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Abstract 

Aminoacylation reaction is a key step that bridges RNA to protein. This reaction is 

solely conducted by protein enzymes called aminoacyl-tRNA synthetases (ARSs) in the 

current world. The high specificity toward both tRNA and amino acid of ARSs ensures 

the right connection between anticodon and amino acid thus accurate translation of 

mRNA to protein is achieved. It is thought that in the early stage of life, RNA was re-

sponsible not only for genomic storage but also for catalyzing chemical reaction and this 

hypothesis is called the RNA world. In the transition era between the RNA world and the 

current world, the aminoacylation reaction is possibly conducted by RNA. Such RNA 

responsible for aminoacylation would be called aminoacylation ribozyme. This ribozyme 

is expected to have the characteristics of natural ARS that is the specificity toward both 

amino acid and tRNA. Since no such ribozyme has yet been discovered, the aim of this 

thesis is to discovery such ARS-like ribozyme. 

Chapter 1 describes the general introduction of this thesis. The RNA world hypothesis 

is explained in detail and the riboswitch which is a possible relic of RNA world is ex-

plained as well. Also, the history of aminoacylation ribozyme discovery is presented. 

In chapter 2, the discovery of aminoacylation ribozyme using T-box riboswitch as 

starting structure is described. A ribozyme which has specificity toward both amino acid 

and tRNA was obtained. The detailed characterization of this ribozyme is also explained. 

This aminoacylation ribozyme was coupled to the in vitro translation mixture to demon-

strate the feasibility of this ribozyme. 

In chapter 3, the amino acid specificity against other amino acid was attempted using 

the similar approach as chapter 2.  
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In the last chapter, the achievement of this thesis is discussed. The implication of the 

discovery of aminoacylation ribozyme from riboswitch is also pointed out. 
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1.1 RNA world hypothesis 

In the current world, life is governed by three types of biomolecules; DNA, RNA and 

protein. Genetic information is stored in the form of DNA which is transcribed into 

mRNA and then translated into protein and all of these processes are done with the help 

of protein enzymes (Figure 1.1a). It is unlikely that the complicated biological system 

nowadays suddenly appeared and it is thought that the life on early earth was using a 

different system. The idea that an RNA-based system was predominant before the rise of 

the current DNA/RNA/protein based system is a popular hypothesis which is also called 

the RNA world hypothesis. In this hypothesis, RNA was responsible for both genomic 

storage and chemical reaction catalysis (Figure 1.1b). This hypothesis was coined by Wal-

ter Gilbert in 19863. The discovery of RNA bearing catalytic activity, ribozyme, in 1980s 

have enhanced the plausibility of this hypothetical RNA world. These ribozymes include 

the self-splicing RNA found in Tereahymena thermophila4 and the M1 RNA which is the 

RNA component of bacterial RNase P responsible for tRNA maturation5. It is important 

to note that these ribozymes have catalytic activity even in the absence of protein. Since 

then many RNAs bearing catalytic function were both discovered in nature or artificially 

engineered in laboratory. Especially the engineering of ribozyme was boosted by the de-

velopment of a methodology to selecting RNAs from large random libraries also known 

as Systematic Evolution of Ligands by Exponential enrichment (SELEX)6,7. 

Another evidence of the possible RNA world is the fact that the ribosome which plays 

a critical role in the modern translation system is also a ribozyme. Although ribosome is 

a ribonucleoprotein which is composed of both ribosomal RNAs and ribosomal proteins, 

the central core; peptidyl transfer center (PTC) is composed only of RNAs which was 

indisputably determined by X-ray structure8,9. These findings pose the possibility that the 

primitive ribosome could have been solely composed of RNA as coined by Crick10.  
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In the course of evolution, the hypothetical ribozymes present in the RNA world 

would have been taken over by protein enzymes, and it is unlikely to find ancient ribo-

zymes in the contemporary world. However, as the current ribosome is regarded as a 

ribozyme, the relic of the ancient ribozymes could be present or even experimentally en-

gineered from random RNA library. Such ribozymes include the RNA polymerase ribo-

zyme11 which is able to replicate RNA in a protein-free fashion. Since replication of RNA 

in the absence of protein enzymes is an important feature in the RNA world, the success-

ful engineering of such ribozyme, although not found in nature, is an evidence that sup-

ports the RNA world hypothesis.  

Figure 1.1 | Schematic illustration of the central dogma 
(a) The interplay of DNA, RNA and protein in the current world. (b) The schematic image of 
how RNA functioned in the RNA world. 
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1.2 Riboswitch 

Riboswitches are class of RNA motif that regulates the expression of target gene in 

the presence of its ligand. Riboswitches reside upstream of the gene they regulate and 

commonly found in 5'-untranslated region (UTR) of bacteria mRNA. Although most of 

the riboswitches are discovered in bacteria, some are spread in all three domains of life 

and there are variety of ligands that function as a gene expression switch for the ri-

boswitch. These ligands include; coenzymes12-15, nucleotides16-19, amino acids20-22, 

sugar23, ions24-26 or even RNA27-29. Upon binding of its ligand, the riboswitch undergoes 

a structural change and controls the expression of the target gene at the level of either 

transcription attenuation or translation initiation.  

In most cases, riboswitch comprises two domains, where one domain is responsible 

for ligand sensing and the other domain is responsible for gene regulation. The sequence 

overlapping between these two domains contributes to the switching of riboswitch upon 

ligand binding. In terms of transcriptional attenuation, the gene regulation domain com-

monly forms a helix, followed by poly-uridine sequence. The weak interaction with poly-

uridine sequence and DNA results in the release of RNA polymerase thus transcription 

termination is achieved. As for translation initiation, the gene regulation domain forms a 

helix that include the Shine-Dalgarno sequence. This would prevent ribosomal binding 

which hinders translation initiation. Ligand binding will either induce or prevent this helix 

formation and translation initiation is regulated. 

The intriguing fact about the discovery of riboswitch is that RNA alone can sense the 

surrounding environment and undergoes structural change as well as has the ability to 

selectively bind to metabolites or even other RNAs. This has led us the possibility that 

RNAs in the possible RNA world could have been using a similar recognition mechanism 
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as seen in current riboswitches or riboswitches could be the reminiscent of ancestral ri-

bozymes present in the RNA world30.  
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1.3 Strategy to obtain functional oligonucleotides 

SELEX or also known as in vitro selection is an established screening method for 

enriching nucleotides from a pool of random library based on desired functionality. This 

method was first reported from two different groups in 1990 and they succeeded in iden-

tifying specific RNA sequences that bind to T4 DNA polymerase31 and organic dyes7 

respectively. The establishment of this method in 1990s has boosted the discovery of nu-

merous ribozymes and RNA sequences binding to specific target compounds (aptamers). 

In vitro selection of functional RNA comprises of mainly four steps (Figure 1.2). First, 

DNA library is constructed where T7 promoter domain for transcription and constant re-

gions at both 5' and 3' end are included. These constant regions are necessary for PCR 

and reverse transcription in the downstream procedure. The prepared DNA library was 

then in vitro transcribed and usually gel purified. The obtained library was then applied 

to screening based on affinity or catalytic activity. The active species that are selectively 

recovered from the random pool are then reverse transcribed followed by PCR amplifi-

cation to obtain another set of a DNA library. By repeating the above cycle for multiple 

times, RNA sequence bearing the desired functionality would be enriched from a random 

library. Using this method, ribozymes catalyzing various chemical reactions have been 

obtained. These ribozymes, include the aforementioned RNA polymerase ribo-

zyme11,32,33, alcohol dehydrogenase ribozyme34, ribozyme that catalyzes Diel-Alder reac-

tion35,36 or aminoacylation ribozymes2,37-41. 
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Figure 1.2 | Schematic illustration of the in vitro selection 
PBS denotes primer binding site circled with gray. T7 denotes T7 promoter sequence. Random 
region is colored magenta. 
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1.4 History of Aminoacylation ribozyme 

1.4.1 Aminoacy-tRNA synthetase (aaRs) 

Aminoacylation is a key step that bridges amino acid and RNA in the current world. 

This reaction is catalyzed by protein enzymes called aminoacyl-tRNA synthetases (aaRs). 

It is proposed that this reaction could have been catalyzed by RNA especially in the tran-

sition era between the RNA world and the current RNA/DNA/protein world. The reaction 

catalyzed by aaRs has two steps; (i) amino acid activation and (ii) aminoacyl transfer 

(Figure 1.3). The activation of amino acid is achieved by adenylation of the carboxylic 

acid using ATP as substrate. The adenylated amino acid is reacted with the substrate tRNA 

and 3′ end of tRNA is aminoacylated. Many researchers have attempted to engineer ami-

noacylation ribozymes that catalyze the above reaction but all of them can only catalyze 

either of the two reactions.  

 

1.4.2 Amino acid activating ribozyme 

In 2001, Yarus group succeeded in developing an amino acid activation ribozyme, 

KK131. This ribozyme utilizes the 5′-triphospahte of its own sequence to activate amino 

acid. The selection strategy employed in the discovery of KK13 is shown in Figure 1.4. 

They used 3-mercapto-propionic acid as the initial substrate and mixed it with the RNA 

pool having 5′-triphospate. After incubation, the reacted RNA was treated with thiopropyl 

Figure 1.3 | Two reactions carried out by aminoacyl-tRNA synthetases (aaRs) 
(i) Amino acid activation is achieved with the help of ATP and aminoacyl adenylate (AA-AMP) 
is formed while releasing pyrophosphate (PPi) after activation. (ii) aaRs recognizes the substrate 
tRNA and transfers AA-AMP to the 3′-end of tRNA. 
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sepharose 6B matrix to selectively capture active RNAs. The active RNAs were eluted 

using DTT, ethanol precipitated, reverse transcribed, PCR amplified, and transcribed. Af-

ter repeating this step for 8 times, they succeeded in identifying several sequences and 

among them, KK13 was further characterized and activation using amino acid substrates 

was confirmed. The secondary structure of KK13 is shown in Figure 1.5. The 5′-terminal 

triphosphate was necessary for activation since 5′-pKK13 and 5′-OH KK13 did not react 

with the substrate. However, this ribozyme functions best at pH 4-4.5 due to the instability 

of the product. 

 

Figure 1.4 | Schematic procedure of selecting carboxyl-activating ribozymes. 
This figure is adapted from previous paper1. 3-mercaptopropionic acid was used as the substrate 
and subjected to incubation with the RNA library. The active species were selectively recovered 
by the thiopyropyl sepharose6B matrix. 
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1.4.3 Aminoacyl transfer ribozyme 

All aminoacyl transfer ribozymes discovered so far utilizes an already activated 

amino acid. The activated amino acid could be either aminoacyl adenylate which the cur-

rent aaRs utilizes or other artificially activated amino acid such as cyanomethyl esters 

(CME). The first aminoacylation ribozyme was discovered by Yarus group in 1995 using 

Phe-AMP as substrate2. The selection procedure employed is shown in Figure 1.6. The 

RNA library was mixed with Phe-AMP and then reacted with naphthoxyacetyl-N-hy-

droxysuccinimidyl ester to convert the active RNA more hydrophobic and purifiable us-

ing reverse-phase HPLC. The selection resulted in isolating isolate #29 RNA which ami-

noacylate Phe-AMP at the 3′-teminal guanosine. They also succeeded in minimizing iso-

late #29 RNA sequence (95 mer) to 29-mer (Figure 1.7a,b)39. Both the minimized isolate 

#29 or original isolate #29 RNA had no amino acid specificity and required both Mg2+ 

and Ca2+ for their activity. Yarus group also engineered a tiny aminoacylation ribozyme 

called C3 ribozyme (Figure 1.7c)41. This ribozyme was engineered utilizing an RNA li-

brary that includes hammerhead ribozyme (HDV) at the 3′-end. Since the HDV does not 

have any requirement for the upstream nucleotide, the 3′-end nucleotide for the aminoac-

ylation site can be anything as opposed to the previous selection, where 3′-end nucleotide 

Figure 1.5 | Secondary structure of KK13 
This figure is adapted from previous paper1. The 5′-terminal triphosphate attacked by the 
carboxylate oxygen to give activated amino acid. 
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was restricted because it was included in the primer binding site. This C3 ribozyme, as 

compared to #29 ribozyme, does not need divalent ions such as Mg2+ or Ca2+ for reactiv-

ity, and highly specific for L-amino acids. 

 

 

 

Figure 1.6 | Selection scheme for discovering isolate #29 ribozyme 
This figure is adapted from previous paper2. The RNA pool was reacted with Phe-AMP 
followed by naphthoxyacetyl-N-hydroxysuccinimidyl ester mixing. Beacuase of the 
hydrophobilicy of naphthalene moiety, this resulted in retention time diference compared to 
unreacted RNA in the HPLC purification. 

Figure 1.7 | Secondary structures of isolate #29 RNA derivative and C3 ribozyme. 
(a) Secondary structure of isolate #29 RNA. (b) Secondary structure of minimized isolate #29 
RNA. (c) Secondary structure of C3 ribozyme. Red nucleotides are critical for its activity. 
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Several aminoacylation ribozymes have been developed that utilizes artificially acti-

vated amino acids as well. The first of such aminoacylation ribozyme is ATRib which 

was developed in Szostak’s group (Figure 1.8a)42,43. ATRib uses aminoacylated hexanu-

cleotide as an aminoacyl donor and self-aminoacylates itself. The selection strategy was 

using Biotin-Met as an amino acid substrate and recovering active species through strep-

tavidin agarose. Using ATRib, aminoacylation to tRNA was also achieved using a ping-

pong like process (Figure 1.8b). Briefly speaking, ATRiB first binds to aminoacylated 

hexanucleotide and the amino acid is tranfered to ATRiB. The free-hexanucleotide is de-

tached and tRNA-3′-end binds to the same site as hexanuleotide. The amino acids that 

was attached to ATRib itself then transfers to the bound tRNA which will result in the 

release of aminoacylated tRNA. Although all of these processes are in equilibrium, they 

succeeded in obtaining 30-40% of aminoacylated tRNA in 2hrs. Also, another in vitro 

selection was conducted to give ATRib additional tRNA specificity, which resulted in the 

Figure 1.8 | Characterization of ATRib and ATRib mediated aminoacylation 
(a) Secondary structure of ATRib. (b) Schematic illustration of ATRib mediated tRNA 
aminoacylation. 
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engineering of aminoacylation ribozyme BC2844. This ribozyme has an accessory domain 

to ATRib that recognizes tRNA anticodon. 

Nearly two decades ago, our lab also developed an aminoacylation ribozyme based 

on the hypothesis that 5′-leader sequence of tRNA before maturation by RNaseP could 

have been responsible for aminoacylating the downstream tRNA38. An RNA library hav-

ing 70-nt random sequence upstream of tRNA was prepared and those that can self-ami-

noacylate biotin-Phe-CME was selectively recovered through streptavidin agarose. Total 

of 17 rounds of screening was conducted, which eventually resulted in obtaining self-

aminoacylating ribozyme, pre-24. This ribozyme also retained its activity when treated 

with RNaseP which means that this ribozyme functions in trans as well. Minimization 

and further engineering of r-24 (tRNA deleted version of pre-24) resulted in an aminoac-

ylation ribozyme Fx345. This ribozyme base-paris with the CCA-end of tRNA and could 

accept Phe derivative amino acids. Fx3 was further engineered to accept more variety of 

amino acid substrates as well as enhanced activity and these ribozymes were called flex-

izymes40,46 (Figure 1.9). eFx accepts aromatic amino acids activated with cyanomethyl 

esters or chlorobenzyl thioester. dFx accepts non-aromatic amino acids that are activated 

with 3,5-dinitrobenzyl ester and aFx accepts amino acids with (2-aminoethyl)- amidocar-

boxybenzyl thioester. The versatility of flexizymes enabled us to mischarge any tRNA of 

interest with non-natural amino acids which lead to studies on genetic code reprogram-

ming47-50 or even discovery of functional non-natural peptides binding to specific pro-

tein(s) of interest51-59. 

 
  



 20 

  

Figure 1.9 | Schematic illustration of Fx3 and flexizymes. 
Red letters represent the positions of base-pairs between Fx3 and substrate tRNA. LG denotes 
leaving group. DBE denotes 3,5-dinitrobenzyl-ester, CME denotes cyanomethyl-ester, CBT 
denotes chlorobenzyl-thioester and ABT denotes (2-aminoethyl)- amidocarboxybenzyl thioester. 
Flexizymes were engineered from Fx3 sequence. 
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Chapter 2 was omitted due to publication and patent application.
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Chapter 3 was omitted due to patent application. 
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General conclusion 
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In the current world, the aminoacylation reaction is conducted solely by aminoacyl-

tRNA synthetases (ARS) which recognizes its corresponding tRNA and amino acid spe-

cifically. The defined correspondence between tRNAs and acids defines the genetic code, 

which is essential for accurate translation of mRNAs to proteins in living organism. In 

the transition era between the current world and the possible RNA world, such aminoac-

ylation reaction could be conducted by ribozyme. It is possible that ribozyme specifically 

recognizing both the amino acid and tRNA could have been present. In this thesis the 

recreation of such ribozyme was attempted. 

 

In chapter 2, with the use of T-box riboswitch, a novel ribozyme named Tx2.1 was 

discovered. This ribozyme has the ability to specifically recognize biotin-LPhe-CME for 

its amino acid substrate. Furthermore, Tx2.1 could distinguish the tRNA anticodon as 

well. The similar characteristics between natural ARS and Tx2.1 presents us the possibil-

ity that such ribozyme similar to Tx2.1 could have been present in the ancient time. Fur-

thermore, the demonstration that Tx2.1 was able to function within the in vitro translation 

mixture was presented. This is to my knowledge the very first case to show that amino-

acylation ribozyme functions in parallel with the translation mixture. This approach to 

discover ribozymes from existing riboswitch could be applicable to other riboswitches as 

well and those engineered ribozymes could also be resembling a possible ancient ribo-

zyme existed in the RNA world. Since there is still room for improvement in efficiency, 

the discovery of Tx2.1 presents us with new apparatus for in situ aminoacylation for ge-

netic code reprogramming as well. 

 

In chapter 3, similar approach to chapter 2 was conducted against different amino acid 

substrates and His-DBE and Hbi-DBE was chosen as amino acid substrates. In the case 
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of His-DBE selection, the identified RNA sequence turned out to be biotinylation ribo-

zyme instead of aminoacylation ribozyme. The study indicates the possible need of biotin 

residue directly attached to the amino acid substrate rather than conjugating afterwards to 

remove the risk of obtaining biotinylation ribozyme. The reduction of reaction time for 

biotinylation could also be applied to selectively recover aminoacylating ribozymes. For 

Hbi-DBE selection, ribozymes having selfaminoacyalation activity was obtained. These 

results present us the benefit of using T-box riboswitch as base structure rather than from 

totally random RNA sequence and that this T-box riboswitch approach to obtain amino-

acylation ribozyme is to some extent feasible. 
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