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Abstract

Three-dimensional (3D) topological Dirac semimetals (TDSs) with 3D linear dispersion in
bulk have been attracting considerable interest. 3D TDS can host topological surface states
and can be driven into topologically distinct phases such as a topological insulating or a Weyl
semimetallic state by controlling a band gap or breaking symmetry. Because of the possible
realization of chiral anomaly, the quantum limit where all carriers reside in the lowest Lan-
dau level has been studied with great interest. Nontrivial topology of conduction and valence
bands mixing in Dirac semimetals can give rise to giant orbital diamagnetism. To explore such
unconventional physics of 3DDirac electrons, chemically flexible 3D TDS, in which it is easy to
break symmetries, to introduce magnetism, and to control band filling and spin-orbit cou-
pling, is highly desirable. Recently, a family of cubic antiperovskite 𝐴�𝑇𝑡O (𝐴 = Ca, Sr, Ba;𝑇𝑡 = Sn, Pb) was theoretically proposed as a 3D massive Dirac electron system, free from the
contribution from other parabolic bands. The antiperovskite family with chemical flexibility is
promising for band engineering of 3D Dirac electrons.

In this thesis, we report the magnetotransport, the bulk magnetic susceptibility and the
nuclear magnetic resonance (NMR) experiments on Sr3PbO, one of the antiperovskite family.
The Hall resistivity and Shubnikov-de Haas oscillation measurements indicate a low density
of holes 𝑛 ∼ 10�� cm−� with an extremely light cyclotron mass of ∼ 0.01𝑚�, one percent
of free electron. A linear magnetoresistance (MR) with a giant MR ratio𝛥𝜌�� 𝐵 /𝜌�� 0 ∼ 10
was observed similar to other 3D TDSs. The temperature dependence of NMR spin lattice
relaxation rate 𝑇�−�with the deviation from the Korringa behavior at high temperature reflects
a V shaped density of states expected for 3D Dirac electrons. These results are fully consistent
with the presence of 3D Dirac electrons in Sr3PbO. The next step is to explore unconventional
physics anticipated for the 3D Dirac electrons.

Chiral anomaly has been experimentally explored and expected negative longitudinal
MR has been observed in several 3D TDSs. However, current jetting effects, focusing of a
current density, raised ongoing discussion about these experiments. We studied the angular
dependences of the longitudinal MR and the planar Hall effect in the Sr3PbO antiperovskite.
The intrinsic contribution associated with the chiral anomaly may be captured by the negative
longitudinal MR and the planar Hall effect at low magnetic field 𝐵 ∼ 0.5 T. The angular
dependences at high field 𝐵 > 0.5 T indicate the predominant effect of the current jetting
rather than the chiral anomaly. The detailed experiments will be left for future study to extract



clear conclusion.

In Dirac semimetals, the topology of an inter-band mixing, represented by inter-band Ber-
ry connection, can give rise to a giant orbital diamagnetism which strongly depends on the
chemical potential and temperature. The large diamagnetism has been observed, for example,
in the bulk magnetic susceptibility of Bi. However, the orbital origin of the large diamagnetism
has not been experimentally confirmed owing to the presence of other contributions to the
magnetic susceptibility associated with the complicated Fermi surface of Bi. We report the
bulk magnetic susceptibility and the 207Pb NMR experiments on Sr3PbO antiperovskite sam-
ples with different carrier density from ∼ 10�� to ∼ 10� cm−�. The magnitude of 𝑇�−� is
well scaled by a density of states derived from a band calculation. This enables us to separate
spin and orbital contributions of NMR Knight shift by analyzing 𝐾, 𝑇�−� and 𝜒 with the help
of a Korringa relation, which provides the evidence for the presence of the giant orbital dia-
magnetism in Sr3PbO.
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Chapter 1
Background

1.1. Dirac electron
1.1.1. Dirac equation in high energy physics
In 1928, P.A.M. Dirac proposed the Dirac equation [1] which describes relativistic spin 1/2
fermions such as an electron. Dirac equation can be written by𝑖ℎ ∂∂𝑡𝜓 = 𝐻𝜓 = 𝑐𝜶 ⋅ 𝒑 + 𝑚𝑐�𝛽 𝜓 (1.1)

where 𝑐, 𝑚, 𝒑 are the speed of light, mass, momentum. Here, 𝜶 and 𝛽 are 4 × 4 matrices
which satisfy 𝛼1,𝛼4 = 2𝛿14,  𝛼1,𝛽 = 0,  𝛽� = 1. (1.2)

In the Dirac representation, these matrices are explicitly written by𝛼1 = 𝜏� ⊗ 𝜎1 = 0 𝜎1𝜎1 0 ,  𝛽 = 𝜏; ⊗ 𝐼 =  𝐼 00 − 𝐼 (1.3)

and Dirac Hamiltonian becomes𝐻 = 𝑚𝑐� 𝑖𝑐𝒑 ⋅ 𝝈𝑖𝑐𝒑 ⋅ 𝝈 − 𝑚𝑐� (1.4)

where 𝜎1 and 𝐼 are Pauli matrix and identity matrix, respectively. A wave function 𝜓 has four
components which represent two spin states (up and down) and two kinds of particles (particle
and antiparticle). The energy dispersion can be obtained by solving𝐻𝜓 = 𝐸𝜓, (1.5)

which yields linear energy dispersion,𝐸 = ± 𝑚𝑐� + (𝑐𝑝)�, as shown in Fig. 1.1. This contrasts to
the Schrödinger equation with quadratic energy dispersion, 𝐸 = 𝑝�/2𝑚. The energy gap
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𝛥 = 2𝑚𝑐� corresponds to the energy for pair creation of two particles, for example, a electron
and a positron. 𝑚𝑐� is equal to the energy of the mass 𝑚, and thus 𝛥 = 𝑚𝑐� is called (Dirac)
mass gap. Considering the low energy limit 𝑝 ∼ 0, the energy dispersion becomes

𝐸 = 𝛥 1 + 𝑐𝑝𝛥 � �/� ∼ Δ + 𝑝�2𝑚 + 𝑂 𝑘F (1.6)

which reproduces the quadratic dispersion of the Schrödinger equation if we neglect a constant
offset 𝛥 and higher order terms 𝑂(𝑘F).
1.1.2. Chirality
In 3D Dirac electron system, a concept of chirality is important. Using the Weyl represen-
tation 𝛽 = 0 𝐼𝐼 0 ,  𝛼1 = − 𝜎1 00 𝜎1 , (1.7)

the Dirac equation can be written by𝑖ℎ ∂∂𝑡𝜓 = − 𝑖𝑐𝒑 ⋅ 𝝈 𝑚𝑐�𝑚𝑐� 𝑖𝑐𝒑 ⋅ 𝝈  𝜓 (1.8)

When 𝑚 = 0, Eq.1.8 can be decomposed into 2 × 2 Weyl equation as𝑖ℎ ∂∂𝑡𝜓H/J = ±𝑖𝑐𝒑 ⋅ 𝝈𝜓H/J (1.9)

∝ p

2Δ

Fig. 1.1. Linear energy dispersion of Dirac electron with mass gap 𝛥.
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𝜓 = 𝜓J𝜓H (1.10)

where 𝜓H/J is called Weyl spinor. Chirality 𝜒 for 𝜓H/J is defined as 𝜒 = +1/ − 1. In the
massless Dirac equation, chirality corresponds to helicity which takes + 1 ( − 1) when 𝒑 is
parallel (anti-parallel) to 𝝈. Since 𝜓H/J are independent solutions of the Weyl equations in
Eq.1.8, chirality is a good quantum number for massless Dirac fermions. Chiralities 𝜒 = ±1 are
hybridized in the massive Dirac equation with𝛥 ≠ 0. However, chirality can be approximately
a valid quantum number when 𝛥 is sufficiently small.

1.1.3. Dirac electron in condensed matter
In condensed matter physics, low energy excitation with much smaller energy than 𝑚𝑐� is
important. According to Eq.1.6, this indicates electrons in solids can be basically described by
the non-relativistic Schrödinger equation with the quadratic energy dispersion. A relativistic
effect is usually taken into account as a perturbation by spin-orbit coupling. However, the
relativistic Dirac Hamiltonian can be realized as a low energy effective Hamiltonian in some
material where a band crossing is protected against gap formation and gives rise to a linear
energy dispersion.

The most famous example of the realization of such Dirac electrons is graphene [2, 3], a
single layer of hexagonal lattice of carbon atoms, which hosts two-dimensional (2D) Dirac elec-
trons. Another important class of materials with 2D Dirac electrons is a topological insulator
(TI) [4, 5]. TI is insulating in the bulk but has gapless surface states with linear dispersion
protected by time reversal symmetry [6–10]. Topological crystalline insulator (TCI) [11] also
hosts gapless surface states protected by a crystalline symmetry. The presence of nontrivial
surface states in TI and TCI is attributed to the nontrivial topology of their bulk band struc-
tures where topological invariants such as Z� index or mirror Chern number take nontrivial
values. The low energy effective Hamiltonian in these 2D Dirac materials are given by𝐻 = ℎ𝑣O 𝒌 ⋅ 𝝈 (1.11)

where 𝑣O, 𝒌 are Fermi velocity and wave vector, respectively. Here, Pauli matrix 𝝈 corresponds
to the sublattice degree of freedom in grapehen and that of real spin in TI respectively. In
addition to Eq.1.11, the two distinct Dirac cones at K and K' points in the first Brillouine
zone (BZ) of graphene yields valley degree of freedom. These 2D Dirac materials have been
attracting considerable interest because of their unconventional properties such as the half-
integer quantum Hall effect, which was observed in graphene [2, 3], and the anomalous quan-
tum Hall effect in a magnetic TI [12, 13].

3D topological Dirac semimetal (TDS) [14–16], a 3D analogue of graphene, has 3D linear
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dispersion in bulk where crystalline symmetry protects the band crossing. Na�Bi is theoreti-
cally proposed as a candidate for 3D TDS [15] and experimentally confirmed by angle resolved
photoemission spectroscopy (ARPES) measurements [17, 18]. After the first realization of the
3D TDS phase in Na�Bi, several 3D TDSs such as Cd�As� [16, 19–30], TlBiSSe [31] and ZrTe\
[32–34] were discovered. 4 × 4 matrix elements of 3D Dirac Hamiltonian can be explicitly
written by    conduction   valence𝐻 = 𝛥 𝑖ℎ𝑣O 𝒌 ⋅ 𝝈𝑖ℎ𝑣O 𝒌 ⋅ 𝝈 − 𝛥

= 𝛥 0 𝑖ℎ𝑣O 𝑘; 𝑖ℎ𝑣O 𝑘+0 𝛥 𝑖ℎ𝑣O 𝑘− − 𝑖ℎ𝑣O 𝑘;𝑖ℎ𝑣O 𝑘; 𝑖ℎ𝑣O 𝑘+ − 𝛥 0𝑖ℎ𝑣O 𝑘− − 𝑖ℎ𝑣O 𝑘; 0 − 𝛥
or      𝜒 = +1      𝜒 = −1𝐻 = 𝑖ℎ𝑣O 𝒌 ⋅ 𝝈 𝛥𝛥 − 𝑖ℎ𝑣O 𝒌 ⋅ 𝝈

= 𝑖ℎ𝑣O 𝑘; 𝑖ℎ𝑣O 𝑘+ 𝛥 0𝑖ℎ𝑣O 𝑘− − 𝑖ℎ𝑣O 𝑘; 0 𝛥𝛥 0 − 𝑖ℎ𝑣O 𝑘; − 𝑖ℎ𝑣O 𝑘+0 𝛥 − 𝑖ℎ𝑣O 𝑘− 𝑖ℎ𝑣O 𝑘;
where 𝑘± = 𝑘� ± 𝑖𝑘d. conduction , valence and 𝜒 = ±1 indicate bases for matrix elements.
3D Dirac bands in 3D TDS are spin degenerate due to the combination of time reversal and
inversion symmetries.

1.2. Origin of Dirac electrons
Band repulsion usually gives rise to an avoided crossing which can be explained by the Schrö-
dinger equation in terms of effective mass approximation. However, linear dispersion can be
realized by a band crossing in some materials. In this section, an origin of the band crossing is
discussed based on previous theoretical works [14–16, 35–37].

1.2.1. Time reversal and inversion symmetry
Let us discuss transformation of a 𝒌,𝜎 state under time reversal and space inversion opera-
tion. The time reversal operation inverts the signs of both momentum 𝒌 and spin 𝜎 as 𝒌,𝜎 →
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−𝒌,−𝜎 . The space inversion operation also inverts the sign of the momentum, but it does not
flip the spin as 𝒌,𝜎 → −𝒌,𝜎 . When the system preserves both time reversal and inversion
symmetries, 𝒌, ↑ → 𝒌, ↓ holds by combining these operations. This indicates the system
with both time reversal and inversion symmetries is spin degenerate.

1.2.2. Band degeneracy protected by symmetry
Let us consider system which preserves certain symmetry. An operator of the symmetry 𝑃
and the Bolch Hamiltonian 𝐻 𝒌 satisfies𝑃𝐻 𝒌 𝑃−� = 𝐻 𝑃𝒌 . (1.12)

When 𝒌 is invariant under the operator 𝑃 as 𝑃𝒌 = 𝒌, the above relation becomes commutation
relation 𝐻(𝒌),𝑷 = 0. 𝐻 𝒌 can be block diagonalized by eigenvalue of 𝑃, 𝜆1, as

Parabolic

Dirac

Band crossing

Band repulsion

Degeneracy

Pk = k
&

Irreducible

Fig. 1.2. Band repulsion usually gives rise to an avoided crossing and parabolic bands. When
wave vector 𝑘 is invariant under an operator of symmetry, 𝑃, a band crossing between different
irreducible representations can be protected agains gap formation. This can realize linear
dispersion, leading to Dirac bands.
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𝐻 𝒌 = eigenvalue 𝜆� 0 ⋯ 00 eigenvalue 𝜆� ⋮⋮ ⋱ 00 ⋯ 0 eigenvalue 𝜆o (1.13)

where each block matrix corresponds to an irreducible representation of 𝑃. The states from
different irreducible representations have no off-diagonal elements, and therefore they are not
hybridized. When two bands from different irreducible representations form a band crossing
at invariant 𝒌 under 𝑃, the band degeneracy point is protected against gap formation (Fig.
1.2). The energy dispersion around the band touching point 𝑘 can be expanded as𝐸 = const. + ℎ𝑣O 𝑘 − 𝑘 + 𝑂 (𝑘 − 𝑘 )� (1.14)

which gives linear energy dispersion if 𝑘 − 𝑘 is sufficiently small.
A band crossing protected by rotational symmetry is a typical example of 3D TDS. Let

us consider system with n-fold symmetry. A rotation operator Cq satisfies Cq𝒌 = 𝒌 on the
rotational axis where𝐻 𝑘 andCq are commutative. As discussed above,Cq protects the band
crossing between the bands with different eigenvalues of Cq. Typical 3D TDSs, for exampleNa�Bi, Cd�As� and antiperovskites, realize linear dispersion by rotational symmetry [15, 16,
35, 36]. For example, the band crossing by Na 3𝑠 and Bi 6𝑝 orbitals gives rise to Dirac bands
in Na�Bi [15] as shown in Fig. 1.3. The Dirac Hamiltonian can be expressed as below.𝑠,↑          𝑝,↑          𝑝,↓          𝑠,↓     

𝐻 = 𝑖ℎ𝑣O 𝑘; 𝑖ℎ𝑣O 𝑘+ 0 0𝑖ℎ𝑣O 𝑘− − 𝑖ℎ𝑣O 𝑘; 0 00 0 − 𝑖ℎ𝑣O 𝑘; − 𝑖ℎ𝑣O 𝑘+0 0 − 𝑖ℎ𝑣O 𝑘− 𝑖ℎ𝑣O 𝑘;
(1.15)

Here, 𝝈 in the Weyl representation Eq.1.8 is pseudospin which represents orbital degree of
freedom (𝑠 and 𝑝 orbitals). Spin up or down components reside in chirality 𝜒 = +1 or 𝜒 = −1
states, respectively. The chirality degree of freedom corresponds to the spin degree of freedom.
Since the spin up and down states are degenerate at zero magnetic field, the 𝜒 = ±1 states are
also degenerate. The chirality ± 1 states are split in magnetic field due to Zeeman split, which
may realize chiral anomaly in 3D TDS, as will be discussed in 1.4.8.
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1.3. Dirac and topological materials
1.3.1. Dirac semimetal
In contrast to high energy physics, Dirac Hamiltonian in condensed matter physics is real-
ized as a low energy effective Hamiltonian. This means the linear energy dispersion 𝐸 𝒌 =𝛥� + (ℎ𝑣O 𝑘)� can take several variations. For example, Fig. 1.4 (a-c) shows massless, mas-
sive and anisotropic Dirac cones, respectively. The energy dispersion of the anisotropic Dirac
electrons is written by𝐸 𝒌 = 𝛥� + ℎ𝑣�𝑘� � + ℎ𝑣d𝑘d � + ℎ𝑣;𝑘; � (1.16)

with anisotropic Fermi velocities 𝑣1 (𝑖 = 𝑥,𝑦,𝑧). In addition, 3D TDS can be driven into topolo-
gically distinct phases by breaking symmetries or controlling parameters such as magnetism.
In the following sections, several topological materials related to 3D TDS are introduced.

1.3.2. Weyl semimetal
A Weyl semimetallic phase can be derived from 3D TDS by breaking time reversal or inver-
sion symmetry [38–41]. Weyl semimetals possess spin split Weyl points each of which acts as
source or sink of Berry curvature with chirality ± 1. One of the intriguing features of Weyl
semimetal is the presence of Fermi arc surface states [38] which connect the projection points of
Weyl nodes with opposite chiralities. TaAs and its family materials [42–47] are confirmed
to be a Weyl semimetal with inversion symmetry breaking. Several candidates for magnetic

Fig. 1.3. 3D Dirac electrons in Na�Bi are formed by the band crossing between 𝑠 and 𝑝 bands.

— 7 —



Weyl semimetal, where time reversal symmetry is broken, such as Mn�(Sn/Ge) [48–50] andCo�Sn�S� [51, 52] have been reported.
1.3.3. Type II Dirac/Weyl semimetal
Electron bands with tilted Dirac cones can be realized in condensed matter as seen in Fig. 1.5.
With a large enough tilt, the conduction and the valence bands of a Dirac cone disperse across
the Fermi energy, where electron and hole naturally coexist as shown in Fig. 1.5 (c). Dirac/
Weyl semimetals with such tilted Dirac cones are called type-II Dirac/Weyl semimetal [53].
Although the Dirac equation Eq.1.4 is originally invariant under a Lorentz transformation,
type-II Dirac/Weyl cone violates the Lorentz invariance. The type II Dirac/Weyl semimetal
phase is discussed in, for example, WTe� [53, 54], MoTe� [55–57].
1.3.4. Line node semimetal
In Dirac/Weyl semimetals, the conduction and the valence bands touch at discrete Dirac/
Weyl nodes. When a certain plane in 𝑘 space is invariant under a symmetry operator 𝑃, band
crossing between different irreducible representations of 𝑃 does not open a gap on the plane.
This can result in a band touching along closed lines [58] instead of discrete points for Dirac/
Weyl semimetals. Topological semimetals with the line nodes are called nodal line semimetal
or line node semimetal. Several materials such as (Ca/Sr)IrO� [59–64], (Zr/Hf)SiS [65–68] and
CaAg(As/P) [69, 70] were proposed as candidates for the line node semimetal.

1.4. Property of Dirac electron
1.4.1. Number and Density of states
Linear energy dispersion of Dirac electrons has unconventional energy dependence of number

Fig. 1.4. Variation of Dirac cones. (a) Massive Dirac cone. (b) Massless Dirac cone. (c)
Anisotropic Dirac cone.
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and density of states (DOS). Carrier density 𝑛 for 3D free electron gas is given by
𝑛 = 𝑔y 12𝜋 �4𝜋3 𝑘O� = 𝑔y𝑘O�6𝜋 . (1.17)

Here, 𝑔y and 𝑘O are spin degeneracy and Fermi wave vector respectively. Applying linear or
quadratic energy dispersions of

𝐸 = 𝛥� + ℎ𝑣O𝑘 � (Dirac)ℎ�𝑘�2𝑚 (Quadratic) (1.18)

to the above carrier density 𝑛, 𝑛 can be written by
𝑛 = 𝑔y6𝜋� 𝐸� − 𝛥�ℎ�𝑣O�

�� (Dirac)𝑔y6𝜋� 2𝑚𝐸ℎ� �� (Quadratic) (1.19)

respectively. DOS, 𝐷 𝐸 , can be calculated as below.

𝐷 𝐸 = 𝑑𝑛𝑑𝐸 = 𝑔y2𝜋�ℎ�𝑣O� 𝐸 𝐸� − 𝛥� (Dirac)𝑔y4𝜋� 2𝑚ℎ� �� 𝐸 (Quadratic) (1.20)

The DOS of 3D Dirac electrons are proportional to ∼ 𝐸� unlike 𝐸 for the quadratic disper-

Fig. 1.5. Tilted Dirac cones. (a) A Dirac cone without tilt. (b) A Dirac cone with small tilt.
(c) A Dirac cone with large tilt. This is called type-II Dirac/Weyl fermion where electron
and hole coexist.
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sion. The unconventional energy dependence of the DOS can be reflected in, for example,
temperature dependence of nuclear magnetic resonance (NMR) spin lattice relaxation rate𝑇�−� [71–73] which is proportional to thermal averaged 𝐷 𝐸 �, as will be discussed in 1.4.11.
1.4.2. Light effective mass & High mobility
Dirac semimetals have high mobility carriers with extremely light cyclotron effective mass.
The cyclotron effective mass 𝑚�∗ is defined by𝑚�∗ = ℎ�2𝜋∂𝑆�∂𝐸 �=�O (1.21)

where 𝑆� is a cross section of Fermi surface (FS) normal to magnetic field. Assuming Fermi
sphere, 𝑆� = 𝜋𝑘�, Eq.1.21 gives constant effective mass 𝑚�∗ for quadratic energy dispersion
of 𝐸 = ℎ�𝑘�/2𝑚�∗. Cyclotron effective mass𝑚�∗ of Dirac electrons with linear energy dispersion𝐸 = 𝛥� + (ℎ𝑣O 𝑘)� can be calculated as

𝑚�∗ = ℎ�2𝜋 ∂∂𝐸 𝜋𝐸� − 𝛥�ℎ�𝑣O� �=�O
= 𝐸O𝑣O�

= 𝛥� + ℎ𝑣O 𝑘O �𝑣O� = 𝑚�� + 𝑚� ∗� → 𝑚�  𝑘 → 0 (1.22)

which depends on the Fermi energy 𝐸O. Here,𝑚� = 𝛥/𝑣O� and𝑚� ∗ = ℎ𝑘O/𝑣O are Dirac mass
and cyclotron effective mass for massless 3D Dirac electrons, respectively. Extremely light
cyclotron effective mass can be realized around the Dirac node as seen in Fig. 1.6. For example,
typical parameters for Dirac semimetals, 𝑣O = 5 × 10\ m/s and 𝐸O = 30 meV, yield 2% of
free electron mass, 𝑚�∗ ≃ 0.02𝑚�.
High mobility of Dirac electrons is attributed to the light effective mass. Mobility 𝜇 is given

by 𝜇 = 𝑒𝜏𝑚�∗ (1.23)

where 𝜏 is scattering time. Dirac electrons with light effective mass can realize high mobility𝜇 ∝ 1/𝑚�∗. Compared to a conventional metal with mobility 𝜇 ∼ 10 cm�/Vs, 3D TDS shows
high mobility of 𝜇 ∼ 10F cm�/Vs as observed in Cd�As� [23, 24] and ZrTe\ [34].
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1.4.3. Berry phase and Berry curvature
Berry phase and Berry curvature [74, 75] in Dirac/Weyl semimetals give rise to unconvention-
al magnetic responses such as half-integer quantum Hall effect [2, 3] and chiral anomaly [76,
77]. In quantum mechanics, time development of the nth eigenstate 𝜓o with the eigenenergy𝐸o adds a phase factor to the eigenstate as𝜓o 𝑡 = 𝑒−1�o�/ℎ 𝜓o 0 . (1.24)

When a certain parameter adiabatically changes along a closed loop, the phase factor of the
wave function can also acquire a topological term, Berry phase. Let us consider Bloch Hamilto-
nian𝐻 𝒌 with the nth Bloch states 𝑢o(𝒌) . Since the Bloch states depend on 𝒌, the variation
of 𝒌 along a closed path 𝐶 gives rise to Berry phase 𝛾o as𝛾o = ��𝑑𝒌 ⋅ 𝑨� 𝒌 (1.25)

where Berry connection 𝑨� 𝒌 is given by𝑨� 𝒌 = 𝑖 𝑢o 𝒌 ∇� 𝑢o 𝒌 . (1.26)

As seen in Eq.1.26 and Fig. 1.7, the Berry connection can be intuitively regarded as the varia-
tion of 𝑢o(𝒌) in 𝑘 space. Note 𝐶 must be closed in order to preserve gauge invariance of 𝛾o.
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Fig. 1.6. (a) Fermi wave vector 𝑘O dependence of cyclotron effective mass 𝑚�∗ for 3D Dirac
electrons with Fermi velocity 𝑣O = 5.0 × 10\ m/s and mass gap 𝛥 = 0 meV (red line) or
10 meV (blue line). (b) 𝑣O dependence of 𝑚�∗ for 3D Dirac electrons with Fermi energy 𝐸O =
10 meV (red line) or 30 meV (blue line).
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Because Dirac electrons are formed by a band crossing between different orbitals, the strong
variation of the wave function around the Dirac node yields nontrivial Berry phase. Let us
consider cyclotron motion of Dirac electrons in magnetic field along a 𝑧 direction. A closed
path 𝐶 is a circle on a 𝑘�-𝑘d plane as 𝑘 cos 𝜃, 𝑘 sin 𝜃, 0 . 3D Dirac Hamiltonian on 𝐶 can be
decomposed into 2 × 2 matrix as below.

𝐻 ± 𝒌 = 𝛥 𝑖ℎ𝑣O 𝑘𝑒±1�𝑖ℎ𝑣O 𝑘𝑒∓1� 𝛥 (1.27)

The eigenvalues are ± 𝛥� + (ℎ𝑣O 𝑘)�. The eigenstate 𝑢� for the eigenvalue 𝛥� + (ℎ𝑣O 𝑘)�
is given by 𝑢� = 12 11 + 𝛼� + 1 + 𝛼� 1 + 𝛼� + 1𝛼𝑒−1� (1.28)

where 𝛼 = ℎ𝑣O 𝑘/𝛥. By substituting 𝑢o(𝒌) in Eq.1.25 for 𝑢� , the Berry phase 𝛾 is cal-
culated as 𝛾 = 𝜋 𝛼�1 + 𝛼� + 1 + 𝛼� (1.29)

which depends on Fermi energy 𝐸O and Fermi wave vector 𝑘O. For massless Dirac Hamiltonian
with 𝛥 = 0, the Berry phase is obtained by 𝛼 → ∞ in Eq.1.29, leading to nontrivial Berry
phase 𝜋 independent of 𝐸O and 𝑘O. The nontrivial Berry phase 𝜋 of Dirac electrons plays an
important role in the formation of Landau levels.

According to Stokes's theorem, Berry phase 𝛾o in Eq.1.25 is also written by𝛾o = ��𝑑𝑺 ⋅ 𝛀�o (1.30)

where 𝑆 is an arbitrary surface enclosed by the path 𝐶. Here, Berry curvature 𝛀�o 𝒌 is given

Fig. 1.7. Berry connection can be thought as the variation of the nth Bloch state 𝑢o(𝒌)
as in Eq.1.26.
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by 𝛀�o 𝒌 = ∇�× 𝑨� 𝒌 = 𝑖∇�× 𝑢o 𝒌 ∇� 𝑢o 𝒌 . (1.31)

For example, an explict form of a 𝑘; element of Berry curvature is
𝛀���do = 𝑖 ∂𝑢o 𝒌∂𝑘� ∂𝑢o 𝒌∂𝑘d − 𝑥 ⇔ 𝑦 . (1.32)

Let us consider 3D massless Dirac/Weyl Hamiltonian which can be decomposed into two2 × 2matrices𝐻 𝒌 = ±ℎ𝑣O 𝒌 ⋅ 𝝈 for chirality ± 1. The Berry curvature can be calculated as𝛀 𝒌 = ±12 𝒌𝑘� (1.33)

which takes the same form as magnetic field generated by a magnetic monopole. This indi-
cates the Dirac cone acts as a monopole of the Berry curvature, in which chirality ± 1 states
corresponds to source or sink respectively. Since Dirac cones in 3D TDS are spin degenerate,
the source and sink of Berry curvature are canceled out. 3D TDS in the magnetic field or
Weyl semimetal have spin split Dirac cones. The separated source and sink form the flow of
Berry curvature as shown in Fig. 1.8. Applying Gauss's theorem to Eq.1.30 and Eq.1.33, 𝛾o
can be calculated as 𝛾o = ��� �;≥ 𝑑𝑺 ⋅ 𝛀 𝒌 = ±𝜋 (1.34)

which is, of course, the same value as massless case (𝛼 → ∞) of Eq.1.29. Here, 𝑆� �;≥ is a
semisphere for 𝑘; ≥ 0.
In addition, Berry curvature acts as pseudo magnetic field in 𝑘 space. Boltzmann equation

with contribution from Berry curvature [75, 77] is written by𝒓 = ∂𝜀o 𝒌ℎ∂𝒌 + ℎ𝒌 × 𝛀o 𝒌𝒌 = 𝑒𝑬 + 𝑒𝑐 𝒓 × 𝑩 (1.35)

The velocity 𝒓 has not only a conventional term from band dispersion but also an extra term
including Berry curvature, ℎ𝒌 × 𝛀o 𝒌 . This term can be regarded as ‘Lorentz force’ from
pseudo magnetic field 𝛀o 𝒌 in 𝑘 space. Let us consider Eq.1.35 with time reversal symmetry
(TRS) or inversion symmetry (IS). 𝒓 and 𝒌 invert the signs while 𝒌 preserves the sign under
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TRS. IS changes the signs of all 𝒓, 𝒌 and 𝒌. When system has TRS or IS, Berry curvature𝛀o 𝒌 satisfies the following conditions.𝛀o 𝒌 = −𝛀o −𝒌 (TRS)𝛀o 𝒌 = 𝛀o −𝒌 (IS) (1.36)

Both relations hold in system with both TRS and IS, where 𝛀o 𝒌 vanishes in whole the BZ.
3D TDS under magnetic field or Weyl semimetal, where TRS or IS are broken, have finite
Berry curvature which can contribute to transport phenomena. For example, Berry curvature
plays an important role in anomalous Hall effect [48, 51, 78] and chiral anomaly [76, 77, 79].

1.4.4. Anomalous Landau level splitting
Dirac electron has unconventional Landau level (LL) under magnetic field [80], which is
attributed to 𝑘-linear dispersion and nontrivial Berry phase 𝜋. Magnetic field can be taken into
account by substituting ℎ𝒌 to 𝝅 = ℎ𝒌 − 𝑒𝑨

𝐻𝜓 = 𝛥 𝑖𝑣O ℎ𝒌 − 𝑒𝑨 ⋅ 𝝈𝑖𝑣O ℎ𝒌 − 𝑒𝑨 ⋅ 𝝈 − 𝛥 𝜓�𝜓¤ = 𝐸 𝜓�𝜓¤ (1.37)

where𝑨,𝐸, 𝜓�(¤) are a vector potential, the energy of LL and the wave function for conduction
(valence) band, respectively. Applying 𝝈 ⋅ 𝒂 𝝈 ⋅ 𝒃 = 𝒂 ⋅ 𝒃 + 𝑖𝝈 ⋅ 𝒂 × 𝒃 and 𝝅 × 𝝅 = 𝑖ℎ𝑒𝑩
to the above equaition, we obtain𝝅�2𝑚�∗ − ℎ𝑒2𝑚�∗𝝈 ⋅ 𝑩 𝜓�§¤ = 𝐸� − 𝛥�2𝛥 𝜓�§¤ (1.38)

Fig. 1.8. In Weyl semimetal or 3D TDS under magnetic field, Berry curvature flows from
the source with chirality + 1 into the sink with chirality − 1.
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with𝑚�∗ = 𝛥/𝑣O� . The first term of the left side has the same form as free electron gas in mag-
netic field, which leads to conventional eigenvalues ℎ𝜔�∗ 𝑛 + 1/2 + ℎ�𝑘;�/2𝑚�∗ with cyclotron
frequency 𝜔�∗ = 𝑒𝐵/𝑚�∗. The energy of LL for Dirac electron becomes

𝐸o§© = ± 𝛥� + 2𝛥 ℎ𝜔�∗ 𝑛 + 12 + 𝜎2 + ℎ�𝑘;�2𝑚�∗ 𝛥 > 0± 𝑣O 2ℎ𝑒𝐵 𝑛 + 12 + 𝜎2 + ℎ𝑘; � 𝛥 = 0 (1.39)

where 𝑛 = 0, ±1, ±2, ⋯ and 𝜎 = ±1 (Fig. 1.9). The energy of the LL in Eq.1.39 is
approximately proportional to square root of the field 𝐵 and the LL index 𝑛, which con-
trasts to conventional LLs for free electron gas 𝐸o = ℎ𝜔� 𝑛 + 1/2 linearly proportional
to 𝐵 and 𝑛. The energies of LLs in Eq.1.39 are quantized in terms of not half-integer 𝑛 + 1/2
but integer 𝑁 = 𝑛 + 1/2 + 𝜎/2. This offset gives rise to unconventional zero modes for𝑛,𝜎 = 0,−1 , −1,1 , the energies of which are fixed at the edges of conduction or valence
bands. The unconventional LLs of Dirac electrons can be understood by an intuitive picture.
Since the energy dispersion of Dirac electrons is proportional to 𝑘, square root of conventional𝑘�, the energy of LL is also scaled by square root of 𝐵 and 𝑛. The additional offset 𝜎/2 is
attributed to the nontrivial Berry phase 𝜋 of massless Dirac electron in Eq.1.29. Considering
contribution from Berry phase, Bohr-Sommerfeld quantum condition acquires an additional
term 𝛽 as

k

E

k

E(a) (b)

Fig. 1.9. (a) and (b) Landau levels for massive and massless 3D Dirac electrons, respectively.
The energy of Landau levels are scaled by a square root of the Landau index, which gives rise
to the non-equal intervals. The energies of unusual zero modes are fixed at the band edges.
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�𝒑 ⋅ 𝑑𝒓 = 2𝜋ℎ 𝑛 + 12 + 𝛽 . (1.40)

𝛽 = 1/2 for Dirac electrons changes the quantization condition from half-integer to integer.
Although Berry phase of massive Dirac electrons deviates from 𝜋 and depends on the Fermi
energy as seen in Eq.1.29, the Fermi energy dependence of the Berry phase and contribution
from pseudospin orbital magnetic moment are canceled out [81, 82].

1.4.5. Quantum Oscillation
Landau quantization induces modulation of DOS at Fermi energy, 𝐷(𝐸O), which manifests
itself in quantum oscillation. The quantum oscillation is observed in various physical quan-
tities dependent on𝐷(𝐸O) such as resistivity and magnetic susceptibility. In particular, Shub-
nikov-de Haas (SdH) oscillation and de Haas-van Alphen effect are the quantum oscillations
in resistance and magnetic moment respectively. Similar to Eq.1.40, Onsager's semiclassical
quantization condition including contribution from Berry phase becomes𝑆 𝐶 = 2𝜋 𝑛 + 12 − 𝛽 𝑒𝐵ℎ (1.41)

where 𝑆 𝐶 is an area enclosed by a cyclotron orbit 𝐶. In addition, pseudospin orbital mag-
netic moment contributes to energy shifts of LLs. In particle-hole symmetric massive Dirac
electron system, such contribution is canceled out by Fermi energy dependence of Berry phase.
This gives rise to integer quantization of LLs independent of 𝐸O [81, 82]. In general, Dirac
Hamiltonian in real system usually violates the particle-hole symmetry due to higher order
terms in Eq.1.14, which shifts the Landau level offset from 1/2.
Since the quantum oscillation is associated with DOS at 𝐸O, it involves a lot of information

about FS.𝐷(𝐸O) takes a maximum when 𝑆 𝐶 corresponds to a maximal cross sectional area
of the FS 𝑆O normal to the field 𝐵. The magnetic field for maximal𝐷(𝐸O), 𝐵o, is given by the
field for the maximal 𝑆O and 𝑛 in Eq.1.41, yielding

𝛥 1𝐵 = 1𝐵o+� − 1𝐵o = 2𝜋𝑒ℎ𝑆O . (1.42)

This indicates the quantum oscillation is periodic in 1/𝐵. The maximal cross section 𝑆O can be
experimentally derived from the frequency 𝐹 = 𝛥 1/𝐵 . The shape of the FS can be deter-
mined by angular dependence of 𝑆O which can be extracted from angular dependence of the
quantum oscillations.

The nontrivial Berry phase can be captured by an extra phase offset in the quantum oscil-
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lation [74]. The phase offset can be experimentally extracted from a Landau fan diagram by a
linear fit of the maxima of the quantum oscillation with𝑛 = 𝐹/𝐵 − 1/2 + 𝛽 ∓ 1/8. (1.43)

The additional factor ∓ 1/8 is attributed to three-dimensionality and a maximal/minimal
cross-sectional area [83–85].When 𝑛 takes integer in Eq.1.43, the DOS is maximum. Therefore,
carriers are easily scattered, yielding short scattering time 𝜏. Let us consider the quantum
oscillation of conductivity tensors under magnetic field along a 𝑧 direction. The conductivity
tensors are given by 𝜎�� = 11 + 𝜔�∗𝜏 �𝜎 = 𝜎dd (1.44)

𝜎�d = − 𝜔�∗𝜏1 + 𝜔�∗𝜏 �𝜎 =-𝜎d� (1.45)

with 𝜎 = 𝑛𝑒�𝜏/𝑚�∗. Here, 𝑛 and 𝑚�∗ are carrier density and cyclotron effective mass. The
quantum oscillations are usually observed in the strong field limit, 𝜔�∗𝜏 ≫ 1, where the con-
ductivity 𝜎�� is inversely proportional to 𝜏. The maxima of 𝜎�� for short 𝜏 are assigned to
the integer 𝑛 in the Landau fan diagram Eq.1.43.

However, we should be careful about the assignment of LL index as discussed in [86, 87],
because what we measured in experiments is not conductivity but resistivity. The resistivity
tensor is inverse tensor of conductivity. The transformation for isotropic system is given by𝜌�� 𝜌�d𝜌d� 𝜌�� = 1𝜎��� + 𝜎�d� 𝜎�� − 𝜎�d𝜎�d 𝜎�� . (1.46)

When 𝜎�� ≪ 𝜎�d holds, the maxima of 𝜌�� ≃ 𝜎��/𝜎�d� corresponds to maxima of 𝜎��. On the
other hand, when 𝜎�� ≫ 𝜎�d is satisfied, the minima of 𝜌�� ≃ 1/𝜎�� is assigned to the
maxima of 𝜎��. The resistivity along the field direction, 𝜌;; does not have contribution from
Lorentz force. This means that 𝜌;; does not couple with 𝑥 or 𝑦 components and is obtained
by the Drude formula as 𝜌;; = 1𝜎;; = 𝑚�∗𝑛𝑒�𝜏 (1.47)

which is inversely proportional to 𝜏. The maxima of 𝜌;; give the integer 𝑛 in Eq.1.43.
In addition, the cyclotron effective mass can be derived from temperature dependence of
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the amplitude of the quantum oscillation. The amplitude diminishes with increasing temper-
ature due to broadening of the LLs ∼ 𝑘®𝑇 and finally fades out when the intervals of LLs are
comparable to the thermal fluctuation, ℎ𝜔�∗ ∼ 𝑘®𝑇. According to Lifshitz-Kosevitch (LK)
formula [88], the temperature dependence of the amplitude is wrriten by𝐿𝐾 𝑋,𝑇 = 𝑋𝑇sinh 𝑋𝑇   𝑋 = 2𝜋�𝑘®𝑚�∗ℎ𝑒𝐵 . (1.48)

The cyclotron effective mass 𝑚�∗ can be experimentally determined by the LK formula fit-
ting to the temperature dependence of the amplitude. The quantum oscillations are observed
under the condition ℎ𝜔�∗ ≫ 𝑘®𝑇 which requires high magnetic field and low temperature.
For example, in a simple metal with𝑚�∗ ∼ 𝑚�, the SdH oscillation at 5 T can be observed only
below several hundreds mK. In Dirac electron systemwith extremely light effective mass about
1% of free electron, however, the SdH oscillation at 5 T may be observed at relatively high
temperature ∼ 100 K and all amplitude of the oscillations can be obtained at 2 K (Fig. 1.10).
1.4.6. Quantum limit
In strong magnetic field, all carriers reside in the lowest LL, which is called quantum limit. In
a usual metal with high carrier density ∼ 10�� cm−�, ∼ 500 T is necessary for the quantum
limit, which is difficult to reach in experiments. In contrast, the quantum limit can be realized
at feasible magnetic field in low carrier density system. Dirac electron system, where the Dirac
point or the Dirac mass gap are located at the Fermi energy, is a (zero gap) semiconductor.
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Fig. 1.10. Temperature dependence of LK formula in Eq.1.48 for magnetic field 𝐵 = 5 T
and cyclotron effective mass 𝑚�∗ = 0.01𝑚�.
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Samples synthesized in experiments are slightly doped due to defects or impurities and Fermi
energy 𝐸O deviates from zero. When the carrier density and hence Fermi energy 𝐸O are low
enough, the quantum limit can be achieved at a moderate magnetic field. For example, the
energy gap between the zero mode and 𝑁 = 𝑛 + 1/2 + 𝜎/2 = ±1 modes 𝛥 →� for Dirac
electrons with Fermi velocity 𝑣O = 10² m/s and 𝐵 = 5 T is calculated as𝛥 →� = 𝑣O 2ℎ𝑒𝐵 ∼ 80meV. (1.49)

Here, the presence of mass gap and the dispersion parallel to 𝐵 are neglected for simplicity.
Fermi energy 𝐸O for 𝑛 ∼ 10�� cm−� is typically tens of meV which is comparable to or even
smaller than 𝛥 →�. For example, 𝐸O ∼ 50 meV is realized in Sr3PbO with 𝑛 ∼ 10�� cm−�.
Because the quantum limit can be accessed at a moderate magnetic field of a few T, 3D TDS
provides a promising platform to explore unconventional magnetic responses such as giant
linear MR [89] and chiral anomaly [76, 77, 79].

1.4.7. Linear MR
3D TDS often shows a large and non-saturating 𝐵-linear magnetoresistance (MR) typically
over 1000% [22–27, 31, 89], which is distinct from the 𝐵�-MR with saturation in a simple
metal. Giant linear MR is widely observed for several 3D TDSs and can be regarded as one of
the hallmarks of Dirac electrons. Two models are proposed to understand the unconventional
linear MR, but its origin is still controversial. One is a quantum MR of linear dispersion [89]
which is satisfied in 3D TDS under the quantum limit. In this scenario, the magnitude of linear
MR is expected to be independent of temperature, which is consistent with the experimental
observations of 3D TDSs [22, 90]. Linear MR, on the other hand, can be often recognized
below the field which the quantum limit requires [22–24].

The other is classical disorder model discussed in doped silver chalcogenides [91–93],Cd�As� [24] and GaAs quantum wells [94]. In this model, current inhomogeneity is induced
by a mobility fluctuation due to the disorder, where the carriers can flow along a direction
perpendicular to both current and magnetic field. MR picks up 𝐵-linear contribution from𝐵-linear 𝜌�d. Since the mobility usually depends on temperature, the linear MR is expected to
depend on temperature.

1.4.8. Chiral anomaly
Historically, chiral anomaly was first discussed in the context of high energy physics [95, 96].
Chiral anomaly gives a leading contribution to pion decay 𝜋 → 𝛾𝛾 [97]. Neelsen and Ninomiya
pointed out that chiral anomaly may be also anticipated in a crystal with 3D linear dispersion
in the quantum limit [76]. Recently discovered 3D Dirac/Weyl semimetal provides a promising
arena to explore the chiral anomaly in condensed matter physics.
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In Weyl semimetal or Dirac semimetal under magnetic field, source and sink of Berry cur-
vature with chirality ± 1 are separated in 𝑘 space, forming flow of Berry curvature as shown in
Fig. 1.8. Berry curvature contributes to Boltzmann equation of Eq.1.35. When magnetic field
parallel to current is applied, contribution from Berry curvature, 𝑬 ⋅ 𝑩 𝛀�, drives charge
pump from a chirality+ 1 band to a chirality− 1 band (Fig. 1.11), which leads to an imbalance
of the chirality called chiral anomaly [76, 77, 79]. The charge pump induces additional current
which can be observed as negative longitudinal MR. According to theoretical calculations [77,
79], the longitudinal magnetoconductivity is predicted to be proportional to 𝐵� at low fields.

Chiral anomaly has been experimentally explored and negative longitudinal MR has been
reported in several 3D Dirac/Weyl semimetals or related topological materials such as Na�Bi
[98], Cd�As� [28, 29], ZrTe\ [33], TaAs family [99–101] and GdPtBi [102]. However, the inter-
pretation of the negative MR based on the chiral anomaly has been a subject of debate as
the possibility of current jetting effects [103–105] cannot be excluded. When a sample has
no anisotropy of resistivity, current flows homogeneously through the sample (Fig. 1.12 (a)).
3D Dirac/Weyl semimetals often show giant and non-saturating transverse MR as discussed
above, which induces large anisotropy of resistivity under the magnetic field 𝐵. If 𝐵 is applied
parallel to the current, the current flows predominantly along the field direction with much
smaller resistance. With increasing the anisotropy of resistivity under 𝐵, such focusing of the
current density between current contacts may lead to substantially zero voltage between the
two voltage contacts and hence zero resistance (Fig. 1.12 (b)). This is called current jetting
effect, which proposed an alternative scenario for negative MR. To confirm chiral anomaly, we
should take special care. One possible way is a cross-check between many independent voltage
pairs [102].

Another approach to study chiral anomaly is angular dependent MR experiments. The
charge pump term 𝑬 ⋅ 𝑩 𝛀� can contribute to not only negative longitudinal MR but also
planar Hall effect [106, 107]. In usual Hall effect, when the magnetic field 𝐵 normal to the
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Fig. 1.11. In the presence of magnetic field parallel to the applied current, Berry curvature
drives charge pump from the Dirac cone of chirality + 1 to that of chirality − 1.

— 20 —



current 𝐼 is applied, the Lorentz force induces Hall voltage 𝑉µ perpendicular to both 𝐼 and 𝐵.
In planar Hall effect, a voltage 𝑉�d is induced normal to the applied current 𝐼 similar to Hall
voltage but not perpendicular to 𝐵. 𝐵 is applied in the same plane as 𝐼 and 𝑉�d unlike usual
Hall effect as seen in Fig. 1.13 (a). Magnetic field angle dependence of negative longitudinal
MR and planar Hall effect are given by𝜎�� ∝ cos�𝜃 (1.50)𝜎�d ∝ cos𝜃sin𝜃 (1.51)

where 𝜃 is defined as in Fig. 1.13 (a). 𝜎�� and 𝜎�d with phase difference can be a useful tool
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Fig. 1.12. Schematic pictures of equi-potential surface (blue lines) in samples without or with
anisotropy of MR. (a) When a sample has no anisotropy of MR, correct resistivity can be
obtained by almost homogeneous current. (b) In 3D Dirac/Weyl semimetals, the magnetic
field𝐵 can induce strong anisotropy of MR, which gives rise to focusing of the current density
between the current contacts. The voltage 𝑉�� can be almost zero due to the absence of the
current near the voltage pairs.
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Fig. 1.13. (a) Planar Hall effect induces voltage normal to current 𝐼. The induced voltage 𝑉�d,
magnetic field𝐵 and 𝐼 are in the same plane unlike usual Hall effect. (b) Negative longitudinal
MR and planar Hall effect can be regarded as a projection of charge pump.
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to distinguish intrinsic contributions from artifacts by the current jetting effect. These angle
dependences can be intuitively understood as a projection of the charge pumping effect. The
charge pump term is proportional to 𝑬 ⋅ 𝑩 = 𝐸𝐵 cos 𝜃. Negative longitudinal MR or pla-
nar Hall effect corresponds to 𝑥 or 𝑦 components of the charge pump, yielding the angle
dependences of Eq.1.50 or Eq.1.51, respectively (Fig. 1.13 (b)). As the planar Hall effect origi-
nates from the charge pump, the same origin as longitudinal MR, planar Hall effects should be
even to the applied magnetic field 𝐵 unlike normal Hall effect. So far, the planar Hall effect
has been reported in only a few members of topological materials such as Na�Bi, GdPtBi
and Cd�As� [107–109].
1.4.9. Giant orbital diamagnetism
The intra-band Berry curvature around the Dirac node gives rise to unconventional magnetic
responses such as nontrivial Berry phase [23, 24] and chiral anomaly [33, 76, 77, 98] as dis-
cussed above. The research interest has so far been limited to the intra-band Berry curvature
and its related physics. However, Dirac bands formed by the band crossing realize nontrivial
topology of conduction and valence bands mixing, which gives rise to an inter-band Berry
connection [110] between different bands. The inter-band Berry connection is defined as𝑨o¶ 𝒌 = 𝑖 𝑢o 𝒌 ∇� 𝑢¶ 𝒌 (1.52)

similar to the intra-band Berry connection in Eq.1.26. Here, 𝑛 and𝑚 (𝑛 ≠ 𝑚) are band indices.
The inter-band Berry connection gives rise to a giant orbital diamagnetism as discussed for

Bi [80, 111]. The giant orbital diamagnetism of Dirac electrons shows unconventional chemical
potential 𝜇 dependence. The orbital diamagnetism takes negative minimum when chemical
potential 𝜇 is located within the Dirac mass gap where DOS, 𝐷 𝜇 = 0 (Fig. 1.14). This
contrasts to the conventional contributions such as the Pauli paramagnetism or the Landau
diamagnetism which are proportional to 𝐷 𝜇 . The exotic chemical potential 𝜇-dependence
originates from a topological character of orbital diamagnetism to which fully occupied states
contribute via virtual inter-band excitations.

Large diamagnetism has been observed in bulk magnetic susceptibility of Bi and Bi�−¸Sb¸
[112–114], which has been attributed to the giant orbital diamagnetism of Dirac electrons.
Recently discovered 3D TDS also shows a large diamagnetic susceptibility [115–117]. How-
ever, its microscopic origin has not been experimentally confirmed owing to the presence of
hole pockets in Bi and/or other contributions. For example, core diamagnetism ∼ −10−F-10−\ emu/mol and Pauli paramagnetism enhanced by a large 𝑔 factor, often observed in a
topological semimetal, can be comparable to the giant orbital diamagnetism. NMR and 𝜇SR
experiments may separate the spin and the orbital contributions, but 209Bi NMR for 𝐼 = 9/2
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nuclear spin is not a pure magnetic probe due to quadrupole interaction. Spin contribution
cannot be estimated in the 𝜇SRmeasurement where Korringa relaxation is difficult to observe.
NMR study on 𝐼 = 1/2 nuclear spin without electric quadrupole interaction is a promising way
to resolve spin and orbital contributions, though applicable nuclear species are limited.

1.4.10. Bulk susceptibility & NMR Knight shift
Bulk magnetic susceptibility 𝜒 is comprised of several contributions as𝜒 𝜇,𝑇 = 𝜒»½¾q 𝜇,𝑇 + 𝜒¿ÀÁ 𝜇,𝑇 + 𝜒Â¿ÀÃ (1.53)

where 𝜒»½¾q and 𝜒¿ÀÁ are spin and orbital contributions respectively. A usual metal with carrier
density ∼ 10�� cm−� and with 𝑔 = 2 shows a Pauli paramagnetism 𝜒»½¾q of ∼ 10−F-10−\ emu/
mol. 𝜒Â¿ÀÃ is a core diamagnetism which is typically ∼ 10−F-10−\ emu/mol and independent of
chemical potential 𝜇 and temperature 𝑇.
NMR Knight shift 𝐾 has several contributions as𝐾 = 𝐾»½¾q 𝜇,𝑇 + 𝐾¿ÀÁ 𝜇,𝑇 + 𝐾ÂÄÃÅ, (1.54)

essentially the same as the bulk susceptibility in Eq.1.53. Here, 𝐾»½¾q and 𝐾¿ÀÁ are spin and
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Fig. 1.14. Simplified picture of energy dispersion of massive Dirac electrons (left) and giant
orbital diamagnetism (right).𝛥 is a Dirac mass gap. The orbital diamagnetism of Dirac elec-
trons grows with approaching the gap and takes negative minimum within the mass gap.
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orbital contributions respectively. These terms are written by𝐾»½¾q = 𝐴»½¾q𝜒»½¾q𝑁Æ𝜇® (1.55)

𝐾¿ÀÁ = 𝐴¿ÀÁ𝜒¿ÀÁ𝑁Æ𝜇® (1.56)

where 𝑁Æ and 𝜇® are Avogadro constant and Bohr magneton respectively. Each term is pro-
portional to 𝜒»½¾q and 𝜒¿ÀÁ via respective hyperfine coupling constants 𝐴»½¾q and 𝐴¿ÀÁ. The
giant orbital diamagnetism of Dirac electrons should be observed as the orbital shift𝐾¿ÀÁ. The
chemical shift𝐾ÂÄÃÅ is characterized by the interatomic distance and therefore insensitive to 𝑇
and 𝜇. 𝐾ÂÄÃÅ acts as a constant offset of the Knight shift 𝐾.
To discuss hyperfine couplings, let us consider interaction between nuclear spin 𝑰 and elec-

tron [118, 119]. Nuclear magnetic moment 𝝁É = 𝛾Éℎ𝑰 produces a vector potential𝑨 𝒓 = ∇× 𝝁É𝑟 (1.57)

where 𝑟 is a position from the nucleus. This leads to the interaction Hamiltonian𝐻 = 12𝑚 𝒑 + 𝑒𝑐𝑨 � + 𝑔𝜇®𝑺 ⋅ ∇× 𝑨= 𝒑�2𝑚 + 𝐻Ì + 𝐻y + 𝑒�2𝑚𝑐�𝑨� (1.58)

𝐻y = 𝑔𝜇®𝑺 ⋅ ∇× 𝑨 (1.59)𝐻Ì = 𝑒2𝑚𝑐 𝒑 ⋅ 𝑨 + 𝑨 ⋅ 𝒑 . (1.60)

Here, using a formula ∇× ∇× 𝝁É𝑟 = ∇ ∇⋅ 𝝁É𝑟 − ∇�𝝁É𝑟 , (1.61)

a spin part 𝐻y can be calculated as
𝐻y = 83𝜋𝑔𝜇®𝒔 ⋅ 𝝁É𝛿 𝒓 + 𝑔𝜇® −𝒔 ⋅ 𝝁É𝑟� + 3 𝒔 ⋅ 𝒓 𝝁É ⋅ 𝒓𝑟\ . (1.62)
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The second term is dipole interaction for 𝑝, 𝑑 and 𝑓 electrons. The first term𝐻ÐÑ = 83𝜋𝑔𝜇®𝒔 ⋅ 𝝁É𝛿 𝒓 (1.63)

is Fermi contact interaction to which 𝑠 electrons contribute. 𝐾»½¾q by the Fermi contact inter-
action becomes 𝐾»½¾q = 83𝜋 𝜓 0 �𝜒». (1.64)

Pauli paramagnetism 𝜒» is proportional to 𝑔�, therefore 𝐾» ∝ 𝑔�. 𝐻Ì is an orbital part and
written by 𝐻Ì = 𝑒2𝑚𝑐 𝒑 ⋅ 𝝁É × 𝒓𝑟� + 𝝁É × 𝒓𝑟� ⋅ 𝒑= 2𝜇® 𝒍 ⋅ 𝝁É𝑟� (1.65)

with ℎ𝒍 = 𝒓 × 𝒑. When 𝐻Ì is attributed to Van Vleck susceptibility, 𝐾¿ÀÁ is given by𝐾¿ÀÁ = 2 1𝑟� 𝜒¿ÀÁ. (1.66)

The hyperfine coupling constants can be experimentally determined by 𝑇-dependence of
a 𝐾 versus 𝜒 diagram called 𝐾-𝜒 plot. When only 𝐾»½¾q (𝐾¿ÀÁ) depends on temperature, the
hyperfine coupling constant 𝐴»½¾q (𝐴¿ÀÁ) is given by a slope of the 𝐾-𝜒 plot. In a conventional
system, 𝐾¿ÀÁ is attributed to 𝑇-independent Van Vleck susceptibility, and therefore the slope
yields𝐴»½¾q.𝐴¿ÀÁ cannot be obtained experimentally and the theoretical value of𝐴¿ÀÁ = 2 𝑟−�
for the Van Vleck susceptibility in Eq.1.66 is employed to estimate 𝐾¿ÀÁ. Diamagnetism from
orbital motion of conduction electrons, which corresponds to Landau diamagnetism for free
electron gas, is also independent of 𝑇. 𝐴¿ÀÁ for the orbital motion is hard to be estimated
by the 𝐾-𝜒 plot and has not been discussed in experiments. However, the unconventional 𝑇-
dependence is predicted for the giant orbital diamagnetism of Dirac electrons [120–122], which
suggests 𝐴¿ÀÁ for itinerant orbital motion of Dirac electrons can be experimentally extracted
from the 𝐾-𝜒 plot.
1.4.11. NMR spin lattice relaxation rate
Spin contribution of magnetic susceptibility can be captured by NMR spin lattice relaxation
rate 𝑇�−�. 𝑇�−� can be written by
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𝑇�−� ∝ �𝑑𝜀𝐷 𝜀 �𝑓 𝜀 1 − 𝑓 𝜀 (1.67)

which is proportional to thermal average of square of DOS. Here, 𝑓 𝜀 = 1/(1 + 𝑒(Ó−Ô)/�®Õ )
and 𝐷 𝜀 are Fermi distribution function and the DOS respectively. In a simple metal, the
almost constant 𝐷 𝜀 as a function of 𝑇 leads to 𝑇-independent (𝑇�𝑇 )−�, known as the Kor-
ringa law.

DOS of 3D Dirac electrons in Eq.1.20 is not constant, which gives rise to unconventional
temperature dependence of 𝑇�−�. When 𝛥 = 0, Sommerfeld expansion [123], applied to the
integration in Eq.1.67, yields𝑇�−� ∝ 𝜇F𝑘®𝑇 + 2𝜋�𝜇� 𝑘®𝑇 � + 715𝜋F 𝑘®𝑇 \ . (1.68)

Here, the following formula

�−×× 𝑥o𝑒�𝑒� + 1 �𝑑𝑥 = 0 𝑛 = odd2𝑛! 1 − 2�−o 𝜁 𝑛 𝑛 = even (1.69)

is used with zeta function 𝜁 𝑛 = ΣÌ=�× 1/𝑙o such as 𝜁 2 = 𝜋�/6 and 𝜁 4 = 𝜋F/90. 𝑇�−� shows a
crossover from 𝑇-linear to 𝑇 �- and 𝑇 \- behavior with increasing 𝑇. Note that the mass gap 𝛥
can be neglected in the above calculation when 𝜇� ≫ 𝛥� is satisfied.
Because 𝑇�−� is scaled with the square of DOS, 𝑇�−� is associated with 𝐾»½¾q ∝ 𝐷(𝜀) via

Korringa relation

𝑇�𝑇𝐾»½¾q� = ℎ4𝜋𝑘® 𝛾�𝛾o
� = 𝑆. (1.70)

Here, 𝛾� and 𝛾o are gyromagnetic ratios of a electron and a nucleus, respectively. Eq.1.70 indi-
cates a Korringa value 𝑆 depends only on a kind of nuclei. Note 𝑆 is often modified by a factor
of 2 even in a simple metal [124].

In general, the Korringa value 𝑆 may be scaled by 𝑔 factor. Let us consider 𝑇�−� in non-
magnetic and 𝐼 = 1/2 system with the Fermi contact interaction in Eq.1.63. A transition
rate 𝑤 between spin up and down states is given by Fermi's Golden rule as𝑤 ∼ 2𝜋ℎ 𝑖 𝐻ÐÑ 𝑓 �𝛿 𝐸1 − 𝐸Ü ∝ 𝑔� (1.71)

where 𝑖 and 𝑓 represent initial and final states, respectively. 𝑇�−� is the summation of 𝑤 over
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the vicinity of FS and 𝑇�−� ∝ 𝑔� holds. Beucase 𝐾» ∝ 𝑔�, the Korringa value 𝑆 in Eq.1.70
is proportional to 𝑔�.
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Chapter 2
Antiperovskite𝑨�𝑻𝒕O(𝑨=Ca,Sr,Ba;𝑻𝒕 = Sn,Pb)

As discussed in the previous chapter, 3D Dirac electrons can provide playground for unconven-
tional magnetic responses such as chiral anomaly in the quantum limit and giant orbital dia-
magnetism. 3D TDS can be also driven into topologically distinct phases such as a Weyl
semimetal or a topological insulator by breaking the symmetries or controlling the band gap.
To explore unusual physics and the exotic phases derived from 3D TDS further, controllable
systems with 3D Dirac electrons are highly desirable.

In this chapter, the antiperovskite family 𝐴�𝑇𝑡O (𝐴=Ca,Sr,Ba; 𝑇𝑡=Sn,Pb), theoretical-
ly proposed as a 3D massive Dirac electron system [35, 120], is introduced as an arena for
the present study. The antiperovskite with certain chemical flexibility is a promising material
family for band engineering of 3D Dirac electrons. The uniqueness of the antiperovskites as
compared with other 3D TDSs is discussed.

2.1. Crystal structure
The antiperovskite 𝐴�𝑇𝑡O has a cubic perovskite structure as shown in Fig. 2.1 (a). The
O atom is surrounded octahedrally by the alkaline earth metals (𝐴 atoms) and forms an O𝐴²
octahedron. The 𝑇𝑡 atom fills the space between O𝐴² octahedra. The positions of metal atoms
and O atoms are swapped as compared to those of normal cubic perovskite oxides as seen in
Fig. 2.1 (b). The name of ‘anti’ perovskite originates from such exchange of the elements.

2.2. Band structure
In the ionic limit, the valence state of the antiperovskites can be written by 𝐴��+𝑇𝑡F−O�−.
According to band calculation [35, 120, 125], the fully occupied 5𝑝 (6𝑝) orbitals of 𝑇𝑡F− ions
and the empty 3𝑑 (4𝑑 or 5𝑑) orbitals of 𝐴�+ ions form the valence bands and the conduction
bands respectively. The 𝑝 valence bands and the 𝑑 conduction bands marginally overlap at
Fermi energy (Fig. 2.2 (a)), and an energy gap opens at the band crossing due to the 𝑑-𝑝
hybridization. CF rotational symmetry of the crystals protects the band crossing against gap
formation at the only six equivalent points on Γ-X lines which areCF rotational axes of the first
Brillouin zone (BZ) (Fig. 2.2 (b)). This gives rise to six Dirac points around which anisotropic
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Dirac bands are found as seen in Fig. 2.3. The 3D Dirac bands are free from other parabolic
bands, which indicates the antiperovskites are ideal platform to study 3D Dirac electrons.
The band calculation predicts Fermi velocity 𝑣O = 2-4 × 10\ m/s. High mobility carriers with
extremely light effective mass can be expected.When the Fermi energy𝐸O shifts from the mass
gap towards the valence bands, the 3D Dirac bands of Sr3PbOmerge together at a saddle point
(SP) of 𝐸O ∼ −125 meV (Fig. 2.4) and finally form multi-bands FS. As shown in Fig. 2.4, the
character of the band structure around𝐸O can be classified into three regimes: Dirac bands, SP
and multi-bands.

Fig. 2.1. (a) and (b) Crystal structures of antiperovskite𝐴�𝑇𝑡O and normal perovskite𝐴𝑇𝑡O�
(𝐴=Ca,Sr,Ba; 𝑇𝑡=Sn,Pb). The O atom is surrounded by 𝐴 atoms and forms an O𝐴² octa-
hedron in the antiperovskite 𝐴�𝑇𝑡O, which contrasts to the normal perovskite 𝐴𝑇𝑡O�.

Fig. 2.2. (a) In Sr3PbO antiperovskite, the fully occupied 6𝑝 orbitals of PbF− ions and the
empty 4𝑑 orbitals of Sr�+ ions slightly overlap at the Fermi energy 𝐸O. (b) The Dirac points
of the antiperovskites are located at the red points on Γ-X lines which areCF rotational axes of
the first BZ. The blue line parallel to the (110) direction connects the two Dirac points.
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Fig. 2.3. The band structure of Sr3PbO antiperovskite from [120] with permission from the
author. The Dirac band denoted by the arrow in (a) is enlarged in (b). The Dirac band has a
small mass gap of ∼ 20 meV.

E

k // (110)

Dirac

Saddle Point

multi-bands

Fig. 2.4. The simplified band structure of Sr3PbO antiperovskite for a 𝑘 axis along (110)
(blue line in Fig. 2.2 (b)). By moving the chemical potential 𝜇 from the Dirac mass gap to the
valence band, the character of the band structure at the Fermi energy𝐸O can be classified into
three regimes; Dirac bands (red area), a saddle point (SP) and multi-bands (blue area).
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The 3D Dirac band has a small mass gap of ∼ 10 meV, which means antiperovskites family
is a 3D massive Dirac electron system. According to a tight binding model of the antiperovs-
kites [120, 125], the mass gap opens perturbatively due to a small but finite hybridization of the
higher energy orbital states to the Dirac bands via spin-orbit coupling. The magnitude of mass
gap therefore depends on 𝐴 and 𝑇𝑡 elements. The presence of tunable mass gap opens up a
possibility to design a richer variety of topological states. Ca�PbO and Sr3PbO were proposed
as a candidate for TCI [126], where type-II Dirac surface states were recently predicted [127].Ca�PbO and Sr3PbO can exhibit both the 3D Dirac states in bulk and 2D Dirac states on
the surface similar to Pb�−¸Sn¸Se [128, 129]. The TCI phase is characterized by the mirror
Chern number 𝑛â = ±2 on a (100) mirror plane. This implies the presence of nontrivial
hinge states between (100) and (010) planes [130] though the nontrivial surface states are
also protected by mirror symmetry. A higher order topological insulator phase, which does
not possess gapless surface states but hosts nontrivial hinge states, may be realized by applying
uniaxial pressure or strain which breaks mirror symmetry as discussed for SnTe [130].

A recent experiment shows unconventional magnetotransport properties by light mass car-
riers in Sr3PbO [90], which supports the presence of 3D Dirac electrons. These results were
reported in the master thesis of the author [132] and will be again presented in Chapter 4.
ARPES study on Ca�PbO was also consistent with the band calculation though the obser-
vation of the bands was limited below the Dirac points because of hole doping [131] (Fig. 2.5).

While band calculations from several groups [35, 120, 133–135] predicted 3D Dirac bands
free from parabolic bands in Sr�SnO, band calculation by T.H. Hsieh 𝑒𝑡.𝑎𝑙. [126] shows the
presence of hole pockets at R points in Sr�SnO. Note 𝐸O-dependence of weak localization
observed in magnetotransport experiments on thin films of Sr�SnO [134] was consistent with
the band calculation without the hole pockets.

2.3. Band engineering
Temperature and a tolerance factor dependences of the crystal structure were previously
reported [136], which indicates that the cubic perovskite structure is stable over a wide range of𝐴 and 𝑇𝑡 atoms; 𝐴 = Ca, Sr, Ba and magnetic Eu and 𝑇𝑡 = Pb and Sn. The antiperovskites
with chemical flexibility can provide a platform to control 3DDirac electrons. The replacement
of Sr with Ca shifts the Dirac points towards the Γ point [35, 120], which increases anisotropy
of Fermi velocity and leads to more tilted Dirac bands in Ca�PbO. Ba compounds undergo a
structural phase transition at ∼ 150 K, from cubic to orthorhombic upon cooling [136]. The
orthorhombic structure breaks CF rotational symmetry and hence 3D Dirac electrons are no
longer protected. Because spin orbit coupling determines the mass gap, the gap can be tuned
by a Pb/Sn ratio as Sr�Pb¸Sn�−¸O [137]. Band filling may be controlled by La or F doping asSr�−¸La¸PbO or Sr�PbO�−¸F¸.
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In addition, magnetism can be introduced to the antiperovskites by replacing alkaline earth
metals with magnetic Eu as Sr�−¸Eu¸PbO or Eu�PbO where interplay between 3D Dirac elec-
trons and magnetism may be expected. In fact, Eu�PbO (Eu�SnO) undergoes an antiferro-

Fig. 2.5. Band structure and ARPES intensity plots ofCa�PbO from Phys. Rev. B 96, 155109
(2017) [131]. Copyright 2017, American Physical Society. (a) Band structure of Ca�PbO. (b)
The first BZ of Ca�PbO. The Dirac points are located at the six red points on Γ-X lines.
(c) and (e) ARPES intensity plots on the Γ-X line along 𝑘; or 𝑘� directions, respectively.
The peak positions of momentum distribution curves and energy distribution curves are rep-
resented by red and blue respectively, which is in good agreement with the band calculation
(black dashed lines). (d) and (f) The second-derivative of ARPES spectrum on the Γ-X line
along 𝑘; or 𝑘� directions, respectively.
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magnetic (AFM) transition at 𝑇É = 42.9K (33.2K) [137]. A series of metamagnetic transitions
was observed in magnetization as a function of magnetic field, which reveals the complicated
phase diagram. Because TRS is broken at the AFM phase where Kramers degeneracy is lifted,
a magnetic Weyl semimetal phase may be realized in these compounds.

2.4. Comparison with other 3D Dirac semimetalsNa�Bi was first theoretically proposed as a candidate for 3D TDS [15] and experimentally con-
firmed by ARPES measurements [17]. Na 3𝑠 orbitals and Bi 6𝑝 orbitals form conduction and
valence bands, respectively. C� rotational symmetry protects 3D massless Dirac electrons with
a strong anisotropy of a factor of 4. Magnetotransport measurements show negative longitudi-
nal MR and planar Hall effects [105], consistent with the expected angle dependence. BecauseNa�Bi with an unusual valence state of Bi�− is air-sensitive similar to the antiperovskites,
few experiments has been reported [17, 18, 98, 105] so far. Cd�As� was predicted to be 3D TDS
protected by CF rotational symmetry [16] and confirmed by ARPES experiments [20] similar
toNa�Bi.Cd�As� is air-stable, which provides easy access to 3DDirac electrons by many kinds
of probes such as transport [22–30] and scanning tunnelling microscopy (STM) [138] exper-
iments. Magnetotransport measurements on Pb�−¸Sn¸Se [129] support the presence of bulk
massive 3D Dirac electrons. Above the critical value of Sn content 𝑥, Pb�−¸Sn¸Se undergoes
a temperature driven topological phase transition by a gap inversion, leading to a TCI phase
[128] with massive Dirac electrons in the bulk. Na�Bi, Cd�As� and Pb�−¸Sn¸Se from PbSe
or SnSe have only two kinds of elements to tune the chemical composition. The antiperovskites𝐴�𝐸O with three kinds of elements would be easier to control 3D Dirac electrons.

TlBiSSe has been studied in the context of TI to observe a topological phase transition
from trivial insulator TlBiS� to TI TlBiSe� [139, 140]. TlBiSSe is located at the topological
transition point and hosts gapless states in bulk explained by 3D Dirac electrons. Large linear
MR was observed [31] though the origin is not clear. ZrTe\ was first theoretically proposed as
a candidate for a TI [141] but experimental study is still controversial because of possibility
of bulk 3D Dirac electrons [32–34]. According to band calculation [142], ZrTe\ is located near
a topological phase transition point between a weak TI and a strong TI, at which a 3D Dirac
semimetal phase can be realized without symmetry protection. When ZrTe\ is sufficiently
close to the transition point, the band dispersion of ZrTe\ can be regarded as a 3D Dirac
dispersion and signatures of 3D Dirac electrons should be able to be captured. Because fine
tuning is required to realize 3D Dirac semimetal phases in these materials, they have difficulty
in controlling further the 3D Dirac electrons.

Bi has electron pockets described by massive 3D Dirac electrons with strong anisotropy
[143]. Large diamagnetism was observed in bulk susceptibility of Bi and Bi�−¸Sb¸ [112–114],
which is consistent with chemical potential dependence of the giant orbital diamagnetism of
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Dirac electrons. Microscopic magnetism has been explored by NMR [144], muon spin rota-
tion (𝜇SR) [145, 146], perturbed angular distribution [147, 148] and 𝛽-NMR [149] to identify
the orbital origin of the large diamagnetism. However, the attempts have not been successful
owing to the presence of normal hole pockets and/or other contributions. For example, NMR
experiments on 𝐼 = 9/2 nuclear spin at 209Bi involve large quadrupole interaction in Knight
shift and phonon contribution in spin lattice relaxation rate, which obscure spin and orbital
magnetic susceptibility of Dirac electrons.

To explore unconventional physics of 3D Dirac electrons mentioned in Chapter 1, chemical
flexible 3D TDS, in which it is easy to break symmetries, to introduce magnetism, and to
control band filling and spin-orbit coupling, is highly desirable. The antiperovskites 𝐴�𝑇𝑡O
with chemical flexibility is a unique and promising material family for band engineering of 3D
Dirac electrons as discussed in Section 2.3. In addition, the antiperovskite family with 𝐼 = 1/2
nuclear spin at 207Pb and 117, 119Sn provides an ideal platform for NMR study of the giant
orbital diamagnetism of Dirac electrons. Because of the cubic structure of the antiperovskites,
the anisotropy of MR is induced by only magnetic field unlike non-cubic systems, for example
TaAs family [104]. The antiperovskites is suitable to investigate chiral anomaly including the
effect of current jetting.

2.5. Purpose of this research
The antiperovskites family can be a model system in which to design exotic topological phas-
es and to explore unconventional magnetic responses. In this thesis, we focus on one of the
antiperovskite family, Sr3PbO. 3D Dirac electron in the antiperovskites was predicted by the
band calculation [35, 120]. The first step of this study is experimental verification of 3D Dirac
electrons in Sr3PbO. As reported in the master thesis of the author [132] and [90], giant linear
MR and high mobility were observed in magnetotransport measurements. An extremely light
cyclotron effective mass of carriers was derived from SdH oscillations. These results strongly
support the presence of 3D Dirac electrons in Sr3PbO. To make the thesis self-contained, they
are again presented in this thesis.

A next step is the investigation of unconventional physics anticipated in 3D Dirac electrons.
The purposes of this study are shown in the following.

(1) Giant orbital diamagnetism of Dirac electrons in Sr3PbO.
Although large diamagnetism has been observed in bulk susceptibility of Bi and Bi�−¸Sb¸,
its microscopic origin has not been confirmed experimentally.We report bulk magnetic sus-
ceptibility and 207Pb NMR experiments on Sr3PbO antiperovskite samples with different
carrier density from 10�� to 10� cm−�. Because of 𝐼 = 1/2 nuclear spin species 207Pb with-
out electric quadrupole and phonon interactions, spin and orbital contributions of NMR
Knight shift can be separated with the help of a Korringa relation.
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(2) Unconventional transport induced by chiral anomaly in Sr3PbO.
Chiral anomaly has been experimentally explored and expected negative longitudinal MR
has been reported in several 3D TDSs. However, current jetting effects have raised ongoing
discussion about these experiments. Angular dependent measurements of longitudinal MR
and planar Hall effect have been reported in a limited number of materials. Considering the
difficulty arising from strong anisotropy of MR, a suitable platform to study chiral anoma-
ly including the current jetting effects is highly desirable. We report angular dependent
magnetotransport experiments on cubic Sr3PbO antiperovskite in which the anisotropy
of MR is induced only by magnetic field. This helps us to discuss the effect of the current
jetting in the transport measurements.
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Chapter 3
Method

Because Sr3PbO crystals are air-sensitive due to an extremely reduced valence state of PbF−,
all processes of preparations and measurements were conducted without exposing the samples
to air, for example, inside an Ar-filled glove box.

3.1. Single crystal growth
Single crystals of Sr3PbO were grown by Sr-self flux method by the following reaction as
reported by our collaborators [136].𝑥Sr + PbO → Sr�PbO (3.1)

Sr was distilled in order to remove oxides or hydrides impurity. The distilled Sr and PbO were
sealed in a tantalum ampule which was further sealed in a niobium ampule to keep the sample
away from oxygen andmoisture. A 3-5% excess of Sr from a stoichiometric ratio, 𝑥 = 3.09-3.15,
increases crystal size and quality, which gives single crystals of ∼ 500 𝜇m with carrier density𝑛 ∼ 10��-10� cm−�. These samples were used for magnetotransport, bulk susceptibility and
NMR experiments which will be reported in Chapter 4.

The extremely reduced ionic state of PbF− strongly favors an oxidation of the sample,
and the crystals obtained at the early stages often had a high hole concentration of 𝑛 ≫ 10��cm−�. However, the band calculation suggests 3D Dirac bands of Sr3PbO can be accessed
only for Fermi energy 𝐸O ≤ 100 meV [35, 120] which requires a very low carrier density
of 𝑛 ≤∼ 10�� cm−� or less. The condition of the synthesis was further optimized to grow
cleaner and larger crystals with 𝑛 ≤∼ 10�� cm−� and > 1 mm.

The distilled Sr and high purity PbO (Alfa Aesar, 99.9995%) were sealed in the same way
as the previous report [136]. Typical temperature sequence is shown in Fig. 3.1. We controlled
two parameters, the amount of Sr flux 𝑥 = 3.15-4.5 and the highest temperature 𝑇Ä¾åÄ =
1350, 1400 and 1450 °C. Large single crystals seem to be grown by large amount of Sr flux of𝑥 ≥ 3.6 as seen in Fig. 3.2. The quality of the samples can be roughly characterized by the
magnetization which strongly depends on the carrier density of the samples (see Appendix
A). These characterizations suggest that lower carrier density samples can be obtained by
the growth at high temperature of 1450 °C and large amount of Sr flux. The thresholds of
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the largest Sr/PbO ratio and the highest temperature were determined as following. Large
amount of Sr at high temperature produces high pressure due to the evaporation of Sr, which
can break the tantalum ampules when 𝑥 ≥ 4.5. Sr starts to react the tantalum ampule at ∼
1450 °C, which involves tantalum impurity.We attempted a single crystal growth by placing Sr
and PbO in BN or alumina crucibles. The crucibles was placed in a sealed tantalum ampule in
order to avoid the contamination from tantalum impurity. However, sizable single crystals had
not been obtained by the tantalum-tube technique.

time

T
Thigh

100 ℃/h

−1 ℃/h12 h

−100 ℃/h

1050 ℃

Fig. 3.1. Typical temperature sequence for single crystal growth for Sr3PbO. The highest
temperature 𝑇Ä¾åÄ of 1350, 1400 and 1450 °C were used.

Fig. 3.2. Pictures of single crystals of Sr3PbO synthesized by the temperature sequence in Fig.
3.1 with 𝑇Ä¾åÄ = 1450 °C. (a) Single crystals of 0.5-1 mm were obtained by the Sr flux of𝑥 = 3.45. (b) and (c) Larger amount of Sr flux of 𝑥 = 3.6 gives larger single crystals of 1-2 mm
with shiny and flat surfaces.
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3.2. X-ray diffraction
Because of the air-sensitivity of Sr3PbO, it is difficult to take out a single crystal from the
glove box for a single crystal X-ray diffraction. We have not determine a direction of a single
crystal in early magnetotransport experiments, as reported in the master thesis [132]. Recent-
ly to conduct the angular dependent magnetotransport measurements, single crystal X-ray
diffraction experiments were performed as following.

A single crystal was fixed on a slide glass by a double-sided kapton tape and sealed by a thin
kapton film (12.5 𝜇m) with Apiezon N Grease as shown in (Fig. 3.3 (a)). Additional getters
Sr3PbO or Sr�SnO crystals were put together inside the sealing to catch possible oxygen and
moisture. X-ray diffraction data were collected by D8 DISCOVER (Bruker AXS). The diffrac-
tion patterns with several spots from Sr3PbO such as (200), (300), (102), (103), (113) and so on
were obtained by a 2D detector (Fig. 3.3 (b)), which enables us to determine the crystal axes.
The surface of the sample is gradually oxidized even in the sealing, which can be observed as
continuous ring patterns. After several hours, the diffraction spots from the Sr3PbO single
crystal completely fades out. The X-ray measurements had to be finished in ∼ 1 hour.

3.3. Transverse magnetotransport
Single crystals were polished into a rectangular shape by alumina sandpapers using electron
wax (Quickstick 135 Temporary Mounting Wax) which was removed by dehydrated acetone.
Because the surface of the crystals may react with the acetone, the surface was scraped by
tweezers to obtain the fresh and shiny surface. To ensure good electrical contacts, a gold film

Fig. 3.3. (a) A single crystal of Sr3PbO was sealed by a thin kapton film of 12.5 𝜇m with
Apiezon NGrease in the glove box, and then X-ray diffraction measurements were performed.
(b) One of the diffraction patterns of a single crystal Sr3PbO obtained by a 2D detector is
shown. Three spots of (200), (300) and (103) can be identified.
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as an electrode was made by a sputter coater (JEOL Smart Coater). A gold wire was attached
there by conductive epoxy CW2400 (Circuit Works) with the help of a micromanipulator.
The sample was fixed on a sapphire plate by a double-sided kapton tape, and then placed in a
sample holder with an air tight indium seal (Fig. 3.4 (a-b)).

The magnetotransport measurements were performed by PPMS 14 T (Quantum Design)
with magnetic fields normal to the applied current. A six probe configuration was used to mea-
sure the resistivity 𝜌�� 𝐵 and the Hall resistivity 𝜌�d 𝐵 (Fig. 3.4 (c)). We confirmed that the
results for the two independent voltage pairs were consistent with each other, which eliminated
any artifact arising from spatial inhomogeneity of the sample. To exclude the contributions
to 𝜌�� 𝐵 (𝜌�d 𝐵 ) from 𝜌�d 𝐵 (𝜌�� 𝐵 ) due to the misalignment of electrodes,𝐵-symmetric
(𝐵-asymmetric) parts of the raw data were extracted and presented as 𝜌�� 𝐵 (𝜌�d 𝐵 ).

3.4. Angular dependent magnetotransport
The angular dependent magnetotransport experiments were performed by a two-axis rotation
insert for PPMS 14 T with an air tight sample holder by an indium seal (Fig. 3.5 (a)). The
sample holder can be rotated along two directions by two worm gears as shown in Fig. 3.5 (b),
which enables us to realize exact alignment and to measure in-plane and out-of-plane angular
dependences in the same setup. Two worm gears were attached to a rotational shaft which is
connected to a rotational rod with a magnetic fluid seal at the top of the insert. Each rotational
axis was controlled by a motor outside the vacuum chamber. As seen in Fig. 3.5 (b), a cernox

Fig. 3.4. (a) and (b) A sample holder with an air tight indium seal is used for the magne-
totransport experiments by PPMS 14 T. (c) Six gold wires were attached to a single crystal of
Sr3PbO to measure the resistivity and the Hall resistivity.
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thermometer was fixed on the sample holder by an indium soldering to measure temperature
at the sample. Electrodes were prepared in a similar way to the transverse magnetotransport
measurements in Section 3.3.

3.5. Bulk magnetic susceptibility
Powder samples of Sr3PbO were sealed in glass tubes under helium gas as seen in Fig. 3.6 (a).
The glass tubes with and without the samples were measured separately by a superconducting
quantum interference device (SQUID) at a magnetic field 7 T. The SQUID signal only with the
glass tube was subtracted from that with both the tube and the sample, yielding a resultant
SQUID signal only from the sample (Fig. 3.6 (b)). The bulk susceptibility was derived from a
fit to the resultant signal.

3.6. NMR
Powder samples from five batches of Sr3PbO A-E were immersed in high-quality mineral oil
(Daphne 7373) sealed in straws with epoxy resin inside the glove box. The samples in straws
were mounted in an NMR coil. A magnetic field 𝐵 ∼ 7 T was applied, which was calibrated
by 63Cu NMR spectrum of the coil using gyromagnetic ratio 𝛾/2𝜋 = 11.2893305 MHz/T
and Knight shift 𝐾 = 0.200%. 207Pb NMR experiments were conducted using Carr-Purcell-
Meiboom-Gill multi-echo sequence with 10 echoes for the samples A-C or conventional spin-
echo sequence for the samples D and E respectively. NMR spectra were obtained by a combina-

Fig. 3.5. (a) and (b) Angular dependent magnetotransport experiments were performed by
a two-axis rotation insert for PPMS 14 T. An air tight sample holder can be rotated along two
directions (red and blue arrows) by two worm gears. A cernox thermometer was attached to
the sample holder.
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tion of Fourier transformation and frequency sweep (Fourier-Step-Sum technique). The origin
of peak shift𝛥𝑓was defined as 𝛾𝐵with gyromagnetic ratio of 207Pb 𝛾/2𝜋 = 8.9072353MHz/T.
NMR Knight shift𝐾 = 𝛥𝑓/𝛾𝐵 is simply determined by the NMR frequency shift for 𝐼 = 1/2
nucleus. Spin lattice relaxation rate 𝑇�−� was extracted from a single-exponential fit to the
relaxation curves collected by a standard inverse saturation recovery method.
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Fig. 3.6. (a) A powder sample of Sr3PbO was sealed in a glass tube for bulk magnetic sus-
ceptibility measurements. (b) A resultant SQUID signal only from the sample (black line)
was obtained by SQUID signals from the both the sample and the glass tube (red line) and
from the glass tube (blue line).
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Chapter 4
Result & Discussion

4.1. Characterization
4.1.1. Carrier density
The carrier densities are characterized by the Hall resistivity 𝜌�d 𝐵 measurements for single
crystals from different batches as reported previously [90, 132]. 𝜌�d 𝐵 in Fig. 4.1 for batches A
and C-E in the zero field limit gives positive Hall coefficients 𝑅µ = +3.8, 0.13, 0.032 and
0.029 cm�/C, yielding densities of holes 𝑛 = 1.6 × 10��, 5.0 × 10�ç, 2.0 × 10� and 2.2 × 10� cm−� respectively. 𝜌�d 𝐵 observed in the sample A shows nonlinear behavior in 𝐵, which can
be attributed to the coexistence of high and low mobility carriers due to the mass anisotropy
of six hole pockets as will be discussed in Section 4.2. This suggests 𝜌�d 𝐵 in A seems to
be dominated by the highly mobile hole pockets and the hole density of the sample A may
be underestimated. All samples investigated in this study are hole doped, which is consistent
with the previous reports [90, 131] and naturally expected from the viewpoint of chemistry.
The valence states of Pb usually takes 2+ or 4+. The extremely reduced and anionic statePbF− should prefer an oxidation of the sample, for example through cation defects or excess of
oxygens, which should lead to hole doping. Note that the sample quality can be also estimated
by the bulk magnetic susceptibility which strongly depends on 𝑛 (see Appendix A).
4.1.2. Fermi surface
As the chemical potential 𝜇 moves from the Dirac gap to the valence band, the character
of the band structure near the chemical potential 𝜇 can be classified into three regimes; Dirac
bands, a saddle point (SP) and multi-bands as shown in Fig. 4.2 (a). By comparing the carrier
concentrations 𝑛 and its energy dependence derived from the band calculation as Fig. 4.2 (b),
Fermi energy 𝐸O, chemical potential at 0 K, for the samples A, C, D and E are estimated to be− 45, − 125, − 235 and − 250meV respectively. The sample A with 𝐸O = −45meV resides in
the Dirac-bands. With increasing carrier densities 𝑛, 𝐸O reaches the SP near the 𝐸O ∼ −125
meV of the sample C, and finally falls well below the Dirac bands, as the samples D and E
seem to have multi-bands Fermi surfaces.
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Fig. 4.2. (a) Simplified band structure of antiperovskite Sr3PbO is again presented. The sam-
ple A belongs to the Dirac bands (red area) and the sample C is located near the SP. The
samples D and E reside in the multi-bands (blue area). (b) Energy dependence of carrier
concentration 𝑛 was derived from the band calculation. Fermi energies 𝐸O for the samples A,
C, D and E was determined by carrier density 𝑛 from Hall resistivity. The corresponding𝐸O is
denoted by dashed lines in (a) and (b).

A C

D
E

-2
-1
0
1
2

xy
 (m

cm
)

-10 -5 0 5 10
B (T)

-40
-20

0
20
40

xy
 (

cm
)

-10 -5 0 5 10
B (T)

(a) (b)

Fig. 4.1. (a) Field dependence of Hall resistivity 𝜌�d 𝐵 in the zero field limit gives the hole
densities of 𝑛 = 1.6 × 10��, 5.0 × 10�ç, 2.0 × 10� and 2.2 × 10� cm−� for the samples A,
C, D and E respectively. Small 𝜌�d 𝐵 for the samples C-E is enlarged in (b).

— 43 —



4.2. Presence of 3D Dirac electrons
As discussed in 4.1.2, a signature of 3D Dirac electrons is anticipated in a sample with low car-
rier density of 𝑛 ∼ 10�� cm−�. In this section, the transverse magnetotransport measurements
and NMR spin lattice relaxation rate for samples with similar carrier density to the sample
A in Fig. 4.2 are reported, which provides the evidence for the presence of 3D Dirac electrons
in Sr3PbO. The results for the magnetotransport measurements has been already reported
in part in the master thesis [132] and published in [90]. Those already reported in the master
thesis are again presented to make the thesis self-contained. Note the orientation of the single
crystal for the magnetotransport experiments was not determined. However, the observed SdH
oscillations, in conjunction with the result of magnetic torque measurements [137, 150], sug-
gest that magnetic field is applied to a direction close to a (100) axis of the crystal. Bulk super-
conductivity, as reported in polycrystalline Sr�−¸SnO [133], was not observed in our single
crystals down to 2 K (See also Appendix B).

4.2.1. Hall resistivity & Magnetoresistance
Temperature dependence of resistivity 𝜌�� 𝑇 for a single crystal of Sr3PbO shows metallic
behavior with a residual resistivity 𝜌�� 0 = 90 𝜇Ωcm and a residual resistance ratio (RRR)
of ∼ 10 (Fig. 4.3 (a)). The Hall resistivity 𝜌�d 𝐵 in the zero field limit gives a positive and 𝑇-
independent Hall coefficients𝑅µ = +3.8 cm�/C, yielding a low density of holes 𝑛 = 1.6 × 10��cm−� (Fig. 4.4 (a)). 𝜌�d 𝐵 in Fig. 4.4 (a) is nonlinear in magnetic field 𝐵 similar to a two
carrier model. The mass anisotropy of six hole-pockets, which will be discussed later, may give
rise to the coexistence of high and low mobility carriers. Within the two carrier model, the 𝑇-
independent𝑅µ in the inset to Fig. 4.3 (a) suggests that only the highly mobile holes dominate𝜌�d 𝐵 in the low field limit. The Hall mobility is estimated to be 4.4 × 10F cm�/Vs in the low
temperature limit, comparable to those reported for other 3D Dirac systems such as Cd�As�
[23, 24] and ZrTe\ [34]. The high mobility of carries is consistent with the presence of 3D Dirac
electrons.

A giant MR ratio 𝛥𝜌�� 𝐵 /𝜌�� 0 of over 10 at 𝐵 = 14 T was observed at the lowest
temperature measured, 𝑇 = 2 K as seen in the inset to Fig. 4.4 (c). 𝜌�� 𝐵 shows 𝐵-linear
behavior over a wide range of magnetic field𝐵 from 1 T up to 14 T, where no trace of saturation
is recognized (Fig. 4.4 (c)). Similar results has been reported in other 3D TDSs [22–24, 26,
27, 31, 98] and other topological semimetals [151–153]. The close similarity to other 3DTDSs is
indicative of the presence of 3D Dirac electrons in Sr3PbO.

While 𝛥𝜌�� 𝐵 /𝜌�� 0 shows a decrease with increasing 𝑇, the 𝐵-linear contribution in𝛥𝜌�� 𝐵 at high fields is independent of 𝑇 at least up to 200 K. This is demonstrated by
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the 𝑇- and 𝐵- independent derivative of resistivity 𝑑𝜌��/𝑑𝐵 in Fig. 4.4 (d). 𝛥𝜌�� 𝐵 /𝜌�� 0
in the 𝐵-linear region is therefore scaled by 𝐵/𝜌�� 0,𝑇 , where a Kohler's rule,𝛥𝜌�� 𝐵,𝑇 /𝜌�� 0,𝑇 = 𝑓 𝐵/𝜌�� 0,𝑇 (4.1)

is satisfied.

In the low field limit, 𝛥𝜌�� 𝐵 shows 𝐵�-behavior as seen in almost 𝐵-linear behavior
of 𝑑𝜌��/𝑑𝐵. The slopes of 𝑑𝜌��/𝑑𝐵 for different temperatures overlie each other as seen in
Fig. 4.4 (d), which indicates that the magnitude of the 𝐵� contribution of 𝛥𝜌�� 𝐵 in the
zero field limit is almost independent of 𝑇. In contrast to 𝐵-linear contribution at high fields,
the low field 𝐵� contribution apparently violates the Kohler's rule of Eq.4.1, which cannot
be explained by a classical 𝐵� MR.
A crossover from the low-field 𝐵� to the high field 𝐵-linear behaviors can be recognized

in 𝑑𝜌��/𝑑𝐵 in Fig. 4.4 (d). A crossover field 𝐵�êH can be represented by the magnetic field
at which 𝑑𝜌��/𝑑𝐵 shows a peak (inset to Fig. 4.4 (d)). 𝐵�êH increases with 𝑇 and is scaled
by 𝑇-dependent resistivity 𝜌�� 𝑇 as seen in Fig. 4.4 (e).

The nonlinear 𝐵 dependence of 𝜌�d 𝐵 in Fig. 4.4 (a) reflects the crossover from 𝐵� to𝐵-linear behavior observed in 𝛥𝜌�� 𝐵 . The nonlinear behavior is better visualized in the
derivative 𝑑𝜌�d/𝑑𝐵 in Fig. 4.4 (b). A crossover of 𝑑𝜌�d/𝑑𝐵 is observed from a 𝐵-linear and𝑇-independent decrease well below 1 T to a weak and again 𝑇-independent decrease at high
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Fig. 4.3. (a) Temperature dependence of resistivity 𝜌�� 𝑇 from 300 K to 2 K decreases upon
cooling. The inset shows temperature independent Hall coefficients 𝑅µ = +3.8 cm�/C. (b)
The first BZ and the Fermi surface for the Dirac bands. 𝑘O1 for 𝑖 = 𝑥, 𝑦, 𝑧 are Fermi wave
vectors.
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fields, as seen in (Fig. 4.4 (b)). The crossover magnetic field 𝐵�ìíîî may be represented by the

Fig. 4.4. Hall resistivity and magnetoresistance of the single crystal of Sr3PbO. (a) Magnetic
field 𝐵 dependence of 𝜌�d 𝐵 is nonlinear in 𝐵 and independent of 𝑇 up to 200 K. 𝜌�d 𝐵 in
the zero field limit gives a low density of holes 𝑛 = 1.6 × 10�� cm−�. (b) The nonlinear behavior
of 𝜌�d 𝐵 is more clearly distinguished in the derivative 𝑑𝜌�d/𝑑𝐵. A crossover field from low
field 𝑇-independent to high field 𝑇-independent behavior is denoted by the black arrow in the
inset. (c) A large MR ratio𝛥𝜌�� 𝐵 /𝜌�� 0 over 10 at 𝐵 = 14 T was observed at 𝑇 = 2 K as
seen in the inset. Magnetic field dependence of 𝛥𝜌�� 𝐵 = 𝜌�� 𝐵 − 𝜌�� 0 shows 𝐵-linear
and 𝑇-independent behavior, which is better recognized in the 𝑇-independent and constant
derivative 𝑑𝜌��/𝑑𝐵 at high fields in (d). A crossover field from 𝐵� to 𝐵-linear behavior in𝛥𝜌�� 𝐵 is indicated by the black arrow in the inset. (e) The crossover field 𝐵� defined by the
peak of 𝑑𝜌��/𝑑𝐵 (circle) and by the dip of 𝑑𝜌�d/𝑑𝐵 (square) seems scaled by 𝜌�� 𝑇 (line).
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field of the dip in 𝑑𝜌�d/𝑑𝐵 (black arrow in the inset to Fig. 4.4 (b)), which well agrees with the
corresponding crossover field 𝐵�êH as shown in Fig. 4.4 (e). The crossover 𝐵� between the
two 𝑇-independent magnetotransport regions commonly observed in 𝛥𝜌�� 𝐵 and 𝜌�d 𝐵 is
scaled with 𝜌�� 𝑇 and hence the 𝑇-dependent scattering rate 1/𝜏, which means the crossover
is controlled by 𝐵𝜏 𝑇 .

4.2.2. SdH oscillations
SdH oscillations are superposed at least up to 40 K as clearly seen in 𝑑𝜌��/𝑑𝐵. The observation
of the SdH oscillations up to high temperature suggests an extremely light cyclotron effective
mass, which supports the presence of 3D Dirac electrons. The SdH oscillations were derived
from 𝜌�� 𝐵 by subtracting a polynomial background (Fig. 4.5 (a)). The oscillations are com-
posed of two different traces with frequencies of 4.98 ± 0.30 and 31.5 ± 2.4 T hereinafter
referred as 5 and 32 T respectively. The 5 T oscillations cannot be recognized above 𝐵 ∼ 5
T. This indicates the quantum limit is reached above 𝐵 ∼ 5 T for the 5 T oscillations, which is
lower than or comparable to those reported for other 3D TDSs [27, 34, 98, 129]. This means
that the antiperovskite Sr3PbO provides a promising platform to explore the physics of the
quantum limit. The 32 T oscillations persist up to higher fields than 14 T and the quantum
limit cannot be realized in the experiments. In angle-dependent torque magnetometry exper-
iments on Sr3PbO [137, 150], quantum oscillations with similar frequencies were observed
when magnetic field is applied along the (100) axis. This suggests that the magnetic field ori-
entation is along a direction close to the (100) axis of the sample in this magnetotransport
measurement.

The cyclotron effective masses 𝑚�∗ for the two oscillations are derived from the fit to the
temperature dependence of the magnitude of the oscillations using the Lifshitz-Kosevich for-
mula [88] (inset to Fig. 4.5 (b)). The clear oscillation peaks at 0.64 T−� (black arrow in Fig. 4.5
(b)) and 0.11 T−� (black arrow in the inset to Fig. 4.5 (b)) were selected for the fitting. The fits
to these peaks yield𝑚�∗ of 0.011𝑚� and 0.057𝑚� for the 5 T and 32 T oscillations respectively.
The extremely light effective mass of ∼ 1% of the free electron mass is consistent with the
presence of 3D Dirac electrons in Sr3PbO. The difference in 𝑚�∗ between two oscillations may
be attributed to the anisotropy of six hole pockets, which will be discussed later.

The nontrivial Berry phase of Dirac electrons can be captured by an extra phase offset of
SdH oscillations. This offset 𝛽 can be extracted from the Landau fan diagram for the position
of maxima in SdH oscillations of 𝜎��,𝑛 = 𝐹𝐵 − 12 + 𝛽 − 18 (4.2)

where 𝑛, 𝐹 and 𝐵 are the maximum index, the frequency of SdH oscillations and magnetic

— 47 —



field, respectively. In an ideal Dirac electron system, the extra offset phase 𝛽 corresponds to the
Berry phase 𝜋 associated with the cyclotron motion [2, 3, 23]. Indeed, 𝛽 = 0.5 is expected for
the ideal Dirac dispersion and 𝛽 = 0 for a trivial 𝑘� dispersion [74]. The additional factor− 1/8 reflects the three dimensionality and the maximal cross-sectional area [83–85]. Note𝜎�� > 𝜎�d and hence 𝜌�� ≃ 𝜎��/𝜎�d� holds in the field range where the SdH oscillations are
observed. Therefore, we assigned the maxima of 𝜎�� to the maxima of 𝜌�� as discussed in [86].

Such fits to Eq.4.2 for the two frequencies are presented in Fig. 4.5 (b). In order to avoid
deviations arising from the quantum limit [154], the fit for the 5 T oscillations was limited
to 𝑛 ≥ 1.5. 𝛽 = 0.76 ± 0.16 and 𝛽 = 0.44 ± 0.26 were obtained for the 5 T and the 32 T
oscillations, respectively. These values are incompatible with the trivial value 0, although they
deviate from 0.5 expected for the ideal Dirac dispersion. Such deviations have also been seen
in, for example, Cd�As� [25] and can be attributed to the quadratic terms not considered in
the ideal Dirac dispersion as well as to the significance of spin splitting at high magnetic fields
[82, 154, 155]. However, large errors involving the determination of peak positions make it
difficult to draw clear conclusion about the offset in Landau levels. A more detailed analysis of
the phase will be left for future work.

Let us discuss the FS geometry and the relevant physical parameters of Sr3PbO from the
SdH oscillations with two different frequencies. Here, we assume that the FS has an ellip-
soidal shape and the magnetic field is applied to the direction close to the (100) axis. The
three principal Fermi momenta 𝑘O1 (𝑖 = 𝑥, 𝑦, 𝑧) are defined for the FS on the (100) axis as
in Fig. 4.3 (b). 𝑘Od = 𝑘O; is satisfied due to CF rotational symmetry of the (100) axis. There
should be two different cross-sectional areas normal to the field, 𝜋𝑘Od 𝑘O; for two FSs on the
(100) axis and 𝜋𝑘O�𝑘Od = 𝜋𝑘O�𝑘O; for the other FSs on (010) and (001) axes. The frequencies
for 5 T and 32 T oscillations correspond to the cross-sectional areas 5.0 × 10−F and 2.8 × 10−�
Å, respectively. If we assign the small (5 T) and the large (32 T) cross sections to 𝜋𝑘Od 𝑘O; and𝜋𝑘O�𝑘Od respectively, we obtain 𝑘O� = 5.6𝑘Od = 0.073 Å. These 𝑘O values give a carrier density
of 𝑛ðñì = 6 × 𝑘O�𝑘Od 𝑘O; /3𝜋� = 2.5 × 10�� cm−�, where a factor of 6 comes from six hole-
pockets. Note that if we consider a compressed FS instead of one elongated along the (100)
axis, 5.6𝑘O� = 𝑘Od = 0.030 Å and 𝑛ðñì = 1.0 × 10�� cm−� result. We cannot rule out at this
stage the possibility of oblate FS as the agreement between 𝑛ðñì and 𝑛ìíîî for oblate FS is
not entirely unreasonable given the uncertainty of the relevant parameters.

Using 𝐸O = 𝑚�∗𝑣Od 𝑣O; = 𝑚�∗𝐸O/ℎ𝑘Od × 𝐸O/ℎ𝑘O; , we obtain a Fermi energy of 𝐸O = 117
meV and Fermi velocities of 5.6𝑣O� = 𝑣Od = 𝑣O; = 1.4 × 10²m/s from the cyclotron effective mass0.011𝑚� for the 5 T oscillations. The same analysis applies for 32 T oscillations and gives con-
sistent values, 𝐸O = 127meV and 5.6𝑣O� = 𝑣Od = 𝑣O; = 1.5 × 10²m/s. Using 𝐸o = 2𝑣Od 𝑣O; ℎ𝑒𝐵𝑛,
the energy of 𝑛 = 1 LLmode𝐸� for 5 T oscillations is estimated to be 114 meV at 5 T.𝐸� ∼ 𝐸O
at 5 T is consistent with the realization of the quantum limit at 5 T. If we consider the case for

— 48 —



compressed FS, the same analysis yields𝐸O = 111meV, 𝑣O�/5.6 = 𝑣Od = 𝑣O; = 0.6 × 10²m/s and𝐸� = 111meV at 5 T. This is also consistent with the quantum limit at∼ 5T. Note a mass gap
of 𝛥 ∼ 10 meV predicted in the band calculations [35, 120] is negligible in the calculation of𝐸O and 𝐸�, as 𝛥 is much smaller than derived 𝐸O and 𝐸�. The two cross sectional areas in

Fig. 4.5. SdH oscillations of Sr3PbO. (a) SdH oscillations 𝜌��ï»Â 𝐵 were obtained by sub-
tracting a polynomial background from 𝜌�� 𝐵 . Two sets of oscillations with frequencies of4.98 ± 0.30 and 31.5 ± 2.4Twere observed. The 32 T oscillations above∼ 6 T is emphasized in
the inset. (b) The phase offset associated with the nontrivial Berry phase can be captured by
Landau fan diagram. Both peaks (closed symbols) and dips (open symbols) of SdH oscilla-
tions with two different frequencies 5 T and 32 T are plotted. Extrema of SdH oscillations and
their errors were determined by Gaussian fitting of SdH oscillation peaks. 𝛽 = 0.76 ± 0.16 and𝛽 = 0.44 ± 0.26were extracted from the linear fit to the 5 T and 32 T oscillations, respectively.
The cyclotron effective mass𝑚�∗ can be derived from the fit to the temperature dependence of
the oscillations amplitude by a Lifshitz-Kosevitch formula. The amplitude for clear oscillation
peaks at 0.64 T−� (black arrow in (a)) and 0.11 T−� (black arrow in the inset of (a)) are
plotted as a function of temperature in the inset, representing 5 T and 32 T oscillations. The
fits yield extremely light 𝑚�∗ of 0.011𝑚� and 0.057𝑚� for the 5 T and 32 T oscillations.
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the SdH oscillations give an almost the same 𝐸O values, which supports the assumption that
they originate from the equivalent FSs. The angular dependence of de Haas-van Alphen effect
around (100) observed in torque magnetometry experiments [137, 150] on single crystals with
smaller carrier density than that of the present crystal gives an "extrapolated" anisotropy of
2-3, a factor of 2 smaller than the present estimate. In the band calculation, the anisotropy was
predicted to be 2-3 [120] . The difference may suggest the presence of a more complicated FS
shape than ellipsoid for a higher carrier concentration, which should be clarified in the future.

The above estimate of the Fermi energy 𝐸O ∼ −100 meV is a factor of 2 larger than𝐸O ∼ −50 meV derived from the carrier density 𝑛 in Fig. 4.2. The latter, 𝐸O ∼ −50 meV, is
fully consistent with the magnitude of (𝑇�𝑇 )−�/� as will be discussed in 4.4.3, which implies
that𝐸O ∼ −100meV is overestimated. The limited number of oscillations and the beating pat-
tern from two different frequencies, in conjunction with the suggested complicated FS shape,
may involve the large errors of 𝑚�∗ and hence 𝐸O by a factor of ∼ 2. Note that, in the above
discussion, both calculated 𝐸O and 𝐸� are scaled with 1/𝑚�∗. This gives the good agreement
between 𝐸O and 𝐸� even if 𝑚�∗ deviates from the above estimate.
4.2.3. Origin of linear MR
Let us turn our attention to an origin of linear MR. To understand 𝐵-linear profile of MR
in Dirac electron systems, two models are often employed. However, at least in their original
forms, they do not provide a full account for the experimental observations. One is the classical
disorder model discussed in doped silver chalcogenides [91–93], Cd�As� [24] and GaAs quan-
tum wells [94], where 𝐵-linear 𝜌�� 𝐵 is attributed to 𝜌�d 𝐵 . The observed relation between𝛥𝜌�� 𝐵 and 𝜌�d 𝐵 via mobility supports this scenario. However, it is not obvious at all
in this scenario why there is 𝑇-independence of 𝛥𝜌�� 𝐵 and 𝜌�d 𝐵 in conjunction with 𝑇-
dependence of 𝜌�� 𝐵 and the absence of nonlinearity in 𝛥𝜌�� 𝐵 out of nonlinear 𝜌�d 𝐵 .
The other scenario is quantum magnetoresistance for Dirac electrons in the quantum limit
[89]. This may account for the 𝑇-independent and 𝐵-linear 𝛥𝜌�� 𝐵 . However, the crossover
from 𝐵� to 𝐵-linear behavior seems to be controlled by 𝐵𝜏 rather than the realization of the
quantum limit at 𝐵 = 5 T. When magnetic field is applied to the (100) axis, the originally
equivalent six hole pockets may split into the two groups because of the anisotropy. These
two contributions can have different mobilities under the field, but the very weak temperature
dependence of𝛥𝜌�� 𝐵 and 𝜌�d 𝐵 makes the analysis in terms of the naïve two-carrier model
and hence the interpretation of 𝛥𝜌�� 𝐵 and 𝜌�d 𝐵 very difficult. We cannot exclude the
possibility that FS anisotropy can explain the difficulties of the two scenarios at this stage.
Measurements with the field parallel to the (111) direction, where six hole pockets remain
equivalent, can eliminate the complication from the FS anisotropy, which may discriminate
between the two scenarios.
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4.2.4. Spin lattice relaxation rate
Here, we briefly discuss the temperature dependence of NMR spin lattice relaxation rate 𝑇�−�
observed in the 207Pb NMR experiments on the powder sample from the same batch as the
sample A with low carrier concentrations 𝑛 = 1.6 × 10�� cm−�, which supports the presence of
3D Dirac electrons in Sr3PbO. NMR experiments including the sample dependence of 𝑇�−� will
be discussed in Section 4.4 in more detail.

The energy dependence of DOS can be captured by spin lattice relaxation rate𝑇�−� = �𝐷 𝐸 �𝑓 𝐸 (1 − 𝑓 𝐸 ). (4.3)

In a simple metal with a constant 𝐷 𝐸 as a function of 𝑇, constant (𝑇�𝑇 )−� is expected,
known as the Korringa law. 𝑇�−� in all the samples shows 𝑇-linear behavior in the low temper-
ature limit as seen in Fig. 4.6. At higher temperature, 𝑇 � behavior of 𝑇�−� was observed in
the sample A, which can be attributed to strongly 𝐸-dependent DOS of 3D Dirac electrons,𝐷 𝐸 ∼ 𝐸�. Similar results were reported and discussed in 𝑇 � behavior in organic quasi 2D
Dirac system [71] and Weyl semimetal TaP [72] or 𝑇 �-behavior in Sr�−¸SnO [73]. Note the
relaxation of 𝐼 = 1/2 nuclear spin at 207Pb does not have the direct phonon process which gives
rise to 𝑇 ò or 𝑇 ç dependence. Indirect phonon contribution via spin-orbit coupling is negligible
[118].
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Fig. 4.6. Temperature dependence of NMR spin lattice relaxation rate 𝑇�−�. 𝑇�−� of the sample
A shows crossover from 𝑇-linear (black dashed line) to 𝑇 � behavior (red dashed line) with
increasing 𝑇, which reflects the DOS of 3D Dirac electrons𝐷 𝐸 ∝ 𝐸�. The numerical calcu-
lation of 𝑇�−� by Eq.1.68 (solid line) is consistent with the experimental results for the sample
A.
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Numerical calculation of 𝑇�−� supports the presence of 3D Dirac electrons in Sr3PbO. Using
Sommerfeld expansion for DOS of massless 3D Dirac electrons 𝐷 𝐸 ∝ 𝐸�, 𝑇�−� can be given
by Eq.1.68, where the competition between chemical potential 𝜇 and temperature 𝑇 leads
to a crossover from 𝑇-linear to 𝑇 � and then 𝑇 \ behavior with increasing 𝑇. 𝑇-linear 𝑇�−� is
expected at low temperature where 𝑘®𝑇 ≪ 𝜇 is satisfied. At higher temperature where 𝑘®𝑇
is not negligibly small as compared with 𝜇 and therefore thermal excitation can significantly
contribute to 𝑇�−�, 𝑇�−� shows 𝑇 �- and then 𝑇 \- behavior reflecting the𝐸� dependence of𝐷 𝐸 .
As seen in Fig. 4.6, Eq.1.68 with 𝜇 = −60meV gives good agreement with the experimentally
observed 𝑇�−�, which provides microscopic evidence for the presence of 3D Dirac electrons in
Sr3PbO. Note mass gap 𝛥 ∼ 10 meV can be neglected in the calculation of 𝑇�−� for 𝜇 = −60
meV as 𝜇� is much larger than 𝛥� in 𝐷 𝜇 of Eq.1.20.

In summary, Sr3PbO shows unconventional magnetotransport properties by extremely
light mass carriers. The DOS of 3D Dirac electrons is reflected in unconventional temperature
dependence of 𝑇�−�. These results provide the evidence for the presence of 3D Dirac electrons in
Sr3PbO. In the following sections, we will report angular dependent magnetotransport, bulk
magnetic susceptibility and NMR experiments on Sr3PbO and discuss unconventional physics
anticipated in 3D Dirac electrons, chiral anomaly and giant orbital diamagnetism, though
the angular dependent measurements have difficulty owing to the current jetting effects.
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4.3. Chiral anomaly & current jetting effect
As reported in the master thesis [132], the single crystal of Sr3PbO shows negative longitudinal
MR, while the results indicate the presence of the current jetting effects. As seen in Fig. 4.4 (c),
Sr3PbO exhibits a large transverse MR ratio𝛥𝜌�� 𝐵 /𝜌�� 0 of over ∼ 10 at 14 T, which can
induce anisotropy of MR and hence the focusing of the current density.
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Fig. 4.7. (a) The geometry of a Sr3PbO single crystal for resistivity, Hall resistivity and
transverse MR experiments. The applied current along the (100) axis is normal to magnet-
ic field along the (001) axis. (b) Temperature dependence of the resistivity shows metallic
behavior with RRR of ∼ 10. Small anomaly at low temperature indicates filamentary super-
conductivity (see Appendix B). (c) Field dependence of the Hall resistivity 𝜌�d 𝐵 at 2.5
K in the zero field limit gives a positive Hall coefficient 𝑅µ = 5.2 cm�/C, yielding a low
hole density 𝑛 = 1.2 × 10�� cm−�. (d) Field dependence of the resistivity 𝜌�� 𝐵 at 2.5
K shows 𝐵-linear behavior, where a large MR ratio 𝛥𝜌�� 𝐵 /𝜌�� 0 of ∼ 9 at 𝐵 = 14 T
was observed as seen in the inset.
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In this section, we report angle dependent magnetotransport measurements to discuss the
effect of current jetting. In these experiments, crystallographic axis was determined by a single
crystal X-ray diffraction experiment, and then a single crystal was polished into a rectangular
shape the surfaces of which are (100) or equivalent planes as shown in Fig. 4.7 (a). Broad
current contacts were attached to the sample in order to diminish the artifacts from the current
jetting effects. Current is applied along (100) axis of the single crystal. Although a six probe
configuration was prepared, one voltage contact was broken probably because of chemical ins-
tability of Sr3PbO. We could not cross-check results using two independent voltage pairs.

4.3.1. Hall resistivity & Transverse MR
The single crystal was characterized by the resistivity, the Hall resistivity and the transverse
MR with applied field along the (001) axis normal to the current (Fig. 4.7), all of which are
similar to the previous results. The resistivity 𝜌�� shows metallic behavior with RRR of ∼ 10.
The Hall resistivity 𝜌�d 𝐵 at 2.5 K in the zero field limit gives a positive Hall coefficient𝑅µ = 5.18 cm�/C, yielding a low density of holes 𝑛 = 1.2 × 10�� cm−�. A large MR ratio𝛥𝜌�� 𝐵 /𝜌�� 0 of∼ 9was observed at 𝑇 = 2.5K and𝐵 = 14T as seen in the inset to Fig. 4.7
(d).

4.3.2. Longitudinal MR
Longitudinal MR with the applied field parallel to the current decreases with increasing field
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𝐵 (Fig. 4.8), consistent with the expected negative longitudinal MR induced by chiral anoma-
ly. However, ‘negative resistance’ was observed at low temperature and at high field, for exam-
ple, at 2.5 K and 𝐵 > 3 T. Since a 𝐵-symmetric part is presented as 𝜌��Ã¸½ 𝐵 in Fig. 4.8, the
observed ‘negative resistance’ is not simply explained by contribution from 𝜌�d 𝐵 . These
results indicate that current jetting effects play important role in the longitudinal MR [103,
104].

4.3.3. Angular dependence of MR
In order to study the possible chiral anomaly and the current jetting effects further, we mea-
sured 𝜑-dependence of 𝜌��Ã¸½ by in-plane rotation where the angle 𝜑 is defined as in the inset to
Fig. 4.9 (a). The angle dependence of MR exhibits anomalous peak structure with two peaks
and two dips (red arrows in Fig. 4.9 (a)). The peaks structure develops with increasing 𝐵,
namely with increasing the anisotropy of MR. The current jetting effects induced by such
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Fig. 4.9. (a) 𝜑-dependence of 𝜌��Ã¸½ at 2.5 K by in-plane rotation shows anomalous peak struc-
ture with two peaks and two dips (red arrows), which indicates the presence of the current jet-
ting effects. The angle 𝜑 is defined as in the inset. (b) and (c) The peaks or the dips observed
in 𝜌��Ã¸½ can be intuitively explained by the alignment of a current contact and a voltage contact
along𝐵. The current density concentrates on the voltage contacts because of the anisotropy of
MR.
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enhanced anisotropy of MR can reasonably explain the experimentally observed negative MR
if the field is slightly misaligned from the current direction, as discussed in a previous report
[104]. When the positive current contact and the positive voltage contact are aligned along the
magnetic field direction, focusing of the current density on the voltage contact gives rise to the
peak of 𝜌��Ã¸½ (Fig. 4.9 (b)). The dips can be also explained by a similar arrangement of current
and voltage contacts with opposite signs as shown in Fig. 4.9 (c). The magnitude of the peaks
are larger than that of the dips, which can be described by the shorter distance between the
aligned current and voltage contacts. These current jet angles are expected to be dependent
on geometry of the attached contacts rather than the field intensity. Indeed, the peak (dip)
positions 𝜑½Ãíõ (𝜑ñ¾½) are almost independent of 𝐵 and consistent with the contacts geometry
where 𝜑½Ãíõ ∼ ±25° and 𝜑ñ¾½ ∼ ±12.5° are estimated. Similar peaks were also observed in out-
of-plane rotation measurements at high field where the angle 𝜃 is defined as in the inset to Fig.
4.10 (a). This can be ascribed to small misalignment of the contacts along (001) axis (Fig. 4.10
(b)) as discussed in a previous report [104].

The current jetting effects, in conjunction with small misalignment of magnetic field, can
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Fig. 4.10. (a) 𝜃-dependence of 𝜌��Ã¸½ at 2.5 K by out-of-plane rotation has two peaks and two
dips indicated by the red arrows. The inset is a side view of the sample with the tilt angle 𝜃. (b)
The peaks and the dips may be ascribed to misalignment of current and voltage contacts
which can give rise to the focusing of the current density on the voltage contacts at finite 𝜃.
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decrease 𝜌��Ã¸½ as seen in Fig. 4.9 (a), which can be observed as the negative longitudinal MR.
This suggests that special care is necessary for the longitudinal MR experiments as discussed
in previous reports [103, 104]. The focusing of the current density can be recognized as peak
structure in angular dependence of 𝜌��Ã¸½, which helps us to distinguish intrinsic contribution
from the artifacts caused by the current jetting effects.

4.3.4. Angular dependence of planar Hall effect
Field angle 𝜑-dependence of planar Hall effect is expected to show cos 𝜑 sin 𝜑 ∝ sin 2𝜑

variation [106, 107] as discussed in 1.4.8. Because the planar Hall effect is even in magnetic field𝐵 unlike usual Hall effect, experimentally obtained 𝜌�dÃ¸½ 𝐵 in Fig. 4.11 (a) was inferred from
a 𝐵-symmetric part of Hall voltage 𝑉�d 𝐵 + 𝑉�d −𝐵 /2. The field angle 𝜑-dependence
of 𝜌�dÃ¸½ 𝐵 at 2.5 K shows a large positive peak and a large negative peak (red arrow in Fig.
4.11 (a)), which is different from the theoretical sin2𝜑 variation. The magnitude of the peaks
increases with increasing𝐵, and the peak positions are almost independent of𝐵. Those can be
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Fig. 4.11. (a) 𝜑-dependence of 𝜌�dÃ¸½ at 2.5 K shows a large positive peak and a large negative
peak (red arrows), each of which has a small dip (blue arrows). The angle 𝜑 is defined as in the
inset. (b) The peaks observed in 𝜌�dÃ¸½ can be attributed to the focusing of the current density,
similar to the𝜑-dependence of 𝜌��Ã¸½. The anti-symmetric pattern of the peaks can be explained
by the geometry of the electrodes. (c) The alignment of the current and voltage contacts
with longer distance may give rise to the small dips in the peaks.
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explained by the current jetting effects, similar to the peak structure in 𝜌��Ã¸½. The anti-symmet-
ric pattern of the peaks is consistent with the geometry of voltage contacts with opposite signs
as shown in Fig. 4.11 (b). Each peak has a small dip (blue arrows in Fig. 4.11 (a)) which may
be attributed to the alignment of the electrodes with longer distance (Fig. 4.11 (c)).

4.3.5. Possibility of chiral anomaly
Although a small anisotropy of MR 𝐴 ∼ 2 is expected at 𝐵 = 1 T in the absence of the
negative longitudinal MR, the current jetting effects are clearly recognized in 𝜌��Ã¸½ 𝐵 and𝜌�dÃ¸½ 𝐵 at 1 T as seen in Fig. 4.12. TheMR anisotropy of𝐴 effectively shortens the sample by a
factor of 𝐴 in the direction of 𝐵 [104], which modifies a suitable aspect ratio 𝑙ö¿ö/𝑤 (𝑙ö¿ö/𝑡)
for homogeneous current density by a factor of 𝐴. An effective aspect ratio of the sample
used in these measurements for 𝐴 = 2 is 𝑙ö¿ö/(𝑤 𝐴) ∼ 2.8 (Table 4.1). This is comparable

Data 𝑙ö¿ö(µm) 𝑙Â(µm) 𝑤(µm) 𝑡(µm)
Fig. 4.3-Fig. 4.5 652 271 236 225

Fig. 4.7-Fig. 4.13 (a) 1144 226 293 286
Fig. 4.13 (b) 1137 333 224 279

Table 4.1. The dimensions of the crystals investigated in Section 4.2 and Section 4.3. 𝑙ö¿ö, 𝑙Â, 𝑤
and 𝑡 are the total length, the distance between voltage contacts, the width and the thickness,
respectively. The sample in Fig. 4.7-Fig. 4.13 (a) was again used for a remeasurement (Fig.
4.13 (b)) after polishing the surfaces and preparing contacts.
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to an aspect ratio of ∼ 2.9 for the sample investigated in Section 4.2, where the results for the
two independent voltage pairs were consistent with each other and therefore a homogeneous
current distribution was expected. These results imply that the anisotropy of MR may be
further enhanced by negative longitudinal MR.

The intrinsic contribution may be captured by 𝜌��Ã¸½ 𝐵 at a low field of 𝐵 = 0.5 T. In
Fig. 4.13 (a), clear peaks cannot be recognized at the current jet angles seen at higher fields.
We observe− cos 2(𝜑 + 𝛼) dependence of 𝜌�dÃ¸½ 𝐵 except for the dip structure at 𝜑 = 0°. This
should be compared with− cos2𝜑 dependence of 𝜌��Ã¸½ 𝐵 . Similar results with lower noise were
obtained in a remeasurement for the same sample as shown in Fig. 4.13 (b). The observed
period of ∼ 180° in 𝜌�dÃ¸½ 𝐵 cannot be explained by the period of 360° for usual Hall effect.
The phase difference 𝛼 ∼ −45° between 𝜌��Ã¸½ 𝐵 and 𝜌�dÃ¸½ 𝐵 is, however, incompatible with45° expected for the angular dependences of negative longitudinal MR and planar Hall effect,
which suggests that the observed angular variation of 𝜌�dÃ¸½ 𝐵 is related to current jetting
or other effects. 𝐵 = 0.5 T seems too small for the quantum limit where chiral anomaly is
expected. The magnitudes of 𝜌��Ã¸½ 𝐵 and 𝜌�dÃ¸½ 𝐵 from the same samples in Fig. 4.13 (a)
and (b) are different, which may be caused by the current jetting effects. Considering these
difficulties, cross-check between two independent voltage pairs and reproducibility in other
samples are necessary to discuss the angular dependences of negative longitudinal MR and
planar Hall effect in more detail. Further experiments are left for future study to extract clear
conclusion.
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Fig. 4.13. (a) The phase difference between 𝜌��Ã¸½ and 𝜌�dÃ¸½ at 0.5 T is ∼ −45°, which is incom-
patible with the angular dependences of negative longitudinal MR and planar Hall effect.
(b) After the sample surfaces were polished and electrodes were prepared again, similar 𝜑-
dependence with lower noise was obtained. However, the magnitudes of 𝜌��Ã¸½ 𝐵 and 𝜌�dÃ¸½ 𝐵
are different in spite of the measurement for the same sample.
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4.4. Giant orbital diamagnetism ofDirac electrons
In this section, we report bulk magnetic susceptibility and 207Pb NMR study on the five
Sr3PbO samples A-E with different carrier densities from ∼ 10�� cm−� to ∼ 10� cm−� as
shown in Fig. 4.1. Band structure, carrier density, DOS and bulk magnetic susceptibility 𝜒ÂíîÂ
were calculated by our collaborators, T. Kariyado and M. Ogata. The magnitude of 𝑇�−� is
well scaled by the DOS obtained by the band calculation. This enables us to resolve NMR
Knight shift 𝐾 into spin and orbital contributions with the help of a Korringa relation, which
demonstrated the orbital character of the giant diamagnetism of Dirac electrons in Sr3PbO.

4.4.1. Bulk magnetic susceptibility
The bulk magnetic susceptibilities 𝜒Ã¸½ for the three samples A, C and E are found to be dia-
magnetic as shown in Fig. 4.14 (a). The magnitude of diamagnetic susceptibility is increased
on going from the sample E to A, namely approaching the Dirac mass gap. The increase is
particularly significant from C to A, as large as of the order of 10−F emu/mol.
The increase is hard to be ascribed to a suppression of spin susceptibility with decreasing

hole concentration. The observed increases seems to be comparable to or even larger than
typical Pauli paramagnetism 𝜒»½¾q of ∼ 10−F-10−\ emu/mol assuming carrier density ∼ 10��cm−� and with 𝑔 = 2 for a conventional metal. The spin susceptibility for low carrier density∼10� cm−� is expected to be much smaller than typical 𝜒»½¾q for the conventional metal. We can
easily exclude the variation of core diamagnetism. ∼ 1% of cation defects or excess oxygens
gives a variation of diamagnetism of ∼ 10−² emu/mol as the core diamagnetism is of the order
of only 10−F emu/mol for Sr3PbO. The large diamagnetism of the sample A can be attributed
to the orbital diamagnetism of Dirac electrons.

Indeed, the theoretical calculation of bulk susceptibility based on a tight binding model
supports the emergence of large orbital diamagnetism near the Dirac mass gap. In the Dirac
bands regime in Fig. 4.2 (a), the diamagnetism grows and reaches a negative minimum with
approaching the Dirac mass gap (Fig. 4.14 (b)). At the chemical potential of ∼ −50 meV
for the sample A, clear diamagnetic contribution of − 1 × 10−F emu/mol is expected. The
diamagnetic susceptibility 𝜒Ã¸½ is increased upon cooling, consistent with a downward trend
of 𝜒ÂíîÂ for 𝑛 = 1.6 × 10�� cm−� down to 200 K (Fig. 4.14 (c)). An upturn at∼ 200 K is attribut-
ed to 𝑇-dependence of chemical potential 𝜇 (Fig. 4.15), which cannot be recognized in 𝜒Ã¸½
except for that from impurity. This suggests the chemical potential seems to be less dependent
on 𝑇 than in the calculation. The unconventional 𝜇- and 𝑇- dependences are dominated by
the orbital diamagnetism as seen in Fig. 4.14 (d) and (e), which display each contribution
in𝜒ÂíîÂ, Pauli paramagnetism (Zeeman), orbital diamagnetism from itinerant motion (orbital),
their coupling (cross) and atomic diamagnetism (atomic) as a function of chemical potential or

— 60 —



temperature. The 𝑇-dependence of the orbital diamagnetism allows us to estimate a hyperfine
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Fig. 4.14. Bulkmagnetic susceptibility of Sr3PbO antiperovskite. (a) Temperature dependence
of experimental bulk magnetic susceptibility 𝜒Ã¸½ for the samples A, C and E (solid lines).
All are found to be diamagnetic. The magnitude of diamagnetic susceptibility increases with
approaching the Dirac mass gap, consistent with the giant orbital diamagnetism of Dirac
electrons. By subtracting Curie-like contributions derived from the fit to 𝜒Ã¸½ at low temper-
ature, the intrinsic contributions of 𝜒Ã¸½ were obtained (dotted lines). (b) In response to the
band structure near the chemical potential 𝜇 in Fig. 4.2 (a), theoretical calculation of chem-
ical potential 𝜇-dependence of bulk magnetic susceptibility 𝜒ÂíîÂ at 232 K and 348 K can be
classified into three regimes: giant orbital diamagnetism in the Dirac bands, paramagnetic
peak at the SP, temperature independent susceptibility for multi-bands. The corresponding 𝜇
for the samples A and C-E are indicated by the dashed lines. (c) Temperature dependence
of 𝜒ÂíîÂ for the carrier density 𝑛 = 1.6 × 10��, 5.0 × 10�ç and 2.0 × 10� cm−�. (d) and
(e) Each contribution to 𝜒ÂíîÂ from Pauli paramagnetism (Zeeman), orbital diamagnetism
from itinerant motion (orbital), their coupling (cross) and atomic diamagnetism (atomic) as
a function of 𝑇 and 𝜇. 𝑇-dependence of 𝜒ÂíîÂ for 𝑛 = 1.6 × 10�� cm−� and 𝜇-dependence of𝜒ÂíîÂ at 232 K are dominated by the orbital contribution.
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coupling constant for orbital Knight shift. Note the atomic diamagnetism in 𝜒ÂíîÂ does not
include contribution from core states, which are not taken into account in the tight binding
model.

As the chemical potential moves towards the valence band, the calculated magnetic sus-
ceptibility 𝜒ÂíîÂ can be classified into three regimes, in response to the character of the band
structure near the chemical potential 𝜇 as discussed in 4.1.2. The most prominent feature is the
giant orbital diamagnetism in the Dirac bands regime as discussed above. At the SP, magnetic
breakdown of classical electronic orbits gives rise to quantum tunneling paths enclosed the SP
[156], yielding a paramagnetic peak as in Fig. 4.14 (b). Such paramagnetic behavior in 𝜒ÂíîÂ for𝑛 = 5.0 × 10�ç cm−� (Fig. 4.14 (c)) cannot be found in 𝜒Ã¸½ of the sample C, which suggests its
chemical potential 𝜇 shifts from the SP. As will be discussed later, the good agreement between
the estimated chemical potential in 4.1.2 and the magnitude of 𝑇�−� indicates such deviation is
limited to only the vicinity of the SP. In the multi-bands regime where the orbital contribution
is diminishingly small, 𝜒ÂíîÂ for 𝑛 = 2.0 × 10� cm−� is almost independent of 𝑇 as expected
for a usual metal, which may explain weakly 𝑇-dependent 𝜒Ã¸½ for the sample E.
4.4.2. Giant diamagnetism in NMR Knight shift
In order to identify the origin of the large diamagnetism observed in 𝜒Ã¸½, 207Pb NMR exper-
iments for the samples A-E with different carrier concentrations ∼ 10��-10� cm−� were con-
ducted. As seen in NMR spectra at 150 K shown in Fig. 4.16 (a), the peak positions systemati-
cally shift as a function of chemical potential 𝜇, which suggests these NMR peaks originate
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Fig. 4.15. (a) The chemical potential 𝜇 for carrier density 𝑛 = 1.6 × 10�� cm−� is expected
to be dependent on 𝑇. (b) The calculated magnetic susceptibility 𝜒ÂíîÂ for fixed 𝜇 = −45meV
(red line) monotonically decreases upon cooling and does not show the upturn unlike 𝜒ÂíîÂ for𝑛 = 1.6 × 10�� cm−� with 𝑇-dependent 𝜇 (blue line). The upturn was not observed in 𝜒Ã¸½
for the sample A, which suggests 𝜇 seems to be less dependent on 𝑇 than the calculation in (a).
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from the bulk Sr3PbO. We note that the observed shift values are different from those of pos-
sible impurity phases such as 1.081%, − 0.034% and 0.444% for metallic Pb, PbO and PbO�
[124] respectively. The presence of more than one peak in samples A and B with low carrier
density may be attributed to an inhomogeneity/phase separation where the region(s) with a
slightly different hole density from the main phase coexists.

NMR Knight shift 𝐾 for the samples A-E shows similar behavior to the bulk susceptibility𝜒Ã¸½ as seen in Fig. 4.16 (b), where the Knight shift 𝐾 decreases on going from the sample
E to A, namely with approaching the Dirac mass gap. Upon cooling, the sample A shows
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Fig. 4.16. NMR spectra, Knight shift and spin lattice relaxation rate of Sr3PbO antiperovs-
kite. (a) The peak position of NMR spectra for the samples A-E at 150 K systematically shifts
toward a negative side with decreasing chemical potential 𝜇. (b) NMR Knight shift 𝐾 shows
similar 𝑇- and 𝜇- dependence to 𝜒Ã¸½. (c) 𝑇-dependence of 𝑇�−� for the sample A-E in Fig. 4.6
is again presented. The 𝑇-linear Korringa behavior (black dashed lines) was observed in all the
samples in the low temperature limit. The magnitude of 𝑇�−� systematically increases with
increasing carrier density. (d) (𝑇�𝑇 )−�/� for the samples A-E at 100 K (closed circles) are well
scaled by the calculated partial DOS for 𝑝 orbital of Pb (line), which indicates that (𝑇�𝑇 )−�/�
is regarded as the DOS and therefore the spin contribution𝐾»½¾q. The 𝜇 = −60meV inferred
from the 𝑇-dependence of 𝑇�−� for the sample A is also consistent with the calculated DOS.
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a decrease of 𝐾 while the samples B-E show an increase. The scaling of 𝐾 with 𝜒Ã¸½ indicates
that the chemical potential and temperature dependence of 𝜒Ã¸½ are understood by 𝐾 with
a positive hyperfine coupling constant.

The NMR Knight shift 𝐾 is comprised of several contributions as𝐾 𝑇,𝑛 = 𝐾ÂÄÃÅ + 𝐾»½¾q 𝑇,𝑛 + 𝐾¿ÀÁ 𝑇,𝑛 , (4.4)

essentially the same as the bulk magnetic susceptibility. The chemical shift 𝐾ÂÄÃÅ is char-
acterized by the interatomic distance and hence insensitive to 𝑇 and 𝜇, which acts as a con-
stant offset in 𝐾. 𝐾»½¾q and 𝐾¿ÀÁ are spin and orbital contributions respectively. Each term
is proportional to respective susceptibilities 𝜒»½¾q and 𝜒¿ÀÁ via respective hyperfine coupling
constants 𝐴»½¾q and 𝐴¿ÀÁ as discussed in 1.4.10. 𝐴»½¾q and 𝐴¿ÀÁ are in principle different. In
a conventional system where the orbital contribution is independent of 𝑇, the theoretical value
of 𝐴¿ÀÁ = 2 𝑟−� for Van Vleck susceptibility is usually used and 𝐴»½¾q can be determined
by 𝑇-dependence of a 𝐾 versus 𝜒 diagram. However, unconventional 𝐴¿ÀÁ and temperature
dependence are expected for the orbital diamagnetism of Dirac electrons, and therefore we
separate spin and orbital contributions by analyzing 𝑇- and 𝜇- dependences of 𝜒Ã¸½, 𝐾 and𝑇�−� with the help of a Korringa relation.
4.4.3. Estimate of the spin contribution from 𝑇�−�
The spin contribution can be captured by the spin lattice relaxation rate 𝑇�−� which is deter-
mined by a thermal average of DOS as𝑇�−� ∝ �𝐷 𝐸 �𝑓 𝐸 (1 − 𝑓 𝐸 ). (4.5)

In a simple metal with a constant 𝐷 𝐸 as a function of 𝑇, 𝑇-independent (𝑇�𝑇 )−� is expect-
ed, known as the Korringa law. The 𝑇-linear Korringa behavior of 𝑇�−� was observed in all
the samples in the low temperature limit (Fig. 4.16 (c)). The magnitude of the 𝑇-linear 𝑇�−�
systematically increases with increasing hole density from the sample A to E, which can be
naturally explained by the increase of the DOS at the chemical potential. Indeed, (𝑇�𝑇 )−�/�
of 207Pb NMR for different carrier density at 100 K are well scaled with the calculated partial
DOS of 𝑝 orbitals of Pb (Fig. 4.16 (d)), which evidences that (𝑇�𝑇 )−�/� is regarded as the
DOS and therefore the spin contribution𝐾»½¾q. The good agreement ensures that the deviation
of chemical potential of the sample C mentioned above is very likely limited to the vicinity
of the SP at ∼ −125 meV. The orbital contribution to 𝑇�−� was theoretically studied [157],
which predicted to be 10 times less than observed 𝑇�−� and can be neglected in our results.
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An upward deviation from the 𝑇-linear Korringa behavior with increasing 𝑇 was observed
in the lowest carrier density sample A above 100 K, while the other samples hold 𝑇-linear
behavior all the way up to room temperature. The distinct crossover behavior of the sample
A can be attributed to the strongly 𝐸-dependent DOS of 3D Dirac electrons, which is well
reproduced by the numerical calculation for Eq.1.68 with 𝜇 = −60 meV as discussed in 4.2.4.
Considering the nonlinear behavior of 𝜌�d and the uncertainty of the band calculation in incor-
porating various interaction effects, the estimate of 𝜇 = −60meV is very close to the estimate
of 𝜇 = −45 meV from the hole density. Note 𝜇 = −60 meV is still consistent with the energy
dependence of the calculated DOS in Fig. 4.16 (d) (open square).

4.4.4. Presence of giant orbital diamagnetism

By establishing (𝑇�𝑇 )−� as a measure of the DOS and the spin contribution, we can sep-
arate the 𝐾»½¾q component from the observed 𝐾 with the help of the Korringa relation.𝐾»½¾q ∝ 𝐷 𝐸 is roughly estimated by (𝑇�𝑇 )−�/� using the Korringa relation 𝑇�𝑇𝐾»½¾q� = 𝑆.
The Korringa value 𝑆 depends only on a kind of nuclei in a simple metal and is expressed asℎ/(4𝜋𝑘®)(𝛾�/𝛾o)� for an isotropic Fermi surface. The separation of NMR peaks in the low
carrier density samples A and B (Fig. 4.16 (a)) allows us to measure 𝐾 and 𝑇�−� for each peak
and to avoid the issue of inhomogeneity.

The observed𝐾 as a function of (𝑇�𝑇 )−�/� (Fig. 4.17 (a)) provides evidence for the presence
of the giant orbital diamagnetism. 𝐾 decreases with decreasing (𝑇�𝑇 )−�/� from the sample
E with the highest hole density, much more rapidly than the linear relationship between𝐾»½¾q
and (𝑇�𝑇 )−�/� expected from the Korringa relation (gray dashed line). The rapid decrease
beyond the estimated 𝐾»½¾q by the Korringa relation can be naturally ascribed to the orbi-
tal contribution 𝐾¿ÀÁ which grows with approaching the Dirac mass gap and gives dominant
contribution for the sample A. Experimental Korringa values 𝑆Ã¸½ are quite often modified
by a factor of 2 even in simple metals [124]. 𝑆Ã¸½ ∼ 6.3𝑆 (black dashed line in Fig. 4.17 (a))
is not large enough to change our conclusion above. The strongly nonlinear behavior near the
Dirac mass gap cannot be explained even if we assume much larger 𝑆Ã¸½. In general,𝐾»½¾q and(𝑇�𝑇 )−� are scaled by 𝑔 factor as 𝐾»½¾q ∝ 𝑔� and 𝑇�−� ∝ 𝑔�, and hence 𝑆 ∝ 𝑔� as discussed
in 1.4.11. The good agreement between (𝑇�𝑇 )−�/� and the calculated DOS 𝐷 𝐸 in Fig. 4.16
(d) implies the 𝑔 factor is insensitive to the hole concentration and therefore very likely not
significantly enhanced for the samples investigated.

The unconventional temperature dependence is expected for the giant orbital diamagnetism
of Dirac electrons, which enables us to extract the orbital hyperfine coupling constant 𝐴¿ÀÁ
from 𝐾 and 𝜒Ã¸½ with both orbital and spin contributions. After subtracting Curie-like con-
tributions from impurity as shown in Fig. 4.14 (a) (dotted lines), 𝐴¿ÀÁ = 88 ± 14 kOe/𝜇÷
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can be derived from a linear fit to a 𝐾 versus 𝜒Ã¸½ diagram for the sample A in which the
spin contribution is negligibly small (red line in Fig. 4.17 (b)). Here the main peak A was
used for the Knight shift𝐾. The slopes obtained by linear fits to𝐾 versus 𝜒Ã¸½ for the sample C
and E (green and blue dashed lines in Fig. 4.17 (b)) are similar values to that of the sample
A, which suggests the 𝑇-dependence even in these samples originates from the orbital contri-
bution. An upward deviation of the samples C and E from the red line can be attributed to the
superposition of positive 𝐾»½¾q. This requires a positive 𝐴»½¾q larger than the 𝐴¿ÀÁ. Almost𝑇-independent𝐾»½¾q = 𝐴»½¾q𝜒»½¾q can be subtracted from the samples C and E, for example, as
shown by the arrows in Fig. 4.17 (b). Here, 𝐴»½¾q = 450 kOe/𝜇÷ was used as an example
though 𝐴»½¾q cannot be uniquely determined from our results.𝐾 and 𝜒Ã¸½ for the samples A-E
can be reasonably explained by 𝐾¿ÀÁ 𝑇, 𝜇 + 𝐾»½¾q 𝜇 and 𝜒¿ÀÁ 𝑇, 𝜇 + 𝜒»½¾q 𝜇 including
both 𝑇- and 𝜇- dependences except for constant offsets 𝐾ÂÄÃÅ and 𝜒Â¿ÀÃ.
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Fig. 4.17. Giant orbital diamagnetism of Dirac electrons in Sr3PbO antiperovskite. (a) The
observed 𝐾 decreases with decreasing (𝑇�𝑇 )−�/�, from the sample E to the sample A, much
more rapidly than the linear relationship expected for the Korringa relation (gray dashed
line). The nonlinear behavior of 𝐾 as a function of (𝑇�𝑇 )−�/� cannot be explained by the
modified Korringa value of 𝑆Ã¸½ ∼ 6.3𝑆 (black dashed line), which provides the evidence for
the giant orbital diamagnetism. (b) After subtracting Curie-like contributions from impurity
as dotted lines in Fig. 4.14 (a), the orbital hyperfine coupling constant 𝐴¿ÀÁ = 88 ± 14 kOe/𝜇÷ can be extracted from a linear fit to 𝐾 versus 𝜒Ã¸½ for the sample A in which the orbital
contribution is dominant (red line). An upward deviation of the samples C and E from the red
line can be attributed to the spin contributions 𝐾»½¾q and 𝜒»½¾q, which can be subtracted, for
example, as denoted by the arrows. Here,𝐴»½¾q = 450 kOe/𝜇÷ was used as an example though𝐴»½¾q cannot be determined from our results. The data for 𝑇 > 50Kwere presented in the plot
because the Curie-like contributions for low temperature cannot be completely removed.
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𝐴»½¾q and hence 𝐾»½¾q and 𝜒»½¾q cannot be determined from the above discussion. The
ratio of estimated 𝐾»½¾q, which is an offset from the red line, between the samples C and E
depends on the slope of the red line and therefore 𝐴¿ÀÁ. The ratio, however, takes a constant
independent of 𝐴»½¾q when 𝐴¿ÀÁ is fixed (Fig. 4.18). 𝐾»½¾qø /𝐾»½¾qÑ = 2.4 ± 0.1 was obtained
for 𝐴¿ÀÁ = 88 kOe/𝜇÷. This is in good agreement with the ratio of (𝑇�ø𝑇 )−�/�/(𝑇�Ñ𝑇 )−�/�= 2.6 ± 0.1, which is entirely consistent with the Korringa relation and confirms the validity of
the extracted 𝐴¿ÀÁ ∼ 88 kOe/𝜇÷ though 𝐴»½¾q cannot be determined. Note the parameter
ranges of 𝐴»½¾q and 𝑆Ã¸½ can be restricted. Assuming the spin contribution dominates the 𝜇-
dependence of total𝐾 and 𝜒»½¾q in the samples B-E,𝐴»½¾q,𝐾»½¾q and hence 𝑆Ã¸½ can be derived
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Fig. 4.18. The 𝐾 versus 𝜒Ã¸½ diagram for the sample C and E in Fig. 4.17 (b) is enlarged.
The open symbols represent𝐾 as a function of 𝜒Ã¸½ after subtracting spin contributions𝐾»½¾q
and 𝜒»½¾q, where 𝐴»½¾q = 450 kOe/𝜇÷ was used as an example. A slope of two parallel lines
indicated by red arrows depends on 𝐴»½¾q. Because two triangles enclosed by black line and
two filled triangles are similar figures for the arbitrary slope, 𝐾»½¾qø /𝐾»½¾qÑ takes 𝛥𝐾ø/𝛥𝐾Ñ= 2.4 ± 0.1 independent of 𝐴»½¾q. This is consistent with the ratio of (𝑇�ø𝑇 )−�/�/(𝑇�Ñ𝑇 )−�/�= 2.6 ± 0.1, which supports the extracted 𝐴¿ÀÁ ∼ 88 kOe/𝜇÷ in Fig. 4.17 (b).
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from a linear fit of these samples (black dashed line in Fig. 4.17 (b)), which yields 𝐴»½¾q ∼ 210
kOe/𝜇÷ and 𝑆Ã¸½ ∼ 6.3𝑆. If 𝐴»½¾q is much larger, 𝑆Ã¸½ approaches ∼ 2.3𝑆 in the large 𝐴»½¾q
limit. Those impose the constraints on the parameter ranges as 𝐴»½¾q > ∼ 210 kOe/𝜇÷ and2.3 < 𝑆Ã¸½/𝑆 < 6.3.
The estimated 𝐴¿ÀÁ ∼ 88 kOe/𝜇÷ reflects unconventional character of the orbital dia-

magnetism of Dirac electrons.𝐴¿ÀÁ is scaled by a factor of 2𝑟−� and therefore𝐾¿ÀÁ is dominated
by electrons close to nuclei. 𝐴¿ÀÁ = 2 𝑟−� for conventional Van Vleck susceptibility by local-
ized electrons is estimated to be ∼ 2000 kOe/𝜇÷ for 6𝑝 orbitals of Pb [158, 159]. 207Pb NMR
can see only half of total 𝜒¿ÀÁ as the Dirac bands are formed by 6𝑝 electrons of PbF− and 4𝑑
electrons of Sr�+. 𝐴¿ÀÁ ∼ 88 kOe/𝜇÷ for Sr3PbO is ∼ 10 times smalled than that expected
from 2 𝑟−� . This appears to suggest that 6𝑝 electrons of Pb in charge of the giant orbital
diamagnetism is not localized but itinerant and therefore only∼ 10% of the 6𝑝 electrons would
be close to the nuclei. 𝐾¿ÀÁ for the orbital diamagnetism of Dirac electrons was theoretically
discussed, which yields 𝐴¿ÀÁ < 1 kOe/𝜇÷ for uniform orbital current of Dirac electron gas
[122]. The much larger 𝐴¿ÀÁ ∼ 88 kOe/𝜇÷ for Sr3PbO suggests the orbital diamagnetism
can be attributed to hopping of conduction electrons between the atomic orbitals rather than
uniform orbital current.

Note the positive 𝐴»½¾q suggests the hyperfine couplings are governed by 𝑠 electron-like
Fermi contact interaction. Although the Dirac bands in Sr3PbO is comprised of 𝑝 orbitals ofPbF− and 𝑑 orbitals of Sr�+, 𝑠𝑝 hybridization or strong spin orbit coupling of Pb [160] can
induce 𝑠-like character from electrons of 𝑝 bands as discussed in 209Bi NMR on half-Heusler
compounds [161].
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Chapter 5
Conclusion

5.1. Summary
In summary, we report the magnetotransport, the bulk magnetic susceptibility and the 207Pb
NMR study on the cubic Sr3PbO antiperovskite, theoretically proposed as a candidate for 3D
Dirac electron system. The unconventional magnetotransport properties by extremely light
mass carriers and the crossover in NMR spin lattice relaxation rate 𝑇�−� provide the evidence
for the presence of 3D Dirac electrons in Sr3PbO. Those results established Sr3PbO with𝐼 = 1/2 nuclear spin at 207Pb as a unique and promising platform for NMR study of giant
diamagnetism of Dirac electrons.

The microscopic origin of the giant diamagnetism of Dirac electrons was revealed by the
bulk susceptibility and the NMR experiments on the five Sr3PbO samples with different carrier
density of 10��-10� cm−�. The bulk susceptibility 𝜒Ã¸½ and the NMR Knight shift 𝐾 show
unconventional chemical potential and temperature dependences, consistent with the giant
orbital diamagnetism of Dirac electrons. By analyzing 𝜒Ã¸½, 𝐾 and 𝑇�−�, spin and orbital con-
tributions in 𝜒Ã¸½ and 𝐾 are successfully separated with the help of the Korringa relation.
These results demonstrated the orbital character of the giant diamagnetism of Dirac electrons
for the first time.

The field angle dependences of 𝜌��Ã¸½ and 𝜌�dÃ¸½ shows anomalous peak structure, which can
be attributed to the current jetting effects. Although the intrinsic contribution induced by
chiral anomaly may be captured by the negative longitudinal MR and the planar Hall effect
at low magnetic field, more detailed experiments will be left for future study to extract clear
conclusion.

5.2. Future work
The current jetting effects make the angular dependent magnetotransport experiments diff-
icult. In order to extract clear conclusion, further experiments on Sr3PbO are necessary.
Because the peak (dip) positions in 𝜌��Ã¸½ and 𝜌�dÃ¸½ are expected to be dependent on the geom-
etry of the attached contacts, cross-check between independent voltage pairs is useful to distin-
guish intrinsic contribution from artifacts by the current jetting effects. We are working on
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the magnetotransport measurements on different single crystals by a six probe configuration.

Our results provide the evidence for the presence of 3D Dirac electrons in Sr3PbO, which
opens up amaterial family to control 3DDirac electrons, to design exotic phases and to explore
unconventional physics anticipated in the quantum limit. The anisotropy or mass gap of 3D
Dirac electrons can be tuned by other compounds such as Ca�PbO and Sr�SnO. Magnetism
can be introduced into the antiperovskites by Eu�PbO and Eu�SnO, where a magnetic Weyl
semimetal phase may be realized.

— 70 —



Appendix A
Characterization by magnetization

In this appendix, results of magnetization measurements for Sr3PbO synthesized by different
conditions are summarized. The sample quality can be roughly characterized by the magneti-
zation which strongly depends on the carrier density as discussed in Section 4.4. The single
crystals were grown as written in Section 3.1, which is again presented here.𝑥Sr + PbO → Sr�PbO

time

T
Thigh

100 ℃/h

−1 ℃/h12 h

−100 ℃/h

1050 ℃

Fig. A.1. Typical temperature sequence for single crystal growth for Sr3PbO. The highest
temperature 𝑇Ä¾åÄ of 1350, 1400 and 1450 °C was used.
Here, a Sr/PbO ratio 𝑥 = 3.15-4.5 and the highest temperature 𝑇Ä¾åÄ = 1350-1450 °C were
controlled.

A.1. Sr/PbO ratio dependence
The magnetizations𝑀 are found to be diamagnetic as shown in Fig. A.2, consistent with 𝜒Ã¸½
in Section 4.4. The observed diamagnetism basically increases with increasing the Sr/PbO
ratio 𝑥. The magnitude of diamagnetism grows with decreasing the carrier density, name-
ly approaching the Dirac mass gap. This suggests that low carrier density samples can be
obtained by the larger Sr/PbO ratio 𝑥.
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A.2. Temperature sequence dependence
The magnitude of the observed diamagnetism for the Sr/PbO ratios 𝑥 = 3.15, 3.3, 3.45 and
3.6 increases with increasing 𝑇Ä¾åÄ as seen in Fig. A.3, which suggests that the higher 𝑇Ä¾åÄ
gives samples with lower carrier density.

In summary, the sample quality can be roughly characterized by the magnetization exper-
iments on the samples synthesized by the different conditions. The larger Sr/PbO ratio 𝑥
and the higher 𝑇Ä¾åÄ are suitable to grow samples with low carrier density. However, there
are thresholds for 𝑥 and 𝑇Ä¾åÄ as mentioned in Section 3.1.
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Fig. A.2. Sr/PbO ratio 𝑥 dependence of magnetization for powder samples of Sr3PbO. (a) and
(b) The magnetization of the powder samples for 𝑇Ä¾åÄ = 1400 °C and 1450 °C, respectively.
The magnitude of the observed diamagnetism basically increases with increasing 𝑥.
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Fig. A.3. The highest temperature 𝑇Ä¾åÄ dependence of magnetization for powder samples
of Sr3PbO. (a-d) The magnetization of the powder samples for the Sr/PbO ratios 𝑥 = 3.15,
3.3, 3.45 and 3.6, respectively. The magnitude of the observed diamagnetism increases with
increasing 𝑇Ä¾åÄ.
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Appendix B
Absence of bulk superconductivity

In this appendix, superconducting behaviors in the antiperovskites 𝐴�𝑇𝑡O (𝐴 = Ca, Sr, Ba;𝑇𝑡 = Sn, Pb) observed in resistivity and bulk magnetic susceptibility experiments are present-
ed. Although bulk superconductivity with the transition temperature 𝑇� ∼ 4 K in polycrys-
talline Sr�−¸SnO was previously reported [133], bulk superconductivity was never realized in
our samples of Sr3PbO, Sr�SnO andCa�PbO. We conclude that the superconducting behavior
observed in the antiperovskites 𝐴�𝑇𝑡O does not relate to the Dirac electrons.

B.1. Filamentary superconductivity in resistivity
The single crystals of Sr3PbO often showed a resistance drop of ∼ 10% at low temperature,
which indicates the filamentary superconductivity. Zero resistance was never observed down to
2 K, which indicates the absence of the bulk superconductivity.
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Fig. B.1. Filamentary superconductivity of Sr3PbO. The sample in (a) was grown as reported
previously [136]. The sample in (b) was synthesized inside a BN crucible sealed in a stainless
steel tube.

The sample in Fig. B.1 (b) was synthesized as following. Sr and PbO with the ratio of 𝑥 = 9
were put into a BN crucible and then sealed in a stainless steel tube which was further sealed
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in a quartz tube. Temperature sequence in Fig. B.2 was used. This excludes the possibility
of filamentary superconductivity from tantalum impurity (𝑇� = 4.5 K).
B.2. Small diamagnetic volume fraction
Powder samples of Sr3PbO often showed diamagnetic shielding with transition temperature of∼ 4 K, where small diamagnetic volume fractions at most ∼ 1% were observed (Fig. B.3). The
large volume fractions were never obtained in the samples for the carrier density 𝑛 of 10��-10� cm−� which corresponds to 𝐸O ∼ from − 50 to − 200 meV. Bulk superconductivity was never
realized in a wide range of the band structure from the Dirac bands to the multi-bands region
in Fig. 4.2 and therefore does not related to the bulk band structure in these regions.

Powder samples of other antiperovskites, Sr�SnO and Ca�PbO also showed small diamag-
netic shielding as seen in Fig. B.4, indicative of the absence of the bulk superconductivity.
Because these antiperovskites do not have common atoms except for O atom, the supercon-
ductivity with small volume fraction would not be attributed to metallic Sn or Pb impuri-
ties. All Sr3PbO, Sr�SnO and Ca�PbO shows the transition at 𝑇� ∼ 4 K, which is consistent
with the previous report for Sr�−¸SnO [133]. This suggests that the small diamagnetic shield-
ing observed in our Sr3PbO, Sr�SnO and Ca�PbO samples has the same origin as Sr�−¸SnO.
Our systematic study including the carrier density dependence of Sr3PbO demonstrates the
absence of the bulk superconductivity 𝐸O down to ∼ −200 meV which is well below the Dirac
bands. We conclude that the superconducting behavior in the antiperovskites does not relate
to the Dirac electrons.

time

T

1100 ℃

100 ℃/h
−0.5 ℃/h

1 h

850 ℃

1050 ℃

200 h (anneal)

Fig. B.2. Temperature sequence for the sample used in Fig. B.1 (b).
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Fig. B.3. (a-c) Diamagnetic volume fractions under zero field cooling for powder samples of
Sr3PbOwith carrier density 𝑛 of 10��-10� cm−�. The carrier density 𝑛was determined by Hall
resistivity measurements of the single crystals from the same batch as the powder sample.
The Hall resistivity measurements for two single crystals from the batch of (b) give 𝑛 ∼10�ç and 10� cm−� respectively, which suggests the inhomogeneity of the carrier density. The
observed diamagnetic volume fractions are at most∼ 1%, which indicates the absence of bulk
superconductivity.
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Fig. B.4. (a) and (b) Diamagnetic volume fractions under zero field cooling for powder sam-
ples of Sr�SnO and Ca�PbO. The observed diamagnetic volume fractions are at most ∼ 0.1%
similar to the results for Sr3PbO, which indicates the absence of bulk superconductivity.
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Appendix C
Additional data for angular dependences

In this appendix, the additional data for the angular dependent magnetotransport exper-
iments on Sr3PbO in Section 4.3 are presented.

C.1. Raw data for angular dependence
Raw data of the 𝜑-dependence of 𝜌�� in Fig. 4.9 (a) has a large𝐵-antisymmetric part as shown
in Fig. C.1, which may be attributed to misalignment of the contacts in conjunction with
the focusing of the current density.
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Fig. C.1. Raw data of the 𝜑-dependence of 𝜌�� in Fig. 4.9 (a).

Raw data of 𝜃-dependence of 𝜌�� in Fig. 4.10 (a) also has a large 𝐵-antisymmetric part as
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shown in Fig. C.2. The 𝜌�� for 𝜃 = 90° at𝐵 = 𝐵 and 𝜃 = −90° at𝐵 = −𝐵 is expected to the
same. However, large difference for the 𝜃 = 90° at 14 T and 𝜃 = −90° at − 14 T is recognized.
This may be attributed to the current jetting effects and should be clarified in the future.
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Fig. C.2. Raw data of the 𝜃-dependence of 𝜌�� in Fig. 4.10 (a).
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Appendix D
Additional data for 𝑲, 𝑻�−� and 𝝌
In this appendix, the additional data for bulk magnetic susceptibility and NMR experiments
on Sr3PbO in Section 4.4 are presented.

D.1. Field dependence of bulk susceptibility
Bulk magnetic susceptibility 𝜒 of the sample A does not show appreciable field dependence
from 1 T to 7 T (Fig. D.1) except for a Curie-like increase very likely associated with magnetic
impurities at low temperatures below 100 K. A constant offset at 1 T may be attributed to
a small amount of magnetic impurity which should give rise to negligibly small contributions at
high fields.
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Fig. D.1. Temperature dependence of bulk magnetic susceptibility of the sample A in Fig.
4.14 (a) at 7, 5, 3 and 1 T.

The 𝐵-independent 𝜒 for the sample A is consistent with 𝐵-linear behavior of magnetiza-
tion𝑀 for the several samples in Fig. A.2 and Fig. A.3.𝑀 for a sample F, one of these samples,
is again presented in Fig. D.2 (a). The sample F shows a large diamagnetism of ~ − 1 × 10−F as
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seen in Fig. D.2 (b), which is indicative of the giant orbital diamagnetism of Dirac electrons.
Field independence of bulk susceptibility is better visualized in almost constant 𝜒 as a function
of field.

D.2. NMR data for other samples
NMR Knight shift 𝐾 and spin lattice relaxation rate 𝑇�−� observed in the sample A was well
reproduced by other samples A-2 and G. The sample A-2 was prepared from the same batch
as the sample A. The temperature dependence of 𝐾 for the sample A-2 and G is in good
agreement with that for the sample A (Fig. D.3 (a)). 𝑇�−� for the samples A-2 and G shows 𝑇 �-
behavior (Fig. D.3 (b)), which is fully consistent with the sample A. These results support our
conclusion in the Section 4.4.
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Fig. D.2. Field dependence of magnetization 𝑀 and magnetic susceptibility 𝜒 of a sample F
at 100 and 300 K. (a) The magnetization of the sample F shows𝐵-linear behavior. (b) A large
diamagnetism of ~ − 1 × 10−F emu/mol was observed in the sample F. The bulk susceptibility𝜒 is almost constant as a function of field, consistent with Fig. D.1.
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Fig. D.3. NMR Knight shift𝐾 and spin lattice relaxation rate 𝑇�−� for samples A-2 and G. (a)
The observed 𝐾 for the samples A-2 and G is in good agreement with that for the sample
A. (b) 𝑇�−� for the sample A-2 and G shows 𝑇 �-behavior (red dashed line), consistent with
the sample A.
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