time providing an additional dimension. Then the
in-out propagator (4.12) becomes

S
c(x, y) = (i /Dx + m)

⁄ Œ

0
ds g(x, y, s) , (4.14)

g(x, y, s) := iÈx|e
≠iĤs

|yÍ , (4.15)

Ĥ := /̂D
2 + m

2
. (4.16)

Here we have characterize a worldline kernel, Eq. (4.15), which satisfies a quantum
mechanical-like Schrödinger equation,

1 d

ds
≠ H

2

g(x, y, s) = 0 , (4.17)

with Hamiltonian, H. /̂D
2 = D̂

µ
D̂µ + 1

2F‡. This is the functional form first en-
visioned by Schwinger [15]. And, for certain applications calculations can be con-
siderably simplified as we will demonstrate. In passing let us mention that using
the small imaginary piece one can readily identify Eq. (4.12) as a solution to the
defining di�erential equation in Eq. (4.5).

Our next task is to cast the kernel, Eq. (4.15) into a path integral form. We stated
this result in the previous section; see Eq. (3.34) and arguments which follow, and as
advertised let us construct the path integral in detail. This process is accomplished
through identifying the worldline Lagrangian, L from the Hamiltonian, Eq. (4.16),
and using a Legendre transform [114]. Then we make use of Eq. (3.34). There,
we use x(· = 0) = y and x(· = s) = x as boundary conditions. The worldline
operators follow appropriate Heisenberg equation of motion in proper time,

dÔ

d·
= ≠i[Ô, Ĥ] , (4.18)

as well as a 4+1 dimensional extension of the canonical commutation relation,
[p̂µ, x̂‹ ] = igµ‹ . We find for the velocity

˙̂xµ := dx̂µ

d·
= ≠i[x̂µ, Ĥ] = 2(p̂µ ≠ Aµ(x̂)) . (4.19)
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Then using the above the corresponding Lagrangian can be found as

L̂ = p̂µ

ˆĤ

ˆp̂µ
≠ Ĥ (4.20)

= ≠
1
4

˙̂x2
≠ A(x̂) ˙̂x ≠

1
2F (x̂)‡ ≠ m

2
. (4.21)

Here and throughout “dots” represent derivatives with respect to · . Going from an
operator formalism to a classical variable for the path integral, we find the kernel,
Eq. (4.15), of the in-out propagator may be read as

g(x, y, s) = i

⁄

Dx P exp
;

i

⁄

s

0
d·

Ë

≠
1
4 ẋ

2
≠ Aẋ ≠

1
2F‡ ≠ m

2
È

<

. (4.22)

The Lorentz indices have been suppressed here and also hereafter where appropriate;
where confusion might be present, we make explicit the indices. Thus complete
the formulation of the worldline path integral. Eq. (4.22) and the in the in-out
propagator are valid for any QED background field. However, at this point let us
restrict our attention to parallel homogeneous fields.

The derivation of the fermion propagator in homogeneous fields using functional
means is well known [15, 114], but let us spell out the explicit steps, as for later
calculations we will need to make use of some details outlined here.

The homogeneous field we use are indicated in Eq. (2.22); they are parallel on
the x3 direction. Also the energy density of the configuration, i.e. Fµ‹F

µ‹ , need
not be zero; of course we have ‘µ‹–—F

µ‹
F

–—
”= 0. A significant simplification in

homogeneous fields involves the breakup of the integrand in the path integral into
a spin factor, (we saw before in Eq. (3.37)), and a bosonic path integral factor.

It is convenient to first address the spin factor in the path integral, Eq. (3.37),
contained in both the e�ective action and propagator. Under homogeneous fields the
argument simplifies and the path ordering disappears. Furthermore using a Weyl
representation for our gamma matrices the argument of the spin factor, F‡, takes
on a diagonal form and the spin factor, Eq. (3.37), becomes

� =

Q

c

c

c

a

e
≠e(E≠iB)s 0

e
e(E≠iB)s

e
e(E+iB)s

0 e
≠e(E+iB)s

R

d

d

d

b

(4.23)

It is also convenient to represent the above in terms of Dirac matrices:

� = [cos(eBs) + i sin(eBs)‡12] ◊ [cosh(sEs) + sinh(eEs)“5‡
12] , (4.24)

with ‡
12 = diag[1, ≠1, 1, ≠1]. The spin factor solely determines the gamma matrix

nature of expectation values, e.g. through only a cursory look at the spin factor one
can determine whether a pole in proper time is present–we will later demonstrate
poles we will be of order sinh≠1(eEs).

Equipped with the spin factor, which does not a�ect the path integration, we
turn our attention to the remaining bosonic portion of the path integral. The bosonic
portion reads

b(x, y, s) :=
⁄

Dx exp
Ó

i

⁄

s

0
d· [≠1

4 ẋ
2

≠ eAẋ]
Ô

, (4.25)
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Any background the fermionic worldline path integral, Eq. (4.22), may be split into
multiplicative bosonic and spin factors, yet a connection between the two is provided
through s and a sum over coordinate paths x. For the case of homogeneous field,
however, the two are only connected through s. Let us proceed with the evaluation of
the bosonic part through the worldline instanton method introduced in Eq. (3.38).
Here, however, our classical paths are quite generic with s dependence and the
imaginary part we will see stems from singularities in the proper time integral. We
solve the path integral by expanding around classical paths

xµ(·) = x
cl

µ
+ ÷µ(·); (4.26)

here ÷ represents fluctuations around the classical path which disappear at end
points, ÷(0) = ÷(s) = 0. Owing to the virtue of a quadratic in xµ Lagrangian higher
order functional expansions disappear and the treatment here is exact. Performing
steepest decents on Eq. (4.25), where the worldline action is Sb =

s

s

0 d· [≠1
4 ẋ

2
≠eAẋ]

of b = exp(iSb); we find

b(x, y, s) = e
iSb(xcl)

F , (4.27)

F :=
⁄

D÷ exp
Ó

i

⁄

s

0
d· [≠1

4 ÷̇
2 + 1

2÷
µ
eFµ‹ ÷̇

‹ ]
Ô

. (4.28)

With our Fock-Schwinger gauge choice, Aµ(x) = ≠
1
2Fµ‹x

‹ , we see the fluctuation
path integral is that of the original one but periodic about zero, simplifying matters.

Let us treat the classical part first. Considering the boundary conditions in
the prefactor fluctuation, the classical part must contain all endpoint, x and y,
information. Solutions of the classical equations of motion can be found simply by
treating the Lorentz force equation as a time-independent like Schödinger equation.
We find the Lorentz force equation with general solution as

ẍ
cl µ(·) = 2eF

µ

‹
ẋ

cl ‹(·) (4.29)

ẋ
cl µ(·) =

5

e
2eF ·

6

µ

‹

ẋ
cl ‹(0). (4.30)

Also making note of the boundary conditions,
s

s

0 d· ẋ
cl µ(·) = z

µ, and inserting
Eq. (4.30) we can find that (e2F s

≠ 1)µ

⁄
ẋ

cl ⁄(0) = 2F
µ

⁄
z

⁄. After some manipulations
we can arrive at the following form for the classical action

Ï := Sb(xcl) = 1
2xµeF

µ

‹
y

‹
≠

1
4zµ[coth(eFs)]µ

‹
eF

‹

⁄
z

⁄
. (4.31)

The above classical action is gauge dependent in the Fock gauge. The important
thing to bare in mind is that the action goes to zero as x æ y. It is also convenient
to expand the Lorentz contracted terms here as well. We find for the classical action
also, after summing over indices in the cotangent function

Ï(x, y, s) = 1
2xµeF

µ

‹
y

‹ + 1
4

Ë

(z2
3 ≠ z

2
0)eE coth(eEs) + (z2

1 + z
2
2)eB cot(eBs)

È

. (4.32)
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The remaining part of the path integral, the fluctuation prefactor, Eq. (4.28),
can be found directly through an expansion about Fourier modes:

÷µ(·) = aµ0 +
Œ

ÿ

n=1

5

aµ n cos
32fin·

s

4

+ bµ n sin
32fin·

s

46

. (4.33)

The factors in the integrand and measure, with measure constant N , in the path
integral become

⁄

s

0
d· ÷̇

2 = s

2

Œ
ÿ

n=1

32fin

s

42
(aµna

µ

n
+ bµnb

µ

n
) , (4.34)

⁄

s

0
d· ÷

µ
eFµ‹ ÷̇

‹ = s

2

Œ
ÿ

n=1

32fin

s

4

(aµ

n
eFµ‹b

‹

n
≠ b

µ

n
eFµ‹a

‹

n
) , (4.35)

⁄

D÷ = N

Œ
Ÿ

n=1
dandbn . (4.36)

We may evaluate the determinant with the help of the normalization of the path
integral in the absence of external fields, D÷ e

i

s s

0 d· [≠ 1
4 ÷̇

2] = ≠i/(4fis)2
, also Fourier

expanded. After some steps we find the fluctuation prefactor becomes

F = ≠i
e

2
EB

(4fi)2 sin≠1(eBs) sinh≠1(sEs) . (4.37)

The kernel, Eq. (4.15), finally reads

g(x, y, s) = e
2
EB

(4fi)2 exp(≠im
2
s + iÏ(x, y, s)) sin≠1(eBs) sinh≠1(eEs)� . (4.38)

The kernel and expectation values derived from it are exact to one loop. The kernel
also contains all the information of Schwinger pair production through its essential
singularity in Ï and isolated singularity in sinh≠1(eEs). All the Landau levels are
contained in the various cot(eBs) functions. Also, let us note, after taking the
covariant derivative the in-out propagator, in homogeneous parallel fields, is found
to be translational invariant with the exception of the gauge dependent Wilson line
factor. Equipped with the in-out propagator, let us move onto the in-in propagator.

4.3 In-In Propagator
The worldline methods depicted for in-out states above have been widely used to
study the Schwinger mechanism, and it would be highly advantageous to extend the
worldline formalism to in-in states. Fortunately for the case of parallel homogeneous
fields this has been accomplished by Fradkin et. al. in Ref. [89], whose construction
di�ers from Eq. (4.12) only through an augmentation of the proper time integral.
Before illustrating calculational steps let us first motivate a physical manifestation
of the in-in propagator provided through a canonical operator formalism stemming
from a Schwinger Keldysh contour. Such a treatment can also provide physical
information of the vacuum non-persistence, Eq. (2.14).
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4.3.1 Matrix Element Expansion
Let us begin our discussion of the in-in propagator through an examination of its
form in a canonical operator approach, introduced in Eqs. (4.1). Doing so makes
clear the physical ramifications of the in-in propagator versus the in-out one. We take
as our starting point the Schwinger Keldysh generating functional defined without
sources. The generating functional, Eq. (3.9), is formally derivable beginning with
an in-in construction [95]. And in this sense, we may formally evaluate the SK path
integral to find the generating functional as

Z÷=0 =
ÿ

–

| È–, out|inÍ |
2 = 1 . (4.39)

– runs over all possible eigenstates of the given background. It can be found that the
only non-vanishing contribution are matrix elements where any number of particle
antiparticle pairs are produced from the vacuum [89]:

Z÷=0 =
Œ

ÿ

N=0

1
N !2

ÿ

m1...mN
n1...nN

|Èa
out

mN
... a

out

m1 b
out

nN
... b

out

n1 Í|
2

. (4.40)

Here, again we use the following notation: ÈOÍ := Èout|O(t)|inÍ/cv. Rearranging the
above by moving the N = 0 contribution to the left we can see how the in-in gen-
erating functional contains information of the vacuum non-persistence, Eq. (2.14),

1 ≠ |cv|
2 =

ÿ

n1,m1

Èb
† out

n1 a
† out

m1 Í
ú
Èa

out

m1 b
out

n1 Í|cv|
2 + 1

2!2 |
ÿ

m1,m2
n1,n2

Èa
out

m2 a
out

m1 b
out

n2 b
out

n1 Í|
2
|cv|

2 + ... ,

(4.41)
where we have made use of the notation for anti-time ordered correlation function
via

ÈOÍ
ú := Èin| O |outÍ /c

ú
v

, (4.42)

The vacuum non-persistence is measuring the probability for any number of pairs
of particles to be produced from the vacuum. Matrix elements here obey the usual
Wick contractions; see Ref. [89] for details. Let us take the Wick contraction of
Èb

† out

n1 ... b
† out

nN
a

† out

m1 ... a
† out

mN
Í. Notice that due to the symmetry of the Hermitian con-

jugate no matter which permutation contraction of b
† out

n
and a

† out

m
we get we may

always rearrange the associated operator on the un-contracted side to find

1
|cv|2

= Èexp
Ë

ÿ

n,m

a
out

n
b

out

m
Èb

† out

m
a

† out

n
Í

ú
È

Í , (4.43)

Into any of these generating functionals we may insert operators to construct in-in
expectation values. We will do so with the in-in time ordered propagator. First,
however, let us look at the first term in the expanded exponential above; one can see
this quantity shares a close connection to the vacuum non-persistence, Eq. (2.14).
In fact, they are identical to O(n = 1) in the non-perturbative expansion of pair
production, exp(≠finm

2

eE
). The quantity is the probability for a single particle anti-

particle pair to be spawned from the vacuum. Using the definitions for the canonical
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operators, Eq. (4.1), and the in-out propagator, Eq. (4.12) we can find

ÿ

n,m

Èa
out

n
b

out

m
ÍÈb

† out

m
a

† out

n
Í

ú = e
2
EB V t

4fi2

Œ
ÿ

n=1
coth

1nfiB

E

2

exp
1

≠
nfim

2

eE

2

. (4.44)

Notice here the probability for a single pair of particles includes contributions from
all n poles. What we can gather from this is that the pole number n does not
correspond to the particle number. Casting the above in a worldline formalism and
completing the sum over n we can identify what the sum over all n is associated
with.

ÿ

n,m

Èa
out

n
b

out

m
ÍÈb

† out

m
a

† out

n
Í

ú
Ã tr Èx|

1
1 ≠ e

Ĥ
fi

eE

|xÍ . (4.45)

Here we see the sum over n in the proper time, s, corresponds to a Boson-like
distribution in proper time with Hamiltonian Ĥ, Eq. (4.16), with fi/(eE) depicting
a temperature in proper time. That a Boson-like distribution is present as opposed to
a Fermi-Dirac distribution is because the Schwinger mechanism process is insensitive
to spin dynamics. Indeed, one can find a similar expression as above for Bosons.

Equipped with the above let us reexamine the in-in propagator. This is in
operator notation, utilizing both in and out representations, (but we may use any
representation we like),

S
c
in(x, y) = i

ÿ

n

ÈÈT [aout

n
„

out

+n
(x) + b

out †
n

„
out

≠n
(x)]Â̄in(y)ÍÍ . (4.46)

We insert in a complete set of states finding again that only Bogoliubov coe�cients
predictive of pair production contribute to the final expression. We can see this
more clearly, using Eq. (4.43), expressing the above as

S
c
in(x, y) = i|cv|

2
Èexp

Ë

ÿ

n,m

a
out

n
b

out

m
Èb

† out

m
a

† out

n
Í

ú
È

TÂ(x)Â̄(y)Í . (4.47)

We can see that the first term in an expansion of the exponential resembles S
c,

however there is the |cv|
2 term which we can show disappears after taking the con-

traction of each term in the series. To illustrate this fact let us examine one specific
contraction:

ÈÈa
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n
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in †
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ÍÍ = |cv|
2
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Ë
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Í . (4.48)

Proceeding with the Wick contraction, let us show how the infinite sum simplifies
through a recursive analysis. Let us consider an element with N pairs of particles
and then apply Wick’s theorem. We sum over every possible permutation, where
we denote here Ê

out

n
= b

out

m
Èb

† out

m
a

† out
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Í
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Í
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+ N(N ≠ 1) È a
out

m3 Ê
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m3 ...a
out

mN
Ê
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mN
a
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m1 Ê
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m1 a
out

m2 Ê
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m2 a
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n
a

in †
m

Í + ...

<

. (4.49)

Here boxed elements represent every possible contraction of contained operators. Let
us imagine the set which includes a contraction of just a

out

n
a

in †
m

, in first expression of
Eq. (4.49) along with everything else, then imagine the next set of contractions which
include one pair of a

out

m1 Ê
out

m1 for each N pairs, the second expression in Eq. (4.49).
Continuing the set which includes two pairs, the final expression in Eq. (4.49), we
see a pattern emerge. Disconnected pieces would be contained in the previous sets,
and all possible fully connected permutations are accounted for in the truncated N !
term. Making use of Eq. (4.43) we find Eq. (4.49) becomes a geometric series
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out

m1 a
in †
m

Í + ... . (4.50)

Finally, we can see that the |cv|
2 term has been absorbed through the contraction

process. Furthermore, we can see from inference that the in-in propagator is then
a series of matrix elements of pairs of particles in the out state. The first of which
is the in-out propagator and physically describes a scenario with no particles in the
out state.

4.3.2 Dirac Eigendecomposition
While the above treatment was physically illuminating actual calculations are chal-
lenging owing to the infinite products over matrix elements of pairs from the out
state. However, a major simplification is achievable if we represent the out state in
the in-out propagator in terms of its transformed in state representation. We again
make use of the canonical operator approach used above. Using Eq. (4.1) but in the
in state representation, we find for the in-out propagator

S
c(x, y) = i

Œ
ÿ

N=0

1
N !2

ÿ

m1...mN
n1...nN

Èb
in †
n1 ...b

in †
nN

a
in †
m1 ...a

in †
mN

ÍÈÈa
in

mN
...a

in

m1b
in

nN
...b

in

n1TÂ(x)Â̄(y)ÍÍ .

(4.51)
Let us consider here Â(x) and Â̄(y) both in the in representation. Then using
the anticommutative properties of the creation and annihilation operators one can
confirm that only the N = 0, 1 states remain after expressing the above in its normal
ordering. We find for the in-out propagator

S
c(x, y) = S

c
in(x, y) + i

ÿ

n,m

Èb
in †
n

a
in †
m

ÍÈÈa
in

m
b

in

n
TÂ

in(x)Â̄in(y)ÍÍ . (4.52)

Let us express the Dirac operator in terms of eigenvectors of the Dirac equation,
then the above can be written as

S
c(x, y) = S

c
in(x, y) + i

ÿ

n,m

Èb
in †
n

a
in †
m

Í

5

◊(z0)„in

≠n
(x)„̄in

+m
(y) + ◊(≠z0)„̄in

+m
(y)„in

≠n
(x)

6

= S
c
in(x, y) + S

a(x, y) (4.53)
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S
a(x, y) :=

ÿ

n,m

„
in

≠n
(x)Èbin †

n
a

in †
m

Í„̄
in

+m
(y) . (4.54)

The calculation of S
a is not central to discussions presented later; the final form

of the expression can be found below in Eq. (4.76).
Let us evaluate the above addition to the propagator, S

a, through an eigende-
compostion of the Dirac equation. This was first performed in Ref. [89], and we
review essential points of their calculation here. We verified above that to construct
an in-in propagator one should calculate the Green’s function depicting any number
of pairs being produced from the vacuum, which serves as an addition to the in-out
propagator. „ is a solution to the Dirac equation, but it is convenient to rather solve
the quadratic Dirac equation given by

( /D
2 + m

2)„̃n(x) = 0 , (4.55)
(i /D + m)„̃n(x) = „n(x) . (4.56)

Let us evaluate the quadratic Dirac equation explicitly in parallel homogeneous
field given by Eq. (2.22). First, let us point out two major simplifications. Consider-
ing the makeup of our gauge fields, we can find for the momentum in the x3 and x1
directions, we should have a factor of exp(ipAxA)/L in „ for xA := (0, ≠x

1
, 0, ≠x

3).
Also as we found before the argument of the spin factor, Eq. (3.37), is diagonal there-
fore we can find the eigenvectors–whose explicit form is not required–associated with
Dirac matrices simply as well, in fact only two are required:

≠ 2i“
1
“

2
uk = kuk , 2“

0
“

3
uk = uk , for k = ±1 . (4.57)

k = 1(≠1) denotes spin alignment (anti-alignment). We can find for the quadratic
Dirac equation, Eq. (4.55), the following form

;

ˆ
2
0 ≠ ˆ

2
2 + (p1 + eBx2)2 + (p3 ≠ eEx0)2 + m

2 + keB ≠ ieE

<

„̃n(x) = 0 , (4.58)

which permits a clear separation into electric and magnetic eigenvectors. Gathering
the magnetic pieces we find „ contains an eigenvector solution for the Landau levels,
l.

;

ˆ
2
2 ≠ (p1 + eBx2)2 + eB(2l + 1)

<

›
B

l
= 0 , for l = 0, 1, 2... (4.59)

›
B

l
= ( eB

fi
)1/4 1

Ô
2ll!

Hl[ 1Ô
eB

(p1 + eBx2)] exp[≠ 1
2eB

(p1 + eBx2)2] . (4.60)

The eigenvectors of Hermite polynomials are orthogonal in Landau level, i.e.,
s

dx2›
B

l
›

B

lÕ = ”llÕ . Finally we may characterize the remaining eigenvectors associated
with the electric field as

;

ˆ
2
0 + (p3 ≠ eEx0)2 + m

2 + eB(2l + 1 ≠ k) ≠ ieE

<

›
E

±k
= 0 . (4.61)

Unlike the magnetic field, solutions here contain complex arguments depictive of
particle and anti-particle solutions. Particle (anti-particle) solutions are given as
positive (negative) eigenvalue solutions to [≠i“

0
D̨“̨ + A

0 + m“
0]„n = ⁄(t)„n. There

are two separate representations, for either in or out asymptotic times, for the
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Hamiltonian. Since the Green’s function, Eq. (4.54), is entirely constructed from in
states we only report such eigenfunctions. We have

›
E

+k
=

p3 +
Ò

p
2
3 ≠ 2ieEa

Ô
2eE

e
ifia

4 Da≠1[ 1Ô
eE

(1 ≠ i)(p3 ≠ eEx0)] , (4.62)

›
E

≠k
= ≠

p3 +
Ò

p
2
3 ≠ 2ieEa

Ô
≠2ieEa

e
ifia

4 D≠a[ 1Ô
eE

(1 + i)(p3 ≠ eEx0)] , (4.63)

a := i(m2 + eB(2l + 1 ≠ k))
2eE

(4.64)

D is a parabolic cylinder function. Gathering the electric field and magnetic field
eigenvectors we compactly write the orthonormalized solutions for the Dirac equa-
tion as

„
in

±nœk,l,p
(x) = (i /D + m)eipAxA

uk

L
›

B

l
›

E

±k
. (4.65)

The covariant derivative can readily be taken by pointing out that the 2nd order
di�erential equations, Eqs. (4.60) and (4.63), can be expressed in a linear form.

With the eigenfunctions in hand one can then calculate the matrix element in
S

a. Then with the help of the in-out propagator, Eq. (4.14), written in operator
form the matrix element representing pair creation in the in state can be found as

Èb
in †
n

a
in †
m

Í = ≠i

⁄

d
3
x

Õ
d

3
y

Õ
„

in †
≠n (xÕ)Sc(xÕ

, y
Õ)“0

„
in

+m
(yÕ) , (4.66)

with x
Õ
0 æ ≠Œ and y

Õ
0 æ Œ. Taking the asymptotic limits of the above eigenvectors

and in-out propagator one can eventually find

Èb
in †
n

a
Õin †
n

Í = a

2fi
e

ifia
2 �(a)”llÕ”kkÕ”(p1 ≠ p

Õ
1)”(p3 ≠ p

Õ
3) . (4.67)

� here is denoted as the gamma function.
Gathering the matrix elements and eigenvectors we can find

S
a(x, y) =

Œ
ÿ

l=0

ÿ

k=±1

⁄

dp1,3
(2fi)2

ia

2fi
�(a)e ifia

2 „
in

≠,k,l,p
(x)„̄in

+,k,l,p
(y) . (4.68)

Let us examine the p3 integral as this is where the non-trivial proper time integration
path stems from. After taking the covariant derivatives of the above parabolic
cylinder functions, Eqs. (4.63), one can find that the p3 integral reduces to the
following two sets of integrals:

Ip3 =
⁄

dp3 e
≠ip3z3D≠a[ 1Ô

eE
(1 + i)(p3 ≠ eEx0)]D≠a[ 1Ô

eE
(1 + i)(p3 + eEx0)] , (4.69)

and the other set can be found with the replacement ≠a æ ≠a ≠ 1 in the parabolic
cylinder function. This integral may be solved exactly provided we split it into
arguments of the z3 and z0 variables. After a change of variables to q = 1Ô

eE
(p3 ≠

eE

2 (x0 + y0)), the above integral can be found as [89]

Ip3 =
Ô

eEe
i
2 eEz3(x0+y0)[◊(z0 + z3)◊(≠z3)J1 + ◊(z0 ≠ z3)◊(z3)J2

+ ◊(≠z0 ≠ z3)◊(≠z3)J3 + ◊(≠z0 + z3)◊(z3)J4] , (4.70)
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J1 = J2 =
⁄

dq D≠a[(1 + i)(q ≠
eE

2

Ò

z
2
0 ≠ z

2
3)]D≠a[(1 + i)(q ≠

eE

2

Ò

z
2
0 + z

2
3)]

=
Ô

fieE

�(a)

⁄ Œ

0
ds e

≠ ifi
4 +ifia+eE(1≠2a)s+i

eE
4 (z2

3≠z
2
0) coth(eEs) sinh≠1(eEs) , (4.71)

J3 =
⁄

dq e
≠i

Ô
eE(z2

0≠z
2
3)q

D≠a[(1 + i)q]D≠a[(1 + i)q] = J1 (4.72)

J4 =
⁄

dq e
i

Ô
eE(z2

0≠z
2
3)q

D≠a[(1 + i)q]D≠a[(1 + i)q]

=
Ô

fieE

�(a) e
i

fi
4 +i

fi
2 (a≠1)

;
⁄ ≠Œ

0
ds e

ifia+eE(1≠2a)s+i
eE
4 (z2

3≠z
2
0) coth(eEs) sinh≠1(eEs)

+
⁄ Œ

≠Œ
ds e

≠ifia+eE(1≠2a)s+i
eE
4 (z2

3≠z
2
0) tanh(eEs) cosh≠1(eEs)

<

. (4.73)

The important thing to notice here is in the final expression, J4, after a change of
variables to s

Õ = s + ifi/2eE, the integrand can be made to resemble that of J1≠3
and moreover the kernel, Eq. (4.38). However, doing so gives us an additional factor
of ifi/2eE in proper time along with a ◊(z3) dependence, qualitatively changing the
propagator. After the above step, the Landau levels can be summed over and p1
integrated over to make the connection to the kernel. It is found

S
a(x, y) = (i /Dx + m)

;

◊(z3)◊(z2
0 ≠ z

2
3)

Ë

⁄ Œ≠ ifi
2eE

≠Œ≠ ifi
2eE

+
⁄ ≠Œ≠ ifi

eE

0≠≠ ifi
eE

È

+ (◊(z3)◊(z2
0 ≠ z

2
3) + ◊(≠z3))

⁄ Œ≠ ifi
eE

0+≠ ifi
eE

<

ds g(x, y, s) , (4.74)

with the kernel given by Eq. (4.38). Last we can simplify the above by noting the
following relationship for the discontinuity about s = ≠ifi/eE for the upper half:

◊(z2
0 ≠ z

2
3)

⁄

“h
ds g(s, y, s) = 0 ; (4.75)

the contour “
h is given in Fig. 7.1 below. We finally find

S
a(x, y) = (i /Dx + m)

;

◊(z3)
Ë

⁄ Œ≠ ifi
2eE

≠Œ≠ ifi
2eE

+
⁄ ≠Œ≠ ifi

eE

0≠≠ ifi
eE

È

+ ◊(≠z3)
⁄ Œ≠ ifi

eE

0+≠ ifi
eE

<

ds g(x, y, s) .

(4.76)
The physical ramification of ◊(z3) terms we will illustrate with concrete examples

in the coming sections; however let us mention that such terms will find to give rise
to a real-time dependence. Let us write the above propagator more compactly.
Combining the above with the in-out propagator, Eq. (4.53), one can find the final
expression for the in-in propagator as [89]

S
c
in(x, y) = (i /Dx + m)

⁄

in

ds g(x, y, s) (4.77)
⁄

in

ds :=
5

◊(z3)
⁄

�>
ds + ◊(≠z3)

⁄

�<
ds

6

, (4.78)

with contours depicted in Fig. 4.2. Let us point out that here that although the
contours seem to be valid to only O(n = 1) of exp(≠nm

2
fi

eE
), the in-in propagator

contains, in fact, all n orders.
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Figure 4.2: In-In propagator, S
c
in, integral contours in proper time s. There is an

essential singularity about s = ≠i
fi

eE
. �>(�<) is valid for positive (negative) z3.

4.3.3 Schwinger Keldysh Real Time Correlators
We have in the previous section examined the in-in real-time propagator, or rather
the time ordered causal correlator. However, as we saw in Sec. 3.1 there are multiple
in-in correlators, Eqs. (3.19) - (3.22), one may find from an SK contour. Let us treat
these here. However let us note that this section may be passed over to Sec. 4.4
for a first reading, as the discussions here are not directly used for later results.
We round out our discussion by listing the remaining in-in or SK correlators; let us
also note that the following correlators, like the time ordered one Eq. (4.78), were
first derived in Ref. [89]. Additionally, hereafter, even equipped with all correlators,
we elect to use the time-ordered propagator, Eq. (4.78), to determine real-time
expectation values. Mostly, this is because in a path integral or Heisenberg notation
the path-ordering would emerge naturally and thus provide a clear definition of our
expectation values. Next, to address point split quantities the causal propagators
provide an implicit averaging over fermion operators. Last, expectation values found
from the in-in time ordered propagator, can be readily contrasted with those found
from the in-out propagator. Despite the above arguments, however, one can find that
any of the following SK correlation functions may be used to find equivalent results.
What is more is we can confirm statistical characteristics and ensure causality of
our formalism.

Let us begin by directly evaluating S
c̄

in
, which is simple considering it’s relation-

ship to S
c

in
:

S
c̄

in
(x, y) = ≠“0[Sc

in
(y, x)]†“0

= (i /Dx + m)
5

◊(≠z3)
⁄

�>ú
+◊(z3)

⁄

�<ú

6

ds g(x, y, s) . (4.79)

The contours of the in-in anti-time ordered propagator are depicted in Fig. 4.3.
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Figure 4.3: In-In anti-time propagator, S
c̄

in
, integral contours in proper time s. There

is an essential singularity about s = ≠i
fi

eE
. �>

ú(�<
ú) is valid for ≠ (+) z3.

Figure 4.4: Contour about origin in proper time, s. There is an essential singularity
about s = 0.

Then equipped with above we can quickly determine the statistical Green’s func-
tion, Eq. (3.26). This is just

F (x, y) = (i /Dx + m)
5

◊(z3)
⁄

�>

+◊(≠z3)
⁄

�<

≠
1
2

⁄

�0

6

ds g(x, y, s) (4.80)

with contours similar to those given in the time ordered propagator; see Fig. 4.2.
Also we have an additional contour surrounding the origin in proper time; this is
given in Fig. 4.4. We can gather two things from the statistical propagator. One, this
represents an averaged expression of both time and anti-time ordered expressions,
and expectation values derived from it are consistent with either for equal time,
z0 = 0. Thus the statistical propagator may be utilized in an Wigner non-equilibrium
framework capable of furnishing a Boltzmann equation [115, 116]–with Schwinger
mechanism e�ects. This step is left for further investigation, however. Two, a
statistical propagator is associated with the imaginary part of a Wightman function,
and indeed we see the pieces associated with imaginary parts are consistent with
the Schwinger mechanism in Eq. (4.80). However, the spectral part is associated
with the real parts and let us show there is no contribution from the Schwinger
mechanism there.
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Let us find the other characteristic equation from a Schwinger Keldysh path:
the spectral function, Eq. (3.27). Again we can do this readily. Here we use the
relationship S

c̄

in
(x, y) ≠ S

c

in
(x, y) = i sgn(z0)fl(x, y), where sgn(z0) = ◊(z0) ≠ ◊(≠z0).

Let us note that by the very construction of our Dirac operators for equal time we
must have limx0æy0 fl(z) = i”(z̨) and therefore the sgn(z0) commutes through the
covariant derivative to find for the spectral propagator

fl(x, y) = ≠i(i /Dx + m)(◊(z0) ≠ ◊(≠z0))
⁄

�0
ds g(x, y, s) . (4.81)

We can confirm causality with the above expression. The vanishing of anti-
commutation of a fermion and an anti-fermion operator outside the light cone serve
as a measure of causality enforcement [114], and indeed the spectral propagator
manifestly vanishes outside the light cone. Also, there are no Schwinger pair
production e�ects present in the spectral correlator.

Having explored all the di�erent types of SK contours2, we have the necessary
tools to calculate in-in real time expectation values. Yet, before calculating actual
observables, it is important to discuss the physical ramifications of both in-in and
in-out expectation values.

4.4 Euclidean (In-Out) and Real Time (In-In) Ex-
pectation Values

In the previous sections the in-out and in-in propagators were examined. In so doing,
a suggestive glimpse into their physical nature was made visible. That is the in-in
propagator contains all the squared matrix elements, (coming from the imaginary
part of the in-out propagator), of any number of produced pairs. And the in-out
propagator is the first term, N = 0, of the in-in propagator predictive of no pairs of
produced particles:

S
c
in = S

c + i
ÿ

n,m

Èa
out

n
ÂÍÈa

† out

n
b

† out

m
Í

ú
Èb

out

m
Â̄Í + ... . (4.84)

What we can gather from this expression is that while the in-in propagator predicts
any number of pairs being produced in the out state the in-out propagator predicts
that no particles are spawned in the out state. Let us first discuss in-in observables
then we confront the more non-trivial in-out observables.

An in-in or SK formalism is well established for computing real-time out-of equi-
librium observables. Indeed, using the in-in propagator, Eq. (4.4), one can see that
observables follow from basic postulates of quantum mechanics; see Sec. 3.1 in the

2 To complete the SK correlators let us write down the remaining ones; these are the Wightman
functions, Eqs. (3.21) and (3.22), which can be inferred from the above correlators. They are

S>
in(x, y) = (i /Dx + m)

Ë

◊(z3)
⁄

�>

+◊(≠z3)
⁄

�<

≠◊(≠z0)
⁄

�0

È

ds g(x, y, s) , (4.82)

S<
in(x, y) = ≠(i /Dx + m)

Ë

◊(z3)
⁄

�>

+◊(≠z3)
⁄

�<

≠◊(z0)
⁄

�0

È

ds g(x, y, s) . (4.83)

However, they are not explicitly used, but can be used as a check of the formalism.
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methods chapter. A distinct merit of the SK formalism is real observables guaran-
teed from the hermiticity of the in-in construction,

ÈÈÂ̄OÂÍÍ = [ÈÈÂ̄OÂÍÍ]† ; (4.85)

this is not necessarily the case with in-out observables, however, with ÈÂ̄OÂÍ ”=
[ÈÂ̄OÂÍ]† for certain operators, O. We use a complex conjugated dagger here so as
to contrast the anti-time ordered element notation introduced in Eq. (4.42). Using
the hermiticity of the SK formalism one can readily see that the in-in expectation
values above, Eq. (4.85), integrated over space

s

d
3
x, are nothing but the definition

of a quantum mechanical expectation value.
Real-time dependence follows directly from a SK contour or closed time path.

In an imaginary time formalism one must give up explicit time dependence for
the benefit of thermal QFT computations. However if a closed time path, such as
discussion in Sec. 3.1, is connected to an imaginary time thermal state then one
can make use of both explicit time dependence and thermal characteristics of the
system. In our prescription, however, we have only made use of a closed time path,
and our in-in propagator, Eq. (4.4), does not describe finite temperature. Doing so
would amount to the insertion of a thermally equilibrated initial density matrix for
some inverse temperature, —, i.e. q

– |in—, –Í Èin—, –| with Èin| ”= Èin—|.
Real time dependence in Eq. (4.4) emerges in a non-trivial way we will illustrate

in the coming chapters. Also, for the case of a vacuum instability in homogeneous
fields the real time dependence emerges not from an operator insertion at some
time, but rather is a measure of the total time necessary to observe Schwinger pair
production. But, moreover we can equally well show no such real time dependence
resides in in-out expectation values.

Then it is a prudent question to address the physical ramifications of in-out
observables. For the case of a vacuum instability present this can be challenging;
in the context of cosmological pair creation it was found in Ref. [95] the metric
generally contained imaginary pieces–marring physical interpretation. We too find
an imaginary part in our the in-out propagator. However, with some exceptions–
see the chapter on the dynamical chiral condensate in Sec. 8–the most physically
translucent in-out observables in regards to pair production are real and zero. This
behavior we argue is to be expected. To reiterate, while the in-in propagator predicts
any number of pairs in the out state the in-out propagator is a matrix element of no
pairs of generated particles from the out vacuum; Eq. (4.84). However, why should
this be the case?

We argue observables found using an in-out propagator represent those of a
Euclidean metric in equilibrium, or rather with zero temperature. Consider a Wick
rotation of the generating in-out functional, Eq. (2.15), such that x

0 = ≠ix
4. Then

the action becomes one of a Euclidean metric
⁄

—

0
dx

4
⁄

d
3
x[Â̄(i /D ≠ m)Â] , (4.86)

at zero temperature, — æ Œ; one can construct an equivalent statistical QFT. We
should expect that in-out observables correspond to observables in a Euclidean met-
ric at equilibrium. Even with such a standard step found in several QFT textbooks,
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Figure 4.5: Periodicity of Euclidean vacuum states, Èx4|, for x4 = 0 (in) to x4 = —

(out) over some manifold in space, x, at some given point in Euclidean time.

there are subtle contrasts between in-out expectation values and an equilibrium
Euclidean expectation values.

The Euclidean partition function and observables derived from it possesses a pe-
riodicity in its vacuum states3 owing to a periodicity in Euclidean time. Specifically
we have

Èx
4
in

= 0| = Èx
4
out

= —| . (4.87)

We can denote the periodicity of Euclidean vacuum states figuratively as in Fig. 4.5.
The above distinction of vacuum states ensures a real (equilibrated) expectation
value.

Turning our attention to the in-out Minkowski case, again keeping in mind
Eq. (4.85), observables found using an in-out construction are simply the matrix
element which predicts no pairs having been generated from the vacuum. This is in
essence a scenario without pair production and with no instability and hence one is
to expect in-out observables would coincide with those of a Euclidean equilibrium
QFT. As before we discussed the vacuum non-persistence, Eq. (2.14), as describing
a case where the vacuum stays the vacuum and anything else would predict pair
production. Here as well, we have an observable which predicts a case where the
vacuum will stay as a vacuum.

Strictly speaking, however, a Euclidean QFT is defined under all real fields in
UA(1) and all real Hermitian real fields under a non-Abelian SU(N) theory. Then
the notion of a Wick rotation is not so trivial. Indeed if one were to start with
a Minkowski space time background electric field E, (a real constant field), then
perform a Wick rotation, one would end up with imaginary electric fields,

Minkowski E æ Euclidean iE . (4.88)

Not only just for homogeneous fields but in fact this procedure is present for all fields
whether Abelian or non-Abelian. Therefore, a vacuum instability QFT generally
possesses a sign problem. Furthermore, the resulting fields are generally complex
with a magnetic field and enlarge the gauge group; for example a Minkowski SU(2)
theory would need to accommodate imaginary pieces as well becoming SL(2, C) in
Euclidean space time4. Complex fields in a Euclidean theory are generally required
to see pair production; this step serves as a starting point for many analytic tools

3Note the periodicity in Euclidean time and the vacuum state should not be mistaken for an
anti-periodicity of Dirac determinant derived quantities such as boundary conditions on grassman
variables stemming from the anti-commutivity of fermions.

4Lefschetz/Picard-Morse theory could potentially be used as a set of theoretical tools with
which to study a gauge extension to complex values.
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of pair production including the worldline instantons [103, 104]. In a non-Abelian
gauge theory defined on the lattice using Monte-Carlo techniques [117], in fact it was
found one may avoid the sign problem and complex fields using an opposite charged
flavor isospin, which yields a real electric field. However, no pair production was seen.
Also, an example of no pair production in a Euclidean theory is provided though
the use of background BPST instantons [29]–di�erent from worldline instantons.
Instantons with winding number, ‹, describe tunneling from a state with winding
number È‹in| to a state È‹out| such that ‹ = ‹out ≠ ‹in in a non-Abelian theory.
QCD–or SU(N) related theory–possesses a vacuum periodic in ‹, with instantons
being minimum energy self-dual solutions of the Yang-Mills action. But it has been
determined that the fermion determinant for BPST (‹ = 1) instantons does not
have an imaginary piece [118, 119], despite the fact that ‹out ”= ‹in. Therefore no
Schwinger pair production is seen under a BPST instanton background consistent
with the above Euclidean equilibrium expectation value argument.

While one may formally describe in-out expectation values as similar to Eu-
clidean equilibrium ones, let us emphasize that still an imaginary part is present in
the in-out propagator, that points to the vacuum instability. This is however not
the case for the real part. No such exponentially suppressed quadratic mass term,
exp(≠nfim

2

eE
), is present for the real part. Indeed, simply examining the combined

proper time structure of the above in homogeneous fields, we can conclude that the
poles are bypassed. And therefore, the real part of the in-out propagator would
represent a physical measurement coinciding with equilibrium.

A final di�culty of a real time, out-of-equilibrium, interpretation lies with the
treatment of the background electric field itself. This problem falls under the um-
brella of backreaction e�ects. Näıvely, the explanation is a background field must be
finite and as such when pairs are produced they too must interact with and a�ect
the background field. We have assumed a large enough field such that this issue
can be ignored. We will find in the coming sections that there will be a linear time
dependence in real time observables, suggesting that as time proceeds the system
goes further out of equilibrium. However, as pairs are produced–such as would be
expected in collider experiments–and a�ect the electric field, then the background
field approximation fails, and indeed this step would be beyond the scope of our
calculations. Furthermore, the Euclidean equilibrium interpretation is valid in the
sense that no pairs are produced in the out state. Now, the in state too, (for both
real time and Euclidean values), is devoid of pairs and therefore at real-time t = 0,
we expect both the real time and Euclidean observables to coincide. Real time
values are prepared in an equilibrium state.



Chapter 5

Axial Ward Identity

5.1 Pseudoscalar Condensate
5.1.1 Euclidean Equilibrium
Equipped with the in-out, Eq. (4.14), and in-in, Eq. (4.77), propagators we may
readily illustrate in and out-of-equilibrium phenomena through investigating the
axial Ward identity, Eq. (2.27).

In homogeneous fields the VEV behavior of ‘
µ‹–—

Fµ‹F–— is trivial; i.e.
È‘

µ‹–—
Fµ‹F–—Í = ÈÈ‘

µ‹–—
Fµ‹F–—ÍÍ = ‘

µ‹–—
Fµ‹F–—. And therefore our primary

consideration belongs to the pseudoscalar condensate portion.
Owing to the virtue of Schwinger proper time the pseudoscalar can easily be

calculated. Indeed Schwinger first performed this for the interaction between the
neutral meson and proton in Ref. [15]. Let us repeat this in-out calculation.

P̄ := ÈÂ̄i“5ÂÍ = ≠ lim
yæx

tr[“5S
c(x, y)] . (5.1)

Taking the Dirac trace we find the /D term will not contribute due to an odd num-
ber of gamma matrices being traced over. More generally, /D acting on the kernel,
Eq. (4.38), for point split expectation values will vanish and this is due to transla-
tional invariance; g(x, y) = g(x ≠ y). Moreover, we see upon taking the trace that
contributions coming from the bosonic part, Eq. (4.25), cancel with those coming
from the spin factor, Eq. (4.24). While there are essential singularities in Ï from
the cotangent function, all vanish upon taking the limit. The essential singular-
ity and poles will be handled judiciously below. We find for the in-out Euclidean
equilibrated pseudoscalar condensate the following:

P̄ = ≠ lim
yæx

4i
me

2
EB

(4fi)2

⁄ Œ

0
ds e

≠im
2
s+iÏ(x,y,s)

= ≠
e

2
EB

4fi2m
. (5.2)

What is profound about P̄ is its cancellation with ‘
µ‹–—

Fµ‹F–— in the axial Ward
identity,

ˆ0n̄5 = 0 , (5.3)
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for any m! It is common to omit the pseudoscalar term in the QCD Lagrangian
when examining small mass scenarios, however, we find here that the pseudoscalar
term plays a critical role. What is more, as the above expectation value is valid
for any mass we are left with an apparent contradiction in comparison with the
physically motivated LLLA result reasoned above, Eq. (2.24). In fact, in the zero
mass limit, one would expect for the physically motivated case

Ê
B∫E, mæ0

≠æ
e

2
EB

4fi2 = 1
2ˆ0n5 . (5.4)

As alluded to above, there is in fact no contraction. The in-out expectation value
is one of an equilibrium scenario, or defined in Euclidean spacetime, and does not
factor in non-equilibrium phenomena like the Schwinger mechanism. Thus the in-
out pseudoscalar condensate, Eq. (5.2) and in-out axial Ward identities, Eq. (5.3),
are values to be expected in the absence of Schwinger produced pairs.

Having seen that there is no anomaly, or that the axial Ward identity is zero
and chirality be conserved, for homogeneous parallel fields in Euclidean equilibrium,
let us illustrate how the anomaly arises out-of-equilibrium utilizing the real-time or
in-in formalism.

5.1.2 Real-Time
Before embarking on explicit real-time calculations, let us motivate real-time ob-
servables by recapping essential points of the expected chirality generation from
the Schwinger mechanism. Out-of-equilibrium the Schwinger mechanism in parallel
electric and magnetic fields should continually produce particle anti-particle pairs
along the fields. Since it was found the non-persistence of the vacuum, Eq. (2.21),
should go to linear order in time, one would expect out-of-equilibrium expectation
values such as the generated current should also go to linear order in time. Then,
for a strong magnetic field, the produced pairs would have their spins aligned with
the magnetic field, generating chirality. The essential calculation to illustrate this
is with the divergence of the chiral density current (or the axial Ward identity);
we do that here. Later, we explicitly support our pseudoscalar calculations with
calculations of the chiral density, Sec. 5.2.2.

As anticipated in the previous section we may directly calculate the real-time
or out-of-equilibrium expectation values associated with the Schwinger mechanism
using the in-in propagator, Eq. (4.77), and confirm the physically motivated case,
Eq. (2.24). Following similar steps as in the equilibrium case we may arrive at

P := ÈÈÂ̄i“5ÂÍÍ = ≠ lim
yæx

tr[“5S
c

in
(x, y)]

= ≠ lim
yæx

i
me

2
EB

4fi2

5

◊(z3)
⁄

�>
+◊(≠z3)

⁄

�<

6

ds e
≠im

2
s+iÏ(x,y,s)

. (5.5)

The pseudoscalar condensate is una�ected by regularization and this fact is reflected
in the fact that we may use either �> or �< (or both averaged) in its calculation.
Here, we elect to use a point split averaged notation. The Green’s function is
defined in a symmetric fashion when evaluated at common points i.e., S(x, x) =
1
2 [S(x, x + 0) + S(x + 0, x)]. This also yields limyæx ◊(±z3) = 1/2. Again the pole
contributions cancel out here as well upon taking the limit. We may deform the
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contour to arrive at an expression indicative of the addition of Schwinger e�ects.
We ultimately find

P = ≠4i
me

2
EB

(4fi)2

5
⁄ Œ

0
ds ≠

⁄ Œ≠i
fi

eE

≠i
fi

eE

ds

6

e
≠im

2
s

= ≠
e

2
EB

4fi2m

5

1 ≠ e
≠fim

2
/(eE)

6

, (5.6)

which decidedly predicts the generation of chirality from the Schwinger mechanism.
Naturally, there is perfect agreement with the expression Eq. (2.24). Using the axial
Ward identity, Eq. (2.26), under in-in vacuum states the divergence of the chiral
density in real-time is found as

ˆ0n5 = e
2
EB

2fi2 e
≠fim

2
/(eE)

. (5.7)

Amazingly we find no other contributions to the axial Ward identity than the
Schwinger mechanism, indicating that indeed the mechanism is solely responsible
for the anomalous generation of chirality. Let us also note here that Eq. (5.6) was
inferred in Ref. [120] from the Schwinger mechanism. Here however we make clear
the di�erence in vacuum state expectation values.

Using the real-time formalism we arrive at the generated chiral density directly
in an independent calculation to confirm the above. Likewise, we also show the
absence for the in-out equilibrium case. But first, let us shortly digress on the utility
of Schwinger proper time methods for handling observables like the pseudoscalar
condensate.

Fujikawa first formulated [1] the anomaly as arising from the measure in the
path integral. There, careful regulation is required in defining the functional trace
of “5. Of most relevant for our discussion, in the Fujikawa method the following is
utilized (here we are in a Euclidean spacetime)

tr(“5e
1
2 eFµ‹‡

µ‹
/M

2) = i

2M4 ‘
µ‹–—

Fµ‹F–— (5.8)

to regulate the trace of “5. A large cuto� mass, M , is used and only the leading
terms in M are considered above. Contrast this with the trace taken in pseudoscalar
calculation. We found

tr(“5Pe
≠i

s s

0 d·
1
2 eFµ‹‡

µ‹ ) = 4i sin(eBs) sinh(eEs), (5.9)

Here we are in Minkowski spacetime and the fields are constant; and upon a Wick
rotation in · and large s limit we can find Fujikawa’s result, Eq. (5.8). But what
is important here is that without the Schwinger proper time realization one would
find a trivial result. This is because the proper time method naturally incorporates
a heat kernel regularization. And thus the proper time formulation not only easily
enables (as we discovered above) but also handles the non-trivial regularization
within calculations with “5 and concerning chirality.
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5.2 Chiral Density
5.2.1 Euclidean Equilibrium
Having discussed the benefit of the worldline formalism and how it enables calcula-
tions such as the equilibrium and real-time pseudoscalar we now confirm our results
by calculating the chiral density equivalents. Of particular importance, we see how
time dependence arises in real-time through the phase space. However, before that
let us ensure the Euclidean equilibrated chiral density,

j̄
µ

5 := ÈÂ̄“
µ
“5ÂÍ = i lim

yæx
tr[“µ

“5S
c(x, y)] , (5.10)

vanishes.
We may immediately take the Dirac trace, and so find that only the covariant

derivative piece of the propagator contributes.

j̄
µ

5 = ≠i lim
yæx

tr[“µ
“5 /Dx

⁄ Œ

0
ds g(x, y, s)] . (5.11)

We expect the equilibrium chiral current to vanish due to translational invariance of
the Green’s function, and hence kernel, g. But let us illustrate this. First allowing
the derivative to act on the kernel we find

/Dxg(x, y, s) = (ˆµ ≠
i

2eFµ‹x
‹)“µ

g(x, y, s)

= ≠
1
2

5

ieFµ‹ + (coth(eFs)eF )µ‹

6

z
‹
“

µ
g(z, s) . (5.12)

We can gather that so long as the kernel remain analytic and finite as x æ y or
z æ 0 then due to the z out front the above expression will vanish in the limit.
This is clearly the case outside of the singularities in g, and it also case for the
singularities, but requires more e�ort. First let us close the proper time contour as
depicted in Fig 5.1. There is a semicircle contour about ≠i

kfi

eE
’ k œ R+. However we

have an essential singularity in the classical piece of the kernel, Ï(z, s), Eq. (4.32).
For a semicircle contour about ≠i

kfi

eE
on the kernel the following residue may be

found
≠ ifiRes

3

g, ≠i
kfi

eE

4

= ≠ifi

(k ≠ 1)! lim
sæ0

d
k≠1

dsk≠1

53

s + ikfi

eE

4

g(s)
6

. (5.13)

However, it can be seen that any such term after being acted on by the covariant
derivative will contain some power of z and hence

lim
yæx

/Dx Res
3

g, ≠i
kfi

eE

4

= 0 . (5.14)

Pieces of integration between the essential singularities can be seen to also vanish
in the z æ 0 limit. Therefore we find as expected the equilibrium chiral density
vanishes,

j̄
µ

5 = 0 . (5.15)

in agreement with the pseudoscalar computation. This, however, is not the case
out-of-equilibrium.
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Figure 5.1: Contour of proper time, s, to imaginary values after Wick rotation.
Contributions on the semicircle |s| æ Œ vanish owing to convergence provided by
the m

2
≠i‘ term in the worldline action. Imaginary parts of the kernel are associated

with singularities at s = ≠infi/eE, and the principal part of the kernel is associated
with regions in-between singularities.

5.2.2 Real-Time
The real-time chiral density reads

j
µ

5 := ÈÈÂ̄“
µ
“

5
ÂÍÍ = i lim

yæx
tr[“µ

“5S
c

in
(x, y)] . (5.16)

We can make similar manipulations with the Dirac trace as before to find

j
µ

5 = ≠i lim
yæx

tr[“µ
“5 /Dx

⁄

in

ds g(x, y, s)] . (5.17)

The essential di�erence here as opposed to the Euclidean equilibrium case dis-
cussed earlier is the addition of ◊(±z3) terms, and upon being acted on by the
covariant derivative give rise to a phase space term identifiable with real time. Let
us first, though, press on with the calculation, particularly around the singularity.

Proceeding with the calculation of the real-time chiral density, we see that the
integration contours can be subtracted with a semicircle contour about the singular-
ity ≠ifi/eE; see Fig. 7.1. However here, we only have the upper half contour of the
singularity about ≠ifi/eE as opposed to entire contour about ≠infi/eE. Recall the
above argument about the singularities in g, Eq. (5.13). There every term contained
some power of z

2
3 ≠ z

2
0 and therefore vanished in the z æ 0 limit. However, here

we have the covariant derivative not acting on the kernel and we find non-vanished
pieces. They are the pieces that contain a hyperbolic sine factor in the spin factor,
Eq. (4.24). Let us illustrate this with the following integral:

Ih =
⁄

h

ds e
≠im

2
s+iÏ(x,y,s) cot(eBs) coth(eEs) . (5.18)
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First we shift the proper time s by s æ s
Õ + ifi

eE
, keeping only the leading terms in the

integrand. The origin of the semicircle contours is shifted to s = 0 by this process.
Even though there is an essential singularity here, keeping the leading terms here
does reproduce the exact result when the x æ y limit is taken. Later we will need
to keep all orders.

Ih = e
≠ i

2 xF y≠ m2fi
eE ≠ 1

4 (z2
1+z

2
2)eB coth(≠ fiB

E ) i coth(fiB

E
)

eE
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eE

ds

s
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0≠z
2
3)

. (5.19)

Now redefining ÷ = 1/s we can find
⁄

h+i
fi

eE

ds

s
e

≠ i
4s (z2

0≠z
2
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⁄ Œ

≠Œ

d÷

÷
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≠ i
4 (z2
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3 ≠ z
2
0) (5.20)

the Heaviside step function. The integral becomes

Ih = e
≠ m2fi

eE
2fi

eE
coth

3

fiB

E

4

◊(z2
3 ≠ z

2
0) . (5.21)

We may perform a similar set of calculations but without the coth(eEs) factor
⁄

h

ds e
≠im

2
s+iÏ(x,y,s) cot(eBs)

= e
≠ m2fi

eE
ifi

2 coth
3

fiB

E

4

(z2
3 ≠ z

2
0) ◊(z2

3 ≠ z
2
0) , (5.22)

which goes to zero after taking its derivative then the limxæy. Integrals without the
cot(eBs) can be found by replacing the above final expression with coth(eBs) æ ≠i.
Note, the above result may also be found by closing the semicircle contour to a full
closed contour about ≠ifi/eE,

s

“h
ds = ◊(z2

3 ≠ z
2
0)

s

“f
ds; see Fig. 7.1. Then one may

apply the residue formula, Eq. (5.13), where all higher order contributions from the
essential singularity will vanish.

Now we take the Dirac trace, keeping only pieces of the spin factor which contain
a cosh(eEs), (which gives us a coth(eEs) factor in the integrand). We find

tr“0“5 /D exp(≠ i

2eF‡s) = D‹

5

i sin(eBs) cosh(eEs) tr(“0“5“
‹
‡

12)

≠
1
2 sin(eBs) sinh(sEs) tr(“0“5“

‹
“5‡

12) + cos(eBs) sinh(eEs) tr(“0“5“
‹
“5‡

12)
6

.

(5.23)

Only the top term above with the cosh(eEs) will remain as it is the only one with a
non-vanishing singularity after taking the x æ y limit. Then we have for the chiral
current

j
µ

5 = lim
xæy

i
e

2
EB

4fi2 ˆ
3
◊(z3)”µ

3

⁄

h

ds coth(eEs)e≠im
2
s+iÏ(x,y,s)

. (5.24)

We can now see the key di�erence of the real-time expression here is the introduction
of a theta term, ◊(±z3), indicative of time dependence in our system. The delta term
here is a measure of the phase space of the system, and we identity it with total
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time dependence, t, in our system.

lim
yæx

”(z3) = lim
yæx

⁄

dp3
2fi

e
ip

3
z

3 = eEt

2fi
. (5.25)

In a homogeneous field, such identification is just [121]. Consider the quantum
mechanical setup in homogeneous fields. One would have two harmonic oscillator
solutions for both the electric and magnetic parts. The electric field harmonic os-
cillator would have energies independent of p3 due to a quadratic shift, and the
wavepacket position in time would be shifted by p3/eE. Then one could envision an
integration over all p3, (as is done in e�ective action calculations), as being analogous
over one of total time. Alternatively, we can also understand this from a classical
perspective as well. Consider a pair being accelerated by a electric field in the 3-axis
direction, then knowledge of the pairs’ p3 (given at some time, t, assumed from a
static initial state) would give us a measure of the total time in the system. This
is because at some initial time, the kinetic momentum of the pairs is zero, which
implies p3 = eEt.

We finally find for the real-time chiral density

j
µ

5 = e
2
EB t

2fi2 exp
1

≠
fim

2

eE

2

”
µ

3 , (5.26)

where we have used Eq. (5.25) and Eq. (5.21), (replacing coth(fiB/E) with ≠i).
Then the divergence of the chiral current is completely in agreement with the psue-
doscalar and the axial Ward identity.

It is curious why one ought to see a vanishing chiral density. To address this
let us note that ˆ0n̄5 = 0 in a Euclidean picture, i.e. Èˆ4 j

4
5Í = 0. Then let us

consider Euclidean ground state for the m = 0 case. There topological properties
are independent of the ◊ angle and hence one would not expect a nonzero topological
charge and or net chirality. Before embarking on the qualitative di�erences between
the in-out and in-in expectation values let us examine the vector current to ensure
similar findings for the CME.



Chapter 6

Chiral Magnetic E�ect

6.1 Euclidean Equilibrium
Above we found the Euclidean equilibrated chiral density vanished and equilibrium
in-out pseudoscalar condensate also showed a vanishing anomaly. It is then an
important task to verify similar behavior also for the CME current. The CME
current should be entirely contained in our in-out and in-in formalisms, i.e. no
artificial placement of chirality or a chiral chemical potential should be necessary.
All the chirality generated we found before was spawned through the Schwinger
mechanism in parity violating fields.

Proceeding as before we may calculate the vector current using in-out and in-in
vacuum states. These are

j̄
µ := ÈÂ̄“

µ
ÂÍ = i lim

yæx
tr

Ë

“
µ
S

c(x, y)
È

, (6.1)

j
µ := ÈÈÂ̄“

µ
ÂÍÍ = i lim

yæx
tr

Ë

“
µ
S

c
in(x, y)

È

. (6.2)

Once again, here the mass portion of the Dirac trace vanishes and we are left
with the following

j̄
µ = ≠i lim

yæx
tr[“µ /Dx

⁄ Œ

0
ds g(x, y, s)] , (6.3)

j
µ = ≠i lim

yæx
tr[“µ /Dx

⁄

in

ds g(x, y, s)] . (6.4)

Let us address the in-out current first. Using arguments in the calculation of the
chiral density, namely that the covariant derivative acting on the kernel both outside
of the poles and around the poles, Eq. (5.14), vanishes. Thus like the equilibrium
chiral density the equilibrium CME current too vanishes:

j̄
3 = 0 . (6.5)

Using similar arguments one may also verify that indeed all the equilibrium current
vanishes, j̄

µ = 0.
As we analyzed before there were no matrix element contributes of out state

generated particles and thus it is easy to see that no current would arise. There
is no insertion of a chiral chemical potential, or other device which mimics an out-
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of-equilibrium scenario either. All the generated current as we found for the chiral
density must be sourced through an out-of-equilibrium real-time prescription.

6.2 Real-Time
The CME current, as anticipated, for the real-time expectation value does not vanish
as we will show. The calculations here are similar to the real-time chiral density
case, therefore we only give a brief overview here. First, let us confirm that for
the produced pairs we have charge conservation and that only the x3 direction
current remains. The only other term possessing z0 dependence vanishes, namely
ˆ

0
◊(z2

3 ≠ z
2
0) = 0, where we have used the identity ◊(z2

3 ≠ z
2
0) = ◊(z0 + z3)◊(≠zo +

z3)+ ◊(≠z0 ≠ z3)◊(z0 ≠ z3). Likewise, there is no contribution coming from the poles
in the kernel, Eq. (5.14). Next, let us take the Dirac trace noting that

tr“µ /De
≠ i

2 eF ‡s = 4D‹

;

cos(eBs) cosh(eEs)gµ‹

≠ sin(eBs) cosh(eEs)(≠g
µ1

g
‹2 + g

µ2
g

‹1) ≠ cos(eBs) sinh(eEs)‘µ‹12
<

. (6.6)

Only the first term with D3 remains as the other terms do not posses any poles.
Gathering all the terms we find consistency with Schwinger’s formula, Eq. (2.23),
using Eq. (5.25) and Eq. (5.21),

j
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3

= 2Ê t . (6.7)

All the chirality (for a strong magnetic field) generated through the Schwinger mech-
anism is converted into an electromagnetic current parallel to the magnetic field:
the CME. Indeed, it was inferred in Ref. [13] through a Lorentz transformation of
Schwinger’s formula a similar catalysis of the CME. The above, as are the real-time
chiral density and pseudoscalar condensate, is one-loop exact and all Landau levels
have been kept.

Here too, in addition to the chiral density, equilibrium observables of the CME
vanish. As we found before in an Euclidean setting there can be no chirality gen-
eration and hence no CME. Indeed, the vanishing of the CME in equilibrium has
been noted elsewhere, see e.g. Ref. [122], yet that the out-of-equilibrium CME can
stem from the vacuum instability is new here. And we correctly see that to see the
CME real-time physics is a necessity.

Then it is important to see why in some cases even in equilibrium the CME is
observed, and this is due to a finite µ5 inserted by hand. However, µ5 is an inherently
out-of-equilibrium quantity, and even though a contradiction may be present in some
applications, the insertion of µ5 is an indispensable theoretical tool.
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Chiral Density Fluctuations

Having elucidated the e�ects of chirality generation as well as the CME due to
Schwinger pair production it is prudent that we confirm similar behavior in chiral
density fluctuations, also referred to as a chiral susceptibility. A measure of the
chiral fluctuations is important in systems in which a chirality imbalance may be
present locally, however globally is conserved. An example setting is provided in the
context of heavy-ion collisions. There for a single collision event or an average over
many collision events it is thought local parity violation may occur [24, 25], giving
way to an observable signal for the CME. Specifically, fluctuations in the topological
charge are related to an electric charge separation in the direction of the magnetic
field. What is observable is then fluctuations in the charge density; this is made
possible by virtue of the CME relating topology to a measurable electric current.
However, for our purposes of chirality generation via the Schwinger mechanism it is
essential that we rather show chiral density fluctuations be non-vanishing, and then
one may relate such a chiral imbalance to the CME as was put forth in Sec. 3.3.4.
Also it is important that we confirm the role the Schwinger mechanism plays in the
fluctuations as well as its real-time dependence.

The chiral density fluctuations in real-time and in equilibrium

‰5 := ÈÈN
2
5 ÍÍ ≠ ÈÈN5ÍÍ

2
, (7.1)

‰̄5 := ÈN
2
5 Í ≠ ÈN5Í

2
, (7.2)

where N5 :=
s

d
3
xÂ̄(x)“0

“5Â(x). In heavy-ion collisions while chirality is conserved
globally local fluctuations in chirality may provide observable e�ects averaged over
many events.

‰5 = lim
x0æy0

⁄

d
3
xd

3
y tr[“0“5S

c
in(x, y)“0“5S

c
in(y, x)]

= (7.3)

And we may also define here the equilibrium value as well,

‰̄5 = lim
x0æy0

⁄

d
3
xd

3
y tr[“0“5S

c(x, y)“0“5S
c(y, x)] . (7.4)
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Due to the presence of a finite spatial z̨ in the propagators, calculations here are
somewhat more involved, (but introduce no new methods than employed previously).
The final form of the chiral density fluctuations both for the real-time and Euclidean
equilibrium cases can be seen in Eq. (7.63).

Let us proceed with the calculation in equilibrium Eq. (7.4) and out-of-
equilibrium Eq. (7.3), where the respective correlation functions can found from
Eqs. (4.14) and (4.77). Taking note that the traces of an odd number of Dirac
matrices vanishes we find for the real-time observable

‰5 = ≠ lim
x0æy0

⁄

d
3
xd

3
y tr

5

“0 /Dx

⁄

in

ds g(x, y, s)“0 /Dy
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ds
Õ
g(y, x, s

Õ)
6
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m
2
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d
3
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3
y tr
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“0

⁄

in

ds g(x, y, s)“0

⁄

in

ds
Õ
g(y, x, s

Õ)
6

. (7.5)

Unlike before when calculating expectation values, such as the chiral density and
current, in which the xµ æ yµ limit was taken, here /Dxg(x, y, s) provides a contri-
bution (except for x0 æ y0). However, let us first look at the side which contains
covariant derivative pieces and eliminate a few terms. Note that the derivative
acting on

s

in
ds yields a delta function. Moreover, we find a term that contains

tr[“0( /̂
x

s

in
ds)g(x, y, s)“0

s

in
ds

Õ( /Dyg(y, x, s
Õ))], and this term we can show vanishes.

First notice that when the covariant derivative acts on the kernel we aquire a linear
term in zµ in the integrand; see Eq. (5.12). Then, for the term in question, there
are integrals over z1 and z2

⁄

dx1dx2dy1dy2z
1,2

e
≠ i

4 eB(z2
1+z

2
2)[cot(eBs)+cot(eBs

Õ)]
.

The poles in the cotangent functions are not picked up, and these integrals are
gaussian with a linear z

1,2 term and thus vanish. Likewise the z
0 term in the

covariant derivative equation above will also vanish due to the x0 æ y0 limit. In
a similar way, we will acquire a delta function from the ( /̂

x

s

ds) term which will
give us an x3 æ y3 limit upon acting on the integral, and then the x3 æ y3 limit
acting on z

3 in the covariant derivative term will also vanish. We are left with for
the real-time chiral density fluctuations

‰5 = It + ID + Im (7.6)
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x0æy0

⁄

d
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3
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;
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(7.7)
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d
3
xd

3
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⁄
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(7.8)

Im := ≠ lim
x0æy0
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d
3
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3
y m

2
;
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in

ds g(x, y, s)“0

⁄
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ds
Õ
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Õ)
6<

. (7.9)

Also, we may perform a similar analysis on the equilibrium quantity:

‰̄5 = ĪD + Īm (7.10)

ĪD := ≠ lim
x0æy0

⁄

d
3
xd

3
y

;
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d
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y m
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0
ds g(x, y, s)“0
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0
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Õ
g(y, x, s

Õ)
6<

. (7.12)
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Let us treat in the following each set of integrals separately.

7.1 Time Dependent Portion
Let us look at the piece which yields a time dependence, It. All time dependence,
as we found originated from a phase space factor, is in fact contained in this term.
Moreover, no such term is present in the in-out equilibrium calculation. It is con-
venient here and throughout this section to adopt a closed form of the proper time
contour. This is to ensure in the z æ 0 limit no contribution from the kernel about
the full closed contour will contribution after being acted by the derivative. We find
the time dependent piece becomes

It = ≠ lim
x0æy0

⁄

d
3
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3
y tr
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“0( /̂
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“f
ds g(x, y, s)“0( /̂
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Õ
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3(2◊(z3) + 1)

⁄

“f
ds
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“f
ds

Õ
g(y, x, s

Õ)
6

. (7.13)

�(z) = ◊(z3)◊(z2
3 ≠ z

2
0). Let us examine the squared delta function for arbitrary

function, f , as
⁄

d
3
xd

3
y”(z3)2

f(x ≠ y) = lim
z0,z3æ0

eEV t

fi

⁄

d
2
zf(z) . (7.14)

The above integrals become upon taking the Dirac trace

It = lim
z0,z3æ0
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2fi

3

e
2
EB

4fi2

42 ⁄

d
2
z

◊

;5
⁄

“f
dse

≠im
2
s+iÏ(z,s) cot(eBT ) coth(eET )

62
≠

5
⁄

“f
ds e

≠im
2
s+iÏ(z,s) coth(eET )

62<

.

(7.15)

The singularities here are similar to those before; please see the contours listed
above. Now we only take the z0 and z3 limits, however that is su�cient to remove
higher order pieces coming from the essential singularity. We ultimately find
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, (7.16)

where the LLLA has been taken in the last step. Again we see that the characteristic
exponential quadratic mass suppression and time dependence have appeared. That
the time be linear is guaranteed from our construction, and even though we are
performing a loop calculation linear time independence is to be expected.
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Figure 7.1: Various contours used to calculate chirality fluctuations. Vertical axis is
imaginary s.

7.2 Quadratic Mass Portion
Let us now tackle the quadratic mass portion of the anomalous fluctuations, Im.
Also, in this section and the next for compact expressions we take for the product of
two similar expressions for arbitrary function, f , the following notation: [f(z)][x ⌦
y] := f(z, s)f(≠z). Let us first take the Dirac trace and LLLA finding

Im ¥ 2
3

me
2
EB

8fi2

42 ⁄

d
3
xd

3
y

◊

I

5
⁄

in

ds e
≠im

2
s+iÏ(x,y,s) coth(eEs)
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x ⌦ y

6

≠

5
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in

ds e
≠im

2
s+iÏ(y,x,s)

65

x ⌦ y

6<

,

(7.17)

where we have used the fact that Ï(x, y, s) is quadratic in z. It proves convenient
at this point to decompose the contours into two parts. For an arbitrary function f

which may represent either of the integrands above we can see

[
⁄

in

ds f(s)][x ⌦ y]

= [◊(z3)
⁄

�>
ds + ◊(≠z3)

⁄

�<
ds][◊(≠z3)
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�>
ds

Õ + ◊(z3)
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�<
ds

Õ]f(s)f(sÕ)

= [
⁄

�I
ds + ◊(z3)

⁄

“<
ds + ◊(≠z3)

⁄

“>
ds] (7.18)

◊ [
⁄

�I
ds

Õ + ◊(≠z3)
⁄

“<
ds

Õ + ◊(z3)
⁄

“>
ds

Õ]f(s)f(sÕ) ,

where the relevant contours can be found from Fig. 7.1. Had we dealt with a single
operator point split or volume integral green’s function only the �I contour would
remain. However, for the case of chiral density fluctuations the singularities also
contribute. Then, using the property that [

s

“< ds +
s

“> ds]f(s) = 0, we can evaluate
the above as

[
⁄

in

ds f(s)][x ⌦ y] ¥ [
⁄

�I
ds

⁄

�I
ds

Õ +
⁄

“<
ds

⁄

“>
ds

Õ] f(s)f(sÕ) . (7.19)
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The last step is valid upon considering that ([
s

“< ds+
s

“> ds]f(s))2 = 0 and therefore
under the z3 integral we can drop terms ◊(z3)◊(≠z3) π 1 acting on similar functions.

Gathering terms together we see that
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C
m

1 :=
⁄
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⁄ Œ

0
ds v(z3, s) coth(eEs)]2 , (7.21)

C
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0
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C
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C
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4 := ≠
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ds

Õ
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v(z3, s
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, (7.24)

v(z3, s) := e
≠im

2
s+ i

4 z
2
3eE coth(eEs) (7.25)

Interestingly, in contrast to the point split single correlation function observables
we find for the chirality fluctuation case there is no UV divergence in the quadratic
mass portion, (however a divergence is found in the covariant derivative piece).
Convergence of the integral is provided by the z

2
3 term in the exponential. Let us

look at the integrals individually here. To treat a more manageable expression we
approximate coth(eEs) ¥

1
eEs

within the integrand; this is equivalent to a weak
electric field or large mass approximation. Let us analyze the following integrals
under the approximation

Re
⁄ Œ

0
ds v(z3, s) coth(eEs) ¥

2
E

K0(m |z3|) , (7.26)
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0
ds i v(z3, s) ¥

Û

z
2
3

m2 K1(m |z3|) . (7.27)

Here Kn is the modified Bessel function of the nth kind. Then we can calculate the
first two integrals above to find

C
m

1 = 2fi
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e2E2m
, C

m

2 = 3fi
2

16m5 . (7.28)

Evaluating the integrals with singularities requires a little more work. First, let
us note that

[
⁄

“<
ds ≠

⁄
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ds]f(s) = ◊(z2

3 ≠ z
2
0)

⁄

“f
ds f(s) . (7.29)

Therefore upon using [
s

“< ds +
s

“> ds]f(s) = 0, we find
⁄
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Õ
f(s)f(sÕ) = ≠
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3 ≠ z
2
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5
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“f
dsf(s)

62
. (7.30)

Next, let us focus our attention on the following integral which will display all the
information needed for our integrals about the essential singularity.

I“f :=
⁄

“f
ds v(z3, s) . (7.31)
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Due to the essential singularity and no z3 æ 0 limit a simple residue cannot be taken
here. Rather we have an infinite number of higher-order poles whose higher-order
residues must be taken. We cannot naively take the z3 integration first either. We
can immediately see in that case no pole about the annulus would be present and
the above integral would vanish. We, in fact, find a nonzero contribution from the
above integral and therefore the s and z3 integrations are not interchangeable. We
proceed with directly evaluating the essential singularity.
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Notice that we are ultimately taking the s æ 0 limit, so in the argument of the
exponential let us take coth(eEs) ≠

1
eEs

¥
eEs

3 ; this is also equivalent to a weak
electric field approximation.
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I is a modified bessel function with a complex argument. Let us confine our attention
to the case of (m/E)2

π z
2
3/12, as is valid in the weak field approximation and

considering that after the z3 integral such for small z3 the singularity contours will
not contribute. See above. We are left with an imaginary argument in the Bessel
function,
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Applying the above to the last two sets of integrals in Im we find

C
m

3 = ≠
1
2

⁄ Œ

0
dz3

5 4
ieE

d

dz
2
3
I“f

62
¥ e

≠ 2m2fi
eE

fi
2

2eE2
121/4

Ô
eEfi

�(1
4)2

�(3
4)2 , (7.35)

C
m

4 = 1
2

⁄ Œ

0
dz3I

2
“f ¥ e

≠ 2m2fi
eE

fi
2

2eE2
121/4

Ô
eEfi

392
63

2�(1
4)2

�(3
4)2 . (7.36)



82 Chapter 7. Chiral Density Fluctuations

We ultimately find for the in-in quadratic mass piece
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Let us repeat similar arguments for the in-out equilibrium, Īm, term:
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(7.38)
We can see as before for the chiral condensate case there are imaginary pieces in the
in-out correlation function. However, let us confine our attention to just the real
part of the in-out correlation function to discern the most relevant physical prop-
erties. The real part is exactly the same as the in-in case without the exponential
suppression, and we can immediately write down Īm as
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7.3 Covariant Derivative Portion
We now proceed onto the last set of covariant derivative integrals. These sets of
integrals proceed as before in the quadratic mass term evaluation. Upon examining
the covariant derivative acting on the kernel, and using similar reasoning above we
note that contributions to z0 as well as integral sets with just one zµ in the dz

integral (after variable change) will disappear. We are left with the following:
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Now we take the various Dirac traces and perform the LLLA. Note that integrations
over z1 and z2 will give similar contributions and thus cross terms in the above will
cancel. The above becomes
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We can treat the various integrals as before. There is one additional integral in the
mass piece however. Using a weak field approximation we find.
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Then we can evaluate three of the integrals as before
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In contrast to the quadratic mass integrals, there is a divergence in the last integral
as z3 æ 0. This can be removed with a suitable UV cuto� in proper time:
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We are left with an incomplete gamma function whose behavior for large � acts
linear in �.

Next, we examine the essential singularity parts of ID. Each integral can be
handled as before however here we integrate numerically after a change of variables.
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Let us also note here that all the essential singularity terms in ID are of the same
order in eE and thus

e
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N
D here is a numerical factor from the above integrals. Gathering all the terms for

ID, we find
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Repeating similar analyses, the equilibrium part follows as, where again we con-
fine our attention to the real part of the in-out correlation function,
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Putting everything together we find for the real and equilibrium chirality fluctu-
ations (ND is given by Eq. (7.59))

‰5/V = e
2
EB t

2fi2 e
≠ 2m2fi

eE + e
3
E

2
B

fi

Y

]

[

N
D

2 · 43fi2 e
≠ 2m2fi

eE (eE)≠ 3
2

+
3

1 ≠ e
≠ m2fi

eE

425

≠
45 e

2
E

2

1282 m7 ≠
1

512m3 +
Ô

2fim

64e2E2fi2

3

�[≠1
4 ,

m
2

�2 ]
426

Z

^

\

+ e
3
E

2
B

fi

I

(2.827)e≠ 2m2fi
eE m

2(eE)≠ 7
2 +

3

1 ≠ e
≠ m2fi

eE

423

m

2 e2E2 + 3
64 m3

4

Z

^

\

(7.62)
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To reiterate the LLLA and a weak electric field large mass, m
2

∫ eE, approx-
imations have been taken in the above. The most significant di�erence between
the two values is the presence of exponentially suppressed mass terms, (particularly
with time dependence as well), in the real-time observable. Neither the suppression
nor the real-time dependence are seen for the equilibrium chiral fluctuations. The
real-time dependence is linear for the fluctuations and this is to be expected as a
quadratic order real-time dependence was subtracted in ÈÈN5ÍÍ

2. As for the remain-
ing terms, considering the assumption of a weak electric field (small mass) we can
quickly see which terms are dominant in the above. They reside in the ID piece as-
sociated with the covariant derivative term, associated with a UV divergence. The
divergence piece can be seen to go as linear in � in the chiral density fluctuation
for both equilibrium and real-time cases. Curiously we also see terms that go like
1 ≠ exp(≠m

2

eE
). While for chiral fluctuations, due to the weak field limit, such terms

cannot vanish but we will see in the next section with a focused example, the chiral
condensate, this term does vanish for strong fields. Furthermore the chiral conden-
sate also possesses a similar UV divergence. Therefore it is instructive to examine
the chiral condensate, which we do so next.



Chapter 8

Dynamical Chiral Condensate

We now shift our attention to the chiral condensate, as is commonly referred to
in QCD applications–otherwise known as the scalar condensate. The condensate
famously acquires a non-zero value in QCD due to the breaking of the chiral sym-
metry, which in turn imparts the bulk of mass to the hadrons. As we saw before in
the chiral fluctuation calculation, properties not seen in the previous 2-point corre-
lators were present: namely the presence of 1 ≠ exp(≠m

2

eE
) pieces and an ultraviolet

divergence. The chiral condensate in fact, too, possesses such features and is more
analytically tractable than is the chiral fluctuations. Furthermore, the chiral con-
densate, (much like the pseudoscalar condensate), is a quintessential observable in
chiral phenomena and thus rounds out our analysis.

Perhaps one of the most prominent examples of the chiral condensate stems from
its enhancement under a background magnetic field in what is known as magnetic
catalysis [22, 123]. An intuitive extension would be to ask how the condensate
behaves under an electric field in and out of equilibrium. Let us note here the
equilibrium case has been explored in Ref. [124]; we expand on this by introducing
real-time properties including e�ects stemming from the Schwinger mechanism.

The chiral condensates in and out-of-equilibrium respectively read

�̄ := ÈÂ̄ÂÍ = i lim
yæx

tr
Ë

S
c(x, y)

È

, (8.1)

� := ÈÈÂ̄ÂÍÍ = i lim
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Ë

S
c
in(x, y)

È

. (8.2)

To recover the magnetic catalysis case one only need to take the electric field to zero
of either quantity above since the two are formally equivalent without the presence
of an electric field. To analyze a simpler expression let us take the LLLA, then the
chiral condensate then reads

�̄
-

-

-

E=0
= ≠
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4fi2 m

⁄ Œ

0

ds

s
e

≠im
2
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s
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ƒ ≠
eB

4fi2 m �[0, m
2
/�2] . (8.3)

Here � is the incomplete gamma function. In the second step we have made a Wick
rotation in s æ ≠is, and then introduced an ultraviolet cuto�. In so doing we
may explicitly see the connection to familiar equations used for magnetic catalysis,

86



8.1. Euclidean Equilibrium 87

e.g. see Ref. [22, 123]. In the final step we have employed the LLLA. In the chiral
condensate without an electric field a logarithmic divergence emerges,

�[0, m
2
/�2] ƒ ≠“E + ln(�2

/m
2) . (8.4)

Applied to the e�ective potential this logarithmic singularity, with small m, yields
an negative infinite curvature producing the magnetic catalysis. Here “E is the
Euler-Mascheroni constant.

We introduced the magnetic catalysis in Sec. 2.3.3. There we found even under
a massless limit a non-vanishing value persists for the dynamical mass, Eq. (2.31),
(found from solving a gap equation), under a strong magnetic field. The physics
behind this process is deducible from a LLLA e�ectively creating a dimensionally
reduced system; there the magnetic field, in essence, could coalesce the–classically
motivated–particle anti-particle pair through a spin alignment. It is then a fasci-
nating extension to introduce an electric field; as one could gather much about the
chiral condensate through a heuristic physical picture presumably one could also do
the same with an electric field. Indeed this is the case we will show.

8.1 Euclidean Equilibrium
Then let us examine how the condensate behaves in and out-of-equilibrium with
the addition of an electric field. First, we look at the equilibrium case. Following a
similar procedure as employed in the sole magnetic field case, Eq. (8.3), we arrive
at
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In the final step the approximation, e
≠m

2
/�2

≥ 1, has been used and then only
leading order contributions for large �2 are kept. From the cotangent function we
see a digamma function, Â(x), emerges whose contributions include an augmentation
of the chiral condensate as well as imaginary pieces. Using an asymptotic expansion,
namely Â(x) ≥ ln x ≠ 1/2x for large x in the digamma function, we can recover the
magnetic catalysis case, Eq. (8.3) for E æ 0.

With the addition of a finite electric field we can see the logarithmic singularity
with respect to m

2 disappears; see Ref. [124] for further investigation. What is more,
here in the equilibrium case is the appearance of an imaginary part in the condensate.
Analogous complex features were found in an examination of the condensate under
a finite topological ◊ [125, 126]. A topological ◊ and parallel fields share a similar
quantum number thus it is anticipated that complex values emerge. However, what
is novel in our case is the formation of a bosonic-like distribution in the imaginary
part of the condensate; here temperature is replaced with fi/(eE). Let us point



88 Chapter 8. Dynamical Chiral Condensate

out also that the same structure is present in the matrix element predicting the
probability of two pairs of particles emerging from the vacuum, i.e., Eq. (4.45). Let
us emphasize here that the placement of the fi/eE factor here is not indicative of a
single pair as it includes the summation of all n factors of nfi/eE factors summed in a
geometric series. Thus, with the above descriptions in terms of a Boson distribution,
one can see that the fi/eE factor present in the imaginary part should be associated
with an out-of-equilibrium phenomena–one whose characteristic “temperature” is
fi/(eE). Now, equipped with the in-out expectation value we can show the real-
time chiral condensate does in fact contain such an exponential, exp(≠fim

2
/eE),

factor. And moreover, the real-time expectation value is real.

8.2 Real-Time
The real-time or dynamical chiral condensate too displays interesting behavior under
a parallel electric field. In the same way as in the equilibrium case above one
may perform an imaginary rotation in s to find the real-time condensate is an
augmentation of the equilibrium one:
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We have only kept terms in leading order in the large �2 limit. As in the equilibrium
case we see UV divergences appear. Here (as in the same way for s æ 0 assuming
LLLA) as s æ ≠i

fi

eE
we find an additional UV divergence. Therefore we regulate

both divergences the same way with a 1/�2 prescription. Furthermore, as follows
from the Hermiticity of in-in expectation values, there is no imaginary part as was
observed in the equilibrium case. The real-time chiral condensate is plotted in
Fig. 8.1 below.

What is interesting here is we see a diminishing e�ect on the constituent mass,
or rather a “melting” of the chiral condensate in a parallel electric field. As
exp(≠fim

2
/eE) grows large the real-time chiral condensate vanishes. Particles

produced from the vacuum act to reduce the constituent mass. Furthermore, one
can see that for any large electric field the chiral condensate vanishes, and in fact
may even take on positive values, thus negating the catalyzing e�ect from the
magnetic field. One can intuitively grasp this making use of the same classical
picture of a condensed particle and anti-particle used in Sec. 2.3.3. A parallel to the
background magnetic field electric field will act to pull apart the pair, weakening
it. This stands in contrast to the magnetic field, which would act to strengthen the
condensate from spin alignment, or a dimensional reduction in the LLLA.

In the context of spontaneous symmetry breaking, then it becomes an interesting
question to ask: Under the e�ects of a dynamical mass, to which mass does the
Schwinger mechanism apply–the constituent or bare mass? Eq. (8.6) provides some
clarity. At the critical electric field strength, the chiral condensate should melt and
no constituent mass would emerge (defined using an in-in formalism).
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Figure 8.1: Real-time chiral condensate, Eq. (8.6), in background parallel electric
and magnetic fields. The chiral condensate is multiplied by 4fi

2

eB� and is plotted for
electric field strength, eE (normalized by the scale �2), and quadratic mass, m

2

(also normalized by the scale �2). Notice the melting, � æ 0, of the condensate
for larger values of E. This phenomenon can be attributed to the fact that an
electric field acts to separate the condensate, in turn restoring the chiral symmetry.
Note, this is an inverse magnetic catalysis behavior, in contrast to the behavior in
a sole magnetic field. In e�ect, the Schwinger mechanism is acting to decrease the
constituent mass.

With the advent of studies on the applicability of the Schwinger mechanism and
magnetic catalysis in condensed matter systems, it too may be possible to verify
(falsify) the melting of the chiral condensate. This may be particularly the case
for a Weyl semimetal. In the semimetal, it is reasoned the Schwinger mechanism
may be visible [127]. But not only the Schwinger mechanism, in fact, there might
also be potential for the study of magnetic catalysis [128]. Let us also point out
that the melting of the chiral condensate does not necessarily require the Schwinger
mechanism and an out-of-equilibrium picture to verify. In fact, even in equilibrium
a lessening of the condensate should be present according to Eq. (8.5) for strong
magnetic fields.
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Conclusions

The interplay between the generation of chirality in strong electromagnetic back-
ground fields that are CP violating and the Schwinger mechanism has been exam-
ined. While it has been known at a cursory heuristic level that the Schwinger mecha-
nism may give rise to a net chirality [13], we have clarified the importance of asymp-
totic vacuum states (in(out) states correspond to asymptotic times, t æ ≠Œ(+Œ))
in the realization of expectation values both in real-time and in an equilibrated
Euclidean setting. Notably, the known heuristic picture of chirality production via
the Schwinger mechanism corresponds to an in-in (or real-time) vacuum state ex-
pectation value, that describes a scenario out-of-equilibrium–where any number of
pairs may be produced in the out state. Whereas the in-out state is a matrix ele-
ment expectation value, and upon Wick rotation describes a scenario of Euclidean
equilibrium–or a state in which no pairs of particles are produced in the out state.
In-out and in-in expectation values were found utilizing the worldline formalism.

9.1 Summary of Results
Our primary new finding was the importance of asymptotic vacuum states, (whether
in-out (Euclidean equilibrium) or in-in (out-of-equilibrium)), for the determination
of expectation values related to the chiral anomaly. This was an essential finding
in that not only does it paint a new picture of the chiral anomaly in and out-
of equilibrium, but also it establishes the anomaly’s dependence on the vacuum
instability–the Schwinger mechanism. In turn, we also discovered the behavior of
the anomaly in and out-of equilibrium with mass e�ects. Notably, there was no
anomaly in equilibrium, regardless of the mass. Out-of-equilibrium mass e�ects are
characteristic of an exponential mass suppression due to the Schwinger mechanism.

To achieve this understanding several quantities were calculated, and these are
listed in Table 9.1. Before diving into the significance of each item, it is important
to recapitulate which quantities were previously known and which were new. Here
and throughout this chapter we refer to Table 9.1, and the notations for the various
expectation values therein, for discussions. P̄ , j̄

µ, and j
µ were known expressions.

P , ˆ0n5, j
µ

5 , and �̄ appeared in literature, however we provided significant new
understandings and derivations of each. Last, to the best of our knowledge, ˆ0n̄5,
j̄

µ

5 , ‰̄5, ‰5, and � were entirely new results, which could not be found elsewhere.
Let us review each known result first, and describe what we had done that was

novel. The calculation of P̄ was notably first achieved by Schwinger in Ref. [15] to
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Table 9.1: Summary of results both previously known and new: a denotes known
values, b denotes known values, but with significant new understandings and deriva-
tions, and c denotes entirely new results. Using both Euclidean equilibrium (in-out)
representations and real-time (in-in) representation various expectation values were
calculated pertaining to the spontaneous generation of chirality from the Schwinger
mechanism. Calculations leading to the pseudoscalar condensates, the axial Ward
identities, and chiral currents can be found in Ch. 5. Calculations for the chiral
magnetic e�ect currents can be found in Ch. 6. Those for the chiral fluctuations are
in Ch. 7, where the full expressions can be seen in Eq. (7.63); note here a truncated
approximated expression is listed. And finally, calculations for the chiral condensate
are located in Ch. 8.

characterize the decay of a neutral meson into two photons. However, that it cancels
out in the axial Ward identity leading to ˆ0n̄5, and also j̄

µ

5 , vanishing was a new and
profound result, signaling a new understanding of the anomaly. As further evidence,
it has been noted elsewhere [122] that j̄

µ, the CME, vanishes in equilibrium. And,
it had been shown in Ref. [13] that j

µ may arise through the Schwinger mechanism.
Through an identification of vacuum states, however, we had been able to provide a
new perspective of the CME in and out-of-equilibrium stemming from the Schwinger
mechanism. Moreover, ˆ0n5, and j

µ

5 have indeed been known at a heuristic level
in Ref. [13], and P was also conjectured from the Schwinger formula in Ref. [120].
However, it addition to our main finding of an identification of vacuum states, we had
provided for the first time, using the worldline formalism, one-loop exact expressions
for P , ˆ0n5, and j

µ

5 . This was significant in that it supported our notions of the
anomaly cancelling in equilibrium, yet reappearing out-of-equilibrium exactly. Last,
while �̄ has been discussed in equilibrium before [124], we had for the time shown its
complex behavior, (i.e., imaginary pieces in the chiral condensate). Let us discuss the
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ramifications of both known and new results in the context of Euclidean equilibrium
and real-time pictures.

We found that P and hence the axial Ward identity took on finite values in-
dicative with contributions to the Schwinger mechanism out-of-equilibrium in ho-
mogeneous parallel electric and magnetic fields. Prominent features of real-time
out-of-equilibrium observables were both a characteristic exponentially suppressed
quadratic mass term that was non-perturbative in the coupling and electric field,
as well as a real-time linear time dependence. The former is seen in Schwinger’s
formula, Eq. (2.23), for the probability of a single particle anti-particle pair be-
ing produced in the out state. And the latter, the real-time dependence, is also
characteristic of a space-time volume factor present in Schwinger’s formula.

The real-time expectation values provided us with one-loop exact mass depen-
dence of ˆ0n5 and the CME, j

µ. However, while an exponential mass dependence
was seen for out-of-equilibrium expectation values, curiously there was no mass de-
pendence for equilibrium quantities including j̄

µ

5 and j̄
µ. In fact, j̄

µ

5 and j̄
µ, which are

associated with the anomaly, were seen to vanish in equilibrium or using an in-out
formalism. Considering the quintessential cartoon of the anomaly, (see Sec. 2.3.1),
one can see that to initiate the anomaly process two ingredients are required: an
electric field to distort the Dirac eigenspectrum and a vacuum instability (or rather
a source of infinite particles/holes by which the anomaly can initiate). The latter
requirement is seen more clearly with an energy or mass gap, as in Fig. (1.3). We
find that not only for homogeneous Abelian fields, but also in the massive Schwinger
model as well as any case with weak field or large mass, the chiral anomaly indeed
vanishes, and chirality is conserved according to the axial Ward identity.

We also found analogous in and out-of-equilibrium behavior in applications to
the axial Ward identity including the CME, j

µ, and ‰5. The former, like the chiral
density, possessed the characteristic Schwinger mass suppression along with linear
time dependence. However, unlike the chiral density, j

µ, predictive of the CME,
includes contributions from all Landau levels. However let us point out that strictly
speaking only the lowest Landau level ought to be considered for a rigorous definition
of the CME, and this is because only the lowest level can be associated with chirality
production. Also, ‰5 was found to be finite and with linear time dependence for
pieces associated with the production of particles. And, motivated by a melting
behavior in the fluctuations we examined a theoretically interesting and supportive
quantity known for its nonperturbative behavior in a magnetic field, that is the chiral
condensate, �. � was found to weaken with the inclusion of an electric field, even
vanishing for strong enough fields. We may heuristically understand this behavior
as the electric field acting to tear the condensate (particle anti-particle) pair apart,
whereas a magnetic field–responsible for magnetic catalysis of the condensate, serves
to align the spins strengthening the condensate.

Let us discuss one limitation of our setup, that is that we are restricted to the
use of homogeneous fields. The advantage is manifest in that we may obtain simple
expressions unobscured by technicalities. However, the cost is that divergences ap-
pear due to infinite homogeneous fields; these divergences however were identifiable
with real-time as was shown in Eq. (5.25). Additionally, one must assume for a
realistic setup that our system is contained in some space-time volume box, i.e.,
V t. To circumvent the problem of divergences, as well as a clear real-time depen-
dence, inhomogeneous fields ought to be utilized, and this is a subject for future
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work. Before discussing future projects, let us remark on some implications of our
findings.

9.2 Implications
9.2.1 Weyl Semimetal Testing
Our findings are in principal testable both in QED in high-powered lasers and
in QCD in heavy ion collisions, however both setups come with significant chal-
lenges. The Schwinger critical electric field is still beyond our technical limits in
high-powered lasers–even though more exotic field configurations o�er one solution.
Also, ultra-peripheral collisions may o�er a unique means to access non-linear QED
e�ects, including the Schwinger mechanism, since the strong force is negated due to
the large separation of colliding nuclei. However, how might one extract meaningful
data on the Schwinger mechanism is still not at hand. Yet, testing of the Schwinger
mechanism along with chirality generation in parity violating fields is eminently
testable in semimetal environment; c.f. see Sec. 2.2.2.

The Schwinger mechanism is facilitated through a Landau Zener transition in
condensed matter systems signaling a breakdown of an insulator. In the absence
of a magnetic field, it has been reasoned, the mechanism may be observable in a
Weyl semimetal [64]. While such a case is in theory gapless, a non-vanishing gap
may be tunable [60]; in a direct analogy to mass let us call this �. Then using the
CME to access the anomaly one may surmise a conduction current in the direction
of parallel electric and magnetic fields to grow linear in time with an exponential
gap suppression:

jCME Ã e
2
EB t coth

1fiB

E

2

exp
1

≠
fi�2

vF~eE

2

, (9.1)

for large times following the switch-on of the electric field. However, let us point
out that realistic e�ects in a semiconductor environment are not taken into account
here. These, could include finite volume or temperature e�ects, or competing mech-
anisms which may conceal the above current. In any case, it would be a fruitful
endeavor to more fully explore the generation of chirality by Landau Zener tunnel-
ing in semimetals, as this could serve as a tabletop experiment for the otherwise
inaccessible physics of the anomaly and vacuum instability in QFTs.

9.2.2 Suppression of Anomaly
An immediate application of the work outlined in this thesis is apparent in that
processes initiated through the anomaly that were once thought inhibited are now
strongly exponentially suppressed. For example, the appearance (or rather lack there
of) of anomaly fluctuations in colliders might be explainable due to a finite, though
small, quark mass. A further example is provided in early universe applications;
there, baryogenesis theories thought sourced through an anomalous term may now,
too, be strongly suppressed. There may in fact be many a�ected theories built on
an anomaly.
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9.2.3 Strong CP Problem
One of the final unsolved problems for the Standard Model is the strong CP problem.
Most proposed solutions lie beyond the Standard Model, the most popular of which
is the addition of a new particle, the axion [129]. However, our Euclidean equilibrium
calculation may shed some light on this famous problem not relying on beyond the
Standard Model physics. In a nutshell, the problem is why is there no topological
◊ term in the QCD Lagrangian. While we have shown that the anomaly disappears
in equilibrium, the more important point for this purpose is that the pseudoscalar
condensate was found to be purely topological. Then upon a finite ◊

Õ chiral rotation
of the QCD partition function, one could acquire a finite ◊

ÕÕ1 topological term in
a mean field approximation, in e�ect cancelling any existing ◊ term. The cost of
this procedure, however, is that the quark mass(es) would be lessened by cos(2◊

Õ).
Therefore, a finite theta QCD may in fact resemble a zero theta QCD but with
reduced mass. However, this analogy relies on the hypothesis that the pseudoscalar
condensate be purely topological. Proving this relationship we, however, leave for a
future work.

9.3 Future Directions
We have established the connection between chirality generation and the Schwinger
mechanism in this work, however, there are still future directions worth pursuit to
both broaden our outlook and to deepen our understanding. Some future directions
considered are an in-in formalism for generic field types, a closer examination of
the anomaly cancellation also for generic field types, a non-perturbative worldline
analysis beyond one loop, and a study of backreaction e�ects.

While we may indeed have a heuristic picture of chirality production via the
Schwinger mechanism, as an extension to this work it is important to develop a
general framework with which to calculate in-in real time propagators for general
inhomogeneous fields.

Although we found for the equilibrium case the anomaly in homogeneous fields
will vanish, it is a curious extension if this indeed exists for any field. Already
preliminary calculations tell us that it should. To treat this problem justly a purely
Euclidean metric should be used and the pseudoscalar should be calculated on the
lattice, and moreover, the extension to non-Abelian fields with a topological winding
number is most important in this analysis.

The Schwinger mechanism to all orders, including the e�ects of a dynamical
gauge field, in a constant electric field has been established. However, a robust
mathematical means which naturally includes the non-perturbative nature of the
Schwinger mechanism while keeping all orders of a dynamical gauge field is needed.
Worldline instantons provide a reliable non-perturbative method of handling inho-
mogeneous and other complicated background fields. And, encompassing worldline
methods to include higher loop e�ects may prove indispensable. Already, interest-
ing extensions to worldline instantons exist in homogeneous fields accompanied by
dynamical photons [130]. Yet, a more thorough treatment valuable to high-intensity

1◊ÕÕ
”= ◊Õ, since the axial Ward identity at finite chiral rotation is di�erent from the one presented

earlier, Eq. (2.26).
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laser experiment environments is needed. Another needed extension lies with accu-
rately treating an otherwise immutable background field or backreaction e�ects.

The background field method is illuminating and powerful for select QFT phe-
nomena, however, there are instances in which the method breaks down. One such
case lies with the Schwinger mechanism. Produced pairs a�ect the background field
which produced them, and to treat the interplay judiciously is challenging. Yet, this
is an important detail in for example high-intensity laser experiments causing beam
depletion. In Ref. [131] a coherent state formalism under the Furry picture was used
to treat backreaction e�ects. There, scattering between initial and final coherent
states could be modeled through a complex background field. Further study in this
direction would prove fruitful. Moreover, it would be an interesting extension to
analyze backreaction e�ects modeled as a complex potential on worldline instantons
as well as ramifications to known expectation values.
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[64] S. Vajna, B. Dóra, and R. Moessner, “Nonequilibrium transport and statistics
of Schwinger pair production in Weyl semimetals,” Phys. Rev. B 92, 085122
(2015).

[65] M. Marklund and J. Lundin, “Quantum vacuum experiments using high in-
tensity lasers,” Eur. Phys. J. D55, 319 (2009).

[66] G. V. Dunne, “New Strong-Field QED E�ects at ELI: Nonperturbative Vac-
uum Pair Production,” Eur. Phys. J. D55, 327 (2009).

[67] A. Ringwald, “Boiling the Vacuum with An X-Ray Free Electron Laser,” in
Quantum Aspects of Beam Physics 2003 (2004) pp. 149–163.

[68] T. Heinzl and A. Ilderton, “Exploring high-intensity QED at ELI,” Eur. Phys.
J. D55, 359 (2009).

[69] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M. Marklund,
I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin, and E. Wallin, “Extended
particle-in-cell schemes for physics in ultrastrong laser fields: Review and de-
velopments,” Phys. Rev. E 92, 023305 (2015).

[70] C. Bamber, S. J. Boege, T. Ko�as, T. Kotseroglou, A. C. Melissinos, D. D.
Meyerhofer, D. A. Reis, W. Ragg, C. Bula, K. T. McDonald, E. J. Prebys,
D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C.
Berridge, W. M. Bugg, K. Shmakov, and A. W. Weidemann, “Studies of
nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses,”
Phys. Rev. D 60, 092004 (1999).

[71] M. Ruf, G. R. Mocken, C. Muller, K. Z. Hatsagortsyan, and C. H. Keitel,
“Pair Production in Laser Fields Oscillating in Space and Time,” Phys. Rev.
Lett. 102, 080402 (2009).

[72] D. Kharzeev, E. Levin, and K. Tuchin, “Multi-particle production and ther-
malization in high-energy QCD,” Phys. Rev. C75, 044903 (2007).

[73] N. Tanji, “Quark pair creation in color electric fields and e�ects of magnetic
fields,” Annals Phys. 325, 2018 (2010).

[74] Y. Zhong, C.-B. Yang, X. Cai, and S.-Q. Feng, “Spatial distributions of
magnetic field in the RHIC and LHC energy regions,” Chin. Phys. C 39,
104105 (2015).

http://dx.doi.org/10.1103/PhysRevD.78.096009
http://dx.doi.org/10.1103/PhysRevB.81.165431
http://dx.doi.org/10.1103/PhysRevB.81.165431
http://dx.doi.org/10.1103/PhysRevB.92.085122
http://dx.doi.org/10.1103/PhysRevB.92.085122
http://dx.doi.org/10.1140/epjd/e2009-00022-0
http://dx.doi.org/10.1140/epjd/e2009-00113-x
http://dx.doi.org/10.1140/epjd/e2009-00113-x
http://dx.doi.org/10.1103/PhysRevE.92.023305
http://dx.doi.org/10.1016/j.aop.2010.03.012


102 Bibliography

[75] L. Keldysh, “IONIZATION IN THE FIELD OF A STRONG ELECTRO-
MAGNETIC WAVE,” Sov. Phys. JETP 20, 1307 (1965).

[76] N. B. Narozhnyi and A. I. Nikishov, “The Simplist processes in the pair cre-
ating electric field,” Yad. Fiz. 11, 1072 (1970).

[77] H. Gies and K. Klingmuller, “Pair production in inhomogeneous fields,” Phys.
Rev. D D72, 065001 (2005).

[78] C. Schneider and R. Schutzhold, “Dynamically assisted Sauter-Schwinger ef-
fect in inhomogeneous electric fields,” JHEP 02, 164 (2016).

[79] C. Kohlfurst, M. Mitter, G. von Winckel, F. Hebenstreit, and R. Alkofer,
“Optimizing the pulse shape for Schwinger pair production,” Phys. Rev. D
88, 045028 (2013).

[80] M. Orthaber, F. Hebenstreit, and R. Alkofer, “Momentum spectra for dy-
namically assisted Schwinger pair production,” Phys. Lett. B 698, 80 (2011).

[81] K. Enqvist, “Primordial Magnetic Fields,” Int. J. Mod. Phys. D 7, 331 (1998).

[82] K. Fukushima and C. Sasaki, “The phase diagram of nuclear and quark matter
at high baryon density,” Prog. Part. Nucl. Phys. 72, 99 (2013).

[83] T. D. Cohen and D. A. McGady, “Schwinger mechanism revisited,” Phys. Rev.
D 78, 036008 (2008).

[84] G. V. Dunne, “Heisenberg-Euler e�ective Lagrangians: Basics and extensions,”
in From fields to strings: Circumnavigating theoretical physics (2004) pp. 445–
522.

[85] J. Ambjorn, J. Greensite, and C. Peterson, “The axial anomaly and the lattice
Dirac sea,” Nuclear Physics B 221, 381 (1983).

[86] P. I. Fomin, V. A. Miransky, and Yu. A. Sitenko, “Infrared problem and boson
suppression in massless Abelian gauge theory,” Phys. Lett. B 64, 444 (1976).

[87] J. Bardeen, L. N. Cooper, and J. R. Schrie�er, “Theory of Superconductivity,”
Phys. Rev. 108, 1175 (1957).

[88] S. P. Klevansky, “The Nambu—Jona-Lasinio model of quantum chromody-
namics,” Rev. Mod. Phys. 64, 649 (1992).

[89] E. Fradkin, D. Guitman, and S. Shvartsman, Quantum electrodynamics: with
unstable vacuum (Springer-Verlag, 1991).

[90] K. Fukushima, F. Gelis, and L. McLerran, “Initial singularity of the little
bang,” Nucl. Phys. A 786, 107 (2007).

[91] J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys.
2, 407 (1961).

[92] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp.
Teor. Fiz. 47, 1515 (1964).

http://dx.doi.org/10.1007/JHEP02(2016)164
http://dx.doi.org/10.1103/PhysRevD.88.045028
http://dx.doi.org/10.1103/PhysRevD.88.045028
http://dx.doi.org/10.1016/j.physletb.2011.02.053
http://cds.cern.ch/record/349272
http://dx.doi.org/10.1016/j.ppnp.2013.05.003
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1103/PhysRevD.78.036008
http://dx.doi.org/10.1016/0370-2693(76)90117-9
http://dx.doi.org/10.1103/PhysRev.108.1175
https://books.google.com/books?id=N73vAAAAMAAJ
https://books.google.com/books?id=N73vAAAAMAAJ
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.086
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727


Bibliography 103

[93] E. A. Calzetta and B.-L. B. Hu, Nonequilibrium Quantum Field Theory (Cam-
bridge University Press, 2008).

[94] A. K. Das, Finite Temperature Field Theory (World Scientific, New York,
1997).

[95] R. D. Jordan, “E�ective field equations for expectation values,” Phys. Rev. D
33, 444 (1986).

[96] J. Berges, “Introduction to nonequilibrium quantum field theory,” AIP Conf.
Proc. 739, 3 (2004).

[97] D. M. Gitman, “Processes of arbitrary order in quantum electrodynamics with
a pair creating external field,” J. Phys. A 10, 2007 (1977).

[98] G. Baym and L. P. Kadano�, “Conservation Laws and Correlation Functions,”
Phys. Rev. 124, 287 (1961).

[99] F. Gelis and R. Venugopalan, “Particle production in field theories coupled to
strong external sources, I: Formalism and main results,” Nucl. Phys. A 776,
135 (2006).

[100] F. Gelis and R. Venugopalan, “Particle production in field theories coupled
to strong external sources, II: Generating functions,” Nucl. Phys. A 779, 177
(2006).

[101] R. P. Feynman, “Mathematical formulation of the quantum theory of electro-
magnetic interaction,” Phys. Rev. 80, 440 (1950).

[102] R. P. Feynman, “An Operator calculus having applications in quantum elec-
trodynamics,” Phys. Rev. 84, 108 (1951).

[103] I. K. A�eck, O. Alvarez, and N. S. Manton, “Pair production at strong
coupling in weak external fields,” Nucl. Phys. B 197, 509 (1982).

[104] G. V. Dunne and C. Schubert, “Worldline instantons and pair production in
inhomogeneous fields,” Phys. Rev. D 72, 105004 (2005).

[105] P. Copinger and K. Fukushima, “Spatially Assisted Schwinger Mechanism and
Magnetic Catalysis,” Phys. Rev. Lett. 117, 081603 (2016), [Erratum: Phys.
Rev. Lett.118,099903(2017)].

[106] S. P. Kim and D. N. Page, “Schwinger pair production via instantons in a
strong electric fields,” Phys. Rev. D 65, 105002 (2002).

[107] G. V. Dunne, Q.-h. Wang, H. Gies, and C. Schubert, “Worldline instantons
and the fluctuation prefactor,” Phys. Rev. D 73, 065028 (2006).

[108] D. Cangemi, E. D’Hoker, and G. V. Dunne, “E�ective energy for QED in
(2+1)-dimensions with semilocalized magnetic fields: A solvable model,” Phys.
Rev. D 52, R3163 (1995).

[109] G. V. Dunne and T. M. Hall, “An exact (3+1)-dimensional QED e�ective
action,” Phys. Lett. B 419, 322 (1998).

http://dx.doi.org/10.1017/CBO9780511535123
http://dx.doi.org/10.1063/1.1843591
http://dx.doi.org/10.1063/1.1843591
http://dx.doi.org/10.1088/0305-4470/10/11/026
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1016/j.nuclphysa.2006.07.020
http://dx.doi.org/10.1016/j.nuclphysa.2006.07.020
http://dx.doi.org/10.1016/j.nuclphysa.2006.08.015
http://dx.doi.org/10.1016/j.nuclphysa.2006.08.015
http://dx.doi.org/10.1103/PhysRev.80.440
http://dx.doi.org/10.1103/PhysRevD.73.065028
http://dx.doi.org/10.1103/PhysRevD.52.R3163
http://dx.doi.org/10.1103/PhysRevD.52.R3163


104 Bibliography

[110] T. M. Tritt, N. D. Lowhorn, R. T. Littleton, A. Pope, C. R. Feger, and
J. W. Kolis, “Large enhancement of the resistive anomaly in the pentatelluride
materials HfTe5 and ZrTe5 with applied magnetic field,” Phys. Rev. B 60, 7816
(1999).

[111] G. N. Kamm, D. J. Gillespie, A. C. Ehrlich, T. J. Wieting, and F. Levy,
“Fermi surface, e�ective masses, and Dingle temperatures of ZrTe5 as derived
from the Shubnikov–de Haas e�ect,” Phys. Rev. B 31, 7617 (1985).

[112] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo,
X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C.
Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, “Massive Dirac Fermion on
the Surface of a Magnetically Doped Topological Insulator,” Science 329, 659
(2010).

[113] A. A. Burkov, “Chiral Anomaly and Di�usive Magnetotransport in Weyl Met-
als,” Phys. Rev. Lett. 113, 247203 (2014).

[114] M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge
University Press, 2014).

[115] D. Vasak, M. Gyulassy, and H.-T. Elze, “Quantum transport theory for
abelian plasmas,” Annals Phys. 173, 462 (1987).

[116] H.-T. Elze and U. W. Heinz, “Quark-Gluon transport theory,” Phys. Rept.
183, 81 (1989).

[117] A. Yamamoto, “Lattice QCD with Strong External Electric Fields,” Phys.
Rev. Lett. 110, 112001 (2013).

[118] G. V. Dunne, J. Hur, C. Lee, and H. Min, “Precise Quark Mass Dependence
of Instanton Determinant,” Phys. Rev. Lett. 94, 072001 (2005).

[119] G. V. Dunne, J. Hur, C. Lee, and H. Min, “Calculation of QCD instanton
determinant with arbitrary mass,” Phys. Rev. D 71, 085019 (2005).

[120] H. J. Warringa, “Dynamics of the chiral magnetic e�ect in a weak magnetic
field,” Phys. Rev. D 86, 085029 (2012).

[121] A. I. Nikishov, “Pair production by a constant external field,” Zh. Eksp. Teor.
Fiz. 57, 1210 (1969).

[122] N. Yamamoto, “Generalized Bloch theorem and chiral transport phenomena,”
Phys. Rev. D 92, 085011 (2015).

[123] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, “Dimensional reduc-
tion and dynamical chiral symmetry breaking by a magnetic field in (3+1)-
dimensions,” Phys. Lett. B 349, 477 (1995).

[124] L. Wang, G. Cao, X.-G. Huang, and P. Zhuang, “Nambu-Jona-Lasinio model
in a parallel electromagnetic field,” Phys. Lett. B 780, 273 (2018).

[125] D. Boer and J. K. Boomsma, “Spontaneous CP-violation in the strong inter-
action at ◊=fi,” Phys. Rev. D 78, 054027 (2008).

http://dx.doi.org/10.1103/PhysRevB.60.7816
http://dx.doi.org/10.1103/PhysRevB.60.7816
http://dx.doi.org/10.1103/PhysRevB.31.7617
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://dx.doi.org/10.1016/0370-1573(89)90059-8
http://dx.doi.org/10.1016/0370-1573(89)90059-8
http://dx.doi.org/10.1103/PhysRevLett.94.072001
http://dx.doi.org/10.1103/PhysRevD.71.085019
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://dx.doi.org/10.1016/j.physletb.2018.03.018
http://dx.doi.org/10.1103/PhysRevD.78.054027


Bibliography 105

[126] K. Mameda, “QCD ◊-vacua from the chiral limit to the quenched limit,” Nucl.
Phys. B 889, 712 (2014).

[127] S. Vajna, B. Dora, and R. Moessner, “Nonequilibrium transport and statistics
of Schwinger pair production in Weyl semimetals,” Phys. Rev. B 92, 085122
(2015).

[128] B. Roy and J. D. Sau, “Magnetic catalysis and axionic charge density wave in
Weyl semimetals,” Phys. Rev. B 92, 125141 (2015).

[129] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Pseu-
doparticles,” Phys. Rev. Lett. 38, 1440 (1977).

[130] O. Gould, A. Rajantie, and C. Xie, “Worldline sphaleron for thermal
Schwinger pair production,” Phys. Rev. D 98, 056022 (2018).

[131] A. Ilderton and D. Seipt, “Backreaction on background fields: A coherent
state approach,” Phys. Rev. D 97, 016007 (2018).

http://dx.doi.org/10.1016/j.nuclphysb.2014.11.002
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.002
http://dx.doi.org/10.1103/PhysRevD.98.056022

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation and Outstanding Issues
	Anticipations
	Issue Resolutions
	Notations and Outline

	Background
	Chiral Anomaly
	Chiral Magnetic Effect
	Chiral Magnetic Effect in Condensed Matter
	Chiral Magnetic Effect in Heavy Ion Collisions

	Background Electric Field
	Schwinger Mechanism
	Schwinger Mechanism in Condensed Matter
	Schwinger Mechanism in High Powered Lasers
	Inhomogeneous Fields

	Background Magnetic Field
	Schwinger Mechanism with Magnetic Field
	Axial Ward Identity
	Magnetic Catalysis

	Observables under a Vacuum Instability

	Methods
	In-In Formalism and the Schwinger Keldysh Closed Time Path
	Worldline Formalism
	Schwinger Mechanism Enhancement in Inhomogeneous Fields
	Electric and Magnetic Field Kernels
	Spatially Inhomogeneous Magnetic Field
	Temporally Inhomogeneous Electric Field
	Enhancement Comparison


	Vacuum States and Observables
	Summary of Chirality Production Results
	In-Out Propagator
	In-In Propagator
	Matrix Element Expansion
	Dirac Eigendecomposition
	Schwinger Keldysh Real Time Correlators

	Euclidean (In-Out) and Real Time (In-In) Expectation Values

	Axial Ward Identity
	Pseudoscalar Condensate
	Euclidean Equilibrium
	Real-Time

	Chiral Density
	Euclidean Equilibrium
	Real-Time


	Chiral Magnetic Effect
	Euclidean Equilibrium
	Real-Time

	Chiral Density Fluctuations
	Time Dependent Portion
	Quadratic Mass Portion
	Covariant Derivative Portion

	Dynamical Chiral Condensate
	Euclidean Equilibrium
	Real-Time

	Conclusions
	Summary of Results
	Implications
	Weyl Semimetal Testing
	Suppression of Anomaly
	Strong CP Problem

	Future Directions

	Bibliography

