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Abstract

T cells play vital roles in the immune system. A diverse T cell receptor (TCR) repertoire

is essential to defend the body against numerous kinds of pathogens, and a variety of T

cell phenotypes shape sophisticated immune reactions to eliminate and remember pathogens

while keeping cells of the body undamaged. The diverse TCR repertoire and the functional

phenotype composition, along with a large number of cells, owe their origin to the thymus.

T cell development in the thymus is thus essential for the immune system. Although we

have accumulating evidence that T cell development is a homeostatic process in various

aspects, it remains elusive how homeostatic T cell development is maintained. In this thesis,

we quantitatively studied homeostasis of population size, TCR repertoire diversity, and

intracellular signaling network in thymic T cell development utilizing mathematical modeling

and high throughput sequence analysis.

Thymocytes, immature T cells in the thymus, differentiate in a stepwise manner. The differ-

entiation process of a significant fraction of T cells is divided into three steps; CD4−CD8−

double negative (DN), CD4+CD8+ double positive (DP), and CD4+CD8− single positive

(SP4) stage. This differentiation process is regulated by mutual interactions with two types

of thymic epithelial cells (TECs), cortical and medullary TECs (cTECs and mTECs). It

remains unclear how the mutual interactions contribute to the stable population size of

thymocytes and TECs. To address this problem, we construct a mathematical model for

population dynamics of thymocytes and TECs during the recovery from irradiation to in-

vestigate the relationship between cell-to-cell interactions and their population sizes.

The mathematical model can reproduce experimentally observed time courses of cell pop-

ulation size. We can also infer a regulatory network of thymocytes and TECs from the

model, and reveal its role for the homeostasis of thymic cell populations. We find that DN
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thymocytes and cTECs form a negative feedback loop, which results in the overshooting

dynamics of population sizes thereof. We further analyze the detail differentiation process of

DN thymocytes because the DN stage is subdivided into DN1, DN2, DN3, and DN4 stages

in the order of differentiation, and they interact with cTECs in different ways. We modify

the model to include more detailed differentiation stages from DN1 to DN4. The detailed

model reproduces the dynamics of subpopulations of DN1 to DN4. We also obtain the DN

population dynamics almost the same as the proposed model by summing up DN subpop-

ulations of the detailed model. The detail model indicates that the influx of thymocyte

progenitors is quite small, which agrees well with other estimates.

In addition, we observe that the recovery of DP thymocytes is much faster than that of DN

thymocytes. Our model predicts that DP thymocytes accelerate their recovery of population

size by proliferating temporally upon the decrease in its population size. A subsequent

experiment of proliferation assay verifies this prediction by showing that the proportion of

proliferating DP thymocytes gets higher temporarily after irradiation. We also demonstrate

that the model of SP4 thymocytes and mTECs can mimics the previous study which impaired

interaction between them.

Our model establishes a pivotal step towards the integrative understanding of T cell devel-

opment as a regulatory network system. We anticipate a future extension of our model by

incorporating the dynamics of other thymic resident cells, such as B cells, dendritic cells,

and thymic endothelial cells, to understand thymic development and its homeostasis more

comprehensively.

Although the mathematical model for population dynamics in the thymus revealed the con-

tribution of intercellular interactions to homeostasis of thymic populations size, it remains

unclear how the TCR repertoire diversity, the quality of T cell population, is maintained

against perturbation. Therefore, we next investigate the dynamics of the TCR repertoire

change by thymic selection in which thymocytes with inappropriate TCRs are weeded out

via interactions with TECs. We perform deep sequencing of TCR α and β chains from

matured DP and SP4 thymocytes during the recovery from irradiation to measure the ef-

fect of negative selection, an elimination of self-reactive TCRs, and its temporal disorder

by irradiation. TCR repertoire analysis clarifies that the repertoires of α and β chains are

temporally impaired by irradiation in different ways.
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In the normal TCR α chain repertoire before irradiation, we find that unique α derived

from invariant natural killer T cells (iNKT cells) becomes significantly abundant in SP4

thymocytes. However, irradiation curtailed the abundance of the unique α chain. We also

observe that the recovery of the unique α chain abundance is much slower than that of the

other α chains. This slower recovery suggests that the iNKT-like fraction undergoes different

differentiation process from other thymic T cells.

We also characterize the difference of TCR β chain repertoire by the usage of V and J genes,

which code variable regions of TCR chains. We find that linear transformations of V and J

gene usage counts quantify the effect of negative selection and irradiation. Furthermore, we

also find that the effect of both negative selection and irradiation are correlated more with

V genes than with J genes. This correlation of the irradiation effect with V genes suggests

that the TCR, especially its V gene, may contribute to the thymocyte ability to survive

and proliferate after irradiation. We next investigate how the proportion of common CDR3

sequences, one of the variable regions of the TCR, changes after irradiation. We find that the

proportion of several CDR3s gets higher after irradiation. This also supports the prediction

of TCR-dependent radiation tolerance, because thymocytes of small population size under

normal conditions would not get abundant by irradiation if every clone is equally eliminated

by irradiation

These results can serve as a first step of the forthcoming study of the repertoire time course

to dissect the mechanism of thymic selection and the repertoire homeostasis in the thymus.

Finally, we investigated developmental control of thymocytes phenotypes. The phenotype

composition of T cells, as well as their TCR repertoire diversity, is also vital for appropriate

immune reaction. The lineage choice of thymocytes in the thymus is the first step that shapes

various phenotypes of T cells. Despite the exploration of numerous molecules that engage

in the lineage choice, it remains unclear how those molecules as a whole process multiple

extracellular signals for appropriate differentiation.

To address this problem, we construct a mathematical model of intracellular signaling during

thymocyte differentiation. In particular, we focus on a homeostatic property of differentiation

duration. The mathematical model suggests that incoherent regulations of the TCR signal to

the cytokine signal contributes to the constant differentiation duration independently from
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TCRs. We expect that our model evokes experimental verification of the model.

Our quantitative studies exploit mathematical modeling and sequence analysis, emerging

approaches in immunology, to provide a systematic viewpoint that integrates previous find-

ings on various aspects of T cell development, and deepen understanding of the homeostasis

in the thymus. We anticipate that our studies have a pivotal impact on future directions for

immunological research from a systematic perspective.
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1.1 Immunological role of T cell

Most of living organisms have immune systems to protect themselves against unwanted

biological invasion. The adaptive immune system of vertebrates defends the body against

pathogens by pathogen-specific responses. To cope with numerous kinds of pathogens, the

adaptive immune system is composed of immune cells with a diverse repertoire of receptors,

each of which has different antigen specificity. One of the major types of immune cells is T

lymphocyte. Each clone of T cells has a unique T cell receptor (TCR). It is estimated that

the number of T cells in a human body is about 2 × 1011 and that the number of possible

TCRs is about 1015 [49].

TCRs bind with antigens, peptides presented on a histocompatibility complex (MHC) molecule

that antigen-presenting cells (APCs) such as dendritic cells (DCs) express on their cell sur-

face [6]. The binding of TCRs with specific antigens induces various immune responses by

T cells according to their differentiation status. Major groups of differentiated T cells are

helper T cells and cytotoxic T cells. When activated, helper T cells secrete cytokines to

control immune response of other cells; cytotoxic T cells induce apoptosis of infected cells or

tumor cells. Helper T cells and cytotoxic T cells are characterized by their expression of cell

surface markers CD4 and CD8 for each. CD4 and CD8 support TCR to bind with peptides

on different types of MHC, class I and class II, respectively.

Disorder of the T cell function leads to severe immune deficiency; attacking reaction to self-

antigens result in autoimmune diseases, and unnecessary reaction to harmless antigens may

cause allergy. Therefore, it is essential to develop a T cell population with an appropriate

TCR repertoire and differentiation states.

1.2 T cell development in the thymus

T cells originate from hematopoietic stem cells that reside in the bone marrow. Hematopoi-

etic stem cells reach the thymus through the circulation of the blood and differentiate from

progenitors of T cells, thymocytes, into T cells in the thymus (Fig. 1.1). T cell develop-

ment in the thymus should be appropriate in terms of its population size, TCR repertoire,
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and lineage commitment so that T cells can properly respond to various pathogens in the

periphery. We aim to elucidate the homeostasis of each of these aspects in this thesis. In

this section, we give a brief overview of a biological process related to each aspect; stepwise

differentiation, somatic recombination and thymic selection, and intracellular signaling of

lineage choice.

1.2.1 Differentiation process

The differentiation stages of thymocytes are divided into three major stages based on the

expression of CD4 and CD8. The first stage is the CD4−CD8− double negative (DN)

stage, where thymocytes express neither CD4 nor CD8. DN thymocytes can be further

divided into 4 sequentially ordered subpopulations; DN1 (CD117+CD44+CD25−), DN2

(CD117+CD44+CD25+), DN3 (CD117lo/−CD44−CD25+), and DN4 (CD117−CD44−CD25−)

[14]. DN4 thymocytes proceed to the CD4+CD8+ double positive (DP) stage and finally

reach the CD4+CD8− or CD4−CD8+ single positive (SP) stage. 1-4 ×106 matured SP thy-

mocytes egress from the thymus via post-capillary venules as naive T cells per day in mice

on average [42].

During this differentiation process, thymocytes move around the thymus mutually interact-

ing with the thymic environment; they first reside in the cortex and migrate to the medulla

as they differentiate from DP to SP. Among cells that compose the thymic environment,

two types of thymic epithelial cells (TECs), cortical TECs (cTECs) and medullary TECs

(mTECs) take essential roles for thymocyte development; they control differentiation, mi-

gration, TCR repertoire formation, and lineage choice of thymocytes.

1.2.2 Generation of TCR repertoire diversity

Thymocytes start to express TCRs during the differentiation. TCRs are heterodimers con-

sisting of α- and β- chains. The α-chain is composed of variable(V), joining(J), and con-

stant(C) genes, while the β-chain has diversity(D) genes in addition to V, J, and C [63]. The

diversity of TCRs is generated by the germline recombination of the gene segments termed

V(D)J rearrangement [6] that randomly chooses V, J, and D genes and combines them with
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Figure 1.1: Differentiation process of thymocytes.

insertion and deletion of nucleotides to create a gene for the TCR (Fig. 1.2). Murine TCRα

locus contains 98 TRAV and 60 TRAJ segments; murine TCRβ locus contains 35 TRBV,

2 TRBD, and 14 TRBJ segments [5, 24]. Each V, D, and J coding segment has conserved

DNA sequence elements, termed recombination signal sequences (RSSs), adjacent to both

ends of its coding segment. The V(D)J recombinase, a complex of RAG1 and RAG2 (re-

combination activating gene 1 and 2), recognizes RSSs to cleave and joint V(D)J segments

[64]. Formation of a hairpin coding end by sealing the end of DNA double-strands follows the

DNA cleavage between RSSs and coding segments. Subsequently, the recombinase opens the

hairpin coding end. The position of the opening is often shifted a few bases off-center. This

shifted cleavage results in short, single-stranded extensions that can give rise to palindromic

insertions (P nucleotides). Then, nontemplated nucleotides (N nucleotides) are added to the

single-strand by the enzyme, terminal deoxynucleotidyl transferase (TdT), for the formation

of coding joints. During the process of cleavage and sealing, nucleotide deletion may occur.

The resultant α and β chains contain three hypervariable loops in its structure, termed

complementarity determining regions (CDR1-3). While CDR1 and CDR2 are required to

interact with pMHC, and encoded by V genes, CDR3 directly contacts with a peptide of

pMHC and thus takes an vital role for peptide recognition [63]. The insertion and deletion
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of DNA fragments during the rearrangement contributes to the diversity of CDR3 region

more than the combinatorial variation of V(D)J genes.

The V(D)J rearrangement takes place during the differentiation of thymocytes [78]. In the

DN3 stage, thymocytes first rearrange their TCRβ locus, and form a pre-TCR by combining

TCRβ and pre-TCRα chains. Lack of a pre-TCR signal due to a failure of the TCRβ

rearrangement leads to apoptosis of thymocytes. This selection process is called β-selection

[10]. pre-TCRs had been thought to transmit the signal without binding with pMHC.

However, they were recently reported actually to bind to pMHC [50]. Thymocytes that

passed the β-selection further rearrange their TCRα locus during their differentiation from

DN4 to DP.

DP thymocytes again encounter the presentation of self-peptide by cTECs. DP thymocytes

can differentiate to the SP stage only if their TCRs have sufficient affinity to the self-peptides;

otherwise they end up in apoptosis. This process is referred to positive selection and ensures

that T cells can receive antigen presentation in the periphery. On the other hand, thymocytes

that express TCRs with high affinity to self-peptides and thus receive a strong signal are

also eliminated by apoptosis. This process, in turn, is called negative selection and prevents

T cells from attack self-derive cells in the periphery. While only cTECs engage in positive

selection, both cTECs and mTECs engage in negative selection and negative selection lasts

through the SP stage. Thymocytes that passed positive selection and negative selection

forms appropriate diversity of TCRs that only respond to foreign antigens.

1.2.3 Lineage choice between CD4+ and CD8+ T cells

After the V(D)J recombination, every thymocyte chooses to express either CD4 or CD8

as they differentiate from DP to SP. The mechanism how they choose their lineage is best

explained by the kinetic signaling model [73] as follows. The TCR signal first leads all DP

thymocytes to terminate CD8 expression and convert into CD4+CD8low. Thymocytes with

the lasting TCR signal eventually differentiate to CD4+ SP. On the other hand, if the TCR

can recognize antigen presentation only with CD8, the TCR signal gets weak as CD8 ceases

to exist on the cell surface. This cessation of the TCR signal allows an interleukin-7 (IL-

7)-mediated signal to induce re-expression of CD8 and also to inhibit expression of CD4,
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Figure 1.2: V(D)J rearrangement of (a) α and (b) β chains.

and eventually, thymocytes differentiate to CD8+SP. This switch-like expression of CD4

and CD8 is achieved by antagonistic cross-regulation between ThPOK (T helper inducing

POZ/Krueppel-like factor) and Runx3 (runt-related transcription factor 3), transcription

factors of CD4 and CD8, respectively; ThPOK represses Runx3 and CD8 expression whereas

Runx3 limits ThPOK and CD4 expression [32].

The fundamental relationship between ThPOK and Runx3 is regulated by extracellular

signals and a large number of downstream molecules Fig. 1.3. The initial TCR signal upreg-

ulates ThPOK through c-Myb and GATA3, and ThPOK and GATA3 form positive feedback

[23, 85]. While ThPOK represses CD8 by directly binding to the CD8 locus [65], it limits

Runx3 expression more indirectly through Socs1 (Suppressor of cytokine signaling 1) upreg-

ulation [48]. Runx3 is induced by the IL-7 signal through Jak1 and Jak3 (Janus kinase 1

and 3), and their downstream pSTAT5 (phosphorylated signal transducer and activator of

transcription 5) [35], and Socs1 blocks the IL-7 signaling [13]. The TCR signal has other

pathways that block Runx3; upregulation of miR-17 (microRNA-17) that blocks Jak1 trans-

lation [35], and Caplain that dissociate Jak3 from IL-7R [59]. On the other hand, the TCR
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signal also induces the IL-7R (IL-7 receptor) expression and inhibits Socs1 during cessation

of the CD8 expression [60], and the IL-7 signal upregulates CD8 through Runx3 as the TCR

signal stops for the CD8 lineage.

IL-7R

TCR

CD8

Runx3

pSTAT5

Jak3Jak1

CalpainmiR-17

Socs1

ThPOK

GATA3

CD4

c-Myb

Figure 1.3: Signaling network of thymocyte lineage choice to CD4+or CD8+SP cell.
Molecules with light green border induce CD4 expression, and those with purple border
induce CD8 expression. The arrows and the lines with the T-shaped head represent positive
and negative interaction between molecules, respectively.

1.3 Outline of thesis

T cells play crucial roles in the immune system to recognize pathogens and control the

immune response. The immune system maintains an enormous amount of T cells with

appropriate TCR diversity and phenotypic composition to deal with various pathogens.

Therefore, the homeostasis of T cell development for its population size, TCR repertoire,

and lineage commitment is fundamental to the immune system (Fig. 1.4). To unveil the

mechanisms of these aspects of homeostasis, a quantitative approach employing mathematics

and informatics is advantageous. In this thesis, we study this homeostatic T cell development
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Figure 1.4: Overview of research topics in this thesis.

by utilizing mathematical modeling and high throughput sequence analysis.

We first construct a mathematical model of population dynamics in the thymus that repro-

duces experimentally observed population change during the recovery from irradiation(Chapter

2). We compare models that assume different intercellular interactions, and identify the most

probable interactions that contribute to the homeostasis of thymic cell populations. The

most probable model predicts, and the subsequent experiment verifies that DP thymocytes

temporarily increase their proliferation rate to compensate for a reduction in population

size. Results presented in Chapter 2 are taken from the publication [34] by the author of

this thesis. We next investigate how thymic selection of the TCR repertoire gets affected by

irradiation using high throughput sequence analysis (Chapter 3). We compare V and J genes

usage and CDR3 frequencies in TCR α and β chains during the recovery from irradiation.

We find multiple indices that quantify repertoire change by the thymic selection and its

damage by irradiation. We then work on mathematical modeling of intracellular signaling

during lineage commitment from DP to CD8+SP (Chapter 4). From the derived model,

we infer a mechanism that thymocytes differentiate for a constant time independently from

their TCRs. Finally, we summarize these results and discuss future prospects (Chapter 5).
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Chapter 2

Quantitative analysis reveals

reciprocal regulations underlying

recovery dynamics of thymocytes and

thymic environment in mice
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2.1 Introduction

The thymus is an organ responsible for producing a large part of T cells with appropriate

repertoires [78]. However, it is relatively sensitive to insults from stress, viral infection,

radiation, and other stimuli [4, 28]. While a thymus in a healthy animal can be normally

recovered from these damages, a relatively prolonged process of thymic recovery may impair

T cell-mediated immunity due to a reduced replenishment of naïve T cell repertoire during

the recovery period [28, 61].

Sub-lethal dose radiation on mice has been utilized as an experimental model of the thymic

regeneration after insults [17, 75]. Ionizing irradiation is also broadly used for hematopoietic

transplantation and cancer therapy [8, 53], and total body irradiation causes acute thymic

injury and slow recovery of thymopoiesis. Several studies have shown that irradiation reduces

cellularity, not only of thymocytes but also of thymic epithelial cells (TECs), which are major

constituents of the thymic environment [17, 18, 88]. Because thymopoiesis is supported

by interactions between thymocytes and TECs [1], understanding thymic recovery requires

characterization of the reciprocal regulations between thymocytes and TECs.

Concomitantly, various techniques to trace, perturb, and quantify cells involved in these

events have enabled us to quantitatively characterize their dynamics [19, 41, 76, 94]. By com-

bining mathematical models with such quantitative data, dynamic aspects of thymopoiesis

have been distilled into the form of detailed kinetic information, e.g., rates of proliferation,

death, and differentiation [41, 90]. Mehr et al. [55] developed the first kinetic model of

thymocyte development using ordinary differential equations [9]. Since this seminal work,

kinetic models of the thymopoiesis have been progressively refined by considering detailed

cellularity and developmental states of the thymocytes, as well as by incorporating different

experimental conditions [3, 51, 69, 72, 80].

However, previous works have focused only on thymocytes. Thymic development and thymic

recovery are not thymocyte-autonomous but rather are supported by the thymic environ-

ment. In the last decade, we have accumulated molecular-biological evidence that the thymic

environment itself is homeostatically maintained by thymic crosstalk, bidirectional interac-

tions between the thymocytes and the thymic environment [1, 27, 79]. Among several cells
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comprising the thymic environment, cortical and medullary thymic epithelial cells (cTECs

and mTECs) play integral roles in inducing and controlling proliferation, apoptosis, and

lineage commitments of thymocytes [1, 15, 22, 38, 39, 89]. Thymocytes also regulate TECs

by modulating their maturation and proliferations [17, 40, 46, 87]. Despite the evident rel-

evance and importance of thymic crosstalk for the thymopoiesis and the thymic recovery,

kinetic aspects of the reciprocal regulations between the thymocytes and the TECs have not

yet been clarified.

In this work, we investigate the joint dynamics of thymocytes and TECs by combining a

mathematical model with a quantitative measurement of the number of thymocytes and

TECs during recovery after irradiation. Recovery dynamics are reproduced by out mathe-

matical model, in which we identified reciprocal interactions between thymocytes and TECS

that are relevant for recovery and consistent with thymic crosstalk. Furthermore, we demon-

strate that the model provides an explanation for the mechanism of the dynamical change

in population size. Particularly, our model predicts, and a subsequent experiment verifies, a

previously unrecognized regulation of CD4+CD8+ double positive (DP) thymocytes which

temporarily increases their proliferation rate upon the decrease in their population size.

2.2 Result

2.2.1 Quantification of recovery dynamics of thymocytes and TECs

To quantitatively investigate the kinetic relationship between thymocytes and TECs as well

as the establishment of thymic recovery, we artificially perturbed populations of thymocytes

and TECs in thymi by using sub-lethal 4.5 Gy irradiation, and measured the dynamic

changes in their population sizes over three weeks following irradiation(Fig. 2.1a). Fig. 2.1b

summarizes the changes in cell numbers, which were sorted based on conventional markers

of thymocytes (Figs. 2.1c and 2.2a) and TECs (Figs. 2.1d and 2.2b). Fig. 2.1b shows that

all types of investigated thymocytes and TECs decreased exponentially at different rates

immediately after the irradiation. Then, both thymocytes and TECs started recovering

within 10 days at the longest; the CD4−CD8− double negative (DN) thymocytes and the

cTECs began recovery within 5 days whereas the CD4+CD8− single positive (SP) thymocytes
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and the mTECs required longer intervals, reflecting the temporal order of the thymocyte

development from DN to CD4+ SP (SP4) cells through interactions from cTECs to mTECs.
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Figure 2.1: (Continued on the following page.)
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Figure 2.1: Recovery dynamics of thymocytes and TECs after sub-lethal irradiation. (a) A
schematic diagram of the perturbation experiment. (b) The left panel shows trajectories of
the counts of thymocytes (DN: pink, DP: blue, SP4: light green) and TECs (cTEC: cyan,
mTEC: brown) after irradiation. Points correspond to the experimental cell counts, and the
solid curves are linear interpolations of the average counts at each time point. The numbers
of samples at each time point are shown in Table 2.1. The right panel shows violin plots of
the numbers of thymocytes and TECs without perturbation. (n = 15 for thymocytes, n = 16
for TECs) (c) Typical flow cytometric profiles of the thymocytes after the sub-lethal dose
radiation. Thymocytes were analyzed by staining with anti-CD4 and anti-CD8α. Percentage
of each fraction is shown in the panels. (d) Typical flow cytometric profiles of TECs after
the sub-lethal dose radiation. TECs (EpCAM+CD45−TER119−) were analyzed by staining
with a combination of UEA-1 lectin and anti-CD80. Percentages of UEA-1+cells (mTECs)
and UEA-1−cells (cTECs) are shown in the panels.

Days after irradiation 0 1 4 7 9 11 12 13 14 15 17 19 49
The number of samples (thymocytes) 4 6 3 3 3 3 2 3 3 3 3 6 3

The number of samples (TECs) 4 6 3 6 3 3 2 3 6 3 3 6 3

Table 2.1: The numbers of samples at each time point after irradiation.
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Figure 2.2: (a) Gating strategy for thymocytes. (b) Gating strategy for TECs.

Upon recovery, the population sizes of all but the SP cells peaked around 15 days, and

eventually returned to stationary numbers, which are almost equivalent to or at least half

of the original population sizes before irradiation. Such overshooting behaviors suggest that

the numbers of thymocytes and TECs are dynamically and mutual regulated via reciprocal

interactions.
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2.2.2 Mathematical model can reproduce recovery dynamics
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Figure 2.3: (Continued on the following page.)

To infer regulatory interactions behind the dynamics, we constructed a mathematical model

for the population dynamics of the thymocytes and the TECs using ordinary differential

equations, which explicitly include five cell types: i ∈ C := {DN, DP, SP4, cTEC, mTEC}.

To account for the acute influence of irradiation on the cells, the total number of the cell type

i at time t (day), ntot
i (t) is decomposed into two parts; nx

i (t) represents exponentially dying

cells by the irradiation and ni(t), represents cells that survived or were newly generated

after irradiation. nx
i (t) is assumed to decrease exponentially at a constant rate, ωi (day−1),
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Figure 2.3: Schematic diagram and trajectories of the mathematical model inferred from the
quantitative data. (a) A schematic diagram of the intercellular interactions inferred from
the experimental data and represented by Eq.(2.2). (b) Trajectories of the numbers of thy-
mocytes and TECs obtained by simulating Eq.(2.2) with the optimally fitted parameter set.
The curves represent simulated trajectories, and the points represent the same experimental
data as Fig. 2.1b. Cell types are designated by the color codes which are defined in (a).
(c) Trajectories obtained by the bootstrap parameter estimation. Trajectories in different
panels with the same color correspond to a simulation with a parameter set estimated from
a bootstrapped sample. The trajectories of 100 randomly selected samples are shown in the
panels. The points represent the same experimental data as Fig. 2.1b.

as nx
i (t) = ntot

i (0)(1 − pi)e−ωit where pi is the proportion of survived cells after irradiation;

we modelled the dynamics of ni(t) with ordinary differential equations. Therefore, the total

number of the cell type i, ntot
i , which we observed experimentally, is described as ntot

i (t) =

nx
i (t) + ni(t).

The temporal change in ni(t) is driven by the imbalance among influx, proliferation, death,

and outflux of the type i cells, each of which depends on the number of other cells n(t) :=

[nDN(t), nDP(t), nSP4(t), ncTEC(t), nmTEC(t)]T , where T denotes transpose. While the influx

may be independent of the number of the type i cells, the other should, in nature, depend on
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the number of existing type i cells, ni(t). This allows us to generally represent the ordinary

differential equations for ni(t) as

dni(t))
dt

= ϕi(n(t)) + fi(n(t))ni(t), (2.1)

where the influx should be non-negative, ϕi(n(t)) ≥ 0, whereas the marginalized rate of

proliferation, death, and outflux, fi(n(t)), can be either positive or negative. The actual

value of fi(n(t)) is determined by the balance among proliferation, cell death, and outflux

of the type i cells. To obtain a minimal model with minimal complexity, we assume that

both ϕi(n(t)) and fi(n(t)) are at most linear with respect to n(t) with possible constant

time delays. Therefore, our ordinary differential equation model as a whole has, at most,

quadratic nonlinearity. Considering reproducibility of the recovery dynamics after the irra-

diation and consistency with previously known molecular evidence, we obtained the whole

model described as:

dnDN(t)
dt

= ϕ1 + (δ1 − µ1ncTEC(t))nDN(t) ,

dnDP(t)
dt

= r1µ1ncTEC(t)nDN(t) +
{

θ2

(
1 − nDP(t)

K2

)
− µ2ncTEC(t − τ2)

}
nDP(t) ,

dncTEC

dt
= ϕc + (−δc + µcnDN(t))ncTEC(t) ,

dnSP4(t)
dt

= r24µ2ncTEC(t − τ2)nDP(t) − µ4nmTEC(t)nSP4(t) ,

dnmTEC(t)
dt

= ϕm + ϕm4nSP4(t) +
{

rm

(
1 − nmTEC(t)

Km

)
− γmpnDP(t − τm)

}
nmTEC(t) ,

(2.2)

a diagrammatic representation of which is shown in Fig. 2.3a. Based on this model with

candidate parameter values as the initial condition, we conducted a nonlinear least square

estimation of the whole parameter values in Eq. (2.2), {ntot
i (0)}i∈C , {ωi}i∈C , and {pi}i∈C so

that the whole model can reproduce all the experimental data at once (Fig. 2.3b and Table

2.2). As shown in Fig. 2.3b, our model, Eq.(2.2), nicely reproduced the experimentally

observed recovery, demonstrating that the interactions depicted in Fig. 2.3a sufficiently

account for the dynamics. Moreover, to reevaluate the importance and statistical confidence

of several parameters, we statistically estimated the potential variability of the estimated

values by conducting a bootstrap parameter estimation (Figs. 2.3c and 2.4 and Table 2.3). As

shown in Fig. 2.4, most parameter values statistically fluctuate around single-peak, whereas
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a few parameters, e.g., the influx rate of DN, ϕ1, have multiple peaks in their estimates.
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Figure 2.4: Variations of parameters estimated by bootstrap parameter estimation. The
color of each histogram of a parameter designates the related cell type in Fig. 2.3a to that
parameter. The variations of the other parameters and pairwise scatter plots of the estimated
values are also shown in Figs. 2.5 and 2.6, respectively.

2.2.3 DN thymocytes and cTECs form a negative feedback

Our estimated model indicates that DN thymocytes and cTECs form a negative feedback.

DN cells marginally work to increase the number of cTECs because µc in Eq. (2.2) is posi-

tive, whereas cTECs effectively inhibit the increase in DN cells because −µ1 in Eq. (2.2) is

negative(Fig. 2.3a). This negative feedback is the source of the overshooting behaviors in

the recovery dynamics, and can account for slower onset of cTECs recovery, which lagged a

few days behind DN cells.

These interactions inferred from the quantitative recovery data are also consistent with

previously identified molecular evidence. On one hand, the positive interaction from DN

thymocytes to cTECs may be interpreted as induction of cTEC proliferation by DN cells,
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Figure 2.5: Histograms of the parameter values obtained by the bootstrap estimation.

evidenced by the fact that the number of mature cTECs decreases if DN differentiation is

blocked at early stages [40, 71]. On the other hand, our model suggests that cTECs work to

decrease the number of DN cells. This negative interaction is a marginal effect of induced

cell death, induced differentiation from the DN to the DP stages, and inhibition of DN

proliferation by cTECs. This negative regulation of DN cells by cTECs is consistent with

the lineage commitment of DN cells to the DP stage mediated by cTECs in the Notch1-

Delta-like4-dependent manner [22, 89]. It should be noted, however, that our model does

not exclude other possibilities of additional molecular interactions as long as their marginal

influences are consistent with the diagram in Fig. 2.3a.

31



Figure 2.6: Two dimensional scatter plots of the parameter values obtained by the bootstrap
estimation. The plot range of each parameter is set to be the same as that in Fig. 2.5.

To further analyze the consistency of our model with the underlying dynamics of DN sub-

populations (DN1, DN2, DN3, and, DN4), we additionally quantified the dynamics of these

populations after irradiation (Fig. 2.8). We also modified Eq.(2.2) (denoted here as a coarse-

grained model) to include DN subpopulations (denoted as a detailed model and shown in

Method), the parameter values of which were similarly estimated. As demonstrated in

Figs. 2.7a and 2.7b, the detailed model reproduces the dynamics of the DN subpopulations

(Fig. 2.7a) with only small deviation from the coarse-grained model in which DN subpop-

ulations are lumped together (Fig. 2.7b). We should mention that our estimates of DN1

and DN2 subpopulations can be overestimates because an additional cell surface marker,
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Figure 2.7: (Continued on the following page.)

CD117, is required to exclude non-T-lineage fractions [11]. This overestimate, however, has

little effect on the inferred dynamics of the total DN population (Fig. 2.7b), because the

major fraction of DN cells consist of DN3 and DN4 cells. The estimated parameter values

were also consistent with those of the coarse-grained model except for the DN1 influx rate

ϕ1 estimate, which was much smaller than that of coarse-grained model. Because the peak

other than that around the optimal value in the bootstrap estimate of ϕ1 was at the lower
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Figure 2.7: (Continued on the following page.)

bound of its estimation range (Fig. 2.4), a value smaller than the lower bound may also

reproduce the same recovery dynamics. To verify whether the estimate of ϕ1 in the detailed

model is also consistent with the coarse-grained model, we simulated coarse-grained model by

replacing the value of ϕ1 in the model with the estimate from the detailed model. As shown

in Fig. 2.7b, the trajectories were almost unaffected by this replacement. Moreover, from

the biological viewpoint that the number of the influx DN progenitors is quite small [42],
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Figure 2.7: Detailed analysis of the proposed mathematical model Eq.(2.2). (a) Dynamics
of DN subpopulations obtained experimentally with the corresponding fitted trajectories of
the detailed model. DN1 : pink, DN2 : blue, DN3 : light green, DN4 : green. (b) A
comparison of the trajectories obtained by the detailed model (dotted line) with those of
the coarse-grained model for high (solid line) and low (broken line) DN influx rates. The
solid and broken lines are almost perfectly overlapped in this panel. The colors represent
cell types; DN : pink, DP : blue, cTEC : cyan. (c) Validation of the model prediction by
a proliferation assay of DP cells. Percentages of Ki67 positive DP cells are obtained at 0,
4, 11, 13, 17, and 19 days after irradiation. Points represent experimental cell counts, and
shaded lines represent linear interpolations of the average counts. (n = 3 at each time point)
(d) In silico evaluation of the impact from the disturbed crosstalk between SP4 thymocytes
(light green) and mTECs (brown). Thick solid curves are simulated trajectories of SP4
thymocytes and mTECs with parameter values mimicking the experimental condition in ref.
[87], γ4 = 5.0 × 10−6 and ϕm4 = 0. The thin broken curves are those obtained with the
optimal parameter values used in Fig. 2.3b for comparison.

this value of ϕ1 is also reasonable. Altogether, analysis of the detailed model revealed that

the smaller value of ϕ1, which cannot be selected only from the analysis of the coarse-grained

model, is more relevant.

2.2.4 DP recovery by temporal increase in proliferation rate

The kinetic component characteristic to the DP dynamics is its much faster recovery com-

pared to DN cells (Fig. 2.1b), which strongly suggests that the DP recovery is achieved by

self-proliferation rather than by the influx from the DN population. However, evidence about

the self-proliferation ability and speed of DP cells is inconsistent may depend on strains [42,

82]; some studies showed that DP cells proliferate little [54, 72] while others have suggested

that DP cells can proliferate faster than other types of thymocytes [44, 82]. Our model coor-

dinates these properties with auto-inhibitory regulation of the DP proliferation, represented

by the logistic term θ2(1−nDP(t)/K2) in Eq.(2.2), which can realize fast proliferation during

the recovery period and slowdown at the steady state. Nevertheless, such auto-inhibitory

regulation in DP proliferation has not yet been reported.

To experimentally verify this prediction by our model, we estimated the fraction of prolifer-

ating DP cells under the same condition as in Fig. 2.1a by staining the DP population with

proliferation marker Ki67 (Fig. 2.7c). We observed that the fraction of the proliferating DP

cells transiently increased and peaked at day 7 after irradiation, coinciding perfectly with
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Figure 2.8: (a) Typical flow cytometric profiles of DN thymocytes after the sub-lethal dose
radiation. Lineage marker-negative, CD4-negative, CD8-negative thymocytes were analyzed
by staining with anti-CD25 and anti-CD44. Percentage of each fraction is shown in the
panels. (b) The trajectories of the counts of the DN1 (pink), DN2 (blue), DN3 (light green),
DN4 (green) thymocytes after the irradiation. Points correspond to the experimental counts
of the cells, and the solid curves are linear interpolations of the average counts at each time
point. (n=4 at each time point)

the timing of exponential increase in DP cells during recovery. Self-proliferation ceased when

the number of the DP cells recovered to the normal population size before the irradiation.

This result strongly supports that the proliferation rate of DP cells is inhibited by total pop-
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ulation size to maintain homeostasis. Further, this autoregulatory mechanism is consistent

with the previous observations that the DP cells proliferate little when their numbers are at

the steady state [54].

While the autoregulatory proliferation of DP cells is necessary for reproducing fast recovery,

it cannot solely account for the overshooting behavior of DP cells, which suggests that other

cells regulate DP cells. Supported by the well-established evidence that cTECs engage in

positive selection of DP cells, our model includes a negative influence of cTECs to DP cells

with a time-delay, which can nicely reproduce the overshoot of DP cell count. This negative

interaction with a time delay can be interpreted as the marginal effect of an induced apoptosis

of DP cells with non-functional TCRs and the differentiation of DP cells into SP cells upon

apoptosis rescue. The existence of the time delay may be interpreted by the sequential and

multiple interactions of DP cells with cTECs that are required for positive selection.

Our model estimates that the stable rate of the DP cells to differentiate into CD4 SP cells,

r24µ2n
∗
cTEC is ranging from 9.1 × 10−2 to 8.4 × 10−1 (day−1), which overlaps the range of the

previous estimates from 1.2×10−2 to 9.9×10−2 (day−1) (Table 2.2). ). The estimated value

of r24 varied from 10% to 75%, which mostly overlaps with the range of the previous estimates

that 0.02 ∼ 65% of DP cells survive and differentiate into CD4 SP via positive and negative

selection (Table 2.2). This coincidence supports interpretation that r24 is the fraction of the

rescued DP cells that differentiated into CD4 SP and that the remaining fraction 1 − r24 of

the DP cells undergoes apoptosis. However, we should note that an apoptosis rate cannot

be estimated directly only from the dynamics of the population sizes, and this is the main

reason that the estimated fraction of the rescued DP cells varies in the previous studies and

also in our case.

2.2.5 DP and CD4 SP thymocytes incoherently regulate mTEC

recovery

Compared with other thymocytes and TECs, CD4+ SP cells recovered much slower, with

less pronounced overshooting (Fig. 2.1b). This slow recovery of CD4+ SP cells is consistent

with their lack of proliferation capacity [19, 82], which leads to prolonged recovery. The

CD4+ SP dynamics can be reproduced by assuming no proliferation and mTEC-dependent
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death and outflux −µ4nmTEC(t), which may represent the negative selection of SP cells by

mTECs (Fig. 2.3a).

In contrast, the mTEC recovery was initiated almost concurrently with that of cTEC (Fig.

2.1b). While interactions with CD4+ SP cells have been proven essential for the matura-

tion of mTECs [77], the prolonged CD4+ SP recovery is insufficient for reproducing earlier

onset of mTEC recovery. Our model incorporates an auto-inhibitory regulation of mTEC

proliferation rm(1 − nmTEC(t)/Km) and its negative regulation by DP cells with a time delay

−γmpnDP(t − τm) as in Eq.(2.2). The auto-inhibitory regulation is necessary because with-

out it, we obtained biologically inconsistent parameter values in mTEC dynamics (Figs. 2.9a

and 2.9b). The negative regulation by DP cells is also responsible for mTEC overshooting.

Preceding experimental investigations [17, 56] support these mechanisms. Metzger et al.

reported that the percentage of Ki67hi mTECs increases only after the depletion of mTECs

[56], suggesting auto-inhibitory regulation. Based on a depletion experiment of DP cells,

Dudakov et al. suggested that DP cells negatively regulated TEC proliferation in an IL22

dependent manner [17]. However, the DP-dependent regulation was not the sole interaction

that could explain the early onset of mTEC recovery. We also found that a DN-dependent

regulation could reproduce it (Figs. 2.9c and 2.9d). However, this possibility was excluded

in our model because we lack molecular evidence supporting the long-range interaction from

DN cells to mTECs, which reside in spatially segregated areas of a thymus.

Along with regulated proliferation, our model assumes reciprocal regulations between mTECs

and CD4+ SP cells to account for evidence that mTEC maturation is also related with CD4+

SP cells. According to Williams et al. [87], mTECs express ligands CD80 and CD86 and a

receptor, CD40; the corresponding ligand and receptor of CD4+SP cells are mainly CD28

and CD40L, respectively. A knockout of CD80, CD86, and CD40 was shown to decrease

the number of mTECs and double the number of CD4+ SP cells. We substituted smaller

values of µ4 and ϕm4 than the estimated values into our model to reproduce the experiment

in ref. [87] by assuming that the knock-out of CD80, CD86, and CD40 corresponds to this

substitution. The result qualitatively reproduced the knock-out mutant result in ref. [87];

the stable number of CD4+ SP cells doubled whereas the number of mTECs was decreased

as shown in Fig. 2.7d.

39



Negative
 selection

IL22

CD40

Positive
 selection

Notch
Delta

DN DP CD4+

cTEC mTEC

Without auto regulation of mTEC

(a)

Days after irradiation

N
um

be
r o

f c
el

ls

●
●●
●

●●
●

●

●
●

●●
●

●
●
● ●●

●

●
●
●

●●

●
●
●

●
●
● ●●● ●●●

●

●
●
●
●●

●
●●
●

●
●
●
●

●

●

●
●●

●●●

●

●

●

●

●

●

●
●

●●
● ●

●
●

●
●●

●
●●

●●
●

●
●●

●
●●
● ●●●●

●●

●●
●

●●● ●

●

●

●

●

●

●●

●●● ●
●● ●●

●

●
●
● ●●

●●
●●

●

●●

●
●●●●
●
●

●
●●

●

●
●

●

●

● ●
●

●
●
●●

●● ●
●●

●

●●●
●
● ●●● ●

●
●

●

●

●

●
●
●

●

●●
●

●
●●

●
●
●

●●
● ●

●●●

●

●

●●

●
●●●

●●
●●●

●
●

●●●
● ●●

● ●

●●
●

●

●

●●
●

10 20 30

1000

104

105

106

107

108

109

●●●

●

●
●
●
●●

●
●●

●
●●

●●
●

●
●●

●●●

●
●
● ●●

●●
●●

●●
●

●
●
●

●

●

●

●
●
● ●

●●●

●●
●

●

●

●●
●

●
●●

20 30 40 50

(b)

Negative
 selection

CD40

Positive
 selection

Notch
Delta

DN DP CD4+

cTEC mTEC

With DN to mTEC regulation

Without DP to mTEC regulation

IL22

(c)
Days after irradiation

N
um

be
r o

f c
el

ls

●
●●
●

●●
●

●

●
●

●●
●

●
●
● ●●

●

●
●
●

●●

●
●
●

●
●
● ●●● ●●●

●

●
●
●
●●

●
●●
●

●
●
●
●

●

●

●
●●

●●●

●

●

●

●

●

●

●
●

●●
● ●

●
●

●
●●

●
●●

●●
●

●
●●

●
●●
● ●●●●

●●

●●
●

●●● ●

●

●

●

●

●

●●

●●● ●
●● ●●

●

●
●
● ●●

●●
●●

●

●●

●
●●●●
●
●

●
●●

●

●
●

●

●

● ●
●

●
●
●●

●● ●
●●

●

●●●
●
● ●●● ●

●
●

●

●

●

●
●
●

●

●●
●

●
●●

●
●
●

●●
● ●

●●●

●

●

●●

●
●●●

●●
●●●

●
●

●●●
● ●●

● ●

●●
●

●

●

●●
●

10 20 30

1000

104

105

106

107

108

109

●●●

●

●
●
●
●●

●
●●

●
●●

●●
●

●
●●

●●●

●
●
● ●●

●●
●●

●●
●

●
●
●

●

●

●

●
●
● ●

●●●

●●
●

●

●

●●
●

●
●●

20 30 40 50

(d)

Negative
 selection

IL22

CD40

Notch
Delta

DN DP CD4+

cTEC mTEC

cTEC positively regulates DP

rather than negatively 

(e)

Days after irradiation

N
um

be
r o

f c
el

ls

●
●●
●

●●
●

●

●
●

●●
●

●
●
● ●●

●

●
●
●

●●

●
●
●

●
●
● ●●● ●●●

●

●
●
●
●●

●
●●
●

●
●
●
●

●

●

●
●●

●●●

●

●

●

●

●

●

●
●

●●
● ●

●
●

●
●●

●
●●

●●
●

●
●●

●
●●
● ●●●●

●●

●●
●

●●● ●

●

●

●

●

●

●●

●●● ●
●● ●●

●

●
●
● ●●

●●
●●

●

●●

●
●●●●
●
●

●
●●

●

●
●

●

●

● ●
●

●
●
●●

●● ●
●●

●

●●●
●
● ●●● ●

●
●

●

●

●

●
●
●

●

●●
●

●
●●

●
●
●

●●
● ●

●●●

●

●

●●

●
●●●

●●
●●●

●
●

●●●
● ●●

● ●

●●
●

●

●

●●
●

10 20 30

1000

104

105

106

107

108

109

●●●

●

●
●
●
●●

●
●●

●
●●

●●
●

●
●●

●●●

●
●
● ●●

●●
●●

●●
●

●
●
●

●

●

●

●
●
● ●

●●●

●●
●

●

●

●●
●

●
●●

20 30 40 50

(f)

Negative
 selection

IL22

CD40

Positive
 selection

Notch
Delta

DN DP CD4+

cTEC mTEC

Additional DP to cTEC regulation

(g)

Days after irradiation

N
um

be
r o

f c
el

ls

●
●●
●

●●
●

●

●
●

●●
●

●
●
● ●●

●

●
●
●

●●

●
●
●

●
●
● ●●● ●●●

●

●
●
●
●●

●
●●
●

●
●
●
●

●

●

●
●●

●●●

●

●

●

●

●

●

●
●

●●
● ●

●
●

●
●●

●
●●

●●
●

●
●●

●
●●
● ●●●●

●●

●●
●

●●● ●

●

●

●

●

●

●●

●●● ●
●● ●●

●

●
●
● ●●

●●
●●

●

●●

●
●●●●
●
●

●
●●

●

●
●

●

●

● ●
●

●
●
●●

●● ●
●●

●

●●●
●
● ●●● ●

●
●

●

●

●

●
●
●

●

●●
●

●
●●

●
●
●

●●
● ●

●●●

●

●

●●

●
●●●

●●
●●●

●
●

●●●
● ●●

● ●

●●
●

●

●

●●
●

10 20 30

1000

104

105

106

107

108

109

●●●

●

●
●
●
●●

●
●●

●
●●

●●
●

●
●●

●●●

●
●
● ●●

●●
●●

●●
●

●
●
●

●

●

●

●
●
● ●

●●●

●●
●

●

●

●●
●

●
●●

20 30 40 50

(h)

Figure 2.9: (Continued on the following page.)
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Figure 2.9: Possible regulatory mechanisms that are capable of reproducing the recovery
dynamics of the data, but that are biologically less relevant than the proposed model shown
in Fig. 2.3a. Differences between each model and the one shown in Fig. 2.3a are designated
by red solid lines if additionally included or red broken lines if excluded. The equations
corresponding to the models are shown in Methods. The model in (a) excludes the au-
toinhibitory regulation of mTECs. The model in (c) includes an interaction from DN cells
to mTECs influx instead of the inhibition from DP cells. The model in (e) assumes that
cTECs promote DP cell proliferation, rather than inducing DP cell differentiation or cell
death. The model in (g) includes an inhibitory regulation of cTECs from DP cells similar to
that of mTECs. (b), (d), (f), and (h) show corresponding trajectories of the models in (a),
(c), (e), and (g), respectively.

2.3 Discussion

From quantitative time-series data of thymocytes and TECs recoveries after sub-lethal X-ray

irradiation, we constructed a mathematical model for the recovery dynamics of thymocytes

and TECs. The model reproduces the transient dynamics of the cell population sizes fairly

well, and most of the interactions identified by the modeling are consistent with known

molecular evidence.

Since previous modeling works on quantitative characterizations of thymocyte development

focused only on thymocytes dynamics, our work, which additionally includes both the dy-

namics of and the interactions with TECs, can be viewed as an extension of those works [51,

55, 58, 69, 80, 92]. We validated that the estimated parameter values of thymocytes in our

model are mostly consistent with those estimated in previous works (Table 2.2). Few pa-

rameter value mismatches may also be attributed to differences in the experimental setting

and conditions. However, it should be noted that we compared the apparent proliferation

rates of our model to previous estimates, which are the marginal rates of population size

change owing to the imbalance between proliferation and apoptosis because pure rates of

proliferation or apoptosis cannot be estimated from our model. To reveal dynamical change

in apoptosis rates, we must develop a new approach that combines our reciprocal regulation

model with experimental methods that can directly quantify thymocyte proliferation, apop-

tosis and differentiation [7, 76]. Further, the parameters of TECs are the first to be estimated

by modeling, and should be verified by independent research. Particularly, damage caused

by irradiation can affect the thymic tissue structure, which may result in a systematic bias
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when counting TECs [30, 67]. While this systematic bias is effectively absorbed in our model

by parameters scaling, this potential scaling must be considered when we compare our TEC

parameter value estimates with others. Moreover, to assess this problem more carefully, we

must develop a new image analysis method that can accurately detect and count cells in 3D

tissue images obtained by advanced imaging and tissue clearing [57, 62].

Thymic crosstalk includes various signaling pathways, indicating complex regulations behind

the population size control of thymocytes and TECs. Because of this complexity, our model

may contain missing interactions or possibly different regulations, some of which were tested

during our model identification process. Such possibilities cannot be excluded by the limited

amount of the data alone; therefore, we employed previously obtained molecular biological

evidence and quantitative estimates to evaluate the possible models.

For example, cTECs rescue DP thymocytes from apoptosis via positive selection, which

leads to increase the DP population size. Concurrently, positive selection also induces dif-

ferentiation of thymocytes from the DP stage to the SP stage, causing DP population size

to decrease. These contradicting interactions introduce the possibility that cTECs increase

the DP thymocyte population size, rather than decreasing it as assumed in our model. We

examined this possibility by introducing the increasing effect of the DP population size by

cTECs and concluded that the decreasing effect assumed by our model is more valid because

the model with the increasing effect resulted in much higher parameter values than expected

based on the previous works (Figs. 2.9e and 2.9f).

We also investigated a model in which DP thymocytes contribute to the recovery of both

mTECs and cTECs [17]. We found that the estimated parameter for the interaction from

DP cells to cTECs was almost 0 (Figs. 2.9g and 2.9h), which does not support a major

contribution of DP cells to cTECs recovery under our experimental condition.

Our model can explain the mechanisms by which specific dynamics appear in recovery dy-

namics and their potential biological functions; overshoots of DN thymocytes and cTECs

may originate from negative feedback between them and may contribute to prompt recovery

from various perturbations affecting thymocyte and TEC numbers. Similarly, the disinhi-

bition of DP proliferation upon DP population size decrease facilitates the swift recovery

of DP cells, which could not be achieved solely by the influx of DN cells, as they have a
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much smaller population size than DP cells. Our model provides an integrative view of

thymic crosstalk as a regulatory network and serves as a starting point for comprehensive

understanding of homeostasis in thymic development.

However, our model still has room for future improvement by accommodating more detailed

information on the cellularity of the thymic resident cells, such as B cells, dendritic cells, and

thymic endothelial cells. These cells may have different roles in the dynamic regulation of

thymic homeostasis than thymocytes and TECs, although we did not explicitly include them

by presuming that their effects to the number of thymocytes or TECs are relatively small

or constant, which was implicitly modeled by the constant parameters in our model. Actu-

ally, BMP4 production by endothelial cells after irradiation, which can contribute to TECs

recovery, was reported constant when normalized by the size of thymus [86]. Explicitly incor-

porating these cells may be crucial to extending our model to other experimental settings as

well as for deriving a more integrative and comprehensive model of thymic development and

homeostasis. Among others, the repertoires of thymocytes are particularly relevant. TECs

are responsible for controlling the number of thymocytes as well as for selecting thymocytes

with appropriate repertoires. An upcoming challenge may be integrative modeling and an-

alyzing thymic homeostasis, both in cell number and repertoires by combining quantitative

measurement and high-throughput sequencing [74].

2.4 Methods

2.4.1 Experiment

Animals used in the present study were maintained in accordance with the “Guiding Prin-

ciples for Care and Use of Animals in the Field of Physiological Science” set by the Phys-

iological Society of Japan. All animal experiments were approved by the Animal Research

Committees of RIKEN.

Balb/cA mice were purchased from CLEA Japan. Female mice (7 weeks-old) received X-ray

radiation (4.5 Gy). At each sampling point after irradiation, the mice were sacrificed and

their thymi were used for a flow cytometric analysis. Each thymus was cut and gently agi-
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tated in 2 ml of RPMI-1640 (Sigma-Aldrich, St. Louis, MO, U.S.A.) to release thymocytes for

the flow cytometric analysis. The days of measurement and the number of sampled mice are

shown in Table 2.1. The remaining thymic tissue was digested using Liberase in RPMI1640

(Wako) at 37 ◦C for 30 min. The thymic stroma-rich-fraction was analyzed by flow cytometry

to detect TEC populations. For flow cytometric staining, cells were pre-treated with anti-

CD16 and CD32 (Biolegend) for 20 min and subsequently stained with fluorescence-labeled

antibodies in phosphate buffered saline containing 3% fetal bovine serum. The stained cells

were analyzed using Canto II (BD). The total thymic cell numbers were determined by the

sum of cells in the thymic stroma-rich fraction and the thymocyte fraction. TECs were

defined as CD45-TER119-EpCAM+ cells. mTECs and cTECs were separated with UEA-1

staining. For DN thymocyte staining, the lineage negative cell fraction was separated by

staining with CD25 and CD44 antibodies. Since the DN population contains other minor

cell populations such as dendritic cells, the number of cells from these fractions was sub-

tracted from the number of DN cells in the mathematical modeling based on the average

percentage of these cells (16.6%) in the DN fraction under steady conditions (Fig. 2.2a).

PECy7-anti-CD4 (clone RAM4-4, used as ×200 dilution), FITC-anti-CD4 (clone RAM4-

4, ×200 dilution), APCCy7-anti-CD8 (clone 53-6.7, ×200), APCCy7-anti-CD45 (clone 30

F-11, ×200), APCCy7-anti-TER119 (clone TER-119, ×200), FITC-anti-EpCAM (BioLe-

gend, clone G8.8, ×400), PE-anti-CD80(clone 16-10A1, ×400), Biotin-anti-mouse Ly-6G/Ly-

6C(Gr-1) (×400), Biotin anti-mouse/human CD45R/B220 (×400), Biotin anti-mouse TER-

119/Erythroid cells (clone TER-119, ×400), Biotin conjugated anti-mouse CD11b (×400),

PE anti-mouse/human CD44 (clone IM7, ×400), APC anti-mouse CD25 (clonePC61, ×400),

Streptavidin PE-Cyanine7 (×400), and Streptavidin-PECy7 (×400) were purchased from Bi-

olegnd. UEA-biotin (×400) was from Vector laboratories (Burlingame, CA).

In the proliferation assay, thymocytes were pre-treated with anti-CD16 and CD32 (Bi-

olegend) and subsequently stained with anti-CD4 and anti-CD8 antibodies in phosphate

buffered saline containing 3% FBS. The cells were fixed and permeabilized with Foxp3/Transcription

Factor Staining Buffer Set (eBioscience) according to the manufacturer’s protocol. After

fixation and permeabilization, the cells were stained with a PE-labeled anti-Ki67 antibody

(Biolegend) and subsequently analyzed by Canto II (BD).
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2.4.2 Mathematical Modeling of Thymocyte and TEC dynamics

We assume that the total number of the type i cells, ntot
i , is the sum of cells dying by

irradiation nx
i and survived or newly generated cells ni:

ntot
i (t) = nx

i (t) + ni(t), i ∈ C := {DN, DP, SP4, cTEC, mTEC} , (2.3)

where C is the set of the cell types.

We describe the decrease in the irradiated cells by an exponential decay, which assumes that

cells die at a constant rate ωi after irradiation:

nx
i (t) = nx

i (0)e−ωit . (2.4)

In the model, ntot
i (0) represents the initial population size of type i cells and pi is assumed

to be the fraction of survived cells at t ≤ 0 as

ni(t) =


ntot

i (0), t < 0

pin
tot
i (0), t = 0

, (2.5)

nx
i (t) =


0, t < 0

(1 − pi)ntot
i (0), t = 0

. (2.6)

Given these initial conditions, the model of Eq. (2.2) was implemented on MATLAB (R2018a;

The MathWorks, Natick, MA) and numerically simulated by the ‘dde23’ function or on

Mathematica (version 11.2; Wolfram research, Champaign, Illinois) and simulated by the

‘NDSolve’ function.

2.4.3 Parameter estimation

In the parameter estimation, ωi, ntot
i (0), pi, and all parameters appearing in Eq. (2.2) were

simultaneously estimated. Parameters were estimated by minimizing the sum of the squares

of difference between the logarithms of the observed data and simulated values of the model.
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Because the orders of the parameters are different, and this caused difficulty in the mini-

mization, we decomposed the parameters as θ = θc ◦ θp, where θc is a coefficient vector to

estimate, θp is a constant vector of a power of 10, and ◦ denotes elementwise multiplication.

For the observed time points t∗ = [ti, · · · , tm] and the corresponding data points Ni(tj) for

all i ∈ C, the estimated parameter set θ̂ was obtained by solving

θ̂c = arg min
θc

m∑
j=1

∑
i∈C

[ln(ntot
i (tj,θc ◦ θp)) − ln(Ni(tj))]2 ,

θ̂ = θ̂c ◦ θp

(2.7)

To solve this minimization, we used the ‘lsqnolin’ function in MATLAB Optimization Tool-

box in which parameters were estimated by Trust Region Reflective method. The initial

parameter values in the estimation were given, so that the result converges to moderate

values considering the results of related previous works. The searching range of each param-

eter except pi, r1, and r24 was set between 10 and 0.1 times the initial value. Since pi, r1,

and r24 represent fractions, their searching ranges were set between 0 and 1. The symbols,

descriptions, and estimated values of the parameters are listed in Table 2.3.

2.4.4 Confidence Interval by bootstrap

We calculated the confidence intervals of the estimated parameter values by a bootstrap

method [16].

First, for type i cells, we modeled the statistical variation of the data points using a Gaussian

random variable εi ∼ N (0, σ2
i ) with mean 0 and variance σ2

i as

ln(Ni(t)) = ln(ntot
i (t, θ̂)) + εi . (2.8)

We estimated σ2
i by the sample variance as

σ̂2
i = 1

m − 1

m∑
j=1

[ln Ni(tj) − ln ntot
i (tj, θ̂)]2 . (2.9)

We obtained the kth bootstrapped sample of the time point tj, N bk
i (t∗

j) by using a random
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Symbol Description Value [CI]

p1
Proportion of normal cells

in the initial number of DN 1.7 × 10−5 [1.4 × 10−7, 1.2 × 10−2]

ω1 Death rate of irradiated DN 9.2 × 10−1 [7.0 × 10−1, 1.4 × 100]
nDN(0) Initial value for the number of DN 9.3 × 106 [6.9 × 106, 1.4 × 107]

ϕ1 Inflow to DN 3.3 × 104 [3.3 × 103, 6.6 × 104]
µ1 Negative regulation by cTEC to DN 1.3 × 10−5 [8.1 × 10−6, 2.1 × 10−5]
δ1 Intrinsic proliferation rate of DN 4.7 × 10−1 [2.8 × 10−1, 6.9 × 10−1]

r1
Proportion of differentiation
to DP in regulation by cTEC 2.9 × 10−1 [1.6 × 10−5, 6.9 × 10−1]

p2
Proportion of normal cells
in the initial number of DP 6.9 × 10−6 [4.5 × 10−9, 8.4 × 10−5]

ω2 Death rate of irradiated DP 4.0 × 100 [3.5 × 100, 4.5 × 100]
nDP(0) Initial value for the number of DP 1.7 × 108 [1.2 × 108, 2.5 × 108]

r2 Proliferation rate of DP 1.3 × 100 [1.1 × 100, 1.5 × 100]
k2 Carrying capacity of DP 4.2 × 108 [2.4 × 108, 1.4 × 109]

µ2
Negative regulation rate

by cTEC to DP 2.9 × 10−5 [2.1 × 10−5, 4.0 × 10−5]

τ Delay of cTEC regulating DP 2.1 × 100 [1.2 × 100, 3.1 × 100]

r24
Proportion of differentiation

to CD4+SP in regulation by cTEC 1.0 × 10−1 [4.9 × 10−2, 3.0 × 10−1]

pc
Proportion of normal cells

in the initial number of cTEC 7.6 × 10−1 [1.1 × 10−4, 9.8 × 10−1]

ωc Death rate of irradiated cTEC 7.7 × 10−1 [9.3 × 10−2, 7.6 × 100]
ncTEC(0) Initial value for the number of cTEC 2.7 × 104 [1.9 × 104, 4.3 × 104]

ϕc Inflow to cTEC 6.5 × 103 [4.3 × 103, 8.8 × 103]
γc Death rate of cTEC 7.9 × 10−1 [5.4 × 10−1, 1.3 × 100]
θc Positive regulation by DN to cTEC 3.1 × 10−7 [2.0 × 10−7, 5.7 × 10−7]

p4
Proportion of normal cells

in the initial number of CD4+SP 1.5 × 10−2 [8.2 × 10−5, 1.1 × 10−1]

ω4 Death rate of irradiated CD4+SP 6.3 × 10−1 [5.0 × 10−1, 8.3 × 10−1]
nSP4(0) Initial value for the number of CD4+SP 2.7 × 107 [2.2 × 107, 3.4 × 107]

γ4
Negative regulation

by mTEC to CD4+SP 9.9 × 10−6 [4.7 × 10−6, 2.5 × 10−5]

pm
Proportion of normal cells

in the initial number of mTEC 3.1 × 10−6 [5.5 × 10−8, 4.4 × 10−1]

ωm Death rate of irradiated mTEC 1.6 × 10−1 [10.0 × 10−2, 2.8 × 10−1]
nmTEC(0) Initial value for the number of mTEC 1.4 × 105 [1.1 × 105, 1.9 × 105]

ϕm Constant inflow to mTEC 1.5 × 101 [1.5 × 100, 1.2 × 102]
ϕm4 Inflow to mTEC regulated by CD4+SP 1.6 × 10−4 [1.6 × 10−5, 1.5 × 10−3]
rm Proliferation rate of mTEC 6.1 × 10−1 [1.7 × 10−1, 1.2 × 100]
Km Carrying capacity of mTEC 9.2 × 104 [4.9 × 104, 7.4 × 105]

µmp
Negative regulation

rate by DP to mTEC 3.5 × 10−9 [1.8 × 10−9, 8.2 × 10−9]

τm Delay of DP regulating mTEC 3.3 × 100 [2.1 × 100, 6.2 × 100]

Table 2.3: Estimated parameter values in the coarse-grained model. (CI : confidence inter-
val). We should note that this is the first systematic estimate of the parameters related to
the dynamics of TECs. These parameters should be verified by independent researches.
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number εk
i,j ∼ N (0, σ̂2

i ) as

ln N bk
i (tj) = ln ntot

i (tj, θ̂) + εk
i,j . (2.10)

The kth bootstrapped parameter set θ̂bk was obtained by solving the same optimization

problem of the previous section by replacing the data with the kth bootstrapped sample

N bk
i (tj) as

θ̂bk = arg min
θ

m∑
j=1

∑
i∈C

[ln(ntot
i (tj,θ)) − ln(N bk

i (tj))]2 . (2.11)

The total number of the bootstrapped samples generated was B = 1000. The two-sided

α ∗ 100 % confidence interval of the lth parameter was calculated as [θ̂
B(1−α)

2
l , θ̂

Bα
2

l ] where θ̂
(x)
l

is the xth smallest value of the lthparameter obtained from the bootstrapped samples. The

confidence interval of each parameter is shown in Table 2.3. A pairwise scatter plot of the

bootstrap estimates is shown in Fig. 2.6. The trajectories of the cells obtained from 100

samples of the bootstrap parameter sets are shown in Fig. 2.3c.

2.4.5 Detailed model of DN thymocytes

We additionally measured dynamic changes in the population sizes of DN1, DN2, DN3, and

DN4 cells after irradiation.

To estimate the DN subpopulation dynamics in the original data (Fig. 2.1b), we utilized the

DN subpopulations data as follows. First, we calculated the average proportions of the DN

subpopulations at each time point. Subsequently, assuming that the dynamics of the DN

subpopulation proportions were the same as the original data, we multiplied the number of

DN cells from the original data with the calculated DN subpopulation proportions at each

time point. At time points where we did not have corresponding DN subpopulation data

(days 12 and 14), we used the average proportions of neighboring time points (days 11 and

13 for day 12, and days 13 and 15 for day 14).

Employing the obtained estimates of the DN subpopulation dynamics, we estimated the
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parameter values of the following detailed model of DN1, DN2, DN3, DN4, DP, and cTEC;

dnDN1

dt
= ϕ1 + (δDN1 − µDN1ncTEC(t))nDN1(t) ,

dnDNi

dt
= µDNi−1ncTEC(t)nDNi−1(t) + (δDNi − µDNincTEC(t))nDNi(t) ,

dnDP

dt
= rDN4µDN4ncTEC(t)nDN4(t) +

{
θ2

(
1 − nDP(t)

K2

)
− µ2ncTEC(t − τ2)

}
nDP(t) ,

dncTEC

dt
= ϕc +

−δc +
4∑

j=1
µcTEC,jnDNj(t)

ncTEC(t) ,

(2.12)

for i = 2, 3, 4. The parameter estimation procedure was the same as that for the coarse-

grained model. Because the detailed model has parameters common to the coarse-grained

model; ϕ1 and the model parameters of DP and cTECs, except rDN4, µDN4, and µcTEC,i,

we first fixed those parameter values to the estimates from the coarse-grained model and

estimated the remaining parameter values. However, the detailed model with the estimated

parameter values did not reproduce the DN1 dynamics (Fig. 2.10). To obtain the parameter

values capable of reproducing the dynamics of all cell types, we estimated parameter values

including ϕ1 while other common parameter values were fixed (Fig. 2.7a and Table 2.4).
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Figure 2.10: Trajectories of the detailed model as a result of fitting to the experimentally
obtained dynamics of DN subpopulations while keeping the values of the parameters common
to the coarse-grained model fixed. DN1 : pink, DN2 : blue, DN3 : light green, DN4 : green.
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Symbol Description Value
ϕ1 Inflow to DN 5.6 × 101

δDN1 Intrinsic proliferation rate of DN1 5.4 × 10−1

δDN1 Intrinsic proliferation rate of DN2 3.3 × 10−5

δDN3 Intrinsic proliferation rate of DN3 7.4 × 10−1

δDN4 Intrinsic proliferation rate of DN4 4.1 × 10−1

µDN1 Negative regulation by cTEC to DN1 1.3 × 10−5

µDN2 Negative regulation by cTEC to DN2 1.2 × 10−4

µDN3 Negative regulation by cTEC to DN3 3.3 × 10−5

µDN4 Negative regulation by cTEC to DN4 3.4 × 10−5

µcTEC1 Positive regulation by DN1 to cTEC 2.6 × 10−7

µcTEC2 Positive regulation by DN2 to cTEC 1.1 × 10−8

µcTEC3 Positive regulation by DN3 to cTEC 2.8 × 10−9

µcTEC4 Positive regulation by DN4 to cTEC 5.3 × 10−7

nDN1(0) Initial value for the number of DN1 1.8 × 106

nDN2(0) Initial value for the number of DN2 7.1 × 105

nDN3(0) Initial value for the number of DN3 2.9 × 106

nDN4(0) Initial value for the number of DN4 3.8 × 106

pDN1 Proportion of normal cells in the initial number of DN1 2.3 × 10−3

pDN2 Proportion of normal cells in the initial number of DN2 2.4 × 10−2

pDN3 Proportion of normal cells in the initial number of DN3 4.1 × 10−4

pDN4 Proportion of normal cells in the initial number of DN4 2.5 × 10−5

ωDN1 Death rate of irradiated DN1 6.2 × 10−1

ωDN2 Death rate of irradiated DN2 5.1 × 10−1

ωDN3 Death rate of irradiated DN3 8.9 × 10−1

ωDN4 Death rate of irradiated DN4 1.4 × 100

rDN4 Proportion of differentiation from DN4 to DP in regulation by cTEC 6.7 × 10−1

Table 2.4: Estimated parameter values in the detailed model.

2.4.6 Possible models (1): No self-suppression of mTEC

We constructed a model of mTEC without the self-suppression (Figs. 2.9a and 2.9b) that

had fewer parameters than the proposed model (Figs. 2.3a and 2.3b);

dnmTEC

dt
= ϕm + ϕm4nSP4(t) − (γmpnDP(t − τm) + µm)nmTEC(t) . (2.13)

This model is less appropriate than the proposed one because the estimated value of the

coefficient γmpn∗
DP + µm was so large that mTECs die within a few hours.
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2.4.7 Possible models (2): Regulation by DN to mTEC

We constructed the following model of mTECs with direct regulation by DN cells because

the temporal peaks of their population sizes coincided in the data (Figs. 2.9c and 2.9d);

dnmTEC

dt
= ϕmnnDN(t) + ϕm4nSP4(t) − µmnmTEC(t) . (2.14)

We rejected this model because we have no evidence of direct interaction between DN thy-

mocytes and mTECs, which are located in different regions of a thymus.

2.4.8 Possible models (3): Increase of DP by cTEC

We constructed a model of DP cells in which cTECs promote the increase in the DP popu-

lation size by assuming that cTECs either induce DP proliferation or rescue DP thymocytes

from apoptosis in positive selection (Figs. 2.9e and 2.9f);

dnDP

dt
= µ1r1ncTEC(t)nDN(t) + r2nDP(t)

(
1 − nDP(t)

K2

)
+ µ2ncTEC(t)nDP(t) . (2.15)

This model was determined inappropriate because the estimated values of the coefficients

r2(1−n∗
DP/K2) and µ2n

∗
cTEC were so large that self replication and apoptosis occurred within

a few hours.

2.4.9 Possible models (4): Regulation by DP to cTEC

We constructed a model of cTECs with a regulation by DP thymocytes (Figs. 2.9g and 2.9h)

because the depletion of DP thymocytes was reported to induce recovery both of mTECs

and cTECs [17];

dncTEC

dt
= ϕc + (−δc + µcnDN(t) − γcnDP(t − τm))ncTEC(t) . (2.16)

We found that the assumed effect of DP cells to cTECs was negligible because the substi-

tution of 0 to γc did not change the dynamics after the parameter estimation. Thus, we did
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not adopt this additional interaction.
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Chapter 3

TCR repertoire analysis of thymic

selection and its perturbation
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3.1 Introduction

Appropriate diversity of a TCR repertoire is central to the ability of the adaptive immunity

to protect against pathogens. This diversity is generated by the probabilistic mechanisms

during the T cell development in the thymus: the random gene recombination and the clonal

selection.

Statistical property of these probabilistic mechanisms has been studied, especially after the

emergence of high-throughput sequencing. TCRs that contain specific amino acids with

specific lengths tended to be selected in the thymus [47]. One of the tendencies was that

TCRs that were more likely to be produced by the recombination were more likely to pass

the thymic selection [20]. Nevertheless, the selection bias did not seem to contribute to how

much TCR repertoire is shared among individuals [43].

Impaired functionality of those mechanisms in the thymus for appropriate TCR repertoire

can result in T cell immunodeficiency. The cause of some autoimmune diseases has been

revealed to be related to the deficiency of the thymic development; in a mouse model of

systemic lupus erythematosus, one of the autoimmune diseases, the diversity of both thymic

and splenic TCRβ repertoire were significantly low [45]. On the other hand, specific genetic

mutation related to the thymus has also been studied; when some genes related to the

production of self-peptides in TECs such as thymus-specific serine protease are knocked out,

T cells with TCRs specific to several antigens were impaired [83].

The deficient generation of TCR repertoire in the thymus is caused not only by genetic defects

but also by temporal perturbation such as stress, infection, and medical treatments. Those

perturbations lead to acute thymic atrophy and consequent less-diverse TCR repertoire

output [28]. However, it is still poorly understood how thymic atrophy and following recovery

change the TCR repertoire. In this study, we analyzed dynamical changes of the thymic TCR

repertoire during thymic involution and subsequent recovery after X-ray irradiation.
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Table 3.1: The sample size on each day after irradiation. On day 4 of group 1, we had 3
samples for SP cells and 2 samples for DP cells.

Days after irradiation 0 4 7 11 13 17 19 30 42
Group 1 3 3(2) 3 3 3 3 3
Group 2 2 2 2 3 3 3

3.2 Materials and methods

3.2.1 Experiment

Animals used in the present study were maintained in accordance with the “Guiding Prin-

ciples for Care and Use of Animals in the Field of Physiological Science” set by the Phys-

iological Society of Japan. All animal experiments were approved by the Animal Research

Committees of RIKEN.

We artificially perturbed populations of thymocytes in the thymus by sub-lethal 4.5 Gy

irradiation to mice (7 weeks-old), and we performed deep sequencing of TCRα and TCRβ

chains from CD69+DP and CD4+SP thymocytes during the recovery from irradiation. The

CD69+ population in DP cells is those that have completed positive selection [68]. We

hereafter refer to CD69+DP cells and CD4+SP cells as DP cells and SP cells, respectively.

We experimented with the same condition twice but different sampling time points; on the

second run, we measured samples later than the first run. The sample size at each time

point after irradiation is shown in Table 3.1. We denote the first run as group 1 and the

second run as group 2 hereafter. Preprocessing was conducted using proprietary software of

Repertoire Inc, and we obtained a read count for each combination of V and J gene usages,

and an amino acid sequence of a CDR3 region. About 1.4 × 105 reads were observed for one

sample on average (Fig. 3.1).

3.2.2 Sequence similarity of CDR3

We employed the sequence similarity index of CDR3 proposed in [91]. This similarity index

is based on sequence alignment. To calculate similarity for a pair of CDR3 sequences, we

first run a local sequence alignment. We used the blocks substitution matrix (BLOSUM) 62
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Figure 3.1: Read counts of (a)TCRα and (b)TCRβ chains on each day after irradiation.
Points correspond to the counts of each sample, and lines are linear interpolations of the
average reads at each time point.
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for the amino acid substitution matrix, which determines the cost of replacing a single amino

acid residue by another, and the gap opening and extension penalties were set to 10 and 1,

respectively for the local sequence alignment. From the local sequence alignment score, we

calculate sequence dissimilarity index as:

Si,j = 1 − 2Di,j

Di,i + Dj,j

, (3.1)

where Di,j and Si,j are the local sequence alignment score and the dissimilarity index between

two sequences i and j.

3.2.3 Principal component analysis

Principal component analysis (PCA) is a method to reduce the dimensionality of a data by a

linear transformation to a new set of uncorrelated variables, the principal components (PCs)

[33]. Suppose we have N observations of P variables (N > P ), and let X be an (N × P )

observation matrix. A (N × P ) PC score matrix Z is obtained by a linear transform of X,

Z = XA , (3.2)

where A is a (P × P ) orthogonal matrix determined as follows. Let xp, ap, and zp be a pth

column vector of X, A, Z, respectively. ap is determined so that it maximizes a variance of

zp, keeping zp uncorrelated with zp′ for p′ = 1, · · · , p − 1, under the constraint to be a unit

vector.

The quality of representation of the kth variable on the lth PC is expressed by the square

of a correlation between xk and zl,

q(k, l) =
(

σxk,zl

σxk
σzl

)2

, (3.3)

where σxk
and σzl

are standard deviations of xk and zl, respectively, and σxk,zl
is a covariance

between xk and zl [31].
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3.2.4 Correlation ratio

The correlation ratio is a measure that indicates how much the statistical dispersion within

individual categories contributes to the dispersion across the whole samples [36]. Suppose

we have n samples in total and nx samples in a category x, and let yxi be ith observation in

the category x. The weighted variance of the category means is

σ2
ȳ = 1

n

∑
x

nx(ȳx − ȳ)2 , (3.4)

where ȳ = 1/n
∑

x

∑nx
i yxi is the mean of the whole sample, ȳx = 1/nx

∑nx
i yxi is the mean

of the category x. The weighted mean of the category variances is

σ̄2
x = 1

n

∑
x

nxσ2
x , (3.5)

where σ2
x = 1/nx

∑nx
i (yxi − ȳx)2 is the variance of the category x. The variance of all samples

σ2
y = 1/n

∑
x

∑nx
i (yxi − ȳ)2 is decomposed as σ2

y = σ2
ȳ + σ̄2

x.

The correlation ratio η is defined by the ratio between the weighted variance of the category

means and the variance of all samples,

η2 =
σ2

ȳ

σ2
y

. (3.6)

3.3 Result

3.3.1 Temporal decrease of CDR3 richness after irradiation and

its recovery

We compared the ratio of the number of unique CDR3 to the square root of total reads, which

is called Menhinick’s index [12], of each sample as a species richness index (Fig. 3.2). The

CDR3 richness decreased after irradiation and recovered around 10 days in every TCR chain

and cell type. Although α and β chains have different numbers of V, D, and J genes, there

was little difference in the CDR3 richness compared to the effect of irradiation. Besides,
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the CDR3 richness was relatively higher in SP cells than in DP cells. However, it is not

plausible that thymic selection increases the number of unique CDR3s. This suggests that

the thymic selection may shift the proportion of each CDR3 in the total sequences toward a

uniform distribution. The difference between the groups might be due to different breeding

environment.

3.3.2 Most frequent TCRα chain was common in SP thymocytes

The most frequent combination of V, J, and CDR3 was common in most samples of SP cells

(Fig. 3.3); a combination of TRAV11D, TRAJ18, and CVVGDRGSALGRLHF was most

frequent in 26 out of 37 SP samples. This combination was not observed as the most frequent

combination in DP samples; it was different in each DP sample. Furthermore, the significant

difference in rank-size distributions between DP and SP samples before irradiation was the

prominent abundance of this combination in SP samples (Fig. 3.4). On the other hand, this

combination was not frequent in DP cells; it was only observed in 2 out of 3 DP samples at

day 0. The abundance of the most frequent combination at day 0 declined by irradiation,

and did not get recovered even at 11 days, when the percentage of unique CDR3 counts

per total reads had recovered, but in the end at day 42, it got recovered to the original

proportion which was significantly higher than that of DP cells (Fig. 3.4).

Thymic selection may cause this prominent abundance of the specific V, J, and CDR3

combination in SP cells and its temporal change. Reactivity of the CDR3 region to self

peptides is supposed to determine whether each thymocyte pass thymic selection. Because

amino acid sequence similarity of CDR3 sequences correlates with their peptide reactiv-

ity [6], we speculated that thymocytes with CDR3 sequences same or similar to CVVG-

DRGSALGRLHF were also abundant only in CD4+cells. However, combinations of the

CDR3 CVVGDRGSALGRLHF with other V and J genes were not frequent in SP or DP

cells (Fig. 3.4). Furthermore, there were no sequences similar to CVVGDRGSALGRLHF

that were abundant in both DP and SP (Fig. 3.5). Thus, the peptide reactivity of the CDR3

CVVGDRGSALGRLHF did not seem to explain the abundance of the specific combination

in SP cells.

59



●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●
●

●

●●

●

●

●●
●●● ●

●●

●

●

●

●●●

●
●

●
●●●

●

●

●
●
●●

●
●● ●

●

●

●

●

●

●

●● ●
●
●

●

●

●

●

●
●

DP SP

0 10 20 30 40 0 10 20 30 40

1.0 x 101

3.0 x 101

1.0 x 102

Day after irradiation

M
en

hi
ni

ck
's

 in
de

x

group

●

●

1

2

(a)

●●●

●

●

●●

●

●
●●

●

●

●
●●

●

●●

●

●
●

●

●

●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●● ●●● ●●●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

DP SP

0 10 20 30 40 0 10 20 30 40

1.0 x 101

3.0 x 101

1.0 x 102

Day after irradiation

M
en

hi
ni

ck
's

 in
de

x

group

●

●

1

2

(b)

Figure 3.2: Menhinick’s index of (a)TCRα and (b)TCRβ chains on each day after irradiation.
Points correspond to the percentage of each sample, and lines are linear interpolations of the
average percentage at each time point.
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3.3.3 Difference of TCRβ VJ usage between DP and SP cells

We investigated rank-size distribution of the usage counts of V and J genes (VJ usage) of

in TCRβ (Fig. 3.6). In group 2, the proportions of the most abundant VJ combinations

were higher in SP cells than DP cells before and 13 days after irradiation; however, in

group 1, the difference between DP and SP cells were less obvious. To evaluate the inter-

sample difference of the VJ usage, we next applied PCA [33] to the TCRβ VJ usage. Low

dimensional representation of each sample by the first and second principal components

(PC1 and PC2) captured the differences of cell types as well as the effect of irradiation to

the V and J gene usages (Fig. 3.7); PC1 corresponded to the acute change in the gene usage

by irradiation, and PC2 corresponded to the difference of the gene usage between DP and

SP formed by negative selection.

We then checked the relationship between gene positions and contribution to PC calculated

by Eq. (3.3) (Fig. 3.8). Contributions to PCs seemed to correlate with V genes better than

with J genes, especially in PC2. Therefore, we compared the correlation ratio (Eq. (3.6))

that measures contribution of inter-group dispersion to the whole dispersion, of V and J

gene groups to the quality of representation by PCs(Fig. 3.9). The variance between V

genes contributed to the whole variance of the quality of representation remarkably in PC1

and PC2. This V gene dependencies of PC1 and PC2 suggested that both the selection bias
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Figure 3.7: 2 dimensional representation of V and J gene usage counts in TCRβ by PCA.
Outlined points are averaged PC values of samples at same day for each cell type.

and the acute effect of irradiation changed V gene usage more than J gene usage.

3.3.4 Abundance of specific TCRβ CDR3s after irradiation

There was little difference in the rank-size distribution of TCRβ CDR3 between DP and SP

in group 1 except on day 4 and also in group 2 on day 19 and later (Fig. 3.10).

To examine if we could compare the abundance of each CDR3 between samples, we calculated

how many samples contained the same CDR3s and the average abundance of the CDR3s in

each sample (Fig. 3.11). In group 1, there were only 10 CDRs that were observed in more

than one-third of 41 samples, and only 1 out of the 10 CDR3s was observed more than 10

times on average in each sample. On the other hand, in group 2, 363 CDRs were observed

in more than two-thirds of 30 samples, and 130 out of the 363 CDR3s were observed more

than 10 times on average in each sample.

Therefore, we investigated the transition of proportions of the most common and abundant

130 CDR3s in group 2 (Fig. 3.12). We found that CDR3s that were abundant on day

7, especially in SP cells were also observed on other days with less abundance. This is

interesting because thymocytes with CDR3s that are not abundant under normal conditions

would not increase their population size by irradiation if every clone was just eliminated
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Figure 3.8: Quality of representation by (a) PC1 and (b) PC2 obtained from PCA of VJ
gene usage in TCRβ.
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at the same probability by irradiation. Thus, this suggests that whether thymocytes can

survive and proliferate after irradiation depends on their CDR3s.

3.4 Discussion

We found that the TCRα combination of TRAV11D, TRAJ18, and CVVGDRGSALGRLHF

was especially abundant in the normal CD4+SP cells and the abundance temporally got de-

creased after irradiation. Invariant natural killer T (iNKT) cells are known to express only

this combination of the TCRα chain [93]. While conventional T cells recognize peptide

antigens on the MHC [25, 81], iNKT cells recognize glycolipid antigens on CD1d, an MHC-

class-I-like molecule [26]. Further, positive selection of iNKT cells in the thymus requires

antigen presentation by DP thymocytes [26], not by TECs or DCs. This difference between

iNKT cells and conventional T cells is coincident with our results. We observed that the com-

binations of CVVGDRGSALGRLHF with other V and J genes, or similar CDR3s were not

abundant, contrary to our expectation that similar CDR3 sequences show similar abundance.

This irrelevance of CDR3 similarity to its abundance might be because immature iNKT cells

uniquely express the abundant TCRα chain, and they go through different selection and dif-

ferentiation processes than other thymocytes. We also observed that the abundance of the

iNKT cell-specific TCRα chain had not recovered on day 11, while rank-size distributions

except that chain recovered faster. This slower recovery might be because iNKT selection
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Figure 3.10: Rank size distribution of TCRβ CDR3 in DP (pink) and SP (cyan) cells. The
numbers at the head indicate the day after irradiation.
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Figure 3.11: Correlation between commonality and abundance of CDR3s in (a) group 1 and
(b) group 2. The horizontal axis represents the number of samples in which each CDR3
sequence was observed. The vertical axis represents the average number of CDR3 reads in
the observed samples. CDR3s that were observed in 2 or more samples and the average read
number of which were more than 1 are shown.
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Figure 3.12: Change of average proportions of the most common and abundant 130 CDR3s
in group 2. Red lines represent average proportion of the most abundant CDR3s at each
day.

was a DP-dependent process. The recovery of the DP cell population also took more than

ten days in our analysis of population dynamics (Chapter 2).

In the analysis of TCRβ chain, we characterized the effect of irradiation and negative selec-

tion on VJ usage by the first and second principal components of PCA, respectively. Both

of PC1 and PC2 were more correlated with V genes than J genes. The correlation of PC1,

which represented the effect of negative selection, to V genes suggested that V genes con-

tributed to peptide reactivity of the TCR more than J genes, because negative selection is the

process that eliminates TCRs that react to self-peptides. On the other hand, the correlation

of PC2, which represented the effect of irradiation, to V genes suggested that tolerance of

thymocytes to irradiation may depend on their V gene usage of the TCR. This suggestion of

TCR-dependent radiation tolerance coincided with our finding that the proportions of some

TCRβ CDR3s got higher after irradiation. Radiation tolerance may be realized by survival

from or proliferation after irradiation. Together with the finding of the temporal increase in

the proliferation rate of DP cells (Chapter 2), we should investigate each relationship of the

survival and proliferation ability to CDR3s.

To summarize, our work has provided various aspects of TCR repertoire recovery from

perturbation by comparing the time course of the repertoire change. These results will serve

as a starting point of the forthcoming detail study of each aspect.
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Chapter 4

Mathematical modeling of

intracellular signaling for thymocyte

differentiation
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4.1 Introduction

Lineage choice of thymocytes between CD4+ helper and CD8+ cytotoxic T cell has been

studied as it is a tractable system of the epigenetic bi-potential cell fate decisions [32].

The molecular mechanisms underlying the lineage choice is currently best described by the

kinetic signaling model [73]. TCR signal first suppresses CD8 expression of DP thymocytes

regardless of their subsequent lineage choices. If the suppression of CD8 ceases the TCR

signaling because of the TCR dependency to CD8, signals from cytokines such as IL-7 are

allowed to induce re-expression of CD8 for the CD8-lineage fate, otherwise continuous TCR

signal specifies the CD4-lineage fate.

Among the lineage choice, the duration of differentiation to CD8+SP cells is suggested to be

constant [37]; although the duration of the CD8 suppression from DP varies between clones

depending on their TCRs, the duration of CD8 recovery compensate the variation, and as a

result, the total differentiation duration from DP to CD8+SP holds constant.

A mathematical model is useful to understand and to extract general laws from these dynam-

ical regulations of intracellular signaling. Mathematical concepts of intracellular signaling

derived from the study of other species such as adaptation [21] can indeed explain some

aspects of the differentiation of thymocytes. Adaptation is a process where a system ini-

tially responds to a stimulus and subsequently returns to original or nearly original levels of

activity after a certain amount of time. The expression level of CD8 during differentiation

from DP to CD8+SP shows adaptation; the CD8 expression decreases by TCR signal at first,

but then gets recovered by IL-7.

Despite the relevance of the thymocyte differentiation to mathematical modeling, any mathe-

matical models have not yet been proposed. In this study, we explore mathematical modeling

of intracellular signaling during thymocyte differentiation from DP to CD8+SP with a focus

on the mechanism of differentiation for the constant duration by compensatory recovery.
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Figure 4.1: Schematic trajectories of the constant response duration by compensatory re-
covery.

4.2 Result

4.2.1 Setting

Our goal is to construct a mathematical model of intracellular signaling of the thymocyte

differentiation in which the duration that an output of a system returns to the original level

after response to a stimulus is constant even though the time to reach the peak of transient

response varies (Fig. 4.1).

However, the comprehensive regulatory network of the molecules associated with the thymo-

cyte differentiation remains elusive. Therefore, we do not model the regulatory relationship

among the molecules. Instead, we model the relationship between representative groups

of the molecules to keep the number of variables in the model minimum. The minimum

model allows us to succinctly understand the mechanism of the constant response duration

by compensatory recovery.

We first introduce input and output variables, x and I as a setting of the model construction.

The input I(t) represents the TCR signal strength at time t. After the V(D)J recombination,

the TCR signal starts to be transmitted to begin differentiation of thymocytes from DP to

SP. Because CD5 expression level which correlated to the TCR signal strength was varied
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depending on TCRs [37, 84], we model the input as

I(t) =


1 for t < 0

Ion for 0 ≤ t

, (4.1)

where Ion > 1 is a parameter of the signal strength. We set the initial value I(t) = 1 for t < 0

for simplicity, but we can transform I(t) so that I(t) = 0 for t < 0 to represents the event

that TCR turns signal on. The output x(t) represents an expression level of CD8 at time t.

We assume degradation of CD8 at a constant rate. With a time-dependent expression rate

ϕ(t), the dynamics of the output is written as

dx

dt
= ϕ(t) − x , (4.2)

and we set the initial condition x(t) = 1 for t < 0 for simplicity. We derive a signaling

model that governs the expression rate ϕ(t) given the input (Eq.(4.1)) so that the output

x(t) shows the constant response duration by compensatory recovery.

4.2.2 Model Construction

The main factors that control the CD8 expression are the TCR and IL-7 signals. The

TCR signal represses CD8 through ThPOK. This leads to the transient decline of the CD8

expression during differentiation. We assume that the CD8 expression rate is proportional

to the inverse of the TCR signal strength. On the other hand, the IL-7 signal induces the

CD8 re-expression. Thus, we introduce a variable y(t) that represents the IL-7 signal, and

assume that the CD8 expression rate is proportional to a certain function of y, denoted as

ϕint(y) for the moment;
dx

dt
= ϕint(y(t))

I(t)
− x . (4.3)

To determine the form of ϕint(y) and a model of y(t), we start from considering the simplest

case of ϕint(y(t));

ϕint(y(t)) =


1 for t < tsw

yon for tsw ≤ t

, (4.4)
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and derive the relation of yon and tsw to Ion as follows. With Eqs. (4.1) and (4.4), the model

of x (Eq.(4.3)) is

dx

dt
=



1 − x for t < 0

1
Ion

− x for 0 ≤ t < tsw

yon
Ion

− x for tsw ≤ t

. (4.5)

For this model (Eq.(4.5)) to show the constant response duration by compensatory recovery,

tsw and yon need to be a function of Ion such that x(tsw) is a decreasing function of tsw and

there is a time ten > tsw where x(ten) = 1 independently from Ion and tsw. Because the

solutions of Eq.(4.5) at the time tsw and x(ten) are

x(tsw) = 1
Ion

+ e−tsw

(
1 − 1

Ion

)
, (4.6)

and

x(ten) = yon

Ion
+ e−(ten−tsw)

(
x(tsw) − yon

Ion

)
, (4.7)

respectively, the relation between yon, tsw, and Ion for the model (Eq.(4.5)) to pass a point

(ten, 1) is,

yon = e−ten+tsw + e−ten(Ion − 1) − Ion

−1 + e−ten+tsw
. (4.8)

By assuming Ion = etsw which is the same as I(t) = etsw for t > 0 so that the relation Eq.(4.8)

gets simplified and tsw = 0 when Ion = 1, we obtain

yon(tsw) = −1 + 2etsw − eten+tsw

−eten + etsw
. (4.9)

By taking the derivative of yon by tsw of Eq.(4.9), and substituting y to yon and t to tsw, we

derive the differential equation of y that satisfies y(tsw) = yon for any tsw;

dy

dt
= (−2 + eten + y)(−1 + eteny)

(−1 + eten)2 . (4.10)

We modify Eq.(4.10) for yon to be a fixed point;

dy

dt
= (−2 + eten + y)(−1 + eteny)

(−1 + eten)2

 2
1 + ( y

yon(I))n
− 1

 , (4.11)

where n is a nonlinearity parameter and yon(I) is an increasing function of I obtained by
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Figure 4.2: The relationship between the parameters in the model. (a) yon, the stable value
of y, is an increasing function of I in Eq. (4.12). (b) ϕint is an increasing function of y
whereas yon suppresses ϕint in Eq. (4.13).
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Figure 4.3: Trajectories of x(t) of Eq.(4.3) depending on Ion with other variables given by
Eqs. (4.1) and (4.11) to (4.13), and parameters n = 100 and ten = 3.

substituting tsw = log I(t) to Eq.(4.8) (Fig. 4.2a);

yon(I) = −1 + 2I(t) − etenI(t)
−eten + I(t)

. (4.12)

Finally, we devise a function with a nonlinear parameter n so that the limit of the function

is Eq.(4.4) as n approaches ∞,

ϕint(y) = (yon − 1)en(y−yon) + 1 , (4.13)

where yon acts as a parameter that suppresses the output (Fig. 4.2b).

Although the duration of the obtained model to reach the original value is constant, the

stable value of x is not the same as x(0) (Fig. 4.3). Therefore, we introduce an another
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variable z biological interpretation of which is discussed later, to regulate x;

dx

dt
= ϕint(y(t))

I(t)ϕint(z(t))
− x . (4.14)

We construct a model of z which satisfies

ϕint(z(t)) =


1 for t < ten

zon for ten ≤ t

(4.15)

as n approaches ∞ in ϕint where zon = yon/Ion such that

dx

dt
= 1 − x for ten ≤ t , (4.16)

independent from Ion. To satisfy Eq. (4.15), it is required that a stable value of z(t) is zon

and that the time to reach the stable value is ten. For the model

dz

dt
= a − z , (4.17)

the time T that takes for z to reach zon from z = 1 is

T = log a − 1
a − zon

. (4.18)

Therefore, in order for T to be ten independently from zon, a as a function of zon and ten is

derived by substituting ten to T in Eq. (4.18);

a = zoneten − 1
eten − 1

. (4.19)

Finally, we should add a revision term θ(t) in Eq. (4.17) so that zon is the stable value for

any a;
dz

dt
= a − z + θ(t) , (4.20)

where θ(t) takes

θ(t) =


0 for z < zon

−a + zon for z = zon

, (4.21)
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Figure 4.4: Diagram of regulatory network for the constant response duration by compen-
satory recovery.

so that dz/dt = 0 for z = zon. We devise a function that satisfy Eq. (4.21) as n approaches

∞;

θ(t) = 2(a − zon)
(

1
1 + ( z

zon
)n

− 1
)

. (4.22)

By substituting the obtained a (Eq. (4.19)) and θ(t) (Eq. (4.22)) to Eq. (4.20), we obtain

the model of z;
dz

dt
= zon − z +

(
zon − 1
eten − 1

)( 2
1 + ( z

zon
)n

− 1
)

. (4.23)

As a whole, the constructed model is;

I(t) =


1 for t < 0

Ion for 0 ≤ t

,

dx

dt
= ϕint(y, yon)

I(t)ϕint(z, zon)
− x ,

dy

dt
= (−2 + eten + y)(−1 + eteny)

(−1 + eten)2 ( 2
1 + ( y

yon
)n

− 1) ,

dz

dt
= zon − z + ( zon − 1

eten − 1
)( 2

1 + ( z
zon

)n
− 1) ,

ϕint(v, von) = (von − 1)en(v−von) + 1 ,

yon(I) = 1 + (−2 + eten)I
eten − I

,

zon(I) = yon(I)
I

,

(4.24)

with the initial values x(0) = 1, y(0) = 1, z(0) = 1, and the schematic diagram of which is

shown in Fig. 4.4.
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Figure 4.5: Trajectories of the variables (a) x, (b) I, (c) y, and (d) z in the model (Eq. (4.24))
depending on Ion with the other parameter values n = 1 and ten = 3. Simulations with
different Ion values are shown in different colors.

4.2.3 Properties of the model

The trajectories of the derived model Eq.(4.24) with the different nonlinearity parameter

values n = 1 and n = 100 are shown in Figs. 4.5 and 4.6 respectively. Regardless of the

nonlinearity parameter value, the model output x showed adaptation to the original value.

As the input strength Ion got higher, the duration where x was declining (phase 1) was

prolonged, and the duration where x was increasing (phase 2) was shorten(Fig. 4.7).

4.2.4 Suppression of an indirect regulation is necessary

Because yon(I) is an increasing function of I (Eq. (4.12) and Fig. 4.2a) and the regula-

tory effect by y to the x expression rate is downregulated by yon for y < yon (Eq. (4.13)
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Figure 4.6: Trajectories of the variables (a) x, (b) I, (c) y, and (d) z in the model (Eq. (4.24))
depending on Ion with the other parameter values n = 100 and ten = 3. Simulations with
different Ion values are shown in different colors.
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Figure 4.7: Duration time of phase 1 and phase 2 of the model (Eq. (4.24)) with the pa-
rameters ten = 3 and (a) n = 1 or (b) n = 100, where phase 1 is the phase x is decreasing
and phase 2 is the phase x is increasing during the transient response to I. Colors in the
graphs (a) and (b) represent different Ion values and correspond to that of Figs. 4.5 and 4.6,
respectively.
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Figure 4.8: The regulation in which I suppress the x induction by y varies the duration that
x decreases. Trajectories of x(t) depending on Ion are shown in the model (a) Eq. (4.24) and
(b) Eq. (4.24) except ϕint(y) = y. Other parameters are given by n = 1 and ten = 3.

and Fig. 4.2b), I has an inhibitory effect on the induction of x by y. This inhibition is

critical for the duration compensation. If y solely increases the expression rate of x without

the inhibition by I, the duration that x decreases does not vary, because y as well as the

expression rate of x increase faster as the input strength Ion gets higher (Fig. 4.8). Notably,

this inhibition is consistent with the actual intracellular signaling of thymocytes; the TCR

signal interrupts the IL-7 signal while the TCR signal upregulates the IL-7 receptor expres-

sion [35, 59]. Therefore, substituting ϕint(y) = y for Eq. (4.13) in Eq. (4.24) corresponds

to knocking out the TCR signal-dependent inhibition factors of IL-7 signal, miR-17 and

Calpain. From the substitution, the model predicts that, by knocking out the inhibition fac-

tors, the duration that CD8 decreases gets constant independently from TCR as indicated

in (Fig. 4.8b).

4.3 Discussion

Although the relationship among I, y, and x is consistent with the experimental evidence,

z does not have its corresponding molecule. It may be related to molecules of downstream

of the TCR signal such as CD5 and Zap70 because the expression level of these molecules

positively correlates with the strength or duration of the TCR signal [66, 84]. In our model,

z functions to keep the stable value of x to be the same as the original value before the

input is on. This functionality may be realized by other regulatory network motifs such as

feedback to x or y. To resolve the unclear correspondence, we might have to extend our

model to a detailed model based on chemical kinetics.
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In our model, I directly inhibits x but promotes x through y. This regulatory network

motif is called as an incoherent feedforward loop [52]. Our model has still another regulation

that I prevents the induction of x by y and suggests that this regulation is crucial for the

constant differentiation duration by compensatory recovery. This network motif and its

function should be tested experimentally and might be found in other signaling circuits.

In summary, we constructed a novel mathematical model of intracellular signaling for thy-

mocytes differentiation. Our model focused on the mechanism of the distinctive property of

the differentiation that the duration is constant by a compensatory adaptation. We expect

our model to evoke experimental verification and exploration of signaling circuits that our

model can be applied to.
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Chapter 5

Conclusion
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In this thesis, we applied mathematical modeling and bioinformatic methods to study home-

ostatic T cell development. By utilizing the quantitative approaches, we clarified the extent

and mechanism of the various homeostatic properties. In Chapter 2, we combined mathe-

matical modeling with time courses of population change in the thymus to reveal intracellular

interactions that contribute to maintain the population size of thymocytes and TECs. In

Chapter 3, we conducted the high throughput sequencing analysis of TCRs from thymo-

cytes to elucidate how repertoire diversity changes against perturbations. In Chapter 4,

we constructed a mathematical model of intracellular signaling during the differentiation of

thymocytes to understand the mechanism that controls the duration of differentiation in a

compensatory manner.

Our study focused on the temporal change of cell population, TCR repertoire, and intracel-

lular signals during T cell development. There is still room for further exploration of the

relationship among these dynamics. It would be of interest to investigate the relationship

of the dynamics of thymocytes at the population level to the intracellular signaling and the

TCR repertoire diversity. For example, we anticipate that we can estimate the differentia-

tion rate at the population level from the intracellular signaling model during recovery from

irradiation. We should also await for study on how TCR dependent variations of cell division

and differentiation rate are related to that of the population level.

To tackle these questions, we need experimental methods to measure multiple aspects of T

cell development all at once with a time interval of higher resolution, as well as corresponding

mathematical models and data analysis methods. Although many systems for real-time

observation of T cell development in vivo and in vitro have been developed [2], it is still

impractical to measure multiple features such as expression levels of cell surface markers and

TCR sequences simultaneously in real-time.

One of the promising techniques to measure high dimensional data with a short time interval

is single-cell RNA sequencing. Many methods called pseudotime analysis, which computa-

tionally order cells along differentiation trajectories from the single-cell sequencing data, have

been proposed and applied to the T cell differentiation [70]. By employing the pseudotime

anlysis, we can estimate the time course of multidimensional gene expression levels. Further,

single-cell RNA sequencing allows reading a TCRα and β chains pair [29] for each clone.

By developing appropriate mathematical models and data analysis framework to exploit the
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single-cell sequencing, we will deepen our understanding of T cell development from the more

integrative viewpoint.

In summary, our quantitative studies exploit mathematical modeling and sequence analysis,

emerging approaches in immunology, to deepen understanding of the mechanisms of the

homeostasis in the thymus. We anticipate that our studies have a pivotal impact on future

directions for research to reveal mechanisms of the immunological systems.
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