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Abstract

As the number of transistors in the fabricated circuits becomes extremely larger, it is un-

avoidable for faults to happen in the fabricated chips. Not only single stuck-at faults, but

also multiple stuck-at faults are likely to happen in the circuits, especially for the large scale

circuit. In this thesis, we mainly focus on the combinational circuit. Multiple faults are

difficult to be fully covered due to the exponentially enormous number of all possible faults.

Although there are methods proposed to deal with the multiple faults, they fail to generate

compact test patterns to detect all faults within an acceptable running time.

Nevertheless, there are exponentially more multiple faults than single faults in any given

circuit design. However, it is shown in the previous research that only a few additional test

patterns are needed to cover all of the multiple faults, if the test generation starts from the

complete test set for single faults. In this thesis, we first show the case where test patterns for

single faults are sufficient to cover all multiple faults, and then explain in which conditions

some of the multiple faults may be overlooked. Based on this analysis, we propose a method

which can efficiently generate the complete test set for double faults without traversing all

the faults. Since most of the double faults can be detected by single faults’ test set, the

proposed method only selects the uncovered double faults by analyzing the propagation paths

of single faults and then generating new test patterns only for those uncovered faults. The



iv

experimental results show that based on the single faults’ test set, the proposed method only

needs to create a small number of additional test patterns to cover all double faults in most of

the given circuits.

Based on the method for double faults, we proposes an incremental Automatic Test

Pattern Generation method to deal with multiple stuck-at faults. Instead of traversing the

entire n multiple fault list, the proposed method only selects the faults undetected by the

existing test patterns for n-1 faults, and then generates additional test patterns. Staring from

a complete test set for single faults, the proposed method can be incrementally applied to

handle all multiple faults. Moreover, since the number of undetected faults that are selected is

extremely smaller comparing to the total number of the entire fault list, the proposed method

can generate compact test patterns to cover all faults within an acceptable running time.

As the proposed incremental Automatic Test Pattern Generation method can be used to

find redundant multiple faults, we have proposed a logic optimization method to remove

the redundancy in the circuit. In order to remove as many as possible the redundancy,

instead of removing the redundant single faults first, we clear up the redundant faults from

higher cardinality to lower cardinality. The experiments prove that the proposed method can

successfully eliminate more redundancy compared to the redundancy removal command in

the synthesis tool SIS which is based only on redundant single faults.
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Chapter 1

Introduction

In this chapter, an introduction to the basic concept of the fault, test and Automatic Test

Pattern Generation technologies for the combinational circuit are covered at first. Then, the

thesis overview is stated, including the problem of the previous methods for multiple stuck-at

faults and the motivation of this research, the contribution of this thesis, and the basic flow of

the rest of the thesis.

1.1 Fault and Test

The fabricated chips are needed to be thoroughly tested and determined whether their

functionalities are correct or not before shipping to consumers. This is due to the possibility

that, some physical defects are accidentally introduced during fabrication, especially when

more and more dense chips are produced in the past few decades, as shown in Fig. 1.1.

As shown in Fig. 1.2, the fabricated chips are tested to check the correctness of their

functionalities at first. The non-faulty ones are sent to consumers, while the faulty ones are
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Fig. 1.1 Chip becomes much denser

Fig. 1.2 VLSI Testing Process

dropped, or diagnosed to figure out the reason of the fault by analyzing the location and the

number of faults. Notice that in the test process, instead of the locations and the number of

faults, we only care about whether the circuit has at least one fault or not. In this thesis, we

mainly discuss techniques about the test.

There are commonly used fault models to efficiently represent faults and generate test

patterns, such as stuck-at fault, delay fault, bridge fault and others as illustrated in Fig. 1.3.

The stuck-at fault model is the most commonly used model in industry because although it
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Fig. 1.3 Stuck-at Fault and Briding Fault

is simple, it covers, practically, a large variety of defects which actually may occur during

fabrication. Therefore, we mainly discuss the research for stuck-at fault in this thesis.

Fig. 1.4 Truth Table When Stuck-at Fault Happens

A stuck-at fault indicates that faulty location always keeps either the constant 0 (stuck-at

0) or constant 1 (stuck-at 1) regardless the value of the input signal, as shown in Fig. 1.3.

The truth table of the non-faulty and faulty circuit is shown in Fig. 1.4. The value in In1 is

affected by the stuck-at 1 fault when its original value is 0. Moreover, only one of the four

input configurations actually causes an incorrect value at the output of the gate.
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Fig. 1.5 Basic Operation to Detect Stuck-at Fault

The next question is how to determine a fabricated circuit is faulty or not. The post-

fabrication circuit is essentially a black-box, which means that we can only physically

manipulate and observe primary inputs (PI) and primary outputs (PO). As a result, it is

impossible to examine the internal signals to find the fault. Generally, we can inspect the

output values for some set of input values, which are also called test patterns. We can test the

circuit by assigning the test patterns to PI and comparing the actual output values observed

in fabricated circuits with the expected output values.

Fault activation (sometimes called fault sensitization) and fault propagation are two basic

processes to generate test patterns. Activation indicates that setting an opposite value in

the faulty location. For example, as shown in Fig. 1.5, we need to set the value in the

faulty position to be 0 for stuck-at 1 fault, and 1 for stuck-at 0 fault. Given a single stuck-at

fault fi, D (1/0) is used to represent stuck-at 0 fault, which means that the signal value is

1 in non-faulty circuit and 0 in the faulty one. The complement of D is D’ (0/1). In order

to successfully propagate the fault to a primary output, the values of the side input in the

propagation path should be set to a non-controlling value, which is 1 for AND gate and 0

for OR gate, as illustrated in Fig. 1.5. We need to find the test pattern that can meet both
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Fig. 1.6 Example of Single Stuck-at Fault

Fig. 1.7 Example of the Test Pattern for Single Stuck-at Fault

conditions at the same time; hence, the fault can be propagated to at least one primary output.

When one or more faults exist on a circuit, this is simply referred to as a multiple fault, or

more specifically in this case, a multiple stuck-at fault (MSAF). On the other hand, when

only one fault exists on a circuit, this is called a single fault, or in the case of this thesis, a

single stuck-at fault (SSAF).

Fig. 1.6 and Fig1.7 show examples of the test generation process for the SSAF. We

assume that there is a stuck-at 0 fault in the wire a. The fault can be activated by assigning 1

in input a. In order to propagate the fault to a primary output, the value in b and e is assigned

to 0 and 1, respectively. Finally "101" is a test pattern that can detect the stuck-at 0 fault,
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Fig. 1.8 Example of the Test Pattern for Multiple Stuck-at Fault

as it can distinguish the faulty circuit from the non-faulty one, as shown in Fig. 1.7. The

Fig. 1.8 shows the example of test generation process for the MSAF. We should notice that

instead of detecting all stuck-at faults, we only need to make sure that whether there is at

least one fault in the circuit or not. The stuck-at 0 fault can be propagated to the output by

using the test pattern "101"; hence, the multiple faults pair is detected. Another importation

observation is that the test pattern for the single fault in Fig. 1.6 is the same as the multiple

faults in Fig.1.8. Actually, most of the MSAFs can be detected by using the test patterns for

SSAFs. The details is explained in the following chapters.

1.2 Automatic Test Pattern Generation

In order to detect all possible faults in the circuit, multiple test patterns need to be prepared.

If the number of the possible faulty locations is K, the total number of the single stuck-at

faults is 2 * K, and 3k-1 for all multiple faults, since each location may be stuck-at 0 fault,

stuck-at 1 fault or non-faulty. The most naive way to cover all possible faults is preparing

all input patterns. These test patterns can absolutely guarantee to detect all faults in the

circuit. However, the number of test patterns increases exponentially with the number of PI.
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Fig. 1.9 Combination part of s27 benchmark circuit

When the number of PI is N, there are 2N possible test patterns. It is time-consuming and

impractical to check all test patterns.

Generally, less than 2N test patterns are required to detect all possible faults. In fact, the

subset of all test patterns to cover all faults is not unique. In other words, many subsets can

be used to detect the faulty behavior, including the set (of all possible input patterns) itself, as

well as other highly redundant subsets. Automatic Test Pattern Generation (ATPG) techniques

are proposed to pick up as small as possible subset to detect all faults [18, 19, 22, 30, 38].

A smaller set of input test patterns means less inputs need to be checked, which leads to

less time being spent on testing. Therefore, the main focus in ATPG research is finding

the smallest possible subset of input patterns that still maintains full fault coverage. We

should notice that, as mentioned in subsection 1.1, ATPG is for fault detection, not fault

diagnosis. The purpose of the test patterns generated by ATPG is to determine if any fault

exists somewhere in the circuit. The number, locations, and types of faults do not need to be

calculated by ATPG.
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Take the s27 circuit as an example, which is the smallest circuit among all ISCAS89

benchmark circuits, as shown in Fig. 1.9. The circuit has 6 inputs, 1 output, 2 AND gates, 5

OR gates. If we do not have any optimization on the test patterns and consider a potential

fault at every input/output of every gate, there are (7 gates) x (3 locations) x (2 stuck-at faults)

= 42 possible SSAFs and 26 = 64 test patterns. However, all of the 42 faults can be detected

by checking just 5 specific test patterns [14]. The total number of the MSAFs is much larger.

Recall that there are 21 different fault locations (number of gates multiply number of inputs

and outputs). Each location has three possible states: stuck-at 1, stuck-at 0, and non-faulty. In

other words, if multiple faults are considered, there would be 321-1 (1010) possible multiple

faults. The "-1" is to exclude the case when the entire circuit is non-faulty. However, only

4% of all possible input patterns need to be checked to determine whether or not the circuit

is faulty by utilizing the ATPG technologies.

1.3 Thesis Overview

1.3.1 Problem and Motivation

With the increasing circuit density, not only the SSAF, but also more MSAF happen in the

fabricated circuits. The MSAF indicates the case that several SSAFs happen on different

nets of the circuit, simultaneously, due to multiple defects. Although the test patterns for

single faults can detect most of the multiple faults, there are single faults that violate the

propagation of each other. As the result, the single test patterns may not be sufficient to detect

all multiple faults [17]. In addition, paper [6, 52] show that among 453 failing devices, less

than 40% cases can be modeled using single stuck-at fault model, while the remaining 60%
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cases require to be modeled with multiple stuck-at fault. In other words, without applying the

multiple fault model, we cannot generate sufficient test patterns to cover all faults in those

devices. Furthermore, paper [29] illustrates that multiple fault analysis is required for test

generation and fault simulation in some situations. For instance, we can further improve the

circuit optimization if we can find and remove not only the single redundancy, but also the

redundant MSAFs. In addition, the diagnostic procedure can be improved if we can generate

the test patterns for MSAFs constructed from the suspected fault set identified by the test

patterns of SSAF.

Nevertheless, in most of the cases, the single test patterns cannot cover all MSAFs just

like s27 circuit. In fact, instead of taking care of all MSAFs, most of the ATPG algorithms

only consider the SSAF for two reasons. First, the problem space when considering all

MSAFs is simply too large. In contrast with the SSAFs, MSAFs in the large circuit are very

difficult to be completely checked due to its huge number of fault combinations. Current

methods can generate tests for circuits of up to tens of thousands of gates, but this scale is

far too small for practical use. It is even not at all easy to simply list up all of such fault

combinations. Second, in most cases in recent history, the SSAF coverage has been enough.

Even though MSAFs are not considered, a large number of them are covered anyway by the

tests generated for SSAFs. Nevertheless, as the number of transistors in a chip becomes huge,

the MSAF actually occur after the fabrication of chips. In the case that a MSAF which is not

tested gets fabricated onto a circuit, it will result in a defective product that wrongly passes

the testing phase.

Although there are methods proposed to deal with the multiple faults, they fail to generate

compact test patterns to detect all faults within an acceptable running time. Furthermore,
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some of their generated test patterns fail to cover all multiple faults. In order to solve these

problems, this thesis proposes an incremental Automatic Test Pattern Generation method to

deal with multiple stuck-at faults.

1.3.2 Contribution of Thesis

As we mention in previous sections, it is very hard to handle all multiple faults. In order to

generate a sufficient test set to cover all faults, it may take a long time due to the exponential

large number of faults. Moreover, the generated test patterns may be quite redundant without

the compression and optimization. The experimental results of the previous methods for

multiple faults indicates that they cannot generate a compact test set to cover all faults

within acceptable runing time. Therefore, in this thesis, we propose an incremental ATPG

methods to deal with multiple faults, and discuss the application of the proposed method.

The contributions of this thesis are summerized as follows.

1) We propose a method that can efficiently generate the complete test set for double

faults without traversing all the faults.

2) Based on the idea of the double faults method, we propose an incremental Automatic

Test Pattern Generation method to deal with all multiple stuck-at faults.

3) We present a new logic optimization method by using the proposed incremental ATPG

method.
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1.3.3 Outline of This Dissertation

In chapter 2, some related works are covered, including detailed explanations of the most

basic and well-known ATPG techniques.

In chapter 3, the ATPG method for double stuck-at faults is proposed.

In chapter 4, the incremental ATPG method for multiple faults and its implementation

are discussed.

In chapter 5, the proposed logic optimization method is introduced.

Finally, in Chapter 6, concluding remarks and the future of this research will be consid-

ered.





Chapter 2

Related Works

In this chapter, we will discuss the previous works that significantly impact the field of

research. Basic ATPG technologies for the single fault are present at first, including the

D-algorithm, PODEM and FAN. Next, we explain the satisfiability (SAT) technologies and

its background, which is the test generation method utilized in our proposed method. Then,

some previous works which also attempt to extend ATPG for detecting MSAFs are presented.

Finally, we introduce previous research about the logic optimization.

2.1 Basic ATPG Technologies For Single Fault

In 1966, J.P. Roth of IBM proposed D-algorithm, which is the first ATPG algorithm [30, 38].

As previously stated, it is the basis from which many modern ATPG methods are derived.

Two circuits are considered by the D-algorithm. One is the non-faulty circuit, and the

other one is the faulty circuit, which is exactly the same as the non-faulty circuit, with
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the exception that there exists a fault at some given location. In D-algorithm, there are 3

additional values over 2 initial binary values (0 / 1) as follows.

1) 0 : logic 0 in both the faulty and non-faulty circuit.

2) 1 : logic 1 in both the faulty and non-faulty circuit.

3) X: no value assigned yet.

4) D: logic 1 in the good circuit, logic 0 in the bad circuit.

5) D’: logic 0 in the good circuit, logic 1 in the bad circuit.

The faulty signal is set to D (stuck-at 0) or D’ (stuck-at 1). In order to observe the faulty

signal, the D-algorithms find a test pattern to propagate one of the faulty signal to a primary

output. This is the reason why we call it D-algorithm.

The process of the D-algorithm is as follows. First, the search space, which is the circuit

itself, is constructed. The value of each node is assigned to X at the beginning. Then, we

place D or D’ in the fault location depending on the value of the fault. Next, in order to find

a sufficient test pattern that can detect the fault, the algorithm explores backward to PI and

forward to PO to activate the fault and propagate it to output, respectively.

As for the activation process, after all nodes are assigned X and the faulty location is

set a proper faulty value, if any input or internal has implication on the faulty location, they

will be set to a value that can activate the fault. Otherwise, we set a random value in these

signals. For instance, if an AND gate has a stuck-at 0 fault in the output, we activate it by

setting the value in both inputs to 1. On the contrary, if the AND gate has a stuck-at 1 in the

output, it can be activated as long as one of the input values is 0, and we can assign a random
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value in the other input. In the process of activation, if there is any conflict with the current

assignment, the algorithm will backtrack, until all values in the circuit are set and no conflict

is in circuit.

After the backward process for the fault activation is completed, we start the forward

implication to propagate the fault to output. A list of nodes that have at least one input with

D or D’ and output value of X is stored, which need to be checked and assigned a value. The

list is called D-Frontier. If we can propagate the fault to an output without any conflict, the

input value is a sufficient test pattern to detect the fault. However, if D-Frontier is traversed

and the fault cannot reach any PO, once again, we need to backtrack to activation process

and find a new set of values to activate the fault. Then we can propagate the fault in new

D-Frontier again.

D-algorithm can guarantee to find a test pattern if the fault is not redundant, since it tries

to traverse the entire searching space. However, it has no heuristic to reduce the backtracking

time. Obviously, the test generation process may take a long time in the case that the search

space is very huge and there are many backtracks. Particularly, the redundant fault, which

cannot be detected by any possible input patterns, needs a long processing time, since we have

to exhaust the whole searching space. It is incredibly time-consuming since all combinations

of the paths are exhausted to find a proper input pattern.

PODEM (Path-Oriented Decision Making) was proposed by Goel in 1981 [21]. The first

main difference between this algorithm and D-algorithm is the selection of the search space.

D-algorithm includes the entire circuit as part of the search space, but PODEM only includes

PI. This is possible based on the observation that every node in the circuit is essentially just

some function of some set of PI. Furthermore, if a conflict occurs for a specific assignment,
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only one other assignment, the opposite one, needs to be checked. This greatly reduces the

search space, as well as the number of required backtracks.

Finally, the last of the structural techniques to be examined is FAN, a method proposed

by Fujiwara and Shimono in 1983 [18, 19]. FAN is very similar to PODEM, with the main

difference being the special status which is given to fanout wires. In this thesis, the term

fanout will refer to when the output signal of a gate splits and goes to multiple gate inputs.

Consequently, if a gate is said to have fanout, this also refers to its output signal going to

multiple gate inputs.

2.2 SAT-based ATPG Technologies for Single Fault

Next we will explain the SAT-based ATPG method. Before that, it is necessary to explain

the SAT [9]. Generally, satisfiability problems has two solutions, either the solution existing

(satisfiable, or SAT), or the solution does not exist (unsatisfiable, or UNSAT). More specifi-

cally, given a set of clauses made up of literals in Conjunctive Normal Form (CNF), the SAT

technologies are trying to check whether there are some input values that can make the output

of the CNF expression becoming true. The CNF expression of digital logical terms is the

Product of Sums. Take the CNF expression (W | X) & (Y | !Z) as an example. The expression

is SAT since one solution is X = true and Y = true. Although SAT is a NP-complete problem,

it can be handled by the modern SAT-solver as they are powerful and efficient. Modern

SAT-solver has a wide variety of applications. Since a logical circuit can be converted to a

CNF expression, we can applied the SAT-solver to the test generation process.
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One simple way to generate the test pattern for a fault is to have two copies of the circuit,

one circuit is non-faulty, and the other one is faulty. The outputs of the circuits are connected

by an XOR gate to compare their output values, as shown in Fig. 2.1. If the entire circuit is

converted to a CNF expression, we can generate a test pattern to detect the fault by using the

SAT-solver. However, this method is too naive to handle the large scale circuits. Actually,

there are efficient SAT-based technologies that can deal with single stuck-at faults in the chip

even with industrial scale [44, 42, 15, 13].

Fig. 2.1 Use Test Pattern to Find the Faulty Circuit

2.3 Previous ATPG Technologies for Multiple Faults

As previous stated, most of the previous ATPG techniques, including SAT-based ATPG

methods, mainly focus on the single fault. Actually, there are technologies utilized to obtain

the test patterns for multiple faults, although they cannot generate sufficient test patterns

to cover all multiple faults within an acceptable time. Specifically, in most of the previous

methods, the gate number of the circuits they can handle is smaller than 3,000. Furthermore,



18 Related Works

in the worst case, the fault coverage of their generated test patterns may not be more than

80%.

2.3.1 Vector Pair Method

Inspired by the vector pair method for diagnosis [12], the authors in [27, 26, 25] propose

a parallel vector pair method to generate the multiple test set. It repeatedly analyzes the

vector pairs until all faults are covered or the number of the analyzed vector pairs reaches the

upper limit. This repetition may take a long time if the circuit size is large or some MSAFs

are hard to be detected by analyzing vector pairs. Authors in [1] also apply vector pairs to

detect multiple faults. It first generates pairs of input vectors to cover a part of faults and then

employs the branch and bound procedure to detect the remaining faults. This method may

also result in a long processing time when many remaining faults need to be processed by

the branch and bound procedure.

2.3.2 Genetic Algorithm (GA) based ATPG method

Paper [6] presents a Genetic Algorithm (GA) based ATPG method to find a compact set for

multiple faults. The method tries to obtain the test patterns that can cover more faults by

repeatedly performing selection, crossover and mutation operations. GA is a search technique

that can be used to search problems and find optimal solution. The chromosomes in GA

are substituted for the test patterns. The fitness function is used to determine how good the

current test patterns is. The method tries to reach optimal solution by repeating the process

of selection, evaluation, reproduction and replacement. The optimal solution in this problem
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is the test patterns that can detect all given multiple faults. It needs to analyze many test

patterns and faults to get the optimal solution.

1) Selection:

Initially, a set of test patterns (chromosomes) are picked up. The method randomly

selects maximum possible set of test patterns. For a circuit of n inputs, the maximum possible

number of test patterns is 2n test patterns. Then, the fitness values of each initial test pattern

are calculated.

2) Evaluation:

The fitness value of a generated test pattern is evaluated by the number of faults it can

detect.

3) Reproduction:

After the evaluation process, new test patterns that derived from the initial test patterns

by GA operations like crossover and mutation are reproduced.

4) Replacement:

The older test patterns with lower fitness value are replaced by the newer test patterns,

while the older ones with higher fitness value are retained.

2.3.3 Representing the Fault List Implicitly

Traditionally ATPG processes include pattern generation as well as fault simulation in order

to eliminate detectable faults with the current sets of test patterns from the sets of target faults.

The problem here is the fact that fault simulators represent all faults explicitly. Therefore,

fault simulators do not work if the numbers of fault combinations becomes exponentially

large which is the case if we target all of multiple fault combinations.
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Fig. 2.2 Modeling stuck-at faults at a gate2[17]

Fig. 2.3 The model can represent faults by two bits[17]

Authors in [17] propose an implicit way to efficiently represent all combinations of

multiple faults. Fault lists are managed in implicit ways, and all of the ISCAS89 circuits

can be processed. For example, in order to model stuck-at faults at a gate, the proposed

method introduce the logic circuit (or logic function) with parameter variables, p, q as shown

in Fig.2.2 and Fig.2.3. Here the target gate is an AND gate and its output is replaced with the

circuit shown in the Fig. In this case, there are 33-1=26 faults combination, while it can be

represented by only two bits in this model. It is obvious that the proposed modeling method

can represent more multiple faults, which means it is much easier to cover all faults in larger

design.

Stuck-at faulty behaviors for each location are realized with these additional circuits.

That is, circuits with additional ones can simulate the stuck-at 1 and 0 effects by appropriately

setting the values of p, q, r, .... For m possibly faulty locations, m of p, q, r, ... variables are

used. In order to deal with multiple faults, these circuits for modeling various faults should be
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Fig. 2.4 Modeling stuck-at faults at a gate[17]

inserted into each gate in the circuit. By introducing appropriate circuit (or logic functions)

with parameter variables, varieties of multiple faults can be formulated in a uniform way,

such as the examples shown in Fig.2.4.

The experimental results illustrate that given a complete test set for SSAFs, the number

of additional test patterns necessary to cover all MSAFs is not significantly larger, as shown

in Table 2.1. The algorithm first attempts to use the single test patterns, as shown in the

second column to detect all multiple faults, which succeeds in some circuits such as s298

and s386. If that fails, it will iteratively generate a new test pattern for one of the remaining

faults undetected by single test vectors and then delete the faults covered by the new test

pattern, until the implicitly represented list becomes empty. Obviously the algorithm needs

to go through the entire fault list to create the complete test set, which is impractical in large

circuits. The third and fourth columns show the numbers of the final MSAF test patterns and

the additional test vectors, respectively.



22 Related Works

Table 2.1 Test patterns required for SSAFs and MSAFs [17]

Given Test Generated Test Additional
Circuit Patterns for Patterns for Necessary Test

SSAF MSAF Patterns
s298 28 28 0
s386 64 64 0
s400 28 30 2
s444 25 26 1
s820 99 99 0
s832 101 104 3

s1196 117 117 0
s1238 130 153 23
s1423 25 31 6
s1488 108 108 0
s1494 110 112 2
s5378 102 108 6
s9234 134 297 163
s13207 250 319 69
s15850 116 141 25
s35932 30 103 73
s38417 120 182 62
s38584 174 197 23

2.3.4 Generating test set based on ROBDD Structure

Exhaustive testing of a circuit-under-test would cover complex faults including MSAFs and

bridging faults, however it is impractical. A practical approach called pseudo-exhaustive

testing was proposed. This method was aimed at Built-In Self-Test architectures. Pseudo-

exhaustive testing strategy has a potential application to a ROBDD (Reduced Ordered Binary

Decision Diagram) based structure which is inherently modular in nature. There is a ROBDD

based synthesis [41] which is possible to detect all MSAFs. It proves that the generated the

number of MSAF test patterns is small than three times of SSAF test patterns, which means

that the test set is not exponentially huge.

First is about BDD. One of the methods to describe Boolean functions is a data structure

called Binary Decision Diagram or BDD. For the ROBDD, since the variable ordering is
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Fig. 2.5 ROBDD example [41]

fixed, the representation of the Boolean function is canonical. A circuit with m outputs will

have a ROBDD with m root nodes and two terminal or leaf nodes: leaf node-0 and leaf

node-1. This would be a shared ROBDD. For the current work we consider a single output

function, hence a single output ROBDD as shown in Fig.2.5.

Every node in a BDD has two sucessors, one each for values 1 and 0, also known as high

successor and low successor respectively. When the isomorphic sub-graphs of a BDD are

combined, the resultant is a Reduced Ordered Binary Decision Diagram or ROBDD. Each

ROBDD node v can be represented by the Shannon expansion as shown in Fig.2.6. The

composite circuit for the ROBDD in Fig.2.5 is shown in Fig.2.7.

As it is mentioned in this proposed method, a larger circuit can be segmented into

partitions having a few inputs so that they can be tested exhaustively for those inputs. This is

the principle of pseudoexhaustive testing. Each node in a ROBDD is implemented using a

sub-circuit. This makes ROBDD based circuits inherently segmented. The entire circuit is

composed of 2:1 muxes making the mux a natural candidate for the partition.

Two theorems are proved in this thesis:
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Fig. 2.6 Shannon expansion of the node in ROBDD [41]

Fig. 2.7 The circuit corresponding to Fig.2.5 [41]

1. Though exhaustive values cannot be applied to the node, four values can definitely be

applied to each node. These four values are enough to detect all irredundant multiple faults

of the partition under test (2:1 mux).

2. A ROBDD with N nodes will have N partitions and hence it will require 4N test

vectors to test the entire circuit. ROBDD or DSOP manipulations that are required to derive

the test vectors can be done in polynomial time. Note that the actual number of test vectors

required are much less than 4N. If N is the number of nodes comprising the ROBDD that

represents circuit behavior, the upper bound on the total number of test vectors required to

detect all MSAFs for the circuit synthesized using the 2:1 mux is 3N.

From these theorems we can understand that, the proposed method can generate test

patterns for multiple faults which are not exponentially huge. It is also proved in the
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Fig. 2.8 Part of the experimental results [41]

experimental results as shown in Fig. 2.8. The first colomn indicates the benchmark circuit

under consideration. Number of SSAF tests are listed in column 5 and MSAF tests in column

6. The MSAF test vector set never exceeds the upper bound of 3 * N, N being the number of

ROBDD nodes.

However, it should be noted that the test methodology presented in this paper is restricted

to the circuit which can be represented by ROBDD. In circuits, where the number of paths

are very large and generating ROBDD is increasingly difficult, the test generation approach

of this thesis does not hold good.
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There are also other authors proposing the BDD based method for multiple faults de-

tection. Authors in [33] use the Reduced Ordered Binary Decision Diagrams (ROBDD)

as a model to detect the MSAFs. The single test patterns are generated at first, and then

they are transformed into MSA test patterns. In [46, 47], Structurally Synthesized BDD

(SSBDD) is employed as the model with the double topology to deal with MSAFs. Both of

the experimental results of the BDD based methods show that their generated multiple test

sets are usually three times more than the single test sets.

2.4 Previous Research of Logic Optimization

2.4.1 Basic Idea of Logic Optimization

Many efforts have been made to develop the optimization algorithms. Logic optimization

methods are divided into various categories, including the optimization based on circuit

representation, circuit characteristics and type of execution. For example, the circuit may be

optimized if we transfer a two-level logic to a multi-level logic. We assume that there are

two functions F1 and F2:

F1 = AB + AC + AD,

F2 = A’B + A’c + A’E

where the above 2-level circuit takes six product terms and 24 transistors in CMOS

representation. A functionally equivalent representation in multilevel can be:

P = B + C

F1 = AP + AD

F2 = A’P + A’E
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where the number of levels here is 3. The total number of product terms and literals

reduce because we share the term B + C.

In addition, we can do the circuit minimization in Boolean algebra, where we are trying

to obtain the smallest logic circuit that can represents a given Boolean function or truth table.

The methods such as Karnaugh-map, Binary Decision Diagram are used to optimize the

algebra. Karnaugh-map (K-map) [28, 24] is a graphical technique for circuit minimization in

Boolean algebra. We can hand-calculate the proposed graphical representation of a Boolean

function and its reduction by using K-map. Using different colour schemes,multiple output

functions involving the same inputs can be represented on a single K-map. Binary decision

diagram(BDD) [31, 2] is also a graphical method that is easy enough to implement and

visualise. We often use the BDD as a data structure to both represent the Boolean functions

and to perform the operations efficiently. The usability of this approach is not constrained by

the number of inputs. In addition, the Quine–McCluskey algorithm [36, 37] is functionally

identical to Karnaugh mapping and is a deterministic way to check that the minimal form of

a Boolean function has been reached. The Quine–McCluskey algorithm is easy and efficient

to be implemented because of its tabular form, but, not being graphical, it is not as simple or

as intuitive as Karnaugh-maps for use by the designer.

Here is an example for logic optimization in Boolean algebra. We assume that there is

a circuit with the function AB’ + A’B, which has two AND gates, one OR gate, and two

inverters. The circuit can still be simplified. We can find the circuit simply represents the

function A != B. The optimized circuit includes only one Exclusive OR gates, whose size are

greatly reduced.
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Fig. 2.9 Redundant Circuit

Fig. 2.10 Irredundant Circuit

2.4.2 Add Single Redundancy to Optimize Circuit

Single redundancy removal has achieved certain success for improving testability and op-

timizing logic for large multilevel combinational and sequential networks. For example,

here is a circuit with the function (A+B)’B, as shown in Fig. 2.9. The circuit has some

unnecessary parts, in other words, redundant sub-circuit. We can remove the redundancy and

simplify the function to A’B, as shown in Fig. 2.10, whose logic is greatly simplified.

However, most of the circuits are compact and they have no more single redundancy to be

removed. In order to further optimize the circuit, authors propose a new redundancy removal

method in [16]. The new method is based on Automatic Test Pattern Generation (ATPG)

techniques. This new method, named Redundancy Addition and Removal, optimizes the

network through iterative addition and removal of redundant connections. Adding redundant

wires to a network may cause one or multiple existing irredundant wires and/or gates to

become redundant. If the amount of added redundancies is less than the amount of created

redundancies, the transformation of adding followed by removing redundancies will result in

a smaller network.

Take the circuit given in Fig. 2.11 as an example. Initially, this circuit is irredundant. If

we add a cnnection from the output of gate g5 to the input of gate g9, the functionality of
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Fig. 2.11 Irredundant Circuit [16]

Fig. 2.12 Add Redundancy [16]

the circuit does not change. In other words, the added connection is redundant. However,

the addition of the connection activate two originally irredundant wires as redundant ones as

shown in Fig. 2.12. After removing these two wires and associated gates that either become

floating (g6) or have a single fanin (g4 and g7), the circuit can be greatly optimized as shown

in Fig. 2.13.

The experimental results are shown in Fig. 2.14. The table shows the results for some

of the MCNC combinational benchmark circuits. The second column indicates the initial

Fig. 2.13 Optimized Circuit [16]
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Fig. 2.14 Experimental Results [16]

size of the circuits. The remaining columns show the number of the gates using the proposed

optimization method. The results show that the method can reduce redundancy in circuit.

2.4.3 Majority-Inverter Graph Method

How to efficiently represent the logic is one of a key factors to optimize the circuit. Au-

thors in [4] propose an method, which applys the majority (MAJ) and inversion (INV) as

basic operation, rather than using AND, OR and etc. The Majority-Inverter Graph (MIG)

proposed by the authors consists of three-input nodes MAJ and inverter. MIG contains any

AND/OR/Inverter Graphs (AOIGs). By introducing a novel Boolean algebra, the author

provides a native manipulation of MIGs. A complete axiomatic system is constructed by a

set of five primitive trnaformations. We can explore the entire MIG representation space by

utilizing a sequence of such primitive axioms.
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Fig. 2.15 Majority-Inverter Graph [4]

For the definition of MIG, it is an homogeneous logic network with indegree equal

to 3 and with each node representing the majority function. In terms of representation

expressiveness, the elementary bricks in MIGs are majority operators while in AOIGs there

are conjunctions (AND) and disjunctions (OR). It is worth noticing that a majority operator

M(x, y, z) behaves as the conjunction operator AND(x, y) when z = 0 and as the disjunction

operator OR(x, y) when z = 1. Therefore, majority is actually a generalization of both

conjunction and disjunction. Recall that M(x, y, z) = xy + xz + yz. This property leads to the

following theorem.

Fig. 2.15 depicts an MIG representation example for f = x3 (x2 + (x1’ + x0)’). The

starting point is a traditional AOIG. Such AOIG has three nodes and three levels of depth,

which is the best representation possible using just AND/ORs. The first MIG is obtained by

a one-to-one replacement of AOIG nodes by MIG nodes. As shown by Fig. 2.15, a better

MIG representation is possible by taking advantage of the majority function. In this way, one

level of depth is saved with the same node count.

The results of the proposed method are shown in Fig. 2.16, 2.17, and 2.18. The Fig.

2.16 summarize the results for logic optimization. According to the experimental results, the

average depth of MIGs is 18.6% smaller than AIGs and 23.7% smaller than decomposed
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Fig. 2.16 Experimental Results 1 for MIG [4]

BDDs. The average size of MIGs is roughly the same than AIGs, just 0.9% of difference,

but 2.1% smaller than decomposed BDDs. The average activity of MIGs is again the same

as AIGs, just 0.3% of difference, but 3.1% smaller than decomposed BDDs. Fig. 2.17

represents the result in 3D (size, depth, activity) space. Using a size· depth· activity figure

of merit, MIGs are 17.5% better than AIGs and 27.7% better than decomposed BDDs. As

for the runtime, MIGs is slightly longer than ABC tool (+7.1%) but 68% shorter than BDS.

Fig. 2.18 illustrates the experimental results for MIG-based logic synthesis. On average, the

MIG flow generates delay, area, power estimated metrics that are 22%, 14%, 11% smaller

than the best academic/commercial counterpart. Fig. 2.19 shows the results in 3D space

(area,delay,power). While, in logic optimization, MIGs were mainly shorter than AIGs, in

logic synthesis they enable also remarkable area and power savings. The reason for such

improvement is twofold. On the one hand, the structure of MIGs is further simplifiable by

technology mapping algorithms based on Boolean techniques, such as equivalence checking

using BDDs,
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Fig. 2.17 Experimental Results 1 for MIG [4]

2.4.4 Logic Rewriting with Exact Databases

In order to further optimize the circuit logic, logic rewriting methods are proposed in [53, 5].

The proposed method not only consider physical models to compute more accurate timing

and area costs during synthesis, but also create optimization engines and databases capable

of capturing the specific logic opportunities distinctive of a technology. They optimize the

Fig. 2.18 Experimental Results 2 for MIG [4]
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Fig. 2.19 Experimental Results 2 for MIG [4]

circuit logic by first create circuit database, and then rewriting the circuit with these optimal

circuits in database.

The method develops circuit databases which contain optimum circuit realizations specific

to a given technology. Such databases can be complete, i.e., containing circuits for all the

functions of the circuit. The circuits stored in the databases are highly optimized and, in

most cases, exact, i.e., achieving the global minimum for area, delay and power metrics. Fig.

2.20 shows a sample entry for an exact-delay database, corresponding to (i) a specific 4-input

Boolean function, (ii) figurative library delay characteristics and (iii) input arrival times.

When a database storing the optimal circuits is built, the method can use fast greedy

algorithm to optimize the circuit. It iteratively selects sub-circuits rooted at a node and

replaces them with pre-computed sub-circuits with minimum local area, delay, power, or any

combination of these metrics. The pre-computed sub-circuits are stored in a database. It is

possible to build circuit databases for any design goal and with arbitrary optimization quality.
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Fig. 2.20 Examples of Circuit DataBase [53, 5]

Of course, the more optimized a database is, the better the logic rewriting results will be.

The method is scalable and it can be applied to a large scale circuit. However, the impact of

each replacement must be evaluated at the global level, while the greedy heuristic results in

the local optimization, which means that it may globally degrade some design metric. This

is mostly due to global placement and routing adjustement, in particular to modified wire

lengths and wire capacitances.

2.4.5 Logic Optimization by applying Deep Learning

Deep learning is a machine learning approach which is improved rapidly in these years.

Recently, the advanced and powerful deep learning techniques have revolutionized machine

learning. In order to build an automatic and generic system to optimize the circuit, the authors

[23] apply the deep learning to learn the way to compress the logic.
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Fig. 2.21 Logic Optimization as MDP [23]

The process of logic network optimization is casted as Markov decision process (MDP).

In this process, the circuit moves from one state to another state. A movement is legal if the

circuit before the movement and the circuit after the movement are equivalent. As shown

in Fig. 2.21, the movement starts from the initial state S1, and the final goal is state Sn.

Besides, we have a function score(s) that indicates how good a state s is with respect to the

optimization criterion. For instance, if we want to have the size optimization, the score(s)

can be the reciprocal of the circuit size. It means that we are trying to find the minimum size

circuit in n steps.

Deep reinforcement learning are used to guide MDP. Assume there is a state St, and a

move Mt. The reward of this transition will be r(St, At), which is defined with respect to the

optimization objective. We can define this reward with respect to the score function as r(St,

At) = score(St+1)-score(St), or rt = r(St; At). The sum of the score will be:

Sum = score(St+1)-score(St) + score(St)-score(St-1) + ... + score(S2)-score(S1) =

score(St+1)-score(S1).

Because the initial state’s score S0 is constant for all sequences starting from it, satisfying

the optimality criterion corresponds to maximizing the expectation of the above sum for

every initial state.

The experimental results are shown in Fig. 2.22 and 2.23. The potential improvement in

the table means that for any pair (x, y) belongs to D, the maximum potential size improvement

that can be made from a Shannon decomposition x to an MIG optimum is the score(x)-core(y).
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Fig. 2.22 Experimental Results 1 of Deep Learning Method[23]

Fig. 2.23 Experimental Results 2 of Deep Learning Method[23]

We say that it reaches 100% of potential improvement, since the model finds the optima for

all 3-input functions. The authors also run the same experiment for all 4-input functions.

The data set now consists of all 65536 4-input functions. They run the training procedure

to convergence. The results show that model is able to find the global size optima for 24%

of the functions. For other functions it does not reach the full optima within 20 inference

steps. However, it reaches 83% of total potential improvement. This implies that for most

functions the model is nearly optimal. The authors also select 3 benchmark circuits to have

the experiment. They train a DNN model to perform depth optimization on them. After

training, they use 50 inference steps to optimize depth. The results are summarized in

Fig. 2.23. The results illustrate that the proposed method obtain significant improvements

compared to resyn2 command of ABC, ranging from 12.5% to 47.5%, with an average of

24.7%.

Although there are many logic representation and optimization methods, redundancy

addition and removal still works as one of the last method for optimization especially when

redundant multiple faults are utilized, since it is time-consuming to find multiple redundant

faults.



38 Related Works

2.5 Conclusion

In this section, we firstly introduce basic ATPG technologies for single stuck-at fault, in-

cluding the D-algorithm, PODEM and FAN. Next, as a powerful technology to generate the

single test pattern, SAT-based ATPG technologies are discussed. Then, we present previous

research to detect the multiple faults. Finally, we discuss previous technologies for logic

optimization. Inspired by those research, we propose our method for multiple faults detection

and logic optimization, which are introduced in following sections.



Chapter 3

ATPG Method for Double Faults

3.1 Concept of the Proposed ATPG Method

In order to efficiently find a compact test set to cover all MSAFs, this chapter proposes

an ATPG method which generates test patterns by analyzing the propagation paths of the

single faults[51, 49]. The ATPG method proposed in this chapter is used to deal with double

stuck-at faults. We will introduce the way to extend the proposed method to handle all

multiple faults in chapter 4.

The proposed method has two different features compared to all of the previous ap-

proaches. First, instead of considering all DSAFs, we try to obtain only the uncovered

DSAFs and then generate additional test patterns for them one by one. As can be seen from

the experimental results in [17], since there are very few uncovered faults, it takes a short

time to generate the additional test patterns and the entire test set is kept small.

A general and simple way to get the uncovered faults is to check all DSAFs and exclude

the covered ones. However, it is time-consuming to consider all DSAFs, especially for large
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circuits. Given m possible SSA faults in the circuit, the time complexity to inspect all SSA

faults is O(m), while it becomes O(m2) for DSAFs, O(m3) for triple faults and O(mn) for n

faults.

Second, the proposed method checks the propagation path of an SSA fault to find whether

other SSA faults block its fault propagation or not, which is the first fault filtering method in

our proposed approach. Therefore, instead of traversing the entire DSAF list, we only deal

with a very small subset of DSAFs that are not detectable by SSA test patterns. The SSA

fault pairs which mutually mask the propagation paths with each other are classified as the

uncovered DSAFs. Note that only the propagation paths of SSA faults are inspected no matter

which kind of faults (double, triple, quadruple, etc.) is targeted. Therefore, the complexity to

find the undetected DSAFs is the same as the SSA fault analysis, whose complexity is O(m)

if there are m possible SSA faults. By this way, we can drastically decrease the problem

complexity to obtain the compact multiple test set compared to the previous approaches such

as [17] that try to traverse the entire multiple fault list, which leads to exponentially large

search space. The feasibility of our proposed method will be proved in Section 3.3.

In addition, among the undetected DSAFs selected by our algorithm, sometimes a few

faults can still be covered by the SSA test because they may have other unblocked propagation

paths to different primary outputs. Hence, redundant test patterns may be generated. In

order to further compress the test set, the second fault filter is proposed to reinspect the

undetected DSAFs, ensuring that all the remaining faults are really uncovered, which is the

main difference from our previous method [34].

The proposed method can cover all the missing cases ignored by the previous research

[34], with considerably reduced runtime owing to the adequate integration of the external
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tools in the implementation, as well as the strategies such as circuit partitioning and bit

parallel processing which can greatly decrease the runtime of fault simulation and SAT-based

test generation. Moreover, the proposed method can be inductively employed to deal with all

MSAFs by applying the same idea.

The rest of the chapter is organized as follows. Section 3.2 explains the conditions that

when test patterns for SSAF are sufficient and insufficient to detect the DSAF. Section 3.3

proves the feasibility of the proposed method and explains the key idea of the proposed fault

filtering. Section 3.4 introduces the four steps of the proposed method. Section 3.5 analyzes

the experimental results. Section 3.6 summarizes this chapter.

3.2 Applying Test Patterns for SSA Faults to Detect DSAFs

3.2.1 Definitions

The term masking gate describes the case when the fault is blocked at this gate; hence,

cannot be propagated to any output. In other words, the fault cannot be observed at any

output when the current test pattern is applied.

3.2.2 When Test Patterns for SSA Faults is Sufficient to cover DSAFs

Proposition: Given a combinational circuit with single output, assuming all the gates are

2-input NAND gates with no fan-out, at least one of the test patterns, v1 or v2, which detect

SSA faults f1 and f2, respectively, will also detect the DSAF { f1, f2}. This statement implies

that any set of test patterns which can detect all SSA faults will also detect all DSAFs in the

given circuit.



42 ATPG Method for Double Faults

(Sketch of proof) Consider a combinational circuit with primitive gates. Without loss of

generality, we assume all the gates are 2-input NAND gates, but it can be easily extended

to any primitive gate with any number of inputs. Let’s assume that there exists a DSAF,

{ f1, f2}, which consists of the two non-equivalent SSA faults, f1 and f2. Assuming there

exists a pair of test patterns, v1 and v2, which detect f1 and f2, respectively. Because the

circuit is a tree with one root node, it is guaranteed that the propagation path of one fault will

intersect with the other.

We can ignore any case in which f2 lies in the propagation path of f1 (or vice versa),

because this is a trivial case in which v2 (or v1) is guaranteed to detect { f1, f2} as shown in

Fig. 3.1. f2 is completely unaffected by f1 regardless of the value of f1.

This means that the case which we must consider is when f1 and f2 propagate to a

masking gate, as shown in Fig. 3.2. Three cases may happen, as follows.

1. f2 does not fix the value at wire B, which means that the value at wire B can be

changed by assigning the values of IN2, consequently v1 can set wire B to 1 to propagate f1

to the output.

2. f2 is equal to the stuck-at 1 fault at wire B. In other words, regardless of the input

value at IN2, wire B is fixed at 1 due to the fault f2. Then f1 is detected by v1.

3. f2 is equal to the stuck-at 0 fault at wire B, and hence the propagation of f1 will be

masked when using v1 to detect it. In this case, the primary output value at wire C becomes

1 regardless of f1, while the correct value at wire C is 0 under the test pattern v2, since the

precondition is that f2 can be detected by v2. Therefore, v2 can detect f2 because the faulty

value and the correct value at the output wire C are different under the test pattern v2.
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Fig. 3.1 Fault f2 lies in the propagation path of f1.

Fig. 3.2 Propagation paths of f1 and f2 intersect at a gate.

To conclude, the DSAF { f1, f2} can be detected by v1 in case1 and case2, while v2 can

cover it in case3. These are all the cases which can happen when two faults intersect at the

same gate. Therefore, the DSAF { f1, f2} is detectable by v1 or v2, when the circuit has no

re-convergence. Similar analysis can be done in the case of other types of gates, and more

number of inputs. (End of sketch of proof)

3.2.3 When Test Patterns for SSA Faults is Insufficient to cover DSAFs

The essential characteristic of tree like circuits, which is used in the above proof, is the fact

that fan-out and re-convergence of signals do not exist. By considering them, we can have

more complicated fault propagation paths, such as multiple faults intersecting on multiple

gates and re-converging in another gates like XOR. In contrast with the tree structure circuits,



44 ATPG Method for Double Faults

Fig. 3.3 Example of redundant fault.

Fig. 3.4 Example that DSAF is overlooked.

the circuit with more fan-outs and re-convergence is prone to have the fault masking, since

the fault propagation paths are more likely to intersect; hence, they are blocked by each other.

In addition, redundancies may cause issues because they are “hidden” in the case of SSA

faults but can be “unlocked” in the case of MSAFs, consequently, overlooked.

In the example shown in Fig. 3.3, it is assumed that an input pattern which can activate

and propagate the fault does not exist. In other words, it is not possible to simultaneously set

r to 0 and s to 1. Therefore, the stuck-at 1 fault at location r (sa1@r) becomes redundant.

This fault will be overlooked by the ATPG for single faults. For example, assume that there

is only a single fault sa1@r, the activation of sa1@r always results in the value of 0 at s as

Table 3.1 Test pattern 1001 detects both SSAFs, but it does not detect the DSAF.

abcd Fault t1 t2 o1 o2
10xx SSA 1, f1 D’ 0/1 D’/0 0/D
xx01 SSA 1, f2 0/1 D’ 0/D D’/0
1001 DSA 1, { f1, f2} D’ D’ 0 0
1000 DSA 1, { f1, f2} D’ 0 D’ 0
0001 DSA 1, { f1, f2} 0 D’ 0 D’
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sa1@r is assumed to be redundant here. However, if we also have sa1@s, the previously

untested redundant fault, sa1@r, is now non-redundant as a DSAF, {sa1@r, sa1@s}, and it

may not be detected by the set of test patterns for SSA faults.

In the previous proof, we assumed a circuit with no fan-out. However, many circuits will

violate this assumption. One example of a DSAF which may be undetected due to fan-out is

shown in Fig. 3.4 and Table 3.1. Advanced ATPG tools for single faults may notice that the

test pattern 1001 will detect both stuck-at 1 faults f1 and f2. However, this test pattern will

not detect the case when both faults are simultaneously active. Furthermore, the DSAF is not

redundant, as either of the test patterns 1000 or 0001 will detect it. In other words, this DSAF

could potentially slip through the testing phase undetected by the test patterns for SSA faults.

3.3 Proposed ATPG Method for DSAF

The main problem of the previous works for MSAF is managing a huge fault list, including a

large number of MSAFs. In order to decrease the list size, we can focus only on the MSAFs

undetected by the SSA test set. Fault filters, which can efficiently obtain the undetected

DSAFs, will be proposed in this section.

3.3.1 Focusing on undetected Faults

The bottleneck of the conventional ATPG methods for MSAFs is fault list generation and

management of multiple faults, but not the fault detection. Take the DSAF as an example

and ignore fault collapsing. If there are n SSA faults, the total number of DSAFs becomes
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n*(n-1)/2, which grows quickly for large circuits. Therefore, all the possible DSAFs are hard

to be represented and detected one by one.

In most of the cases, MSAFs are easier to be detected compared to SSA faults, if there

are multiple propagation paths to different primary outputs, according to the results of the

previous research as shown in Table 2.1. However, sometimes they may tend to be blocked

by each other when faults propagate to the same gate or to the same primary output. Since

the blocked faults are much fewer than the entire fault list, we can only take the uncovered

faults into account, avoiding the detected ones. In order to obtain the undetected faults, the

proposed method acts as a filter to pick up the DSAFs which cannot be detected by the test

patterns for SSA faults. It can drastically reduce the size of the DSAF list, as also shown by

our experiments.

As shown in Fig. 3.9, at first the proposed method only generates the SSA fault list

instead of the DSAF list, and then filters out the DSAFs covered by the SSA test set. Note

that the proposed method does not traverse all DSAFs to decide which DSAF is undetected

by the SSA test set, as it is time-consuming. It only analyzes SSA faults and their propagation

paths to obtain the DSAFs which are not detected by the test patterns. As the result, only

a few DSAFs remain. New test patterns are generated by checking them one by one, as

shown in (d), (e) and (f) of Fig. 3.9, which is basically the same as the conventional methods

for SSAF ATPG. Details of how to select the undetected DSAFs will be explained in the

following subsections.
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Fig. 3.5 Propagation paths of two faults have no intersection.

Fig. 3.6 One fault lies in the propagation path of another fault.

3.3.2 Proposed Fault Selection Method in Non-redundant Circuit

One of the main issues when using “single fault ATPG” to detect multiple faults is that the

second fault may somehow interfere with the propagation of the first one. Hence, we can

find the undetected faults by checking all of them and ignore the covered ones. However, it

takes a long time to traverse all DSAFs due to the huge number of faults. This problem will

become much severer when generating test patterns for more simultaneous faults. In order

to keep the same problem complexity regardless of the number of simultaneous faults, we

Fig. 3.7 Path constraints of one fault is violated by another fault.
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propose a method based on the premise that, given DSAF { f1, f2}, as long as f2 does not

interfere with the propagation of f1, f1 will be detected. Therefore, the DSAF { f1, f2} will

be detected as well. Once a test pattern is found for some faults and the path constraints are in

place, any other fault which may interfere with those path constraints can be easily identified

and examined. Here the path constraints are the side values in the fault propagation path.

After checking all the path constraints, the selected DSAFs will be reinspected to further

compress the test patterns. The feasibility of the algorithm is proved as follows.

Proposition: Assuming there are two SSA faults f1, f2 with their test vectors v1, v2 in a

non-redundant circuit. If f1 and f2 do not mutually violate the path constraints of each other,

the DSAF { f1, f2} can be detected by v1 or v2. This proposition means that in order to obtain

all undetected DSAFs, we only need to check the path constraints of each SSA fault instead

of traversing all DSAFs, which can drastically reduce the search space.

(Sketch of proof) There are three possible cases when DSAFs occur, as follows.

1. f1 and f2 are propagated in two different paths without any intersection, as shown in Fig.

3.5. The DSAF can be detected by v1 or v2, since the propagation paths of the two faults are

not effected at all.

2. As we discussed in Section 3.2, in the case that one fault lies in the propagation path of

another fault as shown in Fig. 3.6, f1 is completely unaffected by f2 regardless of the value

of f2. Therefore, the DSAF must be detected by v1, and vice versa.

3. The final case is that one fault violates the path constraints of another fault as shown

in Fig. 3.7. Two subcases are discussed below:
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1) If only f1 violates the path constraints of f2 but f2 does not block the propagation path

of f1, the DSAFs can be detected by v1.

2) On the other hand, if two SSA faults mutually violate the path constraints of each other,

{ f1, f2} cannot be detected by either v1 or v2, if both SSA faults have only one propagation

path.

These are all the possible cases when DSAFs happen in the circuit without redundancy.

However, the SSA faults may have multiple propagation paths. Hence, the last case and

other cases may simultaneously happen in different paths. In other words, some of the

undetected DSAFs selected by the proposed algorithm may still be detectable since the fault

may be unblocked in other propagation paths, which results in the generation of redundant

test patterns. But they can be compressed by reviewing the remaining DSAFs one by one

and then picking up the actual undetected faults. This process is very fast because there are

only a few remaining DSAFs.

To conclude, in order to find all the undetected DSAFs in a non-redundant circuit, we

only need to consider the case that two SSA faults violate the path constraints of each other.

(End of sketch of proof)

3.3.3 When Circuit has Redundancy

Redundancy is unavoidable in the real circuit. If there are redundant SSAFs in the circuit,

some cases may be overlooked by the proof in subsection 3.3.2.

1. One fault lies in the propagation path of another fault, and f1 is a redundant fault.

{ f1, f2} needs a new test pattern, since the propagation path of f2 is blocked such that it

cannot be detected at PO1 by applying the test pattern v2A. Hence, we need to generate a
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Fig. 3.8 One fault lies in the propagation path of another fault (missing case 1)

new test pattern v2B to bypass the redundant fault f1 and reach another output PO2. This is

the one of the cases not covered by the previous research [34].

2. The DSAF consisting of two redundant SSA faults. If both SSAFs are redundant,

we cannot analyze the propagation path to find the undetected DSAFs, as no test pattern is

generated for them. However, we cannot ignore them since some of those faults are in fact

activated as a non-redundant DSAF, although such cases are not frequent. Otherwise they

can become the hidden problem when we incrementally extend the method to n multiple

faults. The number of those DSAFs are enormous when the circuit has many redundant

SSAFs. In order to quickly exclude as much as possible the real undetectable DSAF, we

employ a fault filtering to eliminate the two redundant SSA faults pair that are in the same

propagation path, which are definitely impossible to be activated again as the DSAF. The

remaining redundant SSA faults pairs that are located in the same area are selected as the

possible undetected DSAFs.
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3.4 Four steps of Proposed Method

Four steps of the proposed ATPG method are introduced in this section, as shown in Fig.

3.9. The algorithm flow of the proposed method is introduced in subsection 3.4.1. The

first step, circuit initialization process is shown in subsection 3.4.2. The second step, ATPG

initialization process is shown in subsection 3.4.3. The third step, fault selection process, is

presented in subsection 3.4.4 and 3.4.5. The fourth step, test generation process, is discussed

in subsection 3.4.6. Finally, the way to extend the proposed ATPG method for DSAF to all

MSAFs is discussed in subsection 3.4.7.

3.4.1 Algorithm Flow for Double Faults

1. Circuit initialization:

Initializing and preprocessing the circuit data to accelerate the later process, which is

introduced in 3.4.2.

2. ATPG initialization:

Generating the SSA Fault list (SFL), and their corresponding Test Patterns and Path

Constraints:

1) Generate the list of all SSA faults at the gate inputs that are connected to a fan-out

wire or PI.

2) Pick a SSA fault fi.

3) Generate a test pattern vi, for fi.

4) Based on fi and vi, find the necessary path constraints for the fault propagation.
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Fig. 3.9 The proposed ATPG flow for DSAF.

5) If there are SSA faults in SFL without a test pattern, repeat from step 2 (Pick a SSA

fault). Else go to the next step.

3.1 The first filter of DSAFs:

checking the path constraints following the algorithm flow shown in Fig. 3.10.

1) Initialize a temporary list of potentially undetected DSAFs (PUDL).

2) Take an unchecked SSA fault from SFL as the “focused fault” and traverse the SFL

to find other SSA faults which violate the path constraints and also mask the focused

fault.
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3) If there are unchecked SSA faults in SFL, repeat from the previous step (Take an

unchecked SSA fault). Else go to the next step.

5) Go through the temporary list PUDL, and keep only the faults which are listed twice,

i.e. { fi, f j} and { f j, fi}.

6) Duplicate PUDL list as undetected DSAFs list (UDL).

Here the potentially undetected DSAF means the faults that may be masked since at least

one of the SSA faults among it violates the path constraints of another.

3.2 The second filter of DSAFs:

To avoid the generation of redundant test patterns, we compress the test set by doing

the fault simulation on the faults in list UDL to filter out the DSAFs that are covered by the

generated SSA test patterns.

4. Test Generation:

Perform simple ATPG on the remaining DSAFs in the list UDL to generate new test

patterns for them.

3.4.2 Circuit Initialization

At the beginning, the circuit data is read and the preprocessing is performed for the accelera-

tion of the later steps. As it is well known, when the circuit size is small, the test generation

is quite fast since both the circuit simulation and SAT process can be completed in a short

time. However, as the size of the circuit significantly increases, it becomes much more

time-consuming.
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Fig. 3.10 Undetected DSAFs Selection Flow

We have proposed a circuit partitioning method to split the circuit to different parts and

pair them with the related gates, which can avoid dealing with the entire circuit in the next

steps of the ATPG process. Let us discuss the example circuit shown in Fig. 3.11, the gate

2 is paired with gate 1. If a stuck-at fault happens in gate 2, only the gate 1 and gate 2 are

extracted to do the test generation, while gate 3 is not included since it does not affect the

value in the primary output (PO) 1, which is connecting to gate 2. Maps of the partitioned

sub-circuits {{gate 1: gate i, gate j. . . },{gate 2: gate m, gate n. . . }...} is generated and stored

in the memory after circuit partitioning. Although the partitioning process takes some time as

a trade-off, the total runtime of test generation is significantly reduced, since the circuit size
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Fig. 3.11 Example of circuit partition

we need to handle in each circuit simulation and SAT process can be reduced, on average, to

smaller than 1/10 of the original circuit size.

3.4.3 ATPG Initialization

In order to collapse the faults, at first the proposed method only generates the SSA faults at

the gate inputs that are connected to a fan-out wire or PI (Primary Input) following the paper

[45] and add them to the SSA fault list SFL. For more information about fault collapsing,

please refer to [32, 39]. Since this fault selection model may overlook some redundant faults,

we explicitly go through the entire circuit to pick up all the redundant SSA faults. Then, the

naive SAT-based method is applied to generate the test patterns for the SSA faults. When the

result is SAT, the solution will be stored as the test pattern. Otherwise, the target SSA fault is

marked as a redundant fault. After all the SSA faults are checked, their path constraints are

also analyzed. Then the proposed method activates the SSA fault and traverses the circuit by

following a path where the fault is being propagated. When the propagation path reaches

a primary output, it quits the search and generates the constraints based on the path it has

taken. In addition, the redundant SSA fault has no path constraint since no test pattern can
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detect them. They must be carefully taken care of, since the redundant fault may also violate

path constraints.

Assume there is a SSA fault f1 with its test pattern v1. The path constraints of v1 are the

side-input values in the propagation path of f1. There is no guarantee that every net on which

there is a path constraint is in fact in our initial list of SSA faults. That is because the nets

on the path constraints may not contain the gate inputs which are fan-out wires or PI, where

the proposed method generates the initial SSA faults. Therefore, for every path constraint

which is not directly translated to a SSA fault, the circuit is back traced from that location to

determine every eligible SSA fault which may cause a violation of the path constraints.

3.4.4 First Filter: Checking the Path Constraint

As previously mentioned, only those faults which actually violate the path constraints of the

initially focused fault are considered as the faults that may block the propagation. Since the

focused SSA fault is propagated from the faulty wire, instead of PI, the faults at the paths

from PI to the focused fault cannot mask it. In other words, as long as the path constraints of

the focused fault which start from the focused fault to the primary outputs are not violated,

the propagation cannot be masked. Therefore, the faults at the paths from PI to the focused

fault are not inspected by the proposed method. Once the entire potentially undetected DSAF

list PUDL which includes the focused faults and their respective troublesome faults are

generated, that list must be examined to further reduce the number of DSAFs that are going

to be checked explicitly.

Through the proposed method, only the DSAFs which are listed twice are kept. This

is because even if some fault f j may stop the propagation of another fault fi given the test
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Fig. 3.12 Path constraints of v1.

pattern vi, if fi does not stop the propagation of f j given test pattern v j, the DSAF can be

detected by v j. This is why we only keep those DSAFs which can be covered by none of the

test patterns vi and v j.

There are three cases required to be considered as follows, the case that double faults

mutually violate the path constraints, which is mentioned above, the case that one fault

is redundant, and the case that both faults are redundant. The DSAFs which contain one

redundant SSA fault are kept, because the redundant fault may also mask the propagation of

another fault. In addition, we should not ignore the case that both fi and f j are redundant

faults, since two redundant SSA faults may become non-redundant as a DSAF.

An example of DSAF detection is illustrated in Fig. 3.12-3.16 to explain how the first

filter works. The circuit in the example is the combinational part of S27 which belongs to the

ISCAS89 benchmarks. Here we assume that there are two SSA faults f1 and f2 which can

be detected by test patterns v1 and v2, respectively.

To detect f1 (stuck-at 0 on the output wire of the gate, g5), when the fault is activated and

propagated to the output, the path constraints can be found as shown in Fig. 3.12. As we

mentioned before, the path constraints of v1 are the side-input values in the propagation path
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Fig. 3.13 f2 violates the path constraints of v1.

Fig. 3.14 Path constraints of v2.

of f1. Based on the path constraints of v1, the circuit can be traversed to find the SSA faults

which mask the propagation of f1.

Notice that instead of traversing all SSA faults in the circuit, only the SSA faults that

violate the path constraints of v1 are checked, which can drastically reduce the search space.

Assume there is another SSA fault f2 (stuck-at 1 on the input wire of gate, g7), as shown in

Fig. 3.13, f1 is masked by f2, which means that the DSAFs { f1, f2} cannot be detected by

v1.
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Fig. 3.15 f1 violates the path constraints of v2.

Fig. 3.16 Double faults { f1, f2} can be detected by v2.

The f2 is activated and propagated to the output by v2 as shown in Fig. 3.14. The path

constraints of v2 is also violated by f1 as shown in Fig. 3.15. Therefore we take { f1, f2} as a

potentially undetected DSAF and stored it on the list PUDL.

However, the proposed algorithm does not pick up the DSAFs where only one fault

violates the path constraints of the other. For example, consider the case where f2 violates

the path constraints of v1 but f1 does not block the propagation of v2 as shown in Fig. 3.16,

the DSAF { f1, f2} is surely detectable by v2, which means { f1, f2} does not need new test

pattern. In addition, if the signals at a gate are of the same polarity, the DSAFs intersecting

at this gate will be overlooked, since they are definitely detected. With this first filtering
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Fig. 3.17 The fault indirectly violates the path constraints (missing case 2)

method, the number of the DSAFs in the list PUDL becomes much fewer compared to the

number of all DSAFs.

The fault that indirectly violates the path constraints should be checked as well, such as

the example shown in Fig. 3.17. Here we assume that there is a non-redundant stuck-at 1

fault in the input wire n79 and the test pattern is generated. The f1 is blocked in gate 108 due

to the fan-outs at wire n133 and the re-convergence in gate 108, but it is propagated in gate

109 owing to the side value assigned by the output of gate 108. If there is another stuck-at 0

fault f2 located at the input wire n134 of gate 108, f1 is blocked in gate 109 since f2 allows

the propagation of f1 in gate 108, which results in the counteraction of D and D of f1 in gate

109. The previous method ignores this case since it only selects the fault that directly violets

the path constraint and blocks the propagation, while f2 indirectly blocks the propagation of

f1 by allowing the propagation of f1 in gate 108. Therefore, we need to carefully inspect
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Fig. 3.18 The remaining DSAFs in the list UDL after checking path constraints

all propagation paths of the target fault to cover this case which is not considered by the

previous method [34].

3.4.5 Second Filter: Excluding the DSAFs detectable by the Generated

SSA Test Patterns

After checking the path constraints, only small number of DSAFs remain in the list UDL. If

the ATPG process stops fault filtering here and starts to generate new test patterns, redundant

test patterns may be produced since actually some of the DSAFs remaining in the list UDL

can be detected by the generated SSA test set. When there is a DSAF { fi, f j} with its SSA

test patterns vi and v j, the DSAFs in the list UDL can be classified as shown in Fig. 3.18.

From this figure we can conclude that, in order to minimize the final DSAF list and avoid

generating redundant test patterns, we need to recheck the DSAFs to exclude the detectable

DSAF which has passed in the first filtering.

In some cases, even if two faults fi and f j mutually violate the path constraints of each

other, their test patterns vi and v j still can detect the DSAFs { fi, f j} since there may be

multiple fault propagation paths. In addition, the violation of the path constraints may just
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Fig. 3.19 Example: when propagation path is changed

make the fault reach a different primary output. For example, the SSA fault fi shown in Fig.

3.19 is expected to be detected at the primary output wire n136 by the test pattern vi. When

there is another SSA fault f j which violates the path constraints of vi, fi can still propagate

to another primary output wire n135 though it is different from the previous output.

Besides, other test patterns may also cover the DSAF { fi, f j} which cannot be detected

by vi or v j, especially when the initial SSA test set is not compact enough. We have to

exclude those DSAFs, otherwise some redundant test patterns are generated as shown in

the experimental results of our previous method [34]. The proposed method rechecks the

DSAFs in the undetected DSA list UDL to optimize the second fault filter and then makes

the generated test set more compact compared with the previous method. Although checking
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Algorithm 1: Excluding the DSAF that can be detected by the generated SSA Test
Patterns

1: while There are unchecked faults in the list UDL do
2: Take an unchecked { fi, f j} and vi, v j
3: if both vi and v j do not exist then
4: if other test patterns can detect { fi, f j} then
5: Delete { fi, f j} from fault list UDL
6: end if
7: else if vi or v j exist then
8: if vi or v j can detect { fi, f j} then
9: Delete { fi, f j} from fault list UDL

10: else if other test patterns can detect { fi, f j} then
11: Delete { fi, f j} from fault list UDL
12: end if
13: end if
14: end while

all other SSA patterns takes extra processing time, such increasing time is acceptable since

only a few DSAFs need to be rechecked here. The algorithm of the second filter is illustrated

as Algorithm 1.

After the fault filtering is over, it becomes a simple matter of generating test patterns

for the DSAFs in the list, since the number of the faults remaining in the undetected DSA

list UDL is very small, as shown in the experimental results. The SAT-based ATPG method

which is applied to the SSA faults, is also used on the final remaining DSAFs in the list UDL.

3.4.6 Generation of Additional Test Patterns

After obtaining all the possible undetected DSAFs, we repeat the process that employs the

SAT solver to generate new test patterns, and performs the fault simulation to delete the

fault covered by new patterns, until all the selected faults are covered. The speed of the

fault simulation and SAT process is greatly accelerated since each time we only deal with

a small part of the circuit related to the fault instead of the entire circuit, as discussed in
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Section 3.1. Moreover, we utilize the bit parallel processing to simultaneously run 64 test

patterns in the fault simulation to further improve the speed. As the number of selected

DSAFs is significantly smaller than the total number of DSAFs and the speed of the fault

simulation and SAT process is also considerably accelerated, the speed of the test generation

is significantly improved, as shown in the experimental results.

3.4.7 Extensions for Multiple Faults of Larger Cardinalities

The above method can be extended to deal with multiple faults of larger cardinalities incre-

mentally. After generating the test patterns for double faults, we can perform similar steps

to deal with triple faults. In other words, given the test patterns for n faults (simultaneously

happen), the proposed method can be employed to detect n+1 faults. Based on the undetected

n fault list, the undetected n+1 faults can be quickly obtained. Please note that in such

processes, as we are keeping the sets of fault propagation paths, only faults interfering the

sets are examined, which is the same as the previous case. Such sets of MSAFs should

always be small. This process is repeated until no undetected faults can be found in the

circuit. By applying this approach, multiple faults of arbitrary cardinalities can be processed

incrementally, which is one of our future work.

3.5 Experimental Results

The proposed ATPG method is implemented in C++, and operating on a machine running

Linux kernel 4.17 with Xeon E5-2699 v4 2.20GHz CPU and 512GB memory. Glucose

4.1 [7] is used as the SAT solver to generate the test pattern, since it is efficient at solving
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Table 3.2 Number of DSAF overlooked by [34]

Circuit case1 Re-DSA case1 non-Re case2 Re-DSA case2 non-Re
s444 0 174 9 100
s832 0 0 7 16

s1238 0 0 64 189
s1423 0 19 18 293
s1494 0 0 11 22
s5378 0 308 33 80
s9234 0 2,083 143 913
s35932 0 17,150 1,024 3,936
s38584 0 11,754 3,440 8,917

SAT problem. ISCAS89 benchmark circuits [11] are employed to perform the experiments.

To analyze the performance of the proposed method in different aspects, we organize the

experimental results and classify them into four subsections. Subsection 3.5.1 shows the

DSAFs ignored by the previous research [34] but taken care of by the proposed method.

Subsection 3.5.2 compares the performance of the proposed method to the previous research.

Subsection 3.5.3 illustrates the details of the composition of the selected DSAFs in the

proposed method. Finally, subsection 3.5.4 shows the runtime of each step in the proposed

method.

3.5.1 Selected DSAFs

As we explained in previous sections, the previous method may not cover all DSAFs since

two cases that we discussed in the previous Section are overlooked. Table 3.2 shows the

details of the DSAF in case1 and case2. Re-DSA and non-Re indicate the redundant and

the non-redundant DSAF ignored by the previous method, respectively. According to the

result, in total, the number of non-redundant DSAFs are two to three times more than the

redundant faults, which means that many detectable DSAFs are actually ignored by the
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Table 3.3 Number of additional test patterns generated to cover all the DSAFs

Circuit Result in [34] ABC Proposed Method
s444 2 1 1
s832 4 2 2
s1238 NR 20 18
s1423 2 2 22
s1494 Insufficient 2 2
s5378 Insufficient 3 4
s9234 Insufficient 10 9

s35932 NR NR 21
s38584 NR NR 20

previous research. Although most of those DSAFs can be actually covered by the SSA test

patterns, we still need to pick up all of them to generate a complete test set. As we include

those missing cases in the proposed method, the generated test patterns can cover all DSAFs,

which is proved by exhaustively inspecting all the possible DSAFs.

3.5.2 Performance Comparison

Next, we perform the experiment in testing and verification tool ABC [10] using “&fftest”

command and the proposed implementation based on the compact sets of the SSA fault test

patterns [14]. Besides, we also take the results from the previous research for the comparison.

The coverage of the test patterns is confirmed by exhaustively checking DSAFs in the circuit.

The number of the additional test patterns for the DSAFs when starting from the compact

test patterns for the SSA faults is presented in Table 3.3. Number of additional test patterns

generated to cover all the DSAFs. In the second column, “Insufficient” means that the

generated test patterns cannot cover all DSAFs due to the missing case1 and case2. “No

result” means that the test generation process of S35932 and S38584 circuit cannot be

completed due to some problems. While the previous research and ABC fail to obtain
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Table 3.4 Total runtime (seconds)

Circuit Result in [34] ABC Proposed Method
s444 72 2 0.2
s832 642 248 0.5
s1238 NR 1,476 27
s1423 238 140 2.3
s1494 1,462 126 1.7
s5378 4,454 6,370 6.6
s9234 7,238 61,180 280

s35932 NR NR 2,102
s38584 NR NR 1,027

the test patterns in large circuits, the proposed method can successfully generate sufficient

test patterns to cover all DSAFs. Moreover, for most of the circuits, the additional test

patterns generated by the proposed method are as compact as ABC, though more test patterns

are generated in S1423 circuit as shown in the fourth column, which may need further

optimization in the future.

In addition, we do the comparison about the total runtime as shown in Table 3.4. The

execution speed of the proposed method can achieve around 100 times faster than ABC, and

500 times faster than [34], on average. The execution speed is significantly improved by our

method.

3.5.3 The Selected DSAFs in the Proposed Method

The third column in Table 3.5 is the total number of all possible DSAFs, which is calculated

assuming no fault collapsing is performed for the DSAFs. The fourth and fifth column are

the numbers of the selected DSAF that are undetected by the SSA test patterns, respectively.

Owing to the proposed fault selection algorithm, less than 0.1% DSAFs are selected, which

is significantly smaller than the number of total DSAFs.
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Table 3.5 Number of selected DSAFs in the proposed method

Circuit All SSA All DSA Selected DSA
s444 1,158 1,340,964 56
s832 2,328 5,419,584 51
s1238 3,452 11,916,304 1,714
s1423 3,464 11,999,296 480
s1494 4,194 17,589,636 41
s5378 10,426 108,701,476 314
s9234 14,052 197,458,704 18,633

s35932 88,084 7,758,791,056 441,931
s38584 88,824 7,889,702,976 116,559

Table 3.6 Number of non-redundant and redundant DSAF among all selected DSAFs

All Selected DSA Two Non-re SSA Non-re SSA + Re-SSA Two Re-SSA Re-
SSA

Circuit Re-
DSA Non-re Re-

DSA Non-re Re-
DSA Non-re Re-

DSA Non-re Re-
SSA

s444 51 5 0 0 21 5 30 0 18
s832 46 5 0 0 11 5 35 0 12
s1238 1,686 28 0 0 103 11 1,583 17 84
s1423 72 408 0 70 36 334 36 4 27
s1494 36 5 0 0 19 1 17 4 15
s5378 307 7 0 3 80 4 227 0 48
s9234 18,577 56 4 0 1,579 55 16,994 1 328

s35932 441,376 555 0 87 4,128 468 437,248 0 10,112
s38584 116,490 69 0 0 20,507 66 95,983 3 1,995

The details of the selected DSAF is shown in Table 3.6. The second and third column

present the numbers of the redundant DSAFs and the non-redundant DSAFs among all the

selected DSAFs, respectively. Only a small number of the selected DSAFs are detectable,

hence, in the test generation process, we actually spend more than 90% of time to find and

exclude the redundant DSAF. The results from fourth to ninth columns illustrate the number

of three types of the selected DSAFs, which consists of two non-redundant SSA faults, one

non-redundant SSA and one redundant SSA fault, and two redundant SSA faults. Notice that,

very few DSAFs consisting of two non-Redundant SSA faults are classified as undetected
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Table 3.7 Number of Re-DSAF that are excluded since two Re-SSA faults are in same
propagation path

Circuit Re-DSA Two Re-SSA Deleted (Same Path) Ratio
s444 30 27 90%
s832 35 8 22%

s1238 1,583 80 5%
s1423 36 32 89%
s1494 17 12 71%
s5378 227 55 24%
s9234 16,994 1,771 10%

s35932 437,248 107,072 24%
s38584 95,983 16,119 17%

DSA, since those faults have more propagation paths and smaller probability to be blocked,

as shown in the fourth and fifth columns. On the other hand, most of the non-redundant

DSAFs consist of one non-redundant and one redundant SSA faults, as shown in the seventh

column, while most of the redundant DSAFs have two redundant SSA faults as shown in the

eighth column, since generally they are unlikely to be activated and propagated. The number

of the redundant SSA faults is illustrated in the tenth column.

Since most of the selected DSAFs consist of two redundant SSA faults but over 95% of

them are actually undetectable, we employ a fault filter to quickly exclude some redundant

DSAFs by eliminating the two redundant SSA faults pair that are in the same propagation

path. In Table 3.7, the second column is the number of the DSAF that are redundant and

consist of two redundant SSA faults. The third and fourth column are the DSAF excluded by

our fault filter. The filter works for all the circuits, especially for S444, S1423 and S1494, as

more than 50% of the faults are filtered out since they are on the same propagation path, while

for other circuits we need to use SAT solver to eliminate more than 70% of undetectable

faults. We still need to consider more efficient ways to find those undetectable DSAFs.



70 ATPG Method for Double Faults

Table 3.8 Runtime of each step in the proposed method (seconds)

Circuit Circuit Init ATPG Init Select DSA Generate new Test Total Runtime
s444 0.007 0.08 0.06 0.03 0.2
s832 0.009 0.2 0.1 0.1 0.5

s1238 0.02 1 0.4 26 27
s1423 0.2 0.6 0.6 0.9 2.3
s1494 0.3 0.3 0.2 0.09 1.7
s5378 0.2 2.1 1.1 3.07 6.6
s9234 0.3 5 11 264 280

s35932 6 79 706 1,311 2,102
s38584 7 101 400 519 1,027

3.5.4 Runtime Analysis of the Proposed Method

Table 3.8 presents the four steps in the proposed method. The second and third columns

illustrate that the initialization process only takes a small portion of total runtime. In addition,

the time to find the undetected DSAF and generate new test are almost the same, as shown

in the fourth and fifth columns. However, S1238 and S9234 takes large amount of time to

generate new test patterns, since they have more redundant SSA faults comparing to the

circuits with similar size, as shown in the tenth column of Table 3.8, which results in more

undetectable DSAFs consisting of two redundant SSA faults are selected. Hence, it takes

more time to employ SAT-solver to exclude them. Therefore we can conclude that, the test

generation time in the propose method is not only decided by the size of the circuit, but also

affected by the circuit structure and the number of the SSA redundant fault.

3.6 Conclusion

In this chapter, we have proposed a new incremental ATPG method for DSAFs. Four steps of

the proposed method are introduced, including the circuit initialization, ATPG initialization,
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finding the undetected DSAF by using the fault filtering and generating the additional test

patterns. In order to drastically decrease the size of the DSAF list, we propose two fault

filters to excludes most of the DSAFs which do not need new test patterns, as shown in Table

3.5. Two missing cases in our previous research are considered to cover all double faults,

as shown in Table 3.2. The proposed method starts with the ATPG for single faults and

incrementally adds new test patterns for double faults. The complexity of each incremental

process is the same as the ATPG for SSA faults, thus the proposed method can be very

efficient for large circuits. According to the experimental results, the proposed method can

generate complete test patterns for all the given benchmark circuits, with the processing

speed that is more than two orders of magnitude faster than the previous work.





Chapter 4

Incremental ATPG Method for Multiple

Faults

4.1 Key Idea of the Proposed Method

Based on the method introduced in chapter 3, an incremental ATPG method is proposed

in this thesis to generate the test patterns for all multiple faults [50]. Staring from the

test patterns for single faults, the proposed method inspects the propagation path of the

SSAF to find the undetected MSAF and then generate the additional test patterns for those

undetected faults. Differently from the chapter 3, we targets on all multiple faults. For any n

multiple faults which is user-specified cardinality, the undetected faults by the test patterns

for n-1 faults are found, and the new test patterns for them are generated. By repeating the

similar process, the proposed method can be inductively applied to handle all multiple faults.

Moreover, since we only perform the test generation for the undetected faults, whose number

are drastically smaller than all faults, we can generate a compact test set in an acceptable
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running time. In addition, differently from the method introduced in chapter 3, we greatly

improve the test generation speed by using the equivalence checking to quickly pick up and

eliminate the redundant multiple faults, which is illustrated by the the experimental results

up to the triple fault of ISCAS 89 and IWLS 2005 circuits.

The rest of the chapter is organized as follows. Section 4.2 explains the proposed

incremental ATPG method for MSAF. Section 4.3 presents the experimental results for

multiple faults. Section 4.4 summarizes the chapter and discusses the future work.

4.2 Proposed ATPG Method for Multiple Faults

In this section, the proposed method for the MSAF is explained. The way to extend the

test patterns for the DSAF to the TSAF is presented and proved first. Then, we propose the

general way to extend the method for all MSAFs.

4.2.1 Definitions

The term blocking describes the case when the fault cannot be propagated to any primary

output through a specific path. For example, we assume there are two faults f1 and f2. f1

is blocked by another fault f2 under the test patterns v1. However, it may be propagated to

primary outputs through other propagation paths or by applying other test patterns.

4.2.2 ATPG Method for Triple Faults

As the number of the possible triple faults are very large, it is time-consuming to check the

entire fault list to generate the test patterns. Therefore, similar to the double faults ATPG
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Fig. 4.1 Three SSAFs are independent

method, we inspect the propagation path to pick up the undetected triple faults. Comparing

to the double faults method, there are more cases to be considered for the TSAF, which are

introduced and proved as follows.

Proposition: We assume that the initial test patterns for single faults are given, and the

test generation process of double faults is completed by picking up the undetected faults

and generating additional test patterns. In other words, we have the test patterns to cover all

single and double faults, and we also have the list of double faults that are undetected by the

single test patterns.

There are three non-equivalent single faults f1, f2, and f3. We check the propagation

path of the single and double faults to obtain the list of undetected TSAF list. Only when

three single faults violate the path constrains of each other, TSAF { f1, f2, f3} cannot be

covered by the test patterns for single and double faults. In contrast, if three SSAFs are

totally independent or only two SSAFs of them mutually block the propagation of each other,

TSAF { f1, f2, f3} is definitely detectable by the existing test patterns.

(Sketch of proof) There are only three possible cases for the TSAF, as follows.

1. Three SSAFs respectively happen in different areas of the circuit, whose propagation paths
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Fig. 4.2 Only two SSAFs mutually block the propagation path of each other

have no overlap, as shown in Fig. 4.1. It is obvious that three faults are totally independent,

which means that their propagation paths have no intersection. Therefore, there is no way

that three faults can violate the propagation constrains of each other. In this case, the TSAF

{ f1, f2, f3} is guaranteed to be detected by the single test patterns.

2. The second case is that only two faults f1 and f2 block the propagation path of each other,

while the third fault f3 is unaffected by other two faults, as shown in Fig. 4.2. Although

the f1 and f2 may not be detected by the single test patterns, they must be selected as the

undetected DSAF in the test generation of the double faults. Thus, the generated double

test patterns can handle { f1, f2} . Moreover, the fault f3 is detected by its related single test

patterns. Consequently, we can ignore this kind of the TSAF.

3. Three SSAFs mutually block the propagation path of each other. In order to clearly

explain in which case the TSAF is undetected, we want to classify the relationship of three

SSAFs first, as follows. Here “ f1 → f2" is defined as that f1 is blocked by f2.

f1 → f2, f3
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Fig. 4.3 SSAF f1 has two propagation paths which are blocked by f2 and f3, respectively

Fig. 4.4 SSAF f1 has one propagation path which is blocked by f2 and f3

• f1 can be propagated to output in two paths, which are blocked by other two faults f2

and f3, respectively, as shown in Fig. 4.3.

• There is only one propagation path for f1. It blocked by the DSAF { f2, f3} in Gate2,

as shown in Fig. 4.4.

{ f1, f2} → f3

• { f1, f2} is an undetected DSAF selected by the fault filter of double faults. A new test

pattern is generated to permit its propagation. However, the happening of f3 violate its

path constraints again, as shown in Fig. 4.5

The TSAF { f1, f2, f3} is undetected only in the following two cases.

1) f1 → f2, f3, f2 → f1, f3, f3 → f1, f2.
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Fig. 4.5 DSAF { f1, f2} is blocked by f3

Each SSAF is blocked by another two SSAFs, simultaneously. As a result, three SSAFs

are undetected by the related single test patterns. The TSAF { f1, f2, f3} is selected as a

possible undetected fault. On the contrary, we ignore the case that only one or two SSAFs

are blocked by other faults, since the fault unaffected by others is definitely detected by its

single test pattern.

2) f1 → f2, f3, { f2, f3} → f1

The propagation of the SSAF f1 is blocked by the DSAF { f2, f3}. Meanwhile, the DSAF

{ f2, f3} is selected in the test generation of double faults and has a new test pattern, but its

path constraints are violated by the SSAF f1 again. In this case, the TSAF { f1, f2, f3} can

be detected by neither the single test pattern of f1 nor the double test pattern for { f2, f3}.

However, the TSAF is detectable if only the propagation of { f2, f3} is prevented by f1, while

{ f2, f3} has no influence on f1, and vice versa.

To conclude, these are all the cases when three faults simultaneously happen in the circuit.

We do not target the TSAF belonging to case 1 and case 2, since they are already detected

by the existing test patterns for the SSAF and DSAF. Only the TSAF in case 3 is selected

by the proposed method. In fact, although the selected TSAF is undetected by the related

DSAF and SSAF test patterns, they may be handled by other existing test patterns, if there
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are multiple paths to be propagated to primary outputs. The fault simulation is performed to

check the list of the possible undetected faults, and eliminate the actual detectable TSAFs to

further compress the size of the undetected TSAF list. This process is very fast since only

small number of faults are selected. Therefore, the total time to pick up the undetected TSAF

which needs additional test patterns can be very small by using the proposed method.

(End of sketch of proof)

4.2.3 General Method to Extend the Proposed Method form n-1 faults

to n faults

As we discussed in subsection 4.2.2, there are two cases needed to be checked to find the

undetected faults.

1) f1 → f2, f3

• blocked in 2 paths.

• blocked in 1 path.

2) f1(2) → f3 ({ f1, f2} → f3).

• blocked in 1 path.

where f1(i) indicates the multiple faults pair { f1, f2, f3, ..., fi}. f1 in case 1) can be any of

three faults, and in case 2) the DSAF { f1, f2} is a combination of any two SSAFs out of

three faults. The DSAF { f1, f2} is transformed to a single fault following the method [29],

which can simplify the fault selection process. Since case 2) is to find the single fault whose

propagation path is blocked by another single fault, the fault selection method of the DSAF
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can be reused to deal with this case. Hence, we only need to handle the case 1) to find the

undetected TSAF. We should notice that, the faults in the left-hand side of the formula (

f1 in case 1) and { f1, f2} in case 2) ) are not redundant, otherwise we cannot analyze their

propagation path. On the contrary, the faults in the right-hand side of the formula ( f2, f3 in

case 1) and f3 in case 2) ) may be redundant, since they can become non-redundant as TSAF.

Similarly, there are three cases we need to check to obtain the undetected quadruple

faults.

1) f1 → f2, f3, f4

• blocked in 3 paths.

• blocked in 2 paths.

• blocked in 1 path.

2) f1(2) → f3, f4 ({ f1, f2} → f3, f4).

• blocked in 2 path.

• blocked in 1 path.

3) f1(3) → f4 ({ f1, f2, f3} → f4).

• blocked in 1 path.

where the DSAF { f1, f2} and TSAF { f1, f2, f3} in case 2) and case 3) are converted to

single faults f1(2) and f1(3), respectively, which means that they can be processed by the fault

selection of the DSAF and the TSAF. Thus, we only need to inspect the case 1) to find the

undetected quadruple faults.
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Based on the example of the triple faults and quadruple faults, we want to discuss the

general way to pick up the undetected n faults. Here we assume that we have already

finished the fault selection and the test generation process for the fault whose cardinality

is smaller or equal to n-1. Thus, we have the list of the undetected faults found in the

previous fault selection process, and the test patterns to cover all single, double, ... n-1

faults. If there are n SSAFs f1, f2, f3, ... fn in the circuit, in order to get the list of the

undetected n faults pairs, we only need to take care of the case that n SSAFs mutually violate

the path constraints with each other. The relationship of the faults can be classified as follows.

1) f1 → f2, f3, f4, ..., fn

• blocked in n-1 paths.

• blocked in n-2 paths.

• ...

• blocked in one path.

2) f1(2) → f3, f4, ..., fn ({ f1, f2} → f3, f4, ..., fn)

• blocked in n-2 paths.

• blocked in n-3 paths.

• ...

• blocked in one path.

3) f1(3) → f4, ..., fn ({ f1, f2, f3} → f4, ..., fn)
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• blocked in n-3 paths.

• blocked in n-4 paths.

• ...

• blocked in one path.

...

n-2) f1(n−2) → fn−1, fn ({ f1, f2, f3, ..., fn−2} → fn−1, fn)

• blocked in two paths

• blocked in one path

n-1) f1(n−1) → fn ({ f1, f2, f3, ..., fn−1} → fn)

• blocked in one path

{ f1, f2, f3, ..., fi} (1 <= i < n) is an undetected multiple faults pair found in the previous

fault selection process. Similar to the triple and quadruple faults, following the method [29],

the i faults pair { f1, f2, f3, f4, ..., fi} is transformed to a single fault f1(i) for the ease of the

fault selection. The formula shown above indicates that although the undetected i faults pair

is selected in the previous process and additional test patterns are generated for it, again, it

is blocked by other n-i single faults. All we need to do is to find this kind of undetected i

faults pair and generate new test for it. Moreover, as the case 2) to case n-1) can be processed

by the fault selection of n-1 faults since we convert the multiple faults pair to a single fault,

we only need to inspect the faults in case 1). When we inductively extend the method to

all multiple faults, most of the cases we need to check can be handled by the previous fault
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Fig. 4.6 The proposed ATPG flow

selection, while only small number of faults need to be taken care of. However, even if we

only need to check the case 1), it seems to be complicated and time-consuming to find n-i

SSAFs that violate the propagation constraints of f1(i), simultaneously, especially when n is

large. Actually, because the number of the propagation paths and the possible faulty positions

are limited in the circuit, as the increasing of the cardinality n, there are only few i faults pair

blocked by exactly n-i SSAFs, and hence, they can be skipped to reduce the running time.

In addition, many of the selected faults are actually detected by other existing test patterns

since there may be multiple propagation paths to primary output. We can perform the fault

simulation for them again to further compress the size of the undetected faults list.
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4.2.4 Flow Chart of the Proposed Method

There is a termination point to stop the fault selection and test generation process. We assume

that there are n SSAFs f1, f2, f3, ..., fn happen in the circuit. According to the previous

discussion, the MSAF is selected as the undetected fault only when { f1, f2, f3, ..., fi} →

fi+1, ..., fn (1 <= i < n). In other words, there are two conditions need to be satisfied for

the formula. First condition is that there is undetected i faults pair { f1, f2, f3, ..., fi} in the

circuit. Meanwhile, we need to find exact n-i SSAFs blocking its propagation at the same

time. We ignore the cases that there is no undetected i faults pair or there are undetected

i faults pairs but we cannot find n-i SSAFs violate its path constraints. Actually, with the

increasing of i, there are only few undetected i faults pair since they have more propagation

paths and more probability to be propagated to primary outputs. On the contrary, when the

n-i becomes larger, it is difficult to find exact n-i SSAFs block the propagation of i faults pair,

because the propagation paths and the possible faulty positions are limited in the circuit. The

test generation process can be terminated if we can find neither undetected i faults pair nor n-i

SSAFs block its propagation. Actually, according to the Table 4.2 shown in Section 4.3, the

DSAF test patterns for most of the circuits can already cover all TSAFs, which indicates that

we can terminate the process after the test generation of triple faults. The reason is that we

pick up the undetected n multiple faults based on the undetected n-1 faults, and the number of

undetected faults drastically decreases with the increasing of the cardinality. Therefore, few

additional test patterns is required for triple or higher cardinality faults, as few undetected

fault can be found.

After the fault selection process of the current fault cardinality is completed, the test

generation is performed by using the SAT-solver. It should be finished very quickly because
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the list of the undetected fault is extremely smaller comparing to all faults. Nevertheless, there

are large amount of undetected faults that are actually redundant, which means that it is not

necessary to generate test patterns for them. It takes a long time to exclude those redundant

faults by using the SAT-solver, since SAT-solver have to try numerous solutions before it can

decide that the problem is unsatisfied. Therefore, instead of utilizing the SAT-solver to skip

the redundant multiple faults pairs, we apply the equivalence checking to make sure whether

the fault is redundant or not. Specifically, after the processing of the SAT-solver exceeds a

time limit, we remove the nodes which the target fault pairs located in, and if the removing

does not affect the functionality of the circuit, we can skip the fault.

The flow chart of the proposed method is illustrated in Fig. 4.6. The initialization process

includes the generation of the SSAF faults list and the preparation of the single test patterns.

The initial SSAF list only includes the SSAFs at the gate inputs that are connected to a

fan-out wire or PI (Primary Input), following the paper [45, 32, 39]. The test generation starts

from double faults. After the process of fault selection and test generation of the current

multiple faults pair is finished, the cardinality of the target fault is incremented for the next

test generation. The test generation can be stopped if it reaches the user-specified cardinality

E or the terminate condition we discuss before is satisfied. By repeating this process, the

proposed method can be inductively applied to all multiple faults.

4.3 Experiment Results

We have implemented the proposed method in C++. Glucose 4.1 [7] is used as the SAT

solver to generate the additional test patterns for multiple faults. ABC [10] is used to do the
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Table 4.1 experiment circuits

Circuit Gate # PI # PO #
s1494 712 14 25
s5378 1,912 214 218
s9234 2,534 247 250
s35932 16,047 1,763 2,048
s38417 16,047 1,664 1,742
s38584 16,009 1,464 1,730

i2c 1,575 147 142
spi 4,588 276 274

systemcdes 3,766 322 255
des_area 5,545 368 192

systemcaes 14,831 930 799
usb_funct 19,752 1,874 1,867

wb_conmax 52,658 1,900 2,168
des_perf 107,970 9,042 8,872

equivalence checking to exclude the redundant faults using "CEC" command. The proposed

method is operated in a machine running Linux kernel 4.17 with Xeon E5-2699 v4 2.20GHz

CPU and 512GB memory. ISCAS 89 [11] and IWLS 2005 [3] benchmark circuits are used

to perform the experiment as shown in Table 4.1. The test generation of the ISCAS circuits

starts from the compact single test set [14]. The single test patterns of the IWLS 2005 circuits

are generated by a state-of-the-art commercial tool.

4.3.1 Performance Comparison

We compare the number of the additional test patterns and the running time of the proposed

method to ABC using “&fftest" command. In order to verify the coverage of the generated

test patterns, we exhaustively check all faults and test patterns in the circuit.

The number of the generated test patterns for the TSAF and DSAF are illustrated in Table

4.2. The second column is the number of the initial SSAF test patterns. The third and fourth
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Table 4.2 Number of additional test patterns for DSAF and TSAF

Circuit SSAF
ABC

(DSAF)
ABC

(TSAF)

Proposed
Method
(DSAF)

Proposed
Method
(TSAF)

s1494 110 2 0 2 0
s5378 102 3 0 4 0
s9234 134 10 4 9 0
s35932 30 NR NR 21 5
s38417 120 NR NR 18 0
s38584 174 NR NR 20 0

i2c 77 NR NR 5 0
spi 716 NR NR 8 0

systemcdes 67 NR NR 1 0
des_area 132 NR NR 7 0

systemcaes 193 NR NR 12 0
usb_funct 127 NR NR 10 4

wb_conmax 152 NR NR 309 1
des_perf 63 NR NR 0 0

columns are the number of the additional test patterns for the DSAF and TSAF generated by

ABC. Fifth and sixth columns are the number of the DSAF and TSAF test patterns generated

by the proposed method. Notice that the TSAF test patterns are generated based on the

test for the SSAF and DSAF. The “NR" (no result) in third and fourth columns indicates

that ABC fails to finish the test generation within the time limitation (12 hours), while the

proposed method can smoothly generate the test patterns for all circuits. We confirm the test

coverage by exhaustively checking all the faults. The results illustrate that the test generated

by our proposed method can detect all non-redundant DSAFs and TSAFs. Moreover, the

additional test patterns for the DSAF and TSAF generated by the proposed method is as

compact as ABC. In addition, in most of the circuits, there is no additional test patterns for

the TSAF, since the test patterns for the SSAF and DSAF can already cover all TSAFs.
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Table 4.3 Total runtime (minutes)

Circuit ABC
Proposed
Method

s1494 23.4 1.2
s5378 147 0.18
s9234 NR 7.9
s35932 NR 41.2
s38417 NR 8.4
s38584 NR 59.2

i2c NR 5
spi NR 183

systemcdes NR 570
des_area NR 89.7

systemcaes NR 285
usb_funct NR 11.4

wb_conmax NR 93
des_perf NR 160

The runtime comparison is shown in the Table 4.3. The processing speed of the proposed

method is about 20 and 815 times faster than the ABC for s1494 and s5378 circuits, respec-

tively, while ABC fails to generate test patterns for remaining circuits within the time limit.

Besides, because the proposed method applies the SAT-solver to generate the additional test

patterns, which is not good at handling the XOR gate, the test generation of the circuits such

as wb_conmax or des_perf is time-consuming since they contain many XOR gates. It also

causes the large number of additional double test patterns of wb_conmax in the Table 4.2.

N-detection has been proposed to detect each single fault by at least N different test

patterns [8, 35, 48, 20]. We compare the number of test patterns generated by N-detection to

the proposed method, as shown in Table 4.4. The test number of 2-detection and 5-detection

are shown in the second, and third columns, respectively. The fourth column is the total

number of the TSAF test generated by the proposed method. We verify their coverage of the
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Table 4.4 Test number by N-detect and proposed method

Circuit 2-detect 5-detect

TSAF
test (Pro-

posed
Method)

s1494 217 537 112
s5378 236 570 106
s9234 245 577 143

s35932 40 435 51
s38417 185 435 138
s38584 222 533 194

i2c 151 352 82
spi 1491 3551 724

systemcdes 129 309 68
des_area 227 465 139

systemcaes 338 749 205
usb_funct 242 585 137

wb_conmax 288 704 461
des_perf 130 282 63

TSAF by exhaustively checking all faults. Although the 2-detect and 5-detect test patterns

can cover all TSAFs, their number are about 1.6 times and 4.2 times the test number of the

proposed method, respectively.

4.3.2 Selected Faults Analysis

Table 4.5 illustrates the number of the selected TSAF on the basis of the existing DSAF and

SSAF test patterns. The second and third columns are the total number of the SSAF and

TSAF without fault collapsing. The fourth column shows the number of the selected TSAF,

which is significantly smaller than total number of the TSAF owing to the proposed fault

selection method. It drastically reduces the time of the test generation process. Notice that

there is not selected TSAF in des_perf circuit, since its single and double test patterns can
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Table 4.5 Number of selected TSAF in proposed method

Circuit
Total
SSAF

Total
TSAF

Selected
TSAF

s1494 4,194 7.3*1010 11
s5378 10,426 1.1*1012 69
s9234 14,052 2.7*1012 11,870
s35932 88,084 6.8*1014 10,849
s38417 71,122 3.6*1014 80
s38584 88,824 7*1014 306,149

i2c 3,094 2.9*1010 100
spi 9,442 8.4*1011 35

systemcdes 7,904 4.9*1011 62
des_area 11,316 1.4*1012 12

systemcaes 30,466 2.8*1013 633
usb_funct 39,678 6.2*1013 1,400

wb_conmax 110,364 1.3*1015 12,380
des_perf 210,944 9.4*1015 0

already cover all TSAFs In addition, most of the selected faults are actually redundant. This

is the reason why few additional test patterns are required to cover those undetected faults, as

shown in Table 4.2.

The number of the three types of the TSAF introduced in 4.2.2 is shown in Table 4.6.

The second, third and fourth columns illustrate the number of the SSAF blocked by other

two SSAFs in one path, the SSAF blocked by other two SSAFs in two paths, and the DSAF

blocked by a SSAF, respectively. The fifth column shows the number of the final selected

TSAF by pairing the faults shown in second, third and fourth columns. Although many TSAF

fault pairs are selected in second to fourth columns, only few of them remain in the fifth

column after pairing the faults mutually violate the path constraints with each other.
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Table 4.6 Number of three types of selected TSAF

Circuit
SSAF →

Two SSAFs
in one path

SSAF →
Two SSAFs
in two paths

DSAF →
SSAF

Selected
TSAF

s1494 33,631 4,179 25 11
s5378 236,286 10,370 122 69
s9234 976,799 13,720 35,958 11,870
s35932 897,463 77,396 417,278 10,849
s38417 11,996,276 70,968 2,315 80
s38584 3,516,390 86,787 3,871,139 306,149

i2c 76,917 8,793 965 100
spi 4,613,493 26,386 471 35

systemcdes 32,674,638 21,374 4,560 62
des_area 199,161,604 31,878 6,645 12

systemcaes 207,998,758 85,248 39,791 633
usb_funct 9,494,734 109,971 7,898 1,400

wb_conmax 22,248,329 298,572 38,382 12,380
des_perf 117,412,425 597,668 384 0

4.3.3 Runtime Analyzation

The runtime of each step in the proposed method is shown in the 4.7. The initialization

process only takes few time as shown in the second column. In addition, the runtime of

DSAF and TSAF in most of the circuits are almost the same order.

Table 4.8 shows the time of the fault selection, fault simulation and the test generation

for the DSAF and TSAF, while the time of the initialization process is not included. The

fault selection in second column is the process to find the undetected fault based on the

method introduced in the Section 4.2. The fault simulation in third column is to exclude the

selected faults that are actually detected by other existing test patterns. The test generation in

the fourth column is to traverse the remaining faults in the list and generate the additional

test patterns for them by applying the SAT-solver. In most of the circuit, fault selection

method only takes small part of the execution time comparing to the fault simulation and test
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Table 4.7 Runtime of each step in proposed method (minutes)

Circuit Initialization
DSAF

Processing
TSAF

Processing
Total

Runtime
s1494 0.4 0.4 0.4 1.2
s5378 0.07 0.08 0.03 0.18
s9234 0.1 4.4 3.4 7.9

s35932 1.5 33.7 6 41.2
s38417 1.7 1.4 5.3 8.4
s38584 1.8 11 46.4 59.2

i2c 0.1 2.9 2 5
spi 1 46 136 183

systemcdes 1 29 540 570
des_area 0.9 14 74.8 89.7

systemcaes 101 91 93 285
usb_funct 0.1 5.4 5.9 11.4

wb_conmax 1.3 20.9 70.8 93
des_perf 4.9 92.3 62.8 160

generation, which means that given efficient tools to perform the fault simulation and test

generation, the runtime of the proposed method can be further reduced.

The equivalence checking is used to reduce the time to exclude the redundant fault.

Table 4.9 compares the runtime of the test generation with the equivalence checking and

without the equivalence checking. Notice that this table only includes the runtime of the

test generation process, while the results in 4.3 shows the total runtime. The runtime of the

smaller size circuits such as s1494, s5378, etc., does not change a lot since most of their

redundant faults can be quickly excluded by using the SAT-solver, and hence the equivalence

checking is rarely performed in those circuits. On the other hand, in the larger size circuits,

the equivalence checking can reduce about 20% to 30% running time. Since it takes a long

time to exclude the redundant faults in those circuits by utilizing SAT-solver, the proposed

method uses the equivalence checking to quickly determine whether the fault is redundant
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Table 4.8 Runtime of fault selection, fault simulation and test generation (minutes)

Circuit
Fault

Selection
Fault

Simulation
Test

Generation
s1494 0.5 0.1 0.2
s5378 0.01 0.16 0.01
s9234 0.5 1.5 6.1

s35932 7.1 19 15.1
s38417 4.7 3.4 0.3
s38584 4.2 24.9 30.1

i2c 1 2 2
spi 60 67 51

systemcdes 210 220 140
des_area 26 41.7 22

systemcaes 87 47 151
usb_funct 5 1.9 4.5

wb_conmax 16.8 26.2 50
des_perf 68.7 9.3 82

fault or not. It proves that the equivalence checking is feasible to accelerate the speed of the

test generation.

4.4 Conclusion

In this chapter, we have proposed an ATPG method for MSAF. Starting from a complete test

set of the SSAF, the proposed method can be incrementally applied to all MSAFs. The way

to extend the proposed method to the TSAF is introduced and proved at first as an example.

The general way to inductively extend the method for all MSAFs is explained. In addition,

we discuss the strategy to reduce the processing time for redundant faults. The experimental

results up to the TSAF prove that the proposed method can successfully select the undetected

faults and generate compact test patterns for the multiple faults within an acceptable running
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Table 4.9 The comparison of Test Generation with and without Equivalence Checking

Circuit
Without

Equivalence
Checking

With
Equivalence

Checking
s1494 0.2 0.2
s5378 0.01 0.01
s9234 6.6 6.1

s35932 22.9 15.1
s38417 0.3 0.3
s38584 42.9 30.1

i2c 2 2
spi 55 51

systemcdes 205 140
des_area 28.3 22

systemcaes 208 151
usb_funct 4.5 4.5

wb_conmax 63 50
des_perf 114 82

time. Moreover, the order of the magnitude of the run-time for the TSAF is almost the same

as the DSAF.

Our future work is to further optimize the implementation by integrating the proposed

method with a more powerful commercial ATPG tool for SSAF, and figure out a more

efficient way to check the coverage of the test patterns, instead of exhaustively inspecting the

entire fault list.



Chapter 5

A Logic Optimization Method based on

the Proposed ATPG Method for Multiple

Faults

5.1 Introduction of Logic Optimization

Logic optimization methods have been studied since 1980’s which resulted in SIS [40]

logic synthesis tool and later in ABC [10] logic synthesis and verification tool. Redundancy

removal command in logic synthesis tool SIS can optimize the circuit by eliminating the

single redundant faults. Authors in [16] try to remove the redundancies in the circuit by

repeatedly adding redundancy and then removing other redundancies. Authors in [43]

utilize multiple faults to simplify circuit logics by generating a new circuit with the function

approximate to the original circuit. In other words, the circuit function may be changed.

However, none of these methods consider the optimization by removing the redundant
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multiple faults in the circuit without the function change, which can potentially eliminate

more redundancies and make circuit more compact.

In this chapter, we propose a new logic optimization method by identifying the redundant

multiple stuck-at faults (MSAF) and removing their related gates. The fault selection

method introduced in the previous chapters is applied to find the redundant multiple faults.

According to the experimental results shown in chapter 6, by eliminating the MSAF from

higher cardinality to lower cardinality, the proposed method can remove more redundant

logic comparing to the methods that only eliminate single stuck-at faults (SSAF).

The rest of the chapter is organized as follows. Section 5.2 presents the fault selection

method to find multiple faults. Section 5.3 explains the proposed fault removal method.

Section 5.4 illustrates the experimental results. Section 5.5 concludes the chapter and

discusses the future work.

5.2 Finding the Redundant Multiple Faults

The naive way to find redundant faults is traversing the entire fault list and checking one by

one. However, it cannot handle multiple faults due to the large number of fault combinations.

Inspired by the proposed method in the previous chapters, instead of checking all multiple

faults, we want to check the fault propagation path to find the redundant multiple fault, which

can greatly reduce the time, as shown in the experimental results of chapter 3 and 4. The

DSAF consisting of two SSAFs that block propagation path with each other is selected as a

potential redundant fault. In addition, the DSAF consists of two redundant single faults is

also classified as the potential redundant fault. Then, we can pick up the redundant DSAF by
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performing fault simulation and test generation. This process is very fast since the size of the

potential redundant fault list is drastically smaller than all faults. Therefore, starting from a

compact test set for the single fault, we can incrementally find the redundant multiple faults

in an acceptable running time for fairly large circuits.

5.3 Removal of the Redundant Multiple Faults from Higher

to Lower Cardinality

The composition of the redundant MSAF is shown in Table 5.1, whose second, third, and

forth columns are the number of the redundant DSAFs including two non-redundant SSAFs,

one non-redundant and one redundant SSAFs, and two redundant SSAFs, respectively. The

redundant DSAF consisting of two redundant SSAFs is equal to two SSAFs as redundant

faults, while the DSAF include at least one non-redundant SSAF is different from two

redundant SSAFs. Obviously, most of the redundant DSAFs include at least one redundant

SSAF.

There are two ways to remove the redundant multiple faults. The first way is to remove the

faults from the lower cardinality to higher cardinality. However, according to the experimental

results shown in Table 5.1, we cannot find any redundant multiple faults such as double

faults if we remove all the single faults at first, because most of the redundant multiple faults

include at least one redundant single fault. In other words, if we clear all redundant single

faults, most of the original redundant multiple faults become non-redundant; hence, we

cannot remove them to optimize the circuit structure. In contrast, if we remove the redundant

faults from higher cardinality to lower cardinality, we can remove the redundant single fault
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Table 5.1 Composition of the Redundant DSAF

Circuit
Two

NoRe-SSAF

NoRe-
SSAF+Re-

SSAF
Two Re-SSAF Total Re-DSAF

s444 0 21 30 51
s832 0 11 35 46

s1238 0 103 1,583 1,686
s1423 0 36 36 72
s1494 0 19 17 36
s5378 0 80 227 307
s9234 0 1,579 16,994 18,577
s35932 1 4,128 437,248 441,376
s38417 1 20,507 95,983 116,490

as well as the non-redundant single fault that are included in the redundant multiple faults,

which means that we can make the circuit smaller in size and more compact.

Similarly, in order to optimize more redundancies, in the logic optimization process of

the MSAFs with a same cardinality, the MSAF with more non-redundant SSAFs is removed

first. Since many MSAFs include same redundant SSAFs, if we remove the MSAF with

more redundant SSAFs first, many of the redundant MSAFs with non-redundant SSAFs is

not redundant any more, which decreases the number of redundancies to be removed.

5.4 Experimental Results

We use the Glucose 4.1 [7] as the SAT solver to generate the test patterns and find redundant

faults. We perform the experiment with ISCAS 89 [11] and IWLS 2005 [3] benchmark

circuits. The fault selection of the ISCAS 89 circuits starts from the compact test set for the

SSAF [14]. The single test patterns of the IWLS 2005 circuits are generated by a commercial

tool.
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Table 5.2 Number of Gate and Redundant DSAF and SSAF

Circuit Gate Re-SSAF
Re-DSAF

(Has
Re-SSAF)

Re-DSAF
(No SSAF)

Used
Re-DSAF

s444 212 18 51 0 9
s832 404 12 46 0 6
s1238 597 84 1,686 0 44
s1423 635 28 72 0 8
s1494 712 15 36 0 6
s5378 1,912 56 307 0 15
s9234 2,534 332 18,577 0 130
s35932 16,047 10,688 441,376 0 1,920
s38417 16,047 154 441 0 87
s38584 16,009 2,037 116,490 0 651

des_area 5,545 16 44 0 6
systemcaes 14,831 282 3,804 0 142
usb_funct 19,752 633 6,747 0 218

wb_conmax 52,658 8,918 221,264 0 3,127

In Table 5.2, the experiment results illustrated from the second column to the sixth

column are the number of the gates and the redundant SSAF and DSAF. The second column

is the number of gates in the circuit. The third column is the number of all redundant

SSAFs. The fourth column is the number of the selected redundant DSAF if we do not

remove the redundant single fault in the circuit. The fifth column is the number of selected

redundant double faults after we remove all redundant single fault in the circuit. Obviously,

no redundant double faults is found if we clear all single redundancy, because most of the

redundant double faults include at least one redundant single fault in these circuits. The sixth

column is the number of redundant DSAF that actually used to optimize the circuit. Many

redundant DSAFs may include the same redundant or non-redundant SSAF, which means

that only a portion of DSAFs can already cover all the gates we can optimize. Consequently,
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Table 5.3 The Removed Gates by Optimizing Re-SSAF and DSAF

Circuit
Re-SSAF

Removed Gates
Re-DSAF

Removed Gates
Total runtime

(minute)
s444 12 13 0.003
s832 9 9 0.008
s1238 60 60 0.45
s1423 16 16 0.03
s1494 11 11 0.8
s5378 23 23 0.16
s9234 185 201 4.5

s35932 2,304 2,560 35
s38417 134 139 3.1
s38584 841 865 13

des_area 12 13 14.9
systemcaes 177 204 200
usb_funct 336 344 5.5

wb_conmax 4,786 5,100 22.3

the actual number of DSAF used to eliminate the circuit redundancy is much smaller than

the total number of DSAF.

The number of removed gates by deleting the faults is shown in second and third columns

of Table 5.3. The seventh column is the number of gates that can be removed by optimizing

the redundant single fault using the redundancy removal command in the logic synthesis

tool SIS [40]. The eighth column illustrates the number of gates removed by eliminating the

selected DSAF first and then remove the SSAF. Notice that the number of redundant SSAF

and DSAF in the third and fourth columns are larger than the removed gates in seventh and

eighth columns, respectively, because some of the redundant SSAFs locate in the same gate.

In addition, although the number of the redundant DSAF is one or two order of magnitudes

larger than the SSAF, the improvement ratio is not that much, because most of the DSAFs

consist of two redundant single faults, and only a few of the DSAFs include a non-redundant
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SSAF. Therefore, in most of the cases, the removal of the redundant DSAF is to remove

the redundant SSAF. In the smaller size circuits, such as S444 and S832, the number of the

removed gates by optimizing the single and double redundancy shown in seventh and eighth

columns are almost the same, since most of the DSAFs in those circuits consist of only the

redundant SSAF. Therefore, if we eliminate all the redundant DSAFs, the redundant SSAFs

are eliminated as well. In contrast, in larger size circuits such as systemcaes, 15% more gates

can be removed if we eliminate the DSAF first, since many of the redundant DSAFs in those

circuits include the non-redundant SSAF. It illustrates that the proposed method is capable

of optimizing the circuit and removing more redundancy. In addition, we have performed

the experiment by removing the double faults in every possible combinations. However, the

number of eliminated gates are smaller than the results in Table 5.3. It is because that the

proposed method removes the redundant DSAF including a non-redundant SSAF first, which

guarantees that more redundancies can be eliminated. The experimental results illustrate that

the proposed method is capable of optimizing the circuit and removing more redundancies

following the proposed heuristic of the fault removal.

The total running time is shown in the fourth column of Table 5.3. Actually, fault

selection process of the redundant MSAFs takes most of the running time. Once we obtain

the redundant fault list, the optimization process can be completed very fast. Most of the

circuits can finish the entire optimization process in an acceptable time. Notice that, the

circuit such as systemcaes takes more than 1 hour to finish the redundant fault selection

process, since our method introduced in chapter 3 and 4 are based on SAT-solver, which is

not good at handling the circuit with a large number of XOR gates.
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5.5 Conclusion

In this chapter, we have proposed a logic optimization method by first identifying and then

removing the redundant multiple faults. The incremental ATPG method is used to pick up

the redundant multiple faults. By eliminating the redundant faults from higher cardinality

to lower cardinality, more redundant logics can be optimized. The experimental results

show that the proposed method can remove more redundancy comparing to the redundancy

removal command of SIS, which proves the feasibility of the proposed method. Moreover, the

experimental results prove that the proposed method can finish the process of the redundant

fault selection and removal within an acceptable time. Our future work is to make our

implementation more efficient and utilize higher cardinality of faults, such as redundant triple

faults, in the optimization.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Since it is unavoidable for faults to happen in the fabricated chips, we need to use test patterns

to thoroughly test and determine whether the functionalities of the fabricated chips are correct

or not before shipping to consumers. Automatic Test Pattern Generation technology has

been developed to prepare as small as possible set of test patterns which cover almost all

the faults in a chip. Currently, not only single faults, but also multiple faults occur in the

fabricated circuits. Previously research shows that we cannot generate sufficient test patterns

to cover all faults without applying the multiple fault model. Besides, multiple fault analysis

is required for test generation, fault simulation and logic optimization in some situations.

Therefore, we need to analyze the possible multiple faults in the circuit and generate the

multiple test patterns to thoroughly test and determine whether the functionalities of the

fabricated chips are correct or not before shipping to consumers. Nevertheless, the previous
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test generation methods cannot generate sufficient test patterns for multiple faults within an

acceptable running time.

In this thesis, an incremental ATPG method for multiple faults is proposed. The ATPG

method for double faults is introduced at first. It starts with the ATPG for single faults and

incrementally adds new test patterns for double faults. The complexity of each incremental

process is the same as the ATPG for the SSAF, thus the proposed method can be very efficient

for large circuits. In order to drastically decrease the size of the DSAF list, the proposed

DSAF filter excludes most of the DSAFs which do not need new test patterns. As shown

in the experiments up to double faults, the numbers of the additional test patterns are small;

hence, scalable.

Then, we propose the method to extend the ATPG method to all MSAF. Starting from

a complete test set of the SSAF, the proposed method can be incrementally applied to all

MSAFs. The way to extend the proposed method to the TSAF is introduced and proved at

first as an example. The general way to inductively extend the method for all MSAFs is

explained. In addition, we discuss the strategy to reduce the processing time for redundant

faults. The experimental results show that we can generate compact test patterns within an

acceptable running time. Moreover, the order of the magnitude of the run-time for the TSAF

is almost the same as the DSAF.

Based on the proposed incremental ATPG method, we introduce a logic optimization

method. By eliminating the redundant faults from higher cardinality to lower cardinality,

more redundant logics can be optimized. The experimental results show that the proposed

method can remove more redundancies comparing to the redundancy removal command of
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SIS, which proves the feasibility of the proposed method. The results prove that the proposed

method can remove more redundancy comparing to only delete the single redundancy.

6.2 Future Work

Our future work is to further optimize the implementation of the ATPG method for multiple

faults by integrating the proposed method with a more powerful commercial ATPG tool for

SSAF, and figure out a more efficient way to generate the test patterns for the selected faults.

Current way of test generation is repeating the process that randomly picking up a undetected

faults and generating test pattern. The method is naive and may results in the generation of

redundant test patterns. The test pattern can be further optimized if we have a better heuristic

to decide the sequence of choosing the undetected faults for test generation.

In addition, we will figure out a faster way to check the coverage of the test patterns.

Presently we go through the entire fault list to check the generated test patterns, which is

drastically time-consuming especially for large scale circuits. The runtime can be reduced

if we can efficiently compress the fault list by combining the faults that are equivalent, and

eliminate the faults such as the redundant faults, which are not necessary to be confirmed.

Moreover, we can develop the emulator in hardware to examine the coverage, which can

significantly accelerate the processing speed.

In order to improve the performance of the logic optimization method, we will utilize

higher cardinality of faults, such as redundant triple faults, in the optimization. As we

discussed in chapter 5, we can eliminate more redundant logic if we remove the redundant

multiple faults which include at least one irredundant single fault. Currently, few research
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utilize the redundant multiple fault to optimize the circuit since it is time-consuming to pick

up the redundant faults. It is impractical to traverse the entire fault list to find the target

faults especially for the faults with higher cardinality. However, following the fault selection

method proposed in chapter 3 and chapter 4, we can incrementally select redundant multiple

faults within an acceptable running time.

Although we only discuss the ATPG method for stuck-at fault in this thesis, we can apply

the similar idea of the proposed method to detect the multiple faults of other fault models,

such as the bridging fault. The test patterns for multiple faults can still be incrementally

generated based on the single test patterns.
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