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Abstract

In this Thesis, we investigate problems of thermalization in closed (or isolated)
and open quantummany-body systems, which are deeply tied to the foundations
of quantum statistical mechanics. Such studies have attracted growing interest
thanks to recent experimental realizations of controllable quantum many-body
systems, e.g., cold atoms and ions.

We firstly discuss thermalization in closed quantummany-body systems. The
eigenstate thermalization hypothesis (ETH) has been proposed as a sufficient
condition for a system to be described by the microcanonical ensemble after
a long-time dynamics. The ETH is expected to hold true for generic systems
except for some systems such as many-body localized (MBL) systems with strong
disorder. On the other hand, the reason why the ETH generically holds true
has not yet been fully understood. We here rigorously show that the typicality
argument, which has long been thought to justify the ETH, does not hold true for
a realistic setup with few-body properties of observables and Hamiltonians.

We secondly discuss thermalization in open quantum many-body systems.
State-of-the-art experiments (e.g., experiments under continuous measurement)
have now enabled us to control dissipation, whichmay enrich properties of closed
systems. As one of the fundamental problems of thermalization in open quantum
systems, we study the MBL in non-Hermitian systems, which are relevant for
continuouslymeasured systems. We show that the transition between delocalized
(ETH) and MBL phases occurs even for non-Hermitian many-body Hamiltonians
and affects spectral and dynamical properties. In particular, we find that a novel
real-complex transition occurs upon MBL and affects the dynamical stability in
non-Hermitian interacting systems with asymmetric hopping.

Just as delocalized phases in closed systems are characterized by Hermitian
random matrices, those in open quantum systems are characterized by non-
Hermitian random matrices. On the other hand, in contrast with the Hermitian
cases, the universality in non-Hermitian randommatrices and its relation to sym-
metries are not well understood. In Hermitian random matrices, there are three
universality classes of local spectral statistics dependent on time-reversal sym-
metry (TRS). However, TRS is known not to alter universality in non-Hermitian
randommatrices. We here show that three different universal level-spacing distri-
butions appear even for non-Hermitian randommatrices whenwe consider trans-
position symmetry instead of TRS. This result serves as a basis for characterizing
nonintegrability and delocalization in open quantum systems with symmetry.
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Chapter 1

Introduction

1.1 Problems of thermalization: foundations of quan-
tum statistical mechanics

1.1.1 Thermalization in closed quantum systems

Many of the natural phenomena that we see in everyday life appear at the macro-
scopic level by forming solids, liquids or gases. Statistical mechanics provides
a framework to understand such collective phenomena from the perspective of
microscopic theories, such as quantummechanics. Indeed, equilibrium statistical
mechanics originally developed by Boltzmann is now indispensable for under-
standing various fields of science, including chemistry and neural networks, not
to mention physics. It allows us to calculate thermodynamic variables and their
fluctuations using microscopic Hamiltonians [1] without explicitly solving com-
plicated dynamics.

Equilibrium statistical mechanics asserts that observables at thermal equilib-
rium can be computed by the microcanonical ensemble ρ̂mic:

ρ̂mic(E) :� 1
dim[HE,∆E]

P̂E,∆E , (1.1)

whereHE,∆E denotes the Hilbert space spanned by eigenstates in themicrocanon-
ical energy shell with mean E andwidth 2∆E, and P̂E,∆E is the projection operator
onto the energy shell given as

P̂E,∆E :�
∑

|Eα〉∈HE,∆E

|Eα〉 〈Eα | (1.2)

with the eigenstates |Eα〉 of the Hamiltonian. Then, the expectation value of an
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operator Ô at thermal equilibrium is given by Tr[Ôρ̂mic].
Despite the success of equilibrium statistical mechanics, the reason why the

microcanonical ensemble correctly describes equilibrium states has not yet been
justified in terms of microscopic dynamical laws. One of the most fundamental
questions related to this issue is how initially nonequilibrium quantum systems
relax to states described by the microcanonical ensemble only by unitary time
evolution, i.e., the problem of thermalization in closed quantum systems.

The problem of thermalization in closed quantum systems was first tackled
by von Neumann in 1929 [2], just three years after the Schrödinger equation had
been proposed. Von Neumann raised the following important questions:

1. Howshouldwe characterize thermal equilibrium in termsof themicroscopic
theory? What is the meaning that "thermal equilibrium is described by the
microcanonical ensemble?"

2. What is the condition for any initial states to relax to states described by the
microcanonical ensemble only by unitary time evolution?

3. Finally, why should the condition obtained above hold true for macroscopic
quantum systems?

He attempted to answer these questions only by using quantum mechanics,
but unfortunately, his answers were forgotten for a long time [3] owing to mis-
understanding of the results [4, 5, 6]. It is only after around this decade that
his answers have been recognized and developed in a modern way along with a
support of experiments of almost closed quantum systems using, e.g., cold atomic
systems; see the next section.

The answer to the first question is that we should consider some set S of
observables to judgewhether the state ρ̂ is in thermal equilibrium or not. Namely,
if

Tr[ρ̂Ô] ' Tr[ρ̂micÔ] (1.3)

for all Ô ∈ S ("'" means that the equality holds true up to subextensive cor-
rections), ρ̂ is in thermal equilibrium; otherwise ρ̂ is out of equilibrium. This
definition of thermal equilibrium depends on S. We often take S to be a set of
local observables or macroscopic observables, which define the so-called "mi-
croscopic thermal equilibrium [7, 8, 9, 10]" or "macroscopic thermal equilib-
rium [2, 11, 3, 9, 12, 10]." In any case, the important thing to note is that thermal
equilibrium is defined through experimentally relevant quantities rather than
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density matrices themselves. We note that almost all pure states belong to ther-
mal equilibrium [7, 8, 13] for local ormacroscopic observables; if we take a random
pure state |ψ〉 ∈ HE,∆E over the Haar measure, ρ̂ � |ψ〉 〈ψ | satisfies Eq. (1.3) with
unit probability in the thermodynamic limit.

Von Neumann’s answer to the second question has now been refined and
known as the (strong) eigenstate thermalization hypothesis (ETH) [14, 15, 16, 17,
18]. TheETHessentially states that all eigenstates |Eα〉 ∈ HE,∆E of theHamiltonian
are thermal:

〈Eα |Ô |Eα〉 ' Tr[ρ̂micÔ], (1.4)

〈Eα |Ô |Eβ〉 ' 0 (for α , β) (1.5)

up to subextensive corrections for all Ô ∈ S; other possible definitions are re-
viewed inChapter 2. TheETHprovides a sufficient condition for any initial state to
relax to thermal equilibriumcharacterizedbyS. Manynumerical simulations sug-
gest that the ETH is actually amechanism to explain thermalization in awide class
of closed quantummany-body systems [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
On the other hand, rigorously proving the ETH in specific quantum systems is a
formidable task.

Instead of a rigorous proof, vonNeumann arguedwhy the obtained condition,
which is essentially the ETH, holds true for generic systems, as the answer to the
third question above. We here call it a typicality argument [30, 31]. This argument
essentially conjectures that energy eigenstates behave as if they were pseudo-
random vectors against observables in the microcanonical energy shell [2, 30]; the
precise definition is reviewed in Chapter 3. If the typicality argument is correct,
we can justify the ETH.

An overview described here will be detailed in Chapters 2 and 3. There we
will also review important related concepts, such as random matrix theory and
many-body localization.

1.1.2 Thermalization in open quantum systems

While the entire universe is expected to be isolated and follow unitary time evo-
lutions, most physical systems are not regarded as being isolated. Such open
quantum systems are described by non-unitary time evolutions and there are
many distinct properties for their dynamics and stationary states. For example,
an external bath often makes the system thermalized at the same temperature
by exchanging energies and particles. On the other hand, for ultracold atomic
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systems, particle loss usually leads to the vacuum stationary states. More inter-
estingly, stationary states ofmany open systemsmaybe genuinely nonequilibrium
for certain cases. Thus, study of dynamics and stationary states in open quantum
many-body systems may unveil nonequilibrium statistical mechanics, which has
yet to be understood. We will call this problem thermalization in open quantum
systems, where we consider the approach not only to thermal equilibrium but
also to other possible nonequilibrium stationary states.

Various microscopic equations of motion are proposed to describe open quan-
tum systems, depending on the relation between the system and bath [32]. The
best known example is the Lindblad master equation, which is obtained by trac-
ing out the bath degrees of freedom with several assumptions (e.g., the Markov
property and the weak system-bath coupling):

dρ̂
dt

� L[ρ̂] � −i
(
ĤNHρ̂ − ρ̂Ĥ†NH

)
+

∑
m

γm L̂m ρ̂L̂†m . (1.6)

Here ĤNH � Ĥ − (i/2)∑m γm L̂†m L̂m is an effective non-Hermitian Hamiltonian,
where Ĥ is the system’s Hamiltonian and L̂m is a so-called jump operator with
strength γm .

In some non-unitary processes represented by the dynamics under continuous
quantum measurement, we can trace each stochastic trajectory under measure-
ment backaction by keeping track of every measurement outcome. The dynamics
of such trajectories, called quantum trajectories, is described by (I) continuous
non-Hermitian dynamics with ĤNH, and (II) a sudden stochastic change of the
state (called a quantum jump) characterized by L̂m . If we take an average over
all quantum jumps (i.e., measurement outcomes), the averaged state obeys the
Lindblad master equation given in Eq. (1.6).

Such quantum trajectories, which are, in fact, accessible in experiments [33, 34,
35, 36, 37], uncover richer physics which is not obtained in the conventional Lind-
blad master equation. For example, we can access to rare quantum trajectories
in which the number of quantum jumps is away from the average. For quantum
trajectories with few numbers of quantum jumps, the dynamics is almost char-
acterized by non-Hermitian time evolution ĤNH. Such non-Hermitian dynamics
has been intensively studied recently, and known to exhibit interesting properties
such as real-complex transitions of eigenvalues [38, 39].

The overview described here is later detailed in Chapters 2 and 3. We will
review the formulations and recent advancement of thermalization in open quan-
tum many-body systems and recent developments in non-Hermitian systems.
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1.2 Experiments of artificial quantummany-body sys-
tems

Thermalization dynamics of many-body systems which we saw in the previous
section has now been observed experimentally using artificially controlled quan-
tum many-body systems. The idea of such artificial quantum systems was first
proposed by Feynman with the following quote [40]:

"· · · nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because
it doesn’t look so easy."
In other words, since quantum many-body systems have large complexity and
it is quite hard to simulate them with a classical computer, it is better to make
quantum devices that can simulate them. While Feynman’s idea encourages
many researchers to create quantum computers [40], here we mainly focus on
analogue quantum simulators, which imitate various models and Hamiltonians
in a highly controllable way. Indeed, state-of-the-art technologies enable us to
simulate quantum models with ultracold atoms, ions, nitrogen-vacancy centers
in diamonds, superconducting qubits to name but a few [41, 42]. These quantum
simulators have succeeded in verifying the theory on thermalization of many-
body systems. Moreover, these artificial quantum many-body systems open up
the researchof novel dynamical phases ofmatter (such asdiscrete time crystals [43,
44]), which cannot be realized by the conventional condensed matter systems.
Here, we review some of the experiments that have addressed the thermalization
dynamics of quantum many-body systems.

1.2.1 Experiments of thermalization in closed systems

Thermalization via unitary time evolutions has often been experimentally verified
using cold atomic systems [45, 46] or cold ion systems [47]. One advantage of
these systems is that they are almost isolated from the surrounding environment
because they are trapped in a high vacuum chamber.

Let us briefly review the basics of these quantumsimulators. Neutral atoms are
cooled down and trapped in a vacuum chamber using magnetic fields and optical
dipole interactions [48, 49]. Their short-range interactions can be controlled by the
Feshbach resonance, and even long-range interactions come into play by dipole-
dipole interactions for Rydberg atoms [50]. Various lattice models with different
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shapes and dimensions are realized using atoms loaded on an optical lattice [51].
Instead, recent experiments show that more flexible lattice configurations are
possible with Rydberg atoms on microtraps created by optical tweezers [50].

Trapped ions are in balance owing to their Coulomb interactions. The phonon
modes around this balance mediate the long-range interactions between distant
psuedospins (internal degrees of freedom) [52]. The degree of power decay of
long-range interactions can be tuned in a rather flexible way [53].

Relaxation to the thermal state

Let us first discuss relaxation to thermal equilibrium. Although the approach to
thermal equilibrium seems ubiquitous, it is not easy to confirm that this is caused
only by unitary time evolutions. This task was first accomplished by Trotzky et al.
with 87Rb ultracold atoms [45]. They loaded atoms on a one-dimensional optical
lattice with on-site interactions, which models a 1D nonintegrable Bose-Hubbard
model. Starting from an initial state in which each particle is isolated only on
an even site, they suddenly lowered the height of the lattice potential. Then, the
atoms spreadwith time and the expectation value of the atom number in odd sites
grows from zero, oscillates, and eventually relaxes to the thermal value, i.e., 0.5.
They found that the experimentally observed relaxation is well described by the
numerical simulation of time-dependent density matrix renormalization group,
which assumes unitary time evolutions.

Another experimental demonstration of thermalizationwas done by Kaufman
and coworkers [46] with only six 87Rb atoms on six lattice sites. Such a small
system can be controlled with the digital micromirror device at a single-site level.
They prepared two copies of a 1D six-site Bose-Hubbard model with a unit filling
by evaporating the other particles. Starting from a Mott state, they lowered the
lattice potential so that the particles may get entangled. After a certain time,
they measured the local particle number, the purity, and the Renyi entanglement
entropy. Note that the purity and the entanglement entropy can be measured by
the interference between the system and its copy [54]. After a sufficiently long
time, they found that the local particle number obeys the Boltzmann distribution
and that the entanglement entropy becomes the thermal value, while the global
purity is almost kept constant. They also confirmed that the reduced density
matrix at a local site is almost equal to the thermal density matrix. These results
are surprising because six sites are far from the macroscopic limit: thermalization
in such a small system is expected to take place owing to the genuinely quantum
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property of entanglement, which is also relevant to the ETH.
Relaxation to thermal equilibrium in closed quantum systems has also been

observed in other systems. Thermalization of spins through the coupling with
the phonon modes was observed by Clos et al. with trapped ions, where the com-
bined system of spins and phonons is almost isolated [47]. As another example,
Ref. [55] used a dipolar-interacting Rydberg spin system in 3D to discuss collective
dynamics of spins. They found that temporal fluctuations during the relaxation
to the thermal state can be well described by the truncated Wigner approxima-
tion. Finally, Neill et al. [56] observed thermalization using three superconducting
qubits with periodic drivings, which describe approximated unitary dynamics at
every periodwhile the energy is not conserved. They found that the entanglement
entropy restricted to one qubit after a certain time becomes thermal for an initial
state whose classical counterpart (S→∞) belongs to a chaotic region in the phase
space.

Absence of thermalization and novel phases of matter

While the relaxation to the thermal state seems natural for large systems, it is
known that certain closed systems do not thermalize even in the thermodynamic
limit. Such non-thermal characters are also applied to create novel dynamical
phases of matter represented by the discrete time-crystalline order.

As detailed inChapter 2, one of themost important examples is themany-body
localized (MBL) system [57, 58], inwhichmany-body eigenstates become localized
in the Fock space owing to (most commonly) strong disorder. The system in the
MBL phase breaks the ETH owing to emergent (quasi-)local conserved quantities.

A series of experiments on the MBL has been performed by using ultracold
atoms by the group inMax Planck Insititute. They first demonstrated theMBL for
a 1D interacting systemwith a quasiperiodic potential, which serves as an effective
disorder [59]. After that they succeeded in preparing identically coupled 1D
chains with quasiperiodic potential [60], 2D systems with genuine disorder [61],
and2Dsystemswithquasiperiodic potential [62]. While they founddelocalization
in the presence of the interaction in Ref. [60], they found the signature of the
MBL in Refs. [61, 62]. They also studied the effect of periodic driving on the
localization. Using a 1D interacting system with quasiperiodic potential, they
found that localized and delocalized phases are separated as a function of the
driving strength and frequency aswell as the strength of the interaction and lattice
potential [63]. We note that, another group in Harvard succeeded in probing the
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logarithmic growth of entanglement using cold atoms [64].

Experiments of the MBL have also been done for other systems. In Ref. [65],
they considered a system of trapped ions in one dimension with tunable long-
range interactions and on-site potentials. Their system is described by a long-
ranged Ising model with disorder. Starting from the Neel state |↑↓ · · · ↑↓〉, where
|↑〉 and |↓〉 are the eigenstates of σ̂z with an eigenvalue +1 and −1, respectively,
they observed relaxation dynamics of each spin. They found that thermalization
of the magnetization observed in the weak-disorder cases ceases to hold in the
strong-disorder cases, which indicates the MBL transition as a function of disor-
der. In Ref. [66], the authors investigated the difference between the MBL and the
noninteracting Anderson localization using the time evolution of ameasure of the
correlation length. References [67, 68] study the MBL using the superconducting
qubits. In Ref. [68], they considered a model with long-range interactions and
demonstrated the breakdown of thermalization for strong disorder. In Ref. [67],
they created the Bose-Hubbard model and found the level-spacing statistics and
the inverse-participation ratio for the eigenstates, withwhich they identified delo-
calized andMBL phases. Finally, we also note that the nitrogen-vacancy centers in
diamonds have been used to demonstrate slow thermalization (dubbed as "critical
thermalization") owing to disorder, although it is not an exact MBL [69].

The absence of thermalization (or slow dynamics) enables us to create novel
dynamical phases of matter, which are not realized in equilibrium. For example,
the periodically driven (=Floquet) MBL [44] and the critical thermalization [43]
are used to create discrete time crystals, which spontaneously break discrete time-
translation symmetry. Note that periodic driving rapidly heats the system and
destroys such a time-crystalline order unless the system belongs to the MBL or
the slowly thermalizing phases.

The MBL is not the only mechanism for absence of thermalization in the
long-time limit. Integrable systems are known to approach the so-called gen-
eralized Gibbs ensemble (GGE) [70], which takes account of initial information
for local conserved quantities, instead of the standard canonical ensemble. Ab-
sence of thermalization owing to integrability has experimentally been observed
in Refs. [71, 72, 73, 74], and the GGE has also been confirmed in Ref. [74]. Another
important mechanism for the absence of thermalization is a quantummany-body
scar. The experiment by Bernien et al. [75] used Rydberg atoms trapped by optical
tweezers to simulate quantum many-body dynamics with strong next-neighbor
interactions. They found that some initial states (such as the Neel states) exhibit
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long-time oscillations even though the system is nonintegrable. This unexpected
behavior has motivated theorists to come up with a new reason for the absence of
thermalization, namely a quantum many-body scar [76], which is a non-thermal
eigenstate embedded in thermal eigenstates.

We also note that some long-ranged interacting systems seem to exhibit pe-
culiar relaxation. Reference [77] observed prethermalization [78, 79, 80] of the
trapped ions modeled by long-ranged Ising model. They argue that the prether-
malized state cannot be described by the GGE. In Ref. [81], the dynamics of trans-
verse Ising model with r−6 interaction was reported with Rydberg atoms trapped
by optical tweezers in 1D (with linear and zigzag configurations). While the re-
laxation dynamics was approximated by an effective Fokker-Planck equation, the
stationary state is distinct from thermal value because the ETH is broken.

Other relaxation dynamics

Experiments in closed quantummany-body systems are also important to under-
stand properties of nonequilibriumdynamics. For example, the speed of informa-
tion propagation is finite owing to the Lieb-Robinson bound, which is confirmed
with cold atoms [82] and trapped ions [83, 53]. Trapped ions are also used to
study dynamical phase transition after quench [84]. As another example, the scal-
ing dynamics across the phase transition (the Kibble-Zurek mechanism [85, 86])
has been observed in various systems [87, 88, 89]. Scaling dynamics is also ob-
served in the intermediate timescale [90, 91], which is called the non-thermal
fixed point. Transport phenomena are directly observed with fermionic [92] and
bosonic [93] atoms. Finally, the dynamics of the out-of-time-ordered correlators
(OTOC), which probes how the quantum information scrambles in the system,
has been observed with the NMR system [94] and the trapped ions [95].

1.2.2 Experiments of thermalization in open systems

While we have explained that almost closed quantum many-body systems have
been realized, recent experiments also enable us to control dissipation and mea-
surement with high precision. Here we review experiments which involve such
non-unitary dynamics.

In some cold atomic systems, dissipation can be introduced by one-body
losses [96, 97, 98], for which the jump operator L̂m can be written as an an-
nihilation operator. For example, in Ref. [96], the authors created one-body
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localized dissipation by shining an electron beam on an atomic Bose-Einstein
condensate. Surprisingly, they found that the loss of atoms was suppressed for
strong dissipation, which has been attributed to the quantum Zeno effect. The
same group also found a non-equilibrium phase transition of the stationary state
for a one-dimensional array of atoms with a local one-body dissipation [97]. An-
other group succeeded in demonstrating non-Hermitian dynamics using tunable
one-body losses mediated by synthetic lattices [98].

We can also tune two-body losses of cold atoms [99] and molecules [100, 101].
For example, in Ref. [99], they considered a 3D 174Yb system, which is described
by a Bose-Hubbardmodel with on-site two-body losses. Such two-body losses are
realized by a single-photon photoassociation beam, which converts two atoms at
doubly occupied sites into a molecular state that is immediately dissociated from
the optical lattice. They found that the melting of the Mott insulator is delayed
for strong dissipation, which is a manifestation of the continuous quantum Zeno
effect.

Other kinds of measurement of cold atoms also lead to nontrivial conse-
quences. For the setups in which jump operators can be regarded as the number
operators, strong dissipation is found to lead to negative differential conductiv-
ity [102], suppression of tunneling owing to the quantum Zeno effect [103], and
destruction of the MBL [104]. For example, in Ref. [104], the authors create such
dissipation by photon scattering. They found that, while theMBL decays with the
rate that depends on dissipation, the susceptibility of the rate against dissipation
can be a signature for the MBL transition point in the absence of the dissipation.

We note that the real-time feedback control after measurement is also pos-
sible [105, 106, 107]. In Ref. [105], they considered a gas of Rydberg atoms in
one dimension. After setting optical tweezers, they measured which tweezers
trap Rydberg atoms. Then they removed those tweezers that do not trap atoms
and moved the position of the remaining tweezers freely using an acousto-optic
deflector. Such a fast feedback control (which takes less than 400 milliseconds)
enables us to prepare various spatial patterns of initial states, which has been
essential for performing subsequent experiments [75, 89].

While we have considered ultracold atoms, we note that dissipation plays an
important role for othermany-body systems. In Ref. [108], the authors experimen-
tally studied the dissipative preparation of the Greenberger-Horne-Zeilinger state
using the trapped ions. In Ref. [109], the authors created a 2D chaotic dissipative
billiard with exciton-polaritons and investigate its spectral properties. Finally,
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dissipation naturally comes into play in e.g., superconducting qubits and cavity
QED systems, where a dissipative phase transition is found [110].

1.3 Organization of this thesis

In this thesis, someproblemsof thermalization in closed andopenquantummany-
body systems are addressed. The following chapters are organized as follows; see
Fig. 1.1.

In Chapter 2, the theoretical advancement of thermalization, universality, and
localization in closed quantum many-body systems is reviewed. I first review
the conditions for a closed quantum system to relax to a state described by a
thermal ensemble, with an emphasis on the ETH. Then, I explain the relation
between nonintegrability, the ETH and random matrices, which has developed
along with the idea of quantum chaos. Some of the known examples for which
thermalization is absent, especially the MBL, are discussed. Finally, I briefly
comment on the universality of relaxation dynamics in closed quantum systems
before complete thermalization.

In Chapter 3, the issue on the origin of the ETH is addressed, revisiting von
Neumann’s seminal work. He showed that the ETH is justified if we assume that
transformation matrices between two eigenbases that diagonalize the observable
and theHamiltonian are randomly (or typically) distributed in themicrocanonical
energy shell. We rigorously show, however, that such an assumption of typicality
does not hold true for most few-body observables and a few-body Hamiltonian,
which are of importance for physically relevant setup. This means that we need a
different scenario that does not rely on the typicality argument to justify the ETH.
This chapter is based on the following reference [31]:

• Atypicality ofMost Few-BodyObservables, Ryusuke HamazakiandMasahito
Ueda, Phys. Rev. Lett. 120, 080603 (2018).

In Chapter 4, I review the basic theory of open quantum systems, particularly
focusing on repeatedly or continuously measured quantum systems. First, the
dynamics of quantum trajectories and its relation to the Lindblad master equa-
tion in such systems are formulated. I next discuss properties of non-Hermitian
systems, which can be regarded as the simplest case of quantum trajectories. Re-
cent developments on thermalization of open quantummany-body dynamics are
also briefly reviewed, such as the decay of the MBL in the Lindblad-equation
formalism.

14



In Chapter 5, we discuss how the MBL, which is a distinct phase of closed
systems, can appear in open many-body systems described by non-Hermitian
systems. We show that non-Hermitian MBL occurs and suppresses the imagi-
nary part of the many-body energy eigenspectrum for a system which possesses
time-reversal symmetry. In particular, we find a novel real-complex phase transi-
tion of eigenvalues owing to the non-HermitianMBL in an interactingmodel with
asymmetric hopping and disorder. This transition alters the stability of thermal-
ization dynamics in such open systems. We also show that non-Hermitian MBL
still occurs in a system without time-reversal symmetry, while the real-complex
transition does not exist. This chapter is based on the following reference [111]:

• Non-Hermitian Many-Body Localization, Ryusuke Hamazaki, Kohei Kawa-
bata and Masahito Ueda, Phys. Rev. Lett. 123, 090603 (2019).

In Chapter 6, motivated by the relationship between thermalization and ran-
dommatrix theory in Hermitian systems, we formulate fundamental universality
classes of non-Hermitian randommatrices, which can be applied to nonintegrable
open quantum many-body systems. While level-spacing distributions of Hermi-
tian systems become distinct depending on time-reversal symmetry, only one
universality class of level-spacing distributions was known for non-Hermitian
random matrices, even if we consider time-reversal symmetry. We show that, by
considering transposition symmetry which is different from time-reversal sym-
metry owing to non-Hermiticity, new universality classes of level-spacing distri-
butions appear. This chapter is based on the following reference [112]:

• The Threefold Way in Non-Hermitian Random Matrices, Ryusuke Hamazaki,
KoheiKawabata,NaotoKura andMasahitoUeda, arXiv:1904.13082 (2019).

In Chapter 7, we conclude this Thesis and discuss some future problems.
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Figure 1.1: Relations between the chapters in the present thesis. Blue and red
texts correspond to closed and open systems, respectively.
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Chapter 2

Review: thermalization, universality,
and localization in closed quantum
many-body systems

In this Chapter, we review basic concepts on thermalization, universality, and
localization in closed quantummany-body systems, particularly focusing on their
theoretical perspectives.

2.1 Long-time dynamics and eigenstate thermaliza-
tion hypothesis

2.1.1 Relaxation to thermal equilibrium

Here we define the approach to thermal equilibrium in closed quantum systems.
For that purpose, we note the following requirements and properties:

1. We naively expect that an initial state relaxes to some stationary state owing
to time evolution in macroscopic systems and stays at that state for all times.
On the other hand, closed quantum systems have the following recurrence
properties [113, 114]: for an arbitrary small ε > 0 and an initial state |ψ(0)〉,
an infinite sequence T1, T2, · · · exists such that

| | |ψ(Ti)〉 − |ψ(0)〉 | | < ε (Ti � T1, · · · ) (2.1)

is satisfied. To keep in mind such atypical recurrence times, we require that
the state be thermal for almost all (not all) times in the long run.
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2. Asmentioned inChapter 1, a state is regardedas thermalwhen it has thermal
expectation values for a set of observables of our interest; see Eq. (1.3).
Thus, we require that the time evolution of the expectation values of such
observables should become thermal in the long run.

3. Macroscopic systems relax to thermal states irrespective of initial conditions
with the macroscopically same energy. Thus, we require that the relaxation
to thermal states (in the above sense) should hold for any initial states that
have certain energy.

In conclusion, we say that the system exhibits thermalization (at certain energy
scale [E −∆E, E +∆E] and for a given set S) when the following condition holds:
For any initial state satisfying | 〈ψ(0)|Ĥ |ψ(0)〉 − E | ≤ ∆E and all Ô ∈ S,

〈ψ(t)|Ô |ψ(t)〉 ' Tr[ρ̂mic(E)Ô] (2.2)

up to subextensive corrections, for almost all times t in the long-time limit. Here,
"Tr[ρ̂1Ô] ' Tr[ρ̂2Ô] up to subextensive corrections" means that

|Tr[ρ̂1Ô] − Tr[ρ̂2Ô]|
| |Ô | |op

→ 0 (2.3)

in the thermodynamic limit, where | |Ô | |op denotes the largest absolute value of
eigenvalues of Ô. Moreover, " f (t) ' F almost all times in the long time limit"
means that

Probt∈[0,T]
[

f (t) ' F
]
→ 1 (2.4)

in the T → ∞ limit, where Probt∈[0,T] is the probability for which t is uniformly
chosen from the interval [0, T].

Let us investigate the condition (2.2) in more detail. Owing to the condi-
tion (2.4), we find that the stationary state should give the long-time average of
〈ψ(t)|Ô |ψ(t)〉 unless 〈ψ(t)|Ô |ψ(t)〉 exhibits singular behavior for exceptional t.
Thus, the condition (2.2) can be decomposed into the following two steps:

1.

〈ψ(t)|Ô |ψ(t)〉 ' 〈ψ(t)|Ô |ψ(t)〉, (2.5)

for almost all times in the long-time limit, where

f (t) � lim
T→∞

1
T

∫ T

0
f (t)dt (2.6)
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denotes the long-time average of f (t).

2.

〈ψ(t)|Ô |ψ(t)〉 ' Tr[ρ̂mic(E)Ô] (2.7)

up to subextensive corrections.

The first condition is sometimes called the condition for equilibration.
To study the conditions above, we expand the state |ψ(t)〉 with respect to the

eigenstates |Eα〉 (α � 1, · · · ,D) of Ĥ, where D is the dimensionality of the Hilbert
space. To simplify the notation, we define Oαβ � 〈Eα |Ô |Eβ〉 and cα � 〈Eα |ψ(0)〉.
Then, we obtain

〈ψ(t)|Ô |ψ(t)〉 �
∑
αβ

c∗αcβe i(Eα−Eβ)tOαβ . (2.8)

We now make two assumptions about energy eigenvalues. One is the non-
degeneracy condition,

Eα � Eβ ⇒ α � β, (2.9)

and the other is the non-resonance condition,

Eα − Eβ � Eγ − Eδ , 0⇒ α � γ, β � δ . (2.10)

Note that these conditions are expected to be satisfied for nonintegrable systems
which conserve only energy. We then find, using the non-degeneracy condition,

〈ψ(t)|Ô |ψ(t)〉 �
∑
α

|cα |2Oαα � 〈Ô〉d , (2.11)

where

〈Ô〉d :� Tr[ρ̂dÔ] (2.12)

with

ρ̂d �

∑
α

|cα |2 |Eα〉 〈Eα | , (2.13)

which is called the diagonal ensemble.
Let us consider the first condition for thermalization i.e., Eq. (2.5) holds

for almost all times. This condition is satisfied if the temporal fluctuation of
〈ψ(t)|Ô |ψ(t)〉 around 〈Ô〉d is sufficiently small, i.e.,

∆OT :�
√
(〈ψ(t)|Ô |ψ(t)〉 − 〈Ô〉d)2 ' 0 (2.14)
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up to subextensive corrections; i.e., ∆OT/||Ô | |op → 0 in the thermodynamic limit
This is because Chebyshev’s inequality leads to

Probt∈[0,∞)[| 〈Ô〉d − 〈ψ(t)|Ô |ψ(t)〉 | > ε] ≤
∆O2

T

ε2 (2.15)

for any ε. Then, using the non-resonance condition, we find the following condi-
tion:

∆OT �

√∑
α,β

|cα |2 |cβ |2 |Oαβ |2 ' 0 (2.16)

up to subextensive corrections. On the other hand, Eq. (2.7) becomes

〈Ô〉d �

∑
α

|cα |2Oαα ' Tr[ρ̂mic(E)Ô] (2.17)

up to subextensive corrections. Equations (2.16) and (2.17) constitute the condi-
tions for thermalization represented by energy eigenvalues and eigenstates.

2.1.2 Eigenstate thermalization hypotesis (ETH)

The eigenstate thermalization hypothesis (ETH) provides a sufficient condition for
thermalization. Indeed, Eqs. (2.16) and (2.17) hold true for any initial states with
a sufficiently localized energy; the precise meaning is explained below. The ETH
intuitively states that all energy eigenstates become thermal. Precisely speaking,
we here define the ETH as a statement for matrix elements Oαβ as follows: for all
eigenstates |Eα〉 , |Eβ〉 ∈ HE,∆E and Ô ∈ S, the matrix elements Oαβ satisfy

Oαα ' Tr[ρ̂mic(E)Ô], (2.18)

Oαβ ' 0 (α , β) (2.19)

up to subextensive corrections.

Before proving the conditions for thermalization with the ETH, we impose
one more assumption for the initial state. We demand that the initial state has a
sufficiently localized energy around E, i.e., the fraction of |cα |2 that is out of the
energy shell is negligibly small in the thermodynamic limit:∑

|Eα〉<HE,∆E

|cα |2 → 0. (2.20)

This is expected to be true for a typical quench setup in locally interacting many-
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body systems [18]. Indeed, the standard deviation of the energy

δE :�
√∑

α

|cα |2 (E − Eα)2 (2.21)

only scales as δE � O(V1/2) (V is the system size) for certain setups [18]. If |cα | is
distributed without high-energy long tails, we expect that taking ∆E � O(V1/2+a)
for small a > 0 is enough for Eq. (2.20) to be satisfied.

Now let usdiscussEqs. (2.16) and (2.17). Thanks to the assumption inEq. (2.20),
we have |ψ(0)〉 ∈ HE,∆E to good approximation. Then, we find

〈Ô〉d �

∑
α

|cα |2 Oαα

'
∑
α

|cα |2 Tr[ρ̂mic(E)Ô]

� Tr[ρ̂mic(E)Ô]
∑
α

|cα |2

� Tr[ρ̂mic(E)Ô] (2.22)

using the ETH for diagonal matrix elements. We also find

∆OT �

√∑
α,β

|cα |2 |cβ |2 |Oαβ |2

≤
√

max
α,β
|Oαβ |2

∑
α,β

|cα |2 |cβ |2

≤
√

max
α,β
|Oαβ |2 ' 0 (2.23)

up to subextensive corrections, using the ETH for off-diagonal matrix elements.
Thus, the conditions for thermalization can be justified.

We note that the ETH is a sufficient but not a necessary condition for Eqs. (2.16)
and (2.17) under additional conditions for initial states [115, 12]. For example, the
so-called effective dimension about the initial state

deff :� 1∑
α |cα |4

(2.24)
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is used to suppress the temporal fluctuation as

∆O2
T �

∑
α,β

|cα |2 |cβ |2 |Oαβ |2

≤ Tr
[
ρ̂dÔρ̂dÔ

]
� Tr

[
ρ̂dÔ

(
Ôρ̂d

)†]
≤

√
Tr

[
ρ̂dÔ

(
ρ̂dÔ

)+]
Tr

[(
Ôρ̂d

)+
Ôρ̂d

]
� Tr[ρ̂2

dÔ
2]

≤ ‖Ô‖2opTr[ρ̂2
d]

�
‖Ô‖2op

deff
, (2.25)

where we have used the Cauchy-Schwartz inequality and the inequality

Tr[ÂB̂] ≤ ||Â| |opTr[B̂] (2.26)

for positive operators Â and B̂. It is often the case that deff growsmuch larger than
| |Ô | |2op with increasing the system size. In this case, temporal fluctuations vanish
without assuming the ETH.

2.1.3 Other possible definitions of the ETH

The above definition of the ETH is directly relevant for thermalization in closed
quantum systems. On the other hand, some literatures adopt different definitions
of the ETH. While many of them are very close to the above definition, some of
them are qualitatively different from it, which we explain below.

Srednicki’s ansatz

We first discuss a conjecture proposed by Srednicki [116], which is actually
stronger than the ETH defined above. We here call it Srednicki’s conjecture,
though it is often called the ETH in some literatures. Srednicki’s conjecture states
that matrix elements take the following form:

Oαβ � A(E)δαβ + e−STh(E)/2 f (E, ω)Rαβ . (2.27)

Here, E � (Eα + Eβ)/2, ω � Eα − Eβ, STh(E) denotes the thermodynamic entropy
at energy E, A(E) and f (E, ω) are smooth functions of their arguments, and
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Figure 2.1: The difference between (a) Eq. (2.18) and (b) Srednicki’s conjecture.
The former only requires that the difference among diagonal matrix elements
should be negligibly small for ∆E with a subextensive width. The latter requires
that the diagonal matrix elements be a smooth function with exponentially small
fluctuations, which is stronger than Eq. (2.18).

δαβ is Kronecker’s delta. Moreover, Rαβ is a normalized variable that fluctuates
quasi-randomly depending on energy eigenstates; namely, the statistics of Rαβ are
conjectured to be described by random matrices, as detailed in the next section.

The definition in Eqs. (2.18) and (2.19) is weaker than Srednicki’s conjecture.
For example, for diagonal matrix elements, the assumption in Eq. (2.18) does not
require that the diagonalmatrix elements be a smooth functionwith exponentially
small fluctuations unlike Srednicki’s conjecture; see Fig. 2.1. The former only
requires that the difference among diagonal matrix elements should be negligibly
small for ∆E with a subextensive width.

Let us discuss the consequence of Srednicki’s conjecture. First, the second term
in Eq. (2.27) is usually exponentially small owing to the exp (−STh(E)/2) factor;
Note that STh(E) is an extensive quantity. Thus, we obtain

Oαβ →A(E)δαβ (2.28)

in the thermodynamic limit. SinceA(E) changes smoothly with E, this condition
leads to the ETH in Eq. (2.18). Here, we find A(E) ' Tr[ρ̂mic(E)Ô]. In addition,
Eq. (2.19) also holds true because the off-diagonal terms vanish.

Srednicki’s conjecture is also relevant for the accuracy of the ETH and ther-
malization for finite systems. Indeed, since the second term in Eq. (2.27) vanishes
exponentially, temporal fluctuations ∆OT are also known to vanish exponentially
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with respect to the system size if we assume this conjecture. In addition, the ac-
curacy of the microcanonical ensemble for small systems can be evaluated using
this conjecture [117].

Weak ETH

Another definition is often called the weak ETH, which states that the variance of
diagonal matrix elements vanishes in the thermodynamic limit [118, 20]:

1
dim[HE,∆E]

∑
α∈HE,∆E

(
Oαα − Tr

[
ρ̂mic(E)Ô

] )2
' 0 (2.29)

up to subextensive corrections.
The weak ETH is not a sufficient condition for thermalization, unlike the ETH

described above. Indeed, even if Eq. (2.29) holds true, there may exist an athermal
eigenstate |Eγ〉 satisfying Oγγ , Tr

[
ρ̂mic(E)Ô

]
. Then, if we take an initial state

as |ψ(0)〉 � |Eγ〉, it trivially does not thermalize because Eq. (2.17) does not hold
true.

The weak ETH can be rigorously justified for locally interacting many-body
systems with translation invariance and cluster decomposition property [118].
Such systems include integrable systems, for which thermalization does not occur
in general.

2.2 Nonintegrability and Universality of randomma-
trices

In the previous section we define the ETH and discuss its consequence. Here, we
reviewwhen and how this hypothesis holds true in quantummany-body systems.
We especially discuss the relation between the ETH, nonintegrability, and random
matrices, showing numerical and analytical results. The original argument by von
Neumann, namely the typicality argument, will be reviewed in the next chapter.

2.2.1 Nonintegrability, the ETH and random matrices

The study about the relations among nonintegrability, the ETH, and random
matrices, which is called quantum chaos theory, first developed from 1970’s to
1990’s especially for quantum systems that have well-defined semiclassical limits
(~→ 0). One of the notable achievements is the Bohigas-Giannoni-Schmit (BGS)
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conjecture [119], which states that local eigenvalue statistics of semiclassically
chaotic (nonintegrable) systems are described by random-matrix theory (RMT).
This is in contrast to semiclassically regular (integrable) systems, whose spectral
statistics are conjectured to be the Poisson statistics [120]. For eigenstates, Berry
proposed [121] that eigenstate statistics of semiclassically chaotic systems are
delocalized in the phase space, consistent with RMT, whereas those of regular
systems are localized. His proposal was applied to matrix elements [16], which
led to the ETH and even Srednicki’s conjecture in Eq. (2.27) for semiclassically
chaotic systems.

The analogy between nonintegrable systems and RMT also turns out to be true
formany-body systemswithout awell-defined semiclassical limit. In fact, roughly
speaking, it is expected that local spectral statistics (represented by level-spacing
statistics) are described by RMT and that Srednicki’s conjecture including the
ETH holds true in nonintegrable systems. Consequently, thermalization occurs in
usual nonintegrable systems (while exceptions can be constructed [122]). We note
that (non)integrability is not a trivial concept in quantum many-body systems,
and that many definitions are proposed [123]. Here we define integrable systems
as systemswhose eigenstates are determined by a set of local conserved quantities.
This definition includes systems that can be mapped to free particles [124, 125, 70,
126, 127, 128, 129, 74], systems solved by the Bethe ansatz [130, 131, 132, 133, 134,
135, 136, 137, 138], and fully many-body localized systems [139].

Let us briefly discuss how RMT is related to Srednicki’s conjecture. For that
purpose, we consider statistics of matrix elements of an observable Ôwith respect
to eigenstates of a D × D random matrix Ĥ. By diagonalizing the observable as
Ô �

∑
i oi |oi〉 〈oi |, we have

Oαβ �
∑

i

oiUαiUiβ , (2.30)

where Uαi � 〈Eα |oi〉 denotes a transformation of the bases. When we assume
that Ĥ is drawn from the Gaussian unitary ensemble, i.e., each element of Ĥ is
a complex variable that is independent and identically distributed, the matrix
U can be regarded as a random matrix uniformly drawn from the unitary Haar
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measure. This fact enables us to calculate the statistics of U as

UαiUiβ �
1
D
δαβ ,

|Uαi |2 |Uiβ |2 �
1 + δαβ

D(D + 1) ,

|Uαi |2 |U jα |2 �
1 + δi j

D(D + 1) ,

UαiUiβUβ jU jα � − 1
D(D − 1)(D + 1) (α , β, i , j), (2.31)

where the overline denotes the ensemble average in this subsection. We then find
that the average and variance of matrix elements become

Oαβ �
δαβ

D

∑
i

oi ,

O2
αα − Oαα

2
�

1
D + 1

 1
D

∑
i

o2
i −

(
1
D

∑
i

oi

)2 ,
|Oαβ |2 �

D
(D + 1)(D − 1)

 1
D

∑
i

o2
i −

(
1
D

∑
i

oi

)2 (α , β). (2.32)

Thus, for large D, matrix elements can be written as

Oαβ ∼
δαβ

D

∑
i

oi +
1√
D

√√√
1
D

∑
i

o2
i −

(
1
D

∑
i

oi

)2

Rαβ , (2.33)

where Rαβ � 0 and |Rαβ |2 � 1. It can also be shown that the distribution of Rαβ

becomes Gaussian for typical observables [140]. We note that the some statistics
of Rαβ (such as the ratio of diagonal and off-diagonal matrix elements) depend on
time-reversal symmetry of a random-matrix ensemble [141, 142, 140, 29].

The formula in Eq. (2.33) reminds us of Srednicki’s conjecture in Eq. (2.27). In
fact, the second fluctuating term of both equations vanish because of the factor
proportional to the square root of the dimensionality of the Hilbert space (

√
D

or eSTh(E)/2), while the first term only contains diagonal elements. On the other
hand, it is important to note that the RMT description of Srednicki’s conjecture
only holds within the very narrow energy shell. In Chapter 3, we show that the
width of the energy shell should be exponentially small for the RMT to hold for
few-body observables and Hamiltonians.
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2.2.2 Numerical results

In this section, we review previous numerical results of the ETH, Srednicki’s
conjecture, and the universality described by RMT. The numerical simulation
of the ETH was already demonstrated as early as in 1980’s with semiclassically
chaotic systems [143] and many-body spin chains [15].

One of the beautiful numerical simulations was done by Rigol, Dunjko, and
Olshanii in 2008, whichmotivated subsequent studies. They clearly demonstrated
that the ETH and thermalization hold true for nonintegrable systems, but they
do not for integrable systems, using models with hardcore bosons. The ETH was
then confirmed for various nonintegrable systems, e.g., spinless [19] or spinful [21]
fermionic systems, interacting spin systems [23], and Bose-Hubbard systems [20].
Some of them also addressed (a part of) Srednicki’s conjecture [22, 24, 26, 141, 27,
142, 29, 28] and other similarities to RMT.

Let us discuss numerical results about the relation between RMT and nonin-
tegrability in detail. In Ref. [29], it was numerically verified that nonintegrable
systems exhibit universality of random-matrix ensemble whose symmetry class
(called classes A, AI, or AII) corresponds to that of the system. Consider a spin
chain with open boundary conditions that includes the Ising interaction, trans-
verse and longitudinal fields, and the Dzyaloshinskii-Moriya (DM) interaction:

Ĥ � ĤI + ĤF + ĤDM, (2.34)

ĤI � −
N−1∑
i�1

J (1 + εi) σ̂z
i σ̂

z
i+1,

ĤF � −
N∑

i�1

(
h′σ̂x

i + hσ̂z
i

)
,

ĤDM �

N−1∑
i�1

®D ·
(−→̂
σ i ×

−→̂
σ i+1

)
,

where ®D � D
(
®ex + ®ez

)
/
√

2, εi is randomly chosen from the uniform distribution
[−ε, ε] at each site to break the reflection symmetry of sites, and N is the number
of the spins. We fix J � 1 and h′ � −2.1h in the following. While this model
is integrable for h � D � 0, it becomes nonintegrable for other values of the
parameters.

This model has different anti-unitary symmetries depending on parameters,
which affect its local spectral statistics. In particular, the model respects complex
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conjugate symmetry for D � 0, which means that [K̂ , Ĥ] � 0 with

K̂σ̂x
i K̂−1

� σ̂x
i , K̂σ̂

y
i K̂−1

� −σ̂y
i , K̂σ̂

z
i K̂−1

� σ̂z
i (2.35)

for each i. Since K̂2 � 1, this model belongs to "class AI" in Dyson’s classifica-
tion [144]. On the other hand, for h � 0, the model respects another time-reversal
symmetry

T̂0 :�

(
N∏

i�1

[
iσ̂y

i

] )
K̂ , (2.36)

which satisfies

T̂0σ̂
x
i T̂−1

0 � −σ̂x
i , T̂0σ̂

y
i T̂−1

0 � −σ̂y
i , T̂0σ̂

z
i T̂−1

0 � −σ̂z
i (2.37)

and thus [T̂0, Ĥ] � 0. Since T̂0 � (−1)N , the model belongs to class AI for even N
but class AII for odd N . Finally, for h , 0 and D , 0, the model does not respect
additional antiunitary symmetry and thus belongs to class A.

Figure 2.2 shows the level-spacing distribution P(s), which is one of the prime
indicators of local spectral statistics, for the models in Eq. (2.34) with different
values of parameters and odd N . Here, the level spacing s is defined by s �

Ẽα+1 − Ẽα (E0 ≤ E1 ≤ · · · ), where Ẽα is the unfolded eigenvalue (i.e., the energy
is normalized such that the density of states for Ẽ becomes constant [145]). In
addition, P(s) is normalized such that∫ ∞

0
P(s)ds �

∫ ∞

0
sP(s)ds � 1. (2.38)

For small D and h, P(s) does not exhibit level repulsions characteristic of
random-matrix universality, whichmeans that the system is close to the integrable
point (h � D � 0). On the other hand, for sufficiently large h and D � 0, the level-
spacing distribution obeys the universality of the Gaussian orthogonal ensemble
(GOE) of random matrices, which is approximately given by

PGOE(s) �
π
2 se−

π
4 s2
, (2.39)

which corresponds to class AI. For sufficiently large D and h � 0, P(s) obeys the
universality of the Gaussian symplectic ensemble (GSE), which is approximately
given by

PGSE(s) �
δ(s)

2 +
4096

729π3 s4e−
16
9π s2

, (2.40)

which corresponds to class AII (note that the delta peak at s � 0 reflects the
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Figure 2.2: Level-spacing distributions P(s) for the models in Eq. (2.34) with
different values of parameters and N � 13. For small D and h, P(s) does not
exhibit level repulsions, which demonstrates the closeness to the integrability.
With increasing the parameters, P(s) shows the universality behavior described
by random matrices (GUE: blue, GOE: green, or GSE: cyan), which reflects the
nonintegrability of the system in classes A, AI, or AII, respectively. Reproduced
from Fig. 3 of Ref. [29]. ©2019 American Physical Society.
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presence of the Kramers degeneracies). Finally, for sufficiently large D and h,
P(s) obeys the universality of the Gaussian unitary ensemble (GUE), which is
approximately given by

PGUE(s) �
32
π2 s2e−

4
π s2
, (2.41)

which corresponds to class A. In the intermediate parameters, level-spacing dis-
tributions exhibit crossover between these universal distributions.

Reference [29] also investigated the statistical fluctuations of matrix elements
Oαβ, i.e., the Rαβ factor in Eq. (2.27). It was found that the statistics of Rαβ for
nonintegrable systems depend on the symmetry of the Hamiltonian and the ob-
servable, and are described by the universality of randommatrices. For example,
the ratio of the standard deviations between diagonal and off-diagonal matrix
elements becomes unity for class A, which is predicted by the GUE calculation;
see Eq. (2.32). However, it becomes

√
2 for the Hamiltonian in class AI and even

observables under time-reversal transformation, which is predicted by the GOE
calculation.

2.2.3 Analytical results

While we have explained that a vast amount of numerical results support the
relation among nonintegrablity, random matrices, and the ETH, its rigorous jus-
tification is very difficult and only few results exist. Up to now, there are no
analytical proof of the ETH, Srednicki’s conjecture, or the random-matrix univer-
sality of level-spacing distributions for any system.

On the other hand, several analytical results have been obtained for another
local spectral statistics, i.e., the spectral form factor (SFF), which is defined by the
inverse Fourier transform of the two-point correlation function of the density of
states, which is the function of energy. The SFF depends on a variable with the
dimension of time, since the density of states depends on energy. For random
matrices, the SFF K(τ) (τ is a rescaled time with respect to the inverse of the mean
level spacing) is given by

K(τ) � τ (2.42)

for GUE and

K(τ) � 2τ − τ ln(1 + 2τ) � 2τ − 2τ2
+ 2τ3 − · · · (2.43)

for GOE. The SFF of nonintegrable systems has numerically been known to ex-
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hibit random-matrix universality that corresponds to the same symmetry class,
consistent with the BGS conjecture [145].

The first step toward the proof of this conjecture for the SFF was made for
semiclassically chaotic systems by Berry [146], who employed Gutzwiller’s trace
formula, which connects the quantum spectral property and classical periodic
orbits. While he obtained only the leading term of the SFF with respect to τ,
subsequent works [147, 148] completed the full-order calculations for τ, demon-
strating the success of the BGS conjecture for the SFF in certain semiclassical
systems (such as chaotic billiards).

Only recently has the SFF been investigated for many-body nonintegrable
systems. In Ref. [149], the authors imitated Berry’s method based on the periodic-
orbit theory and derived the GOE universality of the SFF (up to the τ2 term)
semi-analytically. The same group also derived more rigorously the random-
matrix universality of the GOE-type SFF (up to the leading order) in the following
Floquet nonintegrable model [150]:

ĤKI � ĤI +

∞∑
m�−∞

δ(t − m)ĤK,

ĤI �

L∑
j�1

{
Jσz

j σ̂
z
j+1 + h j σ̂

z
j

}
, ĤK � b

L∑
j�1

σ̂x
j (2.44)

at some specific parameters (e.g. | J | � |b | � π/4) with arbitrary on-site disorder
h j , utilizing the emergent spacetime duality of the model at these parameters. It
was also investigated what happens when the parameters are away from the dual
point [151].

Another type of nonintegrable models for which the SFF is analytically known
is the random unitary circuits, where randomness ensures the chaotic behav-
ior [152, 153, 154] while the systems keep locality and unitarity. In Ref. [155],
the authors considered a one-dimensonal circuit chain composed of L qudits (i.e.
quantum spins with q states). Its dynamics is described by a Floquet operator
W � W2W1, where W1 � U1 ⊗ U2 ⊗ . . .UL generates independent random rota-
tions at each site (U j is given by q × q random unitary matrices), and W2 couples
neighboring sites j and j + 1 by multiplying a random phase factor. Then, the SFF
is exactly calculated in the q →∞ limit, which turns out to obey the universality of
the GUE. Similar results were obtained in another circuit model which conserves
the local charge [156].

Note that these analytical techniques for many-body systems are also used
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to justify some dynamical signatures of nonintegrable models. For example, the
dynamics of bipartite entanglement entropy, which is expected to grow linearly
before saturation for generic nonintegrable models, is analytically demonstrated
for a spacetime-dual model [157] and random unitary circuits [158].

2.3 Many-body localization (MBL) andnon-thermalization

While we have explained the scenario for thermalization in generic nonintegrable
systems, some systems are known not to exhibit thermalization. As mentioned in
the introduction, one of the most important examples is many-body localization
(MBL), forwhich the ETHbreaks downowing to (typically) strong disorder. Here,
we reviewMBL and some other important concepts that challenge thermalization.

2.3.1 Many-body localization and its phenomenology

Many-body localization is often said to be an interacting version of the Anderson
localization in noninteracting systems. Indeed, while the Anderson localization is
a phenomenon in which energy eigenstates become localized in real space, eigen-
states become localized in the Fock space for MBL. Such localization typically
occurs owing to a strongly disordered potential; hopping of particles between
neighboring sites is suppressed owing to a large potential difference. Conse-
quently, the ETH is violated and thermalization does not occur in general.

Let us consider the prototypical example of theMBL, i.e., theHeisenbergmodel
with a disordered magnetic field in one dimension:

Ĥ �

L∑
i�1

®̂Si · ®̂Si+1 − hi Ŝz
i , (2.45)

where ®̂Si � (Ŝx
i , Ŝ

y
i , Ŝ

z
i ) � ®̂σi/2 and the periodic boundary condition is assumed.

Here, hi is uniformly and randomly chosen from the range [−h , h] depending on
site i. The property of this model becomes completely different for small and
large h. For small h, sufficiently highly excited states satisfy the ETH: this is in
contrast with the Anderson localization, where arbitrary small disorder is enough
to localize the system in one dimension. On the other hand, for 3.6 ' hc ≤ h, all
eigenstates are numerically found to become localized, which is called the "fully
MBL [139]." This critical value defines the MBL transition.

We first discuss the phenomenology of the fully MBL phases. In such strongly
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localized systems, we expect that there is no transport, which indicates that a set
of local conserved quantities exists. Then, the Hamiltonian in Eq. (2.45) for large
h can be diagonalized in the following form:

Ĥ � E0 +
∑

i

h′i τ̂
z
i +

∑
i j

J′i j τ̂
z
i τ̂

z
j +

∑
n�3

∑
i1···in

K(n)i1···in
τ̂z

i1
· · · τ̂z

in
(2.46)

with some constants E0, h′i , J′i j , K
(n)
i1···in

. Here, J′i j and K(n)i1···in
exponentially decrease

with increasing |i− j | and |i1 − in |. The new Pauli operators τ̂αi (α � x , y , z) (called
l-bits) are quasi-localized; they have a large overlap with σ̂αi and an exponentially
small overlap with σ̂αj (|i − j | � 1). Put differently, τ̂αi can be obtained by a
quasi-local unitary transformation of σ̂αi for sufficiently large disorder.

From the expression in Eq. (2.46), the energy eigenstates are known to be char-
acterized by a set of quasi-localized conserved quantities as |Eα〉 � |τ1, · · · , τN〉,
where τi � ±1. These conserved quantities lead to the breakdown of the RMT
picture, such as the ETH [57] and Srednicki’s conjecture [27]. In addition, the
level-spacing distributions in the MBL phase obey the Poisson distribution

PPo(s) � e−s , (2.47)

which reflects the fact that each neighboring eigenstate becomes uncorrelated
owing to the conservation law. Another important feature is the area law of the
entanglement entropy [159], as detailed in the next subsection.

These spectral properties of the MBL profoundly affect its dynamics. For
example, the expectation values of local observables retain the information of
initial values for a long time, as indicated by the breakdown of the ETH. As
mentioned in the introduction, they are experimentally observed using e.g., cold
atoms [59, 61]. Disorder is also known to affect transport properties [160].

On the other hand, we need a more sophisticated probe to distinguish be-
tween the Anderson localization andMBL. One of the candidates is the half-chain
entanglement entropy, which is defined as

S � −Tr[ρ̂L/2 ln ρ̂L/2], (2.48)

where ρ̂L/2 � TrL/2[ρ̂] is the reduced density matrix for a state ρ̂. After a quench
starting from a product state, the state ρ̂(t) � |ψt〉 〈ψt | gets entangled and S(t)
starts to grow. If the system belongs to the delocalized (ETH) phase, S(t) typically
linearly grows first and shows saturation to a thermal value [161]. If the system
exhibits the Anderson localization, S(t) quickly becomes some constant [162].
Finally, if the system exhibits MBL, S(t) shows nontrivial logarithmic growth,
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S(t) ' log t [162] (see Fig. 2.3). To intuitively understand this behavior for the
MBL, we consider an initial product state in the basis of τ̂z

j for simplicity:

|ψ0〉 �
∏

j

(
A j |τ j � +1〉 + B j |τ j � −1〉

)
, (2.49)

where |A j |2 + |B j |2 � 1 (although many works consider product states in the basis
of the physical spins σ̂z

j ). Owing to the Hamiltonian in Eq. (2.46), |ψ0〉 acquires
a phase. For the spin i to be entangled with the distant spin j, the phase owing
to the interaction that connects these spins (e.g., K(n)i ,··· , j τ̂

z
i · · · τ̂

z
j ) should become

large. Since the strength of such interactions decays exponentially, we need an
exponentially long time to entangle distant spins. In turn, we have a logarithmic
growth of entanglement as function of time.

Another dynamical probe with which we can distinguish the Anderson local-
ization from MBL is an out-of-time-ordered correlator [163, 164, 165, 166], which
is given by

C(t) � 〈[Â(t), B̂]†[Â(t), B̂]〉 (2.50)

for two local observables Â and B̂. For example, C(t) is known to distinguish
the way of information propagation of the system, which is linear, logarithmic
and zero for the delocalized, MBL, and Anderson localized phases [167, 168, 169],
respectively.

The absence of the ETH inmany-body localized phasesmeans that even highly
excited states can possess quantum order, which is not allowed in thermal equi-
librium, as mentioned in the introduction. For example, excited states can exhibit
a phase transition within MBL phases, such as a transition between paramagnetic
and spin-glass phases [170]. This is also the case for a Floquet system, where
MBL prevents the system from heating. In a Floquet MBL system, another in-
teresting phenomenon, i.e., a discrete time-crystalline (DTC) phase appears. In
a DTC-phase of a system which is periodically driven with a period T, the ex-
pectation value oscillates with the period nT (n � 2, 3, · · · ). It is known that the
transition into a DTC phase is a consequence of the phase transition of the Floquet
eigenstates that remain localized [171].

Since MBL is not easy to study analytically, many of the works aim to reveal its
property with numerical simulations. Many numerical simulations rely on exact
diagonalization [57, 162, 172, 139, 173], which gives complete information of the
system but is limited to small system sizes. Another possible method is to use
matrix-product states, which can simulate large systems as long as the state has
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Figure 2.3: (Top) Half-chain entanglement entropy S(t) of a 1D XXZ spin system.
The strength of the interaction is given by Jz/J⊥, where Jz and J⊥ are coupling
strengths of zz and xx (yy) components, respectively. For zero interaction (namely,
in the case of the Anderson localization) S(t) is saturated quickly. On the other
hand, for nonzero interactions (in the case of MBL) S(t) exhibits a logarithmic
unbounded growth. Inset shows the same data with rescaled time, for which
Jz � 0 values are subtracted. (Bottom) Saturation values of the entanglement
entropy. Reprinted figurewith permission fromFig.1 of [JensH. Bardarson, Frank
Pollmann, and Joel E. Moore. Unbounded growth of entanglement in models of
many-body localization. Phys. Rev. Lett., 109:017202, Jul 2012 (Ref. [162])]
Copyright 2012 by the American Physical Society.
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low entanglement. Since energy eigenstates satisfy the area law of entanglement
entropy and growth of entanglement is slow, matrix-product states are expected
to be useful to simulate eigenstates and dynamics of MBL systems [174, 175]. We
also note that state-of-the-art-techniques such as machine learning techniques are
also utilized to identify MBL phases [176, 177].

WhileMBL is actively investigated for the above reasons, it is still under debate
in what conditions the MBL phase exists [178]. In fact, the MBL is analytically
proven only for the one-dimensional transverse Ising model with disorder on the
basis of the picture of quasi-local conserved quantities discussed above [179, 180].
The existence of MBL in higher dimensions is more controversial. Semi-analytical
arguments indicate that a small delocalized region, which exists owing to the
fluctuation of disorder, is enough to delocalize the entire system in the thermo-
dynamic limit for dimensions d ≥ 2 [181]. On the other hand, experimental [61]
and numerical [182] studies of about 10 × 10-site lattice in two dimensions show
the signature of MBL. Another ingredient that affects the existence of MBL is
the symmetry of the system. Indeed, if the Hamiltonian respects a non-Abelian
symmetry, the energy eigenstates cannot beMBL unless the system exhibits spon-
taneous symmetry breaking [183].

2.3.2 Characterizing the MBL transition

One of the most interesting challenges is to investigate the phase transition be-
tween delocalized and MBL phases. Indeed, such a transition is very different
from the usual thermal or ground-state phase transitions, since the transition
is defined by excited eigenstates. Reference [173] numerically investigated the
transition point between delocalized and MBL phases by using several different
measures such as the level-spacing distributions. Let us consider here the entan-
glement entropy of energy eigenstates. As shown in Fig. 2.4(top), the variance of
the half-chain entanglement entropy σE is expected to have a peak near the critical
point [170, 173] and exhibit a scaling behavior. Figure 2.4(middle) shows that the
entanglement entropy SE obeys the volume law (i.e., SE/L is almost constant for
large L) for delocalized phases and the area law (i.e., SE/L is decreasing as ∝ L−1

for large L) for localized phases; note that they considered a one-dimensional
system. Moreover, Fig. 2.4(bottom) shows that SE obeys a critical scaling as

SE

L
� f (L |h − hc |ν), (2.51)
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where ν is a critical exponent. Note that it is still a controversial problem to
precisely evaluate ν [184].

Another interesting criterion of theMBL transition was proposed in Ref. [185],
which studied the distribution of matrix elements of a local observable between
the eigenstates of the system. The authors of Ref. [185] consider the following
measure:

G(L) � ln
|Vα,α+1 |

E′α+1 − E′α
(2.52)

for some local observable V̂ , where E′α � Eα + Vαα. This indicator measures the
stability of energy eigenstate |Eα〉 of the original Hamiltonian Ĥ against a local
perturbation V̂ . Indeed, if we consider

Ĥ + V̂ �

∑
α

E′α |Eα〉 〈Eα | +
∑
α,β

Vαβ |Eα〉 〈Eβ | (2.53)

and use the first-order perturbation theory on the right-hand side, the perturbed
eigenstates can be written as

|Eα〉 +
∑
β(,α)

Vβα
E′β − E′α

|Eβ〉 + · · · . (2.54)

Thus, for the leading correction to be small, we require����� Vβα
E′β − E′α

����� � 1. (2.55)

On the other hand, the perturbation breaks down (i.e., eigenstates are unstable
against the perturbation) when ����� Vβα

E′β − E′α

����� � 1. (2.56)

By taking the logarithm and setting β � α+1, we obtain the indicator in Eq. (2.52).

The crucial finding in Ref. [185] is that G(L) considerably changes its behavior
at the delocalized-MBL transition. Indeed, the authors found that G(L) ∼ αL
for the delocalized phase but G(L) ∼ −βL for the MBL phase (α, β are some
positive constants). At the transition point, G(L) becomes independent of L. In
other words, the eigenstates are unstable in the thermodynamic limit only for the
delocalized phase.

The above behavior is understood as follows. For the delocalized (ETH) phase,
matrix elements Vα,α+1 are expected to be proportional to e−STh(E)/2 according to
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Figure 2.4: Transition between delocalized and MBL phases. The left and right
columns show the results for different energy scales. (top) Rescaled standard
deviation of the half-chain entanglement entropy for different system sizes. The
scaling behavior is observed for appropriate ν and hc . (middle) L-dependence
of the half-chain entanglment entropy SE devided by L for different h. We find
a crossover transition from the volume law to the area law with increasing h.
(bottom) The critical scaling of SE/L. We can see the data collapse for differ-
ent h by using the same ν and hc as in the top figures. Reprinted figure with
permission from Fig.3 of [David J. Luitz, Nicolas Laflorencie, and Fabien Alet.
Many-body localization edge in the random-field heisenberg chain. Physical
Review B, 91:081103(R), Feb 2015 (Ref. [173])] Copyright 2015 by the American
Physical Society.
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Srednicki’s conjecture in Eq. (2.27). On the other hand, the typical level spacing
decreases as E′α+1 − E′α ∼ e−STh(E). Thus, G(L) ∼ αL is expected for positive α. For
the MBL phase, however, Vα,α+1 is far more suppressed because energy eigen-
states |Eα〉 and |Eα+1〉 are characterized by different sets of quasi-local conserved
quantities. The perturbation V̂ only acts on a local region and can little affect the
quasi-local conserved quantities in the distance. Consequently, |Eα+1〉 and V̂ |Eα〉
have an exponentially small overlap, leading to G(L) ∼ −βL for positive β. Strictly
speaking, there can be higher-order perturbation effects that alters the nature of
the localization [180], but we neglect this for simplifying the discussion.

Phenomenologically, the critical phenomenon is understood by the growth of
the delocalized (resonant) clusters. While they cannot grow enough to delocalize
the entire system for the localized phase, they can encompass the entire system at
and below the critical point. To describe this process, different renormalization-
group methods are employed [186, 187, 188]. Such schemes predict the critical
exponent ν in large systems as well as the anomalous subdiffusive transport in
the delocalized phase near criticality, namely the Griffiths phase [160].

2.3.3 Other systems where thermalization is absent

We here briefly review systems in which thermalization is absent even without
localization.

Integrable systems

One of the important classes is integrable systems, whose importance on thermal-
ization was known before the MBL. Let us consider semiclassical systems whose
classical counterparts are integrable, i.e., an extensive set of integrals of motion
exists. In that case, the level-spacing distributions obey the Poisson distribution
according to the Berry-Tabor conjecture [120] and the eigenstates do not obey
RMT [121].

A similar result is expected tohold true for integrablequantummany-body sys-
tems. Here, we define integrable systems as those whose eigenstates are uniquely
determined by an extensive number of local conserved quantities, although other
definitions can also be made [123]. In particular, we focus on systems that are
mapped to free particles [124, 125, 70, 126, 127, 128, 129, 74] or solved by the
Bethe ansatz [130, 131, 132, 133, 134, 135, 136, 137, 138]. It is known that such
integrable systems have the level-spacing distributions obeying the Poisson dis-
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tribution, although a system that does not obey this principle has recently been
found [189]. Moreover, the ETH and Srednicki’s conjecture do not hold, and thus
thermalization is absent [16, 18]. Instead, these systems is expected to relax to the
so-called generalized Gibbs ensemble (GGE) [190, 191, 124, 70],

ρ̂GGE �
e−

∑
m λm Îm

Tr[e−
∑

m λm Îm ]
, (2.57)

where Îm denote a set of conserved quantities that retain the initial information
about the system in the course of time evolution. We note that the GGE ap-
pears owing to an extensive number of local conserved quantities and complete
integrability is not necessarily needed [192].

Let us comment on the main difference between the clean integrable sys-
tems (free systems and Bethe-ansatz-solvable systems) and the (fully) MBL, both
of which have integrable structures in that their eigenstates are uniquely deter-
mined by an extensive number of local conserved quantities. Firstly, while "local
conserved quantities" denote an extensive sumof local operators (macroscopically
conserved quantities) for the clean case, they are (quasi)locally conservedwithout
taking the sum for theMBL. Secondly, while the clean integrable systemsmay not
be robust under additional perturbations in the Hamiltonian parameters, MBL
systems robustly exist for generic parameters if the disorder is strong.

Quantum many-body scars

Another notable example without thermalization that have attracted much atten-
tion recently is a quantummany-body scar. Aquantumscarwas originally studied
in semiclassical systems [193]; even when the classical limit is chaotic, there exist
rare excited energy eigenstates that violate the RMT description, which reflects
the unstable periodic orbits in classical chaotic systems.

Similarly, it has recently been found that non-thermal excited eigenstates can
exist even in nonintegrable systems. These eigenstates are called quantummany-
body scars and largely affect the dynamics for some specific initial states [75, 76].
One of the most important examples is the so-called PXPmodel, which effectively
describes the blockade effect in Rydberg atoms [76, 194, 195, 196]:

Ĥ � Q̂i−1σ̂
x
i Q̂i+1, (2.58)
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where

Q̂i �
1 − σ̂z

i

2 � |↓〉 〈↓| (2.59)

is the projection operator, and we consider the periodic boundary condition for
simplicity. The dynamics of this model is constrained owing to the projections.
Indeed, configurations including neighboring up states are not allowed. Then,
the dimensionality of the Hilbert space essentially grows following the Fibonacci
sequence. Importantly, the level-spacing distribution of this model obeys the
Wigner-Dyson statistics, which indicates the nonintegrability of the system.

Reference [76] showed that the model in Eq. (2.58) hosts non-thermal rare
eigenstates in the middle of the spectra, while most of the eigenstates obey the
ETH. Owing to these non-thermal states, some initial state, such as the Neel state
|↑↓↑↓ · · ·〉, exhibits an unusual long-time oscillation, whilemost of the initial states
rapidly relax to thermal equilibrium. These eigenstates, called "quantum many-
body scars," have been investigated in terms of the proximity of integrability [197],
the forward-scattering approximation [194], and the semiclassical periodic orbits
defined by the time-dependent variational principle [198]. It is also known exactly
that these scar states can break the ETH in the thermodynamic limit [199]. Let us
consider a matrix-product state

|Φs〉 ∝
∑
{σ}�↑,↓

Tr [Bσ1 Cσ2 . . . BσL−1 CσL] |σ1 . . . σL〉 (2.60)

with

B0
�

(
1 0 0
0 1 0

)
, B1

�
√

2

(
0 0 0
1 0 1

)
, (2.61)

C0
�

©­­«
0 −1
1 0
0 0

ª®®¬ , C1
�
√

2
©­­«

1 0
0 0
−1 0

ª®®¬ . (2.62)

Note that the state in Eq. (2.60) satisfies Ĥ |Φs〉 � 0. Thus, |Φs〉 � 0 is an eigenstate
of Ĥ with Eα � 0, which corresponds to the state at the infinite temperature. We
can calculate that 〈Φs |σ̂z

1 |Φs〉 , Tr[ρ̂T�∞σ̂z
1], which means that |Φs〉 breaks the

ETH.

Such non-thermal states embedded in the middle of the spectra of noninte-
grable systems are actively investigated in several situations. Indeed, they are
found to exist in systems including the Affleck-Kennedy-Lieb-Tasaki model [200,
201], Isingmodelswith certainparameters of transverse and longitudinalfields [202],
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a spin-laddermodel [203], a spin-1 XYmagnets [204], and "fractonic circuits [205]".
It is also known that the embedding can be done systematically [122, 206].

Reference [122] considered a Hamiltonian in the following form

Ĥ �

∑
j

P̂ j ĥ jP̂ j + Ĥ′, (2.63)

where P̂ j is a local projector which eliminates the state in a set T (i.e., P̂ j |Φ〉 � 0
for |Φ〉 ∈ T ) for any j, ĥ j is an arbitrary local operator and Ĥ′ is the Hamiltonian
satisfying Ĥ′ |Φ〉 ∈ T if |Φ〉 ∈ T . Since ĥ j can be arbitrarily complex, Ĥ is in
general nonintegrable. On the other hand, Ĥ′ determines eigenstates that are
diagonalized in the T -space regardless of ĥ j , which means that the eigenstates
in T and the complement of T are uncorrelated. This absence of the correlation
leads to the breakdown of the ETH.

2.4 Relaxation dynamics in closed quantum many-
body systems

We have mainly discussed long-time dynamics and relaxation to thermal states,
which are understood by the ETH. On the other hand, there are a lot of universal
phenomena before the complete relaxation, which are not explained by the ETH.
Herewe briefly discuss some recent topics on non-equilibriumdynamics of closed
quantum many-body systems.

One interesting subject is dynamical chaos, probed by, e.g., the out-of-time-
ordered correlator (OTOC) defined in Eq. (2.50). To see the essence of the OTOC,
let us consider a semiclassical system with one particle, which is described by
canonical variables q̂ and p̂. Then, with the semiclassical approximation, C(t) can
be written as

C(t) � 〈[p̂(t), q̂]†[p̂(t), q̂]〉 → −~2
(
∂pt

∂p

)2
∼ e2λt (2.64)

for a chaotic system. Here q and p are the corresponding classical variables,
pt is a momentum at time t obtained from the classical equation, and λ is the
Lyapunov exponent, which characterizes classical chaos through its exponential
sensitivity. Maldacena and coauthors [166] conjectured that λ obeys a nontrivial
bound, λ ≤ 2πkBT/~ for a thermal state at temperature T. Such a bound is
achieved by the Sachdev-Ye-Kitaev model, which consists of all-to-all Majorana
many-body interactions and has a property analogous to that of some Black-
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hole models [165, 164, 207, 208]. The OTOC is not only relevant to quantum
chaos and the Black holes, but also related to quantum information [209, 153],
characterization of static and dynamical phases of matter [167, 168, 169], and
irreversibility [210].

Another important subject iswhether or not the universality in nonequilibrium
phenomena known in classical systems emerges in closed quantum many-body
systems. For example, emergence of Kardar-Parisi-Zhang universality [211] or
Edwards-Wilkinson universality [212] has been investigated in quantum many-
body systems [213, 214, 215, 216, 217], inspiredbyfluctuationhydrodynamics [218,
219] and surface growth [220] in classical systems.

Another example of the universal phenomena appears in the coarsening dy-
namics of symmetry-broken domains, which shows a self-similar behavior dur-
ing time evolution. To be more precise, the equal-time correlation function
C(x � |i − j |, t) � 〈Ôi(t)Ô j(t)〉 at time t obeys the scaling form

C(x , t) ∝ f (x/L(t)), (2.65)

where the growth of L(t) determines the universality of the coarsening dynamics.
Though such scaling behavior is well known in dissipative classical systems [221],
it has recently been known that closed quantum systems can obey this scaling
law [222, 223, 224, 225, 216]. For instance, L(t) ∝ t2/3, namely binary liquid
universality is obtained for the Ising-type domain in ferromagnetic spin-1 spinor
gases in two dimensions [224], but L(t) is characterized by the exponential integral
in one dimension [225]. A similar concept is a notion of the non-thermal fixed
point, which states that certain initial states should be attracted to a long-lived
nonequilibrium state and show the critical behavior there. Specifically, a non-
thermal fixed point is expected to be diagnosed by the correlation function which
behaves as C(x , t) � tγ f (x/tβ) for some critical exponents γ and β. Originally
proposed in Ref. [226], the non-thermal fixed points are actively investigated as a
unifying mechanism for the scaling behavior in nonequilibrium systems.
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Chapter 3

Atypicality of most few-body
observables

3.1 Motivation

In the previous chapter, we have explained that the ETH is the most promising
candidate to justify thermalization in closedquantumsystems. While localization,
integrability, and someothermechanisms (such as quantummany-body scars) can
violate the ETH, it is still believed that the ETH holds true for generic few-body
or local quantum many-body systems without such special reasons.

Interestingly, von Neumann already addressed analytically why the ETH
seems to hold true for generic macroscopic systems in his paper in 1929 [2],
relying on the "typicality argument". As detailed in the next section, the typical-
ity argument essentially consists of two steps. First, we mathematically prove the
typicality on the matrix elements; for almost all (i.e., typical) unitary transforma-
tions of the bases between the Hamiltonian Ĥ and observable Ô over the uniform
Haarmeasure, themaximumfluctuation of thematrix elements within themicro-
canonical energy shell becomes exponentially small. Secondly, we conjecture that
the unitary transformation between physically relevant Ĥ and Ô, i.e., few-body
(or local) Hamiltonians and observables, is actually typical, i.e., satisfies the above
property on the maximum fluctuation, unless some special reason exists, such as
integrability and localization. Note that while the first step is rigorous, the second
step is a physical conjecture. The typicality argument is a sufficient condition for
the ETH, since an exponentially small fluctuation of the matrix elements in the
microcanonical shell implies the condition in Eqs. (2.18) and (2.19).

While the typicality argument has been a promising candidate to justify the
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ETH for generic systems and followed by recent works [3, 30], whether this ar-
gument is really true for the experimentally relevant setups was not sufficiently
discussed. In this chapter, we show that the typicality argument cannot be applied
to the setup with most few-body observables and a few-bodyHamiltonian, which
is a natural setup for experiments. Indeed, the diagonal matrix elements for most
few-body observables are shown not to behave typically if the width of the energy
shell decreases at most polynomially as we increase the size of the system.

We first review the mathematical formulation of the typicality argument, fol-
lowing Ref. [30]. We then show our main results of the atypicality of most
few-body observables, although near N-body observables can be consistent with
the typicality argument, where N denotes the system size. We also prove atypi-
cality in another setupwith locality. Finally, we discuss the relation with previous
related works and conclude the chapter with outlook.

3.2 Review on the typicality argument

Wefirst review the rigorous formulation of the typicality argument on the basis of
Ref. [30],whichgeneralizesvonNeumann’s argumentonmacroscopic observables
to arbitrary observables. We introduce the Hilbert space HE,∆E of an energy
windowwith median E and width 2∆E. The projection operator onto this Hilbert
space is given by

P̂E,∆E �

∑
|Eα−E |≤∆E

|Eα〉 〈Eα | . (3.1)

We consider the spectral decomposition of the observable Ô projected ontoHE,∆E:

P̂E,∆EÔP̂E,∆E �

dE,∆E∑
i�1

ai |ai〉 〈ai | , (3.2)

where dE,∆E � dim[HE,∆E] denotes the dimensionality of the energy shell. The
matrix elements of Ô are then described by

Oαβ � 〈Eα |P̂E,∆EÔP̂E,∆E |Eβ〉 �
∑

i

aiUαiU∗βi , (3.3)

where the basis transformation Uαi � 〈Eα |ai〉 constitutes a dE,∆E × dE,∆E unitary
matrix U.

Let us focus on the diagonal matrix elements in the following. If the fluctu-
ation of such diagonal matrix elements within the energy shell vanishes in the
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thermodynamic limit, then the ETH holds true in the energy shell (which is of-
ten taken as the microcanonical energy shell obeying ∆E ∝

√
N , where N is the

number of lattice sites). The magnitude of the fluctuation can be quantified by
the comparison of

max
|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� (3.4)

and | |Ô | |op, where | | · | |op denotes an operator norm. Let us denoteU{ai},η (η > 0)
as a set of all U that satisfy the inequality

max
|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� ≤ ‖Ô‖opd−ηE,∆E . (3.5)

Note that U ∈ U{ai},η means that the ETH holds true within HE,∆E because the
maximum fluctuation of Oαα vanishes exponentially (remember dE,∆E ∝ e sN for
the entropy density s), but that the converse is not true.

We can show that, for almost all (typical) U over the Haar measure, the fluctu-
ation becomes exponentially small. Indeed, we can show the following inequality

PU
[
U <U{ai},η

]
≤ 2dE,∆E exp

−
d1−2η

E,∆E

72π3

 , (3.6)

where PU denotes the probability over the unitary Haar measure. Since the right-
hand side becomes zero in the thermodynamic limit for 0 < η < 1/2, almost all
U satisfy U ∈ U{ai},η. Then, we may assume that U ∈ U{ai},η for U which is
obtained from a physically relevant set of Ĥ and Ô unless some special reasons
exist, which is the statement of the typicality argument.

Let us prove Eq. (3.6). We use the following Levy’s lemma [7, 227]:

Prob
[��g(ψ) − 〈g(ψ)〉ψ�� ≥ ε] ≤ 2 exp

[
−ε

2 (d + 1)
9π3ξ2

]
, (3.7)

where ψ ∈ Sd ⊂ Rd+1 is a point on a d-dimensional unit sphere, g(ψ) : Sd → R is a
Lipshitz continuous functionwith aLipshitz constant ξ, "Prob"means theuniform
probability for ψ over the unit sphere, and 〈· · ·〉ψ is the expectation value for the
uniform measure. We here consider |ψ〉 ∈ HE,∆E as a point ψ on a (2dE,∆E − 1)-
dimensional unit sphere (d � 2dE,∆E − 1). Then, g(ψ) � 〈ψ |P̂E,∆EÔP̂E,∆E |ψ〉 is a
Lipshitz continuous function with

ξ � ∆Ô :� max
i

ai −min
i

ai (3.8)
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because

|〈ψ |P̂E,∆EÔP̂E,∆E |ψ〉 − 〈ψ′|P̂E,∆EÔP̂E,∆E |ψ′〉|

�

���〈ψ |P̂E,∆EÔP̂E,∆E − XÔ/2|ψ〉 − 〈ψ
′|P̂E,∆EÔP̂E,∆E − XÔ/2|ψ

′〉
���

�
1
2 |(〈ψ | + 〈ψ

′|)Ô′(|ψ〉 − |ψ′〉) + (〈ψ | − 〈ψ′|)Ô′(|ψ〉 + |ψ′〉)|

≤ ||Ô′| |op · | |ψ〉 − |ψ′〉 | · | |ψ〉 + |ψ′〉 |
≤ 2| |Ô′| |op · | |ψ〉 − |ψ′〉 |
� ∆Ô · | |ψ〉 − |ψ

′〉 |, (3.9)

where

Ô′ � P̂E,∆EÔP̂E,∆E −
XÔ
2 (3.10)

and XÔ � maxi ai + mini ai . In addition, we can show that 〈g(ψ)〉ψ � Tr[ρ̂micÔ].
Thus, noticing that randomizing ψ is equivalent to randomizing U for some state
(for which we take as the eigenstate of Ĥ), we obtain

PU

[���〈Eα |P̂E,∆EÔP̂E,∆E |Eα〉 − Tr[ρ̂micÔ]
��� ≥ ε] ≤ 2 exp

[
−2ε2dE,∆E

9π3∆2
Ô

]
(3.11)

for any |Eα〉 ∈ HE,∆E.

We next notice

P

[
max

k

(
fk
)
≥ a

]
≤

∑
k

P
[

fk ≥ a
]

(3.12)

for an arbitrary set of functions
{

fk
}

k . Then, using 〈Eα |P̂E,∆EÔP̂E,∆E |Eα〉 � Oαα,
we have

PU

[
max

|Eα−E |≤∆E

���Oαα − Tr[ρ̂micÔ]
��� ≥ ε] ≤ 2dE,∆E exp

[
−2ε2dE,∆E

9π3∆2
Ô

]
. (3.13)

Since
1
2 max
|Eα−E |≤∆E,|Eβ−E |≤∆E

|Oαα − Oββ | ≤ max
|Eα−E |≤∆E

|Oαα − Tr[ρ̂micÔ]|, (3.14)

we have

PU

[
max

|Eα−E |≤∆E,|Eβ−E |≤∆E
|Oαα − Oββ | > 2ε

]
≤ PU

[
max

|Eα−E |≤∆E
|Oαα − Tr[ρ̂micÔ]| > ε

]
,

(3.15)
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where we have used the relation

P[a > c] ≤ [b > c] (3.16)

for a ≤ b. Substituting 2ε � | |Ô | |opd−ηE,∆E into Eq. (3.15) and using Eq. (3.13), we
obtain

PU

[
max

|Eα−E |≤∆E,|Eβ−E |≤∆E
|Oαα − Oββ | > | |Ô | |opd−ηE,∆E

]
≤ 2dE,∆E exp

−
||Ô | |2opd1−2η

E,∆E

18π3∆2
Ô

 .
(3.17)

Finally, using

∆Ô ≤ 2| |P̂E,∆EÔP̂E,∆E | |op ≤ 2| |Ô | |op, (3.18)

we obtain

PU

[
max

|Eα−E |≤∆E,|Eβ−E |≤∆E
|Oαα − Oββ | > | |Ô | |opd−ηE,∆E

]
≤ 2dE,∆E exp

−
d1−2η

E,∆E

72π3

 .
(3.19)

This is equivalent to Eq. (3.6).

3.3 Atypicality of most few-body observables

In the previous section, we have proven Eq. (3.6), which states that U ∈ U{ai},η for
almost all unitary matrices U. On the other hand, it is only an assumption that U
obtained from the physically relevant Ĥ and Ô belongs to U{ai},η. Indeed, little
work has existed which investigated the validity of this conjecture.

Here, we show that the typicality argument does not hold for realistic setups
that possess the few-body property. Indeed, we prove that, for H with few-
body interactions and most few-body Ô, U < U{ai},η holds true, as schematically
illustrated in Fig. 3.1.

3.3.1 Setup

Weassume that the energywidth∆E behaves as∆E ∝ N−p for a real number p and
that dE,∆E increases exponentially with N . Note that the microcanonical energy
width (which Refs. [2, 30] focus on) is subextensive and thus satisfies −1 < p < 0.
For simplicity, we also assume that the energy eigenvalues exist at the edges of the
energy shell. This is in general made possible by changing the original width in
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Figure 3.1: Space of unitary matrices and atypicality of most few-body observ-
ables. Almost all (i.e., typical) unitary matrices U over the Haar measure belong
to U{ai},η, which also implies the ETH. On the other hand, for H with few-body
interactions and most few-body Ô, the corresponding U behaves atypically and
satisfies U < U{ai},η. Reproduced from Fig. 1 of Ref. [31]. ©2018 American
Physical Society.

an exponentially small way, which does not change the essence of the following
discussion. Then max|Eα−E |,|Eβ−E |≤∆E |(Ĥ)αα − (Ĥ)ββ | � 2∆E holds.

We consider a system with N spins on a lattice. The Hilbert space can be
written as a product of local Hilbert spaces at site x as

H �

N⊗
x�1
Hx . (3.20)

We denote L(H) and L(Hx) as operator spaces that respectively act on H and
Hx . The orthonormal basis of L(Hx) is given by{

λ̂0
x :� Îx , λ̂1

x , · · · , λ̂S2−1
x

}
. (3.21)

Here, S � dim[Hx] and λ̂µx (0 ≤ µ ≤ S2 − 1) are S × S Hermitian matrices that
satisfy the orhthonormality condition Trx[λ̂µx λ̂

µ′

x ] � Sδµµ′. For example, for a
spin-1/2 system, S � 2 and λµx can be taken as

{
Î, σ̂x , σ̂y , σ̂z

}
. Then, the basis of
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L(H) can be expressed as

BN �

{
Λ̂′µ1 ,··· ,µN

�

N⊗
x�1

λ̂
µx
x

�����0 ≤ µx ≤ S2 − 1

}
(3.22)

with Tr[Λ̂′µ1 ,··· ,µN
Λ̂′
µ′1 ,··· ,µ

′
N
] � SN ∏N

x�1 δµxµ′x . For example, for the spin-1/2 system,
we can take

BN �
{
Î , σ̂x
I , σ̂

y
1 , σ̂

z
1 , σ̂

x
2 , · · · , σ̂

z
N , σ̂

x
1 σ̂

x
2 , σ̂

x
1 σ̂

y
2 , · · · , σ̂

z
N−1σ̂

z
N , · · · , σ̂

z
1 · · · σ̂

z
N

}
. (3.23)

Let us now define the notion of m-body operators. We consider a subset Bm

of BN as a basis set whose elements nontrivially act on at most m sites:

Bm �

{ q⊗
i�1

λ̂
αxi
xi

�����1 ≤ q ≤ m , 1 ≤ xi ≤ N, 1 ≤ αxi ≤ S2 − 1

}
(3.24)

for m ≥ 1 and B0 �

{⊗N
x�1 λ̂

0
x

}
. For example, for the spin-1/2 system and m � 2,

we can take

Bm�2 �
{
Î, σ̂x

1 , σ̂
y
1 , σ̂

z
1 , σ̂

x
2 , · · · , σ̂

z
N , σ̂

x
1 σ̂

x
2 , σ̂

x
1 σ̂

y
2 , · · · , σ̂

z
N−1σ̂

z
N

}
. (3.25)

Then, we define m-body operators that can be written as a linear combination of
elements in Bm but not in Bm−1, and at-most m-body operators that can be written
as a linear combination of elements in Bm . For example, for the spin-1/2 system,

N∑
i�1

σ̂z
i + σ̂

x
1 σ̂

y
5 ,

N−1∑
i�1

σ̂z
i σ̂

z
i+1, σ̂

x
1 σ̂

x
2 + σ̂x

1 + 2 (3.26)

are two-body observables, whereas
N∑

i�1
σ̂z

i , σ̂
z
3 + 1 (3.27)

are at most two-body observables but not two-body observables. Few-body op-
erators are defined as m-body operators where m (m � N) does not depend on
N .

We next define randomly chosen observables from at most m-body operators.
Consider a setLm of atmost m-body observables. If we let Λ̂1, · · · , Λ̂n be elements
in Bm , where

n �

m∑
q�0

N!
q!(N − q)!(S

2 − 1)q (3.28)

is the number of the bases and Tr[Λ̂ f Λ̂g] � SNδ f g , elements in Lm are written as

50



a linear combination of Λ̂ f . Then we can define the random observables from Lm

as follows:

Definition (Randomly chosen observables from Lm). We take an observable Ĝ ∈
Lm expanded as

Ĝ �

n∑
f�1

G f Λ̂ f , (3.29)

where real random variables ®G � (G1, · · · ,G f , · · · ,Gn) are chosen over a given
probability distribution P( ®G). If P( ®G) is unchanged under any n × n orthogonal
transformations, Ĝ is called an observable randomly chosen from Lm .

This definition depends on how we choose {Λ̂ f } and P( ®G). The following
discussion holds true for an arbitrary choice of P( ®G) as long as {Λ̂ f } possesses
orthonomarlity and Hermiticity, and P( ®G) is invariant under orthogonal trans-
formations. Thus, we may choose P( ®G) to suit our purpose with the invariant
property. In contrast, if U is chosen from a unitary Haar measure as in the typ-
icality argument, it is not clear from what kind of probability distributions an
observable is chosen. In this sense, the operational meaning of our sampling
strategy of observables is well-defined.

3.3.2 Proof of atypicality of most few-body observables

We now study diagonal matrix elements of random observables which we define
above and compare it with the typicality argument. We consider a few-body
Hamiltonian (i.e., Hamiltonian that consists of few-body interactions) as well as
few-body observables. Then, most few-body observables randomly chosen from
Lm behave atypically, i.e, U < U{ai},η, which is understood from the following
theorem:

Theorem. Consider a k-body Hamiltonian and sufficiently large N , and assume
that m (k ≤ m � N) is independent of N . We now choose a random observable
Ô �

∑
f G f Λ̂ f from Lm . We obtain the corresponding {ai} and U from Ĥ and Ô.

Then,

PLm [U ∈ U{ai},η] ≤
√
πn | |Ĥ | |opΛ

2∆E
Γ

( n
2
)

Γ
( n−1

2
) d−ηE,∆E . (3.30)

Here, PLm means the probability with respect to P( ®G), and Λ � max f | |Λ̂ f | |op ≤
Sm/2. If | |Ĥ | |op does not increase exponentially with increasing N , the right-hand
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Figure 3.2: Key idea for the proof of Eq. (3.30). (Left) As a first step, we show that
| ®Γ| does not decay exponentially aswe increase N unless | ®H | is exponentially large.
This is proven from the observation that | ®Γ · ®H | does not decrease exponentially
with increasing N . (Right) Next, ®G has to be almost orthogonal to ®Γ for | ®Γ · ®G |
to be exponentially small, i.e., | ®Γ · ®G | ≤ ||Ô | |opd−ηE,∆E, if we assume that | ®G | is
not exponentially large. The probability of such an event is exponentially small
(∝ d−ηE,∆E) as long as the dimensionality n of the hypersphere is not exponentially
large, which is the case for few-body observables. Reproduced from Fig. 2 of
Ref. [31]. ©2018 American Physical Society.

side of the inequality (3.30) vanishes for large N , since dE,∆E grows exponentially
whereas n and 1/∆E ∝ Np do not.

The inequality (3.30) means that max|Eα−E |,|Eβ−E |≤∆E
��Oαα − Oββ�� does not de-

crease as a power of dE,∆E for physical Hamiltonians and most few-body observ-
ables; remember the definition of U{ai},η given in Eq. (3.5). This shows that the
corresponding unitary U is atypical. Note that atypicality holds for arbitrary m
that satisfies m ≥ k and is independent of N .

Themain idea is that theHamiltonian Ĥ is obviously an atypical operator, since
maximumdifference of diagonalmatrix elementswithin the energy shell becomes
equal to the energy width 2∆E, which is assumed to decay at most polynomically.
Then, sincemost of Ô have sufficiently large overlapwith Ĥ through the few-body
property, maximum difference of diagonal matrix elements for Ô also behaves
atypically owing to the atypicality of the Hamiltonian. This idea is quantitatively
formulated in the proof below.
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Proof of Eq. (3.30) (see Fig. 3.2 for the key idea of the proof)

As a first step, note that Ĥ ∈ Lm satisfies the following condition for a k-body
Hamiltonian:

max
|Eα−E |,|Eβ−E |≤∆E

|(Ĥ)αα − (Ĥ)ββ | � 2∆E � ξd. (3.31)

Here ξd � 2∆E does not decay faster than polynomial in the system size N . We
define γ and δ as labels of eigenstates satisfying (Ĥ)γγ − (Ĥ)δδ � ξd. If we define
Γ f � (Λ̂ f )γγ − (Λ̂ f )δδ, we obtain the expansion Ĥ �

∑n
f�1 H f Λ̂ f , which leads to

®H · ®Γ � ξd with ®H � (H1, · · · ,Hn) and ®Γ � (Γ1, · · · , Γn). Using

| ®H | �

√
Tr[Ĥ2]

SN ≤ ||Ĥ | |op, (3.32)

we obtain

| ®Γ| ≥ ξd

| |Ĥ | |op
. (3.33)

Next,

max
|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� ≥ | ®G · ®Γ| (3.34)

leads to

PLm

[
max

|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� ≤ ||Ô | |opε

]
≤ PLm

[
| ®G · ®Γ| ≤ ||Ô | |opε

]
(3.35)

for any ε > 0, where we use P[a ≤ c] ≥ P[b ≤ c] for a ≤ b.

To evaluate Eq. (3.35), we note that the probability P( ®G)d ®G is expressed as

P′(| ®G |)| ®G |n−1d | ®G |dΩ (3.36)

owing to the invariance under any orthogonal transformations, where Ω is the
high-dimensional solid angle. Defining the angle between ®G and ®Γ as θ, we obtain

PLm

[
| ®G · ®Γ| ≤ ||Ô | |opε

]
≤ PLm

[
| cos θ | ≤

√
n | |Ĥ | |opΛε

ξd

]
≤
√
πn | |Ĥ | |opΛε

2∆E
Γ

( n
2
)

Γ
( n−1

2
) . (3.37)
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Here, we have used Eq. (3.33) and

| |Ô | |op ≤
n∑

f�1
|G f | |Λ̂ f | |op

≤ Λ
n∑

f�1
|G f | · 1

≤ Λ| ®G |
√

n. (3.38)

Note that we have used the property of an operator norm as well as the Cauchy-
Schwartz inequality. We also used

PLm [| cos θ | < x] ≤ PLm

[π
2 (1 − x) < θ < π

2 (1 + x)
]

≤

∫ π
2 (1+x)
π
2 (1−x) Sn−2(sin θ)dθ∫ π

0 Sn−2(sin θ)dθ

≤

∫ π
2 (1+x)
π
2 (1−x) (sin θ)n−2dθ∫ π

0 (sin θ)n−2dθ

≤
√
πx
Γ

( n
2
)

Γ
( n−1

2
) , (3.39)

where Sm(r) �
√
πΓ[(m + 1) /2]rm/Γ[(m + 2) /2] is an area of an m-dimensional

hypersphere. For ε � d−ηE,∆E, the left-hand side of (3.35) becomesPLm [U ∈ U{ai},η].
Then, with Eq. (3.37), the proof of Eq. (3.30) is completed. �

We note that our theorem applies to any k-body Hamiltonians. If we take Ĥ
as a Hamiltonian with spatially local interactions, we expect | |Ĥ | |op ∝ N . Thus,
for the right-hand side of Eq. (3.37) to vanish, ε can instead be taken as

ε ∝ N−z ∼ n−
z
m (z > 1 + p + m) (3.40)

for ∆E ∝ N−p , since
√

nΛΓ [n/2]/Γ [(n − 1)/2] → n ∼ Nm for N � 1. This means
that the maximum fluctuation of most few-body observables actually decreases
slower than

∼ N−z ∼ n−
z
m (z > 1 + p + m). (3.41)
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3.4 Typicality of most N-body observables

Our theorem of atypicality only holds true for few-body systems, where m is
independent of N . If we instead consider many-body observables, the typicality
argument may hold true. We here show that most random N-body observables
behave typically. Indeed, we can show the following proposition:

Proposition. Let us consider a randomly chosen observable Ô �
∑

f G f Λ̂ f from
LN . We then obtain the corresponding {ai} and U. In this case, we can show that

PLN [U <U{ai},η] ≤ 2d exp
−

dd−2η
E,∆E

72π3

 , (3.42)

where d � dim[H] � SN . The right-hand side vanishes for N →∞when η < 1/2.

This proposition indicates that most observables randomly chosen from LN

satisfy the ETH in the energy shell. We note that recent numerical simulations
indeed suggest that many-body observables can satisfy the ETH [209, 31, 28, 29],
in contrast with the picture that relies on the spatial entanglement for the validity
of the ETH [58].

Proof of Eq. (3.42)

First, we show that a random observable Ĝ �
∑

f G f Λ̂ f chosen from LN has
eigenstateswhich are distributed over the uniformHaarmeasure. For any SN×SN

transformation R̂ which is unitary, we have

R̂ĜR̂† �
S2N∑
f�1

G f R̂Λ̂ f R̂†

�

S2N∑
f�1

G f

S2N∑
g�1
R f gΛ̂g

�

S2N∑
f�1

G̃ f Λ̂ f , (3.43)

where R f g is defined by

R̂Λ̂ f R̂† �
S2N∑
g�1
R f gΛ̂g (3.44)
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and

G̃ f �

S2N∑
g�1

GgRg f . (3.45)

Here,R is an S2N×S2N orthogonalmatrix. Indeed, the normalization condition of
Λ̂ f , Tr[Λ̂ f Λ̂g] � SNδ f g , leads to

∑
h R f hRgh � δ f g owing to the operator expansion

of R̂Λ̂ f R̂†R̂Λ̂gR̂†. In addition, R f g � R∗f g holds true because of the Hermiticity
condition Λ̂†f � Λ̂ f , which is known from the operator expansion of (R̂Λ̂ f R̂†)†.
Consequently, for randomly chosen observables from LN , the probabilities of
choosing Ĝ and R̂ĜR̂† are equal to each other because P( ®G) is invariant under
any orthogonal rotation, i.e., P( ®G) � P(R ®G). Thus, the eigenstates of a randomly
chosen Ĝ are uniformly distributed over the unitary Haar measure.

Now, we bound the right-hand side of Eq. (3.42). In a manner similar to the
derivation of Eq. (3.6), we obtain

PLN

[
max
α,β

��Oαα − Oββ�� > | |Ô | |opd−ηE,∆E

]
≤ 2d exp

−
dd−2η

E,∆E

72π3

 , (3.46)

where we have considered the unitary Haar measure for the entire Hilbert space.
Because of the inequalitymaxα,β

��Oαα − Oββ�� ≥ max|Eα−E |,|Eβ−E |≤∆E
��Oαα − Oββ��, we

finally obtain

PLN

[
max

|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� > | |Ô | |opd−ηE,∆E

]
≤ PLN

[
max
α,β

��Oαα − Oββ�� > | |Ô | |opd−ηE,∆E

]
.

(3.47)

Thus, Eq. (3.42) is proven. �

3.5 Extension of the setup with locality

Our discussion so far has focused on the few-body setup. Our results thus apply
to spatially nonlocal but few-body observables, such as momentum distribu-
tions [18, 228] and structure factors [229], which are also expected to obey the
standard statistical mechanics [141]. On the other hand, wemay specifically be in-
terested in spatially local observables in some cases. We here extend our theorem
of atypicality for Oαα to most local observables for translation-invariant locally
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interacting systems.
In the following, we consider N lattice spins in one dimension, for which the

label of each site is denoted as x � 1, · · · ,N , for simplicity. It is straightforward
to generalize the discussion to higher dimensions. Let us consider a subregion
Sl which is composed of neigboring sites labeled by x � 1, · · · , l. Here, we start
from x � 1without loss of generality, sincewewill consider a translation-invariant
system in the following. If l (� N) is independent of N , Sl is defined as a local
subsystem. Next, we define HSl as the Hilbert space of Sl and Lloc

l � L(HSl ) as
the operator space that acts on Sl . An orthonormal basis set for Lloc

l is given as

Bloc
l �

{
⊗l

x�1λ̂
µx
x

��0 ≤ µx ≤ S2 − 1
}
�: {Λ̂loc

f }
r
f�1, (3.48)

where r � S2l . The orthonormality condition is chosen as TrSl [Λ̂loc
f Λ̂

loc
g ] � Slδ f g .

Next we define local observables randomly chosen from Lloc
l :

Definition (Randomly chosen local observables from Lloc
l ). Consider an observ-

able Ĝ ∈ Lloc
l written as

Ĝ �

r∑
f�1

g f Λ̂
loc
f , (3.49)

where ®g � (g1, · · · , g f , · · · , gr) are random real variables chosen from a probabil-
ity distribution Ploc( ®g). If Ploc( ®g) is unchanged under an arbitrary r× r orthogonal
transformation, Ĝ is defined as an observable randomly chosen from Lloc

l .

Next we define an l′-local, translation-invariant Hamiltonian Ĥ as an operator
expressed as Ĥ �

∑N
i�1 ĥi ,l′, where ĥ1,l′ only acts on x � 1, 2, · · · , l′ and T [ĥi ,l′] �

ĥi+1,l′, with T denoting the one-site translation.
We now prove the following theorem:

Theorem. Consider an l′-local translation-invariant Hamiltonian, and assume
that l (l′ ≤ l � N) is independent of N which is sufficiently large. We choose a
random observable Ô �

∑
f g f Λ̂

loc
f from Lloc

l . We then obtain the corresponding
{ai} and U from Ĥ and Ô. Then,

PLloc
l
[U ∈ U{ai},η] ≤

√
πrN | |ĥ | |opΛ

2∆E
Γ

( r
2
)

Γ
( r−1

2
) d−ηE,∆E , (3.50)

where PLloc
l

means a probability over Ploc( ®g) and Λ � max f | |Λ̂ f | |op ≤ S
l
2 � r1/4.

If | |ĥ | |op � | |ĥ1,l | |op does not increase exponentially with increasing N , the right-
hand side vanishes in the thermodynamic limit.
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Proof of Eq. (3.50)

We first note that ĥ1,l′ belongs to Lloc
l and satisfies the following:

(ĥ1,l′)γγ − (ĥ1,l′)δδ �
1
N

∑
i

[(ĥi ,l′)γγ − (ĥi ,l′)δδ]

�
1
N
[(Ĥ)γγ − (Ĥ)δδ] �

2∆E
N

, (3.51)

where γ and δ label the maximum and minimum eigenvalues within the energy
shell, respectively. Let us define

γ f � (Λ̂loc
f )γγ − (Λ̂

loc
f )δδ . (3.52)

Then, ĥ1,l′ �
∑r

f�1 h f Λ̂
loc
f leads to

®h · ®γ �
2∆E

N
, (3.53)

where ®h � (h1, · · · , hr) and ®γ � (γ1, · · · , γr). Since

| ®h | �

√
TrSl [ĥ2

1,l′]
Sl

≤ ||ĥ1,l′ | |op � | |ĥ | |op, (3.54)

we have

| ®γ | ≥ 2∆E

N | |ĥ | |op
. (3.55)

We now discuss the right-hand side of Eq. (3.50). Since

max
|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� ≥ | ®g · ®γ |, (3.56)

we have

PLloc
l

[
max

|Eα−E |,|Eβ−E |≤∆E

��Oαα − Oββ�� ≤ ||Ô | |opε

]
≤ PLloc

l

[
| ®g · ®γ | ≤ ||Ô | |opε

]
. (3.57)

Defining the angle between ®g and ®γ as φ, we have

PLloc
l

[
| ®g · ®γ | ≤ ||Ô | |opε

]
≤ PLloc

l

[
| cosφ | ≤

√
rN | |ĥ | |opΛε

2∆E

]
≤
√
πrN | |ĥ | |opΛε

2∆E
Γ

( r
2
)

Γ
( r−1

2
) . (3.58)

Note that we have used

| |Ô | |op ≤ Λ| ®g |
√

r (3.59)
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as in Eq. (3.38) and that Ploc( ®g) is invariant under orthogonal transformations.
Using Eqs. (3.57) and (3.58) and taking ε � d−ηE,∆E, we can show that the left-

hand side of (3.57) becomes PLloc
l
[U ∈ U{ai},η], which completes the proof of

Eq. (3.50). �

Equations (3.57) and (3.58) also tell us how slowly the maximum fluctuation of
Oαα decays. Letus choose∆E � | |ĥ | |opN−p(−1 < p). Since

√
πrΛΓ (r/2)/2Γ ((r − 1)/2)

is independent of N , we can choose ε � N−z (z > 1 + p) so that the left-hand side
of (3.57) may vanish for N →∞.

3.6 Discussions

We have examined the validity of the typicality argument, which is based on the
unitary Haar measure, for the few-body (or local) setting. We have rigorously
proven that diagonal matrix elements Oαα behave atypically for most few-body
observables when the energy width decreases at most algebraically with increas-
ing N , which is demonstrated by Eq. (3.30) (or Eq. (3.50)). We have also shown,
on the other hand, that the typicality argument can hold true for many-body
observables (see Eq. (3.42)).

We nowdiscuss themeaning of our atypicality and the relation between previ-
ousworks. The results that we have obtained suggest that the typicality argument
does not hold true for physical Hamiltonians and few-body observables when the
width of the energy shell decays at most polynomially. Thus, the typicality argu-
ment cannot explain the ETH in realistic nonintegrable systems, contrary to the
arguments in e.g., Ref. [30]. We note, however, that we do not deny the ETH itself.
Indeed, we do not exclude the possibility that the maximum fluctuation of Oαα
decays algebraically with increasing N . Our results thus indicate that a different
approach which does not rely on the typicality argument is required for justifying
the ETH. We also note that our present study does not judge whether the original
work by von Neumann [2] is valid. In fact, he considered modified observables
that are obtained from the coarse-graining of the original macroscopic observ-
ables. This procedure adds subextensive corrections to the observables, which
are negligible in discussing thermalization in macroscopic systems but Eq. (3.30)
becomes no longer applicable.

We next discuss the relation with Srednicki’s conjecture in Eq. (2.27). If we
assume that the “slope" dA(E)/dE in this conjecture does not decay exponen-
tially, the atypicality holds true. Indeed, Srednicki’s conjecture with this assump-
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tion leads to the maximum fluctuation of the diagonal matrix elements that is
estimated to be dA(E)/dE × 2∆E in the thermodynamic limit, which does not
decrease exponentially small for ∆E ∝ N−p . However, our proof of atypicality
is rigorously obtained solely from quantum mechanics without relying on any
conjecture or assumption about matrix elements. From a different perspective,
our results rigorously show that the random-matrix behavior of matrix elements
Oαβ should not hold for few-body observables unless the energy width decays
exponentially with the system size. Note that the previous numerical simulations
that argued random-matrix-type (exponentially small) fluctuation of diagonal
matrix elements do not contradict with our results because they used a differ-
ent measure of fluctuations of Oαα, which essentially subtracts the effect of the
slope dA(E)/dE that causes atypicality. Recent numerical simulation [230] indeed
demonstrated that the random-matrix-type behavior appears only after we get rid
of atypical structures of Oαα that is expressed as an overlap of the Hamiltonian
and observables, which is consistent with our discussion.

Our results in Eq. (3.30) (or Eq. (3.50)) and Eq. (3.42) explicitly demonstrate
that few-body properties of observables and the Hamiltonian are very important
for the statistics of matrix elements. This fact was not pointed out in the previous
literatures. It is indicated from our results that the assumption for the slope
dA(E)/dE in the previous paragraph usually seems to hold in numerics [70,
25] because they mainly consider few-body observables. On the other hand,
if many-body observables are concerned, the slope can be much smaller as a
function of energy [31]. We also note that the slope can be small even for few-
body observables [231, 232] in Floquet nonintegrable systems (Ẽ represents the
quasienergy), for which the energy is not conserved and our results do not apply.
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Chapter 4

Review: theory of open quantum
systems

While there are systems which are nearly isolated such as cold atom systems, no
systems are perfectly isolated because of the existence of couplings with external
environments. Such open quantum systems obey non-unitary time evolutions,
which cannot be understood within the framework discussed in the previous
chapters. Indeed, dissipation can drive systems; the obtained state may be trivial
(e.g., maximally mixed) states, but in turn it can be highly out-of-equilibrium
states (e.g., non-equilibrium steady states). It is a long-standing and challenging
problem to establish nonequilibrium statistical mechanics, which may emerge as
a consequence of external environments. The ETH, though being successful in
closed quantum systems, is apparently not sufficient to explain such complicated
situations.

In a modern perspective, dissipation and measurements have been controlled
in recent experiments of many-body systems using cold atoms, trapped ions,
etc., as mentioned in Chapter 1. These experiments provide a suitable setup
to pursue statistical mechanics and thermalization in open quantum many-body
systems. For example, as detailed later, decay of the MBL obeying the Lindblad
master equation with a dephasing type of dissipation has been investigated both
theoretically and experimentally.

It is also important to note that certain experimental setups, represented by
continuously measured open quantum systems, can access each quantum trajec-
tory that keeps individual measurement outcomes [233]. Dynamics of such a
quantum trajectory may behave differently from the conventional dynamics, for
which all measurement outcomes are averaged out. This will be clarified in Sec-
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tion 4.1, where we discuss the dynamics of non-Hermitian systems as a special
case of quantum trajectories. In addition, we comment that quantum trajectories
are necessary to discuss closed-loop feedback control depending on measure-
ment outcomes, which has experimentally been realized in quantum many-body
systems using Rydberg atoms [105, 106].

In this chapter, we review the basic theory and recent developments in open
quantum systems. In Section 4.1, we formulate dynamics of quantum trajectories
in repetitively or continuously measured open quantum systems. In Section 4.2,
we review properties of non-Hermitian systems, which can be regarded as the
simplest case of quantum trajectories. In Section 4.3, we discuss recent develop-
ments on thermalization of open quantum many-body dynamics.

4.1 Repeatedly or continuouslymeasured open quan-
tum systems

4.1.1 Repeatedly measured quantum systems

We here formulate time evolution of quantum systems under indirect repeated
measurements. Here, we model the indirect measurement as the following cycle:

1. (Preparation) We attach an ancilla state ρ̂A (such as photons) to the system
ρ̂S (such as bosons). The total state ρ̂tot is given by

ρ̂tot,0 � ρ̂S ⊗ ρ̂A. (4.1)

2. (Interaction) We let the system and the ancilla interact with a unitary time
evolution operator ÛSA. Then the entire system becomes

ρ̂tot,0 → ÛSA(ρ̂S ⊗ ρ̂A)Û†SA. (4.2)

3. (Measurement) We perform a projective measurement on the ancilla. We
introduce a set of projective operators P̂A(η) depending on a measurement
result η. The normalization condition is given by

∑
η P̂A(η) � ÎA, where ÎA/S

is the identity operator of the ancilla/system Hilbert space.

The state after the measurement with an outcome η can be written as

ρ̂tot,η �
P̂A(η)ÛSA(ρ̂S ⊗ ρ̂A)Û†SAP̂A(η)

pη
(4.3)
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with the probability of the measurement result η given by

pη � Tr[P̂A(η)ÛSA(ρ̂S ⊗ ρ̂A)Û†SAP̂A(η)]. (4.4)

4. (Detachment of the ancilla) Finally, we trace out the Hilbert space of the
ancilla and obtain

ρ̂S,η � Ẽη(ρ̂S) � TrA[ρ̂tot,η] (4.5)

for the measurement outcome η. Therefore, the state after the ensemble
average over the measurement outcome η is given by

ρ̂′S �

∑
η

pη ρ̂S,η �
∑
η

pηẼη(ρ̂S) �
∑
η

TrA[P̂A(η)ÛSA(ρ̂S ⊗ ρ̂A)Û†SAP̂A(η)].

(4.6)

The map ρ̂S → ρ̂′S � E(ρ̂S) defines one cycle of the measurement process.

Next, let us perform the spectral decompositions of ρ̂A and P̂A(η) as follows:

ρ̂A �

∑
a

ρA,a |ρA,a〉 〈ρA,a | ,

P̂A(η) �
∑

b

|πA,η,b〉 〈πA,η,b | , (4.7)

where a and b are the labels of eigenstates that diagonalize ρ̂A and P̂A(η), respec-
tively. Then, introducing the operators

M̂η,c �
√
ρA,a 〈πA,η,b |ÛSA |ρA,a〉 (4.8)

with c � (a , b), we obtain

ρ̂S,η � Ẽη(ρ̂S) �
∑

c M̂η,c ρ̂SM̂†η,c
pη

(4.9)

and

ρ̂′S � E(ρ̂S) �
∑
η,c

M̂η,c ρ̂SM̂†η,c , (4.10)

where ∑
η,c

M̂†η,cM̂η,c � ÎS (4.11)

is satisfied. Note that the map E is completely positive and trace-preserving.

Suppose that we repeat the above measurement cycles n times. A quantum
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trajectory with the outcomes η1, η2, · · · ηn can be written as

Ẽηn (· · · (Ẽη1(ρ̂S)) · · · ). (4.12)

On the other hand, the averaged dynamics over all quantum trajectories can be
simply written as

En(ρ̂S). (4.13)

4.1.2 Continuously measured quantum systems

Next, we assume that each of the above cycles is performed in a very short time
dt. We consider a situation in which the initial state of the ancilla is ρ̂A � |0〉 〈0|.
Then, η � 0 corresponds to the case for the null measurement outcome and η ≥ 1
corresponds to the case for which some signal is observed. We also assume that
the measurement process is characterized by the operators M̂0, M̂1, · · · given by

M̂0 � ÎS + (K̂ − iĤ)dt ,

M̂η≥1 � L̂η
√

dt . (4.14)

Here, Ĥ and K̂ are Hermitian andwe have omitted c � (a , b) in Eq. (4.8) by assum-
ing that the initial ancilla state is pure and that each of the projective operators
P̂A(η) has rank 1. It follows from the normalization condition in Eq. (4.11) that

K̂ � −1
2

∑
η≥1

L̂†ηL̂η. (4.15)

As we mentioned above, η � 0 corresponds to the case for which no outcome
is obtained, and η , 0 corresponds to the case with outcome η. Indeed, for η � 0,
the state evolves as

ρ̂0(t + dt) �
M̂0ρ̂(t)M̂†0

pη�0

� ρ̂(t) +
(
−i[Ĥ , ρ̂(t)] + {K̂ , ρ̂(t)} − 2Tr[ρ̂(t)K̂]

)
dt + o(dt) (4.16)

with

pη�0 � Tr[ρ̂(t)M̂†0 M̂0] � 1 + 2Tr[ρ̂(t)K̂]dt + o(dt). (4.17)

Thus, the state evolves continuously as a function of time. On the other hand, for
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η ≥ 1, the state becomes

ρ̂η≥1(t + dt) �
M̂η ρ̂(t)M̂†η

pη

�
L̂η ρ̂(t)L̂†η

Tr[ρ̂(t)L̂†ηL̂η]
(4.18)

with probability

pη � Tr[ρ̂(t)M̂†ηM̂η] � Tr[ρ̂(t)L̂†ηL̂η]dt . (4.19)

Thus, the state evolves discontinuously as a function of time, which is called the
quantum jump.

The dynamics for which all measurement outcomes η are averaged out can be
written as

dρ̂(t)
dt

� −i[Ĥ , ρ̂(t)] − 1
2


∑
η≥1

L̂†ηL̂η , ρ̂(t)
 +

∑
η≥1

L̂η ρ̂(t)L̂†η

� −iĤNHρ̂(t) + iρ̂(t)Ĥ†NH +

∑
η≥1

L̂η ρ̂(t)L̂†η , (4.20)

where we have introduced a non-Hermitian Hamiltonian

ĤNH � Ĥ − i
2

∑
η≥1

L̂†ηL̂η. (4.21)

The equation Eq. (4.20) is nothing but the Lindblad equation.

When we instead focus on quantum trajectories with individual measurement
outcomes, the dynamics can be written as the stochastic time evolution. If we
assume that the state is pure, its dynamics is given by

d |ψ〉 � ©­«ÎS − iĤNH +
1
2

∑
η≥1
〈ψ |L̂†ηL̂η |ψ〉

ª®¬ |ψ〉 dt +
∑
η≥1

(
L̂η |ψ〉

〈ψ |L̂†ηL̂η |ψ〉
− |ψ〉

)
dNη.

(4.22)

Here, the event of quantum jump dNη is defined as a stochastic calculus satisfying

dNηdNη′ � δηη′dNη ,

E[dNη] � 〈ψ |L̂†ηL̂η |ψ〉 dt , (4.23)

where E denotes the average over samples. The quantum trajectory is composed
of no-jump intervals, where the dynamics is governed by the non-Hermitian
Hamiltonian in Eq. (4.21), and the quantum jumps, at which the state suddenly
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changes owing to the second term in Eq. (4.22). Note that the averaged dynamics
of ρ̂(t) � E[|ψ〉 〈ψ |] satisfies the Lindblad equation in Eq. (4.20).

When there are no quantum jumps, i.e., dNη � 0, the dynamics of the quantum
trajectory is simply given by

d |ψ〉
dt

�
©­«−iĤNH +

1
2

∑
η≥1
〈ψ |L̂†ηL̂η |ψ〉

ª®¬ |ψ〉 , (4.24)

whose solution is

|ψ(t)〉 �
e−iĤNHt |ψ(0)〉
| |e−iĤNHt |ψ(0)〉 | |

. (4.25)

Thus, the dynamics of a quantum trajectorywith no jumpprocesses is determined
by the non-Hermitian Hamiltonian ĤNH.

4.2 Non-Hermitian systems

We have seen above that the non-Hermitian dynamics is important for the dy-
namics of quantum trajectories. In fact, non-Hermitian Hamiltonians generally
show up in various types of open systems, both in classical and quantum systems.
In this section, we review basic properties and applications of non-Hermitian
Hamiltonians.

4.2.1 Basic aspects of non-Hermitian matrices

Let us consider a very simple example. We take a non-Hermitian matrix

H � σz
+ i gσy

�

(
1 g
−g −1

)
(4.26)

with g ∈ R (g , 0). The matrix has eigenvalues

λ+ �

√
1 − g2, λ− � −

√
1 − g2 (4.27)

which correspond to two right eigenstates (i.e., H ®φ± � λ± ®φ±),

®φ+ ∝
(

−g
1 −

√
1 − g2

)
, ®φ− ∝

(
−g

1 +
√

1 − g2

)
. (4.28)
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On the other hand, left eigenstates, which satisfy ®χ†±H � λ± ®χ†±, are given by

®χ†+ ∝
(
g 1 −

√
1 − g2

)
, ®χ†− ∝

(
g 1 +

√
1 − g2

)
. (4.29)

There are some important properties to note:

1. Left and right eigenstates are in general different, i.e., ®φα and ®χα are not
proportional to each other.

2. Three normalization conditions ®χ†α ®φα � 1, ®φ†α ®φα � 1, and ®χ†α ®χα � 1 cannot
simultaneously be satisfied. In the following, we assume ®χ†α ®φα � 1 and
®φ†α ®φα � 1, but ®χ†α ®χα , 1.

3. (Biothogonality) Under the normalization condition above, one obtains

®χ†α ®φβ � δαβ , (4.30)

i.e., the biothogonality between right and left eigenstates.

4. (Non-othogonality) On the other hand, there is no orthogonality between
two right (left) eigenstates in general,

®φ†α ®φβ , 0, ®χ†α ®χβ , 0. (4.31)

These properties are common to general non-Hermitian matrices.
In addition, the Hamiltonian in Eq. (4.26) has the following important proper-

ties owing to the reality condition H � H∗:

1. For |g | < 1, both eigenvalues stay real, i.e., λ± ∈ R, even in the presence
of the non-Hermiticity. Each of the two eigenstates is invariant under the
complex-conjugate operation, ®φ∗α � ®φα.

2. For |g | > 1, two eigenvalues are complex-conjugate to each other, i.e., λ∗+ �

λ−. In this case, the corresponding eigenstates are also connected by the
complex conjugation, ®φ∗+ � ®φ−.

3. For |g | � 1, two eigenstates and eigenvalues coincide, or “coalesce". In
contrast with the degeneracy that can occur in Hermitian systems, this
coincidence is accompanied by the reduction of the rank of the matrix.
Indeed, since eigenstates coincide, they cannot span the entire Hilbert space,
which means that the completeness of the eigenstates is lost. These special
points are called exceptional points.
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These properties are known to occur if the system respects time-reversal sym-
metry T̂ � T̂+K̂, where K̂ is a complex-conjugation operator and T̂+ (T̂+T̂ ∗+ � ±Î) is
a unitary operator, namely

T̂+Ĥ∗T̂ −1
+ � Ĥ . (4.32)

Note that T̂+ is the identity in the example in Eq. (4.26). When Ĥ |φα〉 � Eα |φα〉,
we have Ĥ∗ |φα〉∗ � E∗α |φα〉∗ and thus

ĤT̂+ |φα〉∗ � T̂+Ĥ∗ |φα〉∗

� E∗αT̂+ |φα〉∗ . (4.33)

Thus, Ĥ has an eigenstate T̂+ |φα〉∗ with an eigenvalue E∗α. This means that eigen-
values necessarily appear as real ones or form complex-conjugate pairs. We note
that these properties appear also for matrices with the pseudo-Hermiticity [234],
i.e.,

η̂Ĥ†η̂−1
� Ĥ (4.34)

for a unitary matrix η̂ with η̂2 � 1. In this case, when 〈χα | Ĥ � Eα 〈χα |, the vector
η |χα〉∗ becomes a right eigenstate of Ĥ with an eigenvalue E∗α.

Let us go back to the simple example in Eq. (4.26). If we increase g from 0,
two real eigenvalues first approach each other. Then, the eigenvalues coalesce
at g � 1 and then become complex for g > 1. In other words, eigenvalues
can be complex only through the exceptional point. This is in contrast with the
matrix without such time-reversal symmetry, where eigenvalues themselves are,
in general, complex.

The real-complex transition was already discussed in the seminal paper by
Hatano and Nelson [235, 236, 237], who investigated an asymmetric hopping
model with disorder (see Chapter 5) that keeps time-reversal symmetry. The
importance of the symmetry was first stressed in Ref. [38], who considered a
single particle in a non-Hermitian potential with parity and time-reversal (PT)
symmetry. In that case, the real-complex transition is called the PT-symmetry
breaking. The case for which eigenvalues are real is called the PT-symmetry
unbroken phase; the case for which eigenvalues form a complex-conjugate pair is
called the PT-symmetry broken phase, since eigenstates are no longer invariant
under PT operation while the Hamiltonian is.
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4.2.2 Non-Hermitian quantum dynamics

Let us consider time evolution of a non-Hermitian quantum system that obeys
Eq. (4.25). By expanding the Hamiltonian in terms of its energy eigenstates, the
state becomes

|ψ(t)〉 �
∑
α 〈EL

α |ψ(0)〉 e−iEα t |ER
α 〉����∑

α 〈EL
α |ψ(0)〉 e−iEα t |ER

α 〉
���� , (4.35)

where |ER
α 〉 and |EL

α〉 are right and left eigenstates of ĤNH, respectively. When one
of the eigenvalues Eα have nonzero imaginary parts, the state will eventually be
dominated by the particular mode |ẼR

α 〉, where Ẽα is the energy eigenvalue with
themaximumpositively imaginary part. When all of the eigenvalues are real (e.g.,
in a PT-symmetry unbroken phase), there is no such eventual dominance of the
state. On the other hand, even such a case can exhibit an interesting dynamics
which is absent in closed quantum systems. For example, even for an observable
Ô that satisfies [ĤNH, Ô]=0, its expectation value is not necessary conserved if
|ψ(0)〉 is not an eigenstate of Ô. Indeed, we have

〈ψ(t)|Ô |ψ(t)〉 �
〈ψ(0)|e iĤ†NHt e−iĤNHtÔ |ψ(0)〉
〈ψ(0)|e iĤ†NHt e−iĤNHt |ψ(0)〉

, (4.36)

which is, in general, time dependent.

4.2.3 Other non-Hermitian systems

We have seen above that non-Hermitian matrices come into play in quantum-
trajectory theory for continuously measured quantum systems. On the other
hand, non-Hermitian systems appear in many other situations. In fact, non-
Hermitian systems have actively been studied in the context of classical op-
tics [238, 239, 240, 241, 242, 243, 39]. For example, in Ref. [242], electric fields
in the absorbing media (with a complex refractive index) obey an effective non-
Hermitian Schrodinger equation. These systems are expected to be suitable play-
grounds for interesting non-Hermitian phenomena, such as PT-symmetry break-
ing and non-Hermitian topological effect [244, 245, 246].

Non-Hermitianmatrices alsonaturally appear indissipative [247, 248] systems.
If we consider classical Markov dynamics, its transition matrix is, in general,
non-Hermitian. For another example, the Lindblad superoperator for quantum
systems can also be mapped to non-Hermitian operator (see Chapter 6 as an
example). Non-Hermiticity also appears in linearized hydrodynamics [249]. In
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addition, non-Hermitian matrices are relevant for other fields of science, such as
biology [250] and information science [251].

4.3 Previous studies on thermalization of open quan-
tum many-body systems

In the previous sections we have discussed basic formulations of open quantum
systems. We here review studies on the problem of thermalization, such as
stationary states, in open quantum many-body systems.

4.3.1 Thermalization under the Lindblad equations

We first consider the stationary states of the Lindblad equations. The simplest
case is that the operator L̂η for each η is Hermitian. In this case, the maximally
mixed state ρ̂ ∝ Î becomes a solution of the Lindblad equation. More generally, a
sufficient condition (called quantum generalization of the detailed-balance condi-
tion) for a Lindblad operator to have the Gibbs state as a stationary-state solution
is also obtained [252].

Recently, it has been reported numerically that even systemswithout the quan-
tum generalization of the detailed-balance condition sometimes relax to a thermal
state for a weak coupling limit | |L̂η | | → 0 [253]. However, it is still not fully un-
derstood when a system relaxes to thermal equilibrium for a general setup.

There are other cases for which the stationary-state solutions of the Lindblad
equation are known. One of the important examples is the case that dark states
appear. Namely, if the state ρ̂ is eliminated by all of the jump operators

L̂η ρ̂ � 0 (4.37)

and if it is invariant under the Hamiltonian part

[ρ̂, Ĥ] � 0, (4.38)

ρ̂ is a stationary state of the Lindblad equation. This technique is used to create a
desired state by controlling dissipation [254, 255, 256].

In many cases, however, the stationary state emerges as a complicated com-
petition of the unitary dynamics and dissipation. For example, by tuning the
dissipation, the stationary state of dissipative many-body systems (e.g., locally
interacting spin systems) can exhibit nontrivial phase transitions [257, 258]. We
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can also create highly nonequilibrium stationary states, such as current-carrying
stationary states [259, 260] or time-crystalline states [261, 262]. While analyti-
cal [263, 264] and numerical [265, 266, 267, 268, 269, 270, 271, 258, 272, 273, 274, 275]
techniques for finding such stationary states are rapidly developing, it is still an
interesting open problem to elucidate stationary states of Lindblad equations in
general setups.

4.3.2 Decay of the many-body localization under the Lindblad
dynamics

Here, as one of the most important cases of thermalization in open systems, we
discuss the effect of dissipation on the MBL system.

The MBL under dissipation was first considered in Ref. [276], which investi-
gated interactingdisorderedFermionic systemswith adephasing-typedissipation
(L̂l � n̂l)

Û̂ρ(t) � −i[Ĥ , ρ̂(t)] + γ
N∑

l�1

[
n̂l ρ̂(t)n̂l −

1
2

{
n̂l , ρ̂(t)

}]
, (4.39)

where

Ĥ � −J
N∑

l�1

(
ĉ†l ĉl+1 + ĉ†l+1 ĉl

)
+ V

N∑
l�1

n̂l n̂l+1 + 2
N∑

l�1
hl n̂l . (4.40)

In this case, the stationary state is trivially an infinite-temperature state because
n̂l is Hermitian. On the other hand, using numerical simulations for finite-size
systems, the authors of Ref. [276] claimed that the dynamics in the strong-disorder
regime is different from that in the weak-disorder regime. For example, they
found that the von-Neumann entropy of ρ̂(t) grows logarithmically as ∼ log(γt),
which indicates the exponentially long relaxation time as inHermitianMBL cases,
although the relaxation time depends on the dissipation. They also found that the
imbalance of particle numbers between odd and even sites asymptotically exhibits
a stretched exponential decay (∼ exp(−µtα) for some µ and α).

Subsequently, there appeared several works that investigate the same models
using an effective classical dynamics. In Ref. [277], the authors investigated the
long-time behavior by analyzing the low-lying eigenstates (near stationary states)
by using the degenerate perturbation theory. After showing that the long-time
dynamics is effectively described by a classical Markov process, they argued that
Renyi-2 entropy becomes thermal values and do not exhibit MBL signatures (in
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contrast with the finding in Ref. [276]). Reference [278] investigated the long-time
dynamics by assuming that off-diagonal quantum coherence in the basis that
diagonalizes quasilocal conserved quantities rapidly decays owing to dephasing.
Then, the dynamics is governed by the classical rate equation for the particle
density at each site. Using this effective equation, they numerically showed that
the local imbalance exhibits a stretched exponential decay,which is consistentwith
the finding in Ref. [276]. Such a stretched exponential decay was later observed
in a controlled experiment of ultracold atoms [104].

We note that, by tuning the dissipation (that is non-Hermitian) such that it
drives the system into a nonequilibrium steady state, we can find the localization
signature even in stationary states of open systems [279, 280]. For example, by
choosing

L̂l � (ĉ†l + ĉ†l+1)(ĉl − ĉl+1) (4.41)

for the jump operators instead of L̂l � n̂l in Eq. (4.39), the stationary state is shown
to exhibit MBL signatures for, e.g., the imbalance of particles [280].

4.3.3 Thermalization dynamics without ensemble averaging

We have explained the dynamics of the Lindblad equation, which describes the
averaged dynamics over all quantum jumps. Here, we discuss a few theoretical
progresses which treat thermalization of open many-body systems at the level of
quantum trajectories.

Dynamics of quantum trajectories

One of the simplest scenario is that each quantum trajectory will heat up owing
to the energy injection by quantum jumps (i.e., measurement backaction). The
authors ofRef. [281] showed that a typical quantumtrajectory in theBose-Hubbard
model with very weak dissipation, which ensures the long-time interval between
quantum jumps, heats up to a state described by the infinite-temperature state.
To see this, we remind that the dynamics of quantum trajectories consists of
time evolutions by a non-Hermitian Hamiltonian (which is approximated by the
Hermitian Hamiltonian of the Bose-Hubbard model under the weak-dissipation
condition) and stochastic quantum jumps. Since the quantum jumps are regarded
as stochastic quench operations of the system and the ETH is satisfied owing to the
nonintegrability of the Hermiltonian, the quantum trajectories after a sufficiently
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long time are described by thermal states, whose energy eventually grows.
Another interesting consequence of quantum jumps is that it can disentangle

a quantum state. References [282, 283, 284] considered random quantum circuits
which are composed of unitary parts (explained in Chapter 2) and non-unitary
projective measurements. Intuitively, if the occurrence of the projective mea-
surement is sufficiently rare, quantum trajectories will be entangled owing to the
interaction of the unitary time evolution. On the other hand, for frequent local
measurements, quantum trajectories will be disentangled owing to the collapse
of the state. Indeed, it was found that the competition between interactions and
measurements leads to a novel critical phase transition of the growth of the en-
tanglement entropy S(t) of quantum trajectories. Namely, S(t) ∝ O(t1) is found
for infrequent measurements but S(t) ∼ O(t0) for frequent measurements. At the
critical point, S(t) exhibits the logarithmic behavior as S(t) ∼ log t. This behavior
is also relatedwith the classical percolation theory [283]. The entanglement phase
transition has actively been studied in various setups recently, such as the case for
indirect measurements [285] and specific bosonic systems [286]. It is also related
to quantum information theory, such as information scrambling and the error
correction [287, 288, 289, 290].

Non-Hermitian dynamics

While the phenomena discussed above are explained by the effects of stochastic
quantum jumps, interesting features can also result from the continuous-time
evolution described by non-Hermitian Hamiltonians. In fact, several works in-
vestigated consequences brought by purely non-Hermitian dynamics, which cor-
responds to postselected quantum trajectories with no jumps (see Eq. (4.25)).
For example, Ref. [291] showed that the Lieb-Robinson bound, which holds true
for unitary time evolution and the Lindblad dynamics, breaks down for non-
Hermitian time evolutions, reflecting the non-orthogonality of eigenstates. In
Ref. [292], it was demonstrated that quantum magnetism which corresponds to
negative temperature is dynamically stabilized in the Hubbardmodel with a non-
Hermitian interaction, since an eigenvalue for such a negative-temperature state
has the maximum imaginary part among the spectrum.
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Chapter 5

Non-Hermitian many-body
localization

5.1 Motivation

In the previous chapter, we have seen that non-HermitianHamiltonians appear in
open systems, e.g., continuously measured quantum systems with null outcome.
As explained there, non-Hermiticity leads to many unique properties, such as the
real-complex phase transition of two eigenvalues under time-reversal symmetry
(TRS), which also affect properties of nonequilibrium dynamics.

One of the important classes of non-Hermitian systems that exhibit the real-
complex transitionowing toTRSwasproposedbyHatano andNelson in 1996 [235,
236, 237]. This model is a single-particle disordered model with asymmetric hop-
ping. In thismodel, a real-complexphase transitionof the single-particle spectrum
and a non-Hermitian generalization of the Anderson localization coincide.

While the Hatano-Nelson model is a seminal one which has been followed
by many researchers [293, 294, 295, 296, 297, 298, 299], it is unknown if a real-
complex transition owing to TRS and a localization transition owing to disorder
occur in non-Hermitian many-body systems. As discussed in Chapter 2, many-
body interaction and localization lead to the nontrivial consequence of many-
body localization (MBL), which is characterized by the transition of a many-body
spectrum. It is an intriguing problem how the competition between interaction,
localization, and non-Hermiticity affects many-body properties of the system.

This question is also related to the problem of thermalization in open quan-
tum many-body systems. As discussed in Chapter 4, MBL in open systems has
been studied in the Lindblad master-equation formalism, which shows that the
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MBL may be destroyed by certain dissipation [278, 276, 277, 104, 300]. On the
other hand, non-Hermitian setups are relevant for quantum trajectories (with no
quantum jumps) in continuously measured quantummany-body systems, where
measurement outcomes are not averaged out, and describe physics distinct from
the master-equation approach. It is nontrivial whether disorder affects the dy-
namics of such non-Hermitian open systems.

In this chapter, we discuss MBL in non-Hermitian systems. We demonstrate
that imaginary parts of many-body energy eigenvalues of non-Hermitian many-
body systems with TRS are suppressed by localization. We find that interacting
systems with disorder and asymmetric hopping exhibit a novel real-complex
phase transition: almost all energy eigenvalues become complex for weak dis-
order, and almost all energy eigenvalues become real for strong disorder (see
Fig. 5.1(a) and (b)). In the real-eigenvalue phase, absorption and emission of en-
ergy disappear despite non-Hermiticity, and the dynamics becomes unstable. We
then show the presence of a non-HermitianMBL transition, which is characterized
by level-spacing distributions and entanglement entropy, near the real-complex
phase transition point. We conjecture that points of the two transitions coincide in
the thermodynamic limit using an analytical discussion on eigenstate stability. We
also show the absence of the real-complex transition in non-Hermitian systems
with gain and/or loss since they do not possess TRS, although non-Hermitian
MBL still persists (see Fig. 5.1(c)). We summarize the results in Fig. 5.1(d).

5.2 Brief review of the Hatano-Nelson model

Before stating our main results, we first review the Hatano-Nelson model. The
original continuum Hamiltonian is given by

Ĥcon �

(
p̂ − i g

)2

2m
+ V(x̂), (5.1)

where V(x̂) is a random potential and we consider a one-dimensional system for
simplicity. In addition, the "imaginary gauge field" i g controls the strength of
non-Hermiticity (note that the sign of g is reversed from Ref. [235]). The discrete
second-quantized version with the tight-binding approximation is

Ĥ �

L∑
i�1

[
−J

(
e−g b̂†i+1 b̂i + e g b̂+i b̂i+1

)
+ hi n̂i

]
, (5.2)
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Figure 5.1: (a) A model with weak disorder and asymmetric hopping. A non-
Hermitian perturbationmakes two energy eigenvalues coalesce and become com-
plex conjugate to each other. (b) A model with strong disorder and asymmetric
hopping. Localization prohibits coalescence of energy eigenvalues owing to per-
turbation. (c) A model with strong disorder and gain and/or loss. In the absence
of TRS, energy eigenvalues with nonzero imaginary parts can appear without co-
alescence, even when localization occurs. (d) Statistics of energy eigenvalues and
entanglement entropy of energy eigenstates for amodelwith asymmetric hopping
(Eq. (5.6)) or a model with gain and/or loss (Eq. (5.29)) for different strengths of
disorder. Reproduced from Fig. 1 of Ref. [111]. ©2019 American Physical Society
with a slight modification.
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where n̂i � b̂†i b̂i is the number operator of particles at site i (b̂i is the annihilation
operator), g represents non-Hermitian asymmetric hopping, and hi denotes the
disorder strength which is randomly chosen from [−h , h]. We also consider the
periodic boundary condition. Note that this model becomes the Anderson model
for g � 0.

The Hatano-Nelson model shows an interesting spectral transition as a func-
tion of disorder (see Fig. 5.2). If disorder is weak enough compared with the
non-Hermiticity, the eigenstates becomedelocalized and the corresponding eigen-
values become complex. If disorder is strong enough compared with the non-
Hermiticity, the eigenstates become localized and the corresponding eigenvalues
become real.

Let us discuss an intuitive reasonwhy non-Hermiticity leads to the breakdown
of localization. Since Eq. (5.1) describes a particle in the imaginary gauge field,
we may perform the following "imaginary gauge transformation" and make the
field vanish:

V̂ � e
gx̂
~ ,

V̂ĤconV̂−1
�

p̂2

2m
+ V(x̂). (5.3)

Since this operation is a similarity transformation which does not alter the eigen-
values and the transformed Hamiltonian is Hermitian, Ĥcon has real eigenvalues
when this transformation is applicable. To see when this transformation becomes
inapplicable, let us start from g � 0, where all of the eigenvalues are delocalized
in one dimension owing to the Anderson localization. In that case, a localized
eigenstate can be written as

ψ(x) ∼ exp
(
− |x − x0 |

ξloc

)
(5.4)

for some x0. For g > 0, the eigenstate becomes

ψg(x) � V̂−1ψ(x) ∼ exp
(

gx
~
− |x − x0 |

ξloc

)
. (5.5)

For g/~ < 1/ξloc, ψg(x) can be safely normalized because |ψg(x)| decays expo-
nentially for large |x |. In that case, the shape of the eigenstate is deformed but it is
still localized, and the corresponding eigenvalue remains real. On the other hand,
for g/~ > 1/ξloc, ψg(x) exponentially diverges for either large positive x or large
negative x, which is incompatible with the periodic boundary condition. This
means that the above gauge transformation cannot be applied, which allows com-
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Figure 5.2: Single-particle spectra of the Hatano-Nelson model [235]. Note that
h in the figure corresponds to −g in Eq. (5.2), which is not the disorder strength.
For h � 0, all of the energy eigenvalues are real, and all of the eigenstates become
localized. For nonzero h, complex eigenvalues appear, which correspond to
delocalized eigenstates. Note that imaginary parts are shifted for h > 0 for clarity.
Reproduced fromFig. 2 of Ref. [235]. ©1996American Physical Society. Reprinted
figure with permission from Fig.2(a) of [Naomichi Hatano and David R. Nelson.
Localization Transitions inNon-HermitianQuantumMechanics. Physical Review
Letters, 77, 570, Jul 1996 (Ref. [235])] Copyright 1996 by the American Physical
Society.
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plex eigenvalues. In that case, the eigenstate is no longer localized but extended
(delocalized) to the entire space.

The Hatano-Nelson model was originally proposed to describe the depinning
transition of vortices in type-II superconductors. Indeed, it can be argued that
the asymmetric hopping takes the role of the tilting field imposed on the vortices,
and that the real-complex phase transition corresponds to the pinning-depinning
transition owing to the tilting field. The Hatano-Nelson model is also arguably
relevant for other contexts, such as population biology [250], quantum chaos [293],
mathematics [294, 295, 297], quantum chromodynamics [296], and optics [298,
299].

5.3 Real-complex phase transition in an interacting
model with asymmetric hopping

We now show that a real-complex transition and a localization transition occur at
the level of many-body spectra (in stark contrast with the single-particle spectra of
theHatano-Nelsonmodel) for an interactingmodelwith disorder and asymmetric
hopping. The Hamiltonian that we consider is

Ĥ �

L∑
i�1

[
−J(e−g b̂†i+1 b̂i + e g b̂†i b̂i+1) + Un̂i n̂i+1 + hi n̂i

]
, (5.6)

where b̂i represents the annihilation operator for a hard-core boson (the following
discussion on the real-complex phase transition also holds true for the case of
the Bose-Hubbard model, as shown in Appendix A). This model becomes the
Hatano-Nelson model for U � 0, which is the disordered XXZ model exhibiting
the Hermitian MBL for g � 0, and the asymmetric XXZ model for h � 0 [301].
Themodel respects TRS because it can be written as a real matrix. In addition, the
model can be realized in state-of-the-art experiments of ultracold atoms that are
measured continuously, since strong disorder has been realized [61] and asym-
metric hopping is also proposed to be implemented [244]. In the following, we
focus on the subspacewhere a number of particles is fixed as M � L/2 (half-filling)
and the parameters as J � 1, g � 0.1, and U � 2. See Appendix A for other values
of the parameters.

We first show the many-body energy eigenvalues of the above Hamiltonian in
Fig. 5.3(a). Note that the spectrum always has a reflection symmetry about the
real axis, since the system respects TRS. On the other hand, the number of energy
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eigenvalues with nonzero imaginary parts evidently decreases as h increases.

5.3.1 Fraction of complex energy eigenvalues

To quantify the real-complex property of energy eigenvalues, we consider the
following fraction

fIm �
DIm
D
. (5.7)

Here, DIm denotes the number of energy eigenvalues with nonzero imaginary
parts, D is the dimension of the Hilbert space, and the overline means the average
over disorder. Note that we consider the average over energy eigenvalues for the
entire energy range to simplify our discussion. This means that we essentially
discuss the energy scale that corresponds to the infinite temperature, where the
density of states becomes maximal, for sufficiently large systems.

We show in Fig. 5.3(b) the dependence of fIm on h for different system sizes L.
When we increase the system size, fIm increases when h . hR

c ' 8 and decreases
when h & hR

c . This means a real-complex critical phase transition for many-body
eigenvalues at h � hR

c in the thermodynamic limit L → ∞. Moreover, we can
confirm the scaling behavior around the critical point when we consider fIm as
a function of (h − hR

c )L1/ν, where we obtain ν � 0.5 here. It is a future problem
to investigate what determines the universality class defined from this critical
exponent.

In conclusion, almost all energy eigenvalues are complex when h < hR
c and

real when h > hR
c . Note that this transition is defined from the statistics of

many-body spectra in the thermodynamic limit. This is quite different from the
usual PT symmetry transition, for which the transition point is identified by the
coalescence of two eigenstates, not by statistics of many eigenstates. We note that
the maximum imaginary value among all energy eigenvalues shows a similar
transition, as shown in Appendix A.

5.3.2 Transition of dynamical stability

The above transition means that, for large disorder, almost all energy eigenvalues
suddenly become real. This transition considerably affects the stability of the time
evolution of the system. To see this, we consider the following non-Hermitian
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Figure 5.3: (a) Energy eigenvalues of the non-Hermitian Hamiltonian (5.6) for
different disorder strength (h � 2, 10) with L � 12. (b) (top) Dependence of the
fraction fIm on disorder strength h for L � 6, 8, 10, 12, 14, and 16. and small for
h & hR

c . (bottom) As a function of (h − hR
c )L1/ν, fIm exhibits the critical scaling

collapse, where hR
c � 8.0 and ν � 0.5 are used. Note that we determine fIm using

a cutoff of the imaginary part C � 10−13, with which machine errors (|ImEα | � C)
and pure complex eigenvalues (|ImEα | � C) can be separated clearly. We show
the data that are averaged over Nsam samples for different disorder realizations.
Here, Nsam � 10000 for L � 6, 8, 10, 12, Nsam � 1000 for L � 14, and Nsam � 100
for L � 16.
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time evolution:

|ψ(t)〉 �
e−iĤt |ψ0〉
| |e−iĤt |ψ0〉 | |

, (5.8)

which describes to the quantum trajectories with no jump processes for systems
that are continuously measured, as discussed in Chapter 4. In the following, we
assume that the initial state |ψ0〉 is a charge-density-wave state

|ψ0〉 � |1010 · · · 10〉 . (5.9)

In Fig. 5.4(a), we show the dynamics of the real part of the energy,

ER(t) � Re[〈ψ(t)|Ĥ |ψ(t)〉]. (5.10)

We first note that ER(t) does not change because of the conservation of energy
in the Hermitian case, i.e., in the case with g � 0. If we add non-Hermiticity,
however, ER(t) dramatically changes for h . hR

c . This indicates the instability
of the system in the complex-eigenvalue phase owing to energy absorption and
emission. In contrast, the system is stable if h & hR

c , in that the energy is kept
almost constant with only small oscillations. This comes from the fact that almost
all energy eigenvalues are real.

We can also consider the dynamics of the half-chain entanglement entropy

S(t) :� TrL/2[|ψ(t)〉 〈ψ(t)|]. (5.11)

In Fig. 5.4(b), we show that S(t) increases similarly for both the Hermitian (g � 0)
and non-Hermitian (g � 0.1) cases for short time (t . 4) if disorder is weak
(h � 2). In the longer time (t & 10), however, S(t) behaves differently: while
S(t) saturates for g � 0, it gradually decays for g � 0.1. This decrease again
demonstrates that this non-Hermitian model is unstable for weak disorder. For
the strong-disorder case (h � 14), S(t) shows a logarithmic growth for a long time,
in a manner similar to the Hermitian case [302, 162], which again demonstrates
that the system becomes dynamically stable despite its non-Hermiticity for strong
disorder.

Finally, Fig. 5.4(c) show the dynamics of the local density of particles,

m(t) � 〈ψ(t)|n̂1 |ψ(t)〉. (5.12)

For the weak disorder (h � 2), m(t) saturates for g � 0 and decreases for a long
time for g � 0.1. For the strong disorder (h � 14), m(t) shows similar behavior for
g � 0 and g � 0.1.
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Figure 5.4: (a) (left) Dynamics of the real part of the energy ER(t) in Eq. (5.10) for
different non-Hermitian strength g (dashed lines are for g � 0 and solid lines are
for g � 0.1). (right) Time evolution of ER(t) for h � 2, 4, 6, 7, 8, 10, 12, and 14 for
g � 0.1. (b) Dynamics of the half-chain entanglement entropy S(t) in Eq. (5.11).
(c) Dynamics of the local particle density m(t) in Eq. (5.12). For the weak disorder
h � 2, m(t) saturates for g � 0 but keeps decreasing for g � 0.1 in the long time.
All the data show the results that are averaged over Nsam � 100 samples for L � 12.

Whereas the non-Hermitian time evolution and the Hermitian one are differ-
ent, our results imply that the dynamics as well as stationary states are distinct in
the two phases. These results provide a first step toward understanding thermal-
ization of such open quantum systems with disorder. For instance, recurrence
phenomena do not occur in the complex-eigenvalue phase but it can occur in the
real-eigenvalue phase.

5.4 Non-Hermitian many-body localization

We have discussed the real-complex transition so far. We next discuss yet another
transition, namely, the MBL transition in our system. Though it is nontrivial how
we can characterize MBL with non-Hermiticity, we will demonstrate that some of
the knownmethod for characterizingMBL in Hermitian systems can be extended
to the non-Hermitian systems.

Firstly, we consider the level-spacing distribution of energy eigenvalues. Since
eigenvalues become complex for small h, we need to consider the level-spacing
distributions on the complex plane in that case. We use the spacings on the real
axis for large h. Here, a level spacing for an energy eigenvalue Eα on the complex
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plane is essentially given by the minimum distance d1 � minβ |Eα − Eβ |. Note
that we need to perform the unfolding procedure to obtain the normalized level
spacing s from the bare distance d1. To do this task, we follow Ref. [145]. We first
note that a local mean density of energy eigenvalues can be estimated as

ρ �
n
πd2

n
, (5.13)

where n is sufficiently larger than unity (but not too large) and dn is the distance
of the nth nearest neighbor from Eα. Then, s is defined as [145]

s � d1

√
ρ, (5.14)

with which the dependence of local density of eigenvalues vanishes.

InFig. 5.5(a),we show level-spacingdistributions fordifferentdisorder strength.
When disorder is weak, the distribution obeys the Ginibre distribution, which is
the Gaussian random matrix ensemble for non-Hermitian matrices [145, 303]
(see Chapter 6 for details). Concretely, the level-spacing distribution is given
by [304, 145, 296]

PC
Gin(s) � cp(cs), (5.15)

where

p(s) � lim
N→∞

[
N−1∏
n�1

en(s2)e−s2

]
N−1∑
n�1

2s2n+1

n!en(s2) (5.16)

with

en(x) �
n∑

m�0

xm

m! (5.17)

and

c �

∫ ∞

0
dssp(s) � 1.1429 · · · , (5.18)

rather than a Poisson statistics

PC
Po(s) �

πs
2 e−

π
4 s2
, (5.19)

on the complexplane. This result showsanon-Hermitian extentionof theBohigas-
Giannoni-Schmit conjecture [145, 119, 57], which states that level-spacing distri-
butions of chaotic systems obey the Wigner-Dyson distribution in Hermitian sys-
tems. We also find that, for large disorder strength, the level-spacing distribution
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Figure 5.5: (a) Level-spacing distribution P(s) of energy eigenvalues on the
complex plane (h � 2) and that of energy eigenvalues on the real axis (h � 14),
where the system size is L � 16. We take statistics from energy eigenvalues that
lie within ±10% in the middle of the spectrum with respect to real and imaginary
parts. (b) (top) Half-chain entanglement entropy S/L calculated from the average
of Sα/L over disorder and eigenstates whose energy eigenvalues are within ±2%
from the middle of the real part of the spectrum. (bottom) Scaling collapse as a
function of (h − hMBL

c )L1/ν, where hMBL
c � 7.1 and ν � 1.3 are used. (c) Eigenstate

stability G for different system sizes, where V̂NH � b̂†i b̂i+1. Reproduced from Fig.
3 of Ref. [111]. ©2019 American Physical Society.

on the real axis obeys the Poisson distribution

PR
Po(s) � e−s , (5.20)

rather than the Wigner-Dyson statistics

PR
WD(s) �

πs
2 e−

π
4 s2
. (5.21)

We next investigate half-chain entanglement entropy of |ER
α 〉,

Sα � TrL/2[|ER
α 〉 〈ER

α |], (5.22)

which is calculated from a right eigenstate. Note that we obtain similar results
for left eigenstates. Here, we have a normalization condition that 〈ER

α |ER
α 〉 � 1.

In Fig. 5.5(b), we illustrate the dependence on L of Sα/L that is averaged over
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the eigenstates in the middle of the spectrum, which is denoted by S/L. We
can confirm that S shows a crossover from the volume law to the area law for
h ' hMBL

c ' 7.1. We also find the scaling collapse around the critical point by
rewriting the entropy as a function of (h− hMBL

c )L1/ν, where we find ν � 1.3. From
these results, we can distinguish the delocalized and MBL phases by S(t) even
in non-Hermitian systems, as in the Hermitian case [159, 173]. If the system is
delocalized, eigenstates of non-Hermitian systems are predicted by those of non-
Hermitian random matrices, which are expected to satisfy the volume law just as
the Hermitian counterpart. If the system is localized, eigenstates are determined
by quasilocal conserved quantities even for non-Hermitian systems and the area
law holds. It is a future problem to investigate how the universality class of this
transition changes from the Hermitian counterpart.

5.5 Relation between two transition points

Finally, we discuss the stability of eigenstates against small perturbations in delo-
calized and localized phases, which elucidate why the complex energy eigenval-
ues are suppressed in the localized system with TRS.

To discuss this in a general setup, we consider a decomposition of a Hamilto-
nian into an unperturbed part and a non-Hermitian perturbation as

Ĥ � Ĥ0 + V̂NH. (5.23)

Here, Ĥ0 may also be non-Hermitian. Let us consider a set of real eigenvalues
{Ea} of Ĥ0, where the right and left eigenstates can be written as |ER

a 〉 and |EL
a 〉,

respectively. Note that they satisfy the biorthonormality, 〈EL
a |ER

b 〉 � δab [305].
We now add the perturbation V̂NH. The first-order energy deviation is given

by

〈EL
a |V̂NH |ER

a 〉, (5.24)

which is, in general, complex. On the other hand, if the system respects TRS, it
becomes real because

〈EL
a |V̂NH |ER

a 〉 �
(��EL

a
〉
, V̂NH

��ER
a
〉)

�
(
T̂

��EL
a
〉
, T̂V̂NH

��ER
a
〉)∗

�
(��EL

a
〉
, V̂NH

��ER
a
〉)∗

�
〈
EL

a

��V̂NH
��ER

a
〉∗
, (5.25)
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where we have used [Ĥ0, T̂] � [V̂NH, T̂] � 0 and T̂
���ER/L

a

〉
�

���ER/L
a

〉
. This means

that energy eigenvalues of systems with TRS cannot be complex at the level of
the first-order energy deviation, i.e., if we do not consider the mixing with other
eigenstates.

Even with TRS, however, eigenvalues can be complex owing to coalescence
of two eigenvalues for sufficiently large V̂NH, as reviewed in Chapter 4. This
coalescence results from the mixing of two eigenstates, which are relevant for
higher-order perturbations. To evaluate the perturbation of energy eigenstates,
we write the Hamiltonian as

Ĥ � Ĥ0 + V̂NH �

∑
a

(Ea + ∆E(0)a ) |ER
a 〉 〈EL

a | + V̂NH −
∑

a

∆E(0)a |ER
a 〉 〈EL

a | (5.26)

with ∆E(0)a � 〈EL
a |V̂NH |ER

a 〉. Let us consider the second and third terms on the
right-hand side as a perturbation. We then obtain the following perturbed eigen-
state:

|ER
a ,perturbed〉 � |E

R
a 〉 +

∑
b(,a)

〈EL
b |V̂NH |ER

a 〉
E′b − E

′
a
|ER

b 〉 . (5.27)

Here, we have used the normalization conditions 〈EL
a |ER

b 〉 � δab and 〈ER
a |ER

a 〉 � 1
(note that 〈EL

a |EL
a 〉 , 1). For the perturbation series to converge, the magnitude

of the second term should be small enough. We particularly take b � a + 1 and
define its logarithm to discuss the localization transition, which leads to

G � ln
| 〈EL

a+1 |V̂NH |ER
a 〉 |

|E′a+1 − E′a |
. (5.28)

Note that this is a generalized stability measure for the Hermitian counterpart
of Ref. [185], which has been discussed in Chapter 2. If G is large enough, it is
expected that eigenvalues coalesce and that many complex eigenvalues appear.
Note that an exception to this expectation is realized by assuming theHamiltonian
which can be written as Ĥ � V̂−1ĤHV̂, where ĤH is Hermitian and V̂ is a
non-unitary invertible operator, since Ĥ and ĤH have the same eigenvalues, as
shown in Appendix A. Nevertheless, our discussion is applicable to generic non-
Hermitian systems without this structure. Indeed, our discussion is consistent
with numerics for the Lindblad operators [306, 264, 261, 244, 307], which are
mapped to non-Hermitian matrices.

Just as in the Hermitian situation [185], we find that the stability measure in
Eq. (5.28) becomes small only when the system is in an MBL phase. In Fig. 5.5(c),
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we show the dependence of G on h. It is found that G ∼ αL (α > 0) and
G ∼ −βL (β > 0) for the delocalized and localized phases, respectively. This is
similar to the case for the Hermitian counterpart [185]. The non-Hermitian MBL
transition point is evaluated as hMBL

c ' 7 ± 1 from the point where G becomes
independent of L.

We conjecture that the points of the real-complex transition hR
c and the MBL

transition hMBL
c coincide in the thermodynamic limit. In fact, from the discussions

for the stability of eigenstates above, the process through which two adjacent
eigenstates coalesce is suppressed by the MBL. Moreover, we can argue that the
coalescence is suppressed even for non-adjacent eigenstates and thus the entire
spectra become real in our asymmetric hoppingmodel (see Appendix A).We note
that the two transition points are close (hR

c ' 8 ± 1 and hMBL
c ' 7 ± 1 for g � 0.1)

to each other but slightly different in our numerical calculations up to L � 16.
From the analytical arguments of the stability above, we suppose that this small
deviation is a consequence of a finite-system size.

Finally, we make two remarks concerning the above discussion. First, the dis-
cussion is expected to apply for the Hatano-Nelson model; G can be the signature
of the localization transition and this transition leads to the suppression of coa-
lescence of eigenvalues and thus the real-complex transition for a single-particle
level. Second, as mentioned in Chapter 2, there can be higher-order perturbation
effects that alters the nature of the localization [180], which we have neglected for
simplifying the discussion.

5.6 A gain-and-loss model

Wehave considered the systemwith TRS. Finally, we discuss that the real-complex
transition does not occur while the non-Hermitian MBL still occurs if we break
TRS.We consider the followingmodel with gain and loss, which becomes feasible
in state-of-the-art experiments [308, 98]:

Ĥ �

L∑
i�1
−J(b̂†i+1 b̂i + H.c.) + Un̂i n̂i+1 + (hi − iγ(−1)i)n̂i . (5.29)

This model does not possess TRS because of the gain and loss terms at odd
and even sites, respectively, which tend to decrease and increase the number of
particles at these sites. In Fig. 5.6(a), we show the spectra of thismodel for different
values of h, which indicates that all energy eigenvalues are complex for any h and
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L, i.e., fIm � 1 for all cases. Thus, it is expected that the system is always unstable
in that it drastically changes its energy.

Despite the absence of the real-complex phase transition, the non-Hermitian
MBL still occurs. In Fig. 5.6(b), we show the level-spacing distributions on the
complex plane for different disorder strength h. When h . hMBL

c (hMBL
c & 4),

the distribution obeys non-Hermitian random matrix theory with transposition
symmetry, which is distinct from PC

Gin(s) as will be discussed in Chapter 6. When
h & hMBL

c , it is a Poisson distribution in the complex plane, PC
Po(s) (note that this

distribution coincides with the Wigner-Dyson distribution for Hermitian matri-
ces). This transition implies the presence of the non-HermitianMBL.We also find
that the half-chain entanglement entropy exhibits a transition from the volume
to the area law around h ∼ hMBL

c � 4.2 (see Fig. 5.6(c)), with the scaling collapse
as a function of (h − hMBL

c )L1/ν, where we find ν � 1.8. It is a future problem to
investigate whether the universality class for this transition in the gain-and-loss
model is different from that in the asymmetric hopping model.

5.7 Discussions

We have demonstrated that MBL which is extended to non-Hermitian systems
suppresses the imaginary part of energy eigenvalues for generic non-Hermitian
interacting Hamiltonians with TRS. Using the system with asymmetric hopping,
we have shown that a novel real-complex transition occurs and changes the dy-
namical stability of the system. In addition, non-Hermitian MBL has been shown
to be characterized by the level-spacing distributions and entanglement entropy
as in the Hermitian case. The discussion on stability of eigenstates allows us to
argue that two transition points coincide in the thermodynamic limit. We have
also provided numerical evidence for the absence of real-complex transitions for
models with gain and/or loss without TRS, although the non-Hermitian MBL
occurs.

The real-complex transition discussed in this chapter is conceptually novel
since it cannot occur in closed, clean, or few-body systems. As a related fact, there
is a transition in the dynamical stability, where the important notion of Hermi-
tian thermalization such as recurrence can be discussed even in non-Hermitian
systems (which are relevant for continuouslymeasured quantum systems). More-
over, there are many other features of the non-Hermitian MBL represented by the
critical phenomena, which are indicated by our critical scaling collapse and may
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Figure 5.6: (a) Energy eigenvalues of the non-Hermitian Hamiltonian without
TRS in Eq. (5.29) for γ � 0.1. (b) Level-spacing distributions on the complex plane
for energy eigenvalues. We take the statistics from the eigenstateswhose eigenval-
ues are within ±10% from the middle of the spectrum (single-disorder realization
with L � 16). (c) (top) Dependence on h of S/L averaged over the eigenstates from
themiddle of the real part of the spectrum for different system sizes L and γ � 0.1.
(bottom) The scaling collapse of S/L as a function of (h − hMBL

c )L1/ν around the
critical point, where we use hMBL

c � 4.2 and ν � 1.8. Reproduced from Fig. 4 of
Ref. [111]. ©2019 American Physical Society with a slight modification.

90



differ from the conventional Hermitian transitions. Our results are also related
to quantum chaos [119, 247, 141] in open systems described by non-Hermitian
interactingHamiltonians, as implied by its random-matrix-type level-spacing dis-
tributions.
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Chapter 6

The threefold way in non-Hermitian
random matrices

6.1 Motivation

Aswe have seen in the previous chapter, delocalized phases of the non-Hermitian
many-body systems are characterized by universality of non-Hermitian random
matrices. Furthermore, universality of non-Hermitian randommatrices is known
to appear in various systems including mesoscopic systems [303], dissipative
systems [247, 248, 249], and neural networks [251].

As fundamental ensembles of non-Hermitian randommatrices, Ginibre intro-
duced three different ensembles based on time-reversal symmetry (TRS), which
are called GinUE, GinOE, and GinSE [309]. This is a natural generalization of
Dyson’s threefold way in Hermitian random matrices, where three ensembles
distinguished by TRS are called GUE, GOE, and GSE (see Chapter 2).

On the other hand, the three symmetry classification by Ginibre does not lead
to three distinct universality classes for local correaltions. In fact, all of Ginibre’s
three symmetry classes lead to the same universality class for level-spacing distri-
butions on the complex plane, in contrast with Dyson’s three symmetry classes,
for which three different symmetry classes appear. Given the diverse applica-
tions of universality of random matrices, it is fundamentally important to study
whether other universality classes exist for non-Hermitian randommatrices if we
consider symmetries which are different fromTRS. Note that symmetry classifica-
tion is determined only from algebraic structures ofmatrices, but that universality
classification is determined from statistics of the spectra that do not depend on
the detailed structure of matrices.
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In this chapter, we show that three different universality classes, namely Gini-
bre’s class and the other two new classes, appear by considering transposition
symmetry, which is distinct from the complex conjugation symmetry (TRS) for
non-Hermitian matrices. We first review previous results on non-Hermitian ran-
dom matrices and its symmetry classification (characterized by non-Hermitian
extension of the Altland-Zirnbauer symmetry classes [310]) in the following two
sections. We then demonstrate our main numerical results of new universality
classes of level-spacing distributions for non-Hermitian random matrices with
transposition symmetry. We discuss that transposition symmetry affects inter-
actions between two close eigenvalues and changes level-spacing distributions,
while the other symmetries including TRS can only affect correlations of nonlocal
eigenvalues (see Fig. 6.1), which is supported by the analysis of small matrices. It
is also shown that the new universality classes that we find manifest themselves
in dissipative quantum nonintegrable systems described by Lindblad many-body
equations and non-Hermitian many-body Hamiltonians.

6.2 Review on Ginibre’s symmetry classes

6.2.1 Definition

We first review Ginibre’s three non-Hermitian random-matrix symmetry classes
with TRS, called the classes A, AI, and AII.

Class A

Let us first consider a symmetry class of non-Hermitian matrices without any
symmetry constraint, which is called the class A. By dropping the Hermiticity
condition for GOE by Dyson, whose probability distribution can be written as

P
(
Ĥ

)
dĤ ∝ e−βTr[Ĥ2]dĤ ∝ exp

−β
∑

i

H2
ii − 2β

∑
i> j

|Hi j |2

∏

i

dHii

∏
i> j

dHi jdH∗i j ,

(6.1)

Ginibre introduced GinOE characterized by

P
(
Ĥ

)
dĤ ∝ e−βTr[Ĥ†Ĥ]dĤ ∝ exp

−β
∑
i , j

|Hi j |2

∏
i , j

dHi j dH∗i j . (6.2)
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Figure 6.1: Dyson’s threefold way with respect to time-reversal symmetry (TRS)
and its two different kinds of non-Hermitian extensions. Open circles denote
individual eigenvalues andandfilled circles indicateKramerspairs of eigenvalues.
In Dyson’s three classes, repulsive interactions between neighboring eigenvalues
are different from one another. However, the difference does not appear when
we consider Ginibre’s threefold way of non-Hermitian matrices. This is because
TRS only influences the global symmetry of eigenvalues (green arrows). On the
other hand, transposition symmetry (TRS†) is different from TRS because of the
absence of Hermiticity and results in another threefold universality. In this case,
the interaction between neighboring eigenvalues becomesweaker for the class AI†
and stronger for AII† than that for the class A, as indicated by the arrows with
different colors. Taken from Fig. 1 in the fourth version of Ref. [112].
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Note that we can consider other probability distributions in the class A. For
example, for a non-Hermitian Bernoulli ensemble, matrix elements are randomly
chosen from

Hi j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.3)

with equal probabilities.

Class AI

For the class AI, there exists a TRS T̂ � T̂+K̂ that satisfies T̂2 � +Î and [T̂ , Ĥ] � 0.
In other words, there exists a unitary operator T̂+ that satisfies

T̂+Ĥ∗T̂ −1
+ � Ĥ , T̂ ∗+ T̂+ � +Î. (6.4)

As we have seen in the previous chapters, this symmetry leads to eigenvalues that
are either real or form complex-conjugate pairs.

We can assume that T̂+ is an identity operator without loss of generality, from
which we obtain the condition for real matrices

Hi j � H∗i j , (6.5)

if we consider Gaussian ensembles. In fact, from Eq. (6.4) we can prove that
Û−1ĤÛ is real for a unitary operator Û �

√
T̂+. Since Gaussian ensembles P(Ĥ)

satisfy P(Ĥ)dĤ � P(Û−1ĤÛ)d(Û−1ĤÛ), we can assume an ensemble of real
matrices. Thus,we can study theprobabilitydistributionofGaussian realmatrices
(GinOE) given by

P
(
Ĥ

)
dĤ ∝ exp

−β
∑
i , j

H2
i j


∏
i , j

dHi j . (6.6)

Though a Bernoulli ensemble explicitly depends on T̂+, we consider T̂+ � Î in
the following discussions. Then, the matrix elements are randomly chosen as

Hi j �

{
1;
−1

(6.7)

with equal probabilities.
Here, we note the relation between the class AI and another class called D† in
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Ref. [246]. Matrices in class D† satisfy the condition

T̂−Ĥ∗T̂ −1
− � −H, T̂−T̂ ∗− � Î, (6.8)

where T̂− is called a conjugate of particle-hole symmetry (PHS†) [246]. Impor-
tantly, the symmetry the classes AI andD† are in one-to-one correspondence [245]
in the following sense: if H belongs to the class AI, another matrix iH belongs
to class D†. In particular, the level-spacing distributions for both of these classes
are identical, considering the rotation of the spectrum by the angle π/2 in the
complex plane.

Class AII

For the class AII, matrices have TRS given as

T̂+Ĥ∗T̂ −1
+ � Ĥ , T̂ ∗+ T̂+ � −Î. (6.9)

In a manner similar to the class AI, eigenvalues form complex-conjugate pairs
(Eα , E∗α). In contrast with the class AII in the Hermitian case, the two-fold degen-
erate Kramers pairs appear only for eigenvalues that stay real for the class AII in
the non-Hermitian case. Furthermore, Kramers pairs on the real axis are absent
for typical randommatrices in the non-Hermitian the class AII owing to the level
repulsions of eigenvalues that occur for generic matrices.

We can choose T̂+ as the Pauli matrix σ̂y just as in the case for the class AI for
Gaussian ensembles. We obtain

Ĥ � Î2×2 ⊗ â + iσ̂x ⊗ b̂ + iσ̂y ⊗ ĉ + iσ̂z ⊗ d̂ , (6.10)

where â, b̂, ĉ, and d̂ denote non-Hermitian matrices whose elements are real. The
Gaussian probability distribution is then given by

P
(
Ĥ

)
dĤ ∝ exp

−β
∑
i , j

(
a2

i j + b2
i j + c2

i j + d2
i j

)
∏
i , j

dai j dbi jdci jddi j . (6.11)

In contrast, for a Bernoulli ensemble, matrix elements are randomly chosen as

ai j , bi j , ci j , di j �

{
1;
−1

(6.12)

with equal probabilities.

We note the equivalence between the class AII and class C†, the latter of which
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Figure 6.2: Eigenvalue plots for non-Hermitian Gaussian randommatrices in the
the classes A, AI, and AII. In the enlarged figures, we can see that real eigenvalues
exist for the class AI, and complex-conjugate pairs appear for the classes AI and
AII.

respects PHS†,
T̂−Ĥ∗T̂ −1

− � −Ĥ , T̂−T̂ ∗− � −Î, (6.13)

in the sense discussed previously for the classes AI and D†, that is, the level-
spacing distributions for both of these classes are the same, considering the rota-
tion of the spectrum by the angle π/2 in the complex plane.

6.2.2 Spectral properties

Theproperties ofGinibre’s ensembles have thoroughly been investigated [311, 312,
313, 314, 315, 316]. For example, the density of states in each of the three ensembles
is well described by the circular law, where eigenvalues spread uniformly within
a circle with a radius proportional to

√
N , where N is the matrix size (see Fig. 6.2).

As an important property, let us consider the joint probability distribution of
eigenvalues for GinUE, which is known as

Pjpdf,GinUE(E1, · · · , EN)d2E1 · · · d2EN ∝ e−
∑N

j�1 |E j |2 ∏
1≤i< j≤N

��Ei − E j
��2 d2E1 · · · d2EN .

(6.14)
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The factor
��Ei − E j

��2 represents a cubic level-repulsion factor between eigenvalues
(note the extra factor which comes from d2Eid2E j), which is reflected in the level-
spacing distribution. In fact, the level-spacing distribution, which is given by
Eq. (5.15), is derived from this joint distribution.

Next, the joint probability distribution for GinOE is given by [311]

Pjpdf,GinOE(E1, · · · , EN) ∝

√√√ N∏
j�1

erfc

( |E j − E∗j |√
2

)
e−

E2
j +E∗2j

2

∏
1≤i< j≤N

(Ei − E j), (6.15)

where

erfc(x) � 2√
π

∫ ∞

x
e−t2dt . (6.16)

For eigenvalues that are real or almost real, the distribution qualitatively differs
from that for GinUE. On the other hand, eigenvalues in the bulk of the specrum
(i.e., far away from the real axis) behave similarly compared with GinUE. For
example, if we focus on the eigenvalues E1 and E2, both of which are assumed
to be in the bulk of the upper circle, we find a level-repulsion factor |E1 − E2 |2 as
in GinUE. In addition, we obtain the coefficient e−|E1 |2−|E2 |2 as in GinUE by using
erfc(x) → e−x2

x
√
π
for large x.

More intuitively, TRS creates global correlations between eigenvalues that are
complex conjugate with each other, but they do not affect local correlations of
eigenvalues away from the real axis. A similar discussion can be made for GinSE.
Then, in particular, the level-spacing distributions (in the bulk of the spectrum)
for Ginibre’s three classes are argued to be the same [145], in contrast with the
Hermitian case.

6.3 Review on non-Hermitian symmetry classes

6.3.1 Overview

Aswehave seen in the previous section, Ginibre’s three classesA,AI,AII classified
by TRS do not lead to distinct universality classes of the level-spacing distribution.
On the other hand, it has recently been recognized that symmetries are enriched
in non-Hermitian matrices [317, 318, 246]. As a prime example, we first note that
Ĥ∗ , ĤT for non-Hermitian matrices. Then, instead of TRS in Eq. (6.4), we can
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Table 6.1: Symmetry classes, constraints (where the correspondingunitary opera-
tors are taken as the simplest ones), and level-spacing distributions. The sign (plus
or minus) indicates whether the symmetry operator squared is +Î or −Î. Only the
classes AI† and AII† exhibit the distributions distinct from that of GinUE.

Class Symmetry Constraint pGinUE(s)?
A None - Yes [309]

AI (D†) TRS, + (PHS†, +) Ĥ � Ĥ∗ Yes [248]
AII (C†) TRS, − (PHS†, −) Ĥ � σ̂yĤ∗σ̂y Yes [309]
AI† TRS†, + Ĥ � ĤT No
AII† TRS†, − Ĥ � σ̂yĤT σ̂y No
D PHS, + Ĥ � −ĤT Yes
C PHS, − Ĥ � −σ̂yĤT σ̂y Yes

AIII CS (pH) Ĥ � −σ̂zĤ†σ̂z Yes
AIII† SLS (CS†) Ĥ � −σ̂zĤ σ̂z Yes

consider complex-conjugate TRS (TRS†) defined by transposition as follows:

Ĉ+ĤT Ĉ−1
+ � Ĥ , Ĉ∗+Ĉ+ � +Î, (6.17)

which is called the class AI†.

In general,we can consider anon-Hermitian extensionof theAltland-Zirnbauer
(AZ) tenfold symmetry classes for Hermitian matrices [310]. Within Hermitian
AZ classes, five symmetry classes (AIII, AI, D, AII, and C) possess only one
symmetry, i.e., TRS, particle-hole symmetry (PHS), or chiral symmetry (CS). By
considering the above ramification for non-Hermitianmatrices, we obtain another
set of five classes (AIII†, AI†, D†, AII†, and C†). On the other hand, as we have
seen above, the classes AI and D† as well as the classes AII and C†, are equivalent.
Thus, adding the class A, we have nine non-Hermitian symmetry classes with up
to one symmetry. Note that combination of more than one symmetry leads to
the other 29 classes, which defines 38 different classes [246]. In the following, we
especially focus on non-Hermitian matrices for the above 9 classes. The property
of the 9 classes is summarized in Table 6.1.

6.3.2 Detailed classification

Here, we present detailed properties of the classes AI†, AII†, D, C, AIII, and
AIII† introduced in Ref. [246]. We also introduce explicit forms of Gaussian and
Bernoulli ensemble for each class, which is a part of our work.
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Class AI†

For class AI†, there exists a unitary matrix Ĉ+ for which Eq. (6.17) is satisfied. By
taking the transpose of the eigenequation for the left eigenvector

〈χα | Ĥ � Eα 〈χα | , (6.18)

we have
ĤT |χα〉∗ � Eα |χα〉∗ . (6.19)

When TRS† is present, we thereby obtain

Ĥ
(
Ĉ+ |χα〉∗

)
� Ĉ+ĤT |χα〉∗ � Eα

(
Ĉ+ |χα〉∗

)
. (6.20)

Thus, Ĉ+ |χα〉∗ also becomes an eigenstate of Ĥ with the same eigenvalue Eα as
|φα〉. Assuming no degeneracy, we obtain the constraint between right and left
eigenstates as

Ĉ+ |χα〉∗ ∝ |φα〉 . (6.21)

Note that this constraint is imposed on all the eigenstates, which results in a new
universality class of the level-spacing distribution as discussed in the next section.

We can assume without loss of generality that Ĉ+ is the identity for the Gaus-
sian ensemble, which leads to the condition for a symmetric matrix:

Hi j � H ji . (6.22)

The probability distribution in this case is given by

P
(
Ĥ

)
dĤ ∝ exp

−β ©­«
∑

i

|Hi j |2 +
∑
i> j

2|Hi j |2
ª®¬

∏
i≥ j

dHi jdH∗i j . (6.23)

For a Bernoulli ensemble, on the other hand,matrix elements are randomly chosen
as

Hi j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.24)

with equal probabilities under the constraint in Eq. (6.22).
Note that the class AI† naturally appears in experiments. For example, optical

systemswith gain and loss are in the classAI† because gain and loss only introduce
non-Hermitian imaginary terms on the diagonal matrix elements, which keeps
the symmetric structure under transposition. Another example is the Rydberg
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systemswith dissipation, which is described by a Lindblad equation, as discussed
later.

Class AII†

In class AII†, matrices have TRS† defined as

Ĉ+ĤT Ĉ−1
+ � Ĥ , Ĉ+Ĉ∗+ � −Î. (6.25)

In this case, we can prove a non-Hermitian extension of the Kramers degeneracy
theorem [319, 320]. Indeed, from ĈT

+ Ĉ−1
+ � −Î, we obtain

〈χα | Ĉ+(|χα〉∗) �
(
〈χα | Ĉ+(|χα〉∗)

)T
� 〈χα | ĈT

+ (|χα〉∗) � − 〈χα | Ĉ+(|χα〉∗), (6.26)

which leads to 〈χα | Ĉ+(|χα〉∗) � 0. Hence, the eigenvectors |φα〉 and Ĉ+ |χα〉∗

satisfy biorthogonal and linear-independent conditions. This indicates that all
the eigenstates have at least two-fold degeneracy when TRS† with Ĉ+Ĉ∗+ � −Î is
present.

We can take Ĉ+ as the Pauli matrix σ̂y , which enables us to describe the
Gaussian distribution for arbitrary Ĉ+ with Ĉ+Ĉ∗+ � −Î as we have seen so far. We
then have

Ĥ �

(
â b̂
ĉ d̂

)
, (6.27)

where â, b̂, ĉ, and d̂ satisfy

â � d̂T , b̂ � −b̂T , ĉ � −ĉT . (6.28)

Then, the probability distribution of a Gaussian ensemble is defined by

P
(
Ĥ

)
dĤ ∝ exp

−2β

∑

i

|aii |2 +
∑
i> j

(
|ai j |2 + |bi j |2 + |ci j |2 + |di j |2

)


×
∏

i

daiida∗ii
∏
i> j

dai j da∗i jdbi j db∗i jdci jdc∗i j ddi jdd∗i j .

(6.29)

For a Bernoulli ensemble, matrix elements are randomly chosen as

ai j , bi j , ci j , di j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.30)

101



with equal probabilities under the constraint in Eq. (6.28).

Class D

In the class D, matrices have particle-hole symmetry (PHS) given as

Ĉ−ĤT Ĉ−1
− � −Ĥ , Ĉ−Ĉ∗− � +Î, (6.31)

with a unitary matrix Ĉ−.
Just as in the classes AI† and AII†, we obtain

Ĥ
(
Ĉ− |χα〉∗

)
� −Ĉ−ĤT |χα〉∗ � −Eα

(
Ĉ− |χα〉∗

)
. (6.32)

Hence, Ĉ− |χα〉∗ again becomes an eigenstate of Ĥ with an eigenvalue −Eα. Thus,
eigenvalues constitute (Eα ,−Eα) pairs. In other words, PHS creates eigenvalue-
pairs (Eα ,−Eα) but does not impose local constraints on eigenstates away from
the zero eigenvalue, in analogy with TRS and PHS†.

We assume that Ĉ− is the identity operator without loss of generality for
Gaussian ensembles. We then obtain

Hi j � −H ji . (6.33)

In other words, they can be regarded as antisymmetric matrices. Then, the prob-
ability distribution is given as

P
(
Ĥ

)
dĤ ∝ exp

−2β
∑
i> j

|Hi j |2

∏
i> j

dHi j dH∗i j . (6.34)

For a Bernoulli ensemble, on the other hand,matrix elements are randomly chosen
as

Hi j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.35)

with equal probabilities which obey the constraint in Eq. (6.33).

Class C

In the class C, matrices have PHS given by

Ĉ−ĤT Ĉ−1
− � −Ĥ , Ĉ−Ĉ∗− � −Î, (6.36)
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with a unitary matrix Ĉ−. In a manner similar to the class D, there appear
eigenvalue-pairs (Eα ,−Eα).

We assume that Ĉ− is the Pauli operator σ̂y without loss of generality for
Gaussian ensembles. We then obtain

â � −d̂T , b̂ � b̂T , ĉ � ĉT (6.37)

for a matrix form in Eq. (6.27). Then, the probability distribution is

P
(
Ĥ

)
dĤ ∝ exp

−2β

∑

i

(
|aii |2 + |bii |2/2 + |cii |2/2

)
+

∑
i> j

(
|ai j |2 + |bi j |2 + |ci j |2 + |di j |2

)


×
∏

i

daiida∗iidbiidb∗ii
∏
i> j

dai j da∗i j dbi j db∗i j dci j dc∗i j ddi j dd∗i j .

(6.38)

For a Bernoulli ensemble, on the other hand,matrix elements are randomly chosen
as

ai j , bi j , ci j , di j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.39)

with equal probabilities which obey the constraint in Eq. (6.37).

Class AIII

In the class AIII, matrices have chiral symmetry (CS) defined by

Γ̂Ĥ†Γ̂−1
� −Ĥ , Γ̂2

� Î, (6.40)

with a unitary matrix Γ̂. In a manner similar to the class D, there appear
eigenvalue-pairs (Eα ,−Eα). In this case, we obtain

Ĥ
(
Γ̂ |χα〉

)
� −Γ̂Ĥ† |χα〉 � −E∗α

(
Γ̂ |χα〉

)
. (6.41)

Thus, Γ̂ |χα〉 becomes an eigenstate of Ĥ with an eigenvalue −E∗α. In other words,
there appear eigenvalue pairs (Eα ,−E∗α). In a manner similar to the equivalence
between TRS and PHS† [245] mentioned before, CS is equivalent to pseudo-
Hermiticity [234], which is defined by the following conditions

η̂Ĥ†η̂−1
� Ĥ , η̂2

� Î (6.42)
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for some unitary operator η̂. This condition indicates that the pairs (Eα , E∗α) are
present in the complex plane.

We can assume that Γ̂ is a Pauli matrix σ̂z for obtaining a nontrivial conse-
quence, which results in Eq. (6.27) with

â � −â†, b̂ � ĉ†, ĉ � b̂†, d̂ � −d̂†. (6.43)

Since Ĥ always becomes an anti-Hermitian matrix for a specific case Γ̂ � Î, which
becomes the class A inHermitian systems (by considering iĤ), we do not consider
that case here. Then, the Gaussian probability distribution is given as

P
(
Ĥ

)
dĤ

∝ exp
−β


∑

i

(
|aii |2 + |dii |2 + 2 |bii |2

)
+ 2

∑
i> j

(
|ai j |2 + |bi j |2 + |ci j |2 + |di j |2

)


×
∏

i

daiiddiidbiidb∗ii
∏
i> j

dai j da∗i j dbi j db∗i jdci jdc∗i jddi jdd∗i j .

(6.44)

For a Bernoulli ensemble, on the other hand,matrix elements are randomly chosen
as

ai j , bi j , ci j , di j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.45)

with equal probabilities under the constraint in Eq. (6.43).

Class AIII†

In the class AIII†, matrices have sublattice symmetry (SLS) given by

ŜĤŜ−1
� −Ĥ , Ŝ2

� 1 (6.46)

with a unitary matrix Ŝ. In this case, we obtain

Ĥ
(
Ŝ |φα〉

)
� −ŜĤ |φα〉 � −Eα

(
Ŝ |φα〉

)
. (6.47)

Thus, Ŝ |φα〉 is an eigenstate of Ĥ with an eigenvalue −Eα and there appear
eigenvalue pairs (Eα ,−Eα).

We can assume that Ŝ is a Pauli matrix σ̂z to obtain a nontrivial consequence,
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which results in Eq. (6.27) with

â � d̂ � 0. (6.48)

Since Ĥ always becomes a zero matrix for a specific case Γ̂ � Î, we do not consider
that case here. Then, the Gaussian probability distribution is given as

P
(
Ĥ

)
dĤ ∝ exp

−β
∑
i , j

(
|bi j |2 + |ci j |2

)
∏
i , j

dbi jdci j . (6.49)

For a Bernoulli ensemble, on the other hand,matrix elements are randomly chosen
as

bi j , ci j �


1 + i;
1 − i;
−1 + i;
−1 − i

(6.50)

with equal probabilities under the constraint in Eq. (6.48).

6.4 New threefoldway in non-Hermitian randomma-
trices and universality of level-spacing distribu-
tions

Wenowshow that there appear three different universality classes of level-spacing
distributions if we consider transposition symmetry (TRS†). The level-spacing
distribution is defined in Chapter 5. In the following, we focus on the Gaussian
and Bernoulli distributions defined in the previous section. Examples of matrices
taken from these ensembles are given in Fig. 6.3(A), which shows that matrix
elements behave differently from each other’s ensemble.

In Fig. 6.3(B), we show the distribution p(s) for each of the three symmetry
classes A, AI†, and AII†. We first find that, the distributions behave similarly for
the Gaussian and Bernoulli ensembles if the symmetry class is the same, which
indicates the universality of each class. Secondly, three different symmetry classes
lead to three different universality classes for p(s), which can be found from e.g.,
the peak height and the width of the distribution. This is similar to Dyson’s three-
fold way but in stark contrast with Ginibre’s classification. In Fig. 6.3(C), we show
the level-spacing distribution for the other classes with a single symmetry, i.e.,
the classes AI, AII, D, C, AIII, and AIII† for the Gaussian ensembles (the Bernoulli
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Figure 6.3: (A) A single realization of a matrix sampled from the Gaussian and
Bernoulli random 32 × 32 matrices for the class A (real and imaginary parts).
(B) Level-spacing distributions p(s) calculated for randommatrices that belong to
the classes A, AI†, and AII†. The matrix elements obey Gaussian and Bernoulli
distributions for main panels and insets, respectively. (C) Level-spacing distri-
butions p(s) calculated for random matrices that belong to the classes AI, AII,
D, C, AIII and AIII†. They obey distributions described by GinUE. We obtain
the results by diagonalizing 2000 × 2000 matrices and from averages over 1000
samples. Statistics are chosen from eigenvalues which are away from the edges
of the spectrum and from the symmetric line (i.e., the real or imaginary axes).
The Level-spacing distribution for the class AII† is computed by identifying the
Kramers degeneracies. Taken from Fig. 2 in the first version of Ref. [112].

106



Figure 6.4: Level-spacing distributions p(s) calculated for random matrices that
belong to the classes A, AI†, AII†, AI, AII, D, C, AIII and AIII†. The results are
computed from diagonalizing 6000 × 6000 matrices and from averages over 300
samples. Statistics are chosen from eigenvalues which are away from the edges of
the spectrum and from the symmetric line (i.e., the real or imaginary axes). The
level spacing for the class AII† is calculated from the minimum distance between
two Kramers pairs, each of which is doubly degenerate. Taken from Fig. S-1 in
the first version of Ref. [112].

ensembles give the similar results). They are well described by the distributions
of GinUE (the class A) pGinUE(s). This means that nonlocal pairs of eigenvalues
such as (Eα , E∗α) indeed cannot alter the local correlation of eigenvalues measured
by p(s) away from the symmetric line, i.e., the real or imaginary axis.

To strengthen the evidence of the universality and the existence of the three-
fold universality classes, we show the results for a larger matrix in Fig. 6.4 size
than those in Fig. 6.3. We find that similar results are obtained for such larger
matrices, which indicates that the three distinctive universality classes are not the
consequence of the finite-size effect.

Furthermore, we quantitatively confirm this threefold universality by up to the
fourth cumulants of p(s). The second, third, and fourth cumulants are defined as

c2 �m2 − m2
1 (6.51)

c3 �m3 − 3m1m2 + 2m3
1 (6.52)

c4 �m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1 , (6.53)
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Figure 6.5: Second, third, and fourth cumulants of p(s) for different matrix
sizes. We consider the nine symmetry classes and two different matrix ensembles
(solid/dashed lines denote the Gaussian/Bernoulli ensembles). Thick solid lines
are the results computed from the exact result of pGinUE(s). Statistics are chosen
from eigenvalues which are away from the edges of the spectrum and from the
symmetric line (i.e., the real or imaginary axes). The data show averaged results
over 20000, 4000, 2000, 1000, 300 matrices whose sizes are 100, 500, 1000, 2000,
6000, respectively. Taken from Fig. S-2 in the fourth version of Ref. [112].
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where

mk �

∫ ∞

0
dssk p(s) (6.54)

denotes the kth moment. From Fig. 6.5, we find the following results which
strengthen the argument on the threefold universality:

1. The Gaussian and Bernoulli ensembles that belong to the same symmetry
class lead to the same results for all of the cases. Small deviations for the
largest matrix size can be ascribed to the fact that the number of samples is
limited.

2. For matrix sizes that are large enough, three distinct universality classes are
found to appear even in cumulants with high orders; while the cumulants
of the classes A, AI, AII, D, C, AIII, and AIII† are the same, those for the
classes AI† and AII† are different.

3. The cumulants cA,2, cA,3, and cA,4 for the classes A, AI, AII, D, C, AIII, and
AIII† are close to the values computed from the exact GinUE distribution
pGinUE(s) (cA,2 � 0.0875, cA,3 � 0.000471, and cA,4 � 0.00215). On the other
hand, the classes AI† and AII† have cumulants that have different values,
which imply that they are distinct from that of the GinUE even when we
consider the infinite matrix size. From Fig. 6.5, we conjecture that cAI† ,2 '
0.11, cAII† ,2 ' 0.075, cAI† ,3 ' 0.004, cAII† ,3 ' −0.0025, cAI† ,4 ' −0.003, and
cAII† ,4 ' −0.001.

6.5 Analysis for small matrices

In this section, we argue that we can understand the main feature of our results
by analyzing small matrices, i.e, by calculating p(s) obtained from 2 × 2 (or 4 ×
4) matrices. Even though small matrices give quantitatively different results
from larger matrices [145], it is expected that we can understand some qualitative
features of level-spacing distributions [248], e.g., howTRS† changes the height and
width of p(s). This is because the repulsive interaction owing to perturbations
between two eigenvalues that are closewith each other is qualitatively understood
by diagonalization of the 2 × 2 (or 4 × 4) transition matrix [248].

Let us consider a situation that a randommatrix Ĥ is slightly perturbedwith V̂ ,
which is assumed to preserve symmetry. To evaluate the correlation of two eigen-
values induced by V̂ , assume that these two eigenvalues are much closer to each

109



other than to the others. In this case, the repulsive interactions of these eigenval-
ues can be estimated by diagonalizing V̂ in the subspace which is spanned by the
corresponding eigenstates. We expect that this method can describe qualitative
feature of the level-spacing distributions.

Using the above method, we obtain matrices that are dependent on the sym-
metry of Ĥ (or equivalently V̂). Firstly, consider the simplest case of the class
A. When we denote |φ1〉 (|χ1〉) and |φ2〉 (|χ2〉) as the corresponding right (left)
eigenstates, the two-by-two matrix which we want can be written as(

〈χ1 |V̂ |φ1〉 〈χ1 |V̂ |φ2〉
〈χ2 |V̂ |φ1〉 〈χ2 |V̂ |φ2〉

)
�:

(
a b
c d

)
. (6.55)

Since |φ1〉 and |φ2〉 are regarded as independent random vectors for large Ĥ and
there is in general no direct relation between |φα〉 and |χα〉, a , b , c , d ∈ C can be
treated as random independent variables. By taking a , b , c, and d as Gaussian
random variables, we define

Ĥsmall,A �:

(
a b
c d

)
. (6.56)

Let us consider the class AI next. While TRS imposes the constraint on two
eigenvalues that are complex conjugate to each other, it does not on two close
eigenstates that are away from the real axis. Consequently, the obtained matrix
that characterizes the interaction of eigenvalues for the class AI also has the form
of Ĥsmall,A. We note that Ĥsmall,A becomes a complex matrix despite TRS of V̂ ,
since the eigenstates |φ1〉 and |φ2〉 spontaneously break TRS. We obtain similar
discussions for the classes AII, D, C, AIII, and AIII†: the eigenstates |φ1〉 and
|φ2〉 no longer preserve the symmetry constraint of V̂ , and Ĥsmall,A describes the
relevant interaction. In other words, a global symmetry of the spectrum cannot
influence the local statistics that are away from the real axis [145].

On the other hand, we face a different situation for classes with transposition
symmetry (TRS†). Let us consider the class AI†, where a condition Ĉ+ |χα〉∗ � |φα〉
is satisfied as noted in Eq. (6.21) (we have taken a proportional coefficient to be
one). Then, whereas 〈χ1 |V̂ |φ1〉 and 〈χ2 |V̂ |φ2〉 become independent complex
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variables, the following relation applies for the off-diagonal terms:

〈χ1 |V̂ |φ2〉 � (〈χ1 |V̂ |φ2〉)T

� (〈φ2 |∗)V̂ |χ1〉∗

� 〈χ2 |ĈT
+V̂T Ĉ−1

+ |φ1〉
� 〈χ2 |Ĉ+V̂T Ĉ−1

+ |φ1〉
� 〈χ2 |V̂ |φ1〉 , (6.57)

where we have used the relation ĈT
+ � Ĉ+, which holds for the class AI†. Hence,

a symmetric matrix with b � c, i.e.,

Ĥsmall,AI �:

(
a b
b d

)
(6.58)

is obtained.

Finally, for the class AII†, we need a four-by-four matrix to deal with the
Kramersdegeneracy. Letus assume thatmatrices are spannedby |φ1〉 , |φ1〉 , |φ2〉 , |φ2〉,
where the corresponding left eigenstates are denoted as |χ1〉 , |χ1〉 , |χ2〉 , |χ2〉.
Here, we note that the following relations hold:

|φα〉 � Ĉ+ |χα〉∗ , 〈χα | � (〈φα |∗)Ĉ−1
+ . (6.59)

We also note that ĈT
+ � −Ĉ+ for the class AII†. In this case, we obtain

〈χα |V̂ |φβ〉 � (〈φα |
∗)Ĉ−1

+ V̂Ĉ+(|χα〉∗)

�
[
(〈φα |∗)Ĉ−1

+ V̂Ĉ+(|χα〉∗)
]T

� 〈χβ |ĈT
+V̂T(ĈT

+)−1 |φα〉
� 〈χβ |Ĉ+V̂T(Ĉ+)−1 |φα〉
� 〈χβ |V̂ |φα〉 . (6.60)

We also have

〈χα |V̂ |φβ〉 �
[
〈χα | V̂Ĉ+(|χα〉∗)

]T

� 〈χβ | ĈT
+V̂T(|χα〉∗)

� − 〈χβ | Ĉ+V̂T(|χα〉∗)
� − 〈χβ | V̂Ĉ+(|χα〉∗)
� − 〈χβ |V̂ |φα〉 (6.61)
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and

〈χα |V̂ |φβ〉 �
[
(〈φα |)∗Ĉ−1

+ V̂ |φβ〉
]T

� (〈φβ |)∗Ĉ−1
+ V̂T(ĈT

+)−1 |φα〉
� −(〈φβ |)∗Ĉ−1

+ V̂T(Ĉ+)−1 |φα〉
� −(〈φβ |)∗Ĉ−1

+ (Ĉ+)−1V̂ |φα〉
� − 〈χβ |V̂ |φα〉 . (6.62)

To sum up, the relevant matrix can be written as

Hsmall,AII† �

©­­­­­«
a 0 e b
0 a c g
g −b d 0
−c e 0 d

ª®®®®®¬
, (6.63)

where a , b , c , d , e , g ∈ C.
The distance between two eigenvalues (or Kramers pairs of eigenvalues) in

these three cases can be written as

|E1 − E2 | �
���√(a − d)2 + 4bc

��� (6.64)

for the class A (and AI, AII, D, C, AIII, and AIII†),

|E1 − E2 | �
���√(a − d)2 + 4b2

��� (6.65)

for the class AI†,

|E1 − E2 | �
����√(a − d)2 + 4e f − 4bc

���� (6.66)

and for the class AII†. We can see that the distributions of |E1−E2 | are different in
the three cases, since the different numbers of free parameters are involved. This
is similar to the Hermitian case, in which the number of degrees of freedom that
changes with symmetry affects the level-spacing distributions. To summarize, the
transposition symmetry (not TRS) can change the interactions of two eigenvalues
and alter the level-spacing distributions through the change of the number of
degrees of freedom even in the non-Hermitian case.

Figure 6.6 indeed shows that the (normalized) level-spacing distributions for
matrices Ĥsmall,A, Ĥsmall,AI† , and Ĥsmall,AII† are distinct from one another. The
properties for the peak and variance for these small matrices also apply to the
calculations of large matrices as we have seen previously, which is demonstrated
as suppression or enhancement of the GinUE distribution in Fig. 6.3 [321].
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Figure 6.6: Level-spacing distributions for Ĥsmall,A, Ĥsmall,AI† , and Ĥsmall,AII† .
Histograms that are numerically obtained agree excellently with analytical pre-
dictions in Eq. (6.76). We obtain the results from averages over 106 ensembles.
Taken from Fig. S-3 in the fourth version of Ref. [112].

6.5.1 Detailed analysis

[Note: the results of this subsection, in particular Eq. (6.76), are mainly obtained by Mr.
Naoto Kura. My contribution is the physical interpretation of the obtained results.]

In this subsection, we give a more detailed analysis for non-Hermitian small
matrices and compare similarity to and difference from the Hermitian case. Let
us first reparametrize Ĥsmall by expanding it using an appropriate basis set {λ̂ν}
of the matrix space:

Ĥsmall � z0Î +

f∑
ν�1

zν λ̂ν . (6.67)

Here, zν ∈ C and λ̂ν satisfy the Hermiticity, the traceless condition, and the
orthonormality

Tr[λ̂ν] � 0, Tr[λ̂ν λ̂σ] � Sδνσ , (6.68)

where S � 2 for two-by-two matrices and S � 4 for four-by-four matrices. The
matrix bases {λ̂ν} for the three classesA,AI† andAII† are summarized in Table 6.2.

We consider zν as random variables instead of a , b , · · · in the previous section.
We first note that

P(Ĥ) ∝ e−βTr[Ĥ†Ĥ]
� e−Sβ

∑ f
ν�1 |z f |2 . (6.69)

Since z0Î does not affect the level-spacing distributions, we can consider (instead
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Table 6.2: Matrix bases {λ̂ν} for three different classes AI†, A, and AII†. Here,
σx ,y ,z and γ1,2,3,4,5 are the Pauli and the Dirac matrices, respectively. We follow
the notation of Ref. [322].

Class f Basis
AI† 2 σx , σz

A 3 σx , σy , σz

AII† 5 γ1, γ2, γ3, γ4, γ5

of Ĥsmall)

Ĥ′small �

f∑
ν�1

zν λ̂ν (6.70)

which is traceless. We obtain

(Ĥ′small)
2
�

f∑
ν�1

z2
ν Î (6.71)

owing to the anticommutation relation

λ̂ν λ̂σ + λ̂σ λ̂ν � 2δνσ Î (6.72)

for the basis in Table 6.2. At the same time, owing to the traceless condition, Ĥ′small
has eigenvalues (ε,−ε) (or (ε, ε,−ε,−ε) for the classes AII†). Then, Ĥ′small satisfies

(Ĥ′small)
2
� ε2Î. (6.73)

Combining the results above, we obtain that the level-spacing s (before un-
folding) can be written as

s � 2|ε | � 2|X f |1/2, (6.74)

where

X f �

f∑
ν�1

z2
ν . (6.75)

Thus, the level-spacing distributions are determined by the sum of f complex-
valued degrees of freedom which are chosen from the Gaussian distribution.
Here, f � 3 for the class A, f � 2 for the class AI†, and f � 5 for the class AII†.
Importantly, this is a straightforward extension of the Hermitian case, in which
the level spacings turn out to be described by the sum of f real-valued degrees of
freedom. In that case, f � 3 for the class A, f � 2 for the class AI, and f � 5 for
the class AII.
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The normalized level-spacing distributions are calculated from the represen-
tation in Eq. (6.74). The straightforward calculation gives (see Appendix B for the
derivation)

psmall(s) �
(
C f s

)3

N f
K f−2

2

( (
C f s

)2
)
, (6.76)

where

Kα(x) �
∫ ∞

0
e−x cosh z cosh(αz) (6.77)

is the modified Bessel function, and C f andN f are normalization constants. The
analytical result in Eq. (6.76) well describes the numerical results in Fig. 6.6. We
note that psmall for a Hermitian random matrix involves the chi-squared distribu-
tion instead of the modified Bessel distribution, after the evaluation of the sum of
f real-valued degrees of freedom. In fact, it can be written in a form

psmall(s) � A f sχ2
f

[
(B f s)2

]
. (6.78)

Let us state some properties of psmall. Firstly, the level-repulsion factor for non-
Hermitian psmall(s → 0) is universally ' s3 [248] irrespective of symmetry (with
an additional factor of log s only for the class AI†), in contrast with the Hermitian
case in which psmall(s → 0) ∝ s f−1. This comes from the difference between the
modified Bessel function and the chi-squared distribution, where only the latter
leads to the f -dependent power of s in the s → 0 limit.

On the other hand, the entire distribution depends on the three symmetry
classes even in the non-Hermitian case as inDyson’sHermitian case, whichmeans
that TRS† alters repulsive interactions. In fact, psmall,AI† and psmall,AII† respectively
have lower and higher peaks than psmall,A. In addition, psmall,AI† and psmall,AII†

respectively have larger and smaller variances than psmall,A. The figures of Fig. 6.6
at relatively small s actually indicate that the repulsive interaction is smaller for
the class AI† and larger for the class AII† than that for the class A. This is very
similar to the Hermitian case, where the repulsive interaction is smaller for the
class AI and larger for the class AII than that for the class A.

6.6 Universality in dissipative many-body systems

As we have seen in Chapter 2, local spectral statistics of eigenvalues, such as the
level-spacing statistics for Hermitian quantum nonintegrable Hamiltonians, are
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conjectured to obey those of random matrices [121, 119, 323, 143, 16, 116, 147,
18, 324, 57, 22, 24, 192, 26, 141, 27, 325, 149, 142, 31]. As a natural extension of
this conjecture, the level-spacing statistics of non-Hermitian randommatrices are
supposed to characterize the transition between nonintegrability and integrabil-
ity, and the transition between chaos and localization, in dissipative quantum
systems [247, 296, 111]. On the other hand, the effect of symmetry for the uni-
versality has not been investigated so far. In this section, we show that new
universality classes of level-spacing distributions indeed appear in dissipative
quantum nonintegrable many-body systems.

6.6.1 Non-Hermitian many-body systems

We first consider locally interacting non-Hermitian spin models that realize the
classes A, AI†, and AII† by changing the parameters (see Fig. 6.7(a)). The Hamil-
tonian is given by

Ĥ � ĤI + ĤF + ĤDM, (6.79)

ĤI � −
N−1∑
j�1

(
1 + i Jε j

)
σ̂z

j σ̂
z
j+1,

ĤF � −
N∑

j�1

(
h′σ̂x

j + hσ̂z
j

)
,

ĤDM �

N−1∑
j�1

®D ·
(−→̂
σ j ×

−→̂
σ j+1

)
,

where ε j is randomly chosen from [−1, 1], h′ � −2.1h, and ®D � D(®ex + ®ez)/
√

2.
Note that this is a non-Hermitian generalization of Eq. (2.34) (where we consider
J , 0).

The symmetry class of this model changes with h and D. The model belongs
to (i) the classA for D , 0, h , 0, (ii) the class AI† for D � 0, h , 0 since Ĥ � ĤT

holds, and (iii) the class AII† for h � 0,D , 0 when L is odd since

Ĥ �

(
L∏

i�1
σ̂

y
i

)
ĤT

(
L∏

i�1
σ̂

y
i

)−1

(6.80)

with (
L∏

i�1
σ̂

y
i

) (
L∏

i�1
σ̂

y
i

)∗
� (−1)L . (6.81)
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Figure 6.7: (a) Schematic illustration of the non-Hermitian spin chain with local
interactions in Eq. (6.79). (b) Level-spacing distributions p(s) for three different
models (i), (ii), and (iii) after the unfolding procedure of eigenvalues. The blue,
red, and purple lines are the results for the classes A, AI†, and AII†, respectively
(for the classes AI† and AII†, we show the same numerical data obtained in
Fig. 6.3(B)). The parameters are chosen as h � 0.5,D � 0 for the model (i),
h � 0.5,D � 0.9 for the model (ii), and h � 0,D � 0.9 for the model (iii). In
addition, J � 0.2 and L � 13 are used for all the models. We obtain the results
from averages over 30 samples. We take statistics from eigenvalues that are away
from the upper and lower edges of the spectrum. Taken from Fig. S-4 in the fourth
version of Ref. [112].

In general, the three non-Hermitian classes A, AI† and, AII† are obtained by
adding non-Hermiticity to diagonal terms of Hermitian systems that belong to
the classes A, AI, and AII, respectively.

We show in Fig. 6.7 the distributions p(s) for the above three models after the
unfolding procedure (see Chapter 5) of eigenvalues [145]. There appear clearly
distinct three types of distributions, which correspond to the universality classes
of random-matrix ensembles (see Fig. 6.3(b)) that belong to the same symmetry
classes. Indeed, model (i) obeys the universality of class A (blue line), model
(ii) obeys that of the class AI† (red line, which is the same data with the middle
main panel in Fig. 6.3(B)), and model (iii) obeys the universality of the class AII†

(purple line, which is the same data with the right main panel in Fig. 6.3(B)). Our
results show that local correlations of eigenvalues of nonintegrable non-Hermitian
many-body systems are predicted by the universality of non-Hermitian random
matrices with the same symmetry.
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6.6.2 Lindblad many-body dynamics

Next, we demonstrate that the universality of non-Hermitian random matrices
also appears in a completely different type of dissipative many-body systems, i.e.,
dissipative systems described by the Lindblad equation (see Fig. 6.8):

dρ̂
dt

� L[ρ̂] � −i[Ĥ , ρ̂] +
L∑

j�1
γ

[
Γ̂ j ρ̂Γ̂

†
j −

1
2

{
Γ̂†j Γ̂ j , ρ̂

}]
, (6.82)

where Γ̂ j denotes a dissipation operator that acts on the site j, and γ is the strength
of dissipation (see Chapter 4). We consider a dissipative spin-1/2 model in one
dimension (see Fig. 6.8(a)). The Lindblad superoperator [326] above consists of
the Hamiltonian

Ĥ � −
L−1∑
j�1
(1 + ε j)σ̂z

j σ̂
z
j+1 −

L∑
j�1

(
−1.05σ̂x

j + 0.2σ̂z
j

)
, (6.83)

where ε j is randomly chosen from [−0.1, 0.1], and dissipation that is either (i)
dephasing

Γ̂ j � σ̂
z
j (6.84)

or (ii) damping

Γ̂ j � σ̂
−
j . (6.85)

This model can be realized with Rydberg atoms [327].

Instead of the eigenvalue equation of the Hamiltonian, we consider the su-
pereigenvalue equation for the Lindblad superoperator,

L[ν̂α] � ηα ν̂α , (6.86)

where ηα is the supereigenvalue for the supereigenstate ν̂α. To know the sym-
metry of the Lindblad superoperator, it is convenient to employ the operator
representation of superoperators. This can be done by considering the following
isomorphism:

Â |i〉 〈 j | B̂→ (Â ⊗ B̂T) |i〉 ⊗ | j〉 , (6.87)

where we have duplicated the Hilbert space by introducing a dual space.
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The Lindblad superoperator can then be written as

L → L̂ � −i(Ĥ ⊗ I − Î ⊗ ĤT) + γ
L∑

j�1

[
Γ̂ j ⊗ Γ̂∗j −

1
2 Γ̂
†
j Γ̂ j ⊗ Î − Î ⊗ Γ̂T

j Γ̂
∗
j

]
, (6.88)

whose eigenvalues equal λα.

For any Γ̂ j , L̂ has TRS whose square equals one. In fact, if we consider the
"SWAP" unitary operator T̂+ which exchanges the original and the dual Hilbert
spaces, i.e.,

T̂+(Â ⊗ B̂)T̂ −1
+ � B̂ ⊗ Â, (6.89)

we obtain

T̂+L̂∗T̂ −1
+ � L̂ (6.90)

along with

T̂+T̂ ∗+ � 1. (6.91)

In addition, for our model, L̂ can have TRS† depending on the dissipator Γ̂ j .
In fact, since Ĥ � ĤT (in the Fock basis), we have

L̂T
� −i(Ĥ ⊗ I − Î ⊗ ĤT) + γ

L∑
j�1

[
Γ̂T

j ⊗ Γ̂
†
j −

1
2 Γ̂

T
j Γ̂
∗
j ⊗ Î − Î ⊗ Γ̂

†
j Γ̂ j

]
. (6.92)

Hence, if

Γ̂T
j � Γ̂ j and (Γ̂†j Γ̂ j)T � Γ̂†j Γ̂ j , (6.93)

the transposition remains, i.e., L̂T � L̂. This condition is satisfied only for (i)
dephasing Γ̂ j � σ̂z

j and not for (ii) damping Γ̂ j � σ̂−j .

We show in Fig. 6.8(b) the level-spacing distributions p(s) for the two models
(i) and (ii). It is evident that, while model (i) obeys the universality of the class
AI†, model (ii) obeys the universality of the class A. These results demonstrate
that local correlations of (super)eigenvalues of nonintegrable dissipative Lindblad
superoperator are also described by the universality of non-Hermitian random
matrices considering TRS†. Note that the additional TRS (the swap symmetry)
is irrelevant for the level-spacing distribution away from the real axis because it
only creates nonlocal pairs of eigenvalues.
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Figure 6.8: (a) Schematic figure of a locally interacting system governed by
the Lindblad equation in Eq. (6.83). (b) Level-spacing distributions p(s) for two
different types of dissipators (Eq. (6.84) for (i) and Eq. (6.85) for (ii)) after the
unfolding procedure of eigenvalues. The blue and red lines are the results for the
classesA andAI†, respectively (for the classAI†, we show the same numerical data
obtained in Fig. 6.3(B)). We obtain the results from averages over 10 samples with
γ � 0.5 and L � 7. We obtain the statistics from eigenvalues that are away from
the edges of the spectrum. Taken from Fig. 3 in the fourth version of Ref. [112].

6.7 Discussions

We have studied the universality classes of the level-spacing distributions of non-
Hermitian random matrices with symmetry. We numerically found that the
symmetry classes AI† and AII† lead to new universality classes that are distinct
from the GinUE. Thus, the three classes A, AI† and AII† defined by transposition
symmetry (TRS†) are considered as a natural non-Hermitian extension of Dyson’s
threefold way for Hermitian matrices.

Aswe have seen in Section 6.3, there are 38 symmetry classes in non-Hermitian
matrices. On the other hand, it is expected that there are only three universality
classes for p(s), determined by the transposition symmetry (TRS†). This is be-
cause the other fundamental symmetries (such as TRS and PHS) do not alter the
interactions between neighboring eigenvalues. One of the examples is our study
of the level-spacing distributions in the Lindblad spectrum, where the TRS (swap
operator) is irrelevant for p(s).

Our results will be the basis for probing nonintegrability and chaos in dis-
sipative quantum systems with symmetry. As we have seen in the previous
chapter, in non-Hermitian disordered systems, level-spacing distributions change
from the random-matrix distribution to the Poisson distribution. In particular,
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for the delocalized phase, p(s) for the gain-loss model is distinct from that for the
asymmetric-hopping model. Our results clearly show that this distinction results
from the presence of the TRS†, and not owing to a finite-size effect or the presence
of hidden integrability.
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Chapter 7

Conclusions and Outlook

In this Thesis, we have discussed some problems on thermalization in closed
and open quantum many-body systems. As discussed in Chapter 1, problems
of thermalization are deeply related to the foundations of quantum statistical
mechanics, and attract extensive attention motivated by experiments in artificial
quantum many-body systems represented by ultracold atoms.

In Chapter 2, we have reviewed basic properties on thermalization in closed
quantum many-body systems. We have first shown that a quantum state after
a sufficiently long time is locally described by a thermal ensemble under the as-
sumption of the eigenstate thermalization hypothesis (ETH). The ETH is expected
in many nonintegrable systems, which is also related to random matrix theory.
On the other hand, the ETH and thermalization does not hold true for several
classes of systems, such as the many-body localized (MBL) systems. We have also
briefly mentioned recent study of dynamics in closed quantum systems before
complete thermalization.

In Chapter 3, revisiting von Neumann’s work, we have discussed the validity
of the typicality argument, which relies on the Haar measure, for the physically
relevant setting, i.e., few-body (or local) setting. We rigorously show that diagonal
matrix elements of most few-body observables behave atypically when the energy
width decreases at most algebraically with increasing the system size. This result
indicates that we need a scenario which does not rely on the typicality argument
in order to explain the ETH.

One interesting future question is to investigate the relaxation dynamics be-
fore complete thermalization in few-body or local settings. Recently, it has been
proposed that relaxation dynamics of quantum many-body systems may be un-
derstood by the typicality argument without few-body (local) structures [328].
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Such a treatment predicts extremely fast decay of observables whose timescale
does not depend on the system size, which is inconsistent with usual thermaliza-
tion [329] but may explain local thermalization of the system [328].

On the other hand, since the information of the entire system cannot be per-
ceived during the fast timescale owing to the Lieb-Robinson bound (for a local
setting), invoking the typicality argument, which relies on the unitary Haar mea-
sure of the entire Hilbert space within the energy shell, may be inappropriate.
It remains to be a challenge to rigorously investigate an atypical structure that is
distinct from the prediction of the typicality argument for the relaxation dynam-
ics in few-body or local settings. For that purpose, the random few-body and
local operator measures that we have introduced in Chapter 3 (see Eqs. (3.29) and
(3.49)) can be helpful.

In Chapter 4, we have reviewed theory of open quantum systems. Wehave first
explained repeatedly or continuouslymeasured quantum systems, which are now
being realized using state-of-the-art experiments, such as those of ultracold atoms.
As an interesting ingredient for such continuously measured quantum systems,
properties of non-Hermitian Hamiltonians have been discussed in detail. We
have also discussed previous studies on thermalization of open quantum many-
body systems, which are nontrivially driven by external dissipation and cannot
be understood by conventional theories.

In Chapter 5, we have discussed how the MBL can change the spectral and
dynamical properties of open quantum many-body systems described by non-
Hermitian Hamiltonians. We have shown that the imaginary part of many-body
energy eigenvalues is suppressed owing to the MBL if the system respects time-
reversal symmetry (TRS). In particular, we have found that non-Hermitian MBL
in an interacting model with asymmetric hopping and disorder leads to a novel
real-complex transition of eigenvalues, which affects dynamical stability of the
system. We have also argued that the non-Hermitian MBL still occurs but the
real-complex transition is absent in a system without TRS, such as a system with
gain and loss.

One of themost important future research arenas is to studyhowwe can extend
the fundamental notions of thermalization in closed systems to open quantum
systems. For example, the presence of the recurrence depends on whether the
system is non-Hermitian MBL or not, in a manner similar to the Hermitian case.
On the other hand, there have been yet no well-defined definitions for some
concepts, e.g., ergodicity, since stationary states are not thermal. Note, however,
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that some features of non-Hermitian MBL remind us of non-ergodicity. For
instance,while the initial informationof the state is eventually lost for the complex-
eigenenergy phase, it is not in the real-eigenenergy phase, the latter of which is
reminiscent of the non-ergodicity in the Hermitian MBL. It is an open question
to unambiguiously formulate the ergodicity in dissipative quantum systems. We
also note that it is also an important future problem to take quantum jumps into
account, which may affect the purely non-Hermitian description of the dynamics.

InChapter 6,wehave studied fundamental universality classes of non-Hermitian
random matrices and its application to open quantum many-body systems, en-
couraged by the relation between thermalization and random matrix theory
in Hermitian systems. We have numerically shown that two new universality
classes of level-spacing distributions, which are distinct from Ginibre’s universal-
ity classes, appear if we consider transposition symmetry. We have argued that
our results will be a probe for the nonintegrability, delocalization and chaos in
open quantum systems with symmetry, such as the dissipative many-body spin
systems described by the Lindblad equation and the non-HermitianHamiltonian.

One of the fundamental issues to be solved is joint probability distributions of
eigenvalues for these classes for an arbitrary matrix size. It is also important to
study if a new universality appears for other statistics, such as distributions of the
edges of the spectrum. As applications, it is interesting to test our universalities
for various systems, such as classical stochastic systems and open mesoscopic
systemsaswell asdissipative quantummany-body systems. A related challenging
problem is to find an experimentally observable quantity that reflects the three
universality classes. From the viewpoint of thermalization, it merits further study
to elucidate how the random-matrix-type level-spacing distribution is related to
the dynamics in open quantum many-body systems, just as it is related to the
relaxation to the thermal state (owing to the ETH) in the Hermitian case.

To summarize, this Thesis is devoted to some of the problems of thermalization
in quantum many-body systems: the atypicality of few-body observables, which
requires a new scenario to explain the ETH, the occurrence ofmany-body localiza-
tion in non-Hermitian systems, and the universality of non-Hermitian matrices
relevant for open quantum systems. We hope that our work will motivate further
researches to study foundations of nonequilibrium statistical mechanics.
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Appendix A

Details of Chapter 5

In this appendix, we explain details of Chapter 5, in particular the results for
different parameters, models, and probes for the transition and the discussions
on the similarity transformation.

A.1 Results for other models and parameters

Here, we discuss real-complex phase transitions and MBL for different values of
the parameters and models from those introduced in Chapter 5.

A.1.1 Real-complex transition for stronger non-Hermiticity g

Wefind the real-complex transition even in systemswith non-Hermiticity stronger
than that discussed previously, e.g., g � 1, in Eq. (5.6). We show in Fig. A.1 how
fIm depends on h for different sizes of the system with g � 1. As L is increased,
fIm increases for h . hR

c ' 16 and decreases for h & hR
c . Moreover, we observe the

scaling collapse around the critical point with a critical exponent ν � 0.7. This
transition point is different from that of the Hermitian counterpart (g � 0) and is
dependent on the non-Hermiticity g.

The non-Hermitian MBL transition occurs for g � 1, too. We show in
Fig. A.1(b) the level-spacing distribution of energy eigenvalues, which are un-
folded on the complex plane (h � 8), and that of energy eigenvalues on the real
axis (h � 20) with L � 16. When h � 8, P(s) obeys a Ginibre statistics PC

Gin(s), not
a Poisson statistics PC

Po(s) � πse−πs2/4/2 on the complex plane. When h � 20, P(s)
obeys a Poisson statistics on the real axis PR

Po(s) � e−s , rather than the Wigner-
Dyson statistics PR

WD(s) � πse−πs2/4/2. This behavior is analogous to the case for
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Figure A.1: Indicators of the real-complex transition and the MBL transition in
the model with asymmetric hopping for g � 1. (a) Dependence of the fraction
fIm on the disorder strength h for L � 6, 8, 10, 12, 14, and 16. (b) Level-spacing
distribution of unfolded energy eigenvalues on the complex plane (h � 8) and
that of energy eigenvalues on the real axis (h � 20) with L � 16. We take statistics
from energy eigenvalues that lie within ±10% in the middle of the spectrum with
respect to real and imaginary parts. (c) Half-chain entanglement entropy S/L
calculated from the average of Sα/L over disorder and eigenstates whose energy
eigenvalues are within ±2% in the middle of the spectrum with respect to the
real parts. We also find the scaling collapse around the critical point, where
hMBL

c � 13.5 and ν � 2.5. (d) Eigenstate stability G for different sizes of the
system, where V̂NH � b̂†i b̂i+1. For (a), (c), and (d), we have used Nsam � 10000 for
L � 6, 8, 10, 12, Nsam � 1000 for L � 14, and Nsam � 100 for L � 16. Reproduced
from Fig. A-1 of Ref. [111]. ©2019 American Physical Society.
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the weak non-Hermitian case, i.e., g � 0.1.
We can also discuss the entanglement entropy S for the right eigenstates. In

Fig. A.1(c), we show how Sα/L averaged over the eigenstates in the middle of the
spectrum depends on L . We can confirm a crossover of S from the volume law to
the area law for h ' hMBL

c for g � 1 as well. We also observe the scaling collapse
around the critical point by rewriting the entropy as a function of (h − hMBL

c )L1/ν,
where hMBL

c � 13.5 and ν � 2.5.
Figure A.1(d) shows how G depends on h. We find that G ∼ αL (α > 0)

and G ∼ −βL (β > 0) for the delocalized and localized phases, respectively. The
non-Hermitian MBL transition point is determined as hMBL

c ' 14 from the point
at which G becomes independent of L. This point is close to hR

c ' 16 for g � 1,
where the small deviation is expected to arise because of a finite-size effect.

A.1.2 Real-complex transition as a function of non-Hermiticity
g

Next, we consider varying g instead of h for the Hamiltonian in Eq. (5.6) and
investigate the real-complex transition point gR

c . In Fig. A.2(a), we show how fIm

and∆Im depend on g for h � 2 < hMBL
0c , where∆Im is themaximum imaginary val-

ues of energy eigenvalues defined by Eq. (A.2) (explained later in this Appendix).
Both fIm and ∆Im increase with L increased for all g . In addition, the figure
indicates that this behavior holds for infinitesimally small g, meaning that gR

c � 0
for h � 2.

In Fig. A.2(b), we also show how fIm and ∆Im depend on g for h � 18 > hMBL
0c .

Both fIm and ∆Im increase for g & 2 and decrease for g . 2 with L increased.
This implies that the real-complex transition occurs at gR

c ' 2 for h � 18 in the
thermodynamic limit. We have in general gR

c > 0 only for h > hMBL
0c in this system.

A.1.3 Case with quarter-filling

Here, we show that the model with the quarter-filling, i.e., L � 4M shows the
MBL and the real-complex transitions as well. Figure A.3 illustrates that both
the real-complex phase transition (with respect to fIm) and the MBL transition
(with respect to G) occur. These two transition points are close to each other (near
h ' 6), where a small deviation is presumably due to a finite-size effect.
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Figure A.2: Dependences of fIm and ∆Im on the non-Hermiticity g for the
Hamiltonian in Eq. (5.6) (a) in the weak-disorder case (h � 2 < hMBL

0c ) and (b) in
the strong-disorder case (h � 18 > hMBL

0c ). Reproduced from Fig. A-2 of Ref. [111].
©2019 American Physical Society.
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Figure A.3: Dependences of fIm and G on disorder strength in the case of the
quarter filling, i.e., L � 4M. We use Nsam � 10000 for L � 8, 12, and Nsam � 100
for L � 16. Reproduced from Fig. A-3 of Ref. [111]. ©2019 American Physical
Society.

A.1.4 Real-complex transition for the Bose-Hubbardmodel with
asymmetric hopping

Here, we consider the real-complex transition of many-body energy eigenvalues
for theBose-Hubbardmodelwithdisorder and asymmetric hopping [330], instead
of hard-core bosons. The Hamiltonian reads

ĤBH � −J
L∑

i�1
(e−g â†i+1 âi + e g â†i âi+1) +

U
2

L∑
i�1

n̂′i(n̂
′
i − 1) +

L∑
i�1

hi n̂′i , (A.1)

where n̂′i � â†i âi is the number operator at site i and âi is the bosonic annihilation
operator at site i. Again, we consider J � 1, U � 2, and M � L/2 with the periodic
boundary condition.

Figure A.4 illustrates the h-dependence of the fraction fIm of complex energy
eigenvalues. We find the occurrence of the real-complex transition at a disorder
strength hR

c , just as the case for hard-core bosons. In fact, as we increase the
size of the system L, the fraction fIm of complex energy eigenvalues increases for
h . hR

c and decreases for h & hR
c , where the critical point is hR

c ' 10 for g � 0.1 and
hR

c ' 17 for g � 1. Wenote that the size of the system in numerical simulations that
is achievable is smaller for the Bose-Hubbard model than the case for hard-core
bosons, since there can be arbitrary numbers of bosons in each site.
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Figure A.4: Real-complex phase transition of the Bose-Hubbard system in
Eq. (A.1) with respect to the disorder strength h for g � 0.1 (left) and 1 (right).
We show the data for fIm averaged over Nsam samples, where Nsam � 10000 for
L � 6, 8, Nsam � 1000 for L � 10, and Nsam � 100 for L � 12. Reproduced from
Fig. A-4 of Ref. [111]. ©2019 American Physical Society.

A.2 Other probes to characterize the transitions

Here we investigate other probes to determine the real-complex or MBL transi-
tions.

A.2.1 Maximum imaginary values

We have discussed the fraction fIm of complex energy eigenvalues. On the other
hand, we can instead define the maximum imaginary part ∆Im among energy
eigenvalues as another measure of the real-complex transition. This is defined as

∆Im � max
α
|Im[Eα]|, (A.2)

where Eα is an energy eigenvalue of Ĥ.
The quantity maxα |Im[Eα]| is relevant for the dynamical stability of non-

HermitianHamiltonians; as the imaginarypart of energy eigenvalues corresponds
to the rate of amplification or decay of that mode, the system is stable for t .
[maxα |Im[Eα]|]−1. We note that the transition point for ∆Im can be different from
that for fIm and the non-Hermitian MBL in general.

Figure A.5 shows how ∆Im depends on h for different sizes L with asymmetric
hopping (Eq. (5.6)) or with gain and loss (Eq. (5.29)). For the former model, ∆Im

increases slowly and exhibits saturation with increasing L for h . 8 (g � 0.1) or
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Figure A.5: Maximum imaginary part of energy eigenvalues. (a) The model with
asymmetric hopping for two values of g in Eq. (5.6). (b) The model with gain and
loss (γ � 0.1) in Eq. (5.29). For both (a) and (b) we have used Nsam � 10000 for
L � 6, 8, 10, 12, Nsam � 1000 for L � 14, and Nsam � 100 for L � 16. Reproduced
from Fig. A-5 of Ref. [111]. ©2019 American Physical Society.

h . 12 (g � 1), while it decreases rapidly for h & 8 (g � 0.1) or h & 12 (g � 1).
This implies that a real-complex transition is present even for the measure of ∆Im.
On the other hand, for the latter model, ∆Im decreases monotonically for all h as
we increase L, which implies that the real-complex transition is absent. We note
that the critical value of ∆Im for the asymmetric-hopping model differs from hR

c

and hMBL
c for this finite size of the system, in particular for g � 1. The precise

determination of the transition points for large L is left as a future challenge.

A.2.2 Entanglement and eigenstate stability as functions of the
size of the system

In Chapter 5, the results of the entanglement entropy S/L and the eigenstate
stability G have been shown as functions of h for different sizes of the system. In
Fig. A.6, we instead illustrate S/L and G as functions of L for different h. We can
read out the MBL transition point (hMBL

c ' 7) from the change from the volume
(S/L ∼ const) to the area laws (S/L ∝ 1/L) for the entanglement and from G ∼ αL
to ∼ −βL (α, β > 0) for the eigenstate stability.
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Figure A.6: Half-chain entanglement entropy S/L and eigenstate stability G for
different values of h as functions of L. Note thatweuse the samedata in Figs. 5.5(b)
and (c) in Chapter 5. Reproduced from Fig. A-6 of Ref. [111]. ©2019 American
Physical Society.

A.2.3 Standard deviation of entanglement

Here, we discuss the standard deviation σ of the (normalized) half-chain entan-
glement entropy S/L averaged over samples. This quantity is expected to exhibit
a peak around the critical point for the Hermitian MBL (g � 0) [170]. We show in
Fig. A.7 that there appears a peak at a disorder strength (h ' 6) which is not far
from theMBL transition point ifwe consider the case for theweaknon-Hermiticity
(g � 0.1). However, no peak appears for the stronger non-Hermiticity (g � 1),
in contrast with the Hermitian case [170] or the weak non-Hermitian case. The
result indicates that the standard deviation of the entanglement should not be
used as a measure of the MBL transition, in particular in the presence of large
non-Hermiticity. We leave it as a future work to investigate the origin of this
unconventional behavior for the large non-Hermiticity.

A.3 Similarity transformationof theHamiltonianwith
interaction and asymmetric hopping

The fact that the coalescence between neighboring eigenstates is absent owing to
the non-HermitianMBL is not a sufficient condition for a complete suppression of
complex energy eigenvalues. Indeed, some (but rare) spatial regions can be reso-

132



Figure A.7: Standard deviation σ of the normalized half-chain entanglement
entropy fordifferent systemsizes L (� 6, 8, 10, 12, 14, 16) over samples as a function
of disorder strength h. We have used Nsam � 10000 for L � 6, 8, Nsam � 1000 for
L � 10, and Nsam � 100 for L � 12. Reproduced from Fig. A-7 of Ref. [111]. ©2019
American Physical Society.

nant and susceptible to local perturbations [186, 187, 179, 180] because of statistical
fluctuations of disorder, which leads to the possibility that non-adjacent eigen-
states mix and form complex-conjugate pairs. In such regions, we should treat
effects of non-Hermiticity non-perturbatively in general because the perturbation
resonantly couples two different eigenstates.

On the other hand, for the asymmetric-hopping model in Eq. (5.6), we can
consider a similarity transformation [235, 236, 237, 298, 299] such that the non-
Hermitian perturbation is only supported on non-resonant regions. From an
analysis of this transformed Hamiltonian, we find that the eigenstate-mixing is
suppressed even for non-adjacent eigenstates, which leads to the emergence of
the entirely real spectrum as explained in the following

To simplify the discussion, we consider the hard-core Boson Hamiltonian
Ĥ in Eq. (5.6) for sufficiently small g. We consider the decomposition of the
Hamiltonian, i.e., Ĥ � Ĥ0 + V̂NH, where

Ĥ0 �

L∑
i�1

[
−J(b̂†i+1 b̂i + h.c.) + Un̂i n̂i+1 + hi n̂i

]
(A.3)
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is a Hermitian Hamiltonian and

V̂NH � −J
L∑

i�1

[
(e−g − 1)b̂†i+1 b̂i + (e g − 1)b̂†i b̂i+1

]
�

L∑
i�1

v̂i ,i+1 (A.4)

is a non-Hermitian Hamiltonian for g , 0. When Ĥ0 is localized with large h,
the local tunneling amplitude | 〈Eb |v̂i ,i+1 |Ea〉 | by the perturbation v̂i ,i+1 is smaller
than |Ea−Eb | formost i, where the two eigenstates |Ea〉 and |Eb〉 are assumed to be
approximatelywritten as product states and connected by terms b̂†i+1 b̂i and b̂†i b̂i+1,
which describe the hopping of the particles. This is due to the fact that moving
particles within the localized regions costs large energy (i.e., |Ea −Eb | ∼ |hi+1− hi |
is large enough). Therefore, we can deal with the effect of v̂i ,i+1 perturbatively.
However, for some (but rare) i, localization can be very weak because of the
statistical fluctuation of hi and particles are relatively easy to move. This leads
to | 〈Eb |v̂i ,i+1 |Ea〉 | ' |Ea − Eb |. Thus, the perturbation owing to such resonant i,
cannot be controlled for the original model.

Fortunately, we can show that theHamiltonian in Eq. (5.6) is transformed into a
Hamiltonianwhose non-Hermitian perturbation is only supported on the regions
that are not resonant. To see this, we consider

V̂i � e gθi n̂i � 1 + (e gθi − 1)n̂i . (A.5)

We have

V̂i b̂iV̂−1
i � b̂i[1 + (e−gθi − 1)n̂i]

� b̂i + (e−gθi − 1)(1 − 2n̂i)b̂i

� e−gθi b̂i , (A.6)

where the relations {b̂i , b̂†i } � 1 and b̂2
i � 0 for hard-core bosons have been used.

Similarly, we have

V̂i b̂†i V̂
−1
i � [1 + (e gθi − 1)n̂i]b̂†i

� b̂†i + (e
gθi − 1)b̂†i (1 − 2n̂i)

� e gθi b̂†i . (A.7)

134



We then obtain

V̂i+1V̂i b̂†i+1 b̂iV̂−1
i V̂

−1
i+1 � e g(θi+1−θi) b̂†i+1 b̂i , (A.8)

V̂i+1V̂i b̂†i b̂i+1V̂−1
i V̂

−1
i+1 � e−g(θi+1−θi) b̂†i b̂i+1, (A.9)

V̂i n̂iV̂−1
i � n̂i , (A.10)

V̂i+1V̂i n̂i+1n̂iV̂−1
i V̂

−1
i+1 � n̂i+1n̂i . (A.11)

We now consider a similarity transformation

Ĥ′ � V̂ĤV̂−1, (A.12)

where

V̂ �

L⊗
i�1
V̂i . (A.13)

This is regarded as a second-quantized version of the imaginary gauge trans-
formation [235, 236, 237] reviewed in Chapter 5. The similarity transformation
cannot change the eigenvalues of Ĥ. In fact, the eigenstate |ER

α 〉 of Ĥ with the
energy eigenvalue Eα is obtained from |ER

α 〉
′ of Ĥ′ with the same eigenvalue as

|ER
α 〉 � V̂−1 |ER

α 〉
′ because

Ĥ |ER
α 〉 � ĤV̂−1 |ER

α 〉
′
� V̂−1Ĥ′ |ER

α 〉
′
� EαV̂−1 |ER

α 〉
′
� Eα |ER

α 〉 . (A.14)

Thus, we can investigate the energy eigenvalues of Ĥ′ instead of Ĥ.

We obtain the transformed Hamiltonian Ĥ′ for which the non-Hermitian per-
turbations are only supported in non-resonant regionswith an appropriate choice
of {θi}. To explain this, we investigate a simpler case, for which sites from 1 to y
may have resonant regions and the other sites are non-resonant. We can suppose
that y is much smaller than the size of the system L, since in the MBL phase
resonant regions are rare [331]. By choosing

θi � i (1 ≤ i ≤ y + 1),
θi � −i + 2y + 2 (y + 2 ≤ i ≤ 2y + 2),
θi � 0 (2y + 3 ≤ i ≤ L), (A.15)
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we have

Ĥ′ �V̂ĤV̂−1

� − J
L∑

i�1
(e−gzi b̂†i+1 b̂i + e gzi b̂†i b̂i+1) +

L∑
i�1

Un̂i n̂i+1 +

L∑
i�1

hi n̂i

�Ĥ0 + V̂′NH, (A.16)

where

zi � 0 (1 ≤ i ≤ y , i � L),
zi � 2 (y + 2 ≤ i ≤ 2y + 1),
zi � 1 (2y + 2 ≤ i ≤ L − 1). (A.17)

As V̂′NH is only supported on the non-resonant regions, it will not mix the eigen-
states, which leads to further suppression of complex energy eigenvalues that are
generally non-adjacent.
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Appendix B

Details of the level-spacing
distributions for small matrices in
Chapter 6

In this appendix, we show the details of the level-spacing distributions for small
matrices in Chapter 6, in particular the derivation of Eq. (6.76):

psmall(s) �
(
C f s

)3

N f
K f−2

2

( (
C f s

)2
)
, (B.1)

where

Kα(x) �
∫ ∞

0
e−x cosh z cosh(αz) (B.2)

is the modified Bessel function, and C f andN f are normalization constants.

B.1 Probability distribution of |X f |2

[Note: the derivation in this section is due to Mr. Naoto Kura.]
As discussed in Chapter 6, we can calculate the level-spacing distribution

psmall(s) from the distribution of X f � z2
1 + · · · + z2

f , where s ∝ |X f |1/2 and {z f }’s
are complex Gaussian random variables. Note that the proportionality constant
is not important because we will normalize the non-normalized level-spacing
distribution p(s) such that∫ ∞

0
dspsmall(s) �

∫ ∞

0
dsspsmall(s) � 1 (B.3)
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at the last stage of our discussion.

We first consider the distribution of |X f |2. This is obtained as

P
(��X f

��2 � κ
)
∝

∫
δ

(
κ −

���z2
1 + · · · + z2

f

���2) e−| |®z | |
2
d2 f ®z , (B.4)

where ®z � (z1, . . . , z f ). Let us decompose ®z as real and imaginary vectors as
®z � ®u + i ®v. Letting θ denote the angle between ®u and ®v, we have

X f � | | ®u | |2 − || ®v | |2 + 2i ®u · ®v � u2 − v2
+ 2iuv cos θ, (B.5)

where u � | | ®u | | and v � | | ®v | |. Then we have

|X f |2 � u4
+ v4

+ 2u2v2(2 cos2 θ − 1). (B.6)

By transforming variables from (u , v , θ) to (U,V, c) � (u2, v2, cos θ), we have

|X f |2 � U2
+ V2

+ 2UV(2c2 − 1). (B.7)

In addition, the measure d2 f ®z is also transformed as

d2 f ®z � d f ®ud f ®v �
2π f /2

Γ( f /2)
2π( f−1)/2

Γ
(
( f − 1)/2

) u f−1duv f−1dv sin f−2 θdθ

∝ u f−1duv f−1dv sin f−2 θdθ

∝ (UV)( f−2)/2dUdV(1 − c2)( f−3)/2dc. (B.8)

We thus obtain

P(|X f |2 � κ) ∝
∫ ∞

0

∫ ∞

0
dUdV(UV)( f−2)/2e−(U+V) (B.9)

×
∫ 1

−1
(1 − c2)( f−3)/2dcδ

(
κ − [U2

+ V2
+ 2UV(2c2 − 1)]

)
. (B.10)

The integration of the delta function can be carried out as follows. We first
introduce

cκ �

(
κ − (U − V)2

4UV

)1/2
, (B.11)

where 0 ≤ cκ ≤ 1 is satisfied if and only if |U − V | ≤
√
κ ≤ U +V . Then, we have

δ
(
κ − [U2

+ V2
+ 2UV(2c2 − 1)]

)
�

1
8UVcκ

[δ(c − cκ) + δ(c + cκ)] (B.12)
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and thus

P
(��X f

��2 � κ
)
∝

∫
|U−V |≤

√
κ≤U+V

dUdV(4UV)( f−2)/2e−(U+V) (1 − c2
κ)( f−3)/2

4UVcκ

�

∫
|U−V |≤

√
κ≤U+V

dUdVe−(U+V) [(U + V)2 − κ]( f−3)/2

[κ − (U − V)2]1/2
. (B.13)

Finally, the transformation of the variables from (U,V) to (x , y) � (U + V,U − V)
leads to

P
(��X f

��2 � κ
)
∝

∫ ∞

√
κ

dx
∫ √

κ

−
√
κ

dye−x (x2 − κ)( f−3)/2

(κ − y2)1/2

∝
∫ ∞

√
κ

dxe−x(x2 − κ)( f−3)/2. (B.14)

To evaluate this, we use the following integral:∫ ∞

r
dxe−x(x2 − r2)α−1/2

�
Γ(2α)

2α−1Γ(α) r
αKα(r). (B.15)

Substitution of α � f /2 − 1 and r �
√
κ in Eq. (B.15) leads to the following

probability distribution of
��X f

��2:
P

(��X f
��2 � κ

)
∝ κ f /4−1/2K f /2−1(

√
κ). (B.16)

B.1.1 Level-spacing distribution for Hsmall

To obtain the level-spacing distribution, we consider the probability distribution
p(s)ds from P(|X f |2 � κ)dκ obtained above. Using s � |X f |1/2 � κ1/4, we have

p(s) ∝ s3P(|X f |2 � κ)|κ�s4 ∝ s f+1K f /2−1(s2). (B.17)

From this, we see that the level repulsion is O(s3) for f > 2 and O
(
s3 log(1/s)

)
at

f � 2.

Finally,we rescale theprobabilitydistributionby considering psmall(s) � ap(bs)
for appropriate constants a and b. Revoking Eq. (B.3), we obtain

p(s) � 1
N f
(C f s) f+1K f /2−1

(
(C f s)2

)
, (B.18)

with

C f �
Γ(1/4)Γ( f /2 + 1/4)

2
√

2Γ( f /2)
(B.19)
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and

N f � 2 f /2−2Γ

(
f
2

)
C−1

f . (B.20)

B.2 Simpler forms

The obtained level-spacing distributions can be simplified by using

K1/2(x) �
√
π
2x

e−x , (B.21)

K3/2(x) �
√
π
2x

(
1 +

1
x

)
e−x . (B.22)

Simpler forms of psmall(s) for f � 2, 3, and 5 are

psmall,A(s) � 2C4
3s3e−C2

3s2
,

psmall,AI†(s) � 2C4
2s3K0

(
C2

2s2) ,
psmall,AII†(s) �

2C4
5s3

3
(
1 + C2

5s2) e−C2
5s2
, (B.23)

where C2 �
1

8
√

2
Γ

( 1
4
)2

� 1.16187 . . . , C3 �
3
4
√
π � 1.32934 . . . and C5 �

7
8
√
π '

1.5509 . . . . Here we have used the formula

Γ(x)Γ(1 − x) � π
sin πx

(B.24)

to obtain C3 and C5.
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