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Abstract

We deal with the five-dimensional N = 1 super Yang-Mills theories. Let Z(AN ,AM )
inst. be the instanton partition

function of the AM quiver gauge theory with AN gauge group with NF = 2(N + 1) matters. We set all the

Chern-Simons levels to be zero. Then, the S-duality claims the invariance of Z(AN ,AM )
inst. under the exchange

between N and M . The main object of the present thesis is to prove this claim. By rewriting the equality in
terms of the topological vertex, we obtain the duality formula under changing the preferred directions.

The key ingredient of the proof is the operator realization of the topological vertex. This is achieved by
the intertwiners of the Ding-Iohara-Miki algebra. By gluing the intertwiners, we can realize what we call the
Mukadé operator. The matrix elements of the Mukadé operator factorize as the products of the Nekrasov
factors. This formula proves the claim. Moreover, the Mukadé operator reduces to the primary fields of
the Virasoro algebra, under the q, t → 1 limit. In the gauge theory terminology, this limit corresponds to
the reduction to the four dimensions. Then, the matrix elements formula of the Mukadé operator can be
interpreted as the proof of the five-dimensional analogue of the Alday-Gaiotto-Tachikawa correspondence.
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Notation

General Notation

Uq,t : Ding-Iohara-Miki Algebra (Definition 3.3.4)

∆(N) : N -th coproduct of Uq,t

N (∈ Z≥1) : Number of Fock tensor spaces

U(N) : Algebra generated by X
(i)
n ’s (Definition 4.3.6)

P : Set of all partitions

Λn = Q(q, t)[x1, . . . , xn]Sn , Λ = lim←−n Λn

γ = (t/q)1/2

ρ = (−1/2,−3/2,−5/2, . . . )

δ = (−1,−2,−3, . . . )

fgln , f̃gln , ϕgln : Bispectral Macdonald functions (Definition 4.1.2)

G(z) =
∏∞
i,j=0(1− zqit−j) : G-factor

Nλ,µ(u) : Nekrasov factor (Definition 2.1.1)⊗ym
i=nAi := An ⊗ · · · ⊗Am∏y
n≤i≤mAi := An ×An+1 × · · · ×Am

Notations concerning Partitions (λ ∈ P)

|λ| =
∑
i≥1 λi

λ′ : Transpose of λ

`(λ) = λ′1 : Length of λ

n(λ) =
∑
i≥1(i− 1)λi

κ(λ) =
∑
i λi(λi + 1− 2i)

||λ||2 =
∑
i λ

2
i
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4

aλ(i, j) = λi − j : Arm length of (i, j)

`λ(i, j) = λ′j − i : Leg length of (i, j)

a′λ(i, j) = j − 1 : Co-arm length of (i, j)

`′λ(i, j) = i− 1 : Co-leg length of (i, j)

A(λ) (resp. R(λ)) : Set of coordinates where we can add (resp. remove) a box

fλ = (−1)|λ|qn(λ′)+|λ|/2t−n(λ)−|λ|/2 : Taki’s framing factor (Definition 4.2.27)

gλ = qn(λ′)t−n(λ)

Uq,t-modules and Intertwiners

F (1,M)
u : (1,M)-module (Fact 3.4.3)

F (0,1)
u : (0, 1)-module (Fact 3.4.4)

Fu : (N, 0)-module in Chapter 4

Φ(x),Φ∗(x),Φλ(x),Φ∗λ(x) : Intertwiners and its matrix elements(Fact 3.4.5)

States in Fock Tensor Spaces (λ = (λ(1), . . . , λ(N)) ∈ PN)

|Xλ〉 (〈Xλ|) : PBW basis (Definition 4.2.6)

|Pλ〉 , 〈Pλ| : Generalized Macdonald functions (Fact 4.2.9)

|Qλ〉 =
∏N
i=1

c
λ(i)

c′
λ(i)
|Pλ〉

|Kλ〉 , 〈Kλ| : Integral form of generalized Macdonald functions (Definition 4.2.25)

Vertex Operators

S(i)(z) (i = 1, . . . , N − 1) : Screening currents (Definition 4.3.1)

S̃(k)(z) = S(k)(γ−2kt−1z) : Shifted screening currents

Φ(0)(x) : Top component (Definition 4.2.14)

Φ(k)(x) (k = 1, . . . , N − 1) : Screened vertex (Definition 4.2.16)

g(x, y1, . . . , yk) :=
θq(tu1y1/uk+1x)

θq(ty1/x)

∏k−1
i=1

θq(tui+1yi+1/uk+1yi)
θq(tyi+1/yi)

: Integral kernel in screening operator

V (n)(x1, . . . , x|n|) =
∏y

1≤i1≤n1
Φ(0)(x[1,i1]n) ·

∏y
1≤i2≤n2

Φ(1)(x[2,i2]n) · · ·
∏y

1≤iN≤nN Φ(N−1)(x[N,iN ]n)

: Composition of screened vertex operators (Definition 4.2.20)

V(x) = V
(
v
u ;x

)
: Mukadé operators (Definition 5.1.1)

T V (u,v;w), T H(u,v;w) : Definition 5.1.8
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Multiples of Partitions and Parameters

u = (u1, . . . , uN ), Spectral parameters of N -fold Fock tensor spaces

t±δi · u := (u1, . . . , ui−1, t
±1ui, ui+1, . . . , uN )

tαi · u := (u1, . . . , ui−1, tui, t
−1ui+1, ui+2 . . . , uN )

t±n · u := (t±n1u1, . . . , t
±nNuN )

n = (n1, . . . , nN ) : ni stands for the number of Φ(i)’s in V (n)(x)

|n| :=
∑N
i=1 ni, Total number of the Φ(i)’s in V (n)(x)

[i, k] = [i, k]n :=
∑i−1
s=1 ns + k

m = (m1, . . . ,mN ), mi is the number of the Φ(i)’s in |Qλ〉

m| :=
∑N
i=1mi, Total number of the Φ(i)’s in |Qλ〉

[i, k]m :=
∑i−1
s=1ms + k

s = (si), Generic parameters in Macdonald functions

Especially, in some propositions in Chapter 4 and 5, they are specialized to

s[i,k]n = qλ
(i)
k t1−kvi (1 ≤ k ≤ ni, i = 1, . . . , N)

s|n|+[i,k]m = t1−ni−kvi (1 ≤ k ≤ mi, i = 1, . . . , N)

λ = (λ(1), . . . , λ(N)) ∈ PN

[λ]n = ([λ]ni )1≤i≤|n| := (λ
(1)
1 , . . . , λ

(1)
n1 , λ

(2)
1 , . . . , λ

(2)
n2 , . . . , λ

(N)
1 , . . . , λ

(N)
nN )



Chapter 1

Introduction

General Motivation

String theory is a well-known candidate of the theory which describes the quantum gravity. Moreover, apart
from its original motivation, the existence of rich structures of various kinds makes the theory more intriguing.
In the present thesis, we will study two such features of the string theory, that is, duality and integrability. Here
let us make an excuse on this point. As we will see, our main interest is the quantum field theories (QFTs)
which are obtained as the low-energy effective theories of the string theory. Especially, we are interested in
the QFTs which live on the branes, the various dimensional dynamical objects in the string theory. Typically,
the theories obtained in this way belong to a special class of QFTs, the class of supersymmetric QFTs. Thus,
what we actually study in this thesis are duality and integrability in supersymmetric QFTs. In a word, the
aim of the present thesis is to study the dualities (just conjectures) from the integrability in QFTs. Let us see
this in more detail.

What is interesting about the string dualities is that the dualities which seem rather trivial in the string
theory, end up with the highly non-trivial dualities in QFTs. As a consequence, those dualities produce the
highly non-trivial identities among their physical observables, especially, their partition functions. In this
thesis, we deal with the five-dimensional N = 1 (i.e. with eight supercharges) supersymmetric Yang-Mills
theories. As we will see, this class of QFTs has nice property. These theories can be engineered by the
(p, q)-webs [39, 2]. The (p, q)-web is the grid diagram, whose edges describe the fivebranes in the type IIB
superstring theory. In order to explain these diagrams, we have a quick look at the type IIB superstring theory.
The superstring theory is defined on the 9 + 1 dimensional spacetime, and especially in type IIB string, the
(5 + 1) dimensional objects called the fivebranes exist and fill the six dimensions out of the ten dimensions.
These fivebranes in the type IIB string are labelled by the two charges [94], that is, the magnetic charges of the
R-R potential C2 and the magnetic charges associated with the NS-NS 2-form gauge field B2 in terms of the
type IIB supergravity. Because of the Dirac quantization condition, these charges are restricted to integers.
We denote them by (p, q). The fivebranes with one former charge are denoted by the (0, 1)-fivebranes and
those with one latter charge are by (1, 0)-fivebranes. In most of the papers, the (0, 1)-fivebranes are called the
D5-branes, and the (1, 0)-fivebranes are the NS5-branes. 1

In order to see the 5d theories are actually produced, let xi, (i = 0, . . . , 9) be the coordinate of the ten-
dimensional spacetime. When we put all the fivebrane from x0 to x4, we have one more dimension to fill.
Then, we put the fivebrane with the charge (p, q) on the line with that slope in the two-dimensional (x5, x6)
plane. Forgetting about x0, . . . , x4, we obtain the two-dimensional diagrams which indicate the positions and
charges of the fivebranes. We refer to this diagram as the (p, q)-webs. For example, the D5-branes become
the vertical lines in this diagram, while the NS5-branes the horizontal lines. Here, let us briefly see why these
webs engineer the 5d N = 1 super Yang-Mills as the low energy effective theories. When we take the low
energy limit, the fine structure of the brane-web is lost, and shrink to a point in the two-dimensional grid
diagram. The branes on this point are five-dimensional, that is, they fill (x0, . . . , x4). Qualitatively speaking,
this is the reason why the IR theories are five-dimensional. Then, the information about gauge groups can be

1For later convenience, we use the unusual notation. In most of the references, the D5-branes are denoted by (1, 0)-branes.
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read off from the diagram as follows. As an example, consider the following (p, q)-web:

x6

x5

This diagram shows two parallel D5-branes are stretched between two NS5-branes. This web engineers the
N = 1 pure theory with G = SU(2). This is because the strings stretched between the parallel D5-branes
(the wavy line in the figure) behave as the gauge bosons. The number of parallel D5-branes is the rank of the
gauge group. This is why the (p, q)-web contains enough information about QFTs. Let us remark that these
webs have been studied extensively when the gauge group is of A-type (SU(N)). Except for that case, we
know the construction of the C- or D-type gauge group using the orientifolds. See for example [58, 40],

The duality which we deal with, acts on the charges of branes and changes the brane configuration. This
seems rather simple operation in the string theory, though for the supersymmetric QFTs in the IR, it shows
very strange result. In general, it completely changes the structures of QFTs such as gauge groups, and
matter contents. It sometimes changes the theory which admits the Lagrangian description to the theory
which does not. For the type IIB superstring, one of the conjectural dualities is the SL(2,Z)-duality. Put
τ = C0 + i exp(−Φ) with C0 the scalar potential and Φ the dilaton field in the type IIB supergravity. Roughly,
this becomes the complexified coupling constant in the IR. At the level of the supergravity, the action is
invariant under the SL(2,Z) action on τ and (p, q),

τ 7→ aτ + b

cτ + d
,

(
p
q

)
7→
(
a b
c d

)(
p
q

)
, with

(
a b
c d

)
∈ SL(2,Z) .

Note that it is conjectured that this is the exact duality in the type IIB superstring. In what follows, we
refer as the S-duality to the S-transformation in this SL(2,Z). (Note that SL(2,Z) is generated by S- and
T -transformation which satisfy some relations.)

Let us again remark that what we call the string dualities are just conjectures, and there is no proof for
them. Thus, the non-trivial identities in QFTs we obtain as a result, are also conjectures. The lack of those
proofs drives us to study these dualities.

The key tool to attack this problem is integrability. The supersymmetric QFTs we deal with have at least
eight supercharges. The theories in this class have been extensively studied, and many remarkable features
have been revealed. One of them was found in [99, 100, 84] and numerous works that followed, and it says that
they are integrable, especially in the sense that the partition functions of these theories (though the space-
time manifolds where they live are not completely free,) can be computed exactly. In general, integrability
is governed by an algebra behind it. For example, the R-matrix, the solution to the Yang-Baxter equation,
governs the integrability of, say, the spin chains on lattices, and at the same time, reproduces the algebras like
Yangian which ensure the existence of enough amount of integrals of motion.

When supersymmetric QFTs with eight supercharges live on the 4d space C2
ε1,ε2 called C2 with the omega

background, the algebra which determines its integrability is known, and the answer is the W-algebra or the
affine Yangian of gl1. This is the discovery by Alday, Gaiotto, and Tachikawa in [4, 121]. This proposal is
quite surprising because the W-algebra describes the symmetry in 2d conformal field theories (CFTs), while
the theories we think of live on 4d.

Now, the situation we are interested in is the theories live on the 5d space C2
ε1,ε2 × S1. In this case,

the answer is given in [14, 15], and it is the Ding-Iohara-Miki (DIM) algebra. This algebra is the quantum
deformation of the algebra which appears when we consider the 4d theories. The DIM algebra plays the central
role throughout this thesis.

Combining all the above, our aim is to prove the non-trivial identity among the partition functions of 5d
theories with eight supercharges, with the help of the Ding-Iohara-Miki algebra. This is our general motivation,
and in what follows, we explain this goal more concretely and show the summary of what we prove.



8 1 Introduction

Detailed Motivation and Summary

Among the string dualities, the most classical and engrossing one is the S-duality, which was originally
introduced in order to avoid the UV divergence in the string amplitudes [94]. Let us see the consequence of
the S-duality in the field theories. We can make the following important observation. As noted above, because
the S-transform in SL(2,Z) acts on the charges (p, q) in the fundamental rep., that is, acting on (p, q) by

S =

(
0 −1
1 0

)
: (p, q) 7→ (−q, p) ,

the S-transform flips the (p, q)-webs along the diagonal line (we neglect the overall minus sign).
The main example we deal with in this thesis of the five-dimensional theory is the AM quiver gauge theory

with AN gauge group (G = A⊗MN ) with NF = 2(N + 1) matters and the Chern-Simons levels ~κ = 0. We
call this theory the (AN , AM )-theory and denote its the partition function of this theory by Z(AN ,AM ). We
concentrate on this theory because it is the most general one as far as we consider the A-type gauge groups.
For the other types of gauge groups, there still exists a problem that the closed forms (which do not include
integrals) of the instanton partition functions are not known, and thus those theories are not good objects to
deal with.

This theory is engineered by the following (p, q)-web:

N + 1

M + 1

That is, we have N + 1 parallel D5-branes, and intersecting M + 1 parallel NS5-branes. The marked lines
indicate the (0, 1) i.e. the D5-branes’ direction. As noted above, because the S-transform flips the diagram
along the diagonal line, the S-duality exchange N and M in Z(AN ,AM ). Thus we have the following conjecture.

Conjecture. As the consequence of the S-duality, we have

Z(AN ,AM ) ∼ Z(AM ,AN ) , (1.0.1)

where ∼ means both sides are identical up to some overall factor. This extra factor has a natural expla-
nation when we consider the topological string theory. See the discussion below.

The main goal of this thesis is to prove the claim above. Note that the proof of this claim using the
K-theory is almost done in [23] for N = 1 case, and in [80] for generic N . We give another proof using the
Ding-Iohara-Miki algebra and the Macdonald functions. Later we will discuss the difference between those
previous works and our result. See Remark below.

One more important fact is we can rephrase the fact above in terms of the topological string theory. Using the
string dualities (see Appendix A.2 and A.2.1 for more details), we can engineer the same theories using the
A-type open topological string theory. The topological string theories are obtained by coupling the gravity to
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the two-dimensional topological sigma models, whose target spaces are typically chosen to be the Calabi-Yau
threefolds (i.e. three complex dimensions). Especially, we are interested in the case where the Calabi-Yau
threefolds are toric. In this case, the Calabi-Yau threefolds are uniquely determined by the web diagrams
called the toric diagrams, which indicate the fixed loci of the torus actions. The concept which connects the
topological string and the 5d N = 1 SYM, is called the geometric engineering. It ensures that it is possible
to compute the partition function of the 5-dimensional QFT which is engineered by a (p, q)-web, by the
topological string on the toric Calabi-Yau manifold whose toric diagram is of the same form as the (p, q)-web.
Note that from this point of view, the duality formula (1) is called the fibre-base duality [74], because the flip
of the toric diagram corresponds to exchanging the base manifolds and fibres.

The contribution for the topological string amplitudes can be regarded to come only from the strings
localized on the toric diagram, and this motivates us to develop the diagrammatic technique to compute the
partition functions of the topological string. This technique is called the refined topological vertex [1, 47], and
it provides the systematic way to compute the topological string partition functions. The refined topological
vertex is defined by

C
(IKV)
λµν (q, t) = (q/t)

(||µ||2+||ν||2)/2
tκ(µ)/2Pν′(t

−ρ; q, t)

×
∑
η

(q/t)
(|η|+|λ|−|µ|)/2

sλ′/η(t−ρq−ν ; q)sµ/η(t−ν
′
q−ρ; q) ,

with Pν the Macdonald polynomial and sλ/η the skew Schur polynomial, and C
(IKV)
λµν can be represented by

the trivalent diagram.

: C
(IKV)
λµν (q, t) .

µ
ν

λ

As is obvious from its form, one direction corresponding to ν is special. This direction is called the preferred
direction. In the diagram, the preferred direction is denoted by the marked edge. Under the string dualities,
(0, 1)-fivebranes corresponds to the preferred directions. The gluing of two vertices means to take summation
over all the partitions about the partition associated with the glued edges.

Using the refined topological vertex, we can also rephrase the conjecture on Z(AN ,AM ). By the geometric
engineering, Z(AN ,AM ) is obtained by arranging them in parallel crosses like the (p, q)-web above. We assign
the emptyset to each external edge. Note that to represent the 4-valent crosses in the diagram, we glue two
topological vertices as follows:

∑
λ


C

(IKV)
λµν1µ

σ

ν2

C
(IKV)
λ′σν2

ν1

 =⇒
ν1

ν2

µ σ

We denote the topological string partition function obtained by this way by Z(AN ,AM )
top. . Here, let us remark

the relation between Z(AN ,AM ) and Z(AN ,AM )
top. . They are identical up to an overall factor, and we denote the

factor by Z(AN ,AM )
extra . That is,

Z(AN ,AM )
top. = Z(AN ,AM )

extra · Z(AN ,AM ) .

The concrete form of Z(AN ,AM )
extra will be given in Section 2.1. The main conjecture above is actually the

invariance of this function Z(AN ,AM )
top. under the S-duality.
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Conjecture (See Conjecture 2.2.1, Proposition 5.2.6 and Conjecture 5.2.9). From the S-duality of the
type IIB superstring, we conjecture

Z(AN ,AM )
top. = Z(AM ,AN )

top. . (1)

Let us remark that when we take q → t, which is called the unrefined limit, there are no preferred directions,
and the unrefined topological vertex is invariant under any permutation of the partitions associated with each
edge. This was proved in [91]. Thus, in this limit, the conjecture becomes trivial. In this limit, the vertex
counts the number of the plane partitions (the three-dimensional partitions) with the fixed asymptotic states.

Now, to simplify the problem, we decompose the toric diagrams to the following ladder diagrams:

λ(1)

λ(2)

λ(N+1)

µ(1)

µ(2)

µ(N+1)

∅

∅

N + 1

µ(i) and λ(i) are the partitions associated with each edge. We denote the gluing of the topological vertex in
this form by CVλ,µ (Definition 2.2.2). Then, changing the preferred directions in CVλ,µ ends up with the following
diagram:

µ(N+1) µ(N) µ(1)

∅ ∅

λ(N)λ(N+1) λ(1)

N + 1

We denote the gluing of the topological vertex in this horizontal ladder form by CHλ,µ (Definition 2.2.2). Then,
it is easily shown that the main claim (1) is equivalent to the following equation (Claim 2.2.3):

CHλ,µ ∼
∑

σ,ν∈PN+1

|σ|=|λ|,|ν|=|µ|

T ∗λ′,σTµ′,ν CVσ,ν , (2)

where T ∗λ′,σ and Tµ′,ν are some matrices which satisfy∑
λ

Tλ,µT
∗
λ,ν = δµ,ν .

∼ means the both sides are equal up to the trivial monomial factors. Moreover, CHλ,µ can be computed directly,
and we obtain

CHλ,µ ∼
N+1∏
i,j=1

Nλ(i),µ(j)(qvi/tuj) , (3)

where Nλ,µ(u) is the Nekrasov factor, and ∼ means we omit the monomial factors.
It is easy to restore the original claim from this equation. That is, when we compose M+1 CH ’s and M+1

CV ’s, the former becomes Z(AM ,AN )
top. and the latter becomes Z(AN ,AM )

top. . As is explained in Definition 5.2.12,
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unfortunately, it is too much to expect Tλ,µ = T ∗λ,µ = δλ,µ. They are given as the transition matrices from
the generalized Macdonald functions to the tensor of Schur functions.

Now we summarize the strategy to prove the main claim above. In order to prove, we construct the
operators whose matrix elements become CVλ,µ. In order to construct them, we make use of the intertwiners
of the modules of the Ding-Iohara-Miki (DIM) algebra Uq,t (Fact 3.4.5). As noted above, the DIM algebra
(Definition 3.3.4) describes the infinite symmetry of the 5d N = 1 supersymmetric QFTs. As we see in
Chapter 3, this algebra acts on the space which is spanned by the Macdonald functions. Because the space
spanned by the Macdonald functions is isomorphic to the Fock space of the Heisenberg algebra (3.2.1)

[am, an] = m
1− q|m|

1− t|m|
δm+n,0 ,

the Fock space is endowed with the Uq,t-module structure. The module structure is not unique. They are
labelled by the two integers (n,m) corresponding to the images of the two centers in Uq,t. At this point,
the (0, 1)-modules and (1,M)-modules (M ∈ Z) are known, and they are enough for our purpose. Then,
in [9], the intertwiner from one (1, 1)-module to the tensor of one (1, 0)-module and one (0, 1)-module (and
its inverse) was introduced. Because these intertwiners connects three Uq,t-modules, they can be represented
by the trivalent vertices. Surprisingly, the matrix elements of these intertwiners with respect to the Schur
functions agree with the refined topological vertex (Proposition 3.4.9). From this proposition, we can see the
preferred directions correspond to the (0, 1)-modules, thus the charges of the fivebranes are identified with the
labels of the Uq,t-modules. By this observation, we use the same diagram as the refined topological vertex to
indicates the intertwiners. Then, combining these intertwiners like the ladder diagram of CVλ,µ, we construct

the operator T V (Definition 5.1.8). Let λ = (λ(1), . . . , λ(N)) be an N -tuple of partitions, and |sµ〉 be the tensor
of the Schur functions (Notation 5.2.10). In the end, it is easy to check that the matrix element 〈Sλ| T V |sµ〉
is identical to CVλ,µ (Lemma 5.2.11). This T V ensures the existence of what we call the Mukadé operator,

defined below. Let Fu =
⊗yN

j=1Fuj be the N -fold tensor space of the Fock spaces.

Definition (See Definition 5.1.1). Let V(x) : Fu → Fv be a linear map satisfying the commutation
relations (

1− x

z

)
X(i)(z)V(x) =

(
1− (t/q)i

x

z

)
V(x)X(i)(z) (i = 1, . . . , N) , (4)

and the normalization condition 〈0| V(x) |0〉 = 1. We refer to this operator as the Mukadé operator. Here
|0〉 (resp. 〈0|) is the vacuum (resp. dual vacuum) state.

Roughly speaking, X(i)(z)’s (Definition 4.2.3) are the generating currents of q-deformed W-algebra for
g = AN−1. Then, we compute the matrix elements of the Mukadé operator. As easily seen, it is not smart to
compute the matrix elements directly with respect to the Schur functions. Instead of that, we introduce the
better basis of the Fock tensor space Fu, called the generalized Macdonald functions. The introduction and
construction of this basis are the main subjects in Chapter 4. We denote by |Kλ〉 = |Kλ(u)〉, the canonical
form of the generalized Macdonald function on Fu (Definition 4.2.25). These states are called the integral
forms of the generalized Macdonald functions. Then, the following theorem, which was conjectured in [8], is
our final result.

Theorem (See Theorem 5.2.1). We have

〈Kλ(v)| V(x) |Kµ(u)〉 =

(
(−γ2)NeN (u)x

)|λ|
(γ2x)

|µ|

N∏
i=1

u
|µ(i)|
i gµ(i)(

v
|λ(i)|
i gλ(i)

)N−1
·

N∏
i,j=1

Nλ(i),µ(j)(qvi/tuj) . (5)
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Here, γ = (t/q)1/2, eN (u) = u1 · · ·uN and Nλ,µ is the Nekrasov factor. For the definition of gλ, see
Definition 4.2.27.

This becomes the proof of the main claim above. Denote by Tλ,µ, the transition matrix from the generalized
Macdonald functions |Pλ〉 to the Schur functions |sµ〉. Then, combining this Tλ,µ, (2) and (3), we can conclude
the proof of the equation (5), and thus that of the main claim (1). For more details, see Section 5.2.

Now what is left is to prove the main theorem (5). Chapter 5 is devoted to this proof. Recall the Mukadé
operator V(x) : Fu → Fv depends on the two sets of parameters, u and v. Then the proof is by the analytic
continuation on the parameters v. That is, we first tune the parameters as

vi → tniui , for ∀ni ∈ Z≥`(λi) .

(λ are the Young diagrams in the bra vector.) Under this specialization, the Mukadé operator has a drastically

simplified realization Ṽ (n)(x). Then the matrix elements of Ṽ (n)(x) become the Macdonald functions. Next,
we apply the Kajihara-Noumi transformation formula (Section 5.3) to the Macdonald functions, and we obtain
the Nekrasov factors with the variables specialized. Finally, we analytically continue them to the generic
parameters v by the identity theorem.

Remark. Here, we explain the difference between the previous work [80] and our result. (Note that the result
in [23] corresponds to the case N = 1 in [80].) Roughly speaking, in [80], they follow the top-down approach,
while our approach is bottom-up.

Let us refine this statement. Let Ku be what is called the equivariant K-group of the instanton moduli
space, which is isomorphic to Fu as a vector space. They firstly introduce what is called the Ext-operator
Φm(z) : Ku → Kv (with m a parameter)2, whose matrix elements are given by the Nekrasov factor.(Note that
this is the definition of the Ext-operator.) Then, they prove that the definition is equivalent to the fact that
Φm(z) satisfies the following commutation relations with the generating currents Wk(y) (k = 1, . . . , N) of the
q-WN algebra:

k∏
i=1

(
1− mkeN (u)z

qN−ieN (v)y

)
·
(
Φm(z)Wk(y)−mkWk(y)Φm(z)

)
= 0 .

Note that Wk(y) is essentially same as X(k)(y) in our definition of V(z).
However, once we forget the original definition of the Ext-operator, these commutation relations do not

define the operator uniquely. More concretely, for k ≥ 2, the matrix elements 〈0| (Wk)lΦm(z) |0〉 (1 < l < k)
(with (Wk)l the l-th mode of Wk(y)) cannot be computed from the defining relations. Thus once we adopt these
defining relations, we have some degrees of freedom to add some operators to the Mukadé operator. (Note that
the Mukadé operator also satisfies these relations in addition to its defining relations.) By recalling that the
Mukadé operator can be identified with the glued topological vertices in the shape of the ladder (that is, T V ),
it is obvious that this situation (where there are degrees of freedom to add some extra operators to the refined
topological vertex,) is not good for our purpose to see the duality formula for the refined topological vertex. For
short, because of these extra degrees of freedom, the Ext-operator cannot be uniquely identified with T V . This
is why we take the bottom-up approach in our work.

Moreover, the equation (5) has one more interesting application. In order to explain it, we first briefly recall
the Alday-Gaiotto-Tachikawa (AGT) correspondence [4]. The AGT correspondence claims the equivalence
between the instanton partition function and the Virasoro conformal block. This conjecture has been proved
in [71], [97] and [3]. The idea of the proof is to confirm the equivariant cohomology of the instanton moduli
space admits the Virasoro module structure. Especially, [3] proves the correspondence by showing the matrix
elements of the Virasoro primary field with respect to the generalized Jack functions, are equal to the 4d
version of the Nekrasov factors.

We can also state the five-dimensional analogue of the AGT correspondence 3, that is, the equivariant
K-group of the instanton moduli space admits the q-Virasoro module structure [76].

2More precisely, the Ext-operator and Φm(z) in [80] differ by a simple factor. We omit the difference for simplicity.
3Although the q-deformation of the conformal field theory is not defined, from this point of view, this does not matter.
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Now we come back to the Mukadé operator. We can show that when N = 2, under the limit q, t→ 1, the
defining relation of the Mukadé operator (4) reduces to

[Ln, V (z)] = zn
(
z
∂

∂z
+ h(n+ 1)

)
V (z) .

This is the defining relation of the Virasoro primary fields. Therefore, the Mukadé operator can be regarded
as the q-analogue of the primary field. Then, the main theorem (5) means the matrix elements of the q-
primary field with respect to the generalized Macdonald functions are equal to the (5d) Nekrasov factors,
and thus becomes the five-dimensional analogue of the proof á la Alba-Fateev-Litvinov-Tarnopolsky [3] of the
Alday-Gaiotto-Tachikawa correspondence [4].

Structure of the Thesis

This thesis is organized as follows. In Chapter 2, we briefly summarize the results concerning the refined
topological vertex and the concept of the geometric engineering. After introducing them, we show the main

claim which is the consequence of the S-duality. That is, the equality between Z(AN ,AM )
top. and Z(AM ,AN )

top. as
noted above.

Chapter 3 and Chapter 4 are irrelevant to Chapter 2. These two chapters are devoted to the explanation
of the Macdonald functions. In Chapter 3, we review the Macdonald functions, realized on the Fock space,
and the algebra associated with this symmetric functions. In this chapter, we see the Macdonald functions on
the Fock space can be regarded as the limit of the Macdonald polynomials where the number of the variables
goes to infinity. We introduce the vertex operator η(z) whose zero mode is intertwined to the Macdonald
operator in the case of the finite variables under the appropriate projection. After that, we review the explicit
algorithm to construct the Macdonald functions on the Fock space. For this purpose, we prepare two tools,
the Macdonald polynomials and the vertex operator called the top component. By multiplying the Macdonald
polynomial to some products of the top components, taking the constant term, and applying the resulted
operator to the vacuum, we obtain the Macdonald function on the Fock space. Next, we study the algebra
associated with this current η(z). In the end, this algebra turns out to be the Ding-Iohara-Miki (DIM) algebra
Uq,t. We summarize the known results about the representation theory of the DIM algebra. One of the key
ingredients in this thesis, the intertwiner of Uq,t, is introduced in this chapter.

Chapter 4 is devoted to the extension of Chapter 3 to the Fock tensor spaces, that is, the introduction of
the generalized Macdonald functions. The story goes almost the same way as in Chapter 3. The generalized
Macdonald functions are defined as the eigenstates of the zero mode of ∆(η(z)), where ∆ is the coproduct in
Uq,t. From the lesson we learned in the previous chapter, we know that in order to construct such states, we
first have to know about the ”polynomials”. We see that the answer is what is called the bispectral Macdonald
functions. Moreover, the analogous vertex operator of the top component requires the screening currents of
q-deformed W-algebra. In this chapter, we mainly study these two ingredients, the bispectral Macdonald
functions, and the screening currents.

Preparations in all the former chapters come to fruition in Chapter 5. We give the algebraic proof of the
main claim stated in Chapter 2, using theorems in Chapter 3 and 4. More precisely, we prove the formula for
the matrix elements of the Mukadé operator with respect to the generalized Macdonald functions. The key
tool for the proof is the Kajihara-Noumi identity, which is roughly the Euler transformation formula for the
multiple hypergeometric series.

In Chapter 6, we revisit the bispectral Macdonald functions. We realize the Macdonald functions as the
compositions of the Mukadé operators (with parameters specialized).

This thesis is based on the following paper [35]:

• M. Fukuda, Y. Ohkubo and J. Shiraishi, ”Generalized Macdonald Functions on Fock Tensor
Spaces and Duality Formula for Changing Preferred Direction”, arXiv:1903.05905[math.QA].
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The original part in the present thesis is provided in some part of Chapter 4, Chapter 5 and Chapter 6. More
precisely, in Chapter 4, Chapter 5 and Chapter 6, all the lemmas, propositions and theorems which have no
citations in their labels, are the original works.



Chapter 2

Main Claim: Duality under
S-transformation

In this chapter, we summarize the facts known in the string theory and show some claims which the string
theory conjectures. The proofs of those claims are the main object in this thesis.

In Section 2.1, we review the concept called the geometric engineering. It relates the five-dimensional super
Yang-Mills (SYM) theory to the topological string theory. More precisely, through this correspondence, the
partition functions of the 5d SYM can be computed as the partition functions of the topological string. Thus
we first summarize the exact form of the 5d SYM partition functions, especially their non-perturbative part
called the instanton partition functions. Then, we see the idea of the topological vertex, which gives us the
technique to compute the (limit of) topological string partition functions. The geometric engineering suggests
these functions agree with each other. We deal with two examples. First, the simplest one, the pure AN gauge
theory. The second one is the AM quiver gauge theory with AN gauge groups. We refer to the latter theory
as the (AN , AM )-theory.

In Section 2.2, we see the string duality called S-duality claims the highly non-trivial identity between the
partition functions of (AN , AM )-theory and (AM , AN )-theory. Moreover, this identity suggests the duality
formula under changing the preferred directions of the refined topological vertex. Again, note that these
formulas are consequences of the string duality, and they are merely conjectures which have to be proved. The
proofs are delivered in Chapter 5.

2.1 Geometric Engineering

2.1.1 Instanton Counting

Our main concern is the 5d N = 1 (i.e. eight supercharges) super Yang-Mills (SYM for short) theory. This
class of QFTs has been extensively studied since the original work [98] by Seiberg. Throughout the thesis, we
only consider the case that the 5-dimensional theories live on C2

ε1,ε2×S
1
R, where R stands for the circumference

of S1. This geometry is defined by the identification

(z, w, y) ∼ (e−ε1z, e−ε2w, y +R) , for (z, w) ∈ C2 , y ∈ S1
R . (2.1.1)

We refer to this geometry as the Ω-background. In what follows, we put q = e−ε1 and t−1 = e−ε2 .
One of the salient features of this class of QFTs is the partition functions can be computed exactly. The

partition function is defined by the the path integral of the unity, that is,

Z5D =

∫
[D(fields)] e−S[(fields)] , (2.1.2)

where S is the action of the theory we consider. (We always consider the Euclidean theories.) First, let us
see what kind of parameters this function depends on. Because C2 is not compact, we have to specify the

15
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boundary conditions at infinity (i.e. the values of each field at infinity) to make the partition function finite.
We have two sets of such parameters u and m, specifying the boundary conditions. (u is the shorthand
notation for the multiple of parameters (u1, u2, . . .).) ui’s are parameters corresponding to the exponential of
the values of At+ iϕ at infinity, where At is the 5d gauge field along S1 direction, and ϕ is the real scalar field
in the vector multiplet in 5d. In the limit where the theory reduces to 4d, they become the complex scalar in
the vector multiplet, we call them the Coulomb branch parameters. Similarly, in 5d, the real mass parameters
become the scalar field in a vector multiplet, and the component along S1 direction of the vector field in
this vector multiplet and the mass are combined into a complex field. mj ’s are parameters corresponding to
the exponential of the values of this complex field at infinity. In the 4d limit, this combination becomes the
complex mass parameters, and thus we just refer to them as the mass parameters in what follows.

Besides, the partition function depends on the coupling constant. In 5d, the coupling constant ∼ 1/g2

becomes the real scalar field in the vector multiplet whose vector component couples to the conserved current
corresponding to the instanton number. We have to specify the value of this field at infinity, and we denote
the exponential of the parameter by q. q is called the instanton fugacity.

In the end, noting we also have q, t parameters, the partition function is the function of all these parameters,
that is,

Z5D = Z5D(q,u,m|q, t) . (2.1.3)

Moreover, the partition function is decomposed into the perturbative part Z1-loop and non-perturbative part
Zinst., as

Z5D = Z1-loop · Zinst. . (2.1.4)

We put the subscript “1-loop” to the perturbative part because it is one-loop exact thanks to the supersym-
metry.

First, we take a look at the non-perturbative part Zinst., which is also called the instanton partition
function. (On the 1-loop part, we will give some comments later.) In the weak coupling limit, we can integrate
out the non-compact 4d space, and the instanton partition function of the theory reduces to the partition
function of the supersymmetric quantum mechanics on S1, that is, the following index (Section 4 in [84]):

Zinst. =

∞∑
k=0

qk Zk , (2.1.5)

with q = e−4π2R/g2 and
Zk = trHk

[
(−1)F qJ1t−J2uΠmK

]
, (2.1.6)

where Hk is the Hilbert space of the supersymmetric quantum mechanics whose target is k-instanton moduli
space and the meanings of the other symbols are as follows. We use the notations like uΠ =

∏
i u

Πi
i . F is

the fermion number operator, J1,2 are the generators of the Cartan algebra of SO(4), and Πi’s (resp. Kj ’s)
are the generators of the Cartan algebra of the gauge group (resp. the flavor group). The rough idea of the
derivation of the results in this section is explained in Appendix A.1, and for more details, see the references
cited there.

Using the localization technique, we can compute Zinst. as the summation over the Young diagrams, which
represent the fixed points of the instanton moduli space. In order to show the closed form of Zinst., we
introduce the function, called the Nekrasov function.

Definition 2.1.1 (Nekrasov Factor). Let λ, µ ∈ P, define the function

Nλµ(u) :=
∏

(i,j)∈λ

(
1− uqaλ(i,j)t`µ(i,j)+1

) ∏
(i,j)∈µ

(
1− uq−aµ(i,j)−1t−`λ(i,j)

)
. (2.1.7)

Zinst. has the contributions from several multiplets. We summarize some of them in the following fact.

Fact 2.1.2. We concentrate on the case where the gauge group is G = AN , and every vectors which appear
below have (N + 1) components.
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1. The vector multiplets:

Zvec.(u,λ) =

N+1∏
i,j=1

1

Nλ(i)λ(j)(qui/tuj)
. (2.1.8)

2. The bifundamental matter with the mass parameter m:

Zbifund.(v,λ|u,µ|m) =

N+1∏
i,j=1

Nλ(i)µ(j)(mqvi/tuj) . (2.1.9)

3. The Chern-Simons term with level κ:

ZCS(u,λ|κ) =

N+1∏
`=1

∏
(i,j)∈λ(`)

(
u`q

j−1t1−i
)κ

= eN+1(u)

(
N+1∏
i=1

gλ(i)

)κ
. (2.1.10)

4. The fundamental and anti-fundamental matter with the mass parameter m1:

Zfund.(u,λ|m) =

N+1∏
i,j=1

Nλ(i)∅(qui/tmj) , Zaf.(u,λ|m) =

N+1∏
i,j=1

N∅λ(i)(qmj/tui) . (2.1.11)

Here, u are the exponentiated Coulomb branch parameters.

Let us see two examples. The first one is the pure theory, and the second one is the A-type linear quiver
gauge theory with the A-type gauge groups. The latter example is out main target, and its exact form is used
repeatedly throughout this thesis.

Example 1: Pure gauge theory with gauge group AN with CS level κ

Fact 2.1.3. For u ∈ CN+1, the following function gives the instanton partition function of the 5d N = 1 pure
SYM with the gauge group G = AN :

ZANinst.(q|u|κ) =
∑

λ(1),...,λ(N+1)∈P

q|λ|ZCS(u,λ|κ)Zvec.(u,λ) . (2.1.12)

Example 2: AM quiver gauge theory with AN gauge group with NF = 2(N + 1)

We consider the following quiver diagram:

M

AN AN AN

N + 1 N + 1

We denote the partition function of this theory by Z(AN ,AM ).

1We use the slightly different notation for the mass parameters than conventional one for later convenience.
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Fact 2.1.4. For u(i) ∈ CN+1 (i = 1, . . . ,M), mf,a ∈ CN+1, the following function gives the instanton
partition function of this theory:

Z(AN ,AM )
inst. ((qi)

M
i=1|u(1), . . . ,u(M)|κ|mf ,ma, (mi)

M−1
i=1 )

=
∑

λ(i)∈PN+1

1≤i≤M

M∏
k=1

q
|λ(k)|
k · ZCS(u(k),λ(i)|κk) · Zvec.(u

(k),λ(k))

×Zfund.(u
(M),λ(M)|mf ) · Zaf.(u

(1),λ(1)|ma)

M−1∏
k=1

Zbifund.(u
(k),λ(k)|u(k+1),λ(k+1)|mk) .

(2.1.13)

Roughly speaking, the contributions from the vector multiplets come out of each node, and the bifun-
damental contributions are associated with the edges connecting nodes. As we will see in Chapter 5, the
parameters mi (i = 1, . . . ,M − 1), which are related to the masses of the bifundamental matters, are fixed to
γ = (t/q)1/2. When the Chern-Simons level κ = (0, . . . , 0), we refer to this theory as the (AN , AM )-theory.

Comments on 1-loop Part

Here, let us give some comments on the 1-loop part Z1-loop of the partition function. The closed formula for
Z1-loop is known (see [61] for the derivation), and the result is summarized as follows.

Fact 2.1.5. Put

G(z) :=

∞∏
i,j=0

(1− zqit−j) =

∞∏
i,j=0

1

1− zqitj+1
. (2.1.14)

For the vector multiplet, the contribution to Z1-loop is given by

Zvec.
1-loop(u) =

∏
α∈∆+

G(uα) · G(quα/t) , (2.1.15)

where ∆+ is the positive root of the gauge group (that is, AN in this thesis), and u is the exponentiated

Coulomb branch parameters. uα stands for
∏N+1
i=1 uαii when we represent α as the N + 1-vector.

For the hypermultiplet, the contribution is given by

Zhyper.
1-loop (u,m) =

(∏
w∈R

G(muw/γ)

)−1

, (2.1.16)

where R is the weight of the representation of AN , which is associated with the matter.

Let us see two examples. The first example is the pure gauge theory with gauge group AN (see Example 1
above). We denote it by ZAN1-loop. The contribution only comes from the vector multiplets, and we obtain the
following fact.

Fact 2.1.6. For u ∈ CN+1, the following identity holds:

ZAN1-loop(u) =
∏

1≤i<j≤N+1

G(uj/ui) · G(quj/tui) . (2.1.17)

The second example is the (AN , AM )-theory (see Example 2 above). In this case, the contribution comes
from the fundamental and anti-fundamental matters and the M −1 bifundamental matters, in addition to the
vector multiplets at each nodes. The result is given by the following fact.
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Fact 2.1.7. The following function gives the 1-loop contribution of (AN , AM )-theory:

Z(AN ,AM )
1-loop (u(1), . . . ,u(M)|u(0),u(M+1)) = Z(AN ,AM )

1-loop, bifund. · Z
(AN ,AM )
1-loop, f,a · Z

(AN ,AM )
1-loop, vec. , (2.1.18)

with

Z(AN ,AM )
1-loop, bifund. =

M∏
k=2

 ∏
1≤j<i≤N

G(u
(k)
i /γu

(k−1)
j )

∏
1≤i≤j≤N

G(u
(k−1)
j /γu

(k)
i )

−1

,

Z(AN ,AM )
1-loop, f,a =

 ∏
1≤j<i≤N

G(u
(1)
i /γu

(0)
j )

∏
1≤i≤j≤N

G(u
(0)
j /γu

(1)
i )

−1

×

 ∏
1≤j<i≤N

G(u
(M+1)
i /γu

(M)
j )

∏
1≤i≤j≤N

G(u
(M)
j /γu

(M+1)
i )

−1

Z(AN ,AM )
1-loop, vec. =

M∏
k=1

 ∏
1≤i<j≤N+1

G(u
(k)
j /u

(k)
i ) · G(qu

(k)
j /tu

(k)
i )

 .

(2.1.19)

Here, u(i) ∈ CN+1 (i = 1, . . . ,M) is the Coulomb branch parameters at i-th node, and u(0),u(M+1) ∈ CN+1

are associated with the parameters mf,a above, the fundamental and anti-fundamental matters.

When M = 1 (note that there is no bifundamental matter in this case), the fact that Z(AN ,A1)
1-loop is of this

form was confirmed in [111] (see also Appendix C in [41]). The generalization of to generic M is straightforward
because the bifundamental matter can be regarded as just the combination of the two fundamental matters.

2.1.2 Topological Vertex and its Refinement

Next, we introduce the topological vertex and its refinement. Again, the rough sketch of the derivation of
them is in Appendix A.2, and for more details, see the references therein. First, we introduce the unrefined
topological vertex.

Definition 2.1.8 (Topological Vertex [1]). For λ, µ, ν ∈ P, define the topological vertex Cλµν(q) by

Cλµν(q) = qκ(µ)/2sν′(q
−ρ; q, t)

∑
η

sλ′/η(q−ν−ρ; q)sµ/η(q−ν
′−ρ; q) . (2.1.20)

The refinement is proposed in [47], and the result is summarized by the following definition.

Definition 2.1.9 (Refined Topological Vertex [47]). Define the refined topological vertex C
(IKV)
λµν (q, t) by

C
(IKV)
λµν (q, t) = (q/t)

(||µ||2+||ν||2)/2
tκ(µ)/2Pν′(t

−ρ; q, t)

×
∑
η

(q/t)
(|η|+|λ|−|µ|)/2

sλ′/η(t−ρq−ν ; q)sµ/η(t−ν
′
q−ρ; q) .

(2.1.21)

We assign the following diagram to the refined topological vertex:

C
(IKV)
λµν (q, t) .

µ

(1,m)

ν (0, 1)

λ

(1,m+ 1)
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For v = (v1, v2) and w = (w1, w2), define the symplectic product ∧ by

v ∧ w = v1w2 − v2w1 . (2.1.22)

Then, the triple of 2-vectors (v1, v2, v3) (vi ∈ Z2) which satisfy

v1 + v2 + v3 = 0 , v1 ∧ v2 = v2 ∧ v3 = v3 ∧ v1 = 1 , (2.1.23)

specify the slopes of each legs of the trivalent vertex. (The graph above corresponds to m = 0 case.) We refer
to the direction corresponding to the partition ν as the preferred direction. We also denote the direction to µ
(resp. λ) as t-direction (resp. q-direction).

As is obvious from its form, in q → t (self-dual background) limit, the refined topological vertex reduces
to the (unrefined) topological vertex.

Now in order to define the gluing rules of the refined topological vertices, we first introduce the framing
factor, which was introduced in [47] and slightly modified in Taki’s paper [111].

Definition 2.1.10 (Taki’s framing factor). Define the framing factor by

f ′ν(q, t) := (−1)|ν|+|ν|/2tn(ν)q−n(ν′) , (2.1.24)

with ν′ the transposition of ν.

Note that we put ′ on fν(q, t) because it differs by (−1)|ν|/2 from fν(q, t) = (−1)|ν|tn(ν)q−n(ν′), which was
introduced in [47] and will be used in the succeeding chapters.

Now we define the gluing rules of two refined topological vertices.

Definition 2.1.11 (Gluing Rules). Let (v
(1)
1 , v

(1)
2 , v

(1)
3 ) and (v

(2)
1 , v

(2)
2 , v

(2)
3 ) be the triple of 2-vectors which

specify two glued vertices.

Define the gluing rules for two vertices associated with v
(1)
i and v

(2)
j (= v

(1)
i ), by∑

ν

Q|ν|C
(IKV)
···ν··· (q, t) · (f ′ν(q, t))n · C(IKV)

···ν′···(t, q) , (2.1.25)

with n = v
(1)
i+1∧v

(2)
j+1 = v

(1)
i−1∧v

(2)
j−1 (identifying i+ 3 with i if needed) the framing number, which is determined

by the slope of the two vertices. The corresponding diagram is given by

v
(1)
i+1

v
(1)
i = v

(2)
j

v
(1)
i−1

v
(2)
j−1

v
(2)
j+1

Q

∑
ν

C
(IKV)
···ν··· (q, t) C

(IKV)
···ν′···(t, q) .

These are all the possible gluing of the vertices.

We introduce the toric Calabi-Yau threefold called AN geometry. As is well-known, the toric variety is
uniquely identified once the two dimensional diagram, called the toric diagram is specified.

Definition 2.1.12 (AN Geometry). Define the toric Calabi-Yau threefold whose toric diagram is given by the
following diagram:
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(1, κ+ 1)

(1, κ)

(1,−N)

(1, 1−N)

(1, κ+ 2− i)

(1, i−N)

(1, κ−N)

(1, 1)

Figure 2.1: Toric Diagram for AN Geometry

The double of integers (n,m) denotes the slopes of each lines. We refer to this CY as the AN -geometry.

This geometry is the C2/ZN+1 fibration over P1. The way to recover the toric diagram above is explained
in the appendix in [46].

The purpose of this subsection is to introduce the following refined topological string partition function.

Definition 2.1.13. Define the topological string partition function ZANtop.(q, t) on AN geometry by the gluing
of the refined topological vertices in the form of the toric diagram of the AN geometry. We regard the vertical
lines as the preferred directions and assign the empty partitions to all external legs.

2.1.3 Geometric Engineering

The concept of the geometric engineering was introduced in [59], and further studied in numerous papers. The
most basic idea is summarized into the following fact.

Fact 2.1.14. We have the following identity:

ZANtop.(q, t) = ZAN1-loop · Z
AN
inst.(q, t) . (2.1.26)

Here, the Chern-Simons level corresponds to κ in Figure 2.1.

The proof is by direct computation and is given in [111].

This correspondence can be extended to the wider class of theories. Let X be the toric diagram of some
CY threefold, and X̄ be the brane web diagram2 which is equal to the diagram X. Then we have

type IIB string with (p, q)-fivebrane web X̄ ' Type-A topological string on X . (2.1.27)

For the toric diagram X, let ZXtop. be the partition function which is obtained by gluing the refined topological

vertices in the form of X. For every 5D N = 1 SYM theory TX which can be realized by the (p, q)-web X̄,
the partition function of TX is equal to ZXtop.. For more details of this idea, see Appendix A.2.1.

Another example we deal with is the AM quiver gauge theory with AN gauge group at each nodes. In the
present thesis, we concentrate on the case where the Chern-Simons levels at each nodes are zero. This theory
is engineered by the following toric diagram:

2Note that we use the unusual convention, with which the D5-branes lie in the vertical direction, while in most of the papers,
they lie in the horizontal direction.
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∅ ∅ ∅

∅ ∅ ∅

∅

∅

∅

∅

∅

∅

N + 1

M + 1

Figure 2.2: Toric Diagram for (AN , AM ) Theory

Here, we use the simplified notation,

C
(IKV)
λµν1µ

σ

ν2

C
(IKV)
λ′σν2

ν1

∑
λ =⇒

ν1

ν2

µ σ

Definition 2.1.15. Define the topological string partition function Z(AN ,AM )
top. by the gluing of the refined

topological vertices in the form of the toric diagram of Figure 2.2.

Then, the geometric engineering claims the following statement.

Fact 2.1.16. Under the appropriate identification of parameters, we have the following identity:

Z(AN ,AM )
top. (q, t) = Z(AN ,AM )

extra · Z(AN ,AM )
1-loop · Z(AN ,AM )

inst. (q, t) . (2.1.28)

The RHS is defined in Fact 2.1.4 and Fact 2.1.7. Z(AN ,AM )
extra is some normalization factor.

Here, the normalization factor Z(AN ,AM )
extra is the contribution from the string stretch between parallel D5-

branes in the external legs. For more details, see [41, 42]. Following these references, for the (AN , AM )-theory,

we can compute the concrete form of Z(AN ,AM )
extra , see especially Appendix C in [41]. This will be used later in

Chapter 5.

Fact 2.1.17. For u,v ∈ CN+1, the form of Z(AN ,AM )
extra is given by

Z(AN ,AM )
extra (u|v) =

∏
1≤i<j≤N+1

G(uj/ui) · G(qvj/tvi) . (2.1.29)

The ratios of the parameters u,v corresponds to the Kähler parameters among the parallel external legs.
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2.2 S-duality and Main Claim

On the LHS of the duality (2.1.27), there exists a natural action of SL(2,Z) on the brane web, which is induced
from that on τ , (which roughly corresponds to the coupling constant of the gauge theory in the IR,)

τ 7→ aτ + b

cτ + d
, with

(
a b
c d

)
∈ SL(2,Z) . (2.2.1)

At the same time, SL(2,Z) acts on the double of integers (p, q), which labels the fivebrane charge. In this
thesis, we are especially interested in

S =

(
0 −1
1 0

)
∈ SL(2,Z) . (2.2.2)

Through the string duality above, this action is intertwined to that on the toric diagram. The S-action on
the diagram above ends up with the exchange between AN and AM . This is due to the fact that S-transform
exchanges the (0, 1)-branes and (1, 0)-branes, and thus in terms of the toric diagrams, it changes the preferred
direction. (We neglect overall negative sign.) As a result, the S-duality in the string theory conjectures the
following equality.

Conjecture 2.2.1. Under the appropriate identification of parameters, we have

Z(AN ,AM )
top. (q, t) = Z(AM ,AN )

top. (q, t) . (2.2.3)

For the details, see Proposition 5.2.6 (and Conjecture 5.2.9).

The proof is presented in Section 5.2.

2.2.1 Main Claim in terms of Refined Topological Vertex

Now we rephrase the above claim in terms of the refined topological vertex. First we define the gluing
corresponding to Figure 2.3.

Definition 2.2.2. For the (N−1)-tuple of parameters (Q1, . . . , QN−1) and the N -tuple of parameters (Q′1, . . . , Q
′
N ),

define

CHλ,µ((Qi), (Q
′
i)) :=

∑
ν∈PN

∑
σ∈PN−1

N−1∏
i=1

Q
|σ(i)|
i

N∏
j=1

(Q′j)
|ν(j)|

N∏
i=1

C
(IKV)

ν(i)(σ(i))′λ(i)(q, t) · C
(IKV)

(ν(i))′σ(i−1)µ(i)(t, q) , (2.2.4)

CVλ,µ((Qi), (Q
′
i)) :=

∑
ν∈PN

∑
σ∈PN−1

N−1∏
i=1

Q
|σ(i)|
i

N∏
j=1

(Q′j)
|ν(j)|

N∏
i=1

C
(IKV)

ν(i)µ(i)(σ(i−1))′
(q, t) · C(IKV)

(ν(i))′λ(i)σ(i)(t, q) . (2.2.5)

We put σ(0) = ∅.
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Q′N

QN−1

λ(N)

∅

QN−2

Q′N−1

λ(N−1)

µ(N−1)

Q′1

µ(1)

λ(1)

∅

µ(N)

∅

µ(1)
Q′1

Q1

Q′2

λ(1)

µ(2)

λ(2)

λ(N)

µ(N)

∅

Figure 2.3: Left:CHλ,µ((Qi), (Q
′
i)) and Right:CVλ,µ((Qi), (Q

′
i))

Then, Conjecture 2.2.1 is translated into the duality formula under changing the preferred directions of
the refined topological vertex.

Claim 2.2.3. Under changing the preferred directions, CHλ,µ and CVλ,µ are related (schematically) with
each other by

CHλ,µ((Qi), (Q
′
i)) ∼

∑
σ,ν∈PN

|σ|=|λ|,|ν|=|µ|

T ∗λ′,σTµ′,νCVσ,ν((Qi), (Q
′
i)) , (2.2.6)

where T ∗λ′,σ and Tµ′,ν are some matrices which satisfy∑
λ

Tλ,µT
∗
λ,ν = δµ,ν . (2.2.7)

The algorithm to compute the exact proportional coefficients and the proof are presented in Corollary
5.2.13.



Chapter 3

Macdonald Symmetric Functions and
Ding-Iohara-Miki Algebra

The Macdonald symmetric polynomials were introduced in the 2nd edition of the textbook ”Symmetric Func-
tions and Hall Polynomials” [69] by Ian Macdonald. They give the two-parameter generalization of the Schur
polynomials and are defined once the root systems of Lie algebra are specified. In this thesis, we concentrate
on the Macdonald polynomials associated with the root systems of A-type. The basic definition and important
properties are reviewed in Section 3.1.

Next, in Section 3.2, we review the realization of the Macdonald polynomials on the Fock space of some
Heisenberg algebra. We refer to such states on the Fock space as the Macdonald functions. They can be
regarded as the limit of Macdonald polynomials where the number of variables goes to infinity because under
the appropriate projection (Definition 3.2.3), they reduce to the Macdonald polynomials. Then, Theorem
3.2.6 gives the explicit algorithm to construct the Macdonald functions. Through the construction, we get
the important lesson that in order to construct the Macdonald functions labelled by the partition λ, we first
need to prepare the Macdonald polynomials labelled by λ. This concept we learned here gives us the strong
guiding principle to construct the generalized Macdonald functions on the Fock tensor spaces, which is the
main subject in Chapter 4.

Section 3.3 and 3.4 are devoted to review the algebra Uq,t called the Ding-Iohara-Miki algebra (DIM for
short). We show the DIM algebra naturally emerges from the consideration of the Macdonald functions
discussed in the previous section. After introducing Uq,t, we summarize its representation theory. In a word,
the Uq,t-modules are labelled by two integers (n,m), corresponding to the images of two centers in Uq,t. Then,
the key fact is there exist two types of intertwiners that intertwine three such Uq,t-modules (Fact 3.4.5). The
salient property of these intertwiners is the matrix elements of them become the refined topological vertex in
Definition 2.1.9. In the proof of the main claim, we make use of these intertwiners instead of the topological
vertex itself.

Then because in the topological vertex side we have the S-transformation (which corresponds to the change
of preferred directions), we have a similar action on the Uq,t-modules which appear in the definition of the
intertwiners. In the end, we will see the S action actually exists as the automorphism of Uq,t, and the labels
(n,m) of Uq,t-modules are acted by the S-transform matrix (2.2.2). This automorphism is called the Miki
automorphism [72], and reviewed in Section 3.5.

Section 3.6 is the complement of Section 3.2. As we see in Section 3.1, the Macdonald functions are the
joint eigenstates of commuting Hamiltonians. On the Fock space, we have to show this property holds, that
is, we have to construct the infinitely many commuting operators. This problem is miraculously solved by
introducing the Feigin-Odesskii algebra.

25
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3.1 Macdonald Symmetric Polynomials

We briefly review the basic facts about the Macdonald polynomials, following [69, Chapter 6], but with infinite
variables. Though we deal with q and t as complex parameters and thus the base field F = C, we sometimes
use the notation Q(q, t) to indicate the dependence on q, t.

Before that, we introduce some notations, which will be used through the following chapters. Let Λn be
the space of symmetric polynomials with coefficients in Q(q, t), that is,

Λn := Λn(q, t) = Q(q, t)[x1, . . . , xn]Sn .

We have a natural surjective homomorphism,

Λn+1 → Λn ,

defined by setting xn+1 = 0. This map allows us to take the inverse limit, and define

Λ := lim←−
n

Λn .

The Macdonald polynomials are labelled by the partition λ, a sequence of integers,

λ = (λ1, λ2, λ3, . . .) , with λi ∈ Z≥0 , λi ≥ λi+1 (i = 1, 2, 3, . . .) .

Partitions which only differ by the sequence of zeros are identified. The partition in which all elements are 0
is denoted by ∅. The transpose of λ is denoted by λ′. We denote the set of all partitions as P. We also use
some notations listed in the top of this thesis.

We also introduce the multi-index notation. For x = (x1, x2, . . . ),

xλ = xλ1
1 xλ2

2 · · · .

3.1.1 Definition for A-type

We concentrate on the Macdonald polynomials with the A-type root systems. (For the Macdonald polynomials
associated with BC-type root systems, see [68].)

Definition 3.1.1 (Dominance Ordering). Define the partial ordering in P by

λ ≥ µ if and only if |λ| = |µ|, and

r∑
i=1

λi ≥
r∑
i=1

µi, (∀r ≥ 1) . (3.1.1)

This is compatible with the usual ordering of the root systems.
We introduce some basic symmetric polynomials which will be used repeatedly throughout this thesis.

Definition 3.1.2. For λ ∈ P, Define

1. monomial symmetric functions : mλ(x) defined by

mλ(x) =
∑

(i1,...,i`(λ))∈Iλ

xλ1
i1
· · ·xλ`(λ)i`(λ)

, with Iλ =
{

(i1, . . . , i`(λ)) ∈ Z
`(λ)
>0

∣∣ ij 6= ik, if j 6= k
}
. (3.1.2)

2. power sum : pλ(x) = pλ1
pλ2
· · · with

pn(x) = m(n)(x) =
∑
i

xni . (3.1.3)

3. elementary symmetric functions : eλ(x) = eλ1
eλ2
· · · , where en is defined by

∑
n

en(x)yn := exp

(
−
∑
n>0

1

n
pn(x)(−y)n

)
. (3.1.4)
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4. complete symmetric functions : hλ(x) = hλ1hλ2 · · · , where hn is defined by

∑
n

hn(x)yn := exp

(∑
n>0

1

n
pn(x)yn

)
. (3.1.5)

5. gλ(x) = gλ1
gλ2
· · · , where gn is defined by

∑
n

gn(x) yn = exp

(∑
n>0

1

n

1− tn

1− qn
pn(x)yn

)
. (3.1.6)

Note that when the number of variables is finite (say n), the more appropriate definition of the monomial
symmetric function is

mλ(x) =
1

|Stab(λ)|
∑

µ∈WAn−1
·λ

∏
i

xµii . (3.1.7)

WAn−1
is the Weyl group of An−1 = SU(n) and Stab(λ) is the stabilizer of λ in WAn−1

. As is obvious from
its form, this definition can be generalized to all types of root systems.

Definition 3.1.3. Define the bilinear form 〈−,−〉q,t : Λ⊗ Λ→ C by

〈pλ, pµ〉q,t = δλ,µzλ

`(λ)∏
i=1

1− qλi
1− tλi

, zλ :=
∏
i≥1

imi ·mi!, (3.1.8)

where mi is the number of entries in λ equal to i.

Now we introduce a set of difference operators, which determines the Macdonald polynomials.

Definition 3.1.4. Let n be a positive integer (the number of variables). Define the set of difference operators

D
(k)
n (x)(k = 0, 1, . . . , n) by

D(k)
n (x|q, t) = tk(k−1)/2

∑
I⊂{1,...,n}
|I|=k

∏
i∈I;j∈Ic

txi − xj
xi − xj

∏
i∈I

Tq,xi , (3.1.9)

where Tq,xi is the q-shift operator with respect to xi. We refer to these difference operators as the Macdonald
difference operators. n and x will be omitted when it is obvious.

Fact 3.1.5. The Macdonald operators are self-adjoint with respect to the scalar products in Definition 3.1.3.
That is, for any f, g ∈ Λ, we have〈

g,D(k)f
〉
q,t

=
〈
D(k)g, f

〉
q,t

(k = 0, 1, 2, . . . ) . (3.1.10)

Furthermore, by direct computation, we can prove the following fact, which states the Macdonald difference
operators commute with each other.

Fact 3.1.6. Let N be the number of variables. For arbitrary k and l ∈ {1, 2, . . . , N}, we have[
D(k)
n (x|q, t), D(l)

n (x|q, t)
]

= 0 . (3.1.11)

This means it is meaningful to consider the joint eigenfunctions of these Macdonald operators. The next
fact shows that those eigenfunctions actually exist uniquely, and this is the very fundamental theorem in the
theory of Macdonald polynomials.
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Fact 3.1.7. There exists the unique polynomial Pλ(x|q, t) ∈ Λn such that

Pλ(x|q, t) = mλ(x) +
∑
µ<λ

αλ,µmµ(x) (αλ,µ ∈ Q(q, t)) , (3.1.12)

D(k)
n (x|q, t)Pλ(x|q, t) = ε

(k)
λ (q, t)Pλ(x|q, t) (k = 0, 1, . . . , n) , (3.1.13)

with the eigenvalue

ε
(k)
λ (q, t) = ek(tn+δqλ) . (3.1.14)

e1 is the first elementary symmetric polynomial defined in Definition 3.1.2, δ = (−1,−2,−3, . . .), and
tn+δqλ stands for (tn−1qλ1 , tn−2qλ2 , . . .).

This definition says Pλ(x|q, t) is the joint eigenstate of D
(k)
n (x). The equation (3.1.12) fixes the normal-

ization. With this fact, we refer to the polynomial Pλ(x|q, t) as the Macdonald polynomial.

Remark 3.1.8. If we follow the original discussion by Macdonald, we should replace the condition (3.1.13)
with the following:

〈Pλ, Pµ〉q,t = 0 (λ 6= µ) . (3.1.15)

However, we adopt the definition above for convenience. Actually, this follows from (3.1.13) and Fact 3.1.5.

Remark 3.1.9. Note that
D(k)
n (x|q, t) = (const.)×D(k)

n (x−1|1/q, 1/t) , (3.1.16)

with the constant t−k(n−1). This means that when the variables are inverted, they are still the Macdonald
polynomials with q and t inverted. In other words, the inversion of q and t means to convert the polynomials
which are defined on the negative root lattice to those on the positive root lattice. Moreover, we can check[

D(k)
n (x|q, t), D(l)

n (x|1/q, 1/t)
]

= 0 , for ∀ k, l ∈ Z>0 . (3.1.17)

This property becomes important later in Section 3.3.1.

Remark 3.1.10. When λ is one-column or one-row, the corresponding Macdonald polynomials are

P(1r)(x|q, t) = er(x) , (3.1.18)

P(r)(x|q, t) =
(q; q)r
(t; q)r

gr(x) . (3.1.19)

We introduce the dual Macdonald polynomials, which has the different normalization.

Fact 3.1.11. Define the dual Macdonald polynomial Qλ(x|q, t) by

Qλ(x|q, t) =
cλ(q, t)

c′λ(q, t)
Pλ(x|q, t) , (3.1.20)

with

cλ(q, t) =
∏

(i,j)∈λ

(
1− qaλ(i,j)t`λ(i,j)+1

)
=
∏

1≤i≤j

(qλi−λj tj−i+1; q)λj−λj+1 ,

c′λ(q, t) =
∏

(i,j)∈λ

(
1− qaλ(i,j)+1t`λ(i,j)

)
=
∏

1≤i≤j

(qλi−λj+1tj−i; q)λj−λj+1 .
(3.1.21)

Then, we have
〈Pλ, Qµ〉q,t = δλ,µ . (3.1.22)
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3.1.2 Kernel Function

Now, we introduce the kernel function, which plays the central role when we move on to the Fock representation
of the Macdonald polynomials. As it is obvious from its name, it actually behaves as the reproducing kernel
with the scalar products. Let us check this below.

Definition 3.1.12. For two sets of variables x,y, define the kernel function Π(x,y|q, t) by

Π(x,y|q, t) = exp

(∑
n>0

1

n

1− tn

1− qn
pn(x)pn(y)

)
=
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

. (3.1.23)

Then the crucial properties are stated in the following fact.

Fact 3.1.13. Let x = (x1, . . . , xn) and y = (y1, . . . , ym). The kernel function satisfies

D(k)
n (x|q, t) Π(x,y|q, t) = D(k)

m (y|q, t) Π(x,y|q, t) (k = 0, 1, . . . ,min(n,m)) . (3.1.24)

From this, we can expand

Π(x,y|q, t) =
∑
λ

Pλ(x|q, t)Qλ(y|q, t) =
∑
λ

Qλ(x|q, t)Pλ(y|q, t) . (3.1.25)

Using this fact and the orthogonality (3.1.15), we can prove

Pλ(x|q, t) =
〈
Pλ(−|q, t),Π(x,−|q, t)

〉
q,t
. (3.1.26)

This is why we call Π(x,y|q, t) the kernel function.
For later use, we also show the different expansion of the Cauchy kernel.

Fact 3.1.14. We have
Π(x,y|q, t) =

∑
λ

gλ(x)mλ(y) . (3.1.27)

The proof is easy once we note the

Π(x,y|q, t) =
∏
i

 ∑
n∈Z≥0

gn(x)yi

 . (3.1.28)

3.1.3 Pieri Rules and Skew Macdonald Polynomials

It is no exaggeration to say that the outstanding feature which makes the Macdonald symmetric polynomials
interesting, is that they are closed under multiplications and divisions. The former corresponds to the Pieri
rules, and the latter to the skew Macdonald polynomials.

Pieri Rule

For a partition λ and a coordinate s = (i, j), we write

bλ(s) =

 cλ(q,t)
c′λ(q,t)

1− qaλ(s)tlλ(s)+1

1− qaλ(s)+1tlλ(s)
, s ∈ λ;

1, otherwise.

(3.1.29)

Note that
∏
s∈λ bλ(s) = cλ(q, t)/c′λ(q, t). We introduce what we call the Pieri coefficients as follows.
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Definition 3.1.15 (Pieri Coefficient). For µ ⊂ λ ∈ P, define

ϕλ/µ =
∏

s∈Cλ/µ

bλ(s)

bµ(s)
, (3.1.30)

ψλ/µ =
∏

s∈Rλ/µ−Cλ/µ

bµ(s)

bλ(s)
, (3.1.31)

ϕ′λ/µ =
∏

s∈Rλ/µ

bµ(s)

bλ(s)
, (3.1.32)

ψ′λ/µ =
∏

s∈Cλ/µ−Rλ/µ

bλ(s)

bµ(s)
. (3.1.33)

Here Rλ/µ (resp. Cλ/µ) is the union of the rows (resp. columns) that intersect λ− µ.

Fact 3.1.16 ([69]). We have the Pieri rules:

grPµ =
∑
λ

ϕλ/µPλ , (3.1.34)

grQµ =
∑
λ

ψλ/µQλ , (3.1.35)

erPµ =
∑
λ

ϕ′λ/µPλ , (3.1.36)

erQµ =
∑
λ

ψ′λ/µQλ . (3.1.37)

Here, the summations in (3.1.34) and (3.1.35) are over the partitions λ such that λ/µ is a horizontal r-strip,
i.e., λ/µ has at most one box in each column. Those in (3.1.36) and (3.1.37) are over the partition such that
λ/µ is a vertical r-strip.

Note that by this formula, we can see that Qµ (µ � λ) does not appear in the expansion of the product∏
i≥1 gλi in the basis of Macdonald polynomials.
One interesting remark is that the Pieri rules are invertible. Once we rewrite the Pieri rules in the form

of matrices, these matrices are of the Bressoud’s matrix, and thus are the matrices with each element are
factorized. That is, we can expand the Macdonald polynomials with respect to the products like gnPµ with
the factorized coefficients. This technique is called Krattenthaler’s matrix inversion. For the details, see [67].

Skew Macdonald Polynomials

Next, we see the ”division” of the polynomials.

Definition 3.1.17. Let λ, µ ∈ P be the partitions such that µ ⊂ λ. Define Pλ/µ ∈ Λ by

Pλ/µ =
∑
ν

fλµνPν , (3.1.38)

where the coefficient fλµν ∈ C(q, t) is given by 1

fλµν = 〈Pλ , QµQν〉 . (3.1.39)

We refer to this as the skew Macdonald polynomials.

1The notation here is different from that in [69]. In order to make them agree, we need to take the transposition of λ, µ and
ν, or multiply bλ/bµbν to fλµν here.
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As it is clear from the form of fλµν , ν in (3.1.38) runs all partitions such that ν ⊂ λ. Also note that, from
(3.1.39), we have

QµQν =
∑
λ

fλµνQλ . (3.1.40)

One of the most important formula for the skew Macdonald polynomials is following.

Fact 3.1.18. We have
Pλ(x,y) =

∑
µ

Pλ/µ(x)Pµ(y) . (3.1.41)

Proof. We have ∑
λ,µ

Pλ/µ(x)Qλ(z)Pµ(y) =
∑
λ,µ,ν

fλµνQλ(z)Pν(x)Pµ(y)

=
∑
µ,ν

Qµ(z)Qν(z)Pν(x)Pµ(y)

= Π(x, z)Π(y, z) =
∑
λ

Pλ(x,y)Qλ(z) ,

(3.1.42)

and comparing the both sides proves the claim.

3.1.4 Tableaux Sum Formula

By virtue of the Pieri rules, introduced in 3.1.3, we can derive the tableaux sum formula for the A-type
Macdonald polynomials. To write down the concrete formula, we concentrate on the case of finite number
variables.

We first define the tableaux, a refinement of the Young diagram.

Definition 3.1.19. For the Young diagram λ ∈ P of length n ∈ Z>0, a tableaux of shape λ is a set of integers
θ = {θi,j ∈ Z≥0|1 ≤ i < j ≤ n} which is defined as follows. First we decompose the partition λ to a set of
integers {λi,j |1 ≤ i ≤ j ≤ n} such that

n∑
j=i

λi,j = λi , (3.1.43)

and

i+k∑
j=i

λi,j ≥
i+k+1∑
j=i+1

λi+1,j (k ∈ Z≥0) . (3.1.44)

From this set, we define the {θi,j} by

θn−i−k,n−k :=

i+k∑
j=i

λi,j −
i+k+1∑
j=i+1

λi+1,j (k ∈ Z≥0) . (3.1.45)

Note that by definition, θi,j ≥ 0.
We denote the all set of tableaux of shape λ by T(λ).

Then, we have the following result.

Fact 3.1.20 (Tableaux Sum Formula). For n ∈ Z>0 and λ ∈ P with `(λ) ≤ n, the n-variable Macdonald
polynomial Pλ(x1, . . . , xn|q, t) is of the form,

Pλ(x1, . . . , xn|q, t) = xλ
∑

{θi,j |1≤i<j≤n}∈T(λ)

c̃(θ;λ|q, t)
∏

1≤i<j≤n

(xj/xi)
θi,j , (3.1.46)
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where the coefficient c̃(θ;λ|q, t) is given by some products of the Pieri coefficients (Definition 3.1.15), as

c̃(θ;λ|q, t) :=

n∏
i=1

ψλ(i)/λ(i−1)(q, t)

=

n∏
k=2

 ∏
1≤i<j≤k

(t1+i−jqλj−λi+
∑
a>k(θi,a−θj,a); q)θi,k

(ti−jqλj−λi+
∑
a>k(θi,a−θj,a)+1; q)θi,k

∏
1≤i≤j<k

(t−1+i−jqλj−λi−θj,k+
∑
a>k(θi,a−θj,a)+1; q)θi,k

(ti−jqλj−λi−θj,k+
∑
a>k(θi,a−θj,a); q)θi,k

 ,

(3.1.47)

with
∑
a>k =

∑n
a=k+1. Here {λ(0), . . . , λ(n)} is a sequence of Young diagrams which is in one-to-one corre-

spondence to the set of θ as follows, with the conditions λ(0) = ∅ and λ(n) = λ. As in Definition 3.1.19, for θ,
we can fix the decomposition of λ as {λi,j |1 ≤ i ≤ j ≤ n}. λ(i) is obtained by removing {λj,i+1|1 ≤ j ≤ i+ 1}
from λ(i+1) (that is, removing the horizontal strip of length λn−i −

∑n
k=i θn−i,k).

We will see an example later in this subsection.

Derivation of Fact 3.1.20

Using Fact 3.1.18, we can decompose the Macdonald polynomial with n variables into those with n−1 variables
and 1 variable, as

Pλ(x1, x2, . . . , xn|q, t) =
∑
λ(n−1)

Pλ/λ(n−1)(x1)Pλ(n−1)(x2, . . . , xn) . (3.1.48)

Then we compute Pλ/λ(n−1)(x1). Because gν and mν are dual with respect to the scalar product (Fact 3.1.14),
we expand as

Pλ(i)/λ(i−1)(x1|q, t) =
∑
ν

〈
Pλ(i)/λ(i−1) , gν

〉
q,t
mν(x1) =

∑
ν

〈
Pλ(i) , gνQλ(i−1)

〉
q,t
mν(x1)

= ψλ(i)/λ(i−1)(q, t) x
|λ(i)−λ(i−1)|
i

= ψλ(i)/λ(i−1)(q, t) x
λi−

∑n
j=i+1 θi,j+

∑i−1
j=1 θj,i

i .

(3.1.49)

From the first to second line, we use the fact that Pλ(i)/λ(i−1) with one variable becomes zero unless λ(i)/λ(i−1)

is a horizontal strip. This is because mν(x) = 0 if `(ν) ≥ 2. From the second to third line, we carefully replace
λ(i) with {θi,j}, following Definition 3.1.19.

By repeating this procedure until the Young diagram reduces to λ(0) = ∅ (i = 1), we obtain the final result,
Fact 3.1.20.

Example: n = 3 Case

In order to get some feels, we see the example of A2 Macdonald polynomials.

θ1,3 θ1,2
θ2,3

λ1

λ2

λ3

: λ(1)

: λ(2) − λ(1)

: λ(3) − λ(2) = λ− λ(2)

Figure 3.1: Example of Tableaux and θi,j for λ = (λ1, λ2, λ3)
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For later convenience, we change the sub-indices of x-variables as xi → xn+1−i(i = 1, . . . , n). First, we reduce
one variable by going from λ = λ(3) to λ(3) as

ψλ(3)/λ(2)(q, t) x
|λ(3)−λ(2)|
1

=

(t;q)θ1,2
(q;q)θ1,2

(tqλ1−λ2−θ1,2−1;q)θ1,2

(qλ1−λ2−θ1,2 ;q)θ1,2

·

(t;q)θ1,3
(q;q)θ1,3

(tqλ2−λ3−θ1,3−1;q)θ1,3

(qλ2−λ3−θ1,3−1;q)θ1,3

·

(t2qλ2−λ3+θ1,2−θ1,3 ;q)θ1,3

(tqλ2−λ3+θ1,2−θ1,3+1;q)θ1,3

(t2qλ1−λ3−θ1,3 ;q)θ1,3

(tqλ1−λ3−θ1,3+1;q)θ1,3

· xλ1−θ1,2−θ1,3
1 .

(3.1.50)

Next, going down to λ(1), we have

ψλ(2)/λ(1)(q, t) x
|λ(2)−λ(1)|
2 =

(t;q)θ2,3
(q;q)θ2,3

(tqλ2−λ3+θ1,2−θ1,3−θ2,3 ;q)θ2,3

(qλ2−λ3+θ1,2−θ1,3−θ2,3+1;q)θ2,3

· xλ2+θ1,2−θ2,3
2 . (3.1.51)

Finally, because we have

mλ(1)(x3) = x
λ3+θ1,3+θ2,3
3 , (3.1.52)

by combining all above and massaging them, we can confirm the coefficient agrees with (3.1.47).

3.1.5 Some Important Properties

For completeness of the review of Macdonald polynomials, we just name some important properties.

• Stability

For any two integers n > m ≥ 1, the following diagram commutes:

Λn
πn◦···◦πm+1−−−−−−−−→ Λm

D(k)
n

y yD(k)
m

Λn
πn◦···◦πm+1−−−−−−−−→ Λm .

This property is called the stability. This property plays an important role when we construct the infinite
variables limit, that is, the Macdonald functions on the Fock space. When the number of variables goes
to infinity, the difference operator seems not to be well-defined because we need the infinite sum. Thus, in
order to see the constructed operator is the good one, we have to project it to the finite number cases. See
Theorem 3.2.4 for more details.

This property only holds for the Macdonald polynomials of type-A. No such property for B,C and D-type
is known. The stability-like condition in inverse direction for C and D-type Macdonald polynomials labelled
by one-column partitions was studied in [45].

• Another Scalar Product

We introduce what is called the Macdonald’s another scalar product. This is the different bilinear form on
Λn × Λn than that defined in Definition 3.1.3.

Definition 3.1.21 (Macdonald’s another scalar product). Define the bilinear form 〈, 〉′q,t on ΛN by

〈f, g〉′q,t =
1

N !

∫
TN

dx

2πix
∆(x) f(x−1)g(x) , (3.1.53)
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with

∆(x) :=
∏
i 6=j

(xi/xj ; q)∞
(txi/xj ; q)∞

. (3.1.54)

Fact 3.1.22.
〈Pλ(x|q, t), Pµ(x|q, t)〉′q,t = nλδλ,µ . (3.1.55)

Proof. The orthogonality can be proven by the following fact.
Define the first Macdonald operator,

D1
x =

N∑
i=1

∏
j 6=i

1− txi/xj
1− xi/xj

Ti , (3.1.56)

where Ti = Tq,xi , the shift operator. Also define

D̃1
x =

N∑
i=1

∏
j 6=i

1− txi/qxj
1− xi/qxj

T−1
i . (3.1.57)

Note that
D̃1
x

(
∆(x)f(x−1)

)
= ∆(x)

(
D1
x−1f(x−1)

)
, (3.1.58)

where we used
T−1
i ∆(x)

∆(x)
=
∏
j 6=i

1− txj/xi
1− xj/xi

1− xi/qxj
1− txi/qxj

. (3.1.59)

Inserting D1
x, we have

ελ(q, t)〈Pµ(x|q, t), Pλ(x|q, t)〉′q,t =

∫
[dx](D1

xPλ(X))∆(x)Pµ(x−1) (3.1.60)

=

∫
[dx](D̃1

x∆(x)Pµ(X−1))Pλ(x) = εµ(q, t)〈Pµ(x|q, t), Pλ(x|q, t)〉′q,t , (3.1.61)

where we assumed the boundary term vanishes. The normalization can be determined by the following fact.

The coefficient nλ can be deduced from the Pieri rule and the famous Macdonald’s constant term conjecture.

Fact 3.1.23 (Macdonald’s constant term conjecture).

〈1, 1〉′q,t =

N∏
i=1

(t; q)∞(qti−1; q)∞
(q; q)∞(ti; q)∞

(3.1.62)

This conjecture was proved by several methods. The constant term conjecture is generalized for the
Macdonald polynomials associated with the arbitrary (classical) Lie algebra, and its proof can be uniformly
achieved by making use of the Cherednik algebra [62, 68].

We have the following result.

Fact 3.1.24.

nλ =

N∏
i=1

(t; q)∞(qti−1; q)∞
(q; q)∞(ti; q)∞

·
∏
s∈λ

1− qa(s)+1t`(s)

1− qa(s)t`(s)+1

1− qa′(s)tN−`′(s)

1− qa′(s)+1tN−`′(s)−1
. (3.1.63)
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3.1.6 Relation to Other Symmetric Functions

In some appropriate limits of the parameters q, t, the Macdonald polynomials reduce to the various known
symmetric polynomials. We name just some of them.

1. q = t limit : Schur polynomial sλ(x):

sλ(x) = aλ+δ(x)/aδ(x) , (3.1.64)

where δ = (N − 1, N − 2, · · · ) and

aλ(x) = det
(
x
λj
i

)
1≤i,j≤N

. (3.1.65)

For the boson and fermion realization of the Schur polynomials, see [50].

2. q → 0 limit : Hall-Littlewood polynomial hλ(x|q) : The realization by vertex operators was studied in
[52].

3. t→ 0 limit with shift of variables : This limit is called the Toda limit,

lim
t→0

Pλ(tδx|q, t) . (3.1.66)

Under this limit, the Bamp-Stade formula are known [21], and admit the simpler expressions.

4. t→ 0 limit : q-Whittaker polynomial. This limit has been enthusiastically studied in the context of the
stochastic process. See [16] for example.

5. q → 1, t = qβ → 1 limit (with β fixed) : Jack polynomial Jλ(x|β). See [107] for example.

6. q, t→ e2π
√
−1/k(root of unity) limit : Uglov polynomial. See [115].

7. q → 1 limit : Elementary symmetric polynomial

lim
q→1

Pλ(x|q, t) = eλ′(x) (3.1.67)

8. t→ 1 limit : Monomial symmetric polynomial

lim
t→1

Pλ(x|q, t) = mλ(x) (3.1.68)

3.2 Macdonald polynomials on Fock Space

Now we realize the Macdonald polynomials on the Fock space. This work was first done in [13], and has been
extended in successive works. In this section, we quickly summarize those results.

3.2.1 Macdonald Operator and Stability

Definition 3.2.1. Let {an|n ∈ Z} be the Heisenberg algebra with the relation

[am, an] = m
1− q|m|

1− t|m|
δm+n,0 a0 . (3.2.1)

Using this Heisenberg algebra, define the Fock space F with the vacuum |0〉, defined by an |0〉 = 0 for
n ∈ Z>0. That is, F = C[a−1, a−2, . . .] |0〉 as the vector space. Similarly, define the dual Fock space F∗ with the
dual vacuum 〈0|, defined by 〈0| an = 0 (n ∈ Z<0). The basis of F (resp. F∗) is given by |aλ〉 = a−λ1

a−λ2
· · · |0〉

(resp. 〈aλ| = 〈0| · · · aλ2
aλ1

) with a partition λ = (λ1, λ2, . . . ). The bilinear form F∗ ⊗ F → C is given by
〈0|0〉 = 1. We also define the normal ordering : − : as usual.
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Note that this definition of the Heisenberg algebra is motivated by the inner product of the power sum
(Definition 3.1.3),

〈pm, pn〉q,t = m
1− qm

1− tm
δm,n . (3.2.2)

Therefore, the map Λ→ F
pn 7→ a−n |0〉 , (3.2.3)

gives the isomorphism as the graded vector space.
Now we define the Macdonald operator acting on the Fock space.

Definition 3.2.2. Define the vertex operator in End(F) by

η(z) := exp
( ∞∑
n=1

1− t−n

n
a−nz

n
)

exp
(
−
∞∑
n=1

1− tn

n
anz
−n
)
. (3.2.4)

We denote its Fourier components as η(z) =
∑
n∈Z ηnz

−n. Especially, we denote its zero mode by η0.

As we will see in below, this plays the role of the Macdonald operator on F .
Next, we define the projector from the Fock space F to ΛN . The definition seems quite natural because

the bosons must be projected to the power sum.

Definition 3.2.3. For |u〉 ∈ F , we define the projector πN : F → C[[x1, . . . , xN ]] by

πN (|u〉) := 〈0|φ(x1) · · ·φ(xN ) |u〉 , (3.2.5)

where

φ(x) := exp

(∑
n>0

1

n

1− tn

1− qn
anx

n

)
. (3.2.6)

The following theorem states that η0 is actually intertwined to the Macdonald operator under the projec-
tion.

Theorem 3.2.4 ([13]). For |u〉 ∈ F , the following equality holds:

πN (η0 |u〉) = (D
(1)
N )′πN (|u〉) , (3.2.7)

with
(D

(1)
N )′ = (t− 1)t−ND

(1)
N + t−N . (3.2.8)

Proof. Let C0 be the circle around 0, excluding 1/xi (i = 1, . . . , N) and C∞ be the circle which includes all
poles except for the infinity. The following computation gives the proof:∮

C0

dz

z
〈0|φ(x1) · · ·φ(xN )η(z) |u〉 =

∮
C1

dz

z

N∏
i=1

1− zxi/t
1− zxi

〈0| : η(z)φ(x1) · · ·φ(xN ) : |u〉

= (1− t−1)

N∑
i=1

∏
j 6=i

1− xj/txi
1− xj/xi

Tq,xiπN (|u〉) +

∮
C∞

dz

z

N∏
i=1

1− zxi/t
1− zxi

〈0| : η(z)φ(x1) · · ·φ(xN ) : |u〉 .
(3.2.9)

The last term becomes just constant t−N . Note that we use the fact,

〈0| : η(1/x)φ(x) : = 〈0|φ(qx) . (3.2.10)



3.2 Macdonald polynomials on Fock Space 37

In other words, Theorem 3.2.4 states that once we construct the states |Pλ〉 in F such that

η0 |Pλ〉 =
(

(t− 1)t−N ε
(1)
λ (q, t) + t−N

)
|Pλ〉 , (3.2.11)

πN (|Pλ〉) is the Macdonald polynomials with N -variables. In this sense, |Pλ〉 can be regarded as the projective
limit of the Macdonald polynomials with finite variables. Then the problem is how to construct such the states
|Pλ〉. This is the main subject in the next subsection.

3.2.2 Explicit Construction

Definition 3.2.5. Define the vertex operator

ϕ(z) = exp

(∑ 1

n

1− tn

1− qn
a−nz

n

)
. (3.2.12)

Note that this is the operator analogue of the generating function of gn, which is introduced in Definition
3.1.2. That is, we have the Fock realization of gn as

|gn〉 =
[
z−nϕ(z) |0〉

]
z,1

, (3.2.13)

where [· · · ]z,1 means the constant term in · · · with respect to z. Then, piling up gn’s gives the Macdonald
function on the Fock space.

The problem left is to determine the coefficients, which is analogous to the inversion of the Pieri coefficients.
The next theorem gives the answer to this problem.

Theorem 3.2.6. Fix λ ∈ P. Let n ≥ `(λ)(∈ Z).

|Qλ〉 =

 ∏
1≤i<j≤n

(1− xj/xi) · Pλ(x−1|q, q/t) ϕ(x1) · · ·ϕ(xn) |0〉


x,1

. (3.2.14)

By analogy of the Macdonald polynomials, we define

|Pλ〉 =
c′λ(q, t)

cλ(q, t)
|Qλ〉 . (3.2.15)

Proof. The proof is same as that of Theorem 4.2.21, which will be given in the next chapter.

This gives the explicit algorithm to construct the Macdonald functions on the Fock space. In below, we
show some examples of this construction.
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Examples

We just show some examples with |λ| ≤ 3.

|P∅〉 = |0〉 ,
|P 〉 = a−1 |0〉 ,

|P 〉 =
1

2

(
(1− q)(1 + t)

1− qt
a−2 +

(1− t)(1 + q)

1− qt
a2
−1

)
|0〉 ,

|P 〉 = −1

2

(
a−2 − a2

−1

)
|0〉 ,

|P 〉 =
1

6

(
2

1− t3

1− t
(1− q)(1− q2)

(1− qt)(1− q2t)
a−3 + 3

(1− q3)(1− t2)

(1− qt)(1− q2t)
a−2a−1 +

(1 + q)(1− q3)

(1− q)
(1− t)2

(1− qt)(1− q2t)
a3
−1

)
|0〉 ,

|P 〉 = −1

6

(
2

(1− q)(1− t3)

(1− t)(1− qt2)
a−3 + 3q

(1 + t)(1− t/q)
1− qt2

a−2a−1 − (2 + q + t+ 2qt)
1− t

1− qt2
a3
−1

)
|0〉 ,

|P 〉 =
1

6

(
2a−3 − 3a−2a−1 + a3

−1

)
|0〉 .

(3.2.16)

3.3 Ding-Iohara-Miki Algebra Uq,t
The Ding-Iohara-Miki algebra Uq,t was introduced independently in [24] and [72]. In [24], it was introduced as
the generalization of the Drinfeld’s new realization of the quantum affine algebra to the wider class of algebra.

Actually, from this point of view, Uq,t is also called the quantum toroidal algebra of ĝl1. As we will see below,
from its construction, Uq,t admits the Drinfeld coproduct, and furthermore, the Hopf algebra structure. On the
other hand, in [72], Uq,t was introduced as the one-parameter deformation of q-deformed W-algebra. Because
these both algebras agree with each other, the algebra is called Ding-Iohara-Miki algebra. In this section and
Section 4.3, we will see both sides of this algebra.

Instead of introducing Uq,t by the top-down approach, we do so by the bottom-up approach. That is, we
extract the commutation relations of Uq,t from those among the operators which are introduced to construct
the Macdonald polynomials on the Fock space.

3.3.1 From Macdonald to DIM

We can show one of the ”derivation” of Uq,t by 4 steps. The final result will be summarized in the next section.

Step1 : η(z)η(w)

We first see the commutation relation between two η’s, introduced in (3.2.2). Because η(z)η(w) = f−1(w/z) :
η(z)η(w) :, this is given by

f(w/z)η(z)η(w) = f(z/w)η(w)η(z) , (3.3.1)

with

f(z) :=
(1− qz)(1− z/t)
(1− z)(1− qz/t)

. (3.3.2)

Step2 : ξ(z)ξ(w)

Now, we recall Remark 3.1.9. Then, we need to introduce a new current, whose zero mode is intertwined to
D(1)(x|1/q, 1/t) under the projection (Definition 3.2.3). In the end, we have the following answer:

ξ(z) = exp
(
−
∞∑
n=1

1− t−n

n
q−n/2tn/2a−nz

n
)

exp
( ∞∑
n=1

1− tn

n
q−n/2tn/2anz

−n
)
. (3.3.3)
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Then this current satisfies the following commutation relation:

f(tw/qz)ξ(z)ξ(w) = f(tz/qw)ξ(w)ξ(z) . (3.3.4)

Step3 : η(z)ξ(w)

Now we compute the commutation relation between these two currents η(z) and ξ(w). Put γ = (t/q)1/2.
First, note that

η(z)ξ(w) =
(1− q1/2t1/2w/z)(1− q−1/2t−1/2w/z)

(1− q−1/2t1/2w/z)(1− q1/2t−1/2w/z)
: η(z)ξ(w) := f(γw/z) : η(z)ξ(w) : ,

ξ(w)η(z) =
(1− q1/2t1/2z/w)(1− q−1/2t−1/2z/w)

(1− q−1/2t1/2z/w)(1− q1/2t−1/2z/w)
: ξ(w)η(z) := f(γz/w) : ξ(w)η(z) : ,

(3.3.5)

and the coefficients are identical as a rational function. (Note f(z) = f(γ2/z) as a rational function.)
Before computing the commutation relation, we introduce some useful tools.

Definition 3.3.1. Define the delta function by

δ(z) =
∑
n∈Z

zn . (3.3.6)

We call δ(z) the delta function, because for arbitrary f(z) ∈ C[[z]], we have

δ(w/z)f(z) = f(w) . (3.3.7)

The following lemma is most fundamental and will be used repeatedly in this thesis.

Lemma 3.3.2.

N∏
i=1

M∏
j=1

1− z/bj
1− z/ai

−
∏N
i=1(−ai/z)∏M
j=1(−bj/z)

N∏
i=1

M∏
j=1

1− bj/z
1− ai/z

=

N∑
i=1

δ(z/ai)
∏
k 6=i

1− ai/bj
1− ai/ak

. (3.3.8)

Now we can compute the commutation relation,

η(z)ξ(w)− ξ(w)η(z)

=
(1− q)(1− t−1)

1− q/t

(
δ(γw/z)ϕ+(γ1/2w)− δ(γ−1w/z)ϕ−(γ−1/2w)

)
.

(3.3.9)

Here we introduced two new currents,

ϕ+(z) =: η(γ1/2z)ξ(z/γ1/2) := exp
(
−
∞∑
n=1

1− tn

n
(1− tnq−n)qn/4t−n/4anz

−n
)
,

ϕ−(z) =: η(z/γ1/2)ξ(γ1/2z) := exp
( ∞∑
n=1

1− t−n

n
(1− tnq−n)qn/4t−n/4a−nz

n
)
.

(3.3.10)

Remark 3.3.3. From the relation (3.3.9), we can show

[η0, ξ0] = 0 , (3.3.11)

and thus reproduce the result in Remark 3.1.9.

Step4 : Other Commutation Relations

The remaining task is to compute the commutation relations among ϕ±(z) and η(z), ξ(z). This is just com-
putation, and in the next section, we just show the results.
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3.3.2 Definition of Algebra

Now it is easy to put these results in order. The algebra Uq,t is defined as follows.

Definition 3.3.4. Let Uq,t be the unital associative algebra over C generated by the Drinfeld currents

x±(z) =
∑
n∈Z

x±n z
−n , ψ±(z) =

∑
n∈Z≥0

ψ±n z
∓n ,

and the invertible central element c1/2, satisfying the following defining relations:

ψ+(z)x±(w) = g(c∓1/2w/z)∓1x±(w)ψ+(z), ψ−(z)x±(w) = g(c∓1/2z/w)±1x±(w)ψ−(z),

ψ±(z)ψ±(w) = ψ±(w)ψ±(z), ψ+(z)ψ−(w) =
g(c+1w/z)

g(c−1w/z)
ψ−(w)ψ+(z),

[x+(z), x−(w)] =
(1− q)(1− 1/t)

1− q/t

(
δ(c−1z/w)ψ+(c1/2w)− δ(cz/w)ψ−(c−1/2w)

)
,

G∓(z/w)x±(z)x±(w) = G±(z/w)x±(w)x±(z) ,

(3.3.12)

where

g(z) =
G+(z)

G−(z)
, G±(z) = (1− q±1z)(1− t∓1z)(1− q∓1t±1z) , δ(z) =

∑
n∈Z

zn . (3.3.13)

Remark 3.3.5. In some papers, the following Serre relations are further imposed in the definition of Uq,t:

[x+
0 , [x

+
1 , x

+
−1]] = 0 , [x−0 , [x

−
1 , x

−
−1]] = 0 . (3.3.14)

We omit these relations, because in the modules that we deal with in this thesis, the Serre relations are
automatically satisfied. See also Example 3.6.3.

Note that by multiplying (1−w/z)(1−qw/tz)(1−tw/qz) to the relation (3.3.1), we obtain the last relation
in (3.3.12). The other relations can be also recovered from the computations in Section 3.3.1.

Remark 3.3.6. One non-trivial step from Section 3.3.1 to the definition above, is the choice of the centers,
that is, how the central elements c±1/2 enter in the relations. It is chosen so that the relations are compatible
with the Hopf algebra structure, especially with the coproduct.

3.3.3 Hopf Algebra Structure

The algebra which is equipped with the coalgebra structure, is called the Hopf algebra. As is shown in [24],
Uq,t admits the Hopf algebra structure. Actually, the algebras of the form of ”the new realization” always
admit the Drinfeld coproduct (and also counit and antipode) [24]. In below, we summarize the Hopf algebra
structure of Uq,t.

Coproduct

Fact 3.3.7. The U admits the (topological) Hopf algebra structure with the Drindeld coprocuct ∆:

∆(c±1/2) = c±1/2 ⊗ c±1/2 ,

∆(x+(z)) = x+(z)⊗ 1 + ψ−(c
1/2
(1) z)⊗ x

+(c(1)z) ,

∆(x−(z)) = x−(c(2)z)⊗ ψ+(c
1/2
(2) z) + 1⊗ x−(z) ,

∆(ψ±(z)) = ψ±(c
±1/2
(2) z)⊗ ψ±(c

∓1/2
(1) z) ,

(3.3.15)

where c
±1/2
(1) = c±1/2 ⊗ 1 and c

±1/2
(2) = 1⊗ c±1/2.

This coproduct plays the central role throughout this thesis.
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Antipode

The antipode a : Uq,t → Uq,t is defined by

a(c±1/2) = c∓1/2 ,

a(x+(z)) = −
(
ψ−(z/c1/2)

)−1

x+(z/c) ,

a(x−(z)) = −x−(z/c)
(
ψ+(z/c1/2)

)−1

,

a(ψ±(z)) =
(
ψ±(z)

)−1
.

(3.3.16)

This antipode plays some role when we construct the Uq,t-module in Section 3.4.3.

Counit

Although the counit ε : Uq,t → C plays no role in this thesis, we present it for completeness.

ε(c±1/2) = 1 , ε(ψ±(z)) = 1 , ε(x±(z)) = 0 . (3.3.17)

3.4 Uq,t-modules and Intertwiners

There are two centers in Uq,t, c and (ψ+
0 /ψ

−
0 )1/2. Thus, we label the Uq,t-modules by the image of these

centers.
We define the (n,m)-modules as the Uq,t-modules where the two centers act as

c = γn , (ψ+
0 /ψ

−
0 )1/2 = γ−m , (3.4.1)

with γ = (t/q)1/2. In what follows, we deal with four modules, two (0, 0), (0, 1), and (1,M)-modules. (M ∈ Z.)

3.4.1 Two Types of (0, 0)-modules

First, we introduce the (0, 0)-modules. There are two different types of them, and the relation among them
will be clear in Section 3.5.

1. (0, 0)-modules (Level-0 modules)

The first (0, 0)-module was introduced in [29], and they are tightly related to the Macdonald difference oper-
ators. Sometimes, we refer to this module as the level-0 module.

The following fact defines the representation, and ensures the map actually defines the representation of
Uq,t.

Fact 3.4.1. The map πx,d : Uq,t → End(Vx) with Vx = Q(q1/2, t1/2)[x±1], and d ∈ Q(q1/2, t1/2)×, defined by

πx,d(c
±1/2) = 1 ,

πx,d(x
±(z)) = d±1(1− t∓1)δ(q∓1/2x/z)T∓1

q,x ,

πx,d(ψ
+(z)) =

(1− q1/2t−1x/z)(1− q−1/2tx/z)

(1− q1/2x/z)(1− q−1/2x/z)
,

πx,d(ψ
−(z)) =

(1− q1/2t−1z/x)(1− q−1/2tz/x)

(1− q1/2z/x)(1− q−1/2z/x)
,

(3.4.2)

endows the Uq,t-module structure with the space of Laurent polynomials Vx.
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Tensor Modules The coproduct of Uq,t helps us to define the tensor modules on Vx1 ⊗ · · · ⊗ VxN . We use
the following notation:

∆(N) = (id⊗ · · · ⊗ id⊗∆)∆(N−1) ,

∆(2) = ∆ .
(3.4.3)

To enjoy the nice properties of these modules, first we concentrate on N = 2 case. Let us consider the
operator D̄ on Vx1

⊗ Vx2
,

D̄ =
[
πx1,t−1 ⊗ πx2,1

(
∆(x−(z))

)]
z,1

. (3.4.4)

[· · · ]z,1 stands for the constant term of · · · with respect to z. Then we have

D̄ = t(1− t) (1− t−1x2/x1)(1− tx2/qx1)

(1− x2/x1)(1− x2/qx1)
Tq,x1 + (1− t)Tq,x2

= (1− t) (x2/x1; q)∞
(tx2/x1; q)∞

(
tx1 − x2

x1 − x2
Tq,x1

+
tx2 − x1

x2 − x1
Tq,x2

)
(tx2/x1; q)∞
(x2/x1; q)∞

,

(3.4.5)

and thus D̄ is the gauge transformation of the first Macdonald operator D
(1)
2 , defined in Definition 3.1.4.

This fact can be generalized to the arbitrary A-type Macdonald operators, including the higher operators.

Theorem 3.4.2. Fix N ∈ {2, 3, . . .}, and set di = ti−N . For 1 ≤ r ≤ N , we have

tr(r−1)/2

(1− t)rr!

[
εr(z; q)∏

1≤i<j≤r w(zi, zj)
πx1,d1 ⊗ · · · ⊗ πxN ,dN∆(N)

(
x−(z1) · · ·x−(zr)

)]
zi,1

= g−1D
(r)
N g , (3.4.6)

with

g =
∏

1≤i<j≤N

(txj/xi; q)∞
(xj/xi; q)∞

. (3.4.7)

2. (0, 0)-modules (Vector Representation)

The other (0, 0)-module of Uq,t and its tensor representations were introduced in [27]. This module is also
called the vector representation.

c±1/2[u]i = [u]i ,

x+(z)[u]i =
1

1− q1
δ(qi1u/z)[u]i+1 ,

x−(z)[u]i = − 1

1− q−1
1

δ(qi−1
1 u/z)[u]i−1 ,

ψ+(z)[u]i =
(1− qi1q3u/z)(1− qi1q2u/z)

(1− qi1u/z)(1− q
i−1
1 u/z)

[u]i ,

ψ−(z)[u]i =
(1− q−i1 q−1

3 z/u)(1− q−i1 q−1
2 z/u)

(1− q−i1 z/u)(1− q−i+1
1 z/u)

[u]i .

(3.4.8)

The tensor modules of this module allow us to construct the (0, 1)-modules. We will see this soon in below.

3.4.2 (0, 1)-modules & (1,M)-modules

Now, we construct the (0, 1) and (1,M)-modules (M ∈ Z). Roughly speaking, (0, 1)-modules are constructed
through piling up the vector representations, while (1, 0)-modules can be regarded as the infinitely many tensor
products of the level-0 representations.

Again, as the two (0, 0)-modules, they are related under some automorphism of Uq,t. This will be explained
in Section 3.5.
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• (1,M)-modules (Horizontal representation)

The (1,M)-modules are almost the same as the bosonic realization of Uq,t which is used to construct the
Macdonald operator on the Fock space. Recall that the zero mode of x+(z) is intertwined to the Macdonald
operator, and this is the Fock analogue of Theorem 3.4.2. In this sense, this module can be thought of as the
infinitely many tensor products of the level-0 modules.

Fact 3.4.3 ([29]). Let u be a nonzero complex parameter. The following algebra homomorphism ρ
(1,M)
u :

Uq,t → End(F) endows the Uq,t-module structure on F :

c1/2 7→ (t/q)1/4, x+(z) 7→ uz−Mq−M/2tM/2η(z), x−(z) 7→ u−1zMqM/2t−M/2ξ(z),

ψ+(z) 7→ qM/2t−M/2ϕ+(z), ψ−(z) 7→ q−M/2tM/2ϕ−(z) ,
(3.4.9)

where

η(z) = exp
( ∞∑
n=1

1− t−n

n
a−nz

n
)

exp
(
−
∞∑
n=1

1− tn

n
anz
−n
)
,

ξ(z) = exp
(
−
∞∑
n=1

1− t−n

n
q−n/2tn/2a−nz

n
)

exp
( ∞∑
n=1

1− tn

n
q−n/2tn/2anz

−n
)
,

ϕ+(z) = exp
(
−
∞∑
n=1

1− tn

n
(1− tnq−n)qn/4t−n/4anz

−n
)
,

ϕ−(z) = exp
( ∞∑
n=1

1− t−n

n
(1− tnq−n)qn/4t−n/4a−nz

n
)
.

(3.4.10)

We call u the spectral parameter, and denote this Uq,t-module by F (1,M)
u .

We can also define the dual Uq,t-module structure F (1,M)∗
u on F∗ through the same ρu by regarding its

image as in End(F∗).

• (0, 1)-modules (Vertical representation)

As introduced in [27], by tensoring the vector representations, we obtain the (0, 1)-representation. The repre-
sentation space is again the space of the Macdonald functions. To avoid confusion, we use |λ〉 to indicate the
Macdonald function with the partition λ.

Through piling up the vector representations, this state is constructed as follows. For the partition λ =
(λ1, . . . , λN ≥ 0), define

|λ〉N = [u]λ1 ⊗ [(t/q)u]λ2−1 ⊗ · · · ⊗ [(t/q)N−1u]λN−N+1 , (3.4.11)

and denote the space spanned by these states by WN (u). Then the state |λ〉 of the (0, 1)-modules is the
element in lim←−N W

N (u).

Fact 3.4.4 ([32, 27]). Let u be an indeterminate. We can endow a Uq,t-module structure to F by setting

c1/2 |λ〉 = |λ〉 , (3.4.12)

x+(z) |λ〉 =

`(λ)+1∑
i=1

A+
λ,i δ(q

λit−i+1u/z) |λ+ 1i〉 , (3.4.13)

x−(z) |λ〉 = q1/2t−1/2

`(λ)∑
i=1

A−λ,i δ(q
λi−1t−i+1u/z) |λ− 1i〉 , (3.4.14)

ψ+(z) |λ〉 = q1/2t−1/2B+
λ (u/z) |λ〉 , (3.4.15)

ψ−(z) |λ〉 = q−1/2t1/2B−λ (z/u) |λ〉 , (3.4.16)
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with

A+
λ,i = (1− t)

i−1∏
j=1

(1− qλi−λj t−i+j+1)(1− qλi−λj+1t−i+j−1)

(1− qλi−λj t−i+j)(1− qλi−λj+1t−i+j)
, (3.4.17)

A−λ,i = (1− t−1)
1− qλi+1−λi

1− qλi+1−λi+1t−1

∞∏
j=i+1

(1− qλj−λi+1t−j+i−1)(1− qλj+1−λit−j+i)

(1− qλj+1−λi+1t−j+i−1)(1− qλj−λit−j+i)
, (3.4.18)

B+
λ (z) =

1− qλ1−1tz

1− qλ1z

∞∏
i=1

(1− qλit−iz)(1− qλi+1−1t−i+1z)

(1− qλi+1t−iz)(1− qλi−1t−i+1z)
, (3.4.19)

B−λ (z) =
1− q−λ1+1t−1z

1− q−λ1z

∞∏
i=1

(1− q−λitiz)(1− q−λi+1+1ti−1z)

(1− q−λi+1tiz)(1− q−λi+1ti−1z)
. (3.4.20)

We refer to this module as F (0,1)-module. We denote the basis Pλ of (0, 1)-module by |λ〉 to distinguish from
those of F (1,M). To represent this module, we sometimes use the notation ρ(0,1) : Uq,t → End(F).

3.4.3 Intertwiners and Refined Topological Vertex

Now we introduce the intertwiners which intertwine the tensor product of two modules to one module or
its inverse. These intertwiners are introduced in the beautiful paper [9]. As we see below, because these
intertwiners connect three modules, they can be diagrammatically represented by trivalent vertices.

Fact 3.4.5 ([9]). When w = −uv, there exists a unique intertwiner which satisfies

Φ

[
(1,M + 1), w

(0, 1), v; (1,M), u

]
: F (0,1)

v ⊗F (1,M)
u −→ F (1,M+1)

w ; aΦ = Φ∆(a) (∀a ∈ Uq,t) (3.4.21)

and the normalization condition 〈0|Φ(|∅〉 ⊗ |0〉) = 1. Moreover, its component Φλ, defined by

Φλ(α) = Φ(|λ〉 ⊗ α) (∀ |λ〉 ⊗ α ∈ F (0,1)
v ⊗F (1,M)

u ) , (3.4.22)

has the following realization,

Φλ

[
(1,M + 1),−vu

(0, 1), v; (1,M), u

]
= t̂(λ, u, v,M)Φ̂λ(v) , (3.4.23)

where

t̂(λ, u, v,M) = (−vu)|λ|(−v)−(M+1)|λ|f−M−1
λ qn(λ′)/cλ ,

Φ̂λ(v) =: Φ∅(v)ηλ(v) : ,

Φ∅(v) = exp
(
−
∞∑
n=1

1

n

1

1− qn
a−nv

n
)

exp
(
−
∞∑
n=1

1

n

qn

1− qn
anv
−n
)
,

ηλ(v) = :

`(λ)∏
i=1

λi∏
j=1

η(qj−1t−i+1v) : .

(3.4.24)

Similarly, the following intertwiner exists uniquely,

Φ∗
[

(1,M), u; (0, 1), v

(1,M + 1),−vu

]
: F (1,M+1)
−uv −→ F (1,M)

u ⊗F (0,1)
v , ∆(a)Φ∗ = Φ∗a (∀a ∈ Uq,t) , (3.4.25)
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with normalization Φ∗(|0〉) = |0〉 ⊗ 1 + · · · , and its component, defined by

Φ∗(α) =
∑
λ

Φ∗λ(α)⊗
(
cλ
c′λ
|λ〉
)

(∀α ∈ F (1,M+1)
−uv ) , (3.4.26)

is realized by

Φ∗λ

[
(1,M), v; (0, 1), u

(1,M + 1),−vu

]
= t̂∗(λ, u, v,M)Φ̂∗λ(u) , (3.4.27)

where

t̂∗(λ, u, v,M) = (q−1v)−|λ|(−u)M |λ|fMλ qn(λ′)/cλ ,

Φ̂∗λ(u) =: Φ∗∅(u)ξλ(u) : ,

Φ∗∅(u) = exp
( ∞∑
n=1

1

n

1

1− qn
q−n/2tn/2a−nu

n
)

exp
( ∞∑
n=1

1

n

qn

1− qn
q−n/2tn/2anu

−n
)
,

ξλ(u) = :

`(λ)∏
i=1

λi∏
j=1

ξ(qj−1t−i+1u) : .

(3.4.28)

Notation 3.4.6. In what follows, we mainly consider the M = 0 case, and we introduce the simplified
notations for the intertwiners.

Φ[u, v] := Φ

[
(1, 1),−vu

(0, 1), v; (1, 0), u

]
, Φ∗[u, v] := Φ∗

[
(1, 0), u; (0, 1), v

(1, 1),−vu

]
, (3.4.29)

and their components,

Φλ[u, v] := Φλ

[
(1, 1),−vu

(0, 1), v; (1, 0), u

]
, Φ∗λ[u, v] := Φ∗λ

[
(1, 0), u; (0, 1), v

(1, 1),−vu

]
. (3.4.30)

We also assign the trivalent diagrams to each intertwiner as follows. The arrows stand for the F (0,1)-
modules, and we refer to this direction as the preferred direction, following the terminology of the refined
topological vertex in [47].

Φ∗[u, v]

u

v

−uv

u

v

−uv

Φ[u, v]

The proof is by direct computation. For example, we can check

x+(z)Φλ − q−1/2t1/2B−λ (z/v)Φλx
+(z) =

`(λ)+1∑
i=1

A+
λ,i δ(q

λit−i+1v/z)Φλ+1i . (3.4.31)

Remark 3.4.7. Define the adjoint action of ∀x ∈ Uq,t on Φ ∈ End(F) by

adj(x) Φ :=
∑
i

x
(1)
i Φ a(x

(2)
i ) , (3.4.32)
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with ∆(x) =
∑
i x

(1)
i ⊗ x

(2)
i and a the antipode. Then, (3.4.31) can be rewritten as

adj(x+(z)) Φλ =

`(λ)+1∑
i=1

A+
λ,i δ(q

λit−i+1v/z)Φλ+1i . (3.4.33)

This means the (0, 1) representation can be regarded as the adjoint representation.

Let us see these intertwiners more carefully. Then we notice

Φ∅(v) =:

∞∏
i=1

∞∏
j=1

1

η(vqj−1t1−i)
: . (3.4.34)

(For Φ∗∅, replace η with ξ.) That is, diagrammatically, Φ∅ means the 1/η’s are spread all over the infinitely
large partition. Then in Φλ, since some 1/η’s are cancelled, they are spread except for λ part. This situation
is summarized in the next figure.

v = 1 q q2 q3 · · ·

qt−1 q2t−1

qt−2 q2t−2

t−1

t−2

t−3

...

λ

Figure 3.2: Left:Φ∅ and Right:Φλ

This consideration becomes important in Chapter 6.

Identification with Refined Topological Vertex

The resemblance between the diagram of intertwiners and that of the refined topological vertex is not a
coincidence. They are actually related with each other. In order to show this relation, we first introduce the
Schur functions on the Fock space and their dual.

Notation 3.4.8. Denote by |sλ〉, the Schur functions on the Fock space, and by 〈Sλ(q, t)|, the dual states,
that is,

〈Sµ(q, t) |sλ〉 = δµ,λ . (3.4.35)

This means the polynomial Sλ is dual to the Schur polynomial with respect to the kernel function (Definition
3.1.12). This can be constructed as follows. Let wu,v and ι be the endomorphisms of Λ,

wu,v(pn) = −(−1)n
1− un

1− vn
pn , (3.4.36)

ι(pn) = −pn , (3.4.37)

with pn the n-th power sum. Then, Sλ can be represented as

Sλ(x; q, t) := ιwt,qsλ(−x) . (3.4.38)

Now the following fact reveals the relation between the Uq,t intertwiners and the refined topological vertex.
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Proposition 3.4.9 ([9]).

1

〈Pλ, Pλ〉q,t
〈Sµ(q, t)|Φλ

[
(1,M + 1),−vu

(0, 1), v; (1,M), u

]
|sν〉 (3.4.39)

=

(
q−1/2u

(−v)M

)|λ|
f−Mλ · (−q−1/2v)−|ν|fν · (t−1/2v)|µ| · (−1)|µ|+|ν|+|λ| C

(IKV)
µν′λ′ (q, t),

〈Sν(q, t)|Φ∗λ
[

(1,M), v; (0, 1), u

(1,M + 1),−vu

]
|sµ〉 (3.4.40)

=

(
(−u)M

q−1/2v

)|λ|
fMλ · (−q−1/2u)|ν|f−1

ν · (t−1/2u)−|µ| · C(IKV)
µ′νλ (t, q).

3.5 Miki Automorphism (S-duality)

3.5.1 Structure of Uq,t
One important fact about Uq,t is, it is Z2-graded [27].2 Especially, deg(x±n ) = (±1, n) and deg(ψ±i ) = (0,±i).
The following picture shows this situation.

ψ+
1

ψ+
2

ψ−1

ψ−2

x+
0

x+
1

x+
2

x+
−1

x+
−2

x−1

x−2

x−−1

x−−2

x−0

x+(z)x−(z) ψ+(z)

ψ−(z)

S

All the elements in Uq,t are generated by x±n (n ∈ Z), and ψ±i (i ∈ Z≥0) so that the degrees are preserved.
For example, the element with a degree (2, 0) is generated by [x+

1 , x
+
−1], see the red lines in the figure. It is

easy to check the degree is conserved (1, 1) + (1,−1) = (2, 0). Repeating this procedure, we can generate all
the elements in Uq,t.

2In this section, we do not care about the centers.
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From this consideration, it is natural to expect the whole algebra to be generated by only 4 elements in
each orthants in Z2, and this is correct. Actually, with the defining relations (3.3.12), x±0 and ψ±1 generate
all the other generators. For example, we can construct x±n , (n ∈ Z>0) from x±0 , ψ+

1 and the first relation in
(3.3.12),

ψ+
1 x
±
n = g̃±1 x

±
n+1ψ

+
0 + g̃±0 x

±
nψ

+
1 , (3.5.1)

where we put

g(c∓1/2w/z)∓1 =
∑
i∈Z≥0

g̃±i · (w/z)
i . (3.5.2)

By solving the equation in terms of x±n+1, we obtain the expression for x±n+1 from x±n and ψ+
1 . (Note that ψ+

0

is the invertible center.) Similarly, we can construct x±n , (n ∈ Z<0) from x±0 , ψ−1 .

Definition 3.5.1 ([72]). Define the automorphism S : Uq,t → Uq,t by

ψ±1 7→ x∓0 , x±0 7→ ψ±1 , (ψ+
0 /ψ

−
0 )−1/2 7→ c , c 7→ (ψ+

0 /ψ
−
0 )−1/2 . (3.5.3)

We omit the constant coefficient in the image of this map.

We indicate this map by the blue line in the figure above.
In the following, we see the representations introduced above are related to each other under this au-

tomorphism. By the consideration above, we only need to check the automorphism is compatible with the
representations of x±0 and ψ±1 .

3.5.2 Duality between (0, 1) and (1, 0) Representations

First, we write down the (0, 1)-representation for each mode as follows.

ρ(0,1)(x+
0 ) |λ〉 =

`(λ)+1∑
i=1

A+
λ,i |λ+ 1i〉 , ρ(0,1)(x−0 ) |λ〉 = γ−1

`(λ)∑
i=1

A−λ,i |λ− 1i〉 ,

ρ(0,1)(ψ+
1 ) |λ〉 = γ−1u(1− t/q)(1− t−1)

∞∑
i=1

qλit1−i |λ〉 ,

ρ(0,1)(ψ−1 ) |λ〉 = γu−1(1− q/t)(1− t)
∞∑
i=1

q−λit−1+i |λ〉 .

(3.5.4)

Next, we write the (1, 0)-representation.

ρ(1,0)(x+
0 ) |Pλ〉 = u(1− t−1)

∞∑
i=1

qλit1−i |Pλ〉 ,

ρ(1,0)(x−0 ) |Pλ〉 = u−1(1− t)
∞∑
i=1

q−λiti−1 |Pλ〉 ,

ρ(1,0)(ψ+
1 ) |Pλ〉 = −γ−1/2(1− t)(1− t/q)a1 |Pλ〉 = qγ−1/2(1− t/q)

∞∑
i=1

A−λ,i |Pλ−1i〉 ,

ρ(1,0)(ψ−1 ) |Pλ〉 = γ−1/2(1− t−1)(1− t/q)a−1 |Pλ〉 = −q−1γ−1/2(1− q/t)
∞∑
i=1

A+
λ,i |Pλ+1i〉 .

(3.5.5)

In the last two lines, we used the Pieri rule. Again, note that A±λ,i are the Pieri coefficients, defined in Definition
3.1.15, up to constant. Now it is obvious that these two modules are related via the Miki automorphism, that
is,

γ∓1(1− (t/q)±1)ρ(1,0)(x±0 )↔ ρ(0,1)(ψ±1 ) , ± q∓1γ±1/2

1− (t/q)±1
ρ(1,0)(x±0 )↔ ρ(0,1)(x∓0 ) . (3.5.6)

It is also possible to observe a similar correspondence between two kinds of (0, 0)-modules.
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3.5.3 Higher Hamiltonians

As the Macdonald polynomials are joint eigenfunctions of commuting Hamiltonians (see Fact 3.1.7), the Mac-
donald functions on the Fock space, (which correspond to infinitely many variables,) also must be characterized
by infinitely many commuting difference operator. In Section 3.2, we show the zero mode of the η(z) currents
in Uq,t is intertwined to the Macdonald operator. In order to make ends meet, we have to construct the higher
operators which commute with η0.

Because for n,m ∈ Z≥0 we have

[ψ+
n , ψ

+
m] = 0 , [ψ−n , ψ

−
m] = 0 , (3.5.7)

the images of ψ±n under the Miki automorphism S commutes with x±0 . This situation is summarized in the
following figure:

I1 I2 I3

Ĩ1Ĩ2Ĩ3

ψ+(z)

ψ−(z)

Ik

S

Ĩk

In [72], the concrete forms of Ik and Ĩk(k ∈ Z≥2) are given by

Ik = [x+
−1,

k−2︷ ︸︸ ︷
[x+

0 , · · · [x
+
0 , x

+
1 ] · · · ]] , (3.5.8)

Ĩk = [x−1 , [x
−
0 , · · · [x

−
0︸ ︷︷ ︸

k−2

, x−−1] · · · ]] . (3.5.9)

We can easily find these forms from the consideration of their degrees. Note that the Serre relation ensures
the commutation relation between I1 = x+

0 and I2 = [x+
1 , x

+
−1] vanishes.

3.6 Shuffle Algebra and Feigin–Odesskii Algebra

In the previous section, we observed there actually exist infinitely many commuting Hamiltonians. In this
section, we present an explicit way to construct them.

There is an ad hoc way to construct the commuting integrals of motion, associated with the A-type
Macdonald operators. This is the Feigin–Odesskii(FO) algebra, which was introduced in [87, 31]. There is a
beautiful paper about the FO algebra [29], and we follow their arguments.

Throughout this section, we put the base field F = Q(q, t).
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3.6.1 Definition

Notation 3.6.1. Denote the space of the m-variable symmetric rational functions with coefficients in F as
Ām (m > 0). We also write Ā =

⊕
n≥0 Ān.

In order to introduce the FO algebra, we first define the star product.

Definition 3.6.2. We put Ā0 = F. For f ∈ Ām and g ∈ Ān, define the map ∗ : Ām × Ān → Ām+n by

(f ∗ g)(x1, . . . , xm+n) = Sym

f(x1, . . . , xm)g(x1, . . . , xn)
∏

1≤α≤m

∏
m+1≤β≤m+n

w(xα, xβ)

 , (3.6.1)

with

w(x, y) :=
(x− q−1y)(x− ty)(x− qy/t)

(x− y)3
, (3.6.2)

and the symmetrizer

Sym (f(x1, . . . , xm)) =
1

m!

∑
σ∈Sm

f(xσ(1), . . . , xσ(m)) . (3.6.3)

We refer to this bilinear map as the star product.

Remark 3.6.3. Note that this is the degenerate case of the original Feigin-Odesskii algebra. In the original
case, instead of w(x, y), they use

λ(x, y) =
Θp(y/qx)Θp(ty/x)Θp(qy/tx)

Θp(y/x)3
. (3.6.4)

We introduce two operators.

Definition 3.6.4. For f ∈ Ān and k = 1, . . . , n, define

∂(0,k) : f 7→ n!

(n− k)!
lim
ζ→0

f(x1, . . . , xn−k, ζxn−k+1, . . . , ζxn) , (3.6.5)

∂(∞,k) : f 7→ n!

(n− k)!
lim
ζ→∞

f(x1, . . . , xn−k, ζxn−k+1, . . . , ζxn) , (3.6.6)

whenever the limits exist. For n = 0, we put the actions to be 0. We also set ∂(0,0), ∂(∞,0) to be the identity
operators.

We define the subset of Ā =
⊕

n≥0 Ān.

Definition 3.6.5. The subspace An ⊂ Ān is defined by the following three conditions:

(i) For f ∈ An and 0 ≤ k ≤ n, ∂(0,k)f and ∂(∞,k)f exist and ∂(0,k)f = ∂(∞,k)f .

(ii) The poles of f ∈ An locate only on {(x1, . . . , xn)|∃(i, j), i 6= j, xi = xj}, and the orders of the poles are
at most two.

(iii) For n ≥ 3, f ∈ An, f(x, q−1x, qx/t, x4, . . .) = f(x, tx, qx/t, x4, . . .) = 0 .

We also denote A =
⊕

n≥0An.

The following theorem is highly non-trivial and essential.

Theorem 3.6.6. The vector space A is closed with respect to the star product ∗, and this defines the unital
associative algebra (A, ∗). Moreover, the algebra (A, ∗) is commutative. We refer to the commuting algebra
(A, ∗) as the Feigin–Odesskii algebra.
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Example

We just show one family of examples which are the elements in A, and thus commute with each other with
respect to the star product.

Definition 3.6.7. For x = (x1, . . . , xn), set

gn(x) =
∏

1≤i<j≤n

g̃(xi, xj) , (3.6.7)

g̃(xi, xj) =
1− xj/txi
1− xj/xi

1− xi/txj
1− xi/xj

. (3.6.8)

Then, it is shown that
gn(x) ∗ gm(y)− gm(y) ∗ gn(x) = 0 . (3.6.9)

The proof is done through applying the Liouville theorem to

gn ∗ gm − gm ∗ gn
gn+m

. (3.6.10)

3.6.2 Family of Commuting Operators

Using this FO algebra, we can construct the family of commuting operators.
First, from (3.3.1), we know

f(x2/x1)η(x1)η(x2) = f(x1/x2)η(x2)η(x1) , (3.6.11)

with

f(z) =
(1− qz)(1− z/t)
(1− z)(1− qz/t)

. (3.6.12)

Then it it easy to show the following lemma.

Lemma 3.6.8. Define the operator

On(z1, . . . , zn) =
∏

1≤i<j≤n

f(xj/xi) · η(z1) · · · η(zn) . (3.6.13)

Then, the operator On is Sn-invariant. That is, the combinations of f and η’s are operator-valued symmetric
Laurent polynomials.

Motivated by this lemma, we define the following map O : A → End(F).

Definition 3.6.9. Define the map O : A → End(F),

In :=

 ∏
1≤i<j≤n

S(zi, zj) · On(z1, . . . , zn)


1

, (3.6.14)

with

S(z, w) =
g̃(z, w)

f(w/z)w(z, w)
. (3.6.15)

For g̃, see Definition 3.6.7. [· · · ]1 means taking the constant term in · · · as before.

We can also easily prove the following lemma by direct computation.
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Lemma 3.6.10. ∏
1≤i<j≤n

S(zi, zj) · On(z1, . . . , zn)

 ·
 ∏

1≤i<j≤m

S(zn+i, zn+j) · Om(zn+1, . . . , zn+m)


=

∏
1≤i≤n

∏
1≤j≤m

w(zi, zn+j)

g̃(zi, zn+j)
·

∏
1≤i<j≤n+m

S(zi, zj) · On+m(z1, . . . , zn+m) .

(3.6.16)

Remark 3.6.11. In Definition 3.6.9, we use the special element gn ∈ An. A admits some Gordon filtration,
and gn’s are top components with respect to that filtration. Thus we can generalize In to

In(f) =

f(z1, . . . , zn)
∏

1≤i<j≤n

1

w(zi, zj)f(zj/zi)
· On(z1, . . . , zn)


1

, (3.6.17)

for f ∈ An.

Combining all above, we have the following main theorem.

Theorem 3.6.12. For arbitrary n and m ∈ Z>0, we have

[In, Im] = 0 . (3.6.18)

Proof. From the lemma above,

In · Im =

 ∏
1≤i≤n

∏
1≤j≤m

w(zi, zn+j)

g̃(zi, zn+j)
·

∏
1≤i<j≤n+m

S(zi, zj) · On+m(z1, . . . , zn+m)


1

=

gn(z1, . . . , zn)gm(zn+1, . . . , zn+m)
∏

1≤i≤n

∏
1≤j≤m

w(zi, zn+j) ·
∏

1≤i<j≤n+m

S(zi, zj)

g̃(zi, zj)
· On+m(z1, . . . , zn+m)


1

=

gn ∗ gm · ∏
1≤i<j≤n+m

S(zi, zj)

g̃(zi, zj)
· On+m(z1, . . . , zn+m)


(3.6.19)

In the last line, we symmetrize the integration variables. Note that (
∏
S/g̃)On+m is Sn+m-invariant. The

commutativity of gn completes the proof.

3.6.3 Examples

By the Serre relation, we know [η1, η−1] and η0 commute with each other,

[η0, [η1, η−1]] = 0 . (3.6.20)

Let us show this fact using the FO algebra. We first rewrite [η1, η−1] (plus something which trivially commutes
with η0) as

[η1, η−1]− (q − q−1) η2
0 =

∮
dz

2πiz

dw

2πiw

(1− w/z)(1− qw/tz)
(1− qw/z)(1− w/tz)

(w
z
− z

w
− (q − q−1)

)
: η(z)η(w) : . (3.6.21)

Then, by symmetrizing the integral contours, we can perform the following transformation.∮
dz

2πiz

dw

2πiw

(1− w/z)(1− qw/tz)
(1− qw/z)(1− w/tz)

(w
z
− z

w
− (q − q−1)

)
: η(z)η(w) :

=
1

2

(1− q)(q + t)

qt

∮
dz

2πiz

dw

2πiw
(1 + t)

(w − z)2

(tw − z)(w − tz)
: η(z)η(w) :

=
(1− q)(q + t)

qt

∮
dz

2πiz

dw

2πiw

1− w/z
1− t−1w/z

: η(z)η(w) :=

∮
dz

2πiz

dw

2πiw

f(z, w)

w(z, w)
η(z)η(w) ,

(3.6.22)
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with
f(z, w)

ω(z, w)
=

1− qw/z
1− qw/tz

. (3.6.23)

In this transformation, the most RHS can be seen as the map from the FO algebra. It is easy to check f in
(3.6.23) satisfies the conditions in A.



Chapter 4

Generalized Macdonald Functions on
N-Fock Tensor Space

This chapter is devoted to the explanation of the generalized Macdonald functions on the N -fold tensor space

of the Fock spaces Fu =
⊗yN

j=1Fuj . These states are defined as the eigenstates of the zero mode of the N -th
coproduct of η(z). Our goal is to extend Theorem 3.2.6 to the Fock tensor spaces. The lesson we learned in
Section 3.2, is that in order to construct |Pλ〉, we need the Macdonald polynomials Pλ and the vertex operator
called the top component.

Thus, we need to prepare the extension of the Macdonald polynomials which are associated with the N -
tuples of partitions. This is the bispectral Macdonald functions, introduced in [86]. This is the main object in
Section 4.1. This function has very nice properties, such as the bispectral duality, the Poincaré duality, and
the factorization formula.

Next, we need to prepare the vertex operators Φ(i) (i = 0, . . . , N − 1). First, we define the N -th tensor
analogue of the top component, denoted by Φ(0). Then, Φ(i) (i 6= 0)’s are constructed by combining the top
component with the screening currents of the q-deformed W-algebra (q-W for short). Then, with these tools,
we obtain the explicit construction of the generalized Macdonald functions. See Section 4.2 for more details.

Section 4.3 is in some sense, a supplement of Section 4.2. In the previous section, we use the screening
currents without mentioning the q-deformedW-algebra itself, and thus we review it in this section. Moreover,
we prove the screening operators, which are the integral of the screening currents, are well-defined. Using
these facts, we can complete the proof of the Kac determinant formula for q-W algebra.

4.1 Bispectral Macdonald Functions

In the previous chapter, we introduced the Macdonald “polynomials”. We now extend these polynomials to
the basic hypergeometric series with multi-variables. The biggest reason for this extension is that we would like
to treat the main variables and the eigenvalue of the Macdonald operator on equal footing. More concretely,
in the previous chapter, the eigenvalues of the Macdonald operators are expressed in terms of

si = tn−iqλi , (4.1.1)

and they are just numbers. Here, we would like to deal with them as another set of variables (s1, . . . ), that
is, as the parameters which have nothing to do with the partitions. This will be clear in Definition 4.1.2. We
refer to these hypergeometric series as the bispectral Macdonald functions.

After this extension, the various known transformation formulas of the basic hypergeometric functions
becomes applicable to the Macdonald functions. It is the Kajihara-Noumi identity that is the master formula
for such transformation. (See Section 5.3.) We also observe the good analytic properties of these functions,
and these become important in the proof of the main claim (see Proposition 5.3.7). Moreover, we obtain two
important duality formulas, the bispectral duality and the Poincaré duality.
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To be fair, we have to note that because now the s-variables are generic, the salient features of Macdonald
polynomials, such as the Pieri rules and the skew analogue, are lost in the bispectral Macdonald functions.

Now, let us begin with the definition of bispectral Macdonald functions.

4.1.1 Definition

We introduce the formal Macdonald difference operators.

Definition 4.1.1. For 1 ≤ k ≤ n, define the operators on C[[x2/x1, x3/x2 . . . , xn/xn−1]] by

D(k)
n (s; q, t) :=

∑
I⊂{1,...,n}
|I|=k

sεI
∏
i<j

i∈I,j /∈I

1− xj/txi
1− xj/xi

∏
j<i

i∈I,j /∈I

1− txi/xj
1− xi/xj

T εIq,x, (4.1.2)

where s = (s1, . . . , sn) are indeterminates, and

sεI =
∏
i∈I

si , T εIq,x =
∏
i∈I

Tq,xi . (4.1.3)

For later use, we also introduce

D̃
(k)
n (s; q, t) :=

∑
I⊂{1,...,n}
|I|=k

sεI
∏
i<j

i∈I,j /∈I

1− txj/qxi
1− xj/qxi

∏
j<i

i∈I,j /∈I

1− qxi/txj
1− qxi/xj

T εIq−1,x . (4.1.4)

We use the almost same notation as Definition 3.1.4. In what follows, we forget about the original operators,

and use the notation D
(k)
n in the sense of this definition.

Note that when we rewrite the factors
1−xj/txi
1−xj/xi to the form of Definition 3.1.4, some extra powers of

t is multiplied to sεI . Then conjugating by x−λ, we can go from D
(k)
n ((tn−iqλi); q, t) back to the original

Macdonald operators.
We now define the bispectral Macdonald functions, following [86, 103].

Definition 4.1.2. Let x = (xi)1≤i≤n be indeterminates and s = (si)1≤i≤n be generic parameters. Define

fgln(x|s|q, t) and f̃gln(x|s|q, t) ∈ C[[x2/x1, x3/x2, . . . , xn/xn−1]] by

fgln(x|s|q, t) =
∑
θ∈Mn

cn(θ; s|q, t)
∏

1≤i<j≤n

(xj/xi)
θi,j , (4.1.5)

f̃gln(x|s|q, t) =
∏

1≤k<`≤n

(1− x`/xk) · fgln(x|s|q−1, t−1). (4.1.6)

We put fgl0 = f̃gl0 = 1. Here Mn is the set of all n × n upper triangular matrices with non-negative
integers, whose diagonal elements are 0. cn(θ; s|q, t) are coefficients defined by the following recurrence
relations:

c1(−; s1, q, t) = 1 ,

cn((θi,j)1≤i<j≤n; (si)1≤i≤n|q, t)
= dn ((θi,n)1≤i≤n−1; (si)1≤i≤n|q, t) · cn−1((θi,j)1≤i<j≤n−1; (q−θi,nsi)1≤i≤n|q, t) ,

(4.1.7)

with

dn((θi)1≤i≤n−1; (si)1≤i≤n|q, t) =
∏

1≤i<j≤n

(tsj/si; q)θi
(qsj/si; q)θi

∏
1≤i≤j≤n−1

(q−θjqsj/tsi; q)θi
(q−θjsj/si; q)θi

. (4.1.8)
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From the recurrence relations, the explicit form of cn can be computed as

cn((θi,j)1≤i<j≤n; (si)1≤i≤n|q, t)

=

n∏
k=2

 ∏
1≤i<j≤k

(q
∑n
a=k+1(θi,a−θj,a)tsj/si; q)θi,k

(q
∑n
a=k+1(θi,a−θj,a)qsj/si; q)θi,k

∏
1≤i≤j<k

(q−θj,k+
∑n
a=k+1(θi,a−θj,a)qsj/tsi; q)θi,k

(q−θj,k+
∑n
a=k+1(θi,a−θj,a)sj/si; q)θi,k

 .
(4.1.9)

Let us see some examples.

• n = 2, 3 Examples

fgl2(x|s|q, t) =
∑
θ∈Z≥0

(t; q)θ
(q; q)θ

(ts2/s1; q)θ
(qs2/s1; q)θ

(qx2/tx1)θ ,

fgl3(x|s|q, t) =
∑

θ1,2,θ1,3,θ2,3∈Z≥0

(t; q)θ1,2
(q; q)θ1,2

(qθ1,3−θ2,3ts2/s1; q)θ1,2
(qθ1,3−θ2,3qs2/s1; q)θ1,2

×
(t; q)θ1,3
(q; q)θ1,3

(ts2/s1; q)θ1,3
(qs2/s1; q)θ1,3

(ts3/s1; q)θ1,3
(qs3/s1; q)θ1,3

(q−θ2,3qs2/ts1; q)θ1,3
(q−θ2,3qs2/s1; q)θ1,3

×
(t; q)θ2,3
(q; q)θ2,3

(ts3/s2; q)θ2,3
(qs3/s2; q)θ2,3

·
∏

1≤i<j≤3

(qxj/txi)
θi,j .

(4.1.10)

Then, the following fact was conjectured in [103] and proved in [86].

Fact 4.1.3 ([86, 103]). The function fgln(x; s|q, t) is a unique formal solution to the 1st order difference
equation

D(k)
n (s; q, t)fgln(x|s|q, t) = ek(s) · fgln(x|s|q, t) , (4.1.11)

up to some constant. ek is the k-th elementary symmetric polynomial. Further, f̃gln(x; s|q, t) is a unique
function such that

D̃
(k)
n (s; q, t)f̃gln(x|s|q, t) = ek(s) · f̃gln(x|s|q, t) . (4.1.12)

Remark 4.1.4. Put δ = (−1,−2, . . . ,−n), and tn+δqλ = (tn−1qλ1 , . . . , qλn). It is easy to show

xλfgln(x|tn+δqλ|q, t) = Pλ(x|q, t) . (4.1.13)

Note that under this specialization, there exists n ∈ N such that for any m ≥ n, cm becomes zero.

The proof of Fact 4.1.3 goes as follows. For an arbitrary partition λ ∈ P, the specialization s = tn+δqλ

degenerates fgln to the Macdonald polynomial Pλ. Under this specialization, the equation (3.1.13) gives the
set of recurrence relations on the coefficients cn(θ; s|q, t). Because these recurrence relations hold for any
s = tn+δqλ with λ ∈ P, they hold as the relations on the rational functions in s. Thus the equation (4.1.11)
holds.

These functions fgln and f̃gln , are dual to each other. We can easily show the following lemma.

Lemma 4.1.5. Let λ and µ satisfy `(λ), `(µ) ≤ n.[
x−λxµf̃gln(x|s(λ)|q, q/t)fgln(x|s(µ)|q, q/t)

]
x,1

= δλ,µ . (4.1.14)

Here, s(λ) = (sj(λ))1≤j≤n, sk(λ) = qλkt1−ku.
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Proof. We denote the LHS by F (λ|µ). Inserting the Macdonald operator D1
n(s; q, q/t) and integrating by

parts, we obtain the equality[
x−λf̃gln(x|s(λ)|q, q/t)

(
D1
n(s̄; q, q/t)xµfgln(x|s(µ)|q, q/t)

)]
x,1

=
[(
D̃1
n(s̄; q, q/t)x−λf̃gln(x|s(λ)|q, q/t)

)
xµfgln(x|s(µ)|q, q/t)

]
x,1

,
(4.1.15)

with s̄k = ut1−k. The LHS becomes εµF (λ|µ) while the RHS ελF (λ|µ). Thus, we have F (λ|µ) = C(λ)δλ,µ
with C(λ) = F (λ|λ). It is easy to show C(λ) = 1 by noting and both f̃gln(x|s(λ)|q, q/t) and fgln(x|s(µ)|q, q/t)
are in C(s1, . . . , sn)[[x2/x1, x3/x2, . . . , xn/xn−1]] and so is their product.

4.1.2 Duality

At this point, in fgln , x-variables and s-variables are still not equal partners. When xi+1/xi = 0 for all i,
fgln = 1. On the other hand, si+1/si = 0, fgln(x; 0|q, t) 6= 1. Actually, it is easy to check

fgln(x|s|q, t)
∣∣
si+1/si=0

=
∑
θ∈Mn

∏
1≤i<j≤n

(t; q)θi,j
(q; q)θi,j

(qxj/txi)
θi,j =

∏
1≤i<j≤n

(qxj/xi; q)∞
(qxj/txi; q)∞

. (4.1.16)

In the last equality, we use the q-binomial formula,

(ax; q)∞
(x; q)∞

=

∞∑
n=0

(a; q)n
(q; q)n

xn . (4.1.17)

Thus, by dividing by this factor we obtain the better version of the bispectral Macdonald functions.

Definition 4.1.6. Define the function ϕgln(x; s|q, t) ∈ C[[s−Q+ ]][[x−Q+ ]] by

ϕgln(x|s|q, t) =
∏

1≤i<j≤n

(qxj/txi; q)∞
(qxj/xi; q)∞

· fgln(x|s|q, t) . (4.1.18)

Then, the following fact shows the equivalence between x and s.

Fact 4.1.7 ([86]). We have the following dualities:

ϕgln(x|s|q, t) = ϕgln(s|x|q, t) , (The bispectral duality) , (4.1.19)

ϕgln(x|s|q, t) = ϕgln(x|s|q, q/t) , (The Poincaré duality) . (4.1.20)

The proof of the bispectral duality is straightforward. It is easy to see the action of D
(k)
n (x; q, t) (note that

this is the operator which shift the s-varibales!) on ϕgln(x|s|q, t) is controllable, and we can show they act
diagonally on ϕgln . This means in ϕgln , we can regard s-variables as the main variables while x-variables as
the accessory parameters.

The Poincaré duality is also easy to check, once we note the prefactor
∏

1≤i<j≤n
(qxj/txi;q)∞
(qxj/xi;q)∞

interpolate

D
(k)
n (s; q, t) to D

(k)
n (s; q, q/t), and

∏
1≤i<j≤n

(txj/xi;q)∞
(qxj/xi;q)∞

does its inverse. The reason we call this duality the

Poincaré duality is following. As studied in [19], the Macdonald functions are the generating functions of the
Euler characteristics of the Laumon space, that is, the generating functions of some cohomology class of the
(twisted) de Rham complex. Then, there exists the Poincaré duality in the usual sense, and in terms of the
generating functions, this duality is interpreted as (4.1.19).

Remark 4.1.8. The operators D
(k)
n act on C[[x−Q+ ]], where −Q+ stands for the negative root lattice of type

An. The coefficients of each xµ =
∏n
i=1 x

µi
i (µ ∈ −Q+) in fgln(x; s|q, t) are in C(s−Q+).

By Fact 4.1.3, we know that the dependence of s-variables should be associated with the coroot lattice. (The
x-variables are associated with the eigenfunctions while s-variables are associated with their eigenvalues.)

Thus, for general root systems, the coefficients of each monomials are in C(s−Q
∨
+). This implies that under

the bispectral duality, the Macdonald functions transform to those associated with the Langlands dual root
system.
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4.1.3 Analytic Property

Definition 4.1.9. For a = (a1, . . . , an) ∈ (C∗)n define the projection for the canonical coordinates πn :
(C∗)n → Cn−1 by

πn(a) = (a2/a1, . . . , an/an−1) ∈ Cn−1 . (4.1.21)

Notation 4.1.10. For later use in Section 5.4, we prepare some notations.

z := (z1, . . . , z|n|−1) = π|n|((x1, . . . , x|n|)) ,

z̃ := (z̃1, . . . , z̃|n|+|m|−1) = π|n|+|m|((x1, . . . , y1, . . . )) ,

w := (w1, . . . , w|n|−1) = π|n|((s1, . . . , s|n|)) ,

w̃ := (w̃1, . . . , w̃|n|+|m|−1) = π|n|+|m|((s1, . . . , s|n|+|m|)) .

Definition 4.1.11. Define the open subset Dw ⊂ Cn−1 by

Dn
w = {w = (w1, . . . , wn−1) ∈ Cn−1

∣∣ wi · · ·wj−1 /∈ q−Z ∪ {0}, 1 ≤ i < j ≤ n}, (4.1.22)

so that
π−1(Dn

w(r)) = {s = (s1, . . . , sn) ∈ (C∗)n
∣∣ sj/si /∈ q−Z, 1 ≤ i < j ≤ n} . (4.1.23)

Definition 4.1.12. Define the subsets Unz (r), Bnz (r) ⊂ Cn−1 by

Unz (r) = {z = (z1, . . . , zn−1) ∈ Cn−1
∣∣ |zi| < r, i = 1, . . . , n− 1} , (4.1.24)

Bnz (r) = {z = (z1, . . . , zn−1) ∈ Cn−1
∣∣ |zi| ≤ r, i = 1, . . . , n− 1} , (4.1.25)

so that
π−1(Bnz (r)) = {x = (x1, . . . , xn) ∈ (C∗)n

∣∣ |xj/xi| ≤ rj−i, 1 ≤ i < j ≤ n} . (4.1.26)

We make use of the following fact, proved in [86]. This plays the central role in the first step of the proof
of the main theorem. (See Step 1 of Section 5.4.)

Fact 4.1.13 ([86]). Let τ be a generic complex parameter, and let O(Dn
w) be the ring of holomorphic functions

on Dn
w For n = 2, 3, . . . , we regard fgln(x|s|q, τ) as a formal power series in z = (z1, . . . , zn−1) with coefficients

in O(Dn
w), that is,

fgln(x|s|q, τ) =
∑
θ∈Mn

cn(θ; s|q, τ)
∏

1≤i<j≤n

(xj/xi)
θi,j ∈ O(Dn

w)[[z]]. (4.1.27)

Put r0 = |q/τ |
n−2
n−1 if |q/τ | ≤ 1, and r0 = |τ/q| if |q/τ | ≥ 1. Then for any compact subset K ⊂ Dw and for

any r < r0, this series 4.1.27 is absolutely convergent, uniformly on Bnz (r) × K. Thus fgln(x; s|q, τ) is a
holomorphic function on Unz (r0)×Dn

w.

4.1.4 Factorization Formula

For completeness, we see the factorization of fgln under the specialization,

xi → tn−i . (4.1.28)

We refer to this specialization as the principle specialization. Then, we have the following fact.

Fact 4.1.14 (Principle Specialization [86]). Let |t| > |q|−(n−2). Then, fgln factorizes as

fgln(x|s|q, t)
∣∣∣
xi→tn−i

=

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

. (4.1.29)

Note that this is the natural generalization of

t−||ν
′||/2Pν(t−ρ; q, t) =

1

cν
, (4.1.30)

in the usual Macdonald polynomials [69].
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4.2 Generalized Macdonald Functions on Fock Tensor Space

In this section, we introduce what is called the generalized Macdonald functions on the Fock tensor spaces.
Roughly speaking, these states are the boson realization of the bispectral Macdonald functions on the Fock
tensor spaces. Throughout this section, N stands for the number of the Fock tensor. The story goes completely
in parallel with that in one Fock space (Section 3.2).

We first introduce some notation to simplify the symbols to express the Fock tensor space.

Definition 4.2.1. Let N ∈ Z≥1, and let u = (u1, . . . , uN ) ∈ (C×)N be an N -tuple of parameters. Define the
(N, 0)-representation by

ρ(N,0)
u := (ρu1

⊗ ρu2
⊗ · · · ⊗ ρuN ) ◦∆(N), (4.2.1)

where ∆(1) := id, ∆(N) := (id⊗ · · · ⊗ id︸ ︷︷ ︸
N−2

⊗∆) ◦ · · · ◦ (id⊗∆) ◦∆ (N ≥ 2).

The ρ
(N,0)
u endows the (N, 0)-module structure to the N -th tensor space of F . We denote it by F (1,0)

u1 ⊗ · · · ⊗
F (1,0)
uN . For brevity of notation, we introduce the notation Fu = F (1,0)

u1 ⊗ · · · ⊗ F (1,0)
uN for simplicity. We also

denote F∗u = F (1,0)∗
u1 ⊗ · · · ⊗ F (1,0)∗

uN . We denote the vacuum (resp. dual vacuum) states of Fu (resp. F∗u) by

|0〉 (resp. 〈0|), that is, the N -the tensor of the vacuum |0〉 = |0〉⊗N (resp. 〈0| = 〈0|⊗N ). We also introduce
the notation,

a(i)
n =

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗an ⊗

N−i︷ ︸︸ ︷
1⊗ · · · ⊗ 1 . (4.2.2)

Now we introduce some facts necessary to define the Macdonald operator on the Fock tensor space.

Fact 4.2.2 ([30]). On Fu, we have

ρ(N,0)
u (x+(z)) =

N∑
i=1

uiΛ
(i)(z) , (4.2.3)

where, for k = 1, 2, . . . , N , we put

Λ(i)(z) := ϕ−(γ1/2z)⊗ · · · ⊗ ϕ−(γi−3/2z)⊗

i-th Fock space︷ ︸︸ ︷
η(γi−1z) ⊗1⊗ · · · ⊗ 1 , (4.2.4)

with γ = (t/q)1/2.

Definition 4.2.3. Set X(1)(z) = ρ
(N,0)
u (x+(z)). Define the set of generators X

(k)
n (k = 1, . . . , N, n ∈ Z) by

the fusion of several X(1)’s as

X(k)(z) =
∑
n∈Z

X(k)
n z−n = X(1)(γ2(1−k)z)X(1)(γ2(2−k)z) · · ·X(1)(z) ∈ End(Fu)[[z±1]] . (4.2.5)

We can massage the currents X(k)(z) to simpler forms. This is summarized in the following fact.

Fact 4.2.4 ([8]). We have

X(k)(z) =
∑

1≤j1<···<jk≤N

: Λ(j1)(z) · · ·Λ(jk)((q/t)k−1z) : uj1 · · ·ujk . (4.2.6)

Definition 4.2.5. We denote by U(N) (the completion in the sense of the adic topology, of) the algebra

〈X(i)
n |n ∈ Z, i = 1, . . . N〉 in End(Fu). That is, U(N) is the completion of the algebra generated by the set of

operators
{
X

(i)
n

}
.
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This algebra U(N) can be thought of as the q-deformed WN algebra, combined with some Heisenberg
algebra [30]. This will be reviewed in Section 4.3.

Now we introduce a candidate for the basis of the Fock tensor space.

Definition 4.2.6. For an N -tuple of partitions λ = (λ(1), λ(2), . . . , λ(N)) ∈ PN , we define |Xλ〉 = |Xλ(u)〉 ∈
Fu and 〈Xλ| = 〈Xλ(u)| ∈ F∗u by

|Xλ(u)〉 := X
(1)

−λ(1)
1

X
(1)

−λ(1)
2

· · ·X(2)

−λ(2)
1

X
(2)

−λ(2)
2

· · ·X(N)

−λ(N)
1

X
(N)

−λ(N)
2

· · · |0〉 , (4.2.7)

〈Xλ(u)| := 〈0| · · ·X(N)

λ
(N)
2

X
(N)

λ
(N)
1

· · ·X(2)

λ
(2)
2

X
(2)

λ
(2)
1

· · ·X(1)

λ
(1)
2

X
(1)

λ
(1)
1

. (4.2.8)

In what follows, we omit the spectral parameter u, unless there is any confusion.
The next fact shows they form the basis of the Fock tensor space.

Fact 4.2.7 ([89]). The set (|Xλ〉) (resp. (〈Xλ|)) forms a PBW-type basis of Fu (resp. F∗u), if ui 6= qst−ruj
and ui 6= 0 for all i, j and r, s ∈ Z.

The proof of this fact owes to the Kac determinant formula. See Proposition 4.3.19 for more detail.

4.2.1 Definition

To define the generalized Macdonald functions, we first generalize the dominance ordering to the N -tuple of
partition.

Definition 4.2.8. The partial ordering
∗
> on the set of N -tuples of partitions is defined by

λ
∗
>µ

def⇐⇒ |λ| = |µ|,
N∑
i=k

|λ(i)| ≥
N∑
i=k

|µ(i)| (∀k) and (4.2.9)

(|λ(1)|, |λ(2)|, . . . , |λ(N)|) 6= (|µ(1)|, |µ(2)|, . . . , |µ(N)|).

Once we adapt this ordering, when we move boxes in a right Young diagram to one in its left, it gets
smaller. Inside one Young diagram, the ordering is compatible with the dominance ordering.

Fact 4.2.9 (Existence and Uniqueness [90]). For an N -tuple of partitions λ, there exists a unique vector
|Pλ〉 = |Pλ(u)〉 ∈ Fu such that

|Pλ(u)〉 =

N∏
i=1

Pλ(i)(a
(i)
−n) |0〉+

∑
µ
∗
<λ

uλ,µ

N∏
i=1

Pµ(i)(a
(i)
−n) |0〉 , uλ,µ ∈ C; (4.2.10)

X
(1)
0 |Pλ(u)〉 = ελ(u) |Pλ(u)〉 , ελ(u) ∈ C, , (4.2.11)

with the eigenvalues

ελ(u) =

N∑
k=1

ukελ(k) , ελ := (1− t−1)

`(λ)∑
i=1

qλit1−i + t−`(λ) . (4.2.12)

Similarly, there exists a unique vector 〈Pλ| = 〈Pλ(u)| ∈ F∗u such that

〈Pλ(u)| = 〈0|
N∏
i=1

Pλ(i)(a(i)
n ) +

∑
µ
∗
>λ

u∗λ,µ 〈0|
N∏
i=1

Pµ(i)(a(i)
n ), u∗λ,µ ∈ C; (4.2.13)

〈Pλ(u)|X(1)
0 = ε∗λ(u) 〈Pλ(u)| , ε∗λ(u) ∈ C , (4.2.14)

with ελ(u) = ε∗λ(u). Again, we omit u unless mentioned otherwise.
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Remark 4.2.10. Throughout this thesis, we assume that q, t ∈ C× and the spectral parameters u are generic
in the following sense:

ελ(u) 6= 0 (∀λ); (4.2.15)

ελ(u) 6= εµ(u) (λ 6= µ); (4.2.16)

ui 6= qntmuj (n,m ∈ Z, i, j = 1, . . . , N). (4.2.17)

Fact 4.2.11 ([8]). |Pλ〉 and 〈Pλ| satisfy

〈Pλ|Pµ〉 =

N∏
i=1

c′
λ(i)

cλ(i)

δλ,µ. (4.2.18)

That is, they form the orthogonal basis. cλ, c
′
λ are defined in (3.1.21).

Definition 4.2.12. Define |Qλ〉 as the states in Fu which satisfy 〈Pλ|Qµ〉 = δλ,µ, i.e., |Qλ〉 :=
∏N
i=1

c
λ(i)

c′
λ(i)
|Pλ〉.

4.2.2 Explicit Formula for Generalized Macdonald Functions

Now we give the explicit construction of the generalized Macdonald functions, using some vertex operators.
Unlike the one Fock space case in Section 3.2, we need to put “colors” to each vertex operators to distinguish
the Fock space on which the operator acts. This is achieved by combining the bare vertex operators with the
screening currents of q-deformed W-algebra. In this section, we use some results in the next section (Section
4.3), where the screening currents and the algebra themselves are reviewed.

Notation 4.2.13. For an N -tuple of parameters u = (u1, . . . , uN ), we prepare the following notations:

t±δi · u := (u1, . . . , ui−1, t
±1ui, ui+1, . . . , uN ) , (4.2.19)

tαi · u := (u1, . . . , ui−1, tui, t
−1ui+1, ui+2 . . . , uN ) . (4.2.20)

For n = (n1, . . . , nN ) ∈ (Z≥0)N , we use the following notation:

|n| :=
N∑
s=1

ns, [i, k] = [i, k]n :=

i−1∑
s=1

ns + k (1 ≤ i ≤ N, ≤ k ≤ ni), (4.2.21)

t±n · u := (t±n1u1, . . . , t
±nNuN ). (4.2.22)

We first define the analogue of the top component in Definition 3.2.5. Note that when N = 1, the following
top component reduces to the operator in Definition 3.2.5.

Definition 4.2.14. Define the vertex operators Φ(0)(x) : Ft−δ1 ·u → Fu by

Φ(0)(x) = : exp

(∑
n>0

1

n

1− tn

1− qn
a

(1)
−nx

n

)
exp

(∑
n>0

1

n

1− γ2ntn

1− q−n
t−na(1)

n x−n

)

× exp

∑
n>0

1

n

1− γ2n

1− q−n
N∑
j=2

γ(j−1)na(j)
n x−n

 : .

(4.2.23)

We refer to Φ(0)(z) as the top component.

Next, we introduce the screening currents.

Definition 4.2.15. Define the screening currents S(i)(y) : Ftαi ·u → Fu by

S(i)(z) :=

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗φsc(γi−1z)⊗

n−i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1 , i = 1, . . . , N − 1 ,

(4.2.24)
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with

φsc(z) := exp

(
−
∑
n>0

1

n

1− tn

1− qn
γ2na−nz

n

)
exp

(∑
n>0

1

n

1− t−n

1− q−n
anz
−n

)

⊗ exp

(∑
n>0

1

n

1− tn

1− qn
γna−nz

n

)
exp

(
−
∑
n>0

1

n

1− t−n

1− q−n
γ−nanz

−n

)
.

(4.2.25)

The screening operators which define the q-W algebra, are defined by the integral of these screening
currents. The existence of such screening operators is proved in the next section.

Now, we define the screened vertex operators, using these screening currents.

Definition 4.2.16. Define the screened vertex operators Φ(k)(x) : Ft−δk+1 ·u → Fu (k = 1, . . . , N − 1) by

Φ(k)(x) :=

k∏
i=1

(q; q)∞(q/t; q)∞
( qui
uk+1

; q)∞( quk+1

tui
; q)∞

·
∮
C

k∏
i=1

dyi

2π
√
−1yi

Φ(0)(x)S(1)(y1) · · ·S(k)(yk)g(x, y1, . . . , yk) , (4.2.26)

with an integral kernel

g(x, y1, . . . , yk) =
θq(tu1y1/uk+1x)

θq(ty1/x)

k−1∏
i=1

θq(tui+1yi+1/uk+1yi)

θq(tyi+1/yi)
. (4.2.27)

Here, the contour of the integration C is chosen so that |t−1| < |yj/yi| < |q| for 1 ≤ i < j ≤ k, and
|q/t| < |yi/x| < 1 for i ≥ 1.

The first remark is that the integration contour is well-defined if |t−1| < |qN−2|. The second remark is fol-
lowing. As we will see in Proposition 4.3.4 below, we originally have infinite possible choices of g(x, y1, . . . , yk)
because the only requirement on g is it satisfies

Tq,yi g(x, y1, . . . , yk) =
ui+1

tui
g(x, y1, . . . , yk) . (4.2.28)

The reason we make the special choice of g as in (4.2.27), is that we have to make the screened vertex
operators Φ(k) well-defined. That is, the action of these operators on the vacuum in the Fock tensor space
must be well-defined. We make this state more precisely in the following remark.

Remark 4.2.17. The screened vertex operator Φ(k)(x) is normalized such that
∮

dx
2π
√
−1x

Φ(k)(x) |0〉 = |0〉.
Indeed, Φ(k)(x) can be expanded as

Φ(k)(y0) =

∮
C

k∏
i=1

dyi

2π
√
−1yi

∑
r1,...,rk∈Z

k∏
i=1

(tui/uk+1; q)ri
(qui/uk+1; q)ri

(yi/yi−1)ri : Φ(0)(y0)S(1)(y1) · · ·S(k)(yk) : . (4.2.29)

This expression follows from the normal ordering formulas (B.1.14)-(B.1.22) and Ramanujan’s 1ψ1 summation
formula (Fact 4.2.18 below). By (4.2.29), we can show that the coefficient of yr10 in the expansion of Φ(0)(y0) |0〉
is given by a finite sum and the constant term with respect to y0 is 1.

Fact 4.2.18 ([36], Section 5).

1ψ1(a; b; q; z) :=

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(q; q)∞(b/a; q)∞(az; q)∞(q/az; q)∞
(b; q)∞(q/a; q)∞(z; q)∞(b/az; q)∞

(|b/a| < z < 1). (4.2.30)

For later use, we introduce a useful notation and the composition of these screened vertices.

Notation 4.2.19.
y∏

n≤i≤m

Ai := An ×An+1 × · · · ×Am . (4.2.31)
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Definition 4.2.20. Let n = (n1, . . . , nN ) be an N -tuple of non-negative integers. Define the operator
V (n)(x1, . . . , x|n|) : Ft−n·u → Fu by

V (n)(x1, . . . , x|n|) =

y∏
1≤i1≤n1

Φ(0)(x[1,i1]n) ·
y∏

1≤i2≤n2

Φ(1)(x[2,i2]n) · · ·
y∏

1≤iN≤nN

Φ(N−1)(x[N,iN ]n) . (4.2.32)

When it is clear, we omit the dependence on the spectral parameters as V (n)(x1, . . . , x|n|) = V (n)
(

u
t−n · u ;x1, . . . , x|n|

)
.

Now, we are equipped enough to state the algorithm to construct the generalized Macdonald functions on
the Fock tensor space. The basic idea is same as Theorem 3.2.6. The only difference is that we use Φ(k−1),
instead of the top component, to add a horizontal strip to the Young diagram in the k-th Fock space.

Theorem 4.2.21. Let n = (n1, . . . , nN ) be an N -tuple of integers satisfying ni ≥ `(λ(i)) for all i. Once

we put s[i,k]n = qλ
(i)
k t1−kui (1 ≤ k < ni, i = 1, . . . , N), we have the following formula:[
x−λf̃gl|n|(x|s|q, q/t)V (n)

(
u

t−n · u ;x1, . . . , x|n|

)
|0〉
]
x,1

= Rnλ(u) |Qλ〉 , (4.2.33)

with

x−λ :=

N∏
i=1

ni∏
k=1

x
−λ(i)

k

[i,k]n
. (4.2.34)

[· · · ]x,1 means to take the constant term in · · · with respect to x, and Rnλ(u) ∈ C(u1, . . . , uN ) is some
coefficient.

Equivalently, we have

x−λ 〈Pλ|V (n)
(

u
t−n · u ;x1, . . . , x|n|

)
|0〉 = Rnλ(u) fgl|n|(x|s|q, q/t) . (4.2.35)

The following proposition gives the explicit form of Rnλ(u).

Proposition 4.2.22. The coefficient Rnλ(u) is of the form,

Rnλ(u) = γ
∑N
i=1(i−1)|λ(i)|

N∏
k=2

nk∏
i=1

k−1∏
l=1

(t−nl+iul/uk; q)−λ(k)
i

(qt−nl+i−1ul/uk; q)−λ(k)
i

. (4.2.36)

Proof. By directly expanding V (n)(x1, . . . , x|n|) |0〉 with respect to xi, and taking the constant terms, we can

prove the formula. Note that we only need to compare the coefficient of the term
∏
i Pλ(i)(a

(i)
−n) |0〉, which

is the top term with respect to the ordering Definition 4.2.8, because by definition, the coefficient of the top
term must be 1 if we get rid of Rnλ(u). See [35] for the details.

Examples

We show the examples with N = 2 and |λ| ≤ 2.

|P( ,∅)〉 = |P 〉 ⊗ |P∅〉 ,

|P(∅, )〉 = |P∅〉 ⊗ |P 〉 −
1

1− u1/u2
|P 〉 ⊗ |P∅〉 ,

(4.2.37)
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|P( ,∅)〉 = |P 〉 ⊗ |P∅〉 ,
|P( ,∅)〉 = |P 〉 ⊗ |P∅〉 ,

|P( , )〉 = |P 〉 ⊗ |P 〉 − |P 〉 ⊗ |P∅〉 −
1 + t

1− u1/tu2
|P 〉 ⊗ |P∅〉 ,

|P(∅, )〉 = |P∅〉 ⊗ |P 〉 − 1

1− u1/u2
|P 〉 ⊗ |P∅〉 ,

|P(∅, )〉 = |P∅〉 ⊗ |P 〉 −
1

1− tu1/u2
|P 〉 ⊗ |P 〉+

1

1− tu1/u2
|P 〉 ⊗ |P∅〉

+
t

(1− u1/u2)(1− tu1/u2)
|P 〉 ⊗ |P∅〉 .

(4.2.38)

Proof of Theorem 4.2.21

For the proof, we prepare the following proposition.

Proposition 4.2.23. For k = 0, 1, . . . , N − 1 and r = 1, . . . , N ,

X(r)(z)Φ(k)(x)− 1− (q/t)rz/tx

1− z/tx
Φ(k)(x)X(r)(z) = uk+1(1− t−1)δ(tx/z)Y (r)(x)Φ(k)(qx)Ψ+(x), (4.2.39)

where δ(z) =
∑
n∈Z z

n is the formal delta function, and we defined

Y (r)(x) :=
∑

2≤i2<···<ir≤N

: Λ(i2)((q/t)tx) · · ·Λ(ir)((q/t)r−1tx) : ui2 · · ·uir , (4.2.40)

Ψ+(z) := exp

∑ 1

n
(1− γ2n)

N∑
j=1

γ(j−1)na(j)
n z−n

 =

∞∏
k=0

1

ρ(N)(ψ+(γ−1t−kz))
. (4.2.41)

Note that in particular Y (1)(z) = 1.

Proof. By direct calculation. See Appendix 4.A.1.

By Proposition 4.2.23 and the operator product formulas in Section B.1.1, we can get the relation

X(1)(z)V (n)
(

u
t−n · u ;x1, . . . , x|n|

)
=

|n|∏
k=1

1− qz/t2xk
1− z/txk

· V (n)(x1, . . . , x|n|)X
(1)(z)

+ (1− t−1)

N∑
i=1

ni∑
k=1

uit
1−kδ(tx[i,k]/z)

∏
1≤`<[i,k]

1− qx[i,k]/tx`

1− x[i,k]/x`
·

∏
[i,k]<`≤|n|

1− tx`/qx[i,k]

1− x`/x[i,k]

× Tq,x[i,k]

(
V (n)(x1, . . . , x|n|)

)
Ψ+(x[i,k]). (4.2.42)

By noting X
(k)
0 |0〉 =

(∑N
i=1 t

−niui

)
|0〉 and by taking the constant term of z, we obtain

X
(1)
0 V (n)(x1, . . . , x|n|) |0〉 = V (n)(x1, . . . , x|n|) |0〉

(
N∑
i=1

t−niui

)
+ (1− t−1)D1

|n|(s
∣∣
λ
(i)
k =0

; q, q/t)V (n)(x1, . . . , x|n|) |0〉 .
(4.2.43)

Once we note the integrals of the total difference vanish, integrating by parts, we can show[
x−λf̃gl|n|(x|s|q, t)D1

n(s|
λ
(i)
k =0

; q, q/t)V (n)(x1, . . . , x|n|) |0〉
]
x,1
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=
[(
D̃1
|n|(s

∣∣
λ
(i)
k =0

; q, q/t)x−λf̃gl|n|(x|s|q, q/t)
)
V (n)(x1, . . . , x|n|) |0〉

]
x,1

=
[(
x−λD̃1

|n|(s; q, q/t)f̃
gl|n|(x|s|q, q/t)

)
V (n)(x1, . . . , x|n|) |0〉

]
x,1

=

(
N∑
i=1

ni∑
k=1

s[i,k]n

)[
x−λf̃gl|n|(x|s|q, q/t)V (n)(x1, . . . , x|n|) |0〉

]
x,1

. (4.2.44)

Here, in the third line, we made use of Fact 4.1.3. This equality identifies the LHS of (4.2.33) with the
generalized Macdonald functions up to the normalization.

For the formula (4.2.35), from (4.2.43), we have

D1
|n|(s; q, q/t)x

−λ 〈Pλ|V (n)(x1, . . . , x|n|) |0〉 = (s1 + · · ·+ s|n|)x
−λ 〈Pλ|V (n)(x1, . . . , x|n|) |0〉 . (4.2.45)

This equality says x−λ 〈Pλ|V (n) |0〉 is an eigenfunction of D1
|n|, and implies (4.2.35). Since the constant terms

in fgln and f̃gln are c1(−; s1|q, t) = 1, the proportionality constant is same as Rnλ(u).

4.2.3 Integral forms

In this subsection, we introduce what is called the integral form, which has a different normalization than that
of the generalized Macdonald functions. In N = 1 case, the integral form has the property that the coefficient

of X
(1)

1|λ|
is 1, that is, the integral form is expanded in the PBW-type basis as

|Kλ〉 = |X(1)

1|λ|
〉+

∑
µ>(1|λ|)

cλµ(u) |X(1)
µ 〉 . (4.2.46)

The biggest reason to introduce the integral form is the main result looks better when written in those basis.
First, we recall the Nekrasov factor, introduced in Chapter 2,

Nλµ(u) :=
∏

(i,j)∈λ

(
1− uqaλ(i,j)t`µ(i,j)+1

) ∏
(i,j)∈µ

(
1− uq−aµ(i,j)−1t−`λ(i,j)

)
. (4.2.47)

We define the normalization factors to define the integral forms.

Definition 4.2.24. Set

C(+)
λ (u) := ξ

(+)
λ (u)×

∏
1≤i<j≤N

Nλ(i),λ(j)(qui/tuj) ·
N∏
k=1

cλ(k) , (4.2.48)

C(−)
λ (u) := ξ

(−)
λ (u)×

∏
1≤i<j≤N

Nλ(j),λ(i)(quj/tui) ·
N∏
k=1

cλ(k) , (4.2.49)

ξ
(+)
λ (u) :=

N∏
i=1

(−1)(N−i+1)|λ(i)|u
(−N+i)|λ(i)|+

∑i
k=1 |λ

(k)|
i

×
N∏
i=1

(q/t)(
1−i
2 )|λ(i)|q

(i−N)
(
n(λ(i)′ )+|λ(i)|

)
t(N−i−1)(n(λ(i))+|λ(i)|), (4.2.50)

ξ
(−)
λ (u) :=

N∏
i=1

(−1)i|λ
(i)|u

(−i+1)|λ(i)|+
∑N
k=i |λ

(k)|
i

×
N∏
i=1

(q/t)(
i−1
2 )|λ(i)|t|λ

(i)|q
(1−i)

(
n(λ(i)′ )+|λ(i)|

)
t(i−2)(n(λ(i))+|λ(i)|), (4.2.51)

where cλ is defined in (3.1.21) and n(λ) =
∑
j≥1(j − 1)λj.
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Definition 4.2.25. Define |Kλ(u)〉 ∈ Fu and 〈Kλ(u)| ∈ F∗u by

|Kλ〉 = |Kλ(u)〉 := C(+)
λ (u) |Pλ(u)〉 , 〈Kλ| = 〈Kλ(u)| := C(−)

λ (u) 〈Pλ(u)| . (4.2.52)

This normalization arises from the following conjecture with respect to the expansion coefficient in the
PBW-type basis |Xλ〉 and 〈Xλ|.

Conjecture 4.2.26.

|Kλ〉 =
∑
µ

α
(+)
λµ |Xµ〉 , α

(+)

λ,((1|λ|),∅,...,∅) = 1, (4.2.53)

〈Kλ| =
∑
µ

α
(−)
λµ 〈Xµ| , α

(−)

λ,((1|λ|),∅,...,∅) = 1. (4.2.54)

Definition 4.2.27 (Taki’s flaming factors). Define

fλ := (−1)|λ|qn(λ′)+|λ|/2t−n(λ)−|λ|/2 = (−γ)−|λ|gλ , (4.2.55)

gλ := qn(λ′)t−n(λ). (4.2.56)

By definition, we can compute the following inner product of the integral forms, and we have the following
proposition in the end.

Proposition 4.2.28.

〈Kλ|Kλ〉 =
(
(−1)Nγ2eN (u)

)|λ| N∏
i=1

(
u
|λ(i)|
i γ−2|λ(i)|gλ(i)

)(2−N)

·
N∏

i,j=1

Nλ(i),λ(j)(qui/tuj), (4.2.57)

where we put eN (u) :=
∏N
i=1 ui.

4.3 Generalized Macdonald Functions and Singular Vectors of q-
Deformed W-Algebra

The W-algebras are defined as the commutants of the set of the screening operators [28, 26, 33]. They are
associated with the Lie algebra g, and in the case g = sl2, the correspondingW-algebra is the Virasoro algebra.
When g = slN , the W-algebra, denoted by WN , contains the higher spin operators, including the Virasoro
generators. Interestingly, the singular vectors in the Verma modules of WN -algebra, are represented by the
Jack polynomials [73].

The quantum deformation of the WN -algebra (q-deformed WN -algebra) was introduced in [105, 12]. One
guiding principle to define the ”good” deformation is that the singular vectors of the deformed algebra must
be related to the Macdonald polynomials, which are the q-deformation of the Jack polynomials. Another
principle is the solvable model, called the RSOS model, see remarks in [51, 66, 102].

Later, the quantum deformation of W-algebras associated with any simple Lie algebra was defined in [34].
In this section, we define the q-deformed WN -algebra as the commutant of the screening operators, and

then show the formula for the Kac determinant.
In this section, we change the region of t so that |t| < |q|, for later convenience.

4.3.1 Screening Operators and q-Deformed WN -Algebra

First, we define the screening currents, the integration of which becomes the screening operators. We have
already used these operators to give the explicit formula for the generalized Macdonald functions in Section
4.2.2.
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Definition 4.3.1. Define the screening currents S(i)(y) : Ftαi ·u → Fu by the following,

S(i)(z) :=

i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1⊗φsc(γi−1z)⊗

n−i−1︷ ︸︸ ︷
1⊗ · · · ⊗ 1 , i = 1, . . . , N − 1 ,

(4.3.1)

with

φsc(z) := exp

(
−
∑
n>0

1

n

1− tn

1− qn
γ2na−nz

n

)
exp

(∑
n>0

1

n

1− t−n

1− q−n
anz
−n

)

⊗ exp

(∑
n>0

1

n

1− tn

1− qn
γna−nz

n

)
exp

(
−
∑
n>0

1

n

1− t−n

1− q−n
γ−nanz

−n

)
.

(4.3.2)

Remark 4.3.2. In the original papers [105, 12], the zero modes are attached to the screening currents. In
this thesis, instead of zero modes, we use the pseudo-constant functions in order to make it easy to prove the
existence of the integration contours. See Proposition 4.3.7 below.

Remark 4.3.3. The main problem here is, of course, how to find the screening currents. Once a candidate
for the currents of an algebra is given, there is a general strategy to check whether there are the screening
currents. See the next paragraph.

Here we begin with the Drinfeld current X(1)(z) of Uq,t in mind. The current is of the form,

X(1)(z) = u1Λ(1)(z) + u2Λ(2)(z) + · · ·+ uNΛ(N)(z) . (4.3.3)

Then, we define the (candidate of) first screening current by the following difference equation:

:
Λ(2)(z)

Λ(1)(z)
:=:

S1(αz)

S1(z)
: , (4.3.4)

α is either of q±1, t±1. The idea of the difference equation is as follows. With c, c1, c2 some constants, we can
compute from the normal ordering as Λ(1)(z)S1(z) − cS1(z)Λ(1)(z) = c1 : Λ(1)(z)S1(z) :, and Λ(2)(z)S1(z) −
cS1(z)Λ(2)(z) = c2 : Λ(2)(z)S1(z) :. Thus if the equation like : Λ(1)(z)S1(z) :∼ : Λ(2)(z)S1(z) : does not hold,
there is no chance for the two terms to sum up to 0, up to the total q±1- (or t±1-) shift.

Note that the LHS is chosen so that it respects the structure of the root system. That is, the ratio u2/u1 is
an element in negative simple roots, and thus the screening current S1 is associated with this negative simple
root. The other screening currents also can be defined by considering the other simple roots.

Actually, in Uq,t case, and α = q, the following relation holds:

:
Λ(2)(tz)

Λ(1)(tz)
:=:

ϕ−(γ1/2z)⊗ η(γz)

η(z)⊗ 1
:=:

S(1)(qz)

S(1)(z)
: . (4.3.5)

In the definition above, we use α = q for all i = 1, . . . , N − 1. We can make another set of the screening
currents if we put α = t. This is compatible with the fact that inW-algebra, there are two sets of the screening
currents S+

i (z) and S−i (z) (see [34], for example).

Proposition 4.3.4. Let gi(w) (i = 1, . . . , N − 1) be a function such that gi(qw) = ui+1

tui
gi(w). Then, the

commutation relation between S(i)(w)gi(w) and the generating currents of the algebra U(N) is a total q-
difference, that is, [

S(i)(w)gi(w), X(k)
n

]
= (1− Tq,w) (some operators) (∀i, k, n). (4.3.6)

Proof. By the normal ordering formulas (B.1.8)-(B.1.13), the operator Λ(j)(z) with j 6= i, i+ 1 just commute
with each other and we can show [

: Λ(i)(z)Λ(i+1)(γ−2z) :, S(i)(w)
]

= 0. (4.3.7)
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Thus, all we have to compute is the relation with uiΛ
(i)(z) + ui+1Λ(i+1)(z).

We have

Λ(i)(z)S(i)(w)− S(i)(w)Λ(i)(z)t = (1− t)δ
(
tw

qz

)
: Λ(i)(tw/q)S(i)(w) :, (4.3.8)

and

Λ(i+1)(z)S(i)(w)− S(i)(w)Λ(i+1)(z)t−1 = (1− t−1)δ

(
tw

z

)
: Λ(i+1)(tw)S(i)(w) :

= (1− t−1)δ

(
tw

z

)
: Λ(i)(tw)S(i)(qw) : . (4.3.9)

Then, by the defining property gi(qz) = ui+1

tui
gi(z) under the q-difference, we obtain(

uiΛ
(i)(z) + ui+1Λ(i+1)(z)

)
S(i)(w)gi(w)− S(i)(w)

(
tuiΛ

(i)(z) + t−1ui+1Λ(i+1)(z)
)
gi(w)

= (t− 1)ui(Tq,w − 1)δ

(
tw

qz

)
: Λ(i)(tw/q)S(i)(w) : g(w) . (4.3.10)

Remark 4.3.5. The function gi(w) can be realized as gi(w) =
θq(t

2uiw/ui+1)
θq(tw) .

We again write the definition of U(N).

Definition 4.3.6. We denote by U(N) (the completion in the sence of the adic topology, of) the algebra

〈X(i)
n |n ∈ Z, i = 1, . . . N〉 in End(Fu). Namely, U(N) is the completion of the algebra generated by the set of

operators
{
X

(i)
n

}
.

Now we show U(N) is actually in the commutant of these screening operators. The proof is similar to the
case corresponding to the Minimal model, given in [49]. Note that, as is same as the Virasoro algebra, the
integration contour does not exist for the generic spectral parameters. Let us remark that in the Virasoro
case, the existence of such a contour is studied in [56].

Proposition 4.3.7. Let r, s ∈ Z>0 and k, j ∈ {1, . . . , r}. We also assume |t| < |q|. Then the generating
currents of U(N) commute with the screening operators, that is,

[
X(j)(z),

∮
dw

w
S(k)(w1) · · ·S(k)(wr)

r∏
i=1

θq(t
2i uk
uk+1

wi)

θq(twi)

]
= 0, (4.3.11)

where the spectral parameter of the codomain of S(k)(w1) is chosen to be u with uk = qst−ruk+1. Here
and hereafter, we use the shorthand notation∮

dw

w
:=

∮
T

r∏
i=1

dwi

2π
√
−1wi

, (4.3.12)

where the cycle is the r-dimensional torus T : |w1| = · · · = |wr| = 1.

What we have to prove is there are no poles between the contour T and q−1 · T . q−1 · T denotes the
contour with one of w is deformed to |wi| = q−1. Once we can prove this, we can complete the proof by using
Proposition 4.3.4 and shifting the integration variables by q. For the detail, see below.
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Proof of Proposition 4.3.7

We first prepare a lemma concerning the symmetrization of theta functions.

Lemma 4.3.8. Define

F̂r,s(z1, . . . , zr) :=
1

r!

∑
σ∈Sr

r∏
i=1

θq(q
st2i−rzσ(i)) ·

∏
i<j

σ(i)>σ(j)

t−1 θq(tzσ(i)/zσ(j))

θq(t−1zσ(i)/zσ(j))
. (4.3.13)

Then, we have

F̂r,s(z1, . . . , zr) =
1

r!

r∏
i=2

θq(t
i)

θq(t)
·
∏

1≤i<j≤r

θq(zi/zj)

θq(tzi/zj)
·
r∏
i=1

θq(q
stzi) . (4.3.14)

For the proof, see the proof of Lemma 4 in [49].

As commented in the proof of Proposition 4.3.4, it is sufficient to consider the relation with Λ(k)(z) +
Λ(k+1)(z). With the help of (4.3.10) used in the proposition above, we can show

[
Λ(k)(z) + Λ(k+1)(z),

∮
dw

w
S(k)(w1) · · ·S(k)(wr) ·

r∏
i=1

θq(t
2i uk
uk+1

wi)

θq(twi)

]
=

r∑
m=1

∮
dw

w
(t− 1)tm−1uk (Tq,wm − 1) δ

(
twm
qz

)
∆(w)

∏
1≤i<j≤r

θq(twi/wj)

θq(wi/wj)
·
r∏
i=1

θq(q
st2i−rwi)

θq(twi)

×
m−1∏
i=1

1− t−1wm/wi
1− wm/wi

·
r∏

i=m+1

1− twi/wm
1− wi/wm

· : Λ(k)(twm/q)

r∏
i=1

S(k)(zi) :, (4.3.15)

with

∆(x) =
∏
i<j

(xi/xj ; q)∞(xj/xi; q)∞
(txi/xj ; q)∞(txj/xi; q)∞

, (4.3.16)

which is introduced in Definition 3.1.21, the integral kernel of the scalar product. When we symmetrize the
variables wi’s, the expression reduces as follows:

1

r!

r∑
m=1

∑
σ∈Sr

∮
dw

w
(t− 1)uk

(
Tq,wσ(m)

− 1
)
δ

(
twσ(m)

qz

)
∆(w)

×
∏

1≤i<j≤r

θq(twσ(i)/wσ(j))

θq(wσ(i)/wσ(j))
·
r∏
i=1

θq(q
st2i−rwσ(i))

θq(twσ(i))
×
∏
i 6=m

1− twσ(i)/wσ(m)

1− wσ(i)/wσ(m)
· : Λ(k)(twσ(m)/q)

r∏
i=1

S(k)(zi) :

=
1

r!

r∑
l=1

r∑
m=1

∑
σ∈Sr
σ(m)=l

∮
dw

w
(t− 1)uk (Tq,wl − 1) δ

(
twl
qz

)
∆(w)

×
∏

1≤i<j≤r

θq(twσ(i)/wσ(j))

θq(wσ(i)/wσ(j))
·
r∏
i=1

θq(q
st2i−rwσ(i))

θq(twσ(i))
·
∏
σ(i) 6=l

1− twσ(i)/wl

1− wσ(i)/wl
· : Λ(k)(twl/q)

r∏
i=1

S(k)(zi) :

=
1

r!

r∑
l=1

∮
dw

w
(t− 1)uk (Tq,wl − 1) δ

(
twl
qz

)
∆(w)

×

∑
σ∈Sr

∏
1≤i<j≤r

θq(twσ(i)/wσ(j))

θq(wσ(i)/wσ(j))
·
r∏
i=1

θq(q
st2i−rwσ(i))

θq(twσ(i))

∏
i 6=l

1− twi/wl
1− wi/wl

· : Λ(k)(twl/q)

r∏
i=1

S(k)(zi) : .

(4.3.17)
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Then, we can apply Lemma 4.3.8 and we obtain

1

r!

r∑
l=1

∮
dw

w
(t− 1)uk (Tq,wl − 1) δ

(
twl
qz

)
∆(w)

×
r∏
i=2

θq(t
i)

θq(t)
·
r∏
i=1

q
s(1−s)

2 (tzi)
−s ·

∏
i 6=l

1− twi/wl
1− wi/wl

· : Λ(k)(twl/q)

r∏
i=1

S(k)(zi) : . (4.3.18)

In this expression, we have poles at wl = 0, wl = qntwi and wl = q−n+1t−1wi (i 6= l, n = 1, 2, . . .). Since
|t| < |q|, the q-shift of the cycle wl → qwl does not pick up any poles and thus the integral (4.3.18) is zero.
This completes the proof.

4.3.2 Example: q-Virasoro Algebra

Now let us see the example, q-deformed Virasoro (q-Virasoro for short), that is, N = 2 case in more detail.
As noted above, in U(N), the Heisenberg algebra is contained. In order to strip it off, we introduce the

following currents [30].

Definition 4.3.9. Define two currents α(z), β(z) by

α(z) := exp

(
−
∞∑
n=1

1

cn − c−n
b−nz

n

)
, β(z) := exp

( ∞∑
n=1

1

cn − c−n
bnz
−n

)
(4.3.19)

with the boson

[bm, bn] =
1

m
(1− q−m)(1− tm)(1− γ2m)(cm − c−m)c−|m|δm+n,0 ,

∆(bn) = bn ⊗ c−|n| + 1⊗ bn .
(4.3.20)

We define the image of this boson under the horizontal representation ρ(1,0), as

bn 7→
1− tn

|n|
(γ|n| − γ−|n|)an . (4.3.21)

We define the q-Virasoro generator.

Definition 4.3.10.
T (z) := ρ(2,0)

u1,u2
(∆(t(z))) , (4.3.22)

with
t(z) = α(z)x+(z)β(z) . (4.3.23)

Remark 4.3.11. Note that the currents α(z), β(z) are chosen so that

ρ(1,0)(t(z)) = 1 . (4.3.24)

This means when N = 1, U(N) is just the Heisenberg algebra. When N > 1, the non-trivial algebra, q-WN

algebra appears.

Proposition 4.3.12 ([105]). We have the commutation relation

f(w/z)T (z)T (w)− f(z/w)T (w)T (z) =
(1− q)(1− t−1)

1− q/t
(
δ(γ2w/z)− δ(w/γ2z)

)
, (4.3.25)

with

f(z) =
(1− qz)(1− z/t)
(1− z)(1− qz/t)

. (4.3.26)

We refer to this algebra as the q-Virasoro algebra.
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Let us give three remarks on this algebra.

Remark 4.3.13. When N ≥ 3, on the RHS of (4.3.25), the new currents appear in the coefficient of the delta
functions. Thus unlike the Virasoro algebra, q-Virasoro is not subalgebra of q-WN -algebra.

Remark 4.3.14. Recall that the Virasoro algebra has the coset construction [37, 6],

ŝl2,k ⊗ ŝl2,1

ŝl2,k+1

' Virk . (4.3.27)

The similar construction for the q-Virasoro is studied in [51].

Remark 4.3.15. Moreover, as noted in [51, 66], the structure function f(z) of q-Virasoro and the generating
current T (z) appear from the integrable model called the restricted solid-on-solid (RSOS) model. Because the
way to deform the Virasoro algebra is not unique, the relation with the integrable model ensures this is the
”good” q-deformation.

4.3.3 Kac Determinant Formula

The Kac determinant formula of the q-deformedWN -algebra is discussed in [105]. In order to show Fact 4.2.7,
that is, the fact that |Xλ〉 form a basis on the Fock space, the Kac determinant formula with respect to |Xλ〉
is proposed in [89]. While in [89], the proof goes without clarifying the choice of the integral cycles, now we
know the existence of the integration cycle (see the proof of Proposition 4.3.7).

Definition 4.3.16. Let 1 ≤ k ≤ N − 1 and uk = qst−ruk+1 (r, s ∈ Z>0 ). Define the vector |χ(k)
r,s 〉 ∈ Fu by

the integral

|χ(k)
r,s 〉 :=

∮
dz

z
S(k)(z1) · · ·S(k)(zr)

r∏
i=1

θq(t
2iukzi/uk+1)

θq(tzi)
|0〉 . (4.3.28)

Again, note that u is the spectral parameter of the codomain of S(k)(z1).

Proposition 4.3.17. The vector |χ(k)
r,s 〉 exists at level rs.

Proof of Proposition 4.3.17. By the normal ordering formulas among screening currents and Lemma 4.3.8, we
can show

|χ(k)
r,s 〉 =

∮
dz

z
∆(z)

∏
1≤i<j≤r

θq(tzi/zj)

θq(zi/zj)
·
r∏
i=1

θq(q
st2i−rzi)

θq(tzi)
: S(k)(z1) · · ·S(k)(zr) : |0〉

=

∮
dz

z
∆(z)

∏
1≤i<j≤r

θq(tzi/zj)

θq(zi/zj)
·
r∏
i=1

1

θq(tzi)
F̂r,s(z1, . . . , zr) : S(k)(z1) · · ·S(k)(zr) : |0〉

=
q
r
2 s(1−s)

r!

r∏
i=2

θq(t
i)

θq(t)
·
∮
dz

z
∆(z)

r∏
i=1

(tzi)
−s :

r∏
i=1

S(k)(zi) : |0〉 , (4.3.29)

with ∆(z) defined in (4.3.16). Note that :
∏r
i=1 S

(k)(zi) : |0〉 agrees with the kernel function Definition 3.1.12,
because we can neglect the annihilation part of S(k)(z) and the creation part is of the form of ϕ(z) in Definition
3.2.5. Therefore, it is expanded in terms of the Macdonald functions. Noting that

∏r
i=1 z

−s
i is the Macdonald

polynomial labelled by the rectangular Young diagram (sr) in r variables, we can rewrite (4.3.29) as

qrs(1−s)/2t−rs

r!

r∏
i=2

θq(t
i)

θq(t)
·
∑
λ

Pλ(α
(k)
−n) |0〉 〈P (r)

(sr)(z), Q
(r)
λ (z)〉′q,t

=
qrs(1−s)/2t−rs

r!

r∏
i=2

θq(t
i)

θq(t)
· P(sr)(α

(k)
−n) |0〉 〈P (r)

(sr)(z), Q
(r)
(sr)(z)〉

′
q,t , (4.3.30)
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where

α
(k)
−n := γkn(−γna(k)

−n + a
(k+1)
−n ), (4.3.31)

and 〈−,−〉′q,t denotes the Macdonald’s another scalar product defined in Definition 3.1.21. Since the Macdonald

polynomials are orthogonal with respect to 〈−,−〉′q,t, the inner product 〈P (r)
(sr), Q

(r)
(sr)〉

′
q,t does not vanish. Thus,

|χ(k)
r,s 〉 6= 0 and of level rs.

By these two propositions (Proposition 4.3.17 and Proposition 4.3.7), we can show the existence of the
singular vectors of the algebra U(N).

Corollary 4.3.18. The vector |χ(k)
r,s 〉 is a singular vector of level rs, i.e.,

X(i)
n |χ(k)

r,s 〉 = 0 (4.3.32)

for all n > 0 and i = 1, . . . , N .

We revisit the proof of the following formula for the Kac determinant detn := det (〈Xλ(u) |Xµ(u)〉)λ,µ`n,

where µ ` n means µ is a N -tuple of partitions with |µ| = n.

Proposition 4.3.19 ([89]). We have

detn =
∏
λ`n

N∏
k=1

bλ(k)(q)b′λ(k)(t
−1)

×
∏

1≤r,s
rs≤n

(u1u2 · · ·uN )2
∏

1≤i<j≤N

(ui − qst−ruj)(ui − q−rtsuj)

P (N)(n−rs)

, (4.3.33)

with

bλ(q) :=
∏
i≥1

(q; q)mi , b′λ(q) := (−1)
∑
imi

∏
i≥1

(q; q)mi .

P (N)(n) = #
{
λ = (λ(1), . . . , λ(N))

∣∣|λ| = n
}
.

(4.3.34)

(Recall mi is the number of entries in λ equal to i.) In particular, if N = 1,

detn =
∏
λ`n

bλ(q)b′λ(t−1)× u2
∑
λ`n `(λ)

1 . (4.3.35)

Proof. We can compute the inner product 〈Xλ|Xλ〉 by commutation relations of X
(i)
n , and the parameters

u1, . . . , uN appear as the eigenvalues of X
(i)
0 . Thus, 〈Xλ|Xλ〉 turns out to be a polynomial in

m(1i)(u1, . . . , uN ) =
∑

j1<···<ji

uj1 · · ·uji (4.3.36)

over Q(q
1
2 , t

1
2 ), and thus so is detn. Because we have the action of the Weyl group of type AN−1 on polynomials

in uj , we can define the action of the symmetric group SN on them in the usual way. Note that the Weyl
group fixes the symmetric polynomials m(1i)(u1, . . . , uN ). Therefore, detn is also a symmetric polynomial in
uj .

Let us introduce the new parameters u′i and u′′ by

N∏
i=1

u′i = 1, ui = u′iu
′′. (4.3.37)
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Then 〈Xλ|Xµ〉 can be decomposed as

〈Xλ|Xµ〉 = (u′′)
∑N
k=1 k(`(λ(k))+`(µ(k))) × (polynomial in u′i) , (4.3.38)

and thus detn is also of the form

detn = (u′′)2
∑
|λ|=n

∑N
k=1 k`(λ

(k)) × F (u′1, . . . , u
′
N ), (4.3.39)

where F (u′1, . . . , u
′
N ) is some symmetric polynomial in u′i. Note that the degree of F (u′1, . . . , u

′
N ) is 2

∑
|λ|=n

∑N
k=1 `(λ

(k)).
By Corollary 4.3.18, for r, s ∈ Z>0 with rs ≤ n, we can show that detn contains the following factor:

(uk − qst−ruk+1)P
(N)(n−rs) =

(
u′′(u′k − qst−ru′k+1)

)P (N)(n−rs)
. (4.3.40)

This is the same discussion as that of the Virasoro Kac determinant. Thanks to the SN invariance, detn must
also contain the factors

(ui − q±st∓ruj)P
(N)(n−rs) =

(
u′′(u′i − q±st∓ru′j)

)P (N)(n−rs)
(4.3.41)

for i 6= j. Recalling the degree of F (u′1, . . . , u
′
N ), we can show

detn = gN,n(q, t)× (u′′)2
∑
λ`n

∑N
i=1 i `(λ

(i))

×
∏

1≤i<j≤N

∏
1≤r,s
rs≤n

(
(u′i − qst−ru′j)(u′i − q−rtsu′j)

)P (N)(n−rs)

= gN,n(q, t)

×
∏

1≤r,s
rs≤n

(u1u2 · · ·uN )2
∏

1≤i<j≤N

(ui − qst−ruj)(ui − q−rtsuj)

P (N)(n−rs)

, (4.3.42)

with gN,n(q, t) ∈ Q(q
1
2 , t

1
2 ). The prefactor gN,n(q, t) has been derived in [89].

Similarly to the Virasoro case, the form of the Kac determinant ensures the linear independence of the
basis |Xλ〉, because for uk 6= qst−ruk+1 (r, s ∈ Z>0 ), the Kac determinant does not become zero, and thus
there is no zero eigenvalue. As the corollary, Fact 4.2.7 follows.



74 4 Generalized Macdonald Functions on N -Fock Tensor Space

Appendix 4.A Proof of Propositions

4.A.1 Proof of Proposition 4.2.23

First, we prove the relation for k = 0. Note that it is this computation that becomes crucial in the proof. For
i1 < · · · < ir, we introduce the notation

Λ(i1,...,ir)(z) =: Λ(i1)(z) · · ·Λ(ir)((q/t)r−1z) : . (4.A.1)

By virtue of the normal ordering formulas (B.1.23)-(B.1.26) and the identity of operators : Φ(0)(w)Λ(1)(tw) :=
Φ(0)(qw)Ψ+(w), we can show that when i1 = 1,

Λ(i1,...,ir)(z)Φ(0)(x)− t−1 1− (q/t)rz/tx

1− z/tx
Φ(0)(x)Λ(i1,...,ir)(z)

= (1− t−1)δ(tx/z) : Λ(i2)((q/t)tx) · · ·Λ(ir)((q/t)r−1tx)Φ(0)(qx)Ψ+(x) :, (4.A.2)

and when i1 ≥ 2,

Λ(i1,...,ir)(z)Φ(0)(x)− 1− (q/t)rz/tx

1− z/tx
Φ(0)(x)Λ(i1,...,ir)(z) = 0. (4.A.3)

Combining these equations, we obtain the result for the case k = 0:

X(r)(z)Φ(0)(x)− 1− (q/t)rz/tx

1− z/tx
Φ(0)(x)X(r)(z) = u1(1− t−1)δ(tx/z)Y (r)(x)Φ(0)(qx)Ψ+(x) . (4.A.4)

Next, for the case k 6= 0, we multiply the screening currents, which almost commute with the generating
currents X(i)(z), to this relation from the right side. Note that Ψ+(x) also commutes with S(i)(y), that is,

Ψ+(z)S(i)(y) = S(i)(y)Ψ+(z) . (4.A.5)

Combining the defining property of g (4.2.28), (4.A.5), and commutativity of the screening currents, we can
derive the relation for general k.

Thus, what is left is to show the commutativity of the screening currents. This goes as follows. First, from
the Leibniz rule of the commutator, we have

Φ(0)(x) ·
[
X(r)(z), S(1)(y1) · · ·S(k)(yk)g(x, y1, . . . , yk)

]
=

k∑
i=1

Φ(0)(x)S(1)(y1) · · ·
[
X(r)(z), S(i)(yi)

]
· · ·S(k)(yk)g(x, y1, . . . , yk) . (4.A.6)

By the same argument as the proof of Proposition 4.3.4, the term which survives in the RHS of (4.A.6) can
be written as

(1− Tq,yi)δ
(
tγ2`yi
qz

)
Φ(0)(x)S(1)(y1) · · ·

· · · : Λ(j1,...,j`,i,j`+2...,jr)(tγ2`yi/q)S
(i)(yi) : · · ·S(k)(yk)g(x, y1, . . . , yk) . (4.A.7)

Note that j`+2 ≥ i+ 2.
Next, let us name the positions of poles in yi, because we have to be careful about the integral cycle.

Combining the θ-functions containing yi in g(x, y1, . . . , yk) and theta’s coming from the normal orderings
among screening currents and Φ(0)(x), we have the factor

1

θq(tyi/yi−1)θq(tyi+1/yi)

(tyi/yi−1; q)∞(tyi+1/yi; q)∞
(yi/yi−1; q)∞(yi+1/yi; q)∞
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=
1

(qyi−1/tyi; q)∞(qyi/tyi+1; q)∞

1

(yi/yi−1; q)∞(yi+1/yi; q)∞
, y0 := x. (4.A.8)

From the normal ordering between Φ(0)(x) and Λ(i)(ty1/q) in Λ(j1,...,j`,i,j`+2...,jr), we also have

1− tδi,1−1tyi/qx

1− yi/tx
. (4.A.9)

Note that for i ≥ 2, from the normal ordering between S(i−1)(yi−1) and Λ(i)(tyi/q), we have

S(i−1)(yi−1)Λ(i)(tyi/q) =
1− tyi/qyi−1

1− yi/qyi−1
: S(i−1)(yi−1)Λ(i)(tyi/q) : . (4.A.10)

Then as a result, we have the following set of poles of (4.A.6) in yi:

yi = tx, (4.A.11)

yi = t−1q2+nyi−1, yi = qnyi+1, (4.A.12)

yi = t q−1−nyi+1 (i ≥ 1, n = 0, 1, 2, . . . ), (4.A.13)

and

yi = q−n+1yi−1 for i ≥ 2, (4.A.14)

yi = q−nx for i = 1 (n = 0, 1, 2 . . . ). (4.A.15)

When r = 1, these are all of the poles, while for general r, this list does not exhaust the possible poles. In
case r ≥ 2, from S(j)(yj) and Λ(jm) in Λ(j1,...,j`,i,j`+2...,jr) with m 6= ` + 1, and from Φ(0)(x) and Λ(jm), we
have additional poles. That is, we have the following factors:

∏̀
m=1

1− t−1(q/t)−`+m−1yi/yjm
1− (q/t)−`+m−1yi/yjm

1− (q/t)−`+m−2yi/yjm−1

1− q−1(q/t)−`+m−1yi/yjm−1

×
r∏

m=`+2

1− t(q/t)`−m+1yjm/yi
1− (q/t)`−m+1yjm/yi

1− (q/t)`−m+2yjm−1/yi
1− q(q/t)`−m+1yjm−1/yi

, (4.A.16)

and ∏
m6=`+1

1− tδjm,1−1(q/t)−`+m−2yi/x

1− t−1(q/t)−`+m−1yi/x
. (4.A.17)

In the end, combining all above, we can show that the following set of the points contains all the poles in yi
are in the following positions: For i ≥ 1,

yi = (q/t)−n−1yj+1, yi = q(q/t)−n−1yj (j > i), (4.A.18)

yi = q(q/t)−nx, (n = 0, 1, 2 . . .), (4.A.19)

and for i ≥ 2,

yi = (q/t)n+1yj (1 ≤ j < i), yi = q(q/t)n+1yj−1 (2 ≤ j < i), (4.A.20)

yi = q(q/t)n+1x (n = 0, 1, 2 . . .). (4.A.21)

For the given integration contour, the poles (4.A.12), (4.A.20) and (4.A.21) are inside the disk {z; |z| <
|qyi|}, while the poles (4.A.14), (4.A.15), (4.A.11), (4.A.13), (4.A.18) and (4.A.19) are outside {z; |z| > |yi|}.
Therefore, the shift yi → qyi is not affected by these poles, and we can show the commutativity between the
screening currents and X(r).



Chapter 5

Main Theorem: Mukadé Operator and
its Matrix Elements

We are now ready to prove (a part of) the main claim (Conjecture 2.2.1). The key idea is to realize the

instanton partition function Z(AN ,AM )
inst. by the expectation value of the composition of intertwiners. As we

soon see below, we introduce the Mukadé operator V(x) (defined in Section 5.1), and prove the formula for
the matrix elements of this operator with respect to the generalized Macdonald functions. Roughly, this ends
with the products of the Nekrasov factors, that is,

〈Kλ(v)| V(x) |Kµ(u)〉 ∼
N∏

i,j=1

Nλ(i),µ(j)(qvi/tuj) . (5.0.1)

(See Theorem 5.2.1.)
For our final purpose, we prepare two facts. One of them is the M -th compositions of the Mukadé operators

give the partition function of the (AM−1, AN−1) theory, that is, schematically,

〈∅| V(x1) · · · V(xM ) |∅〉 ∼ Z(AM−1,AN−1)
inst. . (5.0.2)

This is because the Mukadé operator has the realization T V (see Proposition 5.1.9).
The other fact is the M -th compositions of the RHS of (5.0.1) (with some appropriate instanton fugacities

qi) give the Z(AN−1,AM−1)
inst. (see Proposition 5.2.3), that is,

∑
λ[i]∈PN,
i=2,...,M

M∏
k=2

q
|λ[k]|
k · (RHS of (5.0.1)) ∼ Z(AN−1,AM−1)

inst. . (5.0.3)

Then, combining these three relations, we (almost) completes the proof of Conjecture 2.2.1. All these facts
are summarized in Section 5.2.

Because the latter two facts are easy to prove, the most difficult part is the proof of (5.0.1). Section 5.4 is
devoted to this proof. The proof itself is straightforward, though we have to make use of the Kajihara-Noumi
identity for the multiple hypergeometric series, which we explain in Section 5.3.

5.1 Mukadé Operator

In this section, we introduce the Mukadé Operator V(x). Its uniqueness is easy to see, though its existence is
not trivial. In order to prove the existence, we concretely construct the Mukadé operator using the intertwiners
of DIM algebra. The term ”Mukadé” means the centipede, and the reason for its name is that the diagram of
this realization looks like a centipede.

76
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5.1.1 Definition

We define the Mukadé operator.

Definition 5.1.1. Define the linear operator V(x) = V
(
v
u ;x

)
: Fu → Fv by the following relations:(

1− x

z

)
X(i)(z)V(x) =

(
1− (t/q)i

x

z

)
V(x)X(i)(z), i ∈ {1, 2, . . . , N} (5.1.1)

and 〈0| V(x) |0〉 = 1.

Remark 5.1.2. Under the q, t→ 1 limit, the defining relation of the Mukadé operator reduces to

[Ln, V (z)] = zn
(
z
∂

∂z
+ h(n+ 1)

)
V (z) . (5.1.2)

Thus, we can regard the Mukadé operator as the q-analogue of the Virasoro primary field.

Then we have the following proposition.

Proposition 5.1.3. The V(x) exists uniquely.

Proof. If the operator V(x) exists, the uniqueness is clear by definition of V(w) and the fact that the vectors
|Xλ〉 form a basis (Fact 4.2.7). The existence of V(w) is shown in Proposition 5.1.9 in the next section.

5.1.2 Existence

We now show the existence of the Mukadé operator, composing the intertwiners of DIM algebra as the following
diagrams.

w′N−1

vN , λ
(N)

w′N

vN−1, λ
(N−1)

w′N−2

uN−1, µ
(N−1)

u1, µ
(1)

v1, λ
(1)

w1

uN , µ
(N)

w1ν(0) = ∅

u1, µ
(1)

w′1 = w2ν(1)

v1, λ
(1)

u2, µ
(2)

w′2 = w3ν(2)

v2, λ
(2)

w′N−1 = wNν(N−1)

vN , λ
(N)

uN , µ
(N)

w′Nν(N) = ∅

Figure 5.1: Left:T Hλ,µ(u,v;w) and Right:T Vλ,µ(u,v;w) (up to the overall factor)

For the preparation, we introduce some notations.

Notation 5.1.4. We introduce the notations wi and w′i related to the spectral parameters u,v of the modules.

w1 = w,

w′i =
ui
vi
wi, for i = 1, . . . , N,

wi+1 = w′i, for i = 1, . . . , N − 1.

(5.1.3)
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Notation 5.1.5. For integers n ≤ m, we write⊗ym
i=nAi := An ⊗ · · · ⊗Am. (5.1.4)

For later use, we have to construct the basis for (0, N)-modules. These modules are studied in [17].

Fact 5.1.6 ([17]). The following vectors span F (0,N)
u and its dual space:

|λ〉 =
⊗yN

i=1 |λ
(i)〉 ,

(
|λ(i)〉 ∈ F (0,1)

ui

)
〈λ| =

⊗yN
i=1 〈λ

(i)| .
(5.1.5)

They are normalized as

〈λ|µ〉 =

N∏
i=1

c′
λ(i)

cλ(i)

δλ,µ . (5.1.6)

Especially, we denote the vacuum state by |∅〉 and 〈∅|.
Remark 5.1.7. Note that the basis for (0, N)-modules are just the tensor product of Macdonald functions,
because they are the eigenfunctions of S(∆(N)(x+

0 )) = ∆(N)(ψ+
1 ) = ψ+

1 ⊗· · ·⊗ψ
+
1 with S the Miki automorphism

(Section 3.5). As in the N = 1 case, (0, N)-modules and (N, 0)-modules are also exchanged under S. For
example, we can easily see the following correspondence of the eigenvalues:

ρ(N,0)(x+
0 ) |Pλ〉 =

N∑
k=1

ukελ(k) |Pλ〉 , ρ(0,N)(ψ−1 ) |λ〉 = (1− t/q)
N∑
k=1

ukελ(k) |Pλ〉 . (5.1.7)

(Recall that ελ := (1− t−1)
∑`(λ)
i=1 q

λit1−i + t−`(λ).) For more detail, see [88].

Now we define the compositions of the intertwiners, one of which gives the realization of the Mukadé
operator.

Definition 5.1.8. Define the map TH(u,v;w) :
(⊗yN

i=1F
(0,1)
vi

)
→
(⊗yN

i=1F
(0,1)
ui

)
by the following composition

F (0,1)
v1 ⊗ · · · ⊗ F (0,1)

vN−1
⊗F (0,1)

vN ⊗ |0〉 id⊗···⊗Φ−−−−−−→ F (0,1)
v1 ⊗ · · · ⊗ F (0,1)

vN−1
⊗F (1,1)

−vNw′N
id⊗···⊗Φ∗−−−−−−→F (0,1)

v1 ⊗ · · · ⊗ F (0,1)
vN−1

⊗F (1,0)
wN ⊗F (0,1)

uN

id⊗···⊗Φ⊗id−−−−−−−−→ F (0,1)
v1 ⊗ · · · ⊗ F (1,1)

−vN−1w′N−1
⊗F (0,1)

uN

id⊗···⊗Φ∗⊗id−−−−−−−−−→· · · · · · Φ∗⊗···⊗id−−−−−−→ |0〉 ⊗ F (0,1)
u1

⊗ · · · ⊗ F (0,1)
uN−1

⊗F (0,1)
uN .

Here, · · ·⊗|0〉 and |0〉⊗· · · mean taking the vacuum expectation value at the level (1,0) modules. For simplicity,
we introduce the following notation,

TH(u,v;w) = 〈0|Φ∗[w1, u1]Φ[w′1, v1]Φ∗[w2, u2]Φ[w′2, v2] · · ·Φ∗[wN , uN ]Φ[w′N , vN ] |0〉 . (5.1.8)

For later use, we introduce the map T H(u,v;w) :
(⊗yN

i=1F
(0,1)
vi

)
→
(⊗yN

i=1F
(0,1)
ui

)
by

T H(u,v;w) :=
TH(u,v;w)

〈∅|TH(u,v;w) |∅〉 . (5.1.9)

We denote its matrix elements (with respect to the F (0,N)-basis) by

T Hλ,µ(u,v;w) = 〈µ| T H(u,v;w) |λ〉 . (5.1.10)

|λ〉 is the basis for the (0, N)-module defined in Fact 5.1.6. Note that we have the expression for the matrix
elements of TH(u,v;w),

〈µ|TH(u,v;w), |λ〉 = 〈0|Φ∗µ(1) [w1, u1]Φλ(1) [w′1, v1] · · ·Φ∗µ(N) [wN , uN ]Φλ(N) [w′N , vN ] |0〉 . (5.1.11)

Also, define the vertex operator T V (u,v;w) : Fu → Fv by
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T V (u,v;w) :=
TV (u,v;w)

〈0|TV (u,v;w) |0〉
, (5.1.12)

with

TV (u,v;w) :=
∑

ν(1),...,ν(N−1)

N−1∏
i=1

cν(i)

c′
ν(i)

Φ∗ν(1) [v1, w
′
1]Φ∅[u1, w1]⊗ Φ∗ν(2) [v2, w

′
2]Φν(1) [u2, w2]⊗ · · ·

· · · ⊗ Φ∗∅[vN , w
′
N ]Φν(N−1) [uN , wN ] ,

(5.1.13)

and its matrix elements (with respect to the F (N,0)-basis, that is, the generalized Macdonald functions) are
denoted by

T Vλ,µ(u,v;w) = 〈Pλ| T V (u,v;w) |Pµ〉 . (5.1.14)

This operator T V guarantees the existence of the Mukadé operator, defined in Def. 5.1.1, and the following
proposition completes the proof of Proposition 5.1.3.

Proposition 5.1.9. For arbitrary i ∈ {1, 2, . . . , N}, the operator T V (u,v;w) satisfies(
1− w

z

)
X(i)(z)T V (u,v;w) = γ−i

(
1− γ2iw

z

)
T V (u,v;w)X(i)(z) . (5.1.15)

Proof. The proof is done by direct calculation. For more details, see Section 5.B.2.

Remark 5.1.10. The factor γ−i in the RHS of (5.1.15) can be compensated by redefining the spectral param-
eters as γ−1ui. Under this redefinition, the matrix elements of T V (u,v;w) agree with those of V(w).

5.2 Main Claim

Now we state the main claim in this thesis. The matrix elements of the Mukadé operator with respect to the
integral forms of the generalized Macdonald functions factorize as the product of the Nekrasov factors.

Theorem 5.2.1.

〈Kλ(v)| V(x) |Kµ(u)〉 =

(
(−γ2)NeN (u)x

)|λ|
(γ2x)

|µ|

N∏
i=1

u
|µ(i)|
i gµ(i)(

v
|λ(i)|
i gλ(i)

)N−1
·

N∏
i,j=1

Nλ(i),µ(j)(qvi/tuj) . (5.2.1)

The proof is given in the next section.

5.2.1 Application to Physics

Before going into the proof, we name some implication of the theorem for physics. Here we name two
applications. The first application is for proving Conjecture 2.2.1. The composition of the Mukadé operators

gives the instanton partition function Z(AN−1,AM−1)
inst. (defined in Fact 2.1.4). Then, Theorem 5.2.1, which

shows the equivalence between the Mukadé operator (= T V ) and T H , gives the proof of the conjecture. As a
corollary, we obtain the duality formula for the refined topological vertex under changing preferred directions.

The second application is for proving the 5d version of the Alday-Gaiotto-Tachikawa (AGT) conjecture [4].
In the original AGT, the 4d instanton partition functions are tied to 2d CFT. When we lift the 4d theories
to 5d, the counterparts of 2d theories have not been well-formulated, because the VOA structure gets lost via
this lift. Theorem 5.2.1 strongly insists that the Mukadé operators are regarded as the q-deformation of the
primary fields in CFT.
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S-duality (Conjecture 2.2.1)

First, we show the composition of T H gives Z(AN−1,AM−1)
inst. . For that purpose, we prepare the following lemma.

Lemma 5.2.2. By taking normal ordering, we can compute T Hλ,µ, defined in (5.1.10), and we obtain

T Hλ,µ(u,v;w) = T Hmono. · Z ′µ,λ(u,v) , (5.2.2)

with

T Hmono. =

N∏
i=1

(−1)|µ
(i)|

eN (u)

eN (v)
w

N∏
j=i+1

vj

|λ
(i)|−|µ(i)|(

ui
γvi

)∑N
j=i |µ

(j)|

v
−(N−i)|λ(i)|
i u

(N−i)|µ(i)|
i

×
(
fµ(i)

fλ(i)

)N−i+1

qn((λ(i))′)tn(µ(i))+|µ(i)|γ−(N−i)|µ(i)| , (5.2.3)

Z ′µ,λ(u,v) =

∏N
i,j=1Nλ(i),µ(j)(vi/γuj)∏

1≤i<j≤N Nµ(i),µ(j)(qui/tuj)Nλ(j),λ(i)(qvj/tvi)
∏N
k=1 cµ(k) cλ(k)

. (5.2.4)

Proof. By direct computation, using some formula in Appendix B.1.1.

We show the following fact that the M -th composition of T H gives the instanton partition function

Z(AN−1,AM−1)
inst. (q, t).

Proposition 5.2.3. For s(i) ∈ CN (i = 1, . . . ,M), we have

〈∅|
x∏

1≤i≤M

T H(s(i+1), s(i);xi) |∅〉 = Z(AN−1,AM−1)
inst. ((qk)|s(2), . . . , s(M)|0|γs(M+1), γs(1),γ) , (5.2.5)

with the following identification of the instanton fugacities:

qk ←→ eN (s(k+1))

γNeN (s(k))

xk
xk−1

. (5.2.6)

We use the notations 0 = (0, . . . , 0),γ = (γ, . . . , γ).

Proof. We insert the complete system id =
∑
λ∈PN

|λ〉〈λ|
〈λ|λ〉 , and use Lemma 5.2.2. We use the simplified

notations cλ =
∏N
i=1 cλ(i) , and λ[i,j] = (λ[i])(j) ∈ P, the j-th element of N -tuple of partitions λ[i]. With

λ[1] = λ[M+1] = ∅, we have

〈∅|
x∏

1≤i≤M

T H(s(i+1), s(i);xi) |∅〉 =
∑

λ[i]∈PN,
i=2,...,M

M∏
i=2

cλ[i]

c′
λ[i]

M∏
i=1

〈λ[i+1]| T H(s(i+1), s(i);xi) |λ[i]〉

=
∑

λ[i]∈PN,
i=2,...,M

M∏
k=2

(
eN (s(k+1))

γNeN (s(k))

xk
xk−1

)|λ[k]| ∏M
k=1

∏N
i,j=1Nλ[k,i],λ[k+1,j](s

(k)
i /γs

(k+1)
j )∏M

k=2

∏N
i,j=1Nλ[k,i],λ[k,j](qs

(k)
i /ts

(k)
j )

.

(5.2.7)

Although, in this case, the Chern-Simons levels are fixed to zero, we can change them by replacing the
intertwiners with the other type of intertwiners (M 6= 0 intertwiners in Fact 3.4.5).

We also have the following proposition which says theM -th composition of T V essentially gives Z(AM−1,AN−1)
inst. (q, t).
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Proposition 5.2.4. For s(i) ∈ CN (i = 1, . . . ,M + 1) and x ∈ CM , let x(i) ∈ CM (i = 1, . . . , N + 1) be
the vectors whose elements are determined by the relations

x
(1)
j := xj , (j = 1, . . . ,M)

x
(i)
j :=

s
(j+1)
i−1

s
(j)
i−1

x
(i−1)
j , (i = 2, . . . , N + 1, and j = 1, . . . ,M) .

(5.2.8)

Using this notation, we have

〈0|
y∏

1≤i≤M

T V (s(i+1), s(i);xi) |0〉 =M · Z(AM−1,AN−1)
inst. ((q′k)|x(2), . . . ,x(N)|0|γx(N+1), γx(1),γ) , (5.2.9)

with

M =

∏N
i=1 〈∅|TH,M (x(i+1),x(i); s

(1)
i ) |∅〉∏M

i=1 〈0|TV (s(i+1), s(i);xi) |0〉
, (5.2.10)

(where TH,M (u,v;x)’s are same as TH except that they are maps from F (0,M)
v to F (0,M)

u ) and the iden-
tifications

q′k ←→ eM (x(k+1))

γMeM (x(k))

s
(1)
k

s
(1)
k−1

. (5.2.11)

Proof. First, we have

〈0|
y∏

1≤i≤M

TV (s(i+1), s(i);xi) |0〉 = 〈∅|
x∏

1≤i≤N

TH,M (x(i+1),x(i); s
(1)
i ) |∅〉 , (5.2.12)

where TH,M ’s are same as TH except that they are operators acting on M -th Fock-tensor spaces as explained
above. The equality above is trivial when we write down both sides using the intertwiners Φ’s and Φ∗’s.

Note that both sides are schematically the vacuum expectation value of the map from F (0,M)

x(1) ⊗ F (N,0)

s(M+1) to

F (N,0)

s(1)
⊗F (0,M)

x(N+1) .
Taking the case N = M = 2 as an example, let us check this identity. In this case, the LHS of (5.2.12)

becomes

〈0|TV (s(2), s(1);x1)TV (s(3), s(2);x2) |0〉

=
∑

ν(1),ν(2)∈P

2∏
i=1

cν(i)

c′
ν(i)

〈0|Φ∗ν(1) [s
(1)
1 , x

(2)
1 ]Φ∅[s

(2)
1 , x

(1)
1 ]Φ∗ν(2) [s

(2)
1 , x

(2)
2 ]Φ∅[s

(3)
1 , x

(1)
2 ] |0〉

× 〈0|Φ∗∅[s
(1)
2 , x

(3)
1 ]Φν(1) [s

(2)
2 , x

(2)
1 ]Φ∗∅[s

(2)
2 , x

(3)
2 ]Φν(2) [s

(3)
2 , x

(2)
2 ] |0〉 ,

(5.2.13)

which corresponds to the vacuum expectation value of the following diagram, obtained by gluing two vertical
ladders:
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Φ∅

∅, x(1)
2

∅, x(1)
1

s
(3)
1

x
(2)
2

s
(2)
2

s
(2)
1

ν(2)

ν(1) x
(2)
1

Φν(1)

Φ∗
ν(1)

∅, x(3)
1

∅, x(3)
2

Φ∗∅

Φ∗∅

Φ∅Φ∗
ν(2)

Φν(2)

s
(1)
2

s
(1)
1

s
(3)
2

Then, we can decompose this diagram to two horizontal ladders. That is, once we recall the definition of
〈µ|TH |λ〉 in Definition 5.1.8, the RHS of (5.2.13) can be written as

∑
ν(1),ν(2)∈P

2∏
i=1

cν(i)

c′
ν(i)

〈ν|TH(x(2),x(1); s
(1)
1 ) |∅〉 · 〈∅|TH(x(3),x(2); s

(1)
2 ) |ν〉

= 〈∅|TH(x(3),x(2); s
(1)
2 ) TH(x(2),x(1); s

(1)
1 ) |∅〉 .

(5.2.14)

Here, we use the fact id =
∑
ν∈P2

∏2
i=1

c
ν(i)

c′
ν(i)
|ν〉 〈ν|. Thus, we have the expected identity. For the generic N

and M , we can do the same calculation.
We also have to note that we have extra factor M which appears from the normalizations of T V ’s and

T H ’s. Then, by Proposition Proposition 5.2.3, we obtain the result.

As the direct consequence of Theorem 5.2.1, we have the following theorem.

Theorem 5.2.5. The following equality between the two matrix elements holds:

T Hλ,µ(u,v;w) = (−1)|λ|+|µ|T Vλ,µ(u,v;w) . (5.2.15)

Proof. We can show, up to the monomial factors, the both sides are equal to∏N
i,j=1Nλ(i),µ(j)(vi/γuj)∏

1≤i<j≤N Nµ(i),µ(j)(qui/tuj)
∏N
k=1 cµ(k)

∏
1≤i<j≤N Nλ(j),λ(i)(qvj/tvi)

∏N
k=1 cλ(k)

. (5.2.16)

For the RHS, it is obvious from Theorem 5.2.1 and Definition 4.2.25. For the LHS, it can be shown by a direct
computation, using some formulas in Appendix B.1.1. The monomial factor (−1)|λ|+|µ| is also determined by
direct calculation.

Then, combining Proposition 5.2.3, Proposition 5.2.4 and Theorem 5.2.5, we have the following proposition.
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Proposition 5.2.6. Using the same notations in Proposition 5.2.3 and Proposition 5.2.4, we have

Z(AN−1,AM−1)
inst. ((qk)|s(2), . . . , s(M)|0|γs(M+1), γs(1),γ)

=M · Z(AM−1,AN−1)
inst. ((q′k)|x(2), . . . ,x(N)|0|γx(N+1), γx(1),γ) .

(5.2.17)

The following figure shows what this proposition says. The arrows in the figure means they are identical
up to some scalar multiplication.

∅ ∅ ∅

∅ ∅ ∅

∅
∅

∅

∅
∅

∅

N

M = Z(AN−1,AM−1)
inst.

T H

∅ ∅ ∅

∅ ∅ ∅

∅
∅

∅

∅
∅

∅

M

NZ(AM−1,AN−1)
inst. =

T V

Here, let us consider the proportional factor M. We first compute the vacuum expectation value of TH .

Lemma 5.2.7. We have
〈∅|TH(u,v;x) |∅〉 = G(N)(u|v) , (5.2.18)

with

G(N)(u|v) :=

∏
1≤i<j≤N G(uj/ui) · G(qvj/tvi)∏

1≤j<i≤N G(ui/γvj)
∏

1≤i≤j≤N G(vj/γui)
. (5.2.19)

The proof only requires the normal ordering formulas in Appendix B.1.1.
As a result, using the functions in Fact 2.1.7 and Fact 2.1.17, we have

M∏
i=1

〈∅|TH(s(i+1), s(i);xi) |∅〉 = Z(AN−1,AM−1)
extra (s(1)|s(M+1)) · Z(AN−1,AM−1)

1-loop (s(1), . . . , s(M)|s(1), s(M+1)) .

(5.2.20)

Now, we state a conjecture about the vacuum expectation value of TV .

Conjecture 5.2.8. We conjecture

〈0|TV (u,v;x) |0〉 = 〈∅|TH(u,v;x) |∅〉 . (5.2.21)

Using the mathematica, we have checked this identity for small N by expanding the both sides up to some
powers of the spectral parameters u,v.

Note that the LHS of the conjecture above is the infinite series,

〈0|TV (u,v;x) |0〉

=
∑

ν(1),...,ν(N−1)

N−1∏
i=1

cν(i)

c′
ν(i)

〈0|Φ∗ν(1) [v1, w
′
1]Φ∅[u1, w1] |0〉 ⊗ 〈0|Φ∗ν(2) [v2, w

′
2]Φν(1) [u2, w2] |0〉 ⊗ · · ·

· · · ⊗ 〈0|Φ∗∅[vN , w
′
N ]Φν(N−1) [uN , wN ] |0〉 ,

(5.2.22)

while the RHS factorizes as the products of the double infinite product, G. Thus, the conjecture is highly
non-trivial. At this point, we do not know the proof, and this is our future work. Then, as a corollary, we
obtain the following conjecture.
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Conjecture 5.2.9. We use the same notations as in Proposition 5.2.3 and Proposition 5.2.4. For s(i) ∈
CN (i = 1, . . . ,M + 1) and x ∈ CM , put

Z(AN−1,AM−1)
top. (s(1), . . . , s(M+1)|x) := Z(AN−1,AM−1)

extra (s(1)|s(M+1))

×Z(AN−1,AM−1)
1-loop (s(1), . . . , s(M)|s(1), s(M+1)) · Z(AN−1,AM−1)

inst. ((qk)|s(2), . . . , s(M)|0|γs(M+1), γs(1),γ) ,

(5.2.23)

that is, the explicit form is

Z(AN−1,AM−1)
top. (s(1), . . . , s(M+1)|x)

=

M∏
i=1

G(N)(s(i+1)|s(i))

×
∑

λ[i]∈PN,
i=2,...,M

M∏
k=2

(
eN (s(k+1))

γNeN (s(k))

xk
xk−1

)|λ[k]| ∏M
k=1

∏N
i,j=1Nλ[k,i],λ[k+1,j](s

(k)
i /γs

(k+1)
j )∏M

k=2

∏N
i,j=1Nλ[k,i],λ[k,j](qs

(k)
i /ts

(k)
j )

.

(5.2.24)

Then, combining Proposition 5.2.6 and Conjecture 5.2.8, we conjecture

Z(AN−1,AM−1)
top. (s(1), . . . , s(M+1)|x) = Z(AM−1,AN−1)

top. (x(1), . . . ,x(N+1)|s(1)) . (5.2.25)

Rephrasing in Terms of Refined Topological Vertex Now let us rephrase Theorem 5.2.5 in terms of
the refined topological vertex. We first introduce some notation.

Notation 5.2.10. Denote by |sλ〉, the N -tensor product of the Schur functions, defined in Section 3.4.3, that
is,

|sλ〉 =
⊗yN

i=1 |sλ(i)〉 ,

〈Sλ| =
⊗yN

i=1 〈Sλ(i) | .
(5.2.26)

Note that 〈Sµ |sλ〉 = δµ,λ.

The following lemma is the direct consequence of Proposition 3.4.9.

Lemma 5.2.11. We have

〈µ|TH(u,v;w) |λ〉 =

N∏
i=1

c′
λ(i)

cλ(i)

(−q−1/2w′i)
|λ(i)|(q−1/2wi)

−|µ(i)| · CHλ′,µ ((−ui+1/vi), (−vi/ui)) , (5.2.27)

〈Sλ|TV (u,v;w) |sµ〉 =

N∏
i=1

fµ(i)

fλ(i)

(−q−1/2w′i)
|λ(i)|(q−1/2wi)

−|µ(i)| · CVλ,µ′ ((−ui+1/vi), (−vi/ui)) . (5.2.28)

CHλ,µ and CVλ,µ are defined in Definition 2.2.2, and we use the notation in Notation 5.1.4.

Definition 5.2.12. Because both |Pλ〉 and |sλ〉 form the basis of F (N,0), there exists the transition matrix
which connects the two bases. Denote the transition matrix by

|Pλ〉 =
∑
µ∈PN,
|µ|=|λ|

Tλ,µ |sµ〉 , 〈Qλ| =
∑
µ∈PN,
|µ|=|λ|

T ∗λ,µ 〈Sµ| . (5.2.29)

Note that Tλ,µ and T ∗λ,µ are inverse to each other, that is,∑
λ

Tλ,µT
∗
λ,ν = δµ,ν . (5.2.30)
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Tλ,µ can be computed as follows. First, recall (Definition 4.2.9) the generalized Macdonald functions can be
expanded in the tensor products of the usual Macdonald functions, as

|Pλ(u)〉 =

N∏
i=1

Pλ(i)(a
(i)
−n) |0〉+

∑
µ
∗
<λ

uλ,µ

N∏
i=1

Pµ(i)(a
(i)
−n) |0〉 , uλ,µ ∈ C . (5.2.31)

From the explicit formula (Theorem 4.2.21), we can compute uλ,µ from the bottom. Second, the Macdonald
functions can be expanded in the Schur functions, as

|Pµ〉 =
∑
ν

Cνµ(q, t) |sν〉 , (5.2.32)

because both functions span F . Combining these two facts, we have

Tλ,ν =
∑
µ

uλ,µ

N∏
i=1

Cν(i)µ(i)(q, t) . (5.2.33)

The closed formula for the generalized Jack functions (that is, the 4d case) is studied in [106]. They use the
stable envelope to compute the coefficients, and thus we conjecture the Macdonald version is obtained by
exponentiating every factors like the Nekrasov factors. This is our future work.

Then, as a corollary of Theorem 5.2.5 and Lemma 5.2.11, we have the following identity of the refined
topological vertex. Again, we use the notation like fλ =

∏N
i=1 fλ(i) .

Corollary 5.2.13. We have

(−1)|λ|+|µ|
N∏
i=1

(w′i)
|λ(i)|w

−|µ(i)|
i ·

CHλ′,µ ((−ui+1/vi), (−vi/ui))
G(N)(u|v)

=
∑

σ,ν∈PN
|σ|=|λ|,|ν|=|µ|

fν
fσ

N∏
i=1

(w′i)
|σ(i)|w

−|ν(i)|
i · T ∗λ,σTµ,ν

CVσ,ν′ ((−ui+1/vi), (−vi/ui))
CV∅,∅ ((−ui+1/vi), (−vi/ui))

,

(5.2.34)

where G(N)(u|v) is defined in Lemma 5.2.7.

AGT Proof

Second, Theorem 5.2.1 is the proof of the five-dimensional analogue of the Alday-Gaiotto-Tachikawa (AGT)
conjecture [4]. One proof of the 4d AGT conjecture is given in [3]. The basic idea of [3] is to compute the
matrix elements of the Virasoro primary fields with respect to the generalized Jack functions, and the result
shows they factorize as the bifundamental contribution, that is, the product of 4d Nekrasov factors.

Because as remarked in the previous subsection, the Mukadé operator is the q-analogue of the primary
field, Theorem 5.2.1 is the direct generalization of the AGT proof á la [3] to the five dimensions.

We can confirm the correspondence more concretely. The 4-point function of the Mukadé operators gives

〈0| V
(
w
v ; z1

)
V
(
v
u ; z2

)
|0〉 =

∑
λ

〈0| V
(
w
v ; z1

)
|Kλ〉 〈Kλ| V

(
v
u ; z2

)
|0〉

〈Kλ|Kλ〉

=
∑
λ

(
eN (u)z2

eN (v)z1

)|λ| N∏
i,j=1

N∅,λ(j)(qwi/tvj)Nλ(i),∅(qvi/tuj)

Nλ(i),λ(j)(qvi/tvj)
. (5.2.35)

This is the instanton partition function of U(N) gauge theory with 2N flavors. The similar equality in 4d was
the original statement of the AGT correspondence.
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5.3 Kajihara-Noumi Identity

First, we state the Kajihara-Noumi identity in the most general form. The formula holds for the rational,
trigonometric, and elliptic hypergeometric series, and thus we introduce the unified notation.

Notation 5.3.1. We denote by [x], a non-zero holomorphic function on C, satisfying

[−x] = −[x] ,

[x± y][u± v] + [x± v][y ± u] = [x± u][y ± v] ,
(5.3.1)

where [x± y] = [x+ y][x− y]. The second relation is called the recurrence relation of Hirota-type.
We also use

[x]k := [x][x+ δ] · · · [x+ (k − 1)δ] . (5.3.2)

By the Hermite’s theorem (see [117, Exercise 38 of Chapter 20]), the function which satisfies the above
conditions is any of following three functions up to constant:

[x] = x , (rational)
[x] = sin(x) , (trigonometric)
[x] = σ(x|Zw1 ⊕ Zw2) , (elliptic)

(5.3.3)

where σ(x|Ω) is the Weierstrass sigma function.

Definition 5.3.2. For (a1, . . . , am), (x1, . . . , xm) ∈ Cm and (b1, . . . , bn), (c1, . . . , cn) ∈ Cn, define

Φm,nL

(
a1, . . . , am
x1, . . . , xm

∣∣∣b1, . . . , bnc1, . . . , cn

)
=

∑
µ∈Zm≥0

,|µ|=L

∆(x+ µδ)

∆(x)

∏
1≤i,j≤m

[xi − xj + aj ]µi
[xi − xj + δ]µi

·
∏

1≤k≤n
1≤i≤m

[xi + bk]µi
[xi + ck]µi

, (5.3.4)

with
∆(x) :=

∏
1≤i<j≤m

[xi − xj ] , ∆(x+ µδ) =
∏

1≤i<j≤m

[xi − xj + (µi − µj)δ] . (5.3.5)

Note that this series Φm,nL is of the form of very well-poised hypergeometric series.
Now we state the Kajihara-Noumi identity, which is the duality formula for exchanging the two integers

m and n in Φm,nL . After [55], Rosengren also found the similar transformation formula from the study of the
elliptic kernel functions in [95].

Fact 5.3.3 (Kajihara-Noumi identity [55]). Let (a1, . . . , am) ∈ Cm and (b1, . . . , bn) ∈ Cn two sets of
parameters, satisfying the balancing condition,

a1 + · · ·+ am = b1 + · · ·+ bn . (5.3.6)

Then for two sets of variables (x1, . . . , xm) and (y1, . . . , yn), we have

Φm,nL

(
a1, . . . , am
x1, . . . , xm

∣∣∣y1 − b1, . . . , yn − bn
y1, . . . , yn

)
= Φn,mL

(
b1, . . . , bn
y1, . . . , yn

∣∣∣x1 − a1, . . . , xm − am
x1, . . . , xm

)
. (5.3.7)

This identity contains, in the various limits, most of the known transformation formulas of the multiple
hypergeometric functions. For example, when n = 1 and m = 2, the identity reduces to the Frenkel-Turaev
formula [36, Section 11]. When n = m = 2, it reduces to the elliptic Bailey identity.

The proof is very beautiful, and we just show the idea of proof. Let z = (z1, . . . , zM ), w = (w1, . . . , wM ),
and λ ∈ C. Then, by the Frobenius determinant formula, we have

D(z;w|λ) := det

(
[λ+ zi + wj ]

[λ][zi + wj ]

)M
i,j=1

=
[λ+

∑
i zi +

∑
i wi]∆(z)∆(w)

[λ]
∏
i,j [zi + wj ]

. (5.3.8)
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Next, we define the generating currents of the shift operators,

E(Tz;u) :=

M∏
i=1

(1 + uT δzi) , (5.3.9)

with T δz is the shift operator in the additive notation. Then, we have the Cauchy identity,

E(Tz;u)D(z;w|λ)

D(z;w|λ)
=
E(Tw;u)D(z;w|λ)

D(z;w|λ)
. (5.3.10)

Next, for α = (α1, . . . , αm) ∈ Nm with |α| = M , we put

(z1, . . . , zM ) = (x1, x1 + δ, x1 + (α1 − 1)δ, . . . . . . , xm, xm + δ, . . . , xm + (αm − 1)δ) . (5.3.11)

We do the similar substitution for w → (y1, . . . , yn). Then by massaging (5.3.10) and comparing the coefficient
of uN , we obtain Fact 5.3.3.

Application to Macdonald Functions

In the trigonometric case, which is our main target, the balancing condition can be removed. In order to
simplify the notation, we introduce the generating current of Φm,nL ’s, and the multiplicative notation.

Definition 5.3.4. Define

φm,n
(
a1, . . . , am
x1, . . . , xm

∣∣∣b1, . . . , bnc1, . . . , cn
;u
)

=
∑
µ∈Zm≥0

u
∑m
i=1 µiφm,nµ

(
a1, . . . , am
x1, . . . , xm

∣∣∣b1y1, . . . , bnyn
c1y1, . . . , cnyn

)
(5.3.12)

with

φm,nµ

(
a1, . . . , am
x1, . . . , xm

∣∣∣b1, . . . , bnc1, . . . , cn

)
=
∏
i<j

qµixi − qµjxj
xi − xj

∏
i,j

(ajxi/xj ; q)µi
(qxi/xj ; q)µi

∏
i,k

(bkxi; q)µi
(ckxi; q)µi

. (5.3.13)

Note that φm,nµ is essentially same as one term in Φm,nL in Definition 5.3.2. Then, as a corollary of Fact
5.3.3, we can prove the following identity. This equality was proved in [54], just before its elliptic generalization
Fact 5.3.3.

Corollary 5.3.5 ([54, 55]). We have

φm,n
(
a1, . . . , am
x1, . . . , xm

∣∣∣b1y1, . . . , bnyn
cy1, . . . , cyn

;u
)

=
(a1 · · · amb1 · · · bnu/cn; q)∞

(u; q)∞
· φn,m

(
c/b1 , . . . , c/bn
y1 , . . . , yn

∣∣∣cx1/a1, . . . , cxm/am
cx1, . . . , cxm

; a1 · · · amb1 · · · bnu/cn
)
.

(5.3.14)

In the main proof, we would like to apply the Kajihara-Noumi identity to the bispectral Macdonald
functions with some variables specialized. For that purpose, we prepare the following notation.

Definition 5.3.6. For non-negative integers n, m and µ = (µi)1≤i≤m ∈ Zm, we introduce

Nn,mµ (s1, . . . , sn+m) :=

m∏
k=1

(
n+k∏
i=1

(qsn+k/tsi; q)µk
(qsn+k/si; q)µk

)
·

∏
1≤i<j≤m

(t q−µisn+j/sn+i; q)µj
(q−µisn+j/sn+i; q)µj

. (5.3.15)

By using Fact 5.3.3, we can show the following formula which expands the Macdonald function fgln+m(x|s|q, t)
with respect to its ”sub”-Macdonald functions fglm .
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Proposition 5.3.7. Let si (i = 1, . . . , n + m) be generic complex parameters and |t| > |q|−(n−2). We
put xi = xtn−i for i = 1, . . . , n and xn+k = yk for k = 1, . . . ,m. Then

m∏
k=1

(qyk/t
nx; q)∞

(tyk/x; q)∞
· fgln+m(x1, . . . , xn+m|s1, . . . , sn+m|q, t)

=

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

(5.3.16)

×
∑
µ∈Zm≥0

Nn,mµ (s1, . . . , sn+m) fglm(y1, . . . , ym|qµ1sn+1, . . . , q
µmsn+m|q, t)

m∏
k=1

(tyk/x)µk .

The proof is presented in Section 5.B. In particular, if m = 0, this proposition is nothing but the special-
ization formula Fact 4.1.14.

Again let us remark that throughout this chapter, si are treated as generic parameters with si 6= 0 and
si 6= qr1tr2sj (r1 ∈ Z, r2 = 0,±1, ∀i, j).

5.4 Proof of Main Theorem

The proof consists of three steps.

Step 1. Specialize the spectral parameters as

vi → tniui , for ∀ni ∈ Z≥`(λi) . (5.4.1)

(λ are the Young diagrams in the bra vector.) Under this specialization, the operator V
(
v
u ;x

)
has the drastically simplified realization Ṽ (n)(x). Then the matrix elements of Ṽ (n)(x) become
the bispectral Macdonald functions.

Step 2. Apply the Kajihara-Noumi transformation formula to the bispectral Macdonald functions, and
we obtain the Nekrasov factors with the variables specialized.

Step 3. Use the identity theorem for the holomorphic functions.

Step 1.

Firstly, we give a realization of V(x) in the case v = tn · u. The strategy is to specialize the variables in the
operator V (n)(x1, . . . , x|n|) (defined in Definition 4.2.20) as

xi → t|n|−ix . (5.4.2)

Under this specialization, the resulted operator satisfies the relation (5.1.1) with v = tn · u (See Proposition
5.4.7 below).

However, it is non-trivial that we can actually take the limit (5.4.2) in the operator. In order to confirm
this is a well-defined limit, we first show the analytic property of the matrix elements of V (n)(x1, . . . , x|n|) as
the rational function with respect to (x1, . . . , x|n|).

The following theorem achieves our purpose.

Theorem 5.4.1. The operator V (n)(x1, . . . , x|n|) is well-defined on π−1
|n|(U

|n|
z (r0)) with r0 = |t−1|, in the

sense that its matrix elements are the holomorphic functions there.

Before the proof, we prepare the following lemma.
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Lemma 5.4.2. Let u = t−n · v, w = t−m · u and ni ≥ `(λ(i)) (∀i). Then

x−λ 〈Pλ|V (n)
(
v
u ;x1, . . . , x|n|

)
V (m)

(
u
w ; y1, . . . , y|m|

)
|0〉 = Rλ(v) fgl|n|+|m|((x,y)|s|q, q/t) (5.4.3)

under the identification

s[i,k]n = qλ
(i)
k t1−kvi (1 ≤ k ≤ ni, i = 1, . . . , N), (5.4.4)

s|n|+[i,k]m = t1−ni−kvi (1 ≤ k ≤ mi, i = 1, . . . , N). (5.4.5)

This lemma is the corollary of Theorem 4.2.21 by noting the normalization of the screened vertex operators
(Remark 4.2.17).

Proof of Theorem 5.4.1.

First, by Fact 4.1.13, the LHS of (5.4.3) is a holomorphic function on U
|n|+|m|
z̃ (r0). Recall the notation in

Section 4.1.3. Through the pull-back π∗|n|+|m|, it is the holomorphic function in π−1
|n|+|m|(U

|n|+|m|
z̃ (r0)). Thus,

once we fix y ∈ (C∗)|m| such that |yj/yi| < rj−i0 (1 ≤ i < j ≤ |m|), it can be regarded a holomorphic function

of x ∈ π̃−1
|n|,y1(U

|n|
z (r0)), where

π̃−1
|n|,y1(U |n|z (r0)) := {(x1, . . . , x|n|) ∈ (C∗)|n|

∣∣ |xj/xi| < rj−i0 (1 ≤ i < j ≤ |n|), |y1/x|n|| < r0} . (5.4.6)

Then, by multiplying both sides of (5.4.3) by y−µf̃gl|m|(y|s|q, q/t) and taking the constant term in y, we
complete the proof.

Now we can safely take the limit (5.4.2), and define the specialized operators.

Definition 5.4.3. Let |t| > |q|−(n−2). Define Ṽ (n)(x) = Ṽ (n)
(
v
u ;x

)
: Fu → Fv with u = t−n · v by

Ṽ (n)(x) = lim
xi→t|n|−ix

∏
1≤i<j≤|n|

(txj/xi; q)∞
(qxj/txi; q)∞

· V (n)(x1, . . . , x|n|)A
−1
(|n|)(x), (5.4.7)

where

A(r)(x) = exp

(∑
n>0

(1− (q/t)r)(1− t(1−r)n)t2r

n(1− qn)(1− t−n)

N∑
i=1

γ(i−1)na(i)
n x−n

)
. (5.4.8)

Remark 5.4.4. Note that
∑N
i=1 γ

(i−1)na
(i)
n is the boson corresponding to the Cartan part ∆(N)(ψ+(z)).

Proposition 5.4.5. Ṽ (n)(x) is well-defined on C∗, i.e., its arbitrary matrix elements are holomorphic func-
tions there.

Before the proof, we prepare the following fact. This fact tells us the duality of the Macdonald functions
under exchanging t and q/t. Also recall the bispectral Macdonald functions ϕgln in the previous chapter.

Fact 5.4.6 ([86]). The formal series fgln(x|s|q, t) with the leading coefficient 1 satisfies the symmetry relation

fgln(x|s|q, t) =
∏

1≤i<j≤n

(txj/xi; q)∞
(qxj/txi; q)∞

· fgln(x|s|q, q/t) . (5.4.9)

Proof. For the proof, we only have to note

D(k)
n (s; q, t)

∏
1≤i<j≤n

(txj/xi; q)∞
(qxj/txi; q)∞

=
∏

1≤i<j≤n

(txj/xi; q)∞
(qxj/txi; q)∞

D(k)
n (s; q, q/t) . (5.4.10)
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Proof of Proposition 5.4.5. We introduce the following product of currents,

Ã(r)(x1, . . . , xr) :=

r∏
k=1

exp

(∑
n>0

(1− (q/t)r)t2r

n(1− qn)

N∑
i=1

γ(i−1)na(i)
n x−nk

)
. (5.4.11)

We have the following equality.∏
1≤i<j≤|n|

(txj/xi; q)∞
(qxj/txi; q)∞

·
∏

1≤i<j≤|m|

(tyj/yi; q)∞
(qyj/tyi; q)∞

× x−λ 〈Pλ|V (n)(x1, . . . , x|n|)Ã
−1
(|n|)(x1, . . . , x|n|)V

(m)
(
u
w ; y1, . . . , y|m|

)
|0〉

=
∏

1≤i<j≤|n|+|m|

(txj/xi; q)∞
(qxj/txi; q)∞

· Rλ(v) fgl|n|+|m|((x,y)|s|q, q/t) = Rλ(v) fgl|n|+|m|((x,y)|s|q, t) .

(5.4.12)

Here, for simplicity, we set x|n|+i = yi, and used Fact 5.4.6 and Lemma 5.4.2.
Then, by the same argument as the proof of Theorem 5.4.1, we can show the matrix elements of∏

1≤i<j≤|n|

(txj/xi; q)∞
(qxj/txi; q)∞

· V (n)(x1, . . . , x|n|)Ã
−1
(|n|)(x1, . . . , x|n|)

are the holomorphic functions on π−1
|n|(U

|n|
z (r̄0)) with r̄0 = |q/t|

|n|−2
|n|−1 . In this case, y−µf̃gl|m|(y|s|q, t) is

multiplied before the integration in y. Under the assumption |t| > |q|−(n−2), it is clear |t−1| < r̄0, and thus
we can safely take the limit xi → t|n|−ix. By taking limit, we prove the claim.

As noted, this operator Ṽ (n)(x) is a realization of V in the case v = tn ·u. This follows from the following
relation which is essentially the same as (5.1.1).

Proposition 5.4.7. For r = 1, . . . , N , the Ṽ (n)
(
v
u ;x

)
satisfies

(
1− t|n|x

z

)
X(r)(z)Ṽ (n)

(
v
u ;x

)
= (q/t)r

(
1− (t/q)rt|n|

x

z

)
Ṽ (n)

(
v
u ;x

)
X(r)(z) . (5.4.13)

Proof. By Proposition 4.2.23, we obtain

X(r)(z)V (n)
(
v
u ;x1, . . . , x|n|

)
=

|n|∏
k=1

1− (q/t)rz/txk
1− z/txk

· V (n)(x1, . . . , x|n|)X
(r)(z)

+ (1− t−1)

N∑
i=1

ni∑
k=1

vit
1−kδ(tx[i,k]n/z)

∏
1≤`<[i,k]n

1− (q/t)rx[i,k]n/x`

1− x[i,k]n/x`
·

∏
[i,k]n<`≤|n|

1− tx`/qx[i,k]n

1− x`/x[i,k]n

× Ũ (n)
[i,k]n

(x1, . . . , x|n|)Ψ
+(x[i,k]n), (5.4.14)

where Ũ
(n)
[i,k]n

is the operator which is obtained by replacing Φ(i)(x[i,k]n) in V (n) with Y (r)(x[i,k]n)Φ(i)(qx[i,k]n),

that is,

Ũ
(n)
[i,k]n

(x1, . . . , x|n|) := Φ(0)(x1) · · ·Φ(i)(x[i,k]n−1)Y (r)(x[i,k]n)Φ(i)(qx[i,k]n)Φ(i)(x[i,k]n+1) · · ·Φ(N−1)(x|n|).

(5.4.15)

Under the principle specialization, only the term with [i, k]n = 1 survives. This is because we can show

lim
xi→t|n|−ix

∏
1≤i<j≤|n|

(txj/xi; q)∞
(qxj/txi; q)∞

· Ũ (n)
[i,k]n

(x1, . . . , x|n|) = 0 ([i, k]n 6= 1) . (5.4.16)
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Note that when [i, k]n = 1, the normal ordering inside Ũ
(n)
1 cancels the vanishing factors. By the operator

product (B.1.29), it is easy to see

A(s)(x)X(r)(z) =

r−1∏
k=1

1− t−kz/x
1− t−k(q/t)rz/x

·X(r)(z)A(s)(x). (5.4.17)

Combining (5.4.14), (5.4.16) and (5.4.17), we obtain

X(r)(z)Ṽ (n)(x) =
1− (q/t)rz/t|n|x

1− z/t|n|x
Ṽ (n)(x)X(r)(z) (5.4.18)

+ (1− t−1)v1t
1−k lim

xi→t|n|−ix
δ(tx1/z)

∏
1<`≤|n|

1− tx`/qx1

1− x`/x1

∏
1≤i<j≤|n|

(txj/xi; q)∞
(qxj/txi; q)∞

· Ũ (n)
1 Ψ+(x1).

(5.4.19)

By multiplying the both sides by
(
1− t|n| xz

)
, we obtain the expected result,(

1− t|n|x
z

)
X(r)(z)Ṽ (n)

(
v
u ;x

)
= (q/t)r

(
1− (t/q)rt|n|

x

z

)
Ṽ (n)

(
v
u ;x

)
X(r)(z) . (5.4.20)

Step 2.

Next, we compute the matrix elements of Ṽ (n)(x) with respect to the generalized Macdonald functions. In
the end, we obtain the following result.

Proposition 5.4.8. The matrix elements

〈Kλ|Ṽ (n)(x)|Kµ〉
〈0| Ṽ (n)(x) |0〉

=
(
(−1)NeN (v)x

)|λ| (
(t/q)t|n|x

)−|µ| N∏
i=1

v
−(N−1)|λ(i)|
i ((q/t)ui)

|µ(i)|g−N+1
λ(i) gµ(i)

×
N∏
i=1

(q/t)(N−i)|µ(i)|−
∑i
k=1 |µ

(k)|
N∏

i,j=1

Nλ(i),µ(j)(tnjvi/vj) .

(5.4.21)

Below in this step, we prove this proposition.
Proof of Proposition 5.4.8.

Put s′ := (s′i)1≤i≤|m| with

s′[i,k]m
:= qµ

(i)
k t1−ni−kvi (1 ≤ k ≤ mi, i = 1, . . . , N) (5.4.22)

and s = (si)1≤i≤|n|+|m| be the same one given in (5.4.4), (5.4.5), i.e.,

s[i,k]n = qλ
(i)
k t1−kvi (1 ≤ k ≤ ni, i = 1, . . . , N), (5.4.23)

s|n|+[i,k]m = t1−ni−kvi (1 ≤ k ≤ mi, i = 1, . . . , N). (5.4.24)

We also put x|n|+i = yi. By the explicit algorithm to construct |Qλ〉 (Theorem 5.2.1) and Lemma 5.4.2, we
can rewrite the matrix elements as

〈Pλ|Ṽ (n)(x)|Qµ〉 =
1

Rmµ (u)

[
y−µf̃gl|m|(y|s′|q, q/t) 〈Pλ| Ṽ (n)(x)V (m)(y1, . . . , y|m|) |0〉

]
y,1

=
Rnλ(v)

Rmµ (u)

[
lim

xi→t|n|−ix
(1≤i≤|n|)

y−µxλf̃gl|m|(y|s′|q, q/t)
∏

1≤i<j≤|m|

(qyj/tyi; q)∞
(tyj/yi; q)∞
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×
|m|∏
k=1

(qyk/t
|n|x; q)∞

(tyk/x; q)∞
· fgl|n|+|m|((xi)1≤i≤|n|+|m||s|q, t)

]
y,1

. (5.4.25)

The next step is crucial. By taking advantage of Proposition 5.3.7, the Macdonald function fgl|n|+|m| in
(5.4.25) can be transformed to the summation of its ”sub”-Macdonald functions fgl|m| as

(LHS of (5.4.25)) =
Rnλ(v)

Rmµ (u)

|n|∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤|n|

(qsj/tsi; q)∞
(qsj/si; q)∞

· lim
xi→t|n|−ix
(1≤i≤|n|)

xλ

×
∑

ν∈Z|m|≥0

N|n|,|m|ν (s1, . . . , s|n|+|m|)

[
y−µf̃gl|m|(y|s′|q, q/t)fgl|m|(y|(qνis|n|+i)|q, q/t)

|m|∏
k=1

(tyk/x)νk

]
y,1

.

(5.4.26)

Fact 5.4.6 is also used through the computation. Note that since s|n|+[i,k]m = t1−ni−kvi, N
|n|,|m|
ν = 0 if ν

cannot be regarded as an N -tuple of partitions. By virtue of Lemma 4.1.5 and

xλ
∣∣∣
xi→t|n|−ix

= x|λ|t(|n|−1)|λ|
N∏
i=1

t−n(λ(i))−|λ(i)|
∑i−1
k=1 nk , (5.4.27)

it is shown that

〈Pλ|Ṽ (n)(x)|Qµ〉 =x|λ|−|µ|t|µ|+(|n|−1)|λ|
N∏
i=1

t−n(λ(i))−|λ(i)|
∑i−1
k=1 nk

× R
n
λ(v)

Rmµ (u)

|n|∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤|n|

(qsj/tsi; q)∞
(qsj/si; q)∞

· N|n|,|m|[µ]m (s1, . . . , s|n|+|m|) ,

(5.4.28)

where we use the notation

[µ]m = ([µ]mi )1≤i≤|m| := (µ
(1)
1 , . . . , µ(1)

m1
, µ

(2)
1 , . . . , µ(2)

m2
, . . . , µ

(N)
1 , . . . , µ(N)

mN ) . (5.4.29)

By massaging (5.4.28), we obtain the matrix elements with respect to the integral forms of the generalized
Macdonald functions,

〈Kλ|Ṽ (n)(x)|Kµ〉
〈0| Ṽ (n)(x) |0〉

=C(−)
λ C(+)

µ

N∏
i=1

c′
µ(i)

cµ(i)

· x|λ|−|µ|t|µ|+(|n|−1)|λ|
N∏
i=1

t−n(λ(i))−|λ(i)|
∑i−1
k=1 nk

× R
n
λ(v)

Rmµ (u)

∏
1≤i<j≤|n|

(qsj/tsi; q)[λ]ni −[λ]nj

(qsj/si; q)[λ]ni −[λ]nj

· N|n|,|m|[µ]m (s1, . . . , s|n|+|m|) .

(5.4.30)

Here for the simplicity of notation, we put

∏
1≤i<j≤|n|

(qsj/tsi; q)[λ]ni −[λ]nj

(qsj/si; q)[λ]ni −[λ]nj

=

N∏
k=1

∏
1≤i<j≤nk

(qλ
(k)
j −λ

(k)
i +1t−j+i−1; q)−λ(k)

j +λ
(k)
i

(qλ
(k)
j −λ

(k)
i +1t−j+i; q)−λ(k)

j +λ
(k)
i

×
∏

1≤k<l≤N

∏
1≤i≤nk
1≤j≤nl

(qλ
(l)
j −λ

(k)
i +1t−j+i−1vl/vk; q)−λ(l)

j +λ
(k)
i

(qλ
(l)
j −λ

(k)
i +1t−j+ivl/vk; q)−λ(l)

j +λ
(k)
i

.

(5.4.31)

Finally, we have to show that the expression (5.4.30) coincides with the Nekrasov factors. The following
proposition achieves this goal.
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Proposition 5.4.9. We have

Rnλ
Rmµ

N
|n|,|m|
[µ] (s1, . . . , s|n|+|m|)

∏
1≤i<j≤|n|

(qsj/tsi)[λ]i−[λ]j

(qsj/si)[λ]i−[λ]j

=

N∏
i=1

(−1)|µ
(i)|t−(|n|+ni)|λ(i)|t−(N−i)|µ(i)|nit(|λ

(i)|−|µ(i)|)
∑i
s=1 nst2n(λ(i))+|λ(i)|

×
N∏
i=1

γ−(N−1)(|λ(i)|+|µ(i)|)−2|µ(i)|qn(µ(i)′ )

(
fµ(i)

fλ(i)

)N−i ∏
1≤i<j≤N

(vi/vj)
−|λ(i)|+|µ(i)|

×
N∏
i=1

1

cλ(i)c′
µ(i)

∏N
i,j=1Nλ(i),µ(j)(tnjvi/vj)∏

1≤i<j≤N Nλ(j)λ(i)(qvj/tvi)
∏

1≤i<j≤N Nµ(i)µ(j)(qt−ni+njvi/tvj)
.

(5.4.32)

The proof is by direct computation using recursion relations, and we omit it because it is tedious and not
essential. In a word, the recursion relations with respect to the length of the partitions, coincide on both sides.
For the detail, see [35].

With the help of this proposition, we complete the proof of Proposition 5.4.8.

Step 3.

Now we finalize the main proof. First, we note the difference between (5.1.1) and (5.4.13) can be modified
once we make the transformation

x→ t|n|x, ui → (q/t)ui (i = 1, . . . , N) . (5.4.33)

Note that this transformation also cures the difference of the normalization constant (4.2.48). Then we can see
that the equation (5.4.21) shows Theorem 5.2.1 in the case v = tn ·u. Because the equation (5.4.21) holds for
arbitrary ni ≥ `(λ(i)), the identity theorem, (which says the two rational functions which agree at infinitely
many points are identical on the whole complex space,) guarantees the main theorem.

Remark 5.4.10. One may think we have to show that the matrix elements are rational functions. This is
trivial from the definition of the Mukadé operator (Definition 5.1.1), because once we fix λ and µ, the matrix
elements are the finite product of factors like (1− •x/z).

Let us refine this statement. If λ 6= (∅, . . . , ∅), let j = min{i|λ(i) 6= ∅}. The defining relation of V(z) gives

〈Xλ|V(w)|Xµ〉 =w

〈
X

(∅,...,(λ(j)
2 ,λ

(j)
3 ,...),λ(j+1),...,λ(N))

∣∣∣∣X(j)

λ
(j)
1 −1
V(w)

∣∣∣∣Xµ〉 (5.4.34)

+

〈
X

(∅,...,(λ(j)
2 ,λ

(j)
3 ,...),λ(j+1),...,λ(N))

∣∣∣∣V(w)

(
X

(j)

λ
(j)
1

− (q/t)jwX
(j)

λ
(j)
1 −1

) ∣∣∣∣X(1)
µ

〉
.

The first term in RHS can be rewritten by the matrix elements 〈Xν |V(w)|Xµ〉 with the condition |ν| = |λ|−1

(particularly, in the case λ
(j)
1 − 1 < λ

(j)
2 ), and the second term can be expanded by vectors |Xρ〉 of level

|ρ| = |µ| − λ
(j)
1 or |µ| − λ

(j)
1 + 1. When λ = (∅, . . . , ∅), we can move the negative modes X

(i)
−n, (which

annihilate the bra vacuum ) to the left side of V(w) by the defining relation, and as a result, it makes the
size of Young diagrams in the bra state smaller. Therefore, starting from the case where all Young diagrams
are empty, the matrix elements 〈Xν |V(w)|Xµ〉 can be inductively and uniquely determined. Because this
procedure to compute some specific matrix element is achieved by the finite number of iterations, we can show
that the matrix elements are the rational functions.
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Appendix 5.A Idea of Another Proof for N = 1 Case

In this section, we give the sketch of another proof of Theorem 5.2.1 for N = 1 case. Let us again see the
main claim for N = 1,

〈Pλ| V(u, v; z) |Pν〉 = Ñλ,ν(qv/tu) , (5.A.1)

with

Ñλ,ν(qv/tu) :=
(−tux/q)|λ|

(tx/q)|ν|
gν
cλcν

Nλ,ν(qv/tu) . (5.A.2)

Note that when N = 1, the Mukadé operator becomes (up to the extra G-factor)

V(u, v; z) = exp

(
−
∑
n

1

n

1− (tu/qv)n

1− qn
a−nz

n

)
exp

(∑
n

1

n

1− (v/u)−n

1− q−n
anz
−n

)
. (5.A.3)

When N = 1, we know the Pieri rules (Fact 3.1.16), and thus we can add some boxes (a vertical or
horizontal strip) in the ket state, and move it to the bra state. Then, this erases the strip from the ket state.
Using this fact, we can give another proof of the claim by the induction on ν, the partition in the ket state.

Let us see more in detail. As we learned in Chapter 2, we have the generating current of gn (Definition 3.2.5),

ϕ(w) = exp

(∑
n

1

n

1− tn

1− qn
a−nw

n

)
. (5.A.4)

Then, by taking normal ordering, we have the following identity

exp

(∑
n

1

n

1− (v/u)−n

1− q−n
(w/z)n

)
〈Pλ|ϕ(w)V(u, v; z) |Pν〉 = 〈Pλ| V(u, v; z)ϕ(w) |Pν〉 , (5.A.5)

and when we take the coefficient of w1, we have

1− (v/u)−1

1− q−1

1

z
〈Pλ| V(u, v; z) |Pν〉+

∑
i∈R(λ)

ϕλ/λ−i 〈Pλ−i| V(u, v; z) |Pν〉

=
∑
i∈A(ν)

ϕν+i/ν 〈Pλ| V(u, v; z) |Pν+i〉 .
(5.A.6)

Note that we use the Pieri rule Fact 3.1.16 and its dual. Though we also have to take the coefficients of wn

for the general n, to simplify the discussion, we concentrate on the equation above. The discussion in general
n goes in the similar way.

Then, we fix λ and ν, and assume the main claim (5.A.1) holds for arbitrary partition in the bra state
(respectively in the ket state) which has the smaller (or equal) number of boxes than λ (resp. ν). Then, by

dividing both sides by Ñλ,ν(qv/tu), the LHS of (5.A.6) can be written as

1− v−1

1− q−1

1

z
+
∑

i∈R(λ)

ϕλ/λ−i
Ñλ−i,ν(qv/tu)

Ñλ,ν(qv/tu)
. (5.A.7)

Then, if the RHS agrees with ∑
i∈A(ν)

ϕν+i/ν
Ñλ,ν+i(qv/tu)

Ñλ,ν(qv/tu)
, (5.A.8)

by induction, we prove the main claim.1

We can show this actually holds.

1Again, note that we have only the condition for one linear combination of the Nekrasov factors, and for the complete proof,
we also need the other equations which are obtained from (5.A.5) by taking the coefficients of wn for the general n, though we
omit them here.
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Proposition 5.A.1.

1− v−1

1− q−1

1

z
+
∑

i∈R(λ)

ϕλ/λ−i
Ñλ−i,ν(qv/tu)

Ñλ,ν(qv/tu)
=
∑
i∈A(ν)

ϕν+i/ν
Ñλ,ν+i(qv/tu)

Ñλ,ν(qv/tu)
. (5.A.9)

The proof is done by using Fact 5.3.3. Let us see how to apply the identity to this situation. For
convenience, we introduce the notation, for x = (i, j) ∈ λ, χx = qj−1ti−1. We also use the additive and
multiplicative notations interchangeably. Then, the following identification of parameters allows us to apply
the Kajihara-Noumi identity Fact 5.3.3 to (5.A.8).

δ → 0 ,

m = |A(ν)| ,
n = |A(λ)| ,
L = 1 ,

xi ←→ vχx , (x ∈ A(ν)) ,

xj − aj ←→ vtχy/q , (y ∈ R(ν)) ,

yk ←→ q/utχy , (y ∈ R(λ)) ,

yk − bk ←→ 1/uχy , (y ∈ A(λ)) ,

xi − ai ←→ ∞ ,

y|A(λ)| ←→ ∞ , with
[xi − xi + ai]

[xi + y|A(λ)|]
→ v

u
.

(5.A.10)

(←→ means we interpret the additive symbols as the multiplicative ones.) Note that because we take the
limit δ →∞, both sides diverges because of the factor 1/[δ]. Thus, we first multiply [δ] to both sides and take
the limit. As we can see from the identification of parameters above, one of ai’s and one of bi’s go to infinity.
Then, the balancing condition holds as the both sides go to infinity.

As mentioned above, instead of inserting g1, we can insert gL, and then the similar equality holds by the
Kajihara-Noumi identity for Φn,mL .

Appendix 5.B Proof of Propositions

5.B.1 Proof of Proposition 5.3.7

We prepare two lemmas. They transform the LHS of (5.3.16) to the form to which we can apply the Euler
transformation formula for the multiple trigonometric basic hypergeometric series. The proofs of these lemmas
are by direct calculation, though a little tedious.

Lemma 5.B.1. Let σ = (σk)1≤k≤m−1 ∈ Zm−1 and θ = (θi)1≤i≤n+m−1 ∈ Zn+m−1
≥0 . Let h be the parameter,

satisfying qr1tr2h 6= 1 (∀r1, r2 ∈ Z). Under the change of variables ρk = σk − θn+k, we can show∏
1≤i<j≤n

(qq−θjsj/tq
−θisi; q)∞

(qq−θjsj/q−θisi; q)∞
· dn+m(θ; s|q, t)Nn,m−1

σ (q−θ1s1, . . . , q
−θn+m−1sn+m−1)

=
∏

1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

n∏
i=1

qθit−iθi
m−1∏
i=n+1

qθit−nθi · lim
h→1

Ñn,m−1
ρ (h; s1, . . . , sn+m−1)

× φn+m−1,m
θ

( t , . . . , t
hs−1

1 , . . . , hs−1
n+m−1

∣∣∣qqρ1sn+1/t , . . . , qq
ρm−1sn+m−1/t , tsn+m

qqρ1sn+1 , . . . , qqρm−1sn+m−1 , qsn+m

)
,

(5.B.1)

where

Ñn,mµ (h; s1, . . . , sn+m) :=

m∏
k=1

(
n+k∏
i=1

(qsn+k/tsi; q)µk
(hqsn+k/si; q)µk

)
·

∏
1≤i<j≤m

(t q−µisn+j/sn+i; q)µj
(q−µisn+j/sn+i; q)µj

. (5.B.2)



96 5 Main Theorem: Mukadé Operator and its Matrix Elements

Proof. As noted, the proof is by brute-force computation. We have∏
1≤i<j≤n+m

(q−θjqsj/tsi; q)θi
(q−θjsj/si; q)θi

=
∏

1≤i<j≤n+m

qθis−1
i − qθjs

−1
j

s−1
i − s

−1
j

(tsi/sj ; q)θj
(qsi/sj ; q)θj

t−θj
(qsj/tsi; q)θi−θj
(qsj/si; q)θi−θj

(5.B.3)

and ∏
1≤i<j≤n

(qq−θjsj/tq
−θisi; q)∞

(qq−θjsj/q−θisi; q)∞
=

∏
1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

(qsj/si; q)θi−θj
(qsj/tsi; q)θi−θj

. (5.B.4)

Combining (5.B.3) and (5.B.4), we have∏
1≤i<j≤n

(qq−θjsj/tq
−θisi; q)∞

(qq−θjsj/q−θisi; q)∞
· dn+m(θ; s|q, t) =

∏
1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

· φn+m−1,1
θ

( t , . . . , t
s−1

1 , . . . , s−1
n+m−1

∣∣∣ tsn+m
qsn+m

)

×
n+m−1∏
i=1

qθit−iθi ·
n+m−1∏
j=n+1

j−1∏
i=1

(qsj/tsi; q)θi−θj
(qsj/si; q)θi−θj

.

(5.B.5)

It is also easy computation to show

m−1∏
k=1

n+k∏
i=1

(qq−θn+ksn+k/tq
−θisi; q)σk

(qq−θn+ksn+k/q−θisi; q)σk
(5.B.6)

= lim
h→1

m−1∏
k=1

n+k∏
i=1

(qqρksn+k/tsi; q)θi
(hqqρksn+k/si; q)θi

(qsn+k/tsi; q)ρk
(hqsn+k/si; q)ρk

(qsn+k/si; q)θi−θn+k

(qsn+k/tsi; q)θi−θn+k

and ∏
1≤k<l≤m−1

(tq−σkq−θn+lsn+l/q
−θn+ksn+k; q)σl

(q−σkq−θn+lsn+l/q−θn+ksn+k; q)σl

=
∏

1≤k<l≤m−1

(tq−ρksn+l/sn+k; q)ρl
(q−ρksn+l/sn+k; q)ρl

(qqρksn+k/tsn+l; q)θn+l

(qρksn+k/sn+l; q)θn+l

× tθn+l . (5.B.7)

Combining (5.B.5), (5.B.6) and (5.B.7), we obtain the claim.

Note that h is the parameter which goes to 1 in the main proof. The necessity of the introduction of such
parameter is to avoid some divergence. See the remark below.

Remark 5.B.2. If ρk < 0 and ρk + θn+k > 0 for some k, then Ñn,m−1
ρ is 0 and φn+m−1,m

θ diverges when
h → 1. Because (5.B.1) must converge as a result. we inserted the parameter h. For the detail of this
convergence, see the main proof of Proposition 5.3.7.

We prepare one more lemma.

Lemma 5.B.3. Let ρ = (ρk)1≤k≤m−1 ∈ Zm−1 and ν = (νk)1≤k≤m ∈ Zm≥0. Then

lim
h→1

Ñn,m−1
ρ (h; s1, . . . , sn+m−1)

× φm,n+m−1
ν

(
t , . . . , t, q/t

qρ1sn+1 , . . . , q
ρm−1sn+m−1, sn+m

∣∣∣hq/ts1 , . . . , hq/tsn+m−1

hq/s1 , . . . , hq/sn+m−1

)
= Nn,mµ (s1, . . . , sn+m)× dm((θi); (qµisn+i)|q, t) , (5.B.8)

under the identification of running variables

ρk = µk − θk (k = 1, . . . ,m− 1) , (5.B.9)

νk = θk (k = 1, . . . ,m− 1) , (5.B.10)

νm = µm . (5.B.11)
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Proof. First, put

A =

m−1∏
k=1

qνk+ρksn+k − qνmsn+m

qρksn+k − sn+k

×
m−1∏
k=1

(t; q)νk
(q; q)νk

(qqρksn+k/tsn+m; q)νk
(qqρksn+k/sn+m; q)νk

(tq−ρksn+m/sn+k; q)νm
(qq−ρksn+m/sn+k; q)νm

, (5.B.12)

B =
∏

1≤k<l≤m−1

qνk+ρksn+k − qνl+ρlsn+l

qρksn+k − qρlsn+l
·
∏
k 6=l

(tqρk−ρlsn+k/sn+l; q)νk
(qqρk−ρlsn+k/sn+l; q)νk

, (5.B.13)

C =

m−1∏
k=1

n+m−1∏
i=1

(hqqρksn+k/tsi; q)νk
(hqqρksn+k/si; q)νk

, (5.B.14)

D =
(q/t; q)νm
(q; q)νm

n+m−1∏
i=1

(hqsn+m/tsi; q)νm
(hqsn+m/si; q)νm

, (5.B.15)

to simplify the notation as φm,n+m−1
ν = A ·B · C ·D. First, we have a look at

A =

m−1∏
k=1

(q/t)θk
(t; q)θk
(q; q)θk

(tq−µk+µmsn+m/sn+k; q)θk
(qq−µk+µmsn+m/sn+k; q)θk

m−1∏
k=1

(tq−µksn+m/sn+k; q)µm
(q−µksn+m/sn+k; q)µm

. (5.B.16)

We can see the first part in (5.B.16) is equal to the factors in dm((θi); (qµisn+i)|q, t), i.e., the factors in the
first product in (4.1.8). Next, we can show

lim
h→1

Ñn,m−1
ρ (h; s1, . . . , sn+m−1) · C = Nn,m−1

µ (s1, . . . , sn+m−1) · E, (5.B.17)

where E is defined by

E ≡
∏

1≤k<l≤m−1

t−θk
(tq−µk+µlsn+l/sn+k; q)θk−θl
(q−µk+µlsn+l/sn+k; q)θk−θl

. (5.B.18)

Note some factors in dm((θi); (qµisn+i)|q, t) are remaining, and these factors can be reproduced by the product
BE as follows:

B · E =
∏

1≤i<j≤m

(tq−µk+µlsn+l/sn+k; q)θk
(qq−µk+µlsn+l/sn+k; q)θk

(qq−µk+µl−θlsn+l/tsn+k; q)θk
(q−µk+µl−θlsn+l/sn+k; q)θk

. (5.B.19)

This corresponds to the second part in (4.1.8). Now, what are left are the product of Nn,m−1
µ , D and the

remaining factors (the factors in the second product) in (5.B.16). They can be simplified, and we obtain the
claim as follows:

Nn,m−1
µ (s1, . . . , sn+m−1) ·

m−1∏
k=1

(tq−µksn+m/sn+k; q)µm
(q−µksn+m/sn+k; q)µm

· lim
h→1

D = Nn,mµ (s1, . . . , sn+m) . (5.B.20)

Proof of Proposition 5.3.7

Now, we prove Proposition 5.3.7 by using these lemmas and the Kajihara-Noumi transformation formula.
The proof is done by induction on m. If m = 0, (5.3.16) follows from Fact 4.1.14. Roughly speaking, in

fgln+m in the LHS of (5.3.16) , we have the summation over n+m− 1-variables associated with the variable
xn+m. On the other hand, in the RHS of (5.3.16), we only have the summation over m− 1-variables in fglm .
There is no choice but the Kajihara-Noumi identity for the formula which is applicable to such situation.
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Assuming the claim holds for m− 1, it can be shown that the LHS of (5.3.16) is

∑
θ∈Zn+m−1

≥0

(qym/t
nx; q)∞

(tym/x; q)∞
dn+m(θ, s|q, t)

n+m−1∏
i=1

(xn+m/xi)
θi

×
m−1∏
k=1

(qyk/t
nx; q)∞

(tyk/x; q)∞
· fgln+m−1(x1, . . . , xn+m−1|q−θ1s1, . . . , q

−θn+m−1sn+m−1|q, t)

=
∑

θ∈Zn+m−1
≥0

σ∈Zm−1
≥0

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

· (qym/t
nx; q)∞

(tym/x; q)∞

∏
1≤i<j≤n

(qq−θjsj/tq
−θisi; q)∞

(qq−θjsj/q−θisi; q)∞
dn+m(θ, s|q, t)

× Nn,m−1
σ (q−θ1s1, . . . , q

−θn+msn+m)fglm−1((yi)|(qσiq−θn+isn+i)|q, t)
m−1∏
k=1

(tyk/x)σk .

(5.B.21)

Thanks to the contribution of the factor
∏m−1
k=1 1/(q; q)σk in Nn,m−1

σ , we can extend the range which θ and σ
ran over to

θ ∈ Zn+m−1
≥0 , σ ∈ Zm−1 , (5.B.22)

because for σ ∈ Z<0, this factor becomes zero. Under this range, by applying Lemma 5.B.1, we can rewrite
(5.B.21) as

lim
h→1

∑
θ∈Zn+m−1

≥0

ρ∈Zm−1

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

· (qym/t
nx; q)∞

(tym/x; q)∞

∏
1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

× Ñn,m−1
ρ (h; s1, . . . , sn+m−1)fglm−1(y|(qρisn+i)|q, t)

m−1∏
k=1

(tyk/x)ρk

× φn+m−1,m
θ

( t , . . . , t
hs−1

1 , . . . , hs−1
n+m−1

∣∣∣qqρ1sn+1/t , . . . , qq
ρm−1sn+m−1/t , tsn+m

qqρ1sn+1 , . . . , qqρm−1sn+m−1 , qsn+m

)
×
n+m−1∏
i=1

(qym/t
nx)θi . (5.B.23)

By using the Kajihara-Noumi identity for the trigonometric multiple hypergeometric series (Fact 5.3.3), the
term (5.B.23) can be written as

lim
h→1

∑
ν∈Zm≥0

ρ∈Zm−1

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

× Ñn,m−1
ρ (h; s1, . . . , sn+m−1)pm−1(y; (qρisn+i)|q, t)

m−1∏
k=1

(tyk/x)ρk

× φm,n+m−1
ν

(
t , . . . , t, q/t

qρ1sn+1 , . . . , q
ρm−1sn+m−1, sn+m

∣∣∣hq/ts1 , . . . , hq/tsn+m−1

hq/s1 , . . . , hq/sn+m−1

)
×

m∏
k=1

(tym/x)νk . (5.B.24)

Finally, Lemma 5.B.3 shows that (5.B.24) is equal to

n∏
i=1

(q/t; q)∞
(q/ti; q)∞

·
∏

1≤i<j≤n

(qsj/tsi; q)∞
(qsj/si; q)∞

(5.B.25)
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×
∑

(µi)
m−1
i=1 ∈Z

m−1

µm≥0

Nn,mµ (s1, . . . , sn+m) fglm(y1, . . . , ym|qµ1sn+1, . . . , q
µmsn+m|q, t)

m∏
k=1

(tyk/x)µk .

Note that the summation is restricted to µ ∈ Zm≥0 by the contribution of the factor in Nn,mµ , Thus we complete
the proof.

5.B.2 Proof of Proposition 5.1.9

As noted, the proof is by direct computation. First, we give the proof for X(1)(z). For X(k)(z) with k > 1,
the proof goes completely in parallel to that of k = 1 case.

k = 1 case We first introduce the new notation which we use only in this appendix. We write the operator
T V (u,v;w) as

T V (u,v;w) =
∑

ν(1),...,ν(N−1)

Cν : Φ̂∅(w1)Φ̂∗ν(1)(w
′
1) : ⊗ : Φ̂ν(1)(w2)Φ̂∗ν(2)(w

′
2) :

⊗ · · ·⊗ : Φ̂ν(N−1)(wN )Φ̂∗∅(w
′
N ) :

=:
∑

ν(1),...,ν(N−1)

T Vν (u,v;w), (5.B.26)

with

Cν :=

N∏
i=1

cν(i)

c′
ν(i)

G(wi/γw
′
i)
−1

× t̂(ν(i−1), ui, wi, 0) t̂∗(ν(i), w′i, vi, 0) Nν(i−1)ν(i)(wi/γw
′
i)
/
〈0| T V (u,v;w) |0〉 .

(5.B.27)

Note that the factor Cν is the products of the coefficients of the intertwiners and the factors appearing from
the normal orderings. Here, we put ν(0) = ν(N) = ∅ for convenience. In the following, we omit the parameters
u,v in T V (u,v;w) unless there are any confusion.

As a preparation, we first compute the commutation relations between Λ(j), j = 1, . . . , N and T V (w).
Putting zj = γj−1z, we have

(wj/γw
′
j) vjΛ

(j)(z) T Vν (w)− 1− z/γ2w1

1− z/w1
T Vν (w) ujΛ

(j)(z)

= −uj
(

delta functions from A(ν(j−1))
)

− uj
∑

y∈R(ν(j))

δ(γzj/w
′
jχy) Cν

∏
x∈R(ν(j−1)) 1− γw′jχy/wjχx∏
x∈A(ν(j−1)) 1− w′jχy/γwjχx

∏
x∈A(ν(j)) 1− χy/γ2χx∏
x∈R(ν(j)),x 6=y 1− χy/χx

× · · ·⊗ : η(γ−1w′jχy)Φ̂ν(j−1)Φ̂∗ν(j) : ⊗ : Φ̂ν(j)Φ̂∗ν(j+1) : ⊗ · · ·

= −uj
(

delta functions from A(ν(j−1))
)

(5.B.28)

− uj
∑

y∈R(ν(j))

δ(γzj/w
′
jχy) Cν

∏
x∈R(ν(j−1)) 1− γw′jχy/wjχx∏
x∈A(ν(j−1)) 1− w′jχy/γwjχx

∏
x∈A(ν(j)) 1− χy/γ2χx∏
x∈R(ν(j)),x 6=y 1− χy/χx

× · · ·⊗ : ϕ−(γ−1/2w′jχy)Φ̂ν(j−1)(wj)Φ̂
∗
ν(j)−y(w′j) : ⊗ : Φ̂ν(j)(wj+1)Φ̂∗ν(j+1)(w

′
j+1) : ⊗ · · · .

Note that the following identity of the operators is crucial in the computation:

η(γ−1u) = : ϕ−(γ−1/2u)ξ−1(u) : . (5.B.29)



100 5 Main Theorem: Mukadé Operator and its Matrix Elements

Now, for ν(j) 6= ∅, fix a y ∈ R(ν(j)) and take a look at the corresponding term in the equation above.
Then, we put ν(j) − y as ν̄(j), and rewrite the term using ν̄(j). In the end, we obtain the following equality:

− ujδ(γzj/w′jχy) Cν

∏
x∈R(ν(j−1)) 1− γw′jχy/wjχx∏
x∈A(ν(j−1)) 1− w′jχy/γwjχx

∏
x∈A(ν(j)) 1− χy/γ2χx∏
x∈R(ν(j)),x 6=y 1− χy/χx

× · · ·⊗ : ϕ−(γ−1/2w′jχy)Φ̂ν(j−1)(wj)Φ̂
∗
ν(j)−y(w′j) : ⊗ : Φ̂ν(j)(wj+1)Φ̂∗ν(j+1)(w

′
j+1) : ⊗ · · ·

= uj+1δ(γzj/w
′
jχy) C(...,ν̄(j),... )

∏
x∈R(ν(j)) 1− γ2χy/χx∏
x∈A(ν(j)),x 6=y 1− χy/χx

∏
x∈A(ν(j+1)) 1− wj+1χy/γw

′
j+1χx∏

x∈R(ν(j+1)) 1− γwj+1χy/w′j+1χx

× · · ·⊗ : ϕ−(γ−1/2w′jχy)Φ̂ν(j−1)(wj)Φ̂
∗
ν̄(j)(w

′
j) : ⊗ : Φ̂ν̄(j)+y(wj+1)Φ̂∗ν(j+1)(w

′
j+1) : ⊗ · · · . (5.B.30)

When we note that in the end, we take summation over ν, this term is canceled by the term appearing from
the commutation relation between Λ(j+1) and T Vν′ (w) with ν(j)′ = ν̄(j). This situation is summarized in the
following identity:

(wj+1/γw
′
j+1) vj+1Λ(j+1)(z) T Vν′ (w)− 1− z/γ2w1

1− z/w1
T Vν′ (w) uj+1Λ(j+1)(z)

= −uj+1

(
delta functions from R(ν(j+1)′)

)
− uj+1

∑
y∈A(ν(j)′ )

δ(zj+1/wj+1χy)

∏
x∈R(ν(j)′ ) 1− γ2χy/χx∏
x∈A(ν(j)′ ),x 6=y 1− χy/χx

×
∏
x∈A(ν(j+1)′ ) 1− wj+1χy/γw

′
j+1χx∏

x∈R(ν(j+1)′ ) 1− γwj+1χy/w′j+1χx

× · · ·⊗ : ϕ(γ−1/2wj+1χy)Φ̂ν(j−1)′ (wj)Φ̂
∗
ν(j)′ (w

′
j) : ⊗ : Φ̂ν(j)′+y(wj+1)Φ̂∗

ν(j+1)′ (w
′
j+1) : ⊗ · · · . (5.B.31)

This cancellation mechanism deletes almost all the terms which appear in the commutation relations. While
summing up for j from 1 to N , the term which is not cancelled by this mechanism exists at A(ν(0)) = A(∅).
This term proportional to the delta function at z1/z, vanishes when we multiply both sides by 1−w1/z. Thus
we obtain the main claim of Proposition 5.1.9 for the k = 1 case.

k > 1 case We use the following simplified notation,

Λ(i1,...,ik)(z) :=: Λ(i1)(z) · · ·Λ(ik)(γ2(1−k)z) : . (5.B.32)

The commutation relations between Λ(i1,...,ik)(z) and T Vν (w) schematically lead to the following form:

k∏
j=1

(wij/γw
′
ij ) vi1 · · · vikΛ(i1,...,ik)(z) T Vν (w)− 1− z/γ2kw1

1− z/w1
T Vν (w) ui1 · · ·uikΛ(i1,...,ik)(z)

= −ui1 · · ·uik
(

delta functions from A(ν(i1−1)), R(ν(i1)), A(ν(i2−1)), R(ν(i2)),

. . . , A(ν(ik−1)) and R(ν(ik))
)

(5.B.33)

The delta functions related to R(ν(ij)) (for j = 1, . . . , k) cancel those related to A(ν(ij)) (recall these terms
appear in the commutation relations between Λ(...,ij+1,... )(z) and T Vν (w)). This sequence of the cancellation
begins when ij = ij−1 + 1 and terminates when ij = ij+1 − 1, because in those cases, the poles and zeros
related to ν(ij) cancel each other, and no delta functions related to them appear.

As a result, the only delta function related to A(ν(0)) survives this cancellation. Again, it vanishes when
we multiply 1−w1/z , and we complete the proof of the expected commutation relation between X(k)(z) and
T V (w).



Chapter 6

Macdonald Functions Revisited

Now we revisit the bispectral Macdonald functions.
Recalling Proposition 5.1.9 and the proof of Theorem 4.2.21, T V and Φ(k) satisfy almost the same commu-

tation relation with X(i). From this observation, we expect we can construct the Macdonald functions fglN

by gluing T V ’s. This expectation turns out to be true with some slight tuning of parameters.
The most difficulty is that inside T V there is the summation over N −1 partitions, while fglN is expressed

as the summation over N(N − 1)/2 non-negative integers. There is a mismatch between the numbers of
summations.

To cure this mismatch, we tune the spectral parameters in T V to reduce the summation over the partitions
to that over some integers. After this kind of tuning, by composing N such operators and taking its vacuum
expectation value, we obtain fgln . This is summarized in 6.1.

Note that in particular, N∅,µ(t) 6= 0 if and only if µ = (m) for some m ∈ Z≥0.

6.1 Bispectral Macdonald Functions from Topological Vertex

In order to get rid of the extra G-factors, we set

T̃V (u,v;w) :=

N∏
k=1

G(uk/γvk) · TV (u,v;w) , (6.1.1)

where TV is defined in Definition 5.1.8.
Now we tune the spectral parameters.

Definition 6.1.1.

T̃i(x) := T̃V
(
v,u;x

)∣∣∣∣∣
vk→γ−1t−δk,iuk

(1≤k≤N)

. (6.1.2)

Note that the overall factor (the products of G-factors) goes to zero under the specialization, though the

operator T̃i(x)’s are well-defined. This is because the zeros are cancelled by the divergence from the G-factors
appearing from the normal orderings among Φ’s and Φ∗’s in TV .

To see under these tuning of parameters, the summation under partitions actually reduces, we prepare the
following notation and lemma.

Notation 6.1.2. For a partitions λ and non-negative integers r, s ∈ Z≥0, we denote by Br,s(λ) the partition
obtained by removing s-rows and r-columns from the top left of the original partition, that is,

Br,s(λ) := (P(λs+i − r))i≥1, P(n) =

{
n , n ≥ 0;

0 , n < 0 .
(6.1.3)
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102 6 Macdonald Functions Revisited

For example, if λ = (5, 5, 4, 4, 4, 1, 1), then B2,1(λ) = (3, 2, 2, 2).

Lemma 6.1.3. For m ≥ 0 and n ≤ 0, we have

Nλ,µ(qntm) 6= 0 ⇐⇒ µ ⊃ B−n,m(λ) . (6.1.4)

For m ≤ −1 and n ≥ 1, we have

Nλ,µ(qntm) 6= 0 ⇐⇒ λ ⊃ Bn−1,−m−1(µ) . (6.1.5)

By the formula (B.1.33) and Lemma 6.1.3, we can show the Young diagrams associated with the glued
vertices, are restricted to one row as (Fig. 6.1). That is, we have the following lemma.

Lemma 6.1.4. We have

T̃i(x) =
∑

0≤m1≤m2≤···≤mi−1<∞

t−mi−1

i−1∏
k=1

q2n((1mk ))

c′(mk)c(mk)

(
quk+1

γuk

)mk
f−1

(mk)

×N∅,(mi−1)(t
−1)

i−1∏
k=1

N(mk−1),(mk)(1)

× : Φ̂∗(m1)(γ
−1x)Φ̂(∅)(x) : ⊗

⊗y i−1
k=2 : Φ̂∗(mk)(γ

−kx)Φ̂(mk−1)(γ
−k+1x) :

⊗ : Φ̂∗∅(γ
−it−1x)Φ̂(mi−1)(γ

−i+1x) : ⊗
⊗yN

k=i+1 : Φ̂∗∅(γ
−kt−1x)Φ̂∅(γ

−k+1t−1x) :, (6.1.6)

where we put m0 = 0. Here,
⊗y

is introduced in Notation 5.1.5.

Nota bene! The operators Φ(k)(x) (k = 0, . . . , N − 1) in this chapter slightly differ from those in Section
4.2.2. In this chapter, Φ(k)(x) is a map Ft−δk+1 ·ũ → Fu with ũ = (γ−1u1, . . . , γ

−1uN ).

Remark 6.1.5. We have T̃1(x) = Φ(0)(t−1x).

Figure 6.1: The operator T̃i(x). (=⇒ stands for a simplification of the diagram for convenience)
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Now by gluing these operators, we obtain the expression of Macdonald functions. The following proposition
says the vacuum expectation value of Fig. 6.2 gives fglN .

Figure 6.2: The diagram for the Macdonald function fglN (x;u|q, q/t).

Proposition 6.1.6. The vacuum expectation value of the composition of T̃i(xi)’s gives the Macdonald
function, that is,

〈0| T̃1(u;x1)T̃2(x2) · · · T̃N (xN ) |0〉 =
∏

1≤i<j≤N

(quj/tui; q)∞
(uj/ui; q)∞

· fglN (x;u|q, q/t) . (6.1.7)

Proof. The basic idea of the proof is the same as that of Theorem 4.2.21. That is, we insert X
(1)
0 in the most

left, bring it to the most right, and then confirm the resulting operator is the Macdonald difference operator.
Thus, we only need to compute the commutation relation among X(1)(z) and Φ̂(m)(z)’s.

The operators Φ̂(m)(z) and Φ̂∗(m)(z) can be formally decomposed as

Φ̂(m)(z) =: Φ̂∅(t
−1z)A(qmz) :, Φ̂∗(m)(z) =: Φ̂∗∅(t

−1z)A∗(qmz) :, (6.1.8)

(recall Figure 3.2) where

A(z) = exp

(
−
∑
n>0

1− t−n

n(1− qn)
a−nz

n

)
exp

(∑
n>0

1− tn

n(1− q−n)
anz
−n

)
, (6.1.9)

A∗(z) = exp

(∑
n>0

1− t−n

n(1− qn)
γna−nz

n

)
exp

(
−
∑
n>0

1− tn

n(1− q−n)
γnanz

−n

)
. (6.1.10)

Then, A(z) and A∗(z) agrees with the screening current (Definition 4.3.1):

A∗(z)⊗A(z) = φsc(γ−1t−1z). (6.1.11)

Thus, we have
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T̃i(u;x) =

(
(q/t; q)∞
(q; q)∞

)i−1

(6.1.12)

×
∑

0≤m1≤m2≤···≤mi−1<∞

Φ(0)(t−1x)S̃(1)(qm1x) · · · S̃(i−1)(qmi−1x)

i−1∏
k=1

(uk+1/uk)mk .

Here, we use the screening currents of the different normalization,

S̃(k)(z) = S(k)(γ−2kt−1z) . (6.1.13)

Same as the proof of Proposition 4.3.4, X(1)(z) commutes with S̃(k)(w) up to q-difference:[
X(1)(z), S̃(k)(w)

]
= (t− 1)(uk+1Tq,w − uk)

(
δ

(
γ−2kw

qz

)
: Λ(k)(γ−2kw/q)S̃(k)(w) :

)
. (6.1.14)

By the normal ordering, we also have

S̃(k−1)(x)Λ(k)(γ−2kx/q) = Φ(0)(t−1x)Λ(1)(γ−2x/q) = 0 . (6.1.15)

Then it is easy to show that

Φ(0)(t−1x) ·

[
X

(1)
0 ,

∞∑
m=0

S̃(1)(qmx)(u2/u1)m

]
= 0, (6.1.16)

S̃(k−1)(x) ·

[
X

(1)
0 ,

∞∑
m=0

S̃(k)(qmx)(uk+1/uk)m

]
= 0 (k ≥ 2). (6.1.17)

Combining all above, we obtain

X(1)(z)T̃i(u;w)− γ 1− qz/tw
1− z/w

T̃i(u;w)X(1)(z) = ui(1− t−1)T̃i(u; qw)Ψ+(t−1w)δ(w/z) . (6.1.18)

Finally, with this relation, we get

〈0|X(1)(z)T̃1(x1) · · · T̃N (xN ) |0〉 = γN
N∏
k=1

1− qz/txk
1− z/xk

· 〈0| T̃1(x1) · · · T̃N (xN )X(1)(z) |0〉

+ (1− t−1)

N∑
i=1

δ(xi/z)ui

i−1∏
k=1

1− qxi/txk
1− xi/xk

i−1∏
k=1

1− txk/qxi
1− xk/xi

Tq,xi 〈0| T̃1(x1) · · · T̃N (xN ) |0〉 . (6.1.19)

Thus, the LHS of the claim can be identified with the eigenfunction of the Macdonald operator D1
N :

D1
N (u; q, q/t) 〈0| T̃1(x1) · · · T̃N (xN ) |0〉 = (u1 + · · ·+ uN ) 〈0| T̃1(x1) · · · T̃N (xN ) |0〉 . (6.1.20)

Remark 6.1.7. As studied in [112, 48], the diagram in Figure 6.2 seems to be the puncture corresponding to
the full surface defect, that is, the defect which breaks the gauge group completely to U(1)rank(G). The moduli
space with the full surface defect is called the Laumon space, and we can regard the partition function of the
theory with the defect as that of the 2d sigma model whose target space is the Laumon space. Then, the fact
that the defect partition function becomes the Macdonald function, is compatible with the main claim in [19].



Chapter 7

Conclusion

7.1 Recapitulation of Main Results

We now conclude the thesis. The main results in the present thesis consist of two parts and one by-product.
These results resolve some open problems about the representation theory of the quantum algebra called the
Ding-Iohara-Miki algebra Uq,t. Some applications to the physics are stated in the next subsection.

1. The first result is the explicit algorithm to construct the generalized Macdonald functions |Pλ(u)〉. This
is summarized in Theorem 4.2.21 in Chapter 4, that is, schematically,

|Pλ〉 = (Constant) ·

x−λ∏
i<j

(1− xj/xi) · fgl|n|(x|s|q, q/t)V (n)
(

u
t−n · u ;x1, . . . , x|n|

)
|0〉


x,1

,

The key ingredients are the bispectral Macdonald functions fgl|n| (Definition 4.1.2) and the screened vertex
V (n)(z) (Definition 4.2.20) constructed from the screening currents of the q-deformed W-algebra. This result
can be seen as the natural generalization of the known result on the Macdonald functions on the Fock space
to the multi Fock tensor spaces.

2. The second result consists of the introduction of the Mukadé operator V(x) (Definition 5.1.1), and the
explicit computation of the matrix elements of V(x) with respect to the generalized Macdonald functions. The
existence of the Mukadé operator is ensured by the explicit construction of the operator T V (z) (Definition
5.1.8) using the intertwiners of Uq,t. As noted in Chapter 5, those matrix elements factorize as the products
of the Nekrasov factors. In the end, we obtain, in Theorem 5.2.1,

〈Kλ(v)| V(x) |Kµ(u)〉 =

(
(−γ2)NeN (u)x

)|λ|
(γ2x)

|µ|

N∏
i=1

u
|µ(i)|
i gµ(i)(

v
|λ(i)|
i gλ(i)

)N−1
·

N∏
i,j=1

Nλ(i),µ(j)(qvi/tuj) ,

where |Kµ(u)〉 is the integral form of the generalized Macdonald functions (Definition 4.2.25). These two facts
are our main results.

3. Moreover, as a by-product, we obtain the way to construct the bispectral Macdonald functions using the
intertwiners of Uq,t. This is the result of Chapter 6. More precisely, in the first step, we glue the intertwiners
in the shape of the toric diagram which corresponds to the AM quiver gauge theory with G = AN in 5D
((AN , AM )-theory). In the second step, we specialize some parameters to specific values. Then, in the end, by
taking the vacuum expectation value of those operators, we obtain the bispectral Macdonald functions. This
means that by tuning parameters in the instanton partition functions of the (AN , AM )-theory, we obtain the
bispectral Macdonald functions.
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7.1.1 Application to Physics

As summarized in Section 5.2, we have two applications of the results above. The first one is the S-duality

formula for the partition functions of (AN , AM )-theories. Let Z(AN ,AM )
top. be the topological partition functions

of the (AN , AM )-theory. The S-duality in the type IIB superstring theory exchangesN andM in the (AN , AM )-
theory. In the end, in Proposition 5.2.6, we obtain

Z(AN ,AM )
top. ∼ Z(AM ,AN )

top. ,

where∼means the both sides are identical up to some overall factor. Moreover, once we admit Conjecture 5.2.8,
we show the overall factor is one, and both sides becomes exactly identical.

The second application is the proof of the 5D analogue of the Alday-Gaiotto-Tachikawa (AGT) correspon-
dence. The formula for the matrix elements of V(z) is nothing but the claim of the 5D AGT correspondence.
Note that one of the defining relations of the Mukadé operator in Definition 5.1.1,(

1− x

z

)
X(2)(z)V(x) =

(
1− (t/q)2x

z

)
V(x)X(2)(z)

reduces to the defining relation of the primary field of the Virasoro algebra, under the limit q, t→ 1. We will
give some comments on this point soon in the next section.

7.2 Future Directions

There are many possible extensions and applications of these results. In this section, we discuss four of such
future directions. By pursuing these directions, we may acquire a deeper insight into the string theory from
integrability.

1. The first one is to prove Conjecture 5.2.8 to complete the proof of the S-duality formula Conjecture 5.2.9.
The strategy of the proof may be the same as that of the main theorem Theorem 5.2.1. That is, we

first specialize the spectral parameters so that the inner Young diagrams are restricted to ` rows, and prove
the identity at that value of the spectral parameters, using the Kajihara-Noumi identity. Because such
specialization is not unique, we may carry out the analytic continuation. This strategy is just a guess, though
this is the most convincing strategy.

2. The second one is the extension of the result of Chapter 6 (see 3. in Section 7.1). By making loops
in the diagram (Figure 6.2), we obtain a new function. This function turns out to be the special case of
the non-stationary Ruijsenaars function, which was introduced in [104]. As proved in [104], this function is
the generating function (the Hirzebruch χy-genus) of the Euler characteristics of the affine Laumon space.
As pointed out in [57], this space can be identified with the instanton moduli space of the theories with the
full surface defect (i.e. the surface defect which completely breaks the gauge group to the products of U(1)).
Because such the generating function is the partition function of the 5D N = 1∗ theory (see [116] for example),
the function we obtain by making loops in Figure 6.2, is the specialization of the 5D N = 1∗ theory with the
full surface defect.

The most intriguing feature of the non-stationary Ruijsenaars function is the bispectral duality (see [104]),
physically which exchanges one of the Ω-background parameters and the adjoint mass parameter in the N = 1∗

theory. This is a highly non-trivial duality, and we have to clarify this duality from the string theory point of
view.

3. The third one is the generalization of the generalized Macdonald functions (see 1. in Section 7.1) to the
Koornwinder functions. Recall that the algebra Uq,t and the generalized Macdonald functions are associated
with the A-type root system. In order to deal with the other types of root systems, we have to introduce the
Macdonald functions associated with the other root systems, and these are called the Koornwinder functions
[64]. These functions are associated with the BC-type root system, and in the various limit, they contains
the A-, B-, C-, D-type Macdonald functions. Actually, it is possible to give the Koornwinder analogue of
Theorem 3.2.4, and from that, we can construct the associated algebra. Though many problems about this
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algebra are still open, through the study of this algebra, we may consider the AGT correspondence with other
types of gauge groups.

4. The last one is quite challenging. As noted in the previous section, we now identify the defining relation
of the q-analogue of the primary fields. Thus, following the standard textbooks of CFT, the next step we have
to take, is to define a q-analogue of the degenerate fields. This can be regarded as the first step to construct
the field theory which has the q-Virasoro algebra as its symmetry.
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Appendix A

Remarks on Physical Facts

In this appendix, we give the sketch of the derivation of some facts stated in Chapter 2. Especially, we give a
brief review on the instanton counting and the topological vertex.

A.1 Super Yang-Mills and Instanton Counting

First, we summarize just the idea of the instanton counting because there already exist many beautiful reviews
on this subject. We begin with the 4d N = 2 (i.e. with the eight supercharges) super Yang-Mills theories
with A-type gauge groups, and later we uplift them to the 5d theories.

We name some good review articles on these subjects. The good review on these theories themselves is
[108] and on their various aspects is [113]. The reviews on the instanton counting are [109, 77, 96, 101, 76].
The stringy realization of the instantons is as the bound states of D0-D4 branes. For more details, see [114].
For the theories with other types of gauge groups, see [83, 60].

A.1.1 Instanton Counting in 4D

For simplicity, we deal with the 4d N = 2 theory without any matters on the 4d flat space C2, the basic setup
of the Seiberg-Witten theories [99, 100]. The Lagrangian of the theory is given by

L =

∫
dθ2

1dθ
2
2 TrF(Φ) , (A.1.1)

with Φ the vector multiplet. F is the rational function of Φ, and called the prepotential. Because there exist
the SU(2)R R-symmetry and the isometric symmetry of the space SO(4) ' SU(2)L × SU(2)R, we can make
the topological twist to preserve the diagonal of SU(2)L×SU(2)R. The resulting theory belongs to the class of
the cohomological field theories [119], and especially it becomes the example of the Donaldson-Witten theory.
Then, the action can be written as

S = (Q-exact terms) +
1

8π2

∫
trF ∧ F , (A.1.2)

and thus is minimized if F is the anti-self-dual connection, that is, the gauge connection satisfies the instanton
equation,

F + ∗F = 0 . (A.1.3)

The solution (called the instanton solution ) is labelled by the integer, called the instanton number. We denote
by Mk, the moduli space of k-instanton solutions. Then, the partition function of the theory becomes

Z =

∫
e−S = Zclass. · Z1-loop ·

 ∑
k∈Z≥0

qkZk

 , Zk =

∫
Mk

1 , (A.1.4)
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where q is the exponentiated coupling (contained in the normalization of F ). We also used the fact that the
super Yang-Mills theories are one loop exact. Nekrasov conjectured in [84] that the prepotential is obtained
from the limit of the instanton partition function, that is,

F = lim
ε1,2→0

ε1ε2 logZinst. . (A.1.5)

This conjecture was proved in three independent way in [82], [78] and [18].
Then, the next step is to compute the integral of 1 over Mk. As studied in [75], Mk is realized to be the

hyper-Kähler quotient, and the same moduli space admits the ADHM construction 1 [7] (for the reviews, see
[20, 25]). Though the integration is not well-defined because Mk is not compact, we can make it well-defined
once we make use of the equivariant localization. See [78] and reviews cited above. We also cite [93] as the
review. Physically, this procedure corresponds to the introduction of the Ω-background to C2. That is, we
add one virtual dimension S1 with the circumference R, and make the following identification:

(z, w, 0) ∼ (e−ε1z, e−ε2w,R) , (A.1.6)

and after the identification, we take R→ 0.
Finally, the computation was achieved in the legendary paper [84] by Nekrasov, and using the Ω-background

parameters, the result is given by

Zk =
∑

~λ∈P×rkG,|~λ|=k

Z4d
vec.(~a,

~λ) , Z4d
vec.(~a,

~λ) =
∏
i,j

∏
x∈λ(i)∪λ(j)

1

E(x, i, j)(ε+ − E(x, i, j)) (A.1.7)

with E(x, i, j) := ai − aj + ε1((λ(m))′ − l + 1) − ε2(λ(l) − m) for x = (l,m). When we have matters, the
k-instanton partition functions become ∫

Mk

T , (A.1.8)

where T is the corresponding matter bundle. After all, the contributions are from the fixed points of the
localization, and thus we only need to evaluate the matter bundles at those fixed points. The final results for
the case with matter contents are summarized in Chapter 2.

5D Lift

Now we lift the theory to 5d, C2×S1. Mathematically, this lift means we go from the equivariant cohomology
to the equivariant K-theory [79]. As studied in [81], the action is given by

S =

∫
C2×S1

θ ∧ tr(F ∧ F ) + (Q-exact term) , (A.1.9)

where θ is the U(1) gauge field which gauges the conserved current tr(F ∧F ) [98]. We consider the S1 direction
as the time direction, and instantons as the particles move around the S1 as time passes. In the weak coupling
limit, [81] shows we can integrate out the C2 direction, and the theory reduces to the supersymmetric quantum
mechanics on S1. This discussion goes as follows. In (Q-exact term), we have the term proportional to F+

µν

(+ means the self-dual part) where µ, ν are the indices running only the four-dimensional space directions,
(not the S1 direction). Because the term is Q-exact, we can take the limit where the coupling constant term
in front of this term goes to infinity. Then, we obtain the equation which define the moduli space, as

F+|4d = 0 . (A.1.10)

This is nothing but the instanton equation and thus the moduli space is the same as that of the four-dimensional
theory above. The action reduces to the supersymmetric version of the sigma model whose target space is the

1For the exceptional Lie group, we do not have the ADHM construction.
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instanton moduli. Then, the partition function becomes the index associated with the Dirac operator D, and
it ends with

Z5D
inst. = IndD =

∑
k

qk
∫
Mk

Â(TMk) , (A.1.11)

with Â(TMk) the A-roof genus. See [43] for more details. Roughly speaking, when the Chern class of the
tangent bundle of the instanton moduli space is

∏
i e
xi , the A-roof genus is given by the

∏
i 1/ sinh(xi). Thus,

practically, we just need to exponentiate each factor in the 4d instanton partition functions to obtain the 5d
version. The final result is summarized in Section 2.1.

Because the Atiyah-Singer index of the Dirac operator is related to the Witten index, the partition function
also admits the following expression:

Z5D
inst. = trH

[
(−1)F qIqJ1t−J2uΠmK

]
, (A.1.12)

where I is the conserved charge corresponding to the instanton number. For the other parameters, see Section
2.1.

A.2 Topological Vertex

We now introduce the topological vertex, which is the technique to compute the topological string partition
functions. It was introduced in [1]. The review of the derivation of the topological vertex has already been in
[70, 85, 110], and thus we just show the idea of the derivation.

The open topological string theory is defined on the Calabi-Yau threefolds. We concentrate on the toric
Calabi-Yau threefolds, characterized by the two-dimensional grid diagram, called the toric diagram. For the
details of this class of the Calabi-Yau manifolds, see [22, 44]. Then, by the localization argument in [63], the
contribution to the topological string amplitudes only comes from the strings stretched on edges in the toric
diagrams.

Thus, the key idea is to decompose the toric diagram to the simpler patches, compute each patch, and
finally glue them.

Step 1. Decompose the toric Calabi-Yau threefolds to local patches each of which is isomorphic to C3.

Step 2. Compute the partition functions on those C3 by using the conifold transition and the Chern-
Simons theory.

Step 3. Glue them.

Step 3 requires the careful treatment of the framing, and the result is summarized in Definition 2.1.11. For
more details, see the review articles above.

Step 1. The first step is done by inserting the A-brane/anti-brane pair to the internal legs of the toric
diagrams. A-branes are the analogue of the D-branes in the open topological string. By the same argument
as the pair of pants decomposition, we can decompose the toric diagram to the following trivalent diagram:

The thick lines represent the inserted branes. Once we forget the branes on the boundary, this is the toric
diagram for C3.

In the next step, we compute the topological string amplitudes on C3 with three branes inserted.
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Step 2. Before starting the computation, we have to note some important facts. We enumerate them in the
following list.

1. As pointed out in [118], A-branes wrap on the Lagrangian sub-manifolds in the Calabi-Yau, and the
action on those A-branes is given by the Chern-Simons action.

2. By the Gopakumar-Vafa duality [38], the open topological string partition function on the deformed
conifold is identical to the closed topological string partition function on the resolved conifold. That is,
the open string on the right of the following toric diagram is equal to the closed string on the left. The
dashed line means the Lagrangian S3.

=

3. By combining the proposals by [92] and by [65], once we insert the Wilson loops in the Lagrangian S3,
the open string contribution appears in the closed string partition functions on the resolved conifolds.
For later use, we realize S3 as |z|2 + |w|2 = 1 with z, w ∈ C. Then, when we insert the unknot to
S3 along the coordinate z, we have the insertion of A-branes on the one of the external edges. This is
summarized in the following diagram. If along the coordinate w, it is on the vertical edge. We refer to
this duality by the Ooguri-Vafa duality.

=

unknot added

Now we are ready to go ahead. First, we note that by taking the appropriate limit (the length of the
diagonal line to infinity), the toric diagram of the resolved conifold reduces to that of C3.

We also have to note the A-branes wrapping the Lagrangian sub-manifolds on the boundaries have the
labels to represent their winding numbers. As noted in [1], these winding numbers are labelled by the partitions.
Under the Ooguri-Vafa duality, these partitions turn out to be the labels of the representations of U(∞) which
are associated with the Wilson lines in the deformed conifold side.

Then at the trivalent vertex, we represent the partition functions on the C3 patch by

ZC3

({Ui, λi}i=1∼3) = C ′λ1λ2λ3
(q)

3∏
i=1

trλiUi . (A.2.1)

Again, λi’s are the labels to represent the winding numbers, and trλiUi is the expectation value of the Wilson
loop which forms the unknot with the representation λi. Actually the expectation value of the Wilson loop
which forms the unknot is given by the Schur function, that is, the character of the representations of U(∞)
[120]. Thus this is just the expansion of the partition functions in the basis of Schur functions.

In the end, we obtain the following result.

Claim A.2.1.

C ′λ1λ2λ3
(q) =

∑
ρ,σ

c
λ1λ
′
3

ρσ′ q
(κ(λ2)+κ(λ3))/2

Wλ′2ρ
Wλ2σ′

Wλ2∅
, (A.2.2)

where

Wµ(q) := (−1)|µ|qκ(µ)sµ(q−ρ) = sµ(qρ) , (A.2.3)

Wµν(q) := Wµ(q)sν(qµ+ρ) = sµ(qρ)sν(qµ+ρ)

= (−1)|µ|+|ν|q(κ(µ)+κ(ν))/2
∑
η

sµ/η(q−ρ)sν/η(q−ρ) , (A.2.4)
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and
c
λ1λ
′
3

ρσ′ =
∑
η

cλ1
ηρc

λ′3
ησ′ , (A.2.5)

with cνλµ the Littlewood-Richardson coefficients of the skew Schur functions,

sν/λ =
∑
µ

cνλµsµ . (A.2.6)

The strategy is as follows. We compute the partition function corresponding to the following toric diagram:

λ2

λ1

λ3

That is, we have two insertions of Lagrangian sub-manifolds on one edge. Then, by the Ooguri-Vafa duality,
this reduces to computing the expectation value of the following knot:

λ2

λ1

λ3

Then by using some results in [120], we can compute it with the expectation values of the Hopf links and the
unknot as

〈Knot in figure above〉 =
〈(Hopf link : (λ2, λ1))〉〈(Hopf link : (λ2, λ3))〉

〈(unknot : (λ2))〉
. (A.2.7)

We also have 〈(Hopf link : (λ1, λ2))〉 = Wλ1,λ2 , and 〈(unknot : (λ))〉 = Wλ,∅. After this computation, in order
to restore the original situation in Step 1, we have to move one Lagrangian branes to the other side of the
trivalent vertex. This procedure ends with the above result.

By the careful computation, we can rewrite (A.2.2) as the following form.

Proposition A.2.2.

C ′λ1λ2λ3
(q) = (−1)|λ2|qκ(λ3)/2sλ′2(q−ρ)

∑
η

sλ1/η(qλ
′
2+ρ)sλ′3/η(qλ2+ρ)

= (−1)
∑3
i=1 |λi|qκ(λ3)/2sλ′2(q−ρ)

∑
η

sλ1/η(q−λ
′
2−ρ)sλ3/η(q−λ2−ρ) .

(A.2.8)

We use some formulas in [122]. With some trivial correction such as the redefinition of the partitions, this
agree with the topological vertex defined in Definition 2.1.8.

Refinement

The problem of the topological vertex is that it has only one parameter q, while the instanton partition
functions contain two parameters q, t. The topological vertex is the tool to compute the partition functions
for the self-dual background q = t. Thus, we need to ”refine” the topological vertex to include one more
parameter.

The guiding principle for the refinement is that the resulted vertex actually computes the correct instanton
partition functions with two parameters. There seem to be two solutions to this question.
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One solution is invented in [47], the other is in [10, 11]. The former is summarized in Chapter 2, and thus
we show the result in the latter.

The solution in [10, 11] is quite natural, because they replace the Schur functions with the Macdonald
functions. That is, they introduced the following vertices:

Cνµλ(q, t) = Pλ(tρ; q, t)
∑
σ

ιPµ′/σ′(−tλ
′
qρ; t, q)Pν/σ(qλtρ; q, t)(q1/2/t1/2)|σ|−|ν|fν(q, t)−1 ,

Cµλν (q, t) = (−1)|λ|+|µ|+|ν|Cµ′λ′
ν′(t, q) .

(A.2.9)

Recall that ι is the endomorphism of Λ, ι(pn) = −pn.
Then, by the same argument as Proposition 3.4.9, we have the following fact.

Fact A.2.3 ([9]). We have

1

〈Pλ, Pλ〉
〈ιPµ|Φλ

[
(1, N + 1),−vu

(0, 1), v; (1, N), u

]
|ιQν〉 =

(
−t1/2u
q(−v)N

)|λ|
f−Nλ (t−1/2v)|µ|−|ν|f−1

ν Cµλν(q, t) ,

〈ιPν |Φ∗λ
[

(1, N), v; (0, 1), u

(1, N + 1),−vu

]
|ιQµ〉 =

(
q(−u)N

−t1/2v

)|λ|
fNλ (t−1/2u)−|µ|+|ν|fν Cµλ

ν(q, t) .

(A.2.10)

A.2.1 From (p, q)-web to Topological Vertex

As studied in [2], the 5D N = 1 SYM can be engineered through the brane web of type IIB superstring. Now
we connect the partition function of the theory to the partition function computed by the topological vertex.
This can be accomplished by following the sequence of the string duality. Schematically, the sequence is the
following:

5D N = 1 SYM←− type IIB string on M9 × S1 with (p, q)-Web X̄

1©
== type IIA string on M9 × S̃1

2©
== M-theory on M9 × T2 with the M5-brane wrapping with ΣX

3©
== A-type topological string on X

−→ topological vertex partition function .

(A.2.11)

Here X is the toric Calabi-Yau threefold, and X̄ is the (p, q)-Web which is obtained by regarding the toric
diagram of X as the fivebrane web. The both arrows at the beginning and the end mean the gravity decoupling
limits in the appropriate sense. In the following, we will sketch the idea of each duality steps. The circled
numbers over the equalsigns correspond to those of the paragraphs below.

1© Using the T-duality, we can go from the type IIB string on R2×M5×R2×S1
R with (p, q)-web to the type

IIA string on R2 ×M5 × R2 × S1
1/R with some D6-branes. Here, we put the fivebranes, forming (p, q)-web,

on X̄ ×M5 in the first R2 ×M5, and the T-dual is taken with respect to the last S1
R. Let us see more detail

of the D6-branes whose origins are D5-branes in the (p, q)-web. As explained in [53], the NS5-branes become
the Kaluza-Klein monopoles when T-dualize w.r.t. the normal direction and the total geometry becomes
S1 fibration over R2 ×M5 × R2 with the fibre degenerating at the loci where there were NS5-branes. The
D6-branes wrap R2 ×M5 times the fibred S1.

2© Now we lift the type IIA theory to the M-theory on M5×X. Lifting the type IIA string to the M-theory,
the total geometry becomes the torus fibration over R2 ×M5 × R2 with the fibre degenerating at some loci.
The A-cycle of the fibre degenerates at the place where the S1 fibre in the previous geometry degenerates, and
the B-cycle where there were D6-branes in the type IIA string. These facts show the (p, q)-web has all the
information about the degenerating loci of the torus fibration, that is, at the position (p, q)-fivebrane existing,
the (p, q)-cycle degenerates. By direct comparison of the momentum map, we can identify this geometry with
the toric Calabi-Yau threefold X.
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3© We finally identify the partition functions of the field theories which are obtained by integrating out the
Calabi-Yau directions from type IIA string, agree with the topological string partition functions. This was
confirmed in [5].

Thus, combining all we can identify the topological vertex partition functions and the instanton partition
functions.



Appendix B

Some Useful Formulas

B.1 Some Formulas for Nekrasov Factor

Nλµ(u) =
∏

(i,j)∈λ

(
1− uqaλ(i,j)t`µ(i,j)+1

) ∏
(i,j)∈µ

(
1− uq−aµ(i,j)−1t−`λ(i,j)

)
. (B.1.1)

Nλµ(u) =
∏
j≥i≥1

(uq−µi+λj+1κ−i+j ; q)λj−λj+1
·
∏

β≥α≥1

(uqλα−µβκα−β−1; q)µβ−µβ+1
. (B.1.2)

Nλµ(u) =
Π0(γut−λ

′
q−ρ, q−µt−ρ)

Π0(−γuq−ρ, t−ρ)
, with Π0(x|y) =

∏
i,j

(1− xiyj) . (B.1.3)

Nλµ(u) =
Π(uqλtρ, q−µt−ρ; q, t)

Π(utρ, t−ρ; q, t)
, with Π(x|y; q) =

∏
i,j

(txiyj/γ; q)∞
(xiyj/γ; q)∞

. (B.1.4)

For x = (i, j) ∈ λ, put χx = t1−iqj−1. With f(z) = (1−qz)(1−z/t)
(1−z)(1−qz/t) ,

Nλµ(u) =
∏
x∈λ

(1− uχx)
∏
y∈µ

(1− ut/qχy) ·
∏

x∈λ,y∈µ

f (utχx/qχy) . (B.1.5)

cλc
′
λ = (−1)(|λ|)qn(λ′)+|λ|tn(λ)Nλ,λ(1), (B.1.6)

Nλ,µ(γ−1x) = Nµ,λ(γ−1x−1)x|λ|+|µ|
fλ
fµ
. (B.1.7)

B.1.1 List of operator products

In this subsection, we list some formulas for the normal ordering among the various operators appeared in the
main text. We have

Λ(i)(z)S(i)(w) =
1− t2w/qz
1− tw/qz

: Λ(i)(z)S(i)(w) : , (B.1.8)

Λ(i+1)(z)S(i)(w) =
1− w/z
1− tw/z

: Λ(i+1)(z)S(i)(w) : , (B.1.9)

Λ(j)(z)S(i)(w) =: Λ(j)(z)S(i)(w) : for j < i and j > i+ 1 , (B.1.10)

S(i)(w)Λ(i)(z) =
1− qz/t2w
1− qz/tw

: S(i)(w)Λ(i)(z) : , (B.1.11)
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S(i)(w)Λ(i+1)(z) =
1− z/w
1− z/tw

: S(i)(w)Λ(i+1)(z) : , (B.1.12)

S(i)(w)Λ(j)(z) =: S(i)(w)Λ(j)(z) : for j < i and j > i+ 1 , (B.1.13)

Φ(0)(z)S(1)(w) =
(tw/z; q)∞
(w/z; q)∞

: Φ(0)(z)S(1)(w) :, (B.1.14)

Φ(0)(z)S(i)(w) =: Φ(0)(z)S(i)(w) : (i ≥ 2), (B.1.15)

S(1)(z)Φ(0)(w) =
(qw/z; q)∞
(qw/tz; q)∞

: S(1)(z)Φ(0)(w) :, (B.1.16)

S(i)(z)Φ(0)(w) =: S(i)(z)Φ(0)(w) : (i ≥ 2), (B.1.17)

Φ(0)(z)Φ(0)(w) =
(qw/tz; q)∞
(tw/z; q)∞

: Φ(0)(z)Φ(0)(w) :, (B.1.18)

S(i)(z)S(i)(w) = (1− w/z) (qw/tz; q)∞
(tw/z; q)∞

: S(i)(z)S(i)(w) : , (B.1.19)

S(i)(z)S(i+1)(w) =
(tw/z; q)∞
(w/z; q)∞

: S(i)(z)S(i+1)(w) :, (B.1.20)

S(i+1)(z)S(i)(w) =
(qw/z; q)∞
(qw/tz; q)∞

: S(i+1)(z)S(i)(w) : (∀i), (B.1.21)

S(i)(z)S(j)(w) =: S(i)(z)S(j)(w) : for |i− j| > 2, (B.1.22)

Λ(1)(z)Φ(0)(x) =
1− x/z
1− tx/z

: Λ(1)(z)Φ(0)(x) : , (B.1.23)

Φ(0)(x)Λ(1)(z) =
1− z/x

1− qz/t2x
: Φ(0)(x)Λ(1)(z) : , (B.1.24)

Λ(i)(z)Φ(0)(x) =: Λ(i)(z)Φ(0)(x) : , (B.1.25)

Φ(0)(x)Λ(i)(z) =
1− z/tx

1− qz/t2x
: Φ(0)(x)Λ(i)(z) : (i > 1) , (B.1.26)

Ψ+(z)S(i)(w) = S(i)(w)Ψ+(z) =: Ψ+(z)S(i)(w) : (∀i), (B.1.27)

Ψ+(z)Φ(0)(w) =
1− tw/qz
1− w/z

: Ψ+(z)Φ(0)(w) : , (B.1.28)

A(s)(x)Λ(i)(z) =

r−1∏
k=1

1− t−kz/x
1− t−k−1qz/x

: Λ(i)(z)A(s)(x) :, (B.1.29)

A(r)(x)Φ(0)(y) =

r−2∏
k=0

(t−kqy/tx; q)∞
(t−ky/x; q)∞

: A(r)(x)Φ(0)(y) :, (B.1.30)

A(r)(x)S(i)(y) =: A(r)(x)S(i)(y) : . (B.1.31)

With G(z) =
∏∞
i,j=0(1− zqit−j),

Φλ(vi)Φ
∗
µ(uj) = G(uj/γvi)

−1Nµλ(uj/γvi) : Φλ(vi)Φ
∗
µ(uj) :, (B.1.32)
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Φ∗µ(uj)Φλ(vi) = G(vi/γuj)
−1Nλµ(vi/γuj) : Φ∗µ(uj)Φλ(vi) :, (B.1.33)

Φλ(i)(vi)Φλ(j)(vj) =
G(vj/γ

2vi)

Nλ(j)λ(i)(vj/γ2vi)
: Φλ(i)(vi)Φλ(j)(vj) :, (B.1.34)

Φ∗µ(i)(ui)Φ
∗
µ(j)(uj) =

G(uj/ui)

Nµ(j)µ(i)(uj/ui)
: Φ∗µ(i)(ui)Φ

∗
µ(j)(uj) : . (B.1.35)
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