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Abstract

Cosmological observations in the last twenty years have established the standard ⇤-dominated Cold Dark

Matter (⇤CDM) cosmological model based on General Relativity for the gravity theory thanks to the

increasing amount of observational data. It is essential to validate the consistency of this model with other

independent cosmological probes or to constrain extensions of the standard model such as self-interacting

dark matter, time-evolving dark energy, and modified gravity with observational data.

Galaxy clusters are the most massive gravitationally bound structure in the Universe with mass scales

⇠ 1014
M�, which form in dark matter halos after interactions between gravitational dynamics and baryonic

process related to galaxy formation. Observations of galaxy clusters in the literature have revealed and

constrained the existence and nature of dark matter, dark energy, baryonic matter, and galaxy evolution

and formation with other cosmological and observational probes.

Given the smaller number of such massive dark matter halos in which galaxy clusters reside, we require

deep imaging data from wide field-of-view surveys to investigate the statistical properties of galaxy clusters

over a wide redshift range. The recent development of wide-field optical imaging surveys such as the Hyper

Suprime-Cam Subaru Strategic Program (HSC-SSP) makes an optical selection of galaxy clusters based on

red member galaxies in such cluster regions particularly powerful, typically with a larger number of galaxy

clusters than those selected by X-ray or radio wavelengths at present.

With the same imaging data, such wide-field optical imaging surveys also enable us to calibrate the

relation of galaxy cluster mass (M) and the number of red member galaxies above some luminosity threshold

for each cluster (N), called optical richness, through weak gravitational lensing e↵ects around galaxy clusters

by statistically averaging over a large number of weakly and systematically deformed shapes of distant

galaxies to reveal their mass profiles with equal sensitivity to the dark and baryonic matter. Constraining

this mass-richness relation via weak gravitational lensing is fundamentally important to connect theories

or simulations with observations on galaxy clusters, since the halo mass determine the physical properties

dominantly such as density profiles of dark matter halo and galaxy evolution and formation physics. Also,

constraining the mass distribution function of dark matter halos at galaxy cluster mass scales leads to

cosmological parameter estimations.

Among the physical properties of galaxy clusters, the splashback radius has been recently proposed as a

physical boundary of dark matter halos at the outskirts from a suite of high-resolution N-body simulations,

which separates orbiting from accreting materials (e.g., dark matter and galaxies) as a sharp density edge.

At the splashback radius, the logarithmic derivative of density profiles is predicted to drop significantly

over a narrow range of radius due to piling up of materials with small radial velocities at their first orbital
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apocenter after infall into halos. Importantly, recent observational constraints from di↵erent survey data

in the literature on the splashback radius around optically selected galaxy clusters from an optical cluster-

finding algorithm, called redMaPPer, have shown that the observed splashback radius is ⇠ 20% smaller than

that predicted by N-body simulations under the ⇤CDM model at a high significance (⇠ 4�), with the help

of the mass-richness relation from weak gravitational lensing e↵ects. These observations with high signal-to-

noise ratios are based on statistical measurements of projected photometric galaxy densities around galaxy

clusters, since dynamics of galaxies are expected to follow dark matter distribution in the outskirts based

on gravitational potentials dominantly determined by the larger amount of dark matter. The dependence

of the splashback radius on new physics such as self-interacting dark matter, time-evolving dark energy,

and modified gravity have been investigated in the literature over the last five years to try to explain the

deviation in the observed splashback radius from the standard model. The features of the splashback radius

have also been known as probes of galaxy formation and evolution with galaxy color or magnitude cuts.

As a test of the ⇤CDM model, in this thesis, we present observational and statistical studies of optically

selected galaxy clusters on the mass-richness relation and the splashback radius with mock simulation

analyses. We employ the data catalogs from the ongoing HSC-SSP with the Subaru telescope for optically

selected galaxy clusters, weak lensing analyses, and photometric galaxies. We use ⇠ 2000 optically selected

galaxy clusters from the independent cluster-finding algorithm, called CAMIRA, at a wide cluster redshift

range of 0.1 < zcl < 1.0 thanks to deep and high-resolution HSC images, whereas previous observational

works in the literature on the mass-richness relation and the splashback radius are limited to zcl . 0.7.

First, we measure stacked weak lensing profiles around the HSC CAMIRA clusters over the wide redshift

range. We detect lensing signals around high-redshift clusters at 0.7 < zcl < 1.0 with a signal-to-noise ratio

of 19 within comoving radius range 0.5 . R . 15h
�1Mpc. We constrain their richness-mass relations

P (ln N |M, zcl) assuming a log-normal distribution without informative priors on model parameters, by

jointly fitting to the lensing profiles and abundance measurements under two di↵erent sets of cosmological

model parameters in the ⇤CDM model based on the cosmic microwave background (CMB) measurements

from the Planck and WMAP satellites. We show that constraints on the mean relation hM |Ni with a

precision of ⇠ 5% for each model are consistent between the Planck and WMAP models, whereas the scatter

values �lnM |N for the Planck model are systematically larger than those for the WMAP model, which is

consistent with the literature. In addition, we show that the scatter values for the Planck model increase

toward lower richness values when employing a flexible parametrization for the mass-richness relation,

whereas those for the WMAP model are consistent with constant values as a function of richness. This

result highlights the importance of the scatter in the mass-richness relation to constrain the cosmological

parameters from galaxy clusters.

Second, we present analyses on the splashback radius of the HSC CAMIRA clusters with the re-

sults of the analysis for the mass-richness relation. We detect the splashback feature from the projected

cross-correlation measurements between the clusters and photometric galaxies over the wide redshift range,

including for high redshift clusters at 0.7 < zcl < 1.0, thanks to deep HSC images. We investigate the

dependence of splashback features on cluster redshift, richness, galaxy magnitude limits, and galaxy colors

over the wide redshift range, which should also be informative to compare with hydrodynamic galaxy simu-

lations when available for galaxy evolution and formation studies. We find that constraints from red galaxy

ii



iii

populations only are more precise than those without any color cut, leading to 1� precisions of ⇠ 15% for

cluster samples at 0.4 < zcl < 0.7 and 0.7 < zcl < 1.0. We also find that these constraints at 0.4 < zcl < 0.7

and 0.7 < zcl < 1.0 are more consistent with the model predictions under the ⇤CDM model with the help

of our mass-richness relation (. 1�) than their 20% smaller values as suggested by the previous studies

based on redMaPPer clusters (⇠ 2� for CAMIRA clusters). We also establish a methodology to investigate

selection e↵ects of optical cluster-finding algorithms on the observed splashback features by creating a mock

galaxy catalog from a halo occupation distribution model and, for the first time, closely resembling the

procedure in data analyses and model prediction calculations with the real data. With this methodology,

we find that such e↵ects are insignificant for the CAMIRA cluster-finding algorithm compared to our sta-

tistical errors. We also find that the redMaPPer-like cluster-finding algorithm induces a smaller inferred

splashback radius in our mock catalog at the level of ⇠ 15%, which well explains smaller splashback radii in

the literature, whereas these biases are significantly reduced when increasing its aperture size. This finding

suggests that aperture sizes of optical cluster finders that are smaller than splashback feature scales should

induce significant biases on the inferred location of splashback radius.

Hence, for the first time, we conclude that the observed splashback radii are consistent with the theoret-

ical predictions based on the ⇤CDM model and our mass-richness relation from weak lensing e↵ects for the

HSC CAMIRA clusters at our precisions over the wide redshift range (⇠ 15% for each bin of 0.1 < zcl < 0.4,

0.4 < zcl < 0.7, and 0.7 < zcl < 1.0), and it is also the case for the redMaPPer clusters in the literature

when accounting for the selection bias e↵ects in the redMaPPer cluster-finding algorithm, which we find in

the mock simulation analyses.

We can improve precisions on measurements of the mass-richness relation and the splashback radius by

employing the upcoming full HSC survey data or other future survey data in various wavelengths, including

X-ray and radio, in order to study cosmological and astrophysical aspects of galaxy clusters and the Universe

itself in more detail. Our observational results with the CAMIRA clusters and our analysis frameworks and

methodology for the observational data and mock observations are informative to conduct such analyses

with properly accounting for the selection e↵ects in the near future.
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Chapter 1

Introduction

1.1 The established standard cosmological model: ⇤CDM model

Cosmological and astronomical observations in the last twenty years have firmly established the standard

⇤-dominated Cold Dark Matter (⇤CDM) cosmological model for cosmic structure formation based on

General Relativity for the gravity theory, thanks to increasing amounts of observational data with rapid

progress in observational techniques and facilities, and theoretical foundations. The ⇤CDM model has

remarkably shown a success in explaining many di↵erent observational probes and evidences under a simple

assumption with the same set of cosmological parameters within precisions. These cosmological probes

include temperature angular anisotropies in the cosmic microwave background (CMB) from ground-based

telescopes or satellites such as the Wilkinson Microwave Anisotropy Probe (WMAP ; Hinshaw et al., 2013)

and the Planck (Planck Collaboration et al., 2016), the redshift-distance relations based on the standard

candle with the known intrinsic luminosity of Type Ia supernovae or the standard ruler of the baryon

acoustic oscillation in galaxy spatial correlation functions in the late universe, the abundance of galaxy

clusters, the gravitational lensing e↵ects, and big bang nucleosynthesis. For more detail, we refer to a

recent review in Weinberg et al. (2013) and references therein. At the same time, constraints from ongoing

research with smaller statistical errors start to find possible hints of deviations or inconsistencies among

di↵erent probes, e.g., on the Hubble parameter (Freedman, 2017; Wong et al., 2019), the amplitudes of

matter density fluctuation from the early and late universe (Planck Collaboration et al., 2016b; Abbott

et al., 2018; Costanzi et al., 2018; Hikage et al., 2019), and galactic small-scales (Del Popolo & Le Delliou,

2017).

In this standard paradigm, the energy components consist of ordinary baryonic matter (e.g., stars and

galaxies) and radiation (e.g., photon) for only ⇠ 5% of the total energetic budget in the Universe at present,

and dark components for another ⇠ 95% fraction: dark matter (⇠ 25%) and dark energy (⇠ 70%). Dark

matter interacts only gravitationally and does not emit light from itself as stars and galaxies. The first

observational evidence of dark matter is pointed by Fritz Zwicky thorough galaxy dynamics in the Coma
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2 Introduction

Figure 1.1 An example of the current constraints on the cosmological parameters in the standard ⇤CDM
model and a consistency level between di↵erent cosmological probes or methods. A marginalized posterior
contour in the ⌦m0 � �8 cosmological parameters in the ⇤CDM model with 68% and 95% credible levels
in red color is derived from the cosmological weak lensing cosmic shear analyses in Hikage et al. (2019)
with the HSC first-year (Y1) data catalog, which uses cosmological weak lensing e↵ects without employing
galaxy clusters. For comparisons, contours from other surveys or the CMB measurements in the Planck or
WMAP satellites (Planck Collaboration et al., 2016; Hinshaw et al., 2013) are also presented. This figure
is reproduced from the left panel of Figure 5 in Hikage et al. (2019).

cluster (Zwicky, 1933). From cosmological observations, dark matter is favored to be cold and collisionless,

and thus non-relativistic with small velocities dispersion at early universe. The standard model assumes

no self-interaction of dark matter other than that via the gravitational field. Dark energy is a mysterious

but dominant energy component at the present age of the Universe with negative pressure, leading to

the observed accelerating expansion of the Universe in the late universe. The first clear evidence of the

accelerating universe from dark energy is revealed by the redshift-distance relation from Type Ia supernova

(Riess et al., 1998; Perlmutter et al., 1999). In the ⇤CDM model, the cosmological constant ⇤ term without

time evolution is introduced into the Einstein equation in General Relativity as dark energy. We humans do

not understand the true nature of dark matter and dark energy, including any self-interaction of dark matter

and time-evolution of dark energy as a deviation from the cosmological constant. Also, dark energy could be

a signature of modified gravity as a violation of General Relativity at large cosmological scales. The e↵ects of

neutrino mass in cosmological scales have not been observationally detected although we know the existence

from ground-based experiments on neutrino oscillations. Thus upcoming cosmological and astronomical

observations will be valuable sources of such information with ground-based collider experiments.

Cosmic inflation as the exponential expansion stage generates tiny adiabatic, nearly scale-invariant, and

Gaussian density perturbations via quantum mechanisms for the initial condition of the Universe for the

energy components, and these perturbations subsequently amplify and assemble via gravitational instability
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with interactions to a smaller amount of baryonic matters, to form cosmic structures such as planets, stars,

galaxies, and galaxy clusters that we see today with telescopes, eventually life like us. In the ⇤CDM model,

the cosmic structures generally grow hierarchically due to larger density fluctuations at smaller length scales.

In other words, smaller scales of perturbations in general collapse earlier to form smaller dark matter halos as

a self-gravitationally bound system of dark matter. Subsequently, larger and more massive structures, such

as more massive galaxies and galaxy clusters, gradually form and evolve in dark matter halos by accretion

of these smaller dark matter halos into more massive halos, or mergers between di↵erent halos with similar

masses through interacting with baryonic matters, e.g., for galaxy evolution and formation. Thus, galaxy

evolution and formation processes are closely connected with properties of host dark matter halos such as

halo mass or accretion rates of materials to halos.

The cosmological parameters for the standard flat ⇤CDM model consists of independent six free pa-

rameters as follows: the Hubble parameter at present-day H0 ⌘ 100 h km s�1Mpc�1 as often parametrized

by h, normalized amounts of ordinary baryonic matter, cold dark matter, and the cosmological constant

at present-day as ⌦b0, ⌦c0, and ⌦⇤, respectively, on a condition of ⌦b0 + ⌦c0 + ⌦⇤ = 1 for the flatness

(thus two independent parameters from the three), the normalization and spectral index of the matter

density fluctuation �8 and ns, respectively, and a reionization optical depth ⌧ for the CMB. We again refer

to the review in Weinberg et al. (2013) for more details. The best-fit parameters in Planck Collaboration

et al. (2016) can roughly explain almost all cosmological probes simultaneously. In particular, Figure 1.1

shows an example of the current constraints on the cosmological parameters of ⌦m0 and �8 from the CMB

measurements in the WMAP and Planck with those from gravitational lensing measurements.

The ⇤CDM model should be critically and more severely tested. It is essential to validate the con-

sistency of this model with other independent cosmological probes by comparing with predictions of the

⇤CDM model, or to constrain extensions of the standard cosmological model (e.g., self-interacting dark mat-

ter, time-evolving dark energy, modified gravity, and neutrino mass) from inconsistencies with the ⇤CDM

model if exists in observational data. However, in the era of precision cosmology with increasing amounts

of observational data for smaller statistical errors, we should conduct data analyses with great care on

systematic errors to avoid interpreting such systematics as new physics.

1.2 Galaxy clusters as crossroads of cosmology and astrophysics

Galaxy clusters are the most massive gravitationally bound structure in the Universe with mass scales

⇠ 1014
M�, which form in dark matter halos around rare high peaks in the initial density field generated by

the cosmic inflation after interactions between gravitational dynamics and baryonic process related to galaxy

formation (see Allen et al., 2011; Kravtsov & Borgani, 2012; Weinberg et al., 2013; Wechsler & Tinker, 2018;

Pratt et al., 2019; Walker et al., 2019; Vogelsberger et al., 2019, for recent reviews). Galaxy clusters are

dominated by dark matter and therefore are useful sites for cosmological studies since N -body simulations
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Figure 1.2 Subaru HSC grz-band color composite optical images of the richest clusters at di↵erent redshifts
in the HSC CAMIRA optically selected cluster catalog in Oguri et al. (2018a). In each panel, the cluster
photometric redshift and optical richness are denoted by z and N , respectively. The center of each panel
presents the brightest cluster galaxy identified by the CAMIRA cluster-finding algorithm in Oguri (2014).
The size of each panel is approximately 3.7 arcmin ⇥ 3.7 arcmin. From the lowest to the highest redshift,
the size of 3.7 arcmin corresponds to 0.57 h

�1Mpc, 1.2 h
�1Mpc, 2.1 h

�1Mpc, and 2.6 h
�1Mpc in comoving

coordinates, and 0.48 h
�1Mpc, 0.86 h

�1Mpc, 1.2 h
�1Mpc, and 1.3 h

�1Mpc in physical coordinates with
the Planck cosmological parameters. This figure is reproduced from Figure 5 in Oguri et al. (2018a).

can predict cluster observables reasonably well. The abundance and clustering of massive clusters and their

time evolution are known to be sensitive to cosmological parameters such as the matter density (⌦m0), the

normalization of the matter power spectrum (�8), and dark energy (see e.g., White et al., 1993; Eke et al.,

1996; Kitayama & Suto, 1997; Haiman et al., 2001; Voit, 2005; Vikhlinin et al., 2009; Mantz et al., 2010; Rozo

et al., 2010; Allen et al., 2011; Oguri & Takada, 2011; Weinberg et al., 2013; Planck Collaboration et al.,

2016b). Also, observations on galaxy clusters are useful to test the paradigm of CDM. Recent gravitational

lensing analyses have shown that the radial density profile (e.g., Umetsu et al., 2011) and the degree of non-

sphericity (e.g., Oguri et al., 2010) of massive galaxy clusters are in good agreement with the expectations

from the ⇤CDM model within error-bars. Observations on bullet galaxy cluster have also ruled out a regime

of self-interactions in dark matter (e.g., Markevitch et al., 2004) as a test of collisionless nature of CDM,

from maps of hot gas, dark matter revealed by gravitational lensing e↵ects, and galaxies of a galaxy cluster

with a high-velocity merger.

Galaxy clusters can be observationally identified in optical, X-ray, and radio/mm/submm wavelengths.

In optical images, one of the most striking features within galaxy clusters is the presence of a larger number

of red and elliptical galaxies with little ongoing star formation (Oemler, 1974; Dressler, 1980; Dressler &

Gunn, 1983; Balogh et al., 1997; Poggianti et al., 1999), exhibiting a tight relation in the color-magnitude

diagram called red-sequence (e.g., Stanford et al., 1998). These quenching e↵ects are expected from intra-
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cluster astrophysical processes, including tidal disruption, harassment, strangulation (Larson et al., 1980),

and ram-pressure stripping (Gunn & Gott, 1972), or from the age-matching model (e.g., Hearin et al., 2014)

which employs expectations that galaxies in larger overdensities form earlier. The recent development of

wide-field optical imaging surveys makes an optical selection of galaxy clusters based on red member galaxies

(see Figure 1.2 for examples of their images) in such cluster regions particularly powerful, typically with a

larger number of galaxy clusters than those selected by X-ray or radio wavelengths at present, since optical

surveys take wide-field images with multiple photometric passbands from which we can select clusters of

galaxies e�ciently via the enhancement of red-sequence galaxy number counts in such cluster regions and

derive photometric redshifts of clusters from colors a↵ected by the 4000Å break (e.g., Gladders & Yee, 2000).

There are several optical cluster-finding algorithms based on the red-sequence galaxies for cluster selec-

tion in multi-band optical data and richness estimation for each galaxy cluster. Recently, CAMIRA1(Oguri,

2014; Oguri et al., 2018a) and redMaPPer2(Ryko↵ et al., 2012, 2014; Rozo & Ryko↵, 2014; Rozo et al.,

2015a,b; Ryko↵ et al., 2016) cluster-finding algorithms have often been employed to construct optically

selected cluster catalogs to study the physical properties of galaxy clusters. We refer to Appendix A for

more details. The main di↵erence between the redMaPPer and CAMIRA cluster-finding algorithms is that

CAMIRA subtracts the background galaxy levels to estimate the richness in cluster selection locally, but

redMaPPer does this globally. Moreover, CAMIRA employs a larger aperture size (' 1h
�1Mpc in phys-

ical coordinates) independent of richness values in cluster selections, whereas redMaPPer uses a smaller

richness-dependent aperture (< 1h
�1Mpc in physical coordinates for almost all clusters).

Since theoretical predictions of galaxy cluster observables are primarily determined with respect to the

halo mass for a given cosmological model, we need a valid statistical model to connect the halo mass and

observed mass proxy in order to make full use of galaxy cluster samples. In optical surveys, a commonly-

used mass proxy is an optical richness, which roughly corresponds to the number of red-sequence member

galaxies above some luminosity threshold in each galaxy cluster (e.g., Rozo et al., 2009). Well-calibrated and

unbiased mass-richness relations allow us to infer galaxy cluster masses from observed richness values. Based

on the same optical imaging data used for galaxy cluster selections, weak gravitational lensing provides a

powerful means to constrain mass-observable relations of galaxy clusters. It is the deflection of light due

to the intervening matter density field along the line-of-sight direction to produce a coherent distortion

pattern in background galaxy shapes (for reviews, see e.g., Bartelmann & Schneider, 2001; Kilbinger, 2015;

Mandelbaum, 2018b). Stacked weak lensing measurements statistically probe the projected average mass

distribution of galaxy clusters with equal sensitivity to the dark and baryonic matter (see Appendix B

for more details). Stacking shapes of background galaxies for a sample of galaxy clusters enhances the

signal-to-noise ratio of the measurements. Previous studies have utilized the weak gravitational lensing

e↵ect to constrain mass-observable relations, including mass-richness relations (e.g., Johnston et al., 2007;

1Cluster finding algorithm based on Multi-band Identification of Red sequence gAlaxies
2red-sequence Matched-filter Probabilistic Percolation
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Figure 1.3 Schematic figure for physics of the splashback radius (courtesy of Surhud More, not from published
papers). The horizontal axis shows a radial distance from a halo located at the center of this figure. The
vertical axis denotes the gravitational potential of this halo system. A black point on the left side with a
black arrow presents an infalling object such as dark matter or a galaxy. Without deepening the potential,
the energy for the object conserves, and the object reaches the black point on the right side with the
same potential as one at the start of infalling. On the other hand, when gradually deepening potential
from other accreting materials (red colors) like the red arrow, the potential of the object has an explicit
time-dependence. Thus, the energy for this object does not conserve. As a result, this object turns around
(splashback) at a radius with a smaller potential than one at the start of infalling. From these physical points,
dark matter halos with faster accretion rate have smaller splashback radii, and accretion rate statistically
depends on halo mass.

Leauthaud et al., 2010; Okabe et al., 2013; von der Linden et al., 2014; Hoekstra et al., 2015; Battaglia et al.,

2016; Simet et al., 2017; Melchior et al., 2017; Murata et al., 2018; Medezinski et al., 2018a; Miyatake et al.,

2019; McClintock et al., 2019). Constraining this mass-richness relation via weak gravitational lensing is

fundamentally important to connect theories or simulations with observations on galaxy clusters, since the

halo mass determine the physical properties dominantly such as density profiles of dark matter halos and

galaxy evolution and formation physics. Also, constraining the mass distribution function of dark matter

halos at galaxy cluster mass scales leads to cosmological parameter estimations.

1.3 The observed inconsistency with the ⇤CDM model in the

splashback radius of optically selected galaxy clusters

The splashback radius has been recently proposed as a physical boundary of dark matter halos at the

outskirts which separates orbiting from accreting materials (e.g., dark matter particles and galaxies in

subhalos) as a sharp density edge, which is seen even after stacking of halos through numerical high-

resolution N-body simulations (Diemer & Kravtsov, 2014; More et al., 2015) and a semi-analytic model
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Figure 1.4 Comparison of the three-dimensional splashback radius from model predictions under the ⇤CDM
model and real data in Chang et al. (2018) from the DES redMaPPer optically selected cluster catalog. The
top panel shows that the measurement denoted by “Data (galaxies)” in black color from projected galaxy
profiles is ⇠ 20% smaller their model predictions in red or green colors, as found by More et al. (2016) for
the first time with the SDSS redMaPPer clusters. In the bottom panel, Chang et al. (2018) also exhibits a
comparison with lensing profiles for the splashback radius with a lower signal-to-noise ratio, which we do
not perform in this thesis. This figure is reproduced from Figure 8 in Chang et al. (2018).

(Adhikari et al., 2014). At the splashback radius, the logarithmic derivative of density profiles is predicted

to drop significantly over a narrow range of radius in the outskirts due to the piling up of materials with

small radial velocities at their first orbital apocenter after infall into halos (refer to Figure 1 of Adhikari

et al., 2014, for the phase diagram of dark matter halos in simulations, which demonstrates that orbiting

and accreting materials are well separated at the splashback radius). Previous density model profiles such

as the Navarro-Frenk-White (NFW; Navarro et al., 1996) model profile cannot reproduce such features

(Diemer & Kravtsov, 2014). The splashback radius primarily depends on accretion rate, redshift, and halo

mass (e.g., Diemer et al., 2017). When the gravitational potential deepens during the particle orbit due to

mass accretion on to the halo, particles do not reach as far out: the larger the accretion rate, the smaller

the splashback radius. The secondary infall models with the spherical collapse model (Gunn & Gott, 1972)

predict such sharp density edge semi-analytically (e.g., Fillmore & Goldreich, 1984; Bertschinger, 1985;

Adhikari et al., 2014; Shi, 2016), and thus splashback radius locations can be predicted approximately from

simple dynamics in gravitational potentials of dark matter halos with an explicit evolving time-dependence

due to accreting materials. Furthermore, the splashback features have been investigated from various aspects

with simulations (Mansfield et al., 2017; Diemer, 2017; Okumura et al., 2018; Sugiura et al., 2019; Xhakaj

et al., 2019), including dark energy (Adhikari et al., 2018), modified gravity (Adhikari et al., 2018; Contigiani

et al., 2019b), and self-interacting dark matter (Banerjee et al., 2019). For reference, we show a schematic



8 Introduction

figure for a toy model of the splashback radius in Figure 1.3.

Observationally, the splashback feature has been detected and constrained statistically for galaxy clus-

ters selected by the optical cluster-finding algorithm redMaPPer through cross-correlation measurements

between clusters and galaxies (More et al., 2016; Baxter et al., 2017; Chang et al., 2018; Shin et al., 2019)

or weak lensing measurements (Chang et al., 2018) with high precisions thanks to a large number of opti-

cally selected clusters. Less precise measurements with a smaller number of galaxy clusters have also been

done for clusters selected by the Sunyaev–Zel’dovich e↵ects (Zürcher & More, 2019; Shin et al., 2019) or

by X-ray flux (Umetsu & Diemer, 2017; Contigiani et al., 2019a). We note that the signal-to-noise ratios

for weak lensing measurements are smaller than those for cluster-galaxy cross-correlation measurements to

constrain the splashback feature. It is important to validate theoretical predictions against observed splash-

back features with the help of weak lensing mass calibrations, where weak lensing measurements constrain

mass-observable relation (e.g., mass-richness relation for optically-selected clusters) mainly from their am-

plitudes, instead of the location of the splashback radius imprinted in lensing measurements. Interestingly,

the measurements of the splashback radius with high precision for the redMaPPer clusters (More et al.,

2016; Baxter et al., 2017; Chang et al., 2018) from the Sloan Digital Sky Survey (SDSS) or the Dark Energy

Survey (DES) data show that their observed splashback radius from cluster-galaxy cross-correlation mea-

surements is smaller than expectations from N-body simulations under the ⇤CDM cosmology at the level

of 20% ± 5%. Shin et al. (2019) also show a similar trend at ⇠ 2� level for the redMaPPer clusters at more

massive mass scale. We refer to Figure 1.4, which is reproduced from Chang et al. (2018), for a summary

plot of the inconsistency found in Chang et al. (2018).

One of the possible origins of the inconsistency is some systematics in the optical cluster-finding al-

gorithm, such as projection e↵ects in optical cluster finding algorithms that are misidentifications of non-

member galaxies along the line-of-sight direction as member galaxies in optical richness estimation (e.g.,

Cohn et al., 2007; Zu et al., 2017; Busch & White, 2017; Costanzi et al., 2019; Sunayama & More, 2019).

In particular, Busch & White (2017) and Sunayama & More (2019) investigated projection e↵ects on the

splashback features with a simplified redMaPPer-like optical cluster-finding algorithm in the Millennium

Simulation (Springel et al., 2005), although their cluster abundance densities in the simulations is ⇠ 3 times

larger than observations as a function of richness mainly due to their mock galaxy populations for the mock

cluster finders, which may lead to the overestimate of the projection e↵ects. Also, Busch & White (2017)

and Sunayama & More (2019) did not follow a procedure in the observational studies (e.g., More et al.,

2016; Chang et al., 2018) explicitly to estimate the three-dimensional splashback radius from projected

cross-correlation functions with a model profile proposed in Diemer & Kravtsov (2014). Therefore, we can

improve this aspect in mock simulation analyses to investigate possible bias e↵ects from optical cluster-

finding algorithms by more closely resembling the comparison procedure in the observations. Thus, further

independent investigation would be useful to confirm whether the inconsistency is caused by artifacts due

to optical cluster-finding algorithms or not.



1.3. The observed inconsistency with the ⇤CDM model in the splashback radius of optically selected galaxy clusters9

Another interesting possible origin of the inconsistency is new physics beyond the standard ⇤CDM

model, such as self-interacting dark matter. Non-gravitational interactions between dark matter have been

proposed to explain various observables with some tensions on cluster and galaxy group scales. Models

for the cross-section can depend on the relative velocity of dark matter and the scattering angle. Their

e↵ects on the splashback radius are investigated in Banerjee et al. (2019) with numerical cosmological

simulations as mentioned above. Banerjee et al. (2019) show that the self-interactions between dark matter

can macroscopically alter the distribution of subhalos (i.e., galaxies) and the density of dark matter even

around the splashback radius. First, self-interacting dark matter can produce a cumulative drag, causing

subhalos (i.e., galaxies) to lose energy and turn around before reaching the ⇤CDM splashback radius (i.e.,

smaller splashback radius than expectations under the ⇤CDM model). Second, Banerjee et al. (2019) show

that self-interacting dark matter could preferentially disrupt subhalos (i.e., galaxies) which would otherwise

have had the largest apocenters (i.e., splashback radius), since such subhalos move around halo centers

with larger forces from self-interacting dark matter than the ⇤CDM scenario. As a result, the splashback

radius can be smaller than expectations from ⇤CDM. Additionally, models with anisotropic scattering

could have qualitatively di↵erent and more significant e↵ects compared to those with isotropic scattering,

since anisotropic scattering can lead to a coherent drag force on accreting materials (e.g., dark matter and

galaxies) on to galaxy clusters. In particular, Banerjee et al. (2019) show that, under a relative higher

cross-section for anisotropic scattering compared to constraints from Bullet clusters, the splashback radius

of subhalos (i.e., galaxies) could be shifted to the 20% smaller value than that from the ⇤CDM model at

a fixed cluster mass bin, to explain the observed inconsistency in the redMaPPer clusters in the literature

(More et al., 2016; Chang et al., 2018).

The distribution of galaxies after magnitude or color cuts in observations is expected to have the

same splashback radius as dark matter distribution to the first order approximation unless such cuts select

particular orbits of recently accreted galaxies in clusters due to fast quenching e↵ects for instance, since

dynamics of galaxies are expected to follow dark matter distribution in the outskirts based on gravitational

potentials dominantly determined by the larger amount of dark matter. The di↵erence between dark

matter and subhalos, where galaxies should reside, can be caused by dynamical friction (Chandrasekhar,

1943) that a↵ects subhalos with a mass ratio to host halo mass Msub/Mhost & 0.01 (Adhikari et al., 2016)

to lead to a net orbital energy loss by an e↵ective drag force via gravitational interaction with nearby

matter to decrease splashback radii significantly (& 5%) compared to the dark matter. In observations,

fainter galaxies are expected to live in less massive subhalos, and thus dynamical friction e↵ects are smaller.

Hence, fainter galaxies are expected to have splashback radii closer to those for the dark matter. However,

relations between subhalo masses and galaxy luminosities (including scatter between them) have not been

fully understood. Dynamical friction e↵ects on splashback radii are investigated in the literature (More

et al., 2016; Chang et al., 2018; Zürcher & More, 2019) with di↵erent absolute magnitude thresholds, but

a magnitude dependence of splashback radii for massive clusters has not been detected even with smaller
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error bars in More et al. (2016) at a . 5% precision level, despite the fact that a & 5% shift of splashback

radii is expected in simulations especially for more massive subhalos when selecting subhalos with maximum

circular velocities throughout their entire history to reproduce galaxy abundances in observations (More

et al., 2016; Chang et al., 2018). The scatter between the maximum circular velocities (or subhalo masses)

and galaxy luminosities could wash out dynamical friction e↵ects (More et al., 2016). It would be interesting

to explore dynamical friction e↵ects with an independent optical cluster-finding algorithm and fainter galaxy

samples.

Also, quenching of satellite galaxies (i.e., a transition of blue to red galaxies) at the outskirts of galaxy

clusters has been investigated (e.g., Wetzel et al., 2013; Fang et al., 2016; Zinger et al., 2018; Adhikari et al.,

2019). The splashback radius separates orbiting from accreting galaxies as the physical boundary of halos,

and thus investigating relations between the splashback and quenching features around clusters over a wide

range of redshift would be informative to constrain galaxy formation and evolution physics.

1.4 The wide field-of-view and deep optical imaging survey of

Subaru Hyper Suprime-Cam

Given the smaller number of such massive dark matter halos in which galaxy clusters reside, we require

deep imaging data from wide field-of-view surveys to investigate the statistical properties of galaxy clusters

over a wide redshift range. Ongoing and upcoming wide-field optical or infrared galaxy surveys allow us

to study galaxy clusters in great detail if systematic errors are under control, including the Kilo-Degree

Survey (KiDS; de Jong et al., 2013; Kuijken et al., 2015) and the DES (Flaugher, 2005; Dark Energy Survey

Collaboration et al., 2016) for ongoing surveys, and the Large Synoptic Survey Telescope (LSST; Ivezić

et al., 2008), Euclid (Laureijs et al., 2011), and Wide-Field Infrared Survey Telescope (WFIRST; Spergel

et al., 2015) for upcoming surveys.

The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is also such an ongoing wide-field

optical imaging survey (Miyazaki et al., 2012, 2015, 2018a; Komiyama et al., 2018; Furusawa et al., 2018;

Kawanomoto et al., 2018; Aihara et al., 2018a,b, 2019) with a 1.77 deg2 field-of-view camera on the 8.2 m

Subaru telescope. Compared to the other ongoing surveys, the HSC-SSP survey is unique in its combination

of depth and high-resolution image quality, which allows us to detect galaxy clusters over a wide redshift

range up to zcl ⇠ 1, to measure stacked lensing profiles around such high-redshift clusters with a lower

shape noise than that of other ongoing surveys such as KiDS and DES (see Table 2 in Hikage et al., 2019,

for more details), and to investigate their splashback features with photometric galaxies down to fainter

apparent magnitudes, although the survey area is smaller than those of other imaging surveys. The HSC

grizy broadband filters are shown in Figure A.1.

In this thesis, since the CAMIRA optically selected clusters based on the HSC-SSP data are available
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(Oguri et al., 2018a), we employ these CAMIRA clusters to investigate the statistical properties on the

mass-richness relation and the splashback radius. The HSC-SSP data catalogs for the CAMIRA clusters,

weak lensing shear, photometric redshifts, and photometric galaxies employed in this thesis are at present

or will soon be available at websites.34

1.5 Plan of this thesis

The main physical motivation of this thesis is to reveal whether the observed inconsistency of the splashback

radius in redMaPPer optically selected galaxy clusters in the literature is actually caused by new physics

beyond the established standard ⇤CDM cosmological model, such as non-gravitational self-interaction of

dark matter, or not. It is fundamentally essential to test the validity of the ⇤CDM cosmological model from

the recently proposed physical boundary of galaxy clusters, the splashback radius, for understanding the

physical aspects of the Universe.

For this purpose, in this thesis, we present observational and statistical studies of the CAMIRA optically

selected clusters at 0.1 < zcl < 1.0 thanks to deep HSC images, on the mass-richness relation with weak

gravitational lensing e↵ects and the splashback radius with simplified mock simulation analyses to investigate

selection bias e↵ects in the CAMIRA and redMaPPer optical cluster-finding algorithms, whereas previous

works on the mass-richness relation and the splashback radius are limited to zcl . 0.7 even for DES

(McClintock et al., 2019; Chang et al., 2018). Our study in this thesis is the first study with detections

of the splashback radius in clusters selected by the CAMIRA cluster-finding algorithm, whereas all the

previous works of optically selected galaxy clusters with the inconsistency of the smaller splashback radius

locations are based on the redMaPPer cluster-finding algorithm (More et al., 2016; Chang et al., 2018; Shin

et al., 2019).

The outline of this thesis is as follows:

• In Chapter 2, we constrain the mass-richness relation of the HSC CAMIRA clusters with weak gravi-

tational lensing and abundance measurements. This chapter is based on a published work of Murata

et al. (2019).

• In Chapter 3, we investigate the splashback radius of the HSC CAMIRA clusters with projected

cross-correlation function measurements between the clusters and HSC photometric galaxies with the

help of our mass-richness relation presented in Chapter 2. We also employ simplified mock simulation

analyses to investigate the selection bias e↵ects of the CAMIRA and redMaPPer algorithms on the

observed splashback radius. This chapter is based on Murata et al. (2020), which we have submitted

to Publications of the Astronomical Society of Japan and arXiv5.

3https://hsc-release.mtk.nao.ac.jp/doc/
4https://www.slac.stanford.edu/~oguri/cluster/
5https://arxiv.org/abs/2001.01160
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• In Chapter 4, we summarize our main findings and conclude.

1.6 Convention and unit

Throughout this thesis, we use natural units where the speed of light is set equal to unity, c = 1.

We use M ⌘ M200m = 4⇡(R200m)3⇢̄m0 ⇥ 200/3 for the halo mass definition, where R200m is the three-

dimensional comoving radius within which the mean mass density is 200 times the present-day mean mass

density, ⇢̄m0. In this thesis, we use a radius and density in comoving coordinates rather than in physical

coordinates unless otherwise stated.

We adopt the flat ⇤CDM model as the fiducial cosmological model with the parameters from the

Planck15 (hereafter the Planck) result (Planck Collaboration et al., 2016): ⌦b0h
2 = 0.02225 and ⌦c0h

2 =

0.1198 for the density parameters of baryon and cold dark matter, respectively, ⌦⇤ = 0.6844 for the

cosmological constant, �8 = 0.831 for the normalization of the matter fluctuation, and ns = 0.9645 for

the spectral index. In Chapter 2, we also use cosmological parameters consistent with those from WMAP9

(hereafter the WMAP) results (Hinshaw et al., 2013) to compare with the results of the mass-richness

relation when assuming the Planck cosmological parameters: ⌦b0h
2 = 0.02254, ⌦c0h

2 = 0.1142, ⌦⇤ = 0.721,

�8 = 0.82, and ns = 0.97. As shown in Figure 1.1, these best-fit values of ⌦m0 and �8 for the Planck model

are larger than those for the WMAP model. Thus, the dark matter halo mass function for the Planck model

is larger than that for the WMAP model at high mass scales due to larger density amounts of matters and

larger density fluctuations to make halos more e�ciently for the Planck model.

For reference, we write down the unit of length and mass in this thesis as 1 Mpc = 106pc = 3.086⇥1022m

and M� = 1.988 ⇥ 1030kg.

We employ the convention in More et al. (2015, 2016) for the splashback radius as in all the previous

observational works in the literature, where r
3D
sp

and R
2D
sp

correspond to the locations of the steepest loga-

rithmic derivative of the radially averaged density profiles after stacking of halos in the three-dimensional

or projected space, respectively, due to its accessibility in observations, whereas the di↵erent definition of

the splashback radius are employed from dynamics of dark matter particles in simulations (Mansfield et al.,

2017; Diemer, 2017) with a small di↵erence from our convention.



Chapter 2

The mass-richness relation of

optically selected clusters from weak

gravitational lensing and abundance

with Subaru HSC first-year data

2.1 Overview

In this chapter, we present constraints on the relation between the optical richness and halo mass of optically-

selected HSC clusters in the redshift range 0.1  zcl  1.0 (Oguri et al., 2018a) detected by the CAMIRA

cluster-finding algorithm (Oguri, 2014). For this purpose, we conduct a joint analysis of the abundance and

stacked lensing profiles from the first-year data catalogs of the Subaru HSC-SSP survey. For this work, we

adapt and apply a pipeline developed in Murata et al. (2018), which was used for clusters at 0.1  zcl  0.33

in the SDSS selected by the redMaPPer cluster-finding algorithm. We model the probability distribution

of the richness for a given halo mass and redshift P (ln N |M, z) without informative prior distributions for

richness-mass parameters. We then use Bayes theorem to calculate the mass-richness relation P (ln M |N)

in each redshift bin. In order to accurately model the abundance and stacked lensing profiles, we use

Dark Emulator (Nishimichi et al., 2019), which is constructed from a suite of high-resolution N -body

simulations. We employ an analytic model for the covariance matrix describing statistical errors for the

abundance and stacked lensing profiles. We validate the analytic covariance matrix against realistic mock

shear and halo catalogs (Shirasaki et al., 2019).

The structure of this chapter is as follows. In Chapter 2.2, we briefly describe the Subaru HSC data

and catalogs used in our richness-mass relation analysis. In Chapter 2.3, we describe measurements of the

13
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cluster abundance and stacked cluster lensing profiles. In Chapter 2.4, we summarize model ingredients for

our richness-mass relation analysis. In Chapter 2.5, we show the resulting constraints on the mass-richness

relation. We discuss the robustness of our results in Chapter 2.6. We summarize in Chapter 2.7.

2.2 HSC first-year dataset

2.2.1 HSC-SSP survey

With its unique combination of a wide field-of-view, a large aperture of the primary mirror, and excellent

image quality, HSC enables us to measure lensing signals out to a relatively high redshift. Under the HSC-

SSP, the HSC is conducting a multi-band wide-field imaging survey over six years with 300 nights of Subaru

time. The HSC-SSP survey consists of three layers: Wide, Deep, and UltraDeep. The Wide layer is designed

for weak lensing science and aims at covering 1400 deg2 of the sky with five broad bands, grizy , with a 5�

point-source depth of r ⇠ 26. The i-band images are taken when the seeing is better since i-band images are

used for galaxy shape measurements for weak lensing analysis, resulting in a median point-spread function

(PSF) full width at half maximum of ⇠0
00

. 58 for i-band images for the HSC first-year shear catalog described

in Chapter 2.2.3. The software pipelines that reduce the data are described in Bosch et al. (2018).

While the HSC-SSP Data Release 1 (Aihara et al., 2018b) is based on data taken on 61.5 nights between

March 2014 and November 2015, in this chapter, we use HSC cluster, lensing shear, and photometric redshift

catalogs based on the S16A internal release data of the HSC-SSP survey that was taken during March 2014

through April 2016, about 90 nights in total.

2.2.2 HSC CAMIRA cluster catalog

We use the CAMIRA cluster catalog from the S16A internal release data of the HSC-SSP Wide dataset

presented in Oguri et al. (2018a), which was constructed using the CAMIRA algorithm (Oguri, 2014). In

this chapter, we use the cluster catalog without applying a bright-star mask (Oguri et al., 2018a).

The catalog contains 1921 clusters of 0.1  zcl  1.1 and richness N � 15 with almost uniform

completeness and purity over the sky region. We use 1747 CAMIRA clusters with 15  N  200 and

0.1  zcl  1.0. The total area for the CAMIRA clusters is estimated to be ⌦tot = 232.8 deg2 (Oguri et al.,

2018a), which is larger than the area for the lensing shear catalog presented in Chapter 2.2.3. The CAMIRA

algorithm calculates the mask area fraction fmask to correct for the richness and adopts the minimum mask

fraction value to reject detections (Oguri, 2014). Thus areas for clusters with lower redshifts are slightly

smaller since the richness is defined within a circular aperture with a radius R . 1 h
�1Mpc in physical

coordinates and clusters at lower redshift have a higher rejection rate from the mask cut. We use a random

catalog to estimate this e↵ect by injecting clusters at the catalog level into the footprint to calculate the

rejection rate from the masking cut as a function of cluster redshift. We then define a weighting function
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to quantify the masking e↵ect as

wrand(zcl) =
nsample(zcl)

nkeep(zcl)
, (2.1)

where nsample(zcl) and nkeep(zcl) are the number of injected clusters and the number of clusters not rejected

by the masking cut, respectively (similarly defined in Murata et al., 2018). In addition, we define the

e↵ective area of the CAMIRA cluster catalog at a given redshift as

⌦e↵(zcl) =
⌦tot

wrand(zcl)
, (2.2)

to account for the detection e�ciency as a function of redshift in measurements below, although this

e↵ect is not very large for the CAMIRA clusters with wrand(zcl = 0.1) = 1.02 at most. Here we note

that ⌦e↵(zcl)  ⌦tot. We use the same random catalog to measure lensing signals for the subtraction of

systematics in Chapter 2.3.2.

2.2.3 HSC weak lensing shear catalog

We employ the HSC first-year shear catalog (Mandelbaum et al., 2018a,c) based on the S16A internal

release data for weak lensing measurements around HSC CAMIRA clusters described in Chapter 2.2.2. The

galaxy shapes are measured on coadded i-band images with the re-Gaussianization moment-based method

(Hirata & Seljak, 2003) and fully described in Mandelbaum et al. (2018c)1. This method has been applied

extensively to SDSS data, and thus the systematics of the method are well understood (Mandelbaum et al.,

2005; Reyes et al., 2012; Mandelbaum et al., 2013). Both shape uncertainties and biases are estimated per

galaxy with simulations created using an open source software package GalSim (Rowe et al., 2015) with

galaxy samples from the Hubble Space Telescope COSMOS survey (see Mandelbaum et al., 2018c, for more

details). More specifically, Mandelbaum et al. (2018c) estimate multiplicative bias m, additive bias (c1, c2),

intrinsic root-mean-square ellipticity erms, and shape measurement error �e for the galaxy ensemble in the

simulation, and define interpolation functions to produce an estimate of that quantity for each galaxy in the

real data. The systematic uncertainty in the overall shear calibration is estimated to be 0.01 in Mandelbaum

et al. (2018c).

Mandelbaum et al. (2018a) applied a number of cuts to satisfy the requirements for carrying out first-

year weak lensing cosmology analyses. For example, the catalog is constructed using regions of sky with

approximately full depth in all five bands to ensure the homogeneity of the sample. Mandelbaum et al.

(2018a) also limited the cmodel magnitude (see Bosch et al., 2018, for the definition of cmodel magnitude)

with icmodel < 24.5, which is conservative compared to the i-band magnitude limit of ⇠26.4 (5� for point

sources; Aihara et al., 2018a). As a result, the first-year shear catalog covers ⌦lens = 136.9 deg2 in total

with six distinct fields (XMM, GAMA09H, GAMA15H, HECTOMAP, VVDS, and WIDE12H). We note

1In this method, galaxy shapes are defined in terms of distortion: (e1, e2) = (e cos 2�, e sin 2�) with e = (a2 � b2)/(a2 + b2)
where a and b are the major and minor axes of galaxy shape respectively, and � indicates the position angle with respect to
the RA/dec coordinate system (Bernstein & Jarvis, 2002).
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that the area coverage of the shear catalog is smaller than that of the CAMIRA clusters (⌦tot = 232.8 deg2)

due to the conservative cuts for the shape measurements. Mandelbaum et al. (2018a), Oguri et al. (2018b),

and Hikage et al. (2019) performed extensive null tests of the shear catalog to show that the shear catalog

satisfies the requirements for HSC first-year weak lensing analyses using cosmic shear and galaxy-galaxy

lensing. Even after relatively conservative cuts, the HSC first-year shear catalog includes galaxy shapes

with a high source number density, 24.6 (raw) and 21.8 (e↵ective) arcmin�2 (Mandelbaum et al., 2018a),

which enables us to measure lensing signals around high redshift HSC CAMIRA clusters (zcl  1.0).

2.2.4 HSC photometric redshift catalog

We use a photometric redshift (photo-z) catalog (Tanaka et al., 2018) for the source galaxies in Chap-

ter 2.2.3 estimated from the S16A internal release data of the HSC five broadband photometry. In the HSC

survey, several di↵erent codes are employed to estimate the photometric redshifts: a machine-learning code

based on a self-organizing map (MLZ), a classical template-fitting code (Mizuki), an empirical polynomial

fitting code (DEmP; Hsieh & Yee, 2014), an extended (re)weighing method to find the nearest neighbors in

color/magnitude space from a reference spectroscopic redshift sample (NNPZ), a neural network code using

PSF-matched aperture (afterburner) photometry (Ephor AB), and a hybrid code combining machine learn-

ing with template fitting (FRANKEN-Z; Speagle et al., 2019, Speagle et al. in prep.) The codes are trained,

validated, and tested with spectroscopic and grism redshifts as well as COSMOS 30-band data with high

accuracy photo-z (Ilbert et al., 2009; Laigle et al., 2016) in Tanaka et al. (2018). The photo-z estimation

is most accurate in the range 0.2 . z . 1.5, where the HSC filter set straddles the 4000Å break (Tanaka

et al., 2018).

Among these catalogs from di↵erent codes, we choose MLZ as the fiducial photometric redshift catalog

for the lensing measurement in Chapter 2.3.2, while we also use the other photometric redshift catalogs to

check the robustness of our results to our choice of MLZ (see Chapter 2.6.1). In this chapter, we use the

redshift probability distribution functions (PDFs), P (z), and randomly (i.e., Monte Carlo) sampled point

estimates drawn from the full PDFs, zmc from Tanaka et al. (2018) for the lensing measurements and the

source galaxy selection. We also use the best point estimates zbest (see section 4.2 of Tanaka et al., 2018)

only for lensing covariance estimation as described in Appendix D.1. We correct for the e↵ect of photometric

redshift bias on the lensing measurements (More et al. in prep) using COSMOS 30-band photo-z data (see

Chapter 2.3.2).

2.3 Measurement

We describe the measurement method for the cluster abundance in Chapter 2.3.1 and the stacked cluster

lensing profile in Chapter 2.3.2.
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2.3.1 Cluster abundance

We use the abundance of CAMIRA clusters in given richness and redshift bins as cluster observables to

constrain the richness-mass relation of the clusters. We divide the CAMIRA clusters into 12 bins for the

abundance measurements with four richness and three redshift bins as shown in Table 2.1. We use the point

estimate of richness and redshift of the clusters to calculate the abundance (i.e., we ignore any errors in the

richness estimation and the cluster photometric redshift).

We measure the abundance of the clusters in each bin corrected for the detection e�ciency (Murata

et al., 2018) as

bN↵,� =
X

l;Nl2N↵,zl2z�

⌦tot

⌦e↵(zl)
, (2.3)

where N↵ and z� denote the ↵-th richness bin and �-th redshift bin in Table 2.1, respectively. The summa-

tion runs over all clusters in each richness and redshift bin. The factor ⌦tot/⌦e↵ corrects for the detection

e�ciency as discussed in Chapter ??. Equation (2.3) gives an estimate of the abundance of the clusters we

could observe for the survey area of ⌦tot without the mask e↵ect. We then do not need to include the mask

e↵ect in the model prediction given in Chapter 2.4.2.

The numbers of clusters in the ↵-th richness and �-th redshift bin before and after the detection

e�ciency correction are given in Table 2.1 by N
uncorr

↵,� and bN↵,� , respectively. The correction is less than

⇠1% for all bins.

2.3.2 Stacked cluster lensing profile

We cross-correlate the positions of CAMIRA clusters with the shapes of background galaxies to measure the

average excess mass density profile around the clusters (hereafter the stacked lensing profile). We follow the

procedure in Mandelbaum et al. (2018a,c) to estimate the stacked lensing profile for a sample of CAMIRA

clusters for ↵-th richness and �-th redshift bin in Table 2.1 as

d�⌃l,↵,�(R) =
1

1 + bml,↵,�(R)

"
1

2 bRl,↵,�(R)

⇥ 1

N
↵,�
ls (R)

X

l,s;Nl2N↵,zl2z�

wls

⌦
⌃�1

cr

↵�1

ls
e+(✓s)

������
R=�l|✓l�✓s|

� 1

N
↵,�
ls (R)

X

l,s;Nl2N↵,zl2z�

wls

⌦
⌃�1

cr

↵�1

ls
c+(✓s)

������
R=�l|✓l�✓s|

3

75 ,

(2.4)

where the subscripts l and s stand for lens (cluster) and source, respectively, and e+ and c+ are the

tangential component of the source galaxy ellipticity and the additive bias with respect to the cluster center,

respectively. The summation runs over all pairs of clusters and source galaxies after a source selection cut
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Table 2.1 Binning scheme for the CAMIRA clusters and characteristics of each bin for the abundance and
lensing measurements.⇤

Abundance bin ↵ � Nmin Nmax hNi zcl,min zcl,max hzcli N
uncorr

↵,�
bN↵,�

1 1 1 15 20 17.1 0.1 0.4 0.27 255 258.3
2 2 1 20 30 24.1 0.1 0.4 0.27 208 210.7
3 3 1 30 60 38.2 0.1 0.4 0.26 92 93.3
4 4 1 60 200 77.4 0.1 0.4 0.26 9 9.1
5 1 2 15 20 17.2 0.4 0.7 0.56 301 301.7
6 2 2 20 30 24.0 0.4 0.7 0.53 210 210.6
7 3 2 30 60 38.9 0.4 0.7 0.54 79 79.2
8 4 2 60 200 73.1 0.4 0.7 0.50 7 7.0
9 1 3 15 20 17.0 0.7 1.0 0.84 339 339.2
10 2 3 20 30 23.8 0.7 1.0 0.83 181 181.1
11 3 3 30 60 36.3 0.7 1.0 0.84 65 65.0
12 4 3 60 200 64.7 0.7 1.0 1.0 1 1.0

Lensing bin ↵ � Nmin Nmax hNi zcl,min zcl,max hzcli N
uncorr

↵,�
bN↵,�

1 1 1 15 20 17.1 0.1 0.4 0.27 255 258.3
2 2 1 20 30 24.1 0.1 0.4 0.27 208 210.7
3 3 1 30 200 41.7 0.1 0.4 0.26 101 102.4
4 1 2 15 20 17.2 0.4 0.7 0.56 301 301.7
5 2 2 20 30 24.0 0.4 0.7 0.53 210 210.6
6 3 2 30 200 41.6 0.4 0.7 0.53 86 86.2
7 1 3 15 20 17.0 0.7 1.0 0.84 339 339.2
8 2 3 20 30 23.8 0.7 1.0 0.83 181 181.1
9 3 3 30 200 36.7 0.7 1.0 0.84 66 66.0

⇤ Here ↵ and � denote the bin number for richness and redshift, respectively. Each bin is defined by Nmin,
Nmax, zcl,min, and zcl,max, and hNi and hzcli give the mean values of richness and redshift. N

uncorr

↵,� and bN↵,�

are the abundance measurements without and with the correction discussed in Chapter 2.3.1, respectively.

described below in a given comoving transverse separation bin of R = �l|✓l � ✓s|, where �l is the comoving

distance to each cluster, and ✓l and ✓s are angular positions of the lenses and the sources, respectively. We

use 11 radial bins that are equally spaced logarithmically from 0.42 h
�1Mpc to 14.0 h

�1Mpc in comoving

coordinates. We use area-weighted mean values of comoving radii for the representative radial values. The

value for the first inner bin is 0.51 h
�1Mpc. We do not use lensing profiles at < 0.42h

�1Mpc to avoid a

possible dilution e↵ect (Medezinski et al., 2018b) and an increased blending e↵ect (Murata et al. in prep.)

at such small radii.

The critical surface mass density is defined for a system of lens and source for a flat universe as

⌃�1

cr
(zl, zs) = 4⇡G(1 + zl)�l

✓
1 � �l

�s

◆
(zl  zs) (2.5)

and 0 when zl > zs, where G is the gravitational constant. We average this over the source photometric

redshift PDF for each lens-source pair as

⌦
⌃�1

cr

↵
ls

=

Z 1

zl

dzs⌃
�1

cr
(zl, zs)P (zs). (2.6)



2.3. Measurement 19

In addition, the lens-source pair weight is given as

wls =
⌦tot

⌦e↵(zl)

⌦
⌃�1

cr

↵2
ls

ws, (2.7)

and ws is the source weight defined as

ws =
1

�2
e + e2

rms

, (2.8)

where �e is the measurement error of galaxy ellipticity and erms is the intrinsic per-component root-mean-

square ellipticity estimated in Mandelbaum et al. (2018c) for each source galaxy. The lensing weight factor

⌦tot/⌦e↵(zl) corrects for the e↵ective area di↵erence as a function of cluster redshift as in the abundance

estimator in equation (2.3). We note that this correction to the lensing estimator is small (less than 1%) for

all bins. The denominator in equation (2.4) is the weighted number of lens-source pairs in each separation

bin computed as

N
↵,�
ls (R) =

X

l,s;Nl2N↵,zl2z�

wls

������
R=�l|✓l�✓s|

. (2.9)

The multiplicative bias correction is estimated as

bml,↵,�(R) =

X

l,s;Nl2N↵,zl2z�

mswls

������
R=�l|✓l�✓s|

X

l,s;Nl2N↵,zl2z�

wls

������
R=�l|✓l�✓s|

, (2.10)

where ms is the estimated multiplicative bias for each source galaxy (Mandelbaum et al., 2018c). The

shear responsivity factor represents the statistically-averaged response of galaxy distortions to small shears

(Kaiser et al., 1995; Bernstein & Jarvis, 2002), and is measured as

bRl,↵,�(R) = 1 �

X

l,s;Nl2N↵,zl2z�

e
2

rms
wls

������
R=�l|✓l�✓s|

X

l,s;Nl2N↵,zl2z�

wls

������
R=�l|✓l�✓s|

, (2.11)

which is found to be around 0.83 for all the bins.

Here we describe the source selection cut. As shown in e.g., Medezinski et al. (2018b), it is important

to use a secure background galaxy sample for cluster weak lensing in order to minimize the dilution e↵ect

by cluster member galaxies especially at inner radii. We use the Pcut method (Oguri, 2014) as our fiducial

background source selection cut. In the Pcut method, we select source galaxies whose photometric redshift

PDFs lie mostly beyond the cluster redshift plus some threshold �z:
R1
zl+�z dzP (z) > 0.98. We apply an

additional cut on the randomly sampled redshift from PDFs, zmc < 2.5, for each lens-source pair in equa-
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tion (2.4). We use �z = 0.1 for the fiducial cut since Medezinski et al. (2018b) shows the possible dilution

e↵ect is negligible for the Pcut method with this threshold value at R & 0.5h
�1Mpc. In Chapter 2.6.1, we

also check the robustness of our choice of this source selection cut by using the Pcut method with �z = 0.2

and the color-color cut in Medezinski et al. (2018b). The color-color cut uses the color-color space of g� i vs

r � z for HSC, where cluster red-sequence member galaxies can be well isolated from background galaxies.

In addition, we correct for selection bias from the lower cut on the resolution factor at R2 = 0.3 in the

shape catalog (Mandelbaum et al., 2018c) as

bmsel,l,↵,�(R) = Aselpl,↵,�(R2 = 0.3; R), (2.12)

where Asel = 0.0087 and pl,↵,�(R2 = 0.3; R) is calculated by summation of lens-source weights, wls, in

each of the radial, richness, and redshift bins. This correction is found to be msel ⇠ 0.01 for all bins. We

then correct for the redshift variation of the intrinsic shape noise (Mandelbaum et al., 2018c) by employing

m = 0.03 for 1.0  zbest  1.5 and m = �0.01 for the other redshift ranges, and by averaging this over

lens-source pairs in each bin. This correction is found to be a positive multiplicative bias, but less than 0.01

for all bins.

We also correct for systematic bias e↵ects of the photometric redshift on the lensing measurements

by comparing the critical surface mass density from the photometric redshift estimates against that from

the accurate photometric redshifts in the COSMOS 30-band catalog (Ilbert et al., 2009; Laigle et al.,

2016) with the weak lensing weight wls multiplied by a self-organizing map weight wSOM which adjusts

the COSMOS 30-band photo-z sample to mimic the HSC source galaxy sample (More et al. in prep.).

We assume that the COSMOS 30-band photometric redshift estimates are su�ciently accurate due to the

larger numbers of bands. This method is based on Nakajima et al. (2012) in which the method was applied

to SDSS data, and was also applied in Miyatake et al. (2019) (see their equation 11 for more details).

The debias factor is found to be m ⇠ 0.01 for CAMIRA clusters with 0.1  zcl  0.7 and m ⇠ 0.02

for CAMIRA clusters with 0.7  zcl  1.0 for the fiducial photo-z code MLZ and the fiducial Pcut with

�z = 0.1. The debias factor is similar for the other photo-z catalogs and photo-z cuts. Our result indicates

that the photo-z bias correction is not very large when we average the critical surface mass density over

the photo-z PDF in equation (2.6) with the Pcut method or the color-color cut for the shape catalog.

We also estimate the uncertainties of these correction factors for each richness and redshift bin using the

jackknife resampling technique (Efron, 1982) with ten subsamples of the COSMOS 30-band catalog, where

we recalculate the SOM weight for each jackknife resampled subsample. We estimate the photo-z bias

correction uncertainties as �↵,�,photoz ⇠ 0.001, 0.002, 0.004 for � = 1, 2, 3, respectively, for the fiducial

photo-z catalog and source selection cut. We note that we ignore the impact of photo-z biases, outliers,

and the limited field variance of galaxies due to the small area in the COSMOS 30-band catalog, thus

the uncertainties might be underestimated. These values are used for marginalization together with the
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systematic uncertainty in the overall calibration of the shear �shear = 0.01 (Mandelbaum et al., 2018c) in

Chapter 2.4.3 2.

After the above corrections for d�⌃l,↵,�(R), we also subtract the lensing measurement around random

points as

d�⌃↵,�(R) = d�⌃l,↵,�(R) �d�⌃r,↵,�(R), (2.13)

where d�⌃r,↵,�(R) replaces the clusters with random points in the estimator for d�⌃l,↵,�(R). This subtraction

allows us to measure the excess mass density profile with respect to the background density as stressed in

Sheldon et al. (2004) and Mandelbaum et al. (2005) (also see Singh et al., 2017, for a recent detailed study).

The random subtraction can also correct for an additive bias due to shear systematics including point-spread

function ellipticity errors (Mandelbaum et al., 2005). We use a random catalog of the CAMIRA clusters

presented in Chapter ?? with the same richness and redshift distributions as the data, and there are 100

times as many random points as real clusters in each redshift and richness bin.

2.4 Forward modeling of cluster observables

We adopt a forward modeling approach to model the abundance and stacked lensing profiles (e.g., Zu et al.,

2014; Murata et al., 2018; Costanzi et al., 2018) for a fixed cosmological model. In this approach, we model

the probability distribution of the richness for a given halo mass and redshift, P (ln N |M, z). An alternative

approach models the probability distribution of halo mass for a given richness and redshift, P (ln M |N, z),

as in some previous works (e.g., Baxter et al., 2016; Simet et al., 2017; Melchior et al., 2017; McClintock

et al., 2019).

2.4.1 Richness-mass relation

Following Lima & Hu (2005), we assume that the probability distribution of the observed richness for halos

with a fixed mass and redshift is given by a log-normal distribution as

P (ln N |M, z) =
1p

2⇡�lnN |M,z

exp

 
�x

2(N, M, z)

2�2

lnN |M,z

!
, (2.14)

where x(N, M, z) models the mean relation of ln N parametrized by four model parameters, A, B, Bz, and

Cz as

x(N, M, z) ⌘ ln N �
"
A + B ln

✓
M

Mpivot

◆
+ Bz ln

✓
1 + z

1 + zpivot

◆
+ Cz


ln

✓
1 + z

1 + zpivot

◆�2#
. (2.15)

2We note that we apply this photo-z correction for all photo-z catalogs except for FRANKEN-Z since we do not have the
photo-z estimates for the galaxies with HSC photometry in the COSMOS 30-band catalog from FRANKEN-Z.



22 Chapter 2. The mass-richness relation of optically selected clusters with Subaru HSC first-year data

Hence x(N, M, z) = 0 gives the mean relation of ln N (also the median relation for N) as

hln Ni(M, z) ⌘
Z

+1

�1
d ln N P (ln N |M, z) ln N

= A + B ln

✓
M

Mpivot

◆
+ Bz ln

✓
1 + z

1 + zpivot

◆
+ Cz


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✓
1 + z

1 + zpivot

◆�2
. (2.16)

We adopt Mpivot = 3 ⇥ 1014
h
�1

M� for the pivot mass scale and zpivot = 0.6 for the pivot cluster redshift.

We discuss the validity of including redshift evolution parameters Bz and Cz in Chapter 2.6.3. In this work,

we ignore errors on zcl for simplicity given the small bias and scatter of the cluster redshifts (Oguri et al.,

2018a) as described in Appendix A.

In addition, we assume that the scatter of the richness around the mean relation at a fixed halo mass

and redshift can be parametrized by four parameters, �0, q, qz, and pz as

�lnN |M,z = �0 + q ln

✓
M

Mpivot

◆
+ qz ln

✓
1 + z

1 + zpivot

◆
+ pz


ln

✓
1 + z

1 + zpivot

◆�2
. (2.17)

We also discuss the validity of including redshift evolution parameters, qz and pz, in Chapter 2.6.3. We only

consider the parameter regions of {�0, q, qz, pz} that result in �lnN |M,z > 0 for all halo mass and redshift

for the parameter estimation. In this treatment, �lnN |M,z should be e↵ectively regarded as a total scatter,

including contributions from the intrinsic scatters, the richness measurement errors, the halo orientation

e↵ect (e.g., Dietrich et al., 2014), the projection e↵ect (e.g., Costanzi et al., 2019), and any other source of

observational scatter that may be present.

In summary, we model the richness-mass relation in equation (2.14) with eight model parameters.

We constrain these parameters and check whether this model can reproduce measurements of the cluster

abundance and stacked lensing profiles simultaneously with an acceptable value of �2

min
/dof.

2.4.2 Abundance in richness and redshift bins

Once we fix the richness-mass relation parameters of P (ln N |M, z), we can predict the abundance of

CAMIRA clusters for a given cosmology. For the ↵-th richness bin (N↵,min  N  N↵,max) and the

�-th redshift bin (z�,min  z  z�,max), the abundance of the clusters for the total survey area is given as

N↵,� = ⌦tot

Z z�,max

z�,min

dz
d2

V
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Z
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d ln N P (ln N |M, z)
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2(z)

H(z)
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dM
S(M, z|N↵,min, N↵,max), (2.18)

where �2(z)/H(z) denotes the comoving volume per unit redshift interval and unit steradian, and dn/dM

is the halo mass function at redshift z for a fixed cosmological model. The selection function of halo mass at

a fixed redshift in the richness bin is calculated by integrating the log-normal distribution of P (ln N |M, z)
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over the richness range as

S(M, z|N↵,min, N↵,max) ⌘
Z
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d ln N P (ln N |M, z)
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, (2.19)

where erf(x) is the error function.

2.4.3 Stacked cluster lensing profile in richness and redshift bins

The stacked lensing profile of halos with mass M at redshift zl probes the average radial profile of the matter

distribution around halos, ⇢hm(r; M, zl). Assuming statistical isotropy in the cluster detections, the average

matter distribution around the halos is one-dimensional as a function of separation from the halo center r,

where r is in comoving coordinates. We express the average matter density profile with the cross-correlation

function between the halo distribution and the matter density fluctuation field, ⇠hm(r; M, zl), as

⇢hm(r; M, zl) = ⇢̄m0 [1 + ⇠hm(r; M, zl)] . (2.20)

We note that we use the present-day mean matter density, ⇢̄m0, since we use the comoving density. The

cross-correlation function is connected to the cross-power spectrum, Phm(k; M, zl), via the Fourier transform

as

⇠hm(r; M, zl) =

Z 1

0

k
2dk

2⇡2
Phm(k; M, zl)j0(kr), (2.21)

where j0(x) is the zeroth-order spherical Bessel function. The surface mass density profile is obtained from

a projection of the three-dimensional matter profile along the line-of-sight direction as

⌃(R; M, zl) = ⇢̄m0

Z 1

�1
d� ⇠hm

⇣
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p
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⌘
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Z 1
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kdk

2⇡
Phm(k; M, zl)J0(kR), (2.22)

where J0(x) is the zeroth-order Bessel function and R is the projected separation from the halo center in

comoving coordinates. The excess surface mass density profile around halos, which is the direct observable

from the stacked cluster lensing measurement, is given as

�⌃(R; M, zl) = h⌃(R; M, zl)i<R � ⌃(R; M, zl)

= ⇢̄m0

Z 1

0

kdk

2⇡
Phm(k; M, zl)J2(kR), (2.23)

where h⌃(R; M, zl)i<R is the average of ⌃(R; M, zl) within a circular aperture of radius R, and J2(x) is a

second-order Bessel function.
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We can compute the model prediction for the stacked lensing profile accounting for the distribution of

halo masses and redshifts for CAMIRA clusters in the ↵-th richness and �-th redshift bin as
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The term in square brackets accounts for the non-linear contribution of reduced shear, which might not be

negligible at very small radii (e.g., Johnston et al., 2007), where h1/⌃cri↵,�(R) is measured from pairs of

CAMIRA clusters and source galaxies in each radial bin for the ↵-th richness and �-th redshift cluster bin.

The lens redshift weight of w
↵,�
l (z) is introduced to account for the weight distribution of lens redshift in

the lensing measurement, and is calculated as

w
↵,�
l (z) =

X

l,s;Nl2N↵,zl2z� ,zl2z

wls. (2.25)

More specifically, we compute w
↵,�
l (z) as follows. First we divide the lens-source pairs into 12 lens redshift

bins for each ↵-th richness and �-th redshift bin, which are linearly spaced in zl 2 [z�,min, z�,max]. We then

estimate the weight in equation (2.25) over all sources in each lens redshift bin. We interpolate the weight

values linearly as a function of lens redshift. The normalization factor in the denominator of equation (2.24)

is similar to the abundance prediction in equation (2.18), but is defined accounting for the lens redshift

weight as

N
↵,�
�⌃

=

Z z�,max

z�,min

dz
�

2(z)

H(z)
w

↵,�
l (z)

Z Mmax

Mmin

dM
dn

dM
S(M, z|N↵,min, N↵,max). (2.26)

This lens redshift weight changes the model prediction by less than 1–2% in the lensing profile amplitude

compared to that without accounting for the lens redshift weight.

The identified BCGs as cluster centers can be o↵-centered from the true halo centers (e.g., Lin et al.,

2004; Rozo & Ryko↵, 2014; Oguri, 2014; Oguri et al., 2018a). We marginalize over the e↵ect of o↵-centered

clusters on the lensing profiles in equation (2.24) by modifying the halo-matter cross-power spectrum in

equations (2.22) and (2.23) for CAMIRA clusters in the ↵-th richness and �-th redshift bin as

Phm(k; M, zl) !
⇥
f
↵,�
cen

+ (1 � f
↵,�
cen

)p̃o↵(k; R�,o↵)
⇤
Phm(k; M, zl), (2.27)

following Oguri & Takada (2011) and Hikage et al. (2012, 2013). Here f
↵,�
cen

is a parameter to model the

fraction of centered clusters in the ↵-th richness and �-th redshift bin, and (1 � f
↵,�
cen

) is the fraction of

o↵-centered clusters. While Murata et al. (2018) assigned a model parameter describing the centering

fraction independently for each lensing bin, we employ an empirical parametrization f
↵,�
cen

that depends on
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the average richness and redshift in each bin (see Table 2.1) to reduce the number of model parameters as

f
↵,�
cen

= f0 + fN ln

✓
hNi↵,�
Npivot

◆
+ fz ln

✓
1 + hzcli↵,�
1 + zpivot

◆
, (2.28)

with three model parameters (f0, fN , and fz), where we use Npivot = 25 and zpivot = 0.6 and we restrict the

parameter regions of f0, fN , and fz such that 0 < f
↵,�
cen

< 1 for all richness and redshift bins. The function

po↵(r; R�,o↵) is the normalized one-dimensional radial profile of detected centers by the CAMIRA algorithm

with respect to the true halo center, for which we assume a Gaussian distribution (e.g., Johnston et al., 2007;

Oguri & Takada, 2011) given as po↵(r; R�,o↵) / exp(�r
2
/2R

2

�,o↵), where R�,o↵ is a parameter to model the

typical o↵-centering radius in the �-th lens redshift bins. The Fourier transform of this function is denoted

as p̃o↵(k; R�,o↵) = exp(�k
2
R

2

�,o↵/2). Since the aperture radius of CAMIRA clusters is independent of the

richness, with aperture size of ⇠1 h
�1Mpc in physical coordinates (Oguri et al., 2018a), we use one model

parameter (R�,o↵) for each �-th redshift bin, which is common for all richness bins, with a flat prior from

10�3 to 0.5 ⇥ (1 + hzcli�)h�1Mpc. We note that Oguri et al. (2018a) investigated the o↵set distribution of

centers detected using the CAMIRA algorithm from centers of matched X-ray clusters, and showed that in

most cases the o↵set is less than 0.5h
�1Mpc in physical transverse distances.

We also marginalize over the shape calibration and photometric redshift bias uncertainties by introduc-

ing a nuisance parameter mlens following a Gaussian prior distribution with a mean of zero and a standard

deviation of 0.01 to change the lensing model prediction as

�⌃↵,�(R) ! (1 + m↵,�)�⌃↵,�(R), (2.29)

where m↵,� = mlens ⇥
q
�

2

shear
+ �

2

↵,�,photoz
/0.01. Mandelbaum et al. (2018c) show that the systematic

uncertainty in the overall calibration of the shear is �shear = 0.01, and we use the photometric redshift

bias uncertainty of �↵,�,photoz derived in Chapter 2.3.2. We expect a large correlation in the residual

shape calibration and photometric redshift bias among di↵erent richness and redshift bins, and thus we

conservatively use just one parameter mlens for all bins.

Once the halo mass function dn(M, z)/dM and the three-dimensional halo-matter cross-correlation

⇠hm(r; M, z) or Phm(k; M, z) are provided for a given cosmological model (see Chapter 2.4.4), we can cal-

culate the model prediction of the stacked lensing profile in each richness and redshift bin. The model is

specified by 15 parameters in total for the entire cluster sample of 15  N  200 and 0.1  zcl  1.0:

eight parameters {A, B, Bz, Cz,�0, q, qz, pz} for the richness-mass relation P (ln N |M, z), six parameters

{f0, fN , fz, R1,o↵ , R2,o↵ , R3,o↵} for the o↵-centering e↵ect, and one nuisance parameter (mlens) for the un-

certainty in lensing amplitudes. We use the FFTLog algorithm (Hamilton, 2000) for Fourier transforms,

which allows a fast, but su�ciently accurate and precise computation of the model prediction.
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2.4.4 N-body simulation based halo emulator for the mass function and the

lensing profile

The model predictions must be accurate in order to estimate the model parameters in an unbiased way.

For this purpose, cosmological N -body simulations are one of the methods commonly used in the literature.

Here, we use the database generated by the Dark Quest campaign (Nishimichi et al., 2019) described

in Appendix C to predict the halo mass function and the halo-matter cross-correlation function. The

minimum halo mass of the emulator is 1012
h
�1

M�. Throughout this chapter, we set Mmin = 1012
h
�1

M�

and Mmax = 2⇥1015
h
�1

M� for the minimum and maximum halo masses, respectively, to evaluate the halo

mass integration in the model predictions of abundances and stacked lensing profiles.

For the Planck cosmological model, we use a simple interpolation scheme for a fixed cosmological

model. Specifically, we employ exactly the same cosmological parameters as their fiducial cosmological

model, for which 24 independent realizations of high-resolution runs are available. The relevant statistics

are interpolated as a function of mass and redshift (see Murata et al., 2018). On the other hand, we use

a halo emulator called Dark Emulator in Nishimichi et al. (2019) constructed from the Dark Quest

campaign (see Appendix C for more details), to interpolate over the cosmological parameter space and

compute the predictions for the WMAP cosmological model. This scheme relies on data compression based

on Principal Component (PC) Analysis followed by Gaussian Process Regression for each PC coe�cient.

This is done for a subset of 80 cosmological models. Note that the realizations for the Planck cosmology

are not used in the regression, but rather are used as part of the validation set to assess the performance of

the emulator.

We estimate impacts of the uncertainties in the emulator on constraints of the mass-richness parameters

as follows. For the Planck cosmology, we shift the halo mass function and the halo-matter cross-correlation

function in each bin of halo mass, redshift, and separation length by one standard deviation uncertainty from

the 24 realizations to opposite sides, and we calculate �2 at the best-fit mass-richness relation parameters for

the fiducial analysis below. We find that �2 = 106.9 while we have �2 = 107.0 for the fiducial emulator as

shown in Table 2.2, suggesting that the emulator precision for the Planck cosmology is high enough for our

analysis. For the WMAP cosmology, we estimate the impacts using the outputs of Dark Emulator for the

Planck cosmology by comparing it with the fiducial emulator for the Planck cosmology. Since the realizations

for the Planck cosmology are not used in the regression, di↵erences between the 24 realizations and the

Dark Emulator reveal the typical impact of the uncertainties in the emulator from the Dark Emulator

for the WMAP cosmology. The errors for the model parameters are consistent between the two emulators.

On the other hand, a shift for the median value of A is ⇠ 0.35 compared to the error width, while shifts for

the other parameters are smaller than ⇠ 0.15 compared to the error widths. This suggests that systematic

uncertainties from the emulator for the WMAP cosmology increase the error for A by ⇠ 6% and the errors

for other parameters by ⇠ 1%. Since these impacts of the emulator precision do not change the constraints
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Figure 2.1 Diagonal components of the covariance matrix for the stacked lensing profiles and abundance
measurements for CAMIRA clusters in the fiducial analysis with the photometric redshift catalog MLZ, the
fiducial photometric redshift source selection Pcut with �z = 0.1, and Planck cosmological parameters. We
estimate the shape noise covariance CSN for the lensing measurements by randomly rotating the shapes
in the real shape catalog, and we use analytic covariances to estimate other components of the sample
covariance and Poisson noise where we use the richness-mass parameters of {A, B, Bz, Cz,�0, q, qz, pz} =
{3.16, 0.92, �0.13, 4.17, 0.29, �0.12, �0.02, 0.52}, which are best-fit parameters with the simpler covariance
(see Appendix D.1 for more details). Left: solid curves show the square root of the diagonal elements of
the full covariance C for the lensing measurements in each redshift and richness bin and dashed curves
show the shape noise contribution CSN for comparison. Right: the ratio of the full covariance of the
abundances in each redshift and richness bin, relative to the Poisson contribution. The denominators come
from the model prediction of the abundances N↵,� at the same richness-mass relation parameters as above:
N↵,1 = {255.0, 191.2, 105.8, 17.0}, N↵,2 = {319.6, 198.4, 75.2, 5.0}, N↵,3 = {340.6, 185.2, 54.5, 2.0}.

on the mass-richness relation parameters very significantly, we ignore these uncertainties in this thesis for

simplicity.

2.4.5 Covariance

We must estimate the covariance describing the statistical uncertainties of the stacked lensing profiles

and the abundance. The covariance consists of shape noise covariance from the finite number of lens-

source pairs, Poisson noise for the abundance from the finite number of the clusters, and sample covariance

from an imperfect sampling of the fluctuations in large-scale structure within a finite survey volume (e.g.,

Hu & Kravtsov, 2003; Takada & Bridle, 2007; Oguri & Takada, 2011; Takada & Hu, 2013; Hikage &

Oguri, 2016; Takahashi et al., 2018; Shirasaki & Takada, 2018). We estimate the shape noise covariance

for the stacked lensing profiles directly from the data (e.g., Murata et al., 2018) by repeating lensing

measurements (equation 2.4) for source galaxies with their orientations randomized 15, 000 times. The

shape noise covariance estimated in this manner accounts for the survey geometry and the inhomogeneous

distribution of source galaxies. As discussed in Appendix D.1, we adopt an analytic halo model (Cooray
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Figure 2.2 Correlation coe�cient rij (equation 2.30) of the covariance matrix in Figure 2.1 for the fiducial
setup. The order of data vectors for N↵,� is the same as in Table 2.1. In the fiducial analysis, we do not
include the cross-covariance between the lensing and abundance measurements since its e↵ect on parameter
estimation is small. See Appendix D.1 for more details.

& Sheth, 2002) to compute the sample covariance and the covariance for the abundance assuming that the

distribution of clusters and lensing fields obey a Gaussian distribution. We note that we compute the shape

noise covariance and the sample covariance for each setup of cosmological parameters, photo-z catalog, and

source selection cut as described in Appendix D.1.

In Appendix D.2, we validate the analytic covariance model for the sample covariance by comparing it

with the covariance estimation from 2268 mock catalogs of the source galaxies and the CAMIRA clusters for

the HSC footprint, which are generated from full-sky ray-tracing simulations with halo catalogs (Shirasaki

et al., 2019) based on methods described in Shirasaki et al. (2017) (see also Shirasaki & Yoshida, 2014). The

mock catalogs are based on full-sky, light-cone cosmological simulations constructed from sets of N -body

simulations (Takahashi et al., 2017) with WMAP cosmological parameters (Hinshaw et al., 2013). The

lensing e↵ects at a given angular position are computed by a ray-tracing simulation through the foreground

matter distribution from the multiple lens-plane algorithm (Hamana & Mellier, 2001; Shirasaki et al., 2015).

Each source plane is given in HEALPix format (Górski et al., 2005) with an angular resolution of about

0.43 arcmin. The mock galaxy shape catalog accounts for various e↵ects as in the real data, including survey

geometry, the inhomogeneous angular distribution of source galaxies, statistical uncertainties in the photo-z

estimation of each galaxy, and variations in the lensing weight from observational conditions and galaxy

properties, since the mock catalog is constructed based on the real shape catalog (see Shirasaki et al., 2019,
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for more details). We also construct mock catalogs of the CAMIRA clusters by using the catalog of halos

in each light-cone simulation realization in Takahashi et al. (2017), which are identified with Rockstar

(Behroozi et al., 2013). We refer the readers to Appendix D.2 for more details.

Figure 2.1 shows the diagonal components of the covariance matrix for the fiducial analysis with Planck

cosmological parameters, the fiducial photo-z catalog, and the fiducial source selection cut. The left panel

compares the full covariance with the shape noise covariance for the stacked lensing profiles. The sample

covariance starts to become the dominant contribution even from R = 2h
�1Mpc for the lowest redshift bin

(0.1  zcl  0.4) due to the high source density of the HSC shear catalog (see also Miyatake et al., 2019).

The right panel shows diagonal components of the covariance for the abundance compared to the Poisson

term. The sample variance contributions in the abundance for the lower redshift bins are higher than those

for the higher redshift bins.

Figure 2.2 shows the correlation coe�cient matrix defined as

rij ⌘ C(Di, Dj)p
C(Di, Di)C(Dj , Dj)

, (2.30)

where Di is the i-th component of the data vector D. There are large correlations among neighboring bins

especially for large radii and lower redshift, since the same large-scale structure causes spatially-correlated

fluctuations in the stacked lensing profile and the abundance measurements especially among neighboring

radii or di↵erent richness bins for each redshift bin (Takada & Bridle, 2007; Oguri & Takada, 2011).

We then calculate the signal-to-noise ratio with the measurements and the covariance for the fiducial

analysis with the Planck cosmological parameters. The total signal-to-noise ratio from the stacked lensing

profiles and abundance measurements is 61.0, and the signal-to-noise ratios for the stacked lensing profiles

and the abundance are 53.0 and 30.3, respectively. The lensing signal-to-noise ratios in each redshift bin

are 36.6, 34.2, and 19.3 from the lowest to highest redshift bins.

2.5 Results

In this chapter, we show the posterior distribution of the parameters, the joint probability P�(ln M, ln N) in

each redshift bin, the mass-richness relation P�(ln M |N) in each redshift bin, and the richness-mass relation

P (ln N |M, z), from the joint analysis of the model parameters based on the abundance and lensing profiles

under the fiducial setups. In this work, we fix the cosmological parameters to the Planck cosmology (Planck

Collaboration et al., 2016) or the WMAP cosmology (Hinshaw et al., 2013) as described in Chapter 1.6 to

investigate how and to what degree the di↵erence of the cosmological parameters a↵ects the constraints on

the mass-richness relation without informative priors on the parameters, and to gain insight into cluster

cosmology by comparing the results.



30 Chapter 2. The mass-richness relation of optically selected clusters with Subaru HSC first-year data

2.5.1 Posterior distribution of parameters

We constrain the model parameters by comparing the model predictions with the measurements of the

abundance and the lensing profiles. We perform Bayesian parameter estimation assuming a Gaussian form

for the likelihood, L / |C|�1/2 exp(��2
/2), with

�
2 =

X

i,j

h
D � Dmodel

i

i

�
C�1

�
ij

h
D � Dmodel

i

j
, (2.31)

where D is a data vector that consists of the lensing profiles and the abundance in di↵erent radial, richness,

and redshift bins, Dmodel is the model prediction, and C�1 is the inverse of the covariance matrix (see

Chapter 2.4.5). We use 11 radial bins R in each richness and redshift bin for the stacked lensing profile.

The indices i and j run from 1 to the total number of data points (111 for the fiducial analysis). We perform

the parameter estimation with the a�ne-invariant Markov Chain Monte Carlo (hereafter MCMC) sampler

of Goodman & Weare (2010) as implemented in the python package emcee (Foreman-Mackey et al., 2013).

In Table 2.2, we summarize the results of the parameter estimation, including a description of each

parameter, priors, the median and 68% credible level interval after removing the burn-in chains and marginal-

izing over the other parameters, and �2

min
/dof to show goodness-of-fit under Planck or WMAP cosmology.

In fitting we employ uninformative flat priors for all of the richness-mass relation parameters and the

o↵-centering parameters. We also show the 68% and 95% credible level contours in each two-parameter

subspace, and one-dimensional posterior distributions in Appendix F. Each richness-mass relation parame-

ter is well constrained by the joint analysis compared to its prior. From Table 2.2 and Appendix F, we find

that constraints on A, �0 and q are systematically di↵erent between Planck and WMAP cosmologies mainly

due to the di↵erences in their halo mass functions. On the other hand, constraints on the other parame-

ters are similar to each other. The result for the WMAP cosmology prefers a higher mean normalization

A and lower scatter normalization �0 than for the Planck cosmology. In addition, the result for Planck

cosmology prefers negative q values (i.e., larger scatter at the lower halo mass) more significantly than

the WMAP cosmology, although it is still a < 2� preference. For both cosmological models, o↵-centering

parameters are constrained well compared to their priors. The centering fraction at the pivot richness

and redshift is constrained as f0 = 0.68+0.05
�0.06, which is consistent with fcen = 0.68 ± 0.09 in the analysis

of Oguri et al. (2018a), who estimated the centering fraction without redshift or richness dependences by

comparing CAMIRA cluster centers with X-ray centroids. The richness dependence of the o↵-centering

fraction fN prefers positive values with a high significance, indicating that the higher richness clusters are

centered better than the lower richness clusters. This might be partly because CAMIRA obtained lower

richness values for o↵-centered clusters given that the richness is computed around the identified BCG using

a circular aperture. On the other hand, the redshift dependence parameter fz is consistent with zero. The

o↵-centering radius parameter for each redshift bin R�,o↵ is constrained compared to its prior, but only

marginally.
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We check the validity of our model by monitoring the �2 of the best-fitting models. Since the posterior

distribution of the nuisance parameter mlens for lensing amplitudes is strongly determined by its prior, we do

not include it as a parameter when calculating the number of degrees-of-freedom, thus dof = 111 � 14 = 97

where 111 is the total number of data points for the fitting and 14 is the total number of richness-mass

relation parameters and o↵-centering parameters. We find that �2

min
/dof = 107.0/97 (p-value = 0.23) for

the Planck cosmology, and �2

min
/dof = 106.6/97 (p-value = 0.24) for the WMAP cosmology, both of which

are acceptable p-values. This indicates that we cannot distinguish between Planck and WMAP cosmologies

from the abundance and lensing measurements, partly because of our adoption of a flexible richness-mass

relation.

We also show the comparison of the model predictions from the MCMC chains with the measurements

of the lensing profiles and abundance in Figures 2.3 and 2.4 for Planck and WMAP cosmologies, respectively.

The figures show that the model predictions reproduce the lensing profiles and abundance simultaneously

for both sets of cosmological parameters with the fiducial richness-mass relation model.



32
C
h
ap

ter
2.

T
h
e
m
ass-rich

n
ess

relation
of

op
tically

selected
clu

sters
w
ith

S
u
b
aru

H
S
C

fi
rst-year

d
ata

Table 2.2 The model parameters, priors, and parameter estimations from our joint analysis of lensing and abundance measurements.⇤

Parameter Description Prior Median and Error Median and Error
Planck WMAP

A hln Ni at pivot mass scale and pivot redshift flat[2, 5] 3.15+0.07
�0.08 3.36+0.05

�0.06

B Coe�cient of halo mass dependence in hln Ni flat[0, 2] 0.86+0.05
�0.05 0.83+0.03

�0.03

Bz Coe�cient of linear redshift dependence in hln Ni flat[�50, 50] �0.21+0.35
�0.42 �0.20+0.26

�0.34

Cz Coe�cient of square redshift dependence in hln Ni flat[�50, 50] 3.61+1.96
�2.23 3.51+1.32

�1.59

�0 �lnN |M,z at pivot mass scale and pivot redshift flat[0, 1.5] 0.32+0.06
�0.06 0.19+0.07

�0.07

q Coe�cient of halo mass dependence in �lnN |M,z flat[�1.5, 1.5] �0.08+0.05
�0.04 �0.02+0.03

�0.03

qz Coe�cient of linear redshift dependence in �lnN |M,z flat[�50, 50] 0.03+0.31
�0.30 0.23+0.37

�0.35

pz Coe�cient of square redshift dependence in �lnN |M,z flat[�50, 50] 0.70+1.71
�1.60 1.26+1.77

�1.49

f0 Centering fraction at pivot richness and redshift 0 < f
↵,�
cen

< 1 0.68+0.05
�0.06 0.68+0.05

�0.06

fN Coe�cient of richness dependence in f
↵,�
cen

0 < f
↵,�
cen

< 1 0.33+0.10
�0.09 0.33+0.10

�0.09

fz Coe�cient of redshift dependence in f
↵,�
cen

0 < f
↵,�
cen

< 1 �0.14+0.35
�0.34 �0.19+0.34

�0.34

R1,o↵ O↵-centering radius for the first redshift bin flat[10�3
, 0.64] 0.39+0.10

�0.09 0.38+0.10
�0.09

R2,o↵ O↵-centering radius for the second redshift bin flat[10�3
, 0.78] 0.55+0.12

�0.11 0.52+0.12
�0.10

R3,o↵ O↵-centering radius for the third redshift bin flat[10�3
, 0.92] 0.59+0.17

�0.17 0.58+0.17
�0.15

mlens Marginalization parameter of the lensing amplitudes Gauss(0, 0.01) 0.00+0.01
�0.01 0.00+0.01

�0.01

�
2

min
/dof 107.0/97 106.6/97

⇤ In the fiducial analysis, we vary 15 parameters while fixing the cosmological parameters to either Planck or WMAP. We use flat priors for all richness-mass
parameters and o↵-centering parameters, denoted as flat[x, y], with the region between x and y. We use a Gaussian prior for marginalizing over parameters of the
lensing amplitudes, with mean value 0 and standard deviation 0.01 (see around equation 2.29 for more details on the implementation). We additionally restrict
the scatter parameter space to �lnN |M,z > 0 for the range of halo masses and redshifts we consider, 1012  M/[h�1

M�]  2 ⇥ 1015 and 0.1  z  1.0. We also
restrict the o↵-centering fraction parameters space to 0 < f

↵,�
cen

< 1 for all richness and redshift bins. The maximum ranges of priors for the o↵-centering radii
correspond to R < 0.5h

�1Mpc in physical coordinates using the mean redshift value in each redshift bin from Table 2.1. The column labeled as “Median and Error”
denotes the median and the 16th and 84th percentiles of the posterior distribution. We also show the minimum chi-square (�2

min
) with the number of degrees of

freedom (dof) at the bottom row. Since the lensing marginalization parameter is determined strongly by the prior above, we do not include it as a free parameter
when calculating dof (i.e., dof= 97 = 111 � 14, where 111 is the total number of data points and 14 is the total number of richness-mass relation parameters and
o↵-centering parameters). The correlations among the parameters are shown in Appendix F. We adapt Mpivot = 3 ⇥ 1014

h
�1

M�, zpivot = 0.6, and Npivot = 25 for
the pivot values.
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Figure 2.3 The measurements and fitting results of the stacked lensing and abundance with the Planck

cosmological parameters. Points with error bars show the measurements, and the shaded regions show
the 16th and 84th percentiles of the model predictions from the MCMC chains. The error bars denote the
diagonal components of the covariance matrix (see also Figure 2.1). The black dashed curves show the model
predictions at the best-fit parameters. The light-blue dashed curves show contributions from o↵-centered
clusters to lensing profiles at the best-fit model parameters. We show the minimum value of the reduced
chi-square in the upper-right corner. We also give 16th, 50th (median), and 84th percentiles of the mean
mass hM200mi in each lensing panel from the MCMC chains.

2.5.2 Joint probability P�(ln M, ln N) and mass-richness relation P�(ln M |N)

We then calculate the joint probability distribution of halo mass and richness in each redshift bin after

averaging over the redshift range with volume weight d2
V/dzd⌦ = �

2(z)/H(z) as

P�(ln M, ln N) /
Z z�,max

z�,min

dz
�

2(z)

H(z)
P (ln N |M, z)P (ln M |z)

/
Z z�,max

z�,min

dz
�

2(z)

H(z)
P (ln N |M, z)

dn(M, z)

d ln M
(2.32)
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Figure 2.4 Same as Figure 2.3, but for the WMAP cosmological parameters.

where P (ln M |z) is the probability distribution of the halo mass for a given redshift, and thus is proportional

to the halo mass function dn(M, z)/d ln M . The normalization factor is determined in the range of 1012 

M/[h�1
M�]  2⇥1015 and 15  N  200, and we restrict the domain of the joint probability to this range.

We use the best-fit model parameters of the fiducial analysis in Table 2.2 for P (ln N |M, z). The contours

in Figure 2.5 show the joint probability distribution (equation 2.32) in each redshift bin for the Planck or

WMAP cosmological parameters. We obtain the distribution of ln N and ln M in the range of richness

(Nmin = 15, Nmax = 200) for each redshift bin by integrating the joint probability distribution along the

halo mass and the richness directions respectively as

P�(ln N |Mmin  M  Mmax) =

Z
lnMmax

lnMmin

d ln M P�(ln M, ln N) (2.33)

and

P�(ln M |Nmin  N  Nmax) =

Z
lnNmax

lnNmin

d ln N P�(ln M, ln N). (2.34)
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Figure 2.5 Joint probability distribution P�(ln M, ln N) defined in equation (2.32) from the best-fit pa-
rameters in the fiducial analysis in Figures 2.3 and 2.4. The upper panels show the result for the Planck

cosmological parameters for each redshift bin, whereas the lower panels show the result for the WMAP

cosmological parameters. The solid line shows the best-fit model of hln Ni(M, z) and the dashed lines show
the 16th and 84th percentiles of the richness distribution at a fixed mass (i.e., the width of �lnN |M,z). Here,
for simplicity, we use z = 0.3, 0.6, 0.9 as representative values for the redshift bins. The solid line in the
right panel of each plot shows the probability distribution of the richness defined in equation (2.33), and
points with error-bars denote measurements with Poisson errors in finer richness binning. The top panel of
each plot shows the probability distribution of the halo mass defined in equation (2.34).
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Figure 2.6 Conditional probability distribution P�(ln M |N) defined in equation (2.36) from the best-fit
richness-mass relation parameters from the fiducial analysis, for all three redshift bins. Left and right
panels show results for Planck and WMAP cosmological parameters, respectively. The solid line denotes
the median of the mass distribution at a fixed richness for each redshift bin, and the dashed lines denote
the mean mass at a fixed richness hM |Ni (see equation 2.37). The shaded regions show the range of the
16th and 84th percentiles of the mass distribution at a fixed richness.

The richness distributions P�(ln N |Mmin  M  Mmax) shown in Figure 2.5 indicate that the model

reproduces the observed richness function at much finer bins than those used for the analysis. The joint

probability contours in Figure 2.5 show that scatter widths of the mass at a given fixed richness for the

WMAP cosmology are smaller than those for the Planck cosmology for all redshift bins, and that the widths

for the middle redshift bin (0.4  zcl  0.7) are the smallest among the redshift bins for both cosmologies.

We discuss the origin of these results in Chapter 2.6.3.

Since we constrain the richness-mass relation P (ln N |M, z) from a joint analysis, we can compute the

mass-richness relation P (ln M |N, z) using Bayes theorem as

P (ln M |N, z) =
P (ln N |M, z)P (ln M |z)

Z
lnMmax

lnMmin

d ln M P (ln N |M, z)P (ln M |z)

=
P (ln N |M, z)

dn(M, z)

d ln MZ
lnMmax

lnMmin

d ln M P (ln N |M, z)
dn(M, z)

d ln M

(2.35)

where we use the halo mass function for P (ln M |z). We then average the mass-richness relation over the
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Figure 2.7 The median and the 16th and 84th percentiles of the mean and scatter values of hM |Ni and
�lnM |N from the MCMC chains for the fiducial analysis, for all three redshift bins. Note that this figure
di↵ers from Figure 2.6, which shows hM |Ni and �lnM |N at the best-fit parameters only. The left panels
show the results for the Planck cosmological parameters and the right panels for the WMAP cosmological
parameters. We note that �lnM |N is defined by the half width of the 68% percentile region of the mass
distribution at a fixed richness (see text for more details).
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redshift range with volume weight for each redshift bin as

P�(ln M |N) =

Z z�,max

z�,min

dz
�

2(z)

H(z)
P (ln M |N, z)

Z z�,max

z�,min

dz
�

2(z)

H(z)

. (2.36)

We obtain the mean mass for a given richness in each redshift bin as

hM |Ni� =

Z
lnMmax

lnMmin

d ln M P�(ln M |N)M. (2.37)

Figure 2.6 shows the median, mean, and 16% and 84% percentile region of the mass distribution at fixed

richness values in each redshift bin for Planck and WMAP cosmologies, using the best-fit richness-mass

relation parameters of the fiducial analysis. In Appendix E, as a sanity check, we have confirmed that our

constraints are reasonably consistent with the Sunyaev–Zel’dovich (SZ) masses of eight massive clusters in

Miyatake et al. (2019).

We also show the constraint on the mean relation computed in equation (2.37) and the scatter relation

�lnM |N in Figure 2.7 from the MCMC chains after marginalizing over the model parameters (i.e., not only at

the best-fit parameters as shown in Figure 2.6). Since the model generally predicts a skewed distribution of

halo mass for a fixed richness value in ln M space, we define �lnM |N as the half width of the 68% percentile

region of P�(ln M |N) for each redshift bin as �lnM |N = (ln M84 � ln M16)/2, where M84 and M16 are masses

corresponding to the 84th and 16th percentiles of P�(ln M |N) at a fixed richness, respectively. The mean

relations for Planck and WMAP cosmologies are consistent with each other given the error bars for all the

redshift bins, and the mean relation of 0.4  zcl  0.7 has a larger amplitude than in the other redshift bins

for both cosmologies with relatively high significance given the error bars. We constrain the mean relations at

N = 25 with ⇠ 4% precision for 0.1  zcl  0.4 and 0.4  zcl  0.7, and ⇠ 8% precision for 0.7  zcl  1.0.

The scatter relation for the Planck cosmology increases toward lower richness values for all redshift bins,

whereas the scatter for the WMAP cosmology is consistent with a constant value as a function of richness

for all redshift bins. The scatter values for the Planck cosmology are systematically larger than those for

the WMAP cosmology. This result is qualitatively consistent with the one obtained from cosmological

analysis of SDSS redMaPPer clusters in Costanzi et al. (2018), which shows larger scatter values for larger

S8 = �8(⌦m/0.3)0.5 values (S8 = 0.85 for the Planck and S8 = 0.79 for the WMAP cosmology in this work),

although the scatter modeling method is di↵erent from ours. The scatter values in the middle redshift bin

(0.4  zcl  0.7) are also lower than those in the other redshift bins. We discuss the origin of this result in

Chapter 2.6.3.
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Figure 2.8 The mean and scatter relations of the richness distribution given halo masses as a function of
redshift. The left panels show the results for the Planck cosmological parameters and the right panels for
the WMAP cosmological parameters. We show the results for M/(1014

h
�1

M�) = 1, 3, 8 as representative
halo masses. The solid lines show the median values at fixed redshift and the shaded regions show the 16th
and 84th percentiles from the MCMC chains.
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2.5.3 Richness-mass relation P (ln N |M, z)

As complementary results to Figure 2.7 on P�(ln M |N), we show the mean and scatter relations in equa-

tions (2.16) and (2.17) of the richness-mass relation P (ln N |M, z) in Figure 2.8 for typical masses as a

function of redshift. We find that, for both Planck and WMAP cosmologies, the mean relation has a mini-

mum around z ⇠ 0.5 for all typical masses. This is also true for the scatter relation especially for WMAP

cosmology. We also discuss the origin of these constraints in Chapter 2.6.3.

2.6 Discussion

We discuss the robustness of the fiducial results in Chapter 2.6.1, and the complementarity of lensing

profile and abundance measurements to constrain the richness-mass relation parameters in Chapter 2.6.2.

In Chapter 2.6.3, we discuss redshift evolution in the richness-mass relation and the di↵erence between the

middle redshift bin versus the lower and higher redshift bins shown in Chapters 2.5.2 and 2.5.3.

2.6.1 Robustness of our results

Shape and photometric redshift measurement uncertainties

In the fiducial analysis, we marginalize over the shape and photometric redshift uncertainties on the lensing

measurements by including the nuisance parameter mlens in equation (2.29). To check how these uncertain-

ties a↵ect the model parameter constraints, we repeat the MCMC analysis ignoring these errors (i.e., setting

mlens = 0) for the Planck cosmology with the same measurements and covariance as in the fiducial analysis.

We find no significant shift in the best-fit parameters with �2

min
= 106.9 compared to �2

min
= 107.0 for the

fiducial analysis with mlens. We also find the 68% percentile error widths do not change significantly from

the fiducial analysis. Specifically, the di↵erence between the error widths in this modified versus the fiducial

analysis is smaller than 5% of the error widths in the fiducial analysis for all parameters. This result shows

that the impact of these shape and photometric redshift measurement errors on the joint analysis of current

lensing and abundance measurements is negligible when constraining the richness-mass relation.

Di↵erent photometric redshift catalogs or di↵erent photometric redshift cuts

We use the photometric catalog MLZ and the photometric redshift cuts of Pcut with �z = 0.1 for the

fiducial analysis in Chapter ??. We check the robustness of our results by using di↵erent photometric

redshift catalogs (see Chapter 2.2.4) or di↵erent photometric redshift cuts (see Chapter 2.3.2) for the lensing

measurements. Here we assume the Planck cosmological parameters for this test, using the same model

parameters and priors as shown in Table 2.2. We repeat the same procedure for the lensing measurements

and lensing covariance calculation for di↵erent photometric redshift catalogs or cuts to constrain the model

parameters by jointly fitting to the lensing and abundance measurements.
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Figure 2.9 Comparison of the mean mass relation hM |Ni defined in equation (2.37) for each redshift bin
among the di↵erent photometric redshift catalogs (upper panels) or the di↵erent source selection cuts (lower
panels) with the Planck cosmological parameters. We show the median and the 16th and 84th percentiles
from the MCMC chains, with respect to the median values of hM |Ni for the fiducial catalog MLZ and the
fiducial cut Pcut with �z = 0.1.
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In Figure 2.9, we show the median and the 16th and 84th percentiles of the mean relation hM |Ni for

each redshift bin with respect to the median from the fiducial result of MLZ and the Pcut method with

�z = 0.1. The top panels in Figure 2.9 show the results with di↵erent photometric redshift catalogs, but

with the same photometric redshift cuts of the Pcut method with �z = 0.1. We show that the mean

relation hM |Ni is consistent between the di↵erence photometric redshift catalogs for all redshift bins. The

lower panels in Figure 2.9 show the results with di↵erent photometric redshift cuts, but with the same

photometric redshift catalog MLZ, showing that the results are consistent with each other given the error

bars for all of the redshift bins. This is partly due to our conservative choice of the radial range from

0.5h
�1Mpc in comoving coordinates for the lensing measurements to avoid possible dilution e↵ects on the

lensing measurement based on Medezinski et al. (2018b). These results show the robustness of our result

to photo-z di↵erences.

2.6.2 Complementarity of abundance and stacked lensing profile measurements

We constrained the model parameters by jointly fitting to the lensing profiles and abundance measurements

in Chapter 2.5. Here we study how lensing profile or abundance measurements alone constrain the model

parameters, which helps explain how the joint analysis lifts the model parameter degeneracies. We note

that we use the same measurements and covariance matrix as in the fiducial analysis.

Figure 2.10 shows the 68% and 95% credible level contours in each two-parameter subspace of the

richness-mass relation parameters. The figure shows that the two observables are complementary to each

other, which is why their combination can e�ciently lift model parameter degeneracies. The lensing mea-

surements constrain the mean normalization parameter A better than the abundance measurements, mainly

because the lensing measurements are more sensitive to the mass scale in each redshift and richness bin. The

lensing measurements also constrain the scatter normalization parameter �0 better than the abundance. On

the other hand, other parameters such as the mass dependence parameter B and the redshift evolution pa-

rameters Bz, Cz in the mean relation are relatively better constrained by the abundance measurements. In

summary, the two observables combine e↵ectively to break complex degeneracies in the model parameters.

2.6.3 Redshift evolution in the richness-mass relation

In this chapter, we use the richness-mass relation model with linear and square redshift evolution parameters

(Bz, Cz, qz, and pz) in the fiducial analysis. When we use the richness-mass relation model without

any redshift evolution parameters (i.e., without Bz, Cz, qz, and pz) we obtain �
2

min
/dof = 151.3/101 (p-

value = 8⇥10�4), and when we adopt the model without square redshift evolution parameters (i.e., without

Cz and pz) we obtain �2

min
/dof = 138.6/99 (p-value = 5 ⇥ 10�3), both of which are unacceptable p-values.

Here we use the Planck cosmological parameters with the same covariance as the fiducial analysis for these

analyses. Given the acceptable p-value of �2

min
/dof = 107.0/97 in Table 2.2, we use the richness-mass model
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Figure 2.10 Posterior distributions of the richness-mass relation parameters and the 68% and 95% credible
level intervals in each two-parameter subspace from the MCMC chains of the fiducial (red), lensing-alone
(navy), and abundance-alone (magenta) analyses with the Planck cosmological parameters. The minimal
prior range of the parameter A is conservatively set to be 2 as shown in Table 2.2, but the abundance-alone
analysis has a tail of the distribution at the minimum value of A, mainly due to the substantial flexibility
in the adopted model for the richness-mass relation and the weaker constraining power of the abundance
on the mean normalization A.

with both linear and square redshift evolution parameters in the fiducial analysis.

With such linear and square redshift evolution parameters, the model prediction can include a non-

monotonic dependence on redshift for a fixed mass in P (ln N |M, z) or a fixed richness in P�(ln M |N). These

non-monotonic behaviors in P (ln N |M, z) and P�(ln M |N) are preferred given the significant improvements

of �2

min
by adding the redshift evolution parameters as shown in Figures 2.5, 2.6, 2.7 and 2.8. More

specifically, the mean relation hM |Ni for the middle redshift bin (0.4  zcl  0.7) has the ⇠20% higher

amplitude than those for the other redshift bins for both the Planck and WMAP cosmologies as shown in

Figure 2.7 with relatively high significance, whereas the scatter relation �lnM |N for the middle redshift bin

is slightly smaller than those for the other redshift bins. In addition, Figure 2.8 shows the non-monotonic

behaviors in the mean and scatter relations of P (ln N |M, z) as a function of redshift.

A possible explanation for the non-monotonic behavior as a function of redshift is di↵erent impacts of
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Figure 2.11 Comparison between the photometric cluster redshifts from the CAMIRA algorithm and the
available spectroscopic redshifts of BCGs without any clipping. We show standard deviations of the di↵er-
ence between the photometric and spectroscopic redshifts in each photometric redshift bin. Here we use 841
clusters with N � 15, 0.1  zcl  1.0, and spectroscopic redshifts. We use 19 bins that are defined such that
each bin includes almost the same number of clusters. The standard deviations around 0.4  zcl  0.55 are
smaller than those in the lower and higher redshift bins (see text for more details).

projection e↵ects at di↵erent cluster redshifts. To illustrate this point, in Figure 2.11 we show a comparison

between the photometric cluster redshifts measured from the CAMIRA algorithm and the available spec-

troscopic redshifts of BCGs without the 4� clipping done in Oguri et al. (2018a). The standard deviations

of the di↵erence between the photometric and spectroscopic redshifts are smaller around 0.4  zcl  0.55

than for lower and higher cluster redshifts, which is also a non-monotonic behavior in terms of redshift. The

larger errors at high redshifts can be understood by larger errors on galaxy magnitudes, whereas the larger

errors at low redshifts are most likely due to the lack of u-band in the HSC survey as well as too-bright

galaxy magnitudes (leading to the saturation in some cases) for such low redshifts.

Optical cluster-finding algorithms in imaging surveys essentially use photometric redshifts of individual

galaxies to identify cluster member galaxies. The larger cluster photometric redshift errors imply that

photometric redshift errors of individual galaxies are also larger, leading to larger contaminations of non-

member galaxies along the line-of-sight direction in estimating the cluster richness. Since the photometric

redshift errors in the middle redshift bin (0.4  zcl  0.7) are smaller than in the other redshift bins, we

expect that CAMIRA separates true member galaxies from non-member galaxies along the line-of-sight

direction more e↵ectively in the middle redshift bin. In this case, the mean richness values hln N(M, z)i

should be smaller than those in the other redshift bins for a fixed mass even when non-monotonic behaviors

in terms of redshift do not exist for intrinsic richness values (i.e., without non-member galaxies along the

line-of-sight direction). This is consistent with the result in Figure 2.8 for the mean relation hln N(M, z)i for
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Figure 2.12 The median and the 16th and 84th percentiles of hM |Ni and �lnM |N from the analysis of
individual redshift bins without redshift evolution parameters in the richness-mass relation, assuming Planck

cosmology. These results are consistent with the result of our fiducial analysis shown in Figure 2.7.

the typical masses. In addition, the non-monotonic behaviors in the order of the mean relation P�(ln M |N)

in Figure 2.7 might also be interpreted by the explanation above. Specifically, the smaller observed richness

for a fixed mass leads to the higher mass for a fixed richness, since we expect a smaller contribution of

non-member galaxies to observed richness values at the redshift with smaller photometric redshift errors.

The projection e↵ect modifies not only the mean relation but also the scatter of the richness-mass

relation. In particular, the larger projection e↵ect implies larger scatter because the projection e↵ect depends

sensitively on the projection direction such that a large projection e↵ect is expected when it is projected

along the direction of the filamentary structure. This is also consistent with the results in Figures 2.7 and

2.8, which show slightly smaller scatter values �lnM |N in the middle redshift bin than the lower and higher

redshift bins, and smaller scatter values �lnN |M,z around zcl ⇠ 0.5 for typical masses, respectively.

To check the robustness of the fiducial result to its parametrization for the redshift evolution, we repeat

the MCMC analysis by using only one of the three redshift bins with a simpler richness-mass relation model

without redshift evolution parameters (i.e., only A, B, �0, and q for the richness mass relation), assuming

Planck cosmology with the same covariances as the fiducial analysis. This model is similar to the one used

in Murata et al. (2018) for SDSS redMaPPer clusters over 0.10  zcl  0.33. Table 2.3 shows the parameter

constraint from this model for each redshift bin. We find that the p-values are acceptable for all redshift bins.

Figure 2.12 shows the median and the 16th and 84th percentiles of hM |Ni and �lnM |N from the parameter

constraints shown in Table 2.3. The mean and scatter constraints shown in Figure 2.12 are consistent with

the fiducial result shown in Figure 2.7 within the errors. It is worth noting that the mean relation in the

middle redshift bin also favors higher values than for the lower and higher redshift bins, which is similar to
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Table 2.3 The median and 68% percentile uncertainties of the model parameters with the Planck cosmological
parameters when we use the measurements only from one redshift bin. ⇤

Parameter Low-z Middle-z High-z
A 3.34+0.25

�0.20 3.19+0.20
�0.15 3.31+0.15

�0.26

B 0.85+0.08
�0.07 0.94+0.09

�0.07 0.88+0.08
�0.05

�0 0.36+0.07
�0.21 0.33+0.06

�0.21 0.27+0.14
�0.20

q �0.06+0.09
�0.11 �0.08+0.09

�0.09 �0.03+0.04
�0.11

f
1,�
cen

0.52+0.18
�0.27 0.43+0.12

�0.21 0.64+0.21
�0.17

f
2,�
cen

0.75+0.13
�0.35 0.62+0.13

�0.16 0.39+0.20
�0.21

f
3,�
cen

0.73+0.13
�0.45 0.86+0.09

�0.12 0.62+0.19
�0.24

R1,o↵ 0.33+0.20
�0.24 — —

R2,o↵ — 0.47+0.19
�0.20 —

R3,o↵ — — 0.50+0.22
�0.25

mlens 0.00+0.01
�0.01 0.00+0.01

�0.01 0.00+0.01
�0.01

�
2

min
/dof 30.6/29 25.2/29 34.4/29

⇤ The “Low-z” column shows the results from the lensing and abundance measurements only from 0.1  zcl 
0.4 (� = 1), “Middle-z” only from 0.4  zcl  0.7 (� = 2), and “High-z” only from 0.7  zcl  1.0 (� = 3).
Here we use the same prior ranges for the model parameters shown in Table 2.2 for the model parameters,
whereas we use di↵erent parameters of f

1,�
cen

, f
2,�
cen

and f
3,�
cen

in equation (2.28) instead of f0, fN , and fz in
Table 2.2. We use a flat prior between 0 and 1 for f

1,�
cen

, f
2,�
cen

and f
3,�
cen

. For these analyses we do not include
redshift evolution parameters when fitting the richness-mass relation.

the fiducial results. This result supports the non-monotonic redshift evolution of the richness-mass relation

found in our fiducial analysis, although the significance is not very high given the larger errors.

2.7 Chapter summary

In this chapter, we present the results of the richness-mass relation analysis of 1747 HSC CAMIRA clusters

in a wide redshift range (0.1  zcl  1.0) with a richness range of N � 15 by jointly fitting to the stacked

weak lensing profiles and abundance measurements from the HSC-SSP first-year data (⇠232 deg2 for the

cluster catalog and ⇠140 deg2 for the shear catalog). The exquisite depth and image quality of the HSC

survey enables us to measure stacked weak lensing signals even for high-redshift clusters at 0.7  zcl  1.0

with a total signal-to-noise ratio of 19.

We constrain the richness-mass relation defined in equations (2.16) and (2.17) assuming a log-normal

distribution for the relation P (ln N |M, z) for both the Planck and WMAP cosmological parameters, based

on a forward modeling method. We constrain the richness-mass relation parameters without informative

priors when marginalizing over o↵-centering e↵ects on the stacked lensing profiles. We employ an N -

body simulation-based halo emulator for theoretical predictions of the halo mass function and the lensing

profiles. We also use an analytic model for the sample covariance matrix, which is validated against the

HSC mock shear and halo catalogs. We find that our model simultaneously fits the stacked lensing profiles

and abundance measurements quite well for both the Planck and WMAP cosmological parameters with

�
2

min
/dof = 107.0/97 and �2

min
/dof = 106.6/97, respectively. We check the robustness of the results against

the choice of di↵erent photo-z catalogs and source selection cuts. We also show how the stacked lensing and
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abundance measurements individually constrain the model parameters, and show that the joint analysis

e�ciently breaks the richness-mass parameter degeneracies.

We then derive the mass-richness relation P�(ln M |N) in each redshift bin, using Bayes theorem from

the constraint on P (ln M |N, z). We show that the mean relations hM |Ni in each redshift bin are consistent

between the Planck and WMAP cosmological parameters within the errors, but the scatter relation values

�lnM |N for the Planck cosmological model are larger than those for the WMAP model. In addition, scatter

values for the Planck model increase toward lower richness values, whereas those for the WMAP model are

consistent with constant values as a function of richness.

We also show that we need to include the linear and square redshift-dependent parameters in terms

of ln(1 + z) for the mean and scatter relations in P (ln N |M, z) to have acceptable p-values. The models

without such redshift-dependent parameters resulted in much worse p-values. By including the square

redshift-dependent parameters, we show that the mean relation hM |Ni in the middle redshift bin has ⇠20%

higher amplitude than in the lower and higher redshift bins, whereas the scatter relation �lnM |N in the middle

redshift bin is slightly smaller than in the other bins. We ascribe this non-monotonic redshift dependence

to the non-monotonic behavior of the projection e↵ect as a function of redshift, which is supported by the

redshift dependence of cluster photometric redshift errors. Redshift evolution in the mean relation hM |Ni

should be properly accounted for when one uses the stacked weak lensing signals around the HSC CAMIRA

clusters to validate shear and photo-z catalogs, or to define source selection cuts (e.g., Medezinski et al.,

2018b), by matching the cluster weight distributions in terms of cluster redshift and richness values. We

also check the consistency of our fiducial results based on the richness-mass relation including the redshift-

dependent parameters with those from the analysis of individual redshift bins without redshift-dependent

parameters.

Our results indicate that we cannot distinguish between Planck and WMAP cosmological models from

the current abundance and lensing profile measurements. This is partly because of our choice of a flexible

richness-mass relation model without any informative prior constraints on the model parameters. However,

we find that the predicted scatter values are clearly di↵erent between Planck and WMAP cosmologies,

suggesting that any additional constraints on the scatter of the mass-richness relation may break the de-

generacy between these two cosmological models. For instance, one could add other independent probes

(e.g., X-ray temperature, the Sunyaev–Zel’dovich e↵ect, or lensing magnification e↵ect) for constraining the

scatter values in order to distinguish cosmological models from cluster observables. The analysis of lensing

magnification e↵ect might provide complementary information, and will constrain the richness-mass relation

of the HSC CAMIRA clusters (Chiu et al. in prep.).

Another possible observable to break the degeneracy is spatial clustering of clusters. Here we briefly

investigate the di↵erence of the real-space three-dimensional halo-halo correlation function ⇠hh(r) in each

redshift and richness bin between the Planck and WMAP models by using the best-fit richness-mass relation

parameters from the fiducial analyses in this chapter, to roughly assess its power to break the degeneracy.
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We find that the predicted amplitudes of the halo-halo correlation function for the WMAP model are ⇠20–

30% larger than those for the Planck model for all richness and redshift bins at 3 . r . 50h
�1Mpc. This

implies that clustering of clusters adds useful information that is complementary to abundance and lensing,

although careful investigations of cluster photo-z accuracy, redshift-space distortions, and projection e↵ects

should be conducted in order to combine our results with the cluster clustering analysis to obtain tight

cosmological constraints. We leave this exploration for future work.

In addition, our result should be useful for other cluster-related observational studies (e.g., Lin et al.,

2017; Jian et al., 2018; Nishizawa et al., 2018; Miyaoka et al., 2018; Ota et al., 2018; Hashimoto et al.,

2019), including galaxy formation in cluster regions and the mass scale estimation for clusters detected via

strong-lensing, X-ray, and Sunyaev–Zel’dovich e↵ect with richness values. We can also use our constraint

on P (ln N |M, z) to construct mock CAMIRA cluster catalogs with richness values by using halo mass and

redshift in N -body simulations, which may be useful for testing the performance of cluster-finding algorithms

with simulations (e.g., Dietrich et al., 2014; Oguri et al., 2018a; Costanzi et al., 2019).

Our analysis involves several assumptions. Most critically, we have assumed that the CAMIRA clusters

are randomly oriented with respect to the line-of-sight direction in the forward modeling method to compute

the cluster observables from the mass function and the spherically averaged halo-matter cross-correlation

function from N -body simulation outputs. However, this assumption is inaccurate if the CAMIRA clusters

are a↵ected by projections e↵ects such as misidentification of non-member galaxies along the line-of-sight

direction as member galaxies in the richness estimation (e.g., Cohn et al., 2007; Zu et al., 2017; Busch

& White, 2017; Costanzi et al., 2019; Sunayama & More, 2019). Since our cluster selection is based on

richness values, CAMIRA could preferentially detect clusters with filamentary structure along the line-of-

sight direction. Given the correlation between the halo orientation and surrounding large-scale structure,

this e↵ect can change the lensing profile from the spherically-symmetric case (Osato et al., 2018). This

investigation is beyond the scope of this thesis. Further careful investigations of projection e↵ects for

the mass-richness relation are warranted. In order to properly address the projection e↵ects, we need to

construct realistic mock catalogs of the CAMIRA clusters with intrinsic richness values and to derive cluster

observables accounting for the projection e↵ects. Our results might be useful to check the consistency of

such simulation setups with the observations by comparing our measurements and constraints on the mean

and scatter relations with ones from such mock catalogs with projection e↵ects.

We have presented a richness-mass relation analysis from HSC first-year data. We will have ⇠1000

deg2 area for cluster and shear catalogs when the HSC-SSP survey is complete in 2020. The final HSC

cluster analysis has the potential to provide stronger constraints on the richness-mass relation and its bet-

ter applications for cosmological, galaxy formation, and cluster-related studies particularly when combined

with other probes. There is also room for improving the measurement methods e.g., improving the shear

measurement technique to include more galaxy shapes, and increasing the sample of galaxies with spectro-

scopic redshifts independent from the COSMOS 30-band catalog to improve and understand the accuracy
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of cluster photometric redshifts, and also improving the model framework by further accounting for possible

systematic e↵ects such as projection e↵ects.



Chapter 3

The splashback radius of optically

selected clusters with Subaru HSC

Second Public Data Release

We refer to Murata et al. (2020) for this chapter in this censored version of the thesis.
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Chapter 4

Summary and Conclusion

Recent observational constraints in the last five years on the splashback radius around optically selected

galaxy clusters from the redMaPPer cluster-finding algorithm have shown that the observed splashback

radius is ⇠ 20% smaller than that predicted by N-body simulations under the ⇤CDM standard cosmological

model at a high significance (⇠ 4�), with the help of the mass-richness relation from weak gravitational

lensing e↵ects.

In this thesis, we have presented observational and statistical studies of optically selected galaxy clusters

on the mass-richness relation and the splashback radius as a test of the ⇤CDM model with simplified mock

simulation analyses to investigate the selection bias e↵ects of the CAMIRA and redMaPPer cluster-finding

algorithms on the splashback radius in observations.

For this purpose, we employ the data catalogs from the ongoing HSC-SSP for optically selected galaxy

clusters, weak lensing analyses, and photometric galaxies. We use ⇠ 2000 optically selected galaxy clusters

from the independent cluster-finding algorithm CAMIRA at a wide cluster redshift range of 0.1 < zcl < 1.0

thanks to deep and high-resolution HSC images, whereas previous observational works in the literature on

the mass-richness relation and the splashback radius are limited to zcl . 0.7.

We firstly list our main findings and achievements in Chapter 2 as follows:

• We measure stacked weak lensing profiles around the HSC CAMIRA clusters over the wide redshift

range and we detect lensing signals around high-redshift clusters at 0.7 < zcl < 1.0 with a signal-to-

noise ratio of 19.

• We constrain the richness-mass relations P (ln N |M, zcl) of the HSC CAMIRA clusters assuming a log-

normal distribution without informative priors on model parameters, by jointly fitting to the lensing

profiles and abundance measurements under two di↵erent sets of cosmological parameters for the

⇤CDM model based on the CMB measurements from the Planck and WMAP satellites.

• We show that constraints on the mean relation hM |Ni with a precision of ⇠ 5% for each model

are consistent between the Planck and WMAP models, whereas the scatter values �lnM |N for the
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Planck model are systematically larger than those for the WMAP model, which is consistent with the

literature. Furthermore, we show that the scatter values for the Planck model increase toward lower

richness values when employing our flexible parametrization for the mass-richness relation, whereas

those for the WMAP model are consistent with constant values as a function of richness. This result

highlights the importance of the scatter in the mass-richness relation to constrain the cosmological

parameters from galaxy clusters.

• Our constraint on the mass-richness relation is useful to infer masses of observed galaxy clusters as a

bridge between theories and observations.

We secondly list our main findings and achievements in Chapter 3 with the help of the results of

Chapter 2 as follows:

• We detect the splashback feature from the projected cross-correlation measurements between the

clusters and photometric galaxies over the wide redshift range, including for high redshift clusters at

0.7 < zcl < 1.0, thanks to deep HSC images. We investigate the dependence of splashback features on

cluster redshift, richness, galaxy magnitude limits, and galaxy colors over the wide redshift range.

• We find that constraints from red galaxy populations only are more precise than those without any

color cut, leading to 1� precisions of ⇠ 15% for cluster samples at 0.4 < zcl < 0.7 and 0.7 < zcl < 1.0.

We also find that these constraints at 0.4 < zcl < 0.7 and 0.7 < zcl < 1.0 are more consistent with

our model predictions in the ⇤CDM model with the help of our mass-richness relation (. 1�) than

their 20% smaller values as suggested by the previous studies based on redMaPPer clusters (⇠ 2� for

CAMIRA clusters).

• We establish a methodology to investigate selection e↵ects of simplified optical cluster-finding algo-

rithms on the observed splashback features in mock simulations by creating a mock galaxy catalog

from a halo occupation distribution model and for the first time closely resembling the procedure in

data analyses and model prediction calculations with the real data. With this methodology, we find

that such e↵ects are insignificant for the simplified CAMIRA cluster-finding algorithm within our sta-

tistical errors in the observational data analyses. We also find that the redMaPPer-like cluster-finding

algorithm induces a smaller inferred splashback radius in our mock catalog at the level of ⇠ 15%,

which well explains smaller splashback radii in the literature, whereas these biases are significantly

reduced when increasing its aperture size. This finding suggests that aperture sizes of optical cluster

finders that are smaller than splashback feature scales should induce significant biases on the inferred

location of splashback radius.

Based on our findings, for the first time we conclude that the observed splashback radii are consistent with

the theoretical predictions based on the ⇤CDM standard cosmological model and our mass-richness relation

from weak lensing e↵ects for the HSC CAMIRA clusters at our precisions over the wide redshift range
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(⇠ 15% for each bin of 0.1 < zcl < 0.4, 0.4 < zcl < 0.7, and 0.7 < zcl < 1.0), and this is also the case for

the redMaPPer clusters in the literature when accounting for the selection bias e↵ects of the redMaPPer

cluster-finding algorithm, which we find in our mock simulation analyses.

We can improve the precisions on measurements to explore the consistency with the ⇤CDM model

more precisely by employing the upcoming full HSC survey data or other future survey data in various

wavelengths including X-ray and radio, in order to study cosmological and astrophysical aspects of galaxy

clusters and the Universe itself in more detail. Our observational results with the CAMIRA clusters and our

analysis frameworks and methodology are informative to conduct such analyses with properly accounting

for the selection e↵ects in the near future.
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Appendix A

Optical cluster-finding algorithm

The CAMIRA algorithm (Oguri, 2014; Oguri et al., 2018a) is a red-sequence cluster finder based on a stellar

population synthesis model (Bruzual & Charlot, 2003) to predict colors of red-sequence galaxies at a given

redshift and to compute likelihoods of being red-sequence galaxies as a function of redshift. The stellar

population synthesis model gives us how to interpret the observed spectral energy distribution from a given

galaxy based on the theory of stellar evolution. In addition, Oguri et al. (2018a) calibrated the stellar

population synthesis model with spectroscopic galaxies to improve its accuracy (see Figures A.1, A.2, and

A.3 below for more details).

In the CAMIRA algorithm, the richness corresponds to the number of red member galaxies with stellar

mass M⇤ & 1010.2
M� (roughly corresponding to a luminosity range of L & 0.2L⇤) within a circular aperture

with radius R . 1 h
�1Mpc in physical coordinates. This luminosity range is based on the result in Ryko↵

et al. (2012) by minimizing the scatter of X-ray luminosity at a fixed richness for massive clusters with

X-ray images. The CAMIRA algorithm does not include a richness-dependent scale radius to define the

richness, unlike the redMaPPer algorithm (Ryko↵ et al., 2012). The HSC images are deep enough to detect

cluster member galaxies down to M⇤ ⇠ 1010.2
M� even at a cluster redshift zcl ⇠ 1, which allows a reliable

cluster detection at such high redshifts without a richness incompleteness correction. The algorithm employs

a spatially-compensated filter such that the background level is automatically subtracted in deriving the

richness as shown Figure A.4.

The CAMIRA algorithm identifies the brightest cluster galaxy (BCG) for each cluster candidate that is

defined by a peak in the three-dimensional richness map in RA, dec, and redshift space (Oguri, 2014; Oguri

et al., 2018a). The cluster centers are defined as the locations of the identified BCGs. The mask-corrected

richness N and cluster photometric redshift zcl are refined iteratively during the BCG identification process.

The o↵set of BCG positions from matched X-ray cluster centers is investigated in Oguri et al. (2018a). The

bias and scatter in photometric cluster redshifts of �zcl/(1 + zcl) are shown to be better than 0.005 and

0.01 respectively with 4� clipping over most of the redshift range by using available spectroscopic redshifts

of BCGs.
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Figure A.1 The HSC bandpasses. This figure accounts for the reflectivity of all mirrors, transmission of
all optics, filters, the response of CCD, and a typical atmosphere. The lower panel shows the spectrum of
sky emission lines. In this thesis, we use data catalogs related to the five broadbands: grizy. Redshifted
wavelengths of the 4000Å break in the spectrum of galaxies correspond to the filter transitions at zcl ' 0.4
(from g-band to r-band), zcl ' 0.7 (from r-band to i-band), and zcl ' 1.0 (from i-band to z-band). The
4000Å break is a pronounced discontinuity in the spectra of stellar populations due to the absorption of high
energy radiation from metals in the stellar atmospheres and the lack of hot young stars as the main feature
of galaxy spectra. The amplitude of the 4000Å break depends on the mean stellar age and metallicity of a
galaxy. This figure is reproduced from Figure 2 in Aihara et al. (2018a).
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Figure A.2 The relation between redshift and color of red-sequence member galaxies identified by the
CAMIRA cluster-finding algorithm. Red points are CAMIRA cluster member galaxies. The thick solid
lines are the model colors from the stellar population synthesis model (Bruzual & Charlot, 2003) after
calibrations with available spectroscopic redshifts (Oguri et al., 2018a). The median colors of g–r, r–i, and
i–y change rapidly at cluster redshifts 0.1 < zcl < 0.4, 0.4 < zcl < 0.7, and 0.7 < zcl < 1.0 since the HSC
filter set in Figure A.1 straddles redshifted wavelengths of the 4000Å break. Then, these color combinations
for each redshift bin above have information to estimate cluster redshifts based on the calibrated stellar
population synthesis model, as shown in red points for the CAMIRA member galaxies. This figure is
reproduced from Figure 2 in Nishizawa et al. (2018).
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Figure A.3 Color-magnitude diagrams that are derived by stacking photometric galaxies around all CAMIRA
clusters in Nishizawa et al. (2018) at di↵erent cluster redshifts and radial ranges from centers of galaxy
clusters. Color levels show the number of correlated galaxies around CAMIRA galaxy clusters. Overlaid
contours in each panel show the distribution of red-sequence cluster member galaxies identified by CAMIRA.
In this thesis, we define red and blue galaxy populations for each redshift bin by those above and below the
dashed line (a line 2� below the solid line), respectively, in Chapter ?? based on Nishizawa et al. (2018).
Vertical dotted lines are an apparent magnitude cut employed in Nishizawa et al. (2018). This figure is
reproduced from Figure 3 in Nishizawa et al. (2018).
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Figure A.4 The radial filter (a weighting function) for the CAMIRA cluster-finding algorithm in equa-
tion (??) to count red-sequence galaxies around estimated centers of galaxy clusters in the optical cluster-
finding. Note that the x-axis shows a distance from estimated centers of galaxy clusters in physical coordi-
nates.
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Weak gravitational lensing

We briefly review the weak gravitational lensing. We use weak gravitational lensing measurements around

the CAMIRA clusters in Chapter 2 to constrain the mass-richness relation of the CAMIRA clusters. We refer

to review papers, e.g., Bartelmann & Schneider (2001), Schneider (2006), Kilbinger (2015), and Mandelbaum

(2018b) for more details.

B.1 Overview

Gravitational lensing is the unique means of unveiling the distribution of dark matter in the universe. This

e↵ect is based on General Relativity. The gravitational field along line-of-sight directions bends the path of

light rays by distorting space-time. Consequently, the gravitational lensing causes a coherent distortion in

observed images of galaxies, since the degree of lensing e↵ects is stronger for light rays closer to gravitational

sources (e.g., galaxy clusters) in projected lengths even within a galaxy image. Thus, by measuring the

coherent distortion pattern in the galaxy shapes of background galaxies, we can recover the distribution

of the foreground matter, including both baryon and dark matter, and we can estimate masses of galaxy

clusters for the mass-richness relation for instance. The e↵ect is independent of the nature and dynamical

state of matter, allowing us to estimate masses of dark matter halos with weaker assumptions than other

methods (e.g., hydrodynamical masses from X-ray). With the gravitational lensing e↵ects, we can probe

dark matter directly via gravitational fields with telescopes though dark matter does not emit light like

stars and galaxies.

In general, there are two regimes of gravitational lensing: strong and weak. In strong lensing, the

background image is strongly distorted into rings or arcs, when the source, lens, and the observer are closely

aligned. In this case, the lensing can divide the images into multiple ones. In weak lensing, there are only

the e↵ects of small systematic distortion on the single source in response to foreground gravitational fields.

Hence, this e↵ect cannot be distinguished on an individual galaxy basis, since the lensing e↵ect is typically

smaller than the intrinsic shape of the source. After stacking (averaging) over these e↵ects from many
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background galaxies, we can recover these weak lensing signals by reducing the intrinsic shape noise.

In this thesis, we focus on weak gravitational lensing to constrain the mass-richness relation of the

CAMIRA clusters in Chapter 2. The weak gravitational lensing can map the spatial distribution around

galaxy clusters at scales from ⇠ 0.1 h
�1Mpc to ⇠ 50 h

�1Mpc in the angular comoving distance. Thus, we

can employ this phenomenon to study the mass and density profile of galaxy clusters (i.e., their host dark

matter halos), especially to constrain the mass-richness relation in Chapter 2 for the splashback feature

analyses in Chapter 3.

B.2 Lens equation

In the thin lens approximation, where the light is deflected only at the lens plane, and Born approximation,

the deflection of light by a point object of mass M is given as,

↵̂ = �2
@

@⇠

Z 1

�1
dz

GMp
⇠2 + z2

=
4GM

⇠

= 1.7500
✓

M

M�

◆✓
⇠

R�

◆�1

= 2↵̂N , (B.1)

where ⇠ is the impact parameter (the distance between the light and the lens at the lens plane), ↵̂N is

the prediction of the Newtonian value, and the direction of z is along with the line-of-sight direction from

observers (i.e., telescopes and us). The thin lens approximation is, in general, a valid assumption since

a typical size of galaxy clusters (⇠ 1 h
�1Mpc) is much smaller than a typical distance from background

galaxies to us (⇠ 1 h
�1Gpc). Figure B.1 shows this configuration.

M

�

�̂

Figure B.1 The deflection angle by the lensing from a point mass. The mass is M . The impact parameter
is ⇠. The gravitational field induced by the point mass causes the deflection denoted by ↵̂. Note that the
deflection angle ↵̂ in this figure is larger than the reality for the visualization.

In the case of weak gravitational field (i.e., small deflection angles), the deflection angle of a light with

spatial trajectory ~r = (⇠1(�), ⇠2(�), r3(�)) with the a�ne parameter � passing though the three-dimensional



62 Weak gravitational lensing

mass density ⇢(~r0) is given from the generalization of equation (B.1) as,

~̂↵(~⇠) = 4G

Z
d2
⇠
0
Z

dr
0

3
⇢(⇠

0

1
, ⇠

0

2
, r

0

3
)
~⇠ � ~⇠

0

|~⇠ � ~⇠
0 |2

. (B.2)

The surface mass density is defined as the projected mass density on to the lens plane:

⌃(~⇠) =

Z
dr3 ⇢(⇠1, ⇠2, r3). (B.3)

Then, equation (B.2) can be written as,

~̂↵(~⇠) = 4G

Z
d2
⇠
0
⌃(~⇠0)

~⇠ � ~⇠
0

|~⇠ � ~⇠
0 |2

. (B.4)

From the simple geometry and a tiny value of the deflection angle in equation (B.1), the relation

between the angular coordinates on the source and lens planes are calculated:

~� = ~✓ � ~↵(~✓), (B.5)

where ~� is the angular position of the source, ~✓ is the observed angular position of the image, and ~↵(~✓) is

the scaled deflection angle :

~↵(~✓) ⌘ Dds

Ds

~̂↵(Dd
~✓). (B.6)

Here we define the angular diameter distance between the observer, as one with the lens (Dd), one between

the observer and the source (Ds), and one between the lens and the source (Dds). Figure B.2 shows the

configuration.

From equations (B.4) and (B.6), the scaled deflection angle is given as follows,

~↵(~✓) =
1

⇡

Z
d2
✓
0
(✓

0
)
~✓ � ~✓

0

|~✓ � ~✓
0 |2

, (B.7)

where convergence and critical surface mass density are given as respectively,

(~✓) =
⌃(Dd

~✓)

⌃cr

, (B.8)

and

⌃cr =
1

4⇡G

Ds

DdDds

. (B.9)

In the weak lensing regime, || ⌧ 1. From ~r ln |~✓| = ~✓/|~✓2|, where ~r ⌘ ~r~✓, we can introduce a scalar lens

potential  (~✓):

~↵(~✓) = ~r (~✓), (B.10)
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Observer
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Figure B.2 The configuration of the lens system in equation (B.5). Note that the deflection angle ↵̂ in this
figure is larger than the reality for the visualization.

where

 (~✓) =
1

⇡

Z
d2~✓

0
(~✓

0
) ln |~✓ � ~✓

0
|. (B.11)

Since ln |~✓| is the Green function, the convergence is related to the second derivative of the lens potential:

 =
1

2
( ,11 +  ,22) =

1

2
r2
 , (B.12)

where “,1” and “,2” denote the derivation with respect to ✓1 and ✓2, respectively.

B.3 Distortion of finite image sizes: shear

The change of shape by the lensing is described by the Jacobian matrix:

A(~✓) =
@~�

@~✓

(B.13)
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with the components Aij = @�i/@✓j . From equation (B.5), we obtain

A =

0

B@
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0 ��2

��2 0

1

CA , (B.14)

where �1 and �2 are the two components of shear,

� ⌘ �1 + i�2 = |�|e2i'
,

�1 = � cos 2',

�2 = � sin 2', (B.15)

where ' is the angle of the shape direction with respect to the ✓1-axis, and they are related to the second

derivative of the lens potential as the convergence in equation (B.12):

�1 =
1

2
( ,11 �  ,22) (B.16)

�2 =  ,12. (B.17)

As shown in Figure B.3, the convergence  describes the zooming and scaling, the �1 describes the plus

mode and the �2 describes the cross mode in the reference frame.

� > 0

� < 0

�1 > 0

�1 < 0 �2 > 0�2 < 0

Figure B.3 The e↵ects of convergence and shear on a circle. The convergence describes zooming and scaling.
The �1 describes the plus mode, and the �2 describes the cross mode. The shear depends on the choice of
the frame. Note that the distortion from shear is emphasized for the weak lensing.

The conservation of the surface brightness before and after the lensing is described as,

I(~✓) = I
(s)[~�(~✓)], (B.18)
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where I and I
(s) are the surface brightness of the observed image and the intrinsic source image before

the lensing e↵ect. In the weak lensing regime, the Jacobi matrix A is close to the unit matrix. Hence, the

local linear approximation of equation (B.13) around the source position ~�0 and the corresponding image

positions ~✓0 gives,

~� � ~�0 ' A(~✓0) · (~✓ � ~✓0). (B.19)

From the eigenvalues of the equatoin (B.14), a major and minor axis after the lensing e↵ect for a intrinsic

small circle with a radius R are given as,

a ⌘ R

1 � � |�| =
R

(1 � )(1 � |g|) , (B.20)

b ⌘ R

1 � + |�| =
R

(1 � )(1 + |g|) , (B.21)

respectively. The reduced shear is defined by,

g(~✓) =
�(~✓)

1 � (~✓)
=

|�|
1 � 

e
2i'

. (B.22)

The axis ratio is calculated as,

r =
b

a
=

1 � |g|
1 + |g| . (B.23)

From this equation, we can obtain the reduced shear from the measured shape after the lensing:

|g| =
1 � r

1 + r
. (B.24)

Figure B.4 shows this configuration.
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Only Convergence

Convergence + Shear

a = R

(1�)(1�|g|)

b = R

(1�)(1+|g|)

After A�1

Figure B.4 The lensing mapping by lensing e↵ects. A small circular source is mapped into an ellipse with
axis ratio r = (1 � |g|)/(1 + |g|). The direction of the ellipse is determined by the phase of � = |�|e2i'

. In
reality, the shape before lensing is not circle. Thus, what we observe on the sky is the sum of the intrinsic
shape and the lensing e↵ects on the source galaxies.

Hence, if all the galaxies have a round shape, we can measure the reduced shear from the measured
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axis ratio after the lensing e↵ects. However, obviously, source galaxies have their intrinsic shapes. Thus, in

the weak lensing regime, the shape distortion is so weak that this e↵ect cannot be observed by individual

images. Hence, we need to average the shapes over a sample of background galaxies to reduce these intrinsic

shape noises.

B.4 Estimator

The two definitions of the shape of elliptical isophotes are commonly used with the axis ratio r = b/a and

the major axis '. The shear and distortion are respectively defined for elliptical isophotes:

✏ ⌘ 1 � r

1 + r
e
2i'

, (B.25)

� ⌘ 1 � r
2

1 + r2
e
2i'

. (B.26)

The shear and distortion are related to each other:

✏ =
�

1 +
p

1 � |�|2
(B.27)

� =
2✏

1 + |✏|2 . (B.28)

With equation (B.19), the shear and ellipticity are converted from the intrinsic ones (✏(s), �(s)) by the

lensing e↵ects to the observed ones (✏, �),

✏ =
✏
(s) + g

1 + g⇤✏(s)
, (B.29)

� =
�

(s) + 2g + g
2
�

(s)⇤

1 + |g|2 + 2Re(g�(s)⇤)
, (B.30)

where ⇤ denotes the complex conjugation. Since, the source galaxies have the intrinsic shapes (i.e., ✏(s) 6= 0),

the observed shape contains the shape noise in addition to the reduced lensing shear g.

For the general brightness profile I(~✓), the center is defined by,

✓̄ =

R
d2
✓ qI [I(~✓)]I(~✓)~✓

R
d2✓ qI [I(~✓)]I(~✓)

, (B.31)

where qI(I) is the weight function. The second-order brightness moments are defined as,

Qij =

R
d2
✓ qI [I(~✓)]I(~✓)(✓i � ✓̄i)(✓j � ✓̄j)R

d2✓ qI [I(~✓)]I(~✓)
. (B.32)

For circle image, Q11 = Q22, Q12 = 0. The size is described by trQ. Using the second-order brightness
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moments, the definition of shear and ellipticity are generalized as,

� =
Q11 � Q22 + 2iQ12

Q11 + Q22

, (B.33)

✏ =
Q11 � Q22 + 2iQ12

Q11 + Q22 + 2
p

Q11Q22 � Q
2
12

. (B.34)

The Q
(s)
ij , �(s) and ✏(s) for the intrinsic shapes are defined in the same way:

Q
(s)
ij =

R
d2
� qI [I(s)(~�)]I(s)(~✓)(�i � �̄i)(�j � �̄j)R

d2� qI [I(s)(~�)]I(s)(~✓)
. (B.35)

From d2
� = detA d2

✓, �i � �̄i = Aim(✓m � ✓̄m) and A ⌘ A(✓̄), the relation before and after the lensing is

derived at the first order as,

Q
(s) = AQAT = AQA, (B.36)

which also is the generalization of equation (B.29).

We assume the intrinsic orientation of the sources is random, thus the expectation value of the shape

vanish:

E(�(s)) = E(✏(s)) = 0. (B.37)

Hence, the expectation values of equation (B.29) give us:

ĝ = E(✏), (B.38)

which is the unbias estimator of the reduced lensing shear. On the other hand, the definition of � is not the

unbias estimator of the reduced lensing shear. We need to correct by the lensing responsivity as we do for

Chapter 2, since the definition of the HSC lensing shear catalog is based on this.

B.5 Tangential shear with respect to galaxy clusters

The �1, �2 depend on the reference coordinate systems. When there is the lens object, the shear is orientated

tangent to the radius vector from the center of the lens. The tangential and cross components are defined

by the a direction � with respect to the lens positions:

�+ = �Re[�e�2i�] = ��1 cos 2�� �2 sin 2�, (B.39)

�⇥ = �Im[�e�2i�] = �1 sin 2�� �2 cos 2�. (B.40)

Figure B.5 shows the example of the coordinate transformation around the lens system. Since the gravita-

tional lensing comes from the scalar perturbation, at the first order the gravitational lensing e↵ects exist

only in the tangential shear. The cross components are used to check the residual systematics errors.
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Figure B.5 The lens system and the gravitational lensing e↵ects on the circles. Thus, we ignore the intrinsic
galaxy shape noise on this figure. To get the tangential shear, we need to rotate the coordinate systems as
equation (B.39) from the global coordinate system. After measuring the tangential shear, we can get the
information on the mass distribution through equation (B.47).

For the general mass distribution, we can derive the relation between the mean tangential shear on

circles and the convergence as follows. We use Gauss’s theorem:

Z ✓

0

d2
# r · r = ✓

I
d' r · ~n, (B.41)

where  is an arbitrary scalar function and ~n is the outward directed normal vector on the integration circle.

We can take  to be the deflection potential in equation (B.11). From equation (B.12), we obtain:

m(✓) ⌘ 1

⇡

Z ✓

0

d2
# (~#) =

✓

2⇡

I
d'

@ 

@✓
, (B.42)

where we use r · ~n =  ,✓. By di↵erentiating this equation with respect to ✓ gives,

dm

d✓
=

m

✓
+

✓

2⇡

I
d'

@
2
 

@✓2
. (B.43)

When we consider the point on the ✓1 axis (� = 0),  ,✓✓ =  11 =  + �1 =  � �+. This expression is

independent of the reference coordinates. Thus, this relation is valid for all ' in the integrated. Hence,

equation (B.43) gives the relation on the mean of the convergence and tangential shear:

dm

d✓
=

m

✓
+ ✓ [h(✓)i � h�+i] . (B.44)
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On the other hand, equaton (B.42) denotes that,

m(✓) = ✓
2
̄(✓) ⌘ 2

Z ✓

0

d# #h(#)i,

dm

d✓
= 2✓h(✓)i. (B.45)

(B.46)

Thus, equation (B.44) gives,

2✓h(✓)i = ✓̄(✓) + ✓ [h(✓)i � h�+i] ,

h�+(✓)i = ̄(✓) � h(✓)i. (B.47)

Thus, from the measurements of the average of the tangential shear in a circle, we can measure the conver-

gence values, which is related to the mass profile of lenses, even if the density is not axi-symmetric.

B.6 Stacked cluster-galaxy lensing

It is di�cult to measure the tangential shear around a cluster with a high signal-to-noise ratio. Thus, we need

to average over a sample of clusters to increase the signal-to-noise ratio. For example, if we are interested in

the mass profile in a richness bin, we stack the clusters in the richness bin. This cross-correlation between

the positions of cluster and source galaxies is called stacked cluster-galaxy lensing.

By averaging over the shear measurements around the clusters can probe their average of (projected)

mass profile:

h�⌃(R)i ⌘ ⌃cr[̄(R/Dd) � hi(R/Dd)]

= ⌃̄(R) � h⌃i(R). (B.48)

If the selection is unbias in terms of the cluster direction, we can assume the three-dimensional spherical

symmetry: ⇢(~r) = ⇢(r). In this case, the tangential shear is related to this three-dimensional density profile

in the thin lens approximation thorough,

h⌃(R)i = 2

Z 1

0

dz ⇢(r =
p

R2 + z2), (B.49)

⌃̄(R) =
2

R2

Z R

0

R
0
dR

0
⌃(R

0
). (B.50)

Using this assumption, we can reconstruct the mean of matter density around clusters by fitting with

the assumed matter density profile. This relation between the matter density profile and weak lensing

measurements is useful to constrain the mass-richness relation described in Chapter 2.
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B.7 Possible systematic errors

Since the weak lensing e↵ects are smaller than the intrinsic shape, we need to be careful about the system-

atics. In the presence of systematics, the relation between the shape measurements and the lensing shear

becomes more complicated in reality.

B.7.1 Point-spread function

One of the main systematics is PSF. It describes the smearing of the image by the sky and telescope optics,

and it changes the observed image profile by a convolution with the PSF function as

I
obs(~✓) =

Z
d2
# I(~#)P (~✓ � ~#). (B.51)

The typical size of PSF of the ground-based telescope is larger than faint galaxies. This increases the size of

the observed image and makes the image rounder than the true image with the lensing e↵ects. In addition,

the PSF is not always circular, thus the observed image can be distorted by its anisotropies like the lensing

shear. The PSF is estimated from the interpolation of the images of stars since their image should be circle

if there are no PSF e↵ects. In the HSC lensing shear catalog, the PSF e↵ects are calibrated with image

simulations assuming a galaxy sample detected in the Hubble Space Telescope with a smaller PSF e↵ect

(Mandelbaum et al., 2018a,c).

B.7.2 Redshift estimation

To calculate the projected mass density profile in equatoin (B.48), we need to calculate ⌃cr(zl, zs) in equa-

tion (B.9) from the estimated lens and source redshift. In the case of the cluster-galaxy lensing, the error of

redshift estimation for the clusters is around 0.01 from the red-sequence technique. However, as the redshift

of the lens system increases, the uncertainty of redshift for the available source galaxies increases due to

zl < zs. Thus, we need to be careful about the redshift estimation to avoid significant biases in lensing

measurements. Since it is generally di�cult to earn spectroscopic redshift for such many and faint galaxies

in surveys, we use redshift estimation based on photometries in several bands (e.g., grizy). Specifically,

we use the HSC photometric redshift catalog for galaxies in the HSC lensing shear catalog in Chapter 2

derived from several codes and methods, which generally employs characteristic features in galaxies such as

the 4000Å break, in Tanaka et al. (2018). These photometric redshifts are validated by a small sample of

spectroscopic redshifts from other surveys to check the performance of the photometric redshifts in Tanaka

et al. (2018).
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B.7.3 O↵-centering

As the redshift of the cluster increases, it becomes more di�cult to estimate the center of the clusters from

the optical data. With o↵-centering e↵ects, the observed tangential profile is smeared at the inner radius.

We marginalized over this o↵-centering e↵ects on the lensing profiles in Chapter 2 when constraining the

mass-richness relation from weak lensing e↵ects by assuming the Gaussian distribution for the o↵-centering

distribution from true centers of galaxy clusters.

B.7.4 Dilution e↵ect

Near the center of the lens object, the foreground galaxies can be misidentified as the source galaxies from the

error of the redshift. There is no lensing e↵ect in the foreground galaxies. Hence, this dilution e↵ect biases

the normalization of the lensing measurements. In Chapter 2, we conservatively select source galaxies for

our lensing measurements to mitigate these dilution e↵ects by employing a probability distribution function

of photometric redshift for each source galaxy.



Appendix C

N-body simulation-based halo

emulator: Dark Emulator

Cosmological N -body simulations are one of the methods commonly used in the literature to model predic-

tions of halo statistics. We use the database generated by the Dark Quest campaign (Nishimichi et al.,

2019) to predict the halo mass function and the halo-matter cross-correlation1, both of which are important

ingredients for our model predictions in the mass-richness analysis in Chapter 2 for the abundance and

the lensing profiles and the splashback feature analysis in Chapter 3 for the splashback radius locations.

Nishimichi et al. (2019) developed a scheme called Dark Emulator to predict statistical quantities of

halos, including the mass function and the halo-matter cross-correlation function as a function of halo mass,

redshift, separation length, and cosmological parameters, based on a series of high-resolution, cosmological

N -body simulations in the Dark Quest campaign (Nishimichi et al., 2019).

The simulation suite is composed of cosmological N -body simulations for 101 cosmological models

within a flat wCDM framework. The simulations trace the nonlinear evolution of 20483 particles in a box

size of 1 or 2h
�1Gpc on a side with mass resolution of ' 1010

h
�1

M� or ' 8 ⇥ 1010
h
�1

M�, respectively.

There are 21 redshift slices for each simulation realization across the range 0  z  1.47. Nishimichi et al.

(2019) employed Rockstar (Behroozi et al., 2013) to identify dark matter halos. The halo mass definition

in the simulations includes all particles within a distance of R200m from the halo center. The minimum halo

mass of the emulator is 1012
h
�1

M�. Note that we also use a halo catalog from one of these simulations

to investigate projection e↵ects on the observational constraints for the splashback features in Chapter ??.

Dark Emulator relies on data compression based on Principal Component (PC) Analysis followed by

Gaussian Process Regression for each PC coe�cient from a subset of 80 cosmological models. Nishimichi

et al. (2019) used the other subsets as a validation set to assess the performance of the emulator. We note

1We define the halo-matter cross-correlation function ⇠3D
hm(r; M, z) as ⇢(r; M, z) = ⇢̄m0[1 + ⇠3D

hm(r; M, z)], where ⇢(r; M, z)
is the average matter density profile around halos with mass M at redshift z and ⇢̄m0 is the present-day mean matter density.
We note that we use the present-day mean matter density since we use the comoving coordinate for the radius and density in
this thesis.
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that Nishimichi et al. (2019) did not use the realizations for the Planck cosmology in the regression.



Appendix D

Covariance for abundance and lensing

measurements

We describe the covariance for the mass-richness relation in Chapter 2 as follows. We use analytic calcula-

tions of the sampling variance contribution to the covariances, assuming that the distribution of clusters and

lensing fields obeys the Gaussian statistics. We describe the analytic model and the detailed estimation pro-

cedure in Appendix D.1, and validate it against realistic shear and cluster mock catalogs in Appendix D.2.

We also use an analytic model for Poisson shot noise in the abundance covariance. On the other hand, we

do not use an analytic model for the shape noise covariance in the lensing profiles, but rather estimate it

directly from the data catalogs as described below.

D.1 Analytic model of the covariance matrix

We employ an analytic covariance model for cluster abundances (Hu & Kravtsov, 2003; Takada & Bridle,

2007; Oguri & Takada, 2011) as

C[N↵,� , N↵0,�0 ] = N↵,��
K
↵↵0�

K
��0 + S�,↵↵0�

K
��0 , (D.1)

where �K↵↵0 denotes the Kronecker delta function. The first term denotes the Poisson shot noise from the

finite number of available clusters and the second term gives the sample covariance as

S�,↵↵0 = N↵,�N↵0,�

Z z�,max

z�,min

dz

H(z)
W

h

↵,�(z)W h

↵0,�(z)��2(z)

Z
`d`

2⇡

���W̃s(`⇥s)
���
2

P
L

mm

✓
k =

`

�
; z

◆
, (D.2)

where W̃s(`⇥s) is the Fourier transform of the survey window function, for which we assume a circular

survey geometry with survey area ⌦tot = ⇡⇥2
s for simplicity: W̃s(`⇥s) = 2J1(`⇥s)/(`⇥s). We use CAMB

(Lewis et al., 2000) for computing the linear matter power spectrum P
L
mm

(k; z). The halo weight function
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is defined as

W
h

↵,�(z) =
⌦tot

N↵,�
�

2(z)

Z
dM

dn

dM
S(M, z|N↵,min, N↵,max)bh(M ; z). (D.3)

Here bh(M ; z) is the bias parameter for halos with mass M at redshift z, for which we employ a halo bias

function presented in Tinker et al. (2010) calculated using the colossus package (Diemer, 2018).

We calculate the covariance model for the stacked lensing profiles among di↵erent redshift, richness,

and radial bins by decomposing it into the shape noise covariance CSN and the sample covariance CSV as

C = CSN + CSV
, (D.4)

where we compute the shape noise covariance by randomly rotating background galaxies (e.g., Murata et al.,

2018). More specifically, we measure the lensing estimators around the clusters in the data catalog with all

the multiplicative biases after randomly rotating background shapes in the HSC data catalog, repeating the

process 15,000 times. We then calculate the covariance among di↵erent richness, redshift, and radial bins

based on these measurements.

For the sample covariance of the lensing profiles, we use a Gaussian covariance (Oguri & Takada, 2011;

Shirasaki & Takada, 2018) as

CSV[�⌃↵,�(Rm), �⌃↵0,�0(Rn)]

=
1

⌦lensh�l,�ih�l,�0i

Z
kdk

2⇡

⇥
C

mn
,↵↵0�(k)Cobs

hh,↵↵0�(k)�K��0 + C�⌃,↵�(k)C�⌃,↵0�0(k)
⇤ bJ2(kRm) bJ2(kRn),

(D.5)

where the power spectrum of convergence fields with h⌃crils terms are defined as

C
mn
,↵↵0�(k) = h⌃crils,↵� (Rm) h⌃crils,↵0� (Rn)

Z
dz

H(z)

✓
⇢̄m0⌃

�1

cr
(z, zs,�)

h�l,�i
�(z)

◆2

Pmm

✓
k
0 =

h�l,�i
�(z)

k, z

◆
,

(D.6)

and h�l,�i is the average of �(z) in �-th cluster redshift bin from the data with N � 15. Here zs,� is the

weighted mean of zs,best (zbest for a source galaxy, s) in �-th cluster redshift bin over all the radial bins as

zs,� =

X

l,s;zl2z�

zs,bestwls

X

l,s;zl2z�

wls

. (D.7)

We find zs,1 = 1.09, zs,2 = 1.30, and zs,3 = 1.57 for the fiducial photo-z catalog and source selection cut
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with the Planck cosmological parameters. The weighted mean critical surface mass density is calculated as

h⌃crils,↵� (R) =

X

l,s;Nl2N↵,zl2z�

⌦
⌃�1

cr

↵�1

ls
wls

������
R=�l|✓l�✓s|

X

l,s;Nl2N↵,zl2z�

wls

������
R=�l|✓l�✓s|

. (D.8)

We use Halofit (Smith et al., 2003) for the nonlinear matter power spectrum based on Takahashi et al.

(2012). The terms C
obs

hh,↵↵0� and C�⌃,↵� are defined as

C
obs

hh,↵↵0�(k) = Chh,↵↵0�(k) +
h�l,�i2⌦tot

N↵,�
�
K
↵↵0 , (D.9)

with

Chh,↵↵0�(k) =

Z z�,max

z�,min

dz

H(z)
W

h

↵,�(z)W h

↵0,�(z)PL

mm
(k; z), (D.10)

and

C�⌃,↵�(k) =
⌦tot

N↵,�
⇢̄m0

Z z�,max

z�,min

dz

H(z)
�

2(z)

Z
dM

dn

dM
S(M, z|N↵,min, N↵,max)Phm(k; M, z). (D.11)

The second-order Bessel function after averaging within radial bins is given as

bJ2(kRn) =
2

R2
n,max

� R
2

n,min

Z Rn,max

Rn,min

dR R J2(kR). (D.12)

We do not account for the window function e↵ect of the cluster and shear catalogs in this analytic model.

In Appendix D.2, we validate this analytical covariance by using realistic mock shear and cluster catalogs.

We also ignore the cross-covariance between the stacked lensing profiles and abundance measurements since

this cross-covariance does not have a large impact in the parameter estimation, which we confirm by using

the cross-covariance estimated from the mock catalogs. Specifically, we repeat the MCMC analysis based

on the fiducial covariance with the cross-covariance from the mock catalogs derived in Appendix D.2 to find

that the 68% percentile widths are consistent with the fiducial ones and the shift of the �2

min
value from the

fiducial value is ⇠ 0.1.

In the parameter estimation, we fix the richness-mass relation parameters for the analytic covariance

model to reduce the model calculation time (especially of the lensing covariance). For each setup of the

photo-z catalog, source selection cut, and the cosmological parameters, we estimate the analytic covari-

ance model as follows. First, we perform the MCMC analysis with a simpler covariance model which does

not include the richness-mass relation dependent terms of C�⌃,↵�(k)C�⌃,↵0�0(k) in equation (D.5) and

Chh,↵↵0�(k) in equation (D.9). We do not fix the richness-mass relation parameters for other terms in

the abundance and lensing profiles. We obtain the best-fit parameters as {A, B, Bz, Cz,�0, q, qz, pz} =
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{3.16, 0.92, �0.13, 4.17, 0.29, �0.12, �0.02, 0.52} for the Planck model, and {A, B, Bz, Cz,�0, q, qz, pz} =

{3.37, 0.84, �0.14, 4.47, 0.17, �0.02, 0.19, 0.50} for the WMAP model with the fiducial photo-z catalog (MLZ)

and source selection cut (Pcut with �z = 0.1). Second, we calculate the covariance with the analytic model

based on these parameters from the simpler covariance to derive the parameter constraints. For the case

of the fiducial photo-z catalog and source selection cut, the richness-mass relation parameters for the co-

variance calculation above are consistent with our final results shown in Table 2.2, and the �2

min
values are

not very di↵erent from the final values shown in Table 2.2. We show our covariance matrix for the fiducial

setup with the Planck cosmological parameters in Figures 2.1 and 2.2.

D.2 Validation against realistic mock shear and cluster catalogs

We validate our model of the covariance matrix presented in Appendix D.1 against the realistic HSC

shear and halo catalogs (Shirasaki et al., 2019, see Chapter 2.4.5 for more details). We use 2268 real-

izations of the mock catalogs that share the same footprints of the shear and halo catalogs as the real

data catalogs. The cosmological parameters for the mock catalogs are the same as those for WMAP

used in this thesis. We assign richness values for halos with M � 1012
h
�1

M� to create the mock cata-

logs of the CAMIRA clusters with the richness values. The richness values are assigned according to the

richness-mass relation parameters consistent with our results shown in Table 2.2 for the WMAP model as

{A, B, Bz, Cz,�0, q, qz, pz} = {3.37, 0.85, �0.14, 4.47, 0.18, �0.05, 0.19, 0.50}. We repeat the measurements

of the abundance and lensing profiles for each realization to calculate the covariance matrix from the 2268

realizations. Here we measure the lensing profiles from the shear values without shape noise as we use the

shape noise covariance estimated in Appendix D.1. We also calculate the covariance contribution CR from

the random subtraction (Singh et al., 2017). As shown in Section 2.3 of Singh et al. (2017), we subtract

CR from the covariance above to account for the random subtraction. Murata et al. (2018) found that this

term is negligible (CR
/C ⇠ 0.01 for the diagonal terms) for the SDSS redMaPPer clusters. Similarly, we

find that these values for the HSC CAMIRA clusters are similar to those for the SDSS redMaPPer clusters

and thus are negligible for the HSC CAMIRA clusters.

In Figure D.1, we show the comparison between the covariance estimated from mock catalogs and the

covariance with the analytic model for the WMAP model using the same richness-mass relation parameters.

Since the resolution of the lensing shear in the mock catalogs is limited to 0.43 arcmin, we compare the

lensing covariance only above an e↵ective resolution limit for each cluster redshift bin. Here we set the

resolution limit by comparing the mean of the lensing profiles from the mock catalogs with the model

prediction (see Chapter 2.4.3). The figure shows that the diagonal components of the covariance with

the analytic model agree well with those from the mock catalogs at better than the ⇠10% level for both

the abundance and lensing profiles measurements. We use the covariance with the analytic model for our

parameter estimation because the covariance matrix from the mock catalogs is a↵ected by the resolution
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Figure D.1 The comparison of diagonal components between the covariance estimated from the
mock catalogs and from the analytic model presented in Appendix D.1 for the WMAP cosmologi-
cal parameters. Here we use the richness-mass relation parameters of {A, B, Bz, Cz,�0, q, qz, pz} =
{3.37, 0.85, �0.14, 4.47, 0.18, �0.05, 0.19, 0.50}, which are consistent with our fiducial result for the WMAP

cosmological parameters shown in Table 2.2. The left panel shows the comparison of the lensing covariance
for each redshift and richness bin. We only show the result on the radial scales that are larger than the
resolution limits in the mock catalog for each redshift bin. We include the shape noise covariance estimated
from randomly rotating galaxy shapes in the data catalog for both covariances. The right panel shows the
comparison of the abundance covariances in each redshift bin. The diagonal parts of the analytic covariances
match the mock covariance to better than ⇠10%.

e↵ect as mentioned above.



Appendix E

Sanity check of the mass-richness

relation

As a sanity check, in Figure E.1, we compare cluster masses of our mass-richness relation with those obtained

from another independent study for the same clusters on the sky in our HSC observation footprint. Here

we use the existing independent mass measurements from the Sunyaev–Zel’dovich (SZ) e↵ect for some HSC

CAMIRA clusters, as summarized in table 1 of Miyatake et al. (2019) with richness values. We employ

eight massive clusters listed in table 1 of Miyatake et al. (2019) for this sanity check. Note that the number

of SZ selected clusters are generally smaller than optically selected clusters at present for a given survey

region. In Figure E.1, we confirm that our results of the mass-richness are reasonably consistent with the

SZ masses described in Miyatake et al. (2019), given the well-known bias in SZ masses (MSZ) compared to

weak lensing masses (MWL) as 1 � b = MSZ/MWL ' 0.7, which is summarized in figure 8 of Miyatake et al.

(2019).
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Figure E.1 A sanity check of our mass-richness relation at the best-fit richness-mass relation parameters
and the Planck cosmology for each redshift range from Figure 2.6. We converted the SZ masses in Miyatake
et al. (2019) into our mass convention of M200m based on the standard module of the colossus (Diemer,
2017).



Appendix F

Model parameter constraint contours

For references, we show model parameter constraint contours as follows.

F.1 Mass-richness relation

We show the model parameter constraint contours in Figure F.1 from the fiducial analysis of the mass-

richness relation in Chapter 2, to show the marginalized one-dimensional posterior distributions for each

parameter and the 68% and 95% credible levels contours for each two-parameter subspace from the MCMC

chains.
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Figure F.1 The model parameter constraints in the fiducial analysis of the mass-richness relation in Chapter 2
for both the Planck and WMAP cosmological parameters. Diagonal panels show the posterior distributions
of the model parameters, and the other panels show the 68% and 95% credible levels contours in each
two-parameter subspace from the MCMC chains.
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