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Abstract

The Lovelock theory and the generalized Galileon are the theories of generalized grav-
ity which enable us to describe a variety of healthy models including Einstein’s gen-
eral relativity. The Horndeski theory, which is equivalent to the generalized Galileon
in four dimensions, allows anisotropic inflationary solutions to be attractors without
anisotropic matter, as opposed to Wald’s cosmic no-hair theorem in the general rel-
ativity with a positive cosmological constant. The stability of perturbations of the
Bianchi-type I universe is investigated and it is shown that propagation through an
anisotropic background leads to the birefringence of gravitational waves. Since the
perturbative behavior conflicts with observations, our Universe must be in the vicin-
ity of the isotropic attractor in four dimensions with the aforementioned birefringence
too small to be observable. This, however, motivates us two new directions of study,
namely, the possibility of birefringence in an environment with strong gravity, and ap-
plication of the theory to higher-dimensional spacetime. To observe the birefringence,
we study the perturbations of static and spherically symmetric spacetime and obtain
angular stability conditions, which enables us to theoretically test solutions of a black
hole. The analysis of the anisotropic attractor in four dimensions suggests that some
spatial dimensions expand much slower than the other dimensions if the hierarchical
conditions among parameters are assumed. We investigate anisotropic attractors in
higher dimensions in the presence of energy contents with isotropic and anisotropic
pressure with the Lovelock theory and particular models of the generalized Galileon.
The hierarchical conditions realize arbitrarily slow growth of extra dimensions and the
universe which evolve as if it obeys the general relativity.
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Chapter 1

Introduction

The homogeneity and isotropy on large scales are the most significant features of our
universe, which have been observationally ascertained by the redshift surveys [1–3]. It
is the evidence for the heliocentric theory that our Earth does not lie in the center of
the universe, or more generally, that there is no preferred point nor preferred direction.
This is what is called the cosmological principle and is a fundamental viewpoint to
study cosmology. We need some mechanism in the early universe in order for the
cosmological principle to hold even ten billion years after the big bang, which is called
the horizon problem. One of the most convincing mechanisms is cosmic inflation [4–8],
which makes the early universe undergo accelerating expansion with a scalar field called
inflaton. The observation of the cosmic microwave background (CMB) has revealed
that the spectrum of primordial curvature perturbations is slightly red-tilted [9]. If the
primordial gravitational waves are detected by the forthcoming observation of the CMB
polarization, such as LiteBIRD [10], then it must be the smoking gun that the inflation
occurred. These clues, however, do not tell us which model of inflation is correct because
the main consequence of the inflation faintly depends on specific models. The research
on how to distinguish inflation models is continued even after forty years have passed
since the first article on the primordial gravitational waves [11] appeared.

Homogeneous configuration of the inflaton provides isotropic pressure and it makes
us expect that the universe would be isotropized. It is not trivial that the inflation al-
ways isotropize the universe even in highly warped spacetime. Wald has demonstrated
that a positive cosmological constant makes the spatially homogeneous anisotropic uni-
verse always approach the de Sitter universe if it starts with expanding volume, ex-
cept for the case with positive spatial curvature [12]. This guarantees the inflation
to isotropize the universe and it is called the cosmological no-hair theorem since the
universe loses its information which is likened to a hair. It is rather difficult to produce
anisotropy of the universe in inflation. The present CMB observations are consistent
with zero anisotropy but still admit about 1%-level quadrupolar modulation of the
power spectrum of the curvature perturbations [13, 14]. A naive way to produce such
anisotropy is to put in the universe anisotropic matter such as a vector field [15]. With
a nonconformal coupling with inflaton, the vector field obtains a nonvanishing expecta-
tion value of energy, and it contributes to producing the Bianchi-type-I anisotropy of the
universe. Such anisotropic expansion produces statistical anisotropies of fluctuations
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1 Introduction

produced on exiting the Hubble horizon.
Here we propose another way to realize anisotropic inflation using one of the gen-

eralized gravity theories, the Horndeski theory [16]. The Horndeski theory is the most
general gravity theory with a scalar field which yields second-order field equations. For
this feature, the theory can be free from ghost instability stated by the Ostrogradsky
theorem in higher-derivative theories [17]. Most models of inflation with a single scalar
field, inflaton, are contained in the Horndeki theory [18]. Moreover, it has been shown
that there are plenty of possibilities of coupling between the inflaton and the gravita-
tional field. In the general relativity, which is Wald’s assumption, we can say that there
is only an isotropic attractor and all of the initial states terminates at the isotropic
attractor. On the other hand, a part of the Horndeski theory allows the existence of
anisotropic attractors as well as the isotropic one and enables anisotropic inflation to
occur [19]. It depends on the initial anisotropy of the universe whether it terminates
at the isotropic attractor or the anisotropic attractors. This implies that the universe
has to start with the sufficiently isotropic state so that it can terminate at the isotropic
attractor if the four-dimensional spacetime is given. It stimulates us to think of the hy-
pothesis that our universe initiated with anisotropic and higher-dimensional spacetime,
and an anisotropic attractor realized our isotropic and four-dimensional universe.

The Horndeski theory has been tested both in the theoretical ground and in the
observational ground [20]. The starting point of constraining theory space is to check
the conditions for no ghost and gradient stability in the flat Friedmann universe [18].
Those conditions have been also studied in a static and spherically symmetric spacetime
such as black holes with general solutions [21,22] although they have skipped derivation
of the gradient stability condition along angular directions because of complicated cal-
culations. Contrary to the no-hair theorems for black holes [23–25], the hairy solutions
of a black hole have been discovered [26, 27] and some solutions are realized sponta-
neously [28, 29]. Their quasi-normal modes have also been investigated (e.g. [30, 31]).
The future observation of the ringdown after binary black hole mergers would yield
constraints on such hairy solutions and consequently, the gravity models could be ruled
out. The simultaneous observations of gravitational waves [32] and its electromag-
netic counterpart [33] have given constraints on the theory though propagation speed
of gravitational waves [34–37], with the formula derived in [18].

Higher dimensions may play an important role in the unification of the fundamental
forces. One of the most famous unified theories has been given by Kaluza and Klein
in the 1920’s [38,39]. They aimed to unify the gravitational and electromagnetic forces
by postulating the fifth dimension of spacetime invisible to us. This model, however,
conflicts with observation because such a massless particle has never been detected
which is called radion or modulus originating from the metric component of the fifth
dimension. Sixty years later, the superstring theory has been advocated and it provides
a quantum gravity theory, which requires ten-dimensional spacetime for consistency [40,
41]. It is a strong candidate for a unified theory with extra dimensions compactified [42].
As in the theory of Kaluza and Klein, moduli ought to obtain their mass to be consistent
with observation. A standard solution is injecting fluxes along the extra dimensions and
the flux stabilizes the moduli fields, which is called flux compactification (see e.g. [43]).

It is allowed to deal with the extra dimensions in a more phenomenological manner.
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One of the efficient ways to give an effective theory to describe the dynamics of spacetime
is to consider conditions for avoiding ghosts. In this thesis, we introduce two generalized
theories of gravity which are free from a ghost. One is the Lovelock gravity [44]. It is the
theory only with the metric which provides the most generalized tensor having similar
properties with the Einstein tensor, and the action contains not only a linear term of
the second derivative of the metric but also its higher-order terms. The other is the
generalized Galileon, which is a general scalar-tensor theory and also introduces higher-
order terms of the metric connection in the action through the second derivatives of the
scalar field [45]. The generalized Galileon in four-dimensional spacetime is equivalent
to the Horndeski theory, which has been proven in [18]. The Lovelock theory and the
generalized Galileon can apply to any number of spatial dimensions and they enable us
to analyze the dynamics of higher-dimensional spacetime. The anisotropic dynamics
similar to [19] is expected in those two theories because they introduce nonlinear terms
of the metric connection in the actions.

There have been several studies on the dynamics in higher dimensions in generalized
gravity, aiming to compactify it into large and three-dimensional space [46–57]. The
systematic search on the evolution of the universe in the Lovelock theory has been given
in [48]. It has been shown that there is a parameter region in which the maximally sym-
metric spacetime is not allowed to be the solution and that higher dimensions would be
compactified by collapsing into a less symmetric spacetime in [46,52,55]. Reference [49]
has shown that the effect of higher-order Lovelock terms and the spatial curvature can
balance and static extra dimensions are realized. As an example of a recent study in
a specific case, a numerical example has been given in [57] of anisotropic dynamics of
eight-dimensional spacetime in the Einstein-Gauss-Bonnet gravity, which consists of up
to second-order terms in the Lovelock theory. The spacetimes compactified similarly to
the previous way can exhibit Friedmann-like dynamics [56]. The exactly exponential
solution has been investigated in [53] and [54] in the Einstein-Gauss-Bonnet theory and
the Lovelock theory, respectively. Anisotropic evolution of higher-dimensional space
has been studied in [50, 51] in the Lovelock theory of which parameters originate from
higher-order corrections in the superstring theory.

We try to tackle the question of how higher-dimensional spacetime can evolve into
a lower-dimensional universe with compactified extra dimensions, considering in higher
dimensions the anisotropic attractors discussed in [19]. It has been shown in the four-
dimensional case [19] that anisotropic attractor can exhibit such anisotropic expansion
that one dimension can expand or contract much more slowly than the other dimensions.
If we regard slowly expanding directions as “extra dimensions”, we have a (1 + 1)-
dimensional universe with two-dimensional extra dimensions. It suggests that if we
begin with higher-dimensional spacetime a priori, we have the anisotropic attractors
which enable the spacetime to be compactified into the four-dimensional universe. Here
we do not persist in the conventional paradigm that the extra dimensions must be
static. We control the expansion or contraction rate of extra dimensions to be slow
enough so as not to contradict non-observation of time variation of fundamental physical
constants [58]. We aim to freeze the extra dimensions at an arbitrary level compared
to the dimensions of the universe.

The thesis is organized as follows. In the next chapter, we introduce the action of two
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1 Introduction

kinds of generalized gravity, the Lovelock theory [44] and the generalized Galileon [45].
Those gravity theories are available for any number of dimensions. With the gener-
alized Galileon, we study the evolution of anisotropic background in four dimensions
in Chapter 3 and in higher dimensions in Chapter 6. We develop perturbation theory
in four dimensions on different unperturbed spacetimes, the Bianchi-type I model in
Chapter 4 and the static and spherically symmetric spacetime in Chapter 5.

As Wald has proven in the general relativity, all Bianchi-type universe can be
isotropized in the presence of a positive cosmological constant, except for the Bianchi-
type IX. In Chapter 3, we investigate anisotropic solutions with the generalized Galileon
in four dimensions, the Horndeski theory [16], and we find the universe approaches
anisotropic attractor, which enables the universe to stay anisotropic, even in the pres-
ence of a positive cosmological constant. Chapter 4 shows the perturbative behavior
on Bianchi-type I background and the dispersion relations of gravitational waves and
scalar waves. The analysis around the anisotropic attractor reveals the singular behav-
ior of gravitational waves with even parity and it can provide a way to homogenize the
space by enlarging sound horizon in the early universe. As another fact found out in
Chapter 4, it is worthy of special mention that the Horndeski theory admits mixing
of the dispersion relation between gravitational and scalar waves and it indicates that
birefringence of gravitational waves can occur while propagating over anisotropically
expanding region. It is also important to study perturbative behavior in a strong-field
regime such as the vicinity of black holes. The first half of Chapter 5 is dedicated to
reviewing the perturbation theory of the static and spherically symmetric spacetime
developed in [21, 22]. In the other half, we improve the way to express lengthy combi-
nations of the coefficients in the action and successfully calculate the dispersion relation
including angular directions. Nonlinear terms of expansion rates in the action provide
different dynamics of spacetime, which is suggested in Chapter 3, and it motivates us to
investigate anisotropic solutions in higher dimensions. In Chapter 6, we use a subclass
of the generalized Galileon to study such phenomena in the presence of both isotropic
and anisotropic energy contents. We find that isotropic energy contents, such as the
cosmological constant, homogeneous scalar field, and nonrelativistic matter, allow the
system to approach an anisotropic attractor. With some hierarchy conditions between
constant parameters, extra dimensions can freeze and the universe evolves as if it follows
the Einstein gravity. In an inflationary era, the higher-dimensional space expands only
along three spatial directions and we observe the large three-dimensional space emerges
while approaching the anisotropic attractor. We also show that although anisotropic
energy contents do not admit the anisotropic attractors to be an actual attractor of
the system, the acceleration of the extra dimensions is much smaller than that of the
three-dimensional space of the universe, which means that the expansion rate remains
small. As a special case, radiation or relativistic matter satisfies the equation-of-state
condition for damping down the expansion rate of the extra dimensions. We, therefore,
see that the universe recovers Friedmann-like dynamics in the whole cosmic history.
Chapter 7 is devoted to summarize this thesis and discuss the physical implications.
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Chapter 2

Generalized gravity

Here we introduce two generalized theories of gravity, the Lovelock theory and the
generalized Galileon. Common feature of them are that they do not suffer from the
ghost which has negative kinetic energy. To avoid Osrtogradsky ghost [17], which always
appears when the Lagrangian is not degenerate, higher derivative terms are eliminated
from the field equations of both theories. In the first section, we introduce the Lovelock
theory, which contains only tensor-type degrees of freedom. In the next section, we
review the generalized Galileon with its history from the Galileon. We also show that
the action of the Horndeski theory is given by that of the generalized Galileon in four
dimensions. In the next section, we write the Horndeski action with the ADM variables
to replace the scalar field with the geometrical quantities.

2.1 Gravity only with metric: Lovelock theory

The Lovelock theory of gravity is the most generalized theory which is written only with
metric gµν and its first two derivatives. Its field equation is given by generalization of
the Einstein equation.

In order to generalize the Einstein equation Gµν = Tµν , Lovelock explored in ar-
bitrary dimensions the most generalized tensor Aµν which has the same appropriate
properties as the Einstein tensor Gµν has [44]. He assumed that the generalized Ein-
stein tensor Aµν should have the three properties below:

(a) Aµν is symmetric, i.e.,

Aµν = Aνµ.

(b) Aµν is a function of the metric tensor gµν and its first and second derivatives, i.e.,

Aµν = Aµν(gµν , gµν,ρ, gµν,ρσ).

(c) Aµν is divergence-free, i.e.,

∇µAµν = 0.

5



2 Generalized gravity

The explicit form of all the possible Aµν can be written as below [44]:

Aµν = a0g
µν +

m−1∑
p=1

apg
µµ1···µ2pνν1···ν2pRµ1µ2ν1ν2 · · ·Rµ2p−1µ2pν2p−1ν2p , (2.1)

where a0 and ap are arbitrary constants, m is the positive integer which is defined by

m ≡ ⌈D/2⌉ = 1

2
D if D is even, (2.2)

=
1

2
(D + 1) if D is odd, (2.3)

where D is the number of the dimension of the spacetime, gµ1···µNν1···νN is the super-
scripted generalized Kronecker delta defined by

gµ1···µNν1···νN = det

 gµ1ν1 · · · gµ1νN

...
. . .

...
gµNν1 · · · gµNνN

 , (2.4)

and Rµνρσ is the Riemann curvature tensor. 1 The superscripted generalized Kronecker
delta is also denoted in different representation with signature ϵ(σ) of the permutation
group SN

gµ1···µNν1···νN =
∑
σ∈SN

ϵ(σ)gµσ(1)ν1gµσ(2)ν2 . . . gµσ(N)νN (2.5)

= − 1

(D −m)!
εµ1µ2···µmσ1σ2...σD−mεν1ν2...νmσ1σ2...σD−m

, (2.6)

εµ1µ2...µD = − 1√
−g

δ
[µ1

1 δµ2

2 . . . δ
µD]
D . (2.7)

For n = 4 as in the universe, the tensor Aµν is reduced to

Aµν = a0g
µν + a1g

µµ1µ2νν1ν2Rµ1µ2ν1ν2 (2.8)

= a0g
µν − 4a1G

µν . (2.9)

This recovers the Einstein equation with a cosmological constant.
The action which gives the generalized Einstein equation Aµν = 0 is given by:

S =

∫
dnx

√
−g

(
2a0 +

m−1∑
p=1

2apg
µ1···µ2pν1···ν2pRµ1µ2ν1ν2 · · ·Rµ2p−1µ2pν2p−1ν2p

)
, (2.10)

which is the whole action of the Lovelock theory.

1Here we define the Riemann curvature tensor with any covariant vector field Xµ by Xν
;ρσ −Xν

;σρ =
Rµ

ν
ρσX

µ .
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2.2 Gravity with a scalar field: Generalized Galileon

2.2 Gravity with a scalar field: Generalized Galileon

The generalized Galileon gives general classes of action of a single scalar field which
is coupled with metric. The original Galileon [59] is the scalar field in flat spacetime
gµν = ηµν which enjoys the Galilean symmetry

ϕ→ ϕ+ bµx
µ + c. (2.11)

All the models we consider here contains at most a single scalar field ϕ and its (covariant)
derivatives are denoted by

ϕµ = ∇µϕ, ϕµν = ∇ν∇µϕ, ϕµνρ = ∇ρ∇ν∇µϕ. (2.12)

The Lagrangian of the Galileon is

L1 = ϕ, (2.13)

L2 = −1

2
ϕµϕ

µ, (2.14)

L3 = −1

2
ϕλ

λϕµϕ
µ, (2.15)

L4 = −1

4
{(ϕµ

µ)2ϕνϕ
ν − 2ϕλ

λϕµϕ
µ
νϕ

ν − (ϕλ
µϕµ

λ)ϕνϕ
ν + 2ϕµϕ

µ
νϕ

ν
ρϕ

ρ}, (2.16)

L5 = −1

5
{(ϕµ

µ)3ϕνϕ
ν − 3(ϕλ

λ)2ϕµϕ
µ
νϕ

ν − 3(ϕρ
ρ)(ϕλ

µϕµ
λ)ϕνϕ

ν

+ 6(ϕλ
λ)ϕµϕ

µ
νϕ

ν
ρϕ

ρ + 2(ϕλ
ρϕρ

σϕσ
λ)ϕνϕ

ν + 3(ϕλ
ρϕρ

λ)ϕµϕ
µ
νϕ

ν − 6ϕµϕ
µ
νϕ

ν
ρϕ

ρ
σϕ

σ}.
(2.17)

Each Lagrangian term does introduce neither higher-order derivatives term in its Euler-
Lagrange equation nor ghost instabilities. Its covariantization [60], introducing gravity
in the theory, introduces non-minimal coupling between the scalar field and metric to
eliminate higher-order derivatives term in the field equation of metric.

The generalized Galileon [45] gives the most general theory in flat spacetime satis-
fying the three conditions below:

(i) its Lagrangian contains derivatives of order 2 or less of the scalar field ϕ ;

(ii) its Lagrangian is polynomial in the second derivatives of ϕ ;

(iii) the corresponding field equations are of order 2 or lower in derivatives .

The whole Lagrangian is given by an arbitrary linear combination of the Lagrangians
Ln,0{f} of the form

Ln,0{f} = f(ϕ,X)× (Xgµ1···µnν1···νnϕµ1ν1 · · ·ϕµnνn) , (2.18)

whereX ≡ −∂µϕ∂µϕ/2 is a canonical kinetic term 2 and gµ1···µnν1···νn is the superscripted
generalized Kronecker delta defined in (2.4). As is seen when we take f = const., the

2The definition of X in [45] is different from that in this thesis and in [18], the reference of the
Horndeski theory. Consequently the value in (2.20) is modified.
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2 Generalized gravity

Lagrangians (2.18) include (2.17) as a subset. Note, however, that the Lagrangians
(2.18) no longer enjoy the Galilean symmetry (2.12) in general. Naive covariantization
(ηµν → gµν , ∂µ∂νϕ → ∇µ∇νϕ) leads higher-order derivative term like Rµνρσ,λ. In order
to eliminate such terms, we need to add the compensation terms to get the Lagrangian
which is free from higher-derivative terms. (Such a theory is called healthy.) [45] gives
the healthy covariant action of the form:

S =

∫
dD+1x

√
−g

D∑
n=0

⌊n
2
⌋∑

p=0

Cn,pLn,p{fn}, (2.19)

Cn,p =
4−pn!

(n− 2p)!p!
, (2.20)

Ln,p{f} = gµ1···µnν1···νnP(p){f}

[
p∏

i=1

Rµ2i−1µ2iν2i−1ν2i

][
n∏

i=2p+1

ϕµiνi

]
, (2.21)

P(p){f} ≡
∫ X

X0

dX1

∫ X1

X0

dX2 · · ·
∫ Xp−1

X0

dXp [Xpf(ϕ,Xp)] , (2.22)

Interestingly, the covariantization of the general scalar-field theory leads the Love-
lock theory. It is easily seen that we recover (2.10) when we set

P(p=n/2){f} =
2n(n/2)!

n!
· 2ap if n is even, (2.23)

= 0 if n is odd. (2.24)

2.2.1 In four-dimensional spacetime: Horndesky theory

We live in four dimensional spacetime and we are most interested in four dimension to
apply the theories to cosmology. It has been proved in [18] that the generalized Galileon
(2.22) in four dimension is equivalent to the Horndeski theory [16]. The Horndeski
theory describes the most general couplings between a scalar field ϕ and the metric gµν
which yield second-order field equations.

The theory is characarized by four arbitrary functions, G2, G3, G4 and G5, of ϕ and
its canonical kinetic function X ≡ −∂µϕ∂µϕ/2 as

S =

∫
d4x

√
−g

5∑
i=2

Li, (2.25)

L2 = G2(ϕ,X), (2.26)

L3 = −G3(ϕ,X)□ϕ, (2.27)

L4 = G4(ϕ,X)R+G4X [(□ϕ)2 − (∇µ∇νϕ)
2], (2.28)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1

6
G5X [(□ϕ)3 − 3(□ϕ)(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3], (2.29)

8



2.3 ADM form of Horndeski theory and beyond

whereR is the four-dimensional Ricci scalar, Gµν is the four-dimensional Einstein tensor,
(∇µ∇νϕ)

2 ≡ ∇µ∇νϕ∇µ∇νϕ, (∇µ∇νϕ)
3 ≡ ∇µ∇νϕ∇ν∇λϕ∇λ∇µϕ, and GiX ≡ ∂Gi/∂X.

The Horndeski action is given by (2.19) when we set the functions as

P(p=0){f0} = G2(ϕ,X), (2.30)

P(p=0){f1} = −G3(ϕ,X), (2.31)

P(p=1){f2} = G4(ϕ,X), (2.32)

P(p=1){f3} = −1

6
G5(ϕ,X). (2.33)

The Horndeski theory contains the general relativity (G4 = (16πG)−1 and G2 =
G3 = G5 = 0) and several well-known models of modified gravity.

2.3 ADM form of Horndeski theory and beyond

The action described by the Arnowitt-Deser-Misner (ADM) variables [61] is more useful
to study anisotropic cosmological solutions than the covariant form (2.25). The metric
is given by

ds2 = gµνdx
µdxν = −N2dt2 + qij(dx

i +N idt)(dxj +N jdt). (2.34)

where qµν = gµν + nµnν is the induced metric. (Note that qij = qµν(∂i)
µ(∂j)

ν and that
(∂i)

µ is a component of the vector ∂i in the direction of µ.) We take the unitary gauge,
ϕ = ϕ(t), and then X is given by X = ϕ̇2/2N2 with N being the lapse function. If ϕ is
a monotonic function of t, this is a very convenient gauge and we can use (t, N) instead
of (ϕ,X) to express the action. Next we define the normal vector field nµ ≡ −N∇µt to
a family of the time-constant hypersurfaces Σt.

Then, the theory is described only in terms of t and geometrical quantities as

S =

∫
dtd3xN

√
g

5∑
i=2

Li, (2.35)

L2 = A2(t, N), (2.36)

L3 = A3(t, N)K, (2.37)

L4 = A4(t, N)
(
K2 −Ki

jK
j
i

)
+B4(t, N)R, (2.38)

L5 = A5(t, N)
(
K3 − 3KK i

jK
j
i + 2Ki

jK
j
kK

k
i

)
+B5(t, N)

(
Rij −

1

2
gijR

)
Kij. (2.39)

uo to the total derivative [62]. Ki
j and Rij are the extrinsic and intrinsic curvature of

constant t (constant ϕ) hypersurfaces. The functions Ai, Bi and Gi are related with

9



2 Generalized gravity

each other as follows:

A2(t, N) = G2(ϕ,X)−
√
X

∫
G3ϕ(ϕ,X)√

X
dX, (2.40)

A3(t, N) =

∫ √
2XG3X(ϕ,X)dX − 2

√
2XG4ϕ(ϕ,X), (2.41)

A4(t, N) = −G4(ϕ,X) + 2XG4X(ϕ,X)−XG5ϕ(ϕ,X), (2.42)

A5(t, N) =
1

6
(2X)3/2G5X(ϕ,X), (2.43)

B4(t, N) = G4(ϕ,X)−
√
X

2

∫
G5ϕ(ϕ,X)√

X
dX, (2.44)

B5(t, N) = −
∫ √

2XG5X(ϕ,X)dX, (2.45)

where we identify X = ϕ̇2(t)/2N2. As seen below, among those terms the most crucial
ones in this paper are the terms cubic in the extrinsic curvature. In the covariant
language they come from L5 which depends cubically on the second derivatives of the
scalar field.

In the Horndeski theory, (A4, A5) and (B4, B5) are not independent, as is clear from
Eqs. (2.42)–(2.45) and also from the fact that we originally have four free functions in
the action. However, this point turns out to be not essential in the following discussion.
The most important ingredient here is the cubic (or higher) order terms in the extrinsic
curvature. This allows us to start from the ADM Lagrangians (2.36)–(2.39) and consider
all Ai’s and Bi’s to be independent free functions, which amounts to employing the so-
called “beyond Horndeski” theory [62].

To discuss nontrivial evolution of the background, we use the ADM form (2.36)–
(2.39), because the cubic curvature term (2.39) is essential. On the other hand, we
would use the covariant form (2.25) in the analysis of perturbations in order to provide
the way to calculate perturbations in anisotropic (inhomogeneous) background. The
two forms are equivalent and it is easy to work in the other form by using (2.42)–(2.45).

2.4 Summary

We have introduced the several theories of generalized gravity which are used in the
following chapters. We use the beyond-Horndeski theory (2.35) in Chapter 3 to calculate
the evolution of anisotropic background. In Chapter 4 and Chapter 5, we use the
Horndeski action (2.25) to make the dispersion relation be calculable. In Chapter 6,
we focus on the Lovelock action (2.10) and subclass of the generalized Galileon action
(2.19).

10



Chapter 3

Isotropic and anisotropic attractors
in four dimensions

Here we calculate the evolution of the anisotropic background, especially Bianchi type-
I model. The Horndeski and beyond-Horndeski theories contain nonlinear terms of
expansion rates in conserved momenta of background anisotropies, and it gives other
nontrivial roots than the trivial root which exhibits isotropic expansion. In the first
section we review Wald’s cosmological no-hair theorem [12]. In the next section, we
see the theorem no longer holds in the Horndeski theory in the next section with a few
demonstration of numerical calculation. In the next section, we consider more general
anisotropy with matter contents and conclude that if the spatial curvature is negligible
and if matter content is isotropic then the anisotropic attractor works and it exhibits
axial symmetry.

3.1 Cosmological no-hair theorem

in general relativity

Wald has proven the cosmological no-hair theorem with the Hamiltonian constraint
and an evolution equation which is called the Raychaudhuri equation. The equations
reads in the spatially homogeneous universe (referring to (3.35) and (3.37) with A2 =
−Λ/16πG and A4 = −B4 = −1/16πG)

− Λ +
2

3
K2 − Σi

jΣ
j
i +R = 16πGρ, (3.1)

− 4K̇ + 3Λ− 2K2 − 3Σi
jΣ

j
i −R = 16πGp, (3.2)

where K and Σ denote the trace and trace-free part of the extrinsic curvature, which
are defined in (3.36), respectively. From summation of (3.1) and (3.2), we obtain

K̇ =
Λ

2
− 1

3
K2 − Σi

jΣ
j
i − 4πG(ρ+ p). (3.3)

We assume the dominant and strong energy conditions and they imply

ρ ≥ 0, ρ+ p ≥ 0. (3.4)

11



3 Isotropic and anisotropic attractors in four dimensions

Except for Bianchi-type IX model, All the spatially homogeneous spacetime has flat or
negative spatial curvature

R ≤ 0. (3.5)

The energy conditions (3.4) reduce the evolution equation (3.3) to

K̇ ≤ Λ

2
− 1

3
K2 − Σi

jΣ
j
i ≤

Λ

2
− 1

3
K2 (3.6)

With (3.4) and (3.5), the Hamiltonian constraint (3.1) reads

2

3
K2 − Λ ≥ Σi

jΣ
j
i ≥ 0. (3.7)

From those two equations, we obtain

K̇ ≤ Λ

2
− 1

3
K2 ≤ 0. (3.8)

The second inequality in (3.8) shows that the trace part of the extrinsic curvature,
which corresponds to total-volume expansion rate, has an lower limit once it initiate
with a positive value

K ≥
√

3Λ

2
. (3.9)

On the other hand, the first inequality in (3.8) implies that time evolution of K has an
upper limit

K ≤
√

3Λ

2

(
tanh

t

α

)−1

, (3.10)

where α is a typical time scale of evolution defined by α ≡
√

6/Λ. The upper and lower
bounds indicate that for t≫ α the trace part of the extrinsic curvature K approaches√

3Λ/2 rapidly. From (3.7), we can tell that the trace-free part of the extrinsic curvature
decreases exponentially, which corresponds to anisotropic expansion rate. This is a
simpler version of the proof given by Wald. It is difficult to extend the proof into
the Horndeski theory in general. We would pay attention to evolution equation of the
trace-free part (3.38) in Sec. 3.3, and we see an essential difference between the general
relativity, in which the Wald’s cosmological no-hair theorem holds, and the Horndeski
theory.

3.2 Vacuum Bianchi type-I model

For the simplest case, let us consider the Bianchi type-I model, which is the spatially
flat and homogeneous model. Once we diagonalize the spatial metric and its time
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3.2 Vacuum Bianchi type-I model

derivative, off-diagonal components are not generated in this model, so that we can
express the metric in the Kasner-type form as

ds2 = −N2(t)dt2 + a2(t)
[
e2(β+(t)+

√
3β−(t))dx2 + e2(β+(t)−

√
3β−(t))dy2 + e−4β+(t)dz2

]
,

(3.11)

where a(t) is a scale factor and β±(t) show the differences between the expansion rates
in different directions. Substituting the metric (3.11) in the ADM form of the action
(2.35), we obtain

S =

∫
dtd3x L (3.12)

=

∫
dtd3x Na3

[
A2 + 3HA3 + 6A4(H

2 − σ2
+ − σ2

−)

+6A5(H
3 − 3H(σ2

+ + σ2
−) + 2(3σ+σ

2
− − σ3

+))
]
,

(3.13)

where we have defined the Hubble parameter H and the shear σ± as

H ≡ 1

N

d ln a

dt
, σ± ≡ 1

N

dβ±
dt

. (3.14)

Since the Bianchi type-I model is spatially flat and consequently Eq. (3.13) depends on
β± only through their time derivatives, the momenta conjugate to β± are conserved.

δS

δβ±
=

d

dt

∂L
∂β̇±

=
d

dt
Pβ± = 0. (3.15)

The conserved momenta are given by

Pβ+ = a3
[
(A4 + 3HA5)σ+ + 3A5(σ

2
+ − σ2

−)
]
, (3.16)

Pβ− = a3 [(A4 + 3HA5)σ− − 6A5σ+σ−] . (3.17)

up to constant factors, which are irrelevant in the discussion. It is manifest that as the
scale factor a(t) increases, the expressions inside the square brackets of Eqs. (3.16) and
(3.17) decay toward zero as [· · · ] = Pβ±a

−3 → 0, and thus σ+ and σ− evolve to one of
the fixed points. In the present case, there are four fixed points. One is the isotropic
solution σ± = 0, whereas the other three are anisotropic attractors.

Let us look at the trajectories on the (σ+, σ−) plane of the phase space. Given initial
condition, the constants Pβ± are fixed. Then, σ± can be expressed in terms of A4, A5, a,
H, and Pβ± by solving the algebraic equations (3.16) and (3.17), although the equation
is of the fourth degree and thus the explicit form of the solutions is complicated. In
order to show the dynamics of the anisotropies in a single figure, we use the normalized
shear A± defined as

A± ≡ 3A5

A4 + 3HA5

σ±, (3.18)
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3 Isotropic and anisotropic attractors in four dimensions

instead of σ+ and σ−. Here we assumed that A4 + 3HA5 ̸= 0 and A5 ̸= 0. It is
also convenient to introduce the new time coordinate τ ≡ a3(A4 + 3HA5)

2/3A5. In
an expanding universe, |τ | is an increasing function of t provided that A4, A5, and H
depend on t only weakly, which is a natural assumption during inflation. With τ and
A±, we can rewrite Eqs. (3.16) and (3.17) simply as

Pβ+ = τ
[
A+ +A2

+ −A2
−
]
, (3.19)

Pβ− = τ [A− − 2A+A−] . (3.20)

We show trajectories (A+(τ),A−(τ)) for different values of Pβ± in Figure 3.1. As stated
above, there are four fixed points in the (A+,A−) plane: one isotropic solution, (0, 0),
and three anisotropic solutions, (−1, 0) and (1/2,±

√
3/2). All of them are attractors

(as long as |τ | is an increasing function of t).

-1 0 1

-1

0

1

+

-

Figure 3.1: Trajectories of the evolution of the normalized shear (A+,A−). If the initial
conditions lie inside the circle given by A2

+ + A2
− = 1/4, the universe evolves toward

the center, (A+,A−) = (0, 0), as τ increases. If the universe starts from outside of
the circle, it goes to the closest one of the anisotropic fixed points on the vertices,
(A+,A−) = (−1, 0), (1/2,±

√
3/2), of the triangle as τ increases.

The initial anisotropies determine which attractor the universe approaches. To see
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3.2 Vacuum Bianchi type-I model

this explicitly, we differentiate Eqs. (3.19) and (3.20) and get

τ
dA+

dτ
= −

(2A+ − 1)(A2
+ +A2

− +A+)

4A2
+ + 4A2

− − 1
, (3.21)

τ
dA−

dτ
= −

A−(2A2
+ + 2A2

− − 2A+ − 1)

4A2
+ + 4A2

− − 1
. (3.22)

Equivalently, one may introduce the polar coordinates (r(τ), θ(τ)) defined by A+ =
r cos θ and A− = r sin θ and write

τ
dr

dτ
= −r[2r

2 + r cos(3θ)− 1]

4r2 − 1
, (3.23)

τ
dθ

dτ
=
r sin(3θ)

4r2 − 1
. (3.24)

The denominators vanish on a circle given by r2 = A2
+ + A2

− = (1/2)2 (the black
circle in Fig. 3.1).1 The fate of the universe depends on whether the initial anisotropies
are inside this circle or not: the universe is attracted toward the isotropic solution at
the origin if the initial anisotropies lie inside the circle, while it goes away from the
circle to the closest one of the anisotropic attractors if outside initially. That is to say,
if the universe is sufficiently anisotropic initially, then it converges to the anisotropic
attractor.

The exceptional case is the trajectories with θ = 0, 2π/3, 4π/3. Those constant
values of θ solve Eq. (3.24), while Eq. (3.23) leads to r(τ) = (

√
C/|τ |+ 1−1)/2, where

C is an integration constant. Therefore, for all initial conditions on θ = 0, 2π/3, 4π/3
the isotropic universe is the attractor.

The structure of Fig. 3.1 will be more transparent in terms of the polar coordinates.
Equations (3.23) and (3.24) clearly show that there are discrete rotation symmetry
θ → θ + 2π/3 and reflection symmetry across θ = 0, 2π/3, and 4π/3 axes. Because of
these symmetries only a sixth part of Fig. 3.1 is physically independent.

Each of the anisotropic attractors corresponds to an axially symmetric space, whose
symmetry axis is the x, y or z axis. This axial symmetry is closely related to the
degeneracy of the eigenvalues of Σj

i discussed in the previous section. The discrete
rotation symmetry in the (A+,A−) plane is the manifestation of the fact that one can
always take, say, the z axis as the symmetry axis without loss of generality by a rotation
of the spatial coordinates.

So far we have focused only on the shear evolution equations. This is sufficient for the
purpose of seeing that the anisotropic fixed points do exist and for initial anisotropies
larger than a certain threshold they are indeed the attractors. To determine the precise
dynamics of the universe including the evolution of H and ϕ, one needs to solve the
full set of the field equations (the trace and trace-free parts of the evolution equations
as well as the constraint equation) consistently. In the next subsection we will show a
numerical example obtained by solving all the equations consistently.

1The shear evolution equations become singular on this circle. However, if we consider the full phase
space by taking into account the trace part of the evolution equation, we see that this singularity is
only apparent.
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3 Isotropic and anisotropic attractors in four dimensions

It has been pointed out by Wald that in general relativity, all vacuum Bianchi uni-
verses with a positive cosmological constant except type IX evolve toward the isotropic
attractor, which was proven by using the Hamiltonian constraint and the trace of the
Einstein equations [12]. In our case, since the Horndeski action dramatically changes
both of them, it must be checked one by one whether a specific model under considera-
tion evolves toward the isotropic or anisotropic attractor. We note that the magnitude
of the shear on the anisotropic attractors diverges when we take the general relativity
limit A5 → 0 keeping A4 constant. In other words, the anisotropic attractors go to in-
finity in the (σ+, σ−) space. In this limit, for all initial conditions the isotropic universe
is an attractor (as they are all inside the circle in Fig. 3.1), and thus the standard result
of Wald in the general relativity is recovered.

Noting that the background anisotropies of the Bianchi type-I universe can be re-
garded as gravitational waves with infinitely long wavelengths, we point out that the
emergence of anisotropic attractors is closely related to the three-point coupling of
gravitational waves in the Horndeski theory. From Eq. (15) of [63], one sees that there
are two types of the three-point couplings of the form hh∂2h and ḣḣḣ, giving rise to
local and equilateral non-Gaussianity, respectively. The former appears even in general
relativity as well as in a generic scalar-tensor theory, while the latter, which obviously
comes from K3

ij, emerges only in the class with A5 ̸= 0 (i.e., G5X ̸= 0). The former
has spatial derivatives and therefore vanishes in the long-wavelength limit, whereas the
latter has only time derivatives and hence does not vanish even in the homogeneous
limit.

3.2.1 Examples

Let us present some examples which yield self-anisotropizing Bianchi type-I solutions.
The first one is simply given by

G2 = −V0, G3 = 0, G4 =
M2

2
+ g4X, G5 = g5X, (3.25)

where V0, M , g4, and g5 are constants. The corresponding ADM form in the unitary
gauge is given by

A2 = −V0, A3 = 0, A4 = −M
2

2
+
g4
2

(
ϕ̇

N

)2

, A5 =
g5
6

(
ϕ̇

N

)3

,

B4 =
M2

2
+
g4
2

(
ϕ̇

N

)2

, B5 = −g5
3

(
ϕ̇

N

)3

. (3.26)

Figure 3.2 shows the evolution of the Hubble parameter, (the velocity of) the scalar
field, and the shear obtained by solving the dynamical and constraint equations numeri-
cally with a certain initial condition away from the attractors at a = 1. The parameters
in this toy example are given by V0 = 0.1, M = 1, g4 = −0.2, and g5 = 1. It can be
seen that the universe quickly converges to the anisotropic inflationary attractor.
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3.2 Vacuum Bianchi type-I model
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Figure 3.2: Numerical example of a self-anisotropizing Bianchi type-I universe: (a) H;
(b) ϕ̇/N ; (c) σ±/H as functions of ln a.
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3 Isotropic and anisotropic attractors in four dimensions

Another example with A5 (or, equivalently, G5X) is the Gauss-Bonnet term coupled
to a scalar field, and the total Lagrangian is of the form

L = f(ϕ)R+ P (ϕ,X) + ξ(ϕ)
(
R2 − 4RµνRµν +RµνρσRµνρσ

)
. (3.27)

Aspects of this theory has been studied extensively in the literature. The Lagrangian
can be reproduced by taking the following Horndeski functions [18]:

G2 = P + 8ξ(4)X2(3− lnX), G3 = 4ξ(3)X(7− 3 lnX),

G4 = f + 4ξ(2)X(2− lnX), G5 = −4ξ(1) lnX, (3.28)

where ξ(n) = dnξ/dϕn. Though this looks quite non-trivial, the corresponding ADM
form is very simple:

A2 = P, A3 = −2
ϕ̇

N

df

dϕ
, A4 = −f, A5 = −4ξ(1)

3

ϕ̇

N
, B4 = f, B5 = 8ξ(1)

ϕ̇

N
.

(3.29)

Even this familiar theory admits self-anisotropizing inflationary solutions.
The theory (3.27) possesses a shift symmetry if f = const, P = P (X), and ξ ∝ ϕ.

In this case it is easy to find an inflationary solution with H = const, ϕ̇/N = const
retaining the nonvanishing shear

σ±
H

∼ f + 4Hξ(1)ϕ̇/N

Hξ(1)ϕ̇/N
. (3.30)

3.3 Axial symmetry of the anisotropic attractors

In addition to the action for the gravitational sector described in (2.35), we include the
action for matter minimally coupled to gravity, Sm. By the use of the residual gauge
degrees of freedom one can further impose N i = 0. Then, we obtain the evolution
equations from (2.35) as

T i
j =

1

N
√
g
∂t
[√
g
{
A3δ

i
j + 2A4(Kδ

i
j −Ki

j) + 3A5[(K
2 −Kk

l K
l
k)δ

i
j − 2(KK i

j −Ki
kK

k
j )]
}]

− δijLA +

(
2B4 +

∂tB5

N

)(
Ri

j −
1

2
δjiR

)
+ Φi

j, (3.31)

where Tij is the stress-energy tensor calculated from the matter action Sm,

Tij = − 2

N
√
g

δSm

δgij
, (3.32)

and LA is the kinetic part of the Lagrangian,

LA = A2 + A3K + A4(K
2 −Ki

jK
j
i ) + A5(K

3 − 3KK i
jK

j
i + 2Ki

jK
j
kK

k
i ). (3.33)
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3.3 Axial symmetry of the anisotropic attractors

We have collected the terms that vanish if the lapse function is homogeneous, N(t, x⃗) =
N(t), and written

Φij =
2

N
[∇2(NB4)gij −∇i∇j(NB4)]

+ gijK
lm∇l∇mB5 +K∇k∇jB5 − 2K l

(i∇j)∇lB5 +Kij∇2B5 − gijK∇2B5

+
2

N

[
gij∇l(NK

lm)∇mB5 +∇(i(NK)∇j)B5 −∇l(NK
l
(i)∇j)B5

−∇(i(NK
l
j))∇lB5 +∇l(NKij)∇lB5 − gij∇l(NK)∇lB5

]
. (3.34)

The Hamiltonian constraint is given by

∂N(NA2) +N∂NA3K +N2∂N(N
−1A4)(K

2 −Ki
jK

j
i ) + ∂N(NB4)R

+N3∂N(N
−2A5)(K

3 − 3KK i
jK

j
i + 2Ki

jK
j
kK

k
i ) +N∂NB5

(
RijK

ij − 1

2
RK

)
+

1
√
g

δSm

δN
= 0.

(3.35)

In the following we will not use the momentum constraint equations.
We now show that even without any anisotropic matter sources the universe can

exhibit anisotropic inflationary expansion as an attractor solution in the Horndeski
theory.

Since we consider Bianchi cosmology, we may set N i = 0. Thanks to the homogene-
ity, Φij in the evolution equation (3.31) vanishes. To study anisotropic cosmological
models it is convenient to decompose the extrinsic curvature Kij into its trace K and
trace-free part Σij as

Kij =
1

3
Kgij + Σij, (3.36)

with gijΣij = 0. The trace and trace-free parts of the evolution equation (3.31) read,
respectively,

1

N
√
g
∂t[

√
g(3A3 + 4A4K + A5(2K

2 − 3Σi
jΣ

j
i ))]− 3LA −

(
B4 +

∂tB5

2N

)
R = T i

i .

(3.37)

and

2

N
√
g
∂t
[√
g(−A4Σ

i
j − A5KΣi

j + 3A5{Σi
kΣ

k
j}TF)

]
+

(
2B4 +

∂tB5

N

)
{Ri

j}TF = {T i
j}TF,

(3.38)

where {X i
j}TF stands for the trace-free part of a tensor X i

j,

{X i
j}TF = X i

j −
1

3
Xk

k δ
i
j. (3.39)

Let us look for slow-roll inflationary solutions in which
√
g exponentially increases,

while other functions remain either nearly constant or exponentially decrease. First, we
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3 Isotropic and anisotropic attractors in four dimensions

focus on Eq. (3.38), assuming that the energy-momentum tensor consists of isotropic
matter and hence {T i

j}TF vanishes. If the spatial curvature Ri
j decreases exponentially,

the first term also decreases in the same way. As a result, we find, asymptotically,

−A4Σ
i
j − A5KΣi

j + 3A5(Σ
i
kΣ

k
j −

1

3
Σk

l Σ
l
kδ

i
j) = 0. (3.40)

A trivial solution of Eq. (3.40) is that all components of Σi
j vanish. This solution corre-

sponds to the isotropic attractor which we see in the conventional inflation models. The
presence of the quadratic terms in Σi

j due to nonvanishing A5 yields nontrivial solutions
with Σi

j ̸= 0 as well, which represent an expanding universe retaining finite anisotropies.
We dub this anisotropic attractors as self-anisotropizing inflationary solutions, as this
is not caused by an anisotropic energy-momentum tensor.

The self-anisotropizing attractors are distinct from the previous anisotropic infla-
tionary solutions, because the anisotropic expansion of the previous scenarios are sup-
ported by some anisotropic energy-momentum source such as a vector field coupled
with an inflaton field [15]. Such scenarios produce background anisotropies Σi

j/H ≈
{T i

j}TF/(6A4H
2) = (8πG/3H2){T i

j}TF, where H is the Hubble parameter. The trace-
free part of the energy-momentum tensor, {T i

j}TF, just displaces the terminal point
from the isotropic one.

By contrast, here the self-anisotropizing inflationary solution is realized by the terms
quadratic in Σi

j in Eq. (3.40), which is a consequence of modification of gravity. The
magnitude of produced background anisotropies is estimated from (3.40) as Σi

j/H ∼
(A4 + 3HA5)/3HA5. We require neither an anisotropic energy-momentum tensor nor
any fields other than the scalar ϕ built in the Horndeski theory. In this sense, the
emerged anisotropic terminal points should be distinguished from those of previous
anisotropic inflation models.

Let us evaluate the eigenvalues of the nontrivial solutions of Σi
j for given values of

A4, A5 and K. We can prove that the root Σ of matrix equation (3.40) has two different
eigenvalues at most as follows. First we define a polynomial p(x) by substituting a real
variable x for Σ in the left side of (3.40) as

p(x) = −A4x− A5Kx+ 3A5

(
x2 − 1

3
tr
(
Σ2
))

, (3.41)

where the remaining Σ in the trace is a root of (3.40). p(Σ) = 0 obviously follows from
(3.40) and (3.41), and so p(x) can be divided by the minimal polynomial ϕΣ(x) of Σ.
In linear algebra, it is well-known that if λ is an eigenvalue of matrix Σ then λ is a root
of ϕΣ(x) = 0. Therefore, the eigenvalue λ is also a root of p(x) = 0. Since p(x) is a
quadratic polynomial of x, the number of different roots is equal to or less than two.
This is the proof that Σ has two different eigenvalues, λ1 and λ2 at most. It induces
that, e.g., anisotropic attractors in Bianchi type-I model has axial symmetry in the
order of background, which we show in Section 3.2. As one can see from (3.41), the
different eigenvalues λ1 and λ2 satisfy

λ1 + λ2 =
A4 + A5K

3A5

. (3.42)
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3.4 Summary

Being a three dimensional tensor, Σ has three eigenvalues. Without loss of generality,
we set them as λ1, λ1 and λ2, respectively. They also satisfy

2λ1 + λ2 = 0, (3.43)

because Σ is trace-free. Therefore we have

λ1 = −A4 + A5K

3A5

, λ2 =
2(A4 + A5K)

3A5

. (3.44)

So far we have focused on the evolution equation for Σi
j (3.38) and its nontrivial so-

lution under the assumption that the spatial volume element
√
g increases exponentially

and the spatial curvature Ri
j decreases accordingly. To determine all the components

of the metric, we need to solve the Hamiltonian constraint (3.35) and the trace part
of the evolution equations (3.37) consistently. On the anisotropic attractor where Σi

j’s
eigenvalues are given by (3.44), the rest of the field equations (3.35) and (3.37) are
reduced to

∂N

[
N

(
A2 −

2A3
4

9A2
5

)]
+N∂N

(
A3 −

2A2
4

3A5

)
K = − 1

√
g

δSm

δN
, (3.45)

1

N

d

dt

(
A3 −

2A2
4

3A5

)
−
(
A2 −

2A3
4

9A2
5

)
=

1

3
T i
i , (3.46)

respectively. These two equations can be used to determine K = K(t) and N = N(t).
Let us ignore the matter field Sm for the moment and consider a theory with (ap-

proximate) shift symmetry. In this case, Ai’s depend only on ϕ̇/N and from Eq. (3.46)
one obtains a solution N ≃ const×ϕ̇ satisfying F (ϕ̇/N) ≡ A2−2A3

4/9A
2
5 ≃ 0. Equation

(3.45) is then solved to give K ≃ −∂N(A3−2A2
4/3A5)/∂N(A2−2A3

4/9A
2
5) ≃ const. One

thus obtains an inflating solution with nonvanishing anisotropies.

3.4 Summary

Since A± = O(1) on the anisotropic attractors as is seen in Fig. 3.1, the magnitude of
the resultant anisotropy is given by

σ±
H

∼ A4 + 3HA5

3HA5

, (3.47)

which is typically of O(1) or larger. In theories with A4 ̸= 0 or G5X ̸= 0, initial
anisotropies must be smaller than this value in order to realize an isotropic universe
through inflation. Otherwise, the resultant universe would be unacceptably anisotropic.
Another possibility is that one has |A4 + 3HA5| ≪ |3HA5| via fine-tuning, leaving an
observationally viable universe with only tiny anisotropies on the anisotropic attractor.
This is a motivation to study higher-dimensional models in the context to show a new
compactification mechanism of extra dimensions in the presence of the higher-order
galileon terms in Chapter 6.
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3 Isotropic and anisotropic attractors in four dimensions

It is important to check the perturbative behavior around the anisotropic attractor
as will be seen in Chapter 4. Since the mainly contributing term A5 or G5X changes
the speed of gravitational waves, it has gotten the constraint as

ϕ̇3G5X ∼ |c2GW − 1|
H0

≲ 1045Mpl, (3.48)

where H0 is the present Hubble constant andMpl is the Planck massMpl ≡ (8πGN)
−1/2.

Note that since the energy scale of observation may be close to the cutoff scale of the
model, the evaluation above should be taken into account carefully [64]. It is of great
interest that the term G5X gets constraint by other tests in which the strong field
dynamics is seen. For this purpose, we develop the perturbations theory on static and
spherically symmetric spacetime initiated by [21,22], in Chapter 5.
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Chapter 4

Perturbations on axially symmetric
Bianchi type-I model

We have a good motivation to investigate perturbations in the anisotropic universe,
since some class of generalized gravity theory induces anisotropic attractors, as dis-
cussed in the previous chapter, and anisotropic universe might realize in the cosmo-
logical history. In the present chapter, we aim to establish cosmological perturbation
theory in the generalized Galileon or the Horndeski theory in a flat anisotropic back-
ground. The result can be used not only for the analysis of the perturbative behavior
of the anisotropic attractors but also for the general analysis of the perturbations in
any background of Bianchi type-I model. First we study perturbations with axial sym-
metry of the background because the symmetry enables us to decompose three degrees
of freedom (two tensors and one scalar) into two decoupled system; One consists of
the scalar mode and one of the polarizations of tensor modes; The other of the iso-
lated remaining tensor mode. Next we apply it around the anisotropic attractors and
explore the nature of the perturbations. Finally, we see that cosmic anisotropy in the
generalized Galileon causes birefringence of gravitational waves, which is given rise to
by the deviation between the speeds of the two polarization modes. Since our universe
is very homogeneous, propagation over cosmic gravitational field cannot produce large
birefringence, but it motivates us to work in strong gravitational fields around compact
objects, such as black hole, which is investigated in the next chapter.

4.1 Classification of perturbations

Now we consider perturbations on the axially symmetric background

ds2 = ḡµνdx
µdxν = −N2(t)dt2 + A2(t)

[
dx2 + dy2

]
+B2(t)dz2, (4.1)

We write perturbed metric as gµν = ḡµν + hµν with perturbative variables:

htt, htz, hzz, hta, hza, hab, δϕ, (4.2)

where δϕ is deviation of the scalar field from ϕ(t) and the subscripts a, b, · · · means
the directions x and y. htt, htz, hzz and δϕ have even parity under the inversion of x-y
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4 Perturbations on axially symmetric Bianchi type-I model

plane:

x→ −x, y → −y. (4.3)

We decompose the remaining variables hta, hza and hab which have the subscripts
a, b, · · · into:

hta = ∂ah0 + ϵab∂bχ, (4.4)

hza = ∂ah1 + ϵab∂bψ, (4.5)

hab = h2ḡab + ∂a∂bh3 +
1

2
(ϵac∂b∂cγ + ϵbc∂a∂cγ) , (4.6)

where ϵab is the totally antisymmetric symbol with ϵxy = −ϵyx = 1. Here h0, h1, h2
and h3 are even-parity variables and χ, ψ and γ are odd-parity ones.

Since we have decomposed the perturbative variables by the parity with respect to
the inversion of the x-y plane, let us write gauge transformation with even/odd-parity
infinitesimal transformation

t→ t+ δt, (4.7)

z → z + δz, (4.8)

xa → xa + ḡab(∂bδx+ ϵbc∂cξ). (4.9)

Then the perturbative variables transform as

δϕ→ δϕ− ϕ̇δt, (4.10)

htt → htt + 2δ̇t (4.11)

htz → htz −B2δ̇z + δt′, (4.12)

hzz → hzz − 2B2 (HBδt+ δz′) , (4.13)

h0 → h0 + δt− A2 ˙δx, (4.14)

χ→ χ− A2ξ̇, (4.15)

h1 → h1 −B2δz + A2δx′, (4.16)

ψ → ψ − A2ξ′, (4.17)

h2 → h2 − 2HAδt, (4.18)

h3 → h3 − 2δx, (4.19)

γ → γ − 2ξ, (4.20)

where a prime denotes partial derivative with respect to z. Let us choose complete
gauge fixing δϕ = h1 = h3 = γ = 0.

4.2 Odd-parity sector

Substituting the odd-parity variables to the Horndeski action (2.25), we get second-
order action after redefinition ψ → Bψ:

L(2) =
GA

4B

[
(∂ψ̇ − ∂χ′)2 + 4HA∂χ

′∂ψ
]
+

1

2A2

d

dt

[
A2HAGA

B

]
(∂ψ)2 +

BGB

4A2
(∂2χ)2 − FT

4A2B
(∂2ψ)2,

(4.21)
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4.2 Odd-parity sector

where we define combinations of Horndeski’s arbitrary functions

FT = 2
[
G4 −Xϕ̈G5X −XG5ϕ

]
, (4.22)

GA = 2
[
G4 − 2XG4X −XHAϕ̇G5X +XG5ϕ

]
, (4.23)

GB = 2
[
G4 − 2XG4X −XHBϕ̇G5X +XG5ϕ

]
, (4.24)

where HA ≡ Ȧ/A and HB ≡ Ḃ/B. As can be seen in (4.21), χ has no time derivative
and hence we find that the odd-parity sector has only one degree of freedom. To see
this explicitly, we introduce an auxiliary variable Φ and rewrite (4.21) as

L(2) =
1

4A2

[
− B

A2GA

(∂Φ)2 + 2∂Φ
(
∂ψ̇ − ∂χ′ − 2HA∂ψ

)]
+
BGB

4A2
(∂2χ)2 − FT

4A2B
(∂2ψ)2.

(4.25)

It is easy to confirm that (4.25) is equivalent to (4.21) after substituting solution of Φ
in (4.25) 1. From (4.25), we get

∂2ψ =
B

FT

Φ̇, (4.26)

∂2χ =
1

BGB

Φ′, (4.27)

and after eliminating χ and ψ we finally get

L(2) =
B

4A2F T

Φ̇2 +
B

4A4GA

Φ∂2Φ +
1

4A2BGB

ΦΦ′′. (4.28)

Propagation speed of the odd-parity sector is read immediately in (4.28) as:

c2⊥ =
FT

GA

, c2z =
FT

GB

. (4.29)

This shows that GA ̸= GB leads anisotropic propagation speed. As shown in (4.23) and
(4.24), non-vanishing G5X is necessary for GA ̸= GB. Thus in anisotropically expanding
universe with G5X ̸= 0, odd-parity perturbations, of which isotropic limit is tensor
perturbations or gravitational waves, propagate with different speed along different
spatial directions.

1The similar definition of Ψ is seen in [65], which has studied perturbations of black hole but
provides systematic way available even in anisotropic spacetime.
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4 Perturbations on axially symmetric Bianchi type-I model

4.3 Even-parity sector

We substitute the perturbative metric and the expressions of the even-parity perturba-
tions (4.4), (4.5) and (4.6) to the Horndeski action (2.25), and we get

L(2)
even =− A2B

2
˙̄hzz

[
GA

(
ḣ2 −

1

A2
∂2h0

)
+ΘB̄htt

]
+
A2B

2
(HA −HB)GAh̄zz

(
ḣ2 −

1

A2
∂2h0

)
+
B

4
h̄zz
(
GA∂

2htt −FT∂
2h2
)
+
A2

B
h′tz

{
GA

[
ḣ2 + (HA −HB)h2

]
+ΘB̄htt

}
+

GA

4B
(∂htz − ∂h′0)

2
+
A2BΣ

4
h2tt − A2BΘĀhtt

(
ḣ2 −

1

A2
∂2h0

)
− A2GA

2B
h′tth

′
2

− A2BGB

4
ḣ22 +

BGB

2
ḣ2∂

2h0 +
BGB

4
htt∂

2h2 +
A2FT

4B
h′2

2, (4.30)

where h̄zz = B2hzz and we have defined

Σ ≡ X(G2X + 2XG2XX − 2G3ϕ − 2XG3ϕX)

+ 2 (2HA +HB) ϕ̇
(
2XG3X +X2G3XX −G4ϕ − 5XG4ϕX − 2X2G4ϕXX

)
− 2HA (HA + 2HB)

(
G4 − 7XG4X − 16X2G4XX − 4X3G4XXX

)
− 2HA (HA + 2HB)X

(
6G5ϕ + 9XG5ϕX + 2X2G5ϕXX

)
+ 2H2

AHBϕ̇X
(
15G5X + 13XG5XX + 2X2G5XXX

)
, (4.31)

ΘĀ ≡ −ϕ̇XG3X + ϕ̇G4ϕ + 2ϕ̇XG4ϕX

+ (HA +HB)
(
G4 − 4XG4X − 4X2G4XX + 3XG5ϕ + 2X2G5ϕX

)
−HAHBϕ̇X (5G5X + 2XG5XX) , (4.32)

ΘB̄ ≡ −ϕ̇XG3X + ϕ̇G4ϕ + 2ϕ̇XG4ϕX

+ 2HA

(
G4 − 4XG4X − 4X2G4XX + 3XG5ϕ + 2X2G5ϕX

)
−H2

Aϕ̇X (5G5X + 2XG5XX) . (4.33)

Introducing an auxiliary variable Ψ and a Lagrange multiplier λ, we rewrite (4.30) as

L(2)
even =

1

2
h̄zzΨ̇ + λ

[
Ψ− A2BGA

(
ḣ2 −

1

A2
∂2h0

)
− A2BΘAhtt

]
+
A2B

2
(HA −HB)GAh̄zz

(
ḣ2 −

1

A2
∂2h0

)
+
B

4
h̄zz
(
GA∂

2htt −FT∂
2h2
)
+
A2

B
h′tz

{
GA

[
ḣ2 + (HA −HB)h2

]
+ΘB̄htt

}
+

GA

4B
(∂htz − ∂h′0)

2
+
A2BΣ

4
h2tt − A2BΘĀhtt

(
ḣ2 −

1

A2
∂2h0

)
− A2GA

2B
h′tth

′
2

− A2BGB

4
ḣ22 +

BGB

2
ḣ2∂

2h0 +
BGB

4
htt∂

2h2 +
A2FT

4B
h′2

2. (4.34)
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4.3 Even-parity sector

Now h̄zz also acts as a Lagrange multiplier. Variations with respect to λ, h̄zz and htz
give

Ψ− A2BGA

(
ḣ2 −

1

A2
∂2h0

)
− A2BΘB̄htt = 0, (4.35)

Ψ̇ + A2B (HA −HB)GA

(
ḣ2 −

1

A2
∂2h0

)
+
BGA

2
∂2htt −

BFT

2
∂2h2 = 0, (4.36)

GA

[
ḣ′2 + (HA −HB)h

′
2

]
+ΘB̄h

′
tt +

GA

2A2

(
∂2htz − ∂2h′0

)
= 0, (4.37)

respectively. These three equations can be used to eliminate htt, htz and h0 from the
Lagrangian (4.34). We finally get the Lagrangian which depends only on Ψ and h2.
To write down the action, we substitute the Fourier modes ζ̃ =

∫
d3xe−ik·x−ikzzζ for

a perturbative variable ζ and we omit the tildes for simplicity. Here k and x denotes
vectors (kx, ky) and (x, y), respectively. Let us represent final form of the Lagrangian
as

L(2)
even = Kij v̇

iv̇j − A−2k2Oijv
ivj −B−2k2zZijv

ivj −BFTK22v̇
2∂2v1, (4.38)

where i and j run from 1 to 2, v1 ≡ h2 and v2 ≡ Ψ. The coefficient matrices are given
by

K11 =
A2B

4
GB, (4.39)

K12 = −A
2GBΘB̄

2D2
, (4.40)

K22 =
A2GA

BD4
(ΣGA + 4ΘĀΘB̄) , (4.41)

Z11 =
A2BFT

4
, (4.42)

Z12 = −A
2FTΘB̄

2D2
, (4.43)

Z22 =
A2Θ2

B̄

B2D4

d

dt

[
BG2

A

ΘB̄

]
, (4.44)

where D2 ≡ GA [GAk
2 − 2A2 (HA −HB)ΘB̄]. Ghost-free conditions are given by K11 >

0 and det[Kij] > 0. They are reduced to GB > 0 and

detKij =
A4GBΘ

2
B̄

4D4

[
Σ

Θ2
B̄

G2
A + 4GA

ΘĀ

ΘB̄

− GB

]
> 0. (4.45)
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4 Perturbations on axially symmetric Bianchi type-I model

Oij is relatively complicated but what we need here is dispersion relation. Now we take
large k2 limit and we get

O11 ≈
A2B

4

GBFT

GA

, (4.46)

O12 ≈
{
−A

2

2

ΘĀFT

G2
A

+
A2

4

d

dt

[
BGB

AGA

]}
1

k2
, (4.47)

O22 ≈
Θ2

Ā

G4
A

d

dt

[
A2G2

A

BΘĀ

]
1

k4
. (4.48)

Dispersion relation of even-parity perturbations is given by eigenvalues of the matrix
K−1 (A−2Ok2 +B−2Zk2z). It is reduced to

ω2
even =

1

2

{
k2z
B2

(
FT

GB

+
F z

S

Gz
S

)
+

k2

A2

(
FT

GA

+ c2⊥ +M
)

±

√
k4

A4

Gz
S

GB

M2 +

[
k2z
B2

(
FT

GB

− F z
S

Gz
S

)
+

k2

A2

(
FT

GA

− c2⊥ −M
)]2 ,

(4.49)

where

Gz
S ≡ Σ

Θ2
B̄

G2
A + 4GA

Θ

ΘB̄

− GB (4.50)

F z
S ≡ 1

B

d

dt

[
BG2

A

ΘB̄

]
−FT (4.51)

c2⊥ ≡ Θ2

V

(
B

A2

d

dt

[
A2G2

A

BΘ

]
−

GBΘ
2
B̄

GAΘ2
FT

)
(4.52)

M ≡ GAGBΘB̄

V

(
2FT

GA

(
ΘB̄

GA

− ΘĀ

GB

)
− (HA −HB + ĠA/GA − ĠB/GB)

)
(4.53)

V ≡ ΣG2
A + 4GAΘĀΘB̄ − GBΘ

2
B̄ = Gz

SΘ
2
B̄. (4.54)

When we set G4 = f(ϕ) and G5 = 0, then they lead

GT ≡ GA = GB = FT = 2f(ϕ), (4.55)

M =
ΘB̄

V
(2FT(ΘB̄ −Θ)− G2

T(HA −HB)), (4.56)

=
ΘB̄

V

(
2FT(HA −HB)f(ϕ)− G2

T(HA −HB)
)
= 0. (4.57)
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4.4 Perturbations dependent only on z

When we set G5X = 0, then we get

GT ≡ GA = GB = 2[G4 − 2XG4X +XG5ϕ], (4.58)

FT = 2[G4 −XG5ϕ], (4.59)

Γ ≡ 2(ΘB̄ −Θ)/(HA −HB) = 2[G4 − 4XG4X − 4X2G4XX + 3XG5ϕ], (4.60)

M =
ΘB̄

V
(HA −HB)(FTΓ− G2

T) (4.61)

= −16
ΘB̄

V
(HA −HB)X

2
[
(G4 −XG5ϕ)G4XX +G2

4X +G2
5ϕ

]
. (4.62)

Note that the expression of Γ is similar to the definition in [66]. It suggests that coupling
terms such as ζ̇ ḣ2 contribute to the mixing of scalar and gravitaional waves.

4.4 Perturbations dependent only on z

We note that if perturbations does not depend on the directions x and y, the original
second-order action (4.21) vanishes since all the terms have ∂. In that case, we cannot
use (4.4), (4.5) and (4.6) to represent the perturbations, but we should use another
representation for perturbations which is transverse and traceless in the directions x
and y.

hab = A2h
(TT)
ab , (4.63)

where h
(TT)
aa = 0 = ∂ah

(TT)
ab is satisfied. Its second-order action is

L(2) = A2B
1

8

[
GBḣ

(TT)
ab

2 −B−2FTh
′(TT)
ab

2
]
. (4.64)

As one can see, h
(TT)
ab propagates only to the direction z and its speed is same as cz in

(4.29). Since (4.64) has the same dispersion relation as that of (4.28), we mainly use
(4.28) afterward but attention is needed when we restore original expressions in terms
of the metric.

4.5 Case without axial symmetry

Now we have the metric below for the background

ḡµνdx
µdxν = −N2dt2 + γijdx

idxj, (4.65)

where we define the spatial metric

γij = diag(A2, B2, C2). (4.66)
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4 Perturbations on axially symmetric Bianchi type-I model

The Hamiltonian constraint EN = 0 is given by variation with respect to N .

EN =G2 − ϕ̇2G2X + ϕ̇2G3ϕ − (HA +HB +HC)ϕ̇
3G3X + 2(HAHB +HBHC +HCHA)G4

+ 2(HA +HB +HC)ϕ̇G4ϕ − 4(HAHB +HBHC +HCHA)ϕ̇
2G4X

+ 2(HA +HB +HC)ϕ̇
3G4ϕX − 2(HAHB +HBHC +HCHA)ϕ̇

4G4XX

+ 3(HAHB +HBHC +HCHA)ϕ̇
2G5ϕ − 5HAHBHC ϕ̇

3G5X

+ (HAHB +HBHC +HCHA)ϕ̇
4G5ϕX −HAHBHC ϕ̇

5G5XX . (4.67)

Evolution equations EA = 0 is given by variation with respect to A.

EA =G2 − ϕ̇2G3ϕ − ϕ̇2ϕ̈G3X + 2

(
HBHC +

B̈

B
+
C̈

C

)
G4

+ 2(ϕ̈+ (HB +HC)ϕ̇)G4ϕ − 2

(
(HB +HC)ϕ̇ϕ̈+

(
HBHC +

B̈

B
+
C̈

C

)
ϕ̇2

)
G4X

+ 2ϕ̇2G4ϕϕ + 2ϕ̇2(ϕ̈− (HB +HC)ϕ̇)G4ϕX − 2(HB +HC)ϕ̇
3ϕ̈G4XX

+

(
2(HB +HC)ϕ̇ϕ̈+

(
HBHC +

B̈

B
+
C̈

C

)
ϕ̈

)
G5ϕ

− (3HBHC ϕ̇
2ϕ̈+ (HC

B̈

B
+HB

C̈

C
)ϕ̇3)G5X + (HB +HC)ϕ̇

3G5ϕϕ

+ ((HB +HC)ϕ̇
3ϕ̈−HBHC ϕ̇

4)G5ϕX −HBHC ϕ̇
4ϕ̈G5XX . (4.68)

The other evolution equations of B and C are given by circulation of the expression of
EA. Equation of motion of ϕ is given by linear combination of EN , EA, EB, and EC .

We define perturbative variables

δgµνdx
µdxν = α2dt2 + 2βidtdx

i +Hijdx
idxj. (4.69)

Thanks to the freedom of the gauge, we set H12 = H23 = H31 = 0. The second-order
Lagrangian is written as

S(2) =

∫
dtd3xL(2), (4.70)

L(2) =− AΣAH22H33

4BC
− BΣBH33H11

4CA
− CΣCH11H22

4AB

+
CHBGCḢ11H22

4AB
+
BHCGBḢ11H33

4CA
+
AHCGAḢ22H33

4BC

+
CHAGCḢ22H11

4AB
+
BHAGBḢ33H11

4CA
+
AHBGAḢ33H22

4BC

− AGAḢ22Ḣ33

4BC
− BGBḢ33Ḣ11

4CA
− CGCḢ11Ḣ22

4AB

+
FT∂1H22∂1H33

4ABC
+

FT∂2H33∂2H11

4ABC
+

FT∂3H11∂3H22

4ABC
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4.5 Case without axial symmetry

+
CGC∂1β1
2AB

(
Ḣ22 − (HA +HB)H22

)
+
BGB∂1β1
2AC

(
Ḣ33 − (HA +HC)H33

)
+
AGA∂2β2
2BC

(
Ḣ33 − (HB +HC)H33

)
+
CGC∂2β2
2BA

(
Ḣ11 − (HB +HA)H11

)
+
BGB∂3β3
2CA

(
Ḣ11 − (HC +HA)H11

)
+
AGA∂3β3
2CB

(
Ḣ22 − (HC +HB)H22

)
+
AGA(∂2β3 − ∂3β1)

2

4BC
+
BGB(∂3β1 − ∂1β3)

2

4CA
+
CGC(∂1β2 − ∂2β1)

2

4AB

+
BCHAΘAαH11

A
+
CAHBΘBαH22

B
+
ABHCΘCαH33

C

− BCΘAαḢ11

2A
− CAΘBαḢ22

2B
− ABΘCαḢ33

2C

+
AGAα(∂

2
2H33 + ∂23H22)

4BC
+
BGBα(∂

2
3H11 + ∂21H33)

4CA
+
CGCα(∂

2
3H11 + ∂21H33)

4AB

+
BCΘAα∂1β1

A
+
CAΘBα∂2β2

B
+
ABΘCα∂3β3

C
+

Σ

4
ABCα2, (4.71)

where we ignore total derivatives and we simplify the expressions with the background
equations EN = 0, EA = 0, EB = 0, EC = 0. We have defined several functions

Σ =
1

2
ϕ̇2G2X , (4.72)

ΣA =G2 − ϕ̇2G3ϕ − ϕ̇2ϕ̈G3X + 2

(
Ä

A
−HBHC

)
G4 + 2(ϕ̈+HAϕ̇)G4ϕ

− 2ϕ̇

(
HAϕ̈+

Ä

A
ϕ̇−HBHC ϕ̇

)
G4X + 2ϕ̇2G4ϕϕ + 2ϕ̇2(ϕ̈−HAϕ̇)G4ϕX − 2HAϕ̇

3ϕ̈G4XX

+ ϕ̇

(
2HAϕ̈+

Ä

A
ϕ̇−HBHC ϕ̇

)
G5ϕ +HAHBHC ϕ̇

3G5X +HAϕ̇
3G5ϕϕ +HAϕ̇

3ϕ̈G5ϕX ,

(4.73)

ΘA =− 1

2
ϕ̇3G3X + (HB +HC)G4 + ϕ̇G4ϕ − 2(HB +HC)ϕ̇

2G4X + ϕ̇3G4ϕX − (HB +HC)ϕ̇
4G4ϕϕ

+
3

2
(HB +HC)ϕ̇

2G5ϕ −
5

2
HBHC ϕ̇

3G5X +
1

2
(HB +HC)ϕ̇

4G5ϕX − 1

2
HBHC ϕ̇

5G5XX ,

(4.74)

GA =2G4 − 2ϕ̇2G4X + ϕ̇2G5ϕ −HAϕ̇
3G5X , (4.75)

FT =2G4 − ϕ̇2G5ϕ − ϕ̇2ϕ̈G5X . (4.76)

ΣB, ΣC , ΘB, ΘC , GB, and GC are given by the circulation of their correspondence ΣA,
ΘA, and GA, respectively. We define new variables as

δA =
H11

A
, δB =

H22

B
, δC =

H33

C
, (4.77)

χA = ∂−1
1 β1, χB = ∂−1

2 β2, χC = ∂−1
3 β3. (4.78)
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4 Perturbations on axially symmetric Bianchi type-I model

Then the action with the new variables

L(2) =− 1

4
AΣAδBδC − 1

4
BΣBδCδA − 1

4
CΣCδAδB

− 1

4
AGA(δ̇B δ̇C −HBHCδBδC)−

1

4
BGC(δ̇C δ̇A −HCHAδCδA)

− 1

4
CGC(δ̇Aδ̇B −HAHBδAδB)

+
FTk

2
1

4A
δBδC +

FTk
2
2

4B
δCδA +

FTk
2
3

4C
δAδB

− k21
2A

χA

(
CGC(δ̇B −HAδB) +BGB(δ̇C −HAδC)

)
− k22

2B
χB

(
AGA(δ̇C −HBδC) + CGC(δ̇A −HBδA)

)
− k23

2C
χC

(
BGB(δ̇A −HCδA) + AGA(δ̇B −HCδB)

)
+
k22k

2
3

4BC
AGA(χB − χC)

2 +
k23k

2
1

4CA
BGB(χC − χA)

2 +
k21k

2
2

4AB
CGC(χA − χB)

2

− k21
4A

α(BGBδC + CGCδB)−
k22
4B

α(CGCδA + AGAδC)−
k23
4C

α(AGAδB +BGBδA)

− 1

2
BCΘAα(δ̇A −HAδA)−

1

2
CAΘBα(δ̇B −HBδB)−

1

2
ABΘCα(δ̇C −HCδC)

− k21
A
BCΘAαχA − k22

B
CAΘBαχB − k23

C
ABΘCαχC +

Σ

4
ABCα2, (4.79)

where we have transformed all of the perturbative variables into their Fourier modes

f(t, xi) =

∫
d3k

(2π)3
eikxf(t, ki), (4.80)

The variation of the action with respect to χA and χB gives

k21
2A

(
(HAδB − δ̇B)CGC + (HAδC − δ̇C)BGB) +

k22
B
CGC(χA − χB) (4.81)

+
k23
C
BGB(χA − χC)− 2αBCΘA

)
= 0, (4.82)

k22
2B

(
(HBδC − δ̇C)AGA + (HBδA − δ̇A)CGC) +

k23
C
AGA(χB − χC) (4.83)

+
k21
A
CGC(χB − χA)− 2αCAΘB

)
= 0. (4.84)

Substituting these two into the action, we can eliminate χA and χB. Then χC act as a
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4.5 Case without axial symmetry

Lagrange multiplier, and we get

α =
[
BCk21(BGB(HAδC − δ̇C) + CGC(HAδB − δ̇B)) (4.85)

CAk22(CGC(HBδA − δ̇A) + AGA(HBδC − δ̇C)) (4.86)

ABk23(AGA(HCδB − δ̇B) +BGB(HCδA − δ̇A))
]

(4.87)(
2(B2C2ΘAk

2
1 + C2A2ΘBk

2
2 + A2B2ΘCk

2
3)
)−1

. (4.88)

After χC and α are eliminated, we finally get the action only with the variables δA, δB
and δC .

We can write the action with matrices K, F , and P as

L(2) = δ̇IKIJ δ̇J + δIFIJ δ̇J − δIPIJδJ , (4.89)

where I and J run A, B, and C. KIJ and PIJ are symmetric matrices and FIJ is an
antisymmetric matrix.

Variating the action with respect to δK , we get the equation of motion

2
d

dt
(KKJ δ̇J) +

d

dt
(δIFIK) = FKJ δ̇J − 2PKJδJ . (4.90)

To get dispersion relation, we plug δI ∝ e−iωt into the equation of motion.

(KKJω
2 − PKJ)δJ = 0. (4.91)

In order to obtain nontrivial δJ , the matrix of coefficient must not be regular.

det
[
KIJω

2 − PIJ

]
= 0, (4.92)

where we take the large wavenumber ki limit, so that we can neglect FIJ and time
derivative of KIJ . The solutions for ω2 are given by eigenvalues of K−1P . The eigen-
values are given by the roots x of the cubic equation

a0 + a1x+ a2x
2 + x3 = 0, (4.93)

a0 =
a1a2
3

− 2a32
27

+
4

27
(8D2 + 9M) (4.94)

a1 =
a22
3

− 1

12
(4D2 + 3M) (4.95)

a2 = −S (4.96)
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4 Perturbations on axially symmetric Bianchi type-I model

where

S =
k21
A2

(
2
FT

GA

+
GAΘ

2
A

Ω
(FSA +MBC)

)
+
k22
B2

(
2
FT

GB

+
GBΘ

2
B

Ω
(FSB +MCA)

)
+
k23
C2

(
2
FT

GC

+
GCΘ

2
C

Ω
(FSC +MAB)

)
, (4.97)

D =
k21
A2

(
FT

GA

− GAΘ
2
A

Ω
(FSA +MBC)

)
+
k22
B2

(
FT

GB

− GBΘ
2
B

Ω
(FSB +MCA)

)
+
k23
C2

(
FT

GC

− GCΘ
2
C

Ω
(FSC +MAB)

)
, (4.98)

MΩ =
k41
A4

∆2
BC +

k42
B4

∆2
CA +

k43
C4

∆2
AB − 2

k21k
2
2

A2B2
∆BC∆CA − 2

k22k
2
3

B2C2
∆CA∆AB − 2

k23k
2
1

C2A2
∆AB∆BC ,

(4.99)

Ω =GAGBGCΣ− G2
AΘ

2
A − G2

BΘ
2
B − G2

CΘ
2
C

+ 2GAGBΘAΘB + 2GBGCΘBΘC + 2GCGAΘCΘA, (4.100)

∆AB =2(GAΘA − GBΘB)
FT

GC

+ ĠAGB − GAĠB + (HA −HB)GAGB, (4.101)

MAB =
(GAΘA − GBΘB)

GCΘ2
C

[
(GAΘA − GBΘB)

FT

GC

+ ĠAGB − GAĠB + (HA −HB)GAGB

]
.

(4.102)

Therefore, the dispersion relation is

ω2 = x =
S
3
+
y

6
+

4D2 + 3M
6y

, (4.103)

y ≡z 3

√
8D3 + 9DM− 3

√
3iM

√
D2 +M, (4.104)

where z is the root of z3 + 1 = 0 and then

z = −1,
1±

√
3

2
. (4.105)

4.6 Perturbative behavior near anisotropic attrac-

tor

In this section, we see that it is not realistic that our Universe is in the vicinity of
the anisotropic attractor, because near the anisotropic attractor, the even-parity sector
suffers from a ghost unless we kill the scalar degree of freedom, and propagation speed
of gravitational waves in the odd-parity sector easily increases. However, we argue the
possibility that the behavior of the odd-parity sector can be used to make the universe
homogeneous in its early stage.
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4.6 Perturbative behavior near anisotropic attractor

Equation (3.16) with σ− = 0 reads

d

dt

[
A2B(HA −HB)GA

]
= 0, (4.106)

where we have used the relations from (2.40) to (2.45). This exhibits that if both A
and B increase and anisotropy of the background expansion HA−HB stays finite, then
GA approaches zero.

In the even-parity sector, we have no-ghost conditions GB > 0 and (4.45). Since
GA → 0 as the universe approaches the anisotropic attractor, the left-hand side of (4.45)
converges at

detKij → −
A4G2

BΘ
2
B̄

4D4
. (4.107)

This expression is inevitably negative and thus we suffer from a ghost. To avoid the
ghost, one of the ways is to use a special class of model called the extended cuscuton
which is referred in [67]. In this model, the scalar field behave as not a degree of freedom
but a constraint, and we can consider the below discussion about the odd-parity sector
in order to apply to the cuscuton model.

In the odd-parity sector, the propagation speed (4.29) along the directions x and
y increases as GA → 0. Hereinafter, we show that expansion of sound horizon forces
perturbations to stay oscillating and it realizes a strongly homogenized universe in the
two cases of exponential and power-law expansion.

Exponential expansion Here we assume that the scale factors grows exponentially
as A ∝ eHAt and B ∝ eHBt and that HA and HB are nearly constant and positive,
which justifies introduction of a new constant gA ≡ A2BGA. We start with the final
expression of the second-order action (4.28). First, we define a canonical variable ζ =
(2A2FT )

−1/2Φ and conformal time η, which satisfies dt = Bdη and we fix the integration
constant to have B = (−HBη)

−1. Then we have a second-order action

S(2) =

∫
dη

1

2

[(
dζ

dη

)2

+
HA(HA −HB)

H2
Bη

2
ζ2 +

(
− 1

HBη

)3 FT

gA
ζ∂2ζ +

FT

GB

ζζ ′′

]
. (4.108)

We expand ζ into Fourier modes:

ζ =

∫
d3k

(2π)3/2

[
ζ̃k⃗ak⃗e

ik⃗·x⃗ + ζ̃∗
k⃗
a†
k⃗
e−ik⃗·x⃗

]
. (4.109)

From this we have an equation of motion for ζ̃k⃗,[
d2

dη2
+ ω2

]
ζ̃k⃗ = 0, (4.110)

ω2 = −|η|−2HA(HA −HB)

H2
B

+ |η|−3 FT

gAH3
B

k2 +
FT

GB

k2z , (4.111)
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4 Perturbations on axially symmetric Bianchi type-I model

where k denotes the comoving wavenumber vector in the directions x and y, and kz is
the comoving wavenumber in the direction z. When |η| is large enough in a sufficiently
past epoch, the second term in (4.111) can be neglected and we have a general solution

for ζ̃k⃗ with the Hankel functions of the first and second kind H
(1,2)
ν :

ζ̃k⃗ = c1
√
−ηH(1)

ν [
√
κ(−η)] + c2

√
−ηH(2)

ν [
√
κ(−η)], (4.112)

ν ≡ (HB − 2HA)/2HB, (4.113)

κ ≡ (FT/GB)k
2
z , (4.114)

where the coefficients c1 and c2 are functions of k and kz in general. Next, we define
another canonical variable π = B3/4(2A2FT )

−1/2Φ and a time variable τ , which satisfies
dt = B−1/2dτ and we fix the integration constant to have B = (HBτ/2)

2. Then we
have a second-order action

S(2) =

∫
dτ

1

2

[(
dπ

dτ

)2

+
16H2

A − 16HAHB + 3H2
B

4H2
Bτ

2
π2 +

FT

gA
π∂2π +

(
HBτ

2

)−6 FT

GB

ππ′′

]
,

(4.115)

and we have an equation of motion for the modes π̃k⃗,[
d2

dτ 2
+ Ω2

]
π̃k⃗ = 0, (4.116)

Ω2 = −τ−2 (4HA −HB)(4HA − 3HB)

4H2
B

+
FT

gA
k2 + τ−6 64

H6
B

FT

GB

k2z , (4.117)

When τ is large enough in sufficient future, the third term in (4.117) can be neglected
and we have a general solution for π̃k⃗,

π̃k⃗ = d1
√
τH

(1)
ν′ [

√
κ′τ ] + d2

√
τH

(2)
ν′ [

√
κ′τ ], (4.118)

ν ′ ≡ (HB − 2HA)/HB = 2ν, (4.119)

κ′ ≡ (FT/gA)k
2. (4.120)

We connect two solutions (4.112) and (4.118) in their superhorizon period in which the
first term in (4.111) and (4.117) is dominant. We use the properties of Hankel functions

H
(1,2)
ν (z) = Jν(z) ± iNν(z) and Jν(z) ∝ Γ(ν + 1)−1(z/2)ν for small z. Here we choose

the vacuum in which only positive frequency modes exist with respect to kz in the past
and thus set c1 =

√
π/2 and c2 = 0. Then we find

d1,2 =
c1

2
√
2i

[
Γ(ν)Γ(2ν + 1)

π
Rν ∓ π

Γ(2ν)Γ(ν + 1)
R−ν (1 + i cot(πν)) (1∓ i cot(2πν))

]
,

(4.121)

with R ≡ 2H3
B√
κκ′

=
2H3

B

|kz|k2

gAGB
1/2

F3/2
T

, (4.122)
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4.6 Perturbative behavior near anisotropic attractor

where the upper (lower) sign applies to d1 (d2). From this, number density nk⃗ of the
produced particles π̃k⃗ is calculated and we get

nk⃗ = |d1|2 =
|c1|2

8π2
Γ(ν)2

[
Γ(1 + 2ν)2R2ν − 2Γ(1− ν)2 +

Γ(1− 2ν)2Γ(1− ν)2

Γ(1 + ν)2
R−2ν

]
,

(4.123)

=
π

32
csc2 (πν)

[
Γ(1 + 2ν)2

Γ(1− ν)2
R2ν +

Γ(1− 2ν)2

Γ(1 + ν)2
R−2ν − 2

]
. (4.124)

We stress that the expression (4.124) is applicable only when the mode has the
superhorizon period. If the first terms in (4.111) and (4.117) are always smaller than
the sum of the other two, we can no longer justify the solutions with Hankel functions
(4.112) and (4.118). We focus on the moderate case in which HA and HB are of the
same order, and then the justifying condition can be written as R ≫ 1. In other
words, the mode satisfying R ≫ 1 has its transient superhorizon period and its particle
production is given by (4.124).

In late time, more modes which exit from horizon in z direction are still oscillating
because they are still in larger sound horizon in x and y direction. We can treat such
a mode with WKB approximation, which is expanded by a WKB parameter ϵ ≡ ω̇/ω2,
where the dot temporarily denotes derivative with respect to the referred time variable.
In our case, the maximum of the WKB parameter in time evolution is of the order of
R1/3. Thus particle production of the mode satisfying R ≪ 1 is suppressed by smallness
of R.

Power-law expansion Next, we will discuss power-law inflation with self anisotropiz-
ing. We assume that the scale factors A and B grow as A ∝ tpA and B ∝ tpB , where pA
and pB are constant indices. It gives that HA ≡ Ȧ/A = pA/t and HB ≡ Ḃ/B = pB/t.
From this and (4.106), we can define a constant gA as

gA ≡ A2B(HA −HB)GA = A2B(pA − pB)t
−1GA, (4.125)

and we assume that GB and FT can be regard as constants. Substituting this into
(4.28) and defining a canonical variable ζ = (2A2FT )

−1/2Φ and conformal time η which
satisfies dt = Bdη and of which integration constant we fix to have t = (1− pB)Bη, we
have a second-order action

S(2) =

∫
dη

1

2

[(
dζ

dη

)2

+
pA(pA − pB + 1)

(1− pB)2η2
ζ2 +

B2

A2

FT

GA

ζ∂2ζ +
FT

GB

ζζ ′′

]
. (4.126)

We expand ζ into Fourier modes as in (4.109) and then we have an equation of motion
for ζ̃k⃗, [

d2

dη2
+ ω2

]
ζ̃k⃗ = 0, (4.127)

ω2 = −pA(pA − pB + 1)

(1− pB)2η2
+

(pA − pB)B
2

(1− pB)η

FT

gA
k2 +

FT

GB

k2z . (4.128)
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4 Perturbations on axially symmetric Bianchi type-I model

If B grows faster than t, that is pB > 1, then |η| is a decreasing function and the second
term becomes larger than the first term in the end. Thus we assume that pB > 1 in this
argument so that we can repeat similar study with that in the inflationary universe.
We neglect the second term and get a general solution for ζ̃k⃗ with the Hankel functions

H
(1,2)
ν :

ζ̃k⃗ = c1
√
−ηH(1)

ν [
√
κ(−η)] + c2

√
−ηH(2)

ν [
√
κ(−η)], (4.129)

ν ≡ (pB − 2pA − 1)/2(pB − 1), (4.130)

κ ≡ (FT/GB)k
2
z . (4.131)

Next we define another canonical variable π = B3/4|HA − HB|1/2(2A2FT )
−1/2Φ and a

time variable τ , which satisfies dt = [B|HA − HB|]−1/2dτ and we fix the integration
constant to have t = [B|HA − HB|]−1/2(1 + pB)τ/2. We have another second-order
action with the canonical variable π:

S(2) =

∫
dτ

1

2

[(
dπ

dτ

)2

+
(4pA − pB + 3)(4pA − 3pB + 1)

4(1 + pB)2τ 2
π2 +

FT

gA
π∂2π +

1

B3|HA −HB|
FT

GB

ππ′′

]
,

(4.132)

and we have an equation of motion for the modes π̃k⃗,[
d2

dτ 2
+ Ω2

]
π̃k⃗ = 0, (4.133)

Ω2 = −(4pA − pB + 3)(4pA − 3pB + 1)

4(1 + pB)2τ 2
+

FT

gA
k2 +

1

B3|HA −HB|
FT

GB

k2z . (4.134)

In the far future enough to neglect the third term in (4.134), we have a gengeral solution
for π̃k⃗,

π̃k⃗ = d1
√
τH

(1)
ν′ [

√
κ′τ ] + d2

√
τH

(2)
ν′ [

√
κ′τ ], (4.135)

ν ′ ≡ (pB − 2pA − 1)/(pB + 1), (4.136)

κ′ ≡ (FT/gA)k
2. (4.137)

Then we connect the two solutions (4.129) and (4.135) in their superhorizon period√
κ(−η) ≪ 1 and

√
κ′τ ≪ 1 respectively. We finally gain number density

nk⃗ =
π

32

(pB + 1)

(pB − 1)
csc2 (πν)

[
Γ(1 + ν ′)2

Γ(1− ν)2
R2ν +

Γ(1− ν ′)2

Γ(1 + ν)2
R−2ν − 2

ν ′ sin(πν)

ν sin(πν ′)
cos[π(ν − ν ′)]

]
,

(4.138)

where we have difined

R ≡ 2B0
2/(pB+1) (pB − 1)√

κ

[
(pB + 1)2

(pA − pB)κ′

](pB−1)/(pB+1)

, (4.139)

and B0 ≡ B/tpB .
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4.7 Summary

We have constructed the perturbation theory on axially symmetric Bianchi-type I uni-
verse. The perturbations can be decomposed into the odd-parity sector which contains
one of the polarization modes of gravitational waves, and the even-parity sector which
contains the other polarization mode of gravitational waves and scalar perturbations.
We have calculated those perturbative actions and finally obtained the dispersion rela-
tions. We have also analyzed the perturbative behavior around the anisotropic attractor
discussed in Chapter 3, especially for gravitational waves in the odd-parity sector. It
has been shown that its propagation speed has a singular behavior on approaching
the anisotropic attractor and thus it is unlikely for the anisotropic attractor in four
dimensions to represent our universe. However it gives rise to a possibility that such
a singular behavior can homogenize our universe in the early stage of the universe. It
will be shown in Chapter 6 that the singular behavior might originate from the fact
that the anisotropic attractor in four dimensions is surrounded by the singular plane in
phase space.

39





Chapter 5

Perturbations on static and
spherically symmetric spacetime

Since the first detection of gravitational waves from the binary black hole merger on
September 14, 2015, advanced Laser Interferometer Gravitational-wave Observatory
(aLIGO) has detected gravitational waves from three binary black hole mergers during
the first observing run and gravitational waves from a binary neutron star inspiral and
gravitational waves from seven binary black hole mergers during the second observing
run [68]. Additionally, Event Horizon Telescope (EHT) has succeeded in imaging a
supermassive black hole directly by the very long baseline interferometry of electro-
magnetic waves [69]. The development of observation is expected to become even faster
in the near future, and we can regard compact objects such as black holes as more
important testing grounds of the nature of gravity.

In the general relativity, the equation of motion and stability condition in the odd-
parity sector have been derived in [70] and those in the even-parity sector in [71, 72].
In the Horndeski theory, which contains a scalar field, the equation of motion and the
stability condition in the odd-parity sector have been obtained in [21] and the radial
stability conditions in the even-parity sector are found in [22], which we review in
the following. We calculate angular dispersion relations in the even-parity sector and
discuss stability conditions of the angular perturbations.

5.1 Background equations

We consider a static and spherically symmetric spacetime as a background. The un-
perturbed metric ḡµν is written as

ḡµνdx
µdxν = −A(r)dt2 + dr2

B(r)
+ C(r)r2

(
dθ2 + sin2 θdφ2

)
. (5.1)

Let a scalar field of the generalized Galileon ϕ depend only on r and we regard ϕ = ϕ(r)
as an unperturbed variable rather than a field. Then X = −Bϕ′2/2, where a prime
denotes partial derivative with respect to r. The set of three variables A, B, and C are
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5 Perturbations on static and spherically symmetric spacetime

redundant and we can fix one of them by using the freedom of coordinate transforma-
tion, and we fix C(r) = 1 after getting the equation of motion for C. Substituting the
metric to the action (2.25) leads us to the background action

S(0) =

∫
dtdr4πr2

√
A

B
CL(0), (5.2)

L(0) =G2 −B

(
ϕ′′ + (

2

r
+
A′

2A
+
B′

2B
+
C ′

C
)ϕ′
)
G3

+B

(
− 2

r2
+

2

r2BC
− 2A′

rA
+
A′2

2A2
− 2B′

rB
− A′B′

2AB

−6C ′

rC
− A′C ′

AC
− A′B′

AB
+
C ′2

2C2
− A′′

A
− 2C ′′

C

)
G4

+B2ϕ′2
(

2

r2
+

2A′

rA
+

2B′

rB
+
A′B′

2AB

2C ′

rC
+
A′C ′

AC

+
B′C ′

BC
+
C ′2

2C2
+

4ϕ′′

rϕ′ +
A′ϕ′′

Aϕ′ +
2C ′ϕ′′

Cϕ′

)
G4X

+B2

(
(
1

r2
− 1

r2BC
+
A′

rA
+
C ′

rC
+
A′C ′

2AC
+
C ′2

4C2
)ϕ′′

+(
3A′

2r2A
− A′

2r2ABC
− A′2

2rA2
+

3B′

2r2B
− B′

2r2B2C
+

2A′B′

2rAB
+

2C ′

r2C

+
5A′C ′

2AC
− A′2C ′

4A2C
+

3B′C ′

2rBC
+

3A′B′C ′

4ABC
+

C ′2

2rC2
+
A′C ′2

2rC2
+
A′C ′2

8AC2

+
3B′C ′2

8BC2
− C ′3

4C3
+
A′′

rA
+
A′′C ′

2AC
+
C ′′

rC
+
A′C ′′

2AC
+
C ′C ′′

2C2
)ϕ′
)
G5

−B3ϕ′2
(
(
1

r2
+
A′

rA
+
C ′

rC
+
A′C ′

2AC

C ′2

4C2
)ϕ′′ + (

A′

2r2A
+

B′

2r2B

+
A′B′

2rAB
+

A′C ′

2rAC
+

B′C ′

2rBC
+
A′B′C ′

4ABC
+
A′C ′2

8AC2
+
B′C ′2

8BC2
)ϕ′
)
. (5.3)

The variation of the action with respect to the metric variables A, B, and C and the
scalar variable ϕ yield the equations of motion

EA = 0, EB = 0, EC = 0, Eϕ =
1

r2

√
B

A

d

dr

(
r2
√
ABJ

)
+
∂U
∂ϕ

= 0, (5.4)

where

EA = G2 +Bϕ′2G3ϕ −
1

2
Bϕ′2(2Bϕ′′ +B′ϕ′)G3X +

2(1−B − rB′)

r2
G4

− (B′ϕ′ +
2B(rϕ′′ + 2ϕ′)

r
)G4ϕ −

2Bϕ′(2rBϕ′′ + (B + 2rB′)ϕ′)

r2
G4X − 2Bϕ′2G4ϕϕ

+
Bϕ′2(2rBϕ′′ + (rB′ − 4B)ϕ′)

r
G4ϕX +

2B2ϕ′3(2Bϕ′′ +B′ϕ′)

r
G4XX
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+
Bϕ′(4rBϕ′′ + (1 +B + 3rB′)ϕ′)

r2
G5ϕ −

Bϕ′2(2B(1− 3B)ϕ′′ + (1− 5B)B′ϕ′)

2r2
G5X

+
2B2ϕ′3

r
G5ϕϕ −

B2ϕ′3(2rBϕ′′ − (B − rB′)ϕ′)

r2
G5ϕX − B3ϕ′4(2Bϕ′′ +B′ϕ′)

2r2
G5XX ,

(5.5)

EB = G2 +Bϕ′2G2X −Bϕ′2G3ϕ −
B2ϕ′3(4A+ rA′)

2rA
G3X +

2(A− AB − rA′B)

r2A
G4

− B(4A+ rA′)ϕ′

rA
G4ϕ +

2Bϕ′2(A− 2AB − 2rA′B)

r2A
G4X +

B2ϕ′3(4A+ rA′)2

rA
G4ϕX

+
2B3ϕ′4(A+ rA′)

r2A
G4XX − Bϕ′2(A− 3AB − 3rA′B)

r2A
G5ϕ −

B2ϕ′3(1− 5B)A′

2r2A
G5X

− B3ϕ′4(A+ rA′)

r2A
G5ϕX − B4ϕ′5A′

2r2A
G5XX , (5.6)

EC = G2 +Bϕ′2G3ϕ −
1

2
Bϕ′2(2Bϕ′′ +B′ϕ′)G3X − (B′ϕ′ +Bϕ′′ +Bϕ′(

2

r
+
A′

A
))G4ϕ

− 2AA′B − rA′2B + 2A2B′ + rAA′B′ + 2rAA′′B

2rA2
G4

−B2ϕ′((
2

r
+
A′

A
)ϕ′′ + (

A′

rA
− A′2

2A2
+

2B′

rB
+
A′B′

AB
+
A′′

A
)ϕ′)G4X − 2Bϕ′2G4ϕϕ

+B2ϕ′2(2ϕ′′ − (
2

r
+
A′

A
− B′

B
)ϕ′)G4ϕX +

B2ϕ′3(2A+ rA′)(B′ϕ′ + 2Bϕ′′)

2rA
G4XX

+B2ϕ′((
A′

2rA
− A′2

4A2
+

3B′

2rB
+

3A′B′

4AB
+
A′′

2A
)ϕ′ + (

2

r
+
A′

A
)ϕ′′)G5ϕ

− B3ϕ′3

r
((
A′2

4A2
− 5A′B′

4AB
− A′′

2A
)ϕ′ − 3A′

2A
ϕ′′)G5X +

B2ϕ′3(2A+ rA′)

2rA
G5ϕϕ

+B3ϕ′3((
A′

2rA
− B′

2rB
− A′B′

4AB
)ϕ′ − (

1

r
+
A′

2A
)ϕ′′)G5ϕX − B3A′ϕ′4(2Bϕ′′ +B′ϕ′)

4rA
G5XX ,

(5.7)

J = ϕ′G2X − Bϕ′2(4A+ rA′)

2rA
G3X + (

4

r
+
A′

A
)G4ϕ +

2ϕ′

r2
(1−B − rB

A′

A
)G4X

+
Bϕ′2(4A+ rA′)

rA
G4ϕX +

2B2ϕ′3(A+ rA′)

r2A
G4XX − BA′ϕ′2(1− 3B)

2r2A
G5X

− B2ϕ′3(A+ rA′)

r2A
GϕX − B3A′ϕ′4

2r2A
G5XX , (5.8)

U = G2 +Bϕ′2G3ϕ −
1

2
Bϕ′2(B′ϕ′ + 2Bϕ′′)G3X +

2

r2
(1 +B + rB

A′

A
)G4

+
Bϕ′(4A+ rA′)

rA
G4ϕ +

2B2ϕ′2(A+ rA′)

r2A
G4X +

Bϕ′2

r2
(1−B − rB

A′

A
)G5ϕ

− Bϕ′2(A′B2 + AB′)ϕ′ + 2ABϕ′′

2r2A
G5X , (5.9)

where we have set C = 1.

In the next section, we classify the perturbations with their parity in the spatial
inversion with regard to the origin r = 0. The perturbations can be analyzed with
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5 Perturbations on static and spherically symmetric spacetime

general configurations of A, B, C and ϕ. No particular configuration is considered but
they must satisfy the background equations.

5.2 Classification of perturbations

For odd-parity mode, we write the perturbed metric hµν = gµν − ḡµν as

htt = 0, (5.10)

htr = 0, (5.11)

hrr = 0, (5.12)

hta =
∞∑
ℓ=1

ℓ∑
m=−ℓ

h0,ℓm(t, r)Ea
b∂bYℓm(θ, φ), (5.13)

hra =
∞∑
ℓ=1

ℓ∑
m=−ℓ

h1,ℓm(t, r)Ea
b∂bYℓm(θ, φ), (5.14)

hab =
1

2

∞∑
ℓ=2

ℓ∑
m=−ℓ

h2,ℓm(t, r) [Ea
c∇c∇bYℓm(θ, φ) + Eb

c∇c∇aYℓm(θ, φ)] , (5.15)

where a and b denote the angular coordinates θ and φ, and Eab is the antisymmetric
tensor on the 2-sphere with Eθϕ = −Eϕθ = sin θ, Eθθ = Eϕϕ = 0. The odd parity
is inherited from the antisymmetric tensor when the space is inversed with regard to
the origin r = 0. Yℓm is the spherical harmonics, which is the eigen function of the
Laplacian on the 2-sphere

∆ ≡ 1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2φ, (5.16)

and ∆Yℓm = −ℓ(ℓ + 1)Yℓm ≡ −j2Yℓm. The gauge transformation xµ → xµ + ξµ with
odd parity is given by

ξa =
∑
ℓ,m

Λℓm(t, r)E
b
a∂bYℓm(θ, φ), (5.17)

where only Λℓm can bring the gauge transformations to the variables h0, h1, and h2

h0,ℓm(t, r) → h0,ℓm(t, r) + Λ̇ℓm(t, r), (5.18)

h1,ℓm(t, r) → h1,ℓm(t, r) + Λ′
ℓm(t, r)−

2

r
Λℓm(t, r), (5.19)

h2,ℓm(t, r) → h2,ℓm(t, r) + 2Λℓm(t, r). (5.20)

We can set h2 = 0 for ℓ ≥ 2, which is called the Regge-Wheeler gauge. For the
dipole perturbation ℓ = 1, the spherical harmonics vanishes identically and we need
another gauge condition, which is discussed later. Note that a perturbed scalar field
does not contribute to the odd-parity mode because we cannot construct any odd-parity
quantities with only the scalar field and its derivatives.
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For even-parity mode, we write the metric perturbations hµν as

htt = A(r)
∞∑
ℓ=0

ℓ∑
m=−ℓ

H0,ℓm(t, r)Yℓm(θ, φ), (5.21)

htr =
∞∑
ℓ=0

ℓ∑
m=−ℓ

H1,ℓm(t, r)Yℓm(θ, φ), (5.22)

hrr =
1

B(r)

∞∑
ℓ=0

ℓ∑
m=−ℓ

H2,ℓm(t, r)Yℓm(θ, φ), (5.23)

hta =
∞∑
ℓ=1

ℓ∑
m=−ℓ

βℓm(t, r)∂aYℓm(θ, φ), (5.24)

hra =
∞∑
ℓ=1

ℓ∑
m=−ℓ

αℓm(t, r)∂aYℓm(θ, φ), (5.25)

hab =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Kℓm(t, r)gabYℓm(θ, φ) +
∞∑
ℓ=1

ℓ∑
m=−ℓ

Gℓm(t, r)∇a∇bYℓm(θ, φ). (5.26)

The scalar field ϕ also provides an even-parity perturbation,

ϕ(t, r, θ, φ) = ϕ(r) +
∞∑
ℓ=0

ℓ∑
m=−ℓ

δϕℓm(t, r)Yℓm(θ, φ). (5.27)

With a gauge transformation xµ → xµ+ξµ, we can eliminate some of the variables. We
decompose the even-parity transformation ξµ into orthogonal modes Tℓm(t, r), Rℓm(t, r)
and Θℓm(t, r) with the spherical harmonics

ξt =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Tℓm(t, r)Yℓm(θ, φ), (5.28)

ξr =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Rℓm(t, r)Yℓm(θ, φ), (5.29)

ξa =
∞∑
ℓ=1

ℓ∑
m=−ℓ

Θℓm(t, r)∂aYℓm(θ, φ). (5.30)

With the gauge transformation Tℓm(t, r), Rℓm(t, r) and Θℓm(t, r), the even-parity per-
turbations transform as

H0,ℓm(t, r) → H0,ℓm(t, r) +
2

A
Ṫℓm(t, r)−

A′B

A
Rℓm(t, r), (5.31)

H1,ℓm(t, r) → H1,ℓm(t, r) + Ṙℓm(t, r) + T ′
ℓm(t, r)−

A′

A
Tℓm(t, r), (5.32)

H2,ℓm(t, r) → H2,ℓm(t, r) + 2BR′
ℓm(t, r) +B′Rℓm(t, r), (5.33)
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5 Perturbations on static and spherically symmetric spacetime

βℓm(t, r) → βℓm(t, r) + Tℓm(t, r) + Θ̇ℓm(t, r), (5.34)

αℓm(t, r) → αℓm(t, r) +Rℓm(t, r) + Θ′
ℓm(t, r)−

2

r
Θℓm(t, r), (5.35)

Kℓm(t, r) → Kℓm(t, r) +
2B

r
Rℓm(t, r), (5.36)

Gℓm(t, r) → Gℓm(t, r) + 2Θℓm(t, r). (5.37)

With these rules, we choose the gauge condition βℓm = Kℓm = Gℓm = 0, which can
completely fix the gauge. For the monopole mode ℓ = 0 and the dipole mode ℓ = 1, some
of the variables vanish identically, and we fix their gauges with other conditions. The
monopole mode consists of H0,ℓm, H1,ℓm, H2,ℓm and Kℓm, and Θℓm does not contribute
to the gauge transformation. In the dipole mode, Kℓm and Gℓm are not independent.
The gauge fixing for these modes is given in the following description of calculation.

5.3 Odd-parity sector

The second-order action is written as a sum of the contribution from each multipole
modes

S(2) = 2π
∞∑
ℓ=0

(2ℓ+ 1)

∫
dtdrL(2)

ℓ , (5.38)

where the angular summation
∑

m has been already computed. Hereinafter we omit ℓ
and m from the metric variables h0, h1, and h2. For the multipole modes ℓ > 2, the
Lagrangian L(2)

ℓ is given by [21]

L(2)
ℓ = a1h

2
0 + a2h

2
1 + a3

(
ḣ21 − 2ḣ1h

′
0 + h′20 +

4

r
ḣ1h0

)
, (5.39)

where ai’s are coefficients, which are written with Horndeski’s functions,

a1 =
ℓ(ℓ+ 1)

r2

[
d

dr

(
r

√
B

A
H

)
+
ℓ2 + ℓ− 2

2
√
AB

F

]
, (5.40)

a2 = −(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2r2

√
ABG, (5.41)

a3 =
ℓ(ℓ+ 1)

2

√
B

A
H. (5.42)

In the Lagrangian, Horndeski’s functions are seen in specific combinations, and we
define F , G, and H as

F ≡ 2

(
G4 +

1

2
Bϕ′X ′G5X −XG5ϕ

)
, (5.43)

G ≡ 2

[
G4 − 2XG4X +X

(
A′

2A
Bϕ′G5X +G5ϕ

)]
, (5.44)

H ≡ 2

[
G4 − 2XG4X +X

(
Bϕ′

r
G5X +G5ϕ

)]
. (5.45)
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In order to get a simpler action, we introduce an auxiliary field q

L(2)
ℓ =

(
a1 −

2 (ra3)
′

r2

)
h20 + a2h

2
1 + a3

[
−q2 + 2q

(
ḣ1 − h′0 +

2

r
h0

)]
. (5.46)

Substituting the solution for q into this expression, we get the action (5.39) again. We
variate the action (5.46) with respect to h0 and h1 and then they can be easily solved
for

h0 = −r [ra
′
3q + a3 (rq

′ + 2q)]

r2a1 − 2 (ra′3 + a3)
, (5.47)

h1 =
a3
a2
q̇. (5.48)

To obtain simpler form of the equation of motion, we write the action with Q instead
of q

Q =

(
r2B3/2H2

√
AF

)1/2

q. (5.49)

We finally get the simplest form of action

L(2)
ℓ =

ℓ(ℓ+ 1)

2(ℓ− 1)(ℓ+ 2)

[
F

ABG
Q̇2 −Q′2 − ℓ(ℓ+ 1)F

r2BH
Q2 − V (r)Q2

]
. (5.50)

where the effective mass squared V (r) is given by

V (r) =− 1

16

[
A′2

A2
+ 4

A′

A

(
F ′

F
+

H′

H
+

3

r

)
+ 3

B′2

B2

+4

(
B′

B

F ′

F
+
B′

rB
− B′′

B
+

10F
Br2H

)
−4

(
3
F ′2

F2
− 2F ′′

F
+

4F ′

rF
+

2H′

rH
+

10

r2

)]
, (5.51)

which is regarded as an effective potential in the calculation of quasi-normal modes.
The equation of motion for the master variable Q is given by

F
ABG

Q̈−Q′′ +
ℓ(ℓ+ 1)F
r2BH

Q+ V Q = 0. (5.52)

In a very small region the perturbations can freely propagate, which means that the
potential term V is negligible compared to the other terms. We assume that its (t, r)-
dependence is written as Q ∝ e−iωt+ikr in a small patch. The dispersion relation of the
odd-parity sector is given by

ω2

A
=

G
F
Bk2 +

G
H
ℓ(ℓ+ 1)

r2
, (5.53)
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where ω2/A, Bk2, and ℓ(ℓ+ 1)/r2 are the physical frequency, radial wavenumber, and
angular wavenumber, respectively. Therefore, the radial sound speed cr and angular
sound speed cθ are given by

c2r =
G
F
, c2θ =

G
H
. (5.54)

We now consider the stability of the perturbations. When Q is defined, positivity of
F is implicitly assumed. Otherwise, as is seen in (5.50), F < 0 would change the
sign of the time derivative term and we have the gradient instability, in which the
perturbations evolve exponentially at high wavenumber. From (5.54), one can tell that
the ghost instability emerge when G < 0, and then we see that H < 0 also cause the
gradient instability in the angular directions. Thus we require the conditions below to
avoid those instabilities:

F > 0, G > 0, H > 0. (5.55)

Among the odd-parity modes, the dipole mode needs a special treatment, since it
lacks one of the metric variables which represent the angular metric component hab.
For the dipole mode ℓ = 1, we can read the action from (5.39), where a2 vanishes and
a1 =

2
r2
(ra3)

′

L(2)
ℓ=1 = a3

(2h0 + r(ḣ1 − h′0))
2

r2
, (5.56)

where we have not fixed the gauge yet. h1 can be eliminated by the gauge freedom Λℓm,
and we get the equations of motion for h0

ḣ′0 −
2

r
ḣ0 = 0, (5.57)

a3h
′′
0 + a′3h

′
0 −

2 (ra3)
′

r2
h0 = 0. (5.58)

From the gauge transformation laws (5.18) and (5.19), one can tell that there is residual
gauge freedom Λℓm = C(t)r2, where C is an arbitrary function of time. Therefore, we
have the solution for h0

h0 =
3Jr2

4π

∫ r dr̃

r̃4H

√
A

B
+ C(t)r2, (5.59)

where J is an integration constant and it physically represent the angular momentum
of slightly rotating black hole.

5.4 Even-parity sector

The second-order action is given by the summation of the contribution from each mode
ℓ

S(2) = 2π
∞∑
ℓ=0

(2ℓ+ 1)

∫
dtdrL(2)

ℓ , (5.60)
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For ℓ > 2, the second-order action is given by [22]

L(2)
ℓ =H0

[
a1δϕ

′′ + a2δϕ
′ + a3H

′
2 + j2a4α

′ +
(
a5 + j2a6

)
δϕ+

(
a7 + j2a8

)
H2 + j2a9α

]
+ j2b1H

2
1 +H1

(
b2δϕ̇

′ + b3δϕ̇+ b4Ḣ2 + j2b5α̇
)

+ c1Ḣ2δϕ̇+H2

[
c2δϕ

′ +
(
c3 + j2c4

)
δϕ+ j2c5α

]
+ c6H

2
2 + j2d1α̇

2

+ j2α (d2δϕ
′ + d3δϕ) + j2d4α

2

+ e1δϕ̇
2 + e2δϕ

′2 +
(
e3 + j2e4

)
δϕ2, (5.61)

where we have omitted the subscripts ℓ and m and have defined the coefficients as

a1 = r2
√
AB3Ξϕ′2, (5.62)

a2 =
r
√
ABH
ϕ′ (

A′

A
− B′

B
) +

√
B

A

rϕ′(4ABΞϕ′ + rBΞA′ϕ′ + 2rAΞB′ϕ′ + 2rABΞ′ϕ′ + 2rABΞϕ′′)

2
,

(5.63)

a3 = −r
√
ABH− 1

2
r2
√
AB3Ξϕ′3, (5.64)

a4 =
√
ABH, (5.65)

a5 = −r2
√
A

B

∂EA
∂ϕ

, (5.66)

a6 =

√
A

B

F −H− rH′

rϕ′ , (5.67)

a7 = a′3, (5.68)

a8 = −1

2

√
A

B
H, (5.69)

a9 =
√
AB(

H
r
+
B′

2B
H +H′), (5.70)

b1 =
1

2

√
B

A
H, (5.71)

b2 = −2r2
√
B3

A
Ξϕ′2, (5.72)

b3 = −2r

√
B

A
(
A′

A
− B′

B
)
H
ϕ′ + r2

√
B

A
(B′ϕ′ + 2Bϕ′′)Ξϕ′, (5.73)

b4 = r

√
B

A
(2H + rBΞϕ′3), (5.74)

b5 = −
√
B

A
H, (5.75)

c1 = −r2
√
B

A
Ξϕ′2, (5.76)

c2 =
r

2

√
B

A
ϕ′(2rAΣ− 4ABΘϕ′ − rA′BΞϕ′), (5.77)
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c3 = r2
√
A

B

∂EB
∂ϕ

, (5.78)

c4 =
√
ABΘϕ′2, (5.79)

c5 = −
√
A

B

2AG + rA′H + 2rABΘϕ′3

2r
, (5.80)

c6 =
1

4

√
A

B
(2AG + 2rA′H− r2AΣϕ′2 + 4rABΘϕ′3 + r2A′BΞϕ′3), (5.81)

d1 =
1

2

√
A

B
H, (5.82)

d2 = −2A(G − F) + 2AB(H− G + rH′)− rA′B(2H + rH′) + rAB′(G +H)

r2
√
ABϕ′

−
√
ABΘϕ′(B′ϕ′ + 2Bϕ′′), (5.83)

d3 = 2
√
AB3Θϕ′2, (5.84)

d4 =
√
AB

G
r2
, (5.85)

e1 =
ẽ1

2
√
AB

, (5.86)

e2 = −r2
√
ABΣ, (5.87)

e3 = r2
√
A

B

∂Eϕ
∂ϕ

, (5.88)

e4 =
2A(G − F) + 2AB(rH− rG)′ + rA′B(2F − G − 3H− 2rH′ + rBΘϕ′3)

2r2
√
AB3ϕ′2

,

+
AB′(G +H + 3rBΘϕ′3) + 2rAB2ϕ′2(ϕ′Θ′ + 3Θϕ′′)

2r
√
AB3ϕ′2

, (5.89)

where we have defined several functions

Σ = G2X −Bϕ′2G2XX − 2G3ϕ −
Bϕ′(4A+ rA′)

rA
G3X +Bϕ′2G3ϕX

+
B2ϕ′3(4A+ rA′)

2rA
G3XX +

2

r2
(1−B − rB

A′

A
)G4X +

3Bϕ′(4A+ rA′)

rA
G4ϕX

− 2Bϕ′2

r2
(1− 4B − 4rB

A′

A
)G4XX − B2ϕ′3(4A+ rA′)

rA
G4ϕXX

− 2B3ϕ′4(A+ rA′)

r2A
G4XXX − 2

r2
(1−B − rB

A′

A
)G5ϕ −

A′Bϕ′(1− 3B)

r2A
G5X

+
Bϕ′2

r2
(1− 5B − 5rB

A′

A
)G5ϕX − B2(1− 7B)A′ϕ′3

2r2A
G5XX

+
B3(A+ rA′)ϕ′4

r2A
G5ϕXX +

B4A′ϕ′5

2r2A
G5XXX , (5.90)

Ξ = G3X +
2

Bϕ′2G4ϕ +
4

rϕ′G4X − 2G4ϕX − 4Bϕ′

r
G4XX
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− 4

rϕ′G5ϕ +
1− 3B

r2
G5X +

2Bϕ′

r
G5ϕX +

B2ϕ′2

r2
G5XX , (5.91)

Θ = G3X +
2

Bϕ′2G4ϕ +
2A+ rA′

rAϕ′ G4X − 2G4ϕX − Bϕ′(2A+ rA′)

rA
G4XX

− 2A+ rA′

rAϕ′ G5ϕ −
3BA′

2rA
G5X +

Bϕ′(2A+ rA′)

2rA
G5ϕX +

B2A′ϕ′2

2rA
G5XX . (5.92)

In the Lagrangian (5.61), H0 acts as a Lagrange multiplier. The variation with respect
to H0 gives

a1δϕ
′′ + a2δϕ

′ + a3H
′
2 + j2a4α

′ +
(
a5 + j2a6

)
δϕ+

(
a7 + j2a8

)
H2 + j2a9α = 0. (5.93)

We introduce a new variable ψ to descend the order of derivatives, which is defined as

H2 =
1

a3

(
ψ − a1δϕ

′ − j2a4α
)
. (5.94)

We use it to eliminate H2 from (5.93)

α =
a3ψ

′ + j2a8ψ + (a3 (a2 − a′1)− j2a1a8) δϕ
′ + a3 (a5 + j2a6) δϕ

j2 [j2a4a8 + a3(a′4 − a9)]
. (5.95)

The variation with respect to H1 gives the solution for H1 itself.

H1 = − 1

2j2b1

(
b2δϕ

′ + b3δϕ+ b4H2 + j2b5α
)·
. (5.96)

With (5.93), (5.95) and (5.96), we reach the final expression of the action with two
variables ψ and δϕ

L(2)
ℓ =

1

2
Kij v̇

iv̇j − 1

2
Gijv

i′vj
′ −Qijv

ivj
′ − 1

2
Mijv

ivj, (5.97)

where i and j run from 1 to 2, we take v1 = ψ and v2 = δϕ, and we write the coefficients
as the matrices Kij, Gij, Qij and Mij. We take that Kij, Gij, and Mij are symmetric
and Qij is antisymmetric.

To avoid ghost, which brings us negative kinetic energy, we require that all of the
eigenvalues of the symmetric matrix K are positive. Since K is two-dimensional matrix,
the requirement is reduced to the conditions

tr(K) > 0, det(K) > 0. (5.98)

Furthermore the symmetric property can make the conditions simpler

K11 > 0, det(K) > 0. (5.99)

The first condition reads

K11 =
8r2

√
AB (2H + rBΞϕ′3)

2

ℓ(ℓ+ 1)A2H2

ℓ(ℓ+ 1)P1 −F
(2rHℓ(ℓ+ 1) + P2)

2 > 0, (5.100)
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where we have defined

P1 =
B (2H + rBΞϕ′3)

2rAH2

[
r2AH4

B (2H + rBΞϕ′3)2

]′
, (5.101)

P2 = −rB
(
2− rA′

A

)(
2H + rBΞϕ′3) . (5.102)

The second condition of (5.99) reads

det(K) =
16(ℓ− 1)(ℓ+ 2)r2 (2H + rBΞϕ′3)

2F (2P1 −F)

ℓ(ℓ+ 1)A2H2ϕ′2 (2rHℓ(ℓ+ 1) + P2)
2 > 0. (5.103)

The condition (5.100) shows that we need

2P1 −F > 0, (5.104)

since we now assume F > 0 in the odd-parity modes. If (5.104) is satisfied, (5.100) is
also satisfied and thus only (5.104) is a new independent condition for avoiding ghost.

To derive the dispersion relation, we take the large ℓ limit such that lower-order
terms of ℓ or j2 in the equations of motion which are given by the variation of the action
(5.4) are negligible. We also consider that the perturbations have high momentum in
the radial direction. Then we can ignore Qij and G ′

ij in the equations of motion and get

−Kij v̈
j + Gijv

j ′′ −Mijv
j = 0. (5.105)

Plugging a plane wave solution, which is justified when we consider so small region that
the perturbations cannot feel curvature, vj ∝ e−iωt+ikr into (5.105), we get

Kijω
2vj − Gijk

2vj −Mijv
j = 0. (5.106)

In order for (5.106) to have nontrivial solution, the coefficient matrix must not have its
inverse matrix and thus

det(Kijω
2 − Gijk

2 −Mij) = 0. (5.107)

This is what gives the dispersion relation. The matrices Kij, Gij and Mij reads

K11 =

√
B

A3

2P1(2H + rBΞϕ′3)2

j2H4
, (5.108)

K12 = K21 =
2F(2H + rBΞϕ′3)

j2AH2ϕ′ − j2
√
A

B

H
ϕ′K11, (5.109)

K22 = −4F(H + rBΞϕ′3)√
ABHϕ′2

+

(
j2
√
A

B

H
ϕ′

)2

K11, (5.110)

G11 =

√
2
B3

A

1

j4H3
(2G(H + rBΞϕ′3) + r2ϕ′2(HΣ + 2B2ΘΞϕ′4)), (5.111)

52



5.4 Even-parity sector

G12 = −G21 =
2rBϕ′

j2H2
(rHΣ +BΞϕ′(G + 2rBΘϕ′3)), (5.112)

G22 =
r2
√
AB(HΣ + 2B2ΘΞϕ′4)

2H
, (5.113)

M11 = −
√
B

A

2y

j2r2H
, (5.114)

M12 = M21 =
r2H√
ABϕ′

x+
2G

r2Hϕ′

(
1

B
− 2 +

F
H

+
rB′

2B
− rH′

H
+
rF(A′H + 2ABΘϕ′3)

2AGH

)
,

(5.115)

M22 = −j
2r2H2

Bϕ′2
x−

√
A

B

2j2G
r2ϕ′2

(
1

B
− 1− rA′

2A
+
rB′

2B
− rG ′

G
+
rF(A′H + 2ABΘϕ′3)

AGH

)
,

(5.116)

x ≡

[√
B

A

(A′H + 2ABΘϕ′3)

r2H2

]′
. (5.117)

Note that these expressions are given when we take the large k and ℓ limit. Substituting
them into (5.107), we finally obtain(

ω2

A
− G

F
Bk2 − G

H
j2

r2

)(
ω2

A
− GS

FS

Bk2 − GS

HS

j2

r2

)
=M

j4

r4
, (5.118)

where we have defined

GS

FS

=
r2ϕ′2(2H2Σ + 4B2HΘΞϕ′4 −B2GΞ2ϕ′4)

(2P1 −F) (2H + rBΞϕ′3)2
, (5.119)

GS

HS

= δ − 2H3y

(2P1 −F) (2H + rBΞϕ′3)2
− FG

H (2P1 −F)
, (5.120)

M =
δ2 (2P1 −F)

4F
, (5.121)

δ =
2A(F −H)GH + r(G − F)H2A′ + 2rAH (G ′H− GH′) + 2rABF(GΞ−HΘ)ϕ′3

AH (2P1 −F) (2H + rBΞϕ′3)
.

(5.122)

The dispersion relation (5.118) is the main result of the present chapter, and we explore
it and stability conditions in the next section.

For the monopole mode ℓ = 0, we need a different treatment of the gauge. Without
any gauge transformations ξµ, α = β = G = 0 holds identically. We have only two
gauge freedom Tℓm and Rℓm. We utilize Rℓm to kill K and then we can use the action
(5.61) with j2 = 0 and K = 0. Note that there is still a residual gauge freedom Tℓm.
We have the monopole Lagrangian

L(2)
ℓ=0 =

(
A

2
H ′

0 − Ḣ1

)
(b2δϕ

′ + b3δϕ+ b4H2)

+ c1Ḣ2δϕ̇+H2 [c2δϕ
′ + c3δϕ] + c6H

2
2 + e1δϕ̇

2 + e2δϕ
′2 + e3δϕ

2. (5.123)
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With the variation with respect to H0 and H1, we get

H2 = − 1

b4
(b2δϕ

′ + b3δϕ) +
2C0

Ab4
, (5.124)

where C0 is an integration constant. It corresponds to the change of mass of the black
hole [72] and is not a physical mode. Thus we set C0 = 0. The action is finally written
as

L(2)
ℓ=0 =

1

2
K0δϕ

2 − 1

2
G0δϕ

′2 − 1

2
M0δϕ

2, (5.125)

where the propagation speed cs is given by c2s = (AB)−1K−1
0 G0 and the coefficients K0,

c2s, and M0 reads

K0 =
4√

ABϕ′2
(2P1 −F) , (5.126)

c2s =GS/FS, (5.127)

M0 =− 1

b34

(
2b34e3 + b24 (−2b3c3 + b′2c3 + b2c

′
3 + b′3c2 + b3c

′
2) (5.128)

+b4
(
2b23c6 − 2(b′2b3c6 + b2b

′
3c6 + b2b3c

′
6)− b′4(b2c3 + b3c2)

)
+ 4b′4b2b3c6

)
.

(5.129)

From (5.127), we can tell that the monopole mode can be identified as the scalar wave.
The no-ghost condition 2P1 − F > 0 is the same as that for ℓ ≥ 2. We also get the
condition for gradient stability as c2s = GS/FS > 0.

For the dipole mode ℓ = 1, K can be implicitly represented by G because the
expressions written with the dipole spherical harmonics are no longer independent.
Thus we can kill K without using any gauge freedoms ξµ. We use Tℓm, Rℓm, and Θℓm

to set β = 0, δϕ = 0, and G = 0, respectively. The analysis in the general multipole
modes ℓ ≥ 2 is still available and we can utilize the expression with δϕ = 0. The action
reads

L(2)
ℓ=1 =

1

2
K11ψ̇

2 − 1

2
G11ψ

′2 − 1

2
M11ψ

2, (5.130)

where K11, G11, and M11 are components of the matrices for ℓ ≥ 2. The action (5.130)
gives the same no-ghost condition and propagation speed as in the monopole case ℓ = 0.
Thus the dipole mode is the scalar wave as well as the monopole mode.

5.5 Dispersion relation and stability conditions

Now we have derived the dispersion relation (5.118) including the propagation speed
in axial directions. Suppose that δ = 0 and consequently M = 0. Then the dispersion
decouples to two independent dispersion relations

ω2

A
=

G
F
Bk2 +

G
H
j2

r2
, (5.131)

ω2

A
=

GS

FS

Bk2 +
GS

HS

j2

r2
. (5.132)
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(5.131) and (5.132) are identified with the dispersion relation of gravitational waves
and that of scalar waves, respectively. This shows that if M = 0 then gravitational
waves and scalar waves propagate independently in the large momentum limit. In that
case we can predicate that the propagation speeds of gravitational waves are given by
G/F and G/H in radial direction and axial direction, respectively. It is the same result
in the odd-parity sector (5.54). Likewise we can also predicate that the propagation
speeds of scalar waves are given by GS/FS and GS/HS in radial and axial directions,
respectively. The radial scalar propagation speed has been derived in [22], but the axial
one has never been derived because of the complexity of calculation. In the even-parity
sector, the perturbations of the scalar field and the metric are analyzed and in the
general relativity, in which δ =M = 0, they propagates independently.

Let M ̸= 0 and observe how it affects the dispersions. The dispersion relation
(5.118) can be regarded as a quadratic equation of ω2 and we can express its roots as

ω2

A
=

1

2

{(
G
F

+
GS

FS

)
Bk2 +

(
G
H

+
GS

HS

)
j2

r2
(5.133)

±

√[(
G
F

− GS

FS

)
Bk2 +

(
G
H

− GS

HS

)
j2

r2

]2
+ 4M

j4

r4

}
. (5.134)

Here we observe that the roots contain both the propagation speeds of gravitational
and scalar waves. Thus we regard M as the mixing term which causes the dispersion
relations to mix between the two kinds of perturbative waves. The mixing term implies
that it is difficult to construct the two independent equations of motion for purely scalar
waves and for purely gravitational waves.

We investigate the condition for M ̸= 0. With the stability conditions (5.55) and
(5.104), δ ̸= 0 is the necessary and sufficient condition forM ̸= 0. First, we set a model
as G4 = f(ϕ) and G5 = 0, where f is an arbitrary function, we have

F = G = H = 2f(ϕ), (5.135)

GΞ−HΘ = 0. (5.136)

It causes that δ =M = 0 and thus we have no mixing between gravitational and scalar
waves. The general relativity is the model with f(ϕ) = (16πGN)

−1, and we also have
no mixing. Next, we set a model as G5X = 0, we have

F = 2[G4 −XG5ϕ], (5.137)

G = H = 2[G4 − 2XG4X +XG5ϕ], (5.138)

GΞ−HΘ =
G
rϕ′

(
2− rA′

A

)
(G4X −G5ϕ + 2XG4XX). (5.139)

They lead to δ ̸= 0 and M ̸= 0 in general. From these considerations, one can notice
that if the propagation speed of gravitational waves G/F and G/H are different from
the speed of light c2γ = 1, then the mixing term M does not vanish generally. The
observation of the mixing between gravitational waves and scalar waves emitted by a
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5 Perturbations on static and spherically symmetric spacetime

binary of compact objects can provide a new point of view to test the nature of the
gravity.

Finally we pursue the stability conditions to avoid gradient instabilities. Perturba-
tions with any momentum should not cause such instabilities at any local point. Thus
we impose the condition in which the squared frequency ω2 is positive for any j and k
at any spatial position r. For simplicity, we do not impose any ultraviolet cutoff. Then
all of the three conditions below should be satisfied:

w1 ≡
(
G
F

+
GS

FS

)
Bk2 +

(
G
H

+
GS

HS

)
j2

r2
> 0, (5.140)

w2 ≡
[(

G
F

− GS

FS

)
Bk2 +

(
G
H

− GS

HS

)
j2

r2

]2
+ 4M

j4

r4
≥ 0, (5.141)

w3 ≡ w2
1 − w2 > 0. (5.142)

In order for each condition to be satisfied for all j and k, we get several inequalities for
ratios of G, F , H, GS, FS, HS and M . From the first condition, we get

G
F

+
GS

FS

> 0,
G
H

+
GS

HS

> 0. (5.143)

From the second condition, we obtain(
G
H

− GS

HS

)2

+ 4M ≥ 0 if

(
G
H

− GS

HS

)
·
(
G
F

− GS

FS

)
> 0, (5.144)

M ≥ 0 if

(
G
H

− GS

HS

)
·
(
G
F

− GS

FS

)
≤ 0. (5.145)

From the third condition, we find

G
F

· GS

FS

> 0,
G
H

· GS

HS

> 0, (5.146)

and additionally we require

F
H

+
FS

HS

> 0 or

(
G
H

GS

FS

− G
F

GS

HS

)2

+ 4M
G
F

· GS

FS

< 0. (5.147)

Taking all of those into account, we conclude that we need to require at any spatial
point r

G
F
> 0,

G
H
> 0,

GS

FS

> 0,
GS

HS

> 0, (5.148)

and M must satisfy the conditional requirements (5.144) and (5.145). The conditions
(5.147) are automatically satisfied, considering the ghost-free conditions (5.55) and
(5.104) as well as (5.148). The conditions of (5.148) has been shown in [22], except
for the fourth condition. We have shown that the fourth condition, which determines
angular stability of the scalar waves, and the conditions for the mixing term (5.144) and
(5.145) should be satisfied to perfect the stability conditions along any spatial direction.
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5.6 Summary

We have reviewed the perturbation theory which is developed by [21, 22] in the first
three sections. Since we have simplified some of expressions for the coefficients in the
action, we have finally found the dispersion relation, including the angular directions,
of the even-parity sector which represent the scalar wave and one polarization mode
of gravitational waves. As a result, we have observed that their dispersion relations
mix and it can cause the birefringence around a black hole. The analysis has revealed
that the mixing between scalar and gravitational waves happens when the propagation
speed of gravitational waves can be different from the speed of light. This may give
suggestions on new ways to test the Horndeski theory around a compact object. We
have also found the new stability conditions and it can be used to test the Horndeski
theory through angular stability of the hairy solution of black holes.
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Chapter 6

Freezing extra dimensions
with anisotropic attractors

As seen in Chapter 3, the higher-order curvature term induces nontrivial attractor of
the system, which we call anisotropic attractor. In the large limit of the higher-order
term, that expansion of two dimensional space stopped. It motivates us to study it in
higher-dimensional spacetime to think of a new mechanism to freeze extra dimensions.
We require the two point that (i) expansion rate of the extra dimensions β is much
smaller than that of the lower-dimensional universe α and (ii) dynamics of the lower-
dimensional universe, or α, obeys the Friedmann equation in the general relativity in
the whole of cosmic history as in Figure 6.1.
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Figure 6.1: The standard view of the cosmic history. If extra dimensions exist, it
is naturally deduced that the energy contents can have different pressure in the four-
dimensional universe from that in the extra dimensions. wa and wb denotes the equation
of state of energy contents in the universe dimensions and extra dimensions, respectively.
The equation of state of reheating is relatively unknown and we assume that kinetic
energy of inflaton is dominated.

In the first section of this chapter, we extend the concept of anisotropic attractor
to higher dimensions by considering the Lovelock theory and part of the generalized
Galileon. We also numerically calculate the evolution of expansion rate of each axis in
the presence of a positive cosmological constant and show that inflation can make the
system converge at the anisotropic attractor. This attractor realizes β ≪ α, so that the
extra dimensions expand slowly and only the three-dimensional volume inflates. Finally,
we obtain the large volume of the universe with the extra dimensions compactified by
inflation in higher dimensions.
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6 Freezing extra dimensions with anisotropic attractors

After the inflation, we need to keep the extra dimensions compactified, that is,
β ≪ α in the whole of cosmic history. We can still use the anisotropic attractor
when energy contents with isotropic pressure are dominant, such as kinetic energy of
the inflaton, cold matter and the cosmological constant. It means that in most of
the cosmological period, as seen in Figure 6.1, all we need to freeze extra dimensions
β ≪ α is to impose a hierarchy condition. If energy contents with anisotropic pressure
are dominant, the anisotropic attractor no longer exists and we cannot apply the same
way to freezing extra dimensions. However, in the radiation-dominated era, the special
condition is satisfied for the solution β = β̇ = 0 to exist. We also prove that given
a general anisotropic pressure wa and wb, the acceleration of scale factor of the extra
dimensions β̇ is suppressed in comparison to that of the universe α̇ if β ≪ α and the
hierarchy condition are satisfied. At the end, we demonstrate the evolution of the scale
factors in the presence of several energy contents, kination, radiation, cold matter and
the cosmological constant.

6.1 Anisotropic attractors in higher dimensions

6.1.1 Lagrangian and equations of motion

We assume that the space is flat and thus we can write the metric down in the form of
the Kasner metric, which has only diagonal components,

ds2 = gµνdx
µdxν = −N2dt2 + a2(i)δijdx

idxj, (6.1)

where a(i) = a(i)(t) is the scale factor in the direction of xi, N = N(t) is the lapse
function and we take the synchronous gauge, in which the shift vector vanishes. We set
topology of the space as a torus TD, where D is the number of spatial dimensions. It
does not prefer any special axis in the point that our model is invariant under exchange
of any two axes. We start with the action of the generalized Galileon (2.19), which we
show again:

S =

∫
dD+1x

√
−g

D∑
n=0

⌊n
2
⌋∑

p=0

4−pn!

(n− 2p)!p!
Ln,p{fn(ϕ,X)}, (6.2)

Ln,p{f} = gµ1···µnν1···νn(∂X)
p∗f

[
p∏

i=1

Rµ2i−1µ2iν2i−1ν2i

][
n∏

i=2p+1

ϕµiνi

]
, (6.3)

p∗ ≡
⌊n
2

⌋
− p, (6.4)

where fn are arbitrary functions, and we now redefine its integration (2.22) with deriva-
tives. Substituting (6.1) into the Riemann curvature tensor Rµνρσ and the second
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derivative of the scalar field ϕµν , we get

R0i
0j = δji

1

Na(i)

d

dt

(
ȧ(i)
N

)
, (6.5)

Rij
kl = (δki δ

l
j − δliδ

k
j )

1

N2

ȧ(i)
a(i)

ȧ(j)
a(j)

, (6.6)

ϕ0
0 =

1

N

d

dt

(
− ϕ̇

N

)
, (6.7)

ϕi
j = δji

1

N

ȧ(i)
a(i)

(
− ϕ̇

N

)
, (6.8)

where dots denote derivatives with respect to time t. With these, we find the final form
of the Lagrangian which is equivalent to (6.3) up to total derivatives:

Ln,p{f} =2p (n!− 2p(n− 2)!) [(∂X)
p∗fn] · sn

(
− ϕ̇

N

)n−2p

+ 2p · 2p(n− 2)! [(∂X)
p∗∂ϕfn] · sn−1

(
− ϕ̇

N

)n−2p+1

. (6.9)

Here functions sm’s are the so-called symmetric polynomials of expansion rates sm =
sm(H(1), · · · , H(D)), whose explicit form is given by

s0 = 1, (6.10)

s1 =
∑

1≤i≤D

H(i), (6.11)

s2 =
∑

1≤i<j≤D

H(i)H(j), (6.12)

... (6.13)

sD = H(1)H(2) · · ·H(D), (6.14)

otherwise 0, (6.15)

where H(i) is the expansion rate in the direction of xi defined by

H(i) =
1

N

ȧ(i)
a(i)

. (6.16)

Since we are now interested in aspects of the gravity which directly affects evolution of
the spacetime, we desire that the system which we consider is not affected by evolution
of the scalar field. For this reason, we restrict the action to that represented by the
arbitrary functions fn’s below.

fn = const. for even n, (6.17)

∝ X−1/2 for odd n. (6.18)

61



6 Freezing extra dimensions with anisotropic attractors

Because of the shift symmetry of fn, the second term in (6.9) vanishes. Moreover, the
dependence on ϕ̇ in the first term in (6.9) totally disappears. We eliminate irrelevant
factors and write such homogeneous action in a simple form with constant parameters
cm,

S =

∫
dtdDxN

[
D∏
i=1

a(i)

]
D∑

m=0

cmsm. (6.19)

Note that the full action which gives us this homogeneous action has a scalar field
in the odd-order terms cm=2l+1, and we have to solve evolution of the scalar field in
perturbative calculation. On the other hand, the even-order terms cm=2l are free from
the scalar field and are equivalent to the Lovelock theory. The emergence of the odd-
order terms provides us the way to analyze odd-order terms of the expansion rates H(i)

in the homogeneous action.

c0 = −Λ/(16πGN) and c2 = −1/(16πGN) reduce the action to that of the general
relativity with a positive cosmological constant in spatially flat spacetime. Throughout
the present chapter, we assume c0 < 0 and c2 < 0 to recover the Friedmann equation
in lower-dimensional universe.

Variation of the action (6.19) with respect to N gives the Hamiltonian constraint

D∑
m=0

(1−m)cmsm = 0, (6.20)

where we have set N(t) = 1 without loss of generality. The evolution equations of the
scale factor a(j) are given by the variation of the action (6.19) with respect to a(j)

[∏
i ̸=j

a(i)

]
L+

[∏
i

a(i)

]
∂L
∂a(j)

− d

dt

{[∏
i

a(i)

]
∂L
∂ȧ(j)

}

=

[∏
i ̸=j

a(i)

]
L −

[∏
i ̸=j

a(i)

]
H(j)

D∑
m=1

cm
∂sm
∂H(j)

− d

dt

{[∏
i ̸=j

a(i)

]
D∑

m=1

cm
∂sm
∂H(j)

}

=

[∏
i ̸=j

a(i)

]
L − 1

a(j)

d

dt

{[∏
i

a(i)

]
D∑

m=1

cm
∂sm
∂H(j)

}
= 0 (6.21)

for j = 1, · · · , D,

where we have defined the Lagrangian density L ≡
∑D

m=0 cmsm. When we add perfect
fluid to the system, which is characterized only by the energy density ρ, the pressure
p(i), and the comoving flux vector uµ = (−1, 0, · · · , 0), we can treat such a energy
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6.1 Anisotropic attractors in higher dimension

content by adding the energy term and pressure term to (6.20) and (6.21). We obtain

ρ

2
+

D∑
m=0

(m− 1)cmsm = 0, (6.22)

L+
p(j)
2

− 1

V

d

dt

{
V

D∑
m=1

cm
∂sm
∂H(j)

}
= 0 (6.23)

for j = 1, · · · , D,

where V is the volume factor V =
∏

i a(i). Note that we can eliminate c1 from both
the equations and choose c1 = 0 without loss of generality. From these equations (6.22)
and (6.23), we derive another equation: the continuity equation

d(ρV ) +
D∑
i=1

p(i)V d ln a(i) = 0. (6.24)

6.1.2 Attractors with isotropic energy contents

Here we argue that the system has fixed points or attractors if the spacetime is filled
with isotropic energy content, which has isotropic pressure (p(i) = p for all i). We
subtract (6.23) for j from that for k ̸= j to yield

d

dt

{
V
(
H(j) −H(k)

) D∑
m=2

cm
∂2sm

∂H(j)∂H(k)

}
= 0 for 1 ≤ j < k ≤ D, (6.25)

or we integrate them and get their equivalent expressions

(
H(j) −H(k)

) D∑
m=2

cm
∂2sm

∂H(j)∂H(k)

=
Ajk

V
for 1 ≤ j < k ≤ D, (6.26)

where Ajk are integration constants. Only (D − 1) equations of them are independent
and they can replace other equations of motion.

Note that the solution of the polynomial equations

(
H(j) −H(k)

) D∑
m=2

cmq
(j,k)
m = 0, (6.27)

q(j,k)m ≡ ∂2sm
∂H(j)∂H(k)

, (6.28)

constitute an invariant set of the system under the dynamics in the D-dimensional
phase space (H(1), H(2), · · · , H(D)). A similar equation has been derived in the previous
research [54], assuming constant expansion rates. As the volume factor V =

∏
i a(i)

increases, the amplitude of the right-hand-side of (6.26) decreases. Thus we can regard
the invariant set as an attractor if the total-volume expansion rate V̇ /V =

∑
iH(i) is

positive. We call the invariant set “(an)isotropic attractors” although we must carefully
analyze the system to see whether it really acts as an attractor. For this purpose, we
have to define how to measure nearness.
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6 Freezing extra dimensions with anisotropic attractors

6.1.3 Classification of attractors

Here we divide the root of the (D−1) polynomial equations (6.27) into several types of
attractors. Each attractor is a one-dimensional curve in the D-dimensional phase space
(H(1), H(2), · · · , H(D)). On the attractors, some of the expansion rates H(i) have the
same value with each other, and thus we label the attractors with N , which indicates
the number of different values of expansion rates.

Isotropic case (N = 1) When all of H(i)’s are the same, then all of the polynomial
equations (6.27) are trivially satisfied. It means that the isotropic expansion is one of
the attractors of the system, and it is just what we call the isotropic attractor.

Anisotropic case (N = 2) For the simplest departure of the isotropy, let us consider
the case for N = 2 in which the expansion rates on attractors have two different values
α and β.

H(i) = α for 1 ≤ i ≤ d, (6.29)

H(i) = β for d+ 1 ≤ i ≤ D, (6.30)

where d is any integer which satisfies 1 ≤ d ≤ D−1. For 1 ≤ j ≤ d and d+1 ≤ k ≤ D,
(6.27) gives the relation between α and β

D∑
m=2

cmQm(α, β) = 0, (6.31)

where

Qm(α, β) ≡ q(j,k)m

∣∣
H(1≤j≤d)=α,H(d+1≤k≤D)=β

(6.32)

=
m−2∑
l=0

(
d− 1
l

)(
D − d− 1
m− 2− l

)
αlβm−2−l. (6.33)

Evolution of the system on such anisotropic attractors is obtained by solving (6.31)
with the Hamiltonian constraint and evolution equation in which the expansion rates
H(i)’s are replaced by (6.29) and (6.30).

ρ

2
+

D∑
m=0

(m− 1)cmSm = 0, (6.34)

p

2
+

D∑
m=0

cmSm − 1

d

1

V

d

dt

{
V

D∑
m=1

cm
∂Sm

∂α

}
= 0, (6.35)

p

2
+

D∑
m=0

cmSm − 1

D − d

1

V

d

dt

{
V

D∑
m=1

cm
∂Sm

∂β

}
= 0, (6.36)
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6.1 Anisotropic attractors in higher dimension

where Sm is defined by

Sm(α, β) ≡ sm|H(1≤i≤d)=α,H(d+1≤i≤D)=β

=
m∑
l=0

(
d
l

)(
D − d
m− l

)
αlβm−l, (6.37)

for given number of dimensions D and d.

Anisotropic case (N ≥ 3) Let us investigate the case with three different values
of expansion rates on the attractor. Suppose that H(j) ̸= H(k) and H(k) ̸= H(l). Then
(6.27) implies

D∑
m=2

cmq
(j,k)
m = 0, (6.38)

D∑
m=2

cmq
(k,l)
m = 0, (6.39)

For q
(j,k)
m , the following equation holds.

q(j,k)m = H(l)
∂q

(j,k)
m

∂H(l)

+
∂q

(j,k)
m+1

∂H(l)

. (6.40)

Using these equations, we get

H(l) = −

[
D∑

m=2

cm
∂q

(j,k)
m+1

∂H(l)

][
D∑

m=3

cm
∂q

(j,k)
m

∂H(l)

]−1

, (6.41)

H(j) = −

[
D∑

m=2

cm
∂q

(k,l)
m+1

∂H(j)

][
D∑

m=3

cm
∂q

(k,l)
m

∂H(j)

]−1

. (6.42)

Since

∂q
(j,k)
m

∂H(l)

=
∂q

(k,l)
m

∂H(j)

=
∂3sm

∂H(j)∂H(k)∂H(l)

, (6.43)

we inevitably find H(j) = H(l) unless both of the insides of the square brackets vanish.
In conclusion of the case for N = 3, we have to solve both equations

D∑
m=3

cm
∂3sm

∂H(j)∂H(k)∂H(l)

∣∣∣∣
H(1≤j≤d1)

=α,H(d1+1≤k≤d2)
=β,H(d2+1≤l≤D)=γ

= 0, (6.44)

D∑
m=2

cm
∂3sm+1

∂H(j)∂H(k)∂H(l)

∣∣∣∣
H(1≤j≤d1)

=α,H(d1+1≤k≤d2)
=β,H(d2+1≤l≤D)=γ

= 0, (6.45)
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6 Freezing extra dimensions with anisotropic attractors

to find the position of such anisotropic attractors, where 1 ≤ d1 < d2 ≤ D−1. In order
to have a nontrivial solution for the first equation (6.44), we need D > 3. Otherwise,
D = 3, we get a solution c2 = c3 = 0, but in this case the fixed-point equation (6.27) is
always true and we no longer have anisotropic attractors.

The discussion above can be generalized straightforwardly to the cases with larger
N < D. In order to show the essence of the anisotropic attractors, we focus on the case
for N = 2 in the following.

6.1.4 Example of attractors for D = 6

Here we give the example for the system to converge on the anisotropic attractors.
In seven-dimensional spacetime (or six-dimensional space D = 6), the Lagrangian has
terms up to c6

L = c0 + c1s1 + c2s2 + c3s3 + c4s4 + c5s5 + c6s6, (6.46)

where the symmetric polynomials sm are

s0 = 1,

s1 = H(1) +H(2) +H(3) +H(4) +H(5) +H(6),

s2 = H(1)(H(2) +H(3) +H(4) +H(5) +H(6)) +H(2)(H(3) +H(4) +H(5) +H(6))

+H(3)H(4) +H(3)H(5) +H(3)H(6) +H(4)H(5) +H(4)H(6) +H(5)H(6),

s3 = H(1)[H(2)(H(3) +H(4) +H(5) +H(6)) +H(3)(H(4) +H(5) +H(6))

+H(4)H(5) +H(4)H(6) +H(5)H(6)]

+H(2)[H(3)(H(4) +H(5) +H(6)) +H(4)(H(5) +H(6)) +H(5)H(6)]

+H(3)H(4)H(5) +H(3)H(4)H(6) +H(3)H(5)H(6) +H(4)H(5)H(6),

s4 = H(1){H(2)[H(3)(H(4) +H(5) +H(6)) +H(4)(H(5) +H(6)) +H(5)H(6)]

+H(3)[H(4)(H(5) +H(6)) +H(5)H(6)] +H(4)H(5)H(6)}
+H(2){H(3)[H(4)(H(5) +H(6)) +H(5)H(6)] +H(4)H(5)H(6)}+H(3)H(4)H(5)H(6),

s5 = H(1)H(2){H(3)H(4)H(5) +H(3)H(4)H(6) +H(3)H(5)H(6) +H(4)H(5)H(6)}
+H(1)H(3)H(4)H(5)H(6) +H(2)H(3)H(4)H(5)H(6),

s6 = H(1)H(2)H(3)H(4)H(5)H(6).

We have the full set of the equations of motion:

ρ

2
− c0 + c2s2 + 2c3s3 + 3c4s4 + 4c5s5 + 5c6s6 = 0, (6.47)

L+
p(j)
2

− 1

V

d

dt

{
V

6∑
m=1

cm
∂sm
∂H(j)

}
= 0 for j = 1, · · · , 6, (6.48)

d(ρV ) +
6∑

i=1

p(i)V d ln a(i) = 0, (6.49)

66



6.1 Anisotropic attractors in higher dimension

where one of these is redundant and V = a(1)a(2)a(3)a(4)a(5)a(6). Let us consider the
isotropic energy content and the anisotropic attractor which has two different expansion
rate α and β.

H(i) = α for 1 ≤ i ≤ d, (6.50)

H(i) = β for d+ 1 ≤ i ≤ 6. (6.51)

Here we regard α as the expansion rate of our universe and β as that of extra dimensions.
The anisotropic attractors forN = 2 can be classified with d. For each d, the polynomial
equation (6.31) reads

c2 + 4c3β + 6c4β
2 + 4c5β

3 + c6β
4 = 0 for d = 1, (6.52)

c2 + c3(α + 3β) + c4β(α + β)c5β
2(3α + β) + c6αβ

3 = 0 for d = 2, (6.53)

c2 + 2c3(α + β) + c4(α
2 + 4αβ + β2) + 2c5αβ(α + β) + c6α

2β2 = 0 for d = 3,
(6.54)

c2 + c3(3α + β) + c4α(α + β)c5α
2(α + 3β) + c6α

3β = 0 for d = 4, (6.55)

c2 + 4c3α + 6c4α
2 + 4c5α

3 + c6α
4 = 0 for d = 5, (6.56)

whereas the isotropic attractor is given by H(1) = H(2) = H(3) = H(4) = H(5) = H(6).
For d = 3, which is the case of our most interest, solving (6.54) for β gives the roots

β = β̃(α)

β̃(α) =
−f5 ±

√
f 2
5 − f4f6

f6
, (6.57)

f4 = c2 + 2c3α + c4α
2, (6.58)

f5 = c3 + 2c4α + c5α
2, (6.59)

f6 = c4 + 2c5α + c6α
2, (6.60)

when f6 ̸= 0 and f 2
5 − f4f6 ≥ 0. To emphasize that β is a function of α, we have

put a tilde on β. The anisotropic attractor is one-dimensional curves expressed by the
function β̃ in the phase space and we regard the function β̃ itself as the attractor.

The roots of (6.52–6.56) represent the one-dimensional curves in the six-dimensional
phase space (H(1), H(2), H(3), H(4), H(5), H(6)). Figure 6.2 shows an example of attractors
in (α, β) space for c2 = −1 and c6 = 1 with the other parameters vanishing. There are
five conservation equations given by (6.26), which restrict the position of the system
to another one-dimensional curve. On the other hand, the Hamiltonian constraint
(6.47) represents five-dimensional surfaces. Their intersection determines the evolution
of the system. When we choose one of the attractor curves and it has no intersection
with the Hamiltonian constraint surface for given cm’s, such an attractor is not the
attractor of the system. Especially when the isotropic attractor curve has no interaction
with the Hamiltonian constraint surface, the system cannot converge on the isotropic
attractor and prefers to terminate in the anisotropic attractor. To see this, let us study
the model in which c3 = c4 = c5 = 0 and ρ = p = 0. On the isotropic attractor
H(1) = H(2) = H(3) = H(4) = H(5) = H(6) = α, the Hamiltonian constraint (6.47) reads

−c0 + 15c2α
2 + 5c6α

6 = 0, (6.61)
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-4 -2 2 4
α

-4

-2

2

4

β

Figure 6.2: The isotropic attractors (black line) and anisotropic attractors (6.52–6.56)
plotted in (α, β) plane. The parameters are taken as c2 = −1, c6 = 1, and c3 =
c4 = c5 = 0. The red, blue, and green curves corresponds to the cases for d = 1 or 5,
d = 2 or 4, and d = 3, respectively.
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of which the discriminant is given by

c0c
3
6(100c

3
2 + c20c6)

2. (6.62)

It shows that if c6 > 0 and c6 > −100c32/c
2
0 the reduced Hamiltonian constraint has no

real root, where we have imposed the assumption c0 < 0 to get a positive cosmological
constant. In the case for d = 1 and d = 4, we also observe that there is no intersection
between the attractor curve and the Hamiltonian constraint surface. Thus the system
is allowed to converge on the anisotropic attractor for d = 2, d = 3, and d = 4.

We demonstrate that the system actually converges to the anisotropic attractor for
d = 3. Let c0 = −0.1, c2 = −1, c6 = 108, c3 = c4 = c5 = 0, and ρ = p = 0.
Those parameters no longer allow the system to converge on the isotropic attractor.
Solving the Hamiltonian constraint (6.47) with (6.27), we obtain one of the roots as
α = 0.182 and β = 5.49×10−4. With the cosmological constant c0, the system expands
nearly exponentially. Such an exponential volume expansion causes the scale factors to
converge on specific values, as shown in Figure 6.3, where the initial values of the scale
factors are chosen at random, but we have relabeled the scale factors in order of the
amplitude of their expansion rates. We observe that three of the scale factors increase
faster than the other three scale factors in Figure 6.4. We have started with the space of
D-torus with ai(t = 0) = 1 for 1 ≤ i ≤ 6. We define the external volume of the universe
Vex = a(1)a(2)a(3) and the internal volume of the extra dimensions Vin = a(4)a(5)a(6). It
is shown that Vex reaches at 10

24 but Vin ≈ 1.4 at t = 100. As a result, the large volume
of the universe has emerged and the volume of the extra dimensions is kept small. We
stress that there is no difference among each spatial dimension except for the initial
values of the expansion rates.

H(1)

H(4)

H(5)

H(3)

H(6)

H(2)

0.5 1 5 10 50 100
t10

-4

0.001

0.010

0.100

1

H(i)

Figure 6.3: The evolution of the expansion rates H(i) with cosmological time t. The
initial values of the six scale factors are determined at random. Three of them converge
on a single value α = 0.182 and the other three on β = 5.49× 10−4.
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a(4) a(5) a(6)

a(1) a(2) a(3)
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100

10
6

10
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a(i)

Figure 6.4: The evolution of the scale factors a(i) with cosmological time t. The initial
values of the scale factors are set a(i)(t = 0) = 1. Three of the scale factors expand
rather faster than the other three. Since we start with a torus of the space, we finally
observe large volume of the universe and small internal volume of the extra dimensions.

6.1.5 Analysis with two scale factors

In the standard isotropic cosmology, such as the Friedmann universe, we often analyze
the dynamics of the universe with a single scale factor. It is only justified when the
isotropic evolution is an attractor of the system, and most of the ordinary cases which
we are interested in allow such a simple analysis. We also hope to study anisotropic
evolution of the system around the anisotropic attractor in such a simplified way with
two scale factors. In this subsection, we study the condition to justify it.

Suppose that the expansion rates are perturbed as

H(i) = (1 + δ(i))α for 1 ≤ i ≤ d, (6.63)

H(i) = (1 + δ(i))β for d+ 1 ≤ i ≤ D, (6.64)

where we define α ≡ H(1) and β ≡ H(d+1) and so that δ(1) = δ(d+1) = 0. We now assume
the equation of state 1

p(i) = waρ for 1 ≤ i ≤ d, (6.65)

p(i) = wbρ for d+ 1 ≤ i ≤ D. (6.66)

It is no longer isotropic if wa ̸= wb, but the same equation as (6.26) holds for 1 ≤ j <
k ≤ d or d + 1 ≤ j < k ≤ D. If δ(i) ≪ 1 for all i, then we neglect higher-order terms

1These type of equations of state holds for the energy contents generated after inflation. Figure 6.1
shows the equations of state for the energy contents which is often considered in the standard cosmic
history.
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Figure 6.5: The evolution of the expansion rates with several initial conditions. Dashed
lines means that their values are negative. The first two plots show the evolution to
the anisotropic attractor of d = 3. The third plot also shows the evolution to the
anisotropic attractor of d = 3 but one of the asymptotic values is negative. The forth
plot shows the evolution to the anisotropic attractor for d = 2.
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and get

α
(
δ(j) − δ(k)

) 1

d(d− 1)

D∑
m=2

cm
∂2Sm

∂α2
=

Ajk

V
for 1 ≤ j < k ≤ d, (6.67)

β
(
δ(j) − δ(k)

) 1

(D − d)(D − d− 1)

D∑
m=2

cm
∂2Sm

∂β2
=

Ajk

V
for d+ 1 ≤ j < k ≤ D.

(6.68)

From them, we can calculate evolution of squared amplitude of the perturbations

∑
1≤j<k≤d

(
δ(j) − δ(k)

)2 ∝ [αV D∑
m=2

cm
∂2Sm

∂α2

]−2

, (6.69)

∑
d+1≤j<k≤D

(
δ(j) − δ(k)

)2 ∝ [βV D∑
m=2

cm
∂2Sm

∂β2

]−2

. (6.70)

When their right-hand sides are constants or decreasing functions, the expansion rates
converge at the two values α and β. If we have the same expansion rates in some
directions, we can rescale the scale factors for those directions and write them with a
single variable. Therefore we can write all scale factors with two variables denoted by
a and b

ds2 = −dt2 + a2
[(
dx1
)2 · · · (dxd)2]+ b2

[(
dxd+1

)2
+
(
dxD

)2]
, (6.71)

as long as the sum of deviations
∑(

δ(j) − δ(k)
)2

decreases and the preceding period,

such as inflation, realizes
∑(

δ(j) − δ(k)
)2 ≪ 1 as is seen in the previous subsection.

In the following, we analyze the dynamics of the system in the two-dimensional phase
space (ȧ/a, ḃ/b). We introduce the notation that (Ha, Hb) denotes the whole of the
two-dimensional phase space, whereas (α, β) denotes the point of the system in the
phase space which satisfies all of the equations of motion.

6.2 Freezing extra dimensions

In order for the system to be consistent with the fact that there is no observed time
variation of the physical fundamental constants [58], the expansion rate of the extra di-
mensions β should be much smaller than α, the expansion rate of the universe, because
changing size of extra dimensions causes variation of physical constants, such as the
Newton constant GN and the fine-structure constant αEM. One of the most stringent
constraints on those variance is, for example, that on the fine-structure constant by
natural nuclear reactor at Oklo [73] as |α̇EM/αEM| < 0.5× 10−16 year−1 at the redshift
z = 0.15, when we assume that the physical constant has changed constantly. If the
U(1)EM gauge field originates from a gauge field in higher dimensions, αEM is propor-
tional to a power of b. Assuming this, the rate of change of physical constant is of the
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6.2 Freezing extra dimensions

same order as that of expansion rate of extra dimensions β, and finally we estimate
|β| ≲ 10−16 year−1 in the late universe. Today’s Hubble parameter is α ∼ 10−10 year−1

and thus we need |β/α| < 10−6 in the era when the universe is dominated by dark
energy or the cosmological constant.

6.2.1 Energy contents with isotropic pressure

The Planck observation is consistent with the ΛCDM model, which describes the cos-
mological expansion of the space in the late universe. The cosmological constant Λ or
c0 has isotropic pressure even in higher dimensions. It is obvious from (6.23) that its
equation of state is given by w(i) ≡ p(i)/ρ = −1. Cold (dark) matter has also isotropic
(zero) pressure since it does not give its momentum to the outside and thus w(i) = 0.

The Planck observation and the preceding observations of the cosmic microwave
background have revealed the significant cosmological view that the universe is so flat
that initial square amplitude of the curvature perturbations is of the order of 10−10. One
of the most convincing mechanism to provide such initial condition is inflation. The
simplest model of inflation is caused by a slow-rolling scalar field, which has the equation
of state w ≈ −1. In higher dimensions, we also observe that a slow-rolling homogeneous
scalar field provides w(i) ≈ −1. It means that we have isotropic pressure in inflationary
period, and the system approach the anisotropic attractor exponentially. Hence we
assign another role to inflation in higher dimensions: the inflation compactifies the
higher-dimensional spacetime on approaching an anisotropic attractor. Then the large
volume of three spatial dimensions of the universe appears and the extra dimensions
freeze.

There are several attractors with different d, and roughly speaking, the system
approaches the nearest attractor. If we find the probability distribution function of
the initial condition, we can compute the probability that the higher dimensions are
compactified to three large spatial dimensions. Otherwise we cannot find any other
reasons of the four dimensionality of the universe than an accident.

In this section we see the model with isotropic energy contents, in which the
anisotropic attractors can cause slow expansion of the extra dimensions β ≪ α with
the hierarchy between the Einstein-Hilbert term c2 and higher-order terms cm≥d+2.

First, let us investigate the condition for the function β̃ to be finite in the limit
α → ∞. This property is appropriate for keeping small extra dimensions even at high
energy scale. To see the condition, we start with the special case for D = 6 and d = 3.
From (6.57),

β̃(α → ∞) =
−c5 ±

√
c25 − c4c6
c6

, (6.72)

when c6 ̸= 0. In the limit c6 → 0, the asymptotic value is reduced to β̃(α → ∞) =
−c4/(2c5). Note we can no longer take the limit c5 → 0 without divergence of β̃(α → ∞).
It indicates that we need such nonvanishing higher-order terms as cm≥5 to have a finite
value of β̃(α → ∞).

The polynomial equation (6.31) for general D tells that if we want three-dimensional
space of the universe (d = 3), the highest-order terms of α in the equation should be
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6 Freezing extra dimensions with anisotropic attractors

quadratic. Vanishing coefficient of the quadratic terms gives the asymptotic value of β̃
in the limit α → ∞

D∑
m=4

cm

(
D − 4
m− 4

)[
β̃(α → ∞)

]m−4

= 0. (6.73)

From this, we can infer that D−4 ≥ 1 should be satisfied in order to solve the equation
for β̃(α → ∞) so that the equation can contains its linear or higher-order term. This
clarifies that we need six or higher-dimensional spacetime and a nonvanishing cm≥5 term
in the action to compactify the spacetime into a four-dimensional universe. For general
d, we have the equation giving the asymptotic value β̃(α → ∞)

D∑
m=d+1

cm

(
D − d− 1
m− d− 1

)[
β̃(α → ∞)

]m−d−1

= 0, (6.74)

and we obtain the similar conclusion that we need (d+3) or higher-dimensional space-
time at first to freeze the extra (D − d) dimensions

For given values of cm’s, we can derive the asymptotic value β̃(α → ∞). In large
α limit, we easily find β̃/α → 0 if c5 or c6 is nonvanishing. Since the ratio β̃/α has
the vanishing limit, we can say that for every ϵ > 0, there is a minimum α∗ such that∣∣∣β̃/α∣∣∣ < ϵ if α > α∗. Consequently, in order to utilize this property to freeze—which is a

more appropriate word than stabilize—the extra dimensions, we set sufficient conditions
such that the growth of extra dimensions can be suppressed enough for a small number
ϵ:

(a) There is a minimum of expansion rate of the universe, which is denoted by α∗.

(b) For any α > α∗ the expansion rate of extra dimensions is suppressed β̃(α)/α < ϵ.

If these two conditions are satisfied, we have frozen extra dimensions in the whole
cosmic history. They may be too stringent to make the system be consistent with the
observational constraints, because we do not need β̃/α < ϵ in the very early universe
where we cannot give a constraint. There is possibilities to relax the sufficient conditions
and one can seek the values of cm’s which gives β̃/α < ϵ only for αmin < α < αmax. It
is required when all of the cm≥d+2’s vanish, there is the maximum over which β̃/α < ϵ
no longer holds. However, it is beyond our scope to write down all of the possibilities
and we focus on the case cm≥d+2 ̸= 0.

We again study the case for d = 3 but for a general D. Suppose that only the
cosmological constant c0, the Einstein-Hilbert term c2 and a single higher-order term
c5≤m≤D do not vanish. We get from (6.31)

c2 + cm

2∑
l=0

(
2
l

)(
D − 4

m− 2− l

)
αlβ̃m−2−l = 0. (6.75)
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6.2 Freezing extra dimensions

If we choose the root β̃ which converges to zero in the limit α → 0, an approximate
value of β̃ in the large α limit is given by the roots of

β̃(α)m−4 = − c2
cmα2

(
D − 4
m− 4

)−1

. (6.76)

The system which is just on the attractor β = β̃(α) obeys the effective Hamiltonian
constraint

ρ

2
− c0 + 3c2α

2 + (m− 1)cm

(
D − 3
m− 3

)[
− c2
cm

(
D − 4
m− 4

)−1
]m−3

m−4

α
m−6
m−4 ≈ 0, (6.77)

where we have chosen the positive root of (6.76) and we have neglected smaller terms
with higher-order β. We observe that it recovers the Friedmann equation with the
fractional-order term of α. It brings us a new effect in principle, which is expected to
play a role of quintessence in the late universe. It is, however, out of our interest in
this thesis, and we work in the hierarchy cm ≫ c2α

−m+2 which allows us to neglect the
fractional-order term.

Let us consider the realistic system in the phase space (Ha, Hb). In the phase space,
the attractor is one-dimensional curve represented by Hb = β̃(Ha). Let the position
of the system be (Ha, Hb) = (α, β), which initiates in the vicinity of the anisotropic
attractor so that β ≈ β̃(α). From (6.25) and the definition of β̃(α), we have

D∑
m=2

cm

[
Qm(α, β)−Qm(α, β̃(α))

]
=

C
V (α− β)

, (6.78)

where C is an integration constant. Note that V (α − β) is nearly constant around the
isotropic attractor. We define the ratio η ≡ (β − β̃(α))/β̃(α) and we can say that the
system is in the vicinity of the anisotropic attractor if η ≪ 1. We finally find in the
lowest order of η,

η = C

[
V
(
α− β̃(α)

)
β̃(α)

D∑
m=3

cm
∂Qm

∂β

∣∣∣∣
β=β̃(α)

]−1

, (6.79)

for all dimension number D and d. As long as the inside of the square bracket increase,
the expansion rate β approaches the attractor β̃.

6.2.2 Energy contents with anisotropic pressure

Radiation is one of the energy contents which apparently exists in our universe. The
main origin of the radiation is relativistic particles. The relativistic particles propagate
only in the d-dimensional universe and do not in the extra dimensions if the extra
dimensions are small 2. Pressure is caused by the interaction between the particles

2If particles propagate into the extra dimensions, we no longer regard them as relativistic ones since
propagation in the extra dimensions causes the particles to obtain heavy mass.
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6 Freezing extra dimensions with anisotropic attractors

giving their momentum to each other, and then in the non-propagating direction they
behave as cold matter, which has no pressure. Therefore the radiation has anisotropic
pressure:

w(i) ≡
p(i)
ρ

=
1

d
for 1 ≤ i ≤ d, (6.80)

w(i) ≡
p(i)
ρ

= 0 for d+ 1 ≤ i ≤ D. (6.81)

With anisotropic pressure, the polynomial equation (6.31) no longer holds, and we
cannot use the same discussion as in the case of isotropic energy content. In the case that
the anisotropic pressure is caused by the radiation, however, we see that the expansion
rate of the extra dimensions can be damped if the Einstein-Hilbert term c2 is dominant
in the lower-order terms cm≤d+1. To show it, let c0 = 0 and c3 = c4 = · · · = cd+1 = 0
and investigate the equation of state to hold the solution of static extra dimensions
β = β̇ = 0. We assume the energy content has anisotropic pressure as below at first:

p(i) = waρ for 1 ≤ i ≤ d, (6.82)

p(i) = wbρ for d+ 1 ≤ i ≤ D. (6.83)

It allows us to study with two expansions rates α and β. We define

L(α, β) = L|H(1≤j≤d)=α,H(d+1≤k≤D)=β =
D∑

m=0

cmSm(α, β), (6.84)

Lm(α, β) =
D∑

m=0

(1−m)cmSm(α, β), (6.85)

to abbreviate the following expression. Substituting the Hamiltonian equation (6.22)
into the evolution equations (6.23),

d(L+ waLm)−
V̇

V
L,α − L,ααα̇− L,αββ̇ = 0, (6.86)

(D − d)(L+ wbLm)−
V̇

V
L,β − L,αβα̇− L,βββ̇ = 0, (6.87)

where L,x denotes partial derivative ∂L
∂x

and the variable x denotes α or β. Plugging

V̇ /V = dα + (D − d)β into the two equations and solving them for α̇ and β̇, we get

α̇ =
−d(L+ waLm)L,ββ + (D − d)(L+ wbLm)L,αβ + (dα + (D − d)β)(L,αL,ββ − L,βL,αβ)

L,αβ
2 − L,ααL,ββ

,

(6.88)

β̇ =
+d(L+ waLm)L,αβ − (D − d)(L+ wbLm)L,αα + (dα + (D − d)β)(L,βL,αα − L,αL,αβ)

L,αβ
2 − L,ααL,ββ

.

(6.89)
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6.2 Freezing extra dimensions

To get the static solution β = β̇ = 0, we require the equation

d(L+ waLm)L,αβ − (D − d)(L+ wbLm)L,αα + dα(L,βL,αα − L,αL,αβ) = 0 (6.90)

to hold. The static condition β = 0 reduces L and its derivatives to

L|β=0 =
d∑

m=0

cm

(
d
m

)
αm =

1

2
c2d(d− 1)α2, (6.91)

L,α|β=0 =
d∑

m=0

cm

(
d
m

)
mαm−1 = c2d(d− 1)α, (6.92)

L,β|β=0 =
d+1∑
m=0

cm

(
d

m− 1

)
(D − d)αm−1 = c2d(D − d)α, (6.93)

L,αα|β=0 =
d∑

m=0

cm

(
d
m

)
m(m− 1)αm−2 = c2d(d− 1), (6.94)

L,αβ|β=0 =
d+1∑
m=0

cm

(
d

m− 1

)
(D − d)(m− 1)αm−2 = c2d(D − d), (6.95)

L,ββ|β=0 =
d+2∑
m=0

cm

(
d

m− 2

)
(D − d)(D − d− 1)αm−2

= (D − d)(D − d− 1)(c2 + cd+2α
d), (6.96)

where we used c0 = c3 = c4 = · · · = cd+1 = 0 in the last equality in each equation.
With Lm = L− αL,α − βL,β, the equation (6.90) leads to

1

2
d2(d− 1)(D − d)(1− dwa + (d− 1)wb)c

2
2α

2 = 0. (6.97)

It means that if the equation of state satisfies 1− dwa + (d− 1)wb = 0, β = β̇ = 0 is a
solution. Thus the radiation (wa = 1/d, wb = 0) damps the expansion rate of the extra
dimensions. In order for the static extra dimensions β = β̇ = 0 to be stable, we require
that the partial derivative of the right-hand side in (6.89) with respect to β at β = 0 is
negative. It is given by

−
dα((D − 1)c2 +

1
2
(D − d− 1)(d− 1)2cd+2α

d)

(D − 1)c2 − (D − d− 1)(d− 1)cd+2αd
, (6.98)

where we have used the equation of state wa = 1/d and wb = 0. It implies that the
cd+2 term can induce the positive value of the expression. In the case with isotropic
pressure, we have shown that the hierarchy condition between c2 and any of cm≥d+2’s
can freeze the extra dimensions, but we prefer cm≥d+3 to cm=d+2 because we now have
apprehension of the instability of the static solution β = β̇ = 0.

We now concentrate on the analysis for d = 3 but for a general D with the equation
of state (6.82) and (6.83). We assume that only the Einstein-Hilbert term c2 and a single
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6 Freezing extra dimensions with anisotropic attractors

higher-order term cm≥6 are nonvanishing. We consider that the condition β ∼ β̃(α) ≪ α
holds initially due to the preceding isotropic period in which the system has approached
anisotropic attractor. The assumptions reduce L and its derivative to

L = 3c2α
2 + cm

(
D − 3
m− 3

)
α3βm−3, (6.99)

L,α = 6c2α + 3cm

(
D − 3
m− 3

)
α2βm−3, (6.100)

L,β = 3c2(D − 3)α + cm

(
D − 3
m− 3

)
(m− 3)α3βm−4, (6.101)

L,αα = 6c2 + 6cm

(
D − 3
m− 3

)
αβm−3, (6.102)

L,αβ = 3c2(D − 3) + 3cm

(
D − 3
m− 3

)
(m− 3)α2βm−4, (6.103)

L,ββ = c2(D − 3)(D − 4) + cm

(
D − 3
m− 3

)
(m− 3)(m− 4)α3βm−5, (6.104)

where we have neglected β compared to the same power of α. Suppose that the preced-
ing isotropic era freeze extra dimensions with the anisotropic attractor and the equation
(6.75) approximately holds initially. Then we observe that the c2 term can be neglected
in (6.104) and the cm term in (6.99), (6.100), and (6.102), whereas both the terms in
(6.101) and (6.103) are of the same order. We find the relations among their orders

L ∼ αL,α ∼ αL,β ∼ α2L,αα ∼ α2L,αβ ∼ αβL,ββ. (6.105)

With the order analysis in (6.88) and (6.89), the ratio β̇/α̇ is suppressed as

β̇

α̇
∼ β

α
. (6.106)

The extra dimensions restrain their acceleration with their own slow expansion. It is
not the case in the Einstein gravity in which only the c2 term does not vanish. If
we put a nonvanishing c2 in the evolution equation (6.88) and (6.89), we always find
β̇/α̇ ∼ 1. With the order relations (6.105), the evolution equation (6.88) is calculated
in the leading order and it gives

α̇ =
−d(L+ waLm)L,ββ + dαL,αL,ββ

−L,ααL,ββ

= −d
2
(1 + wa)α

2. (6.107)

It is the same as the Friedmann equation in d-dimensional universe with the isotropic
equation of state w = p/ρ = wa. The next-leading order is suppressed by β/α and the
Friedmann dynamics perfectly recovers in the lower-dimensional universe in the limit
β/α → 0.
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6.2 Freezing extra dimensions

6.2.3 Examples of freezing extra dimensions for D = 6

Now we have a unified view to keep freezing the extra dimensions. In inflation, the
anisotropic attractor divides the expansion rates into two hierarchical values so that only
d-dimensional universe can inflate faster than the extra dimensions do. After inflation,
the universe is thought to be dominated by several kinds of energy contents, kination,
radiation, matter, and dark energy. Except for radiation, those energy contents have
isotropic pressure and in their dominant era, the universe keeps converging on the
anisotropic attractor. The extra dimensions are guaranteed to be frozen when only
the Einstein-Hilbert term c2 and a single higher-order term cm≥d+2 do not vanish and
satisfy the hierarchy condition. Radiation has anisotropic pressure and does not allow
the anisotropic attractor to be the terminal point of the system. Nevertheless the
expansion rate of the extra dimensions has the static condition β = β̇ = 0 as the
solution in radiation dominant era. Even when an anisotropic pressure with general
wa and wb dominates the universe, the acceleration rate of the extra dimensions can
be suppressed compared to that of the universe dimensions as is seen in the previous
subsection.

Let us study below the simplest cases in which the two conditons can be satisfied.

c3 = c4 = c5 = 0 : First, we let c3 = c4 = c5 = 0 and get the anisotropic attractor on
which

β̃(α) = ±
√

−c2
c6
α−1. (6.108)

Substituting β into the Hamiltonian constraint (6.47), we get the equation below

ρ

2
− c0 + 3c2α

2 − 3c22
c6α2

∓ 4

√
−c32
c6

= 0. (6.109)

It can be regarded as the effective Hamiltonian constraint in the lower-dimensional uni-
verse. If α4 ≫ c2/c6 is satisfied, we recover the Friedmann equation α2 = (2c0−ρ)/(6c2).
In order for the root of the Friedmann equation to satisfy α4 ≫ c2/c6 recursively, we
choose the parameter region which satisfy the hierarchy condition between parameters:∣∣∣∣ c32

(ρ− 2c0)2c6

∣∣∣∣≪ 1. (6.110)

This hierarchy condition guarantees both neglecting the fourth and fifth term in (6.109)
and freezing extra dimensions

∣∣∣β̃/α∣∣∣ = 6

√
c32

(ρ− 2c0)2c6
≪ 1. (6.111)

With the ordinary energy contents of which the energy density decreases as the volume
expands, we have ρ → 0 in the very late universe and find that the minimum of
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6 Freezing extra dimensions with anisotropic attractors

expansion rate of the universe is given by α∗ =
√
c0/(3c2). The expansion rate of the

universe α is almost determined by c0, c2 and ρ, which means that its evolution is not
affected by the higher-order term c6. To freeze the extra dimensions compared to the
universe for all the period, we have to set c6 to a large number, which is parameterized
by a small number ϵ,

c6 =
9c32
c20
ϵ−2, (6.112)

with which we always have
∣∣∣β̃/α∣∣∣ < ϵ. We have

η = C
[
V
(
α− β̃(α)

)
2c6α

2β̃(α)2
]−1

≈ C [−2c2V α]
−1 , (6.113)

where we have ignored β̃(α) compared to α. It shows that if the total volume V expands
faster than the decrease of α, the system approaches to the anisotropic attractor η → 0.
It is the case if we have the equation of state w = p/ρ < 1. If the system has approached
the anisotropic attractor in the preceding period, w = 1 also allows the system to stay
in the vicinity.

c3 = c4 = c6 = 0 : Next, let us repeat the same analysis in the case for c3 = c4 =
c6 = 0. The anisotropic attractors give

β̃(α) =
−c5α2 ±

√
c25α

4 − 2c2c5α

2c5α
. (6.114)

As is seen here, one of the roots behaves as β̃(α) ∝ α as α → ∞, so that we can use
the other root to freeze the extra dimensions, which converges to β̃ → −c2/(2c5α2) if
c5 > 0. We substitute β = β̃ into the Hamiltonian constraint (6.25). Both of the roots
lead to

ρ

2
− c0 + 3c2α

2 − 3c22
2c5α

≈ 0, (6.115)

which can be the effective Hamiltonian constraint in lower-dimensional universe. If
α3 ≫ c2/c5, then the fourth term in (6.115) can be neglected, so that we work in the
hierarchy condition ∣∣∣∣ c52

(ρ− 2c0)3c25

∣∣∣∣≪ 1, (6.116)

with which the Friedmann equation is recovered and −c2/(2c5α2) provides an good
approximation of β̃. For a small number ϵ, if we take a large value of c5 as

c5 =
3

2

√
3c52
c30
ϵ−1, (6.117)
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we have such frozen extra dimensions that
∣∣∣β̃/α∣∣∣ < ϵ. From (6.79),

η = C
[
V
(
α− β̃

)
2c5αβ̃(α + 2β̃)

]−1

≈ C [−c2V α]−1 , (6.118)

and thus we need w = p/ρ ≤ 1 to keep laying the system in such a vicinity of the
anisotropic attractor that β ≈ β̃.

Let us show the specific case for D = 6 and d = 3 in order to test our mechanism of
compactification by hierarchy condition. To show it explicitly, we numerically calculate
the evolution of the scale factors and energy density. Now we define the metric with
two scale factors a and b

ds2 = −dt2 + a2
[(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2]

+ b2
[(
dx4
)2

+
(
dx5
)2

+
(
dx6
)2]

.

(6.119)

Now we set the constants of the model as

c0 = −λ
2M5

2
, c2 = −M

5

2
, c3 = c4 = c5 = 0, c6 =

λ−4M5

2
ϵ−2, (6.120)

where we have mass-dimensional parameters M , λ but we have freedom to choose the
over-all factor, so that we setM the unity. Note that ϵ is dimensionless. Energy density
is given by

ρ = ρϕa
−6b−6 + ρra

−4b−3 + ρma
−3b−3, (6.121)

where ρϕ, ρr, and ρm denote the initial energy density of kination, radiation, and cold
matter, respectively. In this parameterization, we have the value of β on the anisotropic
attractor as

β̃(α) = ±ϵλ
2

α
. (6.122)

Suppose the universe is around the anisotropic attractor. Plugging the expression
of β̃ into the Hamiltonian constraint, we get

ρ+ λ2 − 3α2 − ϵ2
3λ4

2α2
∓ ϵλ2 = 0. (6.123)

If ϵ≪ 1 and α ≫ ϵλ are satisfied, the fourth and fifth terms can be neglected compared
to the second and third terms. It means that the Friedmann dynamics of the universe
recovers around the anisotropic attractor.

α2 ≈ ρ+ λ2

3
. (6.124)

If equations of state of energy contents are not exotic, the energy density ρ decreases as
the universe volume a3 increases and finally we find the asymptotic value α∗ ≡ λ/

√
3.

Since α is a decreasing function in the universe without exotic contents, α∗ gives the
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lowest value of α in a cosmic history. Thus the assumption α ≫ ϵλ is automatically
satisfied when ϵ≪ 1 holds. We find the asymptotic value of β∗ ≡ ±

√
3ϵλ. If we always

need such slow expansion of the extra dimensions as β/α < γ, it is enough to take the
value of ϵ as

ϵ <
γ

3
. (6.125)

Let us show a numerical calculation in the case of the parameters ρϕ = 0.1, ρr =
10−2, ρm = 10−4, ϵ = 10−2 and λ2 = 10−13. We show the evolution of each energy
density in the figure 6.6, the evolution of the expansion rates α and β in the figure
6.7, and the evolution of the scale factors a and b in the figure 6.8. As is seen in

0 5 10 15 20
ln t

10-11
10-8
10-5
10-2

ρ

Figure 6.6: The energy densities of kination (blue), radiation (orange), matter (green),
and the cosmological constant (red).

the figure 6.7, we have started the calculation around the anisotropic attractor in the
kination dominated era, because we assume a preceding inflation converge the system
on the anisotropic attractor. Except for in the radiation dominated era, since isotropic-
pressure energy contents always dominate, we can observe that the system stays around
the anisotropic attractor. In the radiation dominated era, the expansion rate seems
slightly damped because our setup reduces the evolution equation (6.89) to a damping
equation for β as

β̇ = −ξ(α, β)β, (6.126)

where ξ is a rational expression of α and β. After the era, the cold matter start to dom-
inate the universe and we can see the expansion rate of the extra dimensions converges
on that of the anisotropic attractor. When the cosmological constant dominates, both
of the expansion rates cease varying. The ratio β/α can read ∼ 10−2 in the end in the
figure 6.7, which is consistent with the expected value β̃(α∗)/α∗ = 3ϵ.

We have studied the model with c3 = c4 = c5 = 0 above. Now we want to demon-
strate the robustness of the model. Figure 6.9, 6.10, and 6.11 shows how the asymptotic
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Figure 6.7: The time evolution of the expansion rate of the universe α (blue) and
that of the extra dimensions β (orange). The expansion rate of the extra dimensions
on the anisotropic attractor β̃(α) in (6.108) is also plotted as the green line. During
the domination of the isotropic energy contents, the expansion rate β approaches the
anisotropic attractor β̃(α). In the radiation domination around ln t ≈ 7, β departs from
β̃(α) because of the damping equation (6.126). The blue and green lines are symmetric
with respect to the red line which shows 4

√
−c2/c6, the coefficient of α in (6.108).
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Figure 6.8: The time evolution of scale factors a (blue) and b (orange). We start the
calculation with the initial conditions a(t = 1) = b(t = 1) = 1. The universe shown as
the blue line always grows faster than the extra dimensions shown as the orange line.
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6 Freezing extra dimensions with anisotropic attractors

value of β̃(α)/α∗ changes when c3, c4, and c5 are added, respectively. They imply that
the freezing mechanism breaks down when the added term is too large cnλ

n−2ϵ(n−2)/2 ≳ 1
(n = 3, 4, and 5). c5 is an exception as seen in Figure 6.11 where β̃/α∗ decreases at
c5 > 0. It is consistent with the fact that we can freeze the extra dimensions with a
single higher-order term not only c6 but also c5.
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0.10

β

/α*

Figure 6.9: Change of asymptotic ratio β̃(α)/α∗ when we add c3 to the model. The dot
shows the original asymptotic ratio which realizes at the end of Figure 6.7 (in which
c3 = 0). Only the line is relevant which has a negative first derivative at the dot.

One may think that such a large higher-order term could decrease the energy scale
of the unitarity bound of the model, but we show that it is not the case around the
anisotropic attractor. To demonstrate this, we give a simple estimation of interaction
of gravitons hij on the unperturbed metric ḡµν which is equal to gµν in (6.1). Here the
subscripts i, j, . . . denote the indices for the three spatial dimensions of the universe,
and M,N, . . . for the extra dimensions. From the Einstein-Hilbert term c2, we derive
formal expression of perturbed action as

δL2 = −1

2
c2δR = −1

4
c2δ

µ1µ2
ν1ν2

δRν1ν2
µ1µ2

(6.127)

where δRν1ν2
µ1µ2

is perturbed Riemann tensor. The higher-order term c6 brings

c6δ
µ1µ2···µ6
ν1ν2···ν6 R̄

ν3ν4
µ3µ4

R̄ν5ν6
µ5µ6

δRν1ν2
µ1µ2

(6.128)

where R̄ν1ν2
µ1µ2

is the unperturbed Riemann tensor which is given by (6.5) and (6.6). If
c6δ

µ1µ2···µ6
ν1ν2···ν6 R̄

ν3ν4
µ3µ4

R̄ν5ν6
µ5µ6

is much larger than c2δ
µ1µ2
ν1ν2

, then c6 induces a huge couplings of

the gravitons. δRj1j2
i1i2

and δR0j
0i , in which graviton hij appears, are contracted with

c6δ
0ii1i2M1M2
0jj1j2N1N2

R̄j1j2
i1i2

R̄N1N2
M1M2

and c6δ
0ii1i2M1M2
0jj1j2N1N2

R̄0j
0i R̄

N1N2
M1M2

, respectively. They are of the order
of c6α

2β2 and around the anisotropic attractor, it is of the same order of c2. Therefore
the self-couplings of the gravitons is not larger than that in the general relativity and
the hierarchy condition does not cause the breakdown of the perturbation theory at
much lower scale than the Planck scale.
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Figure 6.10: Change of asymptotic ratio β̃(α)/α∗ when we add c4 to the model. The
dot shows the original asymptotic ratio which realizes at the end of Figure 6.7 (in which
c4 = 0). At the origin, one might expect the solution could freeze the extra dimensions
completely β̃/α∗ = 0. However, α∗ diverges and thus the solution is not realistic.
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Figure 6.11: Change of asymptotic ratio β̃(α)/α∗ when we add c5 to the model. The
dot shows the original asymptotic ratio which realizes at the end of Figure 6.7 (in which
c5 = 0). Only the line is relevant which has a negative first derivative at the dot. At
the origin, one might expect the solution could freeze the extra dimensions completely
β̃/α∗ = 0. However, α∗ diverges and thus the solution is not realistic.
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6 Freezing extra dimensions with anisotropic attractors

6.3 Momentum density and Jacobian matrix

The expansion rate H(i) is the velocity of ln a(i). We define (conjugate) momentum
density of ln a(i) as

π(i) ≡
∂L
∂H(i)

=
D∑

m=1

cm
∂sm
∂H(i)

. (6.129)

The time derivative of π(i) drives the system in the evolution equations (6.23). An
infinitesimal change of the momentum density dπ(i) is translated into the change in the
phase space dH(i) as

dH(i) =

(
∂π(j)
∂H(i)

)−1

dπ(j). (6.130)

This shows that we observe infinite velocity if the Jacobian matrix ∂π(j)/∂H(i) is sin-
gular. We write down the (i, j)-components of Jacobian matrix J explicitly

(J)ij ≡
∂π(j)
∂H(i)

=
D∑

m=2

cm
∂sm

∂H(i)∂H(j)

. (6.131)

On the point where det (J) = 0, some of the acceleration dH(i)/dt diverges and curvature
invariants such as the Ricci scalar R become divergent. The basis ∂π(i)

is not complete
when J is degenerate. Thus we name set of such points degeneracy surface, which is (D−
1)-dimensional curved surface in the D-dimensional phase space (H(1), H(2), . . . , H(D)).
If the system touches the degeneracy surface, we can no longer rely on subsequent
calculation.

In the general relativity, we have c2 ̸= 0 and cm>2 = 0. The Jacobian matrix J
reads

J = c2 ×


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0

 , (6.132)

anywhere in the phase space. Therefore the general relativity provides the constant
Jacobian matrix and nonvanishing determinant det(J) ̸= 0. In other models, given non-
vanishing cm>2’s, J is usually a function of H(i)’s. Such dependence causes anisotropic
dynamics which we have seen in the preceding sections.

Now we explain how slow acceleration of the extra dimensions as seen in Sec. 6.2.2
become possible by using the Jacobian matrix J . With the ansatz of two scale factors,
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J is reduced to

J =

(
Jαα Jαβ
J T
αβ Jββ

)
, (6.133)

Jαα ≡ L,αα ×


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 , (6.134)

Jββ ≡ L,ββ ×


0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

 , (6.135)

Jαβ ≡ L,αβ ×


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , (6.136)

where Jαα, Jββ, and Jαβ are matrices of size d × d, (D − d) × (D − d), and d × (D −
d), respectively. In order to compute the evolution of the system, we calculate the
acceleration Ḣ(i) from the time derivative of momentum densities π̇(i)’s as

dH⃗

dt
= J−1dπ⃗

dt
, (6.137)

where we have defined vectors H⃗ ≡ (H(1), . . . , H(D))
T and π⃗ ≡ (π(1), . . . , π(D))

T . The
inverse matrix J−1 is calculated as below

J−1 ≡
(

A C
CT B

)
, (6.138)

(A)ij =
[(
Jαα − JαβJ

−1
ββ J

T
αβ

)−1
]
ij

=
1

L,αα

(
(D − d)L2

,αβ − (D − d− 1)L,ααL,ββ

d(D − d)L2
,αβ − (d− 1)(D − d− 1)L,ααL,ββ

− δij

)
, (6.139)

(B)ij =
[(
Jββ − J T

αβJ
−1
ααJαβ

)−1
]
ij

=
1

L,ββ

(
dL2

,αβ − (d− 1)L,ααL,ββ

d(D − d)L2
,αβ − (d− 1)(D − d− 1)L,ααL,ββ

− δij

)
, (6.140)

(C)ij = (−J−1
ααJαβB)ij =

L,αβ

d(D − d)L2
,αβ − (d− 1)(D − d− 1)L,ααL,ββ

, (6.141)

where δij denotes the Kronecker delta and L,αα, L,αβ, and L,ββ are partial derivatives
of (6.84). Note that the terms which do not contain indices i or j are independent of
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them. With ϵ ≡ β/α ≪ 1 and the order relations (6.105), we obtain that

(A)ij ≈
1

L,αα

(
1

d− 1
− δij

)
∼ 1

L,αα

, (6.142)

(B)ij ≈
1

L,ββ

(
1

D − d− 1
− δij

)
∼ ϵ

L,αα

, (6.143)

(C)ij ≈ − L,αβ

(d− 1)(D − d− 1)L,ααL,ββ

∼ ϵ

L,αα

, (6.144)

Substituting these order estimations and (6.138) into (6.137), we can tell explicitly why
the acceleration of the extra dimensions is suppressed compared to that of the lower-
dimensional universe. On the other hand, the general relativity provides the inverse
matrix (J−1)ij = c−1

2 ( 1
D−1

− δij) and does not yield such slow acceleration of extra
dimensions.

Note that the expression of the Jacobian matrix (6.131) is related to the attractors.
On the anisotropic attractors, the polynomial equations (6.27) are satisfied and J reads

J =

(
Jαα O
O Jββ

)
, (6.145)

where O is a null matrix. The Jacobian determinant is reduced to det(J) = det(Jαα)×
det(Jββ). From this, especially in the case for d = 1, one can tell that Jαα = (0) and
det(J) = 0 inevitably. It means that the anisotropic attractor discussed in Chapter 3 is
embedded in the degeneracy surface, and implies that it induces the singular behavior
seen in Chapter 4. For d ̸= 1, the nondegeneracy condition det(J) ̸= 0 is satisfied as
long as L,αα ̸= 0 and L,ββ ̸= 0, and the anisotropic attractor is far from the degenerate
surface. Therefore we expect moderate behavior around the anisotropic attractor for
d = 3 which is of the most interest.

6.4 Summary

We have calculated the anisotropic attractor in a class of the generalized Galileon which
contains the Lovelock theory. The expansion rate of each dimension converges on the
attractors according to the total volume expansion. With the anisotropic attractor, a
part of the spatial dimensions inflates faster than the other spatial dimensions, and at
the final stage of inflation, a lower-dimensional universe with large volume and com-
pactified extra dimensions have been observed. To freeze the extra dimensions, we have
obtained the asymptotic equation in the large limit of expansion rate of the universe,
and discussed the condition for making hierarchy between expansion rates of the uni-
verse and that of the extra dimensions. The asymptotic equation implies that if we want
a four-dimensional universe, we have to start with at least six-dimensional spacetime.
Even with anisotropic pressure, which does not allow us to use the anisotropic attractor,
we have argued the conditions with which acceleration rate of the extra dimensions is
suppressed compared to that of the dimensions of the universe.
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Chapter 7

Conclusion

Cosmic inflation is a plausible mechanism to realize a homogeneous and isotropic uni-
verse with almost scale-invariant curvature fluctuations produced by quantum effects.
The simplest way to realize inflation is to use the potential energy of a scalar field, and
various models have been proposed. The generalized Galilean provides the most general
interaction between gravity and a scalar field in which higher-order derivative terms do
not appear in the equations of motion, and it can describe all the inflationary models
of a single scalar field in a unified way. Furthermore, the generalized Galileon is a the-
ory of the generalized gravity which includes general relativity and widely encompasses
other known gravity theories, which may describe the gravity of our Universe.

In Einstein’s general relativity, it has been proven that a spatially homogeneous
anisotropic expanding universe is always isotropized in the presence of a cosmologi-
cal constant unless the spatial curvature is positive. In other words, only isotropic
attractors exist in the general relativity. This is called the cosmic no-hair theorem,
which reinforces the expectation that inflation will make the universe isotropic. On
the other hand, when we consider a spatially homogeneous anisotropic universe using
the generalized Galilean theory, we have shown that anisotropic solutions can also be
attractors. This anisotropic attractor appears in addition to the isotropic attractor
which is present in the general relativity, and which attractor the system converges to
depends on the initial condition. The implication is that when inflation occurs in a
four-dimensional universe, it must be somewhat isotropic from the beginning to obtain
a nearly homogeneous, isotropic universe in which we live.

Here we have considered three possibilities for how anisotropic attractors are re-
lated to our present Universe. One possibility is that the universe lies on an anisotropic
attractor in four-dimensional spacetime, and in this thesis, we have computed pertur-
bations around the anisotropic attractor. Another possibility is that the universe is
on the isotropic attractor in four-dimensional spacetime, and the anisotropic attractor
does not exist or has little effect. In this thesis, we have derived the stability condi-
tions of perturbations which can be used even in a strong gravitational field, such as
that around black holes, in order to constrain the theory which allows the existence of
anisotropic attractors. The last is the possibility that an isotropic, lower-dimensional
universe is generated on the anisotropic attractor in a higher-dimensional spacetime.
With this naive idea, this thesis has examined the dynamics of higher-dimensional
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spacetime with the generalized gravity and found the solution which maintains a small
extra-dimensional space.

In Chapter 3, we have calculated the evolution of the Bianchi-type I universe. It
has been analytically shown that anisotropic attractors exist in some classes of the
Horndeski theory for G5X ̸= 0 or A5 ̸= 0. Such terms are known to emerge after
Kaluza-Klein compactification of higher-dimensional Lovelock gravity [74]. We have
also numerically calculated that anisotropic inflation occurs in a few models. Previously
known models of anisotropic inflation use a quantity having a special direction such as
a vector field to maintain anisotropy during a period of inflation. On the other hand,
this thesis has presented a novel paradigm in which anisotropic inflation is realized by
the generalized Galileon including only a scalar field having no special direction. It has
also been found that the typical magnitude of the resultant anisotropic expansion rate
is about the same as the isotropic expansion rate, and that fine-tuning is necessary to
create the 1%-level of anisotropy permitted by the CMB observations. On the other
hand, the fact that it is possible to construct naturally a solution in which one direction
expanded more slowly than the others has motivated us to study similar solutions in
higher-dimensional spacetime to account for compactification of extra dimensions in
Chapter 6.

In Chapter 4, in order to analyze the behavior of perturbations in an anisotropic
attractor, we have calculated perturbations in an axisymmetric Bianchi type I universe.
Axial symmetry allows us to classify perturbations by parity under the spatial inver-
sion with respect to the symmetry axis. Since even-parity and odd-parity perturbations
evolve independently of each other, they can be analyzed separately. First, we have
investigated the dispersion relation of perturbations in a generic anisotropy state. As
a result, we have found that the gravitational waves in the even-parity sector do not
develop independently of the scalar waves and the propagation speeds are mixed. That
is, gravitational waves passing through an anisotropic background in the Horndeski
theory are allowed to have birefringence to occur. However, since the universe is very
isotropic on the large scale, the effect during long-range propagation is considered to be
small. For an observation of the birefringence, we investigate the behavior of pertur-
bations in a strong gravitational field such as black holes in Chapter 5. Next, we have
assumed that the universe converges at an anisotropic attractor. It has become clear
that the propagation speed of gravitational waves increases as the universe approaches
the anisotropic attractor, which conflicts with the constraint of the propagation speed
by the observations of the neutron-star binary GW170817. This shows that anisotropic
attractors in four-dimensional spacetime are not the attractor of our present universe.
We have also given the dispersion relation in a nonaxisymmetric Bianchi-type I universe.

In Chapter 5, to study the behavior of perturbations in strong fields such as around
black holes, we have investigated perturbation theory around a static and spherically
symmetric spacetime and have obtained the dispersion relation. The spherical symme-
try allows us to classify perturbations according to the parity under a spatial inversion
with respect to the origin. The odd-parity sector represents one polarization mode of
the gravitational waves, and the even-parity sector represents the other polarization
mode and the scalar waves. The dispersion relation of odd-parity mode had been ob-
tained in both radial and angular directions by the previous research [21]. For the even
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parity mode, only the radial dispersion relation had been obtained previously [22]. In
this thesis, we have obtained the complete dispersion relation including the angular di-
rection. It has been clarified that the expected mixing of dispersion relation occurred as
seen in Chapter 4. It predicts the birefringence of gravitational waves near black holes
and provides a new viewpoint to observationally limit models of generalized gravity.
Using the obtained dispersion relation, new stability conditions for angular perturba-
tions have been derived. This yields further theoretical constraints on extended gravity
models using black-hole solutions.

In Chapter 6, in order to obtain the dynamics of higher-dimensional spacetime such
that the excess dimensional space is kept small, we have calculated the evolution of
a homogeneous spacetime of arbitrary dimensions with flat spatial curvature in the
generalized Galileon including the Lovelock theory. For simplicity, however, we have
limited the theory to the class of theory where the evolution of the homogeneous scalar
field does not affect the dynamics of spacetime. As a result, there are anisotropic
attractors as in the four-dimensional case. It has been observed that some spatial
directions expand or contract extremely slowly compared to the other spatial directions,
assuming hierarchical relations among the parameters. When these slowly evolving
directions are regarded as an extra dimension, the ratio of the expansion rates of the
extra dimensions to those of the dimensions of our universe can be arbitrarily reduced
by enhancing the hierarchical relations. We have used these hierarchical relations to
freeze extra dimensions whereas the previous researches, e.g. [49,57], stabilize them by
using spatial curvature.

Since the anisotropic attractor acts as an attractor when they are filled with energy
contents having isotropic pressure, growth of the volume of extra dimensions can be
suppressed during inflation, matter dominated era, and dark energy dominated era.
When filled with energy contents having anisotropic pressure, such as radiation, the
anisotropic attractor disappears generally. If the expansion rate of extra dimensions
decreases in the preceding isotropic energy dominated period, we have found that the
acceleration of extra dimensions is suppressed compared to that of the three spatial
dimensions of the universe. In particular, it has been shown that the equation of state
of radiation satisfies the special condition which allows the expansion rate of extra
dimensions to be damped down. The numerical calculation has shown that in the
seven-dimensional spacetime the anisotropic attractor makes expansion rates converge
into two values in the presence of a cosmological constant and the expansion rate of
extra dimensions stays small compared to that of the universe during the kination era,
radiation dominated era, matter dominated era, and cosmological constant dominated
era.

Therefore, we finally conclude that the use of the generalized Galileon and the
Lovelock theory enables us to freeze the extra dimensions over the entire period of
cosmological history.
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