
博 士 論 文 （要約）　

Fast Low-Order Finite Element Earthquake Simulations on

GPUs with Transprecision Computing

(精度変動演算を用いたGPUによる

高速な低次有限要素地震シミュレーション手法開発)

山口　拓真

ABSTRACT

The content is not included in the abridged version.

ii

Acknowledgment

First and foremost, I would like to express my deep gratitude to Prof. Tsuyoshi Ichimura, who

took me a trip to the farthest edge, or leading edge of computer science. Participation to various

international conferences, collaborative researches, and shortening of the doctor course period were

fruitful and exciting experience for me.

I also would like to thank Prof. Kengo Nakajima for his guidance as a sub-chief examiner. Advices

form the perspective in computational science were insightful for this research. In addition, I appreciate

the feedback offered by Prof. Muneo Hori, Prof. Lalith Wijerathne, and Prof. Kei Yoshimura.

Prof. Kohei Fujita made enormous and invaluable contribution to my studies. Without his supports,

this dissertation would not have materialized.

I am grateful and thankful to my fellow lab members whose continuous supports have motivated

me to keep moving forward.

Part of our results were obtained using the Summit at Oak Ridge Leadership Computing Facility, a

US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory (ORNL).

We thank Yukihiko Hirano (NVIDIA) for coordination of the collaborative research project. We thank

Christopher B. Fuson, Don E. Maxwell, Oscar Hernandez, Scott Atchley, Veronica Melesse-Vergara

(ORNL), Jeff Larkin, Stephen Abbott (NVIDIA), Lixiang Luo (IBM), Richard Graham (Mellanox

Technologies) for generous support concerning use of Summit. We thank Noda Tomoyuki and Hikaru

Inoue (Fujitsu Limited) for support in program development. We acknowledge support from Post K

computer project (Priority Issue 3 - Development of integrated simulation systems for hazards and

disasters induced by earthquakes and tsunamis: proposal numbers hp180217, hp190177), and Japan

Society for the Promotion of Science (18H05239, 18H05239, 26249066, 25220908, and 17K14719).

Part of our results were obtained using Computational resource of AI Bridging Cloud Infrastruc-

ture (ABCI), National Institute of Advanced Industrial Science and Technology (AIST). We thank

Prof. Olaf Schenk (Institute of Computational Science, Università della Svizzera italiana) for the

generous support concerning the use of Piz Daint.

iii

Contents

1 Introduction 1

2 Baseline unstructured low-order finite-element solver targeting viscoelastic crustal

deformation computations on GPU-based systems 4

2.1 Background . 4

2.2 Methodology . 5

2.3 Performance Measurement . 8

2.4 Application Example . 10

2.5 Summary . 11

3 Heuristic optimization of three-dimensional inner structure with CPU-GPU het-

erogeneous wave computing 20

3.1 Background . 20

3.2 Methodology . 22

3.3 Application Example . 25

3.4 Summary . 28

4 Fast solver for crustal deformation computation 34

5 Fast solver for earthquake city simulation with FP21-FP32-FP64 transprecision

computing 35

6 Conclusion 36

Appendix A Acceleration of Matched Filtering by Tensor Core on Volta GPUs 38

Appendix A.1 Background . 38

Appendix A.2 Methodology . 39

Appendix A.3 Performance Measurement . 41

Appendix A.4 Summary . 45

REFERENCES 50

iv

List of Tables

2.1 Configuration of the Element-by-Element for performance comparison 14

2.2 Model settings for weak scaling on Piz Daint. The number of GPU equals the

number of compute nodes. 16

3.1 Parameters. The units of α are meters. 29

3.2 Material properties in target domain. Vp, Vs, and ρ are primary and secondary

wave velocity, and density, respectively. h is the damping ratio used in the linear

wave field calculation, hmax is maximum damping ratio, and γ is the reference

strain used in the non-linear wave analyses. 29

3.3 Parameters obtained by the optimizer for each case. The units of α are meters.

RSS is the residual sum of squares based on the reference model and defined as∑
ij(αij/ᾱij − 1)2, where ᾱij are parameters of the reference model. 31

Appendix A.1 Performance using cuBLAS and our developed kernel. Matrices are input or out-

put in the precision noted in the row of ”Input” or ”Output” and multiplication

is done in the precision noted in the row of ”Computation”. 47

v

List of Figures

2.1 Rough scheme for reduction in Element-by-Element kernel to compute Ku = f .

This figure mainly shows the computation in one block. 14

2.2 Reordering of reduction table. Temporal results are aligned in corresponding

node number. For simplicity, we assume there are two threads per warp and 12

nodes in the thread block. Load balance in warp is improved by reordering. . . 14

2.3-a first-order tetrahedral mesh . 15

2.3-b second-order tetrahedral mesh . 15

2.3 Elapsed time per Element-by-Element kernel call. Elapsed times are divided by

four when using four vectors. 15

2.4 Performance comparison of the entire solver. The numbers of iteration for outer

loop, inner fine loop, and inner coarse loop are described below each bar. 16

2.5-a Breakdown for each loop in the solver . 17

2.5-b Breakdown for MPI Allreduce . 17

2.5 Weak scaling for models indicated in Table 2.2 on Piz Daint 17

2.6 Finite-element mesh for application problem. The 10 layered crust is modeled

using 0.9 km resolution mesh. Elastic coseismic and viscoelastic postseismic

displacements. a) Overview of finite-element mesh with position of input fault

and position of cross section. b) Cross section of finite element mesh. c) Close up

area in the cross section. d) Close up view of mesh. e) Elastic coseismic response

and f) viscoelastic postseismic response. 18

3.1 Rough scheme for our proposed optimizer for an estimation of soil structure. . . 29

3.2-a Initial model . 30

3.2-b Reference model . 30

3.2 Distribution of elevation (m) of the hard layer. 30

3.3 One of finite element models in the analysis. 30

3.4 Time history of error function. Each value is normalized by the error of the

initial model. 30

3.5 Norm distribution of displacement (m) on the ground surface at t = 2.20s in the

linear ground shaking analysis. 31

3.6 x component of the velocity at (x, y) = (150, 200) on the ground surface in the

linear ground shaking analysis. 31

vi

3.7-a Location . 32

3.7-b Maximum axial strain of the pipeline . 32

3.7 Maximum distribution of axial strain along a buried pipeline for each model in

the non-linear ground shaking analysis. The buried pipeline is located between

point A (x, y, z) = (30, 40,−1.2) and point B (x, y, z) = (270, 360,−1.2). 32

Appendix A.1 Memory transaction for an observation matrix. The matrix has many duplicated

components. Shared memory is used as a buffer, and components of the actual

matrix are read from shared memory. 46

Appendix A.2 Rough scheme of normalization. α and β are single-precision scaling factors for

matrices surrounded by dash lines. 46

Appendix A.3 Performance of our proposed kernel when the size of matrix per thread changes. 48

vii

1 Introduction

When designing countermeasures for earthquake disasters, sophisticated damage estimation is one

of key issues. Physical processes of earthquake disasters mainly consist of crustal deformation, wave

propagation, and soil amplification. Traditional approach for damage estimation is based on statistical

analysis [1]; however, available data is not enough for earthquake disasters. Thus, the introduction of

numerical simulations is assumed to be more effective than traditional approaches.

However, these simulations require massive computation cost. Numerical simulations targeting

earthquake disasters come down to the problem with ∼ 1010−11 DOF. In reference [2], finite element

model was generated for the 10.25 km × 9.25 km × 0.24 km domain with 2m resolution to simulate

soil amplification around Tokyo area. Degrees of freedom of the model reached 1.3× 1011.

In addition, there are uncertainties in the earthquake simulation (e.g. earthquake scenarios, me-

chanical characteristics, and geometries). Some studies proposed methods to include these uncer-

tainties. Regarding crustal deformation, [3] considered the effect of error in Green’s functions for

inverse analyses of slip distribution. Also, [4] introduced Markov chain Monte Carlo approach for

the estimation of the posterior distribution of fault parameters. In wave propagation analysis, [5]

demonstrated a case study for inversion in a tomographic problem. In soil amplification analysis, [6]

applied Monte Carlo method in the regional seismic damage prediction accounting for uncertainty in

building structure parameters. These simulations using stochastic computing often come up in this

field. It is assumed that the demand for consideration of uncertainties in earthquake simulations has

also increased. Typical methods to consider uncertainties generally require multiple forward analyses.

Altogether, stochastic computing with high-fidelity 3-D models can lead to more reasonable damage

estimation. Jointly with observation networks, physics-based simulations using high resolution data

will enhance the capability of monitoring and evaluating earthquake hazard.

1

Due to the massive computation cost, we couldn’t execute simulations mentioned above within a

realistic timeframe. Conventional damage estimation is conducted by using deterministic problem

settings or simplified models (e.g. homogeneous elastic half-space model for crustal deformation

computation [7]). In our previous studies, fast implicit low-order finite element solver had been

developed for CPU-based systems [8]. The solver part accounts for the largest proportion of the entire

computation cost in our target simulations; thus, acceleration of the solver is important to reduce the

computation cost.

Recently, the computation environment has been rapidly improved and diverged. Graphic Process-

ing Unit (GPU) is known as one of most widely used accelerators. GPU enables parallel computations

with more than 1,000 cores and it is commonly used in scientific computing. Programming models

to introduce GPU computations have been established. For instance, CUDA [9] enables us to write

GPU-based codes with some extension to C. OpenACC [10], which can port CPU-based codes to

GPU-based systems with directives, is also available. Using GPU computation is expected to reduce

the computation cost required in our target application.

On the other hand, recent GPUs tend to have cores specialized for AI applications. These cores

have much higher peak performance (e.g. Tensor Core on NVIDIA Volta GPU [11]); however, they can

work only for matrix-matrix multiplication in lower-precision data types. Applications without cor-

responding computations cannot gain the benefit from the high arithmetic performance of AI-specific

hardware. In addition, it is generally known that some specific operations limit the performance of

GPU computations. Data transfer between CPU and GPU is major bottleneck of the performance.

Also, we have to consider that the rate of arithmetic performance increase is smaller than that of

memory bandwidth increase. Low-order finite element solver has many memory bound computations;

therefore, straightforward implementations cannot exhibit high arithmetic performance of GPUs. To

utilize AI-specific hardware and reduce data transfer size and memory footprint, the introduction

of transprecision computing with lower-precision data types [12] is important. As lower-precision

numbers have smaller dynamic range and less accuracy, convergence of the solver without overflow

or underflow is a big challenge. To accelerate our target application sufficiently using GPUs, it is

important to design appropriate algorithm and implementation.

Therefore, this thesis aims at the followings: (1) Introduction of GPU computations to a baseline

2

solver with single and double precision numbers, (2) Design of framework to compute multiple forward

analyses using CPU-GPU heterogeneous computing, and (3) Further acceleration of the solver with

transprecision computing in finite element earthquake simulations. The remainder of the thesis is

organized as follows: In Chapter 2, we design our baseline codes for GPU-based systems and evaluate

the performance. In Chapter 3, we apply our baseline solver for the estimation of 3-D inner structure

with heuristic optimization. The content of Chapter 4 and Chapter 5 is not included in the abridged

version. In Chapter 6, we describe conclusions and future prospects.

3

2 Baseline unstructured low-order finite-element

solver targeting viscoelastic crustal deformation

computations on GPU-based systems

2.1 Background

One of the targets of earthquake disaster reduction is the prediction of the place, magnitude, and

time of earthquakes. One approach is estimate earthquake occurrence probability by comparing plate

conditions at past occurrence of earthquakes with plate deformation conditions estimated by crustal

deformation observation data at surface measurement points [13]. In this process, inverse analysis is

required to estimate inter-plate displacement distribution using crust deformation data observed at

the surface. In order to realize this inverse analysis, forward simulation tools computing elastic and

viscoelastic crust deformation for a given fault slip distribution are under development.

In previous crust deformation analyses, simplified models such as horizontally stratified layers [14]

were used. However, recent studies point out that the simplification of crust geometry has significant

effects on the response [15]. Thus, computation considering the crust heterogeneity by methods such

as finite-element methods is suitable. Recently, crust property data for such analysis purposes is

being known, and crust deformation data measured at observation stations can be used. Thus, crust

deformation analyses based on these high resolution data is being anticipated.

On the other hand, the computational domain of the crust deformation analysis is large, and

considering that 1 km resolution is available, the computational size of the target problem becomes

larger than the order of 108 degrees-of-freedom. For this simulation, introduction of GPU computation

is assumed to be effective to reduce the required computation cost.

4

The target finite-element analysis has many parts that are memory bandwidth bound. Especially

many random memory accesses are included in the sparse matrix-vector product kernel which is

most computationally expensive. Compared to its high floating point performance, general GPU has

a smaller memory bandwidth, which is further decreased when coalesced memory access cannot be

performed. Thus, it is difficult to utilize the large arithmetic hardware capability of GPU architectures

in conventional finite-element solvers. Reducing random access is important to improve efficiency of

the GPU computation. In this study, we reduce random access of the major computational kernel

targeting GPUs, and also introduce an algorithm that reduce the solver iterations, to accelerate from

the previous solver. Here we use a multi-time step method together with a predictor to improve the

initial solution of the iterative solver to improve the convergency of the iterative solver. In addition,

by using several vectors for computation, we can reduce random memory access in the major sparse

matrix-vector kernel and improve performance.

Section 2.2 explains the developed method. Section 2.3 shows the performance of the developed

method on Piz Daint [16], which is a P100 GPU based supercomputer system. Section 2.4 shows

an application example using the developed method. Section 2.5 summarizes this chapter and gives

future prospects.

2.2 Methodology

We target elastic and viscoelastic crust deformation to a given fault slip. Following [14], the gov-

erning equation is

σij,j + fi = 0, (2.1)

with

σ̇ = λϵ̇kkδij + 2µϵ̇ij −
µ

η

(
σij −

1

3
σkkδij

)
, (2.2)

ϵij =
1

2
(ui,j + uj,i), (2.3)

where σij and fi are the stress tensor and outer force. (˙), (),i, δij , η, ϵij , and ui are the first

derivative in time, that in the ith direction in space, Kronecker delta, viscosity coefficient, strain

tensor, and displacement, respectively. λ and µ are Lame’s constants. Discretization of this equation

5

by the finite-element method leads to solving a large system of linear equations. The developed method

is based on viscoelastic analysis by [17], which can be described as follows (Algorithm 1 and 2).

An adaptive preconditioned conjugate gradient solver with Element-by-Element method [18], multi-

grid method, and mixed-precision arithmetic is used in Algorithm 2. As most of the computational

cost is in the inner loop of Algorithm 2, and it can be computed in single precision, we can reduce

computational cost. In addition, we can reduce the data transfer size, and thus we can expect it

to be suitable for GPU systems. Below, we call line 8 of Algorithm 2(a) as the inner coarse loop

and line 10 of Algorithm 2(a) as the inner fine loop. The most computational costly kernel is the

Element-by-Element kernel which computes sparse matrix-vector products. The Element-by-Element

kernel computes the product of element stiffness matrix by vectors element wise, and adds the results

for all elements to compute a global matrix vector product. As element matrices are computed on

the fly, the data transfer size from memory can be reduced significantly. This leads to circumventing

the memory bandwidth bottleneck, and thus is suitable for GPU architectures with relatively low

memory bandwidth compared with its arithmetic capability. On the other hand, since many random

data access is required when adding up element wise results, this data access becomes the bottleneck

in this kernel. In order to improve the efficiency of this kernel, we introduce the methods below to

reduce random accesses.

2.2.1 Parallel computation of multiple time steps

In the developed method, we solve four time steps in viscoelastic analysis in parallel following [19].

As the stress of the step before needs to be obtained before solving the next step, only one time step

can be solved exactly. Here we compute until the error of the next time step (displacement) becomes

smaller than prescribed threshold ϵ. The next three time steps are solved using the solutions of the

steps before to estimate the solution. The estimated solution of the step before is used to update

the stress state and outer force vector. By using this method, we can obtain estimated solutions for

improving the convergency of the solver. In this method, four vectors can be computed simultaneously.

In the Element-by-Element kernel, four values corresponding to the four time steps will be consecutive

in memory address space. Therefore we can improve the computational efficiency when compared with

conducting Element-by-Element kernel of one vector for four times. That is, the arithmetic count per

6

iteration increases by approximately four times, but by the decrease in the number of iterations and

the improvement of computational efficiency of the Element-by-Element kernel is expected to reduce

the time-to-solution.

In order to improve convergency, it is important to estimate the initial solution of the fourth time

step accurately. Thus we use the predictor as below. Until the 5th time step, no predictor is used.

For predicting the 6, 7, and 8th time steps, we use the second order Adams-Bashforth predictor. For

predicting the 9th step and on, we use a linear predictor. In this linear predictor, a linear regression

based on the accurately computed 7 time steps are used to predict the future time step. As regressions

based on higher order polynomials or exponential base functions may lead to jumps in the prediction,

we will not use them in this study.

2.2.2 Reduction of atomic access

In the Element-by-Element kernel for GPUs in previous study [20], we need to add up element wise

results to the global vector. We use a buffering method to reduce the number of accesses to the global

vector to improve the efficiency of the Element-by-Element kernel. Regarding for NVIDIA GPU, we

can utilize a shared memory, in which values can be referred among threads in the same block. The

computation procedure is as below and also described in Fig. 2.1.

1. Group elements in to blocks, and store element wise results into a shared memory

2. Add up nodal values in shared memory using a precomputed table

3. Add up nodal values to global vector

We can expect performance improvement as summation of temporal results is mainly performed in

preliminary reduction in a shared memory, which has wider bandwidth. In this scheme, the setting

of block size is assumed to have some impact on its performance. By allocating more elements in

a Block, we can improve the number of reduction of nodal values in shared memory. However, the

total number of threads is constraint by the shared memory size. In addition, we need to synchronize

threads in a Block when switching from element wise matrix-vector multiplication to data addition

part, using large number of threads in a Block leads to increase in synchronization cost. Under this

circumstances, we allocate 128 threads (32 elements × four time steps) per Block.

7

In GPU computation, SIMT composing of 32 threads is used [21]. When the number of compu-

tation differs between the 32 threads, warp divergence occurs and is expected to lead to decrease in

performance. In reduction phase, we need to assign threads per node. However, since the number of

elements per node differs significantly between nodes, we can expect large load imbalance among the

32 threads. Thus we sort the nodes according to the number of elements to be added up as described

in Fig. 2.2. This leads to good load balance among the 32 threads, leading to higher computational

efficiency.

This method on shared memory requires implementation by CUDA. We also use CUDA for inner

product computation to improve the memory access pattern and thus improve efficiency. On the other

hand, other computation such as vector addition and subtraction are memory bound, and thus use of

OpenACC is expected to perform as well. Thus we use CUDA for these performance sensitive kernels,

and use OpenACC for the other parts. The CUDA part is called via a wrapper function.

2.3 Performance Measurement

We measure performance of the developed method on hybrid nodes of Piz Daint1.

2.3.1 Performance measurement of the Element-by-Element kernel

We use on P100 GPU on Piz Daint to measure performance of the Element-by-Element kernels. The

target mesh is a tetrahedral mesh used for finite-element analysis with 959,128 elements. Its degrees-

of-freedom is 4,004,319 in second-order tetrahedral mesh and 522,639 in first-order tetrahedral mesh.

Here we compare four versions of the kernels. Table 2.1 summarizes the kernels. Case A corresponds

to the conventional Element-by-Element kernel, and Case D corresponds to the proposed kernel.

Figures 2.3-a, 2.3-b show the normalized elapsed time per vector of the kernels in inner fine and

coarse loops.

We can see that the use of four vectors, reduction, and reordering significantly changes the perfor-

mance. In order to assess the time spent for data access part, we also indicate the time measured

for the Element-by-Element kernel without computing the element wise matrix-vector products. We

1 Piz Daint comprises of 1,431 × multicore compute node (Two Intel Xeon E5-2695 v4) and 5,320 × hybrid

compute node (Intel Xeon E5-2690 v3 + NVIDIA Tesla P100) connected by Cray Aries routing and

communications ASIC, and Dragonfly network topology.

8

can see that the data access is dominant in the Element-by-Element kernel on P100 GPUs, and thus

it is the bottleneck. With the decrease in memory access by reduction, we can see that the elapsed

time of the kernel has decreased. When compared to the performance in second-order tetrahedral

mesh, the performance in first-order tetrahedral mesh was much more improved by reduction using

shared memory. This effect can be confirmed by the number of call for atomic add to the global

vector. In second-order tetrahedral mesh, atomic addition is performed 115,095,360 times in Case B

and 43,189,848 times in Case D; thereby the number of calls is reduced by about 37%. Regarding

first-order tetrahedral mesh, atomic addition is performed 46,038,144 times in Case B and 10,786,920

times in Case D; thus the number of calls is reduced by about 23%. In total, we can see that the

computational performance of the kernel has improved by 3.3 times in first-order tetrahedral mesh

and 2.2 times in second-order tetrahedral mesh when comparing the conventional kernel (Case A) and

the developed kernel (Case D).

2.3.2 Comparison of solver performance

We compare the developed solver to the original solver without time parallel algorithm and reduction

in shared memory access costs. The same tolerances of solvers is used for both methods, ϵ = 10−8 is

used for the outer loop, (ϵ̄inc , Nc) = (0.1, 300) is used for the inner coarse loop, and (ϵ̄in, N) = (0.2, 30)

is used for the inner fine loop. These tolerance numbers are selected to minimize the elapsed time

for both solvers. We use time step increment dt = 2592000 s with Nt = 300 time steps, and measure

performance of the viscoelastic computation part (time step 2 to 300).

A model with 41,725,739 degrees-of-freedom and 30,720,000 second-order tetrahedral elements is

computed using 32 Piz Daint nodes. Figure 2.4 shows the number of iterations and elapsed time of

the solvers. By using the multistep predictor, the number of iterations of the most computationally

costly inner coarse loop has decreased by 2.3 times. Together, as the Element-by-Element kernel

performance has improved significantly, the total elapsed time has decreased by 2.79 times.

2.3.3 Weak scaling

Next we measure weak scalability up to 1024 Piz Daint nodes. Table 2.2 shows the models used for

measurement.

Using the 32 GPU problem in the previous subsection as one unit, these models are made by making

9

a periodic problem set with problem size according to the number of Piz Daint nodes. The elapsed

time for the viscoelastic computation (time step 2 to 300) is shown in Fig. 2.5-a. We can see reasonable

scalability, however, it is lower than the results of previous studies such as [22]. Main reason for this is

the performance decrement in MPI Allreduce. In this solver, we call MPI Allreduce to add up results

of inner vector product, whose size is four Bytes or eight Bytes × four time steps. We measured

elapsed time required only for this MPI allreduce and estimated the time required for MPI Allreduce

considering the number of calls in the solver. The estimated breakdown is described in Fig. 2.5-b. The

scalability of MPI Allreduce part is getting worse as the number of compute nodes increases; while

the other part is roughly constant among all models. To improve this scalability, further discussion

for MPI Allreduce via other GPU-based supercomputer such as Summit in which reduction operation

is supported at the hardware level is needed. Also we are now trying to use communication avoiding

CG methods [23] to circumvent this bottleneck.

2.4 Application Example

We apply the developed solver to a viscoelastic deformation problem following a hypothetical earth-

quake on the Hellenic arc subduction interface, which affects deformation measured in Greece and

across the Eastern Mediterranean. We selected this Hellenic region, because recent analysis of time-

scale bridging numerical models suggests that the large amount of sediments subducting could mean

that a larger than anticipated M 9 earthquake might be able to occur in this highly populated region

[24]. To model the complete viscoelastic response of the system we simulate a large depth range,

including the Earth’s crust, lithosphere and complete mantle down to the core boundary. The target

domain is of size 3,686 km × 3,686 km × 2,857 km. Geometry data of layered structure is given in

spatial resolution of 1 km [25].

To fully reflect the geometry data into the analysis model, we set resolution of finite-element model

to 0.9 km (second-order tetrahedral element size is 1.8 km). As this becomes a large scale problem,

we use a parallel mesh generator capable of robust meshing of large complex shaped multiple ma-

terial problems [26,19]. This leads to a finite-element model of 589,422,093 second-order tetrahedral

elements, 801,187,352 nodes, and 2,403,562,056 degrees-of-freedom shown in Figure 2.6a-d. We can

10

see that the layered structure geometry is reflected into the model. We input a hypothetical fault slip

in the direction of the subduction, that is, slip with (dx, dy, dz) = (25, 25, -10) m, at the subduction

interface separating the continental crust of Africa and Europe in the center of the model with diam-

eter of 250 km. Following this hypothetical M 9 earthquake we compute the elastic coseismic surface

deformation and postseismic viscoelastic deformation due to viscoelastic relaxation of the crust, litho-

sphere and mantle.. Following [17], a split node method is used to input the fault dislocation, and

time step increment dt is set to 30 days (2,592,000 s). The analysis of 2,000 time steps took 4587 s

using 512 P100 GPUs on Piz Daint.

Figure 2.6e,f shows the surface deformation snapshots. We can see that elastic coseismic response as

well as the viscoelastic response is computed reflecting the 3D geometry and heterogeneity of crust. We

can expect more realistic response distribution by inputting fault slip distributions following current

solid earth science knowledge.

2.5 Summary

We developed a fast unstructured finite-element solver for viscoelastic crust deformation analysis

targeting GPU-based computer. The target problem becomes very computationally costly since it

requires solving a problem with more than 108 degrees-of-freedom. In order to improve performance

of this analysis, the random data access in Element-by-Element method in matrix-vector products

was the bottleneck. In this study, we proposed a reduction method to use shared memory of GPUs.

We also introduced multi-step predictor and linear predictor to improve the convergency of the solver.

Performance measurement on Piz Daint showed 2.79 times speedup from the previous solver. We also

seen reasonable scalability up to 1024 nodes of Piz Daint.

11

Algorithm 1 Coseismic/postseismic crustal deformation computation against given fault dis-

placement. ()n is the variables in the nth timestep. dt is time increment and βn = D−1Aσn,

where σn = (σn
11, σ

n
22, σ

n
33, σ

n
12, σ

n
23, σ

n
13)

T. B is the displacement-strain transformation matrix

and D and A are 6× 6 matrices indicating material properties. Dv = (D−1 + αdtβ′), where

α is a controlling parameter and β′ is the Jacobian matrix of β.

1: Compute f1 by split-node technique

2: Solve Ku1 = f1

3: {σj}4j=1 ⇐ DBu1

4: {δuj}4j=1 ⇐ 0

5: i ⇐ 2

6: while i ≤ Nt do

7: if 5 ≤ i ≤ 8 then

8: Compute initial guess solution by 2nd-order Adams-Bashforth method δui+3 ⇐ ui−3ui+1+

2ui+2

9: end if

10: if i ≥ 9 then

11: Compute initial guess solution by linear predictor δui+3 ⇐ (−17δui−7− 10δui−6− 3δui−5+

4δui−4 + 11δui−3 + 18δui−2 + 25δui−1)/28

12: end if

13: while ∥Kvui − f i∥ > ϵ do

14: {f j}i+3
j=i ⇐

∑
k

∫
Ωk

e
BT (dtDv{βj}i+3

j=i − {σj}i+3
j=i)dΩe + f0

15: Solve Kv{uj}i+3
j=i = {f j}i+3

j=i using Algorithm 2

16: {σj}i+3
j=i+1 ⇐ {σj}i+2

j=i +Dv(B{δuj}i+2
j=i − dt{βj}i+2

j=i)

17: ui ⇐ ui−1 + δui

18: σi+4 ⇐ σi+3 +Dv(Bδui+3 − dtβi+3)

19: i ⇐ i+ 1

20: end while

21: end while

12

Algorithm 2 The iterative solver to obtain a solution u. ()c are variables in first-order

tetrahedral model, while others are in second-order tetrahedral model. (¯) represents single-

precision variables, while the others are double-precision variables. The input variables are

K,K,Kc,P,u, f , ϵinc , Nc, ϵ
in, and N . The other variables are temporal. P is a mapping

matrix from the coarse model to the target model. This algorithm computes four vectors at

the same time, so coefficients have the size of four and vectors have the size of 4×DOF. All

computation steps in this solver, except MPI synchronization and coefficient computation,

are performed in GPUs.

(a) Outer loop

1: r ⇐
∑

Keue

2: r ⇐ f − r

3: β ⇐ 0

4: u ⇐ M
−1

r

5: rc ⇐ P
T
r

6: uc ⇐ P
T
u

7: Solve uc = K
−1

c rc in (b) with ϵinc and Nc

8: u ⇐ Puc

9: Solve u = K
−1

r in (b) with ϵin and N

10: u ⇐ u

11: p ⇐ z+ βp

12: q ⇐
∑

Kepe

13: ρ ⇐ (z, r)

14: γ ⇐ (p,q)

15: α ⇐ ρ/γ

16: r ⇐ r− αq

17: u ⇐ u+ αp

(b) Inner loop

1: e ⇐
∑

Keue

2: e ⇐ r− e

3: β ⇐ 0

4: i ⇐ 1

5: ∥e1∥2/∥r1∥2 > ϵ and N > i

6: z ⇐ M
−1

e

7: ρa ⇐ (z, e)

8: if i > 1 then

9: β ⇐ ρa/ρb

10: end if

11: p ⇐ z+ βp

12: q ⇐
∑

Kepe

13: γ ⇐ (p,q)

14: α ⇐ ρa/γ

15: ρb ⇐ ρa

16: e ⇐ e− αq

17: u ⇐ u+ αp

18: i ⇐ i+ 1

13

=

=

…

Thread Block

store

store

Shared memory Atomic

add

Sum up

nodal values

f

Ke

Ke

u

u

Fig.2.1: Rough scheme for reduction in Element-by-Element kernel to compute Ku = f . This

figure mainly shows the computation in one block.

●

●

● ●

● ● ● ●

● ● ● ●● ●

● ●● ● ●● ●●

●●●●●●●●●●●●

●●●●●●●●●●●●

1 2 3 4 5 6 7 8 9 10 11 12

reordering

●

●

●●

●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

1 11 3 8 6 9 4 12 2 5 7 10Node #

Temporal results

Fig.2.2: Reordering of reduction table. Temporal results are aligned in corresponding node

number. For simplicity, we assume there are two threads per warp and 12 nodes in the thread

block. Load balance in warp is improved by reordering.

Table2.1: Configuration of the Element-by-Element for performance comparison

Reduction using Reordering of nodes

Case # of vectors shared memory in reduction

A 1 x -

B 4 x -

C 4 o x

D 4 o o

14

486.5

309.4

164.8

149.1

443.5

304.7

129.8

113.7

0 100 200 300 400 500

A

B

C

D

Elapsed time per vector (us)

C
a

s
e

Totality Without computation

Fig.2.3-a: first-order tetrahedral mesh

1,346.3

803.5

758.1

607.3

1,292.2

785.5

680.2

529.9

0 500 1000 1500

A

B

C

D

Elapsed time per vector (us)

C
a

s
e

Totality Without computation

Fig.2.3-b: second-order tetrahedral mesh

Fig.2.3: Elapsed time per Element-by-Element kernel call. Elapsed times are divided by four

when using four vectors.

15

793.59

284.55

0 200 400 600 800

Previous

Proposed

Elapsed Time (s)

Other Outer Loop Inner Fine Loop Inner Coarse Loop

406 + 5689 + 83766

1327 + 10555 + 189892

Fig.2.4: Performance comparison of the entire solver. The numbers of iteration for outer

loop, inner fine loop, and inner coarse loop are described below each bar.

Table2.2: Model settings for weak scaling on Piz Daint. The number of GPU equals the

number of compute nodes.

Model # of GPUs Degrees of Freedom # of elements # of elements/GPU

No.1 32 125,177,217 30,720,000 960,000

No.2 128 496,736,817 122,880,000 960,000

No.3 256 992,038,737 245,760,000 960,000

No.4 512 1,978,979,217 491,520,000 960,000

No.5 1024 3,955,080,657 983,040,000 960,000

16

284.55

327.06

357.72

366.51

390.47

0 100 200 300 400

No. 1

No. 2

No. 3

No. 4

No. 5

Elapsed Time (s)

Other Outer loop Inner Fine loop Inner Coarse loop

Fig.2.5-a: Breakdown for each loop in the solver

284.55

327.06

357.72

366.51

390.47

0 100 200 300 400

No. 1

No. 2

No. 3

No. 4

No. 5

Elapsed Time (s)

MPI_Allreduce Other

Fig.2.5-b: Breakdown for MPI Allreduce

Fig.2.5: Weak scaling for models indicated in Table 2.2 on Piz Daint

17

b) Cross section

Close up area in c)
y

z

a) Overview

x

yz

Cross section in b)

Input fault below
circle

Coastline

Crust weak zones

Continental crust
(Eurasia)

Continental crust
(Nubia and Arabia)

Old oceanic crust

y

z

Continental crust
(Nubia and Arabia)

Slab

Mantle
weak
zone

Mantle

Continental crust
(Eurasia)

Crust weak
zone

Mantle

Old oceanic
crust

c) Cross section close up

Close up area in d)

x

y

0.0 0.53 m0.27

e) Elastic coseismic surface

displacement magnitude

0.0 17.1 m8.5

d) View of mesh

f) Viscoelastic postseismic

surface displacement magnitude

(t = 167 years)

x

y

Fig.2.6: Finite-element mesh for application problem. The 10 layered crust is modeled using

0.9 km resolution mesh. Elastic coseismic and viscoelastic postseismic displacements. a)

Overview of finite-element mesh with position of input fault and position of cross section. b)

Cross section of finite element mesh. c) Close up area in the cross section. d) Close up view

of mesh. e) Elastic coseismic response and f) viscoelastic postseismic response.

18

Acknowledgment

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Lecture

Notes in Computer Science, vol 10861, Viscoelastic Crustal Deformation Computation Method with

Reduced Random Memory Accesses for GPU-Based Computers, Takuma Yamaguchi, Kohei Fujita,

Tsuyoshi Ichimura, Anne Glerum, Ylona van Dinther, Takane Hori, Olaf Schenk, Muneo Hori, and

Lalith Wijerathne, c⃝(2018)

19

3 Heuristic optimization of three-dimensional

inner structure with CPU-GPU heterogeneous

wave computing

3.1 Background

Numerical simulations with large degrees of freedom are becoming feasible due to the development

of computation environments and algorithms. Accordingly, more reliable models are required to ob-

tain more reliable results for the target domain with complex structures. This approach has been

discussed in various fields including biomedicine [27], [28], and it is also important for the numerical

simulation of earthquake disasters. It is rational that we allocate resource and take countermeasures

after detecting an area with potentially substantial damage. We can apply numerical simulation for

estimating damages. [29] found that the geometry of the target domain significantly affects the dis-

tribution of displacement on the ground surface and strain in underground structures. To undertake

well-suited countermeasures, three-dimensional unstructured finite element analysis is preferred, as it

considers complex geometry. This analysis results in problems with large degrees of freedom because

it targets large domains with high resolution. The computation mentioned above has become more

attainable due to the development of the computation environment and analysis methods for CPU-

based large-scale systems [2]. However, inner soil structure is not available with high resolution, which

hampers the generation of finite element models. On the ground surface, [30] is used as elevation data

for Japan. With the advance of sensing technology, it is possible to observe earthquake waves on

many points on the ground surface. It is desirable that we estimate a finite element model which

can reproduce observational data on the ground surface and conduct analyses using an estimated

20

model. On the other hand, it is difficult to measure the underground structure with high accuracy

and resolution.

One of realistic ways to address this issue is introduction of an optimization method using observation

data on the ground surface for a micro earthquake. If we can generate many finite element models

and conduct wave propagation analyses for each model, it is possible to select a model with the max-

imum likelihood for available observation data. Using optimized models will increase the reliability

of the analyses. There are some gradient-based methods for optimization as [31] proposed for three-

dimensional crustal structure optimization. These methods have the advantage that the number of

trials is small; however, they may be difficult to escape from a local solution if control parameters

have low sensitivity to an error function. Thus, this study focuses on heuristic methods such as simu-

lated annealing so that we can reach the global optimal solution robustly. The expected optimization

requires many forward analyses, and the challenge is an increase in the computation cost for many

analyses with large degrees of freedom.

We use our solver algorithm proposed in Chapter 2. The computation time can be reduced by using

parallel computation with many GPU cores. However, it is known that GPU computation requires the

consideration of memory access and communication cost to attain better performance. This chapter

proposes an algorithm that combines very fast simulated annealing and wave propagation analyses

and repeats generation of finite element models and the computation of the solver for estimation of

inner soil structure. Some computations in our optimizer are not suitable for GPU computation.

Thus, computer resources are allocated so that we can benefit further from the introduction of GPU

computation. A finite element solver appropriate for GPU computation is used to reduce the com-

putation time in the solver, which is the most computationally expensive part. At the same time,

generation of finite element models, which requires serial operations, is computed on CPUs so that

computation time for model generation can be overlapped. We confirm that the inner soil structure

has a large effect on the results and that our proposed method can estimate the soil structure with

sufficient accuracy for damage estimation.

21

3.2 Methodology

For estimating the inner structure of the target domain, this study proposes a method to conduct

many wave propagation analyses and accept the inner structure with its maximum likelihood. In

this study, optimization targets the estimation of boundary surfaces of the domain that has different

material properties. For simplicity and for the purposes of this study, we have assumed that the target

domain has a stratified structure and that target parameters for optimization are an elevation of the

boundary surface on control points which are located at regular intervals in the x and y directions.

A boundary surface is generated in the target domain by interpolating elevation on control points

using linear functions. Figure 3.1 depicts the scheme for optimization. In this scheme, we conduct

finite element analyses for evaluation of parameters many times in very fast simulated annealing. Our

optimizer is designed so that the generation of a finite element model and the finite element solver,

which account for the large proportion of the whole computation time, can be computed at the same

time by CPUs and GPUs, respectively. We describe the details for each part of our optimizer in the

following parts.

3.2.1 Very Fast Simulated Annealing

Very fast simulated annealing, which is a heuristic optimization method for problems with many

control parameters [32], is applied. Simulated annealing has a parameter that corresponds to tem-

perature, and the temperature decreases as the number of trials increases. We search and evaluate

parameters in the following manner. First, trial parameters are selected randomly based on current

parameters. The search parameter domain is wider when the temperature is higher. The evaluation

value of trial parameters and that of previous ones are compared, and if the evaluation value is im-

proved, parameters are always updated. Even if the evaluation value is worse, parameters are updated

with a high degree of probability while the temperature is high. By repeating this procedure, this

method can move out of the local optimal solution and find the global optimal solution robustly. To

evaluate the parameters, finite element analysis is conducted. We assume that we have many obser-

vation points on the surface of the target domain. Our error function is defined by the time histories

of displacement in the analyses and observation data on observation points. The actual error function

is defined in Section 3.

22

In very fast simulated annealing, temperature at the k-th trial is defined using initial temperature T0

and the number of control points D as Tk = T0exp(−ck
1
D), where parameter c is defined by T0, D, low-

est temperature Tf , and the number of trials kf as Tf = T0exp(−m), kf = expn, and c = mexp(− n
D).

The initial temperature, lowest temperature, and number of iterations depend on problems. A cer-

tain number of iterations are conducted for this simulation, though we can stop searching by other

conditions, including acceptance frequency of new solutions.

3.2.2 Finite Element Analyses

In the scheme, we must conduct more than 103 finite element analyses; thus, it is essential to

conduct these analyses in a realistic timeframe. We target linear wave propagation analyses. The

target equation is
(

4
dt2M+ 2

dtC+K
)
un = fn +Cvn−1 +M

(
an−1 +

4
dtvn−1

)
, where u, v, a, and f

are displacement, velocity, acceleration, and force vector, respectively, and M, C, and K are mass,

damping, and stiffness matrix, respectively. In addition, dt is the time increment, and n is the

number of time steps. For the damping matrix C, we use Rayleigh damping and compute it by linear

combination as C = αM+ βK. Coefficients α and β are set so that
∫ fmax

fmin
(h− 1

2 (
α

2πf + 2πfβ))2df is

minimized, where fmax, fmin, and h are maximum targeting frequency, minimum targeting frequency,

and damping ratio. We apply Newmark-β method with β = 1/4 and δ = 1/2 for time integration.

Vectors vn and an can be described as vn = −vn−1+
2
dt (un−un−1), an = −an−1− 4

dtvn−1+
4

dt2 (un−

un−1). We obtain displacement vector un by solving the equation above and updating vectors vn

and an. Computation in the finite element solver and generation of finite element models are most

computationally expensive parts in our optimizer.

Finite Element Solver

We extend our finite element solver for crustal deformation computation in Chapter 2.

The solver combines a conjugate gradient method with adaptive preconditioning, geometric multigrid

method, and mixed precision arithmetic to reduce the amount of arithmetic counts and data transfer

size. In the solver, sparse matrix vector multiplication is computed by the Element-by-Element (EbE)

method. It computes element matrix on-the-fly and reduces the memory access cost. Specifically,

the multiplication y = Ax is computed as y =
∑ne

i=1(Q
(i)T (A(i)(Q(i)x))), where ne is the number

of elements in the domain, Q(i) is a mapping matrix from local node numbers in the i-th element to

23

the global node numbers, and A(i) is the i-th element matrix and satisfies A =
∑ne

i=1 Q
(i)TA(i)Q(i).

In this problem, A(i) = 4
dt2M

(i) + 2
dtC

(i) + K(i). The entire part of the solver is implemented in

the multiple GPUs using CUDA. To exhibit higher performance using GPUs, we have to reduce the

operations that are not suitable for GPU computation; thus, we modify the algorithm of the solver.

We overlap computation and communication as described in [33]. In the domain of each MPI process,

some elements are adjacent to domains of other MPI processes and require point-to-point commu-

nications, and others do not require these communications. First we compute elements that require

data transfer among other GPUs. Next we communicate with other GPUs while we are computing

elements that do not require data transfer. By following this procedure, it is possible to overlap MPI

point-to-point communication in the solver.

In the conjugate gradient solver, the coefficients are derived from the result of inner product calcula-

tions so that orthogonal residual vector and A-orthogonal searching vector can be generated to those

in the previous iteration, respectively. When multiple GPUs are used with MPI, calculations of these

coefficients require data transfer and synchronization among MPI processes such as MPI Allreduce.

Thus, they become relatively time-consuming taking into account that other computations including

vector operations and sparse matrix vector multiplication are accelerated by GPUs. In our solver,

we employ the method described in [23]. This algorithm requires one MPI Allreduce per iteration,

which halves the number of MPI Allreduce per iteration in the original conjugate gradient method.

The amount of vector operation increases in this scheme. However, the reduction of calculations of

coefficients is more effective for GPU-based systems.

Generation of the Finite Element Model

We automatically generate finite element model using the method by [17]. Its procedure includes

serial computation; thus, we cannot apply GPU computation for this part. Generation of finite element

models can account larger proportion of the whole elapsed time, which is not negligible compared to

the computation time in the finite element solver. Therefore, we design our optimizer so that it is

possible to generate a finite element model for the next trial on CPUs while wave propagation analysis

is computed on GPUs. All of the main computation in the solver can be computed in GPUs, so we

can assign only one core of CPUs for each GPU and this has little effect on the performance of the

solver. Other cores in CPUs are assigned for the generation of finite element models. Program of the

24

model generation is created separately from that of the finite element solver and we executed them

asynchronously using a shell-script. Output files are shared in the file system and controlled so that

they are updated in correct timing. By allocating heterogeneous computer resource as mentioned

above, it is possible to overlap model generation with GPU computation.

3.3 Application Example

We use our developed optimizer to estimate soil structure. Our target domain has two layers, and

we define their boundary surface. We use IBM POWER System AC922 for computation, which has

two POWER9 CPUs (16 cores, 2.6 GHz) and four NVIDIA Volta V100 GPUs. We assign one CPU

core to each GPU for finite element analysis with MPI and we use the remaining 28 CPU cores for

the model generation with OpenMP.

The target domain is 300 m × 400 m × 75 m and the resolution is 2.5 m at the maximum. Elevation

data at the surface are available. They are flat and we set them as z = 0 m. A finite element model

with approximately 3,000,000 degrees of freedom is generated. Figure 3.3 shows one of the FE models

in the analysis. Control points are located at regular intervals in the x and y directions. We notate the

elevation of the hard layer on points (x, y) = (100i, 100j)(i=0-3, j=0-4) as αij(m). The points x = 0,

x = 300, y = 0, and y = 400 are the edges of the domain, and we assume αij = 0 for these points.

The parameters for optimization are αij(i=1-2, j=1-3). Initial parameters and reference parameters,

which are true, are shown in Table 3.1.

We assume the information from the boring survey are available at points (x, y) = (50, 50),

(150, 350), (200, 100). Elevations at these points are -7.01 m, -5.97 m, and -16.3 m, respectively,

and these elevations are interpolated to make the initial boundary surface. The distributions of the

boundary surface for initial and reference models are described as Fig. 3.2.

In this problem, material properties of the soil structure are deterministic. These properties are

described in Table 3.2.

Input waves for wave propagation analyses can be obtained by pulling back observed waves on the

ground surface. In this chapter, we assume that input waves are generated by micro earthquakes,

and linear analysis can be applied. It is then possible to use Ricker wave as our input wave. We

25

derive amplification functions from observation data and pulled back waves. Using these functions,

it is possible to estimate observation data when we input Ricker wave. These operations reduce time

steps for wave propagation analyses and the entire computation time. Ricker waves, represented

as (1 − 2π2f2
c (t − tc)

2)exp(−π2f2
c (t − tc)

2), are input as x and y components of velocity at the

bottom of models. t is time in second, fc is central frequency and tc is central time. For this

application example, the target frequency is as much as 2.5 Hz and we set the period of each analysis

to 2.56 seconds. Considering these settings, we set (fc, tc) = (0.8, 1.2). Time increment of the

analysis is 0.01 second; thus each wave propagation analysis requires computation for 256 times

steps. We set two cases for observation points. In case 1, we allocate 35 observation points defined as

(x, y) = (50i, 50j) (i=1-5, j=1-7) and in case 2, observation points are (x, y) = (−50+100i,−50+100j)

(i=1-3, j=1-4) and the number of points is 12. We use an error function as follows; Error =

1
np

∑np
i=1

∑3
j=1

∫ fmax

0
|F [vij] − F [v̄ij]|df , where np is the number of observation points, and fmax is

the maximum targeting frequency, which is 2.5 Hz in our paper. v is the time history of x, y, and

z components of velocity on each observation point. Values with an over-line corresponds to the

observation data. In addition, F [] corresponds to the discrete Fourier transformation. In other

words, this error function is the total sum of absolute values of difference for frequency components

on observation points. These settings mentioned above are the same as settings in [34].

In our proposed method, we generate finite element models for the next trial and conduct wave

propagation analysis at the same time. In simulated annealing, we generate next trial parameters

after current trial parameters are adopted or rejected. It is desirable that we generate two models

in cases that trial parameters are adopted and rejected while we are conducting wave propagation

analysis; however, generation of finite element model twice takes more time than the computation in

our finite element solver. Parameters in these problem settings are thought to be rejected with high

probability. Thus, we generate a finite element model with prediction that trial parameters will be

rejected. When trial parameters are adopted, we regenerate next finite element models for updated

parameters. This regeneration has a small effect on the whole computation time. The number of

control points in very fast simulated annealing D = 6. Also, we set the number of trials kf = 1500

and c = 4.2975. This c satisfies that parameters which increase the value of the error function by ∆E

are adopted with the probability of 80% at the initial temperature and parameters which increase

26

the value of the error function by ∆E × 10−5 are adopted with the probability of 0.1% at the lowest

temperature, where ∆E is the value of error function obtained in the initial model. The history of

error function is described in Figure 3.4 and parameters are estimated as Table 3.3.

Optimization of both case 1 and 2 adopted trial parameters 51 times in 1,500 trials. Trial parameters

are rejected with the probability of more than 90% and we find that the generation of finite element

model is mostly overlapped by the computation in the solver. Compared to case 2, case 1 with

more observation points estimated the soil structure more accurately. Our previous study [34] used a

multigrid stochastic search algorithm and optimized the same parameters in meters. The numbers of

iteration were 3,000 in case 1 and 1,300 in case 2; thereby we found that parameters were efficiently

optimized with higher accuracy as the number of trials by the very fast simulated annealing was 1,500.

For confirmation of the optimized model, we conduct wave propagation analysis with parameters

obtained in case 1. Figure 3.5 is the distribution of the displacement on the ground surface at time

t = 2.20 s and Fig. 3.6 is the time history of the velocity on point (x, y, z) = (150, 200, 0).

Judging from these figures, we can confirm that the results by optimized model and reference model

are consistent.

Here we evaluate the performance of the computation in our optimization. The elapsed time for our

solver part is about 18 s per trial. [34] computed wave propagation analysis in 263 s for a finite

element model with 274,041 degrees of freedom using Intel Xeon E5-4667 v3 CPU. Our GPU-based

solver has achieved about 160-fold speeding up per problem size, although it is difficult to compare

the performance on different systems. Here we use peak memory bandwidth to evaluate the speeding

up ratio, as general finite element analyses are memory bandwidth bound computations. Intel Xeon

E5-4667 v3 CPU has 68 GB/s and four NVIDIA V100 GPUs have 900 GB/s × 4 = 3,600 GB/s of

memory bandwidth. We attained higher speeding up ratio than the ratio of peak memory bandwidth;

this indicates that we utilize GPU computation. The optimization in case 1 was computed in 13 h 32

min. It took about 10 s for the generation of each model; thus, the whole elapsed time would be 13 h

32 min + 10 s × 1500 = 17 h 42 min and increase by 30% if model generation and finite element solver

were computed sequentially. Thereby we confirmed that efficient allocation of computer resources is

important for this optimization.

Finally, we conduct a non-linear ground shaking analysis using the optimized model. The methods

27

are the same as [2]. We input wave observed in the 1995 Kobe Earthquake at the Kobe Local

Meteorological Office and its time increment is 0.005 s and the number of time steps is 16,384. We

used the modified Ramberg-Osgood model and Masing Rule for non-linear constitutive models. We

assume that a gas pipeline is buried as shown in Fig. 3.7 (a). Figure 3.7 (b) shows the maximum axial

strain of the pipeline.

We can confirm that the strain distributions obtained by our optimized model and initial model,

which is derived from boring survey, are completely different. This analysis is used for screening of

underground structures which will be damaged and its result shows that this optimization is important

to assure the reliability of the result.

3.4 Summary

To increase the reliability of numerical simulations, it is essential to use more reliable models.

Our proposed optimizer searches for a finite element model that can reproduce observation data by

combining very fast simulated annealing and finite element analyses. As an application example, we

estimated soil structure using observation data with 1,500 wave propagation analyses with a finite

element model with 3,000,000 degrees of freedom. The finite element solver, which accounted for the

large proportion of the whole computation time, was accelerated by utilizing the GPU computation.

Compared to the previous study, the elapsed time per problem size was decreased by 1/160. Generation

of a finite element model was difficult to compute on GPUs. We designed our algorithm so that the

computation in model generation on CPUs was overlapped by the computation in the solver on GPUs

and enhanced the effect of GPU acceleration. For future prospects, more trials will be required for

larger problem size, as the convergence of simulated annealing gets worse. To reduce the computation

time, we must attain more speedup ratio for the solver or design a faster algorithm of our optimizer.

28

Table3.1: Parameters. The units of α are meters.

α11 α21 α12 α22 α13 α23

initial model -9.190 -16.260 -6.490 -11.660 -4.980 -7.050

reference model -28.030 -16.260 -25.550 -21.140 -12.790 -11.090

Table3.2: Material properties in target domain. Vp, Vs, and ρ are primary and secondary

wave velocity, and density, respectively. h is the damping ratio used in the linear wave

field calculation, hmax is maximum damping ratio, and γ is the reference strain used in the

non-linear wave analyses.

Vp(m/s) Vs(m/s) ρ (kg/m3) h hmax γ

soft layer 700 100 1500 0.001 0.23 0.007

hard layer 2100 700 2100 0.001 0.001 -

start end

generate

trial

parameters

generate

FE model

adopt/reject

trial

parameters

end

judging

not satisfied

satisfied

very fast simulated annealing

generate

next trial

parameters

GPU

ground

shaking

analyses

generate

next

FE model

finite element
analyses

CPU

Fig.3.1: Rough scheme for our proposed optimizer for an estimation of soil structure.

29

-30

-25

-20

-15

-10

-5

 0

Fig.3.2-a: Initial model

-30

-25

-20

-15

-10

-5

 0

Fig.3.2-b: Reference model

Fig.3.2: Distribution of elevation (m) of the hard layer.

Fig.3.3: One of finite element models in the analysis.

 0.001

 0.01

 0.1

 1

 0 300 600 900 1200 1500

E
rr

o
r

The number of trials

case 1

case 2

Fig.3.4: Time history of error function. Each value is normalized by the error of the initial

model.

30

Table3.3: Parameters obtained by the optimizer for each case. The units of α are meters. RSS

is the residual sum of squares based on the reference model and defined as
∑

ij(αij/ᾱij −1)2,

where ᾱij are parameters of the reference model.

α11 α21 α12 α22 α13 α23 RSS

reference -28.030 -16.260 -25.550 -21.140 -12.790 -11.090 -

case 1 -28.007 -16.290 -25.611 -21.092 -12.770 -11.100 1.6×10−5

case 2 -28.119 -16.133 -25.484 -21.182 -12.849 -11.086 1.2×10−4

(a) initial model (c) optimized model(b) reference model

0.0

1.9

Fig.3.5: Norm distribution of displacement (m) on the ground surface at t = 2.20s in the

linear ground shaking analysis.

-3

-2

-1

 0

 1

 2

 3

 4

 0 50 100 150 200 250

V
el

o
ci

ty
 (

m
/s

)

Timesteps

initial model
reference model

optimized model

Fig.3.6: x component of the velocity at (x, y) = (150, 200) on the ground surface in the linear

ground shaking analysis.

31

A

B

Fig.3.7-a: Location

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

A B

st
ra

in

initial model
reference model

optimized model

Fig.3.7-b: Maximum axial strain of the pipeline

Fig.3.7: Maximum distribution of axial strain along a buried pipeline for each model in

the non-linear ground shaking analysis. The buried pipeline is located between point A

(x, y, z) = (30, 40,−1.2) and point B (x, y, z) = (270, 360,−1.2).

32

Acknowledgment

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer, Lec-

ture Notes in Computer Science, vol 11537, Heuristic Optimization with CPU-GPU Heterogeneous

Wave Computing for Estimating Three-Dimensional Inner Structure, Takuma Yamaguchi, Tsuyoshi

Ichimura, Kohei Fujita, Muneo Hori, and Lalith Wijerathne, c⃝(2019)

33

4 Fast solver for crustal deformation computation

The content of this chapter is submitted to an international conference (The Platform for Advanced

Scientific Computing Conference).

34

5 Fast solver for earthquake city simulation with

FP21-FP32-FP64 transprecision computing

The content of this chapter will be published.

35

6 Conclusion

We developed a fast implicit low-order finite element solver with transprecision computing on GPU-

based systems aiming at stochastic computing for large-scale earthquake simulations within a realistic

timeframe.

Firstly, in Chapter 2, we designed our baseline codes for GPU-based systems and evaluated the

performance. We introduced the solver algorithm that could reduce memory footprint and data

transfer size as well as the computation amount. We also considered the modification of the algorithm

so that random accesses to the memory was reduced. The reasonable speedup ratio was attained in the

performance measurement on Piz Daint. In Chapter 3, we applied our baseline solver for the estimation

of 3-D inner structure with heuristic optimization. Some serial computations in the optimization were

not suitable for GPU computations; thus we introduced a framework where computations on CPUs

were overlapped by executing other computations on GPUs simultaneously.

We achieved further speedup in Chapter 4 and Chapter 5.

From the perspective in computer science, hardware which can attain high performance for some

specific operations has been popularly developed, and data transfer and memory footprint in computa-

tions will continue to be the bottleneck of the performance. Our approaches to introduce transprecision

computing are expected to be helpful to exhibit higher performance on the latest systems.

The proposed methods are expected to be applied for earthquake simulations with actual observa-

tion data. For instance, we estimated the inner soil structure by computing many forward analyses

in toy problem as described in Chapter 3. This estimation is expected to be applied for actual soil

structures. Besides, targeting the 2011 Tohoku earthquake, [35] conducted inversion of slip distri-

bution with uncertainties only in material properties and [36] conducted the similar inversion with

uncertainties only in geometries by many crustal deformation computations. It was confirmed that

36

these uncertainties had non-negligible effects on the results when we discussed the slip distribution

and stress change distribution. These studies originally used GPU computations, but more forward

analyses required in more complex problem settings can be computed by proposed algorithms and

the improvement of computation environments. It is expected that our proposed methods activate

stochastic computing approaches for better understanding of earthquake disaster processes.

For future tasks, settings of maximum iteration numbers and tolerances in preconditioning loops

are currently set by humans in every problem, which must be automatically optimized. Also, it is

possible that non-standard low-precision data types other than FP21 are more efficient for our target

computations according to their required accuracy. The impact of lower-precision numbers on the

convergence of the solver should be evaluated quantitatively.

37

Appendix A Acceleration of Matched Filtering

by Tensor Core on Volta GPUs

Appendix A.1 Background

Matched Filtering [37] is a process of detecting specific pattern in a wave with noise, and it has

been applied to various fields, which include signal detection of radar [38], detection of gravitational

waves [39], and detection of earthquake events [40]. With the improvement of measurement technology,

massive observation data have been accumulated; thus, reduction of the computation cost in Matched

Filtering becomes an important issue. Methods using GPUs are proposed by [41]; however, knowledge

based on latest computer architectures can achieve further speeding-up.

Recently, NVIDIA Volta GPU [42] has Tensor Core [11] for acceleration of dense matrix-matrix

multiplication, which is one of the biggest features of the architecture. Two problems to accelerate

computation with Tensor Core are identified. The first point is that the performance is often memory

bandwidth bound as Tensor Core has extremely high peak theoretical performance. The second

point is that current Tensor Core supports only lower precision data types, i.e., a 16-bit floating

point number, an 8-bit integer, and an 1-bit integer. For example, the 16-bit floating point number

is unable to guarantee the accuracy of more than 4 digits. In some specific fields where very high

accuracy are not required, it is easy to apply these data types; however, it is challenging to apply

them in general numerical simulations. Numerical error in Matched Filtering can lead to detection of

unnecessary events or overlook of events; thus, the effect of numerical error should be minimized. If

we design the algorithm which satisfies conditions mentioned above, we can achieve benefits of very

high performance by Tensor Core operations.

This chapter proposes an algorithm to accelerate the core computation in Matched Filtering using

38

Tensor Core with 16-bit floating point number. We issue Tensor Core operations with lower memory

access cost. Besides, we locally normalize the components of matrices to reduce the effect of using

lower precision data types. We demonstrate that our algorithm attains a reasonable speeding up

and improvement in accuracy when compared to cuBLAS [43], the common library for Tensor Core.

Matched filtering is mathematically a normalized 1D convolution, so our approach can be beneficial

for other implementations targeting convolutional neural networks [44].

Appendix A.2 Methodology

Matched Filtering detects waves similar to templates from the observation data by calculating

correlation coefficient as follows:

CC(i, j) =

∑K
k=1 Tj(k)S(k + i)√∑K

k=1 T
2
j (k)

∑K
k=1 S

2(k + i)
, (A.1)

where Tj is the j-th template wave, S is the observation wave, i is the initial time step of clipped

observation wave, and K is the length of template wave. We focused on the computation in the time

domain while the computation in the frequency domain is also available. When computing CC(i, j) for

many templates and for many time steps, calculation of the dot product in the numerator of Eq. A.1

accounts for the largest computation cost. These dot products are a matrix-matrix multiplication

when we calculate them with many i and j at the same time. Therefore, we can introduce Tensor

Core operations for this computation.

In this chapter, we use warp matrix multiply-accumulate (wmma) API [11] for Tensor Core oper-

ations to optimize the performance and improve the accuracy using low-level descriptions. This API

facilitates the computation of the two 16× 16 matrices multiplication using 32 threads.

As GPU has high peak theoretical performance, we must provide data to cores rapidly to prevent

memory bandwidth from binding the performance.

In matrix-matrix multiplications, it is efficient to use shared memory as a buffer and to reduce

the amount of memory access to global memory. We assume that K is at most 256; therefore, we

calculate a correlation coefficient by conducting 16 multiplications of 16×16 matrices. As the number

of templates depends on problems, we construct our algorithm to compute correlation coefficients for

16 templates at a time, which is the smallest configuration for Tensor Core operations. We assign a

39

16 × 256 template matrix and a 256 ×N matrix to each thread block in computing on GPU. While

we have to read all components for template matrices, we can reduce the memory access cost for

reading observation matrix by applying the same method as [41]. Observation matrix has duplicated

components as the matrix consists of multiple observation vectors which slide initial time steps. Given

that specific characteristic in this problem, we store observation data required for each thread block

in shared memory as described in Fig. Appendix A.1. Then, we reduce the number of memory access

to global memory.

The number of components of the observation matrix per thread block is N × 256, proportional to

the floating operation counts in the multiplication. To generate this observation matrix, we require

N +255-time steps of observation data. Since the size of the observation matrix for each thread block

N increases, higher performance is expected as the amount of memory access per the computation

is reduced. However, the memory resources per thread increase, and it is harder to overlap latencies

in the computation owing to a decline in the number of available threads. We decide an appropriate

matrix size through a performance comparison of different matrix size. Our algorithm can lead to a

reduction in access cost of global memory.

However, computation using Tensor Core tends to be a shared memory bandwidth bound for the

following reasons. Tensor Core requires cooperation of 32 threads for one matrix-matrix multiplication.

Here components of the matrices must be stored in registers of the corresponding thread. Then, the

data mapping between threads is required before and after Tensor Core operations. This mapping

is so complex that wmma API provides functions to map values of registers. These functions are

using shared memory for the data distribution, that is, transferring data between shared memory and

registers. If we issue these functions too frequently, the amount of memory access to shared memory

increases. To exhibit high peak performance on Tensor Core, we must reduce the memory access

mentioned above.

We construct observation matrix reading values in shared memory. The components of the matrix

in shared memory are transferred to registers using load matrix sync function of wmma API; however,

we can map values to registers based on the distribution of thread mapping as analyzed by [45]. Thus,

we use PTX assembly to pass the variables, required for each thread, for the Tensor Core operations.

This implementation has skipped the mapping of matrices from shared memory to registers that

40

would occurred when we used the function load matrix sync in wmma API, so very high peak perfor-

mance on Tensor Core can be utilized since the memory access cost in shared memory as well as the

memory access cost in global memory is reduced.

In the Tensor Core multiplication, 16× 16 input matrices are in half precision whereas the output

matrix is stored in single precision to avoid numerical error in the summation of the results. Fur-

thermore, we introduce localized normalization to reduce numerical error when input matrices are

converted into half precision. Template matrices are normalized per 16 components, and the observa-

tion matrix is normalized for the components stored in shared memory, as shown in Fig. Appendix A.2.

When we call the kernel, template waves are stored in half precision and the observation wave is stored

in single precision. The observation data are converted into half precision with local normalization in

each thread block. In our computations, thread block includes only 32 threads; thus normalizations

including searches of the maximum value can be computed only by using warp shuffle functions.

We must add results of 16× 16 matrix multiplication in single precision after reflecting the values

of scaling factors, involved in the template matrices. Components of 16 × 16 matrix are distributed

among registers in 32 threads and usage of shared memory via the function load matrix sync makes

it easy to identify rescaling factors; however, data transfer between shared memory and registers for

rescaling also decreases the performance. Therefore, we have to rescale the results on registers. We

specify which scaling factor must be multiplied with registers, considering distribution of matrix and

using PTX assembly. It is not until we introduce low-level description considering register allocation

between threads that we can carry out our fine normalization without decreasing the performance

greatly.

Appendix A.3 Performance Measurement

We apply our proposed kernel to the seismic waveforms and evaluate the performance and the

accuracy via comparison with a common library. In recent years, nation-wide seismic observation

networks have been operated (e.g., MOWLAS [46] in Japan) with a lot of continuously recorded data;

besides, the amount of data is expected to increase. For instance, MOWLAS is currently providing

about million template waves and observation data of around 2,100 channels consisting of 4.32× 106

41

time steps per day for approximately 10 years. Using Matched Filtering for these massive data

requires much computation cost; thus, a faster algorithm is necessary to lower the cost. We use a

subset of observation data provided by MOWLAS. We target calculation using 16 template waves and

observation wave with 4.32 × 106 time steps; we also target matrices with the sizes of 16 × 256 and

256× (4.32× 106).

NVIDIA Tesla V100 GPU is used as our computing environment. Its peak FLOPS are 7.8 TFLOPS

in double precision, 15.7 TFLOPS in single precision, 31.4 TFLOPS in half precision, and 125 TFLOPS

in half precision with Tensor Core. The peak memory bandwidth is 900 GB/s. Our code is written

with CUDA Fortran/C and complied with PGI 18.10 and nvcc 10.0.130. Elapsed time and actual mem-

ory bandwidth of kernels are measured by nvprof, whereas FLOPS are counted manually. cuBLAS is

provided by cuda 10.0.130. With multiplication using cuBLAS, we generate the entire matrices explic-

itly. A function cublasGemmEx is provided by cuBLAS for dense matrix-matrix multiplication [47],

and we prepare four types of kernels in which data types of matrices and precision in each operation

are different. We must note that the elapsed time required to construct the input matrices includ-

ing normalization prior to cuBLAS functions is not included. We entirely normalize input matrices

when we use cuBLAS with half precision variables, by searching the maximum value in matrices as

a scaling factor. Without normalization, multiplication caused an overflow. We prepare two versions

of our proposed kernel: the first computes without PTX assembly, and the second skips the data

transfer between shared memory and registers using PTX assembly. Targeting kernels are shown in

Table. Appendix A.1. In the next section, we compare the performance and accuracy of each kernel.

Appendix A.3.1 Evaluation of performance

The middle part of Table Appendix A.1 summarizes the elapsed time of the kernel and actual

bandwidth of shared memory and global memory. When comparing cuBLAS ver. 1, ver. 2, and

ver. 3 kernels, the computation time decreased as the precision of input data reduced. General

dense matrix-matrix multiplication is known as dense computation; however, the performance of our

targeting multiplication was not arithmetic bound and limited by the memory access cost. While

cuBLAS ver. 2 and ver. 3 partly used half precision variables and required data conversion cost,

cuBLAS ver. 4 kernel entirely used half precision variables and improved the performance as the

42

data conversion was unnecessary and Tensor Core operations were enabled. In our case, Tensor Core

operations were disabled even when we specified options to use Tensor Cores except for cuBLAS

ver. 4. The actual bandwidth of global memory in the kernel cuBLAS ver. 4 reached 768 GB/s.

This was close to the result of the benchmark by [48], which was 900 GB/s × 83.3% = 750 GB/s;

thus, the performance of this kernel was limited by the global memory bandwidth. On the other

hand, the proposed kernels increased the bandwidth of shared memory and reduced the bandwidth of

global memory. This was because we took components of the observation matrix from shared memory

instead of global memory, reducing the memory access cost of global memory and increasing the cost

of shared memory. Our proposed kernel used Tensor Core operations; thus, data transfer between

shared memory and registers was issued to distribute components of matrices and additional memory

access cost was required if we used only wmma API. Accordingly, the performance was bound by the

bandwidth of shared memory, increasing the elapsed time. Contrarily, when we used assembly shown

in Section 2, the performance significantly improved as the memory access to shared memory reduced.

We chose the optimal size of matrix per thread block in the kernel. Elapsed time and the register

usage for different sizes of matrices are described in Fig. Appendix A.3. By increasing the size of the

matrix per thread block, memory access cost for computation cost was reduced as we reused template

matrices many times. However, the register usage per thread increased as the size of the matrix

increased because the results of multiplication must be stored in registers. This made it difficult to

overlap latencies involved in memory accesses because the number of available threads is declined.

For our developed kernel, N = 96 was the equilibrium point of these factors.

Our kernel attained 28.4 TFLOPS that was higher than the peak FP32 FLOPS. This performance

was 22.7% of 125 TFLOPS, which was theoretical peak performance when using Tensor Core on V100

GPU. This was because our kernel included operations without Tensor Core required for normalization

and data conversions required for PTX assembly. Performance measurement by [11] showed that

Tensor Core on V100 GPU targeting 512 × 512 matrices attained no more than 20 TFLOPS in any

implementations. In that multiplication, the number of components of matrices was 3×512×512 and

the number of floating point operations was 2× 512× 512× 512. On the other hand, for our targeting

matrices, the number of components of matrices was 16× 256+256× (4.32× 106)+ (4.32× 106)× 16,

and the number of floating point operations was 2 × 16 × 256 × (4.32 × 106). As the number of

43

matrices components was 1,500 times larger and computation cost was only 132 times larger, it was

more difficult to attain higher performance with our targeting matrices. Considering these conditions,

we demonstrated that our developed kernel attained reasonable performance. We computed each

template that had 256-time steps in 1.243ms / 16 = 77.7us with observation data that had 4.32×106-

times steps.

Appendix A.3.2 Evaluation of accuracy

We evaluated the numerical error in the result CCi,j obtained by each kernel based on the result

CCFP64
i,j computed in double precision variables. We used an Error defined below:

Error = max
i,j

|CCi,j − CCFP64
i,j |, (A.2)

which is the absolute maximum value of each error. We used the same data as the previous subsection.

We refer to this data as actual data. In addition, we generated data from a uniform pseudorandom

number with the interval [−50, 50]. We refer to this data as dummy data. The numerical error of

cuBLAS functions and proposed methods using actual data and dummy data, respectively are shown

in the lower part of Table Appendix A.1. Error in actual data was larger than in dummy data for all

kernels. Targeting waves in MOWLAS had a wide dynamic range and their values increased locally;

thus, results of actual data were more affected by numerical errors. The proposed method reduced

the numerical error by introducing local normalization with low-level description. This approach can

work for improving the accuracy unless values change too rapidly even within tens of time steps.

By contrast, numerical error in cuBLAS increased as the precision of variables decreased. To attain

the same degrees of accuracy as our proposed method, internal single-precision computation such as

cuBLAS ver. 2 was required. This kernel cuBLAS ver. 2 took 5.894 ms; therefore, we evaluated that

our kernel attained 4.74-fold speeding up (5.894 ms/1.243 ms) compared to the common library with

returned equally accurate results. When we detected patterns that had CCi,j > 0.7, there was no

erroneous detection in all kernels. This result can change depending on the problem settings; therefore

more verification for accuracy is required as a future task.

44

Appendix A.4 Summary

We focused on Matched Filtering in the time domain. The largest proportion of the computation

cost of Matched Filtering is in matrix-matrix product. Considering massive observation data, the

reduction of computation cost was a critical issue. Using Tensor Core on NVIDIA Volta GPUs, we

designed an algorithm to use fast matrix-matrix product. When we computed using Tensor Core,

memory access to global memory or shared memory became the bottleneck for the performance.

Thus, we reduced the memory access cost reusing the data and skipping unnecessary data movement.

In addition, current Tensor Core only supported lower precision data types; thus, we had to reduce

the effect of numerical errors in the computation. We introduced localized normalization for the

target matrices to improve the accuracy of the computation. This normalization was issued by low-

level description to minimize the data transfer cost. With the appropriate algorithm design, we

achieved 28.4 TFLOPS in the kernel, which was reasonable performance for the sizes of our targeting

matrices. We confirmed that our proposed kernel had a smaller numerical error than matrix-matrix

multiplication on Tensor Core in cuBLAS, which was a common linear algebra library on NVIDIA

GPUs. When we compared our kernel and a function of cuBLAS that exhibited the same degree of

accuracy, our kernel was 4.47 times faster.

45

101

102

103

104

105

101 102 103 104 105

102 103 104 105 106

103 104 105 106 107

104 105 106 107 108

356 357 358 359 360

…

…

… … … … …

Device

memory
Shared

memory

remapread

Shared memory/register

Fig.Appendix A.1: Memory transaction for an observation matrix. The matrix has many

duplicated components. Shared memory is used as a buffer, and components of the actual

matrix are read from shared memory.

Template matrix Observation matrix

16

256

…

…

… …

αi

1

16

βm

N

βn

N

αk

1

16

αj

1

16

αl

1

16

…

256

Fig.Appendix A.2: Rough scheme of normalization. α and β are single-precision scaling

factors for matrices surrounded by dash lines.

46

T
ab

le
A
p
p
en

d
ix

A
.1
:
P
er
fo
rm

an
ce

u
si
n
g
cu

B
L
A
S
an

d
ou

r
d
ev
el
op

ed
k
er
n
el
.
M
at
ri
ce
s
ar
e
in
p
u
t
or

ou
tp
u
t
in

th
e
p
re
ci
si
on

n
o
te
d
in

th
e
ro
w

of
”I
n
p
u
t”

or
”O

u
tp
u
t”

an
d
m
u
lt
ip
li
ca
ti
on

is
d
on

e
in

th
e
p
re
ci
si
on

n
ot
ed

in
th
e
ro
w

of
”C

om
p
u
ta
ti
on

”.

cu
B
L
A
S

p
ro
p
os
ed

v
er
.1

v
er
.2

v
er
.3

v
er
.4

w
/o

P
T
X

w
it
h
P
T
X

In
p
u
t
(T

em
p
la
te

w
av
e)

F
P
32

F
P
16

F
P
16

F
P
16

F
P
16

F
P
16

In
p
u
t
(O

b
se
rv
at
io
n
w
av
e)

F
P
32

F
P
16

F
P
16

F
P
16

F
P
32

F
P
32

O
u
tp
u
t

F
P
32

F
P
32

F
P
16

F
P
16

F
P
32

F
P
32

C
o
m
p
u
ta
ti
on

F
P
32

F
P
32

F
P
32

F
P
16

F
P
16

F
P
16

T
en

so
r
C
or
e
op

er
at
io
n

D
is
ab

le
d

D
is
ab

le
d

D
is
ab

le
d

E
n
ab

le
d

E
n
ab

le
d

E
n
ab

le
d

E
la
p
se
d
T
im

e
12

.7
75

m
s

5.
89

4
m
s

5.
54

0
m
s

3.
03

2
m
s

3.
36

5
m
s

1.
24

3
m
s

D
ev
ic
e
M
em

or
y
B
an

d
w
id
th

44
7
G
B
/s

61
9
G
B
/s

59
4
G
B
/s

76
8
G
B
/s

89
G
B
/s

23
2
G
B
/s

S
h
a
re
d
M
em

or
y
B
an

d
w
id
th

32
96

G
B
/s

81
59

G
B
/s

84
68

G
B
/s

63
84

G
B
/s

10
97

8
G
B
/s

98
82

G
B
/s

E
rr
or

in
ac
tu
al

d
at
a

7
.5

×
10

−
7

3.
0
×
10

−
4

5
.4

×
10

−
4

4
.3

×
10

−
3

3.
0
×
10

−
4

1
.8

×
10

−
4

E
rr
or

in
d
u
m
m
y
d
at
a

2
.9

×
10

−
7

9.
2
×
10

−
5

1
.6

×
10

−
4

1
.3

×
10

−
3

9.
2
×
10

−
5

9
.2

×
10

−
5

47

56 64 78 96 96 98
130

2.771

1.809 1.634
1.336 1.243 1.297

1.600

0

50

100

150

200

250

300

350

400

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64 96 128 172

N (The number of rows per thread block)

register usage
elapsed time (ms)

Fig.Appendix A.3: Performance of our proposed kernel when the size of matrix per thread

changes.

48

Acknowledgment

This appendix is reproduced from “Takuma Yamaguchi, Tsuyoshi Ichimura, Kohei Fujita, Aitaro

Kato, and Shigeki Nakagawa. Matched Filtering Accelerated by Tensor Cores on Volta GPUs with

Improved Accuracy using Half Precision Variables. IEEE Signal Processing Letters, 26(12):1857-1861,

2019,” licensed under Creative Commons Attribution 4.0 License.

49

REFERENCES

[1] P Somerville, N Collins, N Abrahamson, R Graves, and C Saikia. Ground motion attenuation

relations for the central and eastern united states. US Geological Survey, Award 99HQGR0098,

final report, 2001.

[2] Tsuyoshi Ichimura, Kohei Fujita, Pher Errol Balde Quinay, Lalith Maddegedara, Muneo Hori,

Seizo Tanaka, Yoshihisa Shizawa, Hiroshi Kobayashi, and Kazuo Minami. Implicit nonlinear wave

simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive

earthquake simulation. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, page 4. ACM, 2015.

[3] Yuji Yagi and Yukitoshi Fukahata. Introduction of uncertainty of green’s function into waveform

inversion for seismic source processes. Geophysical Journal International, 186(2):711–720, 2011.

[4] Fukuda, Jun’ichi and Johnson, Kaj M. A fully bayesian inversion for spatial distribution of fault

slip with objective smoothing. Bulletin of the Seismological Society of America, 98(3):1128–1146,

2008.

[5] Max Rietmann, Peter Messmer, Tarje Nissen-Meyer, Daniel Peter, Piero Basini, Dimitri Ko-

matitsch, Olaf Schenk, Jeroen Tromp, Lapo Boschi, and Domenico Giardini. Forward and adjoint

simulations of seismic wave propagation on emerging large-scale gpu architectures. In SC’12: Pro-

ceedings of the International Conference on High Performance Computing, Networking, Storage

and Analysis, pages 1–11. IEEE, 2012.

[6] Shunsuke Homma, Kohei Fujita, Tsuyoshi Ichimura, Muneo Hori, Seckin Citak, and Takane

Hori. A physics-based monte carlo earthquake disaster simulation accounting for uncertainty in

building structure parameters. In ICCS, pages 855–865, 2014.

50

[7] Yoshimitsu Okada. Internal deformation due to shear and tensile faults in a half-space. Bulletin

of the Seismological Society of America, 82(2):1018–1040, 1992.

[8] Tsuyoshi Ichimura, Kohei Fujita, Seizo Tanaka, Muneo Hori, Maddegedara Lalith, Yoshihisa

Shizawa, and Hiroshi Kobayashi. Physics-based urban earthquake simulation enhanced by 10.7

blndof× 30 k time-step unstructured fe non-linear seismic wave simulation. In SC’14: Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 15–26. IEEE, 2014.

[9] Shane Cook. CUDA programming: a developer’s guide to parallel computing with GPUs. Newnes,

2012.

[10] OpenACC, [Online]. http://www.openacc.org/ (Accessed: 2019-08-20).

[11] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S Vetter.

NVIDIA Tensor Core programmability, performance & precision. In 2018 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 522–531. IEEE,

2018.

[12] A Cristiano I Malossi, Michael Schaffner, Anca Molnos, Luca Gammaitoni, Giuseppe Tagliavini,

Andrew Emerson, Andrés Tomás, Dimitrios S Nikolopoulos, Eric Flamand, and Norbert Wehn.

The transprecision computing paradigm: Concept, design, and applications. In 2018 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pages 1105–1110. IEEE, 2018.

[13] Takane Hori, Mamoru Hyodo, Shin’ichi Miyazaki, and Yoshiyuki Kaneda. Numerical forecasting

of the time interval between successive M8 earthquakes along the Nankai Trough, southwest

Japan, using ocean bottom cable network data. Marine Geophysical Research, 35(3):285–294,

2014.

[14] Yukitoshi Fukahata and Mitsuhiro Matsu’ura. Quasi-static internal deformation due to a dislo-

cation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem. Geo-

physical Journal International, 166(1):418–434, 2006.

[15] Timothy Masterlark. Finite element model predictions of static deformation from dislocation

51

sources in a subduction zone: sensitivities to homogeneous, isotropic, Poisson-solid, and half-

space assumptions. Journal of Geophysical Research: Solid Earth, 108(B11), 2003.

[16] Piz Daint [Online]. https://www.cscs.ch/computers/piz-daint/ (Accessed: 2019-08-20).

[17] Tsuyoshi Ichimura, Ryoichiro Agata, Takane Hori, Kazuro Hirahara, Chihiro Hashimoto, Muneo

Hori, and Yukitoshi Fukahata. An elastic/viscoelastic finite element analysis method for crustal

deformation using a 3-D island-scale high-fidelity model. Geophysical Journal International,

206(1):114–129, 2016.

[18] James M Winget and Thomas JR Hughes. Solution algorithms for nonlinear transient heat

conduction analysis employing element-by-element iterative strategies. Computer Methods in

Applied Mechanics and Engineering, 52(1-3):711–815, 1985.

[19] Kohei Fujita, Keisuke Katsushima, Tsuyoshi Ichimura, Masashi Horikoshi, Kengo Nakajima, Mu-

neo Hori, and Lalith Maddegedara. Wave Propagation Simulation of Complex Multi-Material

Problems with Fast Low-Order Unstructured Finite-Element Meshing and Analysis. In Proceed-

ings of the International Conference on High Performance Computing in Asia-Pacific Region,

HPC Asia 2018, pages 24–35, New York, NY, USA, 2018. ACM.

[20] Kohei Fujita, Takuma Yamaguchi, Tsuyoshi Ichimura, Muneo Hori, and Lalith Maddegedara.

Acceleration of element-by-element kernel in unstructured implicit low-order finite-element earth-

quake simulation using openacc on pascal gpus. In 2016 Third Workshop on Accelerator Pro-

gramming Using Directives (WACCPD), pages 1–12. IEEE, 2016.

[21] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming

with CUDA. Queue, 6(2):40–53, 2008.

[22] Kohei Fujita, Tsuyoshi Ichimura, Kentaro Koyama, Hikaru Inoue, Muneo Hori, and Lalith Mad-

degedara. Fast and Scalable Low-Order Implicit Unstructured Finite-Element Solver for Earth’s

Crust Deformation Problem. In Proceedings of the Platform for Advanced Scientific Computing

Conference, page 11. ACM, 2017.

[23] AT Chronopoulos and Charles William Gear. s-Step iterative methods for symmetric linear

systems. Journal of Computational and Applied Mathematics, 25(2):153–168, 1989.

52

[24] S. Brizzi, Iris van Zelst, Ylona van Dinther, Francesca Funiciello, and Fabio Corbi. How long-

term dynamics of sediment subduction controls short-term dynamics of seismicity. In American

Geophysical Union, 2017.

[25] Peter Bird. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosys-

tems, 4(3):n/a–n/a, 2003. 1027.

[26] Kohei Fujita, Keisuke Katsushima, Tsuyoshi Ichimura, Muneo Hori, and Lalith Maddegedara.

Octree-based multiple-material parallel unstructured mesh generation method for seismic re-

sponse analysis of soil-structure systems. Procedia Computer Science, 80:1624 – 1634, 2016.

International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,

California, USA.

[27] R Clement, J Schneider, H-J Brambs, A Wunderlich, Martin Geiger, and Franz Günter Sander.

Quasi-automatic 3d finite element model generation for individual single-rooted teeth and peri-

odontal ligament. Computer methods and programs in biomedicine, 73(2):135–144, 2004.

[28] Rolf M Koch, Markus H Gross, Friedrich R Carls, Daniel F von Büren, George Fankhauser, and

Yoav IH Parish. Simulating facial surgery using finite element models. In Proceedings of the 23rd

annual conference on Computer graphics and interactive techniques, pages 421–428. ACM, 1996.

[29] Jianwen Liang and Shaoping Sun. Site effects on seismic behavior of pipelines: a review. Journal

of pressure vessel technology, 122(4):469–475, 2000.

[30] Geospatial Information Authority of Japan Tokyo ward area. 5m mesh digital elevation map.

http://www.gsi.go.jp/MAP/CD-ROM/dem5m/index.htm.

[31] Pher Errol B Quinay, Tsuyoshi Ichimura, and Muneo Hori. Waveform inversion for modeling

three-dimensional crust structure with topographic effects. Bulletin of the Seismological Society

of America, 102(3):1018–1029, 2012.

[32] Lester Ingber. Very fast simulated re-annealing. Mathematical and computer modelling,

12(8):967–973, 1989.

[33] Paulius Micikevicius. 3D finite difference computation on GPUs using CUDA. In Proceedings

53

of 2nd workshop on general purpose processing on graphics processing units, pages 79–84. ACM,

2009.

[34] Tsuyoshi Ichimura, Kohei Fujita, Atsushi Yoshiyuki, Pher Errol Quinay, Muneo Hori, and Takashi

Sakanoue. Performance enhancement of three-dimensional soil structure model via optimiza-

tion for estimating seismic behavior of buried pipelines. Journal of Earthquake and Tsunami,

11(05):1750019, 2017.

[35] Takuma Yamaguchi, Tsuyoshi Ichimura, Yuji Yagi, Ryoichiro Agata, Takane Hori, and Muneo

Hori. Fast crustal deformation computing method for multiple computations accelerated by a

graphics processing unit cluster. Geophysical Journal International, 210(2):787–800, 2017.

[36] Takuma Yamaguchi, Kohei Fujita, Tsuyoshi Ichimura, Takane Hori, Muneo Hori, and Lalith

Wijerathne. Fast finite element analysis method using multiple gpus for crustal deformation and

its application to stochastic inversion analysis with geometry uncertainty. Procedia Computer

Science, 108:765–775, 2017.

[37] George Turin. An introduction to matched filters. IRE transactions on Information theory,

6(3):311–329, 1960.

[38] Philip Mayne Woodward. Probability and Information Theory, with Applications to Radar: In-

ternational Series of Monographs on Electronics and Instrumentation, volume 3. Elsevier, 2014.

[39] Bernard F Schutz. Gravitational wave astronomy. Classical and Quantum Gravity, 16(12A):A131,

1999.

[40] Steven J Gibbons and Frode Ringdal. The detection of low magnitude seismic events using

array-based waveform correlation. Geophysical Journal International, 165(1):149–166, 2006.

[41] Eric Beaucé, William B Frank, and Alexey Romanenko. Fast matched filter (FMF): An effi-

cient seismic matched-filter search for both CPU and GPU architectures. Seismological Research

Letters, 89(1):165–172, 2017.

[42] NVIDIA. NVIDIA Tesla V100 GPU Architecture, [Online]. http://images.nvidia.com/

content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

54

[43] NVIDIA. cuBLAS library. NVIDIA Corporation, Santa Clara, California, 15(27):31, 2008.

[44] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua Yao,

Daniel Mollura, and Ronald M Summers. Deep convolutional neural networks for computer-aided

detection: Cnn architectures, dataset characteristics and transfer learning. IEEE transactions

on medical imaging, 35(5):1285–1298, 2016.

[45] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. Modeling Deep Learning Accelerator Enabled

GPUs. In 2019 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 79–92. IEEE, 2019.

[46] National Research Institute for Earth Science and Disaster Resilience. NIED MOWLAS. https:

//doi.org/10.17598/NIED.0009 (Accessed: 03 July 2019), 2019.

[47] NVIDIA. cuBLAS, [Online]. https://docs.nvidia.com/cuda/cublas/index.html.

[48] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. Dissecting the NVIDIA

Volta GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826, 2018.

55

