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Abstract

There are many extensions of the standard model that predict the existence of elec-

troweakly interacting massive particles (WIMPs), in particular in the context of the

dark matter. WIMPs, which may be the dominant component of the dark matter, can

be searched for using several different methods, such as the direct and indirect detec-

tion of the dark matter and the direct production at collider experiments. However, it

is known that Higgsino, which is an example of the WIMP contained in the supersym-

metric extension of the standard model, is particularly difficult to search for in some

regions of the parameter space. In this thesis, we provide a way for indirectly study-

ing WIMPs through the precision study of the pair production processes of charged

leptons or that of a charged lepton and a neutrino at future 100TeV collider experi-

ments. It is revealed that this search method is suitable for Higgsino, providing us the

5σ discovery reach of Higgsino in the minimal supersymmetric standard model with

mass up to 850GeV. We also show that this search method provides important and

independent information about every kind of WIMP in addition to Higgsino. Finally,

we also discuss how accurately one can extract the mass, gauge charge, and spin of

WIMPs in our method. The main part of this thesis is based on our works [1, 2].
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Section 1

Introduction

1.1 Overview

There are many models that extend the standard model (SM) of particle physics by introduc-

ing weakly interacting massive particles (WIMPs). We have many theoretical motivations

to introduce WIMPs, some of which are listed below.

• One of the motivations is the existence of the dark matter (DM) in our universe. When

we assume a stable WIMP with its interaction strength comparable to the electroweak

gauge coupling, its thermal relic abundance agrees with the observation if its mass is

of O(TeV) or so.

• Such O(TeV) WIMPs often appear in well-motivated models beyond the standard

model (BSM). For example, the following two models contain such WIMPs: the mini-

mal supersymmetric standard model (MSSM) introduced to solve the hierarchy prob-

lem and the minimal dark matter (MDM) model that can explain the existence and

stability of the DM in a minimal extension of the SM.

Besides, models with WIMPs are also phenomenologically interesting because

• Such O(TeV) WIMPs are likely to be discovered by many kinds of experiments such

as the dark matter searches and the collider experiments.

Concerning the second point of the three, many of the WIMPs in the BSM models have

non-zero electroweak charges, which explain their weak interaction with SM particles. In

this thesis, we would like to focus on such kinds of WIMPs and seek ways to search for

them.♮1

In the MSSM, it is known that the supersymmetric (SUSY) partner of the electroweak

gauge bosons or the Higgs boson can be the lightest supersymmetric particles (LSP) and are

natural DM candidates. In particular, there are well-motivated scenarios where the so-called

Higgsino or Wino play the role of the LSP, which transform as doublet and triplet under the

weak SU(2)L gauge symmetry, respectively; light Higgsino is preferred to reduce the amount

♮1The word “WIMPs” is usually used in a broader sense that includes particles with some unknown weak

interactions with SM particles. To distinguish this usage with ours, which only denotes some particles with

non-zero electroweak charges, it may be better to call them “EWIMPs”, the abbreviation of electroweakly

interacting massive particles. However, within this thesis, we will just use “WIMPs” in a narrow sense

obeying the widely spread custom.
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of the fine-tuning of the electroweak scale as in the “natural SUSY” set up [3–6], while the

so-called “mini-split” spectrum [7–12] with anomaly mediation [13,14] makes Wino the LSP.

Another example, the MDM scenario [15–17], introduces a larger SU(2)L multiplet, whose

stability is automatically ensured by the charge assignment. In particular, 5-plet Majorana

fermion with hypercharge zero is a good DM candidate that escapes from the DM search

experiments so far.

To search for WIMPs, several different approaches are adopted. One way is to rely on

DM search experiments, assuming that the WIMPs are the dominant component of the DM.

Firstly, there exist several direct detection experiments that utilize a scattering between a

DM particle and a nucleus [18–20]. Wino is one of the promising targets of these experiments,

whose spin-independent scattering cross section with a proton σSI
p is calculated in [21–25].

Under the assumption that all the SUSY particles but Wino are decoupled, the one-loop

and two-loop contributions to the Wino-quark and Wino-gluon interactions, respectively,

are calculated. It is found that the cross section takes an almost mass independent value

σSI
p ≃ 2.3 × 10−47 cm2, which is still an order of magnitude below the current experimental

limit. The situation for Higgsino highly depends on the size of the mixing between Higgsino

and SUSY partners of electroweak gauge bosons (or electroweakinos). It is particularly

difficult to detect (almost) pure Higgsino DM since its scattering cross section is comparable

to or below that of the neutrino background [22]. The detection of MDM may also be

difficult [26] since its possibly larger mass of O(10)TeV weakens the sensitivity of direct

detection experiments.

Secondly, a lot of efforts are devoted to detecting cosmic rays resulting from DM anni-

hilation, namely the DM indirect detection [27–30]. Although the results suffer from some

astrophysical uncertainties, they have already excluded, for example, Wino with mass smaller

than 400GeV and around 2TeV [31]. On the other hand, the corresponding Higgsino bound

is weaker and it has been probed only up to 350GeV [32] due to the smallness of its annihi-

lation cross section. For the MDM, 5-plet fermion is analyzed as an example in [33] and the

mass less than 2 TeV and several narrow regions are excluded. Note again that the WIMPs

must be the dominant component of the DM for these approaches to be efficient.

Another way of probing WIMPs is the direct production at collider experiments. One

of the good strategies of the collider search for WIMPs is to use the disappearing charged

track signal, which indicates the existence of a long-lived charged particle, the charged

components of the WIMP in our case. Both ATLAS and CMS collaborations at the large

hadron collider (LHC) announced a result of this method with the data of
√
s = 13TeV

LHC [34–36]. The current lower bound on the mass of the pure Higgsino-like (Wino-like)

state is 152 (460)GeV at 95% C.L. We can obtain a similar bound for the MDM using the

same method [37]. In this method, however, the bound strongly depends on the lifetime of

the charged component, which is sensitive to the mass difference between the charged and the
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neutral components. In particular, it is often the case in the SUSY model that the Higgsino-

like LSP and its charged counterpart possess a non-negligible fraction of electroweakinos,

which significantly enhances the mass difference compared to the pure Higgsino case. In

this case, the lifetime of the charged component is extremely short, making the disappearing

track search challenging. There is another option called mono-X search to search for a new

physics signal in general. However, the corresponding bound is usually very weak due to

the large SM background and it may be difficult to put a meaningful constraint on Higgsino

at
√
s = 14TeV LHC [38]. When high energy lepton colliders such as the compact linear

collider (CLIC) [39] will be constructed, which can cover the TeV-region, the pair production

under the clean environment will give us a good opportunity to probe WIMPs. The CLIC

will definitely have a power to exclude the whole parameter region of sub-TeV Higgsino. On

the other hand, the production cross section of, for example, 1TeV Higgsino is limited even

in this case and it is equally interesting to consider the hadron colliders, which can reach

much higher center-of-mass energy.

Given this situation, it has been discussed that indirect search for WIMPs using precision

measurement is useful [40–46]. It utilizes a pair production of charged leptons or that of a

charged lepton and a neutrino, where WIMPs affect the pair production processes through

the vacuum polarizations of the electroweak gauge bosons. The current status and prospects

have been analyzed for several different setups, indicating that it provides a promising way

to probe Higgsino as well as the other WIMPs. A virtue of this method is that it is robust

against the change of the lifetime and the decay modes of WIMPs and whether a WIMP

constitutes a sizable portion of the DM or not. Another important point is that, due to

WIMPs, the invariant mass distributions of the final state particles show sharp dip-like

behavior at the invariant mass close to twice the WIMP mass. It helps us to distinguish

the WIMP effects from backgrounds and systematic errors. This second point, however,

also indicates that we need a sufficiently large number of events with TeV-scale invariant

masses to probe a TeV-scale WIMP. As a result, the prospect of the reach for Higgsino in

the literature is still unsatisfactory; mχ ≲ 100 – 200GeV for the high luminosity LHC [44,46]

and mχ ≲ 500GeV for lepton colliders with
√
s = 1TeV assuming 1% systematic errors [43].

Thus, it is important to consider the application of this method for higher energy colliders.

In particular, in this thesis, we study the prospect of the indirect search method at future

100TeV hadron colliders such as the FCC-hh at CERN [47–49] or the SppC in China [50,51].

We concentrate on the lepton pair production processes since they provide a very clean signal

without any hadronic jets at least from the final state particles. We will show that it provides

a comparable or better experimental reach for Higgsino compared to the direct production

search of WIMPs at future colliders [52–55]. This method also provides independent and

additional information about Wino and the MDM. Besides, we will demonstrate for the first

time that this method is useful to investigate WIMP properties, such as charges, masses,
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and spins.

1.2 Organization of this thesis

This thesis is organized as follows.

In Sec. 2, we briefly review models with WIMPs considered in the thesis. Sec. 2.1 is

devoted to the minimal supersymmetric standard model, while Sec. 2.2 to the minimal dark

matter model. The mass splitting among an SU(2)L multiplet, which is a phenomenolog-

ically important property of WIMPs, is described in Sec. 2.3. The WIMP properties are

summarized in Sec. 2.4.

In Sec. 3, we summarize the WIMP properties as a DM candidate. We show the cal-

culation of thermal relic abundance and derive the requirements on the masses of WIMP

DMs in Sec. 3.1. Then, we review two different approaches to search for WIMP DMs, called

the direct detection described in Sec. 3.2 and the indirect detection in Sec. 3.3. Sec. 3.4 is

devoted to the concluding remarks of this section.

In Sec. 4, we study the direct production of WIMPs at the hadron collider experiments

and its detection. Possible production processes and the kinematics of the produced WIMPs

are summarized in Sec. 4.1. Using the production processes described here, the current status

and the prospect at the future 100TeV colliders are reviewed in the following subsections.

Sec. 4.2 and Sec. 4.3 are devoted to the description of two promising ways for the WIMP

search called the disappearing track search and the mono-jet search, respectively.

In Sec. 5, we discuss our ideas to probe the one-loop effect of WIMPs on the lepton

pair production processes through the precise measurement at 100TeV colliders. Here,

we will describe our statistical analysis, show the obtained reach for WIMPs, and see the

possibility to determine the WIMP properties after its discovery. Conclusions of the thesis

and comments on the possible future directions of our studies are presented in Sec. 6.

In Appendices, we first summarize the conventions and notations used in the thesis in

Appendix A. Then, we briefly review the N = 1 supersymmetric gauge theory in Appendix

B, the procedure we have adopted to perform the collider simulation on the MDM models

in Appendix C, the structure and properties of the relevant loop functions in Appendix D,

the properties of the so-called transverse mass used in our analysis in Appendix E, and the

statistical analysis method called the profile likelihood method in Sec. F.
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Models with WIMPs

In this thesis, we focus on the WIMPs with non-zero electroweak charges. More specifi-

cally, we consider a new scalar or fermion that is an SU(2)L n-plet with U(1)Y hypercharge

Y . A heavy mass is introduced to the particle, which can be either the Majorana or Dirac

mass for the case of fermion. This mass scale may be related to the energy scale of a physics

model beyond the SM. As we will see in Sec. 3, one of the motivations to introduce such a

particle is to explain the existence of DM, so the multiplet should contain an electromag-

netically neutral component. For this purpose, Y should be chosen appropriately for some

fixed value of n, which leaves only n discrete choices.

In the SU(2)L limit, masses of all the components in the multiplet are the same. Since

SU(2)L symmetry is spontaneously broken, the mass difference among them is generated

and a heavy component can decay into a lighter component. For the multiplet to explain

the DM in the current universe, the U(1)EM neutral component should have the lowest mass.

We will return to this point in Sec. 2.3.

There are several examples of models that contain WIMP DM candidates. In this section,

two of them are briefly reviewed, which are intensely studied in this thesis: the minimal

supersymmetric standard model (MSSM) described in Sec. 2.1 and the minimal dark matter

(MDM) model described in Sec. 2.2. We describe the mass splitting among the components

of the WIMP multiplet in Sec. 2.3. Sec. 2.4 is devoted to the summary table of properties

of WIMPs frequently considered below.

H

fL

H

SL, SR

(a) (b)

fR

Figure 1: One-loop correction to the Higgs mass from (a) Weyl fermions fL and fR and (b)

complex scalars SL and SR.
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2.1 Minimal supersymmetric standard model

The MSSM is the simple extension of the SM with N = 1 supersymmetry (SUSY).♮2 One

of the motivations to introduce SUSY is to solve the so-called hierarchy (or naturalness)

problem [56–58] in the SM. The problem is related to the quantum correction to the SM

Higgs boson mass from heavy new physics particles. For example, we can consider the one-

loop correction to the Higgs mass from Weyl fermions fL and fR and complex scalars SL

and SR, both of which couple to the Higgs, as illustrated in Fig. 1. The corrections to the

Higgs mass is given by

∆m2
h = −|λf |2

8π2

[
Λ2

UV +O(log(ΛUV))
]

(fermion), (2.1)

∆m2
h =

λS
16π2

[
Λ2

UV +O(log(ΛUV))
]

(scalar), (2.2)

where λf is the Higgs-fermion coupling constant, while λS the same for the scalar S. We take

the cut-off scale of the theory to be ΛUV to regularize the otherwise divergent loop integral

and neglect the lower order terms of ΛUV. Eqs. (2.1) and (2.2) show the quadratic dependence

of ∆m2
H on ΛUV, which means that the Higgs mass is sensitive to the energy scale of the

beyond the SM physics. However, there is at least one extremely high energy scale physics

in nature, gravity at the Planck scale Mpl ∼ 1018 – 19 GeV. By substituting ΛUV = Mpl in

Eqs. (2.1) and (2.2) and assuming λf ∼ λS ∼ O(1), we notice that fine-tuning by many

orders of magnitude is required to obtain the correct Higgs mass mh = 125.10GeV [59],

which is unnatural.

SUSY provides a nice solution to this fine-tuning problem. As is summarized in Ap-

pendix B, each Weyl fermion in a supersymmetric model is accompanied by two complex

scalars with the same mass mf = mS. In addition, their coupling constants to the Higgs

boson should have a relationship |λf |2 = λS because λS is a coupling constant in the F-term

potential sourced by a superpotential term proportional to λf . By using both equations and

summing the corrections (2.1) and (2.2) with a factor of two multiplied to the latter, we ob-

tain a result without the quadratic dependence on the cut-off scale ΛUV without fine-tuning.

This cancellation is ensured by the so-called non-renormalization theorem. [60,61]

We now summarize the notations and quantum numbers of the chiral and vector su-

perfields in the MSSM in Table 1 and 2, respectively. In the tables, we also summarize

the names of bosonic and fermionic components of each superfield used in this thesis. The

supersymmetric part of the MSSM Lagrangian is described by the superpotential♮3

W = Y ij
u ÛiQ̂jĤu − Y ij

d D̂iQ̂jĤd − Y ij
e ÊiL̂jĤd + µĤuĤd, (2.3)

♮2For a brief review of the N = 1 SUSY gauge theory, see Sec. B.
♮3For a more detailed review of the MSSM, see for example [62].
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Notation SU(3)C SU(2)L U(1)Y boson fermion

Q̂i 3 2 1/6 squark left-handed quark

L̂i 1 2 −1/2 slepton left-handed lepton

Ûi 3̄ 1 −2/3 squark right-handed up-type quark

D̂i 3̄ 1 1/3 squark right-handed down-type quark

Êi 1 1 1 slepton right-handed lepton

Ĥu 1 2 1/2 up-type Higgs up-type Higgsino

Ĥd 1 2 −1/2 down-type Higgs down-type Higgsino

Table 1: Notations and quantum numbers of the chiral superfields in the MSSM. Also

shown are names of bosonic and fermionic components of each superfield used in this thesis.

Notation SU(3)C SU(2)L U(1)Y boson fermion

ĝ 8 1 0 gluon gluino

Ŵ 1 3 0 W boson Wino

B̂ 1 1 0 B boson Bino

Table 2: Notations and quantum numbers of the vector superfields in the MSSM. Also

shown are names of bosonic and fermionic components of each superfield.

where i, j = 1, 2, 3 refer to the quark and lepton generation, while Q,L, U,D, and E are

superfields that contain the left-handed quark, left-handed lepton, right-handed up-type

quark, right-handed down-type quark, and right-handed charged lepton, respectively. In

Eq. (2.3), proper contraction of SU(3)C and SU(2)L indices is assumed. Note that two

Higgs doublets Hu and Hd with opposite values of U(1)Y hypercharges are introduced, which

is needed to cancel the contributions to the gauge anomaly from fermionic partners of the

Higgs doublets.

Postulating SM gauge symmetries as a unique guideline to construct a model, there are

a few more terms allowed in the superpotential:

W∆L=1 = λijkL̂iL̂jÊk + λ
′ijkL̂iQ̂jD̂k + µiL̂iĤu, (2.4)

W∆B=1 = λ
′′ijkÛiD̂jD̂k, (2.5)

where ∆L = 1 and ∆B = 1 represents the breaking of the lepton and baryon numbers by one,

respectively. These terms with a lepton or baryon number breaking are phenomenologically

problematic since they may cause a too fast proton decay, depending on parameters (see for

example [63]). To avoid this problem, we often rely on a symmetry called the R-parity [64]

or the matter parity [63,65–67]. Charges of the R-parity, which is basically a Z2 symmetry,
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are defined as

PR = (−1)3(B−L)+2s, (2.6)

where B, L, and s are the baryon number, lepton number, and spin of the particle, respec-

tively. According to the definition, we can see that all the SM particles have even parity

(PR = +1), while all the supersymmetric particles have odd parity (PR = −1). Then it is

easy to check that Eqs.(2.4) and (2.5) lead to the R-parity violating terms in the Lagrangian

and thus are forbidden, while all the terms in Eq. (2.3) are allowed. From now on, we only

focus on the R-parity preserving MSSM.

Since no superpartner of any SM particle is observed yet, SUSY should be broken at some

scale to give large masses to superpartners. The SUSY breaking part of the Lagrangian is

expressed as

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−
(
Aij

u ŨiQ̃jHu − Aij
d D̃iQ̃jHd − Aij

e ẼiL̃jHd + h.c.
)

−m2ij
Q Q̃†

iQ̃j −m2ij
L L̃†

i L̃j −m2ij
U Ũ †

i Ũj −m2ij
D D̃†

i D̃j −m2ij
E Ẽ†

i Ẽj

−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + h.c.) , (2.7)

where the tilde is used to express the superpartner of the SM particle contained in a super-

field, while fields without hat nor tilde denote particles in the SM. An exception is two Higgs

doublets, where Hu and Hd represent the scalar components, while H̃u and H̃d represent

their superpartners called Higgsinos. The SM-like Higgs doublet H corresponds to a linear

combination of Hu and Hd, while the other combination becomes heavy.

It is known that, within the MSSM, almost all SUSY breaking mechanisms, such as the

F-term (O’Raifeartaigh) [68] or D-term (Fayet-Iliopoulos) SUSY breaking [69, 70], fail to

generate masses of superpartners with keeping the SM gauge group unbroken in the low

energy effective theory. Thus, we need a so-called hidden sector in addition to the MSSM

sector, in which SUSY is spontaneously broken. For the MSSM sector to have Lagrangian

terms (2.7), we also need some mediation mechanism of the SUSY breaking. The relative

size of the SUSY breaking parameters in Eq. (2.7) and thus the phenomenology of the

model highly depends on the mediation mechanism. Among many mediation mechanisms

of SUSY breaking, the anomaly mediated SUSY breaking [13, 14] leads to an interesting

phenomenology with relatively light WIMPs, so it will be reviewed later.

Dark matter candidate in the MSSM

There is another motivation to consider the R-parity preserving MSSM; it naturally contains

the candidate for DM. Since there is a sizable amount of DM in the current universe, a DM
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Value Description Reference

MW = 80.384± 0.014GeV Pole mass of the W boson [71,72]

MZ = 91.1876± 0.0021GeV Pole mass of the Z boson [73]

Mh = 125.15± 0.24GeV Pole mass of the Higgs [74,75]

Mt = 173.34± 0.82GeV Pole mass of the top quark [76](√
2Gµ

)−1/2
= 246.21971± 0.00006GeV Fermi constant for µ decay [77]

α3(MZ) = 0.1184± 0.0007 MS SU(3)C gauge coupling [78]

Table 3: Experimentally measured SM parameters used for the derivation of Eq. (2.9).

candidate should be stable or have a sufficiently long lifetime. In many models, the stability

of DM is ensured by imposing a symmetry and/or by kinematically forbidding the DM decay.

In the MSSM, the role of stabilizer can be played by the R-parity described above. Recalling

that all the SM (supersymmetric) particles have even (odd) parity, each interaction vertex

in the MSSM Lagrangian should contain an even number of supersymmetric particles. If

we consider the lightest supersymmetric particle (LSP), such vertices can not construct the

kinematically allowed LSP decay chain and, as a result, the LSP becomes a stable DM

candidate.

The DM phenomenology, such as the production and annihilation of DM in the universe

and processes that allow us to efficiently detect it, highly depends on which species of the

supersymmetric particle becomes the LSP. Hereafter, we only focus on the cases where one

of the gauginos and Higgsinos becomes the LSP, whose motivations are described below.

Besides, all the LSP candidates described below (i.e., Wino and Higgsino) have non-zero

electroweak charges and they can be viewed as examples of the WIMPs.

Higgs mass in the MSSM

Under the spontaneously or softly broken SUSY, the quantum correction to the Higgs boson

is modified from that in the SUSY limit. One obvious consequence of the SUSY breaking is

the hierarchy between the fermion and scalar masses that affects the logarithmic corrections

to the Higgs mass. In the case of the MSSM, the largest contribution comes from the

superpartner of the top quark, stop, which has the largest coupling with the Higgs boson.

When there is a large hierarchy between the SUSY breaking scale MS, which is compa-

rable to stop masses, and the top mass Mt, the stop contributions to the Higgs mass contain

a large logarithm of the form of log (M2
S/M

2
t ). To resum the large logarithm and obtain a

precise result, an easy way is to rely on the renormalization group equation (RGE). In this

framework, the value of the Higgs self-coupling λ at the electroweak scale is closely related
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to the Higgs mass. We define the potential for the SM Higgs doublet H as

V (H) = −m
2

2
|H|2 + λ|H|4, (2.8)

and assume the SM parameters summarized in Table 3. Then, according to [79], we obtain

the relationship♮4

λ(Mt) = 0.12604 + 0.00206

(
Mh

GeV
− 125.15

)
− 0.00004

(
Mt

GeV
− 173.34

)
, (2.9)

where the MS scheme is used to renormalize the divergence of loop integrals.

In the MSSM, the value of λ at the SUSY breaking scale MS is given by♮5

λ(MS) =
g21(MS) + g22(MS)

8
cos2 2β + δλ, (2.10)

where g1 and g2 are U(1)Y and SU(2)L gauge coupling constants, respectively, while β

parametrizes the ratio of the vacuum expectation values

⟨H0
u⟩

⟨H0
d⟩

= tan β, (2.11)

with H0
u and H0

d being electromagnetically neutral components of the corresponding Higgs

doublets. In Eq. (2.10), the first term shows the tree-level contribution from the D-term

potential and δλ denotes the threshold correction from heavy superpartners. MS is often

chosen to be the geometric mean of stop masses to minimize the largest contribution to δλ

from stops. Once the spectrum of the MSSM particles is fixed, we can evaluate the Higgs

self-coupling using Eq. (2.10), calculate its running according to the RGE, and obtain the

prediction for the Higgs mass through Eq. (2.9).

In Fig. 2, we show the contour plot of the Higgs mass mh in the tan β vs. MS plane.

We assume the universal mass MS for all the SUSY particles and use the RGEs summarized

in [79]. Under this assumption, the largest contribution to the threshold correction δλ from

stops is expressed as

δλ ≃ 9y2t (MS)

16π2
X̃t

[
1− X̃t

12

]
, (2.12)

X̃t ≡
(At − µ cot β)2

M2
S

, (2.13)

♮4Although the values listed in Table 3 are different from the latest ones given in [59], we use older ones

because the change in input values may cause the slight change in values in Eq. (2.9). The latest central

values of the Higgs and top masses are Mh = 125.10GeV and Mt = 173.1GeV, with which we can estimate

λ(Mt) = 0.12595.
♮5The threshold correction δλ includes terms required for the conversion from the DR to the MS scheme.

Since the contribution of these terms, which can be estimated as O(g4i /16π
2) with i = 1, 2, is typically

smaller than that of stops given in Eq. (2.12), we will neglect them in the following discussion.
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Figure 2: Contour of the Higgs mass mh in the tan β vs. MS plane. The universal mass

MS is assumed for all the SUSY particles. Blue (red) lines correspond from top to bottom

to the contours of mh = 131, 128, 125, 122, 119GeV for the minimal (maximal) stop mixing.

Gray shade corresponds to the region where mh = 125.10GeV can be explained.

with yt ≡ Y 33
u and At ≡ A33

u . It is obvious from Eq. (2.12) that, for a moderate value of

X̃t ≲ 6, X̃t = 0 (X̃t = 6) corresponds to the case with minimum (maximum) threshold

correction, often called as the minimal (maximal) stop mixing.♮6

The red (blue) lines in Fig. 2 denote from top to bottom the contours of mh = 131, 128,

125, 122, and 119GeV for the minimal (maximal) stop mixing. Gray shade corresponds to

the region where the central value of the observation mh = 125.10GeV can be explained.

From the figure, we can see that the discovery of the Higgs with mh = 125.10GeV may

indicate a somewhat heavy SUSY breaking scaleMS ≳ 10TeV for the case with a small stop

mixing or a small tan β. Combined with the fact that there is still no sign of the superpartners

at the collider experiment, this motivates us to consider a heavy SUSY scenario.

Light Higgsino and its relation to the naturalness

When we consider a heavy SUSY model concerning the Higgs mass, there is another problem

called the little hierarchy problem. This refers to the hierarchy between the electroweak scale

and the heavy SUSY breaking scale and an accompanying fine-tuning. Although the degree

♮6Eq. (2.12) shows that δλ < 0 for X̃t > 12, resulting in the prediction of a lighter Higgs mass than

the minimal stop mixing case. However, the parameter space with X̃t ≳ 6 is severely constrained by the

requirement of the stability of the electroweak vacuum (see for example [80]) and is not considered here.
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of the required fine-tuning is many orders of magnitude smaller than that for the large

hierarchy between the electroweak and Planck scales, it will be more acceptable if some

mechanism relieves the fine-tuning. The required fine-tuning can be clearly expressed in the

equation

1

2
m2

Z =
m2

Hd
−m2

Hu
tan2 β

tan β2 − 1
− µ2, (2.14)

where the right-handed side is the MSSM prediction for the Z-boson mass assuming the

successful electroweak symmetry breaking. If some of the MSSM parameters mHd
, mHu , µ

are much larger thanmZ , there should be some amount of fine-tuning to satisfy the equation.

There is a measure of the fine-tuning in this sense, proposed in [81,82]:

∆ai ≡
ai
m2

Z

∂m2
Z

∂ai
, (2.15)

where ai is an MSSM model parameter. In order for the model to be “natural”, we require

|∆ai | < ∆ for any ai with a typical choice of ∆ ∼ O(10 – 100). Since mZ is sensitive to the

Higgsino mass µ, this gives an upper bound on the “natural” choice of the Higgsino mass

µ2 <
m2

Z

2
∆, (2.16)

predicting the (sub-)TeV scale Higgsino. As we will see in Sec. 3.1, the light Higgsino is also

fascinating as a dark matter candidate.

Even when the SUSY breaking scale is much higher than the electroweak scale, it is

not strange for Higgsino to be around the electroweak scale since it is protected by an R-

symmetry and a Peccei Quinn symmetry. The symmetry protection is also important for

a solution to the so-called “µ-problem” [83], where the large hierarchy between the SUSY

preserving parameter µ and the cut-off scale of the MSSM such asMpl is discussed. When we

consider the low energy effective field theory in which SUSY is broken and all the squarks and

sleptons are decoupled, a unique linear combination of the R-symmetry and the Peccei Quinn

symmetry is enhanced only if both gauginos and Higgsinos are massless. This fact leads to

the framework of the split SUSY [10], in which there is a hierarchy between the masses of

Higgsinos/gauginos and the other SUSY particles. In this framework, the phenomenology is

determined by the ordering and hierarchy of Higgsino and gaugino masses. In particular, the

collider phenomenology of Higgsino will be summarized in Sec. 4 for the case when gauginos

are heavier than Higssino.

Finally, the naturalness requirement discussed above also imposes an upper bound on

other parameters, in particular, on m2
Hu

for tan2 β ≫ 1. The small value of m2
Hu

can be

realized by the focus point mechanism [84–86], where the choice of the SM parameters in

our universe, particularly that of yt, allows m
2
Hu

at the low energy scale to be insensitive to

its boundary condition at the high energy scale.
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Light Wino in the anomaly mediated SUSY breaking model

Among many heavy SUSY models, the pure gravity mediation scenario [87–89] based on the

anomaly mediated SUSY breaking [13,14] is of particular interest since it naturally predicts

the existence of WIMPs (in particular Winos) in the TeV range. In this scenario, the SUSY

breaking effect is directly mediated to the quark and lepton supermultiplets, and they obtain

masses comparable to the scale of the SUSY breaking, which is roughly equal to the gravitino

mass m3/2. Higgsino is also considered to be heavy contrary to the model described above.

In fact, it is easy to realize the hidden sector dynamics that generate the µ-term of O(m3/2).

On the other hand, the superpartners of gauge bosons, gauginos, feel the SUSY breaking

effect only through a one-loop diagram, which is related to the conformal anomaly. As a

result, gaugino mass parameters in Eq. (2.7) are one-loop suppressed compared with other

mass parameters and given by

Mi(MS) = − βi
2g2i

∣∣∣∣
MS

m3/2, (2.17)

where i = 1, 2, 3 is a gauge index and βi denote the beta functions of gauge coupling con-

stants. At the one-loop level, this gives

M1(MS) =
11g21(MS)

16π2
m3/2, (2.18)

M2(MS) =
g22(MS)

16π2
m3/2, (2.19)

M3(MS) = −3g23(MS)

16π2
m3/2. (2.20)

Since Higgsinos are assumed to have a mass comparable to m3/2 ∼ MS, they decouple

from the effective theory below the scale MS. To take account of the correction to the

gaugino masses from the Higgs-Higgsino loop, one has to include the threshold correction at

MS

∆M1 =
g21(MS)

16π2
L, ∆M2 =

g22(MS)

16π2
L, (2.21)

with

L ≡ µ sin 2β
m2

A

|µ|2 −m2
A

ln
|µ|2

m2
A

, (2.22)

where mA is the mass of the heavy CP-odd Higgs.

Below MS, gaugino mass parameters further run towards the gaugino mass scale MG̃,

where the physical gaugino masses are determined. Note that the Bino and Wino masses
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Figure 3: Gaugino masses as a function of m3/2 with a fixed value of L = 0 (left) and that

of L/m3/2 with a fixed value of m3/2 = 106GeV (right). Blue, green, and red lines denote

the masses of Bino, Wino, and gluino, respectively. tan β = 2.5 is used in both figures.

are well approximated by |M1(MG̃)| and |M2(MG̃)|, while the gluino pole mass mg̃ includes

a sizable effect from the threshold correction as [10]

mg̃ = |M3(MG̃)|

[
1 +

g23
16π2

(
12 + 9 ln

M2
G̃

|M3|2

)]
. (2.23)

The gaugino scale is often defined through M3(MG̃) =MG̃ to make the logarithmic term in

Eq. (2.23) vanish.

In Fig. 3, we show the dependence of gaugino masses on m3/2 and L. In the left panel,

we take tan β = 2.5 and L = 0, and the m3/2 dependence is shown. Blue, green, and red

lines show the masses of Bino, Wino, and gluino, respectively. We can see that, throughout

the parameter region used here, Wino becomes the lightest gaugino and the LSP that can be

a dark matter candidate. In this choice of parameters, m3/2 = 106GeV roughly corresponds

to the observed value of the Higgs mass mh ∼ 125GeV, which at the same time realizes

the O(1)TeV mass for Wino. As we will see in Sec. 3.1, the Wino dark matter in this mass

range is well-motivated since it gives us a correct relic abundance of the dark matter.

In the right panel of Fig. 3, we also show the L dependence of gaugino masses for

tan β = 2.5 and m3/2 = 106GeV. For simplicity, we neglect the relative phase of m3/2 and L

and only consider the relative sign between them. It can be seen that the hierarchy between

gaugino masses is changed when a large value of |L| is considered. However, we can safely

say that when the threshold correction is sufficiently small, |L| ≲ O(m3/2), Wino remains

to be the LSP. Besides, the dependence of mh on L is negligibly small and mh changes only

O(0.1)GeV within the parameter choice of the right panel.
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2.2 Minimal dark matter model

The MDM [15–17] is another example model that contains a WIMP DM candidate. This

model attempts to explain the existence of stable DM by extending the SM as simply as

possible. More specifically, we just assume the same gauge groups as the SM and add only

one SU(2)L n-plet with U(1)Y hypercharge Y in the model.♮7

In some sense, WIMPs contained in the MSSM, if we assume all the other superpartners

are decoupled, can also be viewed as an example of the MDM. In fact, if we choose the

set of SU(2)L and U(1)Y charges as (n, Y ) = (2,±1/2) and (3, 0), they correspond to the

Higgsino and Wino, respectively. However, for these choices, the stability of the U(1)EM
neutral component is not automatically ensured, and some extra symmetry (in this case

the R-parity) is needed for the DM to survive until now. The important point of the new

framework MDM is that, when we use large n ≥ 5, there are examples of multiplets that

automatically contain a sufficiently long-lived DM candidate.

The stability of such multiplets can be understood through a simple group theoretical

argument. To write down the effective operator that describes the decay of an n-plet field to

SM particles, we have to make an n-plet representation out of several SM fields. However,

since the largest SU(2)L representation in the SM is doublet, we need at least n−1 SM fields

in the operator. The operator made out of this large number of fields should be suppressed

by a power of the cutoff scale Λ, at least by Λ4−n (Λ3−n) for a scalar (fermion) MDM, and

results in a small decay rate. Since the well-motivated DM mass is of O(TeV) as we will see

in Sec. 3.1, the resulting lifetime of the DM candidate is estimated as τ−1 ∼ Λ2p(TeV)−2p−1

for an operator with a suppression factor Λ−p. By demanding τ to be larger than the age of

the universe under the assumption for the cut off scale Λ < Mpl, we can conclude that the

operator of the DM decay should have a dimension larger than five. Then, we recast this

condition to that for n and obtain

n ≥

{
6 for scalar MDM,

5 for fermion MDM.
(2.24)

On the other hand, since we consider large SU(2)L multiplets, the RGE running of the

SU(2)L gauge structure constant α2 above the MDM mass is drastically modified. At the

♮7This new particle, even if it is a fermion, does not contribute to the SU(2)2L U(1)Y , U(1)3Y , nor

U(1)Y grav2 anomalies when Y = 0. When Y ̸= 0, we always consider a vector-like pair of Weyl fermions,

similar to the Higgsinos H̃u and H̃d, which as a whole consists of a Dirac fermion and cancels the contributions

to the gauge anomalies.
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one-loop level, we have (see for example [90])

α−1
2 (Q) = α−1

2 (MMDM)−
b2
2π

ln
Q

MMDM

, (2.25)

b2 ≡ −19

6
+ c

n3 − n

18
, (2.26)

with c = 1 (1/4) for a Majorana/Weyl fermion (real scalar). Note that the first and second

terms of Eq. (2.26) represent the contributions from SM particles and the MDM, respectively.

Then, assuming the perturbativity of the SU(2)L gauge coupling up toMpl, this relationship

puts an upper bound on the choice of n. According to the strong dependence on n of b2, a

strong bound is obtained,

n ≤

{
8 real scalar MDM,

5 Majorana fermion MDM.
(2.27)

In Table 4, we summarize the properties of MDMs for several different choices of (n, Y ).

Throughout the table, the checkmark represents a suitable property as a DM candidate.

In the first three columns, we show the quantum numbers of our choice, namely the set of

(n, y) and spin. In the next column, we show the condition for the DM stability, namely,

whether all the DM decay operators have dimensions larger than five or not. The checkmarks

correspond to the automatically stable DM candidates. The next column shows if the DM

direct detection experiment has already excluded these DM candidates or not. Since the

non-zero value of Y usually leads to the large cross section as will be discussed in Sec. 3.2,

only Y = 0 candidates are associated with checkmarks. However, note that these properties

may be changed due to a small modification to the model, such as the imposition of an

extra symmetry or the mixing between other new physics particles. The final column shows

examples of the viable DM candidates analyzed in the literature.

From the table, we can see that there are two fascinating targets, 5-plet fermion and 7-

plet scalar both of which have Y = 0. Among them, we neglect the latter possibility because

it has been pointed out [92, 93] that a higher dimensional operator combined with a loop

consisted of the TeV scale 7-plet scalar induces a sizable decay rate for the U(1)EM neutral

component. Instead, we will take a 5-plet scalar with Y = 0 just as a working example,

assuming that its stability is ensured by some other mechanism.

2.3 Mass splitting among an SU(2)L multiplet

As a final remark in this section, we consider an important property of SU(2)L multiplets

after the spontaneous breakdown of the electroweak symmetry: the mass splitting among the

components of a multiplet. This mass splitting, which we will call ∆mχ, is typically much
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Quntum numbers DM Not excluded by Examples

SU(2)L U(1)Y Spin stability direct detection

2 1/2 Scalar

2 1/2 Fermion Higgsino

3 0 Scalar ✓ [91]

3 0 Fermion ✓ Wino

3 1 Scalar/Fermion [91]

4 1/2 Scalar/Fermion [91]

4 3/2 Scalar/Fermion [91]

5 0 Scalar ✓ [91]

5 0 Fermion ✓ ✓ [15–17]

5 1 Scalar

5 1 Fermion ✓
5 2 Scalar

5 2 Fermion ✓
6 1/2, 3/2, 5/2 Scalar ✓
7 0 Scalar ✓ ✓ [15–17]

7 1, 2, 3 Scalar ✓

Table 4: Table of the MDM properties. In the first three columns, we show the quantum

numbers of our choice. In the next two columns, DM stability (the checkmark means “sta-

ble”) and its status under the DM direct detection experiment (the checkmark means it is

still alive) are shown. The last column is devoted to the examples in the literature.
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smaller compared with the WIMP mass mχ, but its value is phenomenologically important

as we will see in later sections.

First, we start with the tree-level propagation of heavy particles, such as the SUSY

particles other than the LSP, or other unknown particles. After integrating out all the heavy

particles other than the SM particles or the light WIMP, we may obtain operators of the

form of O =Mijχiχj, where χ denotes the WIMP multiplet and i is the SU(2)L index. This

operator causes the mass splitting only whenMij transforms non-trivially under the SU(2)L
symmetry. Then, we can explicitly construct the lowest dimensional operator among those

relevant for the mass splitting. For Higgsino,

O =
1

Λ
(χ̄H∗)(Hχ), (2.28)

where the Dirac Higgsino doublet is defined as χ = (H̃u,−iσ2H̃∗
d)

t, H is the SM Higgs doublet

with Y = 1/2, Λ is the cut-off scale of the effective theory, i.e., the typical mass scale of

the relevant heavy particles, and the parenthesis denotes the SU(2)L invariant product of

fundamental representations. Similarly, for Wino [94],

O =
1

Λ3
(H†σaH)(H†σbH)W̃ aW̃ b, (2.29)

is the lowest dimensional operator that causes the mass splitting. A simple implication of

this observation is that, for multiplets with large n, there are suppression factors that keep

the tree-level mass splitting small. For Wino, the suppression is of O(M4
W/Λ

3), which yields

a splitting smaller than 10MeV for heavy particles with a few TeV masses. For fermionic

MDMs with n ≳ 5, a similarly small mass splitting at the tree-level is expected.♮8 This is

the main reason why the loop correction plays a more important role in the mass splitting

of Wino and MDMs.

The situation is different for Higgsino because of the much less drastic suppression factor

of O(M2
W/Λ), which generates O(100)MeV mass splitting for Λ ≲ 10TeV.♮9 In fact, in

models like the split SUSY, the mixing between Higgsino and heavier gauginos can generate

the large mass splitting among the Higgsino components. As a result, neutral components

that originally forms a Dirac fermion splits into two Majorana fermions with mass difference

∆m0, and the charged components also become heavier than the lighter neutral component

♮8For scalar MDMs, there is another renormalizable operator that generates a mass splitting

O = −λH (χ∗σaχ)
(
H†σaH

)
.

Here, we just assume that λH is sufficiently small and the discussion below is not affected by the above term.
♮9For the order estimation of the mass splitting, we have taken account of the size of the coupling constants

omitted in Eq. (2.28), using the rough estimation g21 ∼ g22 ∼ O(10−1).
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by ∆m
(tree)
χ . According to [95], their approximate expressions are given by

∆m0 ≃
M2

W

g22

(
g21
M1

+
g22
M2

)
, (2.30)

∆m(tree)
χ ≃ M2

W

2g22

[(
g21
M1

+
g22
M2

)
+ sgn(µ) sin 2β

(
g21
M1

− g22
M2

)]
, (2.31)

assuming the CP invariance for simplicity. Note that the results agree with the previous

order estimation with Λ ∼M1, M2.

Next, we consider the loop correction to the WIMP masses. When the loop is composed of

heavy particles, the effective operator that causes the mass splitting again becomes the same

as above, which is now associated with a small loop factor. Thus, the largest contribution

comes from the gauge boson–WIMP loop. For the charged components of Higgsino, the

one-loop result is known: [95]

∆m(rad)
χ ≃ 1

2
α2MZ sin2 θW

(
1− 3MZ

2πmχ

)
∼ 355MeV

(
1− 3MZ

2πmχ

)
, (2.32)

with θW being the Weinberg angle, which gives ∆m
(rad)
χ ≃ 341MeV for the thermal Higgsino

DM mass mχ = 1.1TeV described in Sec. 3.1. This loop-level contribution is important in

the evaluation of ∆mχ = ∆m
(tree)
χ + ∆m

(rad)
χ . On the other hand, for Wino, we have the

two-loop result [96]

∆mχ

MeV
=− 413.315 + 305.383

(
log

mχ

GeV

)
− 60.8831

(
log

mχ

GeV

)2
+ 5.41948

(
log

mχ

GeV

)3
− 0.181509

(
log

mχ

GeV

)4
, (2.33)

which exhibits ∆mχ ≃ 165MeV for the thermal Wino DM mass mχ = 2.9TeV.♮10 For the

MDM, there are neutral, singly charged, doubly charged, and so on, components. Among

them, the neutral and singly charged components have the smallest mass difference of ∆mχ ≃
166MeV [15], which is the most important value for the phenomenology.

2.4 Summary table

In Table 5, we summarize the properties of WIMPs discussed in this thesis. In the first block

named “Quantum numbers”, we show the SU(2)L electroweak charge, U(1)Y hypercharge,

and spin nature. In the second block named “Masses”, two types of masses are shown. mχ

is the required masses to explain the DM relic abundance without non-thermal production

♮10The authors of [96] have checked the validity of the fitting formula within the range 100GeV < mχ <

4TeV. For mχ > 4TeV, the mass splitting still remains to be the asymptotic value ∆m ≃ 165MeV.
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Quantum numbers Masses

WIMP DM candidate SU(2)L U(1)Y Spin mχ/TeV ∆mχ/MeV

Higgsino 2 1/2 Dirac fermion 1.1 341 + ∆m
(tree)
χ

Wino 3 0 Majorana fermion 2.9 165

5-plet fermion 5 0 Majorana fermion 10 166

5-plet scalar 5 0 real scalar 9.4 166

Table 5: Table of properties of WIMPs discussed in this thesis. In the “Quantum numbers”

block, the SU(2)L and U(1)Y charges and spin nature are shown. In the “Masses” block,

the proper mass mχ of the thermally produced DM and mass difference between the neutral

and charged components ∆mχ of the multiplet are shown. See Sec. 3.1 for the descriptions

and implications of mχ.

(see Sec. 3.1 for the detail). ∆mχ is the mass difference between the electromagnetically

neutral and (singly) charged components of the multiplet discussed in the previous section.

Values are taken from [16,91,97–100].
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Section 3

WIMP as a dark matter

In this section, we review the properties of WIMPs as DM candidates. It is revealed

that, when we take a close look at the relic abundance of WIMP DM in Sec. 3.1, a WIMP

with the TeV scale mass is a good DM candidate, which is sometimes called WIMP miracle

and is a strong motivation to consider WIMPs. In Sec. 3.2 and Sec. 3.3, we will consider

two different ways to search for WIMP DM, called the direct and indirect detection. Finally,

Sec. 3.4 is devoted to the summary and concluding remarks of this section.

3.1 WIMP DM relic abundance

One of the most important evidence of the beyond SM phenomena is the existence of

DM [101]. DM is an unknown object that occupies a large fraction of the total energy

of our universe but has not yet been directly observed because of its weak interaction with

the SM particles.♮11 In spite of its invisibility, the existence of DM is confirmed by several as-

trophysical observations such as the mass measurement using the gravitational lensing effect

caused by galaxies and clusters [102,103], the flatness of galactic rotation curves beyond the

optical radius [104, 105], the measurement of the power spectrum of the cosmic microwave

background (CMB), and so on. In particular, the observation of CMB allows us the precise

determination of various cosmological parameters [106, 107] including the normalized den-

sity of the non-relativistic matter Ωm and that of baryon Ωb, which is currently determined

as [108]

Ωmh
2 = 0.1430± 0.0011, (3.1)

Ωbh
2 = 0.02237± 0.00015, (3.2)

where h ∼ 0.7 is the Hubble constant in units of 100 km s−1Mpc−1. The difference between

Ωmh
2 and Ωbh

2 implies the existence of DM and its abundance Ωχh
2 ≃ 0.12.

In cosmology, DM production mechanisms that explain the DM abundance are divided

into two large categories: thermal and non-thermal production. The former assumes the

equilibrium between the DM and the SM thermal bath in the early universe. As the universe

expands, the interaction rate that maintains the thermal equilibrium becomes smaller and

the DM decouples from the thermal bath at some time, which is the so-called freezeout. As

we will see below, the resulting abundance of the DM in this scenario is mainly controlled

♮11At worst DM interacts with the SM particles through gravity, which is considerably weaker than all the

other known interactions.
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by the thermal averaged annihilation cross section ⟨σv⟩. On the other hand, non-thermal

production assumes the DM production by some processes irrespective of the thermal bath

such as the decay of a heavy particle. From now on, we mainly focus on the case without

the non-thermal production, which still gives some relic abundance for WIMPs that have an

interaction with the SM thermal bath through the electroweak interaction.

We assume the stable DM particle χ with massmχ that pair annihilates into SM particles

with some cross section σ. When DM is in thermal equilibrium with the thermal bath of

temperature T , DM velocity obeys the corresponding Boltzmann distribution. Let v be the

relative velocity of annihilating DM particles and ⟨σv⟩ be the thermal average of the product

of σ and v. By using this quantity, we can write down the Boltzmann equation for the DM

number density nχ in a simplified approximation as

d(nχa
3)

dt
= −a3 ⟨σv⟩ (n2

χ − n2
eq), (3.3)

where t and a are the time coordinate and the scale factor, respectively, of the Friedmann

Robertson Walker metric

ds2 = −dt2 + a(t)2dx2, (3.4)

while neq denotes the number density of DM in equilibrium. When DMs are non-relativistic,

its temperature dependence is given by neq ∝ T 3/2 exp (−mχ/T ). The first term of the

right-handed side of Eq. (3.3) represents the annihilation rate of DM pairs that should be

proportional to n2
χ, while the second term describes the DM creation through the inverse

process. As desired, the comoving number density does not change in time if nχ = neq.

Recalling the total entropy conservation in a comoving volume sa3 = (const), it turns out

to be convenient to define the ratio Y ≡ nχ/s. In fact, this modification cancels the effect

of the expansion of the universe da/dt > 0 from Eq. (3.3), leading to a simpler equation

dY

dt
= −s ⟨σv⟩ (Y 2 − Y 2

eq), (3.5)

with Yeq ≡ neq/s.

Here, we assume that the freezeout occurs when the relativistic radiation dominates the

total energy of the universe, which will be verified to be correct later. In this case, we can

derive a ∝ T−1 from the entropy conservation with s ∝ T 3. For the numerical calculation,

we define a dimensionless parameter x ≡ mχ/T . Then Eq. (3.5) can be rewritten as

x

Yeq

dY

dx
= − Γ

H

(
Y 2

Y 2
eq

− 1

)
, (3.6)

where Γ denotes the DM interaction rate defined as

Γ ≡ neq ⟨σv⟩ . (3.7)
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Figure 4: Plot of Y (x)/Y (x = 1) with Y (x) being a solution of the evolution equation

Eq. (3.6). The yellow dotted line is a solution for λ ≡ Γ/H|x=1 = 106, while the black

dotted line shows Yeq(x)/Yeq(x = 1). The solid lines are the approximation to the solutions

described in the text. The blue, red, and green colors correspond to λ = 106, 108, and 1010,

respectively. The vertical dotted lines denote the freezeout temperature xf .

Finally, it is known that ⟨σv⟩ can be expanded as [109]

⟨σv⟩ = ⟨σv⟩s + ⟨σv⟩p x
−1 + · · · , (3.8)

corresponding to the s-wave, p-wave, and so on, contributions to the cross section. When

x ≫ 1, which is the same as the non-relativistic limit, the term with the highest power of

x dominates the cross section. When the x−p term dominates (p ≥ 0), the temperature

dependence of the interaction rate is Γ ∝ x−3/2−pe−x, while the Hubble parameter only

reduces as H ∝ ρ1/2 ∝ x−2. As a result, at some point Γ becomes smaller than H and Y

freezes out as Eq. (3.6) indicates. Hereafter, we focus on the case of the s-wave domination

with ⟨σv⟩s ̸= 0 for simplicity. In Fig. 4, we show the solution of Eq. (3.6) for λ ≡ Γ/H|x=1 =

106 by the yellow dotted line. In the calculation, we use the boundary condition Y (x =

1) = Yeq(x = 1) and plot the normalized value Y (x)/Y (x = 1). We also plot the function

Yeq(x)/Yeq(x = 1) by the black dotted line.

Unfortunately, it is computationally hard to solve Eq. (3.6) for larger values of λ because

of the almost complete cancellation between two terms of the right-handed side for small

x ∼ O(1) and its amplification caused by large λ. We adopt instead to use an approximation

that is the same as the one adopted in the public code MicrOMEGAs [110,111]. For the small

x region, the temperature is still high enough to maintain the equilibrium Y ≃ Yeq, which

means that d∆Y/dx ≪ dYeq/dx with ∆Y ≡ Y − Yeq. From this approximation, we obtain
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a formula

∆Y ≃ − x

2λ

dYeq
dx

. (3.9)

Then we define the time xf , or equivalently the freezeout temperature Tf , when the approx-

imation becomes invalid through the equation♮12

∆Y (xf ) = 2.5Yeq(xf ). (3.10)

After the freezeout x > xf , the annihilation of the DM pairs rapidly slows down and the

DM abundance far exceeds its equilibrium value: Y ≫ Yeq. Then we can neglect the second

term of the right-handed side of Eq. (3.6) and obtain the analytical solution

Y (x) ≃ − x

c1x+ λ/Yeq(x = 1)
, (3.11)

where c1 is an integration constant. In Fig. 4, we show results obtained with these two

approximations Eqs. (3.9) and (3.11) for λ = 106 (blue), 108 (red), and 1010 (green). In

particular, the blue and the yellow lines almost completely overlap with each other, which

proves the validity of the approximations. The vertical dotted lines in the figure show the

freezeout temperature. It can be seen from the figure that x = xf does correspond to the

time when Y starts to deviate from Yeq. Note also that as λ ∝ ⟨σv⟩ becomes larger, the

freezeout time becomes later and the resulting relic abundance becomes smaller. It is known

that for typical WIMPs with mχ ∼ O(1)TeV, λ ∼ 108 and thus Tf ≃ mχ/20 from the figure.

Then, the freezeout temperature is much larger than the temperature at the radiation-matter

equality, and we can confirm that the assumption of the radiation dominated universe at the

time of the freezeout is correct.

When the DM properties (i.e., the mass mχ and the annihilation cross section ⟨σv⟩ for
a given temperature T ) are given, corresponding relic abundance can be calculated using

above procedure. In particular, mχ determines the normalization of the figure, namely

Yeq(x = 1) = Yeq(T = mχ), and ⟨σv⟩ determines the freezeout temperature through the

combination of Eq. (3.7). Assuming the absence of a non-thermal production, there should

be a unique choice of mχ corresponding to some ⟨σv⟩ to explain the current relic abundance

of the DM. From the numerical calculation, we obtain an order estimation formula

Ωχh
2 ∼ 3× 10−27 cm3/s

⟨σv⟩0
∼ 0.1

(
0.01

α

)2 ( mχ

300GeV

)2
, (3.12)

where the rough estimation ⟨σv⟩ ∼ α2/m2
χ is used in the last equation with α being the

fine structure constant for the DM-SM coupling. What is fascinating in Eq. (3.12) is that a

♮12One can easily check that the final relic abundance is not sensitive to the choice of the numerical

coefficient 2.5 in Eq. (3.10).
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particle can be DM if it has a mass comparable to the electroweak scale and coupling constant

comparable to the electroweak coupling constant. This is the so-called WIMP miracle, which

supports the hypothesis of the WIMP as a candidate of the DM. Such TeV-scale WIMPs are

theoretically well-motivated in connection with problems of the SM such as the naturalness

problem as reviewed in Sec. 2. Also, phenomenologically such TeV-scale WIMPs are of great

interest, since they can be detected using several different methods as will be described in

this thesis.

In Table 5, we summarize the value of mχ for each WIMP model that predicts the correct

relic abundance Ωχh
2 ∼ 0.12. As described above, TeV scale masses are suitable for all

WIMP DMs and the required mass becomes larger when we consider a larger SU(2)L n-plet

because of the larger annihilation cross section. However, note that the precise estimation

of the relic abundance solely using the last term of Eq. (3.12) is not possible, because of

the so-called Sommerfeld enhancement effect [98, 112] that may significantly modify the

annihilation cross section. We will review this effect in more detail in Sec. 3.3 in relation to

the indirect detection experiments. Note also that mχ in the table is only an upper bound on

the WIMP DM mass because the existence of non-thermal production processes may allow

lighter WIMPs to explain the whole relic abundance of DM in the current universe.

3.2 WIMP DM search : direct detection

There are many experiments aimed at the direct detection of the DM♮13 proposed in [114].

Here, we assume some interaction between the DM and SM particles and look for the recoil of

a target SM particle due to the collision with the DM in the laboratory. In the case of WIMPs

of our concern, any particle with non-zero electroweak charges can be a target particle, which

interacts with WIMPs through the t-channel electroweak gauge boson exchange. In the

traditional setup such as the XENON1T experiment [115], a nucleus (of xenon in XENON1T)

and an electron are the frequently used target particles. From now on, we focus on the

nucleus target since, as we will see later, it gives much better sensitivity than the electron

target for DMs with a mass of O(TeV). In this case, there are several ways to read out

the information of the nuclear recoil depending on the deposited energy, such as the use of

heat (or photons), an excitation of the nucleus associated with the emission of scintillation

light, and the ionization of the atom. Among them, the XENON1T experiment uses the

scintillation light and the ionization.

To evaluate the event rate for this kind of experiment, it is important to know the DM

energy density ρ0 and velocity distribution around us. For this purpose, we model the

DM profile in our galaxy using the so-called standard halo model (SHM) and adjust the

parameters to the observations. In the SHM, we assume the DM velocity distribution in the

♮13For a recent review of the direct detection experiments, see for example [113].
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galactic rest frame

f(v) =
1√
2πσ

exp

[
− v2

2σ2

]
, (3.13)

with σ ≡
√

3/2vc, where vc denotes the local circular speed of DMs around the Galactic

Center. From the combination of different analyses, we obtain the values ρ0 = 0.3GeV/cm3

and vc = 220 km/s [116, 117]. Also, the DM velocity within the halo cannot be arbitrarily

large, since such energetic DM will not be gravitationally bound and will escape from our

galaxy. Correspondingly, we often introduce a cutoff velocity vesc = 544 km/s [118] and

simply assume f(v) = 0 for |v| > vesc.

Using the distribution defined above, the differential event rate per unit recoil energy E

per unit material mass is given by [119]

dR

dE
(E, t) =

ρ0
mχmT

∫
d3v vf(v, t)

dσ

dE
(E, v), (3.14)

where mT is the mass of the target nucleus, while dσ/dE is the differential cross section

of the DM-nucleus scattering. The DM velocity distribution f(v, t) is now time-dependent

since it represents the distribution observed at the laboratory, which is affected by the

motion of the Earth around the Sun and that of the Sun around the Galactic Center. Thus,

f(v, t) is derived by performing the Galilean transformation to f(v) according to the time-

dependent velocity of the Earth against the galactic rest frame. This time-dependence gives

the signal a characteristic daily and yearly modulation, which helps us to distinguish it from

the background events. Also, the Galilean transformation makes f(v, t) highly anisotropic

since the velocity of the Earth is comparable to vc. Thus, if it is possible to use the directional

information, it also helps us to reduce the background.

The differential cross section dσ/dE, which summarizes the particle physics part of the

calculation, is divided into two parts: the spin-independent (SI) part and the spin-dependent

(SD) part. Denoting the SI and SD scattering cross sections for zero momentum transfer as

σSI
0 and σSD

0 , respectively, we obtain

dσ

dE
(E, v) =

mT

2µ2
Tv

2

(
σSI
0 F

2
SI(E) + σSD

0 F 2
SD(E)

)
, (3.15)

with µT being the reduced mass of the WIMP-nucleus system. The form factors FSI and FSD

summarize the nuclear physics part of the matrix element, both of which have properties

F (0) = 1 and dF/dE < 0 for large E. Among SI and SD contributions, the SI part is of

great interest thanks to the possible coherent enhancement of the cross section. When the

de Broglie wavelength corresponding to the momentum transfer q is longer than the size of

the nucleus (corresponding to q ≲ 200MeV for the xenon), not the individual neutrons and
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Figure 5: Current constraints on the DM SI cross section taken from [121]. The y-axis

corresponds to σSI
p in our notation.

protons but the whole nucleus contribute to the cross section.♮14 This results in the coherent

contribution from all nucleons for the SI case, while only the unpaired nucleons contribute

to the cross section for the SD case. In fact, for the WIMP DM, the SI cross section σSI
0 is

enhanced thanks to the coherence by a large factor A that is the mass number of the target

nucleus (A ≃ 130 for the xenon) as

σSI
0 = A2σSI

p

µ2
T

µ2
p

(3.16)

where σSI
p is the SI scattering cross section for a DM and a single nucleon and µp is the

reduced mass of the WIMP-nucleon system. The above expression dominates over the SD

cross contribution for the WIMP DM for most cases.

In Fig. 5, we show the current constraints on the DM SI scattering cross section σSI
p as a

function of its mass. See [121] and references therein for the details of each experiment. In the

figure, the parameter region above each line is excluded and the orange dashed line represents

the cross section of the background events sourced by neutrinos [122]. This background often

called as the neutrino floor, which is mainly determined by the solar neutrino for the region

mχ ≲ 10GeV and by the atmospheric and supernova neutrinos for mχ ≳ 10GeV, roughly

♮14When the DM is lighter and the de Broglie wavelength is even longer, the collective excitation modes

of nuclei or electrons such as the phonon becomes important (see for example [120]). This corresponds to

q ≲ O(1) keV or mχ ≲ O(1)MeV and thus we neglect this possibility here.
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represents the maximum possible sensitivity of the direct detection method.♮15 Currently,

the XENON1T collaboration [20] provides the most stringent constraint in the (sub-)TeV

region of our interest. Besides, the future planned experiments such as PandaX-4T [123],

XENONnT [124], LZ [125], and DarkSide-20k [126] will be able to probe the spin-independent

cross section of O(10−48) cm2 at the sensitivity maximum after a few years of data taking.

The qualitative description of the form of the sensitivity curves in Fig. 5 can be given

using the above discussion. The sensitivity for a very light WIMP is weak because of the finite

threshold Ethr of the recoil energy required for the detection of the signal. The threshold

effect can be taken into account by choosing the lower boundary of the v-integral in Eq. (3.14)

to be vmin defined as

vmin =

√
mTEthr

2µ2
T

. (3.17)

Since vmin ∝ m−1
χ for mχ ≪ mT , the event rate rapidly becomes smaller for smaller mχ. On

the other hand, heavier WIMP DMs have less number density with the energy density ρ0
fixed. Because of this, the sensitivity for a heavy WIMP becomes moderately worse when

mχ increases. These two behaviors determine the best suitable mχ for each choice of mT and

Ethr, which is the reason why the xenon nucleus target is more suitable for the TeV-scale

WIMP search than the electron target. The latter choice is suitable when we search for

lighter DMs.

Although no signal of DM is observed yet, this null result is still consistent with WIMP

models of our concern. For example, the Wino DM scatters with a nucleon through the

t-channel exchange of a higgs boson or two W gauge bosons at the one-loop order or higher.

The calculation of the scattering cross section up to the next-to-leading order in αs reveals

that it almost mass-independently takes a small value of σSI
p ≃ 2.3× 10−47 cm2 [23], which is

below the current constraint but is a region of future interest. As for the MDM, the 5-plet

fermion is analyzed in [26] and the scattering cross section σSI
p ≃ 10−46 cm2 is obtained.

However, the mass requirement mχ ∼ 10TeV (see Table 5) makes the detection difficult and

the sensitivity will not cover the whole region of the viable parameter space. In general, a

pure SU(2)L multiplet with non-zero hypercharge has a large contribution to σSI
p from the

tree-level exchange of Z boson [91]. Thus, for such a particle to be a viable DM candidate,

we should modify the model to forbid the tree-level scattering. Related to this point, the

Higgsino-like DM is a kind of a mixed multiplet that can avoid the tree-level scattering via

Z boson. As is discussed in Sec. 2.3, the mixing between Higgsino and gauginos splits the

masses of two neutral components of the Higgsino-like state, making them two Majorana

fermions. If the size of the mass splitting is larger than the typical kinetic energy of the

♮15It may be possible, in particular for the solar neutrino background, to significantly reduce the number

of background events and go beyond the neutrino floor by using the directional information of the signals.
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Higgsino-like DM, the scattering with t-channel Z boson exchange is suppressed and the

loop-suppressed scattering cross section for the direct detection dominates. This argument

sets an upper bound on the lighter electroweak gaugino mass Mi (i = 1, 2) as ⟨µv2⟩ ≲
M2

Z/Mi. By substituting µ = 1TeV and v ∼ 10−3, we obtain Mi ≲ 107GeV from the direct

detection constraint. Under this constraint, the phenomenology of the Higgsino-like state is

still highly model-dependent since the size of the mixing significantly modifies the scattering

cross section. According to [22, 127], the almost pure Higgsino has σSI
p below the neutrino

floor, while some of the parameter space with a sizable mixing has much larger σSI
p that is

already excluded. Thus, we conclude that the almost pure Higgsino is difficult to search for

using this method.

3.3 WIMP DM search : indirect detection

The indirect detection of DM♮16 uses the DM annihilation process into SM particles to detect

the DM signal. When DM is composed of WIMPs, their annihilation can be again explained

by the electroweak interaction. Since DMs are non-relativistic in the current universe, the

s-wave contribution to the annihilation cross section, if exists, dominates over others, which

results in the dominant annihilation process coming from the t- and u-channel exchange of

a virtual WIMP. Then, some of the final state particles may propagate to the earth and be

observed by telescopes in the form of gamma-rays, neutrinos, cosmic rays, and so on.

The DM annihilation rate at some point x of the universe has a quadratic dependence

on the local DM energy density ρχ(x).
♮17 In our case, we focus on the photons produced

at the WIMP annihilation, and the main targets of indirect detection experiments are the

center of galaxies or galaxy clusters, where abundant DM is expected to be accumulated

thanks to the strong gravitational potential. The DM energy density distribution around

each galaxy (cluster) can be determined by the observation of the rotation curve of luminous

objects. One of the model functions introduced to fit such observations is the so-called the

Navarro-Frenk-White (NFW) profile [129,130] of the DM density distribution,

ρNFW(r) =
ρs(

r
rs

) [
1 +

(
r
rs

)]2 , (3.18)

where r is the distance from the center of the galaxy of our concern. Free parameters

ρs and rs should be chosen to fit the data for each galaxy, which gives for our galaxy

ρs ∼ 1× 107M⊙ kpc−3 and rs ∼ 20 kpc [131] with M⊙ being the solar mass.

The inner slope of the NFW profile follows ρNFW ∝ r−1. On the other hand, many

observations of the rotation curve and models of dwarf galaxies suggest the scaling behavior

♮16For a recent review of the indirect detection experiments, see for example [128].
♮17More precisely, the annihilation rate has a quadratic dependence on the DM number density nχ(x). This

means that, for some fixed value of ρχ(x), the lighter DM has more chance to annihilate since nχ = ρχ/mχ.
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Figure 6: Dark matter energy density ρχ within our galaxy as a function of the distance

from the galactic center r.

ρ ∝ r0, which is the so-called core-cusp problem (see [132] and references therein). To take

account of this behavior, other profiles are also widely used: the Einasto profile [133,134]

ρEinasto(r) = ρs exp

[
− 2

α

{(
r

rs

)α

− 1

}]
, (3.19)

with ρs ∼ 5 × 106M⊙ kpc−3, α ∼ 0.2, and rs ∼ 10 kpc for our galaxy, and the Burkert

profile [135]

ρBurkert(r) =
ρs(

1 + r
rs

)(
1 + r2

r2s

) , (3.20)

with ρs ∼ 9×107M⊙ kpc−3 and rs ∼ 6 kpc for our galaxy. In Fig. 6, we show the DM energy

density distribution in our galaxy.♮18 As for the choice of parameters, we use the mean values

of fits of several observations listed in [131]. We can see the difference in shapes among three

profiles at the small r region.

Next we derive the formula to estimate the event rate of the indirect detection experi-

ments. The event rate at the laboratory can be divided into the particle physics part and

the astrophysical part, the second of which, referred to as the J-factor, is related to the DM

density distribution. The J-factor for the DM annihilation for a sky patch with solid angle

∆Ω around a sky direction n̂ is given by

J(n̂,∆Ω) =

∫
Ω∼n̂

dΩ

∫
LOS

ρ2χ(Ω, ℓ)dℓ, (3.21)

♮18In principle, all the profiles should reconstruct the DM density at the Sun ρ(r ∼ 8 kpc) ∼ 0.3GeV/cm3,

which is apparently not the case. This deviation can be explained by the effect of the fitting error, which

results in an order of magnitude uncertainty in ρχ at the 68% level.
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Target log10(J(n̂,∆Ω)/GeV2cm−5)

Galactic Center 21.5

Dwarf Galaxies 16–19

Galaxy clusters ∼ 20

Table 6: Comparison of J-factors for several targets of DM indirect detection.

where ℓ is a distance along the line-of-sight (LOS) defined by the direction Ω. The first

integration performed over a region ∆Ω around the direction n̂, while the second one sums

up all the contributions from DMs on the LOS. Using this, the flux Φx(E, n̂,∆Ω) of a SM

particle x with energy E at the sky patch is expressed as♮19

Φx(E, n̂,∆Ω) =
⟨σv⟩
8πm2

χ

dNx

dE
J(n̂,∆Ω), (3.22)

where ⟨σv⟩ and dNx/dE are the thermally averaged DM annihilation cross section and the

differential spectrum of x per annihilation, respectively.

In Table 6, we summarize J-factors for several astrophysical targets suitable for the

indirect detection of DM. Values are taken from [131, 136, 137]. We show the result with n̂

and ∆Ω being the direction of the target and the size of the target observed from the earth,

respectively.♮20 In the table, the results for the center of our galaxy, 20 dwarf galaxies in our

galaxy, and 7 galaxy clusters are shown. Among the targets listed in the table, the Galactic

Center seems to be the best source for indirect detection, which however suffers from huge

background events at the same time. Dwarf galaxies may be a more promising target since it

provides much cleaner signals and the combined analysis of several targets can be performed

to enlarge the statistics. Galaxy clusters may also be an interesting target since its power

for the DM detection strongly depends on the DM profile of each galaxy cluster and a large

enhancement may be expected for clusters that have relatively cusped DM profiles for some

reason.

♮19We identify the DM particle and anti-particle in the calculation of Eq. (3.22). If this is not the case, the

right-handed side should be multiplied by an extra factor of 1/2.
♮20In [137], the authors use a different definition of the J-factor

JT ≡ 1

4πD2

∫
dV ρ2χ, (3.23)

where D is the distance from the earth to the target, while the integral is performed over the whole volume of

the target. This definition possesses an advantage especially for the assumption of the NFW profile, which

becomes ill-defined around the center of the target in the integration process in Eq. (3.21). Due to this

difference, it is difficult to convert the J-factor of their definition calculated with the NFW profile into that

of our definition, and the result of the rough estimation is shown in the table.
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Figure 7: Ladder diagram contribution to the DM annihilation.

There remains a missing piece to describe the phenomenology of TeV-scale DMs: the

Sommerfeld enhancement effect [98,112]. This effect becomes important when the DM par-

ticles become non-relativistic like those in the current universe. Consider the repeated ex-

change of electroweak gauge bosons between two initial DM particles before the annihilation

as shown in Fig. 7, which is sometimes called a ladder diagram. At a glance, the contribution

of this diagram seems to be suppressed compared with the tree-level annihilation by a factor

of (α/4π)n, where α ∼ α1 ∼ α2 is a typical size of the coupling and n is the number of gauge

boson exchange. However, when the initial particles are non-relativistic, it turns out that

the proper power counting should be something like (α/β)n instead of αn, where β is the

velocity of initial particles, observed in the center-of-mass system for simplicity. This results

in a possibly large contribution from ladder diagrams and we need to resum all of them to

calculate the annihilation cross section accurately. This effect affects both the thermal relic

abundance of DM and the event rate at the indirect detection experiments, but the effect

on the latter is typically larger since the average value of β is smaller in the current universe

than that at the freezeout temperature.

The resummation procedure can be performed by the use of the Bethe-Salpeter equation

[138] as in [139]. Or equivalently, this effect can be seen as the deformation of the two-DM

wave function from the plane wave according to the potential energy between them sourced

by the electroweak interaction. In this viewpoint, it is intuitive that the physics can be

described by the Schrödinger equation[
− 1

mχ

d2

dr2
+ V (r)

]
ψ = Eψ, (3.24)

where ψ(r) is the s-wave part of the two-DM wave function, r is the distance between two

DMs, and V (r) and E = mχβ
2 are the potential and kinetic energies of the two DM system,

respectively. Besides, we impose the outgoing boundary condition

ψ(r) → eipr (r → ∞), (3.25)

with p = mχβ being the DMmomentum. Remembering that the DM-DM interaction is local,

the Sommerfeld enhancement factor R that multiplies the tree-level cross section is given by
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R = |ψ(∞)/ψ(0)|2. For example, when we consider the Coulomb potential V (r) = −α/r,
the equation can be analytically solved and we obtain

R =
πα/β

1− e−πα/β
, (3.26)

which causes a huge enhancement of the cross section when β is small and α > 0, or

equivalently, the force between DMs is attractive.

The problem possesses an interesting feature when we consider a potential that is non-

negligible only for a finite range such as the Yukawa potential for the electroweak interaction

V (r) = α2e
−mW r/r. In this case, when we neglect the small mass difference among an

SU(2) multiplet, the factor R is strongly enhanced when the initial particle mass satisfies

the equation

√
2pc = (2n− 1)

π

2
(n = 1, 2, . . . ), (3.27)

with pc ≡
√

2α2mχ/mW .♮21 Each choice of n corresponds to a model point that has a bound

state with zero binding energy and the enhancement is called the zero-energy resonance [140].

Note that the first peak with n = 1 corresponds to mχ ∼ 2TeV, which is compatible with

the assumption of the Wino DM or the MDM with the help of the non-thermal production.

Accordingly, as we will see from now, small regions around peaks of such models have already

been excluded by the indirect detection experiments.

There are many astrophysical observations that focus on several different particles or

photons with different wavelengths. Among them, the most stringent bound on DMs comes

from the gamma-ray observations provided by several currently working or future planned

collaborations such as the Fermi-LAT [141], GAMMA-400 [142], H.E.S.S. [29], and CTA

[143]. For Wino DM, for example, the annihilation mode into W+W− dominates over the

other modes and the photons emitted associated with the W -boson decay will be observed.

In Fig. 8, we show the constraint at the 95% confidence level on the DM annihilation cross

section, assuming 100% branching ratio into W+W− [31]. The gray dotted line shows the

combined result of 4-year observation of 15 dwarf galaxies by the Fermi-LAT collaboration,

while the black solid line denotes the annihilation cross section of Wino. Note the existence

of the zero-energy resonance at the position of mχ ∼ 2TeV as estimated above. From the

figure, we can see that the parameter regions of Wino DM mχ ≲ 400GeV and mχ ∼ 2TeV

are already excluded.♮22

♮21If the mass difference δm among an SU(2)L multiplet is comparable or larger than α2mW , the peaks

move to the heavier direction. This may be the case for Higgsinos with a large mixing with gauginos.
♮22Currently, almost 10-year observation data is expected to be accumulated and no sign of DM is reported.

According to the estimation in [31], this may correspond to the exclusion of mχ ≲ 800GeV and a slightly

larger range around mχ ∼ 2TeV.
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Figure 8: Constraint at the 95% confidence level on the DM annihilation cross section

taken from [31]. The gray dotted line shows the combined result of 4 years observation of 15

dwarf galaxies by the Fermi-LAT collaboration, and the green bands show the observational

errors. For the calculation of the constraint, the NFW profile is used. Also shown in the

black solid line is the annihilation cross section of Wino.

A similar analysis can be performed for other WIMP DM candidates. The Higgsino

is currently constrained only up to 350GeV [32] due to the smallness of the annihilation

cross section in particular for the heavier region. For the MDM, 5-plet fermion is analyzed

as an example in [33] and mχ ≲ 2TeV and several narrow regions corresponding to the

resonances are excluded. As for the prospects of future experiments, firstly, an order of

magnitude improvement on the constraint from that shown in Fig. 8 is expected [31] by a

combination of the 15-year observation at the Fermi-LAT and the 10-year observation at

the GAMMA-400, which covers most of the allowed parameter region of Wino DM. Besides,

the observation of the Galactic Center at the CTA collaboration will probe the relatively

heavier region mχ ∼ O(1)TeV efficiently, reaching σv ∼ (a few) × 10−26 cm3 s−1. However,

note that the observation of the Galactic Center is highly sensitive to the astrophysical

uncertainties such as those on the J-factor. Note also that the thermal Higgsino DM may

be a challenging target of this kind of experiment even in the future, whose mass and cross

section are mχ ∼ 1TeV and σv < 10−26 cm3 s−1, respectively.

3.4 Concluding remarks

In this section, we have described the possibility of WIMPs to be the dominant component of

DM. We have seen that the TeV-scale WIMPs with electroweak interactions can explain the

DM relic abundance and studied two search methods of such WIMP DMs. Both direct and



3.4 Concluding remarks 35

indirect detection have strong powers to explore a large region of the WIMP mass. However,

it is revealed that the almost pure Higgsino will be difficult to probe because of its small

scattering and annihilation cross section. Besides, the constraints shown above assume the

whole DM is composed of a WIMP and are also sensitive to the possibly large astrophysical

uncertainties. From the next section, we will see more robust ways of the WIMP search

using collider experiments and consider whether we can probe the regions of the parameter

space that are difficult to probe using DM search experiments.
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Section 4

Direct collider search of WIMPs

In this section, we review the production of TeV-scale WIMPs and search for their signals

using collider experiments. In particular, we will summarize the current bounds for WIMPs

obtained at the large hadron collider (LHC) and prospects at the future planned 100TeV

colliders such as the hadron option of the future circular collider (FCC-hh) [144] and the

super proton-proton collider (SPPC) [50,51]. In Sec. 4.1, we discuss the dominant production

processes of WIMPs at a hadron collider. In Sec. 4.2 and Sec. 4.3, we review two different

methods for the signal identification, the disappearing track search and the mono-jet search,

and summarize the current and future bounds.

4.1 WIMP production

There are two relevant processes both of which significantly contribute to the production

cross section of WIMPs considered here. The pair production via electroweak interaction

is a universal process that can be considered for any particle with a non-zero electroweak

charge. The decay of colored particles may also be efficient particularly for the MSSM. In

this subsection, we will review these two in order.

Pair production via electroweak interaction

Since all the WIMPs of our interest possess non-zero SU(2)L and/or U(1)Y charges, they can

be directly produced via electroweak interaction at the hadron collider as shown in Fig. 9.♮23

qα

qβ

Z/W/γ

χ

χ

q

Figure 9: WIMP pair production process at the hadron collider.

♮23All the Feynman diagrams in this thesis are drawn with the public code JaxoDraw-2.1 [145], which is

a graphical user interface that allows users to draw Feynman diagrams intuitively and export them in the
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In the figure, qα and qβ denote the partons (namely, one of the quarks)♮24 of the incident

protons relevant for the process, while χ denotes the WIMP and q is the momentum transfer.

Assuming the WIMP to be a SU(2)L n-plet with U(1)Y charge Y and the mass mχ, this

process is well described by the effective lagrangian♮25

L = LSM + (Dµχ)†(Dµχ)−m2
χχ

†χ (complex scalar), (4.1)

L = LSM + χ̄(i /D −mχ)χ (Dirac fermion), (4.2)

with LSM being the SM lagrangian, while the covariant derivative is given by

Dµ ≡ ∂µ − ig2 /W
aT a

n − ig1Y /B, (4.3)

where T a
n (a = 1, 2, 3) are n-dimensional representation matrices of SU(2)L. Note that when

χ is a real scalar (Majorana fermion) with Y = 0, the terms with χ in Eq. (4.1) (Eq. (4.2))

should be divided by two.

For the calculation, we neglect the effect of the electroweak symmetry breaking, which is

valid because we are interested in the high-energy collision with the parton-level center-of-

mass (CM) energy
√
s′ ≡

√
q2 ≳ TeV. Then, we consider the process in the CM frame and

estimate the parton-level differential cross section as

dσαβ
dΩ

∣∣∣∣√
s′,CM

=
Cαβ

8s′

(
1−

4m2
χ

s′

)3/2

sin2 θCM (complex scalar) (4.4)

dσαβ
dΩ

∣∣∣∣√
s′,CM

=
Cαβ

4s′

√
1−

4m2
χ

s′

[
1 +

4m2
χ

s′
+

(
1−

4m2
χ

s′

)
cos2 θCM

]
(Dirac fermion), (4.5)

where θCM is the angle between the momentum of the initial parton qα and that of a final

state WIMP. These expressions are valid only when the CM energy exceeds the production

threshold,
√
s′ > 2mχ. Note also that these expressions represent inclusive cross sections,

i.e., the total cross section for the production of all components of the WIMP multiplet χ.

The coefficient Cαβ consists of contributions from U(1)Y and SU(2)L gauge bosons,♮26

Cαβ = c1αβY
2α2

1 + c2αβI(n)α
2
2, (4.6)

eps format with the help of the (modification of) axodraw style file for LATEX [146]. Under the environment

of macOS Mojave, it apparently fails to start, but one can still execute it by looking inside the application

and start the Java executable file jaxodraw-2.1-0.jar directly. We would like to thank the authors for

providing the best tools to write the thesis with.
♮24When we take account of the next-to-leading order QCD effect, gluon may also be one of the initial

partons.
♮25In this subsection, we neglect the small mass splitting among different components in the multiplet χ

described in Sec. 2.3. This approximation is valid since the mass splitting is by far smaller than mχ and has

only a tiny effect on the production process.
♮26There is no contribution from the interference term between U(1)Y and SU(2)L contributions, since it

is proportional to Tr(T a
n ) = 0.
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with I(n) being the Dynkin index for the n-dimensional representation given by

I(n) ≡ n3 − n

12
, (4.7)

which is normalized so that I(2) = 1/2. The explicit form of c1αβ and c2αβ, which are sizes

of the couplings between partons of our choice and gauge bosons, can be expressed using

the U(1)Y charge Yα of the parton qα and the reducible representation matrices of SU(2)L
in the parton basis T a

αβ as

c1αβ = Y 2
α δαβ, (4.8)

c2αβ =
∑
a

∣∣T a
αβ

∣∣2 . (4.9)

Recalling that α1 < α2 and that we often consider the WIMPs with large n and moderate

Y , the WIMP production cross section grows as n3 for larger multiplets according to the

group theoretical factor (4.7).

In reality, the initial state of the hadron collider is not the individual partons but two

protons. To obtain the cross section for the two-proton initial state, we rely on the parton

distribution function (PDF), which expresses the fraction of the partons with some given

momentum in each accelerated proton (see for example [147,148]). Let fα(x) (0 < x < 1) be

the PDF for a given parton qα inside a proton with momentum pµ. fα(x) can be interpreted as

a probability distribution to find the parton qα with momentum xpµ, so we have a relationship

∑
α

∫ 1

0

dx xfα(x) = 1, (4.10)

associated with the total momentum conservation, and∫ 1

0

dx [fd(x)− fd̄(x)] = 1, (4.11)∫ 1

0

dx [fu(x)− fū(x)] = 2, (4.12)

from the composition of the proton. Using the PDF, the cross section of the process of

interest at the hadron collider is evaluated as

dσ

d
√
s′dΩ

=
∑
α,β

∫ 1

0

dx1dx2 fα(x1)fβ(x2)δ (s
′ − sx1x2)

dσαβ
dΩ

∣∣∣∣√
s′,lab

, (4.13)

where
√
s is the CM energy of the proton-proton collision. Note that dσαβ/dΩ |√s′,lab in the

integrand, which is a differential cross section in the laboratory, is a function of x1 and x2,
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χ

Figure 10: Example of NLO QCD contributions to the WIMP pair production process.

which is obtained by applying the appropriate Lorentz transformation to dσαβ/dΩ |√s′,CM.

Precisely speaking, the PDF has an energy scale dependence which is determined by the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [149–152]. Thus, the PDF is

a function of the form f(x, µF ), where µF is the analog of the renormalization scale for the

PDF often called the factorization scale.

Hadron colliders have several more features related to the strong interaction of quantum

chromodynamics (QCD). Firstly, the next-to-leading order (NLO) QCD contribution to each

process is not necessarily negligible. For the WIMP pair production, the real and virtual

emission of a gluon shown in the left and right panels of Fig. 10, respectively, give the

NLO QCD contributions. In particular, when the large transverse momentum is important

for the phenomenology of our concern, such as the case in Sec. 4.2, the real emission of a

gluon with a sizable transverse momentum significantly modifies the cross section relevant

for the analysis. Also, an additional real emission may be required to trigger the event, in

particular when the other products are invisible for detectors like in Sec. 4.3. Secondly, all

the colored particles in the initial, intermediate, and final states should be accompanied by

numbers of soft emissions of gluons, which can be treated by the semi-classical approximation

called the parton shower. In practice, there is a difficulty caused by the partial overlap of

the gluon phase space between the one-gluon emission cross section calculated as an NLO

QCD effect and the same calculated by the parton shower. To avoid the overlap, we often

perform the matching procedure, in which we set some merging energy scale by hand and

include the contribution to the cross section with gluon energy above (below) the scale only

from the NLO QCD (parton shower) calculation. Finally, the colored particles in the final

states should eventually be confined, which is called the hadronization, and observed as some

energetic and collimated sprays of hadrons, which as a whole is called a jet.

In the following, we perform the numerical calculation, taking account of all the above

complexities. For this purpose, we make use of the Monte Carlo generator MadGraph5

aMC@NLO (v2.6.3.2) [153, 154] with the successive use of Pythia8 [155] for the parton

shower, hadronization, and matching and Delphes (v3.4.1) [156] for the detector simu-
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WIMP name Higgsino Wino 5-plet Majorana fermion

σLO [fb] 15 85 423

σNLO [fb] 17 93 461

K-factor 1.15 1.09 1.09

Table 7: Table of pair production cross sections of several types of WIMPs. The CM energy√
s = 100TeV is assumed and WIMP masses are set to be 1TeV.

Wino mass [TeV] 1.0 1.5 2.0 2.9

σLO [fb] 85 19 6.1 1.3

σNLO [fb] 93 21 6.8 1.5

K-factor 1.09 1.11 1.11 1.15

Table 8: Table of pair production cross sections of Wino with several choice of masses. The

CM energy
√
s = 100TeV is assumed.

lation, including the definition of jets as observed objects. We use the MLM-style match-

ing [157] with the merging scale of 67.5GeV and NNPDF2.3QED with α3(MZ) = 0.118 [158]

as a canonical set of PDFs. For the renormalization and factorization scales, we adopt the

default values of MadGraph5 aMC@NLO, i.e., the central m2
T scale after kT -clustering of

the event. The one-loop level contributions such as the right panel of Fig. 10 can be taken

into account by using a properly prepared model file and the [QCD] option of MadGraph5.

However, just for simplicity of the analysis, we generate the tree-level pair production process

with up to one jet.♮27

In Table 7, we list the production cross sections of various WIMPs via a weak gauge

boson exchange at a
√
s = 100TeV hadron collider.♮28 As for the WIMP mass, we use

the common value m = 1TeV to compare the cross sections among a different choice of

quantum numbers. σLO and σNLO denote the production cross sections without and with

the NLO QCD correction, respectively, while the last line is the so-called K-factor defined as

σNLO/σLO. From the table, by comparing the results for the triplet (i.e. Wino) and 5-plet

Majorana fermions, we can roughly see the correct dependence of the cross section on the

SU(2)L charge σ ∝ n3.

In Table 8, we also show the mass dependence of the Wino pair production cross section.

For heavier mass, a wider range of
√
s′ is below the production threshold 2mχ or accompanied

♮27In spite of the lack of the one-loop contributions, this procedure is free from the infrared divergence

since the matrix element with an additional jet is considered only when the jet energy scale is larger than

the merging scale.
♮28See Appendix C for the implementation of the MDM model in the collider simulation procedure.
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Figure 11: Histogram of the
√
s′ distribution for

√
s = 100TeV. Left: Production of 1TeV

Higgsino at L = 3ab−1. Right: Production of 2.9TeV Wino at L = 30 ab−1.

with a small suppression factor
(
1− 4m2

χ/s
′)1/2 as shown in Eq. (4.5), and the cross section

becomes significantly smaller. However, values in the tables still show that plenty of well-

motivated WIMP DM candidates, such as 1TeV Higgsino and 2.9TeV Wino, are produced

at, for example, the 30 ab−1 option of the FCC-hh.

In Fig. 11, we show the
√
s′ distribution for the pair production process at a

√
s = 100TeV

collider. Left and right figures correspond to the production of mχ = 1TeV Higgsino at the

integrated luminosity L = 3ab−1 and of mχ = 3TeV Wino at L = 30 ab−1, respectively.

At around
√
s′ ∼ 2mχ, we clearly see the production threshold and the suppression effect

σ ∝ (1 − 4m2
χ/s

′)1/2. On the other hand, when
√
s′ becomes much larger than 2mχ, the

cross section rapidly decreases because of both the scaling of the parton-level cross section

σ ∝ (
√
s′)−3 as in Eq. (4.5) and the smaller values of the PDF. Note that these properties

are universal among several processes, including one of the contributions to the gluino pair

production process through the s-channel gluon exchange discussed in the next subsection

and the lepton pair production via an electroweak gauge boson that is the main topics of

Sec. 5.

Decay of colored particles

In hadron colliders, a particle with the color charge has far more chance to be produced

than a non-colored particle with the same mass. When we consider the split SUSY or

the anomaly mediation model reviewed in Sec. 2.1, gluino tends to be relatively light, whose

decay produces WIMPs. Without fine-tuning of Higgsino and gaugino masses, gluino lifetime

is sufficiently short and only its decay products are observed by the detectors. Since all the

SUSY particles finally decay into the LSP as described in Sec. 2.1, the gluino production
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gluino mass [TeV] 6.0 7.0 8.0

σ(pp→ g̃g̃) [fb] 7.9 2.7 1.0

Table 9: Gluino pair production cross section at
√
s = 100TeV at the leading order of αs

taken from [159].

cross section can effectively be counted as the production cross section of WIMPs in these

models.

Keeping the R-parity conservation in our mind, the dominant process accompanied by

gluinos in these models is the gluino pair production. In Table 9, we summarize the gluino

pair production cross section evaluated at the leading order of αs for simplicity for various

gluino masses at
√
s = 100TeV, taken from [159]. The values in the table show that the

gluino pair production process, depending on masses of gluino and WIMP, may give a much

larger cross section for the WIMP production than the purely electroweak processes described

above. We will mainly focus on, however, the electroweak pair production process below, in

case gluino is out of the reach at 100TeV colliders.

4.2 Disappearing track search

In the last section, we have checked the possibility that a large number of WIMPs are

produced at hadron colliders. On the other hand, the detection of produced WIMPs is not a

straightforward task, because there are huge background events with many charged and/or

colored particles. To reduce the background events and obtain the best possible reach for

WIMPs, we consider several methods using typical properties for the WIMP signals, one of

which is the disappearing track signal described here.

As mentioned in Sec. 2.3, the spontaneous breaking of the electroweak symmetry leads to

the mass splitting among an SU(2)L multiplet, leaving the neutral component as the lightest

one. As a result, the charged components of a multiplet, if produced, eventually decay into

the neutral component. However, the mass splitting is so small in many cases that the typical

flight length of the charged components is comparable to the detector size. Such long-lived

charged particles, which travel for a few cm and then decay into an invisible counterpart,

can be detected as charged tracks disappearing in the middle. They are very characteristic

signals and can be used as an efficient discriminator between the SM background and the

WIMP signals. In this section, we will study what we have summarized above in more detail.

Lifetime of charged components

The small mass splitting among a WIMP multiplet allows the heavier charged component to

decay into the neutral component and SM particles via an off-shell W boson. Depending on
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the size of the relevant mass difference ∆mχ, several channels contribute to the decay [160].

For tiny ∆mχ < mπ with mπ being the charged pion mass, χ± → ℓ±νℓχ
0 (ℓ = e, µ) are the

unique decay modes. Once ∆mχ exceeds mπ, the mode χ± → π±χ0 opens up and becomes

the dominant one. After ∆mχ ≳ 1GeV, final states with two and three pions start to give

a sizable contribution, and the total decay rate asymptotes to that for χ± → q′q̄χ0. For a

larger mass splitting, the mode χ± → τ±ντχ
0 may also be allowed. As a whole, these decay

modes determine the lifetime of a charged component of a WIMP, which is typically long

enough to be probed by experiments thanks to the small mass difference.

Let τ be the lifetime of the (singly) charged component of a WIMP, defined using the total

decay rate Γ as τ ≡ 1/Γ. Taking into account that a WIMP, if produced at colliders with

sufficiently high energy, has a velocity comparable to the speed of light c, cτ expresses a rough

estimation of its flight length inside detectors. For Higgsino with mπ < ∆mχ ≲ 1GeV,♮29

we can estimate [160,161]

cτ ≃ 0.7 cm

[(
∆mχ

340MeV

)3
√
1− m2

π

∆m2
χ

]−1

. (4.14)

Since the mass difference for Wino is a factor two smaller than Higgsino, we obtain a much

longer flight length

cτ ≃ 3.1 cm

[(
∆mχ

165MeV

)3
√
1− m2

π

∆m2
χ

]−1

, (4.15)

which gives cτ ≃ 5.8 cm for ∆mχ = 165MeV. The same calculation applies to the MDMs

with n ≥ 5, Y = 0, and ∆mχ = 166MeV, resulting in somewhat shorter flight length

that scales as cτ ∼ 44 cm/(n2 − 1) irrespective of the MDM spin [15] due to the stronger

interaction with W bosons.

Disappering track signal

Once a long-lived charged component of WIMP is produced, it is detected by the trackers

installed in the innermost part of the detectors for the case of ATLAS and CMS collaborations

at the LHC. For example, in the ATLAS setup, several tracking detectors are equipped

cylindrically around the beamline from the radius r = 3 cm to 108 cm. The pixel detector

spans the radius from 3 cm to 12 cm, the strip semiconductor tracker (SCT) from 30 cm to

52 cm, and the transition radiation tracker from 56 cm to 108 cm. In particular, the pixel

detector is the most important for our discussion, which is composed of four layers, with

♮29We are not interested in Higgsino with ∆mχ ≳ 1GeV here since the corresponding flight length will be

much shorter than O(1) cm, which is the scale of the detectors.
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the innermost one being the recently equipped so-called the insertable B-layer [162–164].

To detect the charged track signal of a long-lived WIMP with the typical flight length of

O(1) cm, they require the hit at every layer of the pixel detector and apply the SCT veto

to search for the track signal disappearing in between 12 cm < r < 30 cm. As for the

fake events within the SM, the SCT veto denies the possibility for a stable SM particle to

mimic the signal. However, there are two important sources of the fake track generated by

hadrons/electrons and the so-called pile-up.

The first possibility with hadrons/electrons is a physical background caused by the inter-

action of hadrons with detector material or by the hard photon emission of electrons. After

these interactions, the orbit of a hadron/electron is bent and, if this secondary interaction

occurs in between 12 cm < r < 30 cm, two tracks in the pixel detector and the SCT are not

identified with each other. As a result, the first track in the pixel detector seems to disappear

in the middle, which mimics the true WIMP signals. In the LHC, this type of background

dominates and generates O(10–100) fake events for
√
s = 13TeV, L = 36.1 fb−1 (see Fig. 7

of [34]).

On the other hand, for future hadron colliders, the second possibility of the fake track

from the pile-up may be more important. In hadron colliders, a bunch of protons is acceler-

ated at the same time and two bunches “collide” with each other with some given frequency.

Since there are many protons inside a bunch, typically more than one collisions of two pro-

tons occur for each bunch crossing. The average number of collisions per bunch crossing is

often denoted as ⟨µ⟩ and the values of ⟨µ⟩ ∼ 20, 80, and 200 are expected for LHC Run-2,

Run-3, and HL-LHC. With this large number of collisions, there are a lot of collision products

detected almost at the same time, which makes the signal significantly messy. Then, among

a huge number of hits on tracking detectors, several of them occasionally form a straight

line in position and time, which is sometimes called the fake track. Since this track is only a

fake, it can easily pass the SCT veto and mimic the disappearing track signal of WIMPs. In

the real experiment, the rate for fake track reduces as we require more hits on trackers. See

the results reviewed below for a concrete estimation of the fake track rate at the FCC-hh.

From now on, we estimate how many events are expected at the FCC-hh. Recalling

that the detectors are installed in a cylindrical geometry, the transverse distance dT of the

charged WIMP flight measured from the beamline plays an important role. We can estimate

the probability for dT to be larger than d as

P (dT > d) = exp

(
− d

βγcτ sin θ

)
, (4.16)

where β is the WIMP velocity, γ ≡ (1 − β2)−1/2, and θ is the angle between the WIMP

momentum and the beamline. One of the implications of the above expression is that

WIMPs with large transverse momentum have a larger possibility to reach outer layers of
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Figure 12: Distribution of the survival probability P (dT > 15 cm) for 2.9TeV Wino. The

pair prodction process at
√
s = 100TeV and L = 30 ab−1 is assumed.

the pixel detector. This enlarges the importance of considering the NLO (and higher-order)

QCD processes with real emissions for the pair production. Due to the hard emission of the

gluon, the produced pair of WIMPs recoil in the opposite direction, and WIMPs tend to

have larger transverse momentum than the case without gluon emission. It can be directly

checked that, for
√
s = 100TeV, even the two-gluon emission process possesses non-negligible

contribution to the simulation of the disappearing track search for WIMPs.

In Fig. 12, we show the distribution of P (dT > 15 cm), which is motivated by the FCC-

hh detector setup assumed below, for the 2.9TeV Wino,
√
s = 100TeV, and L = 30 ab−1.

The blue and orange histograms show the distributions without and with the cut on the

missing transverse momentum /ET > 1TeV, respectively, which has been revealed to be

efficient to reduce the number of backgrounds [159]. Here, we only consider the WIMP pair

production process with up to one gluon emission as an example. Note that τ ≃ 5.8 cm

and exp(−15 cm/τ) ∼ 7.5 × 10−2 for this setup. We can see that the effect of the large

Lorentz boost βγ ≫ 1 pushes the probability to P ≳ O(10−1) for some Winos, while the

angular distribution of Winos makes a wide tail of the distribution at P ≲ O(10−2) when

sin θ ∼ 0. By summing the shown probabilities for all produced Winos, we can obtain the

expectation value N15 for the number of Winos with dT > 15 cm. We find N15 ∼ 2700

(700) with (without) the /ET cut, to which a lot of Winos with P ≳ O(10−1) significantly

contribute. Thus, we infer that we can detect the Wino signal if we can suppress the number

of background events to ≲ O(105). In the next subsection, we will see that this may be

the case for the FCC-hh and the parameter space for the Wino DM candidate can fully be

covered.

In Fig. 13, we show the distribution of the Wino velocity β for the same process. The blue
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Figure 13: Distribution of the Wino velocity β for 2.9TeV Wino. The pair prodction

process at
√
s = 100TeV and L = 30 ab−1 is assumed.

WIMP pure Higgsino Wino 5-plet fermion

Upper bound on mχ 152GeV 460GeV 267GeV

Table 10: Current upper bounds for WIMP masses obtained from the disappearing track

search. Results are taken from [34–37].

and orange histograms show the distributions without and with the /ET cut, respectively,

while the green one shows that with /ET > 1TeV and dT > 15 cm, picked up randomly

according to the survival probability Eq. (4.16). As already seen in Fig. 11, the CM energy

of the two-Wino system distributes from a few to O(10)TeV, and many Winos are highly

boosted with β ∼ 1. Since a charged Wino tends to survive for a longer distance when it is

more accelerated, a non-negligible fraction of the boosted Winos with β ≳ 0.6 satisfies the

requirement dT > 15 cm.

Current constraints and future prospects

So far, the disappearing track search is performed by both ATLAS [34] and CMS [36] collab-

orations. Below, we will focus particularly on the ATLAS collaboration and discuss current

constraints.

In Fig. 14, we show the result of the disappearing track search taken from [34]. As for the

production process, only the pair production via an electroweak gauge boson is considered.

The yellow band shows the current constraint on the WIMP mass and lifetime plane and the

left part of the band is already excluded. The sensitivity becomes weak when we consider

τ ≳ 1 ns or cτ ≳ 30 cm due to the requirement of the SCT veto. In the figure, the lifetime
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Figure 14: Current status of the disappearing track search using the pair production process

via an electroweak gauge boson. The figure is taken from [34].

of Wino as a function of its mass is also shown by the black dot-dashed line. It can be seen

that the current constraint on Wino mass is mχ ≲ 460GeV.

Using the lifetime evaluated in the previous subsection, we summarize the current status

for several WIMPs in Table 10, which exhibits upper limits of O(100)GeV. However, note

that the bound for the Higgsino listed in the table neglects the mixing between Higgsino and

gauginos. Actually, ∆mχ and thus τ are sensitive to the mixing, and an order estimation

shows that the mixing lowers the lifetime to be τ ≲ 0.01 ns and spoils the bound for Higgsino

when M1, M2 ≲ 100TeV without any non-trivial cancellation in Eq. (2.31). Note also that

the bound for 5-plet fermion is weaker than that for Wino in spite of the much larger

production cross section because of the smaller lifetime.

The analysis of the disappearing track search at future hadron colliders is performed

in [54,165]. Since the detector setup for future colliders such as the FCC-hh is undetermined

yet, in [165], the authors assume several setups and compare the result. In each setup,

five layers of the pixel detector are installed and the fifth layer position (which we call r5)

ranges from 15 cm to 27 cm.♮30 For the background reduction, hits to all of the five layers

are required. By varying the average number of pp interactions per bunch crossing from

⟨µ⟩ = 200 to 500, the fake background rate is estimated to range from 10−7 to 10−5.

♮30For simplicity of the discussion, we just assume that the detectors outside the pixel detector are far apart

from the beamline so that all the WIMPs decay before reaching them. Then, we can estimate the discovery

reach by counting the number of WIMP signals that reach the fifth layer of the pixel detector.
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Detector setup pure Higgsino Wino

r5 = 15 cm 0.9–1.2TeV > 4.0TeV

r5 = 27 cm < 0.7TeV 2.9–4.0TeV

Table 11: Prospects of 5σ discovery reach of the disappearing track search at the FCC-hh

with L = 30 ab−1 using the pair production process via an electroweak gauge boson. The

results are based on [165].

In Table 11, we summarize the obtained 5σ discovery reach for pure Higgsino and Wino

for two detector setups with the integrated luminosity L = 30 ab−1, again using the pair

production process via an electroweak gauge boson. The uncertainty of the reach corresponds

to the variation of ⟨µ⟩ = 200–500 and the uncertainty in soft QCD processes. Recalling the

discussion in Sec. 3.1, Table 11 shows that the FCC-hh can cover the whole region of the

parameter space consistent with Wino DM mχ ≲ 2.9TeV. On the other hand, there is a

sensitivity up to the mass of the thermal Higgsino DM mχ ∼ 1.1TeV only when we adopt

the most optimistic assumption, i.e., the pure Higgsino with small ∆mχ searched for with

r5 = 15 cm. Thus, it is an important task to consider another way of search for Higgisno,

in particular, a way that is unaffected by the mass splitting ∆mχ. The authors do not give

any comment on the MDM search, but we can give some very rough estimates of the reach

from Table 11. For example, considering the 5-plet fermion with cτ ∼ 1.8 cm, the size of

the significance of the signal should be in between that for Higgsino and Wino assuming

the same production cross section, while the cross section scales as n3 as a function of the

SU(2)L charge as we have seen so far. Thus, the reach for the 5-plet fermion should be

a few TeV, which covers a non-negligible fraction of the parameter space viable as a DM

candidate.

4.3 Mono-jet search

Another way of identifying the WIMP events is to look for the mono-jet events. The relevant

process is shown in the left panel of Fig. 10; if the WIMP pair production occurs with an

initial state radiation (ISR) jet but both of the WIMPs are unobserved by detectors, the

unique object that is observed is the ISR jet. In the mono-jet search, we require this jet to

be sufficiently hard and use it to trigger and tag the event as an event related to the new

physics.

Since the event topology is astonishingly simple, there are a huge number of background

events within the SM. The dominant background comes from the Z+jet production with Z

decaying into two neutrinos. Besides, theW+jet production followed by the leptonic decay of

theW -boson has a comparable contribution because the charged lepton in the final state may
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systematic error σB Higgsino Wino

1% 0.5TeV 1TeV

2% 0.2TeV 0.5TeV

Table 12: Prospects of 5σ discovery reach of the mono-jet search at the FCC-hh with

L = 30 ab−1 using the pair production process via an electroweak gauge boson. The results

are based on [54].

fall outside the detector coverage. Finally, a sub-dominant but non-negligible contribution

to the background comes from the top pair production process and so on. These background

events lead to the small signal-to-background ratio (S/B) of the 1% level both within the

current setup and the future prospect, which makes this method highly challenging.

Considering the small ratio S/B, the systematic errors may also shrink the discovery

reach of WIMPs in this method. At worst, these errors should be as small as the 1% level to

obtain some meaningful results. However, this may be overcome by future endeavors both

in the theory and experimental sides. For example, the theoretical and experimental values

of the relevant cross sections are already controlled with high precision. In the theory side,

the errors in the calculation are reduced to a few percent level by including the next-to-next-

to-leading order QCD and the NLO electroweak effects and performing the next-to-leading

logarithmic resummation of the electroweak Sudakov factors [166]. In the experimental side,

the uncertainties on the estimation of the cross section of background events from the data

are also at a few percent level [167]. These errors are expected to be reduced with the

calculation of the higher order loop effects and the accumulation of more data.

The main focus of this method is on the short lifetime Higgsino since the other long-lived

WIMPs will be more efficiently searched for by the disappearing track search. Unfortunately,

due to the small ratio S/B, there is no constraint on the Higgsino from the mono-jet search

so far [38]. As for the future prospects, we show the prospects of 5σ discovery reach for

Higgsino and Wino taken from [54] in Table 12. To obtain the result, the authors introduce

the parameter σB (σS) that expresses the unknown systematic uncertainty on the background

(signal) and define the p-value as

p ≡ S√
B + (σBB)2 + (σSS)2

, (4.17)

where B and S are the number of background and signal events, respectively. The de-

nominator combines the errors from the statistical fluctuation (the corresponding standard

deviation equals
√
B), the systematic errors on the background (σBB), and those on the

signal (σSS), assuming that all of the above are uncorrelated with each other. They fix

σS = 10% and use two different choices σB = 1% and 2% as the table shows. The values
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on the table correspond to the WIMP masses that give p = 5.

From Table 12, we can see that the result highly depends on the choice of σB. In

particular, it is important to suppress σB ≲ 1% to obtain a strong discovery reach on

Higgsino. Besides, it can be checked that the coverage of the Wino parameter space is much

smaller than that of the disappearing track search, mainly due to the small ratio S/B.
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Section 5

Indirect search of WIMPs

using Drell-Yan process

So far, we have discussed several ways to search for WIMPs using DM searches and

collider experiments. We have seen that, while WIMPs with relatively large SU(2)L charges

such as Wino and the 5-plet fermion are promising for these searches, Higgsino is typically

more challenging to probe. Given this situation, another search strategy attracts a lot of

attention [1, 2, 40–46] that probes WIMPs via the electroweak precision measurement at

colliders. It utilizes a pair production of charged leptons or that of a charged lepton and a

neutrino, where WIMPs affect the pair production processes through the vacuum polarization

of the electroweak gauge bosons as shown in Fig. 15. It is an indirect search method in the

sense that it does not produce on-shell WIMPs as final states.

There are several virtues in this method such as the robustness against the change of the

lifetime and the decay modes of WIMPs and the characteristic dip-like shape of the invariant

mass distributions at the value close to twice the WIMP mass as we will see below. We will

see that the latter point helps us to distinguish the WIMP effects from backgrounds and

systematic errors. However, the obtained reach for Higgsino in most of the literature is still

unsatisfactory since the use of the LHC or lepton colliders gives us only a small number of

events at the position of the dip for a heavy Higgsino, which results in the reach much below

the thermal Higgsino DM mass mχ ∼ 1TeV.

Thus, in this section, we pursue this indirect search method further, considering a much

higher CM energy using the future 100TeV hadron colliders such as FCC-hh [47–49,144] and

qα

qβ

�

�/ν

χ̃0, χ̃±

γ, Z,W

Figure 15: WIMP effect on the Drell-Yan processes considered in this section.
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Figure 16: Invariant mass distribution of the pair-produced electrons at a 100TeV collider

with the integrated luminosity L = 3ab−1.

SppC [50, 51]. We concentrate on the Drell-Yan processes that have two charged leptons or

mono-lepton plus a neutrino in the final state since they provide a very clean signal without

any hadronic jets at least from the final state particles. In Fig. 16, we show the invariant

mass distribution of the pair produced electrons, for example, at a 100TeV collider with

the integrated luminosity L = 3ab−1. As we will discuss in Sec. 5.2.1 in more detail, the

NLO QCD effect is taken into account and NNPDF2.3QED with αs(MZ) = 0.118 [158] is used

as a canonical set of PDFs. In the figure, events are divided into bins with equal width of

100GeV. Thanks to the large CM energy, there are roughly 104 events around the invariant

mass of 2TeV that can be used to probe the O(1)% effect of the new physics, which will be

turned out to be useful for the 1TeV Higgsino search.

Below, we will show that the indirect search method provides a comparable or better

experimental reach for Higgsino compared to the direct production search of WIMPs at fu-

ture colliders [52–55]. Besides, we demonstrate for the first time that the indirect search

method can be applied not only to discover WIMPs but also to investigate their proper-

ties, such as charges, masses, and spins. To this end, it is important to consider both the

charged current (CC) process with two-lepton final state and the neutral current (NC) pro-

cess with mono-lepton final state to break some degeneracy among different WIMP charge

assignments; the NC and CC processes depend on different combinations of the SU(2)L and

U(1)Y charges of WIMP, and hence the inclusion of both processes allows us to extract these

charges separately.

This section is based on our works [1, 2].
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5.1 WIMP effect on the Drell-Yan processes

We investigate contributions of the WIMPs to the Drell-Yan processes through the vacuum

polarization of the electroweak gauge bosons at the loop level. Throughout this section, we

assume that all the other beyond the SM particles are heavy enough so that they do not

affect the following discussion. After integrating out the WIMPs, the effective lagrangian

relevant for our analysis is expressed as

Leff = LSM + C2g
2W a

µνf

(
−D

2

m2

)
W aµν + C1g

′2Bµνf

(
− ∂2

m2

)
Bµν , (5.1)

where LSM is the SM Lagrangian, D is a covariant derivative, m is the WIMP mass,♮31 g

and g′ are the SU(2)L and U(1)Y gauge coupling constants, and W a
µν and Bµν are the field

strength associated with the SU(2)L and U(1)Y gauge group, respectively. The function

f(x) is defined as [44]

f(x) =


1

16π2

∫ 1

0

dy (1− 2y)2 ln(1− y(1− y)x− i0) (Scalar),

1

16π2

∫ 1

0

dy y(1− y) ln(1− y(1− y)x− i0) (Fermion),

(5.2)

where the first (second) line corresponds to a scalar (fermionic) WIMP, respectively.♮32 The

coefficients C1 and C2 for an SU(2)L n-plet WIMP with hypercharge Y are given by

C1 =
κ

8
nY 2, (5.3)

C2 =
κ

8
I(n), (5.4)

where κ = 1, 2, 8, 16 for a real scalar, a complex scalar, a Weyl or Majorana fermion, and a

Dirac fermion, respectively. I(n) is the Dynkin index for the n dimensional representation of

SU(2)L defined in Eq. (4.7). The coefficients are uniquely determined by the representation

of the WIMPs. For example, (C1, C2) = (1, 1) for Higgsino, and (C1, C2) = (0, 2) for Wino.

We emphasize that, contrary to the usual effective field theory, our prescription is equally

applied when the typical scale of the gauge boson four-momentum q is larger than the WIMP

mass scalem since we do not perform a derivative expansion of f in Eq. (5.1). It is important

because, as we see soon, the effect of the WIMPs is maximized when q2 ∼ m2, where the

derivative expansion is not applicable.

♮31Here we neglect a small mass splitting among the SU(2)L multiplet.
♮32If a WIMP interacts only through the electroweak interaction, its decay width is of O(1)% or less of its

mass even if it is unstable. We assume that this is the case, and neglect the small effect on the function f(x)

due to the small decay width. Also, f(x) corresponds to the finite part of the WIMP loop contribution after

performing the renormalization in the MS scheme.
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Fermion f v
(γ)
f a

(γ)
f v

(Z)
f a

(Z)
f v

(W )
f a

(W )
f

up-type quark 2
3
e 0 (1

4
− 2

3
s2W )gZ −1

4
gZ

1
2
√
2
g − 1

2
√
2
g

down-type quark −1
3
e 0 (−1

4
+ 1

3
s2W )gZ

1
4
gZ

1
2
√
2
g − 1

2
√
2
g

lepton −e 0 (−1
4
+ s2W )gZ

1
4
gZ

1
2
√
2
g − 1

2
√
2
g

Table 13: Coefficients of the weak interaction defined as Γ
(V )
f ≡ v

(V )
f +a

(V )
f γ5. Here, e = gsW

and gZ = g/cW , where sW ≡ sin θW and cW ≡ cos θW with θW being the weak mixing angle.

At the leading order (LO), we are interested in u(p) ū(p′) → ℓ−(k) ℓ+(k′) and d(p) d̄(p′) →
ℓ−(k) ℓ+(k′) as the NC processes and u(p) d̄(p′) → ν(k) ℓ+(k′) and d(p) ū(p′) → ℓ−(k) ν̄(k′)

as the CC processes. Here, u and d collectively denote up-type and down-type quarks,

respectively, and p, p′, k, and k′ are initial and final state momenta. In the SM, the amplitudes

for both the NC and CC processes at the LO are expressed as

MSM =
∑
V

[
v̄(p′)γµΓ

(V )
q u(p)

] [
ū(k)γµΓ

(V )
ℓ v(k′)

]
s′ −m2

V

, (5.5)

where
√
s′ is the invariant mass of the final state leptons, which is denoted as mℓℓ for the

NC processes and mℓν for the CC processes. The relevant gauge bosons are V = γ, Z for the

NC processes and V = W± for the CC processes, with mV being the corresponding gauge

boson mass. In addition,

Γ
(V )
f ≡ v

(V )
f + a

(V )
f γ5, (5.6)

with v
(V )
f and a

(V )
f given in Tab. 13. The WIMP contribution is given by

MWIMP =
∑
V,V ′

CV V ′s′f

(
s′

m2

) [v̄(p′)γµΓ(V )
q u(p)

] [
ū(k)γµΓ

(V ′)
ℓ v(k′)

]
(s′ −m2

V )(s
′ −m2

V ′)
, (5.7)

where Cγγ = 4(C1g
′2c2W +C2g

2s2W ), CγZ = CZγ = 4(C2g
2−C1g

′2)sW cW , CZZ = 4(C1g
′2s2W +

C2g
2c2W ), and CWW = 4C2g

2. Again V, V ′ = γ, Z for the NC processes and V, V ′ = W± for

the CC processes.

We use dΠLIPS for a Lorentz invariant phase space factor for the two-particle final state.

Then, using Eqs. (5.5) and (5.7), we define

dσSM

d
√
s′

=
∑
α,β

dLαβ

d
√
s′

∫
dΠLIPS |MSM (qαqβ → ℓℓ/ℓν)|2 , (5.8)

dσWIMP

d
√
s′

=
∑
α,β

dLαβ

d
√
s′

∫
dΠLIPS 2ℜ [MSMM∗

WIMP (qαqβ → ℓℓ/ℓν)] , (5.9)
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where we take the average and summation over spins.♮33 Here, dLαβ/d
√
s′ is the so-called

luminosity function for a fixed
√
s′:

dLαβ

d
√
s′

≡ 1

s

∫ 1

0

dx1dx2 fα(x1)fβ(x2)δ

(
s′

s
− x1x2

)
, (5.10)

where α and β denote species of initial partons,
√
s = 100TeV, and fa(x) is the PDF used in

Sec. 4.1. Eq. (5.8) represents the SM cross section, while Eq. (5.9) the WIMP contribution to

the cross section. For the statistical treatment in the next section, we introduce a parameter

µ that parametrizes the strength of the WIMP effect and express the cross section with µ as

dσ̃

d
√
s′

=
dσSM

d
√
s′

+ µ
dσWIMP

d
√
s′

. (5.11)

Obviously, µ = 0 corresponds to the pure SM, while µ = 1 corresponds to the SM+WIMP

model. Hereafter, we use

δσ(
√
s′) ≡ dσWIMP/d

√
s′

dσSM/d
√
s′

, (5.12)

to denote the correction from the WIMP. Note that this ratio remains unchanged even if we

take into account the next-to-leading order (NLO) QCD effect because the EWIMPs affect

the cross sections only through the vacuum polarization.♮34

In Fig. 17, we plot δσ for the CC processes as a function of
√
s′. The purple, blue,

and red lines correspond to Higgsino, Wino, and 5-plet scalar, respectively. There is a dip

around
√
s′ = 2m for all the cases of the WIMPs which originates from the loop function f

in Eq. (5.2). The WIMP contributions to the NC processes show a similar dip structure that

again comes from f . This dip is crucial not only for the discovery of the WIMP signal (see

Sec. 5.2.3) but also for the determination of the properties of the WIMPs (see Sec. 5.2.4). In

particular, the WIMP mass can be extracted from the dip position, while the WIMP charges

(n and Y ) can be determined from the depth of the dip. The negative sign of the WIMP

contributions can be understood from the consideration using the optical theorem and the

analytic structure of the loop function. See Appendix D for the detailed discussion.

For the NC processes, the momenta of two final state charged leptons are measurable

and we can use the invariant mass distribution of the number of events for the study of the

WIMPs. For the CC processes, on the contrary, we cannot measure the momentum of the

♮33In Eq. (5.9), we only take into account the contribution from WIMPs at the leading order of g
′2 and g2,

which corresponds to the real part of the loop function Eq. (5.2). The contribution from the imaginary part

may be enhanced by a sizable numerical factor, but we neglect it simply because it is a higher order term of

the gauge coupling expansion.
♮34When the NLO QCD effect is included, one of the initial partons can be gluon with the real emission of

one jet in the final state. However, we can easily see that δugσ = δuuσ and so on.



56 Section 5. Indirect search of WIMPs using Drell-Yan process

1000 2000 3000 4000 5000 6000 7000√
s′ [GeV]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

δ σ

Higgsino
Wino
5-plet scalar

Figure 17: δσ for the CC processes as a function of
√
s′ = mℓν . The purple, blue, and red

lines correspond to Higgsino, Wino, and 5-plet real scalar, respectively.
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Figure 18: The WIMP effect on the ratio of the number of events ∆N/N as a function of

mT . The line colors are the same as Fig. 17.

neutrino in real experiments, and hence we instead use the missing transverse momentum

/pT . We use the transverse mass defined as

m2
T ≡ 2pT,ℓ /pT (1− cosϕ) , (5.13)

where pT,ℓ denotes the transverse momentum of the charged lepton and ϕ is the difference

between the azimuth angles of pT,ℓ and /pT . The important property of mT is that the

distribution of mT peaks at mT = mℓν (see Appendix E for more detailed description of the

quantity mT ). Because of this property, the characteristic shape of δσ remains in the mT

distribution in the CC events. To see this, we plot in Fig. 18 the WIMP effect on the number
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of events as a function of mT . Here, the vertical axis is the ratio of the WIMP correction to

the number of events ∆N to the number of events in the SM N for each bin with the bin

width of 100GeV.♮35 We find that the dip structure remains in the mT distribution, though

the depth of the dip is smaller compared to the mℓν distribution.

5.2 Analysis

5.2.1 Event generation

Now we discuss how well we can extract information about WIMPs from the invariant mass

and transverse mass distributions for the processes of our concern at future 100TeV pp

collider experiments. We take into account the effects of the next-to-leading order QCD

corrections in the events as well as detector effects through Monte-Carlo simulations.

In our analysis, we first generate the SM event sets for the NC processes pp→ e−e+/µ−µ+

and the CC processes pp → e±νe/µ
±νµ. We use MadGraph5 aMC@NLO (v2.6.3.2) [153, 154]

for the event generation with the successive use of Pythia8 [155] for the parton shower and

the hadronization and Delphes (v3.4.1) [156] with the card FCChh.tcl for the detector sim-

ulation. We use NNPDF2.3QED with αs(MZ) = 0.118 [158] as a canonical set of PDFs. For the

renormalization and factorization scales, we use the default values of MadGraph5 aMC@NLO,

i.e., the central m2
T scale after kT -clustering of the event (which we denote by Q). We take

into account the NLO QCD effect by the [QCD] option of MadGraph5_aMC@NLO which en-

hances the cross section roughly by a factor of 2 compared to the LO calculation.♮36 The

events are binned by the characteristic mass mchar for each process: we use the lepton in-

variant mass mchar = mℓℓ for the NC processes, and the transverse mass mchar = mT for the

CC processes, respectively. In both cases, we generated events with the characteristic mass

within the range of 500GeV < mchar < 7.5TeV and divide them into 70 bins with an equal

width of 100GeV.

As for the event selection by a trigger, we may have to impose some cut on the lepton

transverse momentum pT . As we will see, we concentrate on events with high pT charged

lepton(s) with which we expect the event may be triggered. For the NC processes, we use

events with at least two high pT leptons. For our analysis, we use events withmℓℓ > 500 GeV;

we assume that such events are triggered by using two energetic charged leptons so that we

♮35Just for an illustrative purpose, we generate events corresponding to the integrated luminosity L = 1ab−1

for this figure, which is not the same luminosity as we use in the next section (see Sec. 5.2.1 for details of

the event generation).
♮36This large enhancement implies that the next-to-next-to-leading order QCD effect may also have a non-

negligible effect on the cross section, and its calculation remains as a future task. However, due to its smooth

dependence on
√
s′, it may not much affect the detection reach of the EWIMPs. See Sec. 5.2.2 for the details.
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do not impose any other kinematical requirement at the parton level.♮37 On the contrary,

the CC events are characterized only by a lepton and a missing transverse momentum. For

such events, we require that the pT of the charged lepton should be larger than 500GeV. ♮38

For the CC events, the cut reduces the number of events in particular for the bins with the

low transverse mass mT ∼ 500GeV, and thus affects the sensitivity of the CC processes to

relatively light WIMPs. We will come back to this point later.

The WIMP effect is incorporated by rescaling the SM event by δσ defined in Eq. (5.12).

With the parameter µ defined in Eq. (5.11), the number of events corresponding to the

SM+WIMP hypothesis in i-th bin, characterized by mi,min < mchar < mi,max, is

xf,i(µ) =
∑

events that satisfy
mi,min<mchar<mi,max

[
1 + µδσ(

√
s′)
]
, (5.14)

where the sum runs over all the events of the final state f whose characteristic mass mchar

(after taking into account the detector effects) falls into the bin. Note that the true value

of
√
s′ should be used for each event for the computation of δσ: we extract it from the hard

process information.♮39

5.2.2 Statistical treatment

We now explain the statistical method we will adopt in our analysis. Throughout this section,

we rely on the so-called profile likelihood method, which is described in detail in Appendix

F. We collectively denote our theoretical model as xf (µ) = {xf,i(µ)}, where xf,i(µ) is given
by Eq. (5.14). We denote the experimental data set as x̌f that in principle is completely

unrelated to our theoretical model xf (µ). Since we do not have an actual experimental data

set for 100 TeV colliders for now, however, we take x̌f = xf (µ = 1) (for some fixed values of

the WIMP mass and charges) throughout our analysis, assuming that the WIMP does exist.

In particular, this choice tests the SM-only hypothesis if we take our theoretical model as

xf (µ = 0).

If the expectation values of xf,i(µ) are precisely known, the sensitivity to WIMPs can be

studied only with statistical errors. In reality, however, the computation of xf,i(µ) suffers

from various sources of uncertainties, which results in systematic errors in our theoretical

♮37Note that the simplified geometry of detector layout is included in the Delphes card and, for example,

muons with large absolute pseudorapidity |η| > 6 are automatically neglected at the detector simulation.
♮38In the ATLAS analysis of the mono-lepton signal during the 2015 (2016) data taking period [168], they

use the event selection condition pT > 24 (60)GeV for leptons that satisfy the medium identification criteria.

In the CMS analysis during the period on 2016 [169], they use the condition pT > 130(53)GeV for an

electron (a muon).
♮39The pT cut for the CC process does not affect this estimation since the WIMP does not modify the

angular distribution of the final lepton and neutrino for the CC process.
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model. The sources include errors in the integrated luminosity, the beam energy, choices of

the renormalization and the factorization scales, choices of PDF, the pile-up effect, higher

order corrections to the cross section, and so on. In order to deal with these uncertainties,

we introduce sets of free parameters θf = {θf,α} (i.e. nuisance parameters) which absorb

(smooth) uncertainties of the number of events, and modify our theoretical model as

x̃f,i(θf , µ) ≡ xf,i(µ)fsys,i(θf ), (5.15)

where fsys,i(θf ) is a function that satisfies fsys,i(0) = 1. We expect that, if the function

fsys,i is properly chosen, the true distribution of the number of events in the SM is given

by x̃f (θf , 0) = {x̃f,i(0)fsys,i(θf )} for some value of θf . In our analysis, we adopt the five

parameters fitting function given by [170]

fsys,i(θf ) = eθf,1(1− pi)
θf,2p

(θf,3+θf,4 ln pi+θf,5 ln
2 pi)

i , (5.16)

where pi = 2mi/
√
s with mi being the central value of the lepton invariant mass (transverse

mass) of the i-th bin for the NC (CC) processes. As we will see, the major effects of

systematic errors can be absorbed into θf with this fitting function.

To test the SM-only hypothesis, we define the following test statistic [171]:

q0 ≡ −2
∑

f=ℓℓ,ℓν

ln
L(x̌f ;

ˆ̂θf , µ = 0)

L(x̌f ; θ̂f , µ̂)
. (5.17)

Here, ˆ̂θf and {θ̂f , µ̂} are determined so that
∏

f L(x̌f ;θf , µ = 0) and
∏

f L(x̌f ;θf , µ) are

maximized, respectively. The likelihood function is defined as

L(x̌f ;θf , µ) ≡ Lθf (x̌f ;µ)L
′(θf ;σf ), (5.18)

where

Lθf (x̌f ;µ) ≡
∏
i

exp

[
−(x̌f,i − x̃f,i(θf , µ))

2

2x̃f,i(θf , µ)

]
, (5.19)

L′(θf ;σf ) ≡
∏
α

exp

[
−
θ2f,α
2σ2

f,α

]
. (5.20)

The product in Eq. (5.19) runs over all the bins, while the product in Eq. (5.20) runs over all

the free parameters we introduced. For each θf,α, we define the “standard deviation” σf,α,

which parametrizes the possible size of θf,α within the SM with the systematic errors.♮40 If

♮40Here we assume the Gaussian form for the nuisance parameter distribution. The dependence of the

results on the choice of the distribution will be discussed later in Sec. 5.2.3.
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the systematic errors are negligible compared with the statistical error, we can take σf → 0,

while the analysis with σf → ∞ assumes no knowledge of systematic errors and gives a

conservative result. We identify
√
q0 = 5 (1.96) as the detection reach at the 5σ (95% C.L.)

level, since q0 asymptotically obeys a chi-square distribution with the degree of freedom one.

In order to determine σf , we consider the following sources of the systematic errors:

• Luminosity (±5% uncertainty is assumed),

• Renormalization scale (2Q and Q/2, instead of Q),

• Factorization scale (2Q and Q/2, instead of Q),

• PDF choice (We use 101 variants of NNPDF2.3QED with αs(MZ) = 0.118 [158] provided

by LHAPDF6 [172] with IDs ranging from 244600 to 244700).

The values of σf are determined as follows. Let yf be the set of number of events in the SM

for the final state f with the canonical choices of the parameters, and y′
f be that with one

of the sources of the systematic errors being varied. We minimize the chi-square function

defined as

χ2
f ≡

∑
i

(
y′f,i − ỹf,i(θf )

)2
ỹf,i(θf )

, (5.21)

where

ỹf,i(θf ) ≡ yf,ifsys,i(θf ), (5.22)

for each final state f , and determine the best-fit values of θf for each set of y′
f . We repeat

this process for different sets of y′
f , and σf are determined from the distributions of the

best-fit values of θf . For example, let us denote the best-fit values for the fit associated with

the luminosity errors ±5% as θ±
f . We estimate σf associated with these errors, denoted here

as σlumi.
f , as

σlumi.
f,α =

√
(θ+f,α)

2 + (θ−f,α)
2

N
, (5.23)

where N denotes the number of fitting procedures we have performed: N = 2 for this case.

We estimate σf associated with the other sources of the errors, denoted as σren.
f , σfac.

f , and

σPDF
f , in a similar manner. Finally, the total values of σf are obtained by combining all the
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Sources of systematic errors σee,1 σee,2 σee,3 σee,4 σee,5

Luminosity: ±5% (σlumi.
ee ) 0.05 0 0 0 0

Renormalization scale: 2Q,Q/2 (σren.
ee ) 0.4 0.6 0.3 0.05 0.004

Factorization scale: 2Q,Q/2 (σfac.
ee ) 0.3 0.5 0.2 0.06 0.004

PDF choice (σPDF
ee ) 0.4 0.7 0.3 0.06 0.004

Table 14: Values of σee for each source of systematic errors. The result is the same for the

µµ final state.

Sources of systematic errors σeνe,1 σeνe,2 σeνe,3 σeνe,4 σeνe,5

Luminosity: ±5% (σlumi.
eνe ) 0.05 0 0 0 0

Renormalization scale: 2Q,Q/2 (σren.
eνe ) 0.3 0.4 0.2 0.04 0.003

Factorization scale: 2Q,Q/2 (σfac.
eνe ) 1.0 1.6 0.6 0.1 0.01

PDF choice (σPDF
eνe ) 0.6 0.9 0.4 0.08 0.006

Table 15: Best fit values of fit parameters for several sources of systematic errors for the

eνe final state. The result is the same for the µνµ final state.

sources together as♮41

σf,α =
√

(σlumi.
f,α )2 + (σren.

f,α )
2 + (σfac.

f,α )
2 + (σPDF

f,α )2. (5.24)

In Tables 14 and 15, we show the values of σee and σeνe associated with each source

of the systematic errors, respectively. These values can be interpreted as the possible size

of the fit parameters within the SM, which is caused by the systematic uncertainties. As

explained in Eq. (5.24), we combine these values in each column to obtain σf . In Table 16,

we summarize the result of the combination for all the final states. The values of σf are

independent of the final state lepton flavors since the energy scale of our concern is much

higher than the lepton masses. However, we use different sets of fit parameters θee and θµµ

for the NC processes and θeνe and θµνµ for the CC processes because of the different detector

response to electrons and muons.

To see how these errors mimic the WIMP signal, we show the form of fsys,i(θf ) in Fig. 19

for the best fit values of θf under the existence of several sources of errors with f = ee

♮41There may be some correlations between the distribution of nuisance parameters θf . After the 100TeV

collider experiments will start and the sufficient amount of data will be accumulated, we should extract the

information of correlations and use it to perform the analysis. However, because the real data does not exist

yet, we rely on a simplified analysis in this section, treating each of them as obeying to an independent

Gaussian distribution.
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Final state f σf,1 σf,2 σf,3 σf,4 σf,5

ee 0.7 1.0 0.4 0.09 0.008

µµ 0.7 1.0 0.4 0.09 0.008

eνe 1.2 1.9 0.7 0.2 0.01

µνµ 1.2 1.9 0.7 0.2 0.01

Table 16: Summary of standard deviations σf for each final state.
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Figure 19: Form of the fitting function fsys,i(θf ) evaluated with using the best fit values

of θf for several sources of systematic errors and f = ee. The yellow solid (dashed) line

shows the result with luminosity error +5% (−5%). The red and blue lines correspond to

the different choices of the renormalization and the factorization scales, respectively, and

the solid (dashed) line shows the result with 2Q (Q/2). The green and purple lines show

results with different sets of the PDF, whose LHAPDF6 IDs are given by 244630 and 244660,

respectively.

as an example. The yellow solid (dashed) line shows the result with luminosity error +5%

(−5%). The red and blue lines correspond to the different choices of the renormalization

and the factorization scales, respectively, and the solid (dashed) line shows the result with

2Q (Q/2). The green and purple lines show results with different sets of the PDF. The main

event set is generated by the PDF set with LHAPDF6 ID 244600 and the green (purple) line

shows the result of the LHAPDF6 ID 244630 (244660) as an example. From the figure, we

can see that there are various forms of O(1)% smooth corrections, including some smooth

dip-like structures, all of which are well-fitted by the fitting function fsys,i(θf ). Accordingly,

as we will see below around Fig. 22, a part of the WIMP effect, in particular a smooth part

away from its dip, is also well-fitted by this function, which may decrease the sensitivity of
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our method significantly.

Several comments on other possible sources of systematic errors are in order. Considering

effects of the error on the beam energy, we could not generate events at NLO due to the

lack of sufficient computational power. Instead, we checked at LO that the corresponding

values of σ (assuming that the uncertainty of the beam energy is 1%) are small enough,

and hence we simply ignored it. Two of the remaining sources are the pile-up effect and the

underlying event, but they may be thought of as negligible since we are focusing on the very

clean signal of two energetic leptons. Another one is the effect of higher order contributions

to the cross section including the electroweak loop correction from SM particles and that

of background processes that are not considered in our analysis. It is in principle possible

to estimate their effects through the simulation and improve the analysis but here we just

leave it as a future task. Related to this, we note here that a smooth change of the number

of events in general, possibly including the uncertainty listed above, could be absorbed by

a minimization procedure using some fitting function like in Eq. (5.16). On the other hand,

as we will discuss below, the WIMP signal can not be fully absorbed by the fit because of

the sharp bend we mentioned before.

We have also neglected the systematic errors from the detector effect. The main errors

are expected to come from the lepton identification, in which some of the leptons in any

process are overlooked or identified incorrectly, resulting in the mis-reconstruction of the

event topology. Again, it is expected that the small and smooth modification of the num-

ber of events may be absorbed into the choice of nuisance parameters, if the corresponding

values of σf are properly taken into account in addition to the values in Tables 14 and 15.

What is dangerous is the possible jerky modification that mimics the WIMP signal, which

may be induced by the detector setup, the complicated detector response to leptons, and

so on. Such unwanted fake signals may be avoided by checking the consistency between

the electron and muon channels. This is because there should be the same size signals at

the same lepton invariant mass in both channels for the WIMP signal, while the detector

response to electrons and muons is different and such a coincidence is not expected in gen-

eral. It may also be helpful to look for similar fake signals in different processes associated

with several leptons. The similar treatment may also be useful to reduce the fake signals

from the so-called look-elsewhere effect. In principle, systematic errors from the detector

and the look-elsewhere effects should be evaluated by repeating pseudo experiments many

times including the detector simulation, but it requires a huge computational power and the

detailed information of the detector construction and setup. Thus, in this section, we just

assume that these errors are well controlled once the real experiment will start and focus on

the theoretical uncertainties listed in tables.



64 Section 5. Indirect search of WIMPs using Drell-Yan process

500 1000 1500 2000 2500 3000
mass [GeV]

0

1

2

3

4

5

6

√ q 0

Integrated luminosity 30ab−1, Higgsino
NC

CC

Combined

σ→0

σ→∞

500 1000 1500 2000 2500 3000
mass [GeV]

0

1

2

3

4

5

6

√ q 0

Integrated luminosity 30ab−1, Wino

NC

CC

Combined

σ→0

σ→∞

Figure 20:
√
q0 as a function of the WIMP mass. Left: The figure for Higgsino. The green

and blue dashed lines represent the results from the NC processes and the CC processes,

respectively, while the red solid lines correspond to that from the combined analysis. The

orange and purple lines denote the results from the combined analysis with the optimistic

σf → 0 limit and those with conservative σf → ∞ limit, respectively. Right: The same

for Wino.

5.2.3 Detection reach

Now we show the detection reach of WIMPs at future 100TeV colliders. In Fig. 20, we plot

the value of
√
q0 as a function of the WIMPmass, with the integrated luminosity L = 30 ab−1.

As representative scenarios, we show the cases for Higgsino (the left figure) and Wino (the

right figure). In both figures, the green and blue dashed lines are the result obtained only

from the NC processes and the CC processes, respectively. We find that the CC processes are

more sensitive to the effect of the WIMPs than the NC processes because of the larger cross

section. This result is consistent with Refs. [45, 46]. The sensitivity of the CC processes is

weakened for m ≲ 700GeV because of the lepton pT cut we have applied.♮42 The combined

results of the NC and CC processes are shown by the red solid lines. By combining the

two types of processes, the 5σ discovery reaches (95% C.L. bounds) for Higgsino and Wino

are 850GeV (1.7TeV) and 1.3TeV (2.3TeV), respectively. We find that the combination

of the NC and CC processes improves the sensitivity of the WIMP mass. Furthermore, if

we understand all the systematic uncertainties quite well and effectively take the σf → 0

limit in the combined result, the detection reach will be pushed up significantly as shown

♮42We note here that the sensitivity of the CC processes depends on the lepton pT cut. For example,

adopting the tighter cut, lepton-pT > 1TeV, the CC processes have almost no sensitivity to WIMPs with

m < 1TeV. Thus, particularly for the purpose of the Higgsino search, it is important to realize the lepton

pT cut as low as ∼ 500GeV.
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Figure 21:
√
q0 as a function of the WIMPmass for the MDMmodels. The red and blue lines

represent the results for 5-plet Majorana fermion and 5-plet real scalar, respectively, while

the solid and dotted lines correspond to the result with and without the fitting procedure,

respectively. All lines denote the combined results of the NC and CC processes.

by the orange dotted lines: 1.1TeV Higgsino signal at well above 5σ level and a 4σ hint of

the 2.9TeV Wino. These lines should be compared with the combined results and also with

those obtained from the conservative analysis with σf → ∞ shown by the purple dotted

lines, assuming no knowledge about sources of systematic errors. The plot shows us that it

is essential to reduce the systematic uncertainties for the detection of WIMPs through the

NC and CC processes.

We also show the detection reach of the MDM scenario using both the NC and CC

processes in Fig. 21. The 5σ reaches are 2.8TeV and 0.5TeV for 5-plet fermion and 5-plet

scalar, while the 95% reaches are 3.8TeV and 1.4TeV. They will be improved up to 5.8TeV

and 2.2TeV (5σ) and larger than 8TeV and 3.4TeV (95% C.L.) when the systematic errors

are well understood. If we assume the vanilla thermal freeze-out scenario, the mass should

be around 10TeV for both 5-plet fermion and scalar [16]. Thus, our method probes only a

part of the allowed mass range for these multiplets.

Next, we plot in Fig. 22 the contribution of each bin to the value of q0 to take a closer

look at the significance of the dip structure, focusing on the NC processes as an example.

The red (blue) lines correspond to the 1TeV Higgsino (1.5TeV Wino), while the solid and

dotted lines correspond to the results with the fitting procedure and those without it (i.e.,

the σf → 0 limit), respectively. We can see that most contributions come from the bins

around the peak at mℓℓ = 2m. This feature is clearer for the fitting based approach, where

all the smooth parts of the correction are absorbed into the fit parameters, thus there is

almost no contribution to q0 from the bins other than mℓℓ ∼ 2m. Note also that, for the
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Figure 22: Plot of the contribution of each bin to the value of q0 for the NC processes. The

red (blue) lines correspond to the 1TeV Higgsino (1.5TeV Wino). The solid and dotted lines

correspond to the results with the fitting procedure and those without it (i.e., the σf → 0

limit), respectively.

σf → 0 analysis, there are more contributions from the bins with lower mℓℓ than those with

higher mℓℓ, though sometimes the WIMP effect on the cross section is much larger in the

latter bins. This is just because of the difference in the number of events in each bin, that

is O(107) for 500GeV < mℓℓ < 600GeV, while O(103) for 4900GeV < mℓℓ < 5000GeV in

our set up, for instance. The similar behavior can be expected also for the CC processes.

So far, we have adopted the assumption that the distribution of the nuisance parameters is

the Gaussian form and that the fitting function Eq. (5.16) is sufficient for treating systematic

errors. In order to discuss the dependence of the results on these assumptions, we have

repeated the same analysis using another distribution or fitting function. In the former case,

we have adopted the top-hat distribution: the likelihood function for the nuisance parameters

L′ is given by

L′(θf ;σf ) ≡
∏
α

Θ
(√

3 σf,α − |θf,α|
)
, (5.25)

where Θ is the Heaviside step function. This corresponds to the top-hat distribution of θf,α
with the variance σ2

f,α for each α. As for an example of another fitting function, we have

adopted a simple one-parameter extension of Eq. (5.16)

fsys,i(θf ) = eθf,1(1− pi)
θf,2p

(θf,3+θf,4 ln pi+θf,5 ln
2 pi+θf,6 ln

3 pi)
i , (5.26)

which consists of six parameters. The variances of the nuisance parameters are estimated in

the same way as Sec. 5.2.2, but now with the six parameters.
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Figure 23:
√
q0 as a function of the WIMP mass using both the NC and CC processes.

The convention for the line colors is the same as Fig. 20. The line styles denote the result

same as Fig. 20 (solid), that with the top-hat distribution (dashed), and that with the six

parameters fitting function (dotted).

In Fig. 23, we show the corresponding results for Higgsino and Wino as an example. The

convention for the line colors is the same as Fig. 20, while the line styles denote different

procedures: the dashed and dotted lines correspond to the result with the top-hat distribu-

tion and that with the six parameters fitting function, respectively, while solid lines are the

same as Fig. 20. From the figure, we can see that the choice of the distribution may slightly

affect the result, while the addition of a nuisance parameter as Eq. (5.26) causes almost no

effect. The size of the effect of the choice of the distribution for the current estimation of

errors σf is about 100GeV (200GeV) for the 5σ (95% C.L.) bounds. We expect that such

uncertainties due to the procedure to include the systematic errors will be reduced once the

data from the real experiment (hence better understanding of the systematic errors) will

become available.

5.2.4 Determination of WIMP properties

In this subsection, we show that it is possible to determine the properties of the WIMPs from

the NC and CC processes, thanks to the fact that we can study the mℓℓ and mT distribution

in great detail for these processes. Some information about the mass, charge, and spin of

the WIMPs can be extracted because the corrections to these distributions from the WIMPs

are completely determined by these WIMP properties. Firstly, we can extract the WIMP

mass from the position of the dip-like structure in the correction since it corresponds to

roughly twice the WIMP mass as we have shown in Sec. 5.1. Secondly, the overall size of

the correction gives us information about the SU(2)L and U(1)Y charges. The CC processes
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depend only on the SU(2)L charge, while the NC processes depend both on the SU(2)L and

U(1)Y charges. Consequently, we can obtain information about the gauge charges of the

WIMPs from the NC and CC processes.

We now demonstrate the mass and charge determination of fermionic WIMPs. This is

equivalent to the determination of the parameter set (m,C1, C2). We generate the data

assuming the SM + WIMP model (µ = 1) with some specific values of m,n, Y , and κ, with

which we obtain (m,C1, C2). We fix µ = 1 for our theoretical model as well, and hence

the theoretical predictions of the number of events also depend on these three parameters,

xf = xf (m,C1, C2). We define the likelihood function L(x̌f ;θf ,m,C1, C2) in the same form

as Eqs. (5.15) and (5.18) with the theoretical prediction xf now understood as a function of

(m,C1, C2), not of µ.
♮43 The test statistic is defined as

q(m,C1, C2) ≡ −2
∑
f

ln
L(x̌f ;

ˆ̂θf ,m,C1, C2)

L(x̌f ; θ̂f , m̂, Ĉ1, Ĉ2)
, (5.27)

where the parameters ({θ̂f}, m̂, Ĉ1, Ĉ2) maximize
∏

f L(x̌f ;θf ,m,C1, C2), while
ˆ̂θf maximize

L(x̌f ;θf ,m,C1, C2) for fixed values of (m,C1, C2). It follows the chi-squared distribution

with three degrees of freedom in the limit of a large number of events [59]. The test statistic

defined in this way examines the compatibility of a given WIMP model (i.e. a parameter set

(m,C1, C2)) with the observed signal.

Once a deviation from the SM prediction is observed in a real experiment, we may de-

termine (m,C1, C2) using the above test statistic q. In the following, we show the expected

accuracy of the determination of (m,C1, C2) for the case where there exists 1.1TeV Hig-

gsino.♮44

In Fig. 24, we show the contours of 1σ (dotted) and 2σ (solid) constraints, which cor-

respond to the values
√
q = 1.9 and

√
q = 2.8, respectively, in the C1 vs. C2 plane for

m = 1.1TeV. The blue, green, and red lines denote the result obtained from the NC pro-

cesses, the CC processes, and the combined analysis, respectively. The models in the gray

region are in more than 2σ tension with the observation. We also show several star mark-

ers that correspond to the single SU(2)L multiplet contributions: the markers with “nY ”

represent an SU(2)L n-plet Dirac fermion with hypercharge Y , while those with “nMaj” an

SU(2)L n-plet Majorana fermion. Among them, the blue one with “21/2” corresponds to the

Higgsino and to the best fit values in our analysis. Both the NC and CC constraints are

represented as straight bands in the C1 vs. C2 plane since each process depends on a specific

linear combination of C1 and C2. In particular, the CC constraint is independent of C1, or

♮43As shown in Eqs. (5.3) and (5.4), C1 and C2 are positive quantities (and C2 is discrete). In the figures,

however, we extend the C1 and C2 axes down to negative regions just for presentation purposes.
♮44The expected significance is 3.5σ for 1.1TeV Higgsino in our estimation. Even though it is slightly below

the 5σ discovery, we take 1.1TeV Higgsino as an example because it is a candidate of the thermal relic DM.
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Figure 24: Contour of
√
q in the C1 vs. C2 plane withm = 1.1TeV, where we assume 1.1TeV

Higgsino signal. The dotted and solid lines denote 1σ and 2σ contours, respectively, and

the gray region corresponds to the parameter space that is in tension with the observation

at more than 2σ level. The blue, green, and red lines correspond to the result from the

NC processes, the CC processes, and the combined analysis, respectively. Each star marker

annotated as “nY ” represents a point corresponding to a SU(2)L n-plet Dirac fermion with

hypercharge Y , while that with “nMaj” corresponds to an SU(2)L n-plet Majorana fermion.

Y . In this sense, the NC and CC processes are complementary to each other, and thus we

can separately constrain C1 and C2 only after combining these two results. For instance, we

can exclude a single fermionic SU(2)L multiplet with n ̸= 2 at more than 2σ level, although

each process by itself cannot exclude the possibility of 3Maj. We can also constrain the hy-

percharge, yet it is not uniquely determined. In addition to the Higgsino, the WIMP as an

SU(2)L doublet Dirac fermion with |Y |2 ≲ 2 or an SU(2)L doublet Majorana fermion with

|Y |2 ≲ 5 is still allowed.

In Fig. 25, we show the contour plots of
√
q in the C1 vs. m plane with C2 = 1 (left) and

those in the C2 vs. m plane with C1 = 1 (right). The star marker in each panel shows the

true values of parameters (C1,m) = (1, 1.1TeV) (left) and (C2,m) = (1, 1.1TeV) (right).

Again, by combining the NC and CC results, we can significantly improve the determination

of WIMP properties, making 1σ and 2σ contours closed circles in the planes of our concern.

In particular, as red lines show, the combined analysis allows us to determine the observed

WIMP mass at the level of O(10)%.

Finally, we comment on the possibility of discriminating between fermionic and scalar

WIMPs, whose difference comes from the loop function f(x) (see Eq. (5.2)). Here we repeat

the same analysis explained above, assuming the 1.1TeV Higgsino signal for example, but use

the scalar loop function to evaluate the theoretical predictions xf (m,C1, C2). In Figs. 26 and
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Figure 25: Left: Contour of
√
q in the C1 vs. m plane with C2 = 1, where we assume

the 1.1TeV Higgsino signal. The colors and styles of lines and the meaning of the gray

region are the same as Fig. 24. The star maker corresponds to the true Higgsino property

(C1,m) = (1, 1.1TeV). Right: Contour of
√
q in the C2 vs. m plane for C1 = 1, where

we assume the 1.1TeV Higgsino signal. The star maker corresponds to the true Higgsino

property (C2,m) = (1, 1.1TeV).

27, we show the results in the C1 vs. C2 plane and the C1 (or C2) vs. m plane, respectively,

where one of the three parameters is fixed to its best fit value. It is seen that, in the case

of the 1.1TeV Higgsino signal, it is hard to distinguish between the bosonic and fermionic

WIMPs only with our method. However, if a part of the WIMP properties (in particular its

mass) is determined from another approach, our method may allow us to determine its spin

correctly.

We also stress here that, with some favorable assumption about the observed signal, we

may obtain some hint about its spin. For example, if we assume that the observed signal

composes a fraction of the dark matter in our Universe, the choice of the WIMP charges

is significantly constrained. Note from Fig. 26 that the only choices of WIMP charges

that allow the WIMP multiplet to contain an electrically neutral component are (n, |Y |) =
(3, 0), (3, 1), (4, 1/2), (4, 3/2), and (5, 0)real. The last column of the table 17 shows proper

choices of WIMP masses in order for their thermal relic abundances to become comparable

with the dark matter abundance in the current Universe. All of those values are somewhat

larger than the central value of the mass of the observed signal, which means that the scalar

interpretation of the signal cannot explain the whole of the dark matter relic abundance

without introducing some non-thermal production mechanism.
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Figure 26: Contour of
√
q in the C1 vs. C2 plane for the 1.1TeV Higgsino signal, tested

with the scalar WIMP assumption. The plane is defined as the scalar mass of 920GeV. The

colors and styles of lines and the meaning of the gray region are the same as Fig. 24.

(n, Y ) C1 C2 mDM[TeV]

(3, 0)real 0 0.25 2.5 [91]

(3, 0) 0 0.5 1.55 [93]

(3, 1) 0.75 0.5 1.6 [91]

(4, 1
2
) 0.25 1.25 2.4 [91]

(4, 3
2
) 2.25 1.25 2.9 [91]

(5, 0)real 0 1.25 9.4 [91]

Table 17: The scalar WIMPs that are compatible with the result in Fig. 26. The observed

DM energy density is explained by the thermal relic of the WIMP with mDM shown in the

fourth column.

5.3 Conclusion

In this section, we have discussed the indirect search of WIMPs at future 100TeV hadron

colliders based on the precision measurement of the production processes of a charged lepton

pair and that of a charged lepton and a neutrino. In particular, we have demonstrated that

not only we can discover the WIMPs, but also we can determine their properties such as their

masses, SU(2)L and U(1)Y charges, and spins via the processes of our concern. It is based

on two facts: the high energy lepton production channel enables us to study its momentum

distribution in great detail, and the WIMP correction shows characteristic features, including

a dip-like structure as the final state invariant mass being twice the WIMP mass. The latter
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Figure 27: Left: Contour of
√
q in the C1 vs. m plane with C2 = 1.25 for the 1.1TeV

Higgsino signal, tested with the scalar WIMP assumption. The colors and styles of lines

and the meaning of the gray region are the same as Fig. 24. Right: Contour of
√
q in the

C2 vs. m plane with C1 = 0 for the 1.1TeV Higgsino signal, tested with the scalar WIMP

assumption.

feature also helps us to distinguish the WIMP signals from backgrounds and systematic

errors, as they are not expected to show a dip-like structure. In order to fully exploit the

differences between the distributions of the WIMP signals and systematic errors, we have

adopted the profile likelihood method as our statistical treatment.

First, we have shown in Fig. 20 the detection reach of WIMPs from the NC processes

(mediated by photon or Z-boson), the CC processes (mediated byW -boson), and the combi-

nation of these two results. We have seen that the addition of the CC processes improves the

detection reach from the previous analysis [1]. From the combined analysis, the bounds at

the 5σ (95% C.L.) level for Higgsino and Wino are 850GeV (1.7TeV) and 1.3TeV (2.3TeV),

respectively. We have also shown the 5σ reach for 5-plet fermion and 5-plet scalar: 5.8TeV

and 2.2TeV for the optimistic analysis and 2.8TeV and 0.5TeV for the analysis with a

fitting procedure. This result, particularly that for short lifetime Higgsino, indicates the

importance of our method for the WIMP search.

Next, we have considered the determination of the mass and SU(2)L and U(1)Y charges

of the observed WIMP. By combining the NC and the CC events, the position and the

height of the dip in the WIMP effect on the cross section gives us enough information for

determining all the three parameters. In Figs. 24 and 25, we have shown the plots of the

test statistics that test the validity of several choices of parameters. As a result, the SU(2)L
charge of the observed signal is correctly identified under the assumption of a single WIMP

multiplet, and the U(1)Y charge and mass are also determined precisely. In order for the
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determination of the WIMP spin, we have plotted the contours of the test statistics that test

the validity of the scalar WIMP models with some fixed values of masses and charges. The

results are shown in Figs. 26 and 27, which reveals that the spin is not completely determined

by solely using our method. Use of another approach to determine the WIMP properties,

or of some assumption like that the observed signal corresponds to the dark matter in our

Universe, may help us to obtain further information regarding the WIMP spin.



74 Section 6. Conclusion and future directions

Section 6

Conclusion and future directions

In this thesis, we have focused on the models with electroweakly interacting massive par-

ticles with TeV-scale masses that are well-motivated in several contexts such as the existence

of dark matter. In the first half of the thesis, we reviewed several search methods of such

particles including the direct and indirect detection of dark matter and the direct production

at the collider experiments. We checked that all of the search methods have complementary

roles with each other and cover a wide range of the parameter space. However, it was re-

vealed that some of the parameter space of Higgsino, which is the supersymmetry partner

of the Higgs boson in the minimal supersymmetric standard model, is particularly difficult

to probe.

Thus, in the main part of the thesis, we focused on yet another method, which uses

the precision measurement of the lepton pair production processes that are affected by

the electroweakly interacting particles through the vacuum polarization of the intermedi-

ate electroweak gauge boson. In particular, we focused on very high energy colliders with

the center-of-mass energy of 100TeV because it has been shown in the literature that the

final state lepton invariant mass at around the twice the mass of the new physics particle is

important for this method, which is in a highly energetic region of O(1)TeV for TeV-scale

new physics. Using the characteristic shape of the signal predicted from the form of the loop

function, we revealed that this method was useful to search for electroweakly interacting

particles and to measure their properties such as the mass and electroweak charges. This

method can equally be applied to Higgsino as well as other particles considered, which makes

it the most powerful way to search for Higgsino for some of the parameter space.

Based on the discussion throughout the thesis, there are several future directions that may

be interesting. Firstly, our results on the Higgsino mass reach mχ ≲ 850GeV is strong, but

still unsatisfactory considering the mass of the thermal Higgsino dark matter mχ = 1.1TeV.

Some improvement of the analysis may be expected by reducing the systematic errors, in

particular by the understanding of the quantum chromodynamics in the theory side. Also,

the increase in the statistics may be possible by taking into account different processes such

as the two gauge boson final state. Secondly, it may also be interesting to consider other

types of couplings between the standard model and new physics particles. This may require

us to consider some other processes and the form of the loop function or the shape of the

signal may also changes, which will require different treatment of the data to extract the

signal information.
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Section A

Conventions and notations

In this appendix, we summarize the conventions and notations used throughout the thesis.

Firstly, we use the natural units with

c = ℏ = kB = 1, (A.1)

where c, ℏ, and kB are the speed of light, the reduced Planck constant, and the Boltzmann

constant, respectively.

Our convention of the four-dimensional Lorenzian metric is gµν = diag(1,−1,−1,−1).

We sometimes use the Pauli matrices defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (A.2)

with i being the imaginary unit. The slash on any character denotes the so-called Feynmann

slash, defined as /p ≡ pµγµ with four-by-four gamma matrices given by

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (A.3)

The unique exception of this rule is /ET , which is used to denote the missing transverse

momentum in hadron collider experiments.

We use the notation g1, g2, and g3 for the gauge coupling constant of the SM U(1)Y ,

SU(2)L, and SU(3)c gauge group. In particular, electroweak coupling constants g1 and g2
in our convention are related to the electromagnetic coupling constant e and the Weinberg

angle θW as

g1 =
e

cos θW
, g2 =

e

sin θW
. (A.4)

We also define and use the fine-structure constants

α1 =
g21
4π
, α2 =

g22
4π
, αs =

g23
4π
, (A.5)

using the low energy values of gauge coupling constants.
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Section B

Review of supersymmetric gauge the-

ory

In this appendix, we briefly review the N = 1 supersymmetric gauge theory, which is an

essential element of the MSSM explained in Sec. 2.1. Our argument is based on [62,173].

First, we show the N = 1 supersymmetry algebra: [174]

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, (B.6)

{Qα, Qβ} = {Q̄α̇Q̄β̇} = 0, (B.7)

[Pµ, Qα] = [Pµ, Q̄α̇] = 0, (B.8)

[Pµ, Pν ] = 0, (B.9)

where σµ is defined with a unit matrix and Pauli matrices as σµ = (−1, σ⃗) and Qα, Q̄α̇,

and Pµ are generators of two types of supersymmetry and translation, respectively. Indices

(α, β, α̇, β̇) run from one to two and denote two-component Weyl spinors. Indices (µ, ν) run

from zero to three and denotes the Lorentz four-vector. Generators in the above algebra

generate the maximally possible symmetries of the S-matrix including fermionic operators

Qα and Q̄α̇ by loosening the assumption on the symmetry in the derivation of the Coleman-

Mandula theorem [175].

There are two important features in the representation of the supersymmetry algebra.

(I) All particles in each representation have the same mass. (II) The number of bosonic

and fermionic degrees of freedom in each representation are the same. The property (I) is

the direct result of the commutation relation Eq. (B.8). To prove (II), we define a fermion

number operator NF which has an eigenvalue 0 for bosonic states and +1 for fermionic

states. From this definition, it is a straightforward work to derive the anti-commutation

relation {(−1)NF , Q} = 0 and its conjugate. Then the following calculation for some finite-

dimensional representation of generators

Tr
[
(−1)NF {Qα, Q̄β̇}

]
= Tr

[
Q̄β̇{(−1)NF , Qα}

]
= 0, (B.10)

shows, using Eq. (B.6), that

2Tr
[
(−1)NFPαβ̇

]
= 2Pαβ̇Tr

[
(−1)NF

]
= 0, (B.11)

with Pαβ̇ ≡ σµ

αβ̇
Pµ. The first equality follows from the fact that the four-momentum is

universal for elements of an irreducible representation. The last equality is just another

expression of the property (II) for some non-zero four-momentum Pαβ̇.
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To formulate the supersymmetric field theory, it is convenient to consider the superfield,

which lives on the extension of the Minkowski space with four fermionic coordinates θα

and θ̄α̇, the so-called super-Minkowski space. In a representation that acts on the super-

Minkowski space, a group element corresponding to operators shown above is expressed

as

G(x, θ, θ̄) = exp
[
i
(
−xµPµ + θQ+ θ̄Q̄

)]
, (B.12)

where the indices of fermionic objects are contracted. Then, by calculating the product

of two group elements, supersymmetry transformation is found to be a translation in the

super-Minkowski space [176,177], expressed as

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ, (B.13)

Q̄α̇ =
∂

∂θ̄α̇
+ iθασµ

αβ̇
ϵβ̇α̇∂µ. (B.14)

It is a straightforward task to check these representations satisfy the correct commutation

relations with the definition of Pµ ≡ −i∂µ. In the super-Minkowski space, we can decompose

the most general function as

F (x, θ, θ̄) = ϕ(x) + θψ(x) + θ̄ψ̄(x)

+ θθF (x) + θ̄θ̄F̄ (x) + θσµθ̄vµ(x)

+ θθθ̄λ(x) + θ̄θ̄θλ̄(x) + θθθ̄θ̄D(x), (B.15)

where all the coefficients are general fields with proper spins under the Lorentz symme-

try. Operators involved in the supersymmetry algebra, Q, Q̄, and P , naturally act on the

superfield F (x, θ, θ̄) with the above representations.

Next, we impose some constraint on the above superfield to get special superfields which

possess required properties when we consider the supersymmetric extension of the SM. First,

we define chiral covariant derivatives as

Dα =
∂

∂θα
− 2iσµ

αα̇θ̄
α̇ ∂

∂yµ
, (B.16)

D̄α̇ = − ∂

∂θ̄α̇
, (B.17)

where yµ is a redefined bosonic coordinate related to xµ as

yµ ≡ xµ + iθ̄σµθ. (B.18)

These derivatives are covariant in the meaning that they satisfy the relations

{Qα, Dβ} = {Q̄α̇, Dβ} = {Qα, D̄β̇} = {Q̄α̇, D̄β̇} = 0, (B.19)
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and also the following equations

(ξQ+ ξ̄Q̄)(DβF (y, θ, θ̄)) = Dβ((ξQ+ ξ̄Q̄)F (y, θ, θ̄)), (B.20)

(ξQ+ ξ̄Q̄)(D̄β̇F (y, θ, θ̄)) = D̄β̇((ξQ+ ξ̄Q̄)F (y, θ, θ̄)), (B.21)

where ξ and ξ̄ are fermionic transformation parameters of the supersymmetry. Using these

derivatives, we define a chiral superfield Φ with a constraint

D̄α̇Φ = 0, (B.22)

or expressed explicitly in terms of component fields,

Φ(x, θ) = ϕ(x) + iθσµθ̄∂µϕ(x) +
1

4
θθθ̄θ̄□ϕ(x)

+
√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄ + θθF (x), (B.23)

which naturally contains a chiral fermion ψ that is an important ingredient of the SM. Since

Higgs fields are also implemented in this type of multiplet as the lowest component ϕ, the

remaining piece is the spin one gauge fields Aµ. They are implemented in vector superfields

defined by a constraint

V = V̄, (B.24)

or in terms of component fields,

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

− θσµθ̄Aµ(x) + iθθθ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D(x) +

1

2
□C(x)

]
, (B.25)

where σ̄µ = (−1,−σ⃗) and component fields are real scalar fields, Majorana fermion fields, or

gauge fields, depending on the spin under the Lorentz symmetry. For general gauge theories

with a gauge coupling g and generators T a
ij, we prepare several vector superfields labeled by

a and use a combination Vij = 2gT a
ijV

a.

Now we demonstrate the way to construct a Lagrangian invariant under the supersym-

metry transformations in terms of chiral and vector superfields. Firstly, we focus on the θθ

component (or the F-term) of a chiral superfield Φ̃, which will be denoted as [Φ]F below,

and derive its transformation rule as[
(ξQ+ ξ̄Q̄)Φ

]
F
= i

√
2ξ̄σ̄µ∂µψ. (B.26)
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Since the above expression is a total derivative if ξ̄ is a global parameter, we can add the

F-term of any chiral superfield to the lagrangian. Similarly, for the vector superfield V , we

can check that the transformation of the θθθ̄θ̄ component (or the D-term), which will be

denoted as [V ]D, is a total derivative:[
(ξQ+ ξ̄Q̄)V

]
D
=

1

2
ξσµ∂µ

[
λ̄+

i

2
σ̄ν∂νχ

]
+

1

2
ξ̄σ̄µ∂µ

[
λ+

i

2
σν∂νχ̄

]
. (B.27)

Thus, we can also add the D-term of any vector superfield to the lagrangian.

Using what we have learned above, we can finally construct the lagrangian of a super-

symmetric gauge theory. The first important observation is that the D-term of a vector

superfield Φ̄Φ contains kinetic terms of the component scalar field ϕ and the chiral fermion

field ψ. We can easily see that[
Φ̄Φ
]
D
∼ −∂µϕ∗∂µϕ− iψ̄σ̄µ∂µψ + F̄F, (B.28)

up to surface terms. For vector superfields, the degrees of freedom of the gauge transfor-

mation require some consideration. As an analogy to the non-supersymmetric gauge theory,

we define gauge transformation parameters Λij ≡ T a
ijΛa using a set of chiral superfields Λa.

Then the transformation rule for each superfield is written as

Φ′ = e−iΛΦ, (B.29)

Φ̄′ = Φ̄eiΛ̄, (B.30)

eV
′
= e−iΛ̄eV eiΛ, (B.31)

where we use the matrix form of V and Λ defined above. Thanks to the gauge degrees of

freedom, we can choose a particular gauge in which Eq. (B.25) is significantly simplified,

VWZ(x, θ, θ̄) = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x), (B.32)

where the name of the gauge, the Wess-Zumino (WZ) gauge [178] is represented by the

subscript. Although the gauge fixing breaks supersymmetry, we can fix one reference frame

of the super-Minkowski space at first, and continue our discussion under the WZ gauge in

this frame. Next, we need an analog of the field strength of the non-supersymmetric gauge

theory that transforms covariantly under the gauge transformation. The required quantity

is a chiral superfield defined as

Wα ≡ −1

4
D̄D̄(e−VDαe

V ), (B.33)

where its transformation rule under the gauge symmetry is

W ′
α = e−iΛWαe

iΛ. (B.34)
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ϕ ψ F bosonic fermionic

on-shell 2 2 0 2 2

off-shell 2 4 2 4 4

Aµ λ D bosonic fermionic

on-shell 2 2 0 2 2

off-shell 3 4 1 4 4

Table 18: The counting of bosonic and fermionic degrees of freedom in the chiral superfield

(up) and the vector superfield (down). Off-shell, auxiliary fields possess non-zero degrees of

freedom and keep bosonic and fermionic degrees of freedom equal in each representation.

The F-term of the invariant combination Tr[WW ] contains terms proportional to the kinetic

terms of Aµ and λ as

[Tr[WW ]]F = 4kg2
[
−2iλaσµ∇µλ̄

a − 1

2
F aµνF a

µν +DaDa +
i

4
F a
µνF

a
ρσϵ

µνρσ

]
, (B.35)

where kδab ≡ Tr[T aT b] and ∇µ and F a
µν are the gauge covariant derivative and the field

strength, respectively. Note that the standard interaction among a gauge boson and two

fermions is naturally introduced through the covariant derivative. For later convenience, we

again decompose Wα as

Wα = 2gT aWa
α, (B.36)

with which Tr[WW ] can be deformed as

1

4kg
Tr[WW ] = WaWa. (B.37)

Finally, we have to comment that the kinetic term of a chiral superfield can be deformed to be

gauge invariant. As is easily read off from Eqs. (B.29)–(B.31), the combination Φ̄eVΦ, instead

of Φ̄Φ, becomes gauge invariant. This modification naturally introduces gauge interactions

of ϕ and ψ as [
Φ̄eVΦ

]
D
∼ −∇µϕ

∗∇µϕ− iψ̄σ̄µ∇µψ + FF̄

−
√
2g(ϕ∗T aψ)λa −

√
2gλ̄a(ψ̄T aϕ) + g(ϕ∗T aϕ)Da, (B.38)

up to surface terms.

In summary, we get the supersymmetric gauge invariant Lagrangian of the form

Lfree =
1

4

[∫
d2θ Tr[WaWa] + c.c.

]
+

∫
d2θd2θ̄

∑
i

Φ̄ie
VΦi, (B.39)
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where the index i discriminates different chiral superfields and
∫
d2θ and

∫
d2θd2θ̄ are the

same as [· · · ]F and [· · · ]D, respectively, because of the Grassmann nature of the coordinates θ

and θ̄. In the lagrangian, component fields Fi andD
a involved in chiral and vector superfields,

respectively, are called auxiliary fields and are needed to make the supersymmetry algebra

closed off-shell, i.e., without using equations of motion. This can be seen from the counting

of bosonic and fermionic degrees of freedom shown in Table 18. However, when considering

on-shell, we can use equations of motion for these fields and completely eliminate them.

Then, the physical degrees of freedom left are chiral fermions ψi and their superpartners ϕi,

and gauge bosons Aa
µ and their superpartners λa called gauginos.

Eq. (B.39) uniquely specifies the form of supersymmetry and gauge invariant kinetic terms

and interactions among them. Besides, we can also add interactions among chiral superfields

following the procedures described above. The most general renormalizable interaction is

Lint =

∫
d2θ W [Φi] + c.c., (B.40)

W [Φi] = LiΦi +M ijΦiΦj + yijkΦiΦjΦk, (B.41)

whereW [Φi] is called the superpotential. Each term in the superpotential should be a gauge

invariant combination of chiral superfields. See, for example, Sec. 2.1 for the superpotential of

the minimal supersymmetric standard model (MSSM). Adding Eq. (B.40) to the lagrangian,

there are two different origins of the scalar potential in a supersymmetric gauge theory, one

from the F-term of the superpotential W [Φi] and the other from the D-term of the gauge

invariant combination Φ̄ie
VΦ. They are often called the F-term and D-term potentials,

respectively.
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Section C

Collider simulation of the MDM model

In this appendix, we explain the procedure we have adopted to implement the MDM

model into the numerical calculation performed in Sec. 4. We first make the FeynRules v2.3

[179] model file for the MDM model by modifying the SM model file sm.fr.♮45 By running

FeynRules, we can convert the model file to the Universal FeynRules Format (UFO) [181],

which can be used as a model file for MadGraph5.♮46

In the Listing 1, we show a part of our FeynRules model file mdm.fr. This corresponds

to the lines that contain additions and modifications to sm.fr to take account of the 5-plet

fermion as an example of the MDM. In the following, . . . denotes a description that is the

same as sm.fr and thus omitted in the listing.

Listing 1: mdm.fr

1 (* ***************************************** *)
2 (* ***** SU(2)L representation matrix ****** *)
3 (*********************************************)
4

5 replaceMDM = {repMDM[a_,b_,c_] :>
6 {{{0,1,0,0,0},{1,0,Sqrt[3/2],0,0},{0,Sqrt[3/2],0,Sqrt[3/2],0},{0,0,

Sqrt[3/2],0,1},{0,0,0,1,0}},
7 {{0,-I,0,0,0},{I,0,-I Sqrt[3/2],0,0},{0,I Sqrt[3/2],0,-I Sqrt

[3/2],0},{0,0,I Sqrt[3/2],0,-I},{0,0,0,I,0}},
8 {{2,0,0,0,0},{0,1,0,0,0},{0,0,0,0,0},{0,0,0,-1,0},{0,0,0,0,-2}}}[[a

[[2]],b[[2]],c[[2]]]]
9 };

10

11 (* ************************** *)
12 (* ****** Gauge groups ****** *)
13 (* ************************** *)
14

15 M$GaugeGroups = {
16 U1Y == {...},
17 SU2L == {
18 Abelian -> False,
19 CouplingConstant -> gw,
20 GaugeBoson -> Wi,
21 StructureConstant -> Eps,
22 Representations -> {{Ta,SU2D},{TM,SU2M}},

♮45Model files for the SM and several relatively simple extensions of the SM are found in the model database

equipped in the official wiki [180].
♮46The use of collider physics public codes such as FeynRules and MadGraph5 can be systematically learned

by referring the well-summarized lecture notes provided by Sho Iwamoto [182].
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23 Definitions -> {Ta[a_,b_,c_]->PauliSigma[a,b,c]/2, FSU2L[i_,j_,k_]:>
I Eps[i,j,k], TM[a_,b_,c_]->repMDM[a,b,c]}

24 },
25 SU3C == {...}
26 };
27

28 (* ************************** *)
29 (* ******** Indices ********* *)
30 (* ************************** *)
31

32 IndexRange[Index[SU2W ]] = Unfold[Range[3]];
33 IndexRange[Index[SU2D ]] = Unfold[Range[2]];
34 IndexRange[Index[SU2M ]] = Unfold[Range[5]];
35 IndexRange[Index[Gluon ]] = NoUnfold[Range[8]];
36 IndexRange[Index[Colour ]] = NoUnfold[Range[3]];
37 IndexRange[Index[Generation]] = Range[3];
38

39 IndexStyle[SU2W, j];
40 IndexStyle[SU2D, k];
41 IndexStyle[SU2M, l];
42 IndexStyle[Gluon, a];
43 IndexStyle[Colour, m];
44 IndexStyle[Generation, f];
45

46 (* ************************** *)
47 (* **** Particle classes **** *)
48 (* ************************** *)
49

50 M$ClassesDescription = {
51 ...
52

53 (* Physical MDM Dirac components *)
54 F[5] == {
55 ClassName -> chi0,
56 SelfConjugate -> True,
57 WeylComponents -> chi0w,
58 Mass -> {mMDM0, 1000},
59 Width -> 0,
60 MajoranaPhase -> 0,
61 PropagatorLabel -> "chi0",
62 PropagatorType -> Straight,
63 PropagatorArrow -> None,
64 ParticleName -> "chi0",
65 FullName -> "chi0"
66 },
67 F[6] == {
68 ClassName -> chi1,
69 SelfConjugate -> False,
70 WeylComponents -> {chi1pw, chi1mwbar},
71 Mass -> {mMDM1, 1000},



84 Section C. Collider simulation of the MDM model

72 Width -> 0,
73 MajoranaPhase -> 0,
74 QuantumNumbers -> {Q -> 1},
75 PropagatorLabel -> "chi1",
76 PropagatorType -> Straight,
77 PropagatorArrow -> Forward,
78 ParticleName -> "chi+",
79 AntiParticleName -> "chi-",
80 FullName -> "chi1"
81 },
82 F[7] == {
83 ClassName -> chi2,
84 SelfConjugate -> False,
85 WeylComponents -> {chi2pw, chi2mwbar},
86 Mass -> {mMDM2, 1000},
87 Width -> 0,
88 MajoranaPhase -> 0,
89 QuantumNumbers -> {Q -> 2},
90 PropagatorLabel -> "chi2",
91 PropagatorType -> Straight,
92 PropagatorArrow -> Forward,
93 ParticleName -> "chi++",
94 AntiParticleName -> "chi--",
95 FullName -> "chi2"
96 },
97

98 (* Fermions: unphysical fields *)
99 F[11] == {

100 ClassName -> LL,
101 Unphysical -> True,
102 Indices -> {Index[SU2D], Index[Generation]},
103 FlavorIndex -> SU2D,
104 SelfConjugate -> False,
105 QuantumNumbers -> {Y -> -1/2},
106 Definitions -> { LL[sp1_,1,ff_] :> Module[{sp2}, ProjM[sp1,sp2] vl[

sp2,ff]], LL[sp1_,2,ff_] :> Module[{sp2}, ProjM[sp1,sp2] l[sp2,ff
]] }

107 },
108 F[12] == {
109 ClassName -> lR,
110 Unphysical -> True,
111 Indices -> {Index[Generation]},
112 FlavorIndex -> Generation,
113 SelfConjugate -> False,
114 QuantumNumbers -> {Y -> -1},
115 Definitions -> { lR[sp1_,ff_] :> Module[{sp2}, ProjP[sp1,sp2] l[sp2,

ff]] }
116 },
117 F[13] == {
118 ClassName -> QL,
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119 Unphysical -> True,
120 Indices -> {Index[SU2D], Index[Generation], Index[Colour]},
121 FlavorIndex -> SU2D,
122 SelfConjugate -> False,
123 QuantumNumbers -> {Y -> 1/6},
124 Definitions -> {
125 QL[sp1_,1,ff_,cc_] :> Module[{sp2}, ProjM[sp1,sp2] uq[sp2,ff,cc]],
126 QL[sp1_,2,ff_,cc_] :> Module[{sp2,ff2}, CKM[ff,ff2] ProjM[sp1,sp2]

dq[sp2,ff2,cc]] }
127 },
128 F[14] == {
129 ClassName -> uR,
130 Unphysical -> True,
131 Indices -> {Index[Generation], Index[Colour]},
132 FlavorIndex -> Generation,
133 SelfConjugate -> False,
134 QuantumNumbers -> {Y -> 2/3},
135 Definitions -> { uR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] uq[

sp2,ff,cc]] }
136 },
137 F[15] == {
138 ClassName -> dR,
139 Unphysical -> True,
140 Indices -> {Index[Generation], Index[Colour]},
141 FlavorIndex -> Generation,
142 SelfConjugate -> False,
143 QuantumNumbers -> {Y -> -1/3},
144 Definitions -> { dR[sp1_,ff_,cc_] :> Module[{sp2}, ProjP[sp1,sp2] dq[

sp2,ff,cc]] }
145 },
146

147 (* Unphysical MDM multiplet *)
148 W[1] == {
149 ClassName -> MDM,
150 Unphysical -> True,
151 Chirality -> Left,
152 SelfConjugate -> False,
153 Indices -> {Index[SU2M]},
154 FlavorIndex -> SU2M,
155 Definitions -> {
156 MDM[sp1_,1] -> chi2pw[sp1],
157 MDM[sp1_,2] -> chi1pw[sp1],
158 MDM[sp1_,3] -> chi0w[sp1],
159 MDM[sp1_,4] -> chi1mw[sp1],
160 MDM[sp1_,5] -> chi2mw[sp1] }
161 },
162

163 (* Unphysical MDM Weyl components *)
164 W[2] == {
165 ClassName -> chi0w,
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166 Unphysical -> True,
167 Chirality -> Left,
168 SelfConjugate -> False
169 },
170 W[3] == {
171 ClassName -> chi1pw,
172 Unphysical -> True,
173 Chirality -> Left,
174 SelfConjugate -> False,
175 QuantumNumbers -> {Q -> 1}
176 },
177 W[4] == {
178 ClassName -> chi1mw,
179 Unphysical -> True,
180 Chirality -> Left,
181 SelfConjugate -> False,
182 QuantumNumbers -> {Q -> -1}
183 },
184 W[5] == {
185 ClassName -> chi2pw,
186 Unphysical -> True,
187 Chirality -> Left,
188 SelfConjugate -> False,
189 QuantumNumbers -> {Q -> 2}
190 },
191 W[6] == {
192 ClassName -> chi2mw,
193 Unphysical -> True,
194 Chirality -> Left,
195 SelfConjugate -> False,
196 QuantumNumbers -> {Q -> -2}
197 }
198 };
199

200 (* ************************** *)
201 (* ******* Parameters ******* *)
202 (* ************************** *)
203

204 M$Parameters = {
205 ...
206

207 mmm == {
208 ParameterType -> External,
209 BlockName -> MDMBLOCK,
210 OrderBlock -> 1,
211 Value -> 1000,
212 TeX -> Subscript[m, MDM],
213 Description -> "MDM␣mass"
214 }
215 };
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216

217 (* ************************** *)
218 (* ******* Lagrangian ******* *)
219 (* ************************** *)
220

221 ...
222

223 LMDM := Block[{mu},
224 ExpandIndices[I MDMbar.sibar[mu].DC[MDM, mu] - mmm/2 chi0bar.chi0 - mmm

chi1bar.chi1 - mmm chi2bar.chi2,
225 FlavorExpand->{SU2W,SU2M}]/.replaceMDM//WeylToDirac];
226

227 Lagrangian:= LGauge + LFermions + LMDM + LHiggs + LYukawa + LGhost;
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Section D

Structure of the loop functions

In this section, we examine the structure of the loop functions defined in Sec. 5 and

discuss their properties. Recall the form of the loop functions

f(x) =


1

16π2

∫ 1

0

dy (1− 2y)2 ln(1− y(1− y)x− i0) (Scalar),

1

16π2

∫ 1

0

dy y(1− y) ln(1− y(1− y)x− i0) (Fermion),

(D.42)

which correspond to the vacuum polarization effects from scalar and fermionic WIMPs,

respectively. Note that f(x = 0) = 0 for both scalar and fermionic cases.

First, we consider the imaginary part of Eq. (D.42). The imaginary part of the integrand

is non-zero if and only if 1 − y(1 − y)x < 0, which can be realized when x > 4. Under this

condition, we can evaluate the integral and obtain

ℑf(x) =


− 1

48π
β3 (Scalar, x > 4),

− 1

192π
β(3− β2) (Fermion, x > 4),

(D.43)

with β ≡
√

1− 4/x. According to the optical theorem, ℑf(x) is proportional to the parton-

level WIMP pair production cross section discussed in Sec. 4.1 with a negative coefficient,

and thus ℑf(x) < 0 for any x > 4. Note that, if we substitute x = s′/m2
χ, the β dependence

of Eq. (D.43) is consistent with the total pair production cross section that is obtained

by integrating Eqs. (4.4) and (4.5) over the solid angle. In the pair production process, β

denotes the velocity of the produced WIMPs in the CM frame.

Next, we consider the analytic structure of the loop function f(z) now defined for z ∈ C.
As shown in Fig. 28, f(z) has a branch cut on the real axis with ℜz > 4. Note that, in the

following discussion, we take account of the Feynman prescription −i0 in the loop function

by choosing physically interesting points as z = x + i0 with x > 0 as shown by the black

circle, while keeping the position of the branch cut just on the real axis. From the Cauchy’s

theorem, we have an identity

f(z) =
z

2πi

∮
f(z′)

z′(z′ − z)
dz′, (D.44)

where a contour that surrounds the point z is chosen. The factor z/z′ is introduced to

realize the required property f(z = 0) = 0. We can take a contour shown in Fig. 28,
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Figure 28: Analytic structure of the loop function f(z) and the contour of the integration.

which is decomposed into two parts; C∞, which exists at |z′| → ∞, and Cℜ, which exists

just below and above the real axis with ℜz′ > 4. Since the integrand decreases as ln z′/z
′2

as |z′| increases, the integration along the contour C∞ gives zero. On the other hand, the

integration along Cℜ is equivalent to the integration of f(z)−f(z)∗ = 2iℑf(z) for an analytic

function f(z) and we obtain

f(z) =
z

π

∫ ∞

4

dz′
1

z′(z′ − z)
ℑf(z). (D.45)

From Eq. (D.45), we determine the property of ℜf that is important for the discussion in

Sec. 5. For this purpose, we return to the function f(x) of real values and rewrite Eq. (D.45)

as

f(x) =


x

π

∫ ∞

4

dx′
1

x′(x′ − x)
ℑf(x), (x < 4)

x

π
P

∫ ∞

4

dx′
1

x′(x′ − x)
ℑf(x) + iℑf(x), (x > 4)

(D.46)

where the symbol P deontes the Cauchy principal value. Note that the first term of the

second line shows the real part of f(x), while the second term is consistently derived by

calculating the residue at x′ → x. For x < 4, we can see that ℜf(x) = f(x) < 0 since

the integrand is always negative. For x > 4, the integration contains both the negative and

positive contributions but we expect ℜf(x) < 0 for x ∼ 4 from the continuity. This explains

the behavior of the correction to the cross section from WIMPs shown in Fig. 17.
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Section E

Properties of the transverse mass

In this appendix, we summarize the properties of the transverse mass, which is used for

the analysis of the mono-lepton final state in Sec. 5. The transverse mass is useful when

there is a unique invisible particle (which we will call I) such as a neutrino in the final state.

As already mentioned in Sec. 5.1, the transverse mass mT is defined event by event using

the measured value of the missing transverse momentum /ET as

m2
T ≡ 2pT /ET (1− cosϕ) , (E.47)

where pT denotes the transverse momentum of a visible final state particle (which will call

P ) and ϕ is the difference between the azimuth angles of visible and missing transverse

momenta. It is important that we can infer the invariant mass of particles P and I with

mT , if both P and I are (approximately) massless.

Let pP and pI be the four momenta of P and I, respectively. When there is only one

invisible particle in the event, the transverse momentum of I is roughly identified with /ET .

Hereafter, we assume the exact equality among them just for simplicity, which corresponds

to neglect the detector errors, transverse momentum of initial partons, soft emissions that

are invisible for detectors, and so on. Then, we can write the components of four momenta

as

pP = (EP , pT cosϕP , pT sinϕP , pPz) , (E.48)

pI = (EI , /ET cosϕI , /ET sinϕI , pIz) , (E.49)

with ϕ ≡ ϕP − ϕI . Note that massless conditions are satisfied, namely E2
P = p2T + p2Pz and

E2
I = /E2

T + p2Iz. We can derive a relation between mT and mPI ≡
√

(pP + pI)2

mT ≤ mPI , (E.50)

where the equation holds when

pPz /ET − pTpIz = 0. (E.51)

When the above equation roughly holds, mPI −mT is proportional to (pPz /ET − pTpIz)
2.

It is more intuitive to understand the situation in the center-of-mass system (CMS),

focusing on the pair production process of particles P and I. In this case, the transverse

momentum of the event is simply given by

m
(CMS)
T = mPI sin θ

(CMS), (E.52)
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Figure 29: Distribution of mT/mℓν for the pair production process of P = ℓ and I = ν.

Figure for
√
s = 100TeV and L = 1ab−1.

where θ(CMS) is the angle between the momentum of P and the beamline in the CMS.

Although the definition of mT is not Lorentz invariant and generally m
(CMS)
T ̸= mT , the

former gives a good approximation of the latter when the two-particle system is not highly

boosted. Let us simply assume mT = m
(CMS)
T and consider the repeated production of P and

I with fixedmPI . When we postulate the uniform distribution of the production cross section

against cos θ(CMS) for simplicity, the distribution of the transverse mass f(mT ) calculated

according to Eq. (E.52) possesses a sharp peak at mT = mPI , described by

f(mT ) =
mT

mPI

cos−1

[
arcsin

(
mT

mPI

)]
. (E.53)

This peak, often called the Jacobian peak, enables us to estimate mPI from the distribution

of mT .

In Fig. 29, we show the distribution of the ratio mT/mℓν for the pair production process

of P = ℓ and I = ν. We use the setup of
√
s = 100TeV and L = 1ab−1. To evaluate the

missing transverse momentum /ET for each event, we have performed the detector simulation

using Delphes similar to the analysis in Sec. 5. We can clearly see the peak at mT/mℓν = 1,

though it is somewhat smeared compared with Eq. (E.53) due to the effect of the Lorentz

boost and the non-trivial angular dependence of the production cross section. Besides, the

small tail of the distribution formT > mℓν can be understood as the effects we have neglected

so far, such as the detector errors.



92 Section F. Profile likelihood method

Section F

Profile likelihood method

In this appendix, we briefly review the profile likelihood method used in Sec. 5.2.2. In

particular, we describe the motivation and justification to consider this method.

First of all, the experimental outcome can be expressed as a set of random variables

x ≡ {x1, · · · , xn}, with n being the number of observables. The distribution of these variables

is due to both the intrinsic physical randomness (i.e., the statistical fluctuation) and the

uncertainty in detector responses such as the efficiency, momentum reconstruction, and so

on. We assume x obey some probability distribution function and express it as f(x;θ), where

θ = {θ1, · · · , θm} parametrize (in many cases unknown) uncertainties listed above. When

we repeat N experiments and obtain N sets of observables expressed as xa (a = 1, · · · , N),

we define the likelihood function L as

L =
N∏
a=1

f(xa;θ). (F.54)

Since L should take a relatively larger value if the assumed distribution f approximates

the reality very well, we may perform the maximization of L against the choice of θ to

obtain the correct probability distribution. Such a maximization procedure can be performed

analytically only for several simple distribution functions. Thus, in many cases, we need a

numerical calculation of the maximization procedure, which can be performed with the

MINUIT package [183].

In our analysis in Sec. 5, the data is given in the form of the histogram. In this case,

xi (i = 1, · · · , n) denotes the observed number of events in each bin labeled by i, with n

being the number of bins. Then the likelihood L, which is the product of the probability

distribution function for each bin, is expressed as

L(x;θ) ≡
∏
i

fi(x;θ) =
∏
i

exp

[
−(xi − µi(θ))

2

2xi

]
, (F.55)

with µi(θ) being the average number of events of the bin i calculated using the parameters

θ. Note that xi ≫ 1 is assumed for each bin and the central limit theorem is used to replace

the Poisson to the Gaussian distribution. Then, it is clear that the maximization of L is

equivalent to the minimization of χ2 defined as

χ2 ≡ −2 lnL(x;θ) =
n∑

i=1

(xi − µi(θ))
2

xi
, (F.56)
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which is the so-called Neyman’s χ2 variable. χ2 obeys the chi-squared distribution with n

degrees of freedom when xi is truely described by the model θ and the distribution of xi
is well approximated by the Gaussian. In this case, χ2 defined above can be easily used to

estimate the errors of θ around the optimized values.

Similarly, one can apply the likelihood maximization to the model test. Let θtrue and

θtest be the model in reality and that we want to test, respectively. For example, in the new

physics search, the former corresponds to a new physics model of our concern, while the

latter to the SM. Then we can define the test-statistic

q(θtest) = −2 ln
L(x;θtest)

L(x;θtrue)
, (F.57)

which plays the role of the so-called ∆χ2 variable according to the discussion above. Again q

may obey the chi-squared distribution with degrees of freedom equal to the number of model

parameters θ and can be used to obtain sensitivities to the new physics, e.g., the 95% C.L.

exclusion and the 5σ discovery. Note that the denominator of the test statistic can also be

expressed as L(x; θ̂), where the hat denotes the values of θ that maximize the function L.

However, the situation may be more complicated since some of the parameters θ are not

directly related to the model parameters, but express the background yield, detector effects,

systematic errors, and so on, which should be determined from experimental data. Such

additional parameters are often called nuisance parameters. To treat nuisance parameters,

there are several ways such as the profile likelihood method [171] and the marginal likelihood

method [184]. In this appendix, we focus on the profile likelihood method.

We divide the parameters into two categories: the model parameter of our interest µ and

nuisance parameters θ. Similarly to the discussion without the nuisance parameters, let µ

be the model that we want to test. The test static is defined as

q(µ) = −2 ln
L(x;µ, ˆ̂θ(µ))

L(x; µ̂, θ̂)
, (F.58)

where the meaning of the hat is the same as above, while ˆ̂θ(µ) denotes the values that

maximize L with fixed values of µ. The motivation for this definition is provided by the

Wilk’s theorem [185], which proves that q(µ) asymptotically obeys the chi-squared distribu-

tion whose degrees of freedom equal to the number of model parameters µ. Note that this

statement is highly non-trivial since the individual term −2 lnL does not obey a chi-squared

distribution in this case. Thanks to the theorem, we can perform the same analysis under the

existence of nuisance parameters and, in particular, absorb the effects of systematic errors

into the choice of parameters θ.
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