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Abstract
Bubble textures in pumice have been thought to reflect the history of magma ascent. Thus, it is valuable to

create a new analysis method based on the morphological variables, such as bubble size, bubble number density,
and bubble shape. The purpose of this thesis is to study the shape of deformed bubbles in various ways and
develop a new scheme to connect bubble textures with the dynamics of explosive eruptions. Pumice containing
highly deformed bubbles like tubes is called as tube pumice, and it is thought to record the flow history of magma
up to fragmentation surface. In order to extract magma flow style, especially the velocity profile, from such a
deformed bubble structure, it is necessary to solve the following three problems. (1) Calculate transient bubble
deformation. (2) Evaluate the effect of bubble interaction on its shape. and (3) Calculate bubble deformation in
an arbitrary velocity field.

First, using the droplet deformation model of Jackson and Tucker (2003), I developed a model that can
calculate the transient deformation of a single bubble in an arbitrary velocity field. Next, to evaluate the
interaction between bubbles, I performed tensile experiments with a solidifying foam. By comparing the
experimental results of bubble shape with the numerical simulations, I confirmed that the average shape of
bubbles coincided with the theoretical deformation model of a single bubble. This result suggests that the
average of bubbles in pumice can be compared with the numerical simulation of a bubble in a conduit flow.

Next, the bubble deformation model and the quasi-two-dimensional steady conduit flow model were com-
bined to solve the bubble deformation in the conduit. I adapt three rheological models to reproduce various
velocity profiles. In the Newtonian isothermal fluid, the velocity profile across the conduit became parabolic.
On the other hand, in the fluid with viscous heating, the temperature near the conduit wall rose up sharply,
leading to a strong reduction in viscosity. The velocity profile changes from a parabolic shape to a plug-like
shape just above the conduit inlet. The bubble shape at the fragmentation surface depends significantly on the
velocity profile. The parabolic velocity profile produced highly elongated bubbles deformed mainly by simple
shear, but the plug-like velocity profile produced less elongated bubbles deformed primarily by pure shear.

Finally, I conducted a bubble structure analysis of pumice erupted at Taupo Volcano in order to discuss
which velocity profile was reasonable. As a result of the analysis, it was found that the plinian eruption had a
single peak in the bubble shape distribution, while the ignimbrite eruption had a broad distribution and contained
highly elongated bubbles. The comparison of the natural bubble textures with the simulation results suggested
that the velocity profile of the plinian eruption was close to a plug-like shape. The reason why the ignimbrite
eruption produced a number of tube pumice was explained by shallowing the transition depth at which the
velocity profile changed from parabolic to plug-like.

The velocity profile in a conduit flow is closely related to several essential eruption processes, such as
degassing and brittle fragmentation. It is of great significance to give constraints to the velocity profile from
the natural quantitative observation of pyroclasts.
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Chapter 1

Introduction

The vesiculation of magma is essential in the eruption dynamics of volcanoes, but it is difficult to observe it
directly. Textural analysis of pyroclasts can reveal some information, because bubbles in pyroclasts records
the vesiculation processes that occurred in the magma (e.g., Klug et al., 2002; Moitra et al., 2013). Many
researchers have sought to infer the eruption dynamics of volcanoes by analyzing bubble textures, including
number density (Klug and Cashman, 1994; Toramaru, 2006), size distribution (Gaonac’h et al., 1996; Giachetti
et al., 2011), orientation (Coward, 1980; Rust et al., 2003), and permeability (Wright et al., 2006, 2009).

Contrary to these morphological variables which reflect the vesiculation processes in a conduit, bubble
shape is thought to record the deformation field during magma ascent. Deformation field in magma, which is
described by a function of strain and strain rate, has a significant meaning in the dynamics of explosive eruptions.
Fragmentation of vesicular magma, which is characterized by a rheological transition from ductile to brittle
behavior, is controlled by strain rate as well as viscosity (Dingwell, 1996; Papale, 1999). The development of
permeable porous networks in magma ascending in a conduit, which controls the explosive to non-explosive
transition through degassing, is controlled by strain and strain rate (Okumura et al., 2008; Caricchi et al., 2011;
Shields et al., 2014).

In this thesis, I focus on the shape of bubbles preserved in pyroclasts. On the basis of the dynamics of
bubble deformation, I try to infer the magma flow style during magma ascent. The information of the shear field
estimated from natural pyroclasts will be helpful to connect the experimental and theoretical studies to natural
eruptions.

The rest of this chapter introduces several notable previous studies about bubble shapes and discusses some
problems which should be taken into account. Section 1.1 describes theoretical studies about bubble deformation
in a viscous fluid and applications of those studies into bubble shapes in pyroclasts. Section 1.2 introduces tube
pumice, which is our research target, from the geological, experimental, and tomographic viewpoints. Section
1.3 discusses the problems of analyzing bubble shapes in tube pumice. Finally, section 1.4 describes the aim
and framework of this thesis.

1



1.1 Bubble deformation

1.1.1 Theoretical studies

In geology and mechanics, a deformation field is frequently expressed by the combination of simple and pure
shear deformation. Simple shear is a two-dimensional deformation in which parallel planes in a material
remain parallel and maintain a constant distance while translating relative to each other (Fig. 1.1b). Pure
shear is a homogeneous axisymetric elongation (Fig. 1.1c). Both shear deformations keep a constant volume
during deformation. Deformation of a bubble in these representative shear flows have been experimentally and
theoretically studied.

a

c

b

a

b

c

R
b

(a) No deformation

(b) Simple shear

(c) Pure shear

Figure 1.1: Shapes of (a) a non-deformed bubble, (b) a bubble deformed by simple shear, and (c) a bubble
deformed by pure shear.

Bubble deformation is controlled by two stresses: viscous and surface tension. Viscous stress causes a
spherical bubble to become elongated, whereas surface tension stress returns an elongate bubble to a spherical
shape. The competition between these two stresses is expressed by a capillary number, Ca, which is defined as

Ca =
Rbγ̇η

Γ
, (1.1)

whereRb is the radius of a spherical bubble, γ̇ is the shear rate, η is the viscosity of the fluid phase, and Γ is the
surface tension. In pure shear deformation, γ̇ is replaced by the pure shear rate ϵ̇ (see section 3.2.6).

The steady shape of a bubble emplaced in a low Reynolds number flow depends on the capillary number
and the viscosity ratio λ of the fluid in the bubble to matrix fluid. The theoretical relationships between Ca and
bubble shape for simple shear and pure shear are summarized in Table 1.1. The shape of a bubble is quantified
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CHAPTER 1. INTRODUCTION

with a deformation degree D given by

D =
a− c

a+ c
, (1.2)

where a and c represent the long and short axes of the bubble, respectively. The dependence of λ on bubble
shapes in magma is negligible because the viscosity ratio is extremely small (10−17 < λ < 10−6). It is known
that the theoretical predictions of the shape of a deformed bubble agree well with the experimental data (Taylor,
1934; Rust and Manga, 2002). Fig. 1.2 shows the steady shape of a deformed bubble in simple shear flow as a
function of the capillary number (Rust and Manga, 2002). The analytical equation for the small deformation is
applicable to Ca < 0.5, and that for the large deformation is applicable to Ca > 0.5.

Table 1.1: Theoretical equations of a steady bubble shape in simple and pure shear flow

Simple shear Pure shear Reference
Small deformation (Ca≪ 1) D = Ca D = 2Ca Taylor (1934)
Large deformation (Ca≫ 1) a/Rb = 3.45Ca1/2 a/Rb = 20Ca2 Hinch and Acrivos (1980)

Acrivos and Lo (1978)

Figure 1.2: Experimental data of bubble deformation degree in simple shear flow with λ ≪ 1 and Re ≪ 1
(Rust and Manga, 2002, Fig. 3). Steady bubble shape depends on the capillary number. The solid line is the
analytical solution of the steady bubble shape based on the small deformation theory, D = Ca (Taylor, 1934),
and the dashed curve is based on the large deformation theory, a/Rb = 3.45Ca1/2, (Hinch and Acrivos, 1980).

The bubble deformation degree D has two advantages in analyzing deformed bubbles within pumice.
First, it characterizes the elongation, which is the essential factor of the shear fields (Rust and Manga, 2002;

Rust et al., 2003; Rust and Cashman, 2007). Some shear fields, such as simple shear, change not only the long
and short axes of a bubble but the median axis. However, it will be challenging to deal with the information
about the median axis, because of the complexity of the shear field in a conduit. As shown in chapter 5, a bubble
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within pumice is far from an ideal ellipsoid. I think that the information about the median axis is easily affected
by the additional effect, such as bubble interaction and crystal.

Second, the bubble deformation degree can be measured by a two-dimensional approach and be applicable
to a large number of pumice. The measurement of the median axis needs a three-dimensional analysis, such
as X-ray computed tomography. However, this method is difficult to analyze a statistically sufficient number of
pumice, because of the long measurement time. The purpose of this thesis is to connect to bubble texture with
the dynamics of a conduit flow. Therefore, it is required to analyze the large number of pumice (at least 100
clasts).

Following the above reasons, I characterize the bubble texture within pumice by the bubble deformation
degree.

1.1.2 Application of the dynamics of bubble deformation to natural volcanic rocks

Based on the theory of steady bubble shape, previous studies inferred the shear environments which produced
deformed bubbles preserved in volcanic rocks.

Rust et al. (2003) analyzed bubble shapes within obsidian, trying to distinguish the flow types (simple shear
vs. pure shear) and to calculate shear rates and shear stresses. Fig. 1.3 shows deformed bubbles within obsidian
from a pyroclastic fall deposit (Rock Mesa). The bubble deformation degrees increase with the equivalent radius,
which the theory explains as the viscous stress (ηγ̇) overcomes the surface tension stress (Γ/Rb). Assuming
that the bubbles were deformed in simple shear and applying the theoretical relation as shown in Table 1.1, Rust
et al. (2003) estimated 1.5× 105 ≤ Ca/Rb ≤ 3.0× 105 m−1. Using η = 106.7 Pa · s and Γ = 0.3 N/m, they
calculated the shear rate, γ̇ = 1 × 10−2 s−1, and the shear stress, σ = 60 kPa. The calculated shear rate for
the obsidian pyroclast was much higher than that for the effusive obsidian flow. For example, the obsidian flow
sample from Big Glass Mountain recorded the low shear rate (10−6.9 − 10−6.6 s−1). The different shear rates
between explosive and effusive eruptions were thought to reflect the distinct physical processes.

The technique of analyzing bubble shapes in obsidian was also applied to the explosive eruption in Newberry
volcano, and revealed the time scales and mechanisms of pre-fragmentation magma ascent (Rust and Cashman,
2007).

1.2 Tube pumice

Tube pumice (Fig. 1.4) is a common product of explosive silicic eruptions forming calderas. It is composed of
highly elongated tube-like bubbles. No standard definition of tube pumice exists at present, but Wright et al.
(2009) defined it as a pumice having bubbles with an aspect ratio greater than 5:1. Such characteristic pumice
is thought to record a particular history of pre-fragmentation shear fields in the conduit.

From the viewpoint of magma fragmentation, Marti et al. (1999) focused on tube pumice of Ramadas
caldera, and proposed a conceptual idea that tube pumice is a well-preserved magmatic ’strain marker’ of the
stress state immediately before and during fragmentation. The existence of tube-like bubbles and kink bands
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Figure 1.3: Deformed bubbles in a obsidian clast from a pyroclastic fall deposit, Rock Mesa (Rust et al., 2003,
(a) Fig. 6, (b) Fig. 7). (a) A thin section of a sample. (b) Bubble deformation degrees as a function of spherical
bubble radius measured in two-dimensional images. The thick gray line is D/Rb = 3.0 × 105 m−1, and the
thin black line is D/Rb = 1.5× 105 m−1.

in fragments reflects the evolutions of the magma’s mechanical response from viscous behaviour through the
plastic or viscoelastic stage, and finally to brittle behaviour.

Tube pumice has also been investigated with respect to permeability. Using the measurements of porosity
and permeability, Wright et al. (2006) showed that bubble deformation increases the permeability parallel to
bubble elongation.

Over the past 20 years, tube pumice has been investigated, with linked to the essential processes of eruptions
such as magma fragmentation and permeable network formation. The following subsections summarize the
geological, experimental, and micro-structural studies about tube pumice.

1cm

(a) (b)

Figure 1.4: Tube pumice from the ignimbrite in Toya caldera. (a) Top view. (b) Side view.
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1.2.1 Geological studies

Tube pumice was found in fall and flow deposits of explosive silicic eruptions, especially caldera-forming
eruptions. In geology, tube pumice has been considered as a key factor in estimating temporal and spatial
variations in a conduit flow.

Taddeucci and Wohletz (2001) analyzed juvenile pyroclasts of a plinian fall deposit and inter-layered ash-
flow beds in the Minoan eruption, and showed that bubbles within pumices become more elongated toward the
ash flow layer (Fig. 1.5a). This stratigraphic increase in the relative abundance of tube pumice was interpreted
as resulting from the increase in shear stress in the flowing magma, which was triggered by the collapse of the
conduit walls. Such an increase in the relative abundance of tube pumice toward a flow event was observed in
other volcanoes (Polacci et al., 2003; Houghton et al., 2010).

Polacci et al. (2001) performed textural analyses of white and gray pumices of the plinian and pyroclastic
flow deposits of the 1991 Pinatubo eruption. White pumice was characterized by higher vesicularity and
deformed bubbles, while gray pumice showed lower vesicularity and less deformed bubbles. The coexistence of
white and gray pumices with distinct textures was interpreted as the results of the intense shear localization and
viscous dissipation at the conduit walls (Fig. 1.5b). Highly deformed bubbles in white pumices were formed
in the conduit center where the magma sharply accelerated up to the fragmentation surface (pure shear). The
bubbles in gray pumices were deformed around the conduit walls where the melt viscosity is quite small due to
intense viscous heating. After fragmentation, the bubbles in the viscous-heating region might have returned to
spherical shapes due to surface tension.

Similarly, Polacci et al. (2003) presented a textural characterization of pumice clasts from the plinian fall
deposit directly underlying the Campanian ignimbrite deposit. Based on the macroscopic texture and clast
density, pumice clasts were classified into microvesicular (heterogeneous bubbles), tube (elongated bubbles),
and expanded (coalesced/inflated bubbles types). The frequency distribution of pumice types revealed that
the proportion of tube pumices increased toward the ignimbrite deposit (Fig. 1.5c), which was interpreted as
relating to the change of eruptive regime (convecting/collapsing) and to the onset of caldera collapse. They
considered that tube pumice was formed by higher velocity gradients and shear stresses at the conduit walls
(Fig. 1.5d). Tube pumice found in the submarine eruption of Havre volcano, Kermadec Arc, was also thought
to be elongated around the conduit walls (Mitchell et al., 2019).

Although changes in the relative abundance of tube pumice have been observed and regarded as indicators
of temporal and spatial evolutions of conduit flows, the shear field in which bubbles were elongated was not
elucidated. In previous studies, two mechanisms have been proposed to deform bubbles in the conduit: simple
and pure shear (e.g., Palladino et al., 2008; Bouvet de Maisonneuve et al., 2009; Dingwell et al., 2016). Fig. 1.6
shows the schematic image of bubble deformation in a conduit. Near the conduit wall, bubbles are deformed
by simple shear that is the velocity gradient across the conduit. As magma ascends in a conduit, pressure
decreases, leading to gas exsolution and bubble inflation. The magma consequently accelerates, driving pure
shear deformation, which is intense just below the fragmentation surface. Although the mechanism causing
tube pumice is key information to assess the shear field of the conduit flow, this dispute (simple vs. pure shear)
has not been elucidated.
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Figure 1.5: (a) Relative abundance of the pumice types in the plinian fall deposit of the Minoan eruption, plotted
against the stratigraphic position (Taddeucci and Wohletz, 2001, Fig. 11). (b) Schematic conduit image of the
1991 Pinatubo eruption (Polacci et al., 2001, Fig. 6). White pumice (tube pumice) was formed in the conduit
center, and gray pumice composed of less elongated bubbles was formed around the conduit walls where viscous
heating was intense. (c) The relative abundance of the pumice types in the plinian fall deposit of the Campanian
ignimbrite eruption (Polacci et al., 2003, Fig. 4). Dashed, thin, bold lines indicate tube pumice, microvesicular,
expanded pumices, respectively. Campanian ignimbrite deposit overlies the fall deposit. (d) Schematic image
of the distribution of microvesicular and tube pumices in the conduit of the Campanian ignimbrite eruption
(Polacci et al., 2003, Fig. 10). Tube pumice was formed in the region near the conduit walls.
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Bubbly magma
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Figure 1.6: Schematic image of bubble deformation in a conduit (modified from Dingwell et al. (2016)).
Strength of simple and pure shear is qualitatively shown by the gradation from blue to yellow.
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1.2.2 Experimental studies

Artificially generating tube pumice in a laboratory is useful in determining the formation mechanism of tube
pumice. To our knowledge, products having textures that are similar to tube pumice have been made in
fragmentation experiments of gum rosin in acetone (Phillips et al., 1995) and rhyolitic melt (Martel et al.,
2000).

Phillips et al. (1995) presented the first experimental investigation of gum rosin-acetone (GRA) solution as an
analogue material of bubbly magma. The GRA solution increases its viscosity and solidifies due to evaporation
of the solvent at low pressure, so that it is similar to magma that increases its viscosity under decompression
due to dehydration. The decompression experiments of GRA solution produced a solid end-product containing
tube-like bubbles.

Martel et al. (2000) performed the first fragmentation experiment with two-phase (melt+gas) rhyolitic
systems under high temperature and high pressure. Since the melt viscosity increases by degassing of volatile
and cooling from air, the fragmented samples quenched and preserved the pre-fragmentation bubble shapes.
This fragmentation experiment generated both tube pumice and isotropic pumice which is composed of spherical
bubbles (Fig. 1.7). Fragments of which vesicularity is less than 50 vol% only displayed spherical bubbles, but
those above 50 vol% showed either tube-like or spherical bubbles. The authors did not conclude why isotropic
or tube pumices had been generated, but they inferred that the sample holder might have restricted lateral bubble
expansion and facilitated the unidirectional deformation.

Figure 1.7: SEM images of fragmented samples in the fragmentation experiments by (Martel et al., 2000, Fig.
2). (a) Isotropic pumice. (b) Tube pumice.

1.2.3 Micro-structural studies

X-ray computed tomography of tube pumice has been performed for permeability calculation. High resolution
three-dimensional images collected at synchrotron facilities enabled to simulate gas flow within tube pumice by
the lattice Boltzman method (Wright et al., 2006; Degruyter et al., 2010a).

One of the remarkable micro-structural studies about tube pumice is Dingwell et al. (2016). Using neutron
computed tomography, the authors succeeded in resolving thin glass walls and obtaining the detailed three-
dimensional images of tube pumice from the Ramadas caldera, Argentina. Fig. 1.8 shows the major axis lengths
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of bubbles within tube pumice compared with their equivalent radii. Using the theoretical steady shape of a
single bubble under simple or pure shear flow (Table. 1.1), the authors estimated the strain rate during bubble
deformation. Assuming that shape relaxation after fragmentation made the scatter of bubbles having the same
bubble radius, they fitted the steady solution to the upper limit of the scattered distribution (most elongated
bubbles) (Fig. 1.8b). They thought the elongated bubbles (upper distribution) might have been quenched
and the less elongated bubbles (lower distribution) might have been relaxed. The authors concluded that the
bubbles within the tube pumice were deformed by simple shear, because the fitting curve for pure shear required
a nonphysical and infinitely fast cooling rate to cover the whole distribution. The estimated strain rate was
10−2 s−1.

Figure 1.8: The distribution of bubble shapes within tube pumice from the Ramadas caldera (Dingwell et al.,
2016, Fig. 8). The major axis length is plotted against the spherical bubble radius. (a) Measured bubbles shapes
are compared to the steady bubble shapes for simple (red) and pure shear (green). (b) The authors fitted the
analytical solution of the steady bubble shape to the upper limit of the distribution. The scattered distribution
of major axis length was explained by shape relaxation after fragmentation.

1.3 Problems of analyzing bubble shapes in tube pumice

Although Dingwell et al. (2016) concluded that the bubbles within the tube pumice were deformed by simple
shear, there are some important issues that were not taken account of but cannot be ignored. The first issue
is transient deformation, whereby bubble deformation stops on the way to reach the steady state because of
insufficient strain. The second issue is bubble interaction including both bubble coalescence and the disturbance
of the shear field around each bubble. These issues have already been pointed out by Rust et al. (2003). In
addition to these problems, I proposed third issue: the superposition of simple shear, pure shear, and volumetric
shear fields.
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1.3.1 Transient deformation

The transient effect of finite strain on bubble deformation has been investigated experimentally. For example,
Okumura et al. (2008) performed deformation experiments on vesiculated rhyolite melts at high temperatures
by twisting columnar specimens, revealing that the degree of bubble elongation increases with increasing shear
strain at constant Ca. This result indicates that, in a transient state, a bubble shape is not determined only by
Ca as its steady-state form but depends on both Ca and accumulated total strain (defined as time integration of
the strain rate that the bubble experiences). Strain-dependent bubble shapes have also been observed in other
experiments (Pistone et al., 2012; Shields et al., 2014).

Bubbles in a conduit flow do not always get enough strain to attain the steady shape. In fact, Rust and
Cashman (2007) reported that bubbles in some obsidian clasts from Newberry volcano recorded transient
deformation. Because the existing analysis method for bubble shapes in volcanic rocks was based on the
analytical solution for a steady-state, a bubble deformation model which can calculate large transient deformation
is required.

1.3.2 Bubble interaction among bubbles

The effects of interactions among bubbles have been examined by numerical simulations. Using a series of
three-dimensional boundary integrals and lattice Boltzmann methods, Manga et al. (1998) and Huber et al.
(2013) calculated the deformation of multiple bubbles for a constant Ca. The simulation of Huber et al. (2013)
showed that the average deformation of many bubbles is slightly smaller than that of a single bubble when
Ca > 0.5; the opposite result is found for Ca < 0.5, because of the shear thinning effect of the effective
viscosity. The deviation from a single bubble can be conveniently explained by a mean field approach, whereby
the viscous stress acting on a bubble’s surface is evaluated by the effective viscosity of a bubbly flow instead of
the viscosity of a fluid phase. The mean field approach can be applied to moderately concentrated emulsions
(ϕ ≤ 0.3), where ϕ is the dispersed-phase volume fraction (Loewenberg, 1998).

The effect of bubble interaction can be negligible when analyzing bubble shapes within an obsidian clast
whose vesicularity is quite small. Manga and Loewenberg (2001) indicated that even for ϕ = 0.25, bubble
interaction results in a less than 10% overestimation of shear stress and shear rate. To the contrary, the effect of
bubble interaction will be significant in pumice with high vesicularity. The validity of the mean-field approach
to pumice should be confirmed. Dingwell et al. (2016) also mentioned the importance of experimental validation
of the deformation model for high vesicularity.

1.3.3 Superposition of simple shear, pure shear, and volumetric fields

If bubbles are deformed by either simple or pure shear, the analytical solutions of a steady bubble shape can
be applied to those bubbles. However, the shear field in a conduit is not composed of only either simple or
pure shear component but is a mixture of both shear components as shown in Fig. 1.6. The previous idea of
exclusively selecting either simple or pure shear is inadequate to depict the shear field in a conduit. In addition,
bubble growth in response to decreasing pressure during an eruption has the potential to round a deformed
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bubble. This volumetric strain rate is assumed to be small in obsidian clasts because obsidians likely forms
along conduit walls where the ascent velocity is low (Rust et al., 2003), but will be more significant in pumice.

In order to comprehend the mixture of simple shear, pure shear, and volumetric strain rate fields in a conduit
flow, a model which can calculate bubble deformation in arbitrary velocity gradient is required.

1.4 Aim and framework of this thesis

This thesis is written with the aim of getting information on the shear field in a conduit by analyzing bubble
shapes in tube pumice. To overcome the three issues mentioned in section 1.3, I combined three different
approaches and then analyzed bubble shapes within natural tube pumice found in Taupo volcano. The structure
of this thesis is summarized in Fig. 1.9.

(a) (b) (c) (d) (e)
0.78

0.
25

0.81
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Chapter 2. Bubble deformation model

Chapter 3.
Extension experiment with
solidifying foam Chapter 4.

Simulation of bubble deformation

Apply 
the bubble deformation model 

to 
a conduit flow model

Chapter 5.
Textural analysis of pumice from 
the Taupo 1.8 ka eruption

Investigate the effect 
of bubble interaction 
on its shape

Obtain a flow field around a bubble from 
quasi two-dimensional conduit flow models

Calculate the deformation of a bubble up to 
the fragmentation surface

Consider bubble interaction

Measure the 2D and 3D shapes of 
bubbles from pumice clasts 

Develop a bubble deformation model which calculates 
large transient deformations in an arbitrary shear field 
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Comparison of bubble shapes
Compare the model calculations with the 

natural bubble shapes
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Figure 1.9: Structure of this thesis from chapter 2 to 6.

Firstly, a new bubble deformation model is developed, based on the existing deformation model of a single
droplet proposed by Jackson and Tucker (2003). The new model can calculate large transient deformations in
arbitrary velocity fields including shear and expansion. This model characterizes a bubble shape by a second-
order tensor, and then numerically solves a time-development equation that describes the shape evolution of the
bubble. The new model is able to simulate the deformation of a single bubble in the superposition of simple
shear, pure shear, and volumetric field (bubble growth). The significance of calculating transient deformation
is demonstrated through the re-analysis of the published data of bubble shapes in obsidian.
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Secondly, I perform extensional experiments with a solidifying foam in order to evaluate bubble interaction.
As an analogue material of magma, I use a polyurethane foam. This material undergoes vesiculation, deforma-
tion, and solidification at room temperature and atmospheric pressure. I can apply the foam a controlled pure
shear deformation during solidification and get deformed bubble textures after solidification, which is similar
to tube pumice. Combining the mean field approach with the new bubble deformation model, I analyze bubble
shapes preserved in the solidified foam.

Thirdly, I calculate a quasi two-dimensional conduit flow based on the model of Barmin et al. (2004) and
Vedeneeva et al. (2005), and combine it to the new bubble deformation model. The combined model can
simulate the entire history of bubble deformation in the conduit flow, which is expected to depend on the
velocity profile across a conduit. In this thesis, I consider a parabolic and plug-like velocity profile. The latter
profile is produced by a shear-thinning model due to bubble deformation and a viscous-heating model. In order
to compare the simulation results with bubble shapes preserved in natural pumice, which I analyzed latter, the
input parameters are set assuming the 1.8 ka Taupo eruption.

Finally, I analyze bubble shapes preserved in pumice clasts from the 1.8 ka Taupo eruption, New Zealand.
To compare natural bubble textures with numerical simulations, a statistically reasonable number of pumice
clasts need to be analyzed. In this thesis, I measure bubble shapes in more than 1000 pumice clasts by a digital
microscope with variable illumination function. This device makes a two-dimensional image of bubble texture
from a cutting surface of a clast. Some pumice clasts were imaged in three-dimensions by Xray-computed
tomography. The comparison of natural bubble textures with the numerical simulations gives valuable insights
for the development of velocity profile and the accumulated strain just before fragmentation.

After this introduction, the thesis is organized as follows. Chapter 2 briefly explains the bubble deformation
model of Jackson and Tucker (2003) ; I then readjust the parameters that they had arbitrarily determined in the
model. The modified model agrees well with the results of the previously reported analogue experiments and
analytical solutions. As a test of analyzing bubble shapes, I re-analyze the data of obsidian clasts published
by Rust and Cashman (2007). In Chapter 3, I perform the extensional experiments with polyurethane foam,
and measured bubble shapes in the solidified foams by using X-ray computed tomography. I confirm that the
mean-field approach is valid even at high vesicularity. Chapter 4 shows the simulation of bubble deformation
along and across the conduit. The distribution of bubble shapes at the fragmentation surface is calculated to
be compared with the bubble shape distribution found in natural samples. Chapter 5 demonstrates the 2D and
3D analysis of bubbles shapes within pumice clasts from the 1.8 ka Tupo eruption. The developed 2D analysis
shows good agreement with the 3D data obtained by the X-ray tomography. I also discuss the validity of data
and the transition of eruptive style. In chapter 6, I compare the bubble shapes founded in Taupo volcano with
the numerical simulation. I also simulate the conduit flow in an ignimbrite stage in the Taupo eruption. Finally,
Chapter 7 discusses the obtained results and their implications for volcanic phenomena.
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Chapter 2

Bubble deformation model

2.1 Introduction

The development of a bubble deformation model is essential for investigating large transient deformation of a
bubble in a conduit flow. Interest in the model of deformable inclusions is not limited in volcanology. Since
the dynamics of a droplet in an imposed flow field control the mechanical properties of polymer blends, several
deformation models for a droplet have been developed in polymer science (Minale, 2010). In polymer science,
the ratio of the viscosities of the droplet (η∗) and polymer matrix (η), λ = η∗/η, is close to unity. However,
λ is much smaller than unity for a deforming bubble in a viscous magma flow. Therefore, the applicability of
models developed in polymer science to the calculation of the shape evolution of a bubble in a magma flow
needs to be examined. I expect these polymer-based models to be essentially valid, because the shapes of both
a droplet and a bubble are determined by the same physics, with there being competition between viscous stress
and surface tension stress on a droplet or bubble.

This chapter begins with a brief explanation of the droplet deformation model proposed by Jackson and
Tucker (2003). I then modify the parameters that are somewhat arbitrarily determined in the model. The
modified model agrees well with previously reported analogue experimental results and analytical solutions.
I also improve the model to calculate the deformation induced by bubble expansion. In the last section, the
developed model is applied to the published data of bubble shapes within obsidian clasts presented by Rust and
Cashman (2007). Focusing on the relationship between bubble shape and radius, I am able to better estimate
the strain and the deformation duration.

2.2 Brief introduction of Jackson and Tucker model

Jackson and Tucker (2003) developed a model to predict the transient shape evolution of an ellipsoidal Newtonian
droplet suspended in a Newtonian matrix under shear flow. I use the term JT when referring to Jackson and
Tucker (2003) and their droplet model. A single droplet is suspended in a uniform velocity flow which is
expressed by the applied velocity gradient tensor L∞

ij = ∂v∞i /∂xj , where v∞i is the applied velocity and xi
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is the spatial coordinate fixed to the space. This applied velocity gradient tensor also expresses the far-filed
velocity field when the fluid does not have a volumetric component. The velocity gradient tensor is simply
decomposed into asymmetric and symmetric parts:

L∞
ij = W∞

ij +D∞
ij , (2.1)

W∞
ij =

1

2
(L∞

ij − L∞
ji ), (2.2)

D∞
ij =

1

2
(L∞

ij + L∞
ji ), (2.3)

where W∞
ij and D∞

ij are the applied vorticity tensor and the rate of deformation tensor, respectively. The JT
model assumes negligible inertia and body forces, no translational motion, and no interactions among droplets.

2.2.1 Geometry of a droplet

The morphology of a droplet is expressed by a morphology tensor Gij (Wetzel and Tucker, 2001). Positions on
the surface of the droplet are described as

Gijxixj = 1, (2.4)

where Gij is a positive and symmetric second-order tensor and the droplet centroid is fixed at the origin of the
spatial coordinate. The repetition of the subscripts indicates summation (Einstein summation convention). The
eigenvectors of Gij correspond to the principal axis directions of the droplet, and the eigenvalues of Gij are
the inverse squares of the principal semi-axes of the droplet. When the coordinates of semi-axes of the droplet
match the principal axes of the ellipsoid, Gij is expressed as

Ĝij =

 1/a2 0 0

0 1/b2 0

0 0 1/c2

 , (2.5)

where a, b, and c (a > b > c) are the lengths of the three semi-axes of the droplet. A hat over a term means
that the bases of a tensor are on the principal axes of the ellipsoid. The radius of an equivalent spherical bubble
is given by Rb = (abc)1/3. Jackson and Tucker (2003) took the material derivative of Eq. (2.4) to obtain the
following evolution equation for Gij :

DGij

Dt
+ L∗

kiGkj +GikL
∗
kj = 0, (2.6)

where D/Dt represents the material derivative and L∗
ij is a second-order tensor having the form of a velocity

gradient within and on the droplet surface. In fact, the velocity within the droplet must have the form of
L∗
ijxj + v′i, where v′i represents a recirculation motion of which the component normal to the surface vanishes

at the droplet surface. The recirculation motion may be laminar, as JT considered, or turbulent. In either case,
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the stress caused by the recirculation is ignored, because I am interested only in cases having small droplet
viscosity. Once L∗

ij is determined, the history of shape evolution can be obtained by Eq. (2.6). Therefore,
constraining the droplet deformation requires L∗

ij to be obtained.

2.2.2 Velocity gradient tensor within a droplet

For a droplet with an arbitrary geometry, the solution to the Stokes equations becomes a complex velocity field
within the droplet. However, Eshelby (1957) and Bilby et al. (1975) found that L∗

ij is uniform throughout an
ellipsoidal droplet. They provided an analytical solution for the velocity field both within and around such a
droplet. Using Eshelby’s theory, Wetzel and Tucker (2001) developed a model for droplet deformation without
surface tension. The droplet vorticity tensor W ∗NoSurf

ij and the droplet rate of deformation tensor D∗NoSurf
ij

are given by

W ∗NoSurf
ij = W∞

ij + CijklD
∞
kl , (2.7)

D∗NoSurf
ij = BijklD

∞
kl , (2.8)

where Cijkl and Bijkl are the vorticity and strain rate concentration tensors, respectively. These tensors are
functions of the ellipsoid geometry and the viscosity ratio, and are calculated using the Eshelby tensor for
isotropic incompressible materials (Wetzel and Tucker, 2001). When the principal axes match the spatial
coordinate axes, Cijkl in Eq. (2.7) vanishes. The JT model assumes that the droplet velocity gradient tensor
must be decomposed into two terms due to the linearity of the Stokes equations: Eqs. (2.7) and (2.8) represent
droplet deformation due to an external flow, whereas D∗surf

ij represents shape relaxation due to surface tension
(see Appendix A). The JT model then yields the droplet velocity gradient for the ellipsoidal droplet L∗Eshelby

ij ,
where

L∗Eshelby
ij =W∞

ij + CijklD
∞
kl +BijklD

∞
kl +D∗surf

ij . (2.9)

The first and second terms represent the vorticity within an ellipsoidal droplet, and the third and fourth terms
represent the rate of deformation within the droplet.

A droplet shape with a small λ shows a transition from an ellipsoidal body to a slender body as its length
increases (Taylor, 1934). The ellipsoidal body is defined as an axisymmetric shape with pointed ends. Following
the slender body theory developed by Khakhar and Ottino (1986), JT gives the velocity gradient tensor in the
slender droplet L∗slender

ij :

L∗slender
ij =W∞

ij + ξ(D∞
ikmkmj −mimkD

∞
kj) +D∗slender

ij +D∗axi
ij , (2.10)

whereD∗slender
ij is the rate of deformation tensor within a slender droplet, which includes retraction of the longest

axis; D∗axi
ij is the rate of deformation tensor representing cross-sectional relaxation due to surface tension (see

Appendix A for more details of both tensors), which takes into account the evolution of a non-axisymmetric
droplet into an axisymmetric one as its major length increases; mi is a unit vector along the longest axis; and ξ
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is an orientation parameter (determined empirically, following the procedure outlined in the following section).
The first and second terms of Eq. (2.10) represent the vorticity within a slender-body droplet, and the third and
fourth terms represent the rate of deformation within the droplet.

Given that a bubble’s shape changes from ellipsoidal to slender in a gradual process, the JT model seamlessly
connects the two models represented by Eqs. (2.9) and (2.10) as follows:

L∗
ij = fL∗Eshelby

ij + (1− f)L∗slender
ij , (2.11)

where f (0 ≤ f ≤ 1) is a blending function, defined as a function of a normalized bubble length a/Rb, such that
L∗Eshelby
ij dominates when a bubble is a compact ellipsoid and L∗slender

ij dominates when it becomes tube-like.
Both the blending function and the orientation parameter can be empirically adjusted for a specific phenomenon
observed in polymer science.

2.3 Modification to Jackson and Tucker model

2.3.1 Transition from ellipsoid to slender-body

The JT model was originally developed for the deformation of a droplet with a viscosity close to that of the
matrix fluid (i.e., λ ∼ 1), and it was adjusted to fit experimental data for such a droplet. However, the viscosity
ratio of a vapor bubble in silicate melt, which is the subject of the present study, is very small, in the range of
10−17 < λ < 10−6 (Rust et al., 2003), and thus lies outside the scope of the JT model. Here I readjusted the
two empirical functions of the JT model, f and ξ.

The JT model employs the blending function f to explain the experimentally determined critical capillary
number for droplet breakup during planar elongation for cases where λ > 10−5. I calculated the steady bubble
shape by the JT model and compared the results with the experimental data of Rust and Manga (2002) for an
air bubble. I then modified the blending function to obtain a good agreement between the model results and
experimental deformation data:

f =


1 (a/Rb ≤ 1.1),

0.5cos
[
π(a/Rb−1.1)

5

{
0.9
(

6.1
a/Rb

)
+ 0.1

(
a/Rb

6.1

)}]
+ 0.5 (1.1 < a/Rb ≤ 6.1),

0 (a/Rb > 6.1).

(2.12)

This function is plotted in Fig. 2.1. The modified blending function switches from the Eshelby model to the
slender-body model earlier than the blending function defined by JT.

The other empirical function, the orientation parameter ξ in the slender-body model, controls the rotation
of the major axis of a bubble. For ξ = 1, the major axis of a bubble asymptotically approaches the external
flow direction in simple shear. When ξ > 1, the major axis lies between the flow direction and the maximum
tensile direction. JT set the orientation parameter ξ to match the critical capillary number for droplet-breakup
in simple shear experiments. I modified the orientation parameter in the same way as the blending function,
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Figure 2.1: Blending function f with respect to the aspect ratio a/Rb. The solid line is the modified f , calculated
from Eq. (2.12). The dashed line is the original f defined by Jackson and Tucker (2003).

taking account of bubble deformation. The new ξ is

ξ =


ξEshelby (a/Rb ≤ 1.1),

1 + 10.5237(a/Rb − 0.1)−2.83 (1.1 < a/Rb ≤ 6.1),

ξslender (a/Rb > 6.1),

(2.13)

where

ξEshelby =
1 + (Rb/a)

3 + [1− (Rb/a)
3](3I − 1)(λ− 1)

1− (Rb/a)3 + [1 + (Rb/a)3](3I − 1)(λ− 1)
, (2.14)

I =

√
1− (Rb/a)3 − (Rb/a)

3cosh−1(a/Rb)
3/2

2[1− (Rb/a)3]3/2
, (2.15)

ξslender =
1 + 12.5(Rb/a)

3

1− 2.5(Rb/a)3
, (2.16)

and ξEshelby is the orientation parameter in the Eshelby model. It is calculated from theBij andCij components
of the Eshelby model, and is based on the assumption of an axisymmetric droplet. (There is a misprint in JT
concerning ξEshelby.) The orientation parameter in the slender-body model ξslender is derived from the model
of Khakhar and Ottino (1986). Although JT introduced the slender-body model, which is based on Khakhar and
Ottino (1986), they used the empirical function ξ, noting that Eq. (2.16) causes the model to yield unrealistic
results. I avoided this issue by modifying the implementation of the Eshelby and slender-body theories when
modeling the evolution of bubbles, and thus used Eq. (2.16) for the slender-body theory. Fig. 2.2 compares the
ξ values used by Jackson and Tucker (2003) and this study.
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Figure 2.2: Orientation parameter ξ as a function of aspect ratio a/Rb. The solid blue line is the modified
ξ curve used in this study, calculated from Eqs.(2.13)–(2.16). The dashed black line is the ξ curve for the
slender-body theory calculated from Eq. (2.16). The dotted black line is the ξ curve based on Eshelby theory,
calculated from Eqs. (2.14) and (2.15). The dashed blue line is the original ξ curve defined by Jackson and
Tucker (2003).

2.3.2 Velocity gradient tensor for bubble expansion

The original JT model assumes a constant volume of a bubble during deformation. However, any bubbles in
magma will increase in volume as the magma ascends in a conduit due to internal overpressure. When a bubble
is non-spherical, an increase in volume driven by internal overpressure tends to moderate its elongation, even
without surface tension. In this thesis, I further include the effect of bubble expansion on its shape. To simplify
bubble expansion, I assume that bubbles do not coalesce, break up, or nucleate in the melt.

Velocity gradient for a liquid-gas mixture

I consider the velocity gradient tensor for a liquid-gas mixture flowing in a long circular conduit. I use the
cylindrical coordinates (z, r, θ), where z is the elevation, r is the radial distance from the conduit center, and θ
is the azimuth. Hereafter, the liquid-gas mixture is assumed to be a one-phase and to have an applied uniform
velocity field (Fig. 2.3). The applied velocity gradient tensor within the mixture LC

ij can be divided into two
components:

LC
ij = LNon

ij + LV ol
ij (2.17)
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Figure 2.3: Schematic image of the gas-mixtrue.

where LNon
ij is the non-volumetric component of the compressible fluid. The isotropic component LV ol

ij

represents the volumetric change due to bubble growth, given by

LV ol
ij =

1

3
trace

[
LC
ij

] 1 0 0

0 1 0

0 0 1

 . (2.18)

Because of the linearity of the Stokes equation, Jackson and Tucker (2003) assumes that the velocity gradient
tensor within the drop L∗

ij is the sum of two terms, one for a applied flow without surface tension and one for
retraction of a deformed bubble due to surface tension. This idea can be extended to the volumetric change, that
is, LC

ij is the sum of two terms, one for a non-volumetric component L∗Non
ij and one for a volumetric component

L∗V ol
ij . Because L∗Non

ij is equal to L∗
ij defined by Eq. (2.11), the velocity gradient tensor within a bubble with

growth can be expressed as

L∗
ij = L∗Non

ij + L∗V ol
ij (2.19)

L∗Non
ij = fL∗Eshelby

ij + (1− f)L∗slender
ij . (2.20)

Keep in mind that L∗Eshelby
ij and L∗slender

ij in Eq. (2.20) must be calculated from LNon
ij not LC

ij because the JT
model does not take account of the dilatational shear. Once I get L∗V ol

ij , I can calculate bubble deformation by
substituting L∗

ij of Eq. (2.19) into the evolution equation of Eq. (2.6). A flowchart of the modified JT model is
shown in Fig. 2.4. In the following paragraphs, I derive L∗V ol

ij by Eshelby theory (Eshelby, 1957) as used in the
JT model.
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Figure 2.4: Flowchart showing the workflow of the modified JT model developed in the present study. Equation
numbers in parentheses refer to equations in the main text.

An inclusion problem in an elastic medium

Before dealing with the problem of bubble expansion in viscous fluid, I consider the expansion of a cavity in an
elastic medium. This problem is well studied, and a general theory has been established (e.g., Aki and Richards,
2002; Davis, 1986; Amoruso and Crescentini, 2009; Mizuno et al., 2015). Consider an ellipsoidal cavity filled
with fluid embedded in an elastic medium. It undergoes volumetric change because of fluid overpressure ∆P .
The deformation of the cavity can be described by the so-called actual strain tensor eij in Eshelby theory. On
the coordinate along the main axes of the ellipsoid, eij is represented as êij :

êij =

 ∆a/a 0 0

0 ∆b/b 0

0 0 ∆c/c

 , (2.21)

where ∆a, ∆b, and ∆c indicate the change of the semi-axis lengths, respectively. Here I follow the expression
by Mizuno et al. (2015). Because êij has only diagonal components, they can be written as

ϵi = êij |i=j . (2.22)

Mizuno et al. (2015) related ϵi to ∆P by

ϵi =
∆P

3k
S′
ijB

′
jkUk, (2.23)
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where k is the bulk modulus of the elastic medium and Ui is a vector with all components being one. S′
ij and

B′
ij are defined as

S′
ij = Sijkl(ν)

∣∣∣
i=j,k=l

, (2.24)

B′
ij =

(
δij − S′

ij

)−1
, (2.25)

where Sijkl(ν) is the Eshelby tensor. Here, Sijkl(ν) is given as a function of Poisson′s ratio ν explicitly,
although the Eshelby tensor used in the JT model assumes ν = 1/2 for an incompressible material. Because the
trace of êij is ∆V/V , where ∆V is the volume change and V is the volume of the cavity before the volumetric
change, I obtain

∆V

V
=

∆P

3k
UiS

′
ijB

′
jkUk. (2.26)

From Eqs. (2.23) and (2.26), I have

ϵi =
∆V

V

S′
ijB

′
jkUk

UiS′
ijB

′
jkUk

. (2.27)

An inclusion problem in a viscous fluid

The above derivation comes from the Eshelby theory for an elastic solid. Eshelby (1957) and Bilby et al. (1975)
showed that the inclusion problem in an incompressible fluid with a low Reynolds number can be solved in the
same manner as that in an elastic medium, as follows. In the elastic theory, the equation of equilibrium and the
constitutive equation are given by

∂σij
∂xj

= 0, (2.28)

σij = kϵkkδij + 2µ

(
ϵij −

1

3
ϵkkδij

)
, (2.29)

where σij is the stress, ϵij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
is the strain tensor where ui is the displacement vector, k is the

bulk modulus, and µ is the shear modulus. The substitution of Eq. (2.29) into Eq. (2.28) gives

∂

∂xi
(kϵkk) + 2η

(
∂

∂xj
ϵij −

1

3

∂

∂xi
ϵkk

)
= 0. (2.30)

The poisson’s ratio ν is defined as

ν =
3k − 2µ

6k + 2µ
. (2.31)
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Letting the elastic medium to be incompressible requires ν → 1
2 , which can be attained by k → ∞ in Eq.

(2.31). The divergence of strain also approaches zero (ϵkk → 0) because of the zero compressibility. Under
these conditions, the hydrostatic pressure p = −kϵkk can remain a finite value. The equilibrium equation of
Eq. (2.30) can be written as

− ∂p

∂xi
+ 2µ

∂

∂xj
ϵij = 0, (2.32)

− ∂p

∂xi
+ µ

(
∂2ui
∂xj∂xj

)
= 0. (2.33)

When ui and µ is considered as the velocity vector and the shear viscosity, Eq. (2.33) corresponds to the Stokes
equation. The inclusion problem in an elastic medium can be extended to that in a steady and incompressible
fluid by letting ν → 1

2 .
Eq. (2.27) is the strain vector of the cavity in the elastic medium. The rate of deformation of an expanding

bubble in an incompressible viscous fluid is represented by the same equation, but with ∆V replaced by the
rate of volume change, V̇ , and taking the limit of zero compressibility (i.e., ν → 1

2 ):

ϵ̇i =
V̇

V
lim

ν→1/2

S′
ijB

′
jkUk

UiS′
ijB

′
jkUk

. (2.34)

Keep in mind that Eq. (2.34) requires not LV ol
ij but V and V̇ . According to the definition of Eq. (2.22), ϵ̇i

represents the diagonal components of the rate of deformation tensor on the coordinate along the main axes of
the ellipsoid. Corresponding velocity gradient tensor on the same coordinate is

L̂∗V ol
ij =

 ϵ̇1 0 0

0 ϵ̇2 0

0 0 ϵ̇3

 . (2.35)

Given that the base of L̂∗V ol
ij is on the principal axes of the bubble, this tensor must be rotated into the spacial

coordinate to get L∗V ol
ij .

A numerical calculation of L∗V ol
ij must take into account that B′

ij in Eq. (2.34) diverges infinitely as ν
approaches 1

2 , although ϵ̇i remains finite. To avoid a numerical error due to the divergence of B′
ij , I calculate

Eq. (2.34) for ν close to, but not equal to, 1
2 . Fig. 2.5 shows the dependence of ϵ̇1

ϵ̇3
on ν. As ν approaches 1

2 , ϵ̇1
ϵ̇3

becomes close to a constant value. The ratio of the two strain rates appears almost constant for 0.5− ν < 10−4.
Thus, I use ν = 0.4999 for S′

ij and B′
jk when I calculate Eq. (2.34).

As a result, L∗V ol
ij is given by Eqs. (2.34) and (2.35) as a function of the bubble shape, the bubble volume,

and the rate of volume change. The last two parameters are related to the volumetric velocity gradient tensor of
the liquid-gas mixture LV ol

ij as follows,

V̇

V
=

1

ϕ
trace

[
LV ol
ij

]
. (2.36)
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where ϕ is the gas volume fraction per unit volume, which is equivalent to vesicularity in a conduit flow.
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Figure 2.5: Relationship between ϵ̇1
ϵ̇3

and 0.5 − ν for an ellipsoidal bubble ( ba = 0.8 and c
a = 0.6). As ν

approaches 1
2 , ϵ̇1

ϵ̇3
approaches a constant value.

Keep in mind that Eq. (2.35) is the velocity gradient of the ellipsoidal bubble embedded in the fluid which
is assumed to be incompressible. Strictly speaking, this assumption is valid only for a small volume of bubble.
For a large volume fraction of bubble, such as bubbly magma, the matrix phase behaves as a compressible fluid
(Prud’homme and Bird, 1978). The difference of bubble growth between incompressible and compressible
fluids is discussed in appendix B.

Lastly, I explain the contribution of the surface tension to the volumetric deformation of a bubble. The
general boundary condition for the bubble surface is given by

(
τij − τ∗ij

)
nj = 2κmΓni, (2.37)

where τij and τ∗ij are the stresses outside and inside of the bubble respectively, ni is the outward unit vector
normal to the bubble surface, κm is the mean curvature, and Γ is the surface tension. Jackson and Tucker (2003)
derived a tensor representing the average stress jump across the bubble surface by integrating Eq. (2.37) over
the surface of the ellipsoidal bubble. The average stress jump tensor ∆τij is written as

∆τij = − 4Γ

πRb
Pij , (2.38)

where Pij is given by Eq. (A.4). This stress jump includes both isotropic and deviatoric components. Jackson
and Tucker (2003) took into account of the deviatoric component of Eq. (2.38) in Eq. (A.1), but did not
consider the isotropic component because they considered the deformation of a droplet with a constant volume.
I followed the model of Jackson and Tucker (2003) to include the deviatoric component in L∗Non

ij (appendix A).
The isotropic component, which is one-third of the trace of Eq. (2.38), should be included in L∗V ol

ij through
∆P in Eq. (2.26), and thus it affects the volume rate V̇ . Once V̇ is determined, the individual values of ϵ̇i,
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which affect the bubble shape evolution, are determined by Eq. (2.35) regardless of the surface tension effect.

2.4 Results of the modified JT (MJT) model

Hereafter, I call the modified JT model employed in this study the MJT model. Its blending function f and
orientation parameter ξ are modified from those in the original JT model. The MATLAB scripts for the MJT
model are available online (http://www.eri.u-tokyo.ac.jp/ichihalab/ohashi.html). The model calculates the time
evolution of a bubble shape for a constant Ca and an arbitrary shear flow. Some results without volume change
are presented in this section.

In the following argument, the word “steady state” is replaced with “equilibrium state” in referring to bubble
shapes. Chapter 4 investigates bubble deformation in a conduit flow, where bubbles experience varying Ca as
magma rises and thus cannot reach a steady state, even if the conduit flow is “steady”. To avoid confusion, I
use the term equilibrium state for bubble shape. The two stresses influencing bubble shape, viscous stress and
surface tension stress, balance each other when the bubble is in its equilibrium state. Therefore, the equilibrium
bubble shape depends only on Ca, which is the only characteristic dimensionless number in the system of
equations in Fig. 2.4 (see Appendix A for more details).

The MJT model is tested using experimental data and analytical solutions from three typical cases: equilib-
rium deformation in shear flow, transient deformation in shear flow, and shape relaxation. Two types of shear
flow are considered: simple and pure shear. All of the calculations here are performed with λ = 10−7, which
corresponds to vapor bubbles (η∗ ∼ 10−5 Pa · s) in viscous fluid (η ∼ 102 Pa · s). Smaller λ values do not lead
to significantly different results from those presented here.

Fig. 2.6 presents the relationship between the equilibrium bubble shape and capillary number for several
models. A bubble remains almost spherical (D ∼ 0) at small capillary numbers, and becomes elongate (D → 1)
as the capillary number increases. Analytical solutions have been obtained for bothCa << 1 (Taylor, 1934) and
Ca >> 1 (Hinch and Acrivos, 1980). The MJT model for simple shear agrees well with the analytical solutions
for both regimes (Fig. 2.6a). The equilibrium bubble shapes calculated by the model are also consistent with
the experimental results reported by Rust and Manga (2002). Furthermore, the MJT model is appropriate for
pure shear, describing well the analytical solutions for both Ca << 1 (Taylor, 1934) and Ca >> 1 (Acrivos,
A. Lo, 1980) (Fig. 2.6b). However, it fails numerically at large strain in pure shear with Ca > 2.1. Jackson and
Tucker (2003) interpreted the numerical failure of their model as the indication of droplet breakup after large
strain above the critical capillary number. I am uncertain whether the numerical failure of the MJT model is
related to bubble breakup, but the results presented in chapter 4 were obtained without failure.

Fig. 2.7 shows the evolution of bubble shape under simple and pure shear at a constant rate. The deformation
degree D increases gradually with time in both cases. When the time is scaled with the shear rate γ̇, time can
effectively be replaced by strain (γ̇t). The bubble therefore reaches an equilibrium state when enough strain is
applied. The amount of strain needed to reach the equilibrium state is about 4 when Ca = 1, which is similar to
the numerical simulation results of Huber et al. (2013), which dealt with multiple bubbles in a flow. Regardless
of whether the bubble reaches the equilibrium state, D in pure shear is larger than that in simple shear at the
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Figure 2.6: Relationship between deformation degree D and capillary number Ca for the equilibrium shapes
of bubbles deformed by (a) simple shear and (b) pure shear. The viscosity ratio λ is set to 10−7. The blue
and green solid lines are the simulation results of the JT and MJT models, respectively. (a) Equilibrium shapes
deformed by simple shear. The dashed line D = Ca is the analytical solution for Ca≪ 1 (from Taylor, 1934).
The dotted line is the analytical solution for a slender bubble (a/Rb ≫ 1) (from Hinch and Acrivos, 1980). The
slender-body solution a/Rb = 3.45Ca0.5 is converted to D(Ca). The yellow dots are the experimental data of
Rust and Manga (2002) for the equilibrium shapes of air bubbles in corn syrup (λ = O(10−7)). (b) Equilibrium
shapes deformed by pure shear. The dashed line D = 2Ca is the analytical solution for Ca≪ 1 (from Taylor,
1934). The dotted line is the analytical solution for a slender bubble (a/Rb ≫ 1) (from Acrivos, A. Lo, 1980),
who searched the stable conditions of the slender-body shape under pure shear, and obtained a/Rb = 20Ca2

for p/γ̇η = 6, where p is the pressure in the bubble. I converted a/Rb to D.
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Figure 2.7: Relationship between deformation degreeD and strain for the transient shapes of bubbles deformed
by (a) simple shear and (b) pure shear.

If the external flow ceases, the shear stress acting on a bubble is removed, and it starts to relax owing to
surface tension. Fig. 2.8 demonstrates the relaxation of bubble shape for two different initial aspect ratios. The
aspect ratio, a/Rb (Rust and Manga, 2002), changes more sensitively with large elongation than does D, such
that the values ai/Rb = 4.3 and 7.4 in Fig. 2.8, where ai denotes the initial value of a, correspond toD = 0.80

and 0.91, respectively. Time is scaled by the relaxation timescale (e.g., Toramaru, 1988):

τrelax =
Rbη

Γ
. (2.39)

Despite the different initial aspect ratios, the normalized relaxation curves calculated by the MJT model are very
similar. Furthermore, the model results are consistent with the experimental data of Rust and Manga (2002).

2.5 Application of the MJT model to bubble shapes in natural samples

We used experimental data for vapor bubbles in viscous fluid (Rust and Manga, 2002) to modify the parameters
in the JT model (Jackson and Tucker, 2003). The MJT model agreed well with both analogue experiments
and analytical solutions (Figs. 2.6 and 2.8). In this section, I re-analyze the bubble geometry data presented
by Rust and Cashman (2007) to determine the ability of the MJT model to reproduce the bubble textures in
natural samples. Rust and Cashman (2007) examined obsidian samples from pyroclastic deposits from the most
recent eruption of Newberry Volcano, Oregon, to analyze the shear rates of the bubbles. This rhyolitic eruption,
which occurred 1300 years ago, produced a widespread pyroclastic fall deposit known as Newberry pumice.
The juvenile component of the fall deposit is dominated by white pumice, with a small amount of obsidian (1–6
wt%). Rust and Cashman (2007) focused on obsidian clasts in the Newberry pumice, and measured bubble
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Figure 2.8: Shape relaxation of a bubble after external flow is stopped. One bubble has an initial aspect ratio of
ai/ci = 9 (ai/Rb ≈ 4.3), and the other has ai/ci = 20 (ai/Rb ≈ 7.4), where ai and ci are the initial semi-major
and semi-minor axes of the sheared bubble, respectively. Time is scaled by the relation timescale (Eq. 2.39).
Dots represent the experimental data of Rust and Manga (2002).

shapes under an optical microscope.

2.5.1 Bubble deformation in the equilibrium state

Fig. 2.9a shows a typical relationship between D and Rb measured by Rust and Cashman (2007). Sample
E shows a linear increase in D from 0 to 0.5 as Rb increases. This trend can be explained if I consider the
equilibrium state of bubble deformation. As long as I focus on bubbles in a small clast, it is reasonable to assume
that the strain rate, viscosity, and surface tension are uniform throughout the clast, such that the bubble radius is
the only parameter controlling its capillary number. The increase inRb implies an increase inCa. Furthermore,
Fig. 2.6 shows that the equilibrium bubble shape deformed by simple shear is described by D = Ca for
D < 0.5 and λ ≪ 1. Rust and Cashman (2007) concluded that the linear increase in D with Rb was due to
equilibrium bubble deformation. Fig. 2.9b shows the temporal evolution ofD calculated by the MJT model for
a constant and uniform simple shear, with strain γ used as time on the horizontal axis. Assuming that bubbles
were deformed by simple shear, Rust and Cashman (2007) obtainedCa for each bubble in the equilibrium state.
Bear in mind that a bubble in the equilibrium state records only the Ca during its deformation. I can evaluate
the minimum strain to reach the equilibrium state, but cannot obtain the actual strain that the bubble experienced
during magma flow.

2.5.2 Bubble deformation in the transient state

A key aspect of the Rust and Cashman (2007) data is that D in Samples F and L initially increases with Rb,
but then approaches a constant value (0.4 and 0.65, respectively) as Rb increases further (Fig. 2.10a). If all
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Figure 2.9: (a) Degree of bubble deformationD with respect to bubble radiusRb for a Newberry obsidian clast.
Data (Sample E) are from Rust and Cashman (2007). (b) Temporal evolution of a bubble shape calculated
for simple shear, calculated by the MJT model, where strain (γ) corresponds to the dimensionless time of
deformation. I can evaluate the minimum strain to reach the equilibrium state, but cannot obtain the actual
strain that the bubble experienced during magma flow.

the bubbles in a clast reach the equilibrium state, then the only possible asymptotic value is D = 1 for both
simple and pure shear (Fig. 2.6); however, the D values for Samples F and L approach much smaller values.
Rust and Cashman (2007) considered these bubbles to represent the transient effect of limited strain on bubble
deformation. Their deformations stopped owing to insufficient strain before reaching the equilibrium state.
Rust and Cashman (2007) roughly estimated the strain for these two samples by approximating the strain from
the maximum dimensionless elongation of the bubbles (a/Rb). Here I used the results of the MJT model to
estimate the shear strain rate and strain more accurately.

Fig. 2.10b shows the temporal evolution of D under a constant simple shear rate as a function of strain,
γ. The dependence of the D–γ curves on Ca is large at small Ca (Ca < 1). On the other hand, the curves
collapse as Ca increases, which defines the maximum D as a function of γ. The maximum D appears as the
deformation limit in the D–Rb plot (Fig. 2.10a), with the limit indicating the strain during bubble deformation.
The distances between each D–γ curve for different Ca values vary slightly for different maximum D values.
For example, the distances between D–γ curves become small for Ca > 2 at D = 0.4, while they become
negligible only for Ca > 5 at D = 0.65. I therefore assume that all the D–γ curves collapse to a single master
curve and that the maximum D value becomes independent of Ca at Ca > 5. I compare this master curve
with the deformation limits in Samples F and L, assuming that they experienced a constant simple shear (Fig.
2.10b). I then obtain shear strain values for these samples of 0.6 and 1.3, respectively. These modeled strain
values are two-to-three times smaller than those estimated by Rust and Cashman (2007).

To specify Ca for each bubble, the viscosity, surface tension, and strain rate are needed. The temperature
was assumed in the viscosity estimate of Rust and Cashman (2007), while the water content of each clast was
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Figure 2.10: (a) Degree of bubble deformation D as a function of bubble radius Rb for two Newberry obsidian
clasts. Data (Samples F and L) are from Rust and Cashman (2007). AsRb increases,D approaches a maximum
value that is much less than 1 (∼ 0.4 for Sample F; ∼ 0.65 for Sample L). This limitation indicates the transient
effect of strain on bubble deformation. (b) Temporal evolution of a modeled bubble’s shape due to simple shear,
calculated by the MJT model. The dependence ofD onCa becomes negligible forCa > 5. The strains applied
to both samples can therefore be estimated from the transient curve at Ca = 5 (0.6 and 1.3, respectively).

measured with Fourier transform infrared spectroscopy. I assumed a melt temperature of 850 ◦C, following
Rust and Cashman (2007), and calculated the viscosity using the equation of Hess and Dingwell (1996). I also
assumed a surface tension of 0.3N/m, such that the strain rate γ̇ was the only parameter needed to convert each
Rb to Ca.

We therefore estimated the strain rate from the D–Rb data of the obsidian samples. I converted the D–Rb

data for Sample F to D–Ca plots by varying the strain rate of simple shear for each clast (Fig. 2.11a). The
D–Ca curves were then calculated for γ = 0.6 by the MJT model. Similar analysis was performed for Sample
L with γ = 1.3 (Fig. 2.11b). I determined the strain rate by least-squares fitting a curve to the data points.
Deformation results for both samples are summarized in Table 2.1. The flow times required to deform the
observed clast bubbles were determined by dividing the strain by the strain rate, yielding values of 4.0 and 2.7
min for Samples F and L, respectively (Table 2.1). These flow times are an order of magnitude smaller than
those obtained by Rust and Cashman (2007).

Table 2.1: Results of deformation analysis

Sample H20 [wt%]a Strain Logγ̇ [1/s] Flow time [min]
F 0.90 0.6 -2.6 4.0
L 0.70 1.3 -2.1 2.7
a From Rust and Cashman (2007)

– 31 –



0 2 4 6 8 10

Ca

0

0.2

0.4

0.6

0.8

1

D

Shifting sample F by γ

0 2 4 6 8

Ca

0

0.2

0.4

0.6

0.8

1

D

Sample F

Sample L

γ
γ

(a) (b)

Figure 2.11: (a) Relationship between the degree of bubble deformation D and the capillary number Ca for
Sample F (Rust and Cashman, 2007), and the simulation curve from the MJT model for simple shear. I shifted
the data points of Sample F, varying the strain rate. (b) Relationship between D and Ca for Samples F and L
(Rust and Cashman, 2007), and the best-fit simulation curves from the MJT model. The strain rate for each
sample (Sample F: 10−2.6s−1; Sample L: 10−2.1s−1) is estimated to yield the best-fit curves to the data.

Our method developed to estimate strain and strain rates has two merits. First, it does not need to approximate
strain by the maximum dimensionless elongation of the bubble (a/Rb), as the strain is accurately estimated
from the deformation limit in the D–Rb data. I can therefore use the D–γ plot (Fig. 2.10b) directly to link
the deformation limit to its corresponding strain. Second, my method can be applied to D–Rb data that do
not exhibit a linear increase for D < 0.5. Rust and Cashman (2007) applied linear fits to the D–Rb data for
D < 0.5 to convert Rb to Ca. However, the bubbles in obsidian samples do not always have linear trends for
D < 0.5. For example, it is difficult to apply a linear fit to the D–Rb data of Sample L, because there are only
a few data points for which D < 0.5. However, my method uses the entire D–Rb dataset from natural samples
when fitted by the D–Ca curve.
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Chapter 3

Extension experiment with solidifying foam

3.1 Introduction

The experimental validation of the deformation theory for high vesicularity is essential for the analysis of
bubble shapes preserved in pumice. In order to assess bubble interaction, I artificially generate tube pumice in
a laboratory. While controlling the rheology and shear field, I compare bubbles preserved in end products with
the bubble deformation model developed in the previous chapter.

The reproduction of tube pumice requires rheological evolution as well as pre-fragmentation deformation.
To our knowledge, products having textures that are similar to tube pumice have been made in fragmentation
experiments of gum rosin in acetone (GRA) (Phillips et al., 1995) and rhyolitic melt (Martel et al., 2000).
The common characteristic of both experiments is that a flowing material evolves into a solid material after
fragmentation. Volatile degassing induced by rapid decompression deforms the sample and increases melt
viscosity with rapid bubble expansion. Due to the high strain rate and large viscosity, the flowing sample results
in fragmentation. The fragmented material solidifies because of the full degassing of acetone in GRA while
quenching in the air for rhyolitic melts. A large number of fragmentation experiments have been conducted
over a few decades, but, except for the two experiments mentioned above, these experiments did not include
the rheological evolution from fluid to solid, and did not produce a sample having the characteristics of tube
pumice.

The fragmentation experiments of GRA and rhyolitic melt reproduced the rheological evolution that is
assumed to occur in magma. However, the mechanism of deforming bubbles could not be elucidated in their
experiments, because these experiments attempted to investigate the fragmentation mechanism by controlling
pressure. The pressure-controlled apparatus makes it more difficult to control and measure the strain and strain
rate before fragmentation. Strain and strain rate are the essential parameters for the development of bubble
structure (e.g., Okumura et al., 2008; Caricchi et al., 2011; Shields et al., 2014).

We apply controlled strain and strain rate to polyurethane foam by a tensile testing machine, which can
apply a uniform pure shear. I chose pure shear because of the following reasons. First, it has been considered as
one of the important shear deformations for a conduit flow. It is caused by the acceleration of magma (Papale,
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1999; Bouvet de Maisonneuve et al., 2009). Decompression along a conduit leads to gas exsolution and bubble
growth, which result in flow expansion and acceleration. Second, tube pumice which was observed in climatic
eruption products of Mount Pinatubo was assumed to be deformed in pure shear (Polacci et al., 2001). Third,
only a few experimental studies have investigated pure shear deformation (e.g., Moitra et al., 2018), while many
previous studies in volcanology have focused on bubble deformation in simple shear. Forth, tensile testing has a
merit that it can apply a uniform deformation across a sample, and I can directly measure the shear deformation.
In torsion experiments that apply simple shear, on the other hand, shear stress and strain are radially variable
and are difficult to be quantified without knowing the sample rheology.

In this study, I measure the bubble geometry of fully solidified polyurethane foam by X-ray computed-
tomography (CT) after the pure shear experiments. Based on the experimental data, I discuss the deformation
parameters recorded by the textures of the solidified products and the method to analyze the deformation of
multiple bubbles.

3.2 Experimental methods

3.2.1 Material

Polyurethane foam is produced by mixing polyol, polyisocyanate, catalyst, and foam stabilizer. During the
foaming process, chemical reactions start after mixing, and the foam expands in several minutes (Fig. 3.1a).
The chemical reactions are complete in several tens of minutes. During the formation of polyurethane foam,
two main reactions occur: a degassing reaction and a curing reaction (Neff et al., 1996). The degassing reaction
forms carbon dioxide gas and produces a foam structure. The curing reaction generates crosslinked polyurethane
and results in the solidification of the foam structure.

In the present study, I used a polyol (Hycel HW-408, TOHO Chemical Industry Co., Ltd.) and a polyiso-
cyanate (Hycel 360P, TOHO Chemical Industry Co., Ltd.). The original product of polyol includes a foam
stabilizer to make a homogeneous polyurethane foam with very small spherical bubbles. In order to simulate
various bubble textures in pumice, I have the polyol specially blended by the manufacturer excluding the foam
stabilizer. Surface tension is an important parameter to control bubble deformation. The surface tensions of
polyol and polyisocyanate were measured by the pendant drop method using a tensiometer (Takeda et al., 2019).
The surface tensions of polyol and polyisocyanate are 36.1 and 48.6 mN/m, respectively.

3.2.2 Equipment

Extensional experiments were carried out using a tensile testing machine (EZ-SX, Shimadzu), which consists
of a stationary lower stage and a moving head attached with a load cell (Fig. 3.1b). A polypropylene cup
(diameter: 23.5 mm, height: 49 mm) is mounted on the lower stage, and another is attached upside down to the
load cell. The two cups are axially aligned and are initially connected mouth to mouth. When a polyurethane
foam sample grows sufficiently in these cups, the upper cup is pulled to extend the sample. The testing machine
records the tensile force and extension length at a sampling rate of 50 Hz.
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Figure 3.1: (a) Schematic evolution of the physical properties of polyurethane foam used in this experiment. Red
and blue lines indicate the temporal change of viscosity and foam volume, respectively. The inset photograph
shows polyurethane foam with bubbles growth. All of the main extensions were finished in tf ≈ 420, 450, or
480s.(b) Schematic diagram of the experimental equipment. Lengths are shown in millimeters. (c) Photograph
of the foam after the main extension (T18121006). (d) Thermal image of the foam (T18121006) after the main
extension.

The degassing reaction is exothermic, while the rheological evolution depends significantly on the temper-
ature (Lipshitz and Macosko, 1976). To control temperature during the experiments, the lower cup is mantled
by an aluminum jacket and is intruded with an aluminum rod (diameter: 19 mm, height: 39 mm). Both the
jacket and the rod are mounted on a thermoelectric cooler (Peltier plate), the temperature of which is set to
20◦C during the experiments. The temperature distribution of the foam was monitored by the infrared thermal
camera (PI450, Optris) at a rate of 27 frames per second (fps) (Fig. 3.1d).

The experiments were recorded by two video cameras with metal halide lights. A high-resolution video
camera (DFK33UX250, The Imaging Source) recorded the stretching of the polyurethane foam. A low-
resolution video camera (Pro 9000, Logicool) recorded the entire experiment from bubble nucleation to complete
solidification. The framing conditions were a rate of 50 fps and spatial resolutions of 0.015− 0.026 mm/pixel

for the high-resolution video camera and 30 fps and 0.088 mm/pixel for the low-resolution video camera,
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respectively.

3.2.3 Procedure

Polyol (5.4 ml) and polyisocyanate (4.8 ml) were poured into a mixing cup and stirred for 20 s with a stirrer.
Hereinafter, time t starts from the finish time of mixing polyol and polyisocyanate (t = 0). A mixture of 6.8
to 7.4 ml was collected using a syringe and then poured into the lower cup. After pouring the mixture, the
moving head was lowered so that the upper cup contacted the lower cup. In the first 120 s, the reactive foam
is in the bubble nucleation stage. Bubble rise was observed in this stage because of the small viscosity, but as
the polymerization proceeds, it became invisible in t > 120 s. As the bubbles grow, the foam inflated into the
upper cup.

The extension experiment consisted of (1) preliminary extension stage, (2) first keeping stage, (3) main
extension stage, and (4) second keeping stage.

At t = 360 s, I applied the preliminary extension of 15 mm by raising the load cell at a constant speed of
1 mm/s. The preliminary extension creates a necking in the middle of the foam. The necking helps to realize
a homogeneous uniaxial deformation in the following main extension.

After the preliminary extension, the foam growth continued very slowly. To prevent the foam from bending
and keep the necking shape, I pulled the foam slowly at a speed of 0.01 mm/s. The effect of the slow pulling
on bubble shape was negligible.

Next, I applied the main extension to the foam by pulling the upper cup at a constant speed (Fig. 3.1c). The
pull speed varies from 0.5 to 10 mm/s, and the pull length varies from 5 to 25 mm. Although an exponential
pull speed is needed to obtain a constant strain rate (Moitra et al., 2018), I pull the cup at a constant speed due
to the instrumental constraint. The constant pull speed had a merit to suppress the increase in viscous stress
during the extension with polymerization.

Delaying the start time of pulling ti increases the instantaneous viscosity at the onset of deformation. The
main extension finished at, t = tf , which was varied as tf = 420, 450, or 480 s (Fig. 3.1a). The experimental
conditions are listed in Table 3.1.
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Bubble growth continued very slightly after the main extension. In order to keep the foam straight, the foam
was pulled at a speed of 0.01 mm/s until t = 1080 s. By analyzing the movie image, I roughly estimated the
bubble growth rate of dRb

dt = 6.6 × 10−6 mm/s at 420 s < t < 1080 s. Given that the average bubble radius
in the fully solidified foam is about Rb = 0.17 mm, bubble growth did not significantly affect bubble shape
during and after the main extension.

After the experiments, three-dimensional images of the foams were obtained by X-ray CT.

3.2.4 Rheology in pure shear

The tensile force during the experiment was measured by the load cell. Stress σ at time t was calculated by
dividing the tensile force by the temporal cross-sectional area A(t) perpendicular to the deformation axis at the
necking of the foam. If the cross-section is circular, its area can be calculated by the sample width measured
from the video images taken from the side. However, some samples have elliptical cross-sections. In order to
correct this effect, A(t) was calculated by

A(t) = ACT

(
w(t)

wend

)2

, (3.1)

where ACT is the cross-sectional area of the solidified foam measured by X-ray CT, w(t) is the width at the
necking of the reactive foam calculated from by the video images, and wend is the width of the fully solidified
foam.

The strain rate and strain during the experiments were estimated in the following manner. In the elongational
deformation, the strain rate is defined as

ϵ̇ =
dvz
dz

, (3.2)

where vz is the vertical component of the velocity vector of a sample. In the present study, vz was measured
using a free tool in Matlab, PIVlab (Thielicke and Stamhuis, 2014). PIVlab provides velocity vectors on a side
surface of the foam from successive video images.

The velocity vectors obtained from PIVlab were averaged in the direction perpendicular to the deformation
axis. The grid size of the PIVlab analyses was 0.257 mm. I calculated the strain rate by taking the vertical
gradient of the upward velocity using 11 grid points around the necking of the foam. The obtained strain
rate and stress time series include high-frequency fluctuations, which I regard as noise due to errors in the
image analyses and the tensile machine, respectively. To remove the noise, I smoothed the data by successively
applying a median filter and taking a moving average. The lengths of the median filter and moving average were
set both to 5 points for stress and to 10 and 5 points for strain rate, respectively. Since one case with the slowest
extension (T18120607) has large noise in the strain rate, I took 40 points for the median filter and 20 points for
the moving average.

When the deformation is incompressible and uniform across the sample, the axial strain rate ϵ̇ is related to
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the rate of the width change as

ϵ̇ = − 2

w

dw

dt
. (3.3)

We confirmed that the strain rate obtained using PIVlab was consistent with the width change of the sample.
This result indicates that the strain rate was uniform in the radial direction. The strain ϵ is defined as the time
integration of ϵ̇ from ti to tf .

Shear viscosity η is usually different from elongational viscosity ηe, which is defined as ηe = σ/ϵ̇. For an
incompressible Newtonian fluid, the shear viscosity has the following relationship as η = 1

3ηe (e.g., Bird et al.,
2007). Although polyurethane foam is not a pure Newtonian fluid or incompressible, I approximated the shear
viscosity from the above relationship.

3.2.5 X-ray computed tomography and image processing

Three-dimensional images of samples were obtained by a micro X-ray CT scanner (METROTOM800, Carl
Zeiss). Images representing the intensities of X-rays transmitted through foam were collected at an energy of
130 kV and a tube current of 60 µA. The samples were rotated 360◦, and 800 projections were taken for each
sample. The pixel sizes of the samples were 8.89 × 8.89 µm2 or 9.37 × 9.37 µm2, excluding one sample
(T18120401, 18.34× 18.34 µm2). The parameters of X-ray CT scan are summarized in Table 3.2.

Table 3.2: Summary of measurement conditions for the samples described in Table 3.1.

Sample number Pixel size [µm] Original raw image size [pixel] Analyzed volume [mm3] a Vesicularity b

T18120401 18.34 1459 × 1464 × 1346 170.00 0.65
T18120607 8.89 1001 × 963 × 1664 48.54 0.63
T19010706 8.89 925 × 884 × 1924 50.17 0.59
T18121006 9.37 987 × 910 × 1871 83.157 0.67
T18121002 9.37 796 × 845 × 1859 67.65 0.61
T19010704 8.89 1167 × 1167 × 1346 170.00 0.58
T18121704 9.37 746 × 823 × 1859 54.58 0.62
T19010702 8.89 775 × 577 × 1894 47.00 0.61
T19010703 8.89 604 × 654 × 1862 30.30 0.59
T19011411 8.89 864 × 787 × 1837 67.23 0.57
T19011412 8.89 1011 × 933 × 1852 68.79 0.55

a Including bubbles and rigid polymers
b Calculated from the three-dimensional rendering images

Image processing of the sample was carried out with commercial 3D image processing software (Simpleware,
Synopsys) in the following procedure. First, CT images were converted to binary images by brightness values
(Fig. 3.2a). The thresholds of the brightness value were determined manually. Since most of the bubbles are
interconnected, I separated them in order to measure the deformations of individual bubbles. Bubble separation
was conducted by an opening operation followed by watershed segmentation (Figs. 3.2b and 3.2c). The opening
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operation involves the erosion and dilation cycle to smooth bubble shape. Watershed segmentation is a method
of automatically separating objects that touch or coalesce (Dingwell et al., 2016). The watershed segmentation
sometimes results in over-segmentation. Over-segmented bubbles were merged manually.
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Figure 3.2: (a) Binary image of sample T18121006. (b) Segmented image. Adjacent bubbles with different
colors indicate that the bubbles are recognized as different bubbles (i.e., separated bubbles). The bubbles
touching the upper and lower boundaries were excluded from the analysis. (c) Three-dimensional rendered
image.

The semi-major and semi-minor axes of a bubble were obtained by fitting the bubble by an optimally oriented
rectangular that accommodates the bubble. The present study analyzed only bubbles with voxel numbers ≥ 100,
because small bubbles were sometimes incorrectly measured. The voxel number of 100 corresponds to a bubble
radius of 25.6 µm for 8.89 µm/pixel. In the present study, the equivalent bubble radius is used as the bubble
radius. The bubble shape is characterized by the deformation degree D (Eq. 1.2). The detail procedure and
error of image processing are described in appendix C.

3.2.6 Pure shear deformation

During the main extension, a bubble in the foam was deformed in pure shear. The velocity field of pure shear
is expressed in cylindrical coordinates (z, r, θ) as follows:

vz = ϵ̇z, (3.4)

vr = −1

2
ϵ̇r. (3.5)
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Generally, bubble deformation is controlled by viscous stress and surface stress due to surface tension at
gas/liquid interface, and the competition of these two stresses is described by capillary number Ca. Using ϵ̇ in
Eq. (3.2), the capillary number in pure shear is defined as

Ca =
Rbϵ̇ηL
Γ

, (3.6)

where Rb is the equivalent bubble radius that is defined as the radius of a sphere with a volume equal to the
deformed bubble, ηL is the viscosity of the fluid phase, and Γ is the surface tension. Under the condition of
a constant Ca, the equilibrium shape of a bubble in pure shear has been investigated experimentally (Taylor,
1934; Delaby et al., 1994) and theoretically (Taylor, 1934; Acrivos and Lo, 1978).

In order to analyze the bubble deformation in our extensional experiment, I compare the experimental results
with the MJT model, which is the new bubble deformation model developed in chapter 2, under a constant
capillary number. In the present study, I estimated the values of ηL, ϵ̇, and Γ in Eq. (3.6) in the following way.

First, I adopt a mean field approach. In the mean field approach, the foam surrounding a bubble is assumed
to be an effective medium. The average shape of multiple bubbles is assumed to be determined by the apparent
viscous stress that is the product of bulk strain rate and effective viscosity of the foam rather than liquid viscosity.
By using this approach, previous numerical and experimental studies calculated the capillary number from the
effective viscosity, revealing that the average shape of deformed bubbles coincided with the shape of a single
bubble theoretically estimated from the effective viscosity (Loewenberg, 1998; Caserta et al., 2007). This
mean field approach is well accepted for a moderately concentrated emulsion. The numerical simulations of
Loewenberg (1998) showed that this approach was valid for at least ϕ ≤ 0.3. The validity of applying the mean
field approach to highly vesiculated foam (ϕ ≈ 0.6) is discussed in the Discussion section.

The capillary number used in the MJT model is assumed to be a function of the shear viscosity of the
fluid phase because the model deals with the deformation of a single bubble. In order to calculate the average
deformation degree of multiple bubbles, I adopt the mean field approach and use the effective viscosity of the
foam η as ηL.

Second, I use the time-averaged values of strain rate and viscosity, which are defined as ϵ̇ave = 1
tf−ti

∫ tf
ti
ϵ̇dt

and ηave = 1
tf−ti

∫ tf
ti
ηdt, respectively. Finally, following the surface tensions of polyol and polyisocyanate

(36.1 and 48.6 mN/m, respectively), I assume a constant surface tension of Γ = 40 mN/m for the reactive
polyurethane foam.

3.3 Results

3.3.1 Rheology

The experimental conditions and results are summarized in Table 3.1. The rheology during the extensional
experiment is shown in Fig. 3.3. The extensional experiment has three parameters: (1) pull rate L̇, (2) pull
length L, and (3) finish time tf . The value of strain rate increases with L̇ (Fig. 3.3a). The final strain tends to
increase with L (Fig. 3.3e). The viscosity depends on the time of extension, which is represented by the finish
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time tf (Fig. 3.3i). With increasing length, the strain rate decreases with time because of the constant pull rate.
The stress depends on L̇ and tf and increases with L̇ and tf (Figs. 3.3d through 3.3f). Except for the low L̇,
the experiments show an initial linear response in which stress increases sharply with applied strain. This sharp
increase in stress corresponds to the sharp increase in strain rate. When the strain rate reaches the maximum
value, the stress increase slows down. The slow increase in stress was caused by the curing reaction of the two
polymers. The effect of the curing reaction is clearly observed in the gradual increase of viscosity (Figs. 3.3g
through 3.3i). Delaying tf leads to the development of a polymer network and an increase in viscosity (Fig.
3.3i).

The viscosity of polyurethane foam is known to increase exponentially with time (Mondy et al., 2013, 2014).
The temporal viscosity can be formulated as follows:

η = ηcexp (αt) , (3.7)

where α is an exponential factor, and ηc is a constant effective viscosity. The linear fitting of the viscosities at
the end of extension in Fig. 3.3i gives α = 0.043 s−1 and ηc = 9.91× 10−6 Pa · s.

3.3.2 Qualitative observation

Representative 2-D slice images are shown in Fig. 3.4. The sample to which only the preliminary extension was
applied is composed of spherical bubbles (Fig. 3.4a). This result suggests that elongated bubbles in Figs. 3.4b
through 3.4k are formed in the main extensional deformation. Comparing the bubble shapes with similar sizes
for each sample, the bubble elongation at the central regions is larger than that at the outer regions (e.g., Fig.
3.4d). I performed a quantitative investigation of this feature in the next subsection. As with the rheological
data, all CT images are classified by pull rate L̇, pull length L, and finish time tf . Comparing samples under the
same L and tf (i.e., Figs. 3.4b through 3.4e), the bubble elongation increases slightly with L̇, which controls
the strain rate. Comparing samples under the same L̇ and tf (Figs. 3.4d and 3.4f through 3.4i), the bubble
elongation increases with L (strain). The samples with different tf show that the elongations of large bubbles
are similar (Figs. 3.4d, 3.4j, and 3.4k). However, the elongation of small bubbles increases with tf , namely
with the viscosity.

3.3.3 Quantitative measurement

The vesicularities of all samples were measured using three-dimensional rendered images (Table 3.2).

Radial distribution of bubble shape

As mentioned in section 3.2, bubble shapes are different between the central regions and the outer regions. In
order to investigate the inhomogeneous distribution of bubble shapes, I plotted the bubble deformation degree
D as a function of r, where r is the radial distance from the axis of the foam to the centroid of a bubble. Figure
3.5a shows the relationship between r and D for a typical sample (T18121006; L̇ = 7 mm/s, L = 10 mm,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Variations of strain rate (a-c), stress (d-f), and shear viscosity (g-i) as a function of time or strain.
The data are divided into three groups: (a, d, g) constant pull length and finish time, (b, e, h) constant pull rate
and finish time, and (c, f, i) constant pull length and pull rate. Black lines indicate the same experiment with
L̇ = 7 mm/s, L = 10 mm, and tf = 420 s. The data indicated by the blue and red lines in (c) are shifted
sideways by +28.8 s and +58.7 s, respectively.
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(h) (i) (j)(g)
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(e)

(k)

Figure 3.4: Typical 2-D slices of gray CT images. The black and gray parts in the images correspond to pores
(air and bubble) and polyurethane. All scale bars are 1 mm. (a) T18120401, (b) T18120607, (c) T19010706,
(d) T18121006, (e) T18121002, (f) T19010704, (g) T18121704, (h) T19010702, (i) T19010703, (j) T19011411,
and (k) T19011412. – 44 –
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tf = 420 s). The color indicates the equivalent bubble radius. The center region (r < 0.7 mm) has a
relatively uniform value ofD and constitutes elongated bubbles (Fig. 3.5b). On the other hand, the outer region
(r > 1.5 mm) shows a large variation in D (Fig. 3.5c). Other samples exhibit a similar distribution to this
sample as well.

Bu
bb

le
 ra

di
us

 [m
m

]

(a) (b)

(c)

r < 0.7 mm

r > 1.5 mm

Figure 3.5: (a) Deformation degree of bubbles in sample T18121006 (L̇ = 7 mm/s, L = 10 mm, tf = 420 s)
as a function of radial distance from the foam center to the centroid of each bubble. The colorbar indicates the
equivalent bubble radius. (b) Histogram of deformation degree for r < 0.7 mm. (c) Histogram of deformation
degrees for r > 1.5 mm. The deformation degree is relatively homogeneous and symmetrical in the center
region (r < 0.7 mm) but becomes wider in the outer region (r > 1.5 mm).

The inhomogeneous distribution of bubbles in the outer regions may be caused by the local rheology on the
foam surface. Although the temperature of the lower cup was controlled by the Peltier plate, the polyurethane
foam in the outer region showed the inhomogeneous distribution of temperature (Fig. 3.1d). Since the rheology
of polyurethane foam is sensitive to temperature (Lipshitz and Macosko, 1976), the rheology around the foam
surface might be inhomogeneous. The inhomogeneous rheology may change the amount of shape relaxation
after the main extension.

In order to avoid the complexity of rheology and shape relaxation, I hereinafter focus on bubbles in the
center region, that is defined as r/r0 < 1/3, where r0 is the radial distance from the center to the furthest foam
surface.

Bubble volume distribution

Figure 3.6 shows the volumetric distribution as a function of bubble radius. The horizontal and vertical axes
are the bubble radius in the log scale and the volume fraction in linear scale, respectively. The sample with
only preliminary extension yields a symmetrical distribution with a peak at Rb = 0.18 mm (Fig. 3.6k). In the
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samples with main extensional deformations, the distribution becomes asymmetrical. The proportion of small
bubbles decreases and that of larger bubbles increases with the pull length L (and strain) (Figs. 3.6c and 3.6e
through 3.6h). The influence of pull rate and finish time on the bubble size distribution is smaller than that of
pull length. For a pull length of L ≥ 20 mm (Figs. 3.6g and 3.6h), there are large bubbles (Rb > 0.4 mm),
which are never observed in the experiment without the main extensional deformation. These large bubbles
were formed by the coalescence of many small bubbles induced by deformation.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) Only preliminary streching

Figure 3.6: Bubble volume distributions for all analyzed samples. The horizontal axis is expressed in log scale.
All samples are categorized into constant pull length and finish time (a-d), constant pull rate and finish time (c,
e-h), constant pull rate and pull length (c, i and j), and only preliminary extension (k).

Bubble shape distribution for each sample

The relationships between Ca andD for each bubble are shown in Fig. 3.7. The red line indicates the results of
the MJT model, which depends onCa and ϵ, and the dashed line indicates the equilibrium shape of a bubble as a
function of Ca. The variation of the capillary number for each sample is caused by the bubble size distribution.

Figures 3.7a through 3.7c show the results for different pull rates. Although there is a scatter of D around
the simulation results, the experimental results show a rough agreement with the simulation results. In the
experiment with small L̇, the bubble deformation degree has a roughly linear relation with Ca (Fig. 3.7a). The
linear trend of Ca and D suggests equilibrium shapes (Rust and Cashman, 2007). A small bubble (i.e., small
Ca) could deform in a manner close to the equilibrium shape because such a bubble requires only a small strain
to reach the equilibrium state. In the samples with different L̇, D asymptotically approaches a constant value
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with Ca (Figs. 3.7b and 3.7c). The relation betweenD and Ca represents the transient effect of the insufficient
strain on bubble deformation (Rust and Cashman, 2007). The asymptotic value ofD (D < 1) is an indication of
transient deformation and enables us to estimate the accumulated strain during bubble deformation (Fig. 2.10).

Note that bubbles of small Ca are less elongated than the model simulations (Figs. 3.7b through 3.7e). For
example, the small bubbles of Ca < 0.7 in Fig. 3.7c are consistently less elongated than the model calculation.
This deviation can be explained by shape relaxation driven by surface tension.

Figures 3.7c through 3.7f show the results for different pull lengths. These figures indicate that the asymptotic
value of D with Ca gradually increases with the pull length, namely strain. With increasing strain, the bubbles
gradually approach the equilibrium shapes, which are solely determined byCa. However, the even largest strain
of this data set (ϵ = 1.52) is too small to attain the equilibrium shape. The model calculation shows that a
bubble of Ca = 1 requires ϵ ≈ 5 to reach the equilibrium state (Fig. 2.7).

The experimental results are distributed around the model result. Compared to the other samples, the
bubbles which experienced the largest strain (Fig. 3.7f), are more scattered from the model results. The
scattering could be caused by bubble coalescences because it is not included in the MJT model. In addition,
when half-coalesced bubbles are not separated accurately during image processing, the irregular shape of the
bubble fit to a rectangular box produces anomalous D values.

Figures 3.7c, 3.7g, and 3.7h show the results for different pull lengths under the same pull rate and finish
time. The delay of tf contributes to the increase in viscosity, resulting in largeCa. These experiments maintain
an approximately constant value of strain (ϵ ≈ 0.6), and thus the asymptotic value ofD also maintains a constant
value (D = 0.6). The variation of tf certainly affects the amount of shape relaxation after the main extensional
deformation. The deviation of D from the simulation result becomes small with delaying tf (i.e., increasing
viscosity).

Shape relaxation

Shape relaxation of a bubble has been discussed based on a relaxation timescale (Toramaru, 1988), which is
given by

τrelax =
RbηL
Γ

. (3.8)

Comparing the relaxation timescale with the cooling timescale, previous studies determined whether bubble
shapes were quenched or relaxed (Okumura et al., 2008; Rust et al., 2003). In the present study, the cooling
timescale can be regarded as the timescale of increasing viscosity and is explicitly defined by

τvisco =
ηL
η̇L
, (3.9)

where η̇L is the increase rate of the liquid viscosity. The liquid viscosity in Eq. (3.9) can be replaced by the
effective viscosity η, because I adopt a mean-field approach. According to Eq. (3.7), the timescale of increasing
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Relaxation

Figure 3.7: Variation of the bubble deformation degree D as function of the capillary number Ca. The plus
sign indicates the experimental result. The red solid line indicates the result of MJT model, which depends on
strain and Ca. Red dashed lines indicate the equilibrium shape of the bubble, which is calculated from the MJT
model. All samples are categorized into constant pull length and finish time (a, b, c), constant pull rate and
finish time (d, c, e, f), and constant pull rate and pull length (c, g, h).
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viscosity is expressed as

τvisco =
η

η̇
=

1

α
. (3.10)

The shape relaxation process can be considered as the competition of the timescale of shape relaxation and
increasing viscosity. Here, I propose a new non-dimensional number referred to as the quench number:

Qu =
τrelax
τvisco

=
Rbη̇

Γ
=
Rbαη0

Γ
, (3.11)

where η0 is the effective viscosity at the onset of shape relaxation. Large Qu means small τvisco compared to
τrelax, resulting in the preservation of bubbles shape.

The amount of shape relaxation was analyzed in the following manner. First, I selected the smallest 50
bubbles for each sample because shape relaxation is prominent in smaller bubbles. Next, I calculated the mean
bubble deformation degree D and the mean bubble radius Rb for the 50 bubbles. Using Rb, I calculated the
mean capillary number Ca and the mean quench number Qu. For the mean capillary number Ca and strain ϵ
applied to the sample, I calculated the MJT model to obtain the numerical deformation degree D0 at the onset
of shape relaxation. The amount of shape relaxation is quantified by D0−D

D0
. The MJT model can also calculate

the shape relaxation of an elongated bubble in solidifying foam. For a very small and a very large value of Qu,
the elongated bubble will be completely relaxed and quenched, respectively. I calculated the value of bubble
deformation degree Dsolid when the polyurethane foam completely solidified after the main extension and the
shape relaxation. Deformation degreeDsolid depends on the deformation degree at the onset of shape relaxation
D0 and the quench number Qu.

Figure 3.8 shows that the shape relaxation D0−D
D0

from the experiments and D0−Dsolid
D0

from the model as a
function ofQu. The experimental results (circles) show that the shape relaxation becomes small with increasing
Qu. Comparing them with the model results (squares) for the same Qu and D0, bubbles in polyurethane foam
are not as relaxed as those in the model results. This difference can be explained by the non-Newtonian behavior
of polyurethane foam. The MJT model, which calculates the shape relaxation after the main extension, assumes
the Newtonian viscosity which increases exponentially with time. On the other hand, the curing process of
polyurethane foam causes not only an increase in viscosity, but also the transition from liquid to solid including
the appearance of yield stress (Lipshitz and Macosko, 1976). The yield stress makes it difficult for bubbles
to relax by surface tension. Therefore, the numerical simulation suggests larger shape relaxation (squares and
dashed lines in Fig. 3.8) than the experimental results. I think that quench number is useful for estimating the
maximum relaxation effect in samples.
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Figure 3.8: The amount of shape relaxation as a function of quench number Qu. Circles indicate the shape
relaxation of the experimental bubble, which is expressed as D0−D

D0
, whereD is the average deformation degree

for the smallest 50 bubbles, andD0 is the numerical bubble deformation degree at the onset of shape relaxation.
Squares indicate the numerical simulation of shape relaxation, which is expressed as D0−Dsolid

D0
, where Dsolid

is the numerical deformation degree when the foam completely solidifies after the main extension and shape
relaxation. The dashed line indicates the numerical simulation results under the same initial conditions for
D0 = 0.5. The vertical and horizontal error bars are calculated from the standard deviations of D and Rb in
a sample, respectively. The amount of shape relaxation becomes small with increasing Qu. One experimental
result (L̇ = 0.5 mm/s, L = 10 mm, ts = 420 s) shows the negative value of shape relaxation becauseD of the
foam were just a little more elongated than D0 calculated from the MJT model.
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3.4 Discussion

3.4.1 Bubble interaction

Based on the theoretical and experimental relationship between Ca and the equilibrium shape of a bubble, the
shear rates during magma flow have been estimated from bubbles preserved in obsidian or pumice samples
(Polacci et al., 1999; Rust et al., 2003; Rust and Cashman, 2007; Dingwell et al., 2016). In the above
estimations, the effect of bubble interaction has been pointed out as a potential source of the error from applying
the deformation theory of a single bubble. This problem is particularly significant in analyzing tube pumice,
which is the target of our study. Wright et al. (2009) showed that the connected porosity of tube pumice ranges
from 0.57 to 0.70, which means actual vesicularities may be larger. They also mentioned that bubbles in tube
pumice are stretched to high aspect ratios (> 5 : 1, which corresponds to D > 0.67).

Using polyurethane foam as an analogue material of magma, I produced the solid products whose texture
is similar to tube pumice. The solidified samples have vesicularities about 0.6 (Table 3.2) and, in the case
with large extension, highly elongated bubbles of D > 0.67 (Fig. 3.7). Strain and strain rate are known as
the essential factors to control bubble shapes. In our experiments, the strain and strain rate that produced the
elongated bubbles were well quantified by the data. Therefore, I think that our experimental data are useful for
examining the effect of bubble interaction on bubble shapes. In the following discussion, I divide the effects in
two processes: (1) through changing the shear field around bubbles and (2) through bubble coalescence.

In bubbly fluid, the shear field around each bubble varies due to the neighboring bubbles, and thus the actual
capillary number which each bubble experiences is not equal to the mean capillary number calculated from the
average strain rate and bulk viscosity. Because the bubble shape evolution is a non-linear equation, it is not
obvious whether the average bubble shape depends on the average capillary number in the same way as a single
bubble. The applicability of the average capillary number to the average bubble shape has been shown valid
for emulsion under relatively low volume fraction (ϕ < 0.3) by a direct numerical simulation (Loewenberg,
1998). In our experiments, Fig. 3.7 shows that the model for a single bubble represents the average value of the
distribution of D for L < 20mm. This result confirms that the deformation theory of a single bubble with the
average capillary number can be applied to vesicularities as large as ϕ ∼ 0.6.

Bubble coalescence changes not only bubble shape but also bubble size. Figures 3.6g and 3.6h show that
the samples with large pull length contain large bubbles (Rb > 0.4 mm). By comparing these samples with a
sample without the main extension, it was suggested that the large bubbles were formed by bubble coalescences
induced by the main extensional deformation. The point is that the bubble volume distribution (BVD) of
the sample with coalesced bubbles exhibits a characteristic distribution, which is often observed in natural
pyroclasts. BVD has been used to examine the occurrence of bubble coalescence in natural samples (Shea
et al., 2010). Bubble coalescence induced by bubble growth is known to show a distinct mode for large bubble
size (Klug and Cashman, 1994; Gurioli et al., 2008). Our samples, which experienced bubble coalescence
enhanced by pure shear (L > 20 mm), also show a distinct mode for large bubble size (Rb > 0.4 mm), in
addition to regular mode for smaller bubble size (Figs. 3.6g and 3.6h). This result suggests that the BVD is
useful also to examine the bubble coalescence induced by shear around the bubbles. BVDs in the samples with
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L < 20 mm have asymmetrical distribution but lack the distinct mode for large bubble size, suggesting that
bubble coalescence in these samples is less dominant than in the samples with the larger strain ( L > 20 mm ).

The coalescence of spherical bubbles always increases D, unless the coalesced bubble relaxes. On the
other hand, I consider that coalescence of two ellipsoidal bubbles can either increase or decrease D depending
on their shapes and relative locations before the coalescence. The coalescence along the long axes of two
bubbles increases D, but the coalescence side by side decreases D. In the sample that shows significant bubble
coalescence in the BVD (Fig. 3.6h), the bubble deformation degrees are widely distributed around the numerical
result (Fig. 3.7f). This result implies that bubble coalescence leads to a wider distribution ofD than the sample
without bubble coalescence.

In summary, the deformation theory of a single bubble can be extended to the average deformation of
non-dilute multiple bubbles, at least in the range of pure shear strain in the experiments (ϵ < 1.5). Bubble
deformation degrees are scattered around the model result due to both the inhomogeneous shear field around
individual bubbles and bubble coalescence. With increasing strain, bubble coalescence is enhanced, and
deformation degrees are more scattered around the model result of a single bubble.

3.4.2 Shape relaxation

In the samples deformed at low viscosities, small bubbles tend to be less elongated than those calculated by
the MJT model (Fig. 3.7). This gap can be explained by the effect of shape relaxation, whereby the elongated
bubbles were relaxed by the surface tension after pure shear flow ceased (Fig. 3.8). I believe that the quench
number is a useful reference for estimating the effect of shape relaxation, although it cannot represent the effect
of yield stress. The necessity of rapid cooling for tube pumice has been pointed out for the Minoan eruption
(Taddeucci and Wohletz, 2001). To preserve elongated bubbles after fragmentation, tube pumice requires a
large quench number and/or the appearance of yield stress.
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Chapter 4

Simulation of bubble deformation

4.1 Introduction

The new bubble deformation model (MJT model) enabled us to calculate large transient deformations of a
single bubble in arbitrary shear flows including volumetric change (Chapter 2). The extension experiment with
solidifying foam suggested that the deformation theory of a single bubble can be compared with the average
shape of multiple bubbles (Chapter 3). Although the vesicularity of pumice (0.7 < ϕ < 0.9) is larger than the
polyurethane foam used in chapter 3 (ϕ ≈ 0.6), I assume that the above suggestion can be extended to bubbles
in pumice. An experimental calibration at higher vesicularities is needed for further work.

In this chapter, I calculate the deformation of a bubble in a volcanic conduit as a forward problem. The
parameters needed for the MJT model are obtained by a conduit flow model.

Most conduit flow models which have been developed for the understanding of magma flow are one
dimensional, assuming a parabolic velocity profile across a conduit. Strictly speaking, the assumption of a
parabolic velocity is only valid for an incompressible laminar flow with a constant viscosity. Previous studies
suggested that a plug-like velocity profile is induced by the shear-thinning effect near the conduit wall due
to viscous heating or bubble elongation (Llewellin et al., 2002a; Mastin, 2005; Vedeneeva et al., 2005). It is
expected that the velocity profile significantly affects bubble shape because bubble deformation depends on
strain as well as capillary number.

Here, I obtain the velocity field around a bubble from a quasi two-dimensional conduit flow model based
on a model of Barmin et al. (2004). The quasi two-dimensional model by Barmin et al. (2004), which is the
same model as Vedeneeva et al. (2005), takes account of the effect of viscous dissipation and heat conduction.
It is shown that the velocity profile across a conduit becomes a plug-like shape due to intense viscous-heating
around conduit walls. The reason why I choose this model is that it is a fundamental model for an explosive
eruption with viscous heating. Following the model of Barmin et al. (2004), I develop three models of explosive
eruption: Newtonian isothermal model, shear-thinning model due to bubble deformation, and viscous-heating
model. Depending on the rheology of magma, the velocity profile varies largely.

The rest of this chapter is organized as follows. Section 4.2 introduces the conduit flow models that I
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used. Section 4.3 describes the numerical method to solve the models. Section 4.4 shows the results of conduit
flow simulations. In order to compare the numerical simulations with natural observations of bubble texture, I
simulate the conduit flow assuming the 1.8 ka Taupo eruption. Section 4.5 demonstrates the application of the
MJT model to the conduit-flow velocity field. Finally, section 4.6 provides the discussion.

4.2 Mathematical formulation

In this section, I describe a conduit flow model that I use. The model is based on a quasi-two-dimensional model
proposed by Barmin et al. (2004). Our model has corrected their mass conservation equation that neglected
density change due to bubble growth. The vertical velocity gradient generated by bubble growth is essential for
pure shear deformation.

At first, I describe the model with the effect of viscous heating. Following the basic equations of the viscous
heating model, I then introduce models with a Newtonian isothermal viscosity and a shear-thinning viscosity
caused by bubble elongation.

4.2.1 Viscous heating model

The conduit flow is assumed to be composed of two regions: a bubbly fluid zone and a gas-particle dispersion
region (Fig. 4.1). The two regions are separated by the fragmentation surface. In this thesis, I assume that
fragmentation is defined as the depth where the critical void fraction reaches (Sparks, 1978).

Figure 4.1: Schematic view of a volcanic conduit.

The bubbly fluid zone is assumed to be a quasi two-dimensional flow in which the pressure is homogeneous
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across the conduit but the other variables (e.g., velocity, temperature, and density) vary axisymmetrically. The
magma is composed of melt, gas bubbles, and gas component dissolved in the melt. I ignore crystals. The
viscosity of magma is controlled by the concentration of the dissolved gas and the temperature. I assume the
gas exsolution to be in chemical equilibrium to simplify the numerical calculation. The magma temperature
varies by viscous heating and heat transfer by conduction and advection.

The gas-particle flow part is treated as a one-dimensional flow using the velocity and density averaged over
the cross section. The velocities of gas and particles are assumed to be identical. I neglect the temperature
variation and viscous friction from the conduit wall, but incorporates the vertical variation of magma density.

Basic equations of the bubbly flow

From section 4.2 to 4.3, I express the basic equations in non-dimensional forms. Dimensional constants
are indicated by an overscript .̃ The definition of non-dimensional values are described in Eq. (D.34). In
the cylindrical coordinate (z, r, θ) with the z-axis taken vertically upward, the non-dimensional conservation
equations of the bubbly flow before fragmentation have the following forms.

1

r

∂

∂r
(rρw) +

∂

∂z
(ρu) = 0, (4.1)
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div v =
1

r

∂

∂r
(rw) +

∂u

∂z
, (4.4)

Re =
ρ̃mũ0R

η̃0
, F r =

ũ0√
g̃R̃

, Ec =
ũ20

c̃V mT̃0
, Eu−1 =

ρ̃mũ
2
0/2

p̃0
, P e =

ρ̃mũ0R̃c̃V m

κ̃
. (4.5)

Here, Eq. (4.1), Eq. (4.2), and Eq. (4.3) represent the conservations of the mass, the momentum, and the
internal energy, respectively. The equations have been simplified with assumptions that the non-dimensional
conduit length scale L is much larger than its radius and that the flow inertia effects are negligible. The detail
of their derivation is given in appendix D. The vertical and radial velocity components are given by u and w,
respectively. The velocity vector v is defined as v = (u,w, 0). ρ, p, η, e, and T are the density, the pressure,
the melt viscosity, the internal energy density, and the temperature increment from the initial temperature at the
conduit inlet. When obtaining the non-dimensinoal equations, I used the following characteristic dimensional
values: R̃ is the conduit radius, ũ0 is a characteristic velocity, ρ̃m is the melt density, T̃0 is the initial temperature
at the conduit inlet, p̃0 is the hydrostatic pressure at the conduit inlet (p̃0 = ρ̃mg̃L̃ + p̃atm where p̃atm is the
atmospheric pressure and g̃ is the gravity acceleration), c̃V m is the specific heat of the melt, and η̃0 is the
characteristic magma viscosity. Following Barmin et al. (2004), I set ũ0 to a constant value of 1 m/s in order
to represent the non-dimensional mass discharge rateQm as an explicit parameter. The non-dimensionalization
gives the dimensionless number defined in Eq. (4.5): Re is the Reynolds number, Fr is the Froude number, Ec
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is the Eckert number, Eu is the Euler number, and Pe is the Peclet number. In the Peclet number, κ̃ indicates
the thermal conductivity. The assumption that the inertia effect is negligible is equivalent with that all of Re,
Fr, Ec, and Eu−1 are small.

The melt viscosity model, which was developed by Hess and Dingwell (1996), depends on the temperature
increment T and the mass fraction of the dissolved gas c which follows the equilibrium solubility law:

η(c, T ) =
1

η̃0
10A(c, T ), A(c, T ) = 0.291 + 0.833ln(c)− 1304 + 2368 ln(c)

T̃0(1 + T )− (344.2 + 32.25 ln(c))
,(4.6)

c = c(p) = min(c0
√
p, cmax), c0 = C̃f

√
p̃0, (4.7)

where η̃0 is the dimensional magma viscosity corresponding to the pressure p̃0 and the temperature T̃0, cmax is
the concentration of gas in the melt in the absence of bubbles in magma, and C̃f is the solubility parameter.

The bulk density and the equation of state for the gas phase follow the following forms

1

ρ
=

1− cmax

1− c
+
cmax − c

1− c

1

ρg
, ρg = ρg0

p

T + 1
, ρg0 =

p̃0

ρ̃mR̃gT̃0
, (4.8)

where ρg is the non-dimensional gas density and R̃g is the gas constant. The melt density is assumed to be a
constant and is scaled as unity. The gas volume ratio ϕ is given by

1

ϕ
= 1 +

1− cmax

cmax − c
ρg. (4.9)

The internal energy density e is defined as

e = ψ(p)(T + 1), ψ(p) =
1− cmax

1− c
+
cmax − c

1− c
cV g, (4.10)

where cV g is the non-dimensional specific heat of the gas phase at constant volume. The specific heat of the
melt phase is scaled as unity.

At the conduit inlet, the velocity profile is assumed to be parabolic and the temperature is homogeneous
across the conduit:

z = 0 : w(r, 0) = 0, u(r, 0) = 2ua0
(
1− r2

)
, T (r, 0) = 0, (4.11)

where ua0 is the average velocity which is given by

ua0 =
Qm

4π
∫ 1
0 ρ(r, 0) (1− r2) rdr

, (4.12)

where Qm is the non-dimensional mass discharge rate.
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At the conduit axis, the axisymmetric boundary condition should be satisfied:

r = 0 : w(0, z) = 0,
∂u

∂r
(0, z) = 0,

∂p

∂r
(0, z) = 0,

∂T

∂r
(0, z) = 0. (4.13)

At the conduit wall, I impose the no-slip condition for the velocity. For the temperature, Barmin et al. (2004)
considered two conditions: the adiabatic or isothermal condition. In our study, I use the isothermal condition
that the wall temperature is the same as the initial temperature at the conduit inlet.

r = 1 : w(1, z) = 0 u(1, z) = 0 T (1, z) = 0. (4.14)

The viscous-heating model is composed of the basic equations Eqs. (4.1)-(4.3), the temperature-dependent
viscosity model Eq. (4.6), and the volatile solubility model Eq. (4.7), together with the boundary conditions
Eqs. (4.11)-(4.14).

Basic equations of the gas-particle flow

The basic equations after fragmentation are cross-sectionally averaged. The velocities of gas and particles are
equal and the flow is isothermal. The non-dimensional equations are expressed as follows

u(p) =
Qm/π

ρg(p)ϕ(p) + (1− ϕ(p))
, (4.15)

dp

dz
=

1

f(p)
, f(p) = −Fr2

(
π

Qm

Eu

2
+
du

dp

)
u(p), (4.16)

ρg = ρg0p, (4.17)

where u is the cross-sectional averaged flow velocity in gas-particle region. Eq. (4.15) represents the mass
conservation. Eq. (4.16) is obtained from the momentum conservation, and Eq. (4.17) is the equation of state
for the gas phase with the assumption of T = 0. Since the temperature increase in the bubbly flow region due
to the viscous-heating effect is concentrated in a very narrow zone near the wall, the average temperature of the
mixture is assumed to be equal to the initial temperature. In the gas-particle flow, the viscous-heating effect
is negligible. The effect of gas expansion on the temperature is also neglected due to the large heat capacity
of the particles. Therefore, I do not solve the energy equation. Then, the gas density is controlled only by the
pressure. The derivation of Eqs. (4.15)-(4.17) are described in appendix D.

From Eq. (4.15), I have

du

dp
=
Qm

π

d

dp

(
1

ρ

)
= − π

Qm

Eu

2
Ma2, Ma =

u

a
, a =

√
Eu

2

dp

dρ
, (4.18)

where Ma is the Mach number and a is the dimensionless speed of sound. When Ma = 1 is satisfied, Eq.
(4.18) gives f(p) = 0. This condition corresponds to the choking condition.
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From Eq. (4.16), the fragmentation level zf can be determined:

zf = L−
∫ pout

pf

f(p)dp, (4.19)

where pf is the pressure when the gas volume fraction reached the critical concentration ϕ = ϕf . Eq.(4.9) gives
the fragmentation pressure pf

pf =

−c0(1− ϕf ) +
√
c20(1− ϕf )2 + 4ρg0cmax(1− cmax)ϕf (1− ϕf )

2ρg0(1− cmax)ϕf

2

. (4.20)

The fragmentation pressure depends on c0, ϕf , ρg0, and cmax.

At the conduit outlet, the pressure pout should satisfy the following condition:

pout = max(pa, p
∗), (4.21)

where pa is the dimensionless atmospheric pressure and p∗ is the solution of f(p) = 0. The pressure of p∗

corresponds to the pressure when choking occurs.

4.2.2 Newtonian isothermal model and shear-thinning model due to bubble deformation

Newtonian isothermal model assumes that the viscosity is Newtonian and the temperature is isothermal through-
out the conduit. The non-dimensional conservation equations of mass and momentum are the same as the
viscous-heating model.

We also consider the conduit flow with the shear-thinning effect induced by bubble elongation. The non-
dimensional basic equations are the same as the viscous-heating model except viscosity. Instead of solving the
energy equation to calculate the temperature-dependent viscosity, I use the bulk viscosity of bubbly fluid ηb.

The shear-thinning effect caused by bubble elongation has been investigated over the past decades. Although
there are still some debates in modeling the rheology of bubbly fluid, I employ the model by Llewellin et al.
(2002b). The simple form of the viscosity model by Llewellin et al. (2002b) is summarized in Mader et al.
(2013). The relative viscosity ηr = ηb

η under simple shear flow is given by the form of a Cross model (Cross,
1965),

ηr = ηr,∞ +
ηr,0 − ηr,∞

1 + (65Ca)
2
. (4.22)

The above viscosity model assumes a bubbly flow under simple shear. In addition, the momentum equation of
(4.2) takes into account the shear stress of simple shear. I calculate Ca with the simple shear rate γ̇:

γ̇ =
∂u

∂r
. (4.23)
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The asymptotic relative viscosities at low and high Ca are represented by ηr,0 and ηr,∞, respectively. For large
gas fractions, they are given by Pal (2003) as follows:

ηr,0 = (1− ϕ)−1, (4.24)

ηr,∞ = (1− ϕ)
5
3 . (4.25)

Fig. 4.2 shows the relative viscosity ηr as a function of the capillary number Ca and gas volume fraction
ϕ. The relative viscosity varies sharply around Ca = 1.

Figure 4.2: Relative viscosity ηr as a function of the capillary number Ca for different gas volume fractions.
The relative viscosity was calculated by the rheology model of Llewellin et al. (2002b).

The capillary number depends on the spherical bubble radius R̃b. The conduit flow model which I used here
does not resolve the evolution of bubble radius, but it does calculate the gas volume fraction ϕ as a function of
z. Neglecting bubble coalescence, I calculate R̃b by,

4π

3
R̃3

b =
ϕ

(1− ϕ)Ñb

, (4.26)

where Ñb is the number of bubbles per unit volume of melt. Eq. (4.26) is also used in combining the conduit
flow model to the bubble deformation model.

4.3 Numerical method

The undetermined parameters are the dimensional conduit radius R̃ and the dimensional initial pressure p̃in.
They are determined by solving the following boundary problem.
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4.3.1 Fragmentation surface

The fragmentation level zf is calculated from Eqs. (4.19) and (4.20). Fig. 4.3 shows the fragmentation level as
a function of the conduit radius R̃ and the magma discharge rate Q̃m. The relative location of the fragmentation
surface zf decreases with the conduit radius. This trend is caused by the dynamics in the gas-particle region.

As mentioned in Eq. (4.21), the boundary condition at the exit is determined by the choking condition.
For the isothermal condition, the sound velocity of the gas-particle mixture is approximated as follows (Kieffer,
1977)

ã =

√
dp̃

dρ̃
∼

√
p̃

ϕ̃ρ̃
=

p̃

ρ̃
√
αR̃gT̃

, (4.27)

where α is the gas mass fraction. Following the mass conservation law Q̃m = πR̃2ρ̃outã, I obtain

p̃∗ ∼ Q̃m

πR̃2

√
αoutR̃gT̃ . (4.28)

where p̃∗, ρ̃out, and αout are the pressure, the density, and the gas mass fraction at the conduit exit, respectively.
Eq. (4.28) indicates that the pressure at the exit decreases with the conduit radius for a given mass flux (Fig.
4.3). The decrease in p̃out leads to the increase in the pressure gradient from the exit to the fragmentation
surface (p̃f − p̃out), resulting in increasing the gas-particle region (L̃ − z̃f ). In this way, the dynamics of the
gas-particle flow region requires that the fragmentation surface goes down with the conduit radius.

Figure 4.3: Blue line shows the relative location of the fragmentation surface zf/(L̃/R̃) as a function of the
conduit radius R̃. Red line indicates the exit pressure p̃out as a function of R̃. The dimensional parameters are
the same as the simulation of the Taupo plinian eruption except for the conduit radius.
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4.3.2 Initial pressure

Barmin et al. (2004) solved the boundary problem about the non-dimensional magma discharge rate Qm as
a function of the given pressure pin at the conduit entrance under the fixed conduit radius. In our study, the
dimensional discharge rate Q̃m is fixed, while the dimensional conduit radius R̃ and the initial pressure p̃in are
varied. For the given R, I calculate Qm and solve Eqs. (4.19) and (4.21) for the gas-particle flow part to obtain
zf and pout. Then, I solve the basic equations before fragmentation (Eqs. 4.1-4.3), and find the adequate pin
which satisfies the boundary condition p = pf at the fragmentation surface z = zf . I assume a value of R and
find an adequate pin by the shooting method in the following way.

4.3.3 Solving the viscous heating model

In the viscous-heating model, the differential equations (4.1)-(4.3) and the equation of state (4.8) have four
variables: the pressure, two velocity components, and temperature. These variables were solved by the finite
difference method. In the vertical direction, the unknown pressure was found by the combination of the explicit
scheme and the iteration method. Under a fixed pressure, the radial profile of temperature is determined by the
implicit scheme. The radial profile of two velocities are also found by the explicit scheme. The detail numerical
method is summarized in appendix D.

4.4 Results of the simulations

Since I am interested in dimensional values, I show numerical results in dimensional forms. Hereafter, all the
quantities are given in dimensional forms unless specified, so that I omit the overscript ˜.

4.4.1 Parameter values

The parameters used in the simulations are summarized in Table. 4.1. For Taupo plinian eruption, I considered
a cylindrical conduit 4 km in depth, an initial H20 = 4.3wt% (Dunbar et al., 1989a; Legros et al., 2000), and
an initial temperature T0 = 850 oC (Dunbar et al., 1989b). The parameters required for the viscous heating
model are derived from Barmin et al. (2004). Mass discharge rate is from Wilson and Walker (1985).

4.4.2 Boundary problems

Fig. 4.4 is the graph of the initial pressure pin as a function of the conduit radius R. All models show that pin
decreases with increasing R because of the lower fragmentation level (Fig. 4.3). In the case of the Newtonian
isothermal model (Fig. 4.4, blue line), pin becomes equal to the lithostatic pressure when R = 53m. In the
case of shear-thinning model (red line), pin becomes lower than in the case of Newtonian isothermal model.
This result is explained by the decrease of flow resistance. In the case of viscous-heating model (yellow line),
the effect of decreasing flow resistance becomes more significant than that in the other two models. The initial
pressure cannot be equal to the lithostatic pressure even in the case of the smallest assumed R.
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Table 4.1: Parameters for the simulation of Taupo plinian eruption (TP) and Taupo Ignimbrite (TI)

Parameter Notation Value
Conduit length a L 4000 m
Representative velocity u0 1.0 m/s
Melt density c ρm 2500 kg/m3

Initial temperature b T0 1123 K
Representative pressure p0 98 MPa
Heat capacity of the melt phase c cV m(cV 0) 1200 J/(kg ·K)
Heat capacity of the gas phase c cV g 1560 J/(kg ·K)
Gas constant c Rg 462 J/(kgK)
Water content a cmax 0.043

Solubility coefficient c Cf 4.1× 10−6Pa−1/2

Gravity acceleration c g 9.8 m/s2

Thermal conductivity c κ 0.8 J/(m · s ·K)
Critical volume fraction d ϕf 0.79 forTP
Mass discharge rate e Qm 2.5× 108 kg/s

a Conduit length and initial water content from Dunbar et al. (1989a)
b Initial temperature from Dunbar et al. (1989b)
c Parameters from Barmin et al. (2004)
d Critical volume fraction is equal to the average vesicularity of

pumice
d Mass discharge rate from Wilson and Walker (1985)

The conduit radius of the viscous heating model is set to the smallest value of R = 33 m in order to set pin
to a high value (Fig. 4.4). Further reduction of R cannot cause fragmentation in the conduit (Fig. 4.3).

The initial pressure pin should be close to the lithostatic pressure, because of the mechanical strength of the
rocks of conduit walls. Barmin et al. (2004) noted that pin can not exceed the lithostatic pressure by more than
20 − 30MPa. In our study, I find pin, which is the closest to the lithostatic pressure, by changing the conduit
radius R. Table 4.2 summarizes the conduit radius for each model. It should be noted that the viscous heating
model does not satisfy the lithostatic condition of pin = p0. This problem will be discussed in section 4.6.2.

Table 4.2: Parameters for the simulation of Taupo plinian eruption

Case Model Conduit radius [m]
Case 1 Newtonian isothermal model 53
Case 2 Shear-thinning model due to bubble deformation 48
Case 3 Viscous heating model 33
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Figure 4.4: Initial pressure pin as a function of the conduit radius R. Blue, red, and yellow line corresponds
to the Newtonian isothermal, the shear-thinning due to bubble deformation, and the viscous-heating model,
respectively. Black dashed line indicates the lithostatic pressure (98 MPa).

4.4.3 Results of the conduit flow

Case 1: Newtonian isothermal model

Fig. 4.5 shows the radial profile of the vertical velocity component, u, and the vertical variation of pressure.
As expected from Eq. (D.89) in appendix D, the velocity profile keeps a parabolic shape. The steep pressure
gradient just below the fragmentation surface reflects the increase in viscous friction, which is caused by
increasing the viscosity as well as increasing the strain rate.

Case 2: Shear-thinning model due to bubble deformation

Fig. 4.6 shows the radial distribution of two velocity components (u, w), and the vertical distribution of
pressure. The radial profile of u slightly flattened around the conduit center (Fig. 4.6a), but it is a similar to
the parabolic shape which was already shown in the Newtonian isothermal model (Fig. 4.5a). On the other
hand, the upward pressure decrease of this model is more gradual than the Newtonian isothermal model (Fig.
4.6c). These behaviors reflect the radial distribution of the capillary number (Fig. 4.6d). As the magma rises
in the conduit, the capillary number increases and the small Ca region gradually narrows. The conduit flow
around the fragmentation surface is dominated by the high Ca region, which leads to a decrease in the bulk
viscosity (Fig. 4.6e). Therefore, the viscous friction in this model is smaller than the Newtonian isothermal
model. The development of plug-like velocity profile needs Ca ≪ 1 around the conduit center and Ca ≫ 1

near the conduit wall (Llewellin et al., 2002a; Colucci et al., 2017). Because most of the conduit cross-section
show the Ca≫ 1 region (Fig. 4.6d), the velocity profile keeps a parabolic profile.
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Figure 4.5: The calculation result of the Newtonian isothermal model. (a) Velocity distribution across the
conduit at z/zf = 0, 0.5, 0.9, 0.95, 1. The fragmentation surface zf is 2869 m. (b) Pressure profile along with
the conduit axis.
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Figure 4.6: The calculation result of the shear-thinning model. (a) Vertical velocity distribution across the
conduit at z/zf = 0, 0.2, 0.5, 0.9, 0.95, 1. The fragmentation surface zf is 3214 m. (b) Horizontal velocity
distribution. (c) Pressure profile along with the conduit axis. (d) Capillary number. (e) Bulk viscosity.
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We use the viscosity model in the steady state to simulate the conduit flow, although one of our research
goals is to calculate transient bubble deformation. In order to check the validity of using the steady viscosity, I
calculate a dynamic capillary number Cd proposed by Llewellin et al. (2002b,a). It is given by

Cd = τrelax
γ̈

γ̇
=
Rbη

Γ

γ̈

γ̇
, (4.29)

where γ̈ is the rate of change in the strain rate and τrelax is the relaxation time scale (τrelax = Rbη/Γ). In this
case, the stain rate γ̇ is defined as the simple shear rate (Eq. 4.23). The dynamic capillary number represents
the competition between the timescale for a bubble to reach the steady state (τrelax) and that for a change in the
shear field (γ̇/γ̈). A bubble under Cd ≪ 1 is expected to keep its steady state. On the other hand, if Cd ≫ 1,
a bubble does not have time to respond to any changes in the external shear field.

Fig. 4.7 shows the distribution of the dynamic capillary number and the capillary number. Most of the
conduit flow satisfies Cd ≪ 1 except for the region just below the fragmentation surface. In the small Cd
region, I think the steady-viscosity model of Llewellin et al. (2002b) is applicable. However, this viscosity
model cannot be directly applied for the unsteady region that shows large Cd.

The rheology model has been investigated in recent decades, but the viscosity in the unsteady-state is not
well understood. Llewellin et al. (2002b) investigated the rheology of bubble suspensions in the oscillatory
flow at small total strains and strain-rates (Ca ≪ 1), They confirmed that the Oldroyd-type rheology model of
Frankel and Acrivos (1970) provided a good fit to their experimental data. Contrary to the study of Llewellin
et al. (2002b), I deal with the large deformation of bubbles under the large Ca condition. I am not sure of the
applicability of the rheology model to our simulation. If the rheology model is valid at even large deformation
and largeCa, the model indicates the limiting viscosity at Cd≫ 1 equals to the viscosity at Ca≫ 1 (Llewellin
et al., 2002a). Fig. 4.7 shows that the large Cd region overlaps with the Ca region.

Figure 4.7: The distribution of (a) the dynamic capillary number and (b) the capillary number. The large Cd
region overlaps with the large Ca region.
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Case 3: Viscous heating model

The distributions of two velocity components (u, w) and the profile of pressure p in the viscous-heating model
are shown in Fig. 4.8. The radial distributions of u, temperature, viscosity, and void fraction close to the conduit
wall are shown in Fig. 4.9.

The viscous heating forms a thin thermal boundary layer around the conduit wall, which is characterized by
high temperature and low viscosity (Fig. 4.9b and c). Strong viscous heating changes the velocity profile from
a parabolic shape to a plug-like shape just above the inlet. As the velocity profile flattens towards the center
of the conduit, w has positive values (Fig. 4.8b). The value of w can be as large as u near the inlet where the
plug-like profile is formed, but w stays much smaller than u afterward.

The pressure profile along the conduit axis is completely different from the Case 1 and 2. In the viscous-
heating model, the pressure gradient before fragmentation is not sharp but gradual (Fig. 4.8c). Intense viscous
heating around the conduit wall leads to a decrease in viscous friction. Then, the vertical pressure gradient is
determined by the hydrostatic value when the inertia effect is neglected (see section 4.6.3). In Barmin et al.
(2004), the pressure gradient before fragmentation is nearly linear because they assume that the density of
bubbly magma before fragmentation is constant. Contrary to their study, I take account of the decrease in the
density induced by bubble growth, and therefore the pressure gradient becomes smaller upward.

The hot region propagates inward because of thermal diffusion and the constant wall temperature, but most
of the interior region keeps the initial temperature (Fig. 4.9b). This calculation result verifies the assumption
that the temperature in gas-particle region after the fragmentation is equal to the initial temperature.

The void fraction of the magma near the conduit wall is a little higher than at the inner conduit. This
difference is caused by the temperature distribution across the conduit. Because the gas phase follows the ideal
gas flow, void fraction depends on temperature as well as pressure.

It should be noted that the temperature in the thermal boundary layer reaches very high values (up to 3400 oC

at the fragmentation surface). This value exceeds the reasonable range of temperature for which the model of
Hess and Dingwell (1996) is applicable. The wall rocks around the conduit wall perhaps experience the intense
melting. This problem will be discussed in section 4.6.2.

4.4.4 Viscous friction

Viscous friction in the bubbly fluid region is shown in Fig. 4.10. In the case 1 and 2, the viscous friction
increases with z because of the magma acceleration and the increased melt viscosity. Due to the shear-thinning
effect, the viscous friction in the case 2 is a little lower than the case 1. Contrary to the two cases, the viscous
friction in the case 3 rapidly decreases due to the decrease in melt viscosity caused by shear heating. Viscous
friction near the conduit inlet (z = 0) is larger in the case 3 than in the cases 1 and 2, because the vertical
velocity is set larger due to the small conduit radius.
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Figure 4.8: The calculation result of the viscous-heating model. (a) Vertical velocity distribution across the
conduit at z/zf = 0, 0.005, 0.001, 0.1, 0.5, 1. The fragmentation surface zf is 3994 m. (b) Horizontal velocity
distribution. (c) Pressure profile along with the conduit axis.
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Figure 4.9: The calculation result of the viscous-heating model at the narrow region around the conduit wall.
(a) Vertical velocity. (b) Temperature. (c) Viscosity. (d) Void fraction.
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Figure 4.10: Viscous friction at the conduit wall τrz(R, z) = η ∂u
∂r in the bubbly fluid region. Solid, dashed,

and dotted lines represent the Newtonian isothermal model (Case 1), the shear-thinning model due to bubble
deformation (Case 2), and the viscous heating model (Case 3).

4.5 Bubble deformation

Using the results of the flow simulation in the previous section, I calculate the deformation of a bubble in the
conduit.

4.5.1 Implementation of the MJT model in the conduit flow

Deriving the velocity gradient

The velocity profile obtained from the conduit flow simulation is regarded to make the velocity gradient tensor
LC
ij for the MJT model. In the axisymmetry flow, the velocity gradient tensor LC

ij is given by

LC
ij =


∂u
∂z

∂w
∂z 0

∂u
∂r

∂w
∂r 0

0 0 w
r

 . (4.30)

The velocity gradient tensor constitutes the two velocities and their derivatives. I set the spatial coordinate used
in the MJT model (ez , ex, ey) to the cylindrical coordinate fixed to the conduit (ez , er, eθ).

The particle trajectory in the steady flow corresponds to the streamline. The temporal variation of the
velocity gradient tensor LC

ij is calculated along with the streamline. Fig. 4.11 shows the streamlines for the
three models. In the Newtonian isothermal model, the streamline is straight because of the absence of horizontal
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velocity. In the shear-thinning model due to bubble deformation, the streamline is curved slightly but almost
straight. Contrary to the two cases, the viscous heating model shows that the streamlines move toward the
conduit wall just above the inlet. This behavior is explained by the large horizontal velocity which is associated
with the development of a plug-like velocity profile.

Figure 4.11: Streamlines of (a) the Newtonian isothermal model, (b) the shear-thinning model due to bubble
deformation, and (c) the viscous-heating model. Every stream line starts from the conduit inlet (z = 0).

Parameters needed for the MJT model

The MJT model requires the spherical bubble radius Rb, the surface tension Γ, and viscosity η.

First, the spherical bubble radius and bubble volume are calculated by Eq. (4.26). The bubble volume is
used to calculate V̇ /V in L∗V ol

ij (Eq. 2.34).

Second, I fixed the surface tension to Γ = 0.3 N/m, based on the results of Bagdassarov et al. (2000) for
Armenian rhyolite. Even though the melt viscosity is highly sensitive to water content (Hess and Dingwell,
1996), surface tension is insensitive to small differences in magma composition (Bagdassarov et al., 2000).

Finally, I use the melt viscosity as the viscosity in the MJT model for all cases. If I calculate the deformation
of multiple bubbles by using the mean-field approach, I should input the effective bubbly viscosity into the
MJT model. However, it is difficult to calculate the effective viscosity in an arbitral shear field. Although some
rheology models about bubbly fluid have been developed until now, they are based on a simple (or pure) shear
field and can not describe the effective viscosity in the combination of simple and pure shear flows. In order to
avoid complications accompanying the calculation of effective viscosity, I here input the melt viscosity into the
MJT model.
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Converting elevation into time

The MJT model needs the temporal flow parameters associated with an individual bubble. The conduit flow
model gives the parameters in terms of z and r, which is fixed to the conduit. Here I assume that a spherical
bubble with radius Rbo starts to rise in the conduit flow from the bottom of the conduit at time t = 0. The
elevation of the bubble at time t is represented by zb(t):

zb(t) =

∫ t

0
us(r, t

′)dt′, (4.31)

where us(r, t) is the vertical velocity of a bubble on the stream line. Eq. (2.6) is numerically integrated by
evaluating LC

ij for the velocity gradient in the conduit flow at elevation zb(t) for each time step. I calculate t
from

Dt =
dz

us
, (4.32)

where Dt is the time interval, which is fixed to the bubble (in the MJT model), and dz is the elevation interval,
which is fixed to the conduit (in the conduit flow model). The conduit flow model gives u as a function of zb. I
then obtain the flow parameters as a function of the elapsed time by iteratively calculating Eq. (4.32) through
the conduit.

4.5.2 Numerical results for bubble deformation

Case1: Newtonian isothermal model

Fig. 4.12 shows the radial distribution of bubble deformation for the Newtonian isothermal model. The line
style indicates the depth of the radial distribution. For all depth, the bubble near the conduit wall becomes more
elongated than around the conduit center. As the magma ascends in the conduit, all bubbles elongate.

The dynamics of bubble deformation is easily understood from the view points of simple and pure shear
components. In the Newtonian isothermal mode, the velocity gradient in the conduit LC

ij can be written as a
simple form because of the absence of the horizontal velocity:

LC
ij =


∂u
∂z

∂u
∂r 0

0 0 0

0 0 0

 . (4.33)

It is decomposed into three components:

LC
ij = LV ol

ij + Lpure
ij + Lsimple

ij , (4.34)

– 72 –



CHAPTER 4. SIMULATION OF BUBBLE DEFORMATION

Figure 4.12: The radial distribution of bubble shape for the Newtonian isothermal case. The line style indicates
the depth normalized by the fragmentation surface.

where

LV ol
ij =


1
3
∂u
∂z 0 0

0 1
3
∂u
∂z 0

0 0 1
3
∂u
∂z

 , (4.35)

Lpure
ij = ϵ̇

 1 0 0

0 −1
2 0

0 0 −1
2

 , ϵ̇ =
2

3

∂u

∂z
, (4.36)

Lsimple
ij = γ̇

 0 1 0

0 0 0

0 0 0

 , γ̇ =
∂u

∂r
. (4.37)

where ϵ̇ and γ̇ are the strain rates of pure and simple shear, respectively. The isotropic component LV ol
ij

represents the volumetric changes due to bubble inflation. The second and third non-volumetric components
represent the velocity gradient tensors for pure shear Lpure

ij and simple shear Lsimple
ij , respectively.

Given that the MJT model (and the JT model) assumes a linear relationship betweenLC
ij andL∗

ij , I can obtain
the corresponding velocity gradient tensors within a bubble individually for Lpure

ij and Lsimple
ij , and sum them

to obtain L∗
ij . Note that values of Gij calculated individually for Lpure

ij and Lsimple
ij cannot be superimposed,

because Eq. (2.6) is not linear.
Fig. 4.13 shows the evolution of bubble deformation and some parameters for the Newtonian isothermal

case. Color of lines indicates the initial position of the bubble at the conduit inlet ri. Black lines indicate values
independent of the radial position in the conduit. As discussed in Fig. 4.12, the bubble deformation degree

– 73 –



increases with z (Fig. 4.13b-d).
Bubble deformation is fundamentally controlled by capillary number and strain. Because of the parabolic

velocity profile in the Newtonian isothermal model, it is expected that simple shear deformation is more dominant
than pure shear deformation. The simple shear is absent only at the conduit center due to the axisymmetry
boundary condition. Therefore, I take ϵ̇ as the strain rate at ri = 0 m and γ̇ at ri = 16 and 48 m. Fig. 4.13f
shows the strain rates for the three initial locations. The strain rate of simple shear at ri = 16 or 48 m is much
bigger than the strain rate of pure shear at r = 0 m. The total strain that a bubble experiences from the inlet to
the fragmentation is calculated by

γ =

∫ t

0
γ̇Dt =

∫ z

z0

γ̇

u
dz′, (4.38)

ϵ =

∫ t

0
ϵ̇Dt =

∫ z

z0

ϵ̇

u
dz′. (4.39)

The total strain of simple shear is also much larger that of pure shear (Fig. 4.13g).
The equilibrium bubble shape depends only on the capillary number. Using the capillary number (Fig.

4.13h), I calculate the equilibrium bubble shape of pure shear deformation at ri = 0 m and that of simple shear
deformation at ri = 16 and 48 m (dashed line in Fig. 4.13b-d). At ri = 16 and 48 m, the deviation between
the bubble shapes by the MJT model and by the equilibrium theory is small, because there is enough strain at
each stage for the bubble shape to follow the change of Ca in a quasi-equilibrium manner (Fig. 4.13g and h).
In addition, Ca is large and thus the bubble can elongate substantially. The bubble in simple shear deviates
from the equilibrium shape just below the fragmentation surface. On the other hand, at ri = 0 m, the bubble
calculated by the MJT model cannot keep up with the equilibrium bubble shape. The pure shear strain rate
undergoes an abrupt increase beneath the fragmentation surface, where the vesicularity (i.e., the bubble radius)
rapidly increases. The rapid increase of ϵ̇ means that the strain under the condition of Ca ≫ 1 is too small to
elongate substantially.

Case2: Shear-thinning model due to bubble deformation

Fig. 4.14 shows the evolution of bubble shape for the shear-thinning model due to bubble deformation. The
distribution of bubble shape is almost the same as that of the isothermal Newtonian model. Since the flat region
expands around the conduit center, less elongated bubbles increase slightly (Fig. 4.14a).

Case3: Viscous-heating model

Fig. 4.15 shows the radial distribution of bubble deformation for the viscous heating model. Contrary to the
case 1 and 2, the bubble shape at the fragmentation surface is homogeneous except for the near-wall region. In
most of the conduit, the bubble shapes are less elongated than case 1 and 2. This difference can be explained by
the evolution of the velocity profile across the conduit.

Fig. 4.16 shows the evolution of the bubble shape and the vertical velocity profile. For all bubbles, the
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Figure 4.13: Bubble deformation in a conduit flow up to the fragmentation surface. The color indicates the
initial position of the bubble at the conduit inlet: ri = 0 m for blue line, ri = 16 m for red line, and ri = 48 m
for yellow line. Black lines indicate values independent of the shear components. (a) Bubble radius. (b-d)
Bubble deformation degree. Broken lines indicate the deformation degree of an equilibrium bubble shape
depending only on Ca. (e) Viscosity. (f) Strain rate. At ri = 0 m (blue), I take ϵ̇ = 2

3
∂u
∂z as strain rate. At

ri = 16 m (red) and 48 m (yellow), I use γ̇ = ∂u
∂r as strain rate. (g) Strain. (h) Capillary number.
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Figure 4.14: (a) The radial distribution of bubble shape for the shear-thinning model due to bubble deformation.
The line style indicates the depth normalized by the fragmentation surface. (b) The vertical evolution of bubble
shape. The color indicates the initial position of a bubble at the conduit inlet. (c) Bubble radius which is
independent of the bubble location. (d) Strain rate. At ri = 0m (blue), I take ϵ̇ = 2

3
∂u
∂z as strain rate. At

ri = 14 m (red) and 43 m (yellow), I use γ̇ = ∂u
∂r as strain rate. (e) Strain. (f) Capillary number.
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Figure 4.15: (a) The radial distribution of bubble shape for the viscous heating model. The line style indicates
the depth normalized by the fragmentation surface. (b) The radial distribution of bubble shape in the near-wall
zone.

bubble deformation degree reaches the highest value at z = 20 ∼ 40 m where the velocity profile changes from
a parabolic shape to a plug-like shape (Fig. 4.8, z/zf ∼ 0.01). When the velocity profile becomes a complete
plug-like shape, the bubble shapes start to return a spherical bubble. As the magma accelerates by the inflation
of bubbles, the bubble shapes gradually elongate.

In the viscous-heating model, I cannot decompose simply the shear field into the simple and pure shear
components because of the non-zero horizontal velocity. In order to get an overview of the shear field, I plot
the evolution of the components of the velocity gradient tensor LC

ij at two initial locations ri = 0 and 10 m (Fig
.4.17). The collapse of the velocity profile into the plug-like shape leads to a decrease in ∂u

∂z and increase ∂w
∂r .

These two components deform a bubble into an oblate shape and increase the bubble deformation degree. When
the velocity profile becomes a plug-like shape, these two components return to zero. As the magma ascends in
the conduit and, the pure shear component of ∂u

∂z increases in the positive direction because of the decrease in
the bulk density. This magma acceleration deforms the bubble into a prolate shape.

The radial gradient of the vertical velocity ∂u
∂r contributes to the bubble deformation degree only at the

beginning of the flow where the velocity profile is parabolic, contrasting that it is the main shear component
controlling the bubble deformation in the other two cases.

Fig. 4.18 shows the evolutions of Rb, η, and Ca. For the simplicity, I approximate the pure shear rate
by ϵ = 2

3
∂u
∂z and use it for Ca. This approximation is reasonable except around the parabolic-to-plug flow

transition where the contribution of w is significant. It is found that the capillary number reached about 1 at the
fragmentation surface.

It is expected that bubbles in the shear localized region will be highly deformed. However, Fig. 4.15b
shows that the bubbles in the near-wall region are less elongated than in the inner region. To investigate bubble
deformation in the shear localized region, I plot the vertical evolution of bubbles in Fig. 4.19. The bubble
starting from ri = 32.340 m shows the similar evolution as the bubbles in Fig. 4.16. The bubble starting from
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Figure 4.16: (a) The vertical evolution of the bubble shape. Color indicates the initial position of the bubble at the
conduit inlet. (b) The velocity profile across the conduit. The color indicates the position of the corresponding
bubble which is plotted in (a).
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Figure 4.17: The vertical evolution of the components of the velocity gradient tensor LC
ij for the bubbles at

ri = 0 (a and b) and at ri = 10 m (c and d). The evolution of the lower region is plotted in (a and c), and that
of the upper region is plotted in (b and d).
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Figure 4.18: The vertical evolutions of (a) Rb, (b) η, and (c) Ca. For the simplicity, I define the pure shear rate
as ϵ = 2

3
∂u
∂z and use it for Ca. Color indicates the initial position of the bubble at the conduit inlet.

ri = 32.776 m does not elongate at z > 2000 m although this bubble ascends through the edge of the shear
localized region.

The deformation around the shear-localized region is controlled by both the rise in the simple shear rate and
the reduction of the viscosity. Fig. 4.20 describes the evolution of the shear field and the rheology of the bubble
starting from ri = 32.776 m. The strain rate of simple shear component ∂u

∂r increases in the negative direction.
However, as

∣∣∂u
∂r

∣∣ increases, the melt viscosity also steeply decreases due to the increase in temperature. The
apparent viscous stress acting on a bubble shape, which is defined by η ∂u

∂r , consequently decreases.
In summary, the bubbles around the shear-localized region cannot elongate substantially due to the reduction

of the viscosity. The shapes of most bubbles are controlled by the pure shear component caused by the magma
acceleration.

Flux of pumice

We calculate the flux of bubble deformation degree at the fragmentation surface in order to compare the
simulation results with the natural observation. The normalized volume flux of pumice F from r = ri to rj is
defined by

F =

∫ rj
ri
u(r′)2πr′dr′∫ R

0 u(r′)2πr′dr′
. (4.40)

The normalized flux F can be written as a function of D.
Fig. 4.21 shows the volume flux of pumice as a function of the bubble deformation degree. As expected
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Figure 4.19: (a) The vertical evolution of bubble shape in the near-wall region. Color indicates the initial
position of the bubble at the conduit inlet. (b) The velocity profile across the conduit. The colored circles mark
the trajectories of bubbles, of which deformation degrees are shown with the corresponding colors in (a).

Figure 4.20: (a) The horizontal evolution of the bubbles at ri = 32.776 m. (a) Components of the velocity
gradient tensor LC

ij . (b) Viscosity. (c) Apparent viscous stress (η ∂u
∂r ).
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from the radial distribution of D (Fig. 4.6, 4.14, 4.15), the histograms of the case 1 and 2 have a peak around
the upper limit of D = 1. Since the velocity profile shifts just slightly to a plug-like shape, the histogram of
case 2 shows more elongated bubbles than that of case 1. On the other hand, the viscous-heating model has a
uniform distribution which has a peak around D = 0.4. Although the bubbles moving along with the conduit
wall are less elongated (Fig. 4.15b), the volume fraction of pumice containing these bubbles are very small
(note a small fraction aroundD = 0.1 in Fig. 4.21 c). This result suggests that the pumice experiencing viscous
heating around the conduit wall is difficult to find in the natural deposits.

Figure 4.21: The histogram of bubble shapes at the fragmentation surface. (a) Case 1: Newtonian isothermal
model. (b) Case 2: Shear-thinning model due to bubble deformation. (c) Case 3: Viscous heating model. The
vertical axis is normalized by the total volume flux. The gap of D is 0.02.
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4.6 Discussion

The viscous-heating model has several assumptions and limitations, which might make the wall temperature
extremely high and the initial pressure below the lithostatic value. Here, I outline and comment on the major
assumptions of the model.

4.6.1 Validity of a steady model

In this thesis, the conduit flow for the Taupo plinian is simulated by a steady flow model. The assumption
of steady state is used for most conduit flow models (e.g., Wilson et al., 1980; Papale, 1999; Mastin, 2002).
This assumption is considered to be appropriate for eruptions that are sustained for several minutes to hours
(i.e., lava fountains and plinian eruptions) because their durations are longer than magma ascent times from
magma chamber to vent (Mastin and Ghiorso, 2000; Campagnola et al., 2016). In this section, the steady-state
approximation is checked from the viewpoints of viscous flow and thermal conduction.

At first, I consider a case in which the flow with a constant viscosity reach the steady state. The fluid
contained in a long tube is initially at rest, and then is moved by a sudden pressure gradient. The variation of
the velocity profile is a function of a dimensionless timescale, ηt

ρR2 where t is the time, η is the viscosity of the
fluid, ρ is the density, andR is the conduit radius (Batchelor, 1967). The flow after a long time ηt

ρR2 ≫ 1 attains
a steady parabolic velocity profile. Parameters for a typical silicic eruption (η = 106 Pas, ρ = 2000 kg/m3,
R = 30 m) yields the timescale to reach the steady state of t ≫ 1.8 s. Therefore, I think that the viscous flow
easily attains the steady state.

In this chapter, I used a viscous-heating model in which the viscosity is affected by temperature rise due
to shear-heating. It is required to check the timescale to reach the thermal equilibrium. Here, I consider a
similar case in which a stagnant fluid with uniform temperature suddenly moves along a circular tube. When
viscous-heating dominates radial conduction, the timescale to reach a spatially maximal temperature is given
by Pearson (1977) as follows

τheat ∼ Na−1, (4.41)

where τheat = κt
ρcV R2 is the dimensionless time, Na =

η0U2
0 b

κ is the dimensionless parameter called Nahme
number, η0 is the initial viscosity, b is the coefficient of the viscosity dependency with temperature at a
reference temperature of T (b = 1

η0

(
dη0
dT

)
T

), U0 is the initial mean vertical velocity which is defined as
U0 = Qm/(ρ0πR

2). The Nahme number is the competition of the temperature rise caused by viscous-heating
and that required to change the viscosity by the factor e. Substituting the parameters for the Taupo plinian
eruption into Eq. (4.41), I obtain the dimensional timescale of t = 24 s. Although the accurate eruption
duration is unknown, this timescale might be much shorter than the eruption duration. Therefore, I think that
the conduit flow attains maximum temperature in a very short time and reaches the steady flow.

The steady-state approximation is also verified from the geological point that the bubble textures of the
Taupo plinian eruption are homogeneous throughout the stratigraphy (Fig. 5.19).
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Keep in mind that the above discussion validates the steady-state assumption for the viscous-heating model
of the Taupo plinian eruption. When taking account other mechanisms, such as conduit-widening and fracture-
healing, the conduit flow is expected to be an unsteady flow.

4.6.2 Strong viscous heating around the conduit walls

The numerical result (Fig. 4.9) shows that the temperature in the thermal boundary layer reaches very high
values (up to 3400 oC), which is above the applicable temperature range of the viscosity model (Hess and
Dingwell, 1996, < 1723 oC). This high temperature leads to the strong reduction of the melt viscosity and the
viscous friction (Fig. 4.9 and 4.10), resulting in the low initial pressure at the conduit entrance.

The problem of viscous heating models that show the unrealistically high temperature at the wall has been
discussed in previous researches (Vedeneeva et al., 2005; Costa et al., 2007). The viscous heating models
including the present one do not consider several possible mechanisms to reduce the temperature. One is the
thermal erosion of conduit wallrocks. Once the temperature in the near-conduit region exceeds the melting
temperature of the wallrock which is usually much higher than that of the flowing magma due to the anhydrous
conditions, the intense melting of wallrocks will happen within a narrow layer around the conduit wall. The
second mechanism is the effective heat exchange caused by the thermal instabilities (Costa and Macedonio,
2005). Rapid variations of the cross-sectional area in the vertical direction and/or the instabilities of the flow
profile with vortex formation could mix the layers strongly, resulting in effective heat transportation. The third
mechanism is the formation of brittle failure in nearby magma or conduit wallrock. Okumura et al. (2013) has
shown experimentally that brittle failure starts to form when the shear stress is larger than 3 − 4 × 105 Pas.
This value is comparable with the shear stress of the viscous-heating model at the conduit wall (Fig. 4.10).
The fourth mechanism is the shear-thinning effect due to bubble deformation (Llewellin et al., 2002b). The
reduction in bulk viscosity can suppress the viscous-heating around the conduit walls and decrease the magma
temperature. The simulation result of the model combining the viscous-heating model and the shear-thinning
model due to bubble deformation is shown in appendix E.

As a possible mechanism to reduce the high temperature, Vedeneeva et al. (2005) discussed the validity
of the boundary condition at the conduit wall. If the magma ascends through the crust while making a new
crack at its tip, the wallrock temperature could be significantly lower than the initial magma temperature. The
thermal conduction from the conduit wall perhaps suppresses the temperature rise. However, I expect that this
effect can be negligible in our simulations because a conduit flow in common explosive eruptions, including
the Taupo plinian eruption, is dominated by viscous heating rather than heat conduction from the conduit wall
(Costa et al., 2007). The loss of thermal energy caused by conduction from the conduit wall is much less than
by viscous heating. Therefore, the choice of the temperature at the conduit wall is not an important issue in our
simulations.

We think the high temperature can be suppressed by taking account of the thermal erosion, the flow
instability, the brittle failure, and the shear-thinning effect due to bubble deformation. A viscous-heating model
taking account of these mechanisms is required for further study.

Although the temperature in the thermal boundary layer reaches 3400 oC at the fragmentation surface, I think
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that the obtained velocity field can be used for calculating the shape of a bubble because the parabolic-to-plug
flow transition occurs at relatively low temperature (1750 oC at z/zf = 0.005, Fig. 4.9). Although there is no
geological evidence constraining the temperature at the thermal boundary layer in the Taupo volcano, I regard
that the model result is valid in the temperature range of the viscosity model (up to 1723 oC). The velocity
profile will keep the plug-like shape after the parabolic-to-plug flow transition. Therefore, the velocity field,
which is mainly controlled by the transition of the velocity field, can be used for the bubble deformation model.

It should be noted that a new model taking account of the potential mechanisms is essential for the pressure
variation along the conduit. The reduction of the temperature rise around the conduit walls will increase viscous
resistance and make the pressure gradient steeper than the current model. The initial pressure at the conduit
inlet consequently increases and may become close to the lithostatic pressure.

4.6.3 Inertia term in the momentum equation

The conservation equation of momentum (Eq. 4.2) neglects the inertia term under the assumption of Re ≪ 1

(Appendix D). However, Fig. 4.10 shows the viscous friction in the viscous-heating model decreases as the
magma ascends in the conduit. Around the fragmentation surface, the inertia force is perhaps comparable with
the viscous friction.

To check the validity of the simulation result of the viscous-heating model, I calculate the acoustic velocity
(a =

√
dp
dρ ) from the vertical profile of p. The vertical velocity in the bubbly flow region must not exceed the

acoustic velocity under the subsonic condition. Fig. 4.22a shows the vertical profiles of u and a. The vertical
velocity increases close to the acoustic velocity a around the fragmentation surface (zf = 3994 m), but it is
smaller than a throughout the conduit. Therefore, I think the obtained velocity profile is reasonable.

The inertia term affects the pressure profile along the conduit. Here, I approximately calculate the pressure
gradient dp

dz including the inertia effect from the following equation:

dp

dz
=
dP

dz
− ρu

du

dz
, (4.42)

where dP
dz , ρ, and u are the pressure gradient, the density, and the vertical velocity obtained by the viscous-

heating model. For simplicity, ρ and u are the values at the conduit center. Fig. 4.22b shows the pressure
calculated from Eq. (4.42). As the magma approaches the fragmentation surface, the pressure gradient becomes
steeper than the original model without the inertia force. If I could make a new model coupling the pressure
decrease with the inertia force, I may obtain a larger value of the initial pressure. The development of the model
with the inertia term is our future study.

4.6.4 Chemical equilibrium

The model assumes that gas exsolution follows the equilibrium solubility law (Eq. 4.7). This assumption has
been used by many models (e.g., Wilson et al., 1980; Papale, 1999; Mastin, 2002), although experimental studies
suggested a disequilibrium degassing in explosive eruptions (Mangan and Sisson, 2000). Only a few models
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Figure 4.22: (a) The vertical velocity at the conduit center and the acoustic velocity of the viscous heating
model. The vertical velocity does not exceed the acoustic velocity. (b) The pressure with the inertia effect
calculated from Eq. (4.42) and the original pressure of the viscous-heating model. The inertia force makes the
pressure gradient slightly steeper.

took into account of a disequilibrium bubble growth in a conduit flow (Mangan et al., 2004; Proussevitch and
Sahagian, 2005; Campagnola et al., 2016).

The kinetic of bubble growth in an ascending magma is fundamentally controlled by three processes:
decompression of a bubbly magma, deformation of viscous melt surrounding a growing bubble, and diffusion
of volatile into a bubble (Toramaru, 1995; Lensky et al., 2004). These processes are coupled intricately and
are solved by a numerical approach. The general features of bubble growth are conveniently explained by the
timescale of each process. Hereafter, I follow the expression by Lensky et al. (2004).

The ambient pressure of a bubble varies as the magma ascends in a conduit. The timescale of decompression
in a conduit is give by

τdec =
pi

|dpamb/dt|i
, (4.43)

where pi is the initial pressure and |dpamb/dt|i is the absolute value of the initial decompression rate. The
timescale of viscosity-limited growth is expressed as

τvis =
4ηi
pi
, (4.44)

where ηi is the initial viscosity. In Eq. (4.44), pi plays a role as an overpressure. The timescale of diffusion-
limited growth is

τdif =
(Rbi)

2

Di
, (4.45)

– 86 –



CHAPTER 4. SIMULATION OF BUBBLE DEFORMATION

where Rbi is the initial bubble radius and Di is the initial diffusivity. Eq. (4.45) characterizes the diffusion of
volatiles in the melt around a bubble at the initial stage.

Dimensionless number which is the ratio of Eqs. (4.43)-(4.45) is useful to characterize the kinetics of
bubble growth. For a sudden decompression, Peclet number, Pe = τdif/τvisc, was often used to estimate the
competition between viscous resistance and mass diffusion during bubble growth. For a successive decompres-
sion, such as magma ascent, it is essential to compare the timescales of bubble growths with decompression.
Following the study of Toramaru (1995), Lensky et al. (2004) proposed two dimensionless numbers,

ΘV =
τvisc
τdec

=
4ηi |dpamb/dt|i

(pi)
2 , (4.46)

ΘD =
τdiff
τdec

=
(Rbi)

2 |dpamb/dt|i
Dipi

. (4.47)

The disequilibrium bubble growth can be explained by these dimensionless numbers together with the dimen-
sionless time t̂ = t/τdec.

Using ΘV and ΘD, Lensky et al. (2004) expressed the bubble growth regime of decompression magma
(Fig. 4.23). As ΘV increases, bubble growth is limited by viscous resistance from the surrounding melt. On
the other hand, bubble growth is limited by the diffusion of volatiles as ΘD increases. Red cross in Fig. 4.23 is
the growth condition of the viscous-heating model of the Taupo plinian eruption.

ΘV and ΘD are 3 × 10−4 and 7 × 10−2 at the conduit inlet, respectively. As can be seen in Fig. 4.23,
the bubble growth condition falls in the transition regime from equilibrium to quasi-static diffusion. This result
indicates that the bubble growth in the Taupo plinian eruption is outside the chemical equilibrium regime and
is controlled by the kinetics of volatile diffusion.

When bubble growth in an ascending magma is limited by diffusion, the magma barely degasses in a conduit
and erupts with high oversaturation (Proussevitch and Sahagian, 1996). Dissolved volatiles cannot be exsolved
even if the ambient pressure decreases rapidly. Therefore, it is expected that the rapid acceleration based on
chemical equilibrium (Fig. 4.8) does not occur in the model based on the disequilibrium model. Suppressing
the magma acceleration may also lead to a decrease in shear stress along the conduit walls, resulting in the
reduction of temperature rise.

The implementation of the disequilibrium bubble growth into a conduit flow model is a challenging problem
even for one-dimensional conduit models. I leave this problem to a subsequent study.

4.6.5 Fragmentation criterion

In this thesis, I used the vesicularity criterion ϕf for fragmentation in the conduit flow model. The fragmentation
criterion is known to strongly influence the pressure profile along the conduit (Campagnola et al., 2016), and
other criteria has been developed in recent decades (Alidibirov, 1994; Papale, 1999; Zhang, 1999). The
fragmentation criterion affects magma acceleration just beneath the fragmentation surface and controls the
vesicularity at fragmentation. As shown later in section 7.2.1, the amount of pure shear is a function of
the vesicularity. The fragmentation criterion consequently influences the rapid elongation just beneath the
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Figure 4.23: The bubble growth regime of decompressing magma as function of ΘV and ΘD at t̂ = 0.5 (Lensky
et al., 2004, Fig. 3b). Red cross indicates the growth condition of the viscous-heating model of the Taupo
plinian eruption. The parameters used in ΘV and ΘD are the initial values obtained by the viscous-heating
model: ηi = 1.2× 105 Pas, |dpamb/dt|i = 3.5× 106 Pa/s, pi = 65 MPa, and Rbi = 3.6 µm. The diffusivity
Di is 10−11 m2/s (Zhang and Behrens, 2000).
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fragmentation. The dependence of bubble deformation on the fragmentation criterion is required for further
study.
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Chapter 5

Textural analysis of pumice from the Taupo
1.8 ka eruption

5.1 Introduction

The quasi two-dimensional conduit flow model was developed in the previous chapter. To compare the
numerical simulation with bubble texture of natural pyroclasts, I address pumice from the 1.8 ka eruption of
Taupo volcano, New Zealand. The pumice from this huge eruption demonstrates various bubble texture, such
as elongate bubbles and equant bubbles (Houghton et al., 2003, 2010). The Taupo eruption is also remarkable
for the lack of compositional variation with respect to H20 and trace elements (Dunbar and Kyle, 1993), which
indicates that the great diversity of bubble textures in pumices may reflect purely physical processes in the
eruption. In addition, the theoretical and geological consideration suggests that the ignimbrite was formed by
a single vent, not a ring-fissure (Legros et al., 2000). Therefore, the Taupo eruption allows us to compare the
natural bubble texture with the steady and cylindrical conduit flow model.

In the rest of the chapter, section 5.2 provides a brief introduction about the 1.8 ka Taupo eruption. Sampling
and analysis methods are described in section 5.3 and 5.4, respectively. Section 5.5 shows the analysis results.
The discussions about the shape relaxation of a bubble are given in section 5.6.

5.2 Brief introduction about the Taupo 1.8 ka eruption

5.2.1 Taupo volcano

Taupo volcano is an active caldera volcano in the Taupo Volcanic Zone, New Zealand. This huge volcano
is famous for having experienced two recent caldera-forming eruptions: Oruanui eruption at 26.5 ka and
Taupo eruption at 1.8 ka. Oruanui eruption is known as the largest ’wet’ eruption, producing 430 km3 of the
fall deposits, 320 km3 of the ignimbrite, and ∼ 420 km3 of the primary intracaldera material, equivalent to
∼ 530 km3 of magma (Wilson, 2001). The shape of Lake Taupo was mainly established during this eruption,
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and modified by the later smaller eruptions (Wilson, 1993). Between the two big eruptions, 26 other explosive
and dome-building eruptions have been recognized (Wilson, 1993).

5.2.2 The 1.8 ka Taupo eruption

The Taupo eruption at 1.8 ka was one of the most violent rhyolitic eruptions in the world in the last 5000 years
(Wilson and Walker, 1985). This eruption is notable for several reasons:

1. It generated a great diversity of eruptive products: two dry Plinian fall deposits, three phreatomagmatic
fall deposits, several intraplinian flow units, and a climatic widespread ignimbrite which was known as a
low-aspect ration ignimbrite (Walker et al., 1980; Wilson and Walker, 1985; Wilson, 1985).

2. It includes the extreme powerful Plinian event and violent ignimbrite-forming event. The former Plinian
event has been considered as a typical case of ’ultraplinian event’, of which column height exceeded
50 km (Walker, 1980). However, the recent study by Houghton et al. (2014) re-estimated the column
hight range of 35−40 km by including the wind effect and questioned if the term ultraplinian is adequate
for this eruption.

3. Multiple vents were located within the Taupo Lake. From the detailed geological studies, Smith and
Houghton (1995) suggested that the Taupo eruption involved at least three vents lying along a NE-SW
fissure (Fig. 5.1).

4. Pumice and melt inclusions show the chemical homogeneity during the Taupo eruption. Dunbar and Kyle
(1993) measured H2O content of the melt inclusions in the deposits from different stratigraphic layers
and concluded that there is no pre-eruptive volatile difference between the plinian and ignimbrite eruption
styles. The Cl and F contents during the eruption also show only a small variation.

On the basis of the above characteristics, Houghton et al. (2010) considered that the Taupo eruption is a suitable
case to interpret the great diversity of eruption products, eruptive styles, and pyroclast characteristics in terms
of physical influences.

In addition, I think that the Taupo eruption is a good target of my study in the following points.

5. The magma of the Taupo eruption is characterized as crystal-poor. The phenocrystal abundance ranges
from 3 to 5 vol% (Dunbar and Kyle, 1993). Microlites are also poor in the groundmass (Fig. 5.2).

6. Although some caldera-forming eruptions occurred in a ring-fissure conduit, the Taupo ignimbrite was
emplaced from a single vent. Legros et al. (2000) performed numerical simulations of magma ascent in
a cylindrical conduit connected to a single vent and in a ring fissure conduit, and compared the modeling
results with geological observations. Since the lithic content of Taupo ignimbrite unit was too small to
be produced by the ring-fissure conduit, they concluded that the ignimbrite was formed with a cylindrical
conduit.
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Figure 5.1: Location map showing the vent positions of 1.8 ka eruption after Smith and Houghton (1995) and
the outcrops where I collected samples. Location A, B, and C are the outcrops where I collected the samples
of the Hatepe plinian (phase 2), the Taupo plinian (phase 5), and the Taupo ignimbrite (phase 6), respectively.
Isopach of fall deposit of Taupo plinian phase (unit 5) is from Walker (1980). Values are in centimeters. Area of
intraplinian flow units of Taupo plinian phase is from Wilson and Walker (1985). Inset map shows the location
of Taupo within North Island, New Zealand.
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Figure 5.2: SEM image of a pumice from the Taupo plinian eruption. There is a microlite in the center of the
image.

The Taupo eruption thus allows us to examine the behavior of bubble deformation in a cylindrical conduit flow
without the consideration of the crystal and conduit geometry effects.

In this study, I follow the unit names given by Houghton et al. (2010). The volume of each unit is from
Wilson and Walker (1985). The seven units are individually associated with the seven distinct eruption phases
(Fig. 5.7). The initial phase was phreatomagmatic, forming a fine-grained fall deposit. The volume of unit
1 is minor (0.005 km3 in DRE) compared with the following units. Phase 2 was a sustained plinian eruption
(1.6 km3 DRE), that was called as Hatepe plinian. Unit 3 and 4 were phreatoplinian eruptions called as Hatepe
phreatoplinian and Rotongaio phreatoplinian. The two eruptions produced fine grained fall deposits of 1.1 km3

(DRE) for unit 3 and 0.8 km3 for unit 4. Phase 5 is a powerful plnian eruption that is called as Tuapo plinian
eruption. This eruption generated a widely dispersed fall deposit of 5.8 km3 DRE (unit 5a in Fig. 5.7) and
relatively weak intraplinian flow deposit of 0.6 km3 DRE (unit 5b in Fig. 5.7). The explosive eruption ended
with the generation of unit 6 (12.1 km3 DRE), called as Taupo ignimbrite. This unit shows many different
facies, which reflected the depositional style from the head and body of the pyroclastic flow (Wilson, 1985).
During phase 7, rhyolitic lava domes were extruded onto the floor of the Lake Taupo.

The detailed stratigraphic analysis of units 3 and 4 by Smith and Houghton (1995) revealed that the Taupo
eruption involved at least three vents on a NE-SW fissure (Fig. 5.1). Phases 1-3 of the eruption were from
a southwestern vent, phase 4 from a northeastern source, and phases 5 and 6 from a source between the two
sources.
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Figure 5.3: Stratigraphy of the 1.8 ka Taupo eruption (Houghton et al., 2010, Fig. 2). In the first column,
phreatomagmatic units are shown as gray. The third and fourth columns are degree of water interation and mass
discharge rates inferred by Wilson and Walker (1985).
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5.2.3 Bubble texture of pumice from the Taupo eruption

Houghton and Wilson (1989) measured the apparent density of the pumices using Archimedes’ principle and
obtained their vesicularities. In the magmatic dry eruptions (units 2 and 5), the vesicularity lies uniformly in
the range 70− 80%. On the other hand, in the phreatomagmatic wet eruptions (units 3 and 4), the vesicularity
varies widely, reflecting the complex vesiculation and water-induced fragmentation.

Houghton et al. (2003, 2010) documented the bubble texture of the pumice clasts by using a scanning
electron microscope. Houghton et al. (2010) classified pyroclastic clasts from each eruption unit into the five
textural components (Fig. 5.4): (A) white and microvesicular pumice dominated by equant bubbles, (B) white
vesicular pumice containing equant milimetersized bubbles, (C) white and long-tube microvesicular pumice
with elongated bubbles, (D) white and long-tube coarsely vesicular pumice with elongated bubbles, and (E)
grey and dense material with sparse and deformed bubbles of varying sizes. There are slight differences in bulk
vesicularity among the clast types.

Figure 5.4: Microtextures of the principal types of pumice observed in the Taupo deposits (Houghton et al.,
2010, Fig. 3).
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Fig. 5.5 shows the mean bulk density and the abundance of pumice with elongated bubbles (C+D), coarsely
vesicular pumice (B+D), and dense clasts (E) (Houghton et al., 2010). Separation of each textural component
was conducted by visual observation. White microvesicular pumice (A+C) is dominant in units 1, 2, and 3.
Then, there is a drastic increase in dense vesicular clast in unit 4. The explosive plinian phases (units 5 and 6)
are characterized by an increase in the proportion of tube pumice. Houghton et al. (2010) interpreted that the
high abundance of tube pumice reflected magma experienced more opportunity for bubble deformation along
conduit margins.

Figure 5.5: Mean density (squares) and one standard deviation (shown as error bars) for 100 clasts, together with
average values calculated for the three densest (triangles) and three lightest (diamonds) clasts in each sample
(Houghton et al., 2010, Fig. 4). The right-hand column plots the abundance in weight % of all elongated
pumice (closed circles), all coarsely vesicular pumice (open circles), and dense clasts (closed triangles).

5.3 Sampling

In this study, I focus on ’dry’ plinian eruptions. I collected samples from the units of the two plinian eruptions
(units 2 and 5) and the ignimbrite (unit 6). Fig. 5.6 shows the outcrops where I collected the samples. The
schematic stratigraphy is shown in Fig. 5.7. The locations of outcrops are shown in Fig. 5.1. The fall deposits
of Hatepe plinian (unit 2) were sampled at location A about 25 km away from the vent 1 (Fig. 5.6a). This
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outcrop shows the whole sequence of the 1.8 ka Taupo eruption and has been investigated for previous studies
(Walker, 1980, 1981). The thickness of unit 2 is about 150 cm.

In many caldera-forming eruptions, pumice fall deposits underlie the main ignimbrite (Bacon, 1983; Rosi
et al., 1999). The precursory fall deposit is thought to record the mechanisms for withdrawal of a volume of
magma sufficient to initiate caldera collapse (Geshi and Miyabuchi, 2016). In order to investigate the transition
from plinian fall to ignimbrite, I conducted a detailed sampling of unit 5 at location B, which is about 20 km
away from the vent 3 and reaches its maximum thickness of 210 cm (Fig. 5.6b and c). This outcrop is located on
the main dispersal axis of unit 3 and is outside the area covered by intraplinian flow (Fig. 5.1). In the location
B, the Taupo plinian fall deposit can be divided into two sub-units according to a sharp change in color, lithic
clasts, and grain size of the pyroclasts: (1) a fine lower unit (30 cm), which is characterized by brown pumice
clasts and rich in lithic fragments, (2) a coarse upper unit (180 cm), which is characterized by vesiculated white
pumice clasts and poor lithic content (Fig. 5.6c). I collected pyroclasts from the bottom to the top of unit 5 at
20 cm intervals. In the lowermost sub-layer, the interval was 10 cm.

The flow deposits of Taupo ignimbrite (unit 6) were collected at location C 48 km away from the vent 3
(Fig. 5.6d and e).

5.4 Methods

5.4.1 Grain size and component analysis

For the samples of unit 5, I measured the median grain size and conducted the component analysis. The median
grain size is defined as the midpoint of the grain size distribution by weight, that is, a half weight of the grains
are coarser and another half weight of the grains are finer than the median grain size. The clasts larger than 1

mm were classified into pumice, lithic, and crystal based on the visual inspection.

5.4.2 Apparent density and bulk vesicularity

Apparent density and bulk vesicularity were measured using the method Houghton and Wilson (1989), which
recommends 100 pumice clasts with the diameter range from 16 to 32 mm (−5Φ to −4Φ). I collected 100

clasts with a diameter of 16−32 mm in unit 2, but due to the restriction of the baggage weight, I could not bring
a sufficient number of clasts in units 5 and 6. When the number of pumice with 16− 32 mm is less than 100, I
used pumice clasts of different sizes. In all sublayers of unit 5, I used total 25 pumice clasts with a diameter of
8− 16 mm as well as 1075 clasts with 16− 32 mm. In unit 6, I used 79 clasts with 16− 32 mm and 21 clasts
with 32− 64 mm.

All pumice clasts were dried at T = 60 oC for 24 hours. The apparent density of pumice was measured by
Archimedes method (Houghton and Wilson, 1989). First of all, I measured the weight of a clast in air ωair. The
pumice clasts then were covered with an impermeable film (Parafilm), whose weight in water is ωfilm

water. The
covered pumice weighed within water ωwater. The density of water is ρwater = 1000 kg/m3. Apparent density
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Figure 5.6: Photos of the outcrops I collected samples. (a) Location A where I collected fall deposits of unit 2.
(b) Location B where I collected fall deposits of unit 5. (c) Close view of location B. (d) Location C where I
collected flow deposits of unit 6. (e) Close view of location C.
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Figure 5.7: Simplified stratigraphy of the outcrops.
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can be calculated by the following equation

ρ =
ωair

ωair − ωwater + ωfilm
water

ρwater. (5.1)

The apparent density value was converted into the vesicularity by using a DRE = 2400 kg/m3 measured by
Houghton and Wilson (1989).

5.4.3 Bubble texture

Volcanologists use the bubble textures of pyroclasts to identify the processes occurring before, during and
immediately after eruption. The most common approach to characterize bubble texture has long been the 2D
approach by thin sections (e.g., Klug and Cashman, 1994; Klug et al., 2002; Houghton et al., 2010). Thin
section images taken by a scanning electron microscope provide 2D textural data such as bubble number density
and vesicularity. The obtained data then are stereoscopically converted into 3D data. This approach has an
advantage of accurately resolving the size and shape of small bubbles. The bubble texture of tube pumice has
been investigated in detail through the 2D approach by thin sections (Polacci et al., 2001, 2003; Bouvet de
Maisonneuve et al., 2009), but transforming the complex bubble shapes to 3D textures are challenging.

Recently, the 3D approach by X-ray CT (computed tomography) has been increasingly used to bubble
textures in pyroclasts (e.g., Gurioli et al., 2008; Polacci et al., 2009; Giachetti et al., 2011). This approach can
accurately get the bubble texture in three dimensions and can be further used to calculate permeability (Wright
et al., 2009; Degruyter et al., 2010b). However, the spatial resolution of standard X-ray CT scanners is not
enough to resolve very thin glass walls within pumice and to measure small bubbles. The recent development of
high-resolution tomography technique allows us to resolve very thin glass walls in three dimensions (Degruyter
et al., 2010b; Dingwell et al., 2016).

Although the microscopic texture has been revealed in the previous works, the bubble texture was not well
studied quantitatively or staistically. Since making thin sections is time-consuming work, the 2D approach by
thin sections cannot be applied to a large number of pumices. The measurement by the 3D approach requires a
relatively shorter time than by the 2D approach, but the machine time is limited. Shea et al. (2010) recommended
to use at least 100 clasts to get statistically meaningful information of a deposit.

The macroscopic classification of pumices into several types, such as spherical and tube pumice, is helpful
to get a general view of the bubble texture in an eruption. The abundance of each component gives us insights
into the mechanical dynamics (Taddeucci and Wohletz, 2001; Polacci et al., 2003; Houghton et al., 2010).
However, this approach depends on the judgment of the observer. In addition, the boundaries between pumice
types are frequently not sharp, and one type may grade into another. In order to get a quantitative distribution
of the bubble texture of whole deposit, a new approach, which allows us to characterize bubble textures in a
short time, is required.

In this study, I develop a new method based on a digital stereo microscope. This method measures bubble
shapes from the cutting surface in a short time, allowing to analyze the bubble texture of a statistically sufficient
number of pumices (an order of thousand). Because this method cannot characterize bubble texture in three
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dimensions, I also measured the bubble texture of the representative samples by using an X-ray CT scanner.
The combination of the new method and the X-ray tomography enables us to get a general view of bubble
deformation in a conduit-scale.

2D texture: digital stereo microscope

We measured the 2D bubble texture for the pumices whose vesicularities were measured by the Archimedes
method, namely 100 clasts for each subunit of unit 5 and 100 clasts for units 2 and 6. First of all, pumice clasts
were cut along the plane parallel to the direction of elongation. I cannot always identify the elongation direction,
and I sometimes cut a sample in a plane slightly off the elongation direction. The artificial error caused by
wrong cutting sections will be discussed later with Fig. 5.20.

Grayscale images of the cutting surface were taken with a digital stereo microscope (VHX-1000, Keyence)
at a magnification of ×20. The most distinctive point of the new 2D approach is to illuminate the cutting surface
from the sides. I cannot recognize the boundaries between a bubble and matrix glass with a conventional
microscope, because it illuminates the surface vertically (Fig. 5.8a). Using an adjustable illumination adapter
(VH-K20, Keyence), I can illuminate the surface at shallow angles. The illumination from the sides makes a
shadow inside the bubbles, which makes the boundaries distinct (Fig. 5.8b).

The image processing was conducted by Matlab codes. First, the grayscale images were transformed into
binary images. Due to the ring lights aligned along the circumference of the lens, the center of a gray image
is bright, but its corner is dark. To recognize bubbles correctly, I used an adaptive threshold algorithm, which
computes a locally adaptive threshold of the brightness value (Bradley and Roth, 2007). Second, I erased
bubbles with pixel numbers smaller than 20 for removing the effect of noise in the brightness values. Bubbles
contacted with the borders were also removed automatically because these bubbles do not reflect the original
shapes. Third, I manually removed the trace holes of crystals, which were made in the cutting process. The
obtained binary image is shown in Fig. 5.8c. Large bubbles are segmented correctly. On the other hand, small
bubbles are not recognized. If I raise the sensitivity of the adaptive threshold of brightness, those small bubbles
will be recognized, but all bubbles will be connected because the glass walls separating the bubbles are too thin
for the camera resolution. In order to segment large bubbles correctly, I remove the surrounding small bubbles
by setting low sensitivity of threshold. The bubble shape was obtained by fitting an ellipse to the area. Each
bubble was approximated as an ellipse, wherein two principle axes pass through the center of gravity of the
bubble (Fig. 5.8d). The relationship between the semi-major and semi-minor axes of the ellipsoid was used to
evaluate the deformation of the bubbles.

3D texture: Low resolution X-ray CT

Nine pumice clasts were selected from each unit (units 2, 5, 6) on the basis of the digital stereo microscope
observation of their morphological features. Although the number of the samples was limited by the machine
time, I think the pumice clasts selected for the X-ray tomography cover various bubble shapes from a nearly
spherical shape to a highly elongated shape.
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Figure 5.8: Digital stereo microscope image with (a) the conventional light and (b) the adjustable illumination
adapter. Inset images show the schematic images of the conventional light and the adjustable illumination. (c)
Binary image overlying the grayscale image. The track of crystal is shown by T. Green color indicates the
recognized bubbles. (d) Fitted ellipsoids are shown in red color. All white bars indicate 5 mm.
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Representative pumice clasts from units 2, 5, and 6 were imaged by METROTOM 800 (Carl Zeiss) at
Saitama Industrial Technology Center (Saitama, Japan). The samples having a cuboid shape were mounted
on the rotational stage in the X-ray CT system and rotated 360o in steps of 0.45o (800 projections). The
configuration used for each tomographic scan was a tube voltage of 130 kV, a tube current of 60 µA, and a voxel
size with edge lengths in each direction of 8 µm. The resulting tomographic data was visualized as volume
renderings via the commercial software (Simpleware, Synopsys). Fig. 5.9 shows the representative sample of
the rendered image of tube pumice.

Figure 5.9: Representative sample of the rendered image of tube pumice from the Taupo Ignimbrite. The image
is binarized to make it easy to observe tube-like bubbles.

Bubbles in most Taupo pumice are entirely connected, as shown in Fig. 5.9. Therefore, I need to separate
those bubbles into an individual bubble before measuring bubble shapes. In chapter 3, I used the watershed
segmentation technique to separate bubbles in three dimensions (appendix C). The basic idea of this technique is
flooding water on a topographic surface, which is the grayscale intensity calculated from the X-ray CT images.
Water is flooded from each regional minimum of the surface, and walls are built where the different waters meet
(Fig. 5.10). In the watershed segmentation used in chapter 3, the grayscale intensity was defined as the distance
from each inner air pixel to the nearest solid medium pixel, as the further is the lower intensity (topography).
The gray-scale mapping and watershed segmentation methods used in chapter 3 for the experimental foams
failed to separate bubbles in Taupo pumice. One reason is that the spatial scale of the texture is finer in the
pumice than in the foam, and the other is that the bubbles are more significantly distorted and connected.

The spatial resolution of the X-ray scanner (METROTOM 800) is not enough to resolve thin glass walls,
and a voxel containing both air and glass wall shows an intermediate density between air and matrix glass.
In this chapter, I used the gradient of density itself as a grayscale topography (the small gradient is the lower
topography). This definition is suitable for porous materials whose intended boundaries have a gradation of
density and is applicable for connected bubbles in pumice. To overcome the segmentation problem for the
bubbles with complicated texture, I use the marker-controlled watershed algorithm (Meyer and Beucher, 1990).

To perform the grayscale mapping based on the density values and the marker-controlled watershed seg-
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Figure 5.10: Schematic image of watershed segmentation in 1D.

mentation, I used an image processing software, Fiji (Schindelin et al., 2012). The detailed procedure of the
image processing for pumice is described in appendix F.

3D texture: High resolution X-ray CT

To resolve the fine textures, I performed high-resolution X-ray CT for some representative samples by SkyScan
1272 (Bruker) at Saitama Industrial Technology Center. Unfortunately, I could not measure all pumice clasts,
which were analyzed in low-resolution X-ray CT, because X-ray from this CT scanner is too weak to penetrate
a dense pumice clast. I analyzed only a few pumices that are highly vesiculated and composed of very thin
bubble walls. The samples were cut into small cuboids with a square base of about 1 mm × 1 mm and a height
of about 2 mm. They were imaged by a 50 kV - 200 µA conventional energy source and rotated 360o in steps
of 0.1o (3600 projections). The spatial resolution is 0.45 µm/pixel, and the image size is 4904× 3280 pixel.
Three-dimensional images were reconstructed by the NRecon software. The method of image analysis of
bubbles is the same as that for the low-resolution X-ray CT. In the following sections, I explicitly indicate the
results with the high-resolution X-ray CT, while data and results are from the standard X-ray CT otherwise.

5.5 Results

5.5.1 Component analysis and bulk vesicularity

Variation of geological parameters in the Taupo plinian fall (unit 5) is shown in Fig. 5.11 as a function of
stratigraphic height. Throughout the whole outcrop, reverse grading was found from bottom to top of the unit
5. Lower fall unit (< 30 cm) is finer-grained with the median diameter ranges from 4 − 6 mm, and is rich in
lithics (19 wt.%). The dominant lithic lithology in unit 5 is rhyolite, followed by altered rhyolite and obsidian.
These lithics were observed in the Taupo ignimbrite by Cole et al. (1998). Upper fall unit is coarser-grained
with the median diameter ranges from 5 − 11 mm, and is poor in lithics (9 − 15 wt.%). Lithic types do not
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change from lower to upper fall unit. Relative abundance of free crystals does not change in unit 5, and is
dominant in plagioclase. The bulk vesicularity data is consistent with the previous studies of Houghton and
Wilson (1989) and Houghton et al. (2010), which showed the homogeneous vesicularity throughout unit 5. The
average vesicularity of pumice in unit 5 is about 78.8 %.

Only the bulk vesiculariy of pumice was measured for the Hatepe plinian fall (unti 2) and the Taupo
ignimbrite (unit 6). The average pumice vesicualrity of unit 2 is 78.6 % which is very close to the value of unit
5, and that of unit 6 is 88.2 % which is higher than the two plinian fall deposits.

Figure 5.11: Vertical variation of (a) the median diameter of grain size, (b) the components, and (c) the bulk
vesicularity of pumice clats in the Taupo Plinian fall (unit 5). In the component analysis, blue and red lines
indicate the relative portion (wt. %) of lithics and crystals, respectively.

5.5.2 Representative samples of units 2, 5, 6

Fig. 5.12 shows the images of the representative pumice clasts taken by the digital microscope and the low-
resolution X-ray CT. Tube and spherical pumices were chosen from each unit by visual observation. As
Houghton et al. (2010) pointed out, there is a wide range of bubble texture in these clasts. Bubble size and
elongation vary among these clasts, and it seems that there is no correlation between elongation and size. Some
pumices show the internal heterogeneous texture. For example, bubbles around crystals are nearly spherical
while most of the bubbles are deformed largely (Fig. 5.12b).
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Figure 5.12: Representative images of pumices from units 2, 5, and 6. Images on the left sides are the photos
taken by the digital stereo microscope, and those on the right side are the cross-section of the X-ray CT images.
Green sheds in the digital stereo microscope images indicate the analyzed bubbles. All scalebars are 5 mm. (a,
b) Sample 45 from unit 2. (c, d) Sample 27 from unit 2. (e, f) Sample 09_04 from unit 5. (g, h) Sample 10_25
from unit 5. (i, j) Sample 2_38 from unit 6. (k, l) Sample 1_11 from unit 6.
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5.5.3 Quantitative analyses of bubble textures

We analyzed the 2D and 3D image data for the relationship between bubble deformation degreeD and spherical
bubble radius Rb as I found the relationship indicative for the dynamics of bubble deformation (section 2.5).
Fig. 5.13 shows the results for the representative clasts (same clasts as Fig. 5.12). All results show the
positive correlations betweenD andRb. There is only small differences between the results of the digital stereo
microscope (2D) and the X-ray CT (3D). Only the plots of sample 10_25 (Fig. 5.13g and h) are significantly
different.

We think that this discrepancy between the 2D and 3D approaches was caused by the direction of the
cutting surface. When making the flat surface of pumice, I tried to cut clasts in the direction parallel to bubble
elongation. However, visual observation of pumice appearance sometimes results in cutting in the wrong
direction. If I cut elongated bubbles perpendicular to elongation direction, the cutting surface shows the nearly
spherical bubbles. The cutting surface of this sample shows nearly spherical bubbles (Fig. 5.12g), while the
tomography image exhibits elongated bubbles (Fig. 5.12h). I think that this discrepancy was caused by the
deviation of the cutting surface from the direction of bubble elongation.

The striking feature of the bubble shapes is that most of the distributions ofD suggest the effect of transient
deformation. As assumed in section 2.5, it is reasonable to assume that strain rate, viscosity, and surface tension
are homogeneous throughout a volcanic pyroclast. Therefore, the capillary number depends on only the bubble
radius. Specifically, Ca is proportional to Rb. If bubble deformation were in the equilibrium state, as Rb

increases, D must approach to unity with large Rb regardless of simple or pure shear. Except for the highly
elongated bubbles in unit 6 (Fig. 5.13i and j),D approaches a much smaller value (D < 1). This trend suggests
a transient deformation, whereby the bubble deformation stopped on the way to reach the equilibrium state due
to the insufficient strain. The distributions of D affected by the transient deformation allow us to estimate the
strain applied to the bubbles.

The high-resolution X-ray CT images contribute to the check of the validity of the results from the standard
X-ray CT. Fig. 5.14 shows the result of the high-resolution analysis for the tube pumice from unit 6 (sample
2_38), which is the same sample as i and j of Figs. 5.12 and 5.13. I can recognize thin bubble walls in the
cross-sectional image (Fig. 5.14a). The distribution of D shows an almost constant value of D ∼ 0.65 for
bubbles with 0.25 < Rb < 1.5×10−4 m (Fig. 5.14b). On the other hand, the low resolution X-ray CT provides
the smaller D (0.4 < D < 0.65) in the corresponding range of Rb. This result suggests that all data imaged by
the low-resolution X-ray CT may not be measured accurately in the range of Rb < 1.5× 10−4 m.

The three-dimensional bubble shape is characterized by two ratios, a/b and b/c. The ellipsoidal shape is
often expressed by Flinn diagram (Flinn, 1962). Fig. 5.15 shows the Flinn diagram for pumices containing
elongated bubbles. All pumice clasts contain prolate and oblate ellipsoids. The elongated bubbles are closer
to prolate ellipsoids than oblate ellipsoids. It should be noted that the prolate bubbles are not the evidence of
pure shear deformation because of the surface tension. Contrary to strain ellipsoids in earth materials, bubbles
contain the surface tension. The cross-section perpendicular to the main axis is relaxed to a circular shape
(Jackson and Tucker, 2003). A highly deformed bubble by simple shear becomes a prolate shape.
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Figure 5.13: Relationships between the bubble deformation degree D and the spherical bubble radius Rb for
the same samples as Fig. 5.12. Yellow dot indicates the average values of D in each subgrid with 2× 10−5 m.
Errorbar expresses the standard deviation of D.

Figure 5.14: High resolution X-ray CT for the tube pumice from unit 6 (sample 2_38), which is the same sample
as Fig. 5.12i and j. (a) Cross section image. (b) Relationship between D and Rb. Yellow dot indicates the
average values of D in each subgrid with 5× 10−6m.
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Figure 5.15: The Flinn diagram for elongated bubbles. (a) Sample 45 from unit 2. (b) Sample 10_25 from
unit 5. (c) Sample 2_38 from unit 6. (d) Sample 2_38 from unit 6. The low resolution X-ray CT data are used
except for (d). The high resolution X-ray CT data are used for (d).

– 112 –



CHAPTER 5. TEXTURAL ANALYSIS OF PUMICE FROM THE TAUPO 1.8 KA ERUPTION

5.5.4 Statistical approach

Hereafter, I report the analytical results for bubbles with the spherical bubble radius greater than 1.5× 10−4 m

in order to measure bubble shape accurately. This constraint is applied for the data of both low-resolution X-ray
CT and digital stereo microscope.

The stratigraphic change of the relative abundance of tube pumice is one of the important references to
interpret the dynamics of a conduit flow. In order to investigate the bubble textures quantitatively, I define a
representative bubble deformation degree for each pumice clast. It is the normalized bubble deformation degree
by the bubble size. The representative bubble deformation degree for the data of the digital microscope DR2 is
given by

DR2 ≡
ΣDi2Ai

ΣAi
, (5.2)

where Di2 and Ai are the bubble deformation degree and the bubble area measured by the digital microscope.
The corresponding representative bubble deformation degree for the low-resolution X-ray CT DR3 is given by

DR3 ≡
ΣDi3R

2
i

ΣR2
i

, (5.3)

where Di3 and Ri are the bubble deformation degree and the equivalent bubble radius measured by the X-ray
CT.

Fig. 5.16 compares DR3 with DR2. In most cases, the representative bubble deformation degree based
on the low-resolution X-ray CT is a little larger than the digital stereo microscope because the cutting surface
is not always parallel to the elongation direction of the bubbles within the pumice. Although there is a slight
difference between DR2 and DR3, DR2 well represents the features of bubble texture within pumice clasts.
Table. 5.1 summarizes DR2 and DR3 for the representative samples.

We think that this discrepancy between the 2D and 3D approaches was caused by the direction of the
cutting surface. When making the flat surface of pumice, I tried to cut clasts in the direction parallel to bubble
elongation. However, visual observation of pumice appearance sometimes results in cutting in the wrong
direction. If I cut elongated bubbles perpendicular to elongation direction, the cutting surface shows the nearly
spherical bubbles.

To check the error caused by cutting a pumice clast in the wrong direction, I obtain the cross-section from
3D data in an arbitral angle. Fig. 5.17 shows the cross-sections cut out from the 3D data of Sample 10_25. This
sample showed the discrepancy between the 2D and 3D approaches (Fig. 5.13g and h). As the inclined angle
from the bubble elongation direction increases, the bubble becomes close to a spherical shape.

Next, I calculate the representative bubble deformation degree DR2 (Eq. 5.2) for all cross-sections with
a certain inclined angle. Fig. 5.18 shows the mean DR2 as a function of the inclined angle. The mean
DR2 decreases with the angle from the elongation direction. The representative bubble deformation degrees
estimated by the digital microscope and the X-ray tomography are DR2 = 0.23 and DR3 = 0.56, respectively.
If I cut the sample in a plane with an angle of more than 50 degrees, this discrepancy between 2D and 3D
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Figure 5.16: Relationships between DR2 and DR3 for the representative samples. In most samples, DR3 is a
little larger than DR2.

approaches can be explained.
The stratigraphic change of DR2 in unit 5 is shown in Fig. 5.19, and no stratigraphic variation is observed.

It is reminded that the pumice vesicularity is also homogeneous in Unit 5 (Fig. 5.11c). Fig. 5.20 shows the
relationship between the vesicularity and DR2 for the pumice clasts from unit 5 and unit 6. Any systematic
trend can not be observed in both units.

The abundance of bubble texture is shown in Fig. 5.21 as the histogram of DR2. The number of analyzed
sample is 100 for unit 2 and 6, and 1100 for unit 5. The plinian fall eruptions (units 2 and 5) show similar
histograms which are characterized by a single peak around DR2 = 0.35 with a half width of about 0.1. The
peak of D in unit 5 is slightly larger than that of unit 2.

The histogram of the Taupo Ignimbrite (unit 6) is markedly different from the plinian units. The highest
peak of unit 6 lies at 0.55 < DR2 < 0.60, and the distribution is broad from 0.28 to 0.70. My new method
enables us to quantitatively analyze the bubble textures of a large number of samples. I expect that the statistical
distribution of bubble deformation degrees of pumice clasts in one layer provides information on the shear
deformation field across the conduit. In the next chapter, I calculate the radial variation of bubble shape and
magma flux across a conduit to interpret the result of Fig. 5.21.

5.6 Discussion

In this thesis, I analyzed bubble shapes under the assumption that they were frozen at the fragmentation surface.
However, bubble shapes at the fragmentation surface might not always be the same as those preserved in pumice
clasts. After fragmentation, deformed bubbles within a pumice may return to spherical shapes due to surface
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Figure 5.17: Cross sections cut out from the 3D data of Sample 10_25. (a) Cross section parallel to the bubble
elongation direction. (b) Cross sections inclined 30o from the bubble elongation direction. (c) Cross section
inclined 60o. (d) Cross section inclined 90o. All scalebars are 5 mm.

Figure 5.18: The mean DR2 as a function of the inclined angle. The errorbar indicates the standard deviation
of DR2.
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Figure 5.19: Stratigraphic change of DR2 for the Taupo plinian (unit 5). Errorbar indicates the standard
deviation of DR2.

Figure 5.20: Relationship between the vesicularity and DR2 for the pumice clasts from (a) the Taupo plinian
(unit 5) and (b) the Taupo ignimbrite unit 6.
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Figure 5.21: Histogram of DR2 for (a) the Hatepe plinian (unit 2), (b) the Taupo plinian (unit 5), and (c) the
Taupo ignimbrite (unit 6). The number of analyzed sample is 100 for units 2 and 6, and 1100 for unit 5.
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Table 5.1: Textural characteristics of the representative pumice clasts.

Sample Unit Vesicularity % a DR2 DR3

03 unit 2 77.7 0.40 0.41
17 unit 2 76.6 0.32 0.40
18 unit 2 75.0 0.43 0.46
23 unit 2 72.6 0.42 0.48
27 unit 2 83.6 0.34 0.35
32 unit 2 80.0 0.29 0.37
45 unit 2 78.1 0.54 0.49
47 unit 2 82.8 0.58 0.46
48 unit 2 86.9 0.34 0.44
09_04 unit 5 76.9 0.51 0.51
09_12 unit 5 74.1 0.57 0.49
09_25 unit 5 76.4 0.54 0.63
09_28 unit 5 76.7 0.25 0.46
09_34 unit 5 78.1 0.30 0.39
10_01 unit 5 76.5 0.31 0.48
10_08 unit 5 82.8 0.38 0.44
10_25 unit 5 80.5 0.23 0.56
10_31 unit 5 81.9 0.42 0.48
1_11 unit 6 90.9 0.28 0.41
1_27 unit 6 89.9 0.46 0.66
1_39 unit 6 91.4 0.48 0.61
1_40 unit 6 91.3 0.33 0.42
1_42 unit 6 89.9 0.64 0.73
2_3 unit 6 89.7 0.68 0.74
2_4 unit 6 91.3 0.34 0.49
2_38 unit 6 86.8 0.66 0.68
2_50 unit 6 89.8 0.44 0.57
a Measured by the Archimedes method (Houghton

and Wilson, 1989)

tension and/or bubble growth, if the pumice has enough time in the stress-free condition before it quenches. In
this section, I discuss this problem.

5.6.1 Shape relaxation caused by surface tension

The amount of shape relaxation can be considered as the competition of the relaxation timescale τrelax and the
solidifying time scale. In section 3.4.2, I evaluate the effect of shape relaxation by using the pumice number
Pu.

Cooling of a tephra clast after fragmentation has been investigated from several viewpoints. Thomas and
Sparks (1992) made a model for the cooling of a clast during fallout from an explosive eruption column,
showing that the cooling condition controls welding in deposits. Hort and Gardner (2000) investigated the
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cooling and degassing of pumice during an eruption column, indicating that large pumice is easily to loss
volatiles syneruptively. From the petrological viewpoints, Tait et al. (1998) studied changes in pumice color
and Curie temperature, using clasts of Minoan plinian eruption of Santorini volcano. Recently, Matsumoto and
Nakamura (2017) investigated the oxidation kinetics of pyrrhotite, suggesting that the pumice surfaces remained
a higher temperature than the assumed temperature of 293 K.

In order to study the shape relaxation of bubbles after fragmentation, here, I solve heat conduction in a
pumice clast during an eruption column. I try to constrain the possibility of shape relaxation in the Taupo
plinian eruption by combining a cooling model with the bubble deformation model (MJT model) proposed in
section 2. First, I obtain the ambient temperature of a pumice clast in the eruption column, using a steady-state
eruption column model, Plumeria (Mastin, 2007). The parameters for the Plumeria are determined to simulate
the eruption column of the Taupo plinian eruption (unit 5). Next, I solve thermal conduction in a pumice clast
and get the temporal profiles of temperature and viscosity. Finally, I calculate the shape relaxation of a bubble
with the MJT model. The detail procedure and parameters are described in appendix G.

The simulation results of the eruption column are shown in Fig. 5.22. The average velocity above the
conduit inlet decreases due to the large gravitational force (Fig. 5.22a). As the eruption column ascends, the
density decreases because of the thermal expansion caused by the high initial magma temperature (Fig. 5.22b).
Then, the velocity turns to increase (Fig. 5.22c). The maximum height is about 27 km. The average temperature
decreases monotonically. Assuming that a pumice clast moves up confluently, I can calculate its risetime to be
197 s.

The history of thermal conduction within a pumice clast is shown in Fig. 5.23. The interior of the pumice
clast cools much slower than the pumice surface because of the small thermal diffusivity (Fig. 5.23a). The
temperature at the pumice surface is slightly higher than the column temperature as a result of inefficient heat
transfer. Fig. 5.23b indicates that the temperature history is largely controlled by the pumice size.

Fig. 5.24 shows the shape relaxation of a bubble in a pumice center. When the pumice radius is less than
2 cm, the shape of a deformed bubble is almost frozen even in a pumice center (Fig. 5.24a). The amount of
shape relaxation is largely controlled by clast size as well as bubble location. As a pumice clast becomes the
large size, a bubble at the pumice center is relaxed before the pumice quenches (Fig. 5.24b).

In this chapter, I analyzed natural pumice clasts whose diameter ranges from 1.6 to 3.2 cm. The numerical
simulation of Fig. 5.24 suggests that bubble shapes within the clasts might have been almost frozen. In addition,
if bubbles had been relaxed before the clast frozen, there would have been the radial variation of bubble shape,
that is, elongated bubbles had located on the clast surface and spherical bubbles had been in the clast center.
However, as far as I analyze, I could not find such a pumice clast. Even if a pumice clast showed a heterogeneous
bubble texture, it was anisotropic. For the above reasons, I think that shape relaxation after fragmentation may
not be an important factor for explosive eruptions.

5.6.2 Shape relaxation caused by bubble growth

Another possibility of shape relaxation of a bubble is growth after fragmentation. Thomas et al. (1994) and
Kaminski and Jaupart (1997) theoretically showed that a pumice clast can expand in the volcanic conduit and
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Figure 5.22: Vertical variation of (a) averaged velocity, (b) plume density, (c) plume radius, and (d) averaged
temperature. Dashed lines in (b) and (d) indicate the atmospheric density and temperature, respectively.

Figure 5.23: (a) Temporal profile of temperature within a pumice with the clast radius of RC = 1.5 cm. Line
color indicates the positions within the clast as well as the column temperature. (b) Temporal evolution of
temperature at the pumice center. Line type indicates the clast radius.
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Figure 5.24: The history of shape relaxation of a bubble at the pumice center. (a) small clasts and (b) large
clasts. The initial D is 0.667 and the initial bubble radius is 0.15 mm. Keep in mind that the ranges of vertical
axes (D) are different between (a) and (b). In the calculation of (b), I assumed that the ambient temperature
kept the temperature at the column top after the pumice clast reached there.

the atmosphere, depending on the pressure and temperature history. According to this research, the range of
vesicularity within samples from the same stratigraphic layer reflects the different paths in the eruption column.
If post-fragmentation growth occurs in pumice, the bubbles inside will return to spherical shapes.

We think such a post-fragmentation bubble growth is significant only inside large pumice, and it can be
negligible for small pumice. Recently, Mitchell et al. (2018) performed a detail investigation of variations in
bulk density of pumice over a size range of 4− 128 mm from the Hatepe eruption (unit 2) of the 1.8 ka Taupo
eruption. According to this research, a clear shift of bulk density appeared between ≥ −5Φ and ≤ −4.5Φ

which corresponds to 32.0 mm and 22.6 mm. Densities for diameters −5Φ and −4.5Φ clasts are 600 and
700 kgm−3, respectively (i.e., vesicularities of 0.74 and 0.71). The authors also qualitatively classified pumice
clast into two types: microvesicular and macrovesicular. Microvesicular pumice was characterized with small
bubbles, assumed to be frozen at the fragmentation surface. On the other hand, macrovesicular pumice had large
bubbles inside together with more quenched rind. This type was assumed to be affected by post-fragmentation
vesiculation. The author showed that the number of macrovesicular pumice increased with clast size, especially
from −5Ψ. For the above reasons, the authors concluded that there was clear evidence of post-fragmentation
vesiculation at > 32 mm.

In this thesis, I used pumice clasts with a diameter of < 32 mm in the units 2 and 5. Therefore I basically
think that the effect of post-fragmentation growth on bubble shape can be negligible for those clasts.

In order to estimate the error of D caused by post-fragmentation vesiculation, here I provide the simplified
problem. I assume that a pumice clast is composed of prolate bubbles with uniform bubble size and deformation
degree. The post-fragmentation vesiculation is assumed to elongate two minor-axes while keeping the main
axis constant. In this situation, the bubble deformation degree is independent of the bubble number density
and the bubble size and is controlled only by vesicularity. Fig. 5.25 shows the temporal change of D caused
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by post-fragmentation vesiculation. The amount of shape relaxation depends on the initial D and vesicularity.
For example, when the vesicularity increases from 0.7 to 0.75, D changes from 0.5 to 0.45 (yellow). Given
that the average vesicularities of microvesicular and macrovesicular pumice are 0.71 and 0.74, respectively, I
estimate the effect of post-fragmentation growth on bubble shape to ∆D < 0.05 where ∆D is the amount of
shape relaxation.

Figure 5.25: The temporal change of D caused by post-fragmentation bubble growth. The pumice clast is
assumed to have the vesicularity of 0.7 at the fragmentation. InitialD is set to 0.9 (blue), 0.7 (red), 0.5 (yellow),
and 0.3 (purple).

In the unit 6 (Taupo ignimbrite), I used larger clasts (> 32 mm) as well as smaller clasts (16−32 mm). The
post-fragmentation vesiculation might have be more significant in unit 6 than units 2 and 5, because pumice clasts
were transported in a hot pyroclastic flow. However, I think that the effect of post-fragmentation vesiculation on
bubble shape was small in tube pumice, because its permeability is higher than a pumice composed of spherical
bubbles (Wright et al., 2006, 2009). If the post-fragmentation vesiculation occurs in tube pumice, exsolved gas
may escape through the interconnected tube bubbles. In addition to that, I could not find tube pumice with radial
heterogeneous bubble texture. If the post-fragmentation vesiculation had affected on bubble shapes, spherical
bubbles would have been found inside the pumice.

For the above reasons, I conclude that the effect of post-fragmentation on bubble shape can be negligible.
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Chapter 6

Comparison of bubble shape

6.1 Introduction

In the previous chapter, I quantitatively analyzed 2D bubble textures within a total of 1300 pumice clasts from
the 1.8 ka Taupo eruption. Assuming that a large number of analyzed clasts reflect the radial distribution of
bubble shapes at the fragmentation surface, I here compare the natural bubble shapes with those calculated by
the quasi-two dimensional conduit flow model. This comparison is of great interest because it can be used to
identify whether the velocity profile across the conduit has a parabolic or plug-like shape.

First, the bubble shapes in the Taupo plinian fall are compared with the numerical simulations based on
the three conduit flow models. The comparison suggests that the velocity profile is close to a plug-like shape.
I then simulate the conduit flow of the Taupo ignimbrite, using the viscous-heating model. The calculated
bubble shapes at the fragmentation surface well reproduce the natural feature of the bubble texture in the Taupo
ignimbrite.

6.2 Comparison for the Taupo plinian fall (unit 5)

6.2.1 Histogram of the Taupo plinian fall

In Fig. 5.21, I showed the histogram of DR2 preserved in pumice clasts from the Taupo plinian fall deposit. In
order to compare it with the numerical simulation of Fig. 4.21, I normalize the vertical axis of Fig. 5.21.

Fig. 6.1 shows the comparison of the bubble shapes in the plinian fall (unit 5) with the numerical simulations.
In the numerical simulations which showed the parabolic velocity profiles, the calculated bubble shapes are
much more elongated than those observed in unit 5 (Fig. 6.1a and b). On the other hand, the bubble shapes
calculated by the viscous-heating model, which showed the plug-like velocity profile, are in the range of the
bubble shapes observed in unit 5 (Fig. 6.1c). This result suggests that bubbles in the Taupo plinian event were
deformed in the conduit flow with the plug-like velocity profile, which was likely to be caused by intense viscous
heating around the conduit walls.
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Figure 6.1: The comparison of bubble shapes in the Taupo plinian fall with the numerical simulations. Histogram
ofDR2 in Taupo plinian fall is shown in red color. Blue histograms representD calculated by (a) the Newtonian
isothermal model, (b) the shear-thinning model due to bubble deformation, and (c) the viscous heating model.
All the vertical axes are normalized.
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6.2.2 Discrepancy between observation and numerical simulation

The distribution of bubble shape calculated by the numerical model is not exactly the same as the observed
bubble shapes. I consider the following reasons.

First, the numerical shear filed in the conduit may be slightly different from the real shear field because of
the simplicity of the conduit flow model I used. When deriving the basic equations of the quasi two-dimensional
conduit flow model (appendix C), I have not considered several terms that potentially change the flow field,
such as inertia terms and vertical viscous stresses. Neglecting these terms may be more serious as magma gets
close to the fragmentation surface where the Reynolds number and expansion rate are large. Strictly speaking,
the assumption of a constant pressure across a conduit is not valid around the fragmentation surface (appendix
C). The horizontal gradient of pressure may cause the additional radial flow, leading to the radial variation of
the bubble deformation degree.

Second, the volcanic conduits may be far from the idealized cylindrical shape. Rapid variations of the
cross-sectional area with depth may lead to a much stronger mixing of the thermal boundary layer around the
conduits (Costa and Macedonio, 2005). The vertical variation of the cross-sectional area also contributes to the
vertical velocity gradient (pure shear).

Third, the parameters for the Taupo eruption (Table 4.1) have uncertainties, which may affect the histogram
ofD. For example, the mass discharge rate for the Taupo plinian eruption ranges from 108 to 109 kg/s and that
for the Taupo ignimbrite eruption ranges from 109 to 1011 kg/s, depending on the estimation method (Wilson
et al., 1980; Wilson and Walker, 1985; Carey and Sigurdsson, 1989; Houghton et al., 2014; Michaud-Dubuy
et al., 2018). The mass discharge rate, which I used here for the Taupo plinian eruption (2.5 × 108 kg/s),
is a little lower value. If I use a higher mass discharge rate, the widening of the conduit will occur, leading
to a reduction in viscous-heating effect. The amount of tube pumice will increase in the same way as the
Taupo ignimbrite eruption shown in the next section. The increase in elongated bubbles is consistent with the
discrepancy that the natural observation contains more elongated bubbles than the simulation result (Fig. 6.1).

Fourth, the shapes of bubbles in a conduit flow are controlled not only by deformation but also by coalescence.
The analogue experiment in chapter 3 showed that the average shape of multiple bubbles was explained by the
deformation model of a single bubble. Based on this result, I define the representative deformation degree
of bubbles in pumice DR2 (Eq. 5.2) and compare it with the numerical simulation. However, the analogue
experiments also showed that a deformation degree for each bubble was more scattered around the model result
with increasing bubble coalescence (Fig. 3.7c-f). The scatter caused by bubble coalescence is expected to be
intense in highly vesiculated foam. Since the Taupo pumice (≈ 75%) is more vesiculated than the analogue foam
(≈ 60%), coalescence might have largely affected the bubble shape. The scattering may occur not only within
a sample but also in the conduit scale. In this study, I conveniently neglect the effect of bubble coalescence by
taking the average bubble deformation degree (i.e., DR2), but I am required to investigate the effect of bubble
coalescence for further study.

Finally, the bubble deformation degree measured by the digital stereo microscope is a little different from
a true three-dimensional bubble shape. The measured bubble shape changes depending on the direction of
the cutting plane, and I could not measure small bubbles separated by thin glass walls because of the space
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resolution of the microscope. Even if all bubbles were measured precisely in the correct plane, I do not have an
effective methodology whereby the 2D data for highly elongated bubbles can be converted to the 3D data.

Although the comparison of the numerical results with the observed bubble shapes has several problems
as described above, I believe that the comparison is still effective in determining the velocity profile which
drastically changes depending on the rheology model. The plug-like velocity profile caused by viscous heating
is the most reasonable case among the considered models.

6.3 Comparison for the Taupo ignimbrite

Next, I simulate the conduit flow for the Taupo ignimbrite (unit 6) by using the viscous heating model and then
obtain the flux of bubble shape at the fragmentation surface.

6.3.1 Conduit flow based on the viscous-heating model

The parameters used in the simulation for the Taupo ignimbrite are the same as the Taupo plinian eruption
(Table. 4.1) except the mass discharge rate Qm and critical volume fraction at fragmentation ϕf . Based on
the geological study by Wilson and Walker (1985), Qm is set to 5 × 1010 kg/s. I also set ϕf to be equal to
the average vesicualrity of pumice from unit 6 (ϕf = 0.88). The initial pressure pin and conduit radius R are
determined from the boundary problem as discussed in the Taupo plinian simulation (section 4.4.2). In the
simulation for the Taupo ignimbrite, pin and R are set to 39 MPa and 700 m, respectively. As with the case of
the Taupo plinian eruption, the initial pressure is less than the lithostatic pressure (98 MPa), while the conduit
radius is comparable with the previously estimated value of 500-600 m by Legros et al. (2000).

The distribution of velocities and the profile of pressure are shown in Fig. 6.2. The horizontal distributions
of vertical velocity, temperature, viscosity, and void fraction in the near-wall zone are plotted in Fig. 6.3. As
in the case for the Taupo plinian, the velocity profile evolves into a plug shape as the magma ascends in the
conduit. A striking feature of the simulation for the Taupo ignimbrite is the timing at which the velocity profile
changes from a parabolic to plug-like shape. In the case for the Taupo plinian, the velocity profile changes just
above the conduit inlet (Fig. 4.8a), but in the case for the Taupo ignimbrite, it changes at around z/zf = 0.3.
This difference significantly affects bubble deformation inside the conduit.

6.3.2 Bubble deformation in a viscous-heating flow

Using the results of the conduit flow simulation for the Taupo ignimbrite, I calculate the deformation of a bubble
inside the conduit. The calculation method is the same as the simulation for the Taupo plinian.

Streamlines for the Taupo ignimbrite are shown in Fig. 6.4a. When the velocity profile changes from a
parabolic to a plug shape at z ∼ 1000 m, the streamlines bend to the conduit wall. The radial distributions of
bubble shapes are shown in Fig. 6.4b. The bubbles around the conduit walls are always more elongated than in
the conduit center. An important point is that the evolution of bubble shape is not monotonous. Fig. 6.5 shows
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Figure 6.2: The calculation results of the Taupo ignimbrite based on the viscous-heating model. (a) Vertical
velocity distribution across the conduit at z/zf = 0, 0.005, 0.001, 0.1, 0.5, 1. The fragmentation surface is
3874 m. (c) Horizontal velocity distribution. (c) Pressure profile along with the conduit axis.

– 127 –



Figure 6.3: The horizontal distribution of the Taupo ignimbrite in the near-wall region. (a) Vertical velocity.
(b) Temperature. (c) Viscosity. (d) Void fraction.
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the vertical evolution of bubble shape as a function of the initial bubble position. All bubbles repeat elongation
and relaxation, depending on the initial position.

Figure 6.4: (a) Streamlines for the Taupo Ignimbrite. (b) The radial distribution of the bubble shapes at each
depth.

In order to understand the complex evolution of bubble shape, I investigate the components of the velocity
gradient tensor L∞

ij . The evolution of L∞
ij starting from the conduit center is shown in Fig. 6.6a. This bubble

does not have a simple shear component by the symmetry boundary condition. The velocity gradient tensor
comprises the diagonal components of ∂u

∂z and ∂w
∂r . Decompression along the conduit accelerates the bubbly

magma, resulting in a positive value of ∂u
∂z . When the velocity profile collapses into a plug shape, the magma

near the conduit center shrinks vertically and bubbles in it elongate in oblate. This bubble elongation has a peak
around z = 1000 m where the velocity profile transforms into a plug shape. Above the transition of the velocity
profile, the bubble starts to elongate vertically in prolate because of pure shear due to the magma acceleration.
When the laterally flattened bubble starts to elongate vertically, the bubble deformation degree once decreases
apparently. Then it increases again, reflecting a prolate shape along the pure shear direction.

The evolution ofL∞
ij along another bubble trajectory starting around the conduit wall (ri = 600m) is shown

in Fig. 6.6b. Contrary to the previous case, the bubble deforms by simple shear (∂u∂r ) as well as pure shear.
Therefore it shows large D. In addition to simple shear, the formation of the plug flow results in not decreasing
but increasing ∂u

∂z in the positive direction. In summary, at the transition to the plug-like flow, bubbles around
the conduit center elongate laterally, while those around the conduit walls elongate vertically.

A key point of bubble deformation of the Taupo ignimbrite event is that the transition of the velocity profile
occurred after ascending in the conduit for a while. Initial bubble deformation in the parabolic velocity profile
was not completely overwritten by the plug-like velocity profile, but continued to affect the final shape at the
fragmentation surface. Bubbles around the conduit walls elongated longer than inside because of simple shear
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Figure 6.5: (a) The vertical evolutions of bubble shape for the Taupo ignimbrite event. The color indicates the
initial position of the bubble at the conduit inlet. (b) The velocity profile across the conduit. The color indicates
the position of the corresponding bubble which is plotted in (a).
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component and vertical elongation during the transition of the velocity profile.

Figure 6.6: The vertical evolution of the components of the velocity gradient tensor L∞
ij for the bubble starting

from (a) ri = 0 and (b) ri = 600 m.

6.3.3 Comparison the simulation result with the natural bubble texture

Finally, I calculate the flux of the bubble deformation degree at the fragmentation surface by using Eq. (4.40).
Blue histogram in Fig. 6.7 shows the normalized flux of bubble shape at the fragmentation surface. Contrary
to the Taupo plinian event, the simulation based on the viscous-heating model provides a wide distribution of
bubble shape. Less elongated bubbles with D ≈ 0.4 were erupted from the conduit center, while those with
D ∼ 0.8 were from the region close to the conduit wall. Because the radial change of bubble shape is steep
around the conduit wall (Fig. 6.4b), the histogram of bubble shape has a peak at D = 0.43 which came from
the inner conduit.

Red histogram in Fig. 6.7 shows the histogram of DR2 for the Taupo ignimbrite. Although the histogram
of the numerical bubble shapes does not exactly overlap with that of the natural bubble shapes, it captures the
qualitative features of the wide distribution including highly elongated bubbles. This result suggests that the
increase of tube pumice in the Taupo ignimbrite was caused by the shallower transition of the velocity profile
from parabolic to plug-like.
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Figure 6.7: The histogram of bubble shapes for the Taupo ignimbrite. Blue histogram represents the numerical
bubble shape. Red histogram represents DR2. The vertical axis is normalized. The gap of D is 0.02.

　

6.4 Discussion

6.4.1 Transition from a parabolic to plug-like shape

The simulation of the Taupo ignimbrite suggests that the transition of the velocity profile significantly changes
the shear field and affects bubble deformation within a conduit. The velocity profile of viscous-heating flow has
been investigated in detail.

Costa et al. (2007) proposed a regime number to identify the behaviour of the cylindrical conduit flow with
radius R and length L. It is defined as

Σ =
Na√
Gz

=
bη0
R

√
U3
0L

ρ0κcV
(6.1)

where Na is the non-dimensional Nahme number, Gz is the non-dimensinoal Graetz number, η0 is the initial
viscosity, b is the coefficient of the viscosity dependency with temperature at a reference temperature of T
(b = 1

η0

(
dη0
dT

)
T

), Qm is the mass discharge rate, U0 is the initial mean vertical velocity which is defined as
U0 = Qm/(ρ0πR

2), ρ0 is the initial density, κ is the thermal conductivity, cV is the heat capacity. Large Σ

means that a conduit flow is dominated by viscous-heating and has a plug-like velocity profile. On the other
hand, small Σ means that a conduit flow is characterized by conductivity heat loss and has a parabolic velocity
profile.

Since Costa et al. (2007) assumed an incompressible magma with constant density, the density and the
mean velocity are constant throughout the conduit. In addition, the water concentration dissolved in the melt
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was assumed to be constant for the computational reason. Here, I extend the regime number to evaluate the
behaviour of the compressible viscous flow at each depth in the conduit. The extended regime number ΣE is
defined as

ΣE =
b(c, T )η(c, T )

R

√
U3L

ρ(c, T, p)κcV
, (6.2)

=
b(c, T )η(c, T )

R

√
Q3

mL

π3ρ(c, T, p)4R6κcV
. (6.3)

The viscosity sensitivity b, melt viscosity η, and bulk density ρ are the values at the conduit center. These
parameters are given at each depth in the conduit, depending on the water concentration, temperature, and
pressure.

Fig. 6.8 shows the variations of ΣE for the Taupo plinian event and the Taupo ignimrbite event. The
extended regime number for the Taupo plinian is always larger than that for the Taupo ignimbrite by an order
of magnitude. Fig. 6.8 indicates that the conduit flow of the Taupo plinian is significantly affected by viscous
heating and easily evolves into the plug-like velocity profile. The difference of ΣE can be explained by the size
of conduit radius. Most of the parameters used in Eq. (6.3) are in the same order of magnitude except for the
conduit radius which differs by an order of magnitude (R = 33 m for the Taupo plinian and R = 700 m for the
Taupo ignimbrite). In the 1.8 ka Taupo eruption, the change of conduit radius may have controlled not only the
significant variation of mass discharge rate but also the velocity profile.

The effect of the conduit radius on viscous-heating is intuitively explained by the shear strain rate at the
conduit wall. The shear strain rates at the wall just above the inlet were ∂u

∂r = 4.2 s−1 for the Taupo plinian
eruption and ∂u

∂r = 0.12 s−1 for the Taupo ignimbrite eruption. The shear strain rate in the Taupo ignimbrite
eruption was smaller than the Taupo plinian eruption by an order of magnitude. Therefore, the conduit flow
experienced a weak viscous-heating which suppressed the transition of the velocity profile

6.4.2 Simulation results with the different bubble number densities

In chapter 4, I showed the simulation results of bubble deformation in the conduit flow of the Taupo plinian
eruption. Because I focus on bubble shape (i.e., bubble deformation degree), I did not explain much about
bubble radius at the fragmentation surface. Regardless of the model, bubble radius at the fragmentation is about
10 µm(= 0.1 mm) (Figs. 4.13, 4.14, 4.18). This value is one order of magnitude smaller than the bubble
radius which I analyzed in chapter 5 (Rb > 0.15 mm). The bubble radius is calculated from the bubble volume
(Eq. 4.26) as a function of vesicularity ϕ and bubble number densityNb. AlthoughNb = 1015 m−3 is from the
textural analysis of Houghton et al. (2010), I can conveniently obtain the simulation results with large bubble
radius by inputting smaller Nb values.

Here, I show the simulation results with the different bubble radius.
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Figure 6.8: Vertical variation of the extended regime number for the Taupo plinian (blue) and the Taupo
ignimbrite (red).

　

Case1: Newtonian isothermal model

Fig. 6.9 shows the simulation results based on the Newtonian isothermal model. Line types indicate the different
Nb values. The bubble radius and the capillary number increase with decreasing Nb (Fig. 6.9a and b). For
Nb = 1011 m−3, the bubble radius at the fragmentation surface is as large as the radius that I analyzed in chapter
5. The bubble deformation degrees for Nb = 1013 m−3 and 1011 m−3 are slightly more elongated than for
Nb = 1015 m−3, but the distribution of D does not change largely. Highly elongated bubbles occupy most of
the area at the fragmentation surface.

Case2: Shear-thinning model due to bubble deformation

Fig. 6.10 shows the simulation results based on the shear-thinning model due to bubble deformation. As with
Fig. 6.9, highly elongated bubbles occupy most of the area.

Case3: Viscous-heating model

Fig. 6.11 shows the simulation results based on the viscous-heating model. Contrary to the previous models,
the radial distributions ofD at the fragmentation surface are different, depending on the bubble number density
Nb (Fig. 6.11c). The D value around the conduit wall increases with the increase in Rb (i.e., the decrease in
Nb). This difference was caused by decreasing the shape relaxation after the transition of the velocity profile.
Bubbles were largely deformed just above the conduit inlet because the velocity profile collapsed to a plug-like
shape (Fig. 6.11b). After the velocity profile became a plug-like shape, the shear field around a bubble ceased.
The bubbles started to return to a spherical shape until the magma accelerated sufficiently.
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Figure 6.9: The calculation results of the Newtonian isothermal model. (a) Bubble radius. (b) Capillary number
of a bubble starting from ri = 16m (c) Horizontal distribution ofD at the fragmentation surface. Solid, dashed,
and dotted lines are Nb = 1015 m−3, 1013 m−3, and 1011 m−3, respectively.

Figure 6.10: The calculation results of the shear-thinning model due to bubble deformation. (a) Bubble radius.
(b) Capillary number of a bubble starting from ri = 16 m (c) Horizontal distribution of D at the fragmentation
surface. Solid, dashed, and dotted lines are Nb = 1015 m−3, 1013 m−3, and 1011 m−3, respectively.
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The relaxation process is largely controlled by the timescale of shape relaxation τvisco = Rbη
Γ . Fig. 6.12

shows the vertical evolution of Ca and τvisco. The timescale of shape relaxation increased as the magma ascend
in the conduit because the viscosity increased due to water exsolution. For the result with Nb = 1015 m−3,
τvisco is quite small above the conduit inlet ≈ 1 s. This range of τvisco is small enough to relax a bubble shape,
given that the magma reached the fragmentation surface in about 70 seconds. On the other hand, τvisco is
comparable with the ascending time if Nb = 1011 m−3. Therefore, those large bubbles do not relax and keep
highly elongated shapes until the fragmentation surface.

The simulation results in this section showed that the large bubble kept the highly elongated shape because
of the long timescale of shape relaxation. In this thesis, I was not able to find a numerical solution that explains
both the bubble deformation degree and the bubble size of the natural observation. In order to overcome this
problem, I first need to improve the calculation method of the bubble radius. In the simulations, the bubble
radius is given by Eq. (4.26) that assumes a constant bubble number density during bubble growth. However,
strictly speaking, this assumption is not realistic because of bubble coalescence. If it occurs, the bubble number
density at nucleation is larger than that of pumice, leading to a small bubble radius in the lower part of the
conduit flow. I also require an accurate initial pressure. Due to the strong viscous heating around the conduit
walls, the initial pressure used in this appendix (65 MPa) is smaller than the lithostatic pressure (98 MPa). If
it is equal to the lithostatic pressure, the bubbles at the conduit inlet become smaller than the current estimated
value. Those small bubbles will relax instantaneously after the velocity profile evolved into a plug-like shape
and will deform only by pure shear caused by magma acceleration.

In summary, in order to calculate the bubble size correctly, it is required to incorporate bubble coalescence
and to resolve the problems of strong viscous heating discussed in section 4.6.2. Although the bubble in the
viscous-heating model is smaller than the natural observation, I think that the present calculation results give
the important implication to bubble deformation from the viewpoint of the velocity profile.

Figure 6.11: The calculation results of the viscous-heating model. (a) Bubble radius. (b) Deformation degree
of a bubble staring from ri = 10 m. (c) The radial distribution of D at the fragmentation surface.
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Figure 6.12: The vertical evolution of the capillary number Ca and the timescale of shape relaxation τvisco. (a)
The capillary number of a bubble starting from ri = 10 m. I use 2

3
∂u
∂z as the strain rate of pure shear. (b) The

timescale of shape relaxation of the same bubble as (a). Solid, dashed, and dotted lines are Nb = 1015 m−3,
1013 m−3, and 1011 m−3, respectively.
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Chapter 7

Discussion

7.1 Introduction

The main aim of this thesis, which was noted in the introduction chapter, was to identify the mechanism of
forming tube pumice and estimate strain and strain rate during bubble deformation. By the combination of the
bubble deformation model, the tensile tests, and the conduit flow models, I identify that bubble deformation
during the 1.8 ka Taupo eruption was mainly controlled by the velocity profile across the conduit. Less elongated
bubbles in the Taupo plinian were deformed in the plug-like velocity profile in which pure shear dominates.
Highly elongated bubbles, which will become tube pumice after the fragmentation, reflected the simple shear
deformation during the parabolic velocity profile.

This chapter provides the estimation method of strain and discusses the implications for volcanic phenomena.
Section 7.2 describes the acquired strain during pure shear. In section 7.3, I discuss the importance of viscous
heating in explosive eruptions. Finally, in section 7.4, some implications for the volcanic phenomena are
discussed.

7.2 Strain during pure shear deformation

In this section, I discuss bubble deformation in pure shear flow. Bubble deformation in the Taupo plinian is
tractable as the inverse problem because bubbles inside the conduit flow were deformed in mostly pure shear.

In the following subsections, I first derive the analytical expression of pure shear strain caused by bubble
growth, and then estimate the strain from the distribution of the observed bubble deformation degree D in a
pumice clast. Finally, I explain the meaning of the strain estimated from the bubble shape.
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7.2.1 Analytical study of bubble deformation in pure shear

Here, I derive a strain of pure shear analytically. I assume the conduit flow with a plug-like velocity profile and
no lateral velocity. The velocity gradient in the conduit center Lij can be written as,

Lij =


∂u
∂z 0 0

0 0 0

0 0 0

 . (7.1)

Keep in mind the absence of the horizontal velocity gradient ∂u
∂r = 0. It is decomposed into two components:

Lij = LV ol
ij + Lpure

ij , (7.2)

where

LV ol
ij = γ̇volume


1
3 0 0

0 1
3 0

0 0 1
3

 , γ̇volume =
∂u

∂z
, (7.3)

Lpure
ij = ϵ̇

 1 0 0

0 −1
2 0

0 0 −1
2

 , ϵ̇ =
2

3

∂u

∂z
, (7.4)

where LV ol
ij and Lpure

ij represent the volumetric and extensional deformation rates, respectively, and γ̇volume

and ϵ̇ are the volumetric strain rate and pure shear rate, respectively.

The volumetric strain rate is defined by

γ̇volume =
1

δV

dδV

dt
, (7.5)

where δV is the volume of the liquid-gas mixture. The cumulative volume strain γvolume that a bubble
experiences from time t1 to t2 is

γvolume =

∫ t2

t1

γ̇volumedt, (7.6)

where t is time. Denoting the values of δV and the gas volume fraction at time ti by δVi and ϕi, respectively,
the conservation of liquid volume requires that

δV1(1− ϕ1) = δV2(1− ϕ2). (7.7)

Substituting Eq. (7.5) to Eq. (7.6) and using Eq. (7.7), I can calculate γvolume as

γvolume =

∫ δV2

δV1

dδV

δV
= ln

(
δV2
δV1

)
= ln

(
1− ϕ1
1− ϕ2

)
. (7.8)
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According to Eq. (7.3) and Eq. (7.4), the pure shear strain ϵ is related to γvolume by

ϵ =
2

3
γvolume =

2

3
ln

(
1− ϕ1
1− ϕ2

)
. (7.9)

Fig. 7.1 shows ϵ for ϕ1 = 0 and ϕ2 as a variable ϕ.
For the Taupo eruption, I want to estimate the pure strain from the conduit inlet to the fragmentation surface.

Assuming that the pressure at the inlet is equal to the lithostatic pressure (98 MPa), I set ϕ1 = 0.032 according
to Eq. (4.9). For ϕ2, I use the average vesicularity in the Taupo plinian deposits, that is ϕ2 = 0.788. Then, the
strain is estimated to be ϵ ∼ 1.0.

Figure 7.1: The strain of pure shear as a function of gas volume ratio. For the simplicity, ϕ1 is set to 0.

7.2.2 Estimation of strain from the distribution of D in a pumice clast

In section 2.5, I estimated strain and strain rate from the published data of bubble shapes within an obsidian
clast. Using the similar method, I try to estimate strain from bubble shapes preserved in a pumice clast erupted
from the 1.8 ka Taupo eruption.

Fig. 7.2a shows the typical relationship between bubble deformation degree and bubble radius in pumice
from the Taupo plinian deposit. Using the simulation result of the MJT model, I estimate strain during bubble
deformation. The numerical simulation of bubble deformation in the conduit implied that the bubble in the
Taupo plinian event was mainly deformed by pure shear in the plug-like velocity profile. Fig. 7.2b shows the
temporal evolution for D under a constant pure shear rate. As Ca increases, D depends only on strain ϵ. As
with the case of simple shear, I assume that D − ϵ curves collapses into a single master curve at Ca > 5. By
comparing the deformation limit (D = 0.44) with the master curve, I obtain the pure strain of 0.46. I emphasize
that the estimation of strain does not require the rheology of melt, but uses only the type of shear filed (simple
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or pure shear).
As discussed in Fig. 5.14, small bubbles measured by the low resolution X-ray CT might have been over-

segmented because of the CT noises. Fitting the calculation result of the MJT model to the distribution of D
needs the increase of D in the range of small bubble radius (i.e., small Ca), and thus, I cannot estimate the
strain rate from the bubble shapes in pumice. High resolution computed tomography in a synchrotron radiation
may allow us to measure accurate shapes of small bubbles and estimate strain rate.

Figure 7.2: (a) Degree of bubble deformation D as a function of bubble radius Rb for the pumice clast from
the Taupo plinian event (sample 09_04: Fig. 5.13f). The bubble shapes were measured by the low resolution
X-ray CT. As bubble radius increases, D approaches a maximum value that is much less than 1 (D ≈ 0.44) (b)
Temporal evolution of bubble shape in pure shear flow, calculated by the MJT model. The dependence of D
on Ca becomes negligible for Ca > 5. The strains applied to the sample can therefore be estimated from the
transient curve at Ca = 5.

7.2.3 Meaning of strain estimated from vesicularity or bubble shapes

In the previous sections, I estimated pure shear strain during the Taupo plinian event by two ways. The analytical
estimation based on the vesicularity yielded ϵ = 1.0, and on the other hand, the estimation using the distribution
ofD provided the smaller pure strain of ϵ = 0.46. Here, I discuss the different meanings of the estimated strains
based on the numerical simulation of the conduit flow model.

Fig. 7.3 summarizes the numerical simulation of bubble shape in the Taupo plinian event. A bubble starting
from the conduit center ri = 0 reaches D = 0.41 at the fragmentation surface (Fig. 7.3b). This bubble
deformation degree is very close to that within the natural pumice analyzed in Fig. 7.2a. Although the shear
filed in the conduit cannot be expressed by only pure shear due to the presence of horizontal velocity, I here
conveniently apply ϵ̇ defined for the 1-D flow by Eq. (7.4) and integrate it from the conduit inlet to fragmentation
surface to obtain ϵ. It has a negative value at 0 < z < 2500 m, because ∂u

∂z is negative when the parabolic
velocity profile collapses into a plug shape.

The pure strain as a function of vesicularity (Eq. 7.9) can be considered as ’the maximum strain’ which
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Figure 7.3: (a) Vertical velocity profile of the Taupo plinian event based on the viscous-heating model. (b-e)
Vertical variations for a bubble starting from ri = 0. (b) Deformation degree. (c) Vesicularity. (d) Pure strain.
(e) Capillary number. I use ∂u

∂z as the pure strain rate.

takes account only of magma acceleration. In the lower part (z < 500 m), the shear filed is largely affected
by the transition of the velocity profile, and Eq. (7.9) cannot be used. However, the shear filed in the upper
part (z > 500 m) is composed only of pure shear, and therefore Eq. (7.9) can be used. In the upper part, the
vesicularity increases from ϕ = 0.25 to 0.78. Using Eq. (7.9), I estimate the pure strain acquired in the upper
part:

ϵ =
2

3
ln

(
1− 0.25

1− 0.78

)
= 0.82. (7.10)

The integration of ϵ̇ from z = 500 m to zf gives a similar value of ϵ = 0.81. This result indicates that the
estimation based on vesicularity well reflects the pure shear filed around a bubble.

On the other hand, the pure strain estimated from the distribution ofD within a pumice can be considered as
’the minimum strain’. In Fig. 7.2b, I used theD− ϵ curve under a constant capillary number of Ca = 5, but the
capillary number of a bubble in the conduit varies as the magma ascends in a conduit (Fig. 7.3e). The bubble,
which was deformed in low capillary number (Ca < 5), would be less elongated than that in high capillary
number (Ca ≥ 5). Therefore, the pure strain estimated the distribution of D is smaller than the true strain. In
addition, this estimation method neglects the effects which return an elongated bubble to a spherical one, such
as bubble growth.

We should keep in mind that pure strains estimated by either the vesicularity or the distribution of D have
the different meanings. However, the point is that the pure strains are much smaller than the simple shear strains
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in the parabolic velocity profile (γ ∼ 10 − 1000 in Fig. 4.13g). This information gives us many insights into
the eruption dynamics, such as fragmentation and outgassing. This problem will be discussed in section 7.4.

7.3 Viscous heating in explosive eruption

One of the main conclusions of this thesis is that the bubble shapes in pumice support the occurrence of viscous
heating in the 1.8 ka Taupo eruption. Viscous heating so far has been investigated from numerical, experimental,
and geological approaches.

Most of conduit flow models, which have been developed especially for explosive eruptions, are one
dimensional, assuming a parabolic velocity profile across a conduit. This velocity profile is derived from
the Hagen - Poiseuille solution for a steady flow in a pipe and is only valid for an incompressible fluid with
constant Newtonian viscosity. Because the viscosity of magma strongly depends on its temperature as well as
volatile content and composition, the validity of a parabolic velocity profile needed to be confirmed. Numerical
simulations including temperature-dependent viscosity and viscous heating have shown that the velocity profile
can evolve from parabolic to plug-like with a thermal diffusion layer around conduit walls (Costa and Macedonio,
2002; Barmin et al., 2004; Mastin, 2005; Vedeneeva et al., 2005; Costa et al., 2007; Hale and Mühlhaus, 2007).
The thin low viscosity layer drastically decreases the viscous friction, leading to prevent a steep pressure gradient
just beneath the fragmentation surface. As a result, the given mass discharge rate is achieved with a narrower
conduit with the viscous heating model than with the one-dimensional isothermal model.

Viscous heating has also been investigated by experiments. Using a uniaxial compression apparatus with
natural melt, Hess et al. (2008) and Cordonnier et al. (2012) confirmed that internal viscous dissipation increases
temperature and causes the reduction of viscosity.

Although numerical and experimental studies about viscous dissipation have been performed, there have
been few geological evidences, especially in the case of explosive eruptions. The 1991 eruption of Mount
Pinatubo produced two different pumice types: (1) white pumice (∼ 85 vol%) having higher vesicularity, more
elongated bubbles, and abundant phenocrysts (40 − 50 vol%), (2) gray pumice (∼ 15 vol%) having lower
vesicularity, less elongated bubbles, and broken phenocrysts (15 vol%). Polacci et al. (2001) interpreted that
these pumices were formed in the different regions within the conduit; the white pumice formed in the conduit
center where the temperature and strain rates were lower, whereas the grey pumice formed near the conduit walls
where the temperature and strain rates were higher. Variations of temperature and strain rate were assumed to
be the results of viscous heating. The similar pumices were also found at Quilotoa volcano in Ecuador (Rosi
et al., 2004). An important common feature of the eruptions at Pinatubo and Quilotoa is that original magma
was rich in crystal.

Our study suggests that bubbles preserved in pumices from the Taupo 1.8 ka eruption were deformed in the
viscous heating conduit flow with a plug-like velocity profile. As far as I know, this thesis is the first study to
show bubble deformation as an evidence of viscous heating in an explosive eruption. I have not identified the
pumice that was formed in the thermal layer around the conduit walls. I think finding such pumice in a deposit
is difficult if the thermal layer is very thin (5 cm in the Taupo plinian eruption, Fig. 4.9).
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7.4 Implications for volcanic phenomena

7.4.1 Degassing

Degassing of vesiculated magma, which is defined as the formation of a permeable network through shear
deformation, is a key factor in controlling explosive-effusive transition. Recent experimental studies showed that
the generation of permeable bubble and fracture networks drastically increases magma permeability (Okumura
et al., 2008, 2013; Caricchi et al., 2011; Pistone et al., 2013; Shields et al., 2014). These experiments gave
us the condition of the permeable network as a function of simple shear strain and bubble or crystal fraction.
For example, the torsional experiments by Okumura et al. (2009) demonstrated that bubble-bearing magma
with ϕ > 0.3 increases permeability sharply when simple shear strain exceeds 8. Laumonier et al. (2011)
experimentally showed that degassing occurs in crystal-bearing magma (crystal fraction > 0.5) at lower bubble
contents with ϕ = 0.11 with small simple shear strain (γ = 1.3). In order to compare the experimental
conditions of degassing with the natural settings, simple shear strain in a conduit was calculated based on the
assumption of the Poiseuille flow with a parabolic velocity profile (Okumura et al., 2009).

This thesis showed that a parabolic velocity easily shifts into a plug-like velocity profile by viscous heating,
depending on the conduit radius. If magma ascends in a narrow conduit like the Taupo plinian eruption, the
velocity profile evolves into a plug-like velocity profile. Since most of bubbly magma in the conduit will not
be affected by simple shear, degassing will be localized only in the thermal boundary layer. I speculate that the
localized degassing will not change the eruption style from explosive to effusive.

We emphasize that the estimation of the velocity profile across a conduit plays an important role in the
condition of degassing. The effect of viscous heating around the conduit wall should be investigated in more
detail in the future.

7.4.2 Transition from fall to flow activity

Our simulations showed that bubbles in the Taupo ignimbrite event were more deformed than those in the
Plinian fall due to the significant simple shear effect before the transition to a plug-like flow (Fig. 6.5). The
essential cause of the difference was that I assumed a larger conduit radius for the ignimbrite eruption, which
was necessary to explain the huge mass discharge rate. Fig. 7.4 schematically shows the conduit flows for the
two eruptions.

The transition from fall to flow activity has been focused on in a few decades and has been investigated for
its relationship between bubble texture and lithic content. In the plinian fall deposit of the Minoan eruption, the
stratigraphic increase in the relative abundance of tube pumice was observed toward the interlayered ash flow
(Taddeucci and Wohletz, 2001). This increase of tube pumice was considered as reflecting an increase in shear
stress which was caused by the collapsing of conduit walls. The similar stratigraphic change of bubble texture
was also observed in the pre-ignimbrite fallout eruption associated with the Campanian Ignimbrite eruption
(Polacci et al., 2003). The increased amount of tube pumice is thought to reflect a gradual transition from
fallout to ignimbrite, and it was interpreted as a result of increased erosive activity near the conduit wall, or
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Figure 7.4: Schematic image of a conduit flow for (a) the Taupo plinian event and (b) the Taupo ignimbrite
event. Images of bubble deformations in the parabolic velocity profile, the transition, and the plug-like velocity
profile are shown on the right side.
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a greater conduit area available for shearing. In this fallout deposit, the increase in lithic content toward the
ignimbrite was also found together with the increase of tube pumice (Fig. 7.5), suggesting a change in eruptive
style resulting from enhanced conduit and vent erosion (Rosi et al., 1999).

Figure 7.5: Vertical variation of the components of the Campanian Ignimbrite fall deposit (Rosi et al., 1999,
Fig. 10). (A) Weight percentage of pumice, accidental lithics and crystals. (B) Their relative portion.

In contrast, the Tapopo plinian deposit (unit 5) shows the relatively gradual variation of lithic contents (Fig.
5.11). Although the lithic content in the upper part (> 160 cm) gradually increases to the ignimbrite, I am
not certain whether this lithic increase was related to the onset of ignimbrite formation, because of the small
increment of 5 wt.% compared to the other eruption (20 wt.% in the Campanian Ignimbrite eruption).

The transition from fall to flow event in the Taupo eruption was correlated with the drastic increase in the
discharge rates from 8 × 104 − 2.4 × 105 m3s−1 for the Taupo plinian fall to 3 × 107 m3s−1 for the Taupo
Ignimbrite (Wilson and Walker, 1985). Wilson and Walker (1985) considered that the abrupt transition from fall
to flow was not simply due to gradual vent widening which initiated the collapse of the Taupo plinian column.
They suggested that the high eruption rate during the plinian event caused the fragmentation level of the bubbly
magma to drop, resulting in a major collapse of the vent walls which greatly widened the vent. However, this
idea does not explain the homogeneous vesicularity and bubble texture throughout the plinian fall deposit (Fig.
5.11 and 5.19).
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The reason why the eruption activity drastically changes form fall to flow is not yet elucidated. Perhaps, the
topmost part of the Taupo plinian deposit in the outcrop had been eroded by and/or mixed with the pyroclastic
flow that deposited the subsequent ignimbrite. However, the transition of eruptive behaviour seems to be related
to the drastic change in the conduit flow. In this thesis, I theoretically associated the abundance of tube pumice
in the Taupo ignimbrite with the conduit enlargement.

7.4.3 Future works

The bubble deformation model in chapter 2 can calculate the large transient deformation in an arbitrary velocity
field. The application of the developed model is not restricted to bubbles in pumice but will be extended to
other volcanic products.

As shown in section 2.5, I applied the model to the bubbles in obsidians and estimated strain and flow time.
The formation mechanism of obsidian is not well understood (Rust et al., 2003; Rust and Cashman, 2007). The
information concerning strain and flow time during bubble deformation will contribute to the elucidation of the
formation mechanism of obsidian. The bubble deformation model can also be applicable to bubbles in lava.
Contrary to previous studies (Coward, 1980; Polacci et al., 1999), the developed method in chapter 2 has the
merit to estimate both strain and strain rate. The information of the shear field of lava will be helpful to clarify
the emplacement process and the pahoehoe-′a′a transition.

Several features are not incorporated into my study that could strongly influence the discussion about tube
pumice. First, the conduit model I used is fundamental, leading to the discrepancy between the measured and
calculated bubble shapes. The update in the viscous-heating model is required to simulate bubble deformation
precisely. In addition, the parameter study for the conduit flow is needed to investigate the discrepancy between
the natural observation and the numerical simulation (Fig. 6.1).

Second, the initial velocity pressure should be investigated extensively. In this thesis, the parabolic velocity
profile is assumed at the conduit inlet. I think that the assumption of the parabolic shape is basically reasonable
because viscous-heating is weak in the shallower part. An incompressible flow with a constant viscosity is
known to have a parabolic velocity profile. Regardless of the velocity profile at the conduit inlet, it transitions
to a parabolic shape after a short rise. The velocity profile at the inlet can be determined by the geometry of
the conduit and the magma chamber, which are not well understood now. The parametric study of the initial
velocity profile is required for further study.

Third, I explain bubble shape mainly by deformation of a single bubble, assuming that the effect of bubble
interaction can be conveniently neglected by focusing on the average bubble shape. Although the extension test
showed the validity of the assumption, it is expected that bubble interactions, including bubble coalescence,
vary depending on the type of shear fields (simple vs. pure shear). Simple shear experiments in the wide range
of the bubble fraction and the capillary number are needed for further investigation about bubble interaction.

Finally, due to the low spatial resolution of X-ray CT, I could not measure the shape of small bubbles, which
are necessary to estimate the strain rate by fitting the theoretical deformation curve. High-resolution X-ray CT
in a synchrotron (e.g., Spring8) is required to resolute thin glass walls and measure small bubbles.
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Chapter 8

Conclusion

Bubble shape in pumice has been thought to be related to the movement of magma under the fragmentation. The
velocity profile of the bubbly flow controls several essential eruption processes, such as degassing and brittle
fragmentation. Therefore it is important to explore the possible link between bubble shape preserved in pumice
and the velocity profile.

Toward the goal, four different approaches were combined in this study. First, we developed a bubble
deformation model by modifying the empirical functions of a deformation model for a liquid droplet proposed
by Jackson and Tucker (2003). The new model enables us to calculate the large transient deformation of a single
bubble in an arbitrary velocity field.

Second, extension tests with polyurethane foam were performed to comprehend the effect of bubble inter-
action on its shape. The experimental results indicate that the deformation model of a single bubble can be
extended to the average deformation of multiple bubbles (ϕ ≈ 0.6) at least in the range of pure shear strain in
the experiments (ϵ < 1.5). This information gives the validity of comparing the average shape of bubbles in
pumice with the numerical simulation in a conduit flow.

Third, we calculate the deformation of a bubble in a conduit flow of the 1.8 ka Taupo eruption by applying
the bubble deformation model to the quasi-two-dimensional conduit flow model based on Barmin et al. (2004).
The simulation results showed that the bubble shape at the fragmentation surface greatly depends on the velocity
profile across the conduit. In the Newtonian isothermal model, the parabolic velocity profile kept up to the
fragmentation surface. Bubble deformation was dominated mainly by simple shear, and highly elongated
bubbles (D > 0.8) were produced. In the viscous-heating model, the velocity profile changed from a parabolic
to a plug-like shape just above the conduit inlet, because the intense viscous-heating caused a drastic reduction
in viscosity around the conduit walls. Bubbles in the plug-like velocity profile were deformed by pure shear,
resulting in less elongated shape at the fragmentation surface (D ≈ 0.4).

Finally, I compared the model results with the natural bubble textures in pumice of the 1.8 ka Taupo eruption
in order to discuss the velocity profile of the conduit flow. Bubble shapes in pumices from two plinian eruptions
and an ignimbrite were measured by a digital stereo microscope and an X-ray CT scanner. The comparison
suggests that the velocity profile at the Taupo plinian eruption was close to a plug-like shape rather than a
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parabolic shape. Assuming that the conduit flow was affected by viscous-heating, I simulated the bubble
deformation in the Taupo ignimbrite eruption. The geological feature that tube pumice increased from the
plinian to the ignimbrite eruption was explained by the transition depth at which the velocity profile changed
from parabolic to plug-like. Large conduit radius in the ignimbrite eruption weakened viscous-heating, resulting
in shallowing the transition depth.

We recognize that there are still some problems which should be solved in the feature. However, I emphasize
that this thesis will be helpful in connecting natural bubble textures with the dynamics of explosive eruption.
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Appendix A

Full expression of D∗surf
ij , D∗slender

ij , and
D∗axi
ij

This section describes the abbreviated terms in L∗Eshelby
ij and L∗Slender

ij (Eqs. 2.9 and 2.10). First, we explain
the rate of the deformation tensor for an ellipsoidal bubble retractionD∗surf

ij , which Jackson and Tucker (2003)
define as

D∗surf
ij = − 2qγ̇

πCa
(BijmnSmnkl)P

′
kl, (A.1)

where q is a scalar factor that was introduced to explain the recirculating motion within a droplet, and the
value of q is set to 5

2 with the assumption that the stress due to the recirculating motion is negligible; Sijkl is
the Eshelby tensor for an incompressible material, which is a function of the ellipsoid axis ratios (Wetzel and
Tucker, 2001); and P ′

ij is the deviatoric part of the tensor Pij :

P ′
ij = Pij −

1

3
tr(Pij). (A.2)

Representing Pij on the coordinate along the main axes of the ellipsoid is calculated as P̂ij

P̂ij =


Rb
c E

(
1− c2

b2

)
0 0

0 Rb
a E

(
1− a2

c2

)
0

0 0 Rb
b E

(
1− b2

a2

)
 , (A.3)

where E() is the complete elliptic integral of the second kind. Each of the diagonal components of P̂ij is a
quarter of the length of the perimeter of a cross-section of the ellipsoid in a plane consisting of two of the main
axes. Therefore, P ′

ij represents the deviation of the ellipsoid from a sphere, and D∗surf
ij represents the rate of

deformation of an elongate bubble returning to a spherical shape under the influence of surface tension.
Second, we illustrate the rate of the deformation tensor causing the elongation of a slender bubble D̂∗slender

ij .
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This tensor is adapted from the work of Khakhar and Ottino (1986), who derived the evolution equation for the
long axis of a droplet. Jackson and Tucker (2003) transformed their equation into the rate of the deformation
tensor, assuming a constant volume of the droplet during deformation. Therefore, D̂∗slender

ij is

D̂∗slender
ij =

[
D∞

ij mimj −
γ̇

2
√
5Ca

√
a/Rb

1 + 0.8λ(a/Rb)3

] 1 0 0

0 −1
2 0

0 0 −1
2

 . (A.4)

Third, we explain the rate of the deformation tensor representing cross-sectional relaxation due to surface
tension D̂∗axi

ij . This tensor is defined as follows (Sarkar and Schowalter, 2001):

D̂∗axi
ij =

4Rb

3raxi

γ̇

Ca(1 + λ)

(
1− raxi

b

) 0 0 0

0 −1 0

0 0 1

 , (A.5)

where raxi =
√
bc is the radius of the droplet’s cross-section. This tensor forces the slender-body shape to be

axisymmetric. The above tensors on the ellipsoid axes, P̂ij , D̂∗slender
ij , and D̂∗axi

ij , must be transformed into
the spatial coordinate axes before they are used in Eqs. (A.2) or (2.10). Note that D∗surf

ij , D∗slender
ij , and

D∗axi
ij are all proportional to γ̇/Ca and that these tensors include the dimensionless parameters λ and the shape

parameters.

– 152 –



Appendix B

Mean field approach

The velocity gradient tensor of Eq. (2.35) expresses bubbles growth in the fluid which is assumed to be
incompressible. Strictly speaking, this assumption is valid only for a small volume of bubble. It is known that
the fluid containing bubbles behaves as a compressible fluid (Prud’homme and Bird, 1978). The difference of
bubble growth between incompressible and compressible fluids should be investigated.

The constitutive equation for the compressible fluid is given by

σij = −pδij + χϵ̇kk + 2η

(
ϵ̇ij −

1

3
ϵ̇kkδij

)
, (B.1)

where p is the pressure, χ is the second viscosity (the dilatational viscosity), ϵ̇ij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
is the strain

rate tensor where ui is the velocity vector, and η is the shear viscosity. The pressure can be defined as

p = p0 − kϵkk, (B.2)

where k is the bulk modulus of the fluid, determined by the equation of state (k = ρ∂p
∂ρ ) and p0 is the reference

pressure at which the zero volumetric strain is defined. I omit p0 below because we can eliminate it by subtracting
it from both pressures in the liquid and in the inclusion.

The constitutive equation for the compressible fluid is clearly different from that for the elastic medium
(Eq. 2.29). The Eshelby theory with the strain replaced by the strain rate can not be directly applied to the
dilatation of an inclusion in compressible fluid. Previous studies have applied the Eshelby theory to inclusion
problems in viscous fluid for two cases.The first is with an incompressible fluid, which has an infinite bulk
modulus (k → ∞) and thus zero volumetric strain (ϵkk = 0) (Eshelby, 1957; Bilby et al., 1975). As shown in
section 2.3.2, the Eshelby theory can be extended to an inclusion in the incompressible fluid. The second is
for a mixture consisting of an incompressible fluid and empty voids (Taya and Seidel, 1981; Budiansky et al.,
1982). This mixture can be considered as an effective compressible fluid. Since the voids have zero pressure,
the volume change of the mixture, that is the volume change of the voids, does not recover. In other word, the
bulk modulus of the effective fluid is zero. From Eq. (B.2), the pressure change of the effective medium is zero.
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Then, constitutive equation for the compressible fluid becomes

σij = χeϵ̇kk + 2ηe
(
ϵ̇ij −

1

3
ϵ̇kkδij

)
, (B.3)

where χe and ηe are the effective second viscosity and shear viscosity, respectively. Eq. (B.3) is comparable
with the constitutive equation for the compressible elastic medium by replacing ϵ̇ij by ϵij , and thus the Eshelby
theory can be applied.

As the gas-liquid mixture has a finite bulk modulus, the Eshelby theory can not be applied to bubble growth
in it. However, the solution with a finite compressibility is expected to lie between those of the inclusion
embedded in an incompressible fluid (k → ∞) and in a perfectly compressible fluid (k → 0). I have presented
the former problem in the main text. Here I show the solution for the latter.

The parameter corresponding to the Poisson’s ratio of an elastic medium is denoted by νe, which is calculated
by replacing the bulk modulus and the rigidity by χe and ηe. The effective shear viscosity ηe can be calculated
by two methods. First, assuming that the fluid surrounding an inclusion is an isotropic homogeneous mixture
with spherical inclusions, Taya and Seidel (1981) gives χe and ηe as follows:

χe =
4η (1− ϕ)

3ϕ
, (B.4)

ηe = 1 + η

(
5ϕ

3 (1− ϕ)

)
, (B.5)

where ϕ is the volume fraction of voids and η is the viscosity of matrix phase. In this method, the effective shear
viscosity increases with ϕ because the effective mixture is deformed by simple shear. The distorted stream lines
around spherical inclusions increase the effective viscosity. The parameter corresponding to the Poisson’s ratio
is written as

νe =
3χe − 2ηe

6χe + 2ηe
=

2α− 1

4α+ 1
, (B.6)

α =
1− ϕ

ϕ
(
1 + 5

3
ϕ

1−ϕ

) . (B.7)

The equivalent of Poisson’s ratio, νe, becomes 1/2 when ϕ = 0.

Second, by using a cell model, Prud’homme and Bird (1978) and Prousevitch et al. (1993) calculate the
growth rate of a bubble in a cell and derive χe and ηe as follows:

χe =
4η (1− ϕ)

3ϕ
(B.8)

ηe = η (1− ϕ) , (B.9)

In this method, the effective shear viscosity decreases with ϕ because the dissipation layer around a bubble
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becomes thin. The parameter corresponding to the Poisson’s ratio is written as

νe =
2− ϕ

4 + ϕ
. (B.10)

Although the different ηe is derived in Eqs. (B.5) and (B.9), it is a difficult problem which definition should
be used for the the calculation for νe. Here, I calculate the Eshelby tensor from both ηe and obtain the strain rate
from Eq. (2.34). Fig. B.1 compares the expansion rate of an ellipsoid in an incompressible fluid (ϕ = 0, which
is equivalent with k = ∞) and that in a perfectly compressible fluid (k = 0) with various νe. As ϕ increases,
the strain rate perpendicular to the major axis increases but only slightly. The difference between the definition
of ηe is slight in Fig. B.1a and b. Thus, I conclude that the effect of compressibility is minor.

Figure B.1: Relationships between the strain rates and the cavity shapes as a function of the void fraction of
cavity. (a) The effective shear viscosity is from Eq. (B.5). (b) The effective shear viscosity is from Eq. (B.9).
The solid and dashed line indicate ϵ̇1 = ȧ

a and ϵ̇2 = ḃ
b , respectively. The cavity is assumed to be a prolate shape

(b = c). The non-dimensional volume rate is V̇
V = 0.01. When ϕ = 0, the obtained strain rates are equal to

those of a growing bubble in an incompressible fluid.
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Appendix C

Image processing of solidified foam

C.1 Image analysis

Image analysis was performed with a commercial 3D image processing software (Simpleware, Synopsys). The
analysis procedure is summarized as follows. All procedures were performed in three dimensions.

First of all, raw image data obtained by a micro X-ray CT scanner was imported into Simpleware. We
selected the part of the sample that has been uniformly stretched (the red rectangle in Fig. C.1a), and cropped
the part manually (Fig. C.1b). The grayscale images were converted into binary images by thresholding (Fig.
C.1c). The threshold value was slightly changed for each sample, depending on the noise level. This binarization
procedure distinguishes the air part (blue) and the solid matrix (green) in Fig. C.1c.

Next, we want to extract bubbles (the air part within the foam). We made a mask covering only inside the
foam (the green mask in Fig. C.1d). For this, we first eliminated the bubbles on the foam surface by applying a
closing procedure to the green part in Fig. C.1c. The closing procedure consists of a volume dilatation followed
by a volume erosion. We repeated it several times until small pores on the surface disappeared. Then, we filled
the internal pores using one of the software functions. By selecting the common parts between the blue mask
in Fig. C.1c and the green one in Fig. C.1d, I obtained the bubbles in the foam (Fig. C.1e).

Almost all the voxels belonging to the obtained blue mask in Fig. C.1e are connected in three dimensions.
Before measuring bubble shapes, I needed to separate the connected bubbles. The segmentation of connected
bubbles was achieved by the opening procedure followed by watershed segmentation. The opening procedure is
the opposite of the closing, that is a volume erosion followed by a volume dilation. This procedure is supposed
to separate impinging bubbles (Fig. C.1f). Automatic separation of connected bubbles is the most challenging
part of three-dimensional image analysis, and several methods have been proposed Dingwell et al. (2016);
Giachetti et al. (2011). Here, I used a watershed segmentation. Fig. F.1 shows the example of the watershed
segmentation. For the simplicity, I here explain in two dimensions. Connected bubbles are shown in Fig. F.1a.
The watershed procedure first calculates the distance map from the binary image (Fig. F.1b). Each pixel in
the bubbles (black mask) is replaced with a grayscale pixel which expresses the distance to the nearest solid
medium pixel (white mask). The watershed procedure also finds the local maxima of the distance map that
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are the farthest points from the surrounding solid medium. The local maxima are then dilated individually as
distinguished by different colors in Fig. F.1c until their edges reach the bubble wall (white pixels) or a region of
a neighbor bubble (an area with any different color). Watershed segmentation works well for spherical bubbles
which do not overlap too much.

The result of three-dimensional watershed is shown in Fig. C.1g. The connected bubbles were separated into
individual bubbles effectively. Because of the ellipsoidal shape of a bubble, watershed segmentation sometimes
resulted in over-segmentation (Fig. C.1e). Over-segmented bubbles were merged manually.

The semi-major and semi-minor axes of a bubble were obtained by fitting the bubble by an optimally oriented
rectangular that accommodates the bubble. The present study analyzed only bubbles with voxel numbers ≥ 100,
because small bubbles were sometimes incorrectly measured.

C.2 Error related to the image processing

Error related to the image processing depends on bubble shape. It is easy to separate less elongated bubbles
whose individual bubble is an ideal ellipsoidal shape. However, it is challenging to separate highly elongated
bubbles. In order to evaluate the validity of watershed segmentation to those bubbles, I carried out a test, using
the data of T19010703 that had the most elongated bubbles.

We compare the bubble shape obtained by watershed with the one traced manually by eye. Fig. C.3a is the
original grayscale image and Fig. C.3b is the cross-section of separated bubbles after watershed segmentation.
The watershed segmentation was performed in three dimensions. In order to accurately measure the shape of a
bubble, I omitted bubbles contacting the upper and lower boundaries. The watershed segmentation could not
wholly avoid making some artificial walls (see the white allow on Fig. C.3b). In Fig. C.3c, I traced bubble
walls manually by eye. This manual reconstruction was performed in two dimensions. Based on the image of
Fig. C.3c, each bubble was colored in Fig. C.3d.

Here, bubble shapes were obtained by fitting a two-dimensional ellipse to each bubble. The histograms of
D for the images segmented by the automatic watershed and the manual drawing are shown in Fig. C.4. The
two histograms show similar distributions, though the number of elongated bubbles (i.e., large D) in the image
by manual drawing is slightly larger than that by the watershed segmentation. The average deformation degree
is 0.45 for the automatic watershed segmentation and 0.50 for the manual drawing. The cumulative frequency
curve of the watershed segmentation is shifted from that of the manual drawing to the low value of D with the
maximum difference of 0.1 when the cumulative frequency reaches 0.6 (Fig. C.5).

This error estimation indicates that the watershed segmentation produces less elongated bubbles than the
drawing walls manually. The difference of D between the two approaches is at most 0.1 in this sample
(T19010703), which contains the most elongated and distorted bubbles of all our experimental samples. Most
of our samples contain nearly ideal ellipsoidal bubbles (Fig. 4 in the main text), which are separated by the
watershed segmentation more successfully like Fig. S1g in the supplement and Fig. 2b in the main text.
Therefore, I regard that the errors in the estimation of D for those samples are smaller than 0.1.
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Figure C.1: Image analysis of T19011412. (a) Original raw image. Red square indicates the cropped area.
(b) Cropped grayscale image. (c) Binarized image. Blue and green masks indicate air and solid medium,
respectively. (d) The green area is the mask covering the inside foam. (e) The blue area is the mask covering
the inside connected bubbles. (f) Bubbles after opening procedure. (g) Separated bubbles after watershed
segmentation. Adjacent bubbles with different colors indicate that the bubbles are recognized as different
bubbles (i.e., separated bubbles). (h) Over-segmented bubble.
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Figure C.2: (a) Original binary image. The black mask indicates bubbles, while the white pixels are the
surrounding medium. (b) Distance map. Grayscale value of a pixel represents the distance from the nearest
pixel of the surrounding medium. (c) Segmented bubbles after the watershed segmentation.

– 160 –



APPENDIX C. IMAGE PROCESSING OF SOLIDIFIED FOAM

Figure C.3: Examples of bubble segmentation of sample T19010703. (a) Original grayscale image. (b) Sepa-
rated bubbles after watershed segmentation. The watershed segmentation was performed in three dimensions.
Adjacent bubbles with different colors indicate that the bubbles are recognized as different bubbles. (c) Glass
walls traced manually by eye. (d) Colored bubbles of the image c. In image b and d, bubbles contacting the
upper and lower boundaries are omitted.
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Figure C.4: The histogram of D. (a) The histogram based on the image after watershed segmentation (Fig.
C.3b). (b) The histogram based on the image obtained by drawing glass walls manually (Fig. C.3d).

Figure C.5: The cumulative frequency distribution of the deformation degrees for the images after the watershed
segmentation (blue line) and after the drawing glass walls manually (red line). The maximum difference of D
between watershed segmentation and manual drawing is about 0.1 when the cumulative frequency reaches 0.6.
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Appendix D

Conduit flow model

D.1 Derivation of the basic equations

First of all, we derive the dimensional equations of the viscous-heating model, and then simplify the equations.
The following derivations of the basic equations are based on Barmin et al. (2004) and Vedeneeva (2007a).

D.1.1 Dimensional complete equations in the bubbly flow region

The basic equations before fragmentation are two-dimensional and axisymmetric. The complete equations
describing the conduit flow is composed of the continuity equation, the momentum equations, and the energy
equation. In the vector form, these equations are given by the following form (Bird et al., 2007):

∂ρ

∂t
+ div(ρv) = 0, (D.1)

∂(ρv)

∂t
+ div(ρvv) = −∇p+ div τ + ρg, (D.2)

∂(ρe)

∂t
+ div(ρev) = −p div v + (τ : L)− div(κ∇T ). (D.3)

Here, ρ is the density, v is the velocity vector, p is the pressure, τ is the viscous stress tensor, g is the gravitational
acceleration, e is the internal energy density, L is the velocity gradient tensor, κ is the thermal conductivity,
and T is the temperature. The colon (:) represents the inner product of two second-order tensors.

The cylindrical coordinate is defined as (z, r, θ), where z is the elevation, r is the radial distance from the
conduit center, and θ is the azimuth. The corresponding velocity components are defined by v = (u,w, 0),
and those of the gravitational acceleration are by g = (−g, 0, 0) with g > 0. I will consider a steady-state
two-dimensional axisymmetric magma flow in a cylindrical conduit. The flow is assumed to be steady ( ∂

∂t = 0)
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and axisymmetric ( ∂
∂θ = 0). Then, Eqs. (D.1)-(D.3) are rewritten as

1

r

∂

∂r
(rρw) +

∂

∂z
(ρu) = 0, (D.4)

1

r

∂

∂r
(rρw2) +

∂

∂z
(ρuw) = −∂p

∂r
+

[
1

r

∂

∂r
(rτrr) +

∂τzr
∂z

− τθθ
r

]
, (D.5)

1

r

∂

∂r
(rρuw) +

∂

∂z
(ρu2) = −∂p

∂z
+

[
1

r

∂

∂r
(rτrz) +

∂τzz
∂z

]
− ρg, (D.6)

1

r

∂

∂r
(rρwe) +

∂

∂z
(ρve) = −p div v + τzzLzz + τrrLrr + τθθLθθ + τzrLzr

+τrzLrz +
1

r

∂

∂r

(
rκ
∂T

∂r

)
+

∂

∂z

(
κ
∂T

∂z

)
. (D.7)

In the axisymmetric flow, the velocity gradient tensor can be written as

L =


Lzz Lzr 0

Lrz Lrr 0

0 0 Lθθ

 =


∂u
∂z

∂w
∂z 0

∂u
∂r

∂w
∂r 0

0 0 w
r

 . (D.8)

The viscous stress tensor is also written as

τ =

(
χ− 2

3
η

)
(div v)δ + η

(
L+L⊤

)

=


(
χ− 2

3η
)
div v + 2η ∂u

∂z η
(
∂u
∂r + ∂w

∂z

)
0

η
(
∂u
∂r + ∂w

∂z

) (
χ− 2

3η
)
div v + 2η ∂w

∂r 0

0 0
(
χ− 2

3η
)
div v + 2ηw

r

 , (D.9)

where χ is the dilatational viscosity, and δ is the unit tensor.

The divergence of the axisymmetric flow is given by

div v =
1

r

∂

∂r
(rw) +

∂u

∂z
. (D.10)
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Using Eqs. (D.4)-(D.7), the basic equations of Eqs. (D.1)-(D.3) are re-written as

1

r

∂

∂r
(rρw) +

∂

∂z
(ρu) = 0, (D.11)

1

r

∂

∂r
(rρuw) +

∂

∂z
(ρu2) = −∂p

∂z
+

1

r

∂

∂r

[
rη

(
∂u

∂r
+
∂w

∂z

)]
+
∂

∂z

[(
χ− 2

3
η

)
div v + 2η

∂u

∂z

]
− ρg, (D.12)

1

r

∂

∂r
(rρw2) +

∂

∂z
(ρwu) = −∂p

∂r
+

∂

∂r

[(
χ− 2

3
η

)
div v

]
+ 2

1
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∂

∂r

(
rη
∂w

∂r

)
− 2

1

r2
ηw

+
∂

∂z

[
η

(
∂u

∂r
+
∂w

∂z

)]
, (D.13)

1

r

∂

∂r
(rρwe) +

∂

∂z
(ρue) = −p divv +
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χ− 2

3
η

)
(div v)2

+η

[
2

(
∂w

∂r

)2

+ 2
w2
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+ 2

(
∂u

∂z

)2

+

(
∂u

∂r
+
∂w

∂z
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+
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∂

∂r

(
rκ
∂T

∂r

)
+

∂

∂z

(
κ
∂T

∂z

)
. (D.14)

Density, Internal energy, and Viscosity

The magma density ρ satisfies the following relation:

ρ = (1− ϕ)ρm + ϕρg, (D.15)

where ρm is the melt density, ρg is the density of the gas phase, and ϕ is the volume fraction of gas bubbles in
magma.

The mass conservations of the gas component and the other melt components are individually,

ρmc
1− ϕ

ρ
+ ρg

ϕ

ρ
= cmax, (D.16)

ρm (1− c)
1− ϕ

ρ
= 1− cmax, (D.17)

where c is the weight fraction of the gas dissolved in the melt and cmax is the maximum weight fraction of the
gas dissolved in the melt when bubbles nucleated.

From Eqs. (D.16 and D.17), the magma density and the gas volume fraction can be written as

1

ρ
=

1− cmax

1− c

1

ρm
+
cmax − c

1− c

1

ρg
, (D.18)

1

ϕ
= 1 +

1− cmax

cmax − c

ρg
ρm

, (D.19)
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Using α(p) = cmax−c
1−c , Eq. (D.18) can be rewritten as

1

ρ
=

1− α(p)

ρm
+
α(p)

ρg
. (D.20)

The above equation implies that α(p) is the weight fraction of the gas phase in magma.

The melt phase of magma is assumed to be incompressible, while the gas phase follows the ideal gas law. I
do not take account of the kinetics of bubble growth and the weight fraction c is assumed to be determined from
the equilibrium solubility law for H2O in magma (Liu et al., 2005). These assumptions are represented by

ρm = const, ρg =
p

RgT
, c = c(p) = min(Cf

√
p, cmax), (D.21)

where Rg is the gas constant and Cf is the solubility coefficient.

The internal energy per unit volume is given in the form of

e = cV T, (D.22)

where cV is the specific heat capacity. Considering that the temperature of the melt and gas phase is uniform,
the internal energy of magma is given by

ρe = [ρm(1− ϕ)cV m + ρgϕcV g]T, (D.23)

where cV m and cV g are the specific heat capacity of the melt and gas phase, respectively. The substitution of
Eq. (D.18) and (D.19) into Eq. (D.23) yields

e =

(
1− cmax

1− c
cV m +

cmax − c

1− c
cV g

)
T. (D.24)

The shear viscosity is from the empirical model of Hess and Dingwell (1996)

η(c, T ) = 10A(c, T ),

A(c, T ) = 0.291 + 0.833ln(c)− 1304 + 2368 ln(c)

T − (344.2 + 32.25 ln(c))
. (D.25)

Boundary condition

The conduit length L and its radius R are fixed. At the entrance of the conduit, the velocity profile of the flow
is parabolic, and the temperature is uniform throughout the conduit section

z = 0 : w(r, 0) = 0, u(r, 0) = 2ua0

(
1−

( r
R

)2)
, T (r, 0) = T0, (D.26)
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where ua0 is the flow velocity averaged by the conduit section at the entrance and, T0 is the initial magma
temperature. From the conservation of mass, ua0 can be written as a function of the mass discharge rate
Qm = 2π

∫ R
0 ρ(r, z)u(r, z)rdr:

ua0 =
Qm

4π
∫ R
0 ρ(r, 0)

(
1−

(
r
R

)2)
rdr

. (D.27)

The boundary conditions at the axis on the conduit are defined by the absence of fluxes

r = 0 : w(0, z) = 0,
∂u

∂r
(0, z) = 0,

∂p

∂r
(0, z) = 0,

∂T

∂r
(0, z) = 0. (D.28)

On the conduit wall, I assume a no-slip condition for the velocity and an isothermal condition for the temperature,
that is

r = R : w(R, z) = 0, u(R, z) = 0, T (R, z) = T0. (D.29)

D.1.2 Dimensional equations in the gas-particle region

After fragmentation, the flow is turbulent. I deal with it as a one dimensional flow, that is v = (u, 0, 0).
Because the flow is mainly held by gas, I neglect the viscous resistance. I also assume that the temperature of
the flow is equal to the initial magma temperature T0 because the viscous-heating in the bubbly flow increases
the temperature only in a very thin layer near the conduit walls and has only a minor contribution to the entire
internal energy, which is shown in the result section. With these assumptions, the conservation equations
(D.4)-(D.7) are simplified for the gas-particle region as

πR2 (ρgϕ+ ρm(1− ϕ))u = Qm, (D.30)
dp

dz
= −ρudu

dz
− ρg, (D.31)

T = T0. (D.32)

The density and gas volume fraction are calculated from the same equations as the bubbly flow region (Eqs.
D.18-D.21).

D.1.3 Dimensionless equations in the bubbly region

As a reference of dimensional values, following values are introduced

u0 = 1 [m/s], p0 = ρmgL+ pout [Pa], η0 = η(c(p0, T0), T0) [Pa · s]. (D.33)

where pout is the pressure at the conduit outlet. Following Barmin et al. (2004), I set u0 to a constant value in
order to regard the non-dimensional mass discharge rate as a variable.
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Hereafter, dimensional values are indicated by an overscript .̃ Non-dimensional values, which have no
subscripts, are obtained by the following equations:

r =
r̃

R̃
, z =

z̃

R̃
, L =

L̃

R̃
, ζ =

1

L

w =
w̃

ũ0
, u =

ũ

ũ0
, ua0 =

ũa0
ũ0

,

ρ =
ρ̃

ρ̃m
, ρg =

ρ̃g
ρ̃m

, Qm =
Q̃m

ρ̃mũ0R̃2
,

p =
p̃

p̃0
, pout =

p̃out
p̃0

, T =
T̃ − T̃0

T̃0
,

cV g =
c̃V g

c̃V m
, e =

ẽ

c̃V mT̃0
,

η =
η̃

η̃0
,

(
χ̃− 2

3
η̃

)
=

(
χ̃− 2

3 η̃
)

η̃0
. (D.34)

Keep in mind that the dimensional temperature is replaced by the magma temperature increment with respect
to the initial temperature at the conduit inlet. Using Eq. (D.34), I rewrite equations Eqs. (D.11)-(D.29)
in non-dimensional forms following the representation by Vedeneeva (2007b) but with some modification to
present the physical meaning clearer.

– 168 –



APPENDIX D. CONDUIT FLOW MODEL

1

r

∂

∂r
(rρw) +

∂

∂z
(ρu) = 0, (D.35)

1

r

∂

∂r
(rρuw) +

∂

∂z
(ρu2) = − 1

2Eu−1

∂p

∂z
+

1

Re

1

r

∂

∂r

[
rη

(
∂u

∂r
+
∂w

∂z

)]
+

1

Re

∂

∂z

[(
χ− 2

3
η

)
div v + 2η

∂u

∂z

]
− 1

Fr2
ρ, (D.36)

1

r

∂

∂r
(rρw2) +

∂

∂z
(ρwu) = − 1

2Eu−1

∂p

∂r
+

1

Re

∂

∂r

[(
χ− 2

3
η

)
div v

]
+

2

Re

1

r

∂

∂r

(
rη
∂w

∂r

)
− 2

Re

1

r2
ηw +

1

Re

∂

∂z

[
η

(
∂u

∂r
+
∂w

∂z

)]
, (D.37)

1

r

∂

∂r
(rρwe) +

∂

∂z
(ρue) = − Ec

2Eu−1
p divv +

Ec

Re

(
χ− 2

3
η

)
(div v)2

+
Ec

Re
η

[
2

(
∂w

∂r

)2

+ 2
w2

r2
+ 2

(
∂u

∂z

)2

+

(
∂u

∂r
+
∂w

∂z

)2
]

+
1

Pe

1

r

∂

∂r

(
r
∂T

∂r

)
+

1

Pe

∂

∂z

(
∂T

∂z

)
, (D.38)

div v =
1

r

∂

∂r
(rw) +

∂u

∂z
, (D.39)

1

ρ
=

1− cmax

1− c
+
cmax − c

1− c

1

ρg
, ρg = ρg0

p

T + 1
, (D.40)

1

ϕ
= 1 +

1− cmax

cmax − c
ρg, (D.41)

e = ψ(p)(T + 1), ψ(p) =
1− cmax

1− c
+
cmax − c

1− c
cV g, (D.42)

c = c(p) = min(c0
√
p, cmax). (D.43)

Non-dimensional constant values are defined by

Re =
ρ̃mũ0R̃

η̃0
, F r =

ũ0√
g̃R̃

, Ec =
ũ20

c̃V mT̃0
, Eu−1 =

ρ̃mũ
2
0/2

p̃0
, P e =

ρ̃mũ0R̃c̃V m

κ̃
,

ρg0 =
p̃0

ρ̃mR̃gT̃0
, c0 = C̃f

√
p̃0. (D.44)

Re is the ratio of the inertia force to the viscous force. Fr and Ec compare the kinetic energy with the
gravitational potential energy and thermal energy, respectively. Eu−1 compares the dynamic pressure due to
the fluid inertia to the pressure. In the flow below the fragmentation surface, not only Re but also Fr, Ec, and
Eu−1 are considered to be very small. Therefore, I neglect the left-hand side of the momentum equations (Eqs.
D.36 and D.37).
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Boundary condition of Eqs. (D.26)-(D.29) are also non-dimensionalized

z = 0 : w(r, 0) = 0, u(r, 0) = 2ua0
(
1− r2

)
, T (r, 0) = 0, ua0 =

Qm

4π
∫ 1
0 ρ(r, 0) (1− r2) rdr

.

r = 0 : w(0, z) = 0,
∂u

∂r
(0, z) = 0,

∂p

∂r
(0, z) = 0,

∂T

∂r
(0, z) = 0. (D.45)

r = 1 : w(1, z) = 0, u(1, z) = 0, T (1, z) = 0.

D.1.4 Simplification of the basic equations

Vedeneeva (2007a) and Vedeneeva (2007b) further simplified the basic equations of Eqs. (D.35)-(D.43) with
the assumption that the conduit length is much greater than its radius (ζ = 1/L ≪ 1). This assumption is
reasonable for typical explosive eruptions.

The length scale along the axis is rescaled as z′′ = ζz so that z′′ has a scale of O(1). As r and u are
also in order O(1), the mass conservation equation (Eq. D.35) requires that w ∼ O(ζ). Then, I also rescale
w as w′′ = w/ζ with w′′ having a scale of O(1). The differential equations (D.35)-(D.43) are written as the
following equations.

1

r

∂

∂r

(
rρw′′)+ ∂

∂z′′
(ρu) = 0, (D.46)

0 = −ζ 1

2Eu−1

∂p

∂z′′
+

1

Re

1

r

∂

∂r

(
rη
∂u

∂r

)
︸ ︷︷ ︸

F1

+ζ2
1

Re

[
1

r

∂

∂r

(
∂w′′

∂z′′

)
+

∂

∂z′′

((
χ− 2

3
η

)
div′′ v + 2η

∂u

∂z′′

)]
− 1

Fr2
ρ, (D.47)

0 = − 1

2Eu−1

∂p

∂r
+ ζ

1

Re

[
∂

∂r
(

(
χ− 2

3
η

)
div′′ v) + 2

1

r

∂

∂r

(
rη
∂w′′

∂r

)
− 2

1

r2
ηw′′ +

∂

∂z′′

(
η
∂u

∂r

)]
︸ ︷︷ ︸

F2

+ζ3
1

Re

∂

∂z′′

(
η
∂w′′

∂z′′

)
, (D.48)

ζ

[
1

r

∂

∂r
(rρw′′e) +

∂

∂z
(ρue)

]
= −ζ Ec

2Eu−1
p div′′v +

Ec

Re
η

(
∂u

∂r

)2

+ζ2
Ec

Re

[(
χ− 2

3
η

)
(div′′ v)2 + 2η

((
∂w′′

∂r

)2

+
w′′2

r2
+

(
∂u

∂z′′

)2

+
∂u

∂r

∂w′′

∂z′′

)]

+ζ4
Ec

Re
η

(
∂w′′

∂z′′

)2

+
1

Pe

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ ζ2

∂

∂z′′

(
∂T

∂z′′

)]
, (D.49)

div′′ v =
1

r

∂

∂r

(
rw′′)+ ∂u

∂z′′
. (D.50)

Small terms with higher orders of ζ in Eqs. (D.46)-(D.49) can be neglected. The rescaling guarantees that both
F1 in Eq. (D.47) and F2 in Eq. (D.48) are in the same order of O(Re−1), so that, Vedeneeva (2007a) got the
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following relationship.

∂p

∂z′′
/
∂p

∂r
∼ 1

ζ2
, O(1/ζ2) ≫ 1 (D.51)

This means that the pressure change in the radial direction is negligible, that is, p(r, z) ∼ p(z). Previous
theoretical studies also verified this approximation under the condition of a long conduit length and a low
Reynolds number by a perturbation method (Van Den Berg et al., 1993; Venerus, 2006).

Finally, I obtain the non-dimensional basic equations:

1

r

∂

∂r
(rρw) +

∂

∂z
(ρu) = 0, (D.52)

dp

dz
=

2Eu−1

Re

1

r

∂

∂r

(
rη
∂u

∂r

)
− 2Eu−1

Fr2
ρ, p(r, z) = p(z), (D.53)

1

r

∂

∂r
(rρwe) +

∂

∂z
(ρue) = − Ec

2Eu−1
pdivv +

Ec

Re
η

(
∂u

∂r

)2

+
1

Pe

1

r

∂

∂r

(
r
∂T

∂r

)
, (D.54)

div v =
1

r

∂

∂r
(rw) +

∂u

∂z
. (D.55)

D.1.5 Dimensionless equations in the gas-particle region

Using the non-dimensional values (Eq. D.34) and the mass conservation law Qm = πρu, the continuity and
momentum equations in the gas-particle region (D.30)-(D.32) can be written in the dimensionless forms:

u(p) =
Qm/π

ρg(p)ϕ(p) + (1− ϕ(p))
, (D.56)

dp

dz
=

1

f(p)
, f(p) = −Fr2

(
π

Qm

Eu

2
+
du

dp

)
u(p), (D.57)

T = 0. (D.58)

The density and gas volume ratio are calculated from Eqs. (D.40) and (D.41). The vertical change of p can be
solved explicitly from Eq. (D.56).

D.2 Numerical method for solving the equations

D.2.1 Numerical method for solving the viscous-heating model

The numerical method for solving the basic equations is not explicitly written in Barmin et al. (2004) or
Vedeneeva et al. (2005). The following method is based on the doctoral thesis of Agur (1983) and Cox (1973).
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Computational grid

Non-uniform grid is used (Fig. D.1). The grid consists ofM +1×N +1 points. The step size along the z-axis
is defined as

∆zn = zn+1 − zn, (1 ≤ n ≤ N). (D.59)

The step size along the radial direction is defined as follow

∆rm = rm+1 − rm, (1 ≤ m ≤M) (D.60)

Xm =
∆rm+1

∆rm
. (1 ≤ m ≤M − 1) (D.61)

Figure D.1: Non-uniform grid.

Differential equations for the energy equation

Substituting the the continuity equation (Eq. D.52) into the left side of the energy equation (Eq. D.54), I obtain:

ρw
∂e

∂r
+ ρu

∂e

∂z
= −EcEu

2
p divv +

Ec

Re
η

(
∂u

∂r

)2

+
1

Pe

1

r

∂

∂r

(
r
∂T

∂r

)
= −EcEu

2
p divv +

Ec

Re
η

(
∂u

∂r

)2

+
1

Pe

(
∂2T

∂r2

)
+

1

Pe

1

r

(
∂T

∂r

)
(D.62)
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When r = 0, 1
r

(
∂T
∂r

)
has the indeterminate form, 0

0 . By L’Hospital’s rule, I obtain

lim
r→0

1

r

(
∂T

∂r

)
=

(
∂2T

∂r2

)
. (D.63)

Similarly, when r = 0, the divergence of the velocity becomes

div v =
1

r

∂

∂r
(rw) +

∂u

∂z
= 2

∂w

∂r
+
∂u

∂z
(D.64)

Taking into the boundary condition (Eqs. D.45 and D.46), the energy equation becomes:

ρu
∂e

∂z
= −EcEu

2
p divv +

2

Pe

(
∂2T

∂r2

)
, for r = 0 (D.65)

ρw
∂e

∂r
+ ρu

∂e

∂z
= −EcEu

2
p divv +

Ec

Re
η

(
∂u

∂r

)2

+
1

Pe

(
∂2T

∂r2

)
+

1

Pe

1

r

(
∂T

∂r

)
, for 0 < r < 1 (D.66)

The following discretization is used for the energy equation:

∂T

∂r

∣∣∣∣n
m

=
1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n
m−1 + (X2

m−1 − 1)Tn
m + Tn

m+1

}
+

1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n−1
m−1 + (X2

m−1 − 1)Tn−1
m + Tn−1

m+1

}
, (D.67)

∂2T

∂r2

∣∣∣∣n
m

=
1

Xm−1(1 +Xm−1)(∆rm−1)2
{
Xm−1T

n
m−1 − (1 +Xm−1)T

n
m + Tn

m+1

}
+

1

Xm−1(1 +Xm−1)(∆rm−1)2
{
Xm−1T

n−1
m−1 − (1 +Xm−1)T

n−1
m + Tn−1

m+1

}
, (D.68)

∂u

∂r

∣∣∣∣n
m

=
1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1u
n
m−1 + (X2

m−1 − 1)unm + unm+1

}
+

1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1u
n−1
m−1 + (X2

m−1 − 1)un−1
m + un−1

m+1

}
, (D.69)

∂u

∂z

∣∣∣∣n
m

=
unm − un−1

m

∆zn−1
, (D.70)

∂e

∂r

∣∣∣∣n
m

= ψ(pn)
∂T

∂r
, (D.71)

∂e

∂z

∣∣∣∣n
m

=
ψ(pn)(Tn

m + 1)− ψ(pn−1)(Tn−1
m + 1)

∆zn−1
. (D.72)
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Substituting Eqs. (D.67) - (D.72) into Eqs. (D.65) and (D.66), I obtain:

ρnmu
n
m

ψ(pn)(Tn
m + 1)− ψ(pn−1)(Tn−1

m + 1)

∆zn−1
= −EuEc

2
pn
[
un1 − un−1

1

∆zn−1
+ 2

wn
2 − wn

1

∆r1

]
+

2

Pe

[
Tn
0 − 2Tn

1 + Tn
2

2(∆r1)2
+
Tn−1
0 − 2Tn−1

1 + Tn−1
2

2(∆r1)2

]
, for r = 0 (D.73)

ρnmw
n
mψ(p

n)

[
1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n
m−1 + (X2

m−1 − 1)Tn
m + Tn

m+1

}
+

1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n−1
m−1 + (X2

m−1 − 1)Tn−1
m + Tn−1

m+1

}]
+ρnmu

n
m

ψ(pn)(Tn
m + 1)− ψ(pn−1)(Tn−1

m + 1)

∆zn−1

= −EuEc
2

pn divv|nm +
Ec

Re
ηnm

(
∂u

∂r

∣∣∣∣n
m

)2

+
1

Pe

[
1

Xm−1(1 +Xm−1)(∆rm−1)2
{
Xm−1T

n
m−1 − (1 +Xm−1)T

n
m + Tn

m+1

}
+

1

Xm−1(1 +Xm−1)(∆rm−1)2
{
Xm−1T

n−1
m−1 − (1 +Xm−1)T

n−1
m + Tn−1

m+1

}]
+

1

Pe

1

rm

[
1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n
m−1 + (X2

m−1 − 1)Tn
m + Tn

m+1

}
+

1

2Xm−1(1 +Xm−1)∆rm−1

{
−X2

m−1T
n−1
m−1 + (X2

m−1 − 1)Tn−1
m + Tn−1

m+1

}]
for 0 < r < 1 (D.74)
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We rearrange Eqs. (D.73) and (D.74):

(∆r1)
2

∆zn−1
ρn1u

n
1

{
ψ(pn)(Tn

1 + 1)− ψ(pn−1)(Tn−1
1 + 1)

}
= −EuEc p

n(∆r1)
2

2

[
un1 − un−1

1

∆zn−1
+ 2

wn
2 − wn

1

∆r1

]
+

1

Pe

[
−2Tn

1 + 2Tn
2 − 2Tn−1

1 + 2Tn−1
2

]
, for r = 0 (D.75)

ρnmw
n
mψ(p

n)∆rm−1

Xm−1(1 +Xm−1)

[
−X2

m−1T
n
m−1 + (X2

m−1 − 1)Tn
m + Tn

m+1 −X2
m−1T

n−1
m−1 + (X2

m−1 − 1)Tn−1
m + Tn−1

m+1

]
+
2(∆rm−1)

2ρnmu
n
m

∆zn−1

[
ψ(pn)(Tn

m + 1)− ψ(pn−1)(Tn−1
m + 1)

]
= −EuEc(∆rm−1)

2pn divv|nm +
2(∆rm−1)

2Ec

Re
ηnm

(
∂u

∂r

∣∣∣∣n
m

)2

+
1

Pe

2
[
Xm−1T

n
m−1 − (1 +Xm−1)T

n
m + Tn

m+1 +Xm−1T
n−1
m−1 − (1 +Xm−1)T

n−1
m + Tn−1

m+1

]
Xm−1(1 +Xm−1)

+
1

Pe

∆rm−1

[
−X2

m−1T
n
m−1 + (X2

m−1 − 1)Tn
m + Tn

m+1 −X2
m−1T

n−1
m−1 + (X2

m−1 − 1)Tn−1
m + Tn−1

m+1

]
rmXm−1(1 +Xm−1)

, for 0 < r < 1 (D.76)
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Eqs. (D.75) and (D.76) can be reduced to the following forms:

Bn
1 T

n
1 + Cn

1 T
n
2 = Hn

1 , for r = 0

where

Bn
1 =

(∆r1)
2

∆zn−1
ρn1u

n
1ψ(p

n) +
2

Pe

Cn
1 = − 2

Pe

Hn
1 = −(∆r1)

2

∆zn−1
ρn1u

n
1

{
ψ(pn)− ψ(pn−1)(Tn−1

1 + 1)
}

−EuEc p
n(∆r1)

2

2

[
un1 − un−1

1

∆zn−1
+ 2

wn
2 − wn

1

∆r1

]
+

1

Pe

[
−2Tn−1

1 + 2Tn−1
2

]
(D.77)

An
mT

n
m−1 +Bn

mT
n
m + Cn

mT
n
m+1 = Dn

mT
n−1
m−1 + En

mT
n−1
m + Fn

mT
n−1
m+1 +Gn

m = Hn
m, for r > 0

where

An
m = −anmX2

m−1 − bmXm−1 + cmX
2
m−1

Bn
m = anm(X2

m−1 − 1) + dnmψ(p
n) + bm(1 +Xm−1)− cm(X2

m−1 − 1)

Cn
m = anm − bm − cm

Dn
m = anmX

2
m−1 + bmXm−1 − cmX

2
m−1

En
m = −anm(X2

m−1 − 1) + dnmψ(p
n−1)− bm(1 +Xm−1) + cm(X2

m−1 − 1)

Fn
m = −anm + bm + cm

Gm =
2(∆rm−1)

2Ec

Re
ηnm

(
∂u

∂r

∣∣∣∣n
m

)2

− EuEc(∆r1)
2pn divv|nm − dnm

{
ψ(pn)− ψ(pn−1)

}
anm =

ρnmw
n
mψ(p

n)∆rm−1

Xm−1(1 +Xm−1)

bm =
1

Pe

2

Xm−1(1 +Xm−1)

cm =
1

Pe

∆rm−1

rmXm−1(1 +Xm−1)

dnm =
2(∆rm−1)

2ρnmu
n
m

∆zn−1
(D.78)

The divergence of the velocity can be written as follows:

divv|nm =
wn
m

rm
+

1

Xm−1∆rm−1(1 +Xm−1)

{
−X2

m−1w
n
m−1 + (X2

m−1 − 1)wn
m + wn

m+1

}
+
unm − un−1

m

∆zn−1
(D.79)
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Therefore, the basic equations can be reduced to a tridiagonal matrix

Bn
1 2Cn

1

An
2 Bn

2 Cn
2

. . . . . . . . .
An

m Bn
m Cn

m

. . . . . . . . .
An

M−1 Bn
M−1 Cn

M−1

Bn
M Cn

M





Tn
1

Tn
2
...
Tn
m
...

Tn
M−1

Tn
M
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=



Hn
1

Hn
2
...

Hn
m
...

Hn
M−1

Hn
M


. (D.80)

This linear system of equations is solved implicitly.

Differential equations for the momentum equation

The integration of the momentum equation (Eq. D.53) with respect to r gives

1

2
r2
dp

dz
=

2

EuRe
rη
∂u

∂r
− 2

EuFr2

∫ r

0
ρr′dr′

∂u

∂r
=
rEuRe

4η

dp

dz
+

Re

Fr2
1

rη

∫ r

0
ρr′dr. (D.81)

The above equation satisfies the boundary condition ∂u(0,z)
∂r = 0. For simplicity, the second term of the right

side is replaced by

I(r) =
Re

Fr2
1

rη

∫ r

0
ρr′dr′. (D.82)

Using the no-slip condition (u(1, z) = 0), I obtain the vertical velocity profile

u =
EuRe

4

dp

dz

∫ r

1

r′

η
dr′ +

∫ r

1
I(r′)dr′. (D.83)

Since the vertical velocity is related to the mass discharge rate Qm = 2π
∫ 1
0 ρurdr, the pressure gradient

can be determined:

dp

dz
=
Qm − 2π

∫ 1
0

(
ρr
∫ r
1 I(r

′)dr′
)
dr

2π
∫ 1
0

(
ρrEuRe

4

∫ r
1

r′

η dr
′
)
dr

. (D.84)

The above equation requires the viscosity and density as a function of r.

Once I get the pressure gradient, I also obtain the vertical velocity from Eq. (D.83). The horizontal velocity
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is determined from the continuity equation (Eq. D.52) with the axis-symmetry conditon:

w = − 1

rρ

∫ r

0
r′
∂(ρu)

∂z
dr′. (D.85)

Computational procedure

The continuity, momentum, and energy equations are coupled by two velocities and temperature. Therefore, they
cannot be solved separately. The coupled equations can be solved by the combination of the finite difference
method and the iteration method. I outline the computational method as follows. Fig. D.2 illustrates the
algorithm to solve the basic equations and boundary problems.

Figure D.2: Flowchart to solve the basic equations and boundary problems.

Notation
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• u1nm, w1nm, T1nm, p1n,
(
dp
dz1
)∣∣∣n are the estimated u, w, T , p, dp

dz at column n, respectively.

• u2nm, w2nm, T2nm, p2n,
(
dp
dz2
)∣∣∣n are the most recently calculated u, w, T , p, dp

dz at column n, respectively.

• un−1
m , wn−1

m , Tn−1
m are u, w, T at column n-1, respectively.

• pini (k) is the initial pressure at the k-th iteration.

Procedure

1. I give the initial pressure pini (1) arbitrarily.

2. The parabolic velocity profile and homogeneous temperature profile are assumed at the conduit entrance.

u1m = 2ua0
(
1− r2m

)
w1
m = 0, (m = 1, 2, · · · ,M + 1)

T 1
m = T0

p1 = pini (1).

3. The initial values of the pressure, velocity, temperature in the first iteration at n + 1 = 2 equal to the
values at n = 1.

u1n+1
m = unm

w1n+1
m = wn

m, (m = 1, 2, · · · ,M + 1)

T1n+1
m = Tn

m

p1n+1 = pn.

4. The strain rate ∂u
∂z

∣∣n
m

and divergence div v|nm at column n are calculated from u1nm and w1nm. I also
calculate the viscosity ηnm and density ρnm from T1nm and p1n.

5. Using u1nm, w1nm, p1n, ηnm, ρnm, ∂u
∂z

∣∣n
m

, div v|nm, T1n−1
m , I solve the energy equation of Eq. (D.80)

implicitly, and then get T2nm.

6. Using p1n and T2nm, I calculate ηnm and ρnm at column n.

7. Using ηnm and ρnm, I calculate dp
dz

∣∣∣n from Eq. (D.84), and then calculate the new pressure p2n.

8. The new pressure is set to be used in the next iteration at column n.

p1n = p2n

9. I repeat steps 6-8 three times. After that, I calculate ηnm and ρnm from the latest p2n.
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10. Using ηnm, ρnm, dp
dz

∣∣∣n, I obtain u2nm and w2nm from Eqs. (D.83) and (D.85).

11. The estimated velocity and temperature are compared with the pre-estimation value. If the following
tolerance condition is fulfilled, then proceed to step 14. Otherwise, continue to step 12.

M+1∑
m=1

(|u2nm − u1nm|+ |w2nm − w1nm|+ |T2nm − T1nm|) < ∆uwT

where ∆uwT is the pre-determined positive small value.

12. The estimated velocity, temperature, and pressure are used in the next iteration at column n.

u1nm = u2nm

w1nm = w2nm, (m = 1, 2, · · · ,M + 1)

T1nm = T2nm

p1n = p2n

13. I repeat steps 4-11 until the tolerance condition is fulfilled.

14. The estimated velocity, temperature, and pressure are used in the first iteration at column n+1.

u1n+1
m = u2nm

w1n+1
m = w2nm, (m = 1, 2, · · · ,M + 1)

T1n+1
m = T2nm

p1n+1 = p2n

15. I repeat steps 4-14 until the column reached the fragmentation surface.

16. The estimated pressure at column N + 1 is compared with the exit pressure. If the tolerance condition∣∣p2N+1 − pf
∣∣ < ∆p is fulfilled where pf is the non-dimensional fragmentation pressure (Eq. 4.20), then

the calculation finishes. ∆p is the pre-determined positive small value. Otherwise, continue to step 17.

17. I change the initial pini (k) to meet the tolerance condition. If k = 1, the next initial pressure is determined
as follows

pini (2) =

{
pini (1) − δp, (when p2N+1

(1) > pf )

pini1 (1) + δp, (when p2N+1
(1) < pf )
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where δp is the pre-determined small value. If k ≥ 2, the next initial pressure is determined by the
Newton-iteration method.

pini (k+1) = pini (k) +
(
pf − p2N+1

(k)

) pini (k) − pini (k−1)

p2N+1
(k) − p2N+1

(k−1)

where p2N+1
(k) is the estimated exit pressure at the k-th iteration and pini (k) is the initial pressure at the

k-the iteration.

Step Size and Tolerance

Because the derivatives are sensitive to step size, small step sizes are used where the velocity profile changes
dramatically. For the radial direction, I used the following geometric series:

rm = ∆r1Y
m−1 (m = 1, 2, · · · ,M + 1) (D.86)

where ∆r1 is the first term of the series and Y is the common ratio. The common ratio is determined by the
length (R = 1), the step number M , and the first term ∆r1. For the simulation of the Tupo plinian event, I set
the step numbers and the first term as M = 1000, N = 10000, ∆r1 = 0.01. The horizontal step size is small
just above the conduit inlet (Table D.1).

Table D.1: Vertical step size

Range of z ∆z

0− 0.1 1
30000

0.1− 1 9
20000

The tolerances for the iteration are defined as follows:

∆uwT = 0.001, ∆p = 0.001, δp = 0.005. (D.87)

D.2.2 Numerical method for solving the Newtonian isothermal model

Because the density and viscosity do not depend on the radial position, I can obtain the analytical solution of
Eq. (D.84):

dp

dz
= −16Fr2ηQm + 2πρ2Re

πρEuReFr2
. (D.88)

Substituting Eq. (D.88) into Eq. (D.83), I obtain the vertical velocity

u =
2Qm

πρ

(
1− r2

)
(D.89)
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Eq. (D.89) indicates that the profile of the vertical velocity is parabolic. The vertical velocity also shows
∂ρu
∂z = 0. Thus, I get w = 0 from Eq. (D.85).

D.2.3 Numerical method for solving the shear-thinning model due to bubble deformation

The pressure gradient can be obtained by the same way as the constant viscosity from Eq. (D.84). In the
shear-thinning case, it is not possible to obtain an explicit solution of u, because viscosity is not uniform along
the radius. The integration of the momentum equation (Eq. D.53) with respect to r gives

1

2
r2
dp

dz
=

2

EuRe
rηb

∂u

∂r
− ρr2

EuFr2
. (D.90)

Keep in mind that the viscosity η is replaced by the bulk viscosity ηb. Substituting the viscosity model of Eqs.
(4.22) - (4.25), I obtain

1

2
r2
dp

dz
=

2

EuRe
rη

ηr,∞ +
ηr,0 − ηr,∞

1 +

(
6
5

Rb
∂u
∂r

η

Γ

)2

 ∂u

∂r
− ρr2

EuFr2
. (D.91)

For a given dp
dz and ρ, I can find the radial change of the vertical velocity ∂u

∂r from Eq. (D.91) by the Newton’s
method. Once I get ∂u

∂r , the vertical velocity can be obtained with the no-slip boundary condition.

u = −
∫ 0

1

∂u

∂r
dr. (D.92)

The horizontal velocity is also given by Eq. (D.85).
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Appendix E

The conduit flow model combining the
viscous-heating model and the shear-thinning
model due to bubble deformation

As described in section 4.6.2, the shear-thinning effect due to bubble elongation is a possible mechanism that
reduces the very large temperature rise around the conduit walls. In this appendix, I show the simulation result of
the viscous-heating model with the shear-thinning effect due to bubble deformation. Unfortunately, it is unable
to couple the viscous-heating model (Eqs. 4.1-4.5) with the viscosity model by Llewellin et al. (2002b) (Eqs.
4.22-4.25) because the calculation procedure is too complex to converge. A more sophisticated computational
procedure is required to converge the calculation.

In order to make the computation tractable, I assume high Capillary numbers (Ca ≫ 1) across and along
the conduit. Instead of using the viscosity model by Llewellin et al. (2002b), I use ηr,∞ which is the asymptotic
relative viscosity at high Ca (Eq. 4.25). Strictly speaking, the above assumption of high Ca throughout the
conduit is incorrect, because bubbles at the conduit center may be nearly spherical after the velocity profile
becomes a parabolic shape. However, this assumption is reasonable for evaluating its effect on the magma
temperature around the conduit walls because the region close to the conduit walls has high Ca.

Fig. E.1 shows the simulation results of the viscous-heating model with the shear-thinning effect due
to bubble deformation. The magma temperature around the conduit walls reaches about 2300 oC at the
fragmentation surface, which is 1000 oC lower than the same temperature of the viscous-heating model without
the shear-thinning effect (Fig. 4.9). In spite of the shear-thinning effect due to bubble elongation, the profiles
of vertical velocity and pressure are almost the same between the two modes (Figs. 4.8 and E.1), because the
profile of the melt viscosity in the viscous-heating model is similar to that of the bulk viscosity in the model
without the shear-thinning effect (Figs. 4.9c and E.1d). In this result, the reduction of the bulk viscosity caused
by bubble elongation has partly compensated with the effect of viscous-heating.

Fig. E.1 indicates that the shear-tinning effect due to bubble elongation has a potential to suppress the
temperature rise around the conduit walls. Further study requires the viscosity model in an arbitrary shear field.
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The current viscosity models, such as Eqs. (4.22)-(4.25) are based on bubble deformation in simple shear field.
This shear filed is reasonable for the conduit fluid with a parabolic velocity profile. However, when the conduit
flow becomes a plug flow, most of the flow is occupied by pure shear as well as simple shear. Bulk viscosity
model should be extended to an arbitrary shear field.

Figure E.1: The calculation result of the viscous-heating model with the shear-thinning effect due to bubble
deformation. (a) Vertical velocity distribution across the conduit at z/zf = 0, 0.005, 0.001, 0.1, 0.5, 1. The
fragmentation surface zf is 3994 m. (b) Pressure profile along with the conduit axis. (c) Temperature around
the conduit walls. (d) Bulk viscosity around the conduit walls.
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Appendix F

Image processing of pumice

Three-dimensional analyses were performed by using an open-source software called Fiji which is a distribution
of the popular software ImageJ (Schindelin et al., 2012). We first cut a cuboid from the volume. Image sizes
range from 483 × 732 × 1299 voxels to 736 × 984 × 1568 voxels, depending on the sample. Subsequently,
we applied the 3D median filter to reduce noise in the images by replacing each voxel with the median of the
neighboring voxel values. Since the watershed process described later is sensitive to low-amplitude noise, we
adjust the brightness and contrast window to suppress all minima whose depth is less than a specified cut-off
level. Binarization, the process by which a grayscale image is converted into a binary image, was done by
Otsu’s method which determines the threshold of brightness automatically (Otsu, 1979). To separate impinging
but not coalescing bubbles, we applied the opening operation which is defined as the several cycles of volume
erosion and dilation.

Before measuring bubble shapes, we first needed to rebuild some bubble walls in order to rebuild very
thin bubble walls which disappeared during the binarization process. The watershed used for solidified foam
(appendix B) is suitable for ideal elliptical bubbles, but it fails to separate intricately distorted bubbles like
bubbles in pumice. To overcome this problem, we used an open-source plugin called Marker-controlled
Watershed (Legland et al., 2016), which is based on the marker-controlled watershed algorithm (Meyer and
Beucher, 1990).

Fig. F.1 shows the schematic image of the marker-controlled watershed. For the simplicity, I here explain
the watershed algorithm in one dimension. The basic idea of the watershed consists of considering the input
grayscale images as a topographic surface and placing a water source in each marker point (Fig. F.1a). The
water is flooded from the sources, and dams are made at the boundaries where the different water sources meet
(Fig. F.1b). This boundary corresponds to the missing bubble wall which divides adjacent bubbles. Flooding
continues until the water covers the entire mask.

The marker-controlled watershed needs three images to run: (1) input grayscale which is used to calculate
the elevation of the topographic field, (2) mask image (binary image) which is used to define the water level,
(3) marker image (binary image) which is used to define the water sources (Fig. F.2). In this thesis, I used
the gradient magnitude of the original image as the input grayscale image and used the binarized image as the
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mask image. The choice of the marker image is one of the essential parts of the marker-controlled watershed.
If I set many markers, the watershed algorithm results in over-segmented bubbles, but otherwise results in
no-segmented bubbles. In order to separate bubble and rebuild thin walls correctly, the marker image should
contain the small seeds for small bubbles while separating the large seeds for large bubbles. The marker image
is usually defined by the local minima of the input grayscale image, which is the connected regions of voxels
with the same value whose neighboring voxels have greater than that of the region. In our study, local minima
succeeded in the identification of small seeds, but failed to separate large seeds. To segment the large seeds, I
applied the opening operation to the large bubbles having 10000 or more voxels. The marker image after the
opening operation is shown in Fig. F.2c. Using the input grayscale, mask, and marker images, I obtained the
segmented bubbles divided by the rebuilt bubble walls (Fig. F.2e).

The watershed operation introduced some over-segmented bubbles, especially with a small volume, due
to the low-resolution of the X-ray CT. In chapter 5, I report analytical results for bubbles with > 100 voxels.
Bubbles contacted with the borders were also removed automatically. The bubble shape was obtained by fitting
a 3D ellipsoid to the volume. All the bubbles were approximated as triaxial ellipsoids, wherein three principle
axes pass through the center of gravity of the bubble.

Figure F.1: Schematic image of the marker-controlled watershed. For the simplicity, I explain the watershed
algorithm in one dimension. The topographic image before flooding (a) and after flooding (b).
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Figure F.2: Representative images used for the marker-controlled watershed algorithm. (a) Original image. (b)
Mask image. (c) Marker image. (d) Gradient image of the original image. (e) Result of the watershed algorithm.
Thin bubble walls are rebuilt. Different colors among neighboring bubbles indicate the segmented bubbles.
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Appendix G

Numerical procedure of shape relaxation in
an eruptive column

The numerical procedure is basically based on Hort and Gardner (2000) who modeled the cooling of a pumice
clast within an eruption column. First, we obtain the ambient temperature of a pumice clast in the eruption
column, using a steady state eruption column model, Plumeria Mastin (2007). Second, we solve thermal
conduction in a pumice clast and get the temporal profiles of temperature and viscosity. Finally, we calculate
the shape relaxation of a bubble with the MJT model.

G.1 One-dimensional eruption column model

We used a steady one-dimensional eruption column model called as Plumeria (Mastin, 2007). This model
assumes the plume as a series of control volumes. In each control volume, mass, momentum, and energy are
conserved by equating the vertical gradient of their properties to the lateral inputs from the ambient atmosphere.
Following the formulation given by Woods (1988), Mastin (2007) divided the momentum conservation into
two regions: a momentum-dominated gas-thrust region above the vent and an overlying buoyancy-dominated
convective region. The basic equations are given by the following equations:

Mass conservation for the gas-thrust region

d(πr2ρu)

dz
= 2πrϵu

√
ρρamb, (G.1)

Mass conservation for the convective region

d(πr2ρu)

dz
= 2πrρambϵu, (G.2)
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Momentum conservation

d(πr2ρu2)

dz
= πr2

(
ρamb − ρ

)
g, (G.3)

Energy conservation

d

dz

[
πr2ρu

(
u2

2
+ gz + h

)]
=
(
gz + hamb

) d (πr2ρu)
dz

, (G.4)

where r is the plume radius, u is the plume velocity, z is the vertical coordinate upward; ρ and ρamb are the
densities of the plume and the ambient atmosphere, ϵ is the entrainment factor, g is the gravitational acceleration,
and h and hamb are the enthalpies per unit mass of the plume and of the ambient atmosphere, respectively. All
parameters, such as velocity and temperature, are averaged horizontally inside the column. Gas and material
are assumed to be in thermal equilibrium, and all components move up confluently. In the convective region,
horizontal entrainment velocity is calculated from ϵu, with ϵ = 0.09. In the gas-thrust region, the entrainment
factor is adjusted by a factor

√
ρ/ρamb to account for the density differences between the plume and the ambient

atmosphere. In the equations, the plume temperature Tp does not appear explicitly, but it is related to the
enthalpy h = CpTp, where Cp is the bulk specific heat.

The input parameters for Plumeria are determined to simulate the eruption column of the Taupo plinian
eruption. The parameters are summarized in Table. G.1.

Table G.1: Parameters for the one-dimensional eruption column model

Notation Parameter Value
T amb
0 Air temperature at the vent 15 oC a

dT/dz Thermal lapse rate in troposphere −6.5 K/km a

z0 Vent elevation 0 m
ztrop Tropopause elevation 11 km a

Htrop Tropopause thickness 9 km a

(dT/dz) Thermal lapse rate in stratosphere 1.0 K/km a

r0 Initial column diameter 432 m b

u0 Initial plume velocity 306 m/s c

Tm Initial plume temperature 850 oC d

n0 Initial mass fraction gas in magma 0.0344 c

rh Relative humidity 0
Qm Mass discharge rate 2.5× 108 kg/s e

a International standard atmosphere
b Initial column diameter is determined from u0, n0, Tm, andQm.
c Parameters from Michaud-Dubuy et al. (2018)
d Initial plume temperature from Dunbar et al. (1989b)
e Mass discharge rate from Wilson (1985)
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G.2 Temporal position of a pumice clast

Using the Plumeria, I can obtain the temporal data of the averaged temperature T and velocity u in the plume.
One of the important assumption of the eruption model is that every component moves up confluently. The
velocity difference between gas and particles are assumed to be ignored. This assumption is reasonable for small
particles whose terminal velocities are much less than the plume velocity. Large particles, which experience a
bigger gravitational acceleration than smaller particles, may not move up confluently. However, the simulation
by Hort and Gardner (2000) showed that the effect of differential movement on cooling can be neglected and
may only be important for the rinds of large pumices. In this study, I focus on the shape relaxation of a bubble
located on the pumice center, and therefore, I assume that pumice clasts move up confluently. The temporal
position of a pumice clasts is calculated from

t(z) =

∫ z

0

1

u(z)
dz. (G.5)

G.3 Thermal conduction in pumice

Once I obtain the temporal data of the plume temperature, I can solve thermal conduction within a pumice clast.
I assume that a spherical pumice is cooled only by conduction. Equation of heat conduction is given by

∂T

∂t
= κ

1

r2
∂

∂r

(
r2
∂

∂r
T

)
, (G.6)

where T is the temperature inside the pumice and κ is the thermal diffusivity. The initial and boundary
conditions are given by

T (r, 0) = Tm, (G.7)
∂T

∂r

∣∣∣∣
r=0

= 0, (G.8)

q|r=RC
= ha (T (RC , t)− Tp(z)) , (G.9)

where Tm is the initial plume temperature, RC is the radius of the pumice clast, q is the heat flux, W/m2,
ha is the heat transfer coefficient, and Tp(z) is the plume temperature. The heat flux q is also related to the
temperature gradient at the pumice surface by the following equation q = k ∂T

∂r

∣∣
r=RC

where k is the thermal
conductivity. The above modeling (Eqs. G.6-G.9) has been used to calculate the cooling history of a pumice
clast during fallout (Thomas and Sparks, 1992) and during an eruption column (Hort and Gardner, 2000). I
assumed that the thermal diffusivity is constant during cooling. The parameters for thermal conduction are
summarized in Table. G.2. The equation for thermal conduction (Eq. G.6) was solved with an implicit scheme.
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Table G.2: Parameters for thermal conduction

Notation Parameter Value
ha Heat transfer coefficient 340 W/(m2K) a

κ Thermal diffusivity 3× 10−7 m2/s b

k Thermal conductivity 0.2 W/m/K b

a from Hort and Gardner (2000)
b from Bagdassarov and Dingwell (1994)

G.4 Shape relaxation

The temporal change of the viscosity inside the pumice clast can be calculated from the temporal data of
temperature. Here, I calculate the viscosity change from the empirical viscosity model proposed by Hess and
Dingwell (1996). During cooling, dissolved water content is assumed to be constant (1.5 wt.%).

Finally, I calculate the shape relaxation of a deformed bubble within solidifying pumice, using the bubble
deformation model (MJT model). The initial bubble has the bubble deformation degree of 0.667, which
corresponds to the aspect ratio of 5 : 1. The surface tension is assumed to be constant 0.3 N/m. The bubble
radius is set to 0.15 mm which is the same as the lower limit of analyzed bubbles in section 5.
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