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Abstract

The technological progress in the computational resource, invention of effi-
cient optimization technique, and the enhancement of the capability to handle
enormous amount of variational parameters have accelerated the application of
the neural networks to various tasks. Although the method evolved in the field
of machine learning, the target issues can be more diverse. Numerous problems
in condensed matter physics or statistical physics are excellent candidates, and
indeed new ideas and techniques have been proposed rapidly through integra-
tion of knowledge. Our objective is to develop new frameworks that apply the
neural networks as the machine to solve tasks in condensed matter physics.

In the present thesis, we provide novel methodologies on three topics. The
first is the classification of disordered topological systems using the neural net-
work, trained in the clean limit, to perform ”phase recognition” on data obtained
by numerical calculation. The second is the representation of classical spin sys-
tems in thermal equilibrium. We find that the transformation of the generalized
Ising model into the Boltzmann machines are beneficial from the viewpoint of
Monte Carlo simulation. The third is the representation of the stationary states of
open quantum many-body systems. The variational optimization of the ansatz
based on complex-valued restricted Boltzmann machine allows one to simulate
the desired state far more efficiently compared to the brute-force calculation by
exact diagonalization.
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1
Introduction

The revolutionary success of the (artificial) neural network boosted the ad-
vancement in various computer science fields such as the image or speech recog-
nition and machine translation [1–4]. Although the theoretical understanding on
the success of the neural networks has not been fully explored [5], it is not too
bold to state that the practical factors are three-fold: the drastic improvement
in the computational resource, the development of efficient optimization tech-
nique, and the increase in the number of variational parameters which enhances
the representation power. While the technology itself was invented in the field of
machine learning, the target problems can be ubiquitous; the methodology awaits
further opportunity to exert its potential in other research fields. Numerous prob-
lems in condensed matter physics or statistical physics are excellent candidates,
and indeed novel ideas and techniques have been developed rapidly through
integration of knowledge. To understand this, we start with introducing some
terminologies and notions in machine learning.

Loosely speaking, in machine learning a “machine” which extracts informa-
tion from data to generate predictions is constructed by applying an appropriate
“learning” algorithm. A succinct and insightful definition is given by Mitchell as
follows [6, 7];

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.

Prompted by this elegant description, we find very useful to build such an element-
wise understanding.

Task T. A task, in short, is the problem you want to solve. In an abstract sense,
a task indicates a process that extracts appropriate information via operations on
some quantified data.

1



2 1 Introduction

The major tasks with excellent connections to physics include the classifica-
tion, representation, generation, and regression. Concise descriptions are given
as follows,

• Classification refers to the attempt to provide some discrete label on a data.
In physics language, the objective is to identify qualitative physical prop-
erties such as phases. A classification task is discussed in Chapter 3 of this
thesis.

• Representation aims to obtain low-dimensional expression that reproduces
or approximates the target dataset or model. The equivalent objectives in
physics are diverse: low dimensional variational parametrization of many-
body states, reconstruction of true probability distribution via restricted
measurement recourse, and so on. We consider the representation task in
exact and approximate manner in Chapter 4 and 5, respectively.

• Generation concerns sampling of new data that obeys the probability distri-
bution of some desired model or existing dataset. For instance, increasing
the amount of data based on appropriate inference to improve classification
task or designing a new algorithm with improved autocorrelation can be
understood as the generation.

• Regression involves the prediction of the (usually) continuous output from
a given function whose explicit operation is unknown. For instance, fore-
casting the physical property of a matter from its atomic structure or the
descriptor is considered to be a regression task.

In the current thesis, we intensively focus on the classification and representation
tasks that are expected to advance dramatically by interdisciplinary study. Obvi-
ously, the discussion of the task is associated with that of the nonlinear function
that actually executes the task. Hence, in the current thesis, we emphasize the
importance of “computer program” in the Mitchell’s words, and refer to it as the
machine.

Performance P. The performance is the quantitative indicator which is neces-
sary to evaluate the algorithm, or equivalently the machine. While a random
machine does not satisfy the criteria required for a given task in general, it is nat-
ural to attempt to improve the machine in a quantitative way by optimizing an
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Chapter Task T and Machine M Performance P Experience E

3 Classification by MLP Cross entropy Quantum state, supervised
4 Representation by real BM - Thermal state, -
5 Representation by complex RBM ”Energy” Mixed state, unsupervised

Table 1.1: Element-wise understanding of the contents in Chapter 3, 4, and 5.

appropriate objective that reflects the capability of the algorithm. Finding a well-
defined and numerically stable measure with respect to the task is crucial. A more
frequently-used term equivalent to the performance P is the cost function, which
would be used in this thesis interchangeably. Note that the performance may not
be considered in a case where the exact construction of the machine is the task
itself, such as the case in Chapter 4.

Experience E. The experience is the dataset used to evaluate and improve the
performance of the machine. Machine learning algorithms can be divided into
two types with respect to the property of the dataset: the supervised and the
unsupervised learning. The supervised learning scheme considers a dataset with
every data accompanied with its “answer.” Namely, we have access to both the
input and its corresponding output for the machine. The unsupervised learning,
on the other hand, does not assume the output. Only the input data is available.

Now we have prepared the perspective to discuss physics problems and ma-
chine learning in a unified way, and therefore ready to state the main topic of
this thesis. Namely, our objective is to develop new frameworks that apply the
neural networks as the machine to solve tasks in condensed matter physics. As is
summarized in Table 1.1, we focus on the classification of disordered topological
systems, representation of both classical and quantum systems in particular.

1.1 Classification task in physics

In the classification task, the machine assigns discrete labels for finite- or infinite-
dimensional data. A familiar example is the automated tagging for digital im-
ages. The data representing the RGB values is processed by some “prediction
machine” that calculates the label based on image recognition techniques. The
neural network is commonly used to perform such a complicated mapping from
the RGB values to the label [8]. The machine learning community has recognized



4 1 Introduction

Observation/Experiment Classification 
By Machine

Dataset Prediction

Figure 1.1: Procedure of classification task by machine. A dataset gathered by
observation, experiment, numerical calculation is passed to a machine that per-
forms multiclass labeling.

the task of developing an efficient classification machine as one of the central
problems for visionary, audible or market data. Recent findings show that the
background of the data could be even more diverse; the neural networks can
handle data gathered via scientific experiments or numerical simulations that are
intended to investigate natural phenomena. Of course, including condensed mat-
ter physics.

Needless to say, the classification of phases is one of the fundamental tasks in
physics as well. In the work by Carraquilla and Melko, they showed that the finite
temperature phases of the two-dimensional Ising model can be successfully clas-
sified by a neural network trained by the supervised learning scheme [9]. Here,
the input data is a “gray image” with each binary pixel corresponding to the up or
down spin. The results suggest that the machine learns the feature corresponding
to the local order parameter, and hence becomes capable of not only the classifi-
cation of the unseen data but also prediction of the phase transition temperature.
The classification task in systems with local order parameter is in good connec-
tion with the ordinary image recognition technique, and is confirmed to be valid
in numerous systems in either supervised or unsupervised scheme [10–16].

Nontrivial application has been done for many-body localized states [17–20].
The many-body localization refers to the quantum phenomenon in which a non-
integrable many-body interacting system is prohibited to thermalize due to the
“localization in the Hilbert space” caused by the disorder [21, 22]. Classification
schemes proposed for such a property focus on the behaviour of the entangle-
ment entropy or eigenvalue statistics. The study by Schindler et al. showed that
by feeding a neural network with the entanglement spectra, which is the negative
logarithm of the spectrum of a reduced density matrix for appropriate subsystem,
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one may classify the quantum phase with relatively low numerical cost [17]. Also,
van Nieuwenburg et al. showed that the dynamics of a quantum state, which can
be expected to encode richer information compared to a single eigenstate, can
also be used as the input data for the machine [20, 23].

Even more intriguing direction is the classification of topological phases, which
cannot be characterized by local order parameters as well. Since the discovery of
the quantum Hall effect [24, 25], physicists have been fascinated by the bizarre
concept of classifying quantum states based on the band topology of wave func-
tions up to now. Given the profoundness and abundance of its nature, it is un-
doubtedly counted as one of the most significant and difficult classification tasks
in condensed matter physics. It is very natural to apply the machine learning
approach to promote further understanding; one may take the many-body corre-
lation function as the input for the neural network trained by data generated
from noninteracting fermion systems to classify phases of interacting fermion
systems [26], or take the Fourier-space representation of Bloch components of
a Hamiltonian to feed into machine that learns the formula of winding num-
ber [27]. While these works tackle systems in the clean limit, the real challenge
lies in the disordered regime.

While the disorder and impurity are present in real materials, the commonly-
used formulae for topological invariants break down when the translation sym-
metry is absent. An image-classification-based approach offers a powerful method
to compensate for this gap. In the Chapter 3 of this thesis, we discuss a method to
predict the quantum phase under disorder based on a machine trained to classify
phases in the clean limit. In sharp contrast with the previous works by Ohtsuki
and Ohtsuki [28, 29], we establish a novel method which allows us to investigate
disordered systems that assume knowledge of only the clean limit. Furthermore,
the proposed method is numerically advantageous compared to other methods
such as the transfer matrix method and the noncommutative geometry approach
from the perspective of the variety of applicable models; the former method be-
comes inefficient when multiple phase boundaries approach each other and the
latter is ill-defined when both the bulk and mobility gap is closed. We see that
neural-network-based method is capable of both difficulties.

As the closing of this section, we would like to mention the diverse method-
ology of integrating knowledge in physics and computer science.

• One may focus on the significant difference between the two fields – the
generation of synthetic data from physical models allows one to modify
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the model parameters almost freely. Van Nieuwenburg et al. proposed a
“confusion scheme” to find the ground-truth transition point as the best
criteria obtained by sorting the fictitious “transition point” [30]. Broecker et
al. argued that the sudden change of behavior near the critical point can be
captured by the anomaly detection technique [31].

• Exporting the notion and knowledge of physics is also promising. It is no-
table that the tensor network, which is one of the most powerful “machine”
developed for quantum systems, has been applied to image recognition
tasks [32–36].

• Application of machine learning technique to experimental data is attract-
ing attention [37–39]. In Ref. [39], Zhang et al. trained a classifier trained by
synthetic data generated from physical models with impurity, and applied
to the experimental data obtained by STM.

1.2 Representation task in physics

Another valuable task with progressive results is the representation of physi-
cal states. In the present thesis, we define the representation as the explicit expres-
sion of physical states such as the ground-state wave function of isolated systems
and the stationary-state density matrix of open quantum systems. For instance,
an exactly soluble model can be rephrased as “the model with the exact represen-
tation of the eigenstates available” and an attempt to calculate the ground state
via variational optimization can be described as the “calculation of the approxi-
mate representation of the ground state.” Also, the function (or machine) may be
referred to as “the representation function (machine).”

In a data-driven task, one usually does not have access to the exact represen-
tation, or the ground truth, of the probability distribution from which the dataset
was drawn. The goals of building the representation, which is closely related to
the representation learning in the field of machine learning, are mainly two-fold:

• Higher performance in classification. Constructing an approximate machine
often involves feature extraction of the data by parametrization. This can
be used to improve tasks such as the classification.

• Mass and cheap production of new data. Once the distribution of the data is
learned with sufficient accuracy, sampling can be done from the machine
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Representation 
By Machine

Machine Dataset

sampling

Real Dataset
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(a)

Physical Model
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Representation 
By Machine

sampling

Machine Dataset

(b)

Figure 1.2: Two flavours of representation task. (a) A data-driven approach.
Given a dataset, one trains the machine so that the data generated by the ma-
chine resembles the real ones. Building a parametrized representation is expected
to construct further understanding of the real dataset. (b) A model-driven ap-
proach. Given a model that describes some natural phenomena, one constructs a
machine either approximates or exactly reproduces the original model. The ma-
chine allows one to perform cheaper sampling and accelerates the understanding
of the original model.

instead of the original source.

While computational physics may differ from the ordinary machine learning in
terms of the accessibility to the data resource, as is graphically described in Fig. 1.2,
the both of fields appreciate the above-mentioned points to establish better un-
derstanding of the data or model.

1.2.1 Representation of classical system

Building the approximate representation in classical systems has been stud-
ied intensively in the field of machine learning and statistics. An example is
the inverse engineering of the model that reproduces the obtained dataset. [See
Fig. 1.2(a) for graphical illustration.] Various approaches have been developed [40]
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for parameter estimation including mean field theory [41], contrastive-divergence
method [42], minimum probability flow [43], and the use of variational autore-
gressive model [44].

The approximate representation in condensed matter physics can be used to
accelerate the Monte Carlo simulations such as the classical Ising model on the
square lattice [45–47], the Falicov-Kimball model [48], and the classical spin glass
model [44]. However, construction of such representation requires some extra
numerical cost, and it is desirable to have a training-free algorithm that draws
samples efficiently. As we discuss in Chapter 4, this strongly motivates us to
construct an exact transformation of a model with difficulty in sampling into an-
other equivalent one with different representation in which the cluster update
algorithm can be applied to speed up the simulation in terms of the autocorrela-
tion between the samples. In particular, we consider a mapping of a model with
many-body interacting binary degrees of freedom into the Boltzmann machine.
In other words, we get rid of the higher order interactions at the expense of ad-
ditional auxiliary degrees of freedom. We see that the application of the cluster
update algorithm would significantly reduce the autocorrelation compared to the
vanilla single-spin flip algorithm.

1.2.2 Representation of quantum system

Search of approximate representation has been one of the significant issues in
numerical investigation of quantum many-body systems. The main objective is
to avoid the bottlenecks that arise in principal, namely the exponential increase in
the memory consumption and numerical cost. Unless one builds a quantum sim-
ulator or universal quantum computer with sufficient fidelity, this severely limits
the accessible system sizes via full-space approach such as the exact diagonaliza-
tion, and instead deal with some machine that accurately captures the property
of the physical system with reduced degrees of freedom.

The approach by the tensor network states has been recognized as one of
the most successful methods [49, 50]. In a gapped one-dimensional (1d) sys-
tem, for instance, an ansatz called the Matrix Product State (MPS) gives highly
accurate approximation of the ground state via optimization by the Density Ma-
trix Renormalization Group (DMRG) [51]. This success is currently attributed
to the structure of the quantum entanglement; the entanglement entropy of the
ground state in gapped 1d systems obey the area-law, which is satisfied in the
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MPS [52–54]. The drastic restriction of the Hilbert space enables prompt and pre-
cise search of the objective state. Numerous extensions of the MPS have been
proposed: the Projected Entangled Pair States (PEPS) that are capable of states in
two-dimensions (2d) with area-law entanglement [55]*1, the Multiscale Entangled
Renormalization Ansatz (MERA) for sub-volume-law states such as the ground
states of critical 1d systems [56], and the Tree-Tensor Network (TTN) with the
connectivity of the tensors given by the tree-structure [57]. Compared to the ex-
treme progress in 1d systems, the approximate representation by the tensor net-
work in higher dimensions including 2d is not as striking, and new methods are
actively investigated.

The recent findings for the ability of the neural networks as representation ma-
chine have attracted intensive attention [58–60]. Carleo and Troyer showed that
the restricted Boltzmann machine (RBM), a representation machine with auxil-
iary degrees of freedom that interact with the whole system, can be optimized
via the variational Monte Carlo method to accurately express the ground states
of quantum spin models such as the tranverse-field Ising model in 1d and the
antiferromagnetic Heisenberg model in both 1d and 2d [61]*2. The accuracy for
the 2d system is comparable with that obtained by the tensor network approach.
This is partly understood due to the ability to express states with large entangle-
ment, and the dimension-free construction of the connection between the physi-
cal and auxiliary degrees of freedom. Deng et al. have shown that the maximally
entangled pure state of spin-1/2 system can be expressed with only polynomial
number of parameters with respect to the system size, where the requirement by
the tensor network ansatz scales exponentially [62]. This lead condensed matter
physicists to consider systems with fermionic [63, 64] or bosonic [65, 66] degrees
of freedom, chiral topological states [67–69], anyonic symmetry [70], and topo-
logical order such as the surface codes [71–73].

Despite its capability to express highly-entangled states, the RBM alone does
not open a road to simulate arbitrary physical states efficiently*3; another hidden

*1Calculation of physical observables such as the correlation function based on the canonical
form requires massive numerical cost. This is one of the bottlenecks for the application of the
PEPS.

*2The calculation in Ref. [61] is done for wavefunctions with real and non-nnegative values
under the periodic boundary condition.

*3It is notable that the investigation into one of the major challenge in 2d system, the J1- J2

Heisenberg model [74–76] with controversial property of its ground state in the frustrated regime,
has not been able to exhibit strong merit over the result by tensor network approach.
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layer on top of an RBM, or the deep Boltzmann machine (DBM), would achieve
even higher representability. For instance, arbitrary quantum circuit can be ex-
pressed with an DBM with auxiliary degrees of freedom scaling only linearly
with respect to the qubit number and the circuit depth [77]. The representation
power of the RBM, on the other hand, has been investigated through comparison
of the tensor network states [78], and is currently understood to be equivalent to
the class of variational states named the correlator-product-states [67, 79]. While
Carleo et al. and Freitas et al. developed a method to perform exact imaginary-
time evolution on the DBM, the applicability is limited [80, 81]. It is still not clear
how to utilize the representation power of the DBM.

There has been continuous effort to extend the variational method to the ex-
cited states [82], imaginary time evolution toward the ground state [80, 81] and
the finite temperature state [83]. Although the applicability has been largely
expanded, approximate representations by the neural networks have yet to be
applied to one of the most challenging problems in modern condensed matter
physics – the open quantum many-body systems. It is notoriously difficult to
solve the fundamental equation of motions for such systems, which is often well
captured by the time-homogeneous quantum master equation. Besides the brute-
force calculation by the exact diagonalization, few methods have been developed
up to now. The quantum jump method, which consider dynamics of pure states
that stochastically undergo ”jump” caused by dissipation, would require a large
amount of sampling when the steady state is thermal, and the variational calcula-
tion based on the tensor network ansatz suffers when the quantum entanglement
is large. Motivated by such situations, in Chapter 5, we develop a new method to
simulate the nonequilibrium stationary state of open quantum many-body sys-
tems.

1.3 Organization of this Thesis

Here, let us outline the organization of this thesis. In Chapter 2, we intro-
duce the machines that are used for the classification and representation tasks. In
particular, we focus on the simplest and most versatile machines applied to the
classification and representation tasks. As the classification machine, we intro-
duce the multilayer perceptron and the convolutional neural network. Either is a
non-linear function consisting of huge number of parameters such that arbitrary
function can be expressed by increasing the degrees of freedom. As the repre-
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sentation machine, we introduce the Boltzmann machine. Furthermore, models
with restrictions on the connectivity between the physical and auxiliary spins are
given to define the restricted and deep Boltzmann machines. We also discuss the
complex-valued Boltzmann machine as well.

In Chapter 3, we develop a new scheme to classify the quantum phases of
free-fermion systems under disorder. Given the disorder that keeps the discrete
symmetries of the ensemble as a whole, we argue that translational symmetry,
which is broken in the individual quasiparticle distribution, is recovered statis-
tically by taking the ensemble average. This enables one to classify the quan-
tum phases in the disordered regime using a neural network trained in the clean
limit. We demonstrate our method by applying it to a two-dimensional system
in the class DIII by showing that the result obtained from the machine is totally
consistent with the calculation by other independent methods. Furthermore, the
proposed method is capable of parameter regions in which the transfer martix
method (noncommutative geometry approach) becomes inefficient (ill-defined)
due to the approaching multiple phase boundaries (bulk/mobility gap closing).

In Chapter 4, we find an exact representation of the generalized Ising mod-
els using the Boltzmann machine. We show that the appropriate combination of
the algebraic transformations, namely the star-triangle and decoration-iteration
transformations, allows one to express the many-spin interaction in terms of
fewer-spin interactions at the expense of the degrees of freedom. Furthermore,
we find that the application of such a representation is beneficial from the view-
point of Monte Carlo simulations since the celebrated cluster update algorithm
becomes applicable. We demonstrate this point by applying the cluster-update
algorithm by Swendsen and Wang, and find that the critical slowing down ob-
served in the single-spin flip algorithm is drastically reduced in a model with
two- and three-spin interactions on the Kagomé lattice. Our framework provides
a general and systematic procedure to speed up the Monte Carlo studies in many-
spin interacting models.

In Chapter 5, we develop a numerical algorithm that builds the approximate
representation of stationary states in open quantum many-body systems. Our
algorithm, dubbed as the neural stationary state algorithm, performs a varia-
tional optimization on an ansatz based on the complex-valued restricted Boltz-
mann machine to compute the stationary states of quantum dynamics obeying
the time-homogeneous quantum master equations. This is enabled by consider-
ing a mapping of the stationary-state search problem into finding a zero-energy
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ground state of an appropriate Hermitian operator. Our method is demonstrated
to simulate various dissipative spin systems efficiently, i.e., the transverse-field
Ising models in both one and two dimensions and the XYZ model in one dimen-
sion that are subject to damping effect.

Chapter 6 is devoted to the Summary of this thesis. Some supplemental ma-
terials are provided in Appendices.



2
Machines for Classification and

Representation

In this chapter, we introduce the machines that are used in the classification
and representation tasks. While the flexibility of the neural network allows one to
consider some specific structure that best fits one’s objective *1, here we deal with
the most versatile, simple, and hence popular structures. Also note that the usage
of the machines are not rigorously fixed to specific tasks. Namely, the machines
for representation may ultimately used to improve the accuracy in classification,
and vice versa.

2.1 Machines for Classification

Machines used in the classification task are required to be mathematical mod-
els that take high-dimensional input data to return continuous/discrete values
through deterministic calculations. Among the variety of such models, usually
called as the discriminative models in the field of machine learning, we consider
the artificial neural networks, since it performs very good in numerous classi-
fication tasks. In particular, we introduce one of the most basic models: the
multilayer perceptron (MLP) *2 and the convolutional neural network (CNN).

2.1.1 Multilayer perceptron

The multilayer perceptron (MLP), one of the most simple and typical models
applied to classification tasks, is a nonlinear function that takes an input x to com-
pute an output y through sequential mappings by layers of perceptrons. While
we exclusively consider a model with real values in the following, it can be easily
extended to incorporate complex values.

*1Refer to Neural Network Zoo (http://www.asimovinstitute.org/neural-network-zoo/)
for detailed information.

*2The MLP is also known as the fully-connected neural network, vanilla neural network, feed-
forward neural network etc.

13
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Before discussing the MLP, let us consider a single perceptron [84]. As is
graphically illustrated in Fig. 2.1(a), a single perceptron is a nonlinear function
that applies the activation function to each element of the weighted input. The
concrete expression of a single perceptron that takes an N-dimensional vector
x ∈ RN (or CN*3) to return a value y ∈ R can be given as

y = A(z) = A ◦W(x), (2.1)

z = W(x) = ∑
i

Wixi + b, (2.2)

A(z) = A(z), (2.3)

where W : RN → R is the weighing operation and A : R → R is the activa-
tion operation. The weighing operation in a single perceptron first multiplies the
weight Wi on the i-th input and then add the bias b. The activation operation, on
the other hand, operates a non-linear activation function A such as the sigmoid,
tanh, or ReLU functions.

A set of perceptrons that share an identical input is called a layer. The MLP is
a many-perceptron model with layers that can be uniquely numbered according
to the order of input and output and do not include any intralayer processing.
[See Fig. 2.1(b).] The first and last layers, or the input and output layers, sand-
wich the in between hidden layers which play an important role in increasing
the expressive power to perform feature extraction. In the following, we consider
a MLP with M hidden layers with m-th layer consisting of Nm units. Note that
the input and output layers can be considered as the 0-th and (M + 1)-th layers
in such a notation.

The weighing and activation operations in the m-th layer are given as Wm :
RNm−1 → RNm and Am : RNm → RNm , respectively. Correspondingly, the output
is calculated as

y = AM+1 ◦WM+1 ◦ · · · ◦ A1 ◦W1(x), (2.4)

where the intermediate output from the (m− 1)-th layer y(m−1) ∈ RNm−1 is pro-

*3It is natural to consider extension to complex-valued ones. Although this naively seems to
be suitable to describe complex systems, the analyticity of the activation function would be lost.
Instead, some works have adopted the real-valued network to output both the amplitude and the
phase of the wave function for quantum systems [64–66].
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Figure 2.1: Graphical illustration of (a) single perceptron, (b) multilayer percep-
tron (MLP), and (c) a layer of convolutional neural network (CNN). A single per-
ceptron first sums up the weighted input, and then operates the non-linear ac-
tivation function to return the output. The MLP, which consists of many layers
with such units, would in general have another type of activation function in the
last layer. A CNN also consists of the weighing and activation operations, which
is often subsequently passed to the pooling layer.

cessed to obtained the output from the next layer, y(m), as

y(m) = Am(z(m)) = Am ◦Wm(y(m−1)),

z(m) =
(
Wm(y(m−1))

)
j
= ∑

i
W(m)

ji y(m−1)
i + b(m)

j ,(
Am(z(m))

)
j
= A(m)(z(m)

j ),

(2.5)

where W(m) and b(m) are the weight and bias for the m-th layer and A(m) is the
activation function.

One of the appreciated properties of the neural network is undoubtedly its ex-
pressive power. As long as the activation is not polynomial function, the function
with at least one hidden layer is known to be capable of approximating arbitrary
nonlinear function by increasing the number of hidden neurons [85–87]*4.

2.1.2 Convolutional Neural network

Computer scientists have become aware that the correlation in the visionary
data should be explicitly extracted to perform better classification. This lead to

*4It is notable that although the MLP with a small number of hidden layers are capable of
expressing arbitrary functions, the required number of hidden neurons becomes exponentially
larger compared to those for the deep-layered MLPs.
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the proposal of the convolutional neural network (CNN) [88, 89]. Ordinary type
of a CNN consists of the convolution and pooling operations in addition to the
activation and the ordinary weighing operations.

Given a d-dimensional array X = (x1, ..., xd) ∈ RN1 × · · · ×RNd , the convolu-
tion operation C can be is given as*5

(C(X))i1,...,id
= ∑

m1,...,md

Xi1+m1,...,id+md Km1,...,md , (2.6)

where the kernel K is equivalent to translationally-symmetric weighing. The sub-
scripts denote the elements of the high-dimensional arrays. The sparcity of the in-
teraction and translation symmetry is understood to help the machine to extract
features efficiently. As in the MLP, one may also prepare multiple convolution
filters that simultaneously operates on an input. Note that the convolution op-
eration is usually followed by the activation operation as is shown in Fig. 2.1(c).
We therefore refer to a set of convolution and activation as the convolution layer.

The pooling, on the other hand, is often considered to introduce an operation
that “summarizes” the statistics of the nearby outputs. An example is the max
pooling that operates on an input X as

(P(X))i1,...,id
= max

(m1,...,md)
{Xi1+m1,...,id+md}. (2.7)

While Eq. (2.7) assumes a single “sheet” of input, it can be modified to take more
than one of them. For instance, one may consider max pooling concerning all the
filters that is calculated by the convolution layer.

In an ordinary CNN structure, the output from the layers of convolution and
pooling are passed to fully-connected units which yield the final classification
result. For instance, a network structure named the VGG, which was proposed in
Ref. [90], repeats the pooling per two or three layers of convolution, and connect
to the fully-connected layers with the subsequent softmax function.

The network structure of the CNN is not only understood to be suitable with
image recognition, but also expected to capture quantum entanglement due to
the exponential growth of entanglement entropy with respect to the number of
layers when the pooling is absent [91].

*5Important notions in practical application are the stride and padding. A convolution (or a
pooling) with stride k concerns the operation for every k pixels. Namely, it denotes the translation
of the kernel. The padding, on the other hand, refers to the value of the pixels outside the image
when the number of the pixels and the kernel are not commensurate.
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(a) (b) (c)

Figure 2.2: (a) Boltzmann machine with generic structure, (b) restricted Boltz-
mann machine (RBM) which has a bipartite structure, and (c) deep Boltzmann
machine (DBM) with multiple layers of hidden spins. The white (black) circles
denote the visible (hidden) spins and the black lines correspond to non-zero in-
teraction between spins.

2.2 Machines for Representation

In contrast to the classification task in which one constructs non-linear sepa-
ration criteria between data, the objective of the representation task is to obtain
a low-dimensional representation of some probability distribution that approxi-
mates or exactly represents the given dataset or the physical model. The machines
for this task is referred to as the generative model in the machine learning com-
munity. The high expressive power of the artificial neural networks is also capa-
ble of the representation task. As in the classification task, we introduce the most
vanilla type among such models – the Boltzmann machine (BM). The machine is
employed for exact representation in Chapter 4 and approximate representation
in Chapter 5.

2.2.1 Boltzmann machines

The BM is an artificial neural network which expresses a canonical distribu-
tion reflecting the virtual energy computed from the configuration of local vari-
ables in the system. Although the local variables are allowed to be taken as either
discrete or continuous, here we restrict our discussion to the former for simplic-
ity*6. BMs were originally introduced to approximate (or estimate) the likelihood

*6Two of variable types are discriminated by the terms ”Gaussian” and ”Bernoulli.” For ex-
ample, a model with continuous visible variables and discrete hidden variables are called ”the
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distribution that best fits (or explains) a given dataset consisting of binary vari-
ables [7, 92].

In the following, we define the BM as a likelihood distribution*7 for a set of
Nv binary degrees of freedom, or the visible spins, σ := (σ1, . . . σNv) ∈ S where
S = {+1,−1}Nv . Concretely, the expression of the BM is given as follows,

π(σ) = ∑
h

π̃(σ,h) = ∑
h

e−E(σ,h), (2.8)

−E(σ,h) = ∑
i,j

Wijσihj + ∑
i,i′

Wii′σiσi′ + ∑
j,j′

Wjj′hjhj′ + ∑
i

aiσi + ∑
j

bjhj,

(2.9)

where the configuration of Nh auxiliary binary degrees of freedom, or the hidden
spins, is given as h := (h1, . . . , hNh) ∈ H where H = (+1,−1)Nh . Here, σi and hj

are the i-th visible and j-th hidden spins that are coupled via the 2-spin interaction
Wij, Wii′ and Wjj′ . In addition, the local magnetic fields are denoted by ai and bj

for visible and hidden spins, respectively. The graphical representation of the BM
is given in general by the undirected graph which depicts the spins as the nodes
and the non-zero interactions as the edges. The current thesis also employs such
notation. [See Fig. 2.2 for some examples.]

The expressibility of the BM is enhanced by introducing the hidden spins. This
is similar to the case in the MLP, in which the increasing number of hidden units
enable us to construct a universal approximator which is capable of capturing
any complicated correlation between the visible units. Correspondingly, the BM
also becomes a universal approximator of likelihood distribution by increasing
the number of the hidden spins [93].

Restricted Boltzmann machine The BM with particular structure of connectiv-
ity becomes beneficial from, e.g., numerical implementation cost or stackability
to form deep layers*8. Here, we introduce the restricted Boltzmann machine
(RBM) which is one of the most widely-known examples due to its simplicity.
The RBM has a bipartite structure due to the lack of interactions within the visi-
ble layer or the hidden layer, namely Wii′ = Wjj′ = 0 in Eq. (2.8). See Fig. 2.2(b)
for its graphical representation.

Gaussian-Bernoulli Boltzmann machine.”
*7This is equivalently the Boltzmann factor in statistical mechanics.
*8In fact, the RBM can be used to pre-train the MLP for classification [94, 95]. Namely, one may

tune the parameters layer-by-layer by unsupervised training on dataset, which enables the layers
to perform feature extraction.



2.2 Machines for Representation 19

The likelihood distribution given by the RBM is as follows,

π(σ) = ∑
h

π̃(σ,h) = ∑
h

e−E(σ,h) (2.10)

−E(σ,h) = ∑
i,j

Wijσihj + ∑
i

aiσi + ∑
j

bjhj. (2.11)

Although the connectivity structure and hence the expression is “restricted” com-
pared to the generic BM, any given likelihood distribution can be approximated
with an arbitrary precision by considering exponentially many number of hidden
spins [93].

One of the appreciated properties of the RBM originating from its bipartite
structure is that the conditional probability distributions p(σ|h) and p(h|σ) are
factored with respect to the variables. Given a fixed set of variables h, the distri-
bution for a visible spin configuration can be written as

p(σ|h) =
π̃(σ,h)

∑σ π̃(σ,h)
(2.12)

= ∏
i

exp(∑j Wijσihj + aiσi)

∑σi=±1 exp(∑j Wijσihj + σiai)
= ∏

i
p(σi|h), (2.13)

and also the conditional distribution given the hidden spins can be computed in
parallel as

p(h|σ) = ∏
j

exp(∑i Wijσihj + bjhj)

∑hj=±1 exp(∑i Wijσihj + bjhj)
= ∏

j
p(hj|σ). (2.14)

This is beneficial when we consider Monte Carlo sampling from the distribution
π. Namely, we may consider independent sampling for each local variable, and
hence expect to draw uncorrelated data if the connectivity of the BM is sufficiently
dense.

Deep Boltzmann machine Employing the notion of the layers introduced for
the MLP, we may describe the RBM as a model with a single visible layer and
a hidden layer. A deep Boltzmann machine (DBM), in contrast, has a multiple
layers of latent spins. To be instructive, let us consider another hidden layer on
top of the RBM as depicted in Fig 2.2(c). The likelihood distribution of a DBM
with M layers is specified by the energy function involving σ, h(1), · · · ,h(M) as
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follows,

π(σ) = ∑
h(1),...,h(M)

π̃(σ,h(1), . . . ,h(M)) = ∑
h(1),...,h(M)

e−E(σ,h(1),...,h(M)), (2.15)

−E(σ,h(1), . . . ,h(M)) = ∑
i,j1

Wij1σih
(1)
j1

+
M−1

∑
m=1

∑
jm,jm+1

W(m)
jm jm+1

h(m)
jm h(m+1)

jm+1
+

+∑
i

aiσi +
M

∑
m=1

∑
jm

b(m)
jm h(m)

jm (2.16)

where h(m)
jm is the jm-th spin in the m-th hidden layer with the local magnetic field

b(m)
jm , and W(m)

jm jm+1
is the interaction between the m-th and (m+ 1)-th hidden layers.

Note that there is in principle no bound on the number of hidden layers, and one
may add as many latent spins as desired.

Complex-valued BM We have discussed the BM with real parameters to ensure
the positivity of the likelihood. However, one may introduce complex values to
represent complex amplitudes such as the wave function, density matrix, and so
on. For example, we consider a spin-1/2 system with its quantum state described
by wave function |ψ⟩ by the complex-valued restricted Boltzmann machine (cRBM)
as

⟨σ|ψ⟩ = 1
Z ∑

h

e−E(σ,h),

−E(σ,h) = ∑
i,j

Wijσihj + ∑
i

aiσi + ∑
j

bjhj,
(2.17)

where Z is the normalization that ensures | ⟨ψ|ψ⟩ | = 1.
Previous research has shown that the connectivity of the hidden spins to the

entire visible spins are beneficial in terms of the quantum entanglement [62]. For
instance, let us consider a spin-1/2 chain of length 2L, and consider an cRBM
with 3L− 1 hidden spins which are connected with the visible spins as shown in
Fig. 2.3. By taking the network parameters to be as follows,

Wij =

{ iπ
4

if j ∈ {i, i− 1, i + L− 1, i + 2L− 1},

0 otherwise,

ai = 0,

bj =

{ iπ
4

if j ∈ [1, 2L− 1],

− iπ
4

otherwise,

(2.18)
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Wij =
i⇡

4
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Subsystem A Subsystem B

Figure 2.3: Structure of the cRBM that shows maximal amount of entanglement
entropy in one-dimensional geometry.

one can show that the Renyi entropy given by the quantum state corresponding
to the cRBM is given for arbitrary α ≥ 0 as

SA
α = L ln 2, (2.19)

where the definition is given as SA
α = 1

1−α log(Tr[ρα
A]) with ρA being the reduced

density matrix for subsystem A*9. This is the maximal value reachable by pure
states. For higher dimensional systems with hypercubic geometry, one may also
construct a cRBM which shows maximal entanglement by following a similar
construction.

*9Note that this reduces to the von Neumann entropy when α → 1, and hence corresponds to
the ordinary entanglement entropy.





3
Classification of Quantum Phases

of Disordered Noninteracting
Fermion Systems

In Chapter 2, we have introduced the multilayer perceptron (MLP) that is an
versatile and simple machine to perform classification tasks. In this Chapter, we
apply the MLP in a supervised manner to classify the quantum phases of nonin-
teracting fermion systems with disorder. To be concrete, we train the MLP to dis-
criminate the quasiparticle distributions of the first excited state in the clean limit,
and then test its performance by applying to those obtained from the disordered
region. Given the disorder that keeps the discrete symmetries of the ensemble as
a whole, translational symmetry, which is broken in the individual quasiparticle
distribution, is recovered statistically by taking the ensemble average. Therefore,
the quantum phases can be classified by the machine trained in the clean limit.
We demonstrate our method by applying it to a model for 2d topological super-
conductor in class DIII. The result obtained from the MLP is totally consistent
with the calculation by other independent methods such as the transfer matrix
method or noncommutative geometry approach. If all three phases, namely the
Z2, trivial, and the thermal metal phases, appear in the clean limit, the machine
can classify them with high confidence over the entire phase diagram. If only the
former two phases are present, we find that the machine remains confused in a
certain region, leading us to conclude the detection of the unknown phase which
is eventually identified as the thermal metal phase.

3.1 Background

Bulk-gapped phases of noninteracting fermions can be classified based on the
topology of the band structures. The symmetry class specified by the presence
of three symmetries, namely the particle-hole symmetry, time-reversal symme-
try, and chiral symmetry, and also the spatial dimension determines the possi-

23
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T P S 1d 2d 3d 4d 5d 6d 7d 8d

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 3.1: Periodic table for topological insulators and superconductors [112,
113]. The ten symmetry classes are labeled by the notation of Altland and Zirn-
bauer [114], reflecting the presence or absence of time-reversal symmetry T,
particle-hole symmetry P, and chiral symmetry C = PT. The values ±1 and
0 denote the presence and absence of symmetry, where the signs specifying the
value of T2 and P2. The topological classifications, i.e., Z, Z2, and 0, show a reg-
ular pattern that repeats when d → d + 8. In the current work, we consider a 2d
system in class DIII, and hence gapped phases can be classified by a Z2 invariant.

ble topological invariant in the system. See Table 3.1 for the correspondence be-
tween the symmetry class and the topological invariants. Although topological
invariants in translationally invariant systems have been well studied including
their concrete expressions and calculations [96–100], the investigation of disor-
dered system is not only nontrivial since the wave number used for calculation
of topological invariant is no longer a good quantum number, but also signif-
icant because of its connection with the real materials. The definition for in-
finite systems under disorder has been provided by Katsura and Koma [101,
102], and validity of numerical approach has been verified in limited number
of symmetry class [103–111]. It is not straightforward, however, to extend such
methods to topological crystalline insulators and higher-order topological insu-
lators/superconductors since the approach concerns the extension of the defini-
tions.

Motivated by such a situation, we develop a new method to determine the
phase diagram of topological insulator/superconductor under finite disorder by
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applying the MLP trained to discriminate the quantum phase only in the clean
limit. The underlying key concept is the recovery of the translational symmetry
by ensemble average. While the translational symmetry is broken in a system
with disorder such as a random potential [115], as an ensemble of disorder aver-
age the symmetry is statistically recovered.

As a demonstration of our approach, we consider a model of topological
superconductor with 2d noncentrosymmetric geometry to show that the MLP
learned from the data in the clean limit is capable of classifying such ensemble
averaged states. The phase diagram obtained from our method is fully consistent
with the results in both the transfer matrix (TM) method [116] and the calculation
of a Z2 index by noncommutative geometry which was recently proposed [101,
102, 111]*1. We argue that the current approach is numerically advantageous
compared to the above-mentioned methods from the perspective of the variety
of applicable models; the transfer matrix method becomes inefficient when mul-
tiple phase boundaries approach each other and the noncommutative geometry
approach is ill-defined when both the bulk and mobility gap is closed. We see that
the well-trained MLP is capable of both difficulties when the translation symme-
try is statistically recovered in the data.

The rest of this chapter is organized as follows. In Sec. 3.2 we provide the
method to map out the phase diagram. The Hamiltonian for 2d noncentrosym-
metric superconductor in class DIII with and without the disorder is introduced
here. Next, in Sec. 3.3, we discuss the architecture, input, and output of the MLP.
Also, we provide the supervised learning scheme which optimizes the parame-
ters of the MLP to give appropriate classification labels. In Sec. 3.4 we show the
results obtained by performing both ternary and binary classification with the
MLP, comparing to those by other two methods. Finally, the summary for the
current chapter and the discussion on the future direction is given in Sec. 3.5.
For completeness, we describe optimization method of the cost function in Ap-
pendix A. In Appendices B and C, the other two methods to depict the phase
diagram are provided.

*1Other options include the scattering matrix theory as in Ref. [117] or the Chalker-Coddington
model as in Ref. [118].
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3.2 Model

Topological superconductors exhibiting the gapless edge modes have been
attracting keen interest, since the excitation can be described by the Majorana
fermion, which is expected to be a candidate for topological qubit in quantum
computation [119, 120]. For class DIII, in particular, the formulation of Niu-
Thouless-Wu, an extension to many-body systems and disordered systems [103],
is known to break down. The recent proposal of the candidate materials such as
CuxBi2Se3 [121, 122] and FeTexSe1−x [11, 123, 124] further motivates one to inves-
tigate the quantum phase diagram of two-dimensional (2d) noncentrosymmetric
superconductor in class DIII with disorder.

In the current thesis, we choose the model for 2d topological superconductor
in class DIII for a demonstration of our approach. Inspired by the recent discov-
ery of candidate materials that breaks the inversion symmetry, we assume the
presence of both s- and p- wave couplings.

3.2.1 Bogoliubov-de Gennes Hamiltonian in real space

The Bogoliubov-de Gennes Hamiltonian H for 2d noncentrosymmetric super-
conductor in class DIII is given in the real space as [125]

H = H0 + H′, (3.1)

H0 = ∑
r

∑
k=1,2

Ψ†
r tkΨr+ek + h.c. + ∑

r
Ψ†

r vΨr, (3.2)

H′ = ∑
r

Ψ†
r VrΨr, (3.3)

where H0 is the Hamiltonian in the clean limit and H′ corresponds to the disor-
der. The Nambu operator is denoted as Ψr = [cr↑, cr↓, c†

r↑, c†
r↓]

T where crα is an
annihilation operator of an electron with spin α at site r. For concreteness, we
define our model on a square lattice with cylindrical boundary conditions. This
leads us to define the 4× 4 matrices in Eqs. (3.2) and (3.3) as follows,

t1 = ts3 ⊗ σ0 +
i∆
2

s1 ⊗ σ3, (3.4)

t2 = ts3 ⊗ σ0 +
∆
2

s1 ⊗ σ3, (3.5)

v = −µs3 ⊗ σ0 − ∆2s2 ⊗ σ2, (3.6)

Vr = (wrs3 ⊗ σ0), (3.7)
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where t1(2) and e1(2) are the hopping matrix and the primitive vector along the
x(y)−direction with the transfer integral t and the helical p-wave coupling ∆. The
Pauli matrices sk and σk (k = 0,1,2,3) operate on the particle-hole and spin space,
respectively. The on-site term, v, consists of the chemical potential µ and the s-
wave pairing ∆2. The mixture of the spin-singlet and the spin-triplet pairings are
caused by the broken inversion symmetry. Although the square lattice is consid-
ered in the effective model, i.e. Eq. (3.1), we assume that the underlying crystal
structure of the original Hamiltonian breaks inversion symmetry. The random-
ness is introduced as a on-site random potential Vr with its amplitude distributed
independently with respect to the site r and also uniformly within the width w as
wr ∈ [−w/2, w/2].

It is easy to confirm that the following symmetries are present in the Hamilto-
nian: even particle-hole symmetry, odd time-reversal symmetry, and chiral sym-
metry. In the presence of such discrete symmetries, the system can be classified as
the class DIII according to the classification by Altland and Zirnbauer [114, 126].
The topological property of a translationally symmetric 2d system under such
class is known to be characterized by the Z2 topological invariant. The formula
for the topological invariant, ν, for systems with occupied 2χ-bands was found
by Kane and Mele as follows [98, 99, 112, 113, 127, 128],

(−1)ν =
4

∏
i=1

Pf[ω(Λi)]√
det[ω(Λi)]

. (3.8)

The antisymmetric 2χ× 2χ matrix ω, which is called as the “sewing matrix,” is
defined using the Bloch wave functions, {|uα,k⟩}, and the time-reversal operator,
Θ, as

ωαβ(k) = ⟨uα,−k|Θ|uβ,k⟩ , (3.9)

where α and β denote the band indices. Here, Pf is the Pfaffian defined for a
2χ× 2χ antisymmetric matrix A as

Pf[A] =
1

2χχ ∑
s∈S2χ

sgn(s)
χ

∏
i=1

As(2i−1),s(2i), (3.10)

where S2χ is a permutation group and sgn(s) gives the sign of a permutation s.
The Pfaffian is related with the determinant, or det, as Pf[A]2 = det[A]. Using the
formula given in Eq. (3.8), we find that the system in the clean limit, i.e., w = 0,
is in Z2 phase at 2− 2

√
1− (∆2/∆)2 < |µ| < 2 + 2

√
1− (∆2/∆)2 if |∆2/∆| < 1.
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Once the disorder is turned on, the wave number is no longer a good quantum
number and thus the formula for the Kane-Mele invariant is no longer applicable.
It is known that moderate randomness in spin-rotational symmetry broken sys-
tem may cause destructive interference of time-reversal paths of the quasiparticle,
suppressing the back scattering and thereby leading the system to show metallic
behavior (weak-antilocalization) in 2d [129–131]. In particular, “insulator-metal”
transition from the Z2 phase, in which Majorana fermions pinned to the disorder
percolates, gives rise to the bulk-gap closed phase which is often referred to as
the Majorana metal phase [132]. In the 2d, the thermal conductivity grows loga-
rithmically with the system size, which is understood as a consequence of the ex-
tended behavior of the quasiparticle over the whole system. Actually, the metallic
property of thermal transport arises also when the bulk gap is closed in the clean
limit. Thus, all of these will be collectively referred to as the thermal metal (ThM)
phase in the following.

3.3 Training the machine

In the current section, we introduce the classification scheme based on the sta-
tistical recovery of symmetry to discriminate the quantum phases of noninteract-
ing fermions. We first argue that the disorder average of the spacial distribution
of the quasiparticle qualifies as the input for classification task. After introduc-
ing the architecture of the MLP, we define the cost function and the optimization
method to train the machine.

3.3.1 Input data for machine

Adopted as the input data x is the disorder average over Nr realizations of the
spacial distribution of the quasiparticle, P(r), corresponding to the first excited
state. Our expectation is that the qualitatively different behavior of the quasi-
particle gives the machine sufficient information to discriminate phases. The
bulk-edge correspondence in the Z2 phase, for instance, assures the robust edge-
localization of the low-lying states across the zero energy. Furthermore, the be-
haviours in other two phases, namely the bulk-localization in the trivial phase
and the delocalization of the quasiparticle over the system due to the bulk gap
closing in the ThM phase, encourage us to consider P(r) for the lowest excitation
as an appropriate input for the machine.
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Figure 3.1: Typical single-shot quasiparticle distribution of the first excited state,
P(r), and its disorder average, ⟨P(r)⟩, over 500 realizations of random config-
urations. The parameters are taken from deep inside the phases as (µ, w) =

(2, 9), (6, 5), (2, 18) with ∆ = 3 and ∆2 = 0 from the top. The system size is
taken as 10× 10.

Let us consider the eigenstate |ψ⟩ satisfying H |ψ⟩ = E1 |ψ⟩ with the lowest
E1 > 0. The degeneracy, if exists, is lifted up to time-reversal symmetry, and the
two states are identical in terms of the quasiparticle distribution, namely,

P(r) = |ψe
↑(r)|2 + |ψe

↓(r)|2 + |ψh
↑(r)|2 + |ψh

↓(r)|2, (3.11)

where the super(sub)script denotes the degree of freedom in the Nambu (spin)
space. Some examples of single disorder realization P(r) and its disorder average
⟨P(r)⟩ for Nr = 500 are shown in Fig. 3.1.

While it is difficult to find evident pattern in respective P(r) due to the ran-
domness, we expect that the translational symmetry is statistically recovered by
taking the disorder average. For instance, the bulk-edge correspondence assures
the Majorana edge mode in the Z2 phase, which is robust against perturbation
unless the bulk gap closes. The quasiparticle is localized at the edge although
the amplitude of P(r) may become uneven along the circumference of the cylin-
der under spacial inhomogeneity. Such a fluctuation is eliminated by considering
⟨P(r)⟩, which we confirm from the top row of Fig. 3.1. Furthermore, the localiza-
tion in the bulk for the middle row indicates the thermal insulating property of
the trivial phase, and the extension of the quasiparticle over the whole system in
the bottom row reflects the metallic behavior of the ThM.
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Therefore, we classify the phases by feeding ⟨P(r)⟩ to the ANN which learned
the labels of P(r) in the clean limit. Both binary and ternary classification are
considered.

3.3.2 Network structure of machine

As the machine for the classification task, we employ the MLP that performs
K-class discrimination with simply two hidden layers. The output from the ma-
chine, which is graphically described in Fig. 3.2, is given as

y = A3 ◦W3 ◦ A2 ◦W2 ◦ A1 ◦W1(x), (3.12)

where the input x ∈ RN is a N-dimensional vector, the output y ∈ RK is normal-
ized so that ∑k yk = 1, andWi(Ai) is the weighing (activation) operation on the
i-th layer. It is instructive to recall that, given the number of neurons in the i-th
layer as Ni, the explicit form ofWi : RNi → RNi+1 is given as

(Wi(x))j =
Ni

∑
k=1

W(i)
jk xk + b(i)j , (3.13)

where W(i)
jk is the weight of output from the k-th neuron in the i-th layer passed to

the j-th neuron in the next layer, and b(i)j denotes the bias term. For the activation
function of the hidden and output layers, we consider the Rectified Linear Unit
(ReLU) and the Softmax function, respectively. The explicit expression of the
nonlinear functions on a given real vector z is given as

Ai(z) =

{ ReLU(z) = {max(0, zj)}
dim(z)
j=1 if i = 1, 2,

Softmax(z) =
{ exp(zj)

∑i exp(zi)

}dim(z)

j=1
if i = 3,

(3.14)

where zj denotes the j-th element of the vector z and dim(z) is the dimension
of the vector. Note that the sum of the output is normalized to be unity, which
enables us to interpret as the ”confidence” of the prediction. The use of ReLU
function is based on the principle that the machines are easier to optimize if their
behavior is closer to linear [7].

3.3.3 Cost function

In the following, we introduce the cross-entropy between the training data
and the prediction of the machine, which is frequently used as the cost function
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Figure 3.2: The architecture of a feedforward artificial neural network with two
hidden layers, at which the input data is compressed to extract some abstract fea-
ture for classification. The activation of the output layer is the Softmax function
so that the sum is unity, allowing us to interpret as the confidence of the ma-
chine. We employ an MLP with two hidden layers containing 50 and 40 neurons,
respectively.

for multi-label classification [7, 133]. This is closely related with the minimization
of the dissimilarity between the empirical distribution defined by the training
set and the model prediction measured by the Kullback-Leibler (KL) divergence,
which is widely applied in the statistics community.

To see that the cross entropy is appropriate as the cost function, let us first con-
sider the KL divergence DKL between single-component probability distributions
p(x) and q(x) as

DKL(p||q) =
∫

dxp(x) log
p(x)
q(x)

, (3.15)

which has nice properties such as the non-negativity, i.e., it becomes 0 if and only
if p = q *2. Let us assume p to be an empirical distribution p̂ given by a dataset

*2Note that due to the assymetry between the two distributions, KL divergence does not qualify
as a distance metric in a mathematical sense.
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D = {x̂i} as

p̂(x) = ∑x̂∈D δ(x− x̂)
|D| . (3.16)

We take the other probability distribution q to be the parametrized prediction by
the machine, and hence explicitly rewrite as qθ where θ denoting the parameters.
The minimization of Eq. (3.15) can be done by considering the optimization of
some cost function Cθ defined as

Cθ = −
1
|D| ∑

x̂∈D
log qθ(x̂), (3.17)

where |D| denotes the number of data. It is clear that Eq. (3.17) is the cross en-
tropy H( p̂, qθ) = −

∫
dx p̂(x) log qθ(x) or alternatively the negative log likelihood.

Quantification of ”distance” between the prediction by a classification ma-
chine and training data can be done for multi-label data in a parallel way. Let a
dataset be D = {x̂i, ŷi} where x̂i is the i-th input data with its label ŷ given as
the K-dimensional one-hot vector, which is a vector with only one of its element
unity while others set to zero. Concretely, the k-th element of the one-hot vector
for the i-th data is ŷ(k)i = δk̂i,k

if the data is labeled as the k̂i-th class. We may
extend Eq. (3.17) to K-class case as

Cθ = −
1
|D|∑i

log y(k̂i)
θ (x̂i)

= − 1
D ∑

(x̂i,ŷi)∈D
∑
k

ŷ(k)i log y(k)θ (x̂i),
(3.18)

where y(k)θ (x̂i) is the k-th element of the output vector from the parametrized
machine which takes the i-th input x̂i. In actual calculation, we also include the
regularization term as

Cθ = −
1
D ∑

(x̂i,ŷi)∈D
∑
k

ŷ(k)i log y(k)θ (x̂i) + λ
(#layers)

∑
n=1

|W (n)|2. (3.19)

where the second term, or the L2 regularization, is the sum over the squared
value of all the weight and bias parameters. Suppression of the amplitudes of the
weight parameters is commonly considered to prevent the machine from overfit-
ting to the training data. The parameters are updated by mini-batch gradient de-
scent with batch size 40 as θ → θ− η (∂Cθ/∂θ), where η is the learning rate that is
controlled by the AdaGrad method to efficiently reach the global minimum [134]
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Figure 3.3: (a) Average outputs of 200 ternary-classifying MLPs trained with the
clean-limit data for t = 1, ∆ = 3, ∆2 = 2. The color of each point (µ, w), denoting
the chemical potential and the amplitude of the uniformly distributed random
potential, indicates the confidence for the thermal metal (red), Z2 (green), and
trivial (blue) phase. The machine is highly confident of each phase but confused
at the boundary. The black dots are the phase boundary given by the TM method.
(b) The parameter µ of 1000 training data with system size 14× 14 is uniformly
distributed within I: [0.0, 0.3], II: [1.0, 2.5], and III: [4.0, 10.0]. During the train-
ing scheme, the network is tested by the data generated along µ ∈ [0.0, 10.0] in
the clean limit, resulting in accuracy over 90%. (c) Enlargement of the region
surrounded by the orange dotted line in (a). (d) The averaged inputs ⟨P(r)⟩ for
Nr = 500 in the vicinity of the boundaries. The parameters (µ, w) are given as
X1:(3, 11.5), X2:(3, 10.75), Y1:(5.25, 10.5), Y2:(5.5, 10).

and the derivative ∂Cθ/∂θ is computed by the back-propagation method [135].
The details on the optimization scheme is provided in Appendix A. The drop-out
method is also applied to avoid overfitting [136].

3.4 Results

In the current section, we discuss the result of the classification of disordered
quantum phase of class DIII topological superconductor by the MLP trained only
in the clean limit. We consider both the ternary classification, i.e., a case in which
all three of the phases are present in the clean limit., and also the binary classifica-
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Figure 3.4: Average output of 200 binary-classifying s trained with the clean-limit
data for t = 1, ∆ = 3, ∆2 = 0. The parameter µ of 1000 training data with system
size 14× 14 is uniformly distributed within (a) I: [0.5, 3.5] and II: [6.0, 10.0], (b)
I, II, and III: µ = 0.0, 4.0, each corresponding to the Z2 (green), the trivial (blue)
phase and the critical point (red). The performance of the machine is monitored
with the test data generated at µ ∈ [0.0, 10.0] in the clean limit, resulting in over
95% accuracy. The outputs above 0.75 for ⟨P(r)⟩ with Nr = 500 are indicated by
the depth of the color, and merely gray for below 0.75.

tion, namely only two phases in the clean limit. The classification by the MLP is
shown to be consistent with other independent methods. Finally, we compare the
output from the MLPs which take data with and without the statistical recovery
of symmetry.

3.4.1 Ternary classification

First, we carry out the ternary classification at finite ∆2. For |∆2| < |∆|, the
bulk gap is closed when (i) |µ| < 2− 2

√
1− (∆2/∆)2 or (ii) 2+ 2

√
1− (∆2/∆)2 <

|µ| < 4
√

1− (∆2/∆)2/2, and the system shows metallic behavior. [117, 125] We
focus on ∆ = 3, ∆2 = 2 and feed three phases, namely the Z2, trivial and ThM, to
the machine, expecting to predict the whole phase with high confidence. Shown
in Fig. 3.3 (a) is the average output of 200 MLPs which takes ⟨P(r)⟩with Nr =500
as the input. Each MLP is trained independently in a stochastic manner using the
data from the clean limit indicated in Fig. 3.3(b). Only the region µ ≥ 0 is shown
since the phase diagram is symmetric with respect to µ = 0. The black dots are
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the transition points obtained from the reliable TM method, which becomes nu-
merically inefficient when multiple phase boundaries approach as in the region
between the Z2 and trivial phases. [See Appendices A and B for details of other
two methods.] Remarkably the machine has successfully learned their character-
istics even in the vicinity of the phase boundaries and fully extended the phase
diagram in the entire region. As is obvious from Figs. 3.3(c)-(d), classifying X1

and X2, or Y1 and Y2, with a comparable precision is beyond our cognitive ability.

Next, let us focus along µ = 2. In the clean limit, the system is in the Z2 and
enters the ThM and trivial phase sequentially by increasing the disorder, which
is accurately captured by the MLP. The blurred output at w ∼ 15 between the
ThM and trivial phases is attributed to the larger fluctuation of the data, which is
suppressed by increasing Nr. Other Z2-ThM and ThM-trivial phase boundaries
are nicely reproduced.

Furthermore, the weak disorder region between the Z2 and the trivial phase
at µ ∼ 3.5 is unambiguously classified as the ThM. Let us emphasize again that
this is attributed to the statistical recovery of the translational symmetry in the
input data. As we see in Sec. 3.4.3, merely taking the average of the output is
insufficient. Note that such close parallel boundaries require extra effort on the
other two methods; determining the peak of the localization length, which di-
verges with the system size, by the TM becomes difficult due to the broadening
by the finite-size effect, and that the noncommutative geometry approach does
not work for critical phases.

3.4.2 Binary classification

To examine the binary classification by the MLP, we consider ∆2 = 0 at which
the ThM phase is absent in the clean limit. The quasiparticle distributions are
generated at µ ∈ [0.5, 3.5] and [6.0, 10.0] for the Z2 and trivial phase, respectively.
The result is shown in Fig. 3.4. As is expected, the machine reproduces the Z2-
trivial phase boundary not only in the clean limit, i.e., the transition point µ = 4,
but also at w > 0 which is obtained by the TM and the noncommutative geometry
approach. At larger disorder, the phase boundaries approach each other. There-
fore, machine is confused, i.e, the output remains far below 1, by the finite-size
effect, resulting in the small estimation of the Z2 phase.

The drop of confidence along µ = 0 is also observed. This is understood as
Z2 − Z2 transition line, which is consistent with the analysis of the staggered
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fermion model for class D. [137] Note that, such a transition that lacks the change
in the size dependence on the thermal conductivity or localization length is very
difficult to detect even by the TM method.

The most remarkable confusion appears above the Z2 phase, e.g. µ = 5, which
clearly suggests phase transition. [See the gray region in Fig. 3.4(a).] While the
output in the trivial phase at small disorder is close to unity, we observe that the
confidence in the gray region is far below 1 regardless of the number of aver-
age for input or the machine. Such a confusion implies the qualitatively different
feature from the trivial phase, namely, the consequence of entering a completely
different phase. As was the case in ∆2 > 0 and also from the argument of the non-
linear sigma model [130, 131], we expect this region corresponds to the thermal
metal phase. To reinforce this argument, we add two critical points , i.e., µ = 0
for the Z2 −Z2 and µ = 4 for the Z2−trivial transition points, as the third label.
Figure 3.4(b) shows that the extended behaviour of the quasiparticle is detected
by the MLP: the finite w regions at µ = 0 and inbetween the Z2 and trivial phase,
which are naturally expected to be critical lines, and the previously confused re-
gion above the Z2 phase. Here, the machine only have access to the real-space
density of the quasiparticle and hence mistakenly identifies the thermal metal
phase with the critical regime. Although the two regimes have completely differ-
ent physical property such as the thermal transport, the machine cannot provide
the correct classification without physical properties reflecting such a difference,
e.g. the energy spectra or transport property. The region above the Z2 phase,
which we confirm to be the thermal metal from its energy spectra, is expected
to be distinguished by a machine trained with such additional information. It is
noteworthy that the Z2-ThM phase boundary predicted by the machine is quan-
titatively consistent with the result by the numerical calculation of TM.

3.4.3 Single-shot and averaged data

In the following, we see that the success by the MLP is attributed to the recov-
ery of symmetry, but not merely by the law of large numbers. Taking disorder
average of the input data corresponds to an appropriate feature selection, which
is crucial in training our machine. Since the MLP is a totally nonlinear function,
this is not the case for averaging the output.

As is shown in Fig. 3.5(a), classification of P(r), i.e., the single-shot realiza-
tion, results in a total meaninglessness, particularly in the strong disorder region.
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Figure 3.5: (a) The output of MLP for single-shot P(r) for ∆ = 3, ∆2 = 2. Bound-
ary between phases are hardly recognizable. (b) The single output for P(r), the
average of 200 outputs for independently generated P(r), and the single output
for ⟨P(r)⟩ with Nr = 500 from the top. The amplitude of the random potential is
fixed as w = 15.

For the sake of simplicity, let us restrict the amplitude as w = 15 in the follow-
ing. Shown at the top of Fig. 3.5(b) is the output for single-shot. The random
values reflect the fact that the MLP is confused by the translational-symmetry-
broken behavior of the quasiparticle. We see in the middle that averaging such
outputs in a brute-force manner does not improve the situation at all. Although
the faint slope around the boundary seems to capture the phase transition, the
output converges far below the unity. It is questionable whether we can deter-
mine the phase in general. Shown at the bottom is the appropriate classification
for ⟨P(r)⟩with Nr = 500, in which the feature of the quasi-translational states are
detected appropriately.
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3.5 Summary of this Chapter

In this Chapter, the use of the MLP to classify phases of 2d noncentrosym-
metric superconductor in class DIII with disorder is shown to be valid in the
following two cases. One is the extension of the phase diagram of w = 0 to
w > 0 when all possible phases are present in the clean limit. We have confirmed
that the machine successfully learns the property of each phase from the quasi-
translational symmetric ⟨P(r)⟩. The confidence of the machine is high within
the phases, which reflects the successful feature extraction. Another is the de-
tection of the unlearned phase. A correctly optimized MLP judges a state with
high confidence when the learned feature is present in the data, and vice versa.
The new phase does not exhibit localization in either bulk or the edge, and thus
the machine is confused. We confirmed that in both cases the consistency with
other independent methods (the transfer matrix method and noncommutative
geometry approach) holds. Furthermore, the proposed method is numerically
advantageous compared to the other two from the perspective of the variety of
applicable models; the transfer matrix method becomes inefficient when multi-
ple phase boundaries approach each other and the noncommutative geometry
approach is ill-defined when both the bulk and mobility gap is closed. We see
that neural-network-based method is capable of such difficulties.

Importantly, the current method relies on the appearance of edge states as-
sured by the bulk-edge correspondence and the statistical recovery of the trans-
lational symmetry that is broken in individual data. Therefore, it is applicable to
models with arbitrary lattice geometry, dimension, and symmetry class. In fact,
it has been shown that higher-order topological phases in 2d systems has been
detected [138] via the current scheme. Application to even wider class of models
including topological crystalline insulators/superconductors is worth investigat-
ing. Also, we naturally expect from the ubiquitous appearance of the bulk-edge
correspondence that the proposed scheme is applicable even under the presence
of interaction or in bosonic systems.

Let us note that although the analysis here is based on the first moment of
the quasiparticle distribution, in general, higher moments may also play a crucial
role. In such a case, we expect that by adding the appropriate higher moments
the classification can be done in other random system as well. Furthermore, we
may consider alternative input to quasiparticle distribution for interacting sys-
tems with disorder; as long as the quantity contains information on the system
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and recovers the symmetry statistically, the validity of the proposed method is
expected. For instance, learning the entanglement spectra with the MLP has been
shown to be a valid idea [17, 18, 20, 30]. We expect that such quantities are capable
of capturing the property even when the disorder is present.





4
Representation of Classical

Systems in Thermal Equilibrium

In this chapter, we find an exact mapping from the generalized Ising models
with many-spin interactions to equivalent Boltzmann machines, i.e., the models
introduced in Chapter 2 that consist of only two-spin interactions between phys-
ical and auxiliary binary variables accompanied by local external fields. More
precisely, the appropriate combination of the algebraic transformations, namely
the star-triangle and decoration-iteration transformations, allows one to express
the model in terms of fewer-spin interactions at the expense of the degrees of
freedom. Furthermore, the benefit of the mapping in Monte Carlo simulations
is discussed. In particular, we demonstrate that the application of the method in
conjunction with the Swendsen-Wang algorithm drastically reduces the critical
slowing down in a model with two- and three-spin interactions on the Kagomé
lattice.

4.1 Background

Since the invention of the Monte Carlo (MC) method, physicists have long
made efforts to develop versatile and efficient simulation methods to investigate
statistical models. In classical lattice systems, the single-spin flip (SSF) algorithm
is undoubtedly one of the most widely-used techniques due to its independence.
The locality of the variables involved in a single update procedure, however, in-
evitably leads to a severe slowing down near critical points or at low temperature
for non-ordering systems. One of the solutions is to apply the global updates
such as the cluster algorithms [139, 140], worm algorithm [141], and loop algo-
rithm [142], but they are mostly restricted to two-spin interacting systems. De-
veloping a generic technique applicable to a wide variety of systems involving
many-spin interactions is highly challenging.

In this work, we establish a mapping from the generalized Ising model to
the BM. The former, which includes many-spin interactions, is used to describe

41
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a wide variety of natural phenomena including magnetic and thermodynamic
properties of solids, the effective model of alloys, spin glass models, and so on
[143–145]. As we have introduced in Chapter 2, the BM, on the other hand, is
an expression of probability distribution by two-spin interactions between phys-
ical (visible) and auxiliary (hidden) degrees of freedom. The mapping procedure
goes as follows: one first decomposes a p-spin Ising interaction into a sum of
three- and (p− 1)-spin interactions by adding an auxiliary spin. This is repeated
until the total interaction is expressed in terms of two- and three-spin interactions.
Finally, each three-spin interaction is transformed into two-spin interactions and
single-spin terms. The idea of such consecutive decomposition can also be seen
in the context of quantum annealing, in which embedding of hidden spins are
considered to keep the ground state (and limited number of excited states) in-
variant [146–149].

After constructing the rigorous mapping between these representations, we
take advantage of it by presenting a novel global update scheme; the applica-
tion of the Swendsen-Wang algorithm to the exactly surrogate BM. By comparing
the autocorrelation times of the visible spin configurations, we demonstrate in a
model with two- and three-spin interactions on the Kagomé lattice that the sam-
pling efficiency of the cluster algorithm on the BM at the critical temperature is
drastically improved compared to that of the SSF algorithm performed on the
original Hamiltonian. While it is possible to introduce cluster-update algorithm
with fewer auxiliary degrees of freedom in some specific many-spin interacting
models by modifying the Fortuin-Kasteleyn transformation, as was done for the
four-spin interacting model on the square lattice [15], the mapping introduced
in this thesis aims to provide a rather general framework. Namely, models with
arbitrary order of interaction in any number of dimensions can be handled sys-
tematically.

The remainder of this chapter is organized as follows. In Sec. 4.2 we first
introduce the most primary transformation techniques, namely the decoration-
iteration and star-triangle transformations. Embedding the hidden spins by com-
bining the two, an arbitrary many-spin interaction is shown to be mappable to the
BM. Furthermore, multiple interaction terms can be taken into account by simply
considering the embedding procedures independently. In Sec. 4.3, we see that
the transformation is numerically beneficial since the existing cluster update can
be applied to the BM. Finally, the summary for the current work and discussion
concerning the future direction are given in Sec. 4.4. For the completeness of the
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(a) (b)

Figure 4.1: Schematic picture of (a) restricted Boltzmann machine (RBM) that is
equivalent to a model with three-spin interaction, (b) deep Boltzmann machine
(DBM) that is equivalent to a model with four-spin interaction. The white and
black objects denote visible and deep spins, respectively. Also, the blue and red
objects are the hidden spins introduced by the decoration-iteration transforma-
tion (DIT) and star-triangle transformation (STT), which are given by Eq. (4.5)
and Eq. (4.7). The presence of the layers is denoted by the gray planes. Note that
the mapping to the RBM or DBM is applicable irrespective of the spatial dimen-
sion.

chapter, in Appendix D, we describe the MC sampling algorithms. The partition
function of the pure three-spin interacting model on the Kagomé lattice, from
which the absence of the phase transition follows, is calculated in Appendix E.

4.2 Algebraic Transformation of Boltzmann Factors

In this section, we find the equivalence of the generalized Ising models and
the BMs with specific architectures, i.e., the restricted Boltzmann machine (RBM)
and the deep Boltzmann machine (DBM). [See Fig. 4.1 for the graphic represen-
tation.] As was introduced in Chapter 2, the Boltzmann factor given by the RBM
is follows,

π(σ) = ∑
h

π̃(σ,h) = ∑
h

e−E(σ,h) (4.1)

−E(σ,h) = exp

{
∑
i,j

Wijσihj + ∑
i

aiσi + ∑
j

bjhj

}
, (4.2)
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where the parameter Wij is the interaction between the i-th visible and j-th hid-
den spins, to which the magnetic fields are imposed as ai and bj. We denote
the visible and hidden spin configurations by σ := (σ1, σ2, ..., σNv) ∈ S and
h := (h1, h2, ..., hNh) ∈ H, where S = {−1, 1}Nv and H = {−1, 1}Nh are the sets
of all possible binary spin configurations for Nv visible and Nh hidden spins, re-
spectively. Also, to discriminate between the spaces with and without the hidden
spins, we call S as the “original space” and S ∪H as the “extended space.”

As for the DBM, we find that the maximum number of layers obtained by
mapping from the generalized Ising model is two. We therefore discriminate the
first and second hidden layers as the “hidden layer” and “deep layer” in the
current chapter for simplicity, and the spins included in these layers are corre-
spondingly referred to as the “hidden spins” and “deep spins.” To be concrete,
the Boltzmann factor of a two-hidden-layer DBM is given as

π(σ) = ∑
h,d

π̃(σ,h,d), (4.3)

π̃(σ,h,d) = exp

{
∑
i,j

Wijσihj + ∑
j,k

W ′jkhjdk+

+∑
i

aiσi + ∑
j

bjhj + ∑
k

b′kdk

}
, (4.4)

where π̃(σ,h,d) is the Boltzmann factor for each spin configuration, dk is the k-
th deep spin with the local field b′k, and W ′jk is the interaction between the j-th
hidden spin and the k-th deep spin. As is the case for the visible and hidden
spins, a configuration of the deep spins is denoted by d := (d1, d2, ..., dNd) ∈ D,
where D = {−1, 1}Nd is the set of all possible configurations of Nd deep spins.
The union S ∪H ∪D is also referred to as the extended space in the following.

In the remainder of this section, we find the exact mapping from the general-
ized Ising model to the RBM or DBM.

4.2.1 Transformation techniques

We introduce two mapping techniques to embed hidden spins as is graph-
ically described in Fig. 4.2: the decoration-iteration transformation (DIT) and
star-triangle transformation (STT). Note that the newly embedded spins are aux-
iliary, and the original interactions are realized by tracing out such degrees of
freedom.
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Figure 4.2: Schematic description of the mapping techniques: (a) Decoration-
iteration transformation and (b) star-triangle transformation. The white and
black circles correspond the visible and hidden spins, respectively, and the num-
bers denote the labels of the visible spins. The solid lines and the filled region
denote the two- and three-spin interactions, respectively.

The DIT, depicted in Fig. 4.2(a), is a very simple transformation which embeds
a hidden spin h between two interacting visible spins as follows [150, 151],

eJσ1σ2 = ∆ ∑
h=±1

exp [W(σ1 + sgn(J)σ2)h] , (4.5)

where ∆ is the normalization factor and the new interaction W is given as

W = arc cosh
(

e2|J|
)

/2. (4.6)

Since the DIT can be carried out for any J, an arbitrary Ising model with two-spin
interactions including random spin-glass, frustrated system, and fully-connected
models can be mapped into an equivalent RBM. Application of such transfor-
mation technique allows one to obtain the exact solution for a model on, for in-
stance, two-spin interacting Ising model on a bond-decorated lattice that can be
transformed into the soluble model on an undecorated lattice [150, 152–156].

The other technique, known as the STT, embeds a hidden spin h into three visi-
ble spins with both two- and three-spin interactions as is illustrated in Fig. 4.2(b) [151,
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157–160]. Expressed in the form of the Boltzmann weight, this can be written
as [161]

exp [Mσ1σ2σ3 + J1σ2σ3 + J2σ3σ1 + J3σ1σ2]

= ∆ ∑
h=±1

exp

[
3

∑
i=1

(Wih + ai)σi + bh

]
, (4.7)

where M and Ji are the amplitudes of three- and two-spin interactions, respec-
tively. The interaction between the visible and the hidden spins in the extended
space is denoted by Wi, and the local fields are denoted by ai and b, respectively.
It can be shown that Eq. (4.7) amounts to eight nonequivalent conditions which
yields the solutions as

exp(4χiai) =
sinh(2(|Ji|+ M))

sinh(2(|Ji| −M))
, (4.8)

cosh(2Wi) =
e2|Ji| cosh

(
2(|Jj|+|Jk|)

)
− e−2|Ji| cosh

(
2(|Jj|−|Jk|)

)
[2 cosh(4|Ji|)− 2 cosh(4M)]1/2 , (4.9)

sinh(2b) =
− sinh(2χiWi) sinh(4M)

[(cosh(4Jj)− cosh(4M))(cosh(4Jk)− cosh(4M))]1/2 , (4.10)

where χi = sgn(Ji) is the sign of the two-spin interaction. The subscripts in Eqs.
(4.9) and (4.11), i.e., i, j, and k, must be chosen such that none of them are identical
to each other. Importantly, the STT is valid under the following conditions *1

|M| < |Ji| (i = 1, 2, 3), (4.11)

sgn(J1 J2 J3) = 1. (4.12)

The notion of the DIT and STT can be generalized to include many-spin inter-
actions. A system in the original space with both four- and two-spin interactions,
for instance, can be mapped to a model with three-spin interactions that involves
a single hidden spin. This mapping, used to obtain the solution of the zero-field
eight-vertex model, is referred to as the star-square transformation [151, 162–164].
While the transformation from the extended space into the original space, known
as “the star-polygon transformation,” is achieved by tracing out the hidden spins
and is in general tractable [155, 165], its inverse mapping exists in very limited

*1Naively, it might seem that the mapping is inapplicable to frustrated systems due to the con-
dition given in Eq. (4.12). However, we emphasize that any frustrated system can be mapped to
RBM/DBM, for instance, by introducing virtual two-spin interactions as in Eq. (4.16)
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cases. We note in passing that the DIT and STT have been extended to models
with local quantum degrees of freedom such as Heisenberg spins and itinerant
electrons [166–168].

4.2.2 Generalized Ising model as Boltzmann Machine

Here, we show that the generalized Ising model, which consists of many-spin
interactions, can be mapped to an equivalent BM. Since the Boltzmann factor
can be written as products over those of many-spin interactions, we may simply
focus on the decomposition of a bare p-spin interaction. More concretely, let us
consider a Hamiltonian as follows,

−βH = ∑
C

MC

(
∏
σ∈C

σ

)
, (4.13)

where MC is the amplitude of the interaction with the inverse temperature β mul-
tiplied and C is a support of an interaction. We dub the support of a given in-
teraction as the “cell” in the following, and denote the number of visible spins
included as |C|. The Boltzmann weight of this Hamiltonian under the inverse
temperature β is given as

π(σ) = ∏
C

π|C|(σC ; MC)=∏
C

(
∑

hC ,dC

π̃(σC ,hC ,dC)

)
,

π|C|(σC ; M) := exp

(
M ∏

σ∈C
σ

)
,

(4.14)

where π|C| is the Boltzmann factor for |C|-spin interaction. The visible spin con-
figuration of the cell C is denoted by σC ∈ SC , where SC is the set of all possible
configurations of the visible spins included in C.

As is evident from Eq. (4.14), the Boltzmann factor for Hamiltonian given as
Eq. (4.13) can be decomposed into products over cells. We therefore focus on bare
p-spin interaction and verify the following decomposition,

π|C|(σC ; MC)= ∑
hC ,dC

π̃(σC ,hC ,dC), (4.15)

where π̃(σC ,hC ,dC) is the weight of the BM obtained by transformation. Also, a
single realization of hidden and deep spins labeled by C is denoted as hC ∈ HC
and dC ∈ DC , where HC and DC are the sets of all possible configurations of the
hidden and deep spins included in C, respectively. Note that although a visible
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spin may be included in multiple cells, the auxiliary spins are uniquely allocated
to their corresponding cells by construction.

Three-spin interaction as RBM

First, we discuss the three-spin interaction as the simplest possible case. Due
to the conditions given in Eqs. (4.11) and (4.12), the STT cannot be applied
straightforwardly to a bare three-spin interaction. To avoid this problem, we in-
troduce the “virtual two-spin interactions” that cancel each other out as follows,

π3(σ; M) = exp(Mσ1σ2σ3)

= exp [Mσ1σ2σ3 + J1σ2σ3 + J2σ3σ1 + J3σ1σ2]

× exp [−(J1σ2σ3 + J2σ3σ1 + J3σ1σ2)] . (4.16)

As is depicted in Fig. 4.3(a), this can be mapped into the RBM by applying Eq. (4.7)
to the first and subsequently Eq. (4.5) to the second factors. Note that the ampli-
tudes of the virtual two-spin interaction, Ji, can be taken arbitrarily as long as
Eqs. (4.11) and (4.12) are satisfied.

Next, let us consider two sets of interacting spins as denoted in Fig. 4.3(b). Al-
though the naive application of Eq. (4.16)) yields eight hidden spins, two of them
on the shared edges can be eliminated by modifying the signs of virtual two-spin
interactions. For instance, by considering the virtual two-spin interactions with a
homogeneous amplitude, we obtain

π3(σC1 ; M)π3(σC2 ; M)

= exp(Mσ1σ2σ3) exp(Mσ2σ3σ4)

= exp [Mσ1σ2σ3 + Jσ2σ3 + Jσ3σ1 + Jσ1σ2] exp [Mσ2σ3σ4 + Jσ3σ4 − Jσ4σ2 − Jσ2σ3]

× exp [−(Jσ3σ1 + Jσ1σ2 + Jσ3σ4 − Jσ4σ2)] , (4.17)

from which six hidden spins emerge.
Furthermore, a system with pure three-spin interaction on the triangular lat-

tice, known to be exactly soluble and dubbed as the Baxter-Wu model [169], can
also be mapped into the RBM merely without hidden spins generated by the DIT.
In other words, we may choose the signs of the virtual two-spin interactions on
the triangles carefully so that the sum at each edge would cancel out, resulting
in a reduced number of the hidden spins. Still, there are exponential number of
ways to represent this model by tuning the amplitudes and the signs of the virtual
two-spin interactions. Shown in Fig. 4.3(c) is the mapping with 4-fold periodicity
along the x-axis.
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Figure 4.3: (a) Transforming a pure three-spin interaction into an RBM. The red
filled circles in the right-hand side are generated by the STT and the blue ones
by the DIT. The black solid and dotted lines denote the positive and negative
two-spin interactions, respectively. The amplitudes of the virtual two-spin in-
teractions are taken as Ji > 0 in the figure. (b) Transforming a couple of three-
spin interactions. The signs of the virtual two-spin interactions are modified so
that the number of the hidden spins is reduced. (c) Transforming the Baxter-Wu
model into an RBM.

Four-spin interaction as DBM

Next, we show that four-spin interaction can be expressed by introducing the
second hidden layer, or the “deep” layer. The illustration of the two-step trans-
formation is shown in Fig. 4.4. In the first step, we interpret the product of Ising
variable as a single new binary variable and apply the DIT as

π4(σ; M(0)) = exp
[

M(0)σ1σ2σ3σ4

]
= ∆ ∑

d=±1
exp

[
M(1)(σ1σ2 + σ3σ4)d

]
= ∆ ∑

d=±1
π3

(
σ1, σ2, d; M(1)

)
π3

(
σ3, σ4, d; M(1)

)
,

(4.18)

where π4(σ; M(0)) is the Boltzmann factor for four-spin interaction with the am-
plitude M(0). The interaction amplitudes M(0) and M(1) are related by Eq. (4.6)
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Figure 4.4: Transforming four-spin interaction into a DBM. The black filled circle
is the spin in the deep layer, and the other notation follows that of Fig. 4.3.

as

M(1) = arc cosh
(

e2|M(0)|
)

/2. (4.19)

Next, we use Eq. (4.16), the result for the three-spin interaction, under homo-
geneous virtual two-spin interactions J > |M(1)| for simplicity. Here, we obtain
the expression as

π4(σ; M(0)) = ∆ ∑
d

∑
ha,hb

∑
h1,...h6

π̃STT
2 (σ,h, d)π̃DIT

2 (σ,h, d)π̃1(σ,h, d), (4.20)

where

π̃STT
2 (σ,h, d) = exp[W(σ1 + σ2 + d)ha + W(σ3 + σ4 + d)hb],

π̃DIT
2 (σ,h, d) = exp

[
4

∑
i=1

W ′(σi − d)hi + W ′(σ1 − σ2)h5 + W ′(σ3 − σ4)h6

]

π̃1(σ,h, d) = exp

[
a ∑

i
σi + add + b(ha + hb)

]
.

Here, π̃
STT(DIT)
2 (σ,h, d) is the Boltzmann factor for the two-spin interaction in the

extended space obtained by the STT (DIT), and π̃1(σ,h, d) is that for the local ex-
ternal fields. The interaction W (W ′) is the interlayer coupling introduced by the
STT (DIT). The magnetic field for the visible, deep, and hidden spins are denoted
by a, ad, and b, respectively. The equivalence of amplitudes of the three-spin in-
teractions, M(1), leads to ad = 2a. Also, the application of DIT to the virtual
two-spin interaction yields W ′ = arc cosh(e2J)/2. Note that the other parameters
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are obtained by substituting M = M(1) and homogeneous Ji = J into Eq. (4.7) as

exp(4a) =
sinh(2(J + M(1)))

sinh(2(J −M(1)))
, (4.21)

cosh(2W) =
e2J cosh(4J)− e−2J

[2 cosh(4J)− 2 cosh(4M(1))]1/2
, (4.22)

sinh(2b) =
− sinh(2W) sinh(4M(1))

| cosh(4J)− cosh(4M(1)))|
. (4.23)

Another way to transform four-spin interaction is to apply the star-square
transformation. Although it also requires a single deep spin, the architecture of
the hidden spins would be symmetric and hence different from the aforemen-
tioned transformation. To keep the number of auxiliary spins minimum, we will
not use the star-square transformation in the following.

Note that Nh/Nd, or the ratio of the number of the hidden spins to that of the
visible spins, may be reduced in a larger system as well as in Sec. 4.2.2; we may
cancel out the virtual two-spin interactions by modifying their signs.

p-spin interaction as DBM

The discussion for four-spin interaction can be extended to p-spin interaction.
The procedure consists of two steps; embedding the deep spins, and then the
hidden spins. The mapping procedure can be summarized as the following:

1. Decompose the p-spin Ising interaction into a sum of three- and (p− 1)-spin
interactions by adding an auxiliary spin.

2. Repeat 1. until the p-spin interaction is expressed in terms of two- and three-
spin interactions.

3. Apply the STT for every three-spin interaction.

A system with a bare p-spin interaction is mapped into an equivalent system with
three-spin interactions in the former step and subsequently broken into systems
with two-spin interactions and local fields in the latter step. Since the DIT is
applied repeatedly, we define

M(k+1) = arc cosh
(

e2|M(k)|
)

/2, (4.24)

M(0) = M, (4.25)
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where M determines the amplitude of the interaction as πp(σ; M). The number
of DITs applied, or k, is referred to the DIT transformation order.

Let us take four-spin interaction as the starting point. By replacing one of the
Ising variables in Eq. (4.20) with a product of two, we obtain the expression for
five-spin interaction as

π5(σ; M(0)) = exp
[

M(0)σ1σ2σ3σ4σ5

]
= ∆ ∑

d1=±1
π3

(
σ1, σ2, d1; M(1)

)
π4

(
σ3, σ4, σ5, d1; M(1)

)
= ∆ ∑

d1,d2=±1
π3

(
σ1, σ2, d1; M(1)

)
π3

(
σ3, d1, d2; M(2)

)
π3

(
σ4, σ5, d2; M(2)

)
,

(4.26)

which is visually described in Fig. 4.5(a). Repeating the DIT such that the DIT
transformation order is as homogeneous as possible, we can show a posteriori that
the general expression is given as

πp(σ; M) = ∆ ∑
d

2n+1−(p−2)︷ ︸︸ ︷
π3(σ1, σ2, d1; M(n))π3(σ3, d1, d2; M(n)) · · ·

× π3(σp−1, σp, dp−3; M(n+1))π3(σp−2, dp−3, dp−4; M(n+1)) · · ·︸ ︷︷ ︸
2(p−2−2n)

,
(4.27)

where n is an integer satisfying 2n ≤ p− 2 < 2n+1. Note that there are two factors
consisting of two visible spins, whereas the others contain only one. The number
of factors with M(n+1) is zero if p− 2 = 2n.

To consider the hidden spins, we substitute M(n) in the transformation intro-
duced in Sec. 4.2.2 as, for instance,

π3(σ1, σ2, d1; M(n)) = ∆ ∑
h

exp[(Wh + a)(σ1 + σ2 + d1) + bh]

× exp[W ′[(σ1 − σ2)h1 + (d1 − σ1)h2 + (σ2 − d1)h3]],
(4.28)

which is described in the right-most panels of Fig. 4.5.
The number of the hidden and deep spins can be computed as well. We de-

note the numbers of hidden spins in the first layer generated by the STT, DIT,
and that of the deep spins in the second hidden layer as nSTT

h , nDIT
h , and nd. It is

straightforward to show that the following relations are satisfied,

nSTT
h = 3(p− 2), nDIT

h = p− 2, nd = p− 3. (4.29)
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Figure 4.5: The transformation of (a) five-spin interaction and (b) p-spin interac-
tion. First mapped into a system with only three-spin interactions by applying
DIT, the transformation technique for the three-spin interaction is used to break
up into two-spin interactions with local external fields.

It is noteworthy from the perspective of the numerical cost that the number of
hidden and deep spins increases only linearly with respect to p. The computa-
tional cost remains to be the same for any update scheme.

4.3 Monte Carlo sampling on Boltzmann machine

In the following, we utilize the BM obtained by the transformation to classical
MC sampling. The block Gibbs sampling, which is frequently used for the RBM
or DBM in the machine learning community, turns out to lack efficiency in terms
of autocorrelation although the numerical cost per a single MC step is low [7, 48].
We alternatively apply the cluster-update algorithm by Swendsen and Wang to
the extended space and demonstrate the speed up compared to the SSF algorithm
on the original space. First, we take the square-lattice Ising model for a simplified
description of our scheme, and then proceed to show the results in the model
with ferromagnetic two-spin interactions and alternating three-spin interactions
on the Kagomé lattice, which is one of the the most comprehensible models that
includes the many-spin interaction and also suffers from the slowing down at the
critical temperature.
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4.3.1 Ising model on square lattice

We consider a Hamiltonian with two-spin interactions on a square lattice,

H = −∑
⟨i,j⟩

σiσj, (4.30)

which shows the ferro-paramagnetic transition at Tc = 2/ ln(
√

2+ 1) as is widely
known in statistical physics [170]. The study by the SSF algorithm, i.e., the Glauber
dynamics in a broader sense, suffers from severe critical slowing down [171, 172].
[The algorithm is given in Appendix D.1.] The application of global updates,
e.g., cluster updates [139, 140], is one of the solutions under some circumstances.
For instance, the well-known cluster update algorithm by Swendsen and Wang,
which is discussed in detail in Appendix D.2, dramatically improves the situation
by speeding up the pre-thermalization and reducing the autocorrelation time.

Given the bipartite structure of the square lattice, one might consider the block
Gibbs sampling as is done for usual RBMs with dense connection. Unfortunately,
this is not the case. Let A and B be the sublattices of the square lattice. The spin
configuration on a sublattice is denoted as σA(B) =

{
{σi}|i ∈ VA(B)

}
where VA(B)

is the set of A(B)-sublattice sites. The posterior distribution for spin configuration
on the A sublattice is written as

p(σA|σB) := π(σA, σB)/ ∑
σA

π(σA, σB), (4.31)

π(σA, σB) = exp

β ∑
⟨i,j⟩

σiσj

 , (4.32)

where π(σA, σB) denotes the Boltzmann factor for the total system and ⟨i, j⟩ de-
notes the edge connecting the sites i and j. Since spins in the A sublattice do not
couple to each other, Eq. (4.31) can be factorized as

p(σA|σB) = ∏
i∈VA

p(σi|σB), (4.33)

p(σi|σB) =
exp

[
βσi ∑j∈∂i σj

]
2 cosh

[
β ∑j∈∂i σj

] , (4.34)

where ∂i denotes the set of sites adjacent to i. The update method based on the
simultaneous and independent sampling of spins on either of sublattices without
rejection is called the block Gibbs sampling.
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However, such an algorithm is not beneficial for the following reason. Con-
sider a domain consisting of upward spins. In the bulk region of the domain, it is
highly probable according to the Eq. (4.33) that the newly sampled spins remain
upwards as well. In other words, the limited range of the connection results in the
mutual locking structure in the bulk region, allowing only the peripheral region
to flip. Such a problematic situation is exacerbated as the domain size grows, and
turns out that the slowing down is much worse than the SSF algorithm.

4.3.2 Generalized Ising model on Kagomé lattice

In the following, we find that the cluster algorithm is beneficial not only for
simulation in two-spin interacting models but also the ones with many-spin inter-
actions. By transforming the generalized Ising model into Boltzmann machines,
we may employ the cluster update algorithm. As was shown in the previous
section, the number of the hidden and deep spins increases linearly with the sys-
tem size, and therefore the computational order of a single MC step remains to
be O(N) in a model with short-range interactions, which is also the case in the
current work.

As a demonstration, we consider a model with ferromagnetic two-spin inter-
actions and also three-spin interactions on a Kagomé lattice. Let E be the set of
edges and△(▽) be an upward (downward) triangle on the lattice. The Hamilto-
nian is defined as

−βH = β ∑
⟨i,i′⟩∈E

σiσi′ + ∑
△

M△τ△ + ∑
▽

M▽τ▽, (4.35)

where τ△ = ∏i∈△ σi and τ▽ = ∏i∈▽ σi is the product of the spin variables,
M△/β (M▽/β) denotes the amplitude of the three-spin interactions for upward
(downward) triangles, and ⟨i, i′⟩ is the edge connecting sites i and i′. The sym-
metry that combines the spin inversion and the mirror inversion is present when
M△ + M▽ = 0, and the model exhibit second-order transition at finite temper-
ature for finite M△ [See AppendixE for discussion when only three-spin inter-
actions are present.]. This can be understood from the correspondence between
the present model and the antiferromagnetic Ising model with a uniform external
field on the honeycomb lattice [173].

In the following, we assume M△ = −M▽ = M > 0. The Boltzmann weight
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Figure 4.6: Graphical understanding of the transformation for the spin model de-
fined by Eq. (4.35) into RBM and hidden-spin-only model. The original space is
defined on the Kagomé lattice, in which the triangles are colored to denote the
signs of three-spin interactions. The white open and red filled circles correspond
to the visible and hidden spins, respectively. Also, the signs of the two-spin in-
teractions are represented as solid and dotted lines for positive and negative, re-
spectively.

is transformed as

π(σ) = exp

β ∑
⟨i,i′⟩∈E

σiσi′ + ∑
△

M△τ△ + ∑
▽

M▽τ▽

 (4.36)

= ∆ ∑
h

exp

[
∑
△

W△h△ ∑
i∈△

σi + ∑
▽

W▽h▽ ∑
i∈▽

σi + b ∑
△,▽

(h△ + h▽)

]
= ∑

h
π̃(σ,h), (4.37)

where the parameters in the extended model are obtained by substituting M△(▽)

and β into the STT, or Eq. (4.7). Note that the external fields on the visible spins
are absent due to the cancellation caused by the alternating signs of the interac-
tions. As is graphically described in Fig. 4.6, one hidden spin is embedded per
triangle and denoted as h△ or h▽. The explicit expressions for the parameters can
be read off from

cosh(2W△(▽)) =
e2β cosh(4β)− e−2β

[2 cosh(4β)− 2 cosh(4M)]1/2 , (4.38)

sinh(2b) =
− sinh(2W) sinh(4M)

|(cosh(4β)− cosh(4M))| , (4.39)

where W△ = −W▽ = W > 0 and the signs of the parameters satisfy sgn(W△(▽)) =

sgn(M△(▽)). Owing to the cancellation of the magnetic field on visible spins, we
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obtain a simple expression by tracing out the visible spins as˜̃π(h) = ∑
σ

π̃(σ,h)

= ∆′ exp

−Wh ∑
⟨j,j′⟩∈E

hjhj′ + b ∑
j∈V

hj

 , (4.40)

where ∆′ is another renormalization factor, E and V are the sets of edges and
vertices in the honeycomb lattice as is shown in the rightmost panel of Fig. 4.6.
Note that the interaction is antiferromagnetic, reflecting the alternating signs of
the three-spin interactions in the original space. The amplitude of the two-spin
interaction is obtained by the DIT as

Wh = arc cosh
(

e2W
)

/2. (4.41)

Although the model defined by Eq. (4.40) is not soluble at b ̸= 0, an approximate
solution of the transition point can be obtained by imposing some assumption
after mapping the original model to an eight-vertex model [173]. This turns out
to be fairly approximate but not exact, and hence we determine the transition
point from the finite size scaling of the Binder ratio [174, 175].

As was introduced by Binder, the renormalization group theory leads us to
assume the scaling law for the Binder ratio,

g :=
1
2

(
3− ⟨m

4⟩
⟨m2⟩2

)
, (4.42)

where m is the magnetization per site and ⟨· · · ⟩ denotes the thermal average. The
scaling of this quantity in the vicinity of the critical temperature, Tc, is given as
follows,

g ∼ F
(

L1/ν(T − Tc)
)

, (4.43)

where L is the linear system size, ν is the critical exponent for the correlation
length, and F is an appropriate polynomial function, which has been taken to
be cubic in this work. Shown in Fig. 4.7 are the results for ferromagnetic two-
spin and alternating-sign three-spin interacting model on the Kagomé lattice with
M/βc = 0.1 and 0.2. From the data collapse in Fig. 4.7, we see that the scaling
analysis is valid. The critical exponent ν is confirmed for numerous M/β to be
in good agreement with ν = 1, suggesting that the transition falls into the two-
dimensional Ising universality class [176]. The simultaneously estimated quan-
tity, i.e., the critical temperature Tc, is summarized in Fig. 4.8(a) together with the
approximate solution given by Ref. [173].
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(a)

L1/⌫(T � Tc)
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Figure 4.7: Data collapse of the Binder ratio for the Ising model with two-spin and
alternating-sign three-spin interaction on the Kagomé lattice. The magnitude of
two-spin interactions is set to unity while that of three-spin interactions is M/βc

= 0.1 and 0.2 for (a) and (b), respectively. the critical temperature and the critical
exponent for the correlation length are obtained as (a) Tc ∼ 2.141 and ν ∼ 0.99, (b)
Tc ∼ 2.134 and ν ∼ 1.04, respectively. The blue circles, green upward triangles,
red squares, and purple downward triangles denote the data for the linear system
sizes L = 12, 18, 24, and 36, respectively.

At the critical temperature, we focus on the representation by the BM and
apply the cluster algorithm extended to deal with external magnetic field. [The
detailed description on the algorithm is given in Appendix D.3.] Our main result
is summarized in Fig. 4.8(b), in which we compare the autocorrelation time τ of
the magnetization measured in units of Monte Carlo steps per site for the whole
system. [See Appendix D.4 for the calculation of physical quantities in the ex-
tended space. ] The magnetization at t-th Monte Carlo step is calculated from the
spin configurations σ(t) = (σ1(t), σ2(t), ..., σNv(t)) with Nv being the number of
visible spins as

m(t) =
Nv

∑
i=1

σi(t)
Nv

, (4.44)

The estimation of τ is done by evaluating the decay of the equilibrium autoco-
variance [142],

A(t) =
⟨|m(t0 + t)m(t0)|⟩ − ⟨|m(t0)|⟩2
⟨|m(t0)|2⟩ − ⟨|m(t0)|⟩2

= A0e−t/τ, (4.45)

where ⟨· · · ⟩ denotes the average over t0, namely the MC steps. The critical slow-
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ing down is constantly observed in the SSF algorithm performed on the orig-
inal space, while the application of the cluster update to the BM significantly
improves the situation. We observe that the dynamical exponent z, which is the
slope of data in Fig. 4.8(b), is also reduced, while the possibility that it gradually
grows in the larger system sizes cannot be ruled out.

The increase in the autocorrelation time along the three-spin interaction M/βc

is understood in the following way. The virtual magnetic field induced in the hid-
den spins by the STT is amplified as M/βc is increased, and thus the virtual mag-
netization per cluster increases, modifying the flipping probability of each cluster
to be unbalanced. While the cluster is flipped randomly when the magnetic field
is absent, finite-valued Zeeman energy results in unbalanced flipping probability
due to the detailed balance condition. Such a situation prevents the system from
exploring the spin configurations efficiently, and thus show a weaker speed up.

4.4 Summary of this Chapter

In the current work, we found an algebraic transformation of the Ising model
with many-spin interactions into the BM in which only two-spin interactions and
virtual local fields are present. The decoration-iteration and star-triangle trans-
formations were applied to embed hidden and deep spins, namely the auxiliary
degrees of freedom to be traced out. At the expense of the dimension of the spin
space, significant suppression of the critical slowing down is achieved by apply-
ing the cluster algorithm to the BM.

We note that, in some specific many-spin interacting models, it is possible to
introduce cluster-update algorithm with fewer auxiliary degrees of freedom by
modifying the Fortuin-Kasteleyn transformation [15], which implicitly assumes
application to models with finite-temperature phase transition in universality
class such as the square Ising model or Potts model. In sharp contrast, the trans-
formation technique introduced in our work allows us to apply arbitrary global
update algorithm, and hence provide a general and systematic framework for
models with arbitrary interaction in various lattice geometry.

Our scheme is also capable of handling continuous classical spin systems with
many-spin interactions. As in the case with two-spin interactions [140], we may
consider projecting each variable on some axis. Namely, we rewrite a continuous
variable Si on site i by a new Ising variable σi as Si = σi|Si ·ni|ni +S

⊥
i , where ni

is the randomly chosen projection axis and S⊥i is orthogonal to ni. We can now
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apply our method by regarding the model for {σi} obtained by projection as the
generalized Ising model. The randomness of the projection axis at each Monte
Carlo step would assure the ergodicity of the scheme.

Beyond our scope in the current work is the optimal transformation for simu-
lation. The transformation is non-unique when the virtual interaction is required,
and we may even consider infinitely strong coupling to express extreme situa-
tions such as decoupled or completely aligned pairs of spins. Non-uniqueness
arises also when four-spin interaction is present. Although we excluded the
application of the star-square transformation for clarity, comparison of the nu-
merical efficiency between different transformations may be worth investigating.
Switching into different BMs for each step may allow us to explore the free energy
landscape more efficiently.

In closing, we would like to note the applicability of the algebraic transforma-
tion to wider fields of research. One interesting direction is undoubtedly the pur-
suit of equilibrium statistical physics, which includes extending and exploring
exactly soluble models and replacing the cluster-update algorithm by Swendsen
and Wang with other global updates to tackle frustrated systems. Another prob-
lem lies in the field of computer science; the combinatorial optimization prob-
lems. Our decompositions, applicable also in the finite-temperature case, may
open a new way to introduce ancilla spins required in the experimental imple-
mentation of annealing process.



4.4 Summary of this Chapter 61

(a)

by Wu et al.

by MC

FM

PM
0 0.25 0.5 2×10 6×10 102

101

(b)
= 0.50𝑀/𝛽𝑐

= 0.20𝑀/𝛽𝑐

= 0.10𝑀/𝛽𝑐

= 0.05𝑀/𝛽𝑐

= 0.00𝑀/𝛽𝑐

102

103

τ

Figure 4.8: (a) The phase diagram of the model defined in Eq. (4.35). The
boundary between the ferromagnetic (FM) and the paramagnetic (PM) phases
are given here. The blue dotted line is calculated from the approximate solu-
tion in Ref. [173], and the black dots are given by the finite-size scaling of the
Binder ratio. The numerically estimated inverse critical temperature at M = 0
approaches βc = ln(3 + 2

√
3)/4 ∼ 0.4666, which can be obtained from the ex-

act solution [152]. (b) The autocorrelation time of the magnetization measured in
units of Monte Carlo step. The black circle, purple upward triangle, red rectangle,
green downward triangle, and blue diamond markers denote the magnitude of
three-spin interactions to be 0, 0.05, 0.1, 0.2, and 0.5, respectively. The filled (un-
filled) markers represent the results by the single-spin flip in the original space
(cluster update in the extended space).





5
Representation of Open Quantum

Many-body Systems

In the present chapter, we study the approximate representation of station-
ary states in open quantum many-body systems by the neural-network quantum
states. Using the high expressive power of the variational ansatz described by
the restricted Boltzmann machines, which we dub as the neural stationary state
ansatz in the following, we compute the stationary states of dynamics which
obeys the time-homogeneous quantum master equation. The mapping of the
stationary-state search problem into finding a zero-energy ground state of an
appropriate Hermitian operator allows us to apply the conventional variational
Monte Carlo method for the optimization. Our method is shown to simulate var-
ious dissipative spin systems efficiently, i.e., the transverse-field Ising models in
both one and two dimensions and the XYZ model in one dimension.

5.1 Background

Despite its rapid progress, the approximation scheme of representation on
quantum systems has yet to be applied to one of the most challenging problems
in modern condensed matter physics – open quantum many-body systems. Al-
though the astounding advancement of experiments [177–181] motivates an ac-
tive research field on open quantum many-body physics, it is notoriously diffi-
cult to solve its fundamental equation of motion, which is often well captured by
the time-homogeneous quantum master equation, or, the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation [182, 183]. Since the number of param-
eters required for exact description grows in proportion to the square of the
Hilbert space dimension, additional numerical cost is required to capture the
mixed states compared to the pure states in closed systems. Accordingly, the sim-
ulation of the GKSL equation with the exact diagonalization method is hard even
for relatively small system sizes. It is thus important whether the approximate
representation is beneficial to simulate open quantum many-body physics. Par-

63
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ticularly intriguing are nonequilibrium stationary states of dynamics, in which
various exotic structure are exhibited: the entanglement [184, 185], nontrivial
topology [186, 187], and novel dissipative phases of matter [188–192].

We remark that there have been previous proposals for simulating open quan-
tum many-body systems numerically. For example, the dissipative dynamics is
simulated by the density matrix renormalization group [193–197] under the ten-
sor network representation, which works very well especially in 1d as long as
the operator space entanglement entropy of the density matrix is small. In ad-
dition, numerous works have focused particularly on the stationary states of the
dissipative dynamics. Cui et al. [198] presented an elegant variational method
to search for the stationary states of the dissipative dynamics by minimizing
the expectation value of L̂†L̂ using the Matrix Product Operator (MPO) algo-
rithm, which is powerful for 1d systems. Beyond 1d, Ref. [199] treated varia-
tional quantum states that take low-order correlations around the product states
into account. It is also notable that certain approximations beyond the mean-
field theory, e.g., the cluster mean-field theory [200, 201], were employed. Few
methods besides the brute-force exact diagonalization have been proposed, how-
ever, that can efficiently capture quantum correlations beyond 1d [196, 197]. The
quantum jump method, which consider dynamics of pure states that stochasti-
cally undergo ”jump” caused by dissipation, would require a large amount of
sampling when the steady state is thermal, and the variational calculation based
on the tensor network ansatz is not as overwhelming in higher dimensions as in
1d.

To overcome this situation, we present a new scheme named the neural stationary state
(NSS) algorithm for simulating the stationary states of open quantum many-
body systems by employing the complex-valued restricted Boltzmann machine
(cRBM) ansatz whose construction does not rely on the spacial dimension of the
system. Due to the dimension-free structure and the capacity of representing
large quantum entanglement, the cRBM ansatz is expected to be advantageous in
simulating higher-dimensional systems or real/imaginary time evolution. As is
schematically illustrated in Fig. 5.1, the overview of the NSS algorithm constitutes
the following four steps:

(a) Define cost function. Given non-Hermitian operator L̂, or the Liouvillian,
that generates the time evolution of the dynamics, consider a Hermitian
positive-semidefinite operator L̂†L̂ whose ”groundstate” corresponds to
the stationary state.



5.1 Background 65

(b) Choose ansatz. We take the cRBM as the variational ansatz for the stationary
state in the current thesis. The volume-law scaling of entanglement entropy
in the vector representation, namely the operator space entanglement en-
tropy, is also discussed [202, 203].

(c) Choose optimization strategy. The optimization is done by the stochastic re-
configuration which is equivalent to imaginary time evolution based on
Monte Carlo sampling.

(d) Run optimization. Update the parameters until termination condition, e.g.,
iteration counts or magnitude of cost function, is satisfied.

Before providing the detailed information on the algorithm, we first give a
concise introduction to the GKSL formalism of open quantum system. After elab-
orating on the steps (a)-(d) of the NSS algorithm, we finally demonstrate the capa-
bility of calculating the stationary states of the dissipative transverse-field Ising
models in 1d and 2d, and XYZ model in 1d.

Define Cost Function Choose Ansatz
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Figure 5.1: Overview of the Neural Stationary State (NSS) algorithm.
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5.2 Formalism of Open Quantum System

Quantum systems are inevitably subject to interaction between uncontrollable
external environment. Open quantum systems handle with effective dynamics of
the system with the environment, which is usually macroscopic and hence cum-
bersome to take into account directly, traced out. Depending on the physical
requirement imposed, numerous formalism exists for such a setup. In the current
thesis, we consider the most standard Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) formalism that yields completely-positive trace-preserving time evolu-
tion with Markovianity.

5.2.1 Physical requirements

For the sake of illustration, let us denote the Hilbert space of the system S
which we are interested in as HS and that of the external environment E as HE.
Correspondingly, the total Hilbert space of the composite system is denoted as
Htot = HS ⊗ HE. We may also use subscripts S and E for operators to clarify
which space they act on.

completely-positive trace-preserving (CPTP) property The CPTP property is
a combination of complete positivity and trace-preserving property. Let us first
remind the positivity of a quantum operation expressed by a superoperator ΦS

which maps an operator into another one. We say that ΦS is positive if ΦS(AS)

has a positive spectrum for any positive operator AS that acts on the system
Hilbert space HS. Furthermore, the complete positivity takes the external envi-
ronment into account. Namely, ΦS is completely positive if an operation in the
total space (ΦS⊗ 1E) is positive for arbitrary dimension of the environment space
HE. This is a much stronger condition than the mere positivity*1, yet physically
natural for quantum operations on quantum states since the environment can
be extended arbitrarily. Trace-preserving property, on the other hand, requires
a quantum operation ΦS to satisfy Tr[ρ̂S] = Tr[ΦS(ρ̂S)] = 1 for arbitrary den-
sity matrix ρ̂S. This allows us to interpret the mapped state ΦS(ρ̂S) as another
quantum state that satisfies physical requirement.

The representation theorem given by Kraus [206] states that linear operation
ΦS satisfies the CPTP property if and only if there exists a set of operators such

*1For instance, the transpose operation TS(ρ̂S) = ρ̂T
S is a positive but not completely positive

operation. Namely, ρ̂T
S is positive, although (TS ⊗ 1E)(ρ̂tot) is not necessarily positive [204, 205].
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that

ΦS(ρ̂) = ∑
k

M̂kρ̂M̂†
k , (5.1)

∑
k

M̂†
k M̂k = 1S, (5.2)

where M̂k is called the Kraus operator that specify the quantum operation. Note
that the choice of Kraus operator is not unique.

Markovianity A continuous-time stochastic process with Markovianity is de-
scribed by time evolution equation that is independent from its memory. This
condition originates from a physical assumption that the time scale of the decay
of dynamics in system τS is much longer than that of the environment τE, namely
τS ≫ τE. Under such approximation, we may readily assume that the time evolu-
tion of the quantum state is given as dρ̂

dt = Φ(ρ̂) where Φ : HS ⊗HS → HS ⊗HS

is a superoperator that maps a matrix into matrix.

5.2.2 GKSL formalism in matrix representation

The two requirements for the evolution in open quantum system given in the
previous section yield the quantum Markovian equation in the simplest GKSL
formalism [182, 183].

Concretely, the time evolution of a mixed state ρ̂(t) is described under the
GKSL formalism as follows,

dρ̂(t)
dt

= Lρ̂(t) := −i[Ĥ, ρ̂(t)] + ∑
k

γkD[ĉk]ρ̂(t). (5.3)

where L is the Liouvillian superoperator, a linear map that maps a density ma-
trix into another density matrix. The first term in the right hand side, given by
the commutator [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ, describes the unitary dynamics ruled by the
Hamiltonian Ĥ. The second term describes the non-unitary dynamics due to the
dissipations. The contribution of the k-th term, whose strength is given as γk > 0,
is governed by a superoperator D[ĉk] acting on the density matrix ρ̂(t) as

D[ĉk]ρ̂(t) = ĉkρ̂(t)ĉ†
k −

1
2

ĉ†
k ĉkρ̂(t)− 1

2
ρ̂(t)ĉ†

k ĉk. (5.4)

Here, the detail of the non-unitary dynamics induced by the interaction between
the system and bath is determined by the set of (non-Hermitian) operators {ĉk}.
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As we shortly see in the next paragraph, the operators are related to the quantum
jumps and hence referred to as the ”jump operators.”

We may concisely check that the dynamical map given by Eq. (5.3) satisfies
the CPTP property. Let the system evolve for an infinitesimally small time step
∆t. Obtaining ρ̂(t + ∆t)− ρ̂(t) = L[ρ̂(t)]∆t, we find that the evolved state can be
written up to the first order in ∆t as follows,

ρ̂(t + ∆t) = M̂0ρ̂(t)M̂†
0 + ∑

k
M̂kρ̂(t)M̂†

k ,

M̂0 = 1S +

(
−iĤ − 1

2
γk ĉ†

k ĉk

)
∆t,

M̂k = ĉk
√

γk∆t,

(5.5)

which is the Kraus representation given in Eq. (5.1). While the Kraus represen-
tation of quantum operation in general is not unique, the expression by Eq. (5.5)
gives us intuitive understanding that the Kraus operators M̂k describes the ”quan-
tum jump” induced by the operator ĉk.

5.2.3 GKSL formalism in vector representation

In Sec. 5.2.2 the generator of the time evolution was given by a superoperator,
it would be more convenient if it is given as an ordinary operator which is inde-
pendent of the state*2. In the following, we introduce the vector representation of
the GKSL equation, which later turns out to be beneficial in terms of variational
calculation of the stationary states.

To investigate the property of the mapping Φ such as the Liouvillian or quan-
tum channel, it is useful to introduce the Choi-Jamiołkowski isomorphism [207,
208]. Here, we take an auxiliary Hilbert spaceHA with an identical dimension as
the original oneHP. For simplicity, we abbreviate the subscript unless necessary.
Let us consider a matrix ϕ : H⊗H → H⊗H with its matrix elements given as

(ϕ)(σσ′),(τ,τ′) = ⟨σ|
(
Φ(|σ′⟩ ⟨τ′|)

)
|τ⟩ , (5.6)

where σ and τ denote computational bases that spanHP. This mapping from the
superoperator Φ from matrix ϕ is called the Choi-Jamiołkowski isomorphism. It
is instructive to note that the quantum states are also mapped from a density
”matrix” ρ̂ to an element of the Hilbert space with a doubled dimension, or the

*2While it is possible to rewrite Liouvillian in the matrix representation as an operator, its action
would be dependent on the quantum state ρ̂.
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operator space. The correspondence between the quantum state and the mapped
pure state is explicitly given as

ρ̂ = ∑
σ,τ

ρστ |σ⟩ ⟨τ| 7→ |ρ⟩⟩ =
1
C ∑

σ,τ
ρστ |σ, τ⟩⟩, (5.7)

where |σ, τ⟩⟩ = |σ⟩ ⊗ |τ⟩ ∈ H ⊗ H denotes a computational basis that spans
H ⊗ H and C =

√
∑σ,τ |ρστ|2 is the normalization factor. To discriminate the

spins in the doubled Hilbert space, we refer to those denoted by σ(τ) as the phys-
ical(fictitious) spins. Note that the normalization of the states are different in the
matrix and vector representations; in the former the trace of the matrix is set to
unity, i.e., ∑σ ρσσ = 1, whereas the L2-norm of |ρ⟩⟩, or ⟨⟨ρ|ρ⟩⟩, is unity in the
latter.

Given the mapping by Eqs. (5.6) and (5.7), we may write down the GKSL
equation in the vector representation. The product of operators and the density
matrix is mapped as

Âρ̂B̂ = ∑
σµντ

AσµρµνBντ |σ⟩ ⟨τ| , (5.8)

7→ Â⊗ B̂T |ρ⟩⟩ =
1
C ∑

σµντ

Aσµρµν(BT)τν |σ, τ⟩⟩ (5.9)

= Â⊗ B̂T |ρ⟩⟩, (5.10)

where Â and B̂ are the operators that act from left and right, respectively. Apply-
ing Eqs. (5.8) to the original expression given by Eq. (5.3), we finally obtain the
vector representation of the GKSL equation as follows,

d |ρ(t)⟩⟩
dt

= L̂ |ρ(t)⟩⟩

=

(
−i(Ĥ ⊗ 1− 1⊗ ĤT) + ∑

k
γkD̂[ĉk]

)
|ρ(t)⟩⟩, (5.11)

where L̂ : H⊗H → H⊗H is the Liouvillian in the vector representation. Here,
the hat symbol (ˆ) is added to explicitly show that the superoperator is mapped
into an operator. Also the jump operators are given as

D̂[ĉk] = ĉk ⊗ ĉ∗k −
1
2

ĉ†
k ĉk ⊗ 1− 1⊗ 1

2
ĉT

k ĉ∗k . (5.12)

5.2.4 Spectrum of Liouvillian

As we have noted in §5.2.2, the Liouvillian consists of two types of terms:
those corresponding to the unitary dynamics governed by the Hamiltonian and
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those describing the non-unitary dynamics governed by the jump operators. From
its vector representation, Eq. (5.11) we can see that the former yields anti-Hermitian
matrix elements, which does not hold for the latter. Therefore, the spectrum of
the Liouvillian is in general distributed in the complex plane C.

The CPTP operator describing the time evolution eLt, which is often referred
to as the quantum channel, can be shown to have eigenvalues with non-positive
real parts [209]. See Fig. 5.2(a) for a pictorial illustration. States in physical sys-
tems associated with a strictly negative real eigenvalue undergoes a trajectory
with decay, while those corresponding to the kernel of L would survive after in-
finitely long time. It is shown that there are at least one zero-eigenvalue for a
Liouvillian that is time-homogeneous. Such a physical state corresponding to the
kernel of the Liouvillian, which is a mixed state in general, is called the stationary
state [209].

Although there may emerge multiple stationary states depending on the setup,
in the following we exclusively consider systems with unique stationary states,
which are confirmed to be present in various systems. For example, if the an-
nihilation operator, or the incoherent spin flip along the z-axis in the language
of spins, is included as the dissipation for each site, the quantum system has
a unique stationary state regardless of the Hamiltonian [210]. Unique station-
ary states also appear for other types of dissipations, as demonstrated in, e.g.,
Refs. [193, 211, 212].

Note that a stationary state is equivalent in two representations. Since the
Choi-Jamiołkowski isomorphism introduced in Eq. (5.6) is a one-to-one mapping,
the vector representation of an element of kernel of L is a null vector of L̂. More
concretely, we find

L[ρ̂] = 0⇐⇒ L̂ |ρ⟩⟩ = 0. (5.13)

Furthermore, the right-hand side of Eq. (5.13) can be considered as a condition
regarding the L2 norm of the state as

||L̂ |ρ⟩⟩||2 = 0⇐⇒ ⟨⟨ρ|L̂†L̂|ρ⟩⟩ = 0⇐⇒ L̂†L̂ |ρ⟩⟩ = 0. (5.14)

The equivalence between the equations in the middle and the right-most follows
from the fact that the operator L̂†L̂ is by construction a positive-semidefinite Her-
mitian operator. In other words, the kernels of L̂†L̂ and L̂ are identical to each
other. [See Fig. 5.2(b) for the graphical description.] As we see in the following
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subsections, the relationship denoted by Eq. (5.14) allows us to apply the well-
established ground-state search technique in closed systems such as the varia-
tional approaches, in addition to the Lanczos method, if the first excited energy
of L̂†L̂ does not vanish [198]. The expectation value ⟨⟨ρ|L̂†L̂|ρ⟩⟩ is suited for the
cost function in the variational Monte Carlo method.
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Figure 5.2: Spectrum of (a) the Liouvillian L̂ and (b) the product of its Her-
mitian conjugate and itself, i.e., L̂†L̂. The white unfilled and black filled circles
denote the stationary states and decaying modes, repectively. The distance be-
tween the imaginary axis and the dashed line gives the reciprocal of the longest
decay time of non-stationary states. The real parts of eigenvalues of L̂ are non-
positive, which reflects that non-stationary modes would decay along time evo-
lution. Note that the spectrum shown in (b) is by definition real. In the current
thesis, we consider systems that can be shown to have unique stationary states.

5.3 Stationary States

As we have discussed in the previous section, the stationary states are the
null space of the Liouvillian operator. We firstly give an instructive example of
stationary states that can be analytically computed in a two-level system. Next,
we introduce the variational ansatz, represented by the cRBM, for a stationary
state of a given many-body system. After the numerical verification of its capa-
bility to express highly-entangled quantum states, we discuss our optimization
algorithm to express the stationary state.
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5.3.1 Stationary states in two-level system

Let us assume a system consisting of a single qubit, namely a two-level sys-
tem, with the two computational basis separated by some gap ∆. Here, the
Hamiltonian of the system is given as

H =
∆
2

σ̂z. (5.15)

Such an elementary setup is crucial in quantum experiments, and hence realized
in numerous systems such as the superconducting qubits, trapped ions, Rydberg
atoms, and so on. Among the decoherence effects caused by the external en-
vironment, we consider two types of dissipation: the damping and dephasing.
The damping is usually considered to include the effect of the energy loss, or
equivalently the spontaneous emission, and the dephasing is a term that kills
the quantum superposition. The GKSL equation with such terms in the matrix
representation is given as

ρ̂(t)
dt

= −i
∆
2
[σ̂z, ρ̂(t)] + γ1D[σ̂−]ρ̂(t) +

γϕ

2
D[σ̂z]ρ̂(t), (5.16)

where γ1 and γϕ gives the amplitude of the damping and dephasing, respectively.
It is useful to introduce the notation by the Bloch vector to represent the state as

ˆρ(t) =
1
2
[1̂ + x(t)σ̂x + y(t)σ̂y + z(t)σ̂z] =

1
2

(
1 + z(t) x(t)− iy(t)

x(t) + iy(t) 1− z(t)

)
,(5.17)

where each element is given as x(t) = Tr[ρ̂(t)σ̂x], y(t) = Tr[ρ̂(t)σ̂y], and z(t) =

Tr[ρ̂(t)σ̂z] with restriction due to the positive-semidefiniteness of the density ma-
trix, x2(t) + y2(t) + z2(t) ≤ 1. This can be solved analytically as [213]

ρ̂(t) =
1
2

(
(z(0) + 1)e−γ1t e−γ2t(x(t)e−i∆t − iy(0)ei∆t)

e−γ2t[x(0)ei∆t + iy(0)e−i∆t] 2− (z(0) + 1)e−γ1t

)
, (5.18)

where γ2 = γ1/2 + γϕ.

Shown in Fig. 5.3 is the visualization of Eq. (5.18) on the Bloch sphere. We plot
the trajectories with various initial pure state under mere damping, i.e., γ1 = 2
and γϕ=0, in Fig. 5.3(a) and the ones under dephasing, i.e., γ1 = 0, γϕ = 0.5, in
Fig. 5.3(b). Under the damping, it is clear that the state always evolves into the
ground state, while this is not the case when non-diagonal terms are present in the
Hamiltonian. On the other hand, under the dephasing, the system loses quantum
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Figure 5.3: A single-qubit with its computational basis, |0⟩ and |1⟩ separated by
gap ∆ under (a) damping and (b) dephasing. The trajectory of the quantum states
are plotted on the Bloch sphere. Here, the parameters defined in Eq. (5.16) are
given as γ1 = 2, γϕ = 0 in (a) and γ1 = 0, γϕ = 0.5 in (b). The green diamond, red
rectangle, and blue circles represent the different initial pure states corresponding
to r = 0.5, 0.7, and 0.9, respectively. The stationary states are denoted by the
yellow stars.

coherence and the non-diagonal parts of the density matrix decays. Note that the
initial pure state in Fig. 5.3 is given as

|ψ0⟩ =
1√

r2 + (1− r)2
((1− r) |0⟩+ r |1⟩) , (5.19)

where |0(1)⟩ denotes the ground (excited) state of the qubit.

5.3.2 Stationary states in many-body system

The size of the Liouvillian of N-qubit system is 4N × 4N in the vector repre-
sentation, and hence the full spectrum of larger systems becomes intractable. To
overcome this problem, in the current thesis we develop an algorithm based on
the variational Monte Carlo (VMC) method, which is a very powerful numerical
technique to investigate the ground states, excited states, and time evolution in
many-body quantum systems.

The main philosophy of the VMC method is given as follows. The Rayleigh-
Ritz variational principle states that the lowest eigenvector |ψ0⟩ of a given Her-



74 5 Representation of Open Quantum Many-body Systems

mitian operator Â = Â† can be obtained as

|ψ0⟩ = arg min
|ψ⟩

⟨ψ|Â|ψ⟩
⟨ψ|ψ⟩ , (5.20)

where the minimization takes the whole space into account. In practice, the size
of the whole space considered in, e.g., quantum physics or chemistry is enor-
mous so that exhaustive exploration becomes numerically unrealistic. One may
employ, however, some parametrized trial state, or the ansatz, |ψθ⟩, to approximate
the lowest eigenstate by |ψ

θ̃
⟩ as

|ψ
θ̃
⟩ = arg min

|ψθ⟩

⟨ψθ|Â|ψθ⟩
⟨ψθ|ψθ⟩

. (5.21)

Its accuracy such as the fidelity with the exact solution depends crucially on the
expressive power of the ansatz and also the strategy of the optimization.

In the following, we introduce our neural stationary state (NSS) algorithm,
which partly relies on the VMC method, to construct the stationary state of a
given open quantum many-body system. The NSS algorithm is summarized in
four steps as

(a) Define cost function.

(b) Choose ansatz.

(c) Choose optimization strategy.

(d) Run optimization.

which are explained in detail in the following.

(a) Define Cost Function

As we have discussed in §5.2, the stationary state corresponds to “the ground
state” of the Hermitian operator L̂†L̂. The stationary state can thus be obtained
via optimization of variational parameters as in Eq. (5.21). Namely, the best ap-
proximation given by the optimal parameters θ̃ can be obtained by

|ρ
θ̃
⟩⟩ = arg min

|ρθ⟩⟩

⟨⟨ρθ|L̂†L̂|ρθ⟩⟩
⟨⟨ρθ|ρθ⟩⟩

, (5.22)
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where |ρθ⟩ is the ansatz with variational parameters θ. The subscript for ansatz
would be abbreviated in the following for simplicity. The cost function C is eval-
uated via the Monte Carlo sampling instead of the brute-force calculation as fol-
lows,

C =
⟨⟨ρ|L̂†L̂|ρ⟩⟩
⟨⟨ρ|ρ⟩⟩

=
∑σ,τ,σ′,τ′⟨⟨ρ|σ, τ⟩⟩⟨⟨σ, τ|L̂†L̂|σ′, τ′⟩⟩⟨⟨σ′, τ′|ρ⟩⟩

∑σ,τ⟨⟨ρ|σ, τ⟩⟩⟨⟨σ, τ|ρ⟩⟩

=
∑σ,τ,σ′,τ′(ρ

∗
στ)(L̂†L̂)(στ),(σ′τ′)ρσ′τ′

∑στ |ρστ|2

=
∑στ |ρστ|2Eloc

στ

∑στ |ρστ|2

=
∑(στ)∈D Eloc

στ

∑(στ)∈D 1
=

1
|D| ∑

(στ)∈D
Eloc

στ ,

(5.23)

where ρστ is the element of the density matrix ansatz in the vector representation,
D = {(σm, τm)}M

m=1 is the set of M spin configurations drawn from the probability
distribution P(σ, τ) ∝ |ρσ,τ|2. In the current thesis, we employ the Metropolis-
Hastings rule to perform the single-spin flip update. [See Appendix D for details.]
A sample is taken as the spin configuration realized after each sweep over the
whole spin. In the fourth line of Eq. (5.23), we introduce the local energy as a
diagonal matrix as follows,

Êloc = diag{Eloc
σ,τ}(σ,τ),

Eloc
σ,τ = ∑

σ′,τ′

ρσ′τ′

ρστ
(L̂†L̂)(στ,σ′τ′),

(5.24)

which can be calculated efficiently for local operators.

(b) Choose Ansatz

As the variational ansatz |ρθ⟩⟩, we consider the cRBM. Let us remind that the
explicit expression of the ansatz can be written as follows,

⟨⟨σ, τ|ρRBM⟩⟩ =
1
Z ∑
{hj}

exp

(
∑
i,j

Wijσihj + W̄ijτihj

)

× exp

(
∑

i
aiσi + āiτi + ∑

j
bjhj

)
, (5.25)
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where Wij (W̄ij) denotes the complex interaction amplitude between the i-th phys-
ical (fictitious) spin σi (τi) and j-th hidden spin hj, ai (āi) is a complex magnetic
field on the i-th physical (fictitious) spin, and bj is a complex magnetic field
on the j-th hidden spin. The normalization factor Z is determined such that
⟨⟨ρRBM|ρRBM⟩⟩ = 1. Denoting the number of the physical, fictitious, and hid-
den spins as N, N̄(= N), and M, respectively, we define the number ratio of the
spins as α = M/(N + N̄) to compare the performance of the cRBM ansatz un-
der different system sizes. The graphical illustration of the ansatz is provided in
Fig. 5.4(a).

The matrix representation of the state given by Eq. (5.25), or ρ̂RBM, does not in
general satisfy the physical conditions required for density matrices: the positive-
semidefiniteness and Hermiticity. While we may impose symmetry in the pa-
rameters so that the conditions are fulfilled [214], we observe that such restriction
worsens the performance of the stochastic reconfiguration method used for the
optimization of the parameters. To ensure the two conditions, we may as well
employ the vanilla stochastic gradient descent.

We argue that, on the other hand, sufficient optimization of the cost func-
tion without parameter constraints is expected to ensure these two conditions in
an approximated way [198]. In fact, we have confirmed that absolute values of
unphysical negative eigenvalues of ρ̂RBM, if any, and ||ρ̂RBM − ρ̂†

RBM||/||ρ̂RBM +

ρ̂†
RBM|| are in the order of 10−3. Such sufficiently small magnitudes of the both

quantities compared to unity indicate the success of optimization in the NSS al-
gorithm *3. The physical observables of the stationary states, such as the entropy,
are computed using the symmetrized density matrix,

ρ̂′RBM =
ρ̂RBM + ρ̂†

RBM
2

, (5.26)

which assures the physical observables to be real values.

While the parameters are unrestricted during the optimization, it is instruc-
tive to provide the explicit expression of the ansatz assured to represent physical
density matrix [214]. [See Fig. 5.4 for the graphical illustration.] Concretely, the

*3The two quantities can be further reduced by, for instance, taking larger α.



5.3 Stationary States 77

ansatz is given as

⟨⟨σ, τ|ρRBM⟩⟩ =
1
Z ∑
{hj,h

(1)
k ,h(2)k }

exp

(
∑
i,j
(Wijσi + W∗ijτi)hj

)

× exp

(
∑
i,k

Wikσih
(1)
k + bkh(1)k

)
exp

(
∑
i,k

W∗ikτih
(2)
k + b∗k h(2)k

)

× exp

(
∑

i
aiσi + a∗i τi

)
, (5.27)

where hj is the j-th hidden spin that interacts with both the physical and fictitious

spins, h(1,2)
k is the k-th hidden spin that interact with only the visible (fictitious)

spins. We introduce the number ratio of spins as α = M/N and α′ = M′/N
where M(′) is the number of hidden spins that is connected to both (either of)
physical and fictitious spins, and the total as αtot = α + 2α′. Note the interac-
tions and the magnetic fields on hidden spins are related with complex conjugate
operations.

The ansatz given as Eq. (5.27) is as highly expressive as the one for the pure
states in terms of the entanglement. In Ref. [62] it is shown that the maximally en-
tangled pure states *4 can be expressed using only O(L) hidden spins, where L is
the total number of spins in the system. Similarly, the cRBM ansatz efficiently ex-
presses density matrices with large operator space entanglement, namely the en-
tanglement entropy of the density matrix in the vector representation [202, 203].
Here, the concrete definition of the operator space entanglement entropy is given
as follows. Let us take a mixed state in the vector representation as |ρ⟩⟩, which
is a pure state on the doubled Hilbert space spanned by L physical and L fic-
titious spins. After choosing [L/2] physical spins and its corresponding [L/2]
fictitious spins to form a subsystem S , we compute the entanglement entropy of
TrS̄ [|ρ⟩⟩ ⟨⟨ρ|], where S̄ is the complement of S . Here, [x] is the largest integer that
does not exceed x.

To demonstrate our argument, we show that the cRBM ansatz given by Eq. (5.27)
with random parameters exhibits volume-law scaling of the operator space en-
tanglement entropy. Shown in Fig. 5.5 is the system size dependence of the oper-
ator space entanglement entropy in random-valued cRBM ansatz characterized
by different number of hidden spins. Both the real and imaginary parts of the

*4The entanglement entropy for the pure states is defined for a composite systemH = HA⊗HB

as the von Neumann entropy of the reduced density matrix obtained by tracing out the subspace
HA.
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Figure 5.4: Graphical illustration of the cRBM ansatz for the stationary state in
the vector representation. Network structures denote (a) the ansatz employed in
the NSS algorithm and (b) a state assured to satisfy the requirements for phys-
ical density matrices. As is discussed in the main text, network parameters are
subject to some restriction. While the interactions Wij and W̄ij, for instance, are
independent in (a), they are related via complex conjugate operation as W̄ij = W∗ij
in (b).

parameters are drawn randomly from a section [−r, r] where r may differ for
Wij, Wik, ai, bk.

The increase of quantum entanglement in the operator space along the num-
ber of spins demonstrates the volume-law scaling. We thus find that the large
operator space entanglement entropy is not necessarily an obstacle for reliable
simulations for our NSS algorithm, in contrast with methods based on the ten-
sor network ansatz such as the MPO algorithm. As a caveat, we note that not
all volume-law states can be expressed efficiently by the cRBM ansatz, which is
discussed in Appendix F.

(c) Choose Optimization Strategy

In the following, we introduce the stochastic reconfiguration (SR) method [215]
which updates the variational parameters θ in the cRBM ansatz by minimization
of the cost function defined in §5.3.2. In short, the SR method is designed to per-
form the imaginary time evolution in a stochastic manner. The imaginary time
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Figure 5.5: The volume-law scaling of the operator space entanglement entropy
in the random-valued cRBM ansatz given by Eq. (5.27). Here, the number ra-
tios of the hidden spins are taken as (α, α′) = (2, 8), (2, 6), (2, 4), (2, 2). We do
not observe any evident difference between finite α, and hence we fix as α = 2.
The amplitudes of the random parameters are taken as r = 0.05, 0.003, 0.1, 0.1 for
Wij, Wik, ai, bk, respectively. Note that each point shows the averaged value over
10 random states that are independently generated.

evolution technique relies on the fact that the lowest eigenstate |ψ⟩GS of a given
Hermitian operator Ĥ can be obtained as follows,

|Ψ⟩GS = lim
β→∞

lim
N→∞

(
e−

β
N Ĥ
)N
|Ψ⟩0

∼ lim
N→∞

(
1− ϵĤ

)N |Ψ⟩0 , (5.28)

where the initial state |Ψ⟩0 is taken to be non-orthogonal to the lowest eigenstate
and ϵ ∈ R is a sufficiently small positive value so that the linear approximation
from the first to the second line holds. Instead of considering the full Hilbert
space, the SR method simulates the evolution of the variational parameters. Let
|Ψθ⟩ and |Ψ′θ⟩ be a variational state before and after imaginary-time evolution for



80 5 Representation of Open Quantum Many-body Systems

infinitesimally small step. We consider expansion as

|Ψθ′⟩ = |Ψ⟩θ + ∑
p

δθp
∂

∂θp
|Ψ⟩θ + O

(
(δθp)

2
)

∼ |Ψ⟩θ + ∑
p

δθp∆̂p |Ψθ⟩ ,

∆̂p = diag
(
{(∂/∂θp) log ⟨σ|Ψθ⟩}σ∈S

)
(5.29)

where ∆̂p is a diagonal operator with each element given as logarithmic deriva-
tive of the wave function with respect to parameter p. Note that S is the set of
all possible spin configuration basis. The update of parameters {δθp} are deter-
mined by requiring that the Fubini-Study metric between the state given by the
imaginary-time evolution as Eq. (5.28) and the one by (5.29) to be minimized, i.e.,

δθ̃ = arg min
δθ

(
F
(
(1− ϵĤ) |Ψθ⟩ , (1 + ∑

p
δθp∆̂p) |Ψθ⟩)

))
, (5.30)

F (|ϕ1⟩ , |ϕ2⟩) := arccos

√
⟨ϕ1|ϕ2⟩
⟨ϕ1|ϕ1⟩

⟨ϕ2|ϕ1⟩
⟨ϕ2|ϕ2⟩

, (5.31)

where δθ̃ is the update of variational parameters that best approximates the imag-
inary time evolution. The explicit expressions of the updates in the variational
parameters are given as follows,

δθ̃p = −ϵ ∑
p′
(S)−1

pp′ fp′ ,

fp := ⟨∆̂†
pÊloc⟩ − ⟨∆̂†

p⟩ ⟨Êloc⟩ ,

Spp′ := ⟨∆̂†
p∆̂p′⟩ − ⟨∆̂†

p⟩ ⟨∆̂p′⟩ ,

(5.32)

where fp, or the force, invokes the ”motion” of the parameters and Spp′ , the quan-
tum Fisher information, is known to play the role of the quantum geometric ten-
sor which yields the steepest gradient direction in terms of the information ge-
ometry [61, 216, 217].

The evaluation of the force and geometric tensor is performed by Monte Carlo
sampling in the vector representation over the probability distribution

p(σ, τ) =
|⟨⟨σ, τ|ρRBM⟩⟩|2
⟨⟨ρRBM|ρRBM⟩⟩

. (5.33)

A step of parameter update by Eq. (5.32) is referred to as an epoch in the follow-
ing. The number of the sampled spin configurations at k-th epoch of optimization
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is denoted as M(k), which is taken to be a constant M in our optimization. The
update is repeated for Nit epochs until the cost function reaches the order of 10−3

or less.

As was introduced in previous sections, the Hermitian operator is taken as
the product L̂†L̂, and the variational parameters are the interactions and mageti-
zation fields in the cRBM ansatz. We present the pseudo code of the SR method
in Algorithm 1.

Algorithm 1 Stochastic Reconfiguration in the NSS algorithm

Set Liouvillian operator L̂.
Set initial parameters θ(k=0).
Set learning rate schedule {ϵ(k)} and sampling numbers {M(k)}.
Initialize epoch number k = 0.
while termination condition not satisfied do

1. Define the local energy Êloc and logarithmic derivative of ansatz ∆̂p as

(
Êloc

)
στ

= ∑
σ′τ′

⟨⟨σ′τ′|ρ(k)θ ⟩⟩
⟨⟨στ|ρ(k)θ ⟩⟩

⟨⟨σ′τ′|L̂†L̂|στ⟩⟩

(
∆̂p
)

στ
= ∂θp

(
log⟨⟨στ|ρ(k)θ ⟩⟩

)
2. Compute the force f (k) and metric S(k)as

f (k)p = ⟨⟨∆̂†
pÊloc⟩⟩ − ⟨⟨∆̂†

p⟩⟩⟨⟨Êloc⟩⟩,

S(k)
pp′ = ⟨⟨∆̂†

p∆̂p′⟩⟩ − ⟨⟨∆̂†
p⟩⟩⟨⟨∆̂p′⟩⟩,

3. Update θ(k) ← θ(k) − ϵ(k) ∑p′
(

S(k)
)−1

pp′
f (k)p′

4. k← k + 1
end while

(d) Run optimization

Since the cost function, ansatz, and the optimization strategy have been de-
fined, one may finally run the algorithm to obtain the stationary state of a given
system. Figure 5.6 shows the iteration of the cost function for one-dimensional
transverse-field Ising model with damping, which is introduced and also further
discussed in §5.4.1. We observe that the cost function converges after 1000 epochs
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Figure 5.6: Iteration of the cost function ⟨⟨L̂†L̂⟩⟩ for the one-dimensional
transverse-field Ising model with damping under the periodic boundary con-
dition, which is introduced in §5.4. Shown in the insets are the real part of the
density matrix obtained from the cRBM ansatz after 15, 150, and 1500 epochs,
respectively. After the convergence of the optimization, the cRBM ansatz nicely
reproduces the result from exact diagonalization. The parameters are taken as
V = 0.3, g = 1, γ = 0.5, and the system size is taken as L = 4. We generate
M = 2000 spin configurations at each epoch.

or so. The fluctuation of the cost function, ⟨⟨L̂†L̂⟩⟩, after the convergence is in the
order of 10−3, which is related with the residual error between the exact solution.
One may either increase the number of sampling, M, to suppress the variance in
the evaluation of the cost function or increase the number of parameters in the
ansatz to reach higher accuracy.

5.4 Result

In this section, we demonstrate the NSS algorithm by applying it to three
models that are in principle experimentally realizable using, e.g., cold atoms or
trapped ions [218], namely the transverse-field Ising models in 1d and 2d as well
as the XYZ model in 1d. Let us remind that the Liouvillian in the vector repre-
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sentation can be given as follows,

L̂ |ρ(t)⟩⟩ =
(
−i(Ĥ ⊗ 1− 1⊗ ĤT) + ∑

k
γkD̂[ĉk]

)
|ρ(t)⟩⟩,

D̂[ĉk] = ĉk ⊗ ĉ∗k −
1
2

ĉ†
k ĉk ⊗ 1− 1⊗ 1

2
ĉT

k ĉ∗k ,

(5.34)

where Ĥ is the Hamiltonian of the system, ĉk is the k-th jump operator with its
amplitude given by γk > 0, and D̂ is the dissipator describing the non-unitary
dynamics.

5.4.1 Transverse-field Ising model in one dimension

To discuss the validity of our NSS ansatz for the concrete open quantum
many-body systems, we first consider the stationary state of 1d transverse-field
Ising model with the length L under the periodic boundary condition. Here, the
Hamiltonian and the jump operators are given as

Ĥ =
V
4

L−1

∑
i=0

σ̂z
i σ̂z

i+1 +
g
2

L−1

∑
i=0

σ̂x
i , (5.35)

ĉi = σ̂−i , γi = γ, (5.36)

where σ̂a
i (a = x, y, z) is the Pauli matrix that acts on the i-th site, V is the strength

of the nearest-neighbor interaction, g is the amplitude of the transverse magnetic
field along the x-axis, and γ gives the magnitude of the homogeneous damping.
To take advantage of the periodic boundary condition, i.e., σ̂L = σ̂0, we impose
translation symmetry on the cRBM ansatz.

As was introduced in Sec. 5.3, we minimize the expectation value ⟨⟨L̂†L̂⟩⟩ us-
ing the SR method. Figure. 5.7 shows the comparison of stationary-state density
matrices obtained by the Lanczos method, which utilizes the Krylov subspace to
efficiently approximate a subset of eigenvectors and eigenvalues of a given sparse
matrix [219], and the NSS algorithm with the number ratio of the spins taken as
α = 1. Here, the model parameters are given as V = 0.3, g = 1, and γ = 0.5,
which results in a stationary state with the volume-law entropy. Figure 5.7(a) and
(b) visually illustrates that the approximation of the state with the NSS algorithm
well represents the stationary state calculated by the Lanczos method.

We argue that the accuracy of the stationary state is also confirmed quantita-
tively via the calculation of the fidelity. The fidelity between ρ̂1 and ρ̂2, which
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is exclusively considered as the stationary-state density matrices obtained by the
NSS algorithm and Lanczos method in practice, is defined as [220]

F(ρ̂1, ρ̂2) =

(
Tr
√√

ρ̂1ρ̂2
√

ρ̂1

)2

. (5.37)

This corresponds to the largest fidelity between any two purifications*5 of the
density matrices or the minimum overlap between probability distributions de-
fined by positive-valued operator measurement *6. For the current case, we find
the fidelity to satisfy F > 0.999. We also observe in Fig. 5.7(c) that the expectation
value ⟨⟨L̂†L̂⟩⟩, which gives measure of the approximation *7, is neatly optimized
and reaches the order of 10−3. Accordingly, we find that the physical quantities
are in good agreement with the exact results. For example, the entropy contribu-
tion by each eigenvalue of the density matrix, i.e., −pn ln pn for the n-th eigen-
value pn, is remarkably accurate (see Fig. 5.7(d)), such that the relative error of
the total entropy is the order of 10−3.

As is the case with other VMC calculations, it must be noted that both nu-
merical cost and required memory for the NSS algorithm are much suppressed
compared to methods that deal with the whole Hilbert space. In particular, the
wall times for the NSS algorithm and the Lanczos method are compared in Ap-
pendix G.

*5A purification of a mixed state refers to a pure state in the higher dimensions that is related
in the following way. Let ρ̂ be a mixed state in the systemHS. When a pure state |Ψ⟩ ∈ HS ⊗HA,
where HA is an auxiliary space, satisfies ρ̂ = TrHA [|Ψ⟩ ⟨Ψ|], the pure state |Ψ⟩ is a purification of
the mixed state ρ̂. Obviously, a purification of a given state is not unique.

*6Let {Êi} be a set of positive operator valued measurement (POVM), and p(k)i = Tr[ρ̂kÊi] the
probability distribution given by the POVMs. The fidelity can be found to satisfy

arg min
{Êi}

∑
i

√
p(1)i p(2)i = F(ρ̂1, ρ̂2), (5.38)

where the left-hand-side considers the minimum over overlap of probability distributions [221].
*7We can show that | ⟨⟨ρSS|ρRBM⟩⟩ |2 ≥ 1− ⟨⟨L̂

†L̂⟩⟩
∆ , where ∆ is the spectral gap of L̂†L̂.
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Figure 5.7: (a) The real and imaginary parts of the stationary-state density matrix
of the 1d transverse-field Ising model with dissipations in Eq. (5.35) obtained by
the Lanczos method. (b) The real and imaginary parts of the stationary-state den-
sity matrix obtained by the NSS algorithm. The fidelity F between the stationary
states obtained by the Lanczos and the NSS algorithms is over 0.999. (c) Iteration
of the cost function ⟨⟨L̂†L̂⟩⟩. The optimization works well and ⟨⟨L̂†L̂⟩⟩ reaches
the order of 10−3. The inset shows the convergence at the last 1500 epochs. (d)
The entropy contribution −pn ln pn, where pn is the n-th eigenvalue of the den-
sity matrix from the top. The blue and orange dots denote the results for the NSS
algorithm and Lanczos method, respectively. The relative error for the total en-
tropy is order of 10−3. For all panels, we use V = 0.3, g = 1, and γ = 0.5, and the
number ratio of the spins is α = 1. In panels (a) and (b), the system size is L = 4
and the sampling number per iteration is M = 2000, repeated for Ne = 1500
epochs, while we take L = 8, M = 2000, Ne = 4000 for (c) and (d).
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5.4.2 Transverse-field Ising model in two dimensions

We next demonstrate the NSS algorithm for the 2D transverse-field Ising model
on the square lattice with system size Lx and Ly along the x- and y-axes, respec-
tively. We again take the periodic boundary condition. The Hamiltonian and the
jump operators are given as [201]

Ĥ =
V
4 ∑
⟨i,i′⟩

σ̂z
i σ̂z

i′ +
g
2 ∑

i
σ̂x

i , (5.39)

ĉi = σ̂−i , γi = γ, (5.40)

where the summation in the first term of Ĥ is taken over the edges connecting
the neighboring sites, which are denoted as i and i′.

The iteration of the cost function in Figure 5.8(a) shows that the optimization
works well even for the 2D case. Indeed, as shown in Fig. 5.8(b), the entropy
contribution for each eigenvalue of the stationary state is well reproduced with
high accuracy. This result strengthens the expectation that the cRBM ansatz does
not suffer from high spatial dimensionality.
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(a) (b)

n
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Figure 5.8: (a) Iteration of the cost function ⟨⟨L†L⟩⟩ for the 2d transverse-field
Ising model defined as Eq. (5.39). The inset shows the convergence at the last
1500 epochs. (b) The entropy contribution−pn ln pn by the n-th eigenvalue of the
density matrix. The blue and orange dots denote the results for the NSS algorithm
and Lanczos method, respectively. The relative error of the total entropy is order
of 10−5. We use the parameters Lx = Ly = 3, V = 0.3, g = 1, and γ = 1. The
number ratio of the spins is α = 4, and the resulting fidelity is F = 0.9996. The
sampling number per iteration is M = 4000, repeated for Ne = 4000 epochs.
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5.4.3 XYZ model in one dimension

Finally, we investigate the 1d XYZ model, in which the dissipations are known
to invoke dramatic change of the phase diagram compared with its counterpart
in the closed system [200]. The model is defined as

Ĥ =
L−1

∑
i=0

Jxσ̂x
i σ̂x

i+1 + Jyσ̂
y
i σ̂

y
i+1 + Jzσ̂z

i σ̂z
i+1 (5.41)

ĉi = σ̂−i , γi = γ, (5.42)

where Ja is the interaction for a (a = x, y, z) component of the spin. We particu-
larly consider Jx = 0.9, Jy = 0.4, Jz = 1, and γ = 1 under the periodic boundary
condition. Here, finite systems show ”remnants” of the phase transition which is
inappropriately suggested by the mean-field approximation [199].

Shown in Fig. 5.9 is the comparison of the NSS algorithm and the Lanczos
method regarding the entropy contribution from each eigenvalue of the station-
ary state. Even though our choice of parameters leads to the non-simple sta-
tionary state of our small systems (as indicated from the peak of the structure
factor [200]), the optimized cRBM ansatz describes the exact results well.
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Figure 5.9: (a) Iteration of the cost function ⟨⟨L†L⟩⟩ for the 1d Ising model de-
fined as Eq. (5.41). The inset shows the convergence at the last 1500 epochs. (b)
The entropy contribution −pn ln pn for the n-th eigenvalue of the stationary-state
density matrix. The data for the NSS (blue) and the exact diagonalization (or-
ange) agree well with each other. The fidelity of the NSS is over 0.998 and the
relative error of the total entropy is order of 10−2. In both panels, the parameters
of the model are taken as Jx = 0.9, Jy = 0.4, Jz = 1.0, L = 4, and γ = 1. The num-
ber ratio of the spins is taken as α = 16 and the sampling number per iteration is
M = 16000, repeated for Ne = 4000 epochs.
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5.5 Summary of this Chapter

We have developed a new algorithm that optimizes the neural quantum states
which are suited for expressing the stationary states of open quantum many-
body systems. The complex-valued restricted Boltzmann machine is applied as
the variational ansatz to solve the zero-energy ground state search problem on an
Hermitian operator which is obtained by mapping the original stationary-state
search problem of the Gorini-Kossakowski-Sudarshan-Lindblad equation.

As is expected from the pure-state case, the cRBM can even express density
matrices with volume-law operator space entanglement, namely the entangle-
ment entropy in the vector representation. We have then demonstrated that the
cRBM ansatz is capable of expressing the stationary states of the dissipative one-
and two-dimensional transverse-field Ising models and one-dimensional XYZ
model. In particular, we have shown that the one-dimensional transverse-field
Ising model is simulated better with our NSS algrithm than the Lanczos method
in terms of the system-size scaling of the computational time.

While the aim of our work is to show the first demonstration of the ade-
quacy of the NSS algorithm for open quantum many-body systems including
highly entangled states and two-dimensional states, we leave several intriguing
questions as future works. One naive question is the capability of our method
to simulate larger system sizes, in which other methods suffer from expensive
numerical cost. Another important question is to clarify the versatility of open
quantum many-body systems describable by our method. We expect that our
ansatz performs well regardless of the dimensionality. This is suggested from the
bipartite-graph structure of the RBM, which is free from the geometry of the un-
derlying physical lattice. Given the significance in many-body quantum physics
even in the isolated systems and the difficulty in the previously-developed meth-
ods, one of the most important future tasks would be to apply the method to
dissipative two-dimensional systems such as the Bose/Fermion-Hubbard model.
It is surely an important question how the model behaves under the dissipation,
which often cause drastic change in the property of the system. It is also interest-
ing whether our method works for various long-range interacting systems (such
as the Haldane-Shastry model [71]) with dissipations, whose mixed stationary
states can be highly entangled.

Two comments regarding the extension of our work are in order. Firstly, the
application to obtain relaxation time is worth investigating. While in the current
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work we have adopted the product of the Liouvillian operator and its hermi-
tian conjugate as the ”generator” of imaginary time evolution, the scheme can
be extended to deal with real-time evolution by considering another variational
principle, which contains information on the decay of non-stationary states. Sec-
ondly, it would be interesting to consider some ”inverse problem” in which either
the Hamiltonian or dissipation is tunable to maximize some physical observable
or fidelity with desirable states.

Note that after the completion of our work published as Ref. [222], we be-
came aware of some related works. Refs. [223] discussed the time evolution and
stationary states of open quantum many-body systems by using the cRBM and
Ref. [224, 225] studied the approximation of the stationary states by the cRBM
ansatz.



6
Summary of Thesis

In this Chapter, the results obtained in this thesis are summarized and future
perspectives are given.

In Chapter 3, we have developed a new scheme to classify the quantum phases
of free-fermion systems with disorder. Given the disorder that keeps the discrete
symmetries of the ensemble as a whole, we argue that translational symmetry,
which is broken in the individual quasiparticle distribution, is recovered statisti-
cally by taking the ensemble average. This enables one to classify the quantum
phases in the disordered regime using a neural network trained in the clean limit.
In particular, the neural network has been shown to be capable of classifying the
phases of 2d noncentrosymmetric superconductor in class DIII with disorder in
the following two cases. One is the extension of the phase diagram from the
clean limit (w = 0) to the disordered region (w > 0) when all possible phases are
present in the clean limit. The machine successfully learns the property of each
phase from the average quasiparticle distribution ⟨P(r)⟩ with quasi-translational
symmetry. The high values of confidence of the machine within the phases re-
flects the success of the feature extraction and statistical recovery of translational
symmetry. Another is the detection of the unlearned phase. A correctly opti-
mized MLP exhibits high confidence when the learned feature is present in the
data, and vice versa. When the new phase does not exhibit localization in either
bulk or the edge, and the machine gets confused. The consistency with other
independent methods has been confirmed. We emphasize that since the current
method relies on the appearance of edge states assured by the bulk-edge corre-
spondence and the statistical recovery of the translational symmetry, it is appli-
cable to models with arbitrary lattice geometry, dimension, and symmetry class.
Application to even wider class of models including topological crystalline insu-
lators/superconductors is worth investigating. Also, we naturally expect from
the ubiquitous appearance of the bulk-edge correspondence that the proposed
scheme is applicable even under the presence of interaction or in bosonic sys-
tems.
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In Chapter 4, we have found an exact representation of the generalized Ising
models by the Boltzmann machine. We have shown that the appropriate combi-
nation of the algebraic transformations, namely the star-triangle and decoration-
iteration transformations, lead to expression of the many-spin interaction in terms
of fewer-spin interactions at the expense of the degrees of freedom. Furthermore,
such a representation is found to be beneficial from the perspective of Monte
Carlo simulations since the celebrated cluster update algorithm becomes appli-
cable. This point has been demonstrated in a model with two- and three-spin
interactions on the Kagomé lattice that the application of the cluster update al-
gorithm by Swendsen and Wang drastically reduces the critical slowing down
in terms of the autocorrelation between the samples. We note that, in some
specific many-spin interacting models, it is possible to introduce cluster-update
algorithm with fewer auxiliary degrees of freedom by modifying the Fortuin-
Kasteleyn transformation [15], which implicitly assumes application to models
with finite-temperature phase transition in universality class such as the square
Ising model or Potts model. In sharp contrast, the transformation technique in-
troduced in our work allows us to apply arbitrary global update algorithm, and
hence provide a general and systematic framework for models with arbitrary in-
teraction in various lattice geometry. It is noteworthy that our scheme is also ca-
pable of handling many-spin interacting classical spin systems with continuous
degrees of freedom. This can be done by considering projection of each variable
on some axis. Namely, the continuous variables are decomposed into compo-
nents that are parallel and orthogonal to some random axes, and new Ising vari-
ables are defined from the parallel component. By regarding the model obtained
by the projection as the generalized Ising model, we can apply our method, which
is beyond our scope in the current thesis.

In Chapter 5, we have developed a new numerical algorithm that optimizes
the complex-valued restricted Boltzmann machine (cRBM), which can express
mixed states with volume-law operator space entanglement, to the approximate
representation of stationary states in open quantum many-body systems. The
variational Monte Carlo technique is used to solve the zero-energy ground state
search problem on an Hermitian operator which is obtained by mapping the
original stationary-state search problem of the Gorini-Kossakowski-Sudarshan-
Lindblad equation. We have demonstrated that the cRBM ansatz is capable of ex-
pressing the stationary states of the dissipative one- and two-dimensional transverse-
field Ising models and one-dimensional XYZ model. While the aim of our work
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is to provide the first demonstration the algorithm for open quantum many-body
systems including highly entangled states and two-dimensional states, several
intriguing questions are left as future works. One naive question is the capa-
bility of the algorithm to simulate larger system sizes, and another important
question is the versatility of open quantum many-body systems describable by
our method. We expect that our ansatz performs well regardless of the dimen-
sionality due to the bipartite-graph structure, which is free from the geometry of
the underlying physical lattice, of the RBM. Given the significance in many-body
quantum physics even in the isolated systems and the difficulty in the previously-
developed methods, one of the most important future tasks would be to apply
the method to dissipative two-dimensional systems such as the Bose/Fermion-
Hubbard model. It is surely an important question how the model behaves under
the dissipation, which often cause drastic change in the property of the system. It
is also interesting whether our method works for various long-range interacting
systems with dissipations, whose mixed stationary states can be highly entangled
as well.





A
Mini-batch Training Algorithms

In this Appendix, we discuss the mini-batch training algorithms. In particu-
lar, we discuss the stochastic gradient descent (SGD) algorithm and the AdaGrad
algorithm [134], in which the learning rate for the gradient vector is changed
adaptively.

As is described in Algorithm 2 below, the SGD algorithm simply employs the
mini-batch evaluation of the gradient vector. Although the idea is rather simple,
this strategy is advantageous compared to the gradient descent in the following
points:

• [Machine Learning.] Computing the gradient vector based on the whole
training dataset is tedious. Since the gradient vector for likelihood-based
cost function is given as the mean over the dataset, we may approximate it
from a subset, or mini-batch, of the dataset. The numerical cost for a single
update is determined from the size of the mini-batch, and hence the SGD
algorithm is considered to be a scalable approach for larger dataset.

• [Variational Monte Carlo.] The SGD algorithm is often applied in variational
calculations in condensed matter problems where the dataset is sampled
from the machine by Monte Carlo sampling, which can be accelerated by
parallelization.

Among the hyperparameters to train the network, the scheduling of the learn-
ing rate {ϵ(k)} has been recognized to be crucial and yet difficult. Rather than
constructing a “hand-crafted” schedule through trial-and-error, it is more effi-
cient and natural to develop an adaptive way of tuning the learning rate. In
Algorithm 3, we show the algorithm of AdaGrad, which scales each element of
the gradient vector inverse proportionally to the accumulated squared value of
the element. Given the initial rate ϵ, the algorithm determines the learning rate
at each step. Instead of accumulating the gradient for the whole iteration, we
may also consider an exponentially weighted moving average. This is called the
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RMSProp algorithm [226], and is also widely used in the machine learning com-
munity.

Other approaches to speed up the optimization of parameters of neural net-
works include the momentum method [227], the combination of adaptive learn-
ing rate scheduling with the momentum [228], the use of the second order deriva-
tive such as the Newton method. No universally optimal strategy has been known
up to now, and one typically choose the optimization depending on their knowl-
edge on the hyperparameter tuning.

Algorithm 2 Stochastic Gradient Descent Algorithm

Set initial parameter θ(k=0), the learning rate schedule {ϵ(k)} and mini-batch
sizes {M(k)}.
Set labeled dataset D = {(x̂i, ŷi)}.
while termination condition not satisfied do

Sample mini-batch of dataset D(k) = {(x̂i, ŷi)}M(k)

i=1 .
Evaluate gradients by mini-batch as ∂θC(k)

θ

Update θ(k) ← θ(k) − ϵ(k)∂θC(k)
θ

k← k + 1
end while

Algorithm 3 AdaGrad Algorithm

Set initial parameter θ(k=0) = {θ(k=0)
i }i and initial learning rate ϵ

Set minibatch numbers {M(k)}k

Set Gradient accumulation r=0 and small constant δ

while termination condition not satisfied do
Get a random minibatch of training dataset D(k) = {xm, ym}M(k)

m=1

for θi in θ(k) do
Evaluate gradients with respect to the cost function of minibatch as gi =

∂θi C
(k)
θ

Accumulate the squared gradient amplitude ri ← ri + g2
i

Update θ
(k)
i ← θ

(k)
i −

ϵ
δ+
√

ri
∂θi C

(k)
θ

end for
k← k + 1

end while



B
Transfer Matrix Method

In this Appendix, we introduce the transfer matrix (TM) method for quasi-
one-dimensional disordered system [116, 229, 230]. Metal-insulator transition
such as the Anderson transition can be understood from the size dependence of
the localization length λ and (thermal) conductivity g, which is easily computed
by the TM method. Let us consider a quasi-one-dimensional system with the
length Lx and the width S. We assume that the time-independent Schrödinger
equation is given as follows,

L†
i−1ψi−1 + Hiψi + Liψi+1 = Eψi. (B.1)

Here, Hi = H†
i is the Hamiltonian restricted on the i-th block and E is the eigenen-

ergy. We may simply consider the slice of the rectangle as a block when only the
nearest neighbor hopping is present, but otherwise not necessarily a geometrical
intersection. ψi is the 2S-dimensional wave function of the (quasi)particle on the
i-th block and Li is the hopping matrix from i-th to (i + 1)-th block. Assuming
det|Li| ̸= 0, Eq. (B.1) is rewritten as(

ψi+1

ψi

)
=

(
L−1

i (E− Hi) −Li

I2S×2S 0

)(
ψi

ψi−1

)

:= T̂i(E)

(
ψi

ψi−1

)
, (B.2)

where the above defined T̂i(E) is referred to as one-step TM. The wave function
at the edge and the total TM, T̂(E), is obtained as follows,(

ψLx

ψLx−1

)
=

(
Lx−1

∏
i=0

T̂i

)(
ψ1

ψ0

)
:= T̂(E)

(
ψ1

ψ0

)
. (B.3)

In the limit of Lx → ∞, we consider the positive definite operator, Γ̂ = lim
S→∞

(T̂T̂†)1/2S,

to introduce

λj =
1

ln γj
, (B.4)
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Figure B.1: Finite-size scaling of the dimensionless localization length, Λ, by the
transfer matrix method for the Hamiltonian defined by Eq. (3.1) in the main text
is shown in (a)-(c). The parameters are given as (a) (w, ∆, ∆2) = (5, 3, 0) under
the OBC, (b) (w, ∆, ∆2) = (12.5, 3, 0) under the PBC, and (c) (w, ∆, ∆2) = (5, 3, 2)
under the OBC. Presented in (d)-(f) are the corresponding data collapses. The
system width varies as S = 8, 12, 16.

where γj is the j-th eigenvalue, which is positive and finite, of Γ̂. The correspond-
ing eigenfunction behaves as exp(±x/λj), with the sign denoting the direction
of the decay, and therefore λj can be understood as the localization length. We
set the length of the system from 104 to 105 so that the statistical error is small
enough.

As pointed out by MacKinnon and Kramer, the finite-size scaling of the max-
imum localization length, λmax := λ, is equivalent to the scaling theory of con-
ductance g [116, 129]. The dimensionless localization length in the vicinity of
the metal-insulator transition point is assumed to be expressed by one-parameter
scaling. Namely, by writing the parameter related to the transition as q (e.g.
chemical potential µ and the amplitude of the Anderson potential w in our work),

Λ(q) :=
λ(q)

S
= Λc +

N

∑
n=1

an(q− qc)
nSn/ν

+
N′

∑
n=1

bn(q− qc)
nSn/ν+y, (B.5)
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where the subscripts c denote the value at the critical point, an and bn are the
expansion coefficients, and ν is the critical exponent for the localization length.
The third term is the irrelevant length scale collection by the boundary, whose size
dependence corrected by y < 0. Finite integers N and N′ denote the number of
the fitting parameters, which is taken as N = 2, N′ = 0 in this work. Examples for
Z2-trivial and Z2-thermal metal (ThM) phase transitions are shown in Fig. B.1, in
which the rising (falling) of Λ for extended (localized) states are indeed observed.

Last but not least, let us note that appropriate boundary condition must be ap-
plied to detect the transition from or into the Z2 phase [230]. In two-dimensional
systems, we have two options: open and periodic boundary condition (OBC or
PBC) along the direction perpendicular to the transferred direction. The edge
state appears along the transferred direction with the OBC, while the state is
merely localized in the first or the last block with the OBC. Thus, to determine
Z2-trivial (Z2-ThM) phase boundary, we must consider OBC (PBC) system. Note
that the trivial-ThM boundary is detected in either way.



C
Noncommutative Geometry
Approach for Z2 Topological

Invariant

In this appendix, we introduce the noncommutative geometry approach to
map out the phase diagram of 2d class DIII system. The Z2 index derived in pre-
vious works [101, 102] is numerically advantageous since it can be determined
from the discrete spectrum of a certain compact operator without taking the dis-
order average. See Ref. [111] for detailed numerical implementation. The defini-
tion of the Z2 index of 2d class DIII system is given as

ν = ker dim [A− 1] modulo 2, (C.1)

where ν = 0 and 1 correspond to the trivial and the Z2 phases, respectively. The
operator Ameasures the difference between two projections,

A = PF −D∗a PFDa. (C.2)

Here, PF is the projection operator onto the quasiparticle states below zero energy.
The Dirac operator Da is defined by

Da(r) :=
r1 + ir2 − (a1 + ia2)

|r1 + ir2 − (a1 + ia2)|
, (C.3)

where r = (r1, r2) ∈ Z2 denotes the position operator of a square lattice and
a = (a1, a2) ∈ R2\Z2 is a vector off the lattice points. The operator D∗a is the
adjoint of the Dirac operator Da. Hereafter, we regard λi as the i-th eigenvalue of
the operator A in descending order including multiplicity.

Shown in Fig. C.1(a) is λ1−λ2 as a function of the chemical potential µ and the
disorder amplitude W with the pairings fixed as ∆ = 3 and ∆2 = 0. The orange-
colored region denotes the Z2 phase since λ1 ∼ 1 [see, for instance, Fig. C.1(c)]
and λ1 − λ2 ̸= 0 evidently hold and thus imply ν = 1. In Fig. C.1(a) we see
that the numerical result is in good agreement with the boundary obtained by
the TM. The two black areas above and to the right of the Z2 phase are identified
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as the ThM and the trivial phases, respectively. This is done in the following way.
When the spectral gap is open (= trivial or Z2 phase), the eigenvalues below
unity always come in pairs [see Fig. C.1(b)(c)] owing to the two symmetries: the
time-reversal symmetry of the Hamiltonian and the supersymmetric structure
of the operator A. However, the doublet structure is not guaranteed when the
spectral or the mobility gap vanishes (the thermal metal (ThM) phase), and in
fact, each eigenvalue shows no such a specific structure in the leftmost region of
Fig. C.1(b).

The difference between the first and second eigenvalues for ∆2 = 2 is also
given in Fig. C.1(d). In the orange region, λ1 ∼ 1 [see, for instance, Fig. C.1(e)]
and λ1 − λ2 ̸= 0, and hence ν = 1 which corresponds to the Z2 phase. The black
region denotes the trivial phase with ν = 0 because there is no λ1 ∼ 1. [See
Fig. C.1(e)]. While the boundary of the Z2 phase is consistent with the TM, detec-
tion of the phase boundary between the ThM and the trivial phase requires deep
consideration in some situations. In Fig. C.1(e), the two phases are distinguish-
able by the presence of the doublet structure, whereas in Fig. C.1(f), it is hard to
tell whether the intermediate region between the Z2 and the trivial phase is a
finite window of the ThM. As is seen in Fig. 3 of the main text, this is indeed a
small window of ThM, which is unambiguously captured by the MLP.
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Figure C.1: (a) and (d) λ1 − λ2 as a function of the chemical potential µ and the
disorder strength w for class DIII Hamiltonian given by Eq. (3.1) of the main
text. The parameters are taken as (t, ∆, ∆2) = (a) (1, 3, 0) and (d) (1, 3, 2), respec-
tively, and the system size is 20× 20. (b), (c), (e), and (f) show µ and w depen-
dences of the eigenvalues λi (i = 1, 2, . . . , 7) of the operator A on the system size
20× 20. The parameters are taken as (t, ∆, ∆2, w) = (b) (1, 3, 0, 15), (c) (1, 3, 0, 5),
(f) (1, 3, 2, 10), and (e) (t, ∆, ∆2, µ) = (1, 3, 2, 2), respectively. The gray bars in (b),
(c), (e), and (f) denote marginal areas.



D
Monte Carlo Sampling Algorithms

Monte Carlo simulation is a very powerful strategy based on random sam-
pling when a problem is too difficult to solve analytically, or too demanding to
perform a deterministic numerical calculation. One of its most successful appli-
cation is the calculation of the statistical or thermodynamical property of a given
classical model by generating Markov chains*1. Two conditions are frequently
imposed on the transition matrix from state A to B, T (A → B), to assure the
unique stationary distribution:

1. Detailed balance condition. Given the likelihood, or the Boltzmann factor, of
the objective states as π, the transition matrices obey

T (A→ B)
T (B→ A)

=
π(B)
π(A)

. (D.1)

2. Ergodicity. For any states A and B, there exists a set of intermediate states
{Xi}m

i=1 such that

T (A→ X1)T (X1 → X2) · · · T (Xm → B) ̸= 0. (D.2)

In many situations, the transition matrix is constructed in a two-step manner [231].
Concretely, we take a product as T (A → B) = T(A → B)α(A → B) where T is
the proposal rate which is usually sparse and α is the acceptance rate to assure
the satisfaction of the detailed balance condition. The single-spin flip algorithm
and the cluster update algorithm can be understood as examples of such strategy.

*1Let P(Xi|Xi−1, ..., X1) be the likelihood for the state of the system to be Xi in the i-th step with
the previous states given as X1, ..., Xi−1 from the beginning. The sampling is Markovian, i.e., we
are generating a Markov chain, if

P(Xi|Xi−1, ..., X1) = P(Xi|Xi−1).
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D.1 Single-spin flip algorithm

The versatility and simplicity of the single-spin flip (SSF) algorithm*2 allows
us to apply it in various fields including condensed matter physics, statistical
mechanics, and machine learning. In the following, we provide the overview of
the SSF algorithm for the classical Ising model.

Let a Hamiltonian defined on a set of sites V be

H(σ) = − ∑
C⊂V

JC ∏
σ∈C

σ, (D.3)

where C is a support of a local interaction term, JC is the amplitude of the inter-
action, and σ := (σ1, σ2, ..., σ|V|) ∈ S is a spin configuration where S being the set
of all possible spin configurations. In a typical SSF algorithm, the proposal rate is
given as

T(σ → σ′) =

{
1/|V| if dist(σ,σ′)=1,

0 otherwise,
(D.4)

where dist(σ,σ′) is the count of spins different from each other. The acceptance
rate is given by the well-known Metropolis-Hastings rule as

α(σ → σ′) = min
(
1, exp(β(H(σ)− H(σ′)))

)
, (D.5)

where β is the inverse temperature of the system. In many cases, repetition of
Eq. (D.4) and (D.5) over |V| times is defined as a single Monte Carlo step. We
summarize the algorithm in Algorithm 4.

Algorithm 4 Single-spin flip algorithm for Ising models
Set inverse temperature β.
Set initial spin configuration σ on sites V.
while termination condition is not satisfied do

for i-th flip trial out of |V| trials do
Proposal: Select random site (or choose sequentially).
Acceptance: Flip the spin configuration with probability

min (1, exp(−β∆H)).
end for

end while

*2It is also referred to as the local update algorithm.
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D.2 Cluster update algorithm without magnetic fields

As is discussed in Chapter 4, the cluster update algorithm by Swendsen and
Wang was initially developed to speed up the pre-thermalization and reduce the
autocorrelation time in Monte Carlo simulation of the classical Ising model on
square lattice [139]. In the following, we assume a Ising model with merely two-
spin interaction defined on a graph G = (V, E) as

H = − ∑
⟨i,j⟩∈E

Jijσiσj, (D.6)

where Jij is the interaction between the i-th and j-th sites. We provide the pseudo-
code in Algorithm 5.

Algorithm 5 Cluster Update Algorithm by Swendsen and Wang
Set inverse temperature β.
Set initial spin configuration σ.
while termination condition is not satisfied do

for every edge ⟨i, j⟩ with non-zero interaction do
Connect the edge with probability δσi,σj

(
1− 2 exp(−βJij)

)
end for
Compute the clusters, i.e., the sets of connected sites.
for every cluster do

Flip all the spins in cluster with probability 1/2.
end for

end while

D.3 Cluster update under magnetic fields

In this Appendix, we introduce two flavors of cluster updates accompanied
with magnetic fields. We assume a model defined on a graph G = (V, E) as
follows:

H = − ∑
⟨i,j⟩∈E

Jijσiσj − ∑
i∈V

hiσi, (D.7)

where Jij is the two-spin interaction between two binary degrees of freedom at
sites i and j, or σi and σj, and hi is the external field on site i. One way to take the
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external field into account is to modify the probability of flipping the cluster that
is formed using the information on the interactions, and the other is to extend the
space to express the field terms by interactions with the auxiliary space.

To introduce the first approach, let us remind that the detailed balance condi-
tion under the two-step strategy is given as,

π(B)
π(A)

=
T(A→ B)α(A→ B)
T(B→ A)α(B→ A)

. (D.8)

The cluster update algorithm in the previous section is rejection-free under hi = 0.
Since the external field modifies the Boltzmann weight as π(A) → e−β ∑i hiσ

A
i ·

π(A) at the inverse temperature β, the trial proposal must absorb such change
to realize a rejection-free scheme in an arbitrary external field. Concretely, the
k-th cluster Ck formed by the ordinary bonding process is flipped with probabil-
ity pk = e−βmk /(e−βmk + e+βmk) where mk = −∑i∈Ck

hiσi is the Zeeman energy
by the external field. The additional computational effort per single MC step is
ignorable.

In the second approach, known as the “ghost spin method,” one introduces
an auxiliary spin that interacts with any spin exposed to the external (or virtual)
field [232, 233]. Defining G̃ = (Ṽ, Ẽ) with the ghost spin on the 0-th site as

V → Ṽ = {0} ∩V, (D.9)

E → Ẽ = {⟨0, i⟩|i ∈ V}, (D.10)

we alternatively consider a Hamiltonian as follows,

H̃ = − ∑
⟨i,j⟩∈Ẽ

J̃ijσiσj, (D.11)

where

J̃ij =


Ji,j if ⟨i, j⟩ ∈ E

hi if j = 0

hj if i = 0

. (D.12)

Now that the new Hamiltonian consists solely of two-spin interactions, the ordi-
nary cluster update can be applied.

D.4 Observation of physical quantity in extended model

The transformation considered in the main text preserves the partition func-
tion, and moreover the Boltzmann factor for visible spin configurations. There-
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fore, to compute the expectation value of a physical observable O(σ) in the ex-
tended space, one may simply consider the identical mapping Õ(σ, h) = O(σ) to
obtain

⟨O⟩ =
∑σ,h Õ(σ, h)π̃(σ, h)

∑σ,h π̃(σ, h)
=

∑σ O(σ) (∑h π̃(σ, h))
Z

=
∑σ O(σ)π(σ)

Z
. (D.13)

In other words, one may simply ignore all the hidden spins and compute the
quantities using the operator in the original space.



E
Partition Function of Three-spin
Interacting Model on Kagomé

Lattice

In this Appendix, we show that a model with only three-spin interactions on
the Kagomé lattice is soluble. This model is a specific case of a broader class of
models with crossing symmetry studied in Ref. [234], which do not exhibit a
phase transition at finite temperature. The partition function is written as

Z = ∑
σ

exp

[
∑
△

M△τ△ + ∑
▽

M▽τ▽

]
, (E.1)

where M△ denotes the three-spin interaction and τ△ := ∏j∈△ σj the product of
the Ising spins in an upward triangle in the lattice. Also M▽ and τ▽ are defined
similarly for a downward triangle. In order to compute Eq. (E.1), we introduce
the identity for a binary variable x = ±1 as follows,

eKx = cosh(K) ∑
n=0,1

(x tanh(K))n . (E.2)

Applying this identity to each triangle yields

Z = ∑
σ

∑
n△,n▽

∏
△

∏
▽

cosh(M△) cosh(M▽)

×
(
τ△ tanh(M△)

)n△ (τ▽ tanh(M▽)
)n▽ . (E.3)

Next, let us consider taking the sum over σj at some site j in Eq. (E.1). De-
noting the triangles touching the site j as △(j) and ▽(j), the contribution from
the spin at j can be given as ∑σj

σ
n△(j)+n▽(j)
j , which is nonzero only when n△(j) =

n▽(j). This argument holds for arbitrary j, and therefore the requirement n△ =

n▽ = 0, 1 for all △ and ▽ imposed for nonzero contribution. Accordingly, we
obtain the concise expression of the partition function as

Z = C

(
1 + ∏

△,▽
tanh(M△) tanh(M▽)

)
, (E.4)
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where C = 2Nv ∏
△

∏
▽

cosh(M△) cosh(M▽) with Nv being the number of visi-

ble spins, i.e., the number of sites. The above expression clearly shows that the
free energy in the thermodynamic limit is analytic, and hence the model does not
show a phase transition at finite temperature. For M△ = M▽, Eq. (E.4) repro-
duces the partition function of the uniform model studied in Ref. [235]. We note
that the present method is not limited to two-dimensional models. In fact, a simi-
lar model with four-spin interactions on a three-dimensional pyrochlore lattice is
also soluble using the same technique [236].



F
Approximating Random Density

Matrices by Neural Networks

In this appendix, we randomly generate a density matrix and fit it by the NSS
to see that the expressive power of the ansatz does not assure efficient represen-
tation of all volume-law states. Here, random density matrices are generated as

ρ̂ =
X̂2

Tr[X̂2]
, (F.1)

where X̂ is sampled from the Gaussian unitary ensemble of random Hermitian
matrices. We have numerically checked that the operator space entanglement
entropy defined as in the main text exhibits a volume-law scaling, i.e., operator
space entanglement entropy ∝ L for matrices with size 2L × 2L (data not shown).

Figure F.1 shows that while a random density matrix generated following
Eq. (F.1) can be approximated better by the NSS with larger α, or the number
ratio of the spins, the number of parameters and accordingly the numerical cost
required to reach some fixed fidelity increase rapidly.
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Figure F.1: The infidelity 1 − F of the NSS fitted to a random density matrix
generated by Eq. (F.1). While the NSS with larger α, or the number ratio of the
spins, better approximates the random density matrices, the number of param-
eters and accordingly the numerical cost required to reach some fixed fidelity
increase rapidly.



G
Computational Cost of
Stationary-State Search

Algorithms

Here, we compare the computational cost of the NSS algorithm and the Lanc-
zos method. While cost for the Lanczos method largely depends on the sparcity
of the target matrix, it is at least linear with respect to the matrix dimension; it
scales exponentially with respect to the total number of spins. The largest bottle-
neck of the NSS algorithm is the calculation of the inverse matrix of the quantum
Fisher information S, and the second being the evaluation via Monte Carlo sam-
pling of force f and S. Given the number of parameters as Np, the number of
epochs as Nit, and the sampling number per epoch as Nsamp, the computational
cost would be given as

O
(

Nit(N3
p + NsampN2

p)
)

. (G.1)

Under the periodic boundary condition, the number of parameters are ∼ αN
with α being the number ratio of spins and N being the system size. Note that
although the computational cost scales polynomially with respect to the number
of parameters, there might be hidden dependence of α, Nsamp, and Nit on system
size to reach certain accuracy.

In Fig. G.1, we show the wall time for calculating the stationary states by op-
timization of the NSS and the Lanczos method. Our variational method exhibits
only polynomial scaling which is, clearly, far more efficient than the exponential
scaling in the Lanczos method. We leave the comparison of the scaling behaviour
between the tensor network ansatz in 1d/2d and our method as a future task.
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Figure G.1: The wall times for computing the stationary state of the 1D
transverse-field Ising model with V = 2, g = 1, and γ = 1. The blue and orange
dots are for the NSS ansatz optimization and the Lanczos method, respectively.
Here, the number ratio of the spins is α = 4. The NSS ansatz exhibits lower scal-
ing as a function of the number of physical spins. The number of sampling is
Ns = 2000 repeated for Nit = 1500 iterations, which we find to be sufficient for
the convergence of the VMC calculation. The computation for the NSS and Lanc-
zos is executed on 8 cores on Intel(R) Core i7-6820HQ and 12 cores on Intel(R)
Xeon(R) Silver 4110, respectively.
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