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Abstract

One of the most fundamental problems in nuclear structure physics is to understand various
static properties of nuclei from nucleon degree of freedom.

In the last decades, we have witnessed two key developments in theoretical nuclear structure
physics along this direction. One is the fundamental interaction among nucleons based on the
chiral effective field theory, and the other one is ab initio methods. Those chiral potentials
are becoming more quantitative, and the scope of those ab initio methods has been rapidly
extended to medium-mass nuclei including doubly open-shell nuclei in the last decade.

We are getting an established path from the fundamental interaction to nuclear many-body
problems in a wide range of the nuclear chart. At the same time, however, there is another
urgent task to be tackled to understand a wide variety of nuclear phenomena starting from
the nuclear potentials. That is to quantify theoretical uncertainties, which is the main theme
of this thesis. Uncertainty quantification (UQ) is not just putting error bars on the theoretical
predictions, but to know the capability of the model itself, i.e., how much we can know about
properties of nuclei using those theoretical methods.

In this thesis, we present new methodologies for UQ by taking configuration interaction
(CI) methods as examples.

Firstly, we propose a systematic way to achieve UQ for valence shell-model calculations in
Chapter 3. The probability distribution of the effective interactions for a physically motivated
model space is obtained by the so-called Laplace approximation, and then the uncertainties in
parameters are propagated to the quantities of interest. This gives for the first time systematic
uncertainty quantification in e.g., energy spectra in this community. Some important outcomes
are discussed. More specifically, our method tell us which states are more likely to have
erotic structures, i.e. states to be considered beyond the adopted model space, such as a-
clustering, intruder states, etc. Such information would give important test ground for the
nuclear potentials and ab initio methods, and facilitate new experiments.

Secondly, in Chapter 4, we introduce a rather general extrapolation method for ab initio full
configuration interaction method with quantified uncertainties. In our method, extrapolation
is performed not by point estimation of a parametric function, but by probabilistic inference
among a huge number of different functions, which are generated by means of Gaussian pro-
cesses with physics constraints. This may alleviate the overfitting caused by a specific choice
of the extrapolation function. We present the application of the method to some published
results of the full configuration interaction method, and we found that this method tells us one
criterion of when to stop the FCI calculations; it is not obviously inadvisable to carry out FCI
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calculations while increasing Ny.x forever. The point to stop can be deduced from analyzing
the behavior of the extrapolated results as a function of the maximum N, available. Here
Nhax specifies the maximum number of excitations across major-shell gaps.

The main test ground is limited to the configuration interaction methods, but we expect
that the methods and its philosophy can be applied to the others too. If we could achieve proper
uncertainty quantifications in any theoretical models, it must be very helpful to facilitate
complemental developments of theories and experiments towards deeper understandings of
various nuclear properties.
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Chapter 1
Introduction

In some research fields of physics, theoretical estimates inevitably rely on highly sophisti-
cated models and computational techniques. This is especially true for modern nuclear struc-
ture physics. This is partly due to difficulties as finite number many-body problems. The fact
that even adjacent nuclei sometimes exhibit significantly different properties indicates that it
is essential for quantitative understandings of nuclear phenomena to take account of nucleon
degree of freedom explicitly to some extent. In addition to this, the fundamental interaction
among nucleons is still ambiguous due to the highly non-perturbative character of the un-
derlying theory, which is Quantum Chromodynamics (QCD), in the low-energy regime, i.e.
the main ground of nucleon degree of freedom. These set nuclear many-body problems apart
from others; This makes problems very complicated and, at the same time, very fascinating to
tackle.

Theoretical studies in nuclear physics, especially in nuclear structure physics today, are
roughly classified into two attributes, which will be called “phenomenological” and “ab initio”

hereafter. Let us here define these terminologies as follows:

1. phenomenological calculations
Most parameters in theory are determined to reproduce experimental data of quantities
of interest, e.g. binding energies.
For example, the valence shell model, cluster model, antisymmetric molecular dynamics
(AMD), the interactive boson model and mean-field calculations with energy density

functionals belong to this class.

2. ab initio calculations
Once a free space nuclear force is given, one does not tune any input parameters in theory

to improve the agreement with experimental data. In addition to this, if its accuracy can



6 Chapter. 1 Introduction

be systematically improved by taking account of higher order terms and/or extending
its model space!, we call it ab initio.

For example, the Faddeev-Yakubovsky scheme, the hyperspherical harmonics method,
the auxiliary field diffusion Monte Carlo method, lattice EFT, No core full configuration
interaction (NCFC), Green’s Function Monte Carlo, Coupled-Cluster (CC), In-Medium
Similarity Renormalization Group (IM-SRG), self-consistent Green’s function theory be-

long to this class.

In the classification above, we put the valence shell model into the phenomenological group.
However, we note that the valence shell model is now can be placed in between phenomeno-

logical and ab initio. This will be briefly reviewed in Sec. 2.3.

In this Ph.D. thesis, we provide the new methodologies to quantify how robust are those
calculations and to extract much more information from those calculations. The main test
ground is limited to the CI methods, but we expect that the methods and its philosophy can
be applied to the others too.

In order to make problems clear, let us quote some parts of the Editorial on Phys. Rev. A [1]:

It is not unusual for manuscripts on theoretical work to be submitted without un-
certainty estimates for numerical results. [...] It is all too often the case that the
numerical results are presented without uncertainty estimates. Authors sometimes
say that it is difficult to arrive at error estimates. Should this be considered an
adequate reason for omitting them? [...] The comparison with experiment itself
provides a test of our theoretical understanding. However, there is a broad class
of papers where estimates of theoretical uncertainties can and should be made.
Papers presenting the results of theoretical calculations are expected to include un-
certainty estimates for the calculations whenever practicable, and especially under

the following circumstances:
1. If the authors claim high accuracy, or improvements on the accuracy of pre-
vious work.

2. If the primary motivation for the paper is to make comparisons with present

or future high precision experimental measurements.

3. If the primary motivation is to provide interpolations or extrapolations of

known experimental measurements.

[i]

'We will define the terminology “model space” later.



These are true not only for manuscripts in Phys. Rev. A covering atomic, molecular, and
optical physics and quantum information, but also for manuscripts in many scientific fields.
We would like readers to refer to the full text of [1] to prevent misunderstandings due to our

partial citation.

In nuclear physics community, the history of uncertainty quantification (UQ) is not so long.
Importance of UQ in theoretical estimates in the context of nuclear models is well explained

by Refs. [2,3] and references therein.

As far as we perform calculations using a model with the parameters determined by exper-

imental data, we must try to answer quantitatively at least to the following questions:

1. How reliable and precise are your results?
2. What happens if you add new data in the parameter fit?

3. What is the origin of the discrepancy between the experimental data and the current

prediction?

These are particularly important for making reliable predictions for proton- or neutron-rich

nuclei for which experimental studies are extremely difficult to carry out.

The main theme of this thesis is to make a progress to answer these questions particular
in a shell-model calculation, which is generally called configuration interaction (CI) in other
fields. The shell-model is superior in terms of its capability; if the computation is feasible,
one can obtain ground states, excited states, and transition strengths among those in a con-
sistent manner. For this reason, shell-model results have been widely used to compare with
new experimental data and also compare with other theoretical calculations. Moreover, the
shell model is no longer just a phenomenological model; it plays a key role to survey the
connections between underlying physics and observables of many-nucleons systems owing to
the recent developments in modern description of nuclear forces with chiral effective field the-
ory (YEFT), which is consistent with underlying symmetry and its breaking patterns, and in
many-body techniques to derive effective nuclear force for valence nucleons. See also Sec. 2.3.1

and Sec. 2.3.3 for more details.

Under these circumstances, uncertainty quantifications in configuration interaction meth-

ods, including its ab initio counterpart, are of great importance from various viewpoints.

Here is an example. In many literatures, figures like FIG. 1.1 comparing excitation spectra
are often shown. We note that the experimental observation errors are too exaggerated and one
typically cannot see any error bars in such a scale thanks to the high resolution. An important

remark here is that from this kind of plot, there is no information at all about how much reliable
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FIG. 1.1: Schematic figure of comparison of excitation spectra between theory and experiments.
The unlikely large error bars are drawn to make the issue clear.

is this theoretical calculation. One cannot figure out whether or not the agreement in the lowest
two excited states and disagreement in the second 07 state are accidental unless estimating
theoretical uncertainties coming at least from the parameters and many-body method itself.

In this thesis, we propose ways to resolve these problematic circumstances.

This thesis is organized as follows: In Chapter 2, some basics about CI methods and
uncertainty quantification are introduced. After that, in Chapter 3, we discuss how to make
comparisons like FIG. 1.1 more insightful by considering theoretical uncertainties coming from
input parameters. In addition to this, we also discuss a novel method to evaluate an intrinsic
uncertainty of ab initio full configuration interaction method in Chapter 4. Conclusions and
some future perspectives are summarized in Chapter 5. Most of the data and codes used in
Chapter 3 and Chapter 4 are opened on GitHub [4,5] for reproducibility and to facilitate future

studies.

Here are the examples of possible impacts of this study from three viewpoints:

1. The relationships with experimental studies
In many literatures of experimental studies, e.g. gamma-ray spectroscopy, results are
shown in comparison with shell-model calculations. The UQ results enable us to quantify
the reliability of their statements deduced from comparison with model wave functions.
The information of theoretical uncertainty can be used to help to construct level schemes

and to design new measurements.

2. The relationships with ab initio frameworks

The UQ in configuration interaction methods may indicate some missing contribution in



current nuclear potentials or many-body techniques to derive effective interactions for a

valance space. This would tell us which higher-order components should not be omitted.

3. The impacts on other research fields
The UQ in shell model may contribute to the understandings in other research fields.
For example, beta-decay quantities like half-lives and neutron emission rates have an
effect on astrophysical simulations of nucleosynthesis. Moreover, some quantities from
nuclear structure calculations play a key role in physics about more fundamental degrees
of freedom. For example, nuclear matrix elements of double beta decay are crucial to
understand properties of neutrinos.

Through out this thesis, we will introduce some abbreviations. We summarize them in

Table 1.1 to prevent readers from confusing.
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Table 1.1: Abbreviations and acronyms used in this thesis.

Abbreviations/Acronyms

explanation

A

ANN
cC
cGP

CI

CK
EFT
FCI
GP

g.s.
HMC
ITSM
IMSRG
LA
LEC(s)
LS
MAP
MBPT
MCMC
MCSM
N

NLO
NNLO, N2LO
N3LO
NO2B
QCD
RWMH
SPE
TBME
UQ

Z

mass number

Artificial Neural Network
Coupled-Cluster

constrained Gaussian Process
Configuration Interaction

Cohen Kurath

Effective Field Theory

Full Configuration Interaction
Gaussian Process

ground state

Hamiltonian Monte Carlo
Importance Truncated Shell Model
In-Medium Similarity Renormalization Group
Laplace Approximation
Low-Energy Constant(s)

spin-orbit (force)

Maximum A Posteriori
Many-Body Perturbation Theory
Markov Chain Monte Carlo
Monte Carlo Shell Model

neutron number

next-to-leading order
next-to-next-to-leading order
next-to-next-to-next-to-leading order
normal ordered two-body
Quantum Chromodynamics
Random Walk Metropolis-Hastings
Single Particle Energy

Two-Body Matrix Element
Uncertainty Quantification

proton number




Chapter 2

Basics of configuration interaction
methods and uncertainty

quantifications

In this chapter, we introduce basics of configuration interaction methods!, and of uncer-

tainty quantifications in nuclear many-body problems by taking the CI methods as examples.

In Sec. 2.1, we briefly summarize fundamental topics of CI calculations in nuclear physics,

and then we explain the basics of Bayesian inference in Sec. 2.4, sampling schemes in Sec. 2.5.

2.1 Configuration interaction methods: valence and full
Cl

2.1.1 Eigenvalue problems in CI methods

The basic question in the nuclear many-body problems is how to solve the non-relativistic

Schrodinger equation for identical fermions:

A

H\I/(Tl,’r'g,...) = E\I/(rl,'rQ,...), (21)

H= Z(——V)+Zv ri—T;) (2.2)

1<J

'The reason why we use the plural form is that we distinguish full configuration interaction from one for a
valence space.

11



12 Chapter. 2 Basics of configuration interaction methods and uncertainty quantifications

where we assumed the system consists of A nucleons with mass m. The A nucleons in a given
nucleus interact with each other through V(r; — r;). We omitted an external potential U(r;)

in the equation above.

The idea of configuration interaction methods is to expand the wavefunction ¥ in a con-

venient many-body basis to handle and the common choice for that is Slater determinants:

v, =Y ", (2.3)
¢j1(1) o Ph (A)

®; oc det : : , (2.4)
SDjA(l) T Pha (A)

where we consider the eigenstate of the Hamiltonian labeled by the index n, and the labels
{j1,J2,---,ja} specify many-body configurations under the given single-particle basis. This

naturally incorporates Pauli principle and antisymmetric property of fermionic wave functions.

We move to Dirac’s bra-ket notation, and then, in harmonic oscillator single-particle basis,

the many-body state ®; is written in a second quantized form
1®,) = al af ---a}A|vacuum>, (2.5)

where a;r- is the operator that creates the single fermion state j.

We here define two terminologies, valence CI and full CI, by the difference in the choice of
the vacuum state. The schematic pictures of full CI and valence CI are shown in FIG. 2.1. In
full CI, |vacuum) is a fermion vacuum. On the other hand, |[vacuum) in valence CI is an inert

core, which is usually taken as the nearest doubly closed-shell nuclei.

Now, the eigenvalue problem can be written as:

D (@l H|®,)” = B, (2.6

J

In many practical situations, (®|H|®) is the large sparse matrix and one is interested in tens
of low-lying states. Therefore, the Lanczos method [6] becomes a method of choice for those
eigenvalue problems. One of the major advantages of CI methods is that one can evaluate
ground state energy, excitation spectra, and other observables in a consistent manner: Once
one obtained eigenstates, any observable of the target nucleus can be obtained by evaluating

expectation values for the operators of interest.

In general, we work with rotationally invariant Hamiltonians. Therefore, the eigenstates of
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Full Cl
z + o000

Valence ClI

non-active non-active non-active tor
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FIG. 2.1: The schematic figure of full and valence CI.
the Hamiltonian have good angular momenta.

H|W) = ), (2.7)
JH W) = J(J + 1)), (2.8)
S| W) = M|W), (2.9)

where we followed the convention to take z-axis as the quantization axis, and M can be
—J,—J+1,---,J. The value of E does not depend on a value of M = ZZA m;, where m; is j,
value of i-th single particle wave function. If we work with all states of a given M under the
spherically symmetric Hamiltonians, the eigenstates is guaranteed to have a good quantum
number J. This is the so-called M-scheme and M = 0 and M = 1/2 are used for even and
odd nuclei, respectively. Many shell-model codes in M-scheme are available: ANTOINE [7],
BIGSTICK [8], MFDn [9-11], and KSHELL [12, 13].

One can also work with the so-called J-scheme, i.e. working with the basis which has a
definite J value. It is known to be more costly to achieve calculations in J-scheme although
the matrix size is usually smaller than that in M-scheme by an order of magnitude. There are
also J-scheme codes on the market such as NuShellX [14].

Here, to avoid confusion, we explicitly introduce the definition of a terminology model space
in this thesis as follows: the all activated single-particle orbitals and many-body configurations

allowed. The latter one is simply called configurations from now on.

In full CI (FCI) calculations, all nucleons are activated under the given single-particle basis

and wave functions are typically represented in a truncated harmonic oscillator basis. This
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involves two basis space parameters, h{2 and Ny,... The Af) is the expansion parameter of the
basis states and the spacing between oscillator major shells. The Ny, defines the maximum
number of harmonic oscillator quanta? N = 2n+/ allowed in the many-body basis states above
the lowest configurations for a target nucleus, where n and ¢ are the principal quantum number
and the azimuthal quantum number respectively. The naive filling configurations correspond
to N = 0. In the case of °Li, for example, the configurations with one proton excitation from
the Op shells (n = 0,¢ = 1) to the 1s shell (n = 1,¢ = 0) and two neutron excitations from the
0s shell (n = 0,¢ = 0) to the 0d shells are included in the configurations with Ny, > N = 5.

2.1.2 Computational costs

Table 2.1: Rough estimates of M-scheme dimensions for FCI.

M-scheme dim.

Noaw ‘He 6Li 20 60
2 59 x 100 8.0x 10> 1.8 x10* 1.3 x 103
4 9.5 x 102 1.7x10* 1.1x10% 3.5x10°
6 79x10° 2.0x10° 3.3x 107 2.7 x 107
8 45 %x10* 1.6 x10° 5.9x10% 1.0 x 10?
10 2.0x 10° 9.7x10% 7.8x10° 2.4 x 10
12 71x10° 49x107 81x100 4.1 x 10"
14 2.2x10% 2.1 x10% 6.9 x 10" 5.4 x 10'?

Table 2.2: Estimates of M-scheme dimensions for valence CI.

nucleus inert core model space M-scheme dim.
OLi ‘He Op (full) 1.0 x 10!
12C ‘He Op (full) 5.0 x 101
BSi 160 Ls,0d (full) 9.4 x 10*
28Gi 160 1s,0d,1p,0f (2hw) 3.9 x 107
28Gi 160 1s,0d, 1p, 0f (full) 3.7 x 1010
6Ni 10Ca 1p,0f (full) 1.1 x 10°

In valence CI calculations, we assume the existence of an inert core, i.e. we divide the
A nucleons into two ingredients, an inert core and valence particles. If we naively compare
between full CI and valence CI methods for the same nucleus, the computational cost is

significantly reduced by assuming the existence of the inert core. This enables us to extend

2Qther than this paragraph, N denotes the neutron number.
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our scope to medium-mass nuclei. Of course, as described later in the context of effective
interactions, it does not necessarily mean that it is easier to obtain the accurate results with
valence CI over the full CI method.

Now we explore how much computational costs are typically required in FCI and valence
CI calculations. In Tables 2.1 and 2.2, we summarized M-scheme dimensions of some nuclei
with positive parity and M = 0 in both cases, full and valence CI?. The M-scheme dimensions
are evaluated with KSHELL code [12]. One can see that M-scheme dimensions increases as
the model size is extended and, especially in the FCI case, this easily exceeds the current
limitation, which is said to be around 10'!. As will be shown in Chap. 4, the values at Nyax
around 10 — 20 is still far from exact values. Regarding the valence CI case, “(full)” means
that all possible excitations in the model space are allowed and X hw express the typical way
to specify the truncation of the configurations. In the case of 2®Si in the sd — pf shells, 2hw
means that only two excitations across the major shell gap are allowed, while all excitations
among the orbitals in the same major shell are taken into account. There are more alternatives

to specify the truncation such as one based on the occupation numbers of each orbital.

2.2 Additional truncations

In the last subsection, we showed rapid increases in the M-scheme dimension as one goes to
heavier nuclei. Even if we introduce the truncation of the number of particle-hole excitations,
it reduces only a few order of magnitudes. This reduction of the dimension does alleviate
the problem, however, it can be easily imagined that this does not help any more in heavier
systems or more neutron- or proton-rich nuclei where more than one-major shell to be taken

into account.

One needs more efficient representations of the many-body wave functions while keeping
original information as much as possible. To this end, we here introduce some additional
truncation techniques which are used in frontier studies using CI methods in nuclear structure

physics.

Now we introduce the terminology importance truncation that gives an efficient representa-
tion of the many-body wave functions. We will introduce two different methods to incorporate
the idea of importance truncation, but the essential idea is common to both. The general idea
of importance truncation is selecting a small subset of the many-body basis states which is
physically more relevant to the observables of interest. If one could find a subset of many-body

states that dominates most of the exact wave function, the usage of that subset gives a very

3The estimates for FCI are done under the emax = 9, which is the maximum number of the harmonic
oscillator quanta for the single-particle states.
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efficient evaluation of the observables and significantly reduces computational costs. This is
because, in that case, it is expected that the rest part, which makes the discrepancy between
the exact one and CI estimates, can be regarded as non-informative component of nuclear

structure and then can be restored by some extrapolation method.

In the rest of this section, we will briefly introduce the Monte Carlo Shell Model [15, 16]
and Importance-Truncated Shell Model [26]. We note that there are other alternatives to work

with a smaller basis size to approximate wave functions using density matrix renormalization
group (DMRG) [17,18] or the hybrid multi-determinant (HMD) method [19,20].

2.2.1 Monte Carlo Shell Model

In the Monte Carlo Shell Model (MCSM) [15,16], a wave function is represented as linear

combination of the projected deformed Slater determinants:

N# J
[DNOSMY =N "N f P @), (2.10)
n=1 K=J

where Ny is the number of basis and the Pj/y is the projection operator in terms of both the

total angular momentum J and the parity m. This is given as

1+ P(r) 2] + 1
2 72

Jr
PMK_

/ dQDI . (Q)ei =B (2.11)

Here P(m) takes +P* for # = + with double-sign in same order, D{};(Q) is the Wigner
D-matrix, and Q = («, 3,7) are the Euler angles. The |®,,) is deformed Slater determinant:

a=1

A Nsp
D) = H (Z Mjaa;> lvacuumy, (2.12)
j=1

where A is the number of nucleons activated, and Ny,(> A) is the number of the single-particle

basis states. Imposing the normalization condition on |®,,), we obtain the relation
> (M) Mo =1, (2.13)
J
for any a.

Since the superposition of those deformed Slater does not have a good angular momen-

tum in general, we need projections shown above to restore the original rotational symmetry.

4The P is space inversion operator.
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One advantage of the deformed Slater is that one can obtain an intuitive understandings of
deformation of the target nucleus. Taking a close look into the overlap between the calculated
wave function and the deformed Slater determinants on the potential energy surface, we can
visually understand the deformation of the target nucleus. We refer the readers to, e.g. [21]

introducing the so-called T-plot.
Now let us go back to the eigenvalue problem with these MCSM wave functions. The

problem of interest is the following generalized eigenvalue problem:

> (@l H 5P| @0) = € (@l £5 Pl | ). (2.14)
nkK nkK

where the £ is the energy eigenvalue and the H is the adopted Hamiltonian. See the Sec. 2.3
for more details on H. Then, we obtain the energy eigenvalue and the coefficients {f/%}.
The main task in MCSM is to approximate well the exact wave function, which is generally
not feasible to evaluate, with less number of basis Ny. To this end, we need to optimize the
{Mj,}. Let M™ denote the transformation matrix between spherical and deformed Slater

determinants for n-th MCSM basis state.

The first procedure is to generate many candidates for the M and then to choose the
best one to minimize the energy. Those samples are generated in a stochastic way using the
auxiliary-field Monte Carlo technique, see Ref. [15,16] for more details. The second procedure
is the optimization of M) so as to minimize the energy eigenvalue using the conjugate gradient
method.

These steps are iterated by increasing Ny by one until the energy eigenvalue becomes
rather stable. It is of course the tradeoff between convergence behavior and computational
costs. We note that the optimization of M® is performed while fixing MM M@ . MG-D,
This guarantees the variational feature of the energy eigenvalue with respect to Ng. This

iterative procedure is called the sequential conjugate gradient (SCG) method in Refs. [22-24].

We also note that there is an alternative way to construct the MCSM basis states: one
can choose N, and optimize the MM M®) . M®s) simultaneously using e.g. the conjugate

gradient method.

Typically, one can obtain plausible estimates of the quantity of interest with an oder of
100 MCSM basis states. For this reason, the MCSM technique have significantly extended
our scope with CI methods to medium-mass nuclei. Representative examples can be found in

Ref. [25]: the original dimension of the basis vector is beyond 103!,

By definition, the calculated lowest energy eigenvalue is always an upper bound to the
exact ground state energy under the given interaction. This feature is useful to analyze the

convergence pattern of the calculation with respect to the number of MCSM basis states.
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2.2.2 Importance-truncated shell model

We here introduce an alternative approach to approximate the wave function with less num-
ber of basis states. For the applications to the valence CI case, the method is called in differ-
ent names such as the importance-truncated shell model (ITSM) or the importance-truncated
valence-space shell model (IT-VSSM). Its counterparts for FCI is known as importance-truncated
no-core shell model (IT-NCSM). The primary studies using IT-SM focused on FCI calcula-
tions [26-30] but then naturally applied to the valence CI case, too [31]. The essential idea is

common among them, so we simply call the method I'TSM for the sake of simplicity.

In the ITSM, one starts with a reference state

|\Ilref>: Z Cj,ref|q)j> (2]‘5)

jEMref

which represents the initial approximation of the exact wave function using less number of
basis. In the case of valence CI, for example, the wave function calculated with the 0hw
truncation in which no excitation across a major-shell gap is allowed. Then, one evaluates the

importance of the contributions from basis states outside the model space, |®;) & M .s:

2

(i H|Wrer) (i H|D;)
K= = — Z C]}Yefe—]’ (216)

€ — € ;
J ref jEMrcf J

where €; — € corresponds to the excitation energy which is evaluated by the unperturbed
single-particle energies. The key idea of I'TSM is that one chooses a fixed importance threshold
Kmin and then include the all basis states whose absolute values of importance measure, |&]|,
larger than k,,;,. The basis states are now iteratively constructed as a function of k;,. Let
M denotes the set of basis states included by the iterations. After the iterations, wave

functions in I'T-SM are represented as

|\Ij£1711in>: Z Cj,ref’q)j% (2.17)

JEMIT

Since the energy eigenvalues obtained by I'TSM are approximations to the exact values
and these are computed with a subset of basis states of the original valence space, the energy

eigenvalues are variational:

Eret = E(00) > E(Kmin) > E(0) = Fexact- (2.18)
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2.2.3 How to recover the original information?

We have discussed so far how to represent CI wave functions in an effective way. However,
it is naturally expected that there still remains a finite discrepancy between the MCSM /ITSM
output and the full model-space calculation. In general, one has to extrapolate the sequence
of results by MCSM/ITSM to estimate the exact value of the observables of interest. That
is typically done by the chi-squared minimization with low-rank polynomials. There is an
extrapolation method using energy variances that makes the extrapolation in MCSM more
stable [22,32]. However, that requires additional computational costs to calculate expectation
values of H?, (PMESM| 2| gMCOSM)  The efficiency is determined by the tradeoff between the

additional cost to evaluate (H?) and the reduction of the original dimension size.

We will revisit these extrapolation issues in Chapter 4.

2.3 Inputs of CI methods

In this section, we will give a brief overview of recent progresses in inputs of nuclear many-
body methods including Cl-type calculations. In Sec. 2.3.1 and Sec. 2.3.2, we briefly explain
recent progresses in describing free-space nucleon-nucleon interactions and higher many-body
forces by chiral effective field theory [33-35,54] and how convergence of many-body methods
could be fastened by the so-called similarity renormalization group method [99,100]. Then, in
Sec. 2.3.3, we introduce some a way to link those free-space nucleon potentials to the so-called

effective interactions for a valence space.

2.3.1 Nuclear potentials from chiral effective field theory

One of the most important developments in recent theoretical nuclear physics is the de-

scription of nuclear potentials by chiral effective field theory (chiral EFT).

The chiral EFT is a low-energy effective field theory of Quantum Chromodynamics (QCD)
and has information of the symmetry and its breaking pattern of QCD. The chiral EFT gives
a connection between nucleon degree of freedom and quarks and gluons. The history of chiral
EFT goes back to the S. Weinberg’s seminal papers [33,34] about the chiral perturbation theory.
Hereafter, we will focus on the application of chiral perturbation theory to the description of
nuclear potentials.

The general idea of effective field theory is the separation of scales. When one is interested

in some system, one has to properly choose the relevant degrees of freedom to capture the
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FIG. 2.2: Hierarchy of nuclear forces from chiral effective field theory under the conventional
Weinberg’s power counting. Solid lines and dashed lines are nucleon and pion lines, respectively.
Vertices with small dots, large dots, solid squares, and diamonds correspond to, and A; =
0,1,2, and 4, respectively.

dominant part of the system. This is achieved by introducing a typical momenta ) and
the breakdown scale of the effective field theory A,. Then, each contribution is classified by
perturbative expansion in terms of (QQ/A,) << 1, and its hierarchy is expressed by the power

v. The effective Lagrangian is given by

Lepr =) <A%) ) Fo(Q. {ci}), (2.19)

v

where F, is a function of () and {¢;} and at the given order v. The the {¢;} is a set of free

parameters in theory, which is the so-called low-energy constants (LECs).

By choosing the typical low-momentum scale ) as nucleon momenta of the order of the
pion mass and the breakdown scale to be A, ~ 1 GeV, the relevant degrees of freedom are
only nucleons and pions, and heavy mesons and nucleon resonances are integrated out, and
the effects of those degrees of freedom are implicitly included through LECs. These LECs are

usually determined by fitting to nucleon-nucleon (NN) or pion-nucleon (7N) scattering data.

In FIG. 2.2, we show a schematic figure of nuclear forces in chiral effective field theory.
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Under a given power counting scheme, one can classify all contributions like this figure. Here
we followed the convention, the power counting introduced in Ref. [35]. In this power counting

scheme, the power v of the chiral expansion is given as

v=-2+24A-2C+2L+) A, (2.20)
A =d; + % _9, (2.21)

where A is nucleon numbers involved, C' denotes the number of separately connected pieces, L
is the number of loops in the diagram, d; is the number of derivatives or pion-mass insertions,
and n; denotes the number of nucleon legs in vertex i. Here the sum runs over all vertices ¢ in
the diagram. This definition of v is slightly different from Weinberg’s original power counting
by 3A — 6. By this, v is essentially free from A-dependence that is not suitable for A > 3
systems [35]. We refer the readers interested in the power counting issue and related ones to
Refs. [36-41].

The following points are often cited as excellent points of chiral EFT potentials:

o The accuracy of the perturbative expansion can be systematically improved.

« This enables us to take account of many-body (three-body, four-body, ...) forces in a

systematic way.

o The derivation of many-body currents can be achieved in a consistent way.

As can be seen from FIG. 2.2, more and more diagrams appear in higher orders. At the
leading order (LO), we only have one-pion exchange term (the left diagram) and contact term
(the right one) in two nucleon force (2NF). The next order contribution, next-to-leading order
(NLO), is not ¥ = 1, but » = 2. This is due to the symmetry. Three different two-pion
exchange contributions at NLO are shown in the figure. At next-to-next-to-leading order
(NNLO), the 2NF contributions with different coupling constants appear, which have A; = 1,
and the three-nucleon forces firstly emerge. From left to right, two-pion exchange (TPE)
term, one-pion exchange (OPE) term, and contact (CON) term, respectively. While the LECs
associated with TPE (¢, ¢3, and ¢4) are common with 2NF, the LECs with OPE (¢p) and
CON (cp) firstly appear in three-nucleon force at NNLO. These c¢p and cg are determined by
fitting to some quantities which are relevant to many-body systems larger than two-body. In
the same manner, four-body, five-body, and higher many-body forces can be systematically
derived in principle. In what follows, let us consider up to three-body forces for practical
purposes. We note that many-diagrams for 3NF appear at N3LO, but there is no new LEC at
this order, i.e. only the LECs already determined in the NN-sector appear.
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Many quantitative chiral forces are available now and those are classified into the two
families: EM(EMN) and EGM(EKM). These are the acronyms of the authors of original
and following studies. Let EM denote the chiral EFT interactions derived by D. R. Entem
and R. Machleidt [35,42-47]. These are sometimes called Idaho potentials. We note that in
some recent studies [45-47], N. Kaiser and/or Y. Nosyk are also included as authors, and after
Ref. [47] the acronym EMN is now widely used for the up-to-date NN interaction. On the other
hand, let EGM/EKM denote ones by E. Epelbaum, Ulf-G. Meifiner and their collaborators [37,
40,41,48-62]. The interactions which belong to the latter family are also called Bochum-Jiilich

potentials. One of the major differences among them lie in their regularization schemes.

We have many options to determine LECs in 2NF and 3NF. We classified them into the
following three: (A) Extrapolative, (B) Interpolative, and (C) Order-by-oder.

For (A) and (B), the way to determine LECs appeared in 2NF is common, which is fit
to scattering data, and the difference lies only in the determination of the LECs in 3NF. In
type-(A), ¢p and cp are determined by fitting to observables of few-body systems such as the
triton binding energy and the nd doublet scattering length %a,,q [48], the binding energies of *H
and *He [63], the binding energy of *H and the charge radius of He [64], and the properties of
p-shell nuclei [65]. An alternative approach is using weak processes [66-70]. A common thing
among them is that those LECs are determined by few-body systems, so the usage of those

LECs in heavier nuclei can be called extrapolative.

Some studies using type-(A) interactions have exhibited that chiral EFT potentials which
are accurate for light nuclei vary considerable in heavier nuclei [71] and in saturation point
for symmetric nuclear matter [64]. One of the chiral interaction, the so-called EM1.8/2.0,
in Ref. [64] is known to give rather plausible saturation point and systematic description of
binding energies of light to medium-mass nuclei [71,72]. This indicates that it is essential for
quantitative chiral interactions to be consistent with both few-body and matter properties.
We refer to the interactions in which empirical saturation points are considered as type-(B)
interactions. There are not so many studies along this line, but this is one possible choice of
future generations of chiral interactions, see Ref. [73,74]. The usage of this type of interaction

in nuclear structure calculation can be regarded as interpolative in terms of mass region.

Alternative approach is simultaneous fit of all LECs to scattering data (and, in some cases,
many-body observables of medium mass nuclei). This approach is used in various interactions
such as NNLO,p [75] and NNLOgy [76], and NNLOge,/NNLOgy, [77]. The successful descrip-
tion of binding energies and charge radii from light to medium-mass nuclei with NNLOg,;
interaction using normal-ordered two-body approximation indicates that effects of 3NFs can

be more or less absorbed into two-body part as effective NN force(, see also Figure 11 in

Ref. [78]).
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We note that there are some studies of effective NN interaction without explicit 3NFs such
as a family of JISP (J-matrix inverse scattering potentia) [79] (JISP6 [80] and JISP16 [81]),
and Daejeon16 [82,83]. These numbers 6 and 16 mean that data up to A < 6 and A < 16 is
used to construct the effective interactions.

We also note that there are several works on chiral interactions from different aspects. In
Ref. [84-88], 3NFs are included as a density-dependent effective nucleon-nucleon interaction
which is obtained by summing up the third nucleon leg over the states in the Fermi sea. Here

are some examples of applications for nuclear matter [89] and reaction theory [90,91].

So far we have introduced the many chiral EFT interactions on the market and shown
that there are many options to construct chiral interactions especially in the context of LECs.
Another important topic on the input interaction is uncertainty in LECs and its propagation to
physical quantities. The UQ become one of the hottest topic of (ab initio) nuclear theory. We
should mention that there are pioneering studies along this line about the uncertainty analysis
in the determination of LECs and uncertainty propagation [77,92-97]. Those studies could
drive us to see some link between fundamental interaction and nuclear many-body systems via
LECs.

2.3.2 Similarity renormalization group (SRGQG)

The realistic potentials including chiral forces have strong repulsion in their short-range
component, and this repulsion deteriorates the convergence of many-body calculations sig-
nificantly. Note that chiral interactions are relatively softer than other realistic interactions
such as Argonne potential [98]. In general, however, it is needed to soften the interaction,
in other words to decouple low and high momentum components in a free-space interaction,
while keeping its original information as much as possible. It is the current common choice for
that purpose to evolve nuclear Hamiltonians using the renormalization group method which is

known as similarity renormalization group (SRG).

The SRG was introduced independently by Glazek and Wilson [99] and Wegner [100]. It is
based on unitary transformations which drive the initial Hamiltonian toward a more band- or
block-diagonal form. The SRG transformation can be achieved in an energy-independent way

and it preserves all observables as far as one keeps induced many-body forces in all orders.

The SRG flow is expressed by a unitary transformation U(s) as,
H(s) = U(s)H(0)U'(s) = Ty + V(5), (2.22)

where T} is the relative kinetic energy to be independent of the flow parameter s and H(s =
0) = Tye1 + V(s = 0) is the initial Hamiltonian, and V' (s) is the evolved potential. Taking the
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derivative of above equation with respect to s, it follows

SH(s) = [a(s), H(S)L, (2.25)

where 7(s) is anti-Hermitian generator defined as

dU(s)

7 U'(s) = —nl(s). (2.24)

n(s) =

The unitary transformation above can be written as an s-ordered exponential [102]:

U(s) = T;exp (/ ds’n(s’)). (2.25)
0
Here we take the simplest choice of the generator, which was firstly suggested by Wegner,
ns = [H(s), H(s)] = [H"(s), H*(s)]. (2.26)

where H% and H°? are diagonal and off-diagonal part of the Hamiltonian. In this particular
choice of the generator, it can be analytically shown that the off-diagonal part is exponentially
driven to zero [100]. There are other alternatives for the generator. For example, White’s
generator [101] is known to be convenient for a specific problem, i.e. it is the common choice
for in-medium SRG®. We refer the interested readers to Refs. [102-104] for more details on the
generator choice. We note that it is a common convention to use A = s~/4, which has units

of fm™!, instead of s.

2.3.3 Derivations of a valence space Hamiltonian from a free-space

interaction

In this subsection, we give a quick overview of derivations of effective interaction for valence

CI calculations.

The history of deriving effective shell-model Hamiltonians from a free-space nucleon-nucleon

interaction goes back to around 60’s [105-109].

While phenomenological (data-driven) approaches to construct shell-model Hamiltonians
have provided systematic descriptions of medium-mass nuclei with great success [110-118],

many progresses have been achieved along the direction to derive it from a free-space NN

®Modified versions of White’s generator are sometimes used.
6Some used the so-called G-matrix theory as its starting point and then modified it so as to improve the
agreement with data.
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force using the many-body perturbation theory (MBPT) [88,119-132], the Coupled-Cluster
method [133-135], the valence space in-medium similarity renormalization group (VS-IMSRG) [71
136-138]. In the rest of this subsection, we will briefly introduce derivations of effective inter-
actions by taking the VS-IMSRG as an example.

The in-medium similarity renormalization group (IM-SRG) was originally developed as an
ab intio method [139] for ground state properties of (sub-shell) closed nuclei like the Coupled-
Cluster [140,141] and the unitary-model operator approach [142-144]. Early applications of
these the so-called post Hartree-Fock (HF) methods were limited to ground state properties of
(sub-shell) closed nuclei. However, these were extended to deal with other quantities such as
Gamow-Teller transition strength and excited states [145-147]. Soon after the first publication,
the IM-SRG was also applied to open-shell nuclei [148]. For these methods, several review
articles are available now for the CC [149] and the IM-SRG [78,102].

The key concept of the IM-SRG is the applications of the SRG to the nuclear many-body
medium. As mentioned above, the SRG decouples, for example, low- and high-momentum
components of the Hamiltonian. On the other hand, the IM-SRG decouples the ground state
and the other excited states. To explain that, let us define some notations. In what follows,

we work with a general form of A-body Hamiltonians truncated at three-body level:
1
H= (1 - Z) TO 4+ 7@ 4 v@ L v®) (2.27)

where V™ is n-body force and kinetic terms are given as

2
T = 2”—7%, (2.28)
7@ = _ p;jﬁ (2.29)
1<j

We can rewrite the Hamiltonian in second-quantized form:

(1 - —) ZT“ alay + 1 ST+ Vidalalawa + 57 Vi alalalaa,

’ij‘l zyklmn

(2.30)

The operators above can be normal ordered with respect to a reference state |®), which is

obtained by e.g. the Hartree-Fock state:

H=F+ Zf” al laj +ZF”M a al jakay : + Z Wiikimn aja}alalaman :, (2.31)

ijkl ijklmn
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FIG. 2.3: Schematic figure of the IM-SRG flow. See the main text for more details.

where most of the normal ordered operators give (®] : af ---a; : |®) = 0 and the coefficients

of zero- to three-body terms are given in a simplified form:

1 1 1
E= (1 - Z> Z@'IT“)Ii)m *3 ;W IT® + V®lij)nn; + S > (igk[VOijk)nm g,

7 ijk

(2.32)

1 1
fij = (1 - Z) GTON) + > (kT + VO |jk)n, + 3 > (kV Okl ngn, (2.33)
k kl

Diji = (i|T® + VO + ) (ijm|VE [kim)n,y,, (2.34)
Wigkimn = (ijK|V P |tmn), (2.35)

using occupation numbers in the reference state, n, = 6(¢, — €p). Here ep denotes the Fermi
energy of the target nucleus. When the contribution of this term with W is relatively small,
it is validated to neglect the third term in Eq. (2.31), which is known as the normal-ordered
two-body (NO2B) approximation. Putting the normal-ordered Hamiltonian Eq. (2.31) into
the IM-SRG flow equation,

= [n(s), H(s)] (2.36)

with 7(s) = n" + @, which are one-body and two-body generators, we obtain the set of
flow equations for E, f,I", and W. As in the free-space SRG, this flow equation is formulated
as a commutator of operators, so this induces higher-order operators than two-body. It is

the common choice to keep up to two-body level in the IM-SRG flow. The flow equation for
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FIG. 2.4: Schematic figure of VS-IMSRG flow. The leftmost panel shows the separation of the
single-particle space with hole (h), valence particle (v), and non-valence particle (q).

zero-body term is written as

dE(S) 1 1 2 _
ds ;(m - nj)nz‘(j)fij + 3 % nz(jlz;lrijklninjnknb (2.37)

where ny = 1 —ny. As a consequence of the IM-SRG flow, the ground state is decoupled from
other states in a non-perturbative way and the 0-body term gives the interacting ground state
energy. The schematic figure is shown in FIG. 2.3. The grayscale figure shows the coupling
among reference state (which is defined as the zero particle zero hole (0pOh) configuration),
1plh, 2p2h, and 3p3h. Under the given Hamiltonian truncated up to two-body level, the
many-body states specified as npnh can only couple to (n £ 2) particle-hole excitation. This
is why the coupling between OpOh and 3p3h is colored in white. As a sequence of the IM-SRG
flow, the off-diagonal couplings between npnh and (n + 2)p(n & 2)h are driven to zero.

The expectation value of H(s) gives better estimate of the ground state energy than HF":

E, N = lim (D] H(s)|®) < (D|H(s = 0)|®) = Enr. (2.38)

The idea of the IM-SRG is naturally applied to decouple the valence space and others,
and this enlarges our microscopic scope to doubly-open shell nuclei. We can receive a benefit
of valence CI methods, i.e. one can systematically obtain ground state properties, excited
states, electromagnetic transitions, and so on. Of course there still remains the problem of

computational scaling of the valence CI method.

Let |i) and |j) denote some two-particle states in A-body system. Under this, we can draw
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FIG. 2.5: Oxygen ground-state energies with the USDB interaction [115] and the VS-IMSRG
interactions [138].

the schematic picture shown in FIG. 2.4. The initial Hamiltonian truncated up to two-body
level can couple the two-body configurations 2v, 1v1q, 2q, 3plh, 4p2h to each other. Here h, v,
and ¢ denote the hole, valence particle (v), and non-valence particle (q), respectively. This
includes the coupling between the model space, outer space, and hole states. The IM-SRG flow
can be used to decouple these couplings and then to renormalize those effect into the effective
Hamiltonian for the model space in a non-perturbative way. This is schematically shown in
the rightmost panel of FIG. 2.4.

In FIG. 2.5, we show the ground-state energies of oxygen-isotopes as a function of neutron
number N. The black dot points are experimental data, and the lines with cross and dia-
mond symbols are calculated results using phenomenological USDB [115] and the VS-IMSRG
interactions’ [138] respectively. We must note that in the VS-IMSRG approach all contri-
butions (from zero-body to two-body) to the energy eigenvalues are fully calculated with the
IM-SRG calculation and the shell model while, in phenomenological shell-model calculations,
the ground-state energy of the inert core is usually taken from a database. In that sense, the
comparison of the agreement between them and data is not fair, and we must note that the

VS-IMSRG results are remarkable and encouraging to go along these bottom-up approaches.

We have so far discussed ways to construct valence-space Hamiltonians using many-body
methods. An alternative approach is the one discussed in Ref. [150], which directly link the

chiral EFT potentials to the effective interactions for a valence space. In this work, they

"The reason why we used the plural form is that effective interactions are derived for each nucleus in the
VS-IMSRG approach.
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construct chiral interactions for a valence space, which is the sd-shell in the work, with center-
of-mass-dependent operators that arise due to the Galilean invariance breaking by assuming

the existence of the inert core.
All these are complemental studies to see the connection between the nuclear force and

effective interactions for a valence space.

2.4 Inference of parameters

target function

FIG. 2.6: Schematic picture of the potential surface of a target function.

In the rest of this chapter, we introduce machineries to quantify theoretical uncertainties

in Cl-type calculations and to extract much information from the results.

Before discussing technical details about the parameter inference, especially Bayesian in-
ference, in nuclear many-body problems, let us make some important remarks from general
viewpoints. Bayesian inference has been widely used in various scientific fields. We must note
that Bayesian is not special at all, but it is quite natural. If one has a belief like “XX must
be YY", this belief may be only the case with what he/she has already observed or known.
The validity of beliefs is strengthen or weakened by objective evidence and then the beliefs
are modified by them. This, updating posterior distributions by observing data, is the way of

thinking for human beings.

In some modern scientific studies, what people are doing can be rephrased as seeking some
optical values, e.g. the optimal values for parameters in a model, the optimal weight values

of neurons in artificial neural networks, the optimal conditions for materials to realize some
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special properties, and so on. In all those studies, the best value to maximize (minimize) some
target function, say the cost function, is used. We must note that the best value is the best
only for the data used and it is much more important to see how much narrow or broad are
their target functions in the parameter space around the best value so that one can see the

robustness of the best value.

The schematic picture, which is nothing to do with physics, is shown in FIG. 2.6. Suppose
the z-axis means some target function to be minimized in two-dimensional parameter space
(01,02). The best parameter is (0,0). The structure of the such target function, let us call
potential surface, tells us the robustness of the argument and whether or not there are some
directions in parameter space which is sensitive or insensitive to the target functions. This

tells us whether or not one still needs additional data to constrain the theoretical model.

It is worth showing the structure of the potential surface more than finding a temporary
optimal value, which will be modified by adding new data in future. This is especially true
for nuclear physics because we cannot write down (at least at this moment) the fundamental

interaction in a closed form and models for the nuclear force have free parameters®.

For that purpose, it is a natural choice to regard the parameters in theory not as points but
as probability distributions, and Bayesian machinery is the method of choice. Bayes’ theorem

is written as

P(D|6)P(6)

POID) = =5

x P(D|0)P(8), (2.39)

where 6 is multidimensional parameter and D is the data set taken into account for parameter
estimations. In most practical cases the marginal likelihood P(D) is difficult to evaluate and

regarded as a normalizing constant.

From here we use the following ordinary likelihood function unless otherwise mentioned:

P(D|6) = exp (—x*(8)/2), (2.40)
with the squared errors,
Np 2
O — < 0[0] >,
X0)=>" ( A0 9] ) , (2.41)
n=1

where Np is the number of data, O*P is experimental value, < O[#] >, is corresponding
theoretical estimates at 6, and AQ is the adopted error of observables {O, }; which are de-

termined by theoretical errors, since theoretical ones have the largest contributions in many

8The parametrization itself is of course not unique in general.
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practical cases of nuclear structure physics. We must note that there is no unique choice for
the denominator in Eq. (2.41), which can be dependent on n. How to parametrize the errors
and how to account for correlations among the errors are still open questions to be studied
in many scientific fields. Here we adopted the global error AQ over the entire data as the

starting point of those comprehensive studies.

While we use non-informed prior P(@) ~ 1 throughout this thesis, one can use the informed
prior if the prior information is plausible. We also mention that if we use Gaussian prior like
P(0) ~ exp (—aOTM 9), this is nothing but introducing L2-norm regularization term in the
x2. The prior selection itself can be formulated in terms of Bayesian inference by hierarchical

usage of Bayesian machinery. This flexibility is the one of the advantages of Bayesian methods.

2.5 How to evaluate posteriors?

Once the prior and the likelihood are determined, the problem is how to evaluate the
posterior, because in general the posterior cannot be obtained in a closed form. We typically
have two classes to evaluate the posterior P(8|D). One is a stochastic method such as Markov
Chain Monte Carlo (MCMC) and the other one is an approximation scheme such as the Laplace

approximation (LA) explained below.

If one could achieve infinite number of iterations for MCMC within a realistic time scale,

one obtains the samples that are exactly obeying posterior distributions.

In the case of nuclear many-body problems taking account of strong correlations among
many nucleons, one can naively expect that the true posterior is highly multimodal; The
mappings between parameters and outputs of many-body calculations are expected to be
highly nonlinear. This nonlinearity may prevent us from obtaining converged results by MCMC

within realistic time scales.

Approximate inferences such as the LA are literally approximation methods for posteri-
ors by writing down a posterior in a simple and closed form such as a Gaussian. Therefore,
computational costs are much less than MCMC. However, in general, they never give sam-
ples obeying the true posteriors. The advantages and disadvantages for these two classes are

complementary.

2.5.1 Stochastic method: Markov Chain Monte Carlo

In this section, we briefly review a few popular Markov Chain Monte Carlo methods from

practical perspectives. More comprehensive explanation can be found in e.g. [151].
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Random-walk Metropolis-Hastings (RWMH) method

The random-walk Metropolis-Hastings (RWMH) algorithm is highly popular sampling
method due to its simplicity and applicability. In RWMH algorithms, the samples obey-
ing a target distribution are generated through updating the state, which is represented by 6

hereafter.

The updating procedure is the following:

o When the current state is 8, a new parameter 8’ is proposed with the transition proba-
bility ¢(8 — @’).

« Calculate the Hastings ratio:

o' — 6)P(8)

0,0') = : 2.42
r0.9) =56 = 0)p0) (2.42)

o Accept the proposed 8’ with the probability:
r=min{l,r(6,0")} (2.43)

The efficiency of sampling crucially depends on the scaling of the proposal distributions. If
the variance of the proposal is too small, samples easily get stuck in local minima. On the
other hand, if the variance is too large, the sampling can become inefficient. It is one of the
most important issues in MCMC to design the appropriate proposal distributions. The highly
expertise and many trial and errors are needed to achieve that. Of course there are several

techniques to design the proposal distributions more or less automatically such as adaptive
MCMC [152].

However, we note that naive usage of adaptive MCMC may get stuck in higher dimension
or in the case of multimodal target functions. From the author’s experience, if we apply
adaptive design of proposal distributions in 17 dimensional space, which is the number of
valence shell-model effective interactions of p-shell space to be considered in Chapter 3, several
component of covariance matrix of the Gaussian proposal become almost zero to acquire the

desired acceptance ratio. This leads to biased samplings.

Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (originally known as Hybrid Monte Carlo in lattice field

theory [153]) algorithm is known as the way to avoid redundancy in random-walk Metropolis-
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Hastings algorithm. This has been widely used in various fields and many packages are avail-
able, see e.g. Stan [154] and PyMC [155]. We also refer the interested reader to the review by
Radford M. Neal [156].

The key idea of HMC is to use Hamiltonian dynamics to propose an update of the state.

We introduce momentum p following standard normal distribution,

d

1) =T 10, (2.44)

f(p) = \/12—7Te><p (—1%2) (2.45)

where let d denote the dimension of the parameter 8 and momenta p. We consider the marginal

probability density of 8 and p:

f(8,p|D) = f(8|D)f(p), (2.46)

where 0 is the parameter of interest and D is the data as the previous section. To employ
standard normal distribution corresponds to considering Hamiltonian dynamics of m = 1

particle. We can rewrite the above equation as
f(8,p|D) = exp (log f(6,p|D)),
X exp <log f(0|D) — Zp?/Q) (2.47)
By using U(0) = —log f(0|D), we obtain the familiar form H(p,0) = U(0) + ., p?/2. The

logarithm of posterior distribution can be regarded as the potential of Hamiltonian H (p, 0).

The marginal probability density is given as follows:

f(8,p|D) = exp (—H(p,0)). (2.48)

Next, let us consider the updating procedure of the parameter 8 using Hamiltonian dy-

namics in the (p, @) phase-space. By introducing the time 7, Hamilton equation is given as

dpi(t) _ OH(p,8)  0U(6)

dr - apz = Di, (250)

fori=1,2,...,d. We have so far considered the case with independent momenta. However, one
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can employ the correlated momenta by replacing f(p) by a multivariate normal distribution

f(p) < exp (—%pTE‘lp)- (2.51)

Our choice corresponds to its special case, X = 1.

In practical application of HMC, one has to solve the Hamiltonian dynamics in a numerical
way, and this induces numerical errors. This deteriorate the acceptance ratio, i.e. sampling

efficiency of HMC algorithm. The method of choice is to employ the so-called leapfrog method:

p(7+1/2) = p(r) = SVoU(0(7)). (2:52)
O(t+1)=0(r)+ep(t+1/2), (2.53)
pr+1)=plr+1/2) — gng(e(T+ 1/2)), (2.54)

where the time step for one iteraction is represented as 1 and € is the infinitesimal constant.
After L steps, we propose the updated parameter 8' = @(7 + L). Then, we calculate the
quantity, H(p(t + L),0") — H(p(7),0). In principle, this must be 0 due to the Hamiltonian
conservation, but, in numerical level, there is finite numerical error due to the finite ¢ to

describe time evolution in phase space. The Hastings ratio in this case becomes

. _ 10,pl0".p") (6, P|D)
t(0',p'10,p)f(6,p|D)

(2.55)

In the Hamiltonian dynamics, the time evolution is reversible, i.e. ¢(6,p|6',p’) = t(6',p'|0, p).

Then, the acceptance rate is given as
r(0,0") = min{l,exp{— (H(p',0') — H(p,0))}}. (2.56)

One can see from the above equation, the acceptance ratio of HMC algorithm is always high

if one keeps the numerical accuracy of Hamiltonian dynamics using e.g. the leapfrog method.

Here let us move to more detailed formulations which are relevant to Cl-type calculations.

We use the ordinary likelihood again:

f(D|0) = exp (—X2/2), (2.57)

i

where ¢ runs over selected nuclei and states, and AFE is arbitrary given accuracy, which can

be dependent on the label of the states, i. Now we assume prior distribution f(@) as uniform
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distribution and f(D) can be regarded as the normalization factor. Thus, U(8) in HMC
algorithm is now identical with x?/2 in problem of interest. We also note that we restrict

ourselves to consider energy eigenvalues from now on®.

In the application of HMC, the main problem is how to evaluate gradients of U(0) with
respect to parameters 6. Besides its importance for HMC, the gradients are also needed in
some approximation schemes for the posterior. In the rest part of this subsection, we explain

the concrete procedure to obtain the gradient in Cl-type calculations.

We start with a general shell-model Hamiltonian up to two-body level:

1
Hgy = Z eiajai + Z Z@ijklaja;akal =S4V, (2_59)

i ijkl

where v is anti-symmetric two-body interaction. We define the shorthand of the uncoupled

two-nucleons states:
1. . . .
|ab> = ﬁ(bamaajbmb) - |]bmb7]ama>)a (260)

where the factor 1/ V2 is for normalization. We from now on use two-different expressions of
TBMEs which are useful as inputs of shell-model codes. One is the JT-coupled form, which is
called isospin-formalism, with explicit isospin symmetry and the other one is neutron-proton
(np) formalism. Traditionally, phenomenological shell-model effective interactions are given
in isospin-formalism. We note that the SPEs are common between neutrons and protons
in isospin-formalism and one has to make sure to take account of derivatives with respect to
SPEs for both protons and neutrons in considering the summation of derivatives. On the other
hand, when one uses derived interactions from chiral potentials, which includes Coulomb force

explicitly, one must work in np-formalism.

To obtain the two-body matrix element in np-formalism, let us define the following two-

nucleons state coupled to J and M:

labs JM) = Aap(T) D (Gajvmam|J M)]ab). (2.61)

MMy

9Tt is easier to evaluate the derivatives of energy eigenvalues than other observables.
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Here the normalization constant is evaluated by considering the norm of the above equation

1 = < ab; JM|ab; JM) (2.62)

=AD" Gty Oy, = s Ormamt O, ) (Jadomamo| JM) (jajvmiymy | JM),
mambmflm;)

=[N (Gadsmams| JM) Gagemams| JM) = 8,5, (Gadsmams| J M) (agsmemal JM)),
Mamp

:[%b(J)]Z Z (jajbmamleM) (jajbmamb|‘]M)(1 + 5jajb(_1)J)a
Mamp

=[Aap(DP (1 + 8,5,(=1)7). (2.63)

Then the normalization factor for non-vanishing angular momentum coupled state is given as
1/4/1+6;,j,- Inversely, the uncoupled two-nucleons state is also expressed as the superposition

of coupled two-nucleons states as

lab) = (Jajomams| T M)[Aay(J)] " ab; TM). (2.64)

We have used the orthogonal relations of Clebsch-Gordan coefficients:

Z(j1j2m1m2|JM) (]1]2m/1m/2|JM) = 6m1m’15m2m’27 (2-65)
JM

Z (j1j2m1m2|JM)(j1j2m1m2|J’M’) = 5JJ’5MM" (2‘66)
mimse

In this thesis, we followed the notations in Ref. [157] by Prof. Arima and Prof. Ichimura'®.

Under these, the two-body part of the shell-model Hamiltonian Eq. (2.59) is represented

as

1 s : . .
V= 4 ZZ Z(]a]bmamb|JM)(jcjdmcmd|J’M’)

abed JM J' M’
X [(Aap (D)) Aca(T)) " Hab; TM|V |ed; J'M')al alacaq, (2.67)
1 _ INT— !/ !/
= 22D D D) Al ) abs TV feds M)
abed JM J' M’
x (1) M [af x af]§P[ac x ad Yy, (2.68)

10This book (in Japanese) has been used for a long time as a formulary in nuclear structure physics group
of the university of Tokyo.



2.5 How to evaluate posteriors? 37

where we used Egs. (2.65) and (2.66) and operators in square brackets are defined as

jaf < afl? = " (Gagomams| JM )alal, (2.70)
mamﬁ

[a. X ad](M],) = Z (Jejamoms|J M')acaq = [ae X dd](_‘]ﬂz,, (2.71)
myms

with G, = (—1)e"™eq,. Using the Wigner-Eckart theorem and the fact that V' must be scaler

in terms of spherical tensor operators, the two-body matrix elements are rewritten as follows:

J'OM'0|J M S0
%mb; J|[Vl|ed; J') = %< ab; J||V|ed; J'), (2.72)

where (||-||) is the reduced matrix element. For rank-k spherical tensor operators, the following

(ab; JM|V |ed; JM") =

relation holds:

k
m Z By — [g® x y®10), (2.73)

Then, Eq. (2.68) becomes

(0)
ZZ A ()] "M ab; J||V||ed; J) [[ x al]? x [a. x ag D] . (2.74)
abcd J 0
Dividing the each term of V' into the coefficient (ab; J||V||cd; J) and the operator part, the
expectation value < V' > is represented in a form < V' >=%"_(ab; J||V||cd; J) < [ >. Now
let o denote (a, b, ¢, d, J), and we define the TBMEs in np-formalism as V" = (ab; J||V||cd; J).

We note that in np-formalism indices (a, b, ¢, d) include the labels of proton and neutron.

When the two-body interaction is isoscalar too, one can obtain the corresponding expres-

sions of V' in isospin-formalism by extending the operators:

1 (0,0
V=7 > [ Aa(JT] [ Aca(TT)) " ab; JT||V ||ed; JT) [[ x al]?D x [a, x ad]UvT)] .
abedJT 0,0
(2.75)

We refer to the reduced matrix element (ab; JT||V||cd; JT) = V*° as TBMEs in isospin-

[0}

formalism. In this case, the greek index « denotes (a, b, c,d, J,T).



38 Chapter. 2 Basics of configuration interaction methods and uncertainty quantifications

The gradients of the potential U(0) with respect to TBMEs in np-formalism are given as

ou 0

oV = v
— 0 (log f(D|0) +log f(6)),

—log f(6]D)),

oV
8 8 X2
exp IS
_ Z { (Z,;((A?)Jr 25(V5")i )<V£p>i ‘ (2.76)

In the forth line, we used Hellmann-Feynman theorem. It is convenient to work in np-formalism
in terms of codes and derivatives of the quantity. However, it is much more convenient to work
in isospin-formalism when it comes to update the parameters. This is simply because the

number of parameters in isospin-formalism is less than that of np-formalism.

Relations of TBMEs between proton-neutron formalism isospin-formalism is given by

V' (papy; peba; J) = V"™ (nanw; nena; J) = Vi, (ab; cd), (2.77)
VP (par; pen 1) = 5 VO + (C170) (L (—)78a) Vs (abs cd)

+ V= (0701 = (—1)70a)Viiolabied) - (2.78)

= oV F_o(ab; cd) 4+ 1 ViF_ (ab; cd), (2.79)

where p and n represent proton and neutron.

Note that the above relations are true only when TBMESs in neutron-proton formalism have
good isospin symmetry. We can use the above equations to construct np-formalism interaction

having isospin symmetry if only you have TBMEs in isospin formalism.

By considering infinitesimal deviations of the function f(V'), we obtain

af af 150 .
{ Vit “ oVre(rv) } dV7—o(ab; cd)

N of B of _ af . of
oVip_,  oVre(nm)  OVrr(wv) Ve ()

} dV;%_ (abyed) = 0, (2.80)

where we assumed that infinitesimal variations in neutron-proton formalism are done simul-
taneously dV"(vv) = dV™(rmv) and we used 7w, vv, and mv to represent proton-proton,

neutron-neutron, and proton-neutron interactions, respectively. Then, we obtain the rela-
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tions:
of of
Ve, Covm(ry) (2:81)
o ___9oJ of of (2.82)

Vi, ovee(an) | ove(u) T aven(m)

We have shown so far the way to calculate gradients in shell-model calculations. This can

be also used in approximate method with Laplace approximation for posterior.

2.5.2 Approximate inference

In the previous subsection, we introduced widely used MCMC methods to obtain samples
from the posterior distribution. As already mentioned at the beginning of this section, the

MCMC is computationally demanding.

We again start with the non-informed prior P(0) o< 1 and the ordinary likelihood function,

P(D|0) = exp (—x*(8)/2), (2.83)
with the squared errors,
Np 2
Exr— < E0] >,
o= (L) (2.8)
n=1

where Np is the number of data, E&P is experimental value, < FE[@] >, is corresponding
theoretical estimates with the parameter 8, and AFE is the adopted error of the energy eigen-
values. This AF, which could be dependent on the label n, is determined by the theoretical
error, since theoretical ones have the largest contributions in many practical cases. It should
be noted again that F can be extended to any type of observables and we restrict ourselves to

consider only energy eigenvalues for simplicity.

In the Laplace approximation (LA), the posterior is approximated by the multivariate

Gaussian distribution around Maximum A posteriori (MAP):

O\iap = arg max P(D|0)P(0) = arg min x(6), (2.85)
0 )

P(6|D) ~ N (6]0yap, A7),

=4/ (|21:)|k exp (—%(9 — BMAP)TA(O — 0MAP))7 (2.86)
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with the Hessian matrix A:
A=-VV log P(D|0)P(0)|9:9MAP' (287)

Here we used Eqgs. (2.39) and (2.83) and P(0) 1. Each element of the Hessian matrix A is

written as

4,— S0 1 a<En[9]>a<1§g£e]> +;(<En[(0i>—E;xp) O(E,[0]) (2.88)

VL (AR 00, E)? 90,00,
The second derivative term above is evaluated by using finite differences of first derivative
terms [158]:

o(E,0)) 1 {8<En[9j+6]> 3<En[9j—€]>}+0(62), (2.89)

80,00,  2¢ 0 - 0

where E,[0; &+ €] denotes the E,, value evaluated by the parameters whose jth components are
slightly shifted by e from @yap. In the practical applications in this thesis, we varied this €
from 1.e-5 to 1.e-4 and confirmed that the results are independent of the choice. Under this
Eq. (2.89), the calculation cost of the second derivative term is 2d times larger than that of
the first term of Eq. (2.88).



Chapter 3

Uncertainty quantification in valence

shell-model calculations

In this chapter, we discuss a systematic way to quantify theoretical uncertainties in va-
lence shell-model calculations, and how these information would help us to understand ezotic

properties in nuclear many-body systems.

The valence CI calculation, which is commonly called shell-model calculation in nuclear
physics community, has been providing successful and systematic descriptions of a wide variety
of properties of light- to medium-mass nuclei. This indicates that the shell-model calculations
well approximates the wave functions of nuclei. See the reviews of shell-model calculations
especially from phenomenological viewpoints, [159-161]. As already discussed in the previous
chapter, also from microscopic viewpoints, the shell model plays a key role with recent de-
velopments in nuclear potentials by chiral EFT and many-body methods to derive effective
interactions for a physically motivated model space. We refer the interested readers to the
references cited in the previous chapter and the very recent review [162] for more details. This
kind of study combining ab initio methods and shell-model calculations can act as a foothold
for better understandings of the nuclear potential or pinning down the LECs, which still have

relatively large uncertainties.

Under this circumstance, it is an urgent task to assess the validity of valence CI itself
through evaluating their uncertainties which stems from the input effective interactions'. This
is because by performing detailed analyses of uncertainties from the inputs, one can obtain
deeper understandings on such as origins of the discrepancies between theory and experiments,
or which observables could be and should be reproduced by the theory within a given model

space.

!Uncertainties from many-body problem solvers are discussed in Chapter 4.

41
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3.1 Inference of shell-model effective interactions

Op-shell space

proton neutron
00 pl/2
;Sg/\\z.@@@ p3/2

FIG. 3.1: Schematic figure of Op-shell space on top of the “*He core.

In what follows, we introduce a way to quantify uncertainties in valence CI results so that

one can make more insightful comparisons than what is schematically shown in FIG. 1.1.

We take the Op-shell space on top of the *He core as the model space. As shown in FIG. 3.1,
the Op shell consists of two orbitals Op; /2 and Opsz/» and these are abbreviated as p1/2 and p3/2
in this chapter. The orbitals above the Op shell such as the 1s0d shell and the 1p0f shell
are not included in the model space, i.e. the excitations from Op shell to those shells are not
allowed in the calculations. Under the isospin symmetry, Op-shell interactions consist of two

single particle energies and fifteen two-body matrix elements, i.e. 17 parameters in total.

In this Op-shell region, there is an well-known phenomenological interaction by Cohen and
Kurath (CK) [110]. Since they did not introduced mass-dependence of TBMEs, which turned
out to improve the fit after CK’s work, and there is a few updated experimental data in this
region, we also re-examine the best fit of Op-shell interaction below. In addition to this, we do
inference of valence effective interactions on the Op-shell space, then properly propagate the

uncertainties to the observables.

All calculations within the Op-shell space can be done by an exact diagonalization method
(using the Lanczos method) with an ordinary laptop. This means that there is no uncertainty
from the many-body calculation itself. Thus, we can extract a theoretical uncertainty com-
ing merely from the input parameters. In this sense, the valence shell-model calculation is
appropriate test ground and starting points for uncertainty estimates in nuclear many-body

problems.

In order to do inference of the parameters, we need to introduce the measure of goodness of

the effective interactions. Following literatures, we use the squared errors shown in Eq. (2.84).
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To compare experimental binding energies with shell-model results, the Coulomb correc-
tions to energy values are added to E'[6] in accordance with Ref. [110]. We again show the

definition of the chi-square deviations in Eq. (2.41):

=3 (550 (31)

For { E®P}, we use a fixed 33 energy values of ground and excited states of the Op-shell nuclei?
throughout this thesis. This data set is essentially the same one used by CK with the exception

of a few updated data. The entire dataset is summarized in the tables shown in Appendix A.

We should mention that our choice of the measure of the goodness is not unique. An addi-
tional possible term which could be added to the squared error is the so-called regularization
term such as L1-norm or L2-norm. An alternative choice is to consider some informed prior.
For example, one can evaluate the mean and variance of effective interactions derived from
different input nuclear potentials, and use them as e.g. a Gaussian prior. Of course there is

no obvious reason to take those interactions on an equal footing.

Now the problem is to evaluate the posterior distribution of the Op-shell interaction over
the seventeen-dimensional parameter space. In general the posterior cannot be evaluated
analytically. We employ the Laplace approximation, which was introduced in Sec. 2.5.2, to

evaluate the posterior. Our task is to evaluate the Hessian matrix in Eq. (2.88).

If we write down a shell-model Hamiltonian in form of

H= Z Siala; + Z Vijmalalara, (3.2)

ijkl

where indices (i, j, k,1) run all single particle states in the model space and S and V are

respectively SPE and TBME. The energy eigenvalues can be represented as

E=(H)= Z Si<ajai> + Z V;-jkl<aja;akal). (3.3)

ijkl

Thanks to the Hellmann—Feynman theorem, this factorization indicates that there is no addi-
tional computation to evaluate first derivative terms in the Hessian matrix, Eq. (2.88), as far
as (ala;) and (aja}akaﬁ are computed. The first derivative terms of the Hessian matrix can

be evaluated using the expectation values of the operators.

The concrete procedures to quantify the uncertainties in shell-model calculations by the

2The notation “XX-shell nuclei” simply means that the naive filling configuration is given in the XX-shell
space. That does not necessarily means that additional excitations beyond the XX-shell are irrelevant.
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LA are the followings:

a) to search the optimal interaction Oyap in Eq. (2.85) with respect to the given data set
b) to calculate the Hessian matrix in Eq. (2.88)

¢) to generate sufficient number of effective interactions and to diagonalize them

For a), we prefixed the optimal interaction for the dataset by Adam [163], which is famous
as an optimization method in the machine learning community. We introduced the mass-
dependence of the form (A/6)? on two-body matrix elements (TBMEs) and we optimized
this p to minimize the total root mean square errors by changing the p by 0.1. This scaling
of TBMEs is originally introduced in Ref. [111] for the universal sd-shell interaction and
accounts for the mass dependence of the radial wave functions more or less. This significantly
improves the quality of the effective interaction. The root mean square errors for the given
data set are summarized in Tab. 3.1 in comparison with the results for three sets of the
interaction proposed by CK [110]. Three CK interactions, denoted CKpot, CKtb1, and CKtb2,
correspond, respectively, to (8-16)POT, (8-16)2BME, and (6-16)2BME in the original work.
Here, the numbers in the parentheses denote the mass range of the nuclei used in the fitting
procedure. In what follows, we use the total root mean square error for the optimal interaction
as the AE in Eq. (2.84), AE = 0.34 MeV.

Table 3.1: The root mean square (RMS) errors of energies for the 33 data in fit with the our
optimized interaction and Cohen-Kurath interactions. All errors are in units of MeV.

Ovar CKpot CKtbl CKth2
total RMS  0.34 057 047  0.54

We summarize the Oyap and its (projected) uncertainty in Tab. 3.2. In addition to the
mean values, the standard errors evaluated from the covariance matrix are shown. Here (full)
and (1st) are the results with the Hessian matrices evaluated by Eq. (2.88) and by only the first
term in Eq. (2.88), respectively. The TBMEs are abbreviated as v(abed; JT) with total spin
J, total isospin 7', and the orbits (a to d), which are 1 = p;/, or 3 = p3/2. The 1o deviations of
parameters are given by the square root of diagonal components of A~!. We can see from the
difference in the standard deviations between (full) and (1st) that the contribution of second
derivative terms are as a whole small compared to the first derivative terms in Eq. (2.88). If
it is a good approximation to omit the second term, the calculation cost to evaluate Hessian
matrices is reduced by a factor of 1/(2d 4 1).
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Table 3.2: Projected posterior distributions for the p-shell effective interactions. The mean
values correspond to the optimal value and std values denote associated standard deviations.

The values are in the unit of MeV.

SPE/TBME mean std (full) std (1st)

SPE pl 2.49 0.97

SPE p3 3.89 0.37
v(l111:01) —1.66 0.69
v(1111:10) —4.84 0.61
v(1113:10) —3.34 0.83
v(1133:01) —535 0.66
v(1133:10) 3.68 1.06
V(1313:10) 648 0.93
V(1313 11) 0.75 0.54
v(1313:20) —6.44 0.69
v(1313:21) —1.82 0.28
v(1333:10) —6.94 1.24
V(1333 21) 1.96 0.27
v(3333:01)  —4.15 0.71
v(3333:10) —3.29 1.14
v(3333:21) —2.13 0.48
v(3333:30) —8.73 0.39

0.84
0.35
0.72
0.58
0.80
0.81
1.07
0.86
0.56
0.77
0.30
1.22
0.27
0.84
1.30
0.50
0.38

Some TBMESs, whose total angular momentum J and total isospin 7" are (J,T') = (1,0),

show relatively large uncertainties. If we take Gamow-Teller transition strengths or electro-

magnetic observables into fit, which are sensitive to those parameters, we expect that the

uncertainties would become smaller. However, this brings additional issues on the quenching

factor or the effective charges. In this thesis, we do not enter into the detail of fitting procedure

including those quantities for the sake of simplicity.

3.2 Credible intervals of valence shell model for the Op-

shell nuclei

For the procedure c) in the last section, we performed shell-model calculations with 50,000

LA samples. This number is large enough to suppress the error coming from stochastic choices

of samples. The typical size of Monte Carlo error in the mean values of energy eigenvalues is

less than 0.1%. All the calculations below are done with KSHELL [12,13]3.

3The public version is available on the page of Prof. N. Shimizu https://sites.google.com/a/cns.s.

u-tokyo.ac.jp/kshell/home.


https://sites.google.com/a/cns.s.u-tokyo.ac.jp/kshell/home
https://sites.google.com/a/cns.s.u-tokyo.ac.jp/kshell/home
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FIG. 3.2: Excitation energies (left column) and energies (right column) of >C and *C. Each
state is classified by its (J™T, Nyr), where (J™T, N;r) stands for the N-th lowest states with
the total angular momentum J™ and the total isospin 7. The sold lines colored in red show
experimental data and the corresponding theoretical results with the LA samples distribute
as violin plots. In each violin plot, mean value and 15 error are shown by horizontal line and
error bar in white, respectively, where ¢ means one standard deviation of the results. Results
by the our @yap, CK interaction and the VS-IMSRG are also shown. While the left half of the
violin plot shows the results with LA samples with full evaluation of the Hessian, the right half
show the counterpart with the Hessian approximated by only the first term of Eq. (2.88). The
bluish and reddish colors, respectively, mean that the state is in and not in fitting procedure.

Now we are ready to evaluate credible intervals of valence shell-model calculations. In
FIG. 3.2, we show some selected results of energy spectra. Theoretical results by the LA
samples are shown by the so-called violin plots in comparison with (i) experimental data on
ENSDF databese [164], (ii) the results by one of the CK interactions, and (iii) those by the
derived interactions using VS-IMSRG [138], if available. The height and width of violins show,
respectively, 3¢ and appearance frequencies of the quantities with respect to all the 50,000 LA
samples. Here we use the notation ¢ for standard deviations of the results with all the LA
samples in order to distinguish from the ordinary statistical term o for Gaussian distributions.
The distributions for most of the states are actually Gaussian-like, but we must mention that

the distribution of the calculated energy eigenvalues do not necessarily distribute as a Gaussian.
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The mean values and 16 credible intervals are shown by horizontal solid lines and error bars
colored in white. FExperimental data and theoretical results are classified with the angular
momentum .J, the parity 7, and the isospin 7. We note that the total isospin is not determined
in some data, in which cases most plausible values are taken from the corresponding theoretical
results. The CKtbl was determined from the closest data to that for our Oyap, and gives the
minimum total root mean square errors among the three CK interactions (see Tab. 3.1). One
can see the significant variances in the height of the credible intervals. This enables us to
quantify the relative reliabilities of the theoretical estimates. We would like to emphasize here
that the overall scale of the credible intervals can be controlled by the factor in denominator
of the Eq. (2.84). If we adopted unrealistically large AFE, we can make all the violins cover
the corresponding experimental data. In that sense, the relative ratio of the height is much
more informative than its absolute size. In the followings, we omit relative and relatively just
before nouns or adjectives to avoid the redundancy, but it should be remembered occasionally.
Those difference in size of uncertainty for each state would imply much information such as
complicated correlations among parameters and many-body configurations, and sensitivity of

the parameters to the states.

Excitation spectra like the left panels in FIG. 3.2 are convenient for comparisons with
experimental studies with gamma-ray measurements, e.g. to determine which states are more
likely relevant to the newly measured gamma rays. One can also work with energy eigenvalues,
as shown in the right panels in FIG. 3.2. These are convenient for purposes to see systematic
deviations (e.g. with respect to the mass numbers) of shell-model results from experimental
data.

From Fig. 3.2, we can make another important remark. Obviously, the second 0" state
of 2C (Hoyle state) and the second 07 and 2% states of C show large deviations from
corresponding experimental data. For the three states, it has been suggested that the Op
shell is insufficient to describe these state and it is now common understanding today, see
e.g. [56,165-173].

We propose that these large discrepancies between the credible intervals and experimental
data can be interpreted as an indicator of exotic structures (« clustering, intruder configura-
tions, core excitations, etc.). Since both configurations in the given model space and outside
the model space contribute to the true wave function simultaneously, it is not giving a distinct
criteria for exotic structures. However, we can deduce which states are more likely to have
exotic structures listed above by looking at the relative size of the deviations. This, discussed
in the Sec. 3.2.1, is an important outcome of the evaluation of uncertainties in shell-model

calculations.

Furthermore, we can assess the validity of the LA by looking into the shapes of violin plots.
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If the LA failed to capture the global structure of y2, i.e. in the case that there are many
local minima or plateaus in the y?-potential over the parameter space, it is expected that the
mean values of observables calculated with the LA samples will deviate from the evaluation
with the MAP estimate and that the shape of violin plots will become asymmetric. However,
the deviation is not significant and the shapes of violin are almost symmetric for most of the
states: Regarding all the 72 states, the typical discrepancy in energy values between a result
by the Oyap and a mean value of the results with the LA samples is about 0.1%.

3.2.1 Detailed analyses of the results

FIG. 3.3: The plot showing the AE for the ground states. The states in fit (not in fit) are
shown by filled circle (cross) symbols. All the states are classified into the three clusters by
the so-called k-means++ method [174].

Hereafter, we explore a sort of generalization ability* of the valence CI calculation, (i.e. to
confirm that the parameter distributions are not overfitted to the 33 states) by considering 72
low-lying states for Op-shell nuclei. All these states and corresponding results using @yap and
LA samples are summarized in Tables A.1-A.2 in Appendix A. One can find more detailed
data including CK and VS-IMSRG results on GitHub [4]. The 33 data used in the parameter

4The terminology “generalization ability” is an important concept in Machine learning and in any scientific
fields using parameters. We expect this will appear in dictionaries for the general public in near future.
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inference are specified by the check-mark symbols v in the tables. We note that the g.s. of
UBe is thought to have unnatural parity, which cannot be described in the Op shell, so the

excitation energies are considered from the lowest natural parity state.

For that purpose, let us define the following quantity:

_ E™ (D)oo, — B |
AE(n) D — | theo. exp.

(3.4)

where the state is labeled by (n). Here ES., EY  and 6™ (D) are experimental energy
value, the mean of theoretical estimates using the LA samples, and one standard deviation,
respectively. We write dependence on the number of data D explicitly to emphasize the mean
value and standard error is dependent on which experimental data is used for the parameter
inference. This AF is the deviation between experimental data and the mean of the LA results
normalized by 16 error, and this can be defined for both energy eigenvalues and excitation

energies.

In FIG. 3.3 and FIG. 3.4 we summarized {AE} for the all 72 states with the data set
D = 33. FIG. 3.3 is showing the ground states and FIG. 3.4 is the counterpart for the excited
states. The values on z and y axis in FIG. 3.4 are AE for energy eigenvalues and excitation
energies, respectively. The states in fit (not in fit) are shown by filled circle (cross) symbols.
In both plots, for intuitive understanding, all the states are classified into the three clusters
by the k-means++ method [174], and colored in green, blue, and red. This is just for rough

classification; the number of clusters is not essential.

Regarding the ground states, say, the cluster colored in green, including 20 out of 26
states, can be said to be described (relatively) well by the shell model. For the rest, especially
a few odd-mass nuclei, deviations are large. It has been already discussed in e.g. [175] that
the continuum effect and the *He+3He component has large contribution to the ground state
energy of "Li. In such a way, combining information of uncertainties of valence CI calculations
with others, we can conclude that the origin of discrepancy is not likely due to the quality of

the effective interactions.

Now let us move to the excited states. The three exotic states mentioned above are located
far from the origin in FIG. 3.4. From this figure and spectra in Appendix A, one can see
that “Be and B respectively show systematic underbinding and overbinding, whereas the
excitation spectra are in relatively good agreement with experimental data. In the nuclei
located at = > vy, it is expected that shell-model properly account for the correlation among
the ground state and excited states. On the other hand, in the nuclei located at z < y such as
8Be and °Be, the shell-model apparently miss the correlation among the ground state and the

excited states, even though the absolute value of ground state is reproduced relatively well. To
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FIG. 3.4: The 2D plot showing AE (z-axis) and AFE for the excitation energy (y-axis). See
the main text for more details.

see whether or not this is general tendency for nuclei having a-cluster component, it is needed
to perform more comprehensive studies with shell model in other regions and cluster-model or

AMD calculations with uncertainty quantification.

Even if there is no preliminary knowledge of which states have exotic structures, one can
quantify how the states are to be (or not to be) taken into account through fitting procedures.
For that purpose, the distance from the origin in FIGs. 3.3-3.4 or a method like the k-means
clustering would provide us with a criterion. In this way, one can identify certain states which
should not be included in the fitting procedure, and then update the optimal interaction to
more utilitarian one. We note that there is a risk of redundancy of data and we do not
claim that more and more data should be included, because the number of data to evaluate

parameter distributions must be suppressed in future applications for heavier systems. If
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available, however, the iteration of inclusion/exclusion of data based on such a majority rule

could be a general strategy of data selection to this kind of phenomenological methods.

3.3 Scalability

In this section, we briefly discuss the scalability of our analysis to heavier systems. We
have demonstrated the distribution of energy eigenvalues obtained by 50,000 LA samples for
Op-shell nuclei. In the mass region beyond the Op shell, however, computing 10 low-lying states

for each nuclei with 50,000 different interactions is generally not realistic to achieve.

We consider the additional approximation to reduce computational cost significantly. Let

us define the following quantity:

Efves = > S alaar + Y Vi (alalara)vap, (3.5)
P ikl

where LFCA is the abbreviation of Laplace plus Fixed Configuration Approximation, and the
n is the label for LA samples. Instead of diagonalizing all the samples, expectation values
of operators are fixed as ones by the MAP interaction and propagate only the uncertainty in
SPEs and TBMEs. If the computational cost for shell-model calculation is dominant and the
approximation works well, the whole computational time is reduced by a factor of 1/(Number
of samples to be diagonalized) compared to the original computation. The validity of this
approximation is determined by how much the many-body configurations are sensitive to the

parameters.

Very recently, this approximation has been applied in UQ work under the Laplace approx-

imation for sd-shell nuclei [176]°.

3.4 Perspectives and remarks

If one intends to change the data set in the fitting procedure, one can modify the parameter
distributions relatively easily by regarding the previously obtained posterior as the prior and
by doing the similar inference for the data added. Furthermore, if one makes pseudo data
for unknown states, one can estimate their impacts on parameters in the same manner. This

flexibility is a benefit of introducing Bayesian inference.

5In addition to this approximation, they introduce the principal component analysis to find a linear com-
binations which are sensitive to the quantity. This gives us more efficient parametrization of the effective
interactions.
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It should be noted that our comparison between theory and experimental data is based on
the the order of the states with given J™ and T' counting from the lowest one; one should keep

in mind the possibility to make wrong comparisons.

This quantification also plays an important role. We have found there are some interesting
excited states in 14N, the third 17 state at 6.204 MeV and the first 37 at 6.446 MeV listed in the
ENSDF database [164]. This nuclei has been extensively studied by many theories such as shell-
model calculations in the p shell [110,177] (and this thesis) and the psd shell [165,178,179], the
no-core shell model [180] and the antisymmetrized molecular dynamics (AMD) method [181].

Among these, there is no corresponding states reported.

So far we have assumed that it is feasible to find a global minimum under the given
data set in the parameter space. However, as can be easily imagined, this is not the case in
heavier region even if one moved from (SPEs, TBMEs) space to the space spanned by a fewer
number of parameters such as linear combinations of SPEs and TBMEs. For that reason, it is
strongly desired to work with the bottom-up approaches and to figure out some way to achieve

uncertainty quantifications on the derived effective interactions.

If we could achieve proper uncertainty quantifications in any theoretical models, it must
be very helpful to assign spin parities of the newly measured states and to reexamine tentative
assignment of the spin parities. That leads to complemental developments of theories and

experiments.



Chapter 4

Uncertainty quantification of
extrapolation problem in CI-type

calculations

In the previous chapter, we have discussed uncertainties coming from input interactions
when the eigenvalue problems can be exactly solved under a given interaction and a fixed
model space. In this chapter, we consider intrinsic uncertainties in many-body methods by
taking full configuration interaction (FCI) method as an example. Some parts of this chapter

are also discussed in [182].

4.1 Extrapolation problems in configuration interaction
methods

In FIG. 4.1, we show schematic figures of problems to be addressed. Suppose that we have
four calculated data y as a function of 1/L, where L is the system size of the calculations.
Usually, the value at L = oo corresponds to the exact value, and it is often the case that the
current limitation of numerical simulations is very far from L = oco. As shown in the right
panel, one usually interpolate and/or extrapolate the results to estimate the value which have
not been calculated by assuming some parametric function and then optimizing its coefficients
to minimize x? deviation between the function and given data points (or an alternative with
additional term such as L2 norm). We show three different examples in the right panel.

Important remark here is that this type of parametric approach! has always a risk of overfitting

'More precisely, the point estimation of the parametric model.

53
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y: quantity of interest

/|
®
®
g o
o
1/L 1/L

FIG. 4.1: Schematic figure of difficulties in many-body calculations (left) and of conventional
approach to do interpolation and extrapolation (right). See the text for more details.

to the given data, i.e. lack of predictive power, unless the underlying mechanisms are exactly

expressed by the adopted parametric function, which is not often the case.

We now introduce examples of extrapolation problems in nuclear many-body theories,
and will discuss the novel interpolation/extrapolation technique that may alleviate overfitting

problems.

The full configuration interaction (FCI) method, which is also known as no-core full con-
figuration (NCFC)/no-core shell model (NCSM) [183,184)?

We summarized in FIG. 4.2 published FCI results of ground state energy of °Li using
JISP16/NNLO,, interaction with A2 = 17.5 MeV [185] and N3LO interaction with A2 = 16.0
MeV [186] as a function of Np,.. These will be analyzed later.

Despite enormous efforts for developing efficient algorithms and advances in computing
power, the currently available N, for the upper Op-shell nuclei is around 10 (see e.g. [187]).
Since this is still far from exact calculations (Nyax = 00), one usually extrapolates the results
with different N, to Npax = 00 to estimate the exact one. In previous studies, several extrap-
olation methods were proposed and the dependence on them was analyzed [187-193|. The most

intuitive way to achieve the extrapolation is the one based on an exponential function [187],
E(Nmax) = Ex + aexp (—bNpax), (4.1)

where (E,a,b) are the free parameters.

2Note that in some precious studies the authors call the ones using effective interaction by Lee-Suzuki
transformation as NCSM and distinguish it from NCFC. In this thesis, we consider only NCFC in this definition.
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FIG. 4.2: The FCI results of g.s. energy of °Li using JISP16/NNLO,y [185] and N3LO [186].

In addition to FCI, such extrapolation techniques are also required in the valence CI method
using additional truncations. Representative examples of the truncation are importance trun-
cation scheme [26-29] and Monte Carlo shell model (MCSM) [15, 16] discussed in Sec. 2.2.
In those methods, the rapid growth of the number of many-body basis for a valence space
is suppressed by selecting a small subset of the many-body basis states which is physically
more relevant. For example, the MCSM enables us to perform shell-model calculations for Sm
isotopes in which the largest M-scheme dimension is beyond 103! [25]. Note that the current
limitation is around 10''. These truncation schemes have been successfully applied to valence
CI and also FCI calculations in previous works [30,31,194-197].

Any of the extrapolation methods in those studies give intuitively reasonable extrapolated
results. However, there is a risk of overfitting, i.e., lack of predictive power for the true exact
values. This overfitting is because the y? minimization of a parametric model and point
estimation of the parameter leads to too deterministic predictions due to limited expression
power of the function. This is a problematic situation if one intends to discuss quantitative
issues like a level ordering of states with small energy differences, the positions of proton and

neutron drip lines, impacts of three-body forces, etc.

We also note that extrapolation techniques using artificial neural-network (ANN) are pro-
posed very recently [198,199]. In general, one usually requires large data sets to train the
networks, while it is still tough to achieve enormous number of FCI calculations while varying
their inputs, h{2 and Np.x. In future applications of FCI and also valence CI with importance
truncations to heavier systems, it is strongly desired to develop an extrapolation technique

which is applicable even to sparse data sets.

In order to overcome the difficulties above, in this chapter, we propose a novel non-
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parametric extrapolation method for CI calculations using constrained Gaussian Processes
that can give extrapolated results with uncertainty quantification and is applicable even to
small data sets. We demonstrate the validity of our model by taking the ground state energy
obtained by FCI calculations as an example. The code written in Julia is also available on

GitHub [5]. Some related technical issues are discussed in Appendix B.

4.2 (aussian processes

Gaussian Process (GP) is a popular statistical method as a non-parametric regression
model [200]. Tt is also becoming popular in physics due to its flexibility. We refer the interested
readers to recent publications in APS journals [97,201-206].

The GP regression can be interpreted as a method to describe a distribution over a function
space and doing inference of probability for each function. This is just what we need, because
this enables us to consider an ensemble of many possible functions for the extrapolation, infer
probability of each function, and then quantify uncertainties in the extrapolated value in a

statistical manner.

Interestingly, GPs are mathematically equivalent or related to many other models such as
ANN;, support vector machines, spline models, and so on. We refer the interested readers to
e.g. [200,207,208]. The excellent textbook on GPs by C. E. Rasmussen and C. K. I. Williams [200]
is available for free in the authors’ page. We would like to mention a very recent book written
in Japanese introducing GPs as a stochastic generative model of the functions [209]. This

would help to understand the usage of GPs for the purpose in this thesis.

Here we introduce some notations. As in statistics literature, P(a|b) denotes the probabil-
ity distribution of a under the condition b, and we use N (u,X) to express the multivariate
Gaussian distribution with mean vector p and covariance matrix 3. In what follows, we con-
sider two variable sets, data and prediction. The terminology data® is used to express a set of
X ={zli=1,..,D}and Y = {y;]i = 1, ..., D}. Here we assumed that we have D input points.
The prediction represents positions X* = {z}|i = 1,..., P} and values Y* = {yf|i = 1, ..., P}
for P points where the target values are not known. Specifically, X denotes currently com-
putable N.x, and X* is a set of Ny, where it is hard or almost impossible to carry out FCI

calculations.

In Gaussian processes, it is assumed that the two target values at the two arbitrary points
in the vicinity must be similar, and so-called kernel functions express the similarities. Then

the data values Y and prediction values Y* are assumed to be generated from the multivariate

3This is distinguished from experimental data in this chapter.
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Gaussian distribution A (p, ) whose covariance matrix X is given as

ECXX' PCXX*

Y = T
Kxx* KX*X*

(4.2)

Here Kxx, Kxx+, and Kx«x« are respectively D x D, D x P, and P X P matrices, and these
elements are evaluated with a kernel function. One of the most popular choices for the kernel

function is the Matérn kernel [210,211], which is defined for, e.g., two data points z; and z;

as follows:
217u
k(s w5 v) = Tmnyu &), (4.3)
£ = M) (4.4)

where I' is the gamma function and K, is the modified Bessel function of the second kind.
Here the global strength 7* and correlation length ¢ are the hyperparameters, and let 8 denote
the vector of hyperparameters. We will revisit the issue of hyperparameters later. The other
matrix elements, k;M(xi,:c’;;V) for Kxx- and kM(x;*,x;f; v) for Kx«x+, are also defined in a

similar way.

We follow the typical choice in literature, Matérn kernel with v = 5/2:

B Vor  Br? 5r
k‘M(’I“:|ZL‘Z'—:E]‘|;I/:5/2):T<1+T+@ exp | ——— | (4.5)

which makes sample functions second differentiable, and we replace r = |z; — ;| in Eq. (4.5)
by r = | Inz; —In z;| so as to make results independent on the scale of the x-axis and to capture
the non-stationary nature of FCI results [212], i.e. results rapidly converge to certain values
as functions of Ny.y. The radial basis function (RBF):

2
r

krpr(r = |z; — x;|) = Texp <—2—€>, (4.6)

which corresponds to Matérn kernel with v = oo [200], is also popular choice for the kernel.

However, its smoothness of the sample functions is often regarded as too high and, in practice,

this too smooth nature sometimes breaks down the positive semi-definiteness of covariant

matrices in numerical calculations when the number of sampling points is increased. These

technical issues are summarized in Appendix B and the author’s GitHub page [213].

Once the kernel function and its hyperparameters are fixed, one can define the joint covari-

4The global strength is not introduced in some textbooks and papers. However, we prefer to have 7.
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ance matrix in Eq. (4.2) for data/prediction as a function of 8. Then, the joint distribution of

data y and predictions y* under given hyperparameters is given as

u

P(y,y*|0) —N( ,2(0)) . (4.7)

Regarding the mean vectors, we use two different mean functions in this thesis:

 (case a) zero mean: pu = O0p, u* = 0p

 (case b) B3 fit: mean of data and prediction are both determined by B3 fit [187], i.e
minimizing x? deviation between the largest three N, data and the exponential func-
tion in the form of F., + c¢gexp (—c¢1Nmax) with three free parameters (Fo, co,c1). In
this choice, it can be said that preliminary knowledge on the behavior of the quantity is

included in terms of the mean function of GPs.

We will analyze both cases hereafter.

By definition of the conditional probabilities, the left-hand side of Eq. (4.7) can be rewritten

as

P(y,y*|0) = P(y"|y,0)P(y|0). (4.8)

Under given 8, one can write down P(y*|y,0) and P(y|0) in a closed form:

P(y*ly,0) = N(ny*\yvz]y*ly)’ (4.9)
frye1y(0) = " + K- Kk (y — ), (4.10)
Ly \y(e) = Kxex- — K)ZQX*K)_&(KXX*? (4.11)
P(y|0) = N(p, Kxx). (4.12)

It is common practice to use the so-called maximum a posteriori (MAP), that is the one to
maximize the hyperparameter posterior P(6|y). However, we do not use a single value for the
hyperparameters. We do inference of their probability distributions in a Bayesian manner so
as to integrate out the hyperparameter dependence, in which case the posterior distribution

of y* for unobserved input x* can be written as

P(y'ly) / P(y'|y.8)P(y|0)P(6)d6. (4.13)
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4.2.1 Constrained Gaussian Processes (CGP)

In many practical situations, the target function is known to have shape constraints (e.g.,
monotonicity or convexity) or inequality constraints. That is also the case with problems of
interest, i.e. energy eigenvalues in FCI are monotonic and (almost) convex with respect to
Nnax- In general, the accuracy of a statistical model like GP is improved by including such

physics information. To this end, we extend Eq. (4.13) to

Py [y, . B, ..) o / P(y'ly, 0)P(y|0)P(6)P(a B |y", y)d6, (4.14)

where P(a, f3,...|y*,y) is the probability that the conditions «, 3, ... are satisfied under the
given y* and y. This follows from the fact that @ are independent of the conditions, i.e.
P(a, B, ...|ly*,y,0) = P(a, B, ...]y*, y) These constraints are introduced independently for each

problem of interest.

In general, the integration in Eq. (4.14) cannot be evaluated analytically. Therefore, some
approximation or sampling scheme is required. We evaluate the integration in Eq. (4.14) by

weighted N, samples as follows:

Np
P(y'ly, . 8,...) =~ Y w Py Py, 69), (4.15)
=1

0 = P(y|09)P0)P(a. B, [y y)
S Py|0©)P(OD) Py O]y, 60) Pla, B, ..y~ y)

(4.16)

We employ the particle filtering method [214] (also known as Sequential Monte Carlo) as a
sampling scheme to evaluate the summation in Eq. (4.15). In our particle filtering algorithm,
states {0@, y*)} are assigned to particles labeled by i = 1,2, ..., N, and those particles are
evolved independently according to the Metropolis-Hastings method. As can be seen from
Eq. (4.16), the plausibility of hyperparameters and predictions, namely w®, is determined by
the balance among the likelihood, the prior, and the fidelity to the constraints.

Particle filter

The pseudo code for our particle filter method is shown in Algorithm 1. At certain points
of runs of the code, we do the so-called resampling of the particles according to the fidelity
of the constraints, i.e. P(a, 3,...|y*™@, y). This prevents the samplings from being biased by
the localization at physically irrelevant region and significantly improve the efficiency. This

procedure is explained in Sec. 4.3.
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Algorithm 1 Particle filter for GP hyperparameters
input: N (sample size), T' (number of step), P(0) (prior for hyperparameters), , y, and x*.

Generating initial hyperparameters:
09(i=1,...N) ~ P(6)
Generating N predictions from P(y*®|y, ).
for step =1 to T do
for i =1to N do
0§;)nd ~ T1(8D) (T : proposal for candidate 8())
o) = min{1, P(y"?), 03,,4|y) /Py, 09]y)}
if U(0,1) (uniform distribution) < o then
6 = Héfl)nd
end if

y:;i)d ~ Ty(y*) (T : proposal for candidate y*®)

B9 = min {1, Py, 0 y)/Py™®.69y)}
if U(0,1) < 8% then
y ) =yl

end if
end for
if step == e.g. 100 then

Resampling of N particles according to the weights
end if

end for

4.3 Application of CGP to extrapolation problems in
full CI method

In what follows, we apply the constrained GP model to extrapolation problems in FCI
calculations. We summarize again the published FCI results of the ground state energy of
OLi. These are obtained by JISP16/NNLO,,; interaction with AQ2 = 17.5 MeV [185] and N3LO
interaction with A2 = 16.0 MeV which is softened by similarity renormalization group (SRG)
method with a flow parameter A = 2.02 fm~' [186]. The results are shown in FIG. 4.2 as a

function of Nyax.

Let {(x1,11), (x2,y2), ..., (Tp,yp)|T1 < 3y < -+ < xp} denote the data, i.e. (x1,y1) =
(6,—28.602), ..., (xp,yp) = (14,—31.977) in the case of N3LO results. Unlike least squares
fitting of parametric models in which one should remove outliers from data, there is no reason

to reduce data in the GP model and we use all V., results as data unless otherwise mentioned.

The extrapolation problem addressed below is to estimate the ground state energies at Ny ax

larger than xp and we express them as {(z7,v7), (25, y3), ..., (25, yp)|2T < x5 < --- < a2} }; Here
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x] = xp + 2 and P is large even integer. For the sake of simplicity, we restrict ourselves to
consider the ground state of ®Li with natural parity, i.e. we only consider even Np... In
practice, we truncate at certain finite P value where predictions are converged with respect to

Niax- A detailed discussion about this P will be given later.

As a minimal constraints to FCI calculations to capture true asymptotic behavior of FCI
results, we impose the following two constraints. We assign the labels o and 3 to the conditions
as in Eq. (4.14).

The condition « is variational property, i.e. the monotonicity of energy eigenvalues with

respect to Npax:
Plaly*,y) = P(yp — 1) X @(y; —43) X -+ X P(Yyp_1 — Yp). (4.17)
Here we introduced the Probit function:

@(Z,fi)E/_:\/;_ﬂexp (—?)dt, (4.18)

where k is the parameter which controls the strictness of constraints.
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FIG. 4.3: The behavior of the Probit function as a function of z (left) and x (right).

As shown in the left panel of FIG. 4.3, this Probit function approaches the step function
at 2 = 0 when K — oco. In the right panel, we plot this Probit function as a function of x,
When we suppose that the z is given in unit of MeV and fixed as —1.0, the ®(k, z = —1.0) has
non-zero value only if k <~ 38. This & is set as about 10° in our code, which is large enough

to impose the variational property with satisfactory accuracy less than 0.01 keV level. More
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FIG. 4.4: The ratios of energy gains associated with 10% fluctuation to larger value (error
bar). The symbols for FCI results are the same as FIG. 4.2. For the visibility of the figure,
NNLOgpt and N3LO results are slightly shifted to the left and right, respectively. See the text
for more details.

precisely, in our code, the & is gradually increased to ~ 10° so as to avoid possible localizations
at the early steps of the Monte Carlo sampling. We confirmed that the form of this x as
a function of the Monte Carlo step does not affect the extrapolation results other than the

sampling efficiency.

Second condition f is the one about the convergence pattern. Let r; denotes a ratio of

energy gain at nearest neighbor three points labeled by ¢, j, and k:

ry =k (4.19)
7o
o) +2 =2l =2 — 2, (4.20)

where (z*),y™)) denotes data and/or prediction. This {r;} can be used as a measure of
convergence pattern of the FCI results. We plot the {r;} in FIG. 4.4 for the three published
FCI results. If calculated results of g.s. energy exactly obey exponential function, this means

rj is a constant. However, this is generally not the case as shown in FIG. 4.4.

JERETIC

We impose the constraint on the {r;} as follows:

) e (e - Yin V)
Yp—2o —Yp_

(4.21)

Y1 — Ya
Yp — Yi

Yo — Y3
yi — Y3
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where Rpg is upper threshold determined as follows:

RE = Tmean T Tstd, (422)
Yp-1 — YpD >0

Tmean — Y

Yp—2 — Yp-1

(4.23)

Tstd = OrTmean; (424)

We use o0, = 0.1 throughout this thesis. As can be expected from FIG. 4.4 and Eqgs. (4.21)-
(4.24), this condition is rather soft constraint on the convergence pattern. When o, is large
enough, results agree with ones with only the condition . We refer to the GP extrapolation
model using constraints as the constrained Gaussian Process (¢cGP) model. More specifically,
we call cGPs defined with zero-mean vectors and with B3 fit as ¢GP-a and ¢GP-b, respectively.

It should be noted that the choice of 5 can be also regarded as the hyperparameter and

one can introduce P(f) and consider its marginalization. This is left as a future study.

4.4 Results and Discussions

4.4.1 Extrapolation of g.s. energies
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FIG. 4.5: The extrapolated values of °Li g.s. energy using the two constrained GP models.
The 1o and 30 confidence intervals of ¢GP results are shown by bands colored in red and blue.
The other symbols are the same as in FIG. 4.2.

We now present the results of ¢cGP predictions for the ground-state energies of °Li in
FIG. 4.5. Extrapolated results of cGP-a and ¢cGP-b are shown by red and blue bands. These are

drown by assuming the posterior at each point to be a Gaussian distribution. The extrapolated
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FIG. 4.6: Distribution of predictions for the three interactions at the point where results
are converged with respect to Np... The credible intervals shown below the histograms are
obtained by assuming a Gaussian distribution.

values are cut at a certain Np., where the mean value is converged. The minimal values of
Niax which give convergence are 44, 38 and 34 for NNLO,, JISP16, and N3LO, respectively.
These numbers are consistent with our intuition that harder (repulsive) interaction requires
larger Ny, to obtain the converged result, while we should remind that these results are for
different h€2. We note that the convergence threshold is set as 0.2 keV and that the possible
deviation of the energy values from F(N,.x = 00) are suppressed less than 1 keV because of

the constraint .

In FIG. 4.6, the predictions at which results converged are shown by histograms in compar-
ison with other extrapolated values. The values for Literature are from Ref. [185,186]. Here
we note that literature value for N3LO [186] might be obtained by an exponential fit using all
five data, though that is not explicitly stated in the references. It must also be noted that it is
a highly non-trivial task to fairly compare the results with different extrapolation techniques,
because some data is truncated in parametric models and some extrapolation methods use
data with multiple A2 as in A5 extrapolation of Ref. [185]. Our predictions include parametric

B3 fit as special cases within 1o deviation.

We have confirmed that the particle filtering algorithm gives converged results within a
few keV accuracy in case of 20,000 particles after 2,000 times Metropolis-Hastings updates and

that independent runs reproduce the same results within Monte Carlo errors.

Our predictions of the exact value of °Li g.s. energies with uncertainty quantification are

summarized in FIG. 4.6.
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FIG. 4.7: The plot showing the impact of the constraints o (monotonicity) and 8 (convexity-
like). The bands in red, orange and green, show lo errors of predictions with o and 3, only
a, and without constraints, respectively. The red bands are cut at a certain Ny, which gives
converged results and these are identical with what are shown by red bands in FIG. 4.5.

4.4.2 Impact of the constraints

Here we discuss how extrapolation results are influenced by two constraints imposed. In
FIG. 4.7, the impact of the constraints is shown. All symbols are the same with FIG. 4.2, and
the cGP-a and ¢GP-b results are summarized, respectively, in the left and right region. The
bands colored with red, orange, and green, correspond to 1o error of GP predictions with «

and [, with the only «, and without constraints, respectively.

As shown in textbooks such as [200] and can be easily confirmed numerically, predictions
of unconstrained zero-mean GPs at points far from the data domain converge to zero with a
fixed standard error. For this reason, we omit the case of cGP-a without a and g which is
obviously not appropriate for the current purpose. It can be seen from FIG. 4.7 that green and
orange ones predict to get additional bindings even after Ny« = 40. This is unlikely under the
assumption that we are interested in low-lying states and that the wave function is dominated
by relatively lower Ny.x configurations®. For that reason, it is expected that predictions with

both constraints o and S are more reliable and suitable than the others.

50Of course we can think of exceptions such as ground state of '!Li.
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4.4.3 Data dependence
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FIG. 4.8: Extrapolated ground state energies as a function of maximum N, used as data.

We have used all N, results as data so far. Here we explore the dependence of extrap-
olated values on the used data to test the potential predictive power of our extrapolation
method. In FIG. 4.8, extrapolated values for both ¢cGP-a and ¢cGP-b are shown as a function

of the maximum Ny, used as data, i.e. xp = max(Npax)-

The height of the violin plot shows 3¢ error, and the error bar in white corresponds to 1o.

We also note that the width of violins is scaled to the same, and some violin plots are slightly
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shifted to left or right for visibility.

As a whole, the size of credible intervals for ¢cGP-a are larger than that for ¢cGP-b, and
the credible intervals of ¢cGP predictions become smaller as higher N,., data added with only
one exception. The exception is the one for N3LO interaction with max(Nyax = 10) for cGP-
b. This exception can be understood from Eqs. (4.8)—(4.12). In this case, the exponential
function exactly fit the given three data and then g+, in Eq. (4.10) is identical with p*.
Any fluctuation of the joint mean value g+, is not allowed, and this significantly reduces
probability weights for functions other than the B3 fit.

In the rest of this subsection, let us regard the mean values at max(Nyax)= 18 for NNLO
and JISP16 and at max(Ny.x)= 14 for N3LO as the tentative exact values.

For NNLO,, and JISP16, an important remark is that the tentative exact values are
covered by ¢GP-a predictions with relatively lower max(/Ny.x), whereas the ¢cGP-b prediction
seems to underestimate the uncertainties in extrapolation. This is because that the cGP-b
takes account of fluctuation of the functional form only around the exponential function, while

c¢GP-a includes a broad class of the functions for the extrapolation.

For N3LO, the extrapolated values for both ¢GP-a and ¢cGP-b are much sensitive to the
max(Npax) than the results with NNLOg,, and JISP16. Any predictions by cGP-a, ¢GP-b,

and B3 fit with lower N, have almost no overlap with the tentative exact value.

The result shown in FIG. 4.8 indicates that the extrapolation for results with N3LO inter-
action would be a more non-trivial problem than others. This can be partly understood from
the behavior of the ratio of energy gains r. Especially in the N3LO case, the r is unstable
with respect to Ny, as seen from FIG. 4.4. One of the reasons which causes this non-flat
behavior of r is that the dominant part of the exact wave function is still not exhausted by
the model space with lower N,,.., i.e. two more excitations still give significant effects. This
is a fundamental difficulty in extrapolations. Another possible reason is the SRG evolution of
the input nuclear potential. To reveal that, one needs to achieve more comprehensive studies
while varying the SRG flow parameter. If one could figure out an additional constraint on
the behavior of extrapolated values as a function of max(Nyay), this kind of problem seen in
N3LO results of 5Li could be alleviated.

4.5 Short summary of this chapter

We introduced an extrapolation method for Cl-type calculations using the constrained

Gaussian Processes. This method has the following advantages that are required for future
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generations of ab initio studies to make more quantitative discussions on observables of interest

and on quality of the nuclear interaction adopted.

Firstly, our extrapolation method has applicability to sparse data set (e.g., three or five

data), which is strongly needed for future FCI calculations.

Secondly, one can naturally incorporate domain knowledge into the model. It is often
the case especially in physics that one knows in advance behavior of the target quantity at
a certain level, which is ranging from empirical laws to physical principles. One can expect
that imposing such information improves the accuracy of the predictions by the model such
as GPs. This flexibility might be useful to alleviate difficulties in extrapolation mentioned at

the end of the previous section.

Thirdly, uncertainty quantification under the given model and the assumption is available.
The overfitting associated with chi-square minimization (e.g., in a single parametric model) can
be alleviated by marginalizing over the parameters instead of making point estimation of the
values [158]. The dependence of the extrapolated results on the extrapolation function is partly
integrated out by means of Gaussian processes, and marginalization of the hyperparameters in
Gaussian processes. For those reasons, it is expected that the overfitting problem in terms of
the selection of the extrapolation function is partly alleviated by our method, though it should

be also mentioned that any type of model are not completely immune to overfitting.

In this thesis, we discussed only the ground state energies obtained by FCI calculations.
When it comes to the extrapolation problem of other quantities or in other systems, the main
problem is to find the minimal conditions to capture the asymptotic behavior of the quantities
of interest as a function of Ny... It is a possible future direction along this line to extend the
c¢GP model to a higher dimension. In case of FCI calculations, for example, one can impose
the following additional constraint on GP by extending the formulation to (Npax, A2) space:
extrapolated values with different AS) should converge more or less to the same value. The
extension of the formulation to a multi-dimensional space is rather straightforward, while it
is expected that one needs more technical analyses in numerical studies such as positive semi-
definiteness of the covariance matrices. Our model can also be applied to valence CI techniques
using an importance-truncation in which extrapolation function is much more non-trivial than
the FCI calculations. It would also be interesting to apply this kind of constrained GP to the

finite-size scaling analyses in other systems.



Chapter 5
Summary and future perspectives

Brief summary of recent developments in nuclear structure theory

In recent decades, we have been witnessing very rapid developments in nuclear structure
physics community, mainly from two aspects. One is the fundamental interaction owing to the
chiral effective field theory, and the other one is many-body problem solvers, especially ab initio
ones. The scope of those ab initio methods has been rapidly extended to medium-mass nuclei,
including doubly open-shell nuclei in the last decade. We are now able to compare various
ab initio methods to check the validity of many-body methods themselves and consistency to
the others by using the same chiral potentials. Even the nuclei with A ~ 20, such as oxygen

isotopes, can be used as a testing ground now.

In addition to this, we are now able to derive shell-model effective interactions starting
from free-space nuclear potentials such as chiral forces. This enables us to achieve systematic
studies of various properties of nuclei in a consistent manner. Our scope has been enlarged to
the systems with 10 < A < 100. Until, say, 10 years ago, the many-body perturbation theory
(in a broad sense) was the only choice to derive shell-model Hamiltonians. The situation has
changed by the extensive studies on the post Hartree-Fock methods such as coupled-cluster

and in-medium similarity renormalization group.

All these are remarkable and encouraging. We are getting a path from the fundamental
interaction to nuclear many-body problems in a wide range of the nuclear chart. At the same
time, however, it is still ambiguous what is the model-dependent or model-independent view of
nuclear phenomena caused by a specific model or approximations. In common with most areas
of science, many modern theoretical models have been developed by iterative cycles of solving
“forward modeling problems” such as methods listed above and “inverse modeling problems”,
i.e. to make feedbacks from experimental observations, comparisons with other models, etc.

They have provided deep insight into phenomena for sure, but it may not work for the nuclei

69
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that are not accessible to experiments. We need a better idea to consider how much we can

know about properties of nuclei using the various theories.

The motivation of this work

(a) (b)
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FIG. 5.1: Schematic figure of impacts of UQ studies. See the main text for more details.

Under these circumstances, uncertainty quantification for theoretical calculations, in par-
ticular ab initio ones, is one of the most urgent and pervasive issues in the low-energy nuclear

physics community today. The aim of this work is to contribute in that direction.

In FIG. 5.1, we showed a schematic figure to show the possible impacts of this study in
contrast to FIG. 1.1. In the left and right panels, we plotted lines as in FIG. 1.1 in Chapter 1.
When one looked at green and blue lines in the left panel (a), one might have the impression
that the second-lowest one shows good agreement with data and the agreement in the third one
is the worst. However, if we could obtain the uncertainties coming from input parameters and
the many-body method itself, and drew the figure like the right panel (b), our impression is
completely different from that from the panel (a). While the middle one by the theory has no
overlap at all with the experimental counterpart, the first- and third-lowest value are covered
by the credible intervals. Those values are more likely to be described by the theory. Moreover,
in the third-lowest one, we got a bimodal distribution of the quantity. The lower peak seems
to be much more consistent with the data. This may indicate that there still remain some
parameters that are not determined well. Uncertainty quantifications would tell us in such
a way more insightful information than the conventional comparisons between theories and

experiments, though it is not often to observe an extreme case like FIG. 5.1.

Here we emphasize that the benefits of the uncertainty quantification are not limited to

putting error bars in predictions. It enables us to visualize non-trivial relation between input
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and output of many-body calculations and leads to deeper understandings of the many-body
method itself.

Conclusions on the analyses in this thesis

In Chapter 3, we have introduced a way to quantify the theoretical uncertainty from input
parameters in valence shell-model calculations by taking the Op-shell as an example. Our
work (including [177]) is the first study of systematic uncertainty quantification of the valence
shell model. We have proposed that one can quantify a sort of capability of the shell model
under the given model space and the assumptions for the probability density of the model
parameters. The characteristic information is found in e.g. FIG. 3.2 (spectra of 12C and 1C)
and FIGs. 3.3-3.4 (the normalized deviations). We proposed that one can use these plots and
the associated quantities to see which states are more likely to have ezotic structures, i.e. states
being out of the model space. It is expected that such information is of great importance for

deeper understandings of those states by combining them with other theoretical models.

In Chapter 4, we have proposed a new method to quantify the intrinsic uncertainty of
the full configuration interaction method. The uncertainty stems from the ambiguity in the
extrapolation method to estimate the exact value. The method has some advantages over the
conventional parametric ones. Firstly, this gives us uncertainty estimates in a systematic way.
One can think of ensembles of many possible extrapolation functions by means of Gaussian
processes. This may alleviate the overfitting, which is caused by the selection of a specific class
of function and point estimation of the parameters. In addition to this, we integrate out the
dependence on hyperparameter by Monte Carlo sampling; this enables us to consider wider
class of functions. Secondly, this method tells us where to stop the FCI calculations; it is not
obviously inadvisable to carry out FCI calculations while increasing Ny« forever. The point
to stop can be deduced from an analysis like a plot in FIG. 4.8, i.e. from the behavior of the
extrapolation function as the function of max (Np.x). In addition to these, its applicability
to sparse data set and the flexibility to incorporate domain knowledge into the model are
notable points of the method. We should note that the credible intervals by the ¢cGP model
show the uncertainty under the given model and assumption; we may underestimate the true
extrapolation uncertainty as seen in e.g. the panel (b) of FIG. 4.8. It is desired to achieve

more comprehensive studies, which are partly described in the next subsection.

If we could evaluate the extrapolation uncertainty in any nucleus calculated by the CI-
methods, this significantly improves the quality of comparisons with the state-of-the-art ex-
perimental observations. This facilitates the complemental studies among theories and exper-

iments.
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Future perspectives

Our method for UQ in a valence CI calculation has already been applied to other systems
and other quantities very recently [176]. We hope that more comprehensive studies of UQ also

in other models will appear in the near future.
One can consider a future extension of our analyses in this thesis by means of hierarchical
usage of Bayesian machinery; one can think of the posterior model distribution:
P(y|m)P(m)
Zm’e,/\/l P(m/v y) 7

P(mly) = (5.1)
where m denotes each model adopted. In this case, the terminology model is used for the
choice of the likelihood, the choice of the Kernel for GPs, the choice of extrapolation model
(GPs, ANN, etc.), and so on. From Eq. 5.1, one can marginalize the model dependence using

the so-called Bayesian model averaging;:

P(y’ly) = Y_ P(y’ly.m)P(m|y). (5.2)
meM

Recently, it has been shown that the eigenvector continuation (EC), which is introduced
in Ref. [215], can be used as an efficient emulator of ab inito methods. This EC has been
applied for uncertainty quantification and sensitivity analyses on input parameters such as
low-energy constants in the chiral EFT potentials [216,217]. Tt is expected that the EC
facilitates comprehensive studies of uncertainty! propagation in ab initio methods. It is also
of great importance to consider the possibilities to apply the EC to the Cl-type calculations.

This is left as one of the possible future studies.

We also mention the acceleration of communications in the nuclear physics community.
Recent studies in our community are actively opening the raw data, the calculated data,
the code used. For example, the code for the VS-IMSRG is opened by the leading author’s
GitHub page [218], and the code for eigenvector continuation with no-core shell model [216] is

also available from the arXiv page. We hope this trend will accelerate.

!The uncertainty here is one in nuclear potentials.
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Appendix A

Summary of credible intervals of

valence CI calculations

In this Appendix A, we summarize the complete results of Chapter 3.

In Tables A.1 and A.2, the all states discussed in Chapter 3 are summarized. Here we
note that the results shown as “LA samples” are the results with the full evaluation of the
Hessian matrix using Eq. (2.88). All distribution of the results are shown by the violin plot
in FIG. A.26-FIG. A.7. The excitation energies and energy eigenvalues are shown in the left
and right panel respectively. We note that the excitation energies are calculated from the
state which has the lowest experimental energy among the natural parity states in the ENSDF
database. For that reason, the excitation energy of (J™T, N) = (170, 1) state of '°B can be
negative. That can be seen from the distribution of the results of the LA samples. It is known
that the ordering of (J™T,N) = (170,1) and (J™T, N) = (370, 1) states is numerically very

subtle and sensitive to the three-body force. For more discussions, see e.g. [65,138].
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FIG. A.1: Energy spectra for He: Excitation enegies (left) and energy eigenvalues (right).
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Table A.1:  Summary of energy and excitation energies (Ex.) for experimental data and
theoretical estimations with the MAP and the LA samples. The total isospin 7" values with ?
symbol are tentative asignments and the states with check-mark symbol are taken into the fit.
The associated standard deviations (1) are also shown in parentheses for the LA samples.

Exp. Theory
MAP LAsamples
nuclei (J™T,Nyr) fit Energy Ex. Energy  Ex. Energy (10) Ex.(10)
SHe (374,1) -28.30 - 2740 - -25.14(0.36) -
‘He (071, 1) -29.27 - 3134 - -30.37(0.77) -
(271,1) -27.47  1.80 2782 3.52 -25.29(0.37)  5.08(0.66)
"He (3731) -28.86 - -28.84 - -26.97(0.46) -
$He (072, 1) -31.40 - -31.68 - -30.30(0.59) -
(272, 1) -28.30  3.10 27.09  4.60 -25.28(0.60)  5.03(0.44)
‘He (3 5,1 -29.04 - 2706 - -26.40(1.04) -
OHe  (073,1) -29.95 - -26.01 - 27.77(1.21)
6Li (170, 1) -31.99 - -32.86 - -32.66(0.59) -
(370, 1) -29.80  2.19 -30.72 214 -28.25(0.71) 40(1.15)
(071,1) -28.42  3.57 -30.35 2,51 -29.37(0.77) 28(0.67)
Li (3741 -39.24 - -40.98 - -40.50(0.26) -
(2711 -34.60  4.64 -36.20  4.79  -33.95(0.40) 55(0.44)
(7L -32.55  6.69 -33.58  7.41 -33.52(0.71) 699( 2)
Li (271,1) -41.28 - 41.80 - -41.66(0.30) -
(171, 1) -40.30  0.98 -40.72  1.08 -40.58(0.34)  1.08(0.39)
(371,1) -39.02 225 -40.11  1.69 -39.50(0.32)  2.16(0.27)
(171,2) -38.07  3.21 -39.03  2.76  -37.66(0.69)  4.00(0.81)
(171,3) -35.88  5.40 -36.84  4.96 -36.15(0.62)  5.51(0.75)
(471, 1) -34.75  6.53 -35.59  6.21 -34.65(0.45)  7.02(0.46)
Li (373,1) -45.34 - -46.12 - -45.72(0.35) -
(373,1) -42.65  2.69 42,78 3.34  -42.91(0.68) 80(0.64)
ULi (3751 -45.71 - -44.40 - -46.30(0.72) -
*Be (0t0,1) v -56.50 - 5596 - -56.86(0.30)
(2t0,1) v -53.47  3.03 52,55  3.41  -52.91(0.22) 395(021)
(2t1,1) v -39.87 16.63 -40.16  15.80 -40.03(0.30) 16.83(0.43)
(470, 1) -45.15  11.35 4545  11.28 -44.59(0.52) 13.04(0.63)
(1t1,1) v -38.86 17.64 -39.08  16.88 -38.95(0.34) 17.91(0.34)
9Be (3711 v -5816 - 5776 - -57.77(0.19)
(5711 v 5573 243 55.11  2.64 -55.00(0.18) ( 3)
(711 -51.77  6.39 51.57  6.19 -50.97(0.30) 680( 3)
0Be  (071,1) -64.98 - 65.13 - -65.15(0.29)
(271,1) -61.61  3.37 61.43  3.70 -61.24(0.22) 390(026)
(271,2) -59.02  5.96 -59.71  5.43  -59.34(0.27)  5.80(0.33)
(071,2) -58.80  6.18 -52.79  12.35 -55.45(1.00)  9.70(1.06)
(271,3) -57.43  7.54 -55.80  9.24 -56.78(0.42)  8.37(0.45)
(271,4) -55.42  9.56 -54.78  10.35 -54.93(0.41) 10.22(0.45)
YBe (3 3,1) -65.16 - -64.32 - -64.65(0.39) -
(3731 -62.80  2.35 -62.07  2.23 -62.55(0.35) 08(0.30)
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Table A.2: Counterpart of Tab. A.1 for nuclei with relatively larger mass numbers.

Exp. Theory
MAP LAsamples
nuclei (J™T,Nyr) fit Energy Ex. Energy  Ex. Energy (10) Ex.(1o)
2Be  (072,1) -68.65 - -66.91 - -68.18(0.61) -
(272, 1) -66.55  2.10 -63.79  3.12  -65.34(0.51) 84(0.61)
10 (370,1) v -64.75 - -64.76 - -64.62(0.25) -
(170,1) v -64.03 0.72 -63.99  0.77 -64.44(0.27)  0.19(0.35)
(0t1,1) v -63.01 1.74 -63.16  1.60 -63.17(0.29)  1.45(0.37)
(170,2) v -62.60 2.15 -62.35 241 -62.62(0.34)  2.00(0.39)
(2t0,1) v -61.17  3.58 -61.38  3.38 -61.42(0.29)  3.21(0.35)
(2¥1,1) v -59.59 5.16 -59.46  5.30 -59.27(0.22)  5.35(0.28)
(470,1) v -58.73  6.02 -58.81  5.95 -58.81(0.29)  5.81(0.34)
(271,2) v -57.28 747 5773 7.03  -57.37(0.27)  7.25(0.39)
1B 2741y v -76.20 - -76.35 - -76.70(0.18) -
(3741 v 7408 212 -74.57  1.78  -74.72(0.22)  1.98(0.28)
(5°L1) v 7176 444 S71.89 447 -72.24(0.18)  4.45(0.25)
(274,20 v 7119  5.02 -71.34  5.01  -71.71(0.32)  4.99(0.35)
(2741 v -69.46 6.74 -70.42  5.93 -70.24(0.23)  6.45(0.27)
12 (171,1) -79.58 - -79.38 - -80.01(0.26) -
(271,1) -78.62  0.95 -78.06  1.33 -78.84(0.21)  1.18(0.34)
(071,1) -76.85  2.72 -74.71  4.67 -76.68(0.80)  3.33(0.88)
(271,2) -75.82  3.76 -74.59 479  -75.96(0.34)  4.05(0.47)
(171,2) -74.58  5.00 7473 4.65 -75.02(0.37)  5.00(0.36)
(371,1) -73.96  5.61 -74.25 513 -75.23(0.37)  4.78(0.35)
(171,3) -72.97  6.60 -72.80  6.58 -72.46(0.69)  7.56(0.68)
5B (373,1) -84.45 - -84.02 - -85.28(0.36) -
12¢ (070,1) v -92.16 - -92.19 - -92.53(0.23) -
(270,1) v -87.72 4.44 -87.71 448 -87.76(0.18)  4.77(0.23)
(070,2) -84.51  7.65 -78.70  13.49 -80.11(1.35) 12.42(1.31)
(170,1) v -79.45 12.71 -79.73 1246  -79.60(0.35) 12.93(0.41)
(1t1,1) v -77.05 15.11 -76.76  15.43 -77.39(0.26)  15.14(0.36)
(2¥1,1) v -76.06 16.11 -75.43  16.76 -76.21(0.21) 16.31(0.28)
13¢C 3731 v 9711 - -96.37 - -96.88(0.21) -
(3741 v 9342 3.68 -92.72  3.65 -93.08(0.18)  3.80(0.27)
(5711 v 8956 7.55 -89.12 724 -89.54(0.23)  7.33(0.30)
(3712 -88.22  8.89 -87.76 861 -88.31(0.46)  8.56(0.51)
e (071,1) -105.28 - -104.48 - -105.17(0.28) -
(071,2) -98.69  6.59 -89.18 15.30 -91.45(0.89) 13.72(0.93)
(271,1) 98.27  7.01 9737 7.1 -97.83(0.23)  7.34(0.32)
(271,2) -96.97  8.32 -88.64 15.84 -90.93(0.53)  14.24(0.60)
1N (170,1) v -104.66 - -104.31 - -104.40(0.26) -
(0t1,1) v -102.35 2.31 -101.48  2.82 -102.17(0.28)  2.23(0.40)
(170,2) v -100.71 3.95 -100.30  4.01 -100.29(0.29)  4.12(0.38)
150 (3 1) v -111.95 - -112.20 - -112.09(0.19) -
(3711 v -105.78 6.18 -105.17  7.04 -105.84(0.27)  6.26(0.34)
160 (0t0,1) v -127.62 - -128.34 - -127.71(0.26) -
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Appendix B

The code and related issues on GPs

In this appendix, we introduce some information of the code used in Chapter 4 and technical

issues on implementation of Gaussian Processes (GPs).

The code for constrained Gaussian processes (cGP) [5] is written in Julia language [220].
The marketing catchphrase of the Julia is something like “Efficient as Python and Fast as
C/Fortran”. The number of users of Julia is increasing rapidly especially in communities such
as machine learning, data science, physics, etc. One can achieve fast manipulation of e.g.
matrix-matrix product without magic spells for optimization and use libraries from Python,

R, C-family, Fortran, Java and many handmade packages on GitHub.

We opened the code used in Chapter 4 on GitHub and that uses only the official packages.
We would be happy if this code and the technical information below are helpful to someone

using GPs.

B.1 Technical issue on Gaussian processes

We, practitioners of Gaussian processes, usually need to calculate conditional mean vectors

and covariance matrices for predictions {y*} under the given observations {y}:

P<y*|y7 0) = N(Ny*\:w Ey*ly)a (Bl)
Poyiy(0) = 1 + KX x. Kk (y — ), (B.2)
Sy (0) = Kxox- — Ko K Kxx-, (B.3)

where the 6 is hyperparameter for the kernel function, and X and X* are the set of observation

points and prediction points respectively. The positive semi-definiteness of the covariance
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matrices is required to achieve the Cholesky decomposition to evaluate Ky% and to make

samples from the multivariate normal distribution N (fey«jy, Eys|y)-

In some cases (e.g., points are located too close to each other), the covariance matrices
3y 1y(0) and/or Kxx become non-PSD numerically, although it must be PSD mathematically.
The typical prescription to this is to add infinitesimal diagonal matrix to the Kxx. Let us call
this the € prescription in the followings. For example, in the package GaussianProcesses.jl for

Julia [221], the [make posdef!] function perform this.

The primary motivation of this survey is based on our experience: RBF kernel tends to
have singular covariance (i.e. not positive semi-definite), when we write the GP code by
ourselves. Then, we thought “Why do many people use RBF kernel in their papers without

any problem?”

Here are toy two data sets to be considered:

e set A:
X = (6.0,8.0), Y = (—=1.0,1.0), X* = (10.0,12.0)

e set B:
X = (6.0,8.0,10.0,12.0,14.0), Y = (—28.602, —30.213, —31.176, —31.713, —31.977),
X* =(16.0,18.0,20.0)

B.1.1 Who may give the correct answer?: set A

Before discussing the PSD property of covariance matrices, we would like to make it clear
that the problem below is not due to the our implementation of GPs. The set A is one for
that purpose. In this case, Eq. (B.2) and Eq. (B.3) can be analytically calculated under the

given hyperparameters.

In the following, we use the three codes listed below:

A [python_gp own.py|: own code in Python,
B [julia_gp_own.jl]: own code in Julia,

C [julia_gp_library.jl]: using the GaussianProcesses.jl package for Julia.

All are available on GitHub [213].

For the simplicity of discussion, we restrict ourselves to use the RBF kernel:

x; — ]
krpr(xi, xj) = T exp (—%), (B.4)
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Table B.1: The summary of outputs of the three codes.

A (own Python) B (own Julia) C (Gaussian Processes.jl)
Hyly [0.15613, 0.00038795 ]  [0.15613, 0.00038795] [0.15613, 0.00038795]
Diag(Xy«y) [0.981355, 0.99999989] [0.981355, 0.99999989] [0.981355, 0.99999989]

and we fixed the hyperparameters 7 = 1.0 and o = 1.0. Since the data values have zero mean,

the results are not unexpectedly influenced by a normalization function in the libraries.
The results are summarized in Table B.1. The codes A, B and C gives the same results.

In this case of set A, we can calculate the mean vector Eq. (B.2) and Eq. (B.3) analytically:

1—e 8 4e 12

~ (.9813550426957166, (B.5)

plrr=12)=1- —— ~ 0.9999998853666244. (B.6)

Now the answer to the title of this subsection is the all codes listed above.

In the GaussianProcesses.jl the default size of observation noise is set as —2.0 in logarithmic
scale. We fixed this observation noise as almost zero in the code C. We are afraid that people

sometimes use an unrealistically large observation noise in their codes without noticing it.

B.1.2 How to deal with non-PSD covariance in the codes?: set B

Now we explore the PSD property of covariance matrices by using set B. Hereafter, we

only use the codes written in Julia.

We use the following three Kernels. One is the RBF Kernel already used in the previous

subsection.

202

2
krpr(z;,z;) = Texp <—u) (B.7)

The other two are Matérn kernels with v = 5/2

B Vor 512 5r
kM(r:|xi—a:j|;1/:5/2):7'<1+7—|—@ exp | ==~ | (B.8)

and with v = 3/2

kv(r =z, —z;iv=3/2) =1 (1—#%) exp (—%) (B.9)
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FIG. B.1: The summary of PSD properties for the three Kernels. The covariance matrices
having PSD are shown by the filled circle. The diamond symbols mean that both Kxx and
Yy+y are non-PSD, and the cross symbols are assigned if only the ¥, is non-PSD.

We calculated the conditional mean vectors and covariance matrices while varying the
hyperparameters 7 and ¢ using our own code in Julia. In Fig. B.1, the positive semi-definiteness
of the covariance matrices are summarized. The diamond symbols (red) correspond to the
case that both Kxx and Y-, are non-PSD, and the cross symbols (blue) are assigned if only
the Xy, is non-PSD. This is the reason why the RBF relatively easily gives non-singular
covariances in our applications. In terms of the length scale, the RBF gives non-PSD matrices

easier than Matérn kernel with v = 5/2 by two orders of magnitude.

In the GaussianProcesses.jl package, the € prescription is implemented as follows:

function make_posdef!(m::AbstractMatrix, chol_factors::AbstractMatrix)

n = size(m, 1)
size(m, 2) == n || throw(ArgumentError("Covariance matrix must be square"))
for $_$ in 1:10

try

copyto! (chol_factors, m)

chol = cholesky! (Symmetric(chol_factors, :U))

return m, chol

catch err

if typeof (err)!=LinearAlgebra.PosDefException
throw(err)

end

€ = l1le-6 * tr(m) / n

@inbounds for i im 1:n
m[i, i] += €

end
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end
end
copyto! (chol_factors, m)
chol = cholesky!(Symmetric(chol_factors, :U))
return m, chol

end

One can see that if the code fails to achieve the Cholesky decomposition of a matrix K,

this function do

e=1le—6xTr(K)/n. (B.11)

As shown later, this procedure sometimes induces significant changes in resultant mean vectors.

Now we show the effects of the € prescription on the predictions. In FIG. B.2 and FIG. B.3,
the following quantity is shown as the so-called heatmap:

A = log, (maz(|psh, — ,ugli’iy ), (B.12)

where the superscripts own and lib. mean the conditional mean vector calculated by our own

code and one using the GaussianProcesses.jl library, respectively. FIG. B.3 shows the A in the

case of Kernels defined by the logarithm distance, i.e. |z; — ;| is replaced by |Inz; — Inz;|.

The hatched region at log;, 0 < 1 means that the results with the two codes are exactly
the same. At the points shown by the diamond symbol in FIG. B.1, our code without the €
prescription cannot not give the mean vectors. Those correspond to the white region log,, o >
1.5 appeared in FIG. B.2 and FIG. B.3. When we go to the parameters at which the posterior
covariance become non-PSD, i.e. points shown by the cross symbol in FIG. B.1, the A become
large because of the immune system in the library. In some cases, the deviations in mean
vectors reach 10% — 10, which is obviously non-negligible. As immune systems in vivo, the ¢

prescription sometimes reacts too much.

One should pay much attention to how the PSD is treated in codes and whether or not
one really can neglect the impact of the prescriptions on the predictions, especially when one

would like to integrate out the hyperparameter dependence.

Here we make a remark from physics aspect. In the current case, we assume the y and y*
values to be calculated energies of nuclei by ab initio full configuration interaction method.
The typical convergence tolerance of the Lanczos method in shell-model codes on the market
is 1.e-5 or better!.

In the BIGSTICK [8] and the KSHELL [12,13], tol = 1.e-5 as default.
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When one would like to incorporate this “tol” information into the kernel as the observation
noise? like K +02._ I, the € in the package is obviously too large for the current purpose and this
must be on the order of 1.e—10. As a result, the possible error coming from the e prescription

in the package can be non-negligible as shown in FIG. B.2 and FIG. B.3.

RBF Mat52
4 4 4
4 -
2 2 2
0 0 0
o o b
o o o
> -2 5 -2 5 -2
o o o
-4 —4 -4
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-8 -8 -8
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log10T logioT logi1oT

FIG. B.2: The plot showing the impact of the € prescription to avoid non-PSD. The colormap
shows the A in Eq. (B.12). The hatched region (gray) show the points at which the two codes
gives the exactly the same result. The region where the self-made code does not give answer
is colored in white.

RBF Mat52 Mat32
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FIG. B.3: The counterpart of FIG. B.2 for the logarithm distance.

B.1.3 Summary

We conclude that the Matérn kernel is safer to use than RBF in terms of positive semi-
definiteness in many practical situations, and, the e prescription with any Kernel function is
not always acceptable. One should be careful to the prescription done in the codes, especially

when using some packages.

2In this context, the term observation means doing calculation instead of experimental observation.
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