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Abstract

Bridging the gap between macroscopic thermodynamics and microscopic quantum dynamics is
one of the most fundamental problems in statistical physics, dating back to von Neumann. Re-
cently, nonequilibrium dynamics of isolated quantum many-body systems have been observed
in highly controllable quantum systems, such as ultracold atoms, superconducting qubits, and
trapped ions. Both theoretical and experimental studies have revealed that isolated many-
body systems thermalize under the unitary time evolution. These studies triggered progress in
understanding mechanisms of thermalization. A widely accepted mechanism of thermalization
is based on a conjecture called the eigenstate thermalization hypothesis (ETH). The ETH is
a counterpart of ergodicity in quantum systems and states that all the energy eigenstates of
a chaotic Hamiltonian are indistinguishable from the thermal states. The ETH has been nu-
merically confirmed for many nonintegrable systems, while it is violated in integrable systems
and localized systems.

Another essential concept of thermodynamics is the second law, which is formulated in
several ways, such as the entropy increase and the impossibility of the perpetual motion of
the second kind. The second law in quantum systems has been studied based on quantum
information theory, while it has not yet been much studied in light of chaos of many-body
dynamics. Correspondingly, our understanding of the second law in quantum systems is not
as established as that of thermalization for isolated many-body quantum systems.

More recently, high-energy physics has provided new insights into quantum chaotic dynam-
ics. In the context of the black hole information problem, the notion of information scrambling
is proposed as a new characterization of quantum many-body chaos. Information scrambling
represents the spreading of localized quantum information over the entire system. Moreover,
information scrambling is closely related to quantum pseudorandomness, which is an impor-
tant resource of quantum information tasks.

The present thesis is devoted to two issues regarding chaotic quantum many-body dynam-
ics. First, we consider the second law at the level of individual energy eigenstates, which
is a crucial ingredient of thermodynamics of isolated quantum many-body systems. Specifi-
cally, we investigate both numerically and analytically the possibility of work extraction by
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cyclic Hamiltonian dynamics. We propose a second-law analog of the ETH from numerical
results, which we name the eigenstate second law, and rigorously prove a weaker version of
the eigenstate second law. Second, we focus on another aspect of chaotic quantum systems
beyond conventional thermodynamics, especially the universal structure of entanglement and
information scrambling. We propose a generalization of the ETH to characterize the higher-
order complexity of quantum chaos at the level of a single energy eigenstate. In addition, we
attempt to bridge the gap between chaotic many-body dynamics and intrinsically random uni-
tary dynamics by introducing a new quantum information-theoretic concept regarding partial
pseudorandomness.

The first issue of this thesis is the possibility of work extraction from quantum many-body
systems. The concept of work is crucially important in thermodynamics, as one cannot extract
positive work from a single heat bath by any cyclic operation, which is manifestation of the
second law in the version of the Kelvin-Planck statement. Establishing the second law from
microscopic dynamics is one of the central issues in statistical physics. Motivated by researches
on designing quantum heat engines, this problem has been actively investigated for isolated
quantum systems. Theoretical progress also has been made, and, for example, an important
notion called passivity has been introduced. For a given Hamiltonian, a quantum state is said
to be passive, if its energy cannot be decreased by any cyclic unitary operations. It has been
proved that the Gibbs states are exactly passive, while pure states are not passive in general.
However, such characterization of passive states is not enough to conclude that the second law
is already established based on quantum mechanics, especially given that a pure state also
describes thermal equilibrium.

Since one has only limited controllability of large-scale systems, a natural question is whether
one can extract positive work by a limited class of unitary operations. In this thesis, we
numerically investigate this question and show that integrability plays an important role.
We numerically calculate the extracted work from individual energy eigenstates by quench
protocols of the mixed-field Ising model with changing its integrability. We show that one
cannot extract positive work from any energy eigenstate, if the initial Hamiltonian or the
protocol has nonintegrability. This result brings us to an analogy between thermalization
and the second law. We thus conjecture the eigenstate second law, which states that all the
energy eigenstates satisfy the second law under experimentally realistic quench protocols. In
fact, we show that the eigenstate second law follows from the ETH for a nonlocal operator
corresponding to the energy of the final state. On the other hand, we numerically show the
violation of the eigenstate second law in an integrable system, which is the counterpart of
the violation of the ETH in integrable systems. In addition, we prove that for arbitrary fixed
unitary operation, one cannot extract positive work from almost all energy eigenstates. This
claim is regarded as a weaker version of the eigenstate second law and holds even in integrable
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systems as long as the Boltzmann’s formula is true. This weaker version of the second law is
analogous to the weaker version of the ETH.

The second issue of this thesis is how to characterize complexity and randomness of quan-
tum chaotic dynamics. The complexity of a quantum state increases in time until it satu-
rates at the maximum value. Thermalization and information scrambling are related to the
growth of complexity under Hamiltonian time evolutions. Characterization of the complexity
of chaotic many-body dynamics is expected to provide a unified description of thermalization
and information scrambling. Moreover, quantum chaos has attracted attention in high-energy
physics and quantum information theory. In the context of the blackhole information paradox,
the out-of-time-ordered correlator (OTOC) has been proposed as an indicator of information
scrambling, and the decay of the OTOC characterizes quantum chaos. Furthermore, it has
been argued that blackholes are quantum chaotic and the most powerful information scram-
bler. These researches suggest that quantum chaotic dynamics are closely related to random
unitary dynamics, which is well known as a good scrambler. Random unitaries are also impor-
tant in quantum information theory, while we need a large number of quantum gates to realize
exact random unitaries. This fact has brought up the research of quantum pseudorandomness
that approximates random unitaries. Quantum pseudorandomness is formulated as a unitary
k-design, which simulates the kth moment of random unitaries. However, the relationship
between chaotic Hamiltonian dynamics and unitary k-designs has not been fully addressed in
previous studies.

Combining the notions of the ETH and unitary k-designs, we introduce a higher-order
generalization of the ETH, named the k-ETH (k = 1, 2, . . . ). The lowest order ETH (i.e., the 1-
ETH) reproduces the conventional ETH. The higher-order ETH is its higher-order counterpart
and characterizes the higher-order randomness. The k-ETH is formulated by considering the
k-replicated system in the same way as the definition of unitary k-designs. The k-ETH (k ≥ 2)
also implies that the kth Renyi entanglement entropy of an energy eigenstate follows a universal
system-size dependence, called the Page curve. The volume law of the eigenstate entanglement
can be explained by the conventional ETH, while the Page correction intrinsically originates
from the higher-order ETH. In addition, we numerically verified that the 2-ETH approximately
holds for a nonintegrable spin model, but does not hold for an integrable model.

In order to clarify the connection between the k-ETH and unitary k-designs, we introduce a
new information-theoretic concept named a partial unitary k-design (PU k-design). A PU k-
design is an approximation of random unitaries in which one focuses only on a limited number
of observables. A conventional unitary k-design is a special case of a PU k-design where all
the observables are accessible. The k-ETH is also a special case of a PU k-design where the
ensemble is given by the random-time sampling of Hamiltonian time evolution operators. On
the other hand, we found that its relationship to information scrambling is not straightforward
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as follows. The exact scrambling, (i.e., the exact agreement of the late-time OTOC with its
random-unitary average), requires the exact 2-ETH, but the approximate decay of the OTOC
in the thermodynamic limit follows only from the approximate 1-ETH.

Our results shed new light on the foundation of statistical mechanics and characterization
of chaos in quantum many-body systems. Moreover, we expect that our approach would
contribute not only to statistical mechanics but also to various fields related to quantum
many-body dynamics, including high-energy physics and quantum information theory. Inves-
tigating the possibility of experimental verification of our results with quantum simulators is
an important future issue.
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Chapter 1

Introduction

As an introduction, we give an overview of three different backgrounds of our
studies. In Sec. 1.1, we consider a longstanding problem in statistical physics dates
back to Boltzmann: how statistical mechanics emerges in isolated systems. In
Sec. 1.2, we introduce the notion of quantum chaos, which is not only important in
the context of the foundation of statistical mechanics but also has recently attracted
interest in high-energy physics. In Sec. 1.3, we provide an overview of recent exper-
iments in isolated quantum systems, which has shed new light on the foundation of
statistical mechanics. In Sec. 1.4, we give a summary of our results.

1.1 Foundations of statistical mechanics
Thermodynamics is a phenomenology of macroscopic thermal behaviors, while statistical

mechanics predicts thermodynamic properties from microscopic mechanics, as originally es-
tablished by Maxwell, Boltzmann, and Gibbs in the nineteenth century. The gap between the
macroscopic theory at the phenomenology level and its microscopic foundation is the central
issue of this thesis.

1.1.1 Principles of statistical mechanics

Statistical mechanics consists of the following two principles [1]. One is the principle of
equal probability, which states that the thermal equilibrium value of a mechanical quantity is
given by the average in the microcanonical ensemble. The microcanonical ensemble is a mixed

12



state in which all the microstates in a given energy shell appear with equal probabilities. We
emphasize that the principle of equal probability is a working hypothesis to calculate the
thermal value. A real microstate of the thermal equilibrium is not necessarily given by the
microcanonical ensemble even in thermal equilibrium from the macroscopic point of view.

The second principle is the Boltzmann’s formula stating that the thermodynamics entropy
S(E) is given by

S(E) = kB logW (E), (1.1)

where W (E) is the number of microstates in the system in the energy shell around energy
E, and kB is the Boltzmann’s constant. Because W (E) grows exponentially with the system
size, S(E) becomes an extensive quantity. The Boltzmann’s formula connects a microscopic
quantity to a macroscopic thermodynamic quantity, the entropy, which cannot be represented
as any mechanical quantity.

Although there is no doubt on the empirical validity of the above two principles, their foun-
dation from microscopic physics has not yet been established. In the early days, Boltzmann
addressed this problem based on classical mechanics while, as is well known, he did not succeed
in establishing the connection between statistical mechanics and classical mechanics. After
that, many researchers also challenged this problem. In particular, von Neumann [2,3] inves-
tigated the relaxation to thermal equilibrium on the basis of quantum mechanics and an idea
that is nowadays known as typicality. While his seminal study had been not fully appreciated
during the last century, today, his work attracts renewed attention because it is now realized
that many important ideas were already there in his papers.

1.1.2 Ergodicity and typicality

There is a long history of studies regarding the principle of equal probability. A most
famous attempt addressing this issue is an approach from ergodicity [4]. Ergodicity is a
property of classical systems stating that a dynamical trajectory uniformly covers a surface
of constant energy in the phase space. This immediately implies that the long-time average
equals the microcanonical average. Thus, many researchers have considered that the principle
of equal probability is justified if the system satisfies ergodicity. Nonintegrable systems, such
as the Sinai’s billiard [5], are known to satisfy ergodicity, while integrable systems never show
ergodicity because conserved quantities restrict a trajectory on a small subspace. Even in
nonintegrable systems, there are some counterexamples of ergodicity*1. For example, in 1955,
Fermi, Pasta, and Ulam [7] performed a numerical simulation of one-dimensional anharmonic
oscillators, and found that ergodicity is violated in this model.

*1 As for classical Hamiltonian dynamical systems, almost all systems are neither integrable nor ergodic [6].
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A concept of typicality [8–11] gives another route to the understanding of the foundation
of statistical mechanics. The typicality of microstates argues that almost all microstates
are indistinguishable from the thermal equilibrium as long as one observes a restricted class
of physical quantities such as few-body observables like the total momentum and the total
magnetization. In this picture, the principle of equal probability is regarded as a prescription
to obtain common properties of typical microstates.

Some researchers argue that typicality is more reasonable than ergodicity as a foundation
of statistical mechanics. However, it is far from obvious whether typicality really accounts
for the thermalization mechanism, because the typicality argument apparently applies to non-
thermalizing systems as well. We note that such non-thermalizing systems have recently
been realized experimentally, where one can observe the breakdown of thermalization in real
laboratories. To achieve a complete understanding of thermalization, we need to consider more
detailed properties of the many-body system, such as the nonintegrability and chaos, rather
than simply relying on the typicality argument. That is to say, the foundation of statistical
mechanics is still a fundamental unsolved question of modern physics.

1.1.3 Eigenstate thermalization hypothesis (ETH)

In this thesis, we focus on isolated quantum systems, in which the time evolution is described
by the Schrödinger equation:

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (1.2)

Throughout this thesis, we set ℏ = 1. If we denote an energy eigenstate of H by |Ei⟩ (i =
1, . . . , d) and the corresponding eigenenergy by Ei, the solution of the Schrödinger equa-
tion (1.2) is given by

|ψ(t)⟩ =
d∑

i=1
cie

−iEit |Ei⟩ , (1.3)

where ci ∈ C is determined from the initial condition. Equation (1.3) implies that a pure state
remains pure during the time evolution, and the steady state cannot be described by statistical
ensembles that are mixed states. Thus, a natural question about thermalization is whether
the expectation value ⟨ψ(t)|O|ψ(t)⟩ approximately equals the microcanonical average ⟨O⟩MC

for a given observable O or a restricted class of observables such as few-body observables. If
⟨ψ(t)|O|ψ(t)⟩ ≈ ⟨O⟩MC holds for large t, we can say that O approaches the thermal equilibrium
value.

Recently, quantum many-body systems isolated from environments have been realized by
real experiments [12–17]. In fact, as we review in Sec. 1.3 in more detail, thermalization (i.e.,
the approach to thermal equilibrium) under the unitary time evolution has been observed in
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recent experiments [18–22]. These experimental systems are nonintegrable systems, which do
not have an extensive number of local conserved quantities.

Moreover, many numerical simulations have demonstrated that thermalization of few-body
observables occurs in generic nonintegrable systems, such as the Bose-Hubbard model [23–27]
and the hard-core boson models [28–31]. These numerical studies have investigated relaxation
dynamics after a quench: The system is initially prepared in a product state or the ground state
of the initial Hamiltonian. Then, the parameters of the Hamiltonian, such as the magnetic
field and the depth of optical lattice, are suddenly quenched to different values. Because
the initial state is not an eigenstate of the post-quench Hamiltonian, the initial state is not
stationary and evolves according to the post-quench Hamiltonian. The numerical studies have
focused on the time-dependence of the expectation values of few-body observables and have
reported that they relax to stationary values near the thermal average. Moreover, from the
finite-size scaling, it has been argued that the deviation between the stationary value and the
microcanonical average converges to zero in the thermodynamic limit.

Let us briefly see the mechanism of thermalization in nonintegrable systems. We divide
⟨ψ(t)|O|ψ(t)⟩ into the time-independent part and the time-dependent part:

⟨ψ(t)|O|ψ(t)⟩ =
d∑

i=1
|ci|2 ⟨Ei|O|Ei⟩ +

∑
i ̸=j

ei(Ei−Ej)tc∗
i cj ⟨Ei|O|Ej⟩ . (1.4)

We naively expect that the second term on the right-hand side is negligible for large t because
it rapidly oscillates. As shown in Chapter 2, this naive expectation can be mathematically
justified for specific quantum states. Thus, for achieving ⟨ψ(t)|O|ψ(t)⟩ ≈ ⟨O⟩MC, it is sufficient
that

⟨Ei|O|Ei⟩ ≈ ⟨O⟩MC (1.5)

holds for all the energy eigenstates. Here, the microcanonical average ⟨O⟩MC is calculated as
the uniform average over the energy eigenstate around energy Ei. Equation (1.5) implies that
the energy eigenstate |Ei⟩ looks thermal as long as one focuses on O. This conjecture is called
the eigenstate thermalization hypothesis (ETH), which was first proposed by Srednicki [32–34]
in the 1990s. If the ETH is true, the effective stationary value of ⟨ψ(t)|O|ψ(t)⟩ equals the
microcanonical average for any initial state in the energy shell. Thus, the ETH can be regarded
as a quantum counterpart of the ergodic hypothesis and is believed to be crucial for the
thermalization in isolated quantum systems [28,35].

As ergodicity is related to classical chaos, the ETH is also related to quantum chaos. In
fact, Srednicki’s studies [32–34] are based on Berry’s conjecture [36] in quantum chaos, which
states that energy eigenstates of a quantum particle system corresponding a classical chaotic
system consist of random superpositions of plane waves. Berry’s conjecture connects classical
chaos or ergodicity to properties of energy eigenstates of quantum systems, and the ETH is an
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extension of Berry’s conjecture to generic quantum systems, including spin systems, atomic
and atomic-molecular-and-optical (AMO) systems.

We note that essentially the same arguments as the ETH have been considered in earlier
works [37–41]. We review the ETH in more detail in Chapter 2.

1.2 Quantum chaos

1.2.1 Classical chaos

Chaos is an important concept in the theory of dynamical systems [42]. The term of chaos
was introduced by Li and Yorke [43] in 1975. Roughly speaking, chaos is a pseudorandom
behavior arising from deterministic dynamics [44]. Although there is no accepted rigorous
and general definition of chaos, many researchers believe that the exponential sensitivity to
infinitesimal perturbations, so-called the butterfly effect, is an important feature of classical
chaos. In this thesis, we adopt the rough definition of chaos by the butterfly effect and do not
go deeply into the mathematical arguments.

To formulate chaos, we consider a classical system of N particles, and denote their positions
by x := (x1, . . . , xN ) and their momenta by p := (p1, . . . , pN ). A classical state is described by
a point of the phase space, denoted as X := (x,p). We consider a single trajectory X(t) with
an initial condition X(0) = X0. A small perturbation to the initial condition X0 → δX0 gives
a new trajectory X(t) + δX(t). Here, δX(t) is the deviation between the old trajectory and
the new trajectory. If the system is chaotic, the deviation induced by the initial perturbation
grows exponentially in time. This is represented as

∥δX(t)∥
∥δX(0)∥

∝ eλLt, (1.6)

where ∥·∥ is the Euclidean norm, and λL is a real constant called the Lyapunov exponent. The
Lyapunov exponent characterizes the initial sensitivity to perturbation, and chaos is defined
as the system which has a positive Lyapunov exponent. We note that this definition of chaos
by the positivity of λL is not a fully rigorous definition of chaos; see Ref. [42] for more rigorous
definitions.

1.2.2 Chaos in quantum systems

Let us move on to quantum systems. In the sense of the classical dynamical systems theory,
any quantum system is said to be integrable and thus not chaotic, because the Schröringer
equation (1.2) is just linear. In fact, ⟨E1|ψ(t)⟩ , . . . , ⟨Ed|ψ(t)⟩ do not depend on time, and
thus they are conserved quantities of the Schrödinger equation. The existence of an extensive
number of conserved quantities implies that the system is (Liouville) integrable. In other
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words, small perturbations do not grow in quantum systems. This is also seen from the fact
that the unitary dynamics e−iHt/ℏ preserves the norm of a vector, i.e.,

∥δ |ψ(t)⟩ ∥
∥δ |ψ(0)⟩ ∥

= 1, (1.7)

for all t. This fact raises a question: what is a quantum counterpart of classical chaos?
Although there is no straightforward extension of chaos to quantum systems as seen above,

some “chaotic” properties have been discovered in quantum systems whose classical counter-
parts are chaotic [45, 46]. As mentioned before, Berry’s conjecture [36] is one of the crucial
signatures of quantum chaos. The ETH is an extension of Berry’s conjecture for many-body
systems with no direct classical counterpart and thus is a characteristic of quantum chaos.

Another important conjecture in quantum chaos is the Bohigas-Gianonni-Schimt (BGS)
conjecture [47], which represents the relationship between quantum chaos and random matrix
theory [48]. Let us focus on the unfolded energy spectrum {λi}d

i=1, which is obtained by
rescaling the energy spectrum {Ei}d

i=1 so that mean level spacing is unity. We define a level-
spacing distribution P (s) as a distribution of spacings of neighboring energy levels, i.e., s =
λi+1 − λi. The BGS conjecture states that a level-spacing distribution for a chaotic quantum
system shows a distribution predicted by the Wigner-Dyson random matrix ensemble. On
the other hand, integrable systems do not obey the Wigner-Dyson distribution. In general,
the level-spacing distribution in the integrable case obeys the Poisson distribution, which is
known as the Berry-Tabor conjecture [49].

1.2.3 New perspective on quantum chaos

Recently, quantum chaos has been extensively investigated in the context of blackhole
physics and holographic duality [50, 51]. Progress in studies of the black hole information
problem based on quantum information theory [52–55] has led to another characterization of
quantum chaos called information scrambling. Information scrambling indicates a spreading of
localized quantum information. We expect that localized information spreads over the entire
system as time increases, and becomes more nonlocal by chaotic dynamics than by nonchaotic
dynamics. In fact, several numerical studies [56–59] have shown that information is almost
maximally delocalized at late times in nonintegrable systems but not in integrable systems.
The aforementioned features of quantum chaos, such as the ETH and the BGS conjecture, are
related to properties of a Hamiltonian, whereas information scrambling focuses on a dynamical
and information-theoretic aspect of quantum chaos.

There are several measures quantifying delocalized information. Here, we look at scrambling
in a spin system through the growth of the number of involved elementary operators [50]. We
consider the dynamics of a simple operator A acting on a single site in the Heisenberg picture.
The time-evolved operator at time t is given by A(t) := eiHtAe−iHt. Even if A(0) = A is
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local, A(t) is not local for t ̸= 0, which can be seen as follows. By expanding e−iHt in t, we
have

A(t) =
∞∑

m=0

(it)m

m!
[H, [H, . . . , [H,A] . . . ]], (1.8)

where [·, ·] represents the commutator. If H is represented as a summation of n-body
operators, [H,A] becomes an n-body operator. In general, a deeply nested commutator
[H, [H, . . . , [H,A] . . . ]] contains many-body operators acting nontrivially on all sites. At early
times, such higher-order terms in the right-hand side of Eq. (1.8) are negligible. However, the
higher-order terms become more dominant as time increases. This implies that A(t) itself is
a nonlocal and many-body operator.

We can quantify the nonlocality of A(t) by considering the squared commutator with another
local operator B:

CA,B(t) := d−1Tr([A(t), B]†[A(t), B]). (1.9)

If A does not have overlap with B, i.e., [A,B] = 0, the squared commutator CA,B(t) vanishes
at t = 0. On the other hand, if A(t) becomes nonlocal, CA,B(t) takes a nonzero value. In a
typical case, A and B are set to Pauli operators. In that case, the squared commutator can
be represented as

CA,B(t) = 2 − 2Re(FA,B(t)) (1.10)

with FA,B(t) := d−1Tr[A(t)BA(t)B]. The four-point correlation function FA,B(t) is called the
out-of-time-ordered correlator (OTOC), because it has the unusual time-ordering. The OTOC
was first investigated by Larkin and Ovchinnikov [60] in a study of disordered superconductors
and has received attention again as a measure of scrambling and also a quantum version of
the butterfly effect [50,51]. In particular, it has been conjectured that the rate of exponential
decay of the OTOC is a quantum counterpart of the Lyapunov exponent, and the maximally
chaotic quantum systems are related to gravity theories by the holographic duality [61, 62].
We review information scrambling and the OTOC in more detail in Chapter 2.

1.3 Experiments of isolated quantum systems
As mentioned above, the recent interest in nonequilibrium quantum dynamics has been

motivated by experimental realizations of isolated quantum many-body systems. The de-
velopment of experimental technologies has provided highly controllable quantum systems,
such as ultracold atoms [12,13], trapped ions [14,15], and superconducting qubits [16,17,63].
These artificial quantum systems allow one to study various quantum many-body phenomena
experimentally.

18



As a remarkable example, we review an experiment of thermalization by Trotzky et al. [18].
They observed relaxation to thermal equilibrium under unitary time evolution by using ultra-
cold atoms. They trapped 87Rb atoms in a one-dimensional optical lattice, which is described
by the Bose-Hubbard model with a harmonic potential:

HBH := −J
∑

j

(b†
jbj+1 + h.c.) + U

2
∑

j

nj(nj − 1) + K

2
∑

j

j2nj , (1.11)

where b†
j and bj are the creation and annihilation bosonic operators at site j, and nj := b†

jbj

is the particle-number operator. They initially prepared a nonequilibrium state where ev-
ery even site is occupied by an atom, while every odd site is empty, giving the initial state
|ψ(0)⟩ = |0, 1, 0, 1, . . .⟩. Then, a quench is performed by changing the depth of the poten-
tial, and the system evolves following the Schrödinger equation. By changing the depth of
the potential again, they measured the local density of atoms. They reported that the lo-
cal density nodd in the odd sites fluctuates in time, and eventually relaxes to a stationary
value. In particular, the stationary value is nodd ≈ 0.5, which implies that the system is in
thermal equilibrium. They also performed numerical simulations by using the time-dependent
density-matrix renormalization group (t-DMRG) [64], and confirmed that the experimental
results agree with simulations of unitary dynamics generated by the Bose-Hubbard Hamilto-
nian (1.11). From this consistency, their experiment is regarded as a direct demonstration of
thermalization in an isolated quantum system.

Non-ergodic quantum systems, which do not exhibit thermalization, have also been realized
in experimental systems. For example, Kinoshita et al. [65] performed a cold-atom experiment
showing the non-thermalizing behavior in a near-integrable system, known as the quantum
Newton’s cradle. A classical Newton’s cradle is a system with a series of suspended balls
and is often used to demonstrate the conservation of momentum. They made a quantum
mechanical Newton’s cradle consisting of around 40 to 250 87Rb atoms. The atoms are trapped
in an anharmonic potential, and they measured the momentum distribution. They reported
that the momentum distribution relaxes to a stationary distribution, but does not equal the
thermal distribution. This is because their system is approximated by the integrable Lieb-
Liniger model [66], and an integrable system never thermalizes because of the presence of local
conserved quantities.

1.4 Organization of this thesis and the summary of the results
This thesis is organized as follows. Chapters 2, 3, and 4 are devoted to a review of funda-

mental concepts related to our study. In Chapters 5, 6, and 7, we describe our main results.
In Chapter 2, we review how thermalization can be formulated in quantum mechanics and

how the ETH explains thermalization of isolated quantum systems. We also review the entan-
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glement structure of random thermal pure states. In Chapter 3, we investigate the possibility
of work extraction from a quantum state and introduce the concept of passivity, which is re-
lated to our study in Chapter 5. In Chapter 4, we review the details of information scrambling
and the OTOC. Moreover, we introduce unitary k-designs, which describes pseudorandom uni-
tary dynamics and gives an information-theoretic meaning of the OTOC. These concepts are
related to our second study discussed in Chapters 6 and 7.

In Chapter 5, we address our first question: Is it possible to extract work from a single
energy eigenstate of a quantum many-body system? This question is closely related to the
validity of the second law of thermodynamics for individual eigenstates and the applicability
of conventional thermodynamics and statistical mechanics for quantum many-body systems.
As a reasonable analogy to the ETH, we expect that the second law is valid at the level of a
single energy eigenstate. To confirm this expectation, we calculate the average work extracted
from individual energy eigenstates by using numerical exact diagonalization and show that
work extraction is impossible from any energy eigenstate of nonintegrable systems. This
result brings us to a conjecture, named the eigenstate second law, stating that all the energy
eigenstates satisfy the second law. Our numerical result implies that the eigenstate second
law is true in nonintegrable systems, but not in integrable systems. We analytically show
that these results can be derived from the ETH for a nonlocal operator describing the final
energy after a quench. To complement our numerical result, we prove the weaker version of the
eigenstate second law stating that work extraction is impossible from most energy eigenstates.

Chapter 6 is devoted to the second question: is it possible to explain various symptoms
of quantum many-body chaos in a unified manner in terms of the ETH? We address this
question by proposing the higher-order extension of the ETH named the k-ETH, where an
integer k represents the order of the randomness. Roughly speaking, the k-ETH is the most
natural extension of the ETH to operators acting on the k-replicated system. We show that
the lowest-order ETH (1-ETH) reproduces the conventional ETH, and the second-order ETH
(2-ETH) is related to the steady value of the OTOC, i.e., information scrambling. In addition,
the k-ETH (k ≥ 2) is related to the entanglement entropy of individual energy eigenstates.
If the k-ETH is true, the kth Renyi entanglement entropy follows a universal system-size
dependence similar to that of thermal pure states. Moreover, we numerically verified that the
approximate 2-ETH for operators related to the OTOC and the entanglement entropy holds
for a nonintegrable spin model, but does not hold for an integrable model.

In Chapter 7, we introduce a new information-theoretic notion of quantum pseudorandom-
ness named partial untiary k-designs (PU k-designs) to bridge the k-ETH and unitary k-
designs. Roughly speaking, PU k-designs are pseudo-unitary k-designs, in which one focuses
on a limited number of operators of the k-replicated system, but not on all the operators.
The k-ETH implies that an ensemble given by the random-time sampling of corresponding
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Chapter 2
Eigenstate thermalization hypothesis

Chapter 3
Work extraction in quantum systems

Chapter 4
Information scrambling 
and unitary design

Chapter 5
Work extraction from
a single energy eigenstate

Chapter 6
Higher-order extension of the ETH

Chapter 7
Partial unitary designOur work

Review

Fig. 1.1 The structure of this thesis.

time-evolution operators is a PU k-design. To comprehend PU k-designs, we provide special
examples.

In Chapter 8, we summarize this thesis and give some remarks on future prospects. Fig-
ure 1.1 shows the relationship between the chapters of this thesis.
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Chapter 2

Eigenstate thermalization hypothesis

In this chapter, we review the ETH and its relevance to thermalization. The
ETH is a widely accepted mechanism of thermalization in isolated quantum systems
and states that all the energy eigenstates represent thermal equilibrium. We first
consider the definition of thermalization and introduce the ETH in Sec. 2.1. Then,
we explain the technical details of the ETH in Sec. 2.2. The weaker version of the
ETH is introduced in Sec. 2.3. We review recent numerical studies in Sec. 2.4. In
Sec. 2.5, we focus on the entanglement entropy of thermal pure states.

2.1 Thermalization in isolated quantum system
First of all, we consider the definition of thermalization in isolated quantum systems and

some theoretical results.

2.1.1 Definition of thermalization

Let us consider an isolated quantum system and denote its Hilbert space by H. We assume
that the dimension D of H is finite. We denote the Hamiltonian of the system by H. Its
eigenenergy and eigenstate are denoted by Ei and |Ei⟩, respectively. A typical example of the
system is a local-interacting spin model on a finite-dimensional lattice, such as the Ising and
XXZ models. We prepare an arbitrary pure state |ψ0⟩ as the initial state. |ψ0⟩ is often set
as a product state or a ground state of some Hamiltonian both in numerical simulations [23,
28, 67, 68] and experiments [18, 20]. In a quench experiment, H corresponds to a post-quench
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Hamiltonian. Then, the system evolves according to a unitary operator e−iHt, and the state
at time t is written as

|ψ(t)⟩ = e−iHt |ψ0⟩ =
D∑

i=1
e−iEitci |Ei⟩ , (2.1)

where we set ℏ = 1 and ci := ⟨Ei|ψ0⟩. As is seen from Eq. (2.1), |ψ(t)⟩ is a quasi-periodic
function of time, and it goes back to the initial state with an arbitrarily small error at infinitely
many times during the time evolution. This phenomenon is known as recurrence. The occur-
rence of many recurrences in classical Hamiltonian dynamics was proved by Poincaré, and its
quantum counterpart was established in Refs. [69,70]. Although the recurrence time typically
grows double-exponentially with respect to the system size, we need a careful treatment of
recurrences in the definition of thermalization under unitary time evolution.

Besides, the limited accessibility to quantum many-body systems is a crucial point to un-
derstand thermalization. Since the quantum state itself is always changing with time, one can
in principle track the time dependence of the state during the entire time evolution. However,
the full tomography of quantum states requires to measure a large number of observables,
including an exponentially large number of many-body observables. On the other hand, in
practice we can only access few-body observables, which is a small subset of the whole set
of observables of a many-body system. If one observes only a small number of observables,
different quantum states might look the same, because these states might give almost the
same expectation values as for measured observables. Correspondingly, as will be seen in the
following, thermalization can occur under unitary dynamics as long as one measures a handful
of observables.

Based on the above argument, we focus on an arbitrary fixed observable O and give a
(non-rigorous) definition of thermalization for O (see Ref. [9, 71, 72] for more rigorous defini-
tions). We say that O thermalizes starting from the initial state |ψ0⟩, if there exists a thermal
equilibrium value Oth such that

⟨O(t)⟩ := ⟨ψ(t)|O|ψ(t)⟩ ≈ Oth (2.2)

holds for almost all t ∈ (0,∞). Strictly speaking, there are some ambiguities in the above
definition, such as thermal equilibrium value and almost all. While the mathematically rigor-
ous treatment of these terms is a difficult task, their physical meanings are as follows. First,
Oth can be calculated by averaging in the microcanonical ensemble. If we restrict ourselves
to the purely phenomenological level without relying on statistical mechanics, we can expect
that Oth is determined only by some macroscopic parameters of the initial state (e.g., the
average energy and the particle number) for systems consistent with thermodynamics. The
term almost all aims at excluding the relaxation process at early times and recurrence times
during which ⟨O(t)⟩ deviates from the thermal equilibrium value.
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In this thesis, we do not go into the details of timescales of thermalization. To prove
that relaxation time is not extremely long under physically reasonable assumptions is an
important issue to establish the foundation of thermodynamics. This is still a challenging
problem because the relaxation time strongly depends on the choice of observables and the
initial state.

We divide the definition of thermalization (2.2) into the two parts for the convenience of
the following investigation. The first part is the relaxation of the expected value to a certain
stationary value O∞:

⟨O(t)⟩ ≈ O∞ for almost all t ∈ (0,∞). (2.3)

At this stage, we do note care about weather O∞ equals the thermal equilibrium value or not.
This part is called equilibration.

The second part is the equivalence of the stationary value and the thermal equilibrium
value:

O∞ ≈ Oth. (2.4)

In general, the left-hand side depends on the details of the initial state, while the right-
hand side is expected to depend only on macroscopic parameters. This cannot be proved
only from quantum mechanics, because Eq. (2.4) is violated for several types of systems
(e.g., integrable systems, localized systems, quantum many-body scar). Thus, we need some
additional assumptions such as the nonintegrability of the Hamiltonian to justify Eq. (2.4).

2.1.2 Equilibration

We first consider equilibration. As we already mentioned, complete equilibration, implying
that all the states approach a unique time-independent state in the limit of t → ∞, is impossi-
ble because of recurrences. However, the expectation value of a given observable can relax to
the effective stationary value between recurrences. Although this fact was already pointed out
in the pioneering works of thermalization [32–34,37–41], more refined results were obtained in
this century [73–78].

Here, we review a simple result about equilibration based on the arguments of Reimann [73]
and Linden et al. [74]. For simplicity, we assume that the Hamiltonian has no degeneracy.
This assumption is not essential and can be easily removed [76]. We also denote the matrix
elements of O in the energy eigenbasis as Oij := ⟨Ei|O|Ej⟩.

We first consider the long-time average of ⟨O(t)⟩ represented as O∞ := ⟨O(t)⟩, where the
overline denotes the long-time average: f(t) := lim

τ→∞
τ−1 ∫ τ

0 f(t)dt. We can explicitly calculate
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the long-time average as follows:

O∞ =
∑
i,j

[
ei(Ei−Ej)t

]
c∗

i cjOij =
∑

i

|ci|2Oii, (2.5)

where we used
[
ei(Ei−Ej)t

]
= δij . Moreover, we introduce the diagonal ensemble by

ρ∞ :=
∑

i

|ci|2 |Ei⟩ ⟨Ei| . (2.6)

Then, O∞ is rewritten as the average on the diagonal ensemble: O∞ = Tr[Oρ∞]. The diagonal
ensemble is diagonal in the energy eigenbasis and describes the effective stationary state of
a quantum system. We emphasize that the diagonal ensemble highly depends on the initial
state. Indeed, the number of parameters in the diagonal ensemble equals the dimension of the
Hilbert space d, which grows exponentially with the system size. This is contrastive to the
microcanonical and Gibbs states, which has only a few parameters. In the next subsection,
we investigate under which conditions one can identify the diagonal ensemble with thermal
equilibrium.

We can derive an upper bound of the temporal fluctuation of ⟨O(t)⟩ around the stationary
value. To obtain the bound, he made the following assumption regarding the spectrum of H.

Assumption 1 (Nonresonant condition). Ei − Ej = Ek − El ̸= 0 if and only if i = k and
j = l.

The nonresonant condition does not hold for noninteracting systems, while it is expected
to hold in nonintegrable systems. Reimann [73] and Linden et al. [74] proved the following
bound.

Proposition 1 (Equilibration [73, 74]). Under the nonresonant condition, the temporal fluc-
tuation of O is bounded from above as

σ(O)2 := [⟨O(t)⟩ −O∞]2 ≤ ∥O∥2

Deff
, (2.7)

where ∥O∥ is the operator norm of O, and Deff is the effective dimension of |ψ0⟩ defined by

Deff := 1∑
i |ci|4

. (2.8)

The effective dimension represents the effective number of energy eigenstates contained
in the initial state, and is a measure of coherence in the energy eigenbasis. The effective
dimension takes the minimum value Deff = 1 for a single energy eigenstate and the maximum
value Deff = d for the uniform superposition of the energy eigenstates : |ψmax⟩ :=

∑
i |i⟩ /

√
d.

When O is a local observable, the operator norm of O does not scale with the system size.
Thus, the temporal fluctuation of a local observable vanishes if the effective dimension diverges
in the thermodynamic limit.
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Proof. From the nonresonant condition, the temporal fluctuation is written as

σ(O)2 =
∑
i ̸=j

|ci|2 |cj |2 |Oij |2 , (2.9)

which is bounded as

σ(O)2 ≤ 1
2
∑
i ̸=j

|ci|4 |Oij |2 + 1
2
∑
i ̸=j

|cj |4 |Oij |2 (2.10)

≤
∑
i,j

|ci|4 |Oij |2 (2.11)

=
∑

i

|ci|4 (O†O)ii (2.12)

≤ ∥O∥2

Deff
, (2.13)

where we used |ci|2 |cj |2 ≤ (|ci|4 + |cj |4)/2 and (O†O)ii ≤
∥∥O†O

∥∥ ≤ ∥O∥2.

We note that there are several improvements to inequality (2.7) [75–78]. For example, Short
and Farrelly [77] have removed the nonresonant condition.

2.1.3 Thermality of stationary values

The foregoing theory of equilibration does not answer whether the diagonal ensemble is
thermal or not. We next address this question and derive the explicit condition of the Hamil-
tonian satisfying O∞ ≈ Oth. In the following analysis, we make two additional postulations
for the consistency with the phenomenological observation of thermodynamics.

We first assume that the initial state does not have macroscopic coherence with respect to
the energy eigenbasis. This implies that the initial state has a macroscopically definitive value
of the post-quench Hamiltonian, and its energy fluctuation is negligible. This postulation
originates from the fact that generating macroscopic superpositions is very difficult. Because
the ground states do not have macroscopic coherence in general [79–83], the standard setup
of quench experiments satisfies this postulation. Moreover, if the initial state does not have a
long-range order, the standard deviation of the the post-quench Hamiltonian is estimated as
∆E ∼

√
N [28]. If the above postulation is true, the initial state can be approximated as

|ψ0⟩ ≈ |ψ̃0⟩ :=
∑

Ei∈IE,∆E

ci |Ei⟩ , (2.14)

where IE,∆E := [E − ∆E,E] is the energy shell.
The second postulation is the stability of thermal equilibrium. It is believed that a small

perturbation to the initial state changes a microstate, but does not change the macroscopic
properties of thermal equilibrium. Let us consider a small perturbation to |ψ̃0⟩. The perturbed
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state is denoted as |ψ̃′
0⟩ :=

∑
Ei∈IE,∆E

c′
i |Ei⟩, where c′

i = ci + δci, and δci is an infinitesimal
complex number. From the normalization condition, δci must satisfy

∑
Ei∈IE,∆E

(ciδc
∗
i +

c∗
i δci) = 0. The stationary value of O for the perturbed state is given by

O′
∞ :=

∑
Ei∈IE,∆E

|c′
i|2Oii =

∑
Ei∈IE,∆E

(|cii|2 + ciδc
∗
i + c∗

i δci)Oii + O(δ2). (2.15)

From the second postulation, we expect that O∞ ≈ O′
∞ ≈ Oth. We thus have the following

two relations: ∑
Ei∈IE,∆E

|ci|2(Oii −Oth) ≈ 0, (2.16)

∑
Ei∈IE,∆E

(ciδc
∗
i + c∗

i δci)Oii ≈ 0. (2.17)

Since we can choose arbitrary {δci} under the normalization condition, Oii must be indepen-
dent of i from the second relation. From the first relation, we obtain

Oii ≈ Oth (2.18)

for all i. This implies that all the energy eigenstates give almost the same expectation value
of O as the thermal value. This condition of the energy eigenstates is called the ETH, as
introduced in Sec 1.1. We will explain a more precise statement of the ETH in Sec. 2.2.

We can immediately derive the principle of equal probability from the ETH as follows. The
microcanonical ensemble average of O is defined as

⟨O⟩MC := 1
dE,∆E

∑
Ei∈IE,∆E

Oii, (2.19)

where dE,∆E represents the number of the energy eigenstates in IE,∆E . Then, the ETH (2.18)
leads

⟨O⟩MC ≈ Oth, (2.20)

which is identical to the principle of equal probability. In summary, the principle of equal
probability is derived from the combination of the Schrödinger equation and the two pos-
tulates argued above. Hereafter, we totally identify the thermal equilibrium value to the
microcanonical average. Thus, the ETH (2.18) is rewritten as

Oii ≈ ⟨O⟩MC , (2.21)

which states that the eigenstate expectation value equals the microcanonical average for all
the energy eigenstates.
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2.2 Diagonal ETH and off-diagonal ETH
In this section, we consider a more precise statement of the ETH and its generalization to

the off-diagonal elements.

2.2.1 Diagonal ETH

The important point for precisely formulating the ETH is to consider the system-size scaling.
We denote the number of sites of the lattice by N , and the thermodynamic limit is given by
the limit of N → ∞ while keeping the lattice structure. Roughly speaking, the ETH states
that Oii = ⟨O⟩MC holds for all the energy eigenstates in the thermodynamic limit. We now
make this statement more rigorous by introducing a measure quantifying the deviation of the
eigenstate expectation value from the microcanonical average.

We focus on the following quantity:

I(O) := max
Ei∈IuN,∆E

|Oii − ⟨O⟩MC| , (2.22)

where IuN,∆E := [uN − ∆E, uN ], u is the energy density, and ∆E is the width of the energy
shell. Here, u and ∆E are the parameters specifying the energy shell and do not depend on
N . I(O) is a direct measure quantifying the deviation, and it was also used in numerical
studies [84]. By using the above measure, the ETH is formalized as follows. We say that the
ETH for O holds (with respect to the energy shell IuN,∆E) if

lim
N→∞

I(O) = 0. (2.23)

This is the precise formulation of Eq. (2.21). We note that Eq. (2.23) is sometimes called
the diagonal-ETH to avoid confusion with the off-diagonal ETH. In this thesis, however, we
simply say the ETH to refer to the diagonal-ETH (2.23).

Although the mathematical proof of Eq. (2.23) is not known, the ETH is believed to hold
in generic nonintegrable systems. In fact, there exists a large amount of numerical evidence
that the ETH is true for few-body observables, at least in the middle of the spectrum of
nonintegrable systems [28,35]. We note that nonintegrable systems can have a few conserved
quantities, such as the total magnetization and the total number of the particles. For such
systems, the ETH is valid only within each sector separated by the conserved quantities. We
explain the details of the numerical studies of the ETH in Sec. 2.4.

The ETH does not hold in integrable systems because of the existence of an extensive
number of few-body conserved quantities. However, Birol et al. [85] has shown that a weaker
version of the ETH holds even in integrable systems, which will be discussed in Sec. 2.3.
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2.2.2 Off-diagonal ETH

The (diagonal) ETH states that the diagonal matrix elements in the energy shell take
almost the same value. Another natural question is whether the off-diagonal matrix elements
have some common properties in thermalizing systems. Such universal behavior of the off-
diagonal matrix elements is known as the off-diagonal ETH [35, 72]. The off-diagonal ETH
is not related to the stationary value of an observable, but is related to the fluctuations and
correlation functions.

In order to derive the off-diagonal ETH, let us consider the diagonal matrix elements of the
square of a local observable O. From the completeness of the energy eigenbasis, we have

(O2)ii =
D∑

j=1
|Oij |2 . (2.24)

If the diagonal ETH is true for both O and O2, we have∑
j(̸=i)

|Oij |2 = (O2)ii −O2
ii ≈ ⟨O2⟩MC − ⟨O⟩2

MC . (2.25)

The left-hand side of Eq. (2.25) is the summation of the off-diagonal matrix elements of
O, and the right-hand side represents the thermal fluctuation of O. It is well known and
also rigorously provable that the thermal fluctuation of a local observable vanishes in the
thermodynamic limit [86,87]. Thus, we have

lim
N→∞

|Oij |2 = 0 for i ̸= j, (2.26)

which implies that the off-diagonal matrix elements vanish in the thermodynamic limit. Equa-
tion (2.26) is a representation of the off-diagonal ETH.

We can see that the off-diagonal ETH (2.26) ensures that the temporal fluctuation of O
vanishes in the thermodynamic limit. The temporal fluctuation of O is bounded from above
as

σ(O)2 ≤ max
i̸=j

|Oij |2
∑
i ̸=j

|ci|2 |cj |2 (2.27)

≤ max
i̸=j

|Oij |2 . (2.28)

If the off-diagonal ETH is true, the right-hand side of this inequality converges to zero in the
thermodynamic limit. That is, the off-diagonal ETH justifies that equilibration occurs for any
initial state, and the large effective dimension is not necessary for equilibration in this case.

2.2.3 Srednicki’s ansatz

On the basis of the random matrix theory, Srednicki [33,34] conjectured a universal form of
matrix elements in chaotic systems, which is known as the Srednicki’s ansatz. The Srednicki’s
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ansatz states that matrix elements of O in the energy eigenbasis takes the following form*1:

Oij = O(Ē)δij + d(Ē)−1/2fO(Ē, ω)Rij . (2.29)

Here, Ē := (Ei + Ej)/2, ω := Ei − Ej , and d(Ē) is the number of the energy eigenstates in
the energy shell around energy Ē. O(Ē) is a smooth function depend only on Ē, fO(Ē, ω) is
a smooth function of Ē and ω, and Rij is a random complex variable distributed according to
the Gaussian probability with zero mean and unit variance. In most cases, there exists ω∗ > 0
independent of N such that the function fO(Ē, ω) is almost constant for ω < ω∗ and decays
exponentially for ω > ω∗.

The Srednicki’s ansatz (2.29) includes the diagonal ETH and the off-diagonal ETH. If
Eq. (2.29) holds, the microcanonical average of O at energy Ē can be rewritten as

⟨O⟩MC = 1
d(Ē)

∑
Ei∈IĒ,∆E

O(Ei) ≈ O(Ē), (2.30)

where we used the smoothness of O(Ē). Thus, Eq. (2.29) implies that Oii ≈ ⟨O⟩MC, i.e.,
the diagonal-ETH. Because the factor d(Ē)−1/2 decays exponentially with the system size,
Eq. (2.29) implies that the off-diagonal elements vanish in the thermodynamic limit, which is
equivalent to the off-diagonal ETH in the aforementioned form.

2.3 Weak ETH
Although integrable systems do not satisfy the ETH, Biroli et al. [85] found that a weaker

version of the ETH holds in these systems. The weaker version of the ETH states that most
of the energy eigenstates represent thermal equilibrium. This is often referred to as the weak
ETH. Although the original ETH (2.23) prohibits the existence of any non-thermal energy
eigenstate, the weak ETH allows the existence of a small number of non-thermal energy
eigenstates whose ratio against the number of all eigenstates vanishes in the thermodynamic
limit.

To give the precise statement of the weak ETH, we consider the variance of diagonal matrix
elements in the energy shell:

∆(O)2 := 1
duN,∆E

∑
Ei∈IuN,∆E

(Oii − ⟨O⟩MC)2. (2.31)

We say that the weak ETH for O holds if

lim
N→∞

∆(O) = 0. (2.32)

*1 The Srednicki’s ansatz (2.29) is not a mathematically rigorous statement, because the left-hand side of
Eq. (2.29) is not a stochastic variable, while the right-hand side is a stochastic variable.
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By applying the Chebyshev inequality to Eq. (2.32), we can show that most of the energy
eigenstates satisfy ⟨Ei|O|Ei⟩ ≈ ⟨O⟩MC. Alba [88] has numerically shown that ∆(O) decays
polynomially with the system size for integrable systems: in particular, ∆(O) ∝ N−1/2 for
integrable one-dimensional XXZ model. Moreover, the weak ETH has been proved for general
translational invariant systems including integrable systems in Ref. [89], and a later work [87]
proved that the following tighter bound

∆(O)2 ≤ cN−1+δ (2.33)

holds for sufficiently large N , where c and δ are arbitrary positive constants.
Furthermore, Mori [90] proved the upper bound of the ratio of athermal eigenstates based

on the large deviation analysis [9, 91]. The large deviation analysis is a more direct approach
than considering the variance (2.31) to investigate the weak ETH. To formulate it, let us
consider the number of the athermal eigenstates

dout
ϵ :=

∑
Ei∈IuN,∆E

θ(|Oii − ⟨O⟩MC| > ϵ), (2.34)

where θ is the step function and ϵ > 0 is an arbitrary threshold. The ETH implies that
dout

ϵ → 0 as N → ∞, while the weak ETH is expressed as dout
ϵ /duN,∆E → 0. Mori [90] proved

the following bound

dout
ϵ

duN,∆E
≤ e−γ(ϵ)N (2.35)

with γ(ϵ) > 0 for any local operator. This bound implies that the ratio of athermal eigenstates
decays at least exponentially with N .

2.4 Numerical studies of the ETH
In this section, we review previous studies of numerical verification of the ETH. Rigol et

al. [28] reported the first clear evidence of the ETH in a model related to an ultracold atomic
system. They investigated hardcore bosons on an asymmetric two-dimensional lattice with
21 sites and calculated the momentum distribution by using exact numerical diagonalization.
They showed that the eigenstate expectation value of the zero momentum occupation number
does not change much with the label of the energy eigenstate in the nonintegrable case. In
particular, the expectation values are almost identical to the microcanonical average. Thus,
they concluded that the ETH holds for their model, and the ETH is the most plausible scenario
for thermalization in ultracold atomic systems. After their seminal work, the ETH has been
verified in the various nonintegrable models listed below.
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Spin system
• 1d Ising model with transverse and longitudinal fields [38,92–94]
• 2d Ising model with transverse field [95–97]
• 1d XXZ model with next-nearest-neighbor interaction [98–101]
• 1d XXZ model with (weak) random magnetic field [102,103]
• 1d XXZ model with harmonic potential [104]
• 1d XXZ-ladder model [104–106]
• Rokhsar-Kivelson model (quantum dimer model) [107]

Fermionic system
• 1d Fermi-Hubbard model [108,109]
• 1d spinless fermions with nearest and next-nearest hopping and repulsion [110–112]
• Holstein polaron model (electron-phonon coupling model) [113]
• Sachdev-Ye-Kitaev (SYK) model (Majorana fermions with disordered, long-range, and

four-body interactions) [114,115]
• Supersymmetric SYK model [116]

Bosonic system
• 1d Bose-Hubbard model [27,104,117]
• 1d hardcore bosons with nearest and next-nearest hopping and repulsion [84,92,118]
• 1d hard-core bosons with dipolar interaction trapped in a harmonic potential [119]
• 2d hardcore bosons with nearest-neighbour repulsion [28]

2.4.1 Finite-size scaling

Beugeling et al. [104] have numerically examined the system-size dependence of the deviation
from the exact ETH in integrable and nonintegrable models. They calculated the variance
∆(O)2 of the eigenstate expectation values defined by Eq. (2.31) for three one-dimensional
models: the spin-1/2 XXZ ladder model, the spin-1/2 XXZ model in a harmonic potential,
and the Bose-Hubbard model. These models allow one to tune the integrability and do not
have any local conserved quantity except for the total energy and the total magnetization (the
number of bosons) in the nonintegrable cases. The authors found that the variance decays as
∆(O)2 ∝ d−1 with the dimension of the energy shell d for several few-body observables in the
case of nonintegrable parameters far from the integrable point. The d−1 behavior is consistent
with the prediction of random matrix theory and the Srednicki’s ansatz (2.29). On the other
hand, the polynomial decay rate α of ∆(O)2 ∝ d−α is very small near the integrable point.

Alba [88] investigated the system-size dependence of ∆(O)2 in an integrable system and
showed the validity of the weak ETH (2.32). He focused on the one-dimensional spin-1/2 XXX
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n sites N-n sites

Fig. 2.1 Bipartition of the system into subsystems X and X̄.

model, which is exactly solvable by the Bethe ansatz. The energy eigenstates were numerically
constructed by using the Bethe ansatz solution for the chain sizes N = 20, 40, 80, 160, which
is much larger than the accessible size of the exact numerical diagonalization. He calculated
reduced density operators of energy eigenstates on a local region and showed that the variance
of reduced density operators decays as N−1. This is the same behavior as noninteracting
models [85], but is contrastive to the d−1 behavior observed in nonintegrable systems.

2.5 Entanglement entropy
In the previous sections, we focused on observables represented as Hermitian operators act-

ing on the Hilbert space. Here, we focus on entanglement, which is not straightforwardly
represented by Hermitian operators. Entanglement is a resource of quantum information
processing when operations are restricted to local quantum operations and classical commu-
nication (LOCC) [120].

Entanglement entropy is a standard measure of bipartite entanglement, which is defined as
follows. Let divide the entire system into two subsystems X and X̄ as illustrated in Fig. 2.1.
We denote the reduced state of a pure state |ψ⟩ on the subsystem X by ρX := TrX̄ [|ψ⟩ ⟨ψ|].
Then, entanglement entropy on X is defined as the von Neumann entropy of the reduced state

S(X) := −Tr[ρX log ρX ], (2.36)

and S(X̄) is defined in the same manner. We note that S(X) = S(X̄) holds for any bipartition,
and 0 ≤ S(X̄) ≤ log dX , where dX is the dimension of the Hilbert space on X. Over the
last two decades, entanglement entropy has been widely used to study quantum many-body
systems in various fields of physics, ranging from condensed matter physics [121] to high-energy
physics [122].

2.5.1 Entanglement in quantum many-body systems

In condensed matter physics, entanglement entropy of the ground state has been studied to
characterize non-trivial quantum phases and quantum criticality [121]. It is well known that
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the entanglement entropy of the ground state of a gapped local Hamiltonian obeys the area
law [123]. The (strict) area law states that the entanglement entropy scales with the size of
the boundary region of X. If we take X as an m-dimensional hyper-square region with length
ℓ := n1/m, the area law is represented as

S(X) = a1ℓ
m−1 + a2ℓ

m−2 + · · · . (2.37)

The area law of the gapped ground state is a consequence of the locality of Hamiltonian. The
rigorous proof of the area law of the gapped ground state (and low energy eigenstates) has
been established for general one-dimensional systems [124,125]

On the other hand, one-dimensional critical systems show a logarithmic violation of the
area law*2. The (1+1)-conformal field theory (CFT) describes the effective theory of one-
dimensional critical systems. From this fact, Calabrese and Cardy [127, 128] showed that the
entanglement entropy of the ground state follows the following universal scaling:

S(X) = c

3
log ℓ

a
+ c′, (2.38)

where c is the central charge of the CFT, a is the short-distance cutoff, and c′ is a non-universal
constant which cannot be determined by the CFT.

In contrast to the ground state, excited states (except for low-lying states) generally obey
the volume law instead of the area law [121].

2.5.2 Page curve

Random pure states are highly entangled because they do not have any local structure.
Correspondingly, the entanglement entropy of a random pure state takes an almost maximum
value. Page [129] calculated the entanglement entropy of a random pure state drawn from the
uniform measure, and conjectured that the averaged entanglement entropy is given by

SPage(X) =
dX dX̄∑

k=dX̄ +1

1
k

− dX − 1
2dX̄

(2.39)

≈ log dX − dX

2dX̄

. (2.40)

Equation (2.39) was proved later by several authors [130, 131]. When the system consists of
N qubits, Eq. (2.40) can be rewritten as

SPage(X) ≈ n log 2 − 2−N+2n−1, (2.41)

*2 Although it had been believed that the area law could be violated by at most log ℓ even in critical systems,
Movassagh and Shor [126] showed its counterexample by constructing an exactly solvable one-dimensional
spin model which violates the area law by

√
ℓ.
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0

Fig. 2.2 The subsystem-size dependence of entangle entropy averaged over uniform ran-
dom states. When n is small, SPage(X) follows the volume law and takes almost the
maximum value. On the other hand, it deviates from the maximum value at n = N/2.

where n is the number of qubits in X. Thus, random pure states obey the volume law. This
result also implies that the deviation of the entanglement entropy from the maximum value
is negligible for n ≪ N/2, but becomes non-negligible value 1/2 at n = N/2. Equation (2.41)
as a function of n is called the Page curve.

From the viewpoint of statistical physics, uniform random states of the entire Hilbert space
are regarded as random states at infinite temperature. This is one of the manifestations of
the typicality in statistical mechanics [132, 133]. Thus, the Page’s result is interpreted as the
typical structure of entanglement at infinite temperature. This raises a question: how is the
Page curve at infinite temperature (β = 0) connected to the low-entanglement structure of
the ground state (β = ∞)? In other words, what is the structure of the entanglement of
finite-temperature pure states? Recently, some groups [134–136] answered this question by
using random pure states describing thermal equilibrium at finite temperature.

Nakagawa et al. [134,135] derived an analytic formula of the entanglement entropy of ther-
mal pure states. They focused on canonical-type random states introduced by Sugiura and
Shimizu [137]. It is parameterized by inverse temperature β ∈ (−∞,∞) and defined as

|ψ(β)⟩ := N −1e−βH/2 |ψ⟩ , (2.42)

where |ψ⟩ is a uniform random state, and N 2 := ⟨ψ|e−βH |ψ⟩ is a normalized constant. At
β = 0, it reproduces a random state investigated by Page, and it becomes the ground state of
H in β → ∞. It was shown that these states reproduce the expectation value of the canonical
ensemble with a probability close to one.

Then, Nakagawa et al. obtained the following formula of the average entanglement entropy
of |ψ(β)⟩:

Sβ(X) = STD(X) − γX . (2.43)
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Here, STD(X) is the thermodynamic entropy of subsystem X given by

STD(X) := β(⟨HX⟩β − FX(β)), (2.44)

where HX is the local Hamiltonian on subsystem X, and FX(β) := β−1 log Tr[e−βHX ] is the
free energy on X. γX is a complicated function which depends on the partition functions of
X and X̄, and also depends on the interaction Hamiltonian between X and X̄. Although
the Page curve does not depend on the Hamiltonian, Eq. (2.43) depends on the Hamiltonian,
where the leading contribution comes through the partition function. The existence of the term
STD(X) is very natural, because |ψ(β)⟩ is locally indistinguishable from thermal equilibrium.
The second term on the right-hand side of Eq. (2.43) is a finite-temperature counterpart of
the Page correction. In the limit of β → 0, Eq. (2.43) reproduces the Page curve (2.41). In
this sense, Eq. (2.43) is an extension of the Page curve to finite temperature.

In addition, a similar formula to Eq (2.43) was obtained by Lu and Grover [136]. They
focused on another class of thermal pure states, called ergodic bipartite (EB) states [138]. The
EB state is parameterized by total energy E and is defined as

|ψE⟩ :=
∑

Ei(X)+Ej(X̄)∈(E−δ,E+δ)

cij |Ei(X)⟩ |Ej(X̄)⟩ , (2.45)

where |Ei(X)⟩ and |Ej(X̄)⟩ are the energy eigenstates of subsystem X and X̄, respectively,
δ > 0 is the width of energy range, and cij is a random complex number drawn uniformly
from a unit hypersphere. The EB state can be regarded as a thermal state in the sense that it
reproduces the microcanonical average for local observables. We remark that Refs. [134–136]
also investigated the kth Rényi entanglement entropy and derived the corresponding extension
of the Page curve.
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Chapter 3

Work extraction in quantum systems

In this chapter, we consider work extraction from quantum systems and explain
the seminal results obtained by Pusz, Woronowicz, and Lenard. They obtained the
complete characterization of work-extractable quantum states. As a preliminary,
we review the second law and work extraction in conventional thermodynamics in
Sec. 3.1. We present the standard setup for work extraction in quantum mechanics
in Sec. 3.2. We review the notion of passivity and some related results in Sec 3.3,
which is the main part of this chapter.

3.1 Second law and work extraction in thermodynamics
In the previous chapter, we investigated the relaxation process toward thermal equilibrium

in isolated quantum systems. Relaxation to thermal equilibrium is one of the fundamental
principles of thermodynamics. On the other hand, the second law is another fundamental
principle and is closely related to the irreversibility of macroscopic phenomena. The second
law characterizes transitions between different thermal equilibrium and determines whether a
given thermodynamic transition is possible by a macroscopic operation. There exist several
different ways to express the second law [139]. For example, Clausius’s principle states that
heat never flows spontaneously from a colder bath to a hotter one, and Carnot’s principle
states that all heat engines between two heat baths are equal or less efficient than the Carnot
engine. Although these formulations of the second law seem very different at a glance, these
are equivalent under reasonable assumptions made in thermodynamics. Establishing these
principles and their equivalence based only on microscopic dynamics is still a central issue in
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Thermodynamic system External apparatus

Fig. 3.1 A typical example of work extraction in thermodynamics. The total system
consists of a thermodynamic system and a mechanical apparatus. Although the system
couples to some environments in general, we assume that the system is surrounded by
adiabatic walls and exchanges the energy only with the apparatus.

statistical physics.
Here, we review a thermodynamic description of work extraction. Let us consider a single

thermodynamic system, such as gas confined in a container with a movable piston (see Fig. 3.1)
and assume that gas is in its thermal equilibrium. Then, there is an external apparatus that
can control the macroscopic parameters of the system, such as the position of the piston. In
conventional thermodynamics, work is defined as the energy transfer between the system and
the apparatus. If the system is not in contact with any environment, extracted work equals
the energy change in the system. The second law can be expressed only with the use of work
as follows: No work can be extracted from thermal equilibrium during any cyclic operation
by the external apparatus. This formulation of the second law is often called the Kelvin-
Planck principle or Thomson’s principle (Thomson is the birth name of Kelvin). In contrast
to heat and entropy, work is relatively easy to deal with in microscopic physics because it can
be defined as a purely mechanical quantity. The Kelvin-Planck formulation only uses work,
whose simplicity is an advantage over other formulations of the second law.

3.2 Quantum mechanical setup for work extraction
We formulate work extraction based on quantum mechanics. As in Chapter 2, we consider

an isolated quantum system, where the time evolution is described by the Scrödinger equation.
In contrast to Chapter 2, we now consider a time-dependent Hamiltonian to deal with the effect
of an external apparatus.

We regard the thermodynamic system as a quantum system and denote its Hamiltonian by
H =

∑d
i=1 Ei |Ei⟩ ⟨Ei|. For simplicity, we assume that the Hamiltonian has no degeneracy.

The system is thermally isolated while exchanges mechanical energy with an external appara-
tus. The apparatus controls an external time-dependent potential V (t). As we only consider
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cyclic processes in the present setup, we assume that the potential vanishes before t = 0 and
after t = τ . Thus, the total Hamiltonian is given by

H(t) = H + V (t), (3.1)

which satisfies H(0) = H(τ) = H. We consider an arbitrary initial state that can be a mixed
state, which is denoted as ρ. The time evolution of the system is described by a unitary
operator U := T exp(−

∫ τ

0 H(t)dt), where T is the time-ordering operator.
Let us formulate work extracted from the system. Since we assumed that there is no other

object than the system and the apparatus, the energy decrease of the system equals the energy
gain of the apparatus. Accordingly, we define the (average) extracted work W (ρ, U) from the
system as the change in the average energy:

W (ρ, U) := Tr[Hρ] − Tr[HUρU†]. (3.2)

Here, W = 0 means that work is not extracted, while W > 0 means that a positive amount
of work is extracted. Our question is whether the extracted work can be positive by some
unitary operations, in other words, whether the average energy of the system can be lowered
by some unitaries.

Finally, we remark a small problem of the above formulation. The above formulation of
work in quantum systems is very common in the community of statistical mechanics [140].
For example, the generalization of the Jarzynski equality [142] to quantum systems is studied
with this formulation [143,144]. However, this conventional formulation is sometimes regarded
as not fully quantum and called semi-classical because the apparatus is implicitly treated as
a classical object. To overcome this problem, we need to treat quantum mechanically both
of the system and the apparatus [145, 146]. In the fully quantum formulation, the composite
system evolves according to a time-independent Hamiltonian composed of the individual free
Hamiltonians of the system and the apparatus and the interaction Hamiltonian between them.
In this formulation, the dynamics of the system itself is not necessarily unitary and is described
by a completely positive and trace-preserving (CPTP) map in general. Recently, Hayashi and
Tajima [145] have established a precise formulation of the fully quantum work extraction
based on quantum measurement theory, where the semi-classical formulation is realized as an
approximation of the fully quantum formulation.

3.3 Passivity
Let us move to review the seminal works by Pusz, Woronowicz, and Lenard [147, 148].

They introduced a notion of passivity in the studies of deriving the Gibbs state from the first
principles. A passive state is a quantum state which does not allow one to extract positive
work by any cyclic unitary operation. The formal definition is as follows.
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Definition 3.1 Passive state [147,148]

A quantum state ρ is passive for a given Hamiltonian H, if W (ρ, U) ≤ 0 holds for any
unitary operator U .

By denoting the maximum extractable work by Wmax(ρ) := maxU W (ρ, U), the definition
of the passive state can be rephrased as Wmax(ρ) = 0. We note that Wmax(ρ) is sometimes
called ergotropy [149, 150] (“ergo” means “work”, and “tropy” means “transformation”). The
ground state is passive, which is obvious from its definition as the minimum energy state.
Moreover, the passive states contain a much broader class of quantum states. Passivity was
first introduced by Pusz and Woronowicz in the context of mathematical physics, and their
formulation is based on C∗-algebras. Afterward, it was translated into the standard notation
of statistical mechanics by Lenard. The concepts of passivity and ergotropy play a key role in
recent studies of quantum thermodynamics [151] and quantum communication [152].

We next consider the explicit form of the passive states. Pusz, Woronowicz, and Lenard
obtained the necessary and sufficient condition of the passivity. Their results are represented
as follows.

Theorem 3.1 Complete characterization of the passive states [147,148]

A quantum state ρ is passive with respect to H, if and only if it satisfies the following
two conditions:

1. ρ is diagonal in the energy eigenbasis of H, i.e., ρ =
∑

i pi |Ei⟩ ⟨Ei|.
2. The population of the energy eigenstate decreases with the eigenenergy, i.e.,

Ei > Ej ⇒ pi ≤ pj for all i and j. (3.3)

The first condition suggests that a passive state is a diagonal ensemble (2.6). Moreover,
the first condition implies that any non-zero coherence in the energy eigenbasis becomes a
resource of work. The second condition is shown schematically in Fig. 3.2.

The Gibbs state γβ := e−βH/Z(β) with non-negative inverse temperature β ≥ 0 is passive
because it obviously satisfies the above two conditions. This fact also can be proved from the
non-negativity of the relative entropy [141]. On the other hand, the microcanonical state is not
passive unless one takes the energy shell as IE := {Ei ≤ E}. In that case, the corresponding
microcanonical state

ρGMC(E) := 1
dE

∑
Ei≤E

|Ei⟩ ⟨Ei| . (3.4)

is called the generalized microcanonical state or the θ-ensemble. The generalized microcanon-
ical state is also a special case of the most energetic passive states [153], which is defined
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Fig. 3.2 Schematic representation of the second condition of Theorem 3.1.

by

ρ(k,l)(λ) := λ

k

k∑
i=0

|Ei⟩ ⟨Ei| + 1 − λ

k

l∑
i=0

|Ei⟩ ⟨Ei| (3.5)

with 0 ≤ λ ≤ 1. That is, the most energetic passive state is a mixture of two generalized
microcanonical states. An important property of the most energetic passive state is that it is
the unique passive state that has the maximum energy with a fixed von Neumann entropy.
More generally, any passive state can be represented as a mixture of generalized microcanonical
states.

The notion of passivity is very similar to the second law in the Kelvin-Planck formulation.
In this sense, theorem 3.1 is often regarded as a quantum mechanical derivation of the second
law. However, passivity and the second law are different in the following two points:

1. The second law focuses on only macroscopic cyclic operations, while all microscopic
operation is considered in the definition of passive states. Thus, passivity is a stronger
constraint than the second law.

2. The second law is formulated for only thermal equilibrium, while passive states contain
more general states but do not contain all the thermal states like thermal pure states.

These differences are indeed starting points of our main study in Chapter 5.

3.3.1 Proof of theorem 3.1

As mentioned above, Theorem 3.1 was first proved by Pusz and Woronowicz [147] by using
the techniques of C∗-algebras. Later, Lenard [148] obtained an elementary proof.

Here, we follow Lenard’s proof. The main part of the proof is to derive the explicit repre-
sentation of ergotropy. Let the spectral decomposition of ρ be given by ρ =

∑d
i=1 pi |ψi⟩ ⟨ψi|
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with p1 ≥ · · · ≥ pd. For a given unitary operator U , the final energy can be written as

Tr[HUρU†] =
d∑

i,j=1
Eipj |⟨Ei|U |ψj⟩|2 . (3.6)

We note that |⟨Ei|U |ψj⟩|2 is doubly stochastic, i.e.,
∑

i |⟨Ei|U |ψj⟩|2 =
∑

j |⟨Ei|U |ψj⟩|2 = 1.
The key of the proof is the Birkhoff-von Neumann theorem [154], which states that any doubly
stochastic matrix is a convex combination of permutation matrices. From the Birkhoff-von
Neumann theorem, we have

Tr[HUρU†] =
∑

π∈Sd

cπ

d∑
i=1

Eipπ(i), (3.7)

where Sd is the permutation group of d elements, and cπ is a non-negative variable satisfying∑
π∈Sd

cπ = 1. The minimum of
∑d

i=1 Eipπ(i) as a function of π ∈ Sd is achieved, when π

satisfies pπ(1) ≥ · · · ≥ pπ(d) for E1 ≤ · · · ≤ Ed [155]. Therefore, we have the following lower
bound:

Tr[HUρU†] ≥
d∑

i=1
Eipi. (3.8)

The equality of the above bound can be achieved by Umax :=
∑

i |Ei⟩ ⟨ψi|. Therefore, ergotropy
of ρ is given by

Wmax(ρ) = Tr[Hρ] −
d∑

i=1
piEi (3.9)

=
d∑

i=1
Eipj |⟨Ei|ψj⟩|2 −

d∑
i=1

Eipi. (3.10)

We now derive the necessary and sufficient condition of Wmax(ρ) = 0. If ρ satisfies two
conditions of Theorem 3.1, we can easily show that Wmax(ρ) = 0. We next show the converse
below. Since work is invariant under the shift of the energy spectrum, we can assume Ei > 0
without loss of generality. Thus, Wmax(ρ) = 0 is equivalent to the following condition:

d∑
j=1

|⟨Ei|ψj⟩|2 pj = pi (3.11)

for all i. This equality implies that we can take |ψi⟩ as |⟨Ei|ψj⟩|2 = δij , or equivalently,
|ψi⟩ = |Ei⟩ for all i. Therefore, we obtain ρ =

∑
i pi |Ei⟩ ⟨Ei| with p1 ≥ · · · ≥ pd. This

concludes the proof of Theorem 3.1.

42



Chapter 4

Information scrambling and unitary design

In this chapter, we review three information-theoretical concepts related to quan-
tum chaos: out-of-time-ordered correlator (OTOC), information scrambling, and
quantum pseudorandomness. In Sec. 4.1, we introduce the OTOC, which char-
acterizes the quantum butterfly effect. In Sec. 4.2, we discuss information scram-
bling, which is also a new characterization of chaos in quantum many-body systems.
Moreover, information scrambling is closely related to the randomness of dynamics.
Random unitary dynamics are also important in quantum information theory, and
approximation of random unitary dynamics is formulated as unitary k-design, as
explained in Sec. 4.3.

4.1 Out-of-time-ordered correlator (OTOC)
Recently, quantum chaos has attracted renewed attention in both gravity physics and sta-

tistical physics [50, 51]. The key is a new indicator called the out-of-time-ordered correlator
(OTOC), which is a four-point correlation function with unusual time-ordering. Although
quantum systems do not have the sensitivity to a small perturbation in the classical sense as
mentioned in Sec. 1.2, the OTOC provides another route to quantify the butterfly effect in
quantum systems. Roughly speaking, the OTOC is obtained by quantizing the definition of the
classical Lyapunov exponent (1.6). The OTOC was first proposed by Larkin and Ovchinnikov
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half a century ago [60]. They investigated the OTOC to describe the semi-classical behavior
of superconductivity. Recently, the OTOC was reexamined through a series of studies by
Shenker, Stanford, and Roberts [156–160].

For given Hermitian operators A and B, the (4-point) OTOC is defined as

FA,B(t) := Tr[A(t)B(0)A(t)B(0)ρ], (4.1)

where A(t) := eiHtAe−iHt is the operator in the Heisenberg picture. The fast decay of the
OTOC characterizes the quantum butterfly effect, and the relaxation of the OTOC to a small
value is related to information scrambling. In the context of gravity physics, the OTOC has
been used to investigate the holographic duality [51, 161, 162]. In the context of statistical
physics, it was shown that the OTOC detects equilibrium and dynamical quantum phase
transitions [163–166]

To understand how the OTOC is related to chaos, let us consider a single particle in a
one-dimensional system. As in Sec. 1.2, we denote classical particle’s position and momentum
by x and p, respectively, and focus on the trajectory (x(t), p(t)) with the initial condition
(x(0), p(0)) = (x0, p0). If the system is chaotic, ∂x(t)/∂x0 is expected to increase exponentially
with time:

∂x(t)
∂x0

∼ eλLt. (4.2)

By use of the Poisson bracket {f(x0, p0), g(x0, p0)} := (∂f/∂x0)(∂g/∂p0)−(∂f/∂p0)(∂g/∂x0),
the left-hand side of Eq. (4.2) is rewritten as ∂x(t)/∂x0 = {x(t), p0}. To obtain its quantum
counterpart, we replace the Poisson bracket with the commutator according to {x(t), p0} →
−i[x̂(t), p̂(0)]. If the semiclassical picture holds, the squared commutator grows as

Tr
(
−[x̂(t), p̂(0)]2ρ

)
∼ {x(t), p0}2 ∼ e2λLt. (4.3)

Thus, the early-time growth of the squared commutator characterizes the quantum butterfly
effect.

To consider more general quantum systems, we replace x̂ and p̂ by arbitrary Hermitian
operators A and B: We consider the following squared commutator

CA,B(t) := Tr
(
−[A(t), B(0)]2ρ

)
, (4.4)

which characterizes the commutativity between A(t) and B(0). We note that CA,B(t) = 0 if
A(t) and B(0) are commutative [A(t), B(0)] = 0. Roughly speaking, the squared commutator
quantifies how the initial perturbation induced by B affects the later measurement of A. The
squared commutator is related to the OTOC (4.1) as follows. Expanding the commutator, we
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have

CA,B(t) =Tr[A(t)B(0)2A(t)ρ] + Tr[B(0)A(t)2B(0)ρ]

− Tr[A(t)B(0)A(t)B(0)ρ] − Tr[B(0)A(t)B(0)A(t)ρ]. (4.5)

If A and B are unitary (e.g., if they are Pauli matrices), the first and second terms on the
right-hand side of the above equality become one, and CA,B(t) can be written as

CA,B(t) = 2 − 2Re[FA,B(t)]. (4.6)

This equality implies that the decay of the OTOC leads to the growth of the squared com-
mutator. Thus, we conclude that the fast decay of the OTOC characterizes the quantum
butterfly effect.

The OTOC plays an essential role in studies of gravity theory. From the semi-classical
description, one naively expects that the OTOC at early times scales as

FA,B(t) = 1 − ϵeλ̃Lt + · · · (4.7)

with ϵ > 0 and λ̃L > 0. Indeed, this description is correct for several field theories, and λ̃L

is regarded as the quantum Lyapunov exponent. The time t∗ , at which the OTOC deviates
from one, is called the scrambling time [156]. If Eq. (4.7) is true, scrambling time is given by
t∗ = λ̃−1

L log ϵ. In addition, Maldacena, Shenker, and Stanford [61] have conjectured an upper
bound on the quantum Lyapunov exponent:

λ̃L ≤ 2π/β, (4.8)

where β is the inverse temperature of the initial Gibbs state. This bound is called the
Maldacena-Shenker-Stanford (MSS) bound. Notably, the CFTs, which are holographically
dual to some gravity theories, saturate the MSS bound [61,62].

4.2 Information scrambling
In strongly-interacting systems, locally encoded quantum information spreads out by the

time evolution. After a certain time interval, information becomes nonlocal and cannot be
accessed by any local measurements. Such delocalization process of quantum information is
referred to as information scrambling, and a system that gives rise to information scrambling
is called a scrambler [50]. Information scrambling has been originally studied in the context
of the black hole information paradox [52–55], and has recently been discussed in condensed
matter physics as a new feature of chaotic quantum systems [59,167].

A general and rigorous mathematical definition of information scrambling has not been fully
established. In fact, there are several definitions of information scrambling. For example, the
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authors of Ref. [54] call the system scrambled, if the final state has the maximum amount of
entanglement for any subsystem smaller than the half of the entire system. Other studies [56,
57, 168] have used the tripartite mutual information to quantify delocalized information. Yet
other studies [167,169] have defined information scrambling by the decay of the OTOC. These
definitions are different at a glance, while they are related to each other, as shown below.

4.2.1 OTOC

In order to analyze more details of information scrambling, let us consider an operator A
acting on a single qubit in an N qubits system. Even if A(0) = A is a local operator at the
initial time, A(t) will become a nonlocal operator acting on many qubits at later times. In
other words, A(t) is not supported on local qubits but spreads over the entire system. This
spreading of the support represents the delocalization of the local operator.

We can quantify this delocalization by using the OTOC as follows. As a reference, we take
another local operator B(0) = B whose support does not overlap with that of A(0). Once A(t)
is delocalized, the support of A(t) overlaps with that of B(0). To quantify this overlap of the
supports, we consider the commutator of A(t) and B(0). The commutator [A(t), B(0)] is zero
at t = 0 by setting, it would become nonzero at later times. Thus, the squared commutator
CA,B(t) is a natural measure of the delocalization of A(t), i.e., CA,B(t) ≈ 0 if A(t) is localized,
and CA,B(t) ≫ 0 if A(t) is delocalized. If A and B are Hermitian and unitary, the time-
dependent part of the squared commutator CA,B(t) is equivalent to the OTOC as seen in
Eq. (4.6). This is the reason why the OTOC is often used to quantify the delocalization of
the operator.

From a different point of view, however, the OTOC does not perfectly characterize scram-
bled information, because its definition is not directly related to any information-theoretic
quantity, such as entanglement and entropy. In addition, the OTOC depends on the choices
of operators A and B. From these viewpoints, the relaxation of the OTOC to the small
value, (or equivalently, the saturation of the squared commutator at the significant value) is
called operator scrambling [170], operator spreading [171], or operator growth [172] rather than
information scrambling.

4.2.2 Tripartite mutual information

We next consider information scrambling from an information-theoretic viewpoint. Fol-
lowing Ref. [168], we introduce N ancilla qubits, and set the initial state as the maximally
entangled state between target qubits and ancilla qubits, i.e., N EPR pairs:

|ψ(0)⟩ = |EPR⟩⊗N :=
(

|0⟩t |0⟩a + |1⟩t |1⟩a√
2

)⊗N

. (4.9)
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Fig. 4.1 Setup of Ref. [168]. There are N target qubits and additional N ancilla qubits.
The ancilla (target) qubits are partitioned into two regions A and B (C and D). The
vertical lines represent collections of qubits in individual regions, and U represents the
time evolution of the system.

In this setup, we can say that information is initially localized in individual EPR pairs. The
unitary operator U acts only on the target qubits, and the finial state is represented as
|ψ(t)⟩ = (U ⊗ I) |ψ(0)⟩. The ancilla qubits are partitioned into two groups A and B, and the
target qubits are partitioned into C and D, as shown in Fig. 4.1. The numbers of qubits on
A,B,C,D are denoted as a, b, c, d, respectively (a < c, b > d, a+ b = c+ d = N).

Our aim is to quantify how much initial information is delocalized by U . We use mutual
information to quantify the correlation between the two regions. For example, the mutual
information between A and C is defined by

I(A : C) := S(A) + S(C) − S(AC), (4.10)

where S(A), S(C), S(AC) are the entanglement entropies of A,C,AC, respectively. In this
setup, I(A : B) = I(C : D) = 0 holds regardless of the choice of U . Information scrambling
states that one cannot extract information of the initial state by any local measurements on
the final state. This implies that the mutual information between A and C is small I(A :
C) ≈ 0, when U is a scrambler. Similarly, we have I(A : D) ≈ 0. On the other hand,
the mutual information between A and CD represents the total information, which becomes
I(A : CD) = 2a log 2 because unitary dynamics preserve the total information. To quantify
delocalized information between C and D, we consider the following quantity:

I3(A : C : D) := I(A : C) + I(A : D) − I(A : CD), (4.11)
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which is the tripartite mutual information. If the system is scrambled, the tripartite mutual
information takes a highly negative value: I3(A : C : D) ≈ −a log 2. On the other hand,
it vanishes if the system is not scrambled. In fact, I3(A : C : D) = 0 holds for U = I

because I(A : C) = 2a log 2 and I(A : D) = 0 for EPR pairs (4.9). Therefore, the tripartite
mutual information (4.11) is a natural measure of information scrambling. We note that
several numerical studies [56, 57] showed that the tripartite mutual information saturates at
around the minimum value in nonintegrable systems. These results suggest that information
scrambling is also a characteristic of chaotic dynamics.

Finally, we remark on the relationship between the tripartite mutual information and the
OTOC. We go back to the N qubit system and consider the OTOC at infinite temperature.
In particular, we consider the following operator-averaged OTOC:

F̃A,D(t) := 1
4a+d

∑
i,j

⟨Di(t)Aj(0)Di(t)Aj(0)⟩ , (4.12)

where the summation is taken over a complete basis of operators acting on A and that on D.
In Ref. [168], it has been proved that a small value of the averaged OTOC implies that the
tripartite mutual information is highly negative. More precisely, by defining δ := (F̃A,D(t) −
F̃min)/F̃min with F̃min being the minimum value of the averaged OTOC, the tripartite mutual
information is bounded as

I3(A : C : D) ≤ −2a log 2 + 2 log(1 + δ). (4.13)

This result implies that a small value of the averaged OTOC is a sufficient condition of
information scrambling.

4.3 Unitary design
Randomness is a fundamental concept in various fields of physics. For example, quan-

tum chaotic systems are believed to have universal features described by random matrix
theory [48,173], and randomness is a key resource of quantum information protocols and com-
putation [174,175]. In quantum information theory, there are two types of randomness, i.e., a
random state and a random operation. Here, we focus on the latter.

4.3.1 Haar random unitary (HRU)

We present a mathematical definition of a uniformly random unitary operator. The uniform
measure on the unitary group is known as the Haar measure. Formally, the Haar measure is
defined as the unique measure satisfying∫

dU = 1,
∫
f(V U)dU =

∫
f(UV )dU =

∫
f(U)dU, (4.14)
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for all continuous functions f and for all unitary operators V . We refer to random unitaries
drawn according to the Haar measure as the Haar random unitary (HRU), and denote the
ensemble of the HRU by H. The HRU plays key roles in studies of quantum information [176,
177], thermalization [178–182] and information scrambling [53,55,168].

4.3.2 Unitary k-design

In spite of the importance of the HRU, it is very hard to generate the HRU in quantum
circuits. In fact, the number of quantum gates to implement the HRU grows exponentially
with the number of qubits [183]. Thus, it is more convenient to use pseudorandom unitary
operations, which efficiently simulate the HRU up to a certain order of the moment. From
this point of view, Dankert et al. [184] introduced the notion of a unitary k-design*1, which is
an ensemble of unitaries reproducing the HRU up to the kth moment*2.

We now formulate unitary k-designs and use the following notation: H is a d-dimensional
Hilbert space, B(H) is the set of linear operators on H, U(H) is the set of unitary operators on
H, and ν is an arbitrary ensemble of unitaries sampled from U(H). We denote the ensemble
average of a function f on U(H) over ν by EU∼ν [f(U)]. It is explicitly written as

EU∼ν [f(U)] :=
∑

i

pif(Ui) (4.15)

for a discrete ensemble ν = {pi, Ui}, where Ui ∈ U(H) is sampled with probability pi. More
generally, we can consider a continuous ensemble ν = {p(U), U}, where p(U) is a probability
measure on U(H). In the continuous case, the average of f is given by

EU∼ν [f(U)] :=
∫
p(U)f(U)dU. (4.16)

Then, unitary k-designs are formally defined as follows [184]. An ensemble ν is a unitary
k-design, if ν satisfies

EU∼ν

[
Ui1j1 · · ·Uikjk

U∗
i′

1j′
1

· · ·U∗
i′

k
j′

k

]
= EU∼H

[
Ui1j1 · · ·Uikjk

U∗
i′

1j′
1

· · ·U∗
i′

k
j′

k

]
(4.17)

for all the indices running from 1 to d. As seen clearly from this definition, a unitary k-design
is a unitary (k − 1)-design, while its converse is not true in general.

*1 In the literature of quantum information theory, unitary k-designs are often referred to as unitary t-
designs. In this thesis, we use k instead of t to avoid confusion with the notation of time.

*2 A unitary k-design is a statistical notion of quantum pseudorandomness and can be regarded as a quan-
tum analog of k-wise independent variables in classical computation theory [185]. Recently, Ji, Liu,
and Song [186] proposed a computational notion of quantum pseudorandom unitary that is computa-
tionally indistinguishable from the HRU. Here, the computational indistinguishability means that no
efficient quantum algorithm can distinguish pseudorandom unitary operations from the HRU. More re-
cently, the computational pseudorandomness has been investigated in the context of the holographic
duality [187,188]
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In addition, we introduce the k-fold channel [189], which is a useful tool to treat the kth
moment of ν. Here, we consider the system H⊗k consisting of k-replicas of H. The k-fold
channel of ν is a super-operator (channel) whose action is given by

Φ(k)
ν (O) := EU∼ν

[
U†⊗kOU⊗k

]
, (4.18)

for all O ∈ B(H⊗k). There is a one-to-one correspondence between the k-fold channel of ν
and the kth moment of ν, as can be seen by considering O = |i1, . . . , ik⟩ ⟨j1, . . . , jk|. Thus, by
using the k-fold channel, the definition of unitary k-design is rewritten as the following simple
form.

Definition 4.1 Unitary k-design

An ensemble ν is a unitary k-design, if ν satisfies

Φ(k)
ν (O) = Φ(k)

H (O) (4.19)

for all O ∈ B(H⊗k).

This form is more convenient than the definition by Eq. (4.17). Other equivalent definitions
of unitary k-designs are summarized in Ref. [190].

Finally, we remark exact and approximate constructions of unitary designs. We can easily
show that the Pauli group is an exact unitary 1-design. The Clifford group is known to be an
exact unitary 3-design [191, 192]. On the other hand, it has been proved that, for k ≥ 4 and
d ≥ 5, there is no subgroup of U(H) that is an exact unitary k-design [193,194]. Instead, there
are several approximate constructions of unitary k-designs [195–198]. We also note that the
depth (i.e., the number of time steps) of an approximate unitary k-design is lower-bounded
by O(kN/ logN), where N is the number of qubits [189,197].

4.3.3 Relationship with information scrambling

The HRU describes the most random dynamics and can be regarded as a strong scrambler
in the following sense. Let us consider the OTOC averaged over the HRU:

FH(A,B) := EU∼H
[
d−1Tr{(U†AU)B(U†AU)B}

]
, (4.20)

where we set the initial state as the infinite temperature state ρ = I/d for simplicity. It
is known that FH(A,B) decreases exponentially with the system size if A and B are trace-
less [199]. Consequently, the OTOC becomes almost zero in a large system. The HRU is also
a strong scrambler in terms of the tripartite mutual information. In fact, the HRU average of
the tripartite mutual information takes a highly negative value [168].
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Moreover, if dynamics is a unitary 2-design, the OTOC takes the same value as the
HRU [199]. More explicitly, if ν is a unitary 2-design,

Fν(A,B) = FH(A,B) (4.21)

holds for all A,B ∈ B(H), where we write Fν(A,B) := EU∼ν

[
d−1Tr{(U†AU)B(U†AU)B}

]
.

This result is a consequence of the fact that the OTOC contains only two pairs of U and U†.
In this sense, a unitary 2-design is sufficient for information scrambling.

The relationship between the OTOC and unitary 2-designs can be extended to the general
case of unitary k-designs as follows. We define the 2k-points OTOC for U ∈ U(H) by

d−1Tr
[
(U†AkU)Bk · · · (U†A1U)B1

]
(4.22)

with A1, . . . , Ak, B1, . . . , Bk ∈ B(H) and its average over ensemble ν by

F (2k)
ν (A,B) := EU∼ν

[
d−1Tr

{
(U†AkU)Bk · · · (U†A1U)B1

}]
, (4.23)

where we write A := (A1, . . . , Ak) and B := (B1, . . . , Bk). The conventional OTOC (4.1) is
a special case of the 2k-point OTOC, where k = 2, A1 = A2 = A, and B1 = B2 = B. As a
higher-order extension of Eq. (4.21), we can easily prove that

F (2k)
ν (A,B) = F

(2k)
H (A,B) (4.24)

holds if ν is a unitary k-design [199].
Furthermore, Roberts and Yoshida [199] have provided a necessary and sufficient condition

of a unitary k-design in terms of the 2k-point OTOC. They considered the frame potential [189]
as a measure of the randomness of an ensemble. The kth frame potential of an ensemble ν is
defined as

F (2k)
ν := EU,V ∼ν

[
Tr(U†V )

]
. (4.25)

The kth frame potential is related to the 2-norm distance between the k-fold channels of ν
and H. In fact, for any ensemble ν, the kth frame potential is bounded from below as

F (2k)
ν ≥ F (2k)

H = k!, (4.26)

where the equality holds if and only if ν is a unitary k-design [200]. The kth frame potential
is related to the the 2k-point OTOC by the following equality

1
d4k

∑
A,B

∣∣∣F (2k)
ν (A,B)

∣∣∣2 = 1
d2(k+1) F (2k)

ν , (4.27)

where the summation
∑

A,B :=
∑

A1
· · ·
∑

Ak

∑
B1

· · ·
∑

Bk
is taken over a complete basis of

B(H). The left-hand side of Eq. (4.27) is the average of the square of the 2k-point OTOC over
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all operators, which does not equal Eq. (4.12). By combining inequality (4.26) and Eq. (4.27),
we can conclude that an ensemble ν becomes a unitary k-design if and only if the operator
average of the square of the 2k-point OTOC takes the minimum value. This is a crucial
connection between the OTOC and unitary designs.
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Part II Results
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Chapter 5

Work extraction from a single energy

eigenstate

In this chapter, we investigate the possibility of extracting work from a single
energy eigenstate based on our paper [201]. In Sec. 5.1, we propose a conjecture
called the eigenstate second law. This is a generalization of the ETH to the second
law-like setup and states that anyone cannot extract a macroscopic amount of work
from any energy eigenstate by simple cyclic operations. In Sec. 5.2, we numerically
confirm the eigenstate second law for a nonintegrable spin model and clarify the role
of the integrability for work extraction. In Sec. 5.3, we argue that the eigenstate
second law can be understood from the ETH for a nonlocal many-body observable.
In Sec. 5.4, we prove a weaker version of the eigenstate second law, which holds
regardless of the integrability of the Hamiltonian and is a generalization of the weak
ETH (2.35).

5.1 Eigenstate second law

5.1.1 Motivation

In the review part of this thesis, we have reviewed two streams of research on the foundation
of statistical mechanics. One is the eigenstate thermalization, and the other is passivity. As
reviewed in Chapter 2, the ETH is the most likely scenario behind thermalization in isolated
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quantum many-body systems. The nonintegrability of the system is crucial for the validity of
the ETH. On the other hand, passivity is related to the second law as reviewed in Chapter 3.
Because the statement of passivity is very similar to the Kelvin-Planck formulation of the
second law, passivity gives a microscopic foundation of the second law.

However, thermal equilibrium is not always described by statistical ensembles. Even a single
energy eigenstate can describe thermal equilibrium, as the ETH states. In fact, considering
the thermal nature of energy eigenstates will be the core of establishing the foundation of
statistical mechanics. In this spirit, it is crucial for understanding the microscopic foundation
of the second law to ask whether the second law is valid at the level of individual energy
eigenstates. This question leads us to the eigenstate second law formulated below.

There are several studies [89,202–209] related to the second law for pure states. For example,
Refs. [207, 208] addressed the validity of the Jarzynski equality [210, 211] for pure states of
nonintegrable spin models on the basis of the ETH. However, the role of the integrability in
work extraction is still unknown.

In addition, we remark on our previous studies [89, 209] showing the non-negativity of the
entropy production and the validity of the fluctuation theorem for a special class of pure states.
In those studies, the entire system consists of a working system and a large heat bath, and
the initial state of the bath is a thermal energy eigenstate. On the other hand, the results in
Refs. [89,209] cannot be applied to the energy eigenstate of the composite system because the
initial state of the entire system is assumed to be a product state of the system and the bath.
For these reasons, we here consider the second law for a single energy eigenstate.

5.1.2 Formulation of the eigenstate second law

We now formulate the eigenstate second law. Because a pure state is not passive in general
as shown in Sec. 3.3, a positive amount of work can be extracted from a single energy eigenstate
if one can perform any unitary operation. In fact, we can easily construct a unitary operator
Ui := |Ei⟩ ⟨E0| + |E0⟩ ⟨Ei| with |E0⟩ being the ground state, by which one can extract work
Ei−E0 from an energy eigenstate |Ei⟩. However, such a unitary operator is highly nonlocal and
contains all N -body interactions in general. We thus ask whether work extraction is possible
under a practical constraint on operations, such as the locality [212] and the symmetry [213,
214]. The number of unitary operations exponentially increases with the system-size because
the dimension of the Hilbert space dimension does so. On the other hand, the number of
feasible operations under practical constraints is expected to increase moderately with the
system-size, not exponentially. It is reasonable to expect that there is a trade-off relation
between the number of practically available operations and the number of quantum states
that prohibit work extraction by the available operations (see Fig. 5.1). From the above
observation, we expect that one cannot extract work from a thermal energy eigenstate by a
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Fig. 5.1 Schematic illustration showing a trade-off between available operations and
work-unextractable states. We expect that the number of work-unextractable quantum
states increases with decreasing the number of available operations.

simple cyclic operation. In other words, protocols of work extraction from a thermal energy
eigenstate will be complicated and highly time-dependent.

To formulate the eigenstate second law, we introduce the effective inverse temperature of an
energy eigenstate [29]. Let H be an initial Hamiltonian and |Ei⟩ be its eigenstate. We define
the effective inverse temperature βi of |Ei⟩ through

Ei = Tr[Hγβi ], (5.1)

where γβi
is the Gibbs state of the Hamiltonian H at inverse temperature βi. The effective

inverse temperature is a decreasing function of Ei, and βi > 0 (βi < 0) corresponds to the
positive (negative) temperature. The Gibbs state at a positive temperature is passive, but
that at a negative temperature is not passive. Correspondingly, the second law is only valid
for positive-temperature states, and we focus on the eigenstates at βi > 0. We remark that
negative-temperature states are thermodynamically unstable while they have been created in
experiments with ultracold atoms [215,216].

Because the ETH depends on the choice of the observable, we define the eigenstate second
law as an operation-dependent property as follows: For a given unitary operation U , we say
that the eigenstate second law holds, if one cannot extract O(N) amount of work from any
energy eigenstate whose effective inverse temperature is positive. That is, for sufficiently large
N ,

Wi(U) := W (|Ei⟩ ⟨Ei| , U) ≤ Nδ (5.2)
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holds for any δ > 0 and energy eigenstate at βi > 0. Here, Wi(U) ≤ Nδ represents the failure
of work extraction at the macroscopic level. We expect that the eigenstate second law (5.2)
holds for generic nonintegrable systems, as is the case for the ETH, as long as we only consider
simple cyclic operations generated by local Hamiltonians.

We note the case that the state is given by a mixture of positive-temperature eigenstates
ρ :=

∑
i:βi>0 pi |Ei⟩ ⟨Ei|. The average work extraction from ρ is given by

W (ρ, U) =
∑

i:βi>0

piWi(U). (5.3)

If the eigenstate second law (5.2) holds for U , we have W (ρ, U) ≤ Nδ, which implies that one
cannot extract a macroscopic amount of work from the diagonal ensemble by U . This result
is reasonable because the diagonal ensemble describes the effective stationary state, as seen in
Sec. 2.1, for which we can expect that work cannot be extracted. In this sense, the eigenstate
second law can be regarded as a manifestation of the second law for thermal states that is not
necessarily described by conventional statistical ensembles.

We remark on coherence between the energy eigenbasis. In the conventional standard mea-
surement scheme of work extraction [210,211], the measurement of energy is performed at the
beginning and at the end of the protocol. In this case, the coherence in the initial state is
destroyed by the first measurement, which changes the initial state into a diagonal ensemble.
In this sense, the above argument for diagonal ensembles is applicable even in the presence of
initial coherence.

5.2 Numerical verification of eigenstate second law
In this section, we numerically validate the eigenstate second law for a specific spin model

with a cyclic quench protocol. Our numerical results show that the eigenstate second law is
valid if at least one of the initial and quenched Hamiltonians is nonintegrable.

5.2.1 Setup

We study the one-dimensional Ising model with the next-nearest-neighbor interactions and
the magnetic fields. This model is a typical example of exhibiting thermalization under unitary
dynamics [92–94] and can be realized in experiments with ultracold atomic gases [217, 218].
The Hamiltonian is given by

H =
N∑

i=1
(gXi + hZi + JZiZi+1 + J ′ZiZi+2), (5.4)

where Xi and Zi denote the Pauli X and Z operators at site i, respectively. Here, g is the
transverse field, h is the longitudinal field, J is the nearest-neighbor coupling constant, J ′ is
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the next-nearest-neighbor coupling constant, and N is the number of spins. We impose the
periodic boundary condition, and thus this model has translational symmetry.

The Hamiltonian (5.4) is integrable only for g = 0 or h = J ′ = 0. Otherwise, in fact,
the level spacing distribution is well fitted by the Wigner-Dyson distribution (see Appendix
of Ref. [201]). The ETH (2.23) for few-body observables holds well in the nonintegrable
parameter region of this model [92–94].

We focus on a quench protocol as a simplest cyclic operation. The system is initially
prepared in an eigenstate |Ei⟩ of the initial Hamiltonian HI. The initial values of the magnetic
fields are denoted as gI and hI. The coupling constants do not change during the protocol.
Then, we carry out the following cyclic protocol consisting of two global quenches. (i) At
the initial time t = 0, the longitudinal field and transverse field are suddenly changed (hI →
hQ, gI → gQ). We denote the postquench Hamiltonian by HQ. (ii) The eigenstate of HI evolves
according to the postquench Hamiltonian during the waiting time, i.e., U = e−iHQτ . (iii) At
time t = τ , the external fields are quenched back to the initial values (hQ → hI, gQ → gI), and
the Hamiltonian is restored to the initial one.

The average work extraction in this protocol is given by

Wi = Ei − ⟨Ei|eiHQτHIe
−iHQτ |Ei⟩ . (5.5)

We calculate Wi for all the energy eigenstates by using exact numerical diagonalization and
consider all of the four combinations of the integrability of Hamiltonians: (a) HI is nonin-
tegrable and HQ is nonintegrable; (b) HI is integrable and HQ is nonintegrable; (c) HI is
nonintegrable and HQ is integrable; (d) HI is integrable and HQ is integrable.

5.2.2 Distribution of work

We first investigate the distribution of the average work extraction Wi. The waiting time
after the first quench is taken to be much longer than the relaxation time (τ = 104). We show
the τ -dependence of extracted work later.

In Fig. 5.2, we plot Wi/N for all the energy eigenstates in the full spectrum with respect
to the eigenenergy density Ei/N for N = 12 and N = 18. We here divided the extensive
quantities Wi and Ei by N to normalize them. For all the cases, Wi tends to be negative
(positive) for the positive (negative) temperature eigenstate.

In the case of (a), (b), and (c), where HI and/or HQ are nonintegrable, the distribution of
Wi/N tends to get narrower in the horizontal direction as N increases and seems to collapse to
a single curve in the thermodynamic limit N → ∞. This behavior is akin to the distribution
of diagonal matrix elements in nonintegrable systems [28, 92, 96, 98, 104]. Moreover, in these
cases, there exists no energy eigenstate with Wi > 0 in the positive-temperature region for
N = 18. This suggests that the eigenstate second law is valid in these cases.
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Fig. 5.2 The distribution of the average work extraction Wi/N for N = 12 (upper
panels) and N = 18 (lower panels). Each point represents an energy eigenstate in the
full spectrum. We set the nearest-neighbour interaction J = 1 and the waiting time
τ = 104. The vertical dashed line indicates the energy at infinite temperature, and the
horizontal one indicates Wi = 0. The left (right) side of the vertical line corresponds to
the positive-temperature (negative-temperature) region. Quench from (a) nonintegrable
to nonintegrable (J = J ′ = 1, gI = gQ = (

√
5 + 5)/8, hI = 0 → hQ = 1.0), (b) integrable

to nonintegrable (J = 1, J ′ = 0, gI = gQ = (
√

5 + 5)/8, hI = 0 → hQ = 1.0), (c)
nonintegrable to integrable (J = 1, J ′ = 0, gI = gQ = (

√
5 + 5)/8, hI = 1.0 → hQ = 0),

and (d) integrable to integrable (J = 1, J ′ = 0, h = 0, gI = 0.5 → gQ = 1.5). Reproduced
from Fig. 1 of [201]. c⃝2019 American Physical Society.

59



On the other hand, in the case of (d), where both HI and HQ are integrable, the distribution
is more scattered in the horizontal direction than the other cases. In this case, the distribution
does not seem to collapse to a single curve, which is analogous to the distribution of diagonal
matrix elements in integrable systems [28,85,88]. Contrary to the other cases, there are many
eigenstates with Wi > 0 in the positive-temperature region, even for N = 18. Thus, the
eigenstate second law is not valid in the case of (d). In the next subsection, we quantitatively
check the above arguments of the validity of the eigenstate second law by investigating the
scaling of the number of work-extractable energy eigenstates.

We next study the dependence of the distribution of Wi on the waiting time τ . Figure 5.3
shows the scatter plots of Wi/N for the waiting time τ = 10−1, 100, 101, 102, 103, 104, 105.
When the waiting time is short (τ = 10−1), Wi/N is almost zero for all the energy eigenstates
because the system remains close to the initial state. The average work begins to be a non-zero
value at τ = 10−1 and does not vary significantly after τ = 102. In particular, as for the cases of
(a), (b), and (c), the distributions of Wi/N look the same for τ = 102, 103, 104, 105 in each case.
This suggests that the temporal fluctuations are negligible in these three cases. On the other
hand, in the case of (d), the distributions of Wi/N are not the same for τ = 102, 103, 104, 105.
This is reasonable because integrable systems exhibit more significant temporal fluctuations
than nonintegrable systems [35,219].

5.2.3 Dependence on the size and integrability

To confirm the validity of the eigenstate second law, we investigate the dependence of the
ratio of work-extractable eigenstates on the system-size. In the context of the foundation
of statistical mechanics, negative-temperature states are not important because they are not
thermodynamically stable for large systems. We thus count the number of work-extractable
eigenstates in the positive-temperature region.

We note that the effective inverse temperature fluctuates due to the finite-size effect, and
this fluctuation mixes positive-temperature eigenstates and negative-temperature eigenstates
around βi = 0. To overcome this problem, we set a threshold for the effective inverse tem-
perature, denoted as βcut. Then, we consider all the energy eigenstates with βi ≥ βcut and
denote the number of them by dβcut .

We count the number of energy eigenstates that violate the eigenstate second law. Let
dout

δ be the number of eigenstates such that βi ≥ βcut and Wi/N ≥ δ, where δ is a given
positive constant. We calculate the ratio dout

δ /dβcut with changing the system-size N and the
integrability of the Hamiltonians.

Figure 5.4 shows the N -dependence of the ratio dout
δ /dβcut for all the combinations of the

integrability of the initial and post-quench Hamiltonians. In the case of (a), (b), and (c),
where HI and/or HQ are nonintegrable, dout

δ /dβcut decays more rapidly than an exponential
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waiting time

(a) (b) (c) (d)

Fig. 5.3 The average work extraction Wi/N for N = 18 with the waiting time τ =
10−1, 100, 101, 102, 103, 104, 105 from top to bottom. The other parameters are the same
as in Fig. 5.2. Reproduced from Fig. 5 of [201]. c⃝2019 American Physical Society.
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Fig. 5.4 The N -dependence of the ratio dout
δ /dβcut . The lack of data points indicates

zero of dout
δ . The parameters are set to τ = 104, βcut = 0.02, and δ = 0.001. Quench

from (a) nonintegrable to nonintegrable (J = J ′ = 1, gI = gQ = (
√

5 + 5)/8, hI = 0 →
hQ = 0.5, 1.0, and 1.5), (b) integrable to nonintegrable (J = 1, J ′ = 0, gI = gQ =
(
√

5 + 5)/8, hI = 0 → hQ = 0.5, 1.0, and 1.5) , (c) nonintegrable to integrable (J =
1, J ′ = 0, gI = gQ = (

√
5 + 5)/8, hI = 0.5, 1.0, and 1.5 → hQ = 0), and (d) integrable to

integrable (J = 1, J ′ = 0, h = 0, gI = 0.5 → gQ = 1.0, 1.5, and 2.0). Reproduced from
Fig. 2 of [201]. c⃝2019 American Physical Society.
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Table 5.1 The validity of the eigenstate second law by our quench protocol for the four
cases of the integrability. We remark that the validity of dout

δ /dβcut = 0 in the cases of
(c) is not evident from Fig. 5.4 (c), while it is supported from an argument based on the
ETH in Sec. 5.3 and Fig. 5.5 (c).

Initial Hamiltonian HI

Nonintegrable Integrable
Postquench Nonintegrable (a) True (b) True
Hamiltonian HQ Integrable (c) True (d) False

function, which implies the eigenstate second law. In particular, dout
δ itself becomes zero at

finite N in the case of (a) and (b), where HQ is nonintegrable. This result implies that work-
extractable eigenstates vanish, and the eigenstate second law is valid even for small systems.
The same argument is expected to be true in the case of (c), but that is not so evident from
Figure 5.4 (c). However, our later analysis and an additional numerical result in Sec. 5.3
support that dout

δ /dβcut = 0 also holds in the case of (c).
In contrast to the cases of (a), (b), and (c), dout

δ itself increases exponentially with N in
the case of (d). This can be seen from the fact that the number of states dβcut increases
exponentially. This exponential growth of dout

δ is analogous to that of the number of athermal
eigenstates in integrable systems [99]. Because integrable systems exhibit a large finite-size
effect than nonintegrable systems, we cannot conclude that the ratio dout

δ /dβcut does not decay
in the case of (d).

Moreover, we mention a theoretical upper bound of dout
δ /dβcut , as will be shown in inequality

(5.19). The bound predicts that dout
δ /dβcut decreases at least exponentially with increasing

the system-size, i.e., e−αN . However, in our numerical setup, the decay rate α is given by
α = βcutδ = 2 × 10−5, which is too small to be observed in our numerical calculation.

Table 5.1 summarizes the validity of the eigenstate second law in our numerical calculations.
The eigenstate second law is valid only for nonintegrable systems, which is analogous to the
ETH.

5.3 Mechanism of the eigenstate second law
We next investigate the underlying mechanism of the eigenstate second law in a noninte-

grable system.
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5.3.1 Relationship to the ETH

The average energy after a protocol equals the expectation value of the time-evolved operator
HI(τ) := UHIU

† in the initial state. Correspondingly, we assume the ETH of the initial
Hamiltonian for HI(τ) with respect to the energy eigenstates of HI, which is given by

⟨Ei|HI(τ)|Ei⟩ ≃ ⟨HI(τ)⟩MC . (5.6)

Here, ⟨· · ·⟩MC denotes the microcanonical average corresponding to the energy shell IE,∆E =
[E − ∆E,E], where E and ∆E are chosen as Ei ∈ IE,∆E . As shown later, the ETH (5.6)
holds true in our model (5.4) except for the case of (d).

From Eq. (5.6), the average work extraction can be written as

Wi ≃ Ei − ⟨HI(τ)⟩MC . (5.7)

This equality implies that the average work takes almost the same value for all the energy
eigenstates in the energy shell. Because the eigenenergy Ei in the energy shell does not vary
much with i, we have

Wi ≃ WMC (5.8)

for all the eigenstate inside the energy shell, where WMC is the average work extraction
from the microcanonical state. This leads to a stronger eigenstate second law, which implies
that the average work takes the thermal value (the microcanonical average) for all the energy
eigenstates in the energy hell. This a stronger version of the eigenstate second law is equivalent
to the ETH for OW := HI −HI(τ).

We now show that Wi ≲ 0 holds from Eq. (5.6). Let us consider the generalized micro-
canonical state, which is given by

ρGMC(E) = 1
dE

∑
Ei≤E

|Ei⟩ ⟨Ei| , (5.9)

where dE is a normalization constant. We denote the average work extraction from the
generalized microcanonical state by WGMC := ⟨HI(0)⟩GMC − ⟨HI(τ)⟩GMC. The number of
energy eigenstates in the energy shell is much larger than the number of eigenstates with
energies lower than the shell, which implies that dE,∆E/dE ≃ 1. We thus have

⟨HI(0)⟩GMC ≃ ⟨HI(0)⟩MC , (5.10)

⟨HI(τ)⟩GMC ≃ ⟨HI(τ)⟩MC . (5.11)

From these relations and Eq. (5.8), the work extracted from |Ei⟩ is approximated as

Wi ≃ WGMC. (5.12)
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As shown in Sec. 3.3, the generalized microcanonical state is passive, i.e., WGMC ≤ 0, which
leads to Wi ≲ 0. Therefore, the eigenstate second law is justified from the ETH for HI(τ).

5.3.2 Numerical verification of the ETH for HI(τ)

The validity of the ETH for HI(τ) is not obvious because HI(τ) is not a few-body operator,
but contains N -body couplings in general. Here, we numerically verify the ETH for HI(τ) in
nonintegrable systems.

To confirm the ETH (5.6), we calculate the eigenstate-to-eigenstate deviations

ri := |⟨Ei+1|HI(τ)|Ei+1⟩ − ⟨Ei|HI(τ)|Ei⟩| , (5.13)

which was introduced in Ref. [92]. If the ETH (5.6) holds, all of ri converges to zero in
N → ∞. On the other hand, if there is an athermal eigenstate, the largest value of ri remains
at a non-zero value in N → ∞. The decay of the average of ri implies the weak ETH.

We consider the energy eigenstates at positive temperature as in Sec. 5.2. As in numerical
verifications of the ETH [28], we remove the eigenstates locating around the edge of the
spectrum, where the density of states is too low. Thus, our target states are eigenstates with
βi > 0 and Ei ≥ E0/2.

Figure 5.5 presents the N -dependence of the largest, the fifth largest, the tenth largest, and
the average values of ri. The average value of ri decays exponentially with N in all the cases.
This result implies that the weak ETH for HI(τ) holds true. The other values of ri tends to
zero only in the case of (a), (b), and (c), while does not decay in the case of (d). We thus
conclude that the ETH for HI(τ) is valid for the case of (a), (b), and (c), where HI and/or
HQ are nonintegrable. On the other hand, Fig. 5.5 implies that the ETH for HI(τ) is violated
in the case of (d). These results are consistent with Table 5.1.

5.4 Weak eigenstate second law
We analytically derive the upper bound of the number of work-extractable eigenstates.

5.4.1 Assumption and the statement

In this section, we consider a general quantum system on a lattice with N sites in any spatial
dimension. We denote the Hamiltonian by H and the number of its energy eigenstates whose
energies are smaller than E by d(E) and assume the following normal behavior of d(E).

Assumption 2 (Existence of the entropy density). Let E0 and E∞ be the ground energy of
H and the infinite-temperature energy (i.e., the average of the energy eigenvalues over all the
eigenstates), respectively. Then, we assume that u0 := lim

N→∞
E0/N and u∞ := lim

N→∞
E∞/N
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Fig. 5.5 The N -dependence of the eigenstate-to-eigenstate deviation ri of HI(τ). In
all the panels, the squares, triangles, diamonds, and circles represent the system-size
dependence of the average, the largest, the fifth-largest, and the tenth-largest values of
ri, respectively. All the parameters are the same as in Fig. 5.2. These numerical results
imply that the weak ETH for HI(τ) is valid for all the cases, while the ETH is valid only
for the cases of (a), (b), and (c). Reproduced from Fig. 3 of [201]. c⃝2019 American
Physical Society.
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exist. For any u ∈ (u0, u∞), we assume that

log d(uN) = Nσ(u) + o(N), (5.14)

where the entropy density σ(u) is a positive function independent of N and satisfies β(u) :=
σ′(u) > 0 and σ′′(u) < 0.

The interval (u0, u∞) corresponds to the positive-temperature region, and Eq. (5.14) is a
standard definition of the entropy density in statistical mechanics, i.e., the Boltzmann formula.
Assumption 2 is expected to be true in a large class of quantum systems and has been proved
in locally interacting systems [86,220]. We note that dβcut in Sec. 5.2 equals d(E(βcut)), where
E(βcut) is the energy of the Gibbs state at β = βcut.

We fix an arbitrary unitary operator U , which does not necessarily represent a cyclic quench.
The question here is whether the ratio of work-extractable eigenstates vanishes in the thermo-
dynamic limit. We denote the number of energy eigenstates satisfying Wi ≥ Nδ with δ > 0
by dout

δ (U):

dout
δ (U) := #{Ei : Ei ≤ uN and Wi(U) ≥ Nδ}. (5.15)

In this setup, we obtained the following upper bound of the ratio dout
δ (U)/d(uN). Under

Assumption 2, for any δ > 0, u ∈ (u0, u∞), and an arbitrary fixed unitary U , we have

dout
δ (U)
d(uN)

≤ e−Nβ(u)δ/2+o(N). (5.16)

The derivation of this is presented in the next subsection. We note that this bound holds not
only for nonintegrable systems but also for integrable systems if only Assumption 2 is satisfied.

Inequality (5.16) implies that the ratio of energy eigenstates breaking the second law van-
ishes in the thermodynamic limit. Thus, inequality (5.16) can be regarded as a weaker version
of the eigenstate second law. Furthermore, the ratio must decrease at least exponentially with
the system-size. This is similar to the large deviation-type bound of the weak ETH (2.35),
which implies that the ratio of athermal eigenstates decreases at least exponentially as well.
In spite of this apparent similarity, our proof of inequality (5.16) is essentially different from
that of the weak ETH.

5.4.2 Derivation of inequality (5.16)

Let us prove inequality (5.16). We first prove an upper bound on a bit different quantity
from dout(U,Nδ), and the bound of dout(U,Nδ) is derived as a corollary of it.

Although we have focused on the mean value of work so far, we here consider the stochastic
work [210, 211] and its distribution. The stochastic work is defined through two projective
measurements of the energy at the beginning and at the end of the protocol. For two outcomes
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Ei and Ej of the energy measurements, the stochastic work extracted from the system is given
by wi→j := Ei − Ej . For an initial state ρ and a cyclic protocol U , the work distribution
P(ρ,U)(w) is given by

P(ρ,U)(w) :=
∑
i,j

δ(wi→j − w) |⟨Ej |U |Ei⟩|2 ⟨Ei|ρ|Ei⟩ . (5.17)

The cumulative distribution is denoted by P(ρ,U)(w ≥ x) :=
∫∞

x
P(ρ,U)(w)dw. For an energy

eigenstate |Ei⟩, we will also use a shorthand notation P(i,U)(w ≥ x) := P(|Ei⟩⟨Ei|,U)(w ≥ x).
Specifically, we investigate the possibility of extracting a significant amount of work for large
N , and thus set x = Nδ with δ > 0 .

We focus on energy eigenstates with Ei ≤ uN for a given energy density u and denote the
number of energy eigenstates with P(i,U)(w ≥ Nδ) being larger than ϵ by d̃out

ϵ,δ (U):

d̃out
ϵ,δ (U) := #{Ei : Ei ≤ uN and P(i,U)(w ≥ Nδ) ≥ ϵ}. (5.18)

If P(i,U)(w ≥ Nδ) is negligibly small on a macroscopic scale, there is no chance to extract a
macroscopic amount of work from |Ei⟩, which is consistent with the second law. Therefore,
d̃out

ϵ,δ (U) → 0 implies the eigenstate second law, while d̃out
ϵ,δ (U)/d(uN) → 0 implies the weak

eigenstate second law.
We can obtain the following upper bound of d̃out

ϵ,δ (U), which implies the weak eigenstate
second law.

Proposition 2. Under Assumption 2, for any δ > 0, u ∈ (u0, u∞), ϵ ≥ e−Nβ(u)δ/2, and an
arbitrary fixed unitary U , we have

d̃out
ϵ,δ (U)
d(uN)

≤ e−Nβ(u)δ/2+o(N). (5.19)

Inequality (5.19) implies that the probability of extracting macroscopic amount of work de-
cays exponentially with N for most energy eigenstates. In other words, the energy distribution
of the final state satisfies the large deviation principle [221]. The proof of inequality (5.19) is
as follows.

Proof. From Markov’s inequality, we have

d̃out
ϵ,δ (U)
d(uN)

≤ 1
ϵd(uN)

∑
i:Ei≤uN

P(i,U)(w ≥ Nδ). (5.20)

By using the definition of the cumulative distribution, we can rewrite the summation in the
right-hand side of the above as∑

i:Ei≤uN

P(i,U)(w ≥ Nδ) =
∑

i:Ei≤uN

∑
j:Ej≤Ei−Nδ

|⟨Ej |U |Ei⟩|2 . (5.21)
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Then, the right-hand side is evaluated as∑
i:Ei≤uN

∑
j:Ej≤Ei−Nδ

|⟨Ej |U |Ei⟩|2 ≤
∑

j:Ej≤uN−Nδ

∑
i:Ei≤uN

|⟨Ej |U |Ei⟩|2 (5.22)

≤
∑

j:Ej≤uN−Nδ

1 (5.23)

= d((u− δ)N), (5.24)

where we used
∑

i:Ei≤uN |⟨Ej |U |Ei⟩|2 ≤ 1 to get the second line. We thus have

d̃out
ϵ,δ (U)
d(uN)

≤ d((u− δ)N)
ϵd(uN)

. (5.25)

We next evaluate d((u− δ)N)/d(uN). By using Assumption 2, we have

d((u− δ)N)
d(uN)

= e−N{σ(u)−σ(u−δ)}+o(N), (5.26)

≤ e−Nβ(u)δ+o(N), (5.27)

where we used σ(u) ≥ σ(u− δ) + β(u)δ. Therefore, we have

d̃out
ϵ,δ (U)
d(uN)

≤ e−Nβ(u)δ+o(N)/ϵ. (5.28)

By setting ϵ = e−Nβ(u)δ/2, we obtain the desired bound (5.19).

We derive an upper bound of dout
δ (U) from inequality (5.19). If P(i,U)(w ≥ Nδ) ≤ ϵ, the

average work Wi =
∫
wP(i,U)(w)dw is upper bounded as

Wi =
∫ Nδ

wmin

P(i,U)(w)dw +
∫ wmax

Nδ

P(i,U)(w)dw (5.29)

≤ Nδ(1 − ϵ) + wmaxϵ, (5.30)

where wmin and wmax are the minimum and maximum values of stochastic work, respectively.
We note that wmax ≤ 2 ∥H∥ = O(N). By setting ϵ = e−Nβ(u)δ/2, we can show that

Wi ≤ Nδ + o(1). (5.31)

From this inequality, we obtain dout
δ (U) ≤ d̃out

ϵ,δ (U), which implies inequality (5.16).

5.4.3 Impossibility of work extraction from a pure state with large coherence

We next consider a pure state which has a large amount of coherence in the energy eigenbasis
and prove the impossibility of work extraction from that state. Let |ψ⟩ be a pure state
in the Hilbert space of the positive-temperature region, i.e., |ψ⟩ =

∑
i:Ei≤uN ci |Ei⟩. The
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corresponding density operator is written by ρ = |ψ⟩ ⟨ψ|. We consider an arbitrary unitary
operation U and show that W (ρ, U) ≲ Nδ.

We apply the two-point measurement scheme described in Sec. 5.4.2. The cumulative dis-
tribution of the stochastic work for ρ can be written as

P(ρ,U)(w ≥ Nδ) =
∑

i:Ei≤uN

|ci|2 P(i,U)(w ≥ Nδ). (5.32)

From this and the Cauchy-Schwartz inequality, we have

P(ρ,U)(w ≥ Nδ) ≤

√√√√√
 ∑

i:Ei≤uN

P(i,U)(w ≥ Nδ)2

 ∑
i:Ei≤uN

|ci|4
 (5.33)

≤

√
ϵ2(d(uN) − d̃out

ϵ,δ (U)) + d̃out
ϵ,δ (U)

deff
, (5.34)

where we denoted the effective dimension by deff = 1/
∑

i |ci|4. The effective dimension can
be regarded as a measure of coherence of pure states; The large effective dimension implies a
large amount of coherence. By setting ϵ = e−Nβ(u)δ/2 and using inequality (5.19), we have

P(ρ,U)(w ≥ Nδ) ≤

√
d(uN)e−Nβ(u)δ/2+o(N)

deff
. (5.35)

Then, we can bound the average work extraction as

W (ρ, U) =
∫ Nδ

wmin

P(ρ,U)(w)dw +
∫ wmax

Nδ

P(ρ,U)(w)dw (5.36)

≤ Nδ(1 − P(ρ,U)(w ≥ Nδ)) + wmaxP(ρ,U)(w ≥ Nδ), (5.37)

≤ Nδ + wmax

√
d(uN)e−Nβ(u)δ/2+o(N)

deff
. (5.38)

We assume that deff ≫ d(uN)e−Nβ(u)δ/2 = eN(σ(u)−β(u)δ/2)+o(N), which means that ρ =
|ψ⟩ ⟨ψ| have a large amount of coherence in the energy eigenbasis. In particular, a typical pure
state with respect to the Haar measure satisfies this assumption [74]. In this case, we have
W (ρ, U) ≲ Nδ for any protocol U . We thus conclude that one cannot extract a macroscopic
amount of work from |ψ⟩.

5.5 Conclusion
In this chapter, we have investigated the possibility of extracting an extensive amount of

work from individual energy eigenstates. Inspired by the eigenstate thermalization, we have
proposed the eigenstate second law (5.2), which states that work extraction is impossible from
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any energy eigenstate by a simple cyclic protocol. As the ETH leads to thermalization for
generic initial states, the eigenstate second law ensures the second law in quantum many-body
systems.

We have numerically investigated the validity of the eigenstate second law in the mixed-
filed Ising model (5.4) for a cyclic quench protocol. Our numerical results are summarized
in Table 5.1. We have found that the eigenstate second law is valid if at least one of the
Hamiltonians is nonintegrable, while it does not hold in the integrable case. These results
suggest that, in nonintegrable systems, the second law is applicable even to a single energy
eigenstate, which is not a statistical mixture but also highly entangled. In addition, we proved
the weaker version of the eigenstate second law (inequality (5.16)), which implies that work
extraction is impossible from almost all energy eigenstates. This is valid regardless of the
integrability and is analogous to the weak ETH.

We expect that the eigenstate second law holds for a much wider class of nonintegrable
systems and protocols, as is the case for the ETH. In fact, we have shown that the eigenstate
second law can be derived from the ETH for a nonlocal observable. Therefore, we can say
that chaotic properties of eigenstates provide a consistent view of the microscopic origin of
the second law and that of thermalization. Future studies would reveal a more comprehensive
understanding of the relationship among quantum chaos, the ETH, and the second law.

Many-body localization (MBL) systems [102,222,223] do not satisfy the weak ETH, because
they breaks translation symmetry and their energy eigenstates do not obey the volume law
of entanglement entropy. Thus, it is reasonable to expect that the eigenstate second law is
violated in MBL systems. If this observation is true, energy eigenstates of MBL systems can be
used as an energy storage, i.e., quantum battery [150,224,225]. The validity of the eigenstate
second law in MBL systems is a fascinating future issue.
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Chapter 6

Higher-order extension of the ETH

In this chapter, we attempt to characterize complexity of quantum many-body
dynamics by extending the ETH, which is based on our paper [226]. We first discuss
the complexity of quantum chaotic dynamics and highlight the difficulty of quanti-
fying the complexity in Sec. 6.1. On the basis of techniques of quantum information
theory reviewed in Sec. 4.3, our extension of the ETH, termed the k-ETH, is for-
malized in Sec. 6.2. In Sec. 6.3, we discuss how the k-ETH is related to the value
of the 2k-point OTOC at late times. In Sec. 6.4, we derive the finite-temperature
Page curve for the kth-Rényi entanglement entropy (k-REE) of individual energy
eigenstates from the k-ETH. In Sec. 6.5, we introduce an extension of entanglement
entropy to operator space called operator space entanglement entropy (OSEE), and
derive the finite-temperature Page curve of the OSEE. These results suggest that
the Page curve characterizes the high-order complexity of chaotic many-body sys-
tems. In Sec. 6.6, we numerically verify the 2-ETH by investigating the finite-size
scaling analysis for a nonintegrable spin model.

6.1 Complexity of chaotic dynamics
Chaos in quantum many-body systems is expected to have hierarchical structure. Starting

from a simple initial state, such as the product state |ψ(0)⟩ = |00 · · · 0⟩, a quantum state will
become more and more chaotic as time goes by. Such a simple initial state will first relax to
a thermal equilibrium, where any local observable equal its thermal equilibrium value. After
that, |ψ(t)⟩ will be scrambled, i.e., information is delocalized over the entire system. Even-
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space of pure states

Fig. 6.1 Schematic of covering the space of pure quantum state with small round patches
with radius ϵ. The number of patches is eeO(N)

.

tually, |ψ(t)⟩ would reach a pseudorandom state, which is hardly distinguished from truly
random states. These three phenomena are referred to as thermalization, information scram-
bling, and (pseudo)randomization, respectively. In this thesis, we have separately discussed
these characteristics of quantum many-body chaos in Secs. 2.1, 4.2, and 4.3. Our fundamen-
tal question is how various chaotic phenomena emerge from local Hamiltonian dynamics. To
address this question, we first reconsider quantum many-body dynamics from the viewpoint
of complexity.

Complexity (or, more precisely, circuit complexity) is an essential concept in computation
theory. The complexity of a quantum state, denoted by C, is defined as the minimal number
of quantum gates needed to generate it within a fixed small error ϵ from a product state [227].
Obviously, the initial product state in a quench experiment has the minimum complexity, i.e.,
C(0) = 0. On the other hand, pseudorandom states at late times will have an exponentially
large amount of complexity [183]. In fact, the complexity of a random pure state is exponen-
tially large in the system size N , which can be seen as follows. An ϵ-net divides the space of
quantum states into many small patches (see Fig. 6.1), and the number of these patches is
doubly exponential in N . However, the number of quantum circuits constructed from t gates
grows exponentially with t. From these two countings, we can conclude that most quantum
states require an exponentially large number of gates to generate. Form the above argument,
it is reasonable to expect that the complexity increases with time and saturates at almost the
maximum value after a long time, i.e., C(t) ≈ Cmax = eO(N) [228]. This behavior is illustrated
in Fig. 6.2 and would be regarded as an essence of quantum many-body chaos.

In a quantum circuit, the number of gates increases linearly with a time step. However, the
complexity might not necessarily increase linearly, because the complexity is defined as the
minimum number of gates needed to generate, and our circuit might be inefficient. If a more
efficient preparation of the state existed, the complexity would be smaller than the number
of gates in the circuit itself. For this reason, it is challenging to rigorously obtain the actual
value of the complexity of a given quantum circuit and also of a Hamiltonian dynamics [228].
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complexity

timethermalize

randomized

scrambled

Fig. 6.2 Schematic of the expected complexity growth in a fully chaotic quantum sys-
tem [230, 231]. The quantum circuit complexity is initially zero and increases linearly
with time. After an exponentially long time, the complexity saturates at the maximum
value Cmax within temporal fluctuations.

Local random quantum circuits are good toy models for chaotic quantum many-body dy-
namics. They are lattice systems for which the time evolution is given by randomly sampled
unitary operators acting on neighboring sites. Random circuits have been extensively studied
in the context of entanglement growth [232] and operator spreading [171]. Moreover, it is
known that they form approximate unitary k-designs in polynomial time [196, 197]. Random
circuits are also good toy models for studying the complexity growth because there is a spe-
cific connection between unitary k-designs and the complexity [188, 189, 197, 199]. Roughly
speaking, approximate unitary k-designs have O(k) complexity [189, 197]. Quite recently,
Brandão et al. [188] derived a rigorous lower bound of the complexity of local random circuits
on the basis of the above fact. Their result supports a conjecture of the linear growth of the
complexity of chaotic dynamics [229–231].

On the other hand, many-body dynamics generated by a time-independent Hamiltonian
never form approximate unitary k-designs because of energy conservation [199] (see Sec. 7.1
for more details). However, chaotic dynamics are similar to pseudorandom dynamics (unitary
designs) at least the lowest order complexity. Here by the lowest order complexity, we mean the
complexity of unitary 1-designs. The average of an observable O over a unitary 1-design equals
the uniform average of O in the Hilbert space. This argument closely resembles ergodicity
(i.e., the long-time average equals the uniform average). We investigate this similarity more
explicitly in Sec. 6.2.

The ETH is often regarded as a quantum counterpart of ergodicity. Thus, it is reasonable
to consider that the ETH reflects the lowest order complexity of chaotic dynamics. On the
other hand, we have relatively little knowledge of the higher-order complexity. While infor-
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mation scrambling may be related to the second-order complexity because unitary 2-designs
achieve perfect information scrambling, some unitary 1-designs (e.g., Pauli ensemble) are not
a scrambler [199]. However, this argument does not fully explain the relationship between
information scrambling and higher-order complexity. In fact, Huang et al. [233] proved, only
using the conventional ETH (2.23), that the late-time value of the 4-point OTOC approaches
to zero in the thermodynamic limit, which suggests that higher-order complexity might not
be necessary, while sufficient, for information scrambling quantified by the OTOC.

To summarize, characterizing the higher-order order complexity of chaotic Hamiltonian
dynamics is an important issue in quantum chaos but difficult. In the next section, we propose
a new approach to this issue by considering the higher-order extension of the ETH.

6.2 k-ETH

6.2.1 Long time ensemble

We first show our setup and introduce the long-time ensemble (LTE) to deal with the typical
behavior of the Hamiltonian dynamics at late times. The setup is almost the same as in the
previous chapters: The system is on a lattice with N sites and isolated from environments. In
this chapter, for simplicity, we suppose that the system does not have any symmetry and any
few-body conserved quantities except for the total energy, and there is no degeneracy in the
eigenenergies.

Because of energy conservation, the dynamics cannot mix states with different energies.
We thus focus on the energy eigenstates within an energy shell IE,∆E := [E − ∆E,E] with
a given energy E and an energy width ∆E. The number of the energy eigenstates whose
eigenenergies are in IE,∆E is denoted by d := dE,∆E . Boltzmann’s formula (5.14) implies
that d increases exponentially with N . An eigenenergy in IE,∆E is denoted by Ei (i =
1, . . . , d), the corresponding energy eigenstate is denoted by |Ei⟩, and a Hilbert space spanned
by {|Ei⟩ : i = 1, . . . , d} is denoted by H := HE,∆E . We note that H is a subspace of the
total Hilbert space of the many-body system. The Hamiltonian of the system is represented
as H =

∑d
i=1 Ei |Ei⟩ ⟨Ei|.

Our focus here is the late-time behavior of e−iHt. We thus introduce the LTE L :=
{e−iHt}t∈(0,∞) as an one-parameter ensemble satisfying

EU∼L [f(U)] = lim
τ→∞

1
τ

∫ τ

0
f(e−iHt)dt (6.1)

for any function f . The right-hand side of the above is the long-time average of f(e−iHt). In
other words, the LTE represents uniformly sampling of e−iHt from t = 0 to t = ∞.

To see the properties of the LTE, let us consider the corresponding 1-fold channel. From
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the definition (6.1), the action of the 1-fold channel of the LTE for an operator O ∈ B(H) is
given by

Φ(1)
L (O) = lim

τ→∞

1
τ

∫ τ

0
O(t)dt =

∑
i

|Ei⟩ ⟨Ei|O|Ei⟩ ⟨Ei| , (6.2)

where we used the no-degeneracy condition. This equality implies that Φ(1)
L is a completely

dephasing channel in the energy eigenbasis.
By using the 1-fold channel, we revisit quantum ergodicity*1, which can be regarded as a

characterization of the lowest-order complexity of chaotic Hamiltonian dynamics. We define
quantum ergodicity for a given operator O ∈ B(H) by

Φ(1)
L (O) = Φ(1)

H (O), (6.3)

where H is the HRU. As seen from Eq. (6.2), the left-hand side of Eq. (6.3) is the long-time
average of O in the Heisenberg picture. On the other hand, the right-hand side of Eq. (6.3) is
the microcanonical average of O, which is given by

Φ(1)
H (O) = ⟨O⟩MC I, (6.4)

where ⟨O⟩MC := d−1∑
i ⟨Ei|O|Ei⟩, and I is the identity operator on H (see Appendix A

for the derivation). That is, Eq. (6.3) states that the long-time average of O equals the
microcanonical average for all initial states.

Furthermore, we can derive the conventional ETH as an equivalent representation of
Eq. (6.3). By taking the average of the both sides of Eq. (6.3) in an energy eigenstate |Ei⟩,
we have

⟨Ei|O|Ei⟩ = ⟨O⟩MC (6.5)

for all i = 1, . . . , d, which is identically the ETH. Thus, we can regard the ETH as a quantum
analog of ergodicity. We note that Eq. (6.5) is stronger than the definition of the ETH (2.23)
given in Sec. 2.2, because the present definition does not allow any finite-size deviation.

6.2.2 Formulation of the k-ETH

Let us formulate the higher-order generalization of the ETH, which is named the k-ETH.
There are two steps to obtain the explicit expression of the k-ETH. The first step is to formulate
the higher-order extension of quantum ergodicity (6.3). The second step is to represent it in
terms of the energy eigenbasis in the same manner as in Eq. (6.5).

*1 We note that there are several formalisms of quantum ergodicity (see, e.g., Refs. [234,235]).
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As in the definition of unitary k-designs, we consider the k-replicated Hilbert space H⊗k and
the k-fold channel, which is the main idea of the k-ETH. The natural extension of Eq. (6.3)
to the k-replicated system is given by

Φ(k)
L (O) = Φ(k)

H (O) (6.6)

for a given O ∈ B(H⊗k). We call this equality the k-scrambling for O. The k-scrambling
for O implies that one cannot distinguish the LTE and the HRU by the measurement of O.
As shown in Sec. 6.3, the k-scrambling for a specific operator is sufficient for the decay of
the 2k-point OTOC. We note that the k-scrambling for O (6.6) is quite similar to unitary
k-designs (see Definition 4.1). However, they are different in the following point. The k-
scrambling is an observable-dependent concept as well as the ETH, while a unitary k-design
is an observable-independent concept because it concerns all operators in B(H⊗k) at the same
time. We investigate the relationship among the k-ETH, the k-scrambling, and unitary k-
designs in Chapter 7.

We next derive another representation of Eq. (6.6) by considering matrix elements in the en-
ergy eigenbasis. To derive a simple representation of the k-fold channel of the LTE, we impose
the k-incommensurate condition [34, 236] on the Hamiltonian. We introduce an equivalence
relation for i := (i1, . . . , ik) and j := (j1, . . . , jk): We denote i ∼ j if (i1, . . . , ik) is a permu-
tation of (j1, . . . , jk) and denote i ̸∼ j otherwise. Then, the k-incommensurate condition is
defined as follows.

Assumption 3 (k-incommensurate condition).
∑k

m=1(Eim
− Ejm

) = 0 if and only if i ∼ j

This condition reproduces the no-degeneracy condition of eigenenergies for k = 1 and
the nonresonant condition for k = 2. The k-incommensurate condition implies that the
LTE is a diagonal-unitary k-design [198, 237–239], as discussed in detail in Sec. 7.3. The
k-incommensurate condition is expected to hold in generic nonintegrable systems [34,236].

From the k-incommensurate condition, we can show that

Φ(k)
L (O) =

∑
i∼j

|E(i)⟩ ⟨E(i)|O|E(j)⟩ ⟨E(j)| (6.7)

holds for any O ∈ B(H⊗k), where we write |E(i)⟩ := |Ei1 · · ·Eik
⟩. The derivation of Eq. (6.7)

goes as follows. From the definition of the LTE, we have

Φ(k)
L (O) =

∑
i,j

lim
T →∞

1
T

∫ T

0
dt exp

[
it

(
k∑

m=1
(Eim

− Ejm
)

)]
|E(i)⟩ ⟨E(i)|O|E(j)⟩ ⟨E(j)| .

(6.8)
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From the k-incommensurate condition, we have

lim
T →∞

1
T

∫ T

0
dt exp

[
it

(
k∑

m=1
(Eim

− Ejm
)

)]
=

{
1 (i ∼ j)

0 (i ̸∼ j).
(6.9)

Substituting this into Eq. (6.8), we obtain Eq. (6.7).
On the other hand, the k-fold channel of the HRU is given by

Φ(k)
H (O) =

∑
π,τ∈Sk

Wgπ,τ (d)Tr[OWτ ]Wπ. (6.10)

Here, Sk is the symmetric group of k objects, and Wπ ∈ B(H⊗k) is a permutation operator
associated with π ∈ Sk, which acts on H⊗k as

Wπ |i1, i2, . . . , ik⟩ = |iπ(1), iπ(2), . . . , iπ(k)⟩ , (6.11)

where |i1, i2, . . . , ik⟩ represents the computational base of H⊗k. The coefficient Wgπ,τ (d) is
the Weingarten matrix [240–242], which is a k!×k! matrix defined as the inverse of the matrix
Qπ,τ (d) := Tr[WπWτ ] whose legs are labeled by elements of the permutation group. We note
that Eq. (6.10) is derived as a simple corollary of the Schur-Weyl duality [243]. See Appendix A
for more details.

We now derive the explicit formula of the k-ETH for O. Substituting Eqs. (6.7) and (6.10)
into Eq. (6.6) and comparing matrix elements in the energy eigenbasis, we obtain the following
representation equivalent to the k-scrambling for O.

Definition 6.1 k-ETH for O

For any i = (i1, . . . , ik) and j = (j1, . . . , jk) with i ∼ j,

⟨E(i)|O|E(j)⟩ =
∑

π,τ∈Sk

δπ(i, j)Wgπ,τ (d)Tr[OWτ ], (6.12)

where δπ(i, j) := δi1jπ(1) · · · δikjπ(k) .

This is the main result of this section. For k = 1, Eq. (6.12) reduces to the ETH (6.5)
(hereafter referred to as the 1-ETH). The 2-ETH reflects the second order of the complexity,
and we will show the explicit expression of the 2-ETH later. In contrast to the 1-ETH, the
k-ETH for k ≥ 2 includes not only diagonal elements, but also off-diagonal elements of O. For
i = j = (i, i, . . . , i), Eq. (6.12) reduces to

⟨E⊗k
i |O|E⊗k

i ⟩ = 1
d(d+ 1) · · · (d− k + 1)

∑
τ∈Sk

Tr[OWτ ], (6.13)

where we used
∑

π∈Sk
Wgπ,τ (d) = d−1(d + 1)−1 · · · (d − k + 1)−1 [244]. Equation (6.13) can

be obtained by the typicality argument, i.e., by a uniform random sampling of |Ei⟩ from the
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Hilbert space H. On the other hand, the other equalities of the k-ETH cannot be derived in
the same manner, and thus the k-ETH cannot reduce to the typicality argument.

The k-ETH (6.12) is not exactly satisfied in finite-size systems except for specific operators,
as shown in Sec. 7.3. It raises a question whether the deviation from Eq. (6.12) vanishes in
the thermodynamic limit (i.e., in the limit of d → ∞). We consider a more general formalism
of the k-ETH allowing finite-size deviations in Sec. 6.2.3.

We show the explicit form of the 2-ETH. By setting k = 2 in Eq. (6.12), we have the
following expression of the 2-ETH for O ∈ B(H⊗2):

⟨EiEi|O|EiEi⟩ = Tr[O] + Tr[OS]
d(d+ 1)

, (6.14)

⟨EiEj |O|EiEj⟩ = dTr[O] − Tr[OS]
d(d2 − 1)

(i ̸= j), (6.15)

⟨EiEj |O|EjEi⟩ = −Tr[O] + dTr[OS]
d(d2 − 1)

(i ̸= j), (6.16)

where S is the swap operator defined by

S |i⟩ |j⟩ = |j⟩ |i⟩ . (6.17)

We note that Eqs. (6.14) and (6.15) are the conditions for the diagonal elements of O, while
Eq. (6.16) is the condition for the off-diagonal elements of O.

There is another possible generalization of the ETH to the k-replicated system. We introduce
a Hamiltonian of the k-replicated system as H(k) := H⊗I⊗(k−1) + · · ·+I⊗(k−1) ⊗H, implying
that there is no interaction among the replicas. The (1-)ETH of H(k) for O ∈ B(H⊗k) is given
by

⟨E(i)|O|E(i)⟩ = Tr[O]
dk

. (6.18)

Although this seems to be a natural generalization of the ETH to the k-replicated system,
Eq. (6.12) and Eq. (6.18) are not equivalent in general. We argue that only the former is a
proper generalization of the ETH. In fact, weak correlations among the energy eigenstates,
which come from their orthogonality are taken into account in Eq. (6.12), but not in Eq. (6.18).
This fact is crucial to understand the structure of the entanglement entropy of energy eigen-
states.

So far, we have considered operators acting on the Hilbert space of the energy shell. However,
we can extend the k-ETH to an operator acting on the entire Hilbert space of the system as
follows. We denote a projection from the entire Hilbert space to H by PMC. For an operator
Ō acting on the k-replicas of the entire Hilbert space, we can define the projected operator by
P⊗k

MCŌP
⊗k
MC. Then, we define the k-ETH for Ō as the k-ETH for P⊗k

MCŌP
⊗k
MC. We can neglect

this projection procedure only for the case of k = 1.
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6.2.3 Approximate k-ETH

As we mentioned before, the k-ETH is generally not true in a rigorous sense. Consequently,
the validity of the k-ETH should be judged by whether Eq. (6.12) holds in the limit of d →
∞. We now formulate an approximate version of the k-ETH in a similar manner to the 1-
ETH. In Sec. 2.2, the measure quantifying the deviation from the exact 1-ETH is introduced
by Eq. (2.22). We consider its straightforward extension to the k-ETH. The corresponding
indicator of the k-ETH is defined by

Ik(O) := max
i∼j

∣∣∣∆(k)
i,j (O)

∣∣∣ , (6.19)

where ∆(k)
i,j (O) represents the difference between the both sides of Eq. (6.12), i.e.,

∆(k)
i,j (O) := ⟨E(i)|O|E(j)⟩ −

∑
π,τ∈Sk

δπ(i, j)Wgπ,τ (d)Tr[OWτ ]. (6.20)

We note that Ik(O) = 0 holds if and only if Eq. (6.12) holds for all i, j with i ∼ j. In the
same manner as the approximate 1-ETH (2.23), we define the approximate k-ETH for O by
lim

d→∞
Ik(O) = 0. On the other hand, for finite d, we define the exact k-ETH for O by Ik(O) = 0.

The indicator Ik(O) is equivalent to the maximum norm of ∆(k)(O) := Φ(k)
L (O)−Φ(k)

H (O) ∈
B(H⊗k). Thus, Ik(O) can be regarded as the finite-size error of the k-scrambling (6.6) for
O. The approximate version of the k-scrambling can be defined in the same manner as the
k-ETH. Moreover, there is another possible choice of a norm of ∆(k)(O), such as the Schatten
norm and the vector norm [154], while these norms do not recover the standard definition of
the approximate 1-ETH (2.23) in general. Thus, we only consider the maximum norm in this
thesis. However, the maximum norm might be inappropriate to characterize the higher-order
complexity as shown in Sec. 6.2.4 and Sec. 6.3, because it is weaker than other norms.

6.2.4 Tensor-product form operator

As a special case, we consider an operator with the tensor-product form: O = A⊗k with
A ∈ B(H). As shown in Sec. 6.3, this type of operators naturally appears in the 2k-point
OTOC. In this case, we can simplify the k-ETH as follows. By decomposing a permutation τ
into the product of cyclic permutations, we have

Tr[A⊗kWτ ] =
c(τ)∏
m=1

Tr[Alm(τ)], (6.21)
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where we denote the number of cycles in the decomposition by c(τ) and the length of the
mth-longest cycle by lm(τ). Thus, the k-ETH for O = A⊗k is given by

Ai1j1 · · ·Aikjk
=

∑
π,τ∈Sk

δπ(i, j)Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] (6.22)

with Aij := ⟨Ei|A|Ej⟩.
We remark that several properties of the product of k matrix elements in chaotic systems

were already studied in Ref. [245]. They mainly focused on the products of matrix elements
in the cyclic order, i.e., Ai1i2Ai2i3 · · ·Aiki1 , but not the products in a general order. Instead,
their argument is not limited to the matrix elements inside the energy shell. Thus, their result
is complementary to our result (6.22).

For k = 2, Eq. (6.22) is simplified as follows:

AiiAii = ⟨A⟩2
MC +

⟨A2⟩MC − ⟨A⟩2
MC

d+ 1
, (6.23)

AiiAjj = ⟨A⟩2
MC −

⟨A2⟩MC − ⟨A⟩2
MC

d2 − 1
(i ̸= j), (6.24)

AijAji =
d(⟨A2⟩MC − ⟨A⟩2

MC)
d2 − 1

(i ̸= j), (6.25)

where we used Tr[A] = d ⟨A⟩MC and Tr[A2] = d ⟨A2⟩MC. These expressions were already
known in random matrix theory [48, 246]. If Eq. (6.23) holds, the variance ∆(A)2 of the
diagonal matrix elements of A considered in Sec. 2.3 is calculated as

∆(A)2 = 1
d

∑
i

(AiiAii − ⟨A⟩2
MC) = 1

d

∑
i

⟨A2⟩MC − ⟨A⟩2
MC

d+ 1
=

⟨A2⟩MC − ⟨A⟩2
MC

d+ 1
. (6.26)

This leads to ∆(A)2 ∝ d−1, which is consistent with the d−1 scaling of ∆(A)2 in nonintegrable
systems (see Sec. 2.4).

We can easily see that the exact 2-ETH for A⊗2 is not compatible with the exact 1-ETH (6.5)
from the fact that the left-hand side of Eq. (6.23) becomes AiiAii = ⟨A⟩2

MC from the exact
1-ETH for A. This is not a contradiction because neither the exact 2-ETH nor the exact
1-ETH holds in general. On the other hand, they can be compatible in an approximate sense,
as seen from the following analysis.

We analyze the asymptotic behavior of the right-hand side of Eq. (6.22) for large d. Here,
we assume that ⟨Al⟩MC = O(1) for all l = 1, 2, . . . , k, which is expected to be true for a local
operator. Under the above assumption, we have

∑
π,τ∈Sk

δπ(i, j)Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] =

⟨A⟩k
MC + O(d−1) for i = j

O(d−1) for i ̸= j.
(6.27)
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Thus, Eq. (6.22) implies that

Ai1j1 · · ·Aikjk
=

⟨A⟩k
MC + O(d−1) for i = j

O(d−1) for i ̸= j.
(6.28)

For k ≥ 2, this equality implies that Aii = ⟨A⟩MC +O(d−1) and Aij = O(d−1/2) for i ̸= j. The
former leads to the approximate 1-ETH (2.23) for A, and the latter leads to the off-diagonal
ETH (2.26) for A. In this sense, the approximate k-ETH for A⊗k is not a new relation and
compatible with the approximate 1-ETH. The approximate k-ETH for A⊗k follows from the
approximate 1-ETH (2.23) and the off-diagonal ETH (2.26).

We provide the deviation of Eq. (6.27). From the assumption, we have

c(τ)∏
m=1

Tr[Alm(τ)] = dc(τ)
c(τ)∏
m=1

⟨Alm(τ)⟩MC = O(dc(τ)). (6.29)

We use the following asymptotic form of the Weingarten matrix:

Wgπ,τ (d) = O(d−2k−1+c(πτ)), (6.30)

(see Appendix A). By combining Eqs. (6.29) and (6.30), we have

∑
τ∈Sk

Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] =
∑

τ∈Sk

O(d−2k+c(πτ)+c(τ)) = O(d−k+c(π)), (6.31)

where we used c(πτ) ≤ k + c(π) − c(τ) [247]. From c(I) = k and c(π) ≤ k − 1 for π ̸= I, we
have

∑
τ∈Sk

Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] =

{
O(1) for π = I

O(d−1) for π ≠ I.
(6.32)

Because δI(i, j) = 1 is equivalent to i = j, we obtain

∑
π,τ∈Sk

δπ(i, j)Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] =

{
O(1) for i = j

O(d−1) for i ̸= j.
(6.33)

Finally, we derive the explicit form of O(1) terms. For i = j, we have

∑
π,τ∈Sk

δπ(i, j)Wgπ,τ (d)
c(τ)∏
m=1

Tr[Alm(τ)] = 1
d(d+ 1) · · · (d− k + 1)

∑
τ∈Sk

c(τ)∏
m=1

Tr[Alm(τ)] (6.34)

= ⟨A⟩k
MC + O(d−1), (6.35)

where we used
∑

π∈Sk
Wgπ,τ (d) = d−1(d+ 1)−1 · · · (d− k + 1)−1 [244].

82



6.3 Relationship between the k-ETH and the OTOC
In this section, we show that the k-ETH for A⊗k (6.22) determines the late-time value of

the 2k-point OTOC (4.23). In particular, we show that the long-time average of the 2k-point
OTOC equals the HRU average if the exact k-ETH holds for A⊗k.

6.3.1 Exact decay of the 2k-point OTOC

Let us consider the long-time average of the 2k-point OTOC, which is given by

F
(2k)
L (A,B) : = EU∼L

[
Tr
{

(U†AkU)Bk · · · (U†A1U)B1ρ
}]

(6.36)

= lim
τ→∞

1
τ

∫ τ

0
Tr[Ak(t)Bk(0) · · ·A1(t)B1(0)ρ]dt (6.37)

with A1, . . . , Ak, B1, . . . , Bk ∈ B(H). For simplicity, we consider the case of A1 = · · · = Ak =:
A, B1 = · · · = Bk =: B, and ρ = ρMC := PMC/d, i.e.,

F
(2k)
L (A,B) = EU∼L

[
d−1Tr

{
(U†AU)B · · · (U†AU)B

}]
. (6.38)

Again, we remark that all the operators now act on the Hilbert space of the energy shell,
but not on the entire Hilbert space of the many-body system. In the entire Hilbert space,
Eq. (6.38) is represented as

F
(2k)
L (A,B) = EU∼L

[
Tr
{

(U†ĀU)ρ1/2k
MC B̄ρ

1/2k
MC · · · (U†ĀU)ρ1/2k

MC B̄ρ
1/2k
MC

}]
, (6.39)

where Ā and B̄ are operators acting on the entire Hilbert space such that PMCĀPMC = A

and PMCB̄PMC = B. The right-hand side of Eq. (6.39) is very similar to the regularization of
the OTOC in field theories [61,248,249]. This regularization is important to remove the effect
of other energy scales. If there is no regularization, the long-time average of the OTOC can
deviate from the HRU average even in fully chaotic systems. In fact, Ref. [233] shows that,
for the non-regularized (4-point) OTOC with traceless operators, the Haar random average
decays exponentially with the system size, while the long-time average decays polynomially
with system size on the basis of a result of Ref. [80].

We go back to representation (6.38). By considering the k-replicated Hilbert space, we can
rewrite the trace of the product of k operators as

Tr[A1 · · ·Ak] = Tr[(A1 ⊗ · · · ⊗Ak)Wcyc], (6.40)

where Wcyc is the cyclic permutation operator (see Fig. 6.3 for a graphical representation). By
using this relation, we can rewrite the long-time average of the 2k-point OTOC as follows [199]:

F
(2k)
L (A,B) = d−1Tr

[
Φ(k)

L (A⊗k)B⊗kWcyc

]
. (6.41)
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=

Fig. 6.3 Graphical representation of Eq. (6.40), where we impose the periodic boundary
condition in the right-hand side. The closed diagram indicates taking the trace.

This representation of the 2k-point OTOC by the k-fold channel is true not just for the LTE but
also for any ensembles. As an immediate consequence of Eq. (6.41), if the k-scrambling (6.6)
holds exactly for A⊗k, we obtain

F
(2k)
L (A,B) = F

(2k)
H (A,B), (6.42)

where F (2k)
H (A,B) is the Haar random average of the 2k-point OTOC. Equation (6.42) rep-

resents the exact decay (relaxation) of the 2k-point OTOC to the HRU average. In this
sense, our definition of the k-scrambling (6.6) represents the kth-order extension of (operator)
scrambling. From the equivalence between the k-scrambling and the k-ETH, Eq. (6.42) is also
achieved from the exact k-ETH for A⊗k. On the other hand, Eq. (6.42) does not necessarily
imply the k-scrambling (6.6) or the k-ETH (6.12) for A⊗k.

6.3.2 Approximate decay of the 2k-point OTOC

We next consider the approximate decay of the OTOC, as the k-ETH holds only approxi-
mately for finite-size systems. Note that there is no generally accepted definition of the ap-
proximate decay of the OTOC. We here use the following naive definition: The approximate
decay of the 2k-point OTOC to the HRU average is defined as

lim
d→∞

∣∣∣F (2k)
L (A,B) − F

(2k)
H (A,B)

∣∣∣ = 0. (6.43)

This definition seems to be natural, but might be insufficient to characterize the higher-oder
complexity. In fact, for k = 2, Huang et al. [233] showed that Eq. (6.43) is achieved if
the approximate 1-ETH and off-diagonal ETH are satisfied for A and B. This is reasonable
because the approximate 2-ETH for A⊗2 follows from the approximate 1-ETH and off-diagonal
ETH for A as shown in Sec. 6.2.4. On the other hand, it is not clear whether Eq. (6.43) is
achieved only from the approximate k-ETH for A⊗k and B⊗k. In this sense, the relaxation
of the 2k-point OTOC to a small value is not straightforwardly related to the higher-order
complexity of the Hamiltonian dynamics.
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6.4 Eigenstate entanglement entropy
In this section, we investigate the k-REE of energy eigenstates in light of the k-ETH.

The k-REE characterizes the complexity of a quantum state. In fact, we cannot efficiently
approximate states in one-dimensional systems by matrix product states if the k-REE of them
obey the volume law for k ≥ 1 [250,251].

6.4.1 k-ETH for the partial cyclic permutation operator

We first introduce the partial cyclic permutation (PCP) operator to define the k-REE. The
PCP operator allows us to study the k-REE of the energy eigenstates from the k-ETH. We
assume that the system consists of N qubits. That is, each site of the lattice has a two
dimensional Hilbert space. As in Sec. 2.5, the single replica system is partitioned into two
subsystems X and X̄ containing n and N − n qubits, respectively. The dimension of the
Hilbert space on X is denoted by dX := 2n.

For k ≥ 2, we define the PCP operator CX supported on X as a cyclic permutation among
k replicas of X. The action of CX is given by

CX |x1y1, x2y2, . . . , xkyk⟩ = |x2y1, x3y2, . . . , x1yk⟩ , (6.44)

where |xi⟩ and |yi⟩ (i = 1, . . . , k) are the computational bases of the Hilbert spaces of X and
X̄, respectively. We note that CX is unitary but not Hermitian for k ≥ 3. The k-REE is
defined as the kth-Rényi entropy of the reduced density operator [120]. For the special case
of k = 2, 3, . . . , the k-REE of |ψ⟩ can be expressed as

R(k)(X) := 1
1 − k

log ⟨ψ⊗k|CX |ψ⊗k⟩ . (6.45)

Because this representation connects the k-REE with the expectation value of CX , we can
employ the k-ETH for CX to study the k-REE of individual energy eigenstates. Importantly,
CX cannot be written in the tensor-product form A⊗k, which implies that the approximate
k-ETH of CX does not reduce to the conventional ETH.

Let us consider the k-ETH for CX . Because CX is defined as an operator acting on the
entire Hilbert space, not in the energy shell H⊗k, we project CX to the energy shell H⊗k. The
projected PCP operator C̃X ∈ B(H⊗k) is defined by C̃X := P⊗k

MCCXP
⊗k
MC. Then, the k-ETH

for CX is given by

⟨E(i)|CX |E(j)⟩ =
∑

π,τ∈Sk

δπ(i, j)Wgπ,τ (d)Tr[C̃XWτ ], (6.46)

for i ∼ j. We rewrite Tr[C̃XWτ ] as

Tr[C̃XWτ ] = dkTr[CXWτρ
⊗k
MC]. (6.47)
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The right-hand side of the above is interpreted as the expectation value of CXWτ in the k-
replicated microcanonical state ρ⊗k

MC except for a factor dk. A quantity Tr[CXWτρ
⊗k
MC] is a

specific case of the entanglement feature [252], which provides more detail information about
entanglement properties than entanglement entropies.

We remark that Eq. (6.46) is related to the k-REE of the energy eigenstates only for the case
of i = j = (i, . . . , i), while the other cases are irrelevant to the k-REE. As shown in Sec. 6.5,
Eq. (6.46), including the case of i ̸= j, is closely related to the OSEE. In the following, we
investigate the k-REE of individual energy eigenstates by using Eq. (6.46).

6.4.2 2-REE

Let us consider the simplest case of k = 2. The PCP operator for k = 2 is specifically called
the partial swap operator and denoted by SX whose action is defined by SX |x1y1, x2y2⟩ =
|x2y1, x1y2⟩. To derive a simple expression of the 2-ETH for SX , we use the following relations

Tr[S̃X ] = d2Tr[SXρ
⊗2
MC] = d2e−R

(2)
MC(X), (6.48)

Tr[S̃XS] = d2Tr[SX̄ρ
⊗2
MC] = d2e−R

(2)
MC(X̄), (6.49)

where R
(2)
MC(X) is the second Rényi entropy of the reduced microcanonical state ρX

MC :=
TrX̄ [ρMC], which is given by R

(2)
MC(X) := − log Tr[(ρX

MC)2]. As investigated later, we expect
that R(2)

MC(X) linearly grows with the subsystem size. Then, Eq. (6.46) reduces to

⟨EiEi|SX |EiEi⟩ = d

d+ 1

(
e−R

(2)
MC(X) + e−R

(2)
MC(X̄)

)
, (6.50)

⟨EiEj |SX |EiEj⟩ = d2

d2 − 1

(
e−R

(2)
MC(X) − e−R

(2)
MC(X̄)/d

)
, (6.51)

⟨EiEj |SX |EjEi⟩ = d2

d2 − 1

(
e−R

(2)
MC(X̄) − e−R

(2)
MC(X)/d

)
. (6.52)

These are the 2-ETH for SX , and Eq. (6.50) is symmetric with respect to the exchange of X
and X̄, but Eqs. (6.51) and (6.52) are not symmetric. When the number of qubits in X is far
fewer than that in X̄ (n ≪ N − n), then R

(2)
MC(X) ≪ R

(2)
MC(X̄) holds. In this case, the second

terms on the right-hand sides of Eqs. (6.50) and (6.51) are negligible compared to the first
terms. We thus have

⟨EiEi|SX |EiEi⟩ ≈ e−R
(2)
MC(X), (6.53)

⟨EiEj |SX |EiEj⟩ ≈ e−R
(2)
MC(X), (6.54)

⟨EiEj |SX |EjEi⟩ ≈ 0, (6.55)

for n ≪ N . These imply that the values of the diagonal elements of SX are about the same
for all i, j, while the off-diagonal elements of SX vanish in the limit of d → ∞. These behavior
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are similar to the case of A⊗2 (see Eqs. (6.23)-(6.25)). On the other hand, when the sizes of
X and X̄ are comparable, i.e., n = N/2, Eqs. (6.23)-(6.25) are approximated as

⟨EiEi|SX |EiEi⟩ ≈ 2e−R
(2)
MC(X), (6.56)

⟨EiEj |SX |EiEj⟩ ≈ 2e−R
(2)
MC(X), (6.57)

⟨EiEj |SX |EjEi⟩ ≈ e−R
(2)
MC(X), (6.58)

where we used R(2)
MC(X) = R

(2)
MC(X̄). The coefficient of 2 in the right-hand sides of Eqs. (6.56)

and (6.57) corresponds to the Page correction of the 2-REE as revealed later.
Before deriving the Page curve, we take a look at the extensivity of R(2)

MC(X). In the case
of n = N , we have R(2)

MC(X) = − log Tr[ρ2
MC] = log d, which implies that R(2)

MC(X) equals the
thermodynamic entropy of the entire system. As an extension of this, we expect that the value
of R(2)

MC(X) is approximated as the thermodynamic entropy of subsystem for 1 ≪ n < N . This
observation leads the extensivity of R(2)

MC(X). The extensivity can also be understood in a
different way. If subsystem X is far smaller than the entire system, and the interaction between
X and X̄ is negligible, we have ρX

MC ≈ e−βHX/Tr[e−βHX ], where HX is the Hamiltonian
truncated to X. If the above approximation is true, we obtain R(2)

MC(X) ≈ − log Tr[e−2βHX ] +
2 log Tr[e−βHX ]. Since Tr[e−2βHX ] and log Tr[e−βHX ] are extensive quantities, we conclude
that R(2)

MC(X) is extensive for n ≪ N .
We next derive the finite-temperature extension of the Page curve from Eq. (6.50). Consid-

ering the logarithm of Eq. (6.50) and the definition of the 2-REE, we obtain

R
(2)
i (X) = R

(2)
th (X) := R

(2)
MC(X) − log 1 + eR

(2)
MC(X)−R

(2)
MC(X̄)

1 + 1/d
, (6.59)

where R
(2)
th (X) takes the same form as proposals of the finite-temperature extensions of

the Page curve based on random thermal pure quantum states [134–136]. In fact, our for-
mula (6.59) can be regarded as the finite-temperature Page curve in the following sense. The
first term of R(2)

th (X) grows linearly with the subsystem-size and is near the maximum value
of the second Rényi entropy under the energy constraint. The second term of R(2)

th (X) is
negligible for n ≪ N but becomes log 2 at n = N/2. This subsystem-size dependence is the
same as the Page correction of the 2-REE.

More explicitly, Eq. (6.59) recovers the Page curve, if the microcanonical state is approxi-
mated as the maximally mixed state of the entire Hilbert space: ρMC ≈ I/2N . In this case,
we have R(2)

MC(X) ≈ n log 2 and R
(2)
MC(X̄) ≈ (N − n) log 2. Thus, R(2)

th (X) is approximated as

R
(2)
th (X) ≈ n log 2 − log(1 + 22n−N ), (6.60)

which is equivalent to the Page curve of the 2-REE [129]. Therefore, our formula (6.59) can
be regarded as a natural extension of the Page curve to the finite-temperature pure states.
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Moreover, we show a direct connection to a universal formula of the 2-REE proposed in
Refs [134,135]. Their formula for a pure state at inverse temperature β is written as

R
(2)
th (X) = n log a(β) − log(1 + a(β)−N+2n) + logK(β), (6.61)

where a(β) and K(β) are constants depending only on β. We assume that R(2)
th (X) is extensive,

i.e., there exist n-independent constants 1 ≤ w(u) ≤ 2 and κ(u) ≥ 0 such that

R
(2)
MC(X) = n logw(u) + κ(u), (6.62)

where u is the energy density of the thermal pure state. From the equivalence of ensembles [86,
220], this is provable for n ≪ N if we take u equal to the energy density at infinite temperature.
By substituting Eq. (6.62) into Eq. (6.59), we have

R
(2)
th (X) ≈ n logw(u) − log(1 + w(u)−N+2n). (6.63)

Because the energy density u can be represented as a function of the inverse temperature
β except for phase transition points, we can rewrite the above equality as a function of the
inverse temperature:

R
(2)
th (X) ≈ n logw(β) − log(1 + w(β)−N+2n), (6.64)

which equals the right-hand side of Eq. (6.61) by setting a(β) = w(β) and logK(β) ≈ 0.

6.4.3 k-REE

We generalize the foregoing results to the case of k ≥ 3. For i = j = (i, . . . , i), Eq. (6.46)
reduces to

⟨E⊗k
i |CX |E⊗k

i ⟩ = dk−1

(d+ 1) · · · (d+ k − 1)
∑

τ∈Sk

Tr[CXWτρ
⊗k
MC] ≈

∑
τ∈Sk

Tr[CXWτρ
⊗k
MC]. (6.65)

The term concerning τ = I in the summation of the right-hand side can be written as

Tr[CXρ
⊗k
MC] = e−(k−1)R

(k)
MC(X), (6.66)

where R(k)
MC(X) := (1 − k)−1 log Tr[CXρ

⊗k
MC] is the kth-Rényi entropy of the reduced micro-

canonical state. This term gives the leading contribution to the k-REE for d ≫ 1. By taking
the logarithm of Eq. (6.65), we have

R
(k)
i (X) ≈ R

(k)
th (X) := R

(k)
MC(X) − γ

(k)
X , (6.67)

where

γ
(k)
X := 1

k − 1
log

(
e(k−1)R

(k)
MC(X)

∑
τ∈Sk

Tr[CXWτρ
⊗k
MC]

)
. (6.68)
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In the same sense as Eq. (6.59), Eq. (6.67) can be regarded as the finite-temperature extensions
of the Page curve of the k-REE. The first term of R(k)

th (X), i.e., R(k)
MC(X) is a straightforward

extension of R(2)
th (X) and represents the thermal behavior. On the other hand, the second

term of R(k)
th (X), i.e., γ(k)

X is the higher-order Page correction. For k = 3, Eq. (6.67) reduces
to

R
(3)
th (X) = R

(3)
MC(X) − γ

(3)
X , (6.69)

γ
(3)
X = 1

2
log
{

1 + e2R
(3)
MC(X)−2R

(3)
MC(X̄) + 3e2R

(3)
MC(X)Tr[ρMC(ρX

MC ⊗ ρX̄
MC)]

+e2R
(3)
MC(X)Tr[CXC

−1
X̄
ρ⊗3

MC]
}
. (6.70)

Again, Eq. (6.69) has the same form as the finite-temperature Page curve studied in Refs. [134–
136].

Finally, we comment on the 1-REE R(1)(X) := −Tr[ρX log ρX ], which cannot be written in
the form of the average of any state-independent operator, as opposed to the case of k ≥ 2.
Accordingly, the 1-ETH does not provide the finite-temperature Page curve of the 1-REE.
However, we can obtain the 1-REE by taking the limit of k → 1 in Eq. (6.67). In this sense,
we can say that the finite-temperature Page curve of the 1-REE follows from the (1 + ϵ)-ETH
with a small number ϵ > 0. In addition, the following lower bound on the 1-REE immediately
follows from the 2-ETH for SX :

R
(1)
i (X) ≥ R

(2)
i (X) = R

(2)
th (X) (6.71)

implying that R(1)
i (X) takes a nearly maximum value for n ≪ N .

6.5 Operator space entanglement entropy (OSEE)
In this section, we introduce the OSEE, which is an extension of the entanglement entropy

to an operator. We formulate the OSEE counterpart of the finite-temperature Page curve in
parallel to the k-REE. The k-ETH for the PCP operator leads to the finite-temperature Page
curve for the OSEE of the LTE.

6.5.1 Definition of the k-OSEE

We introduce the OSEE by mapping the operator into the quantum state in the extended
Hilbert space. For simplicity, we first consider the case where H equals the entire Hilbert
space. The mapping is based on the fact that the operator space B(H) is a d2-dimensional
Hilbert space. Any operator O ∈ B(H) can be mapped to a state |O⟩ in the extended Hilbert
space H⊗2 by

|O⟩ := (O ⊗ I) |I⟩ , (6.72)
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where |I⟩ is a maximally entangled state between two replicas:

|I⟩ := 1
d1/2

d∑
i=1

|i⟩ ⊗ |i⟩ . (6.73)

This mapping is known as the channel-state duality (the Choi-Jamiołkowski isomor-
phism) [253,254]. The inner product of states |O1⟩ and |O2⟩ equals the Hilbert-Schmidt inner
product of operators O1 and O2:

⟨O1|O2⟩ = 1
d

Tr[O†
1O2]. (6.74)

We define the k-OSEE of an unitary operator U ∈ U(H) as the k-REE of the corresponding
state |U⟩ [255, 256]. Let us see more explicitly the definition of the k-OSEE. We divide each
replica into two subsystems and denote subsystems of one replica by X and X̄ and that of the
other replica by Y and Ȳ . The k-OSEE for a subsystem XY is represented as

R
(k)
U (X,Y ) := 1

1 − k
log Tr

[
(ρU

XY )k
]
, (6.75)

where ρU
XY is the reduced density operator of |U⟩ on a subsystem XY . The k-OSEE has

similar properties to the k-OSEE, such as

0 ≤ R
(k)
U (X,Y ) ≤ log dXdY . (6.76)

The k-OSEE characterizes the complexity as well as the k-REE. In fact, U can be efficiently
approximated by a matrix product operator if R(k)

U (X,Y ) = O(logN) for any 0 < k < 1, while
the approximation becomes inefficient if R(k)

U (X,Y ) = O(N) for k ≥ 1 [250, 251]. Moreover,
the k-OSEE quantifies scrambled information [57, 257–260], because the specific type of the
operator-averaged 2k-point OTOC is equivalent to the k-OSEE [168,199].

If k is an integer and k ≥ 2, the k-OSEE can be written as

R
(k)
U (X,Y ) = 1

1 − k
log

Tr
[
C−1

X U†⊗kCY U
⊗k
]

dk
, (6.77)

where CX and CY are the PCP operators (6.44). Motivated by this representation, the k-
OSEE of an ensemble ν is introduced by

R(k)
ν (X,Y ) := 1

1 − k
log

Tr
[
C−1

X Φ(k)
ν (CY )

]
dk

. (6.78)

We remark that R(k)
ν (X,Y ) is not equivalent to the ensemble average of R(k)

U (X,Y ).
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6.5.2 Explicit form of the Page curve

As a natural extension of the Page curve of the k-REE, we introduce the Page curve of the
k-OSEE as the k-OSEE of the HRU:

R
(k)
H (X,Y ) := 1

1 − k
log

Tr
[
C−1

X Φ(k)
H (CY )

]
dk

. (6.79)

The explicit expression of the Page curve of the k-OSEE [257,258,261] is given by

R
(k)
H (X,Y ) = log dXdY − γ

(k)
X,Y , (6.80)

where

γ
(k)
X,Y := 1

k − 1
log

(∑
π∈Sk

d−2k+2c(π)(dXdY )c(ππcyc)−c(π)+k−1

)
. (6.81)

Equation (6.80) is analogous to the Page curve of the k-REE as follows. The first term on the
right-hand side of Eq. (6.80) equals the maximum value of the k-OSEE. It can be rewritten as
log dXdY = (m+ n) log 2, where m and n are the number of qubits in X and Y , respectively.
Therefore, the first term implies the volume law of the k-OSEE. On the other hand, γ(k)

X,Y

is the subleading terms and can be regarded as the Page correction. The Page correction
takes the maximum value at m = n = N/2. In particular, the maximum value converges to

log (2k)!
k!(k + 1)!

in the limit of d → ∞ [258]. For the simplest case of k = 2, the Page curve is

given by

R
(2)
H (X,Y ) = (m+ n) log 2 − log

(
1 + 1 − 22m − 22n + 22(m+n)

22N − 1

)
, (6.82)

≈ (m+ n) log 2 − log
(

1 + 22(m+n−N)
)

for N ≫ 1. (6.83)

We note that this can be obtained from Eq. (6.60) by replacing n → m+ n and N → 2N .
We next derive the finite-temperature extension of Eq. (6.80) by considering the case where

H is a strict subspace of the entire Hilbert space corresponding to the energy shell. As in
Sec. 6.4, we consider the projected PCP operator C̃X . The finite-temperature Page curve of
the k-OSEE is formally defined by

R
(k)
th (X,Y ) := 1

1 − k
log

Tr
[
C̃−1

X Φ(k)
H (C̃Y )

]
dk

. (6.84)

In order to see its property, we derive a more explicit expression for the case of k = 2 and
d ≫ 1. From Eqs. (6.48) and (6.49), we obtain

d−2Tr
[
S̃XΦ(2)

H (S̃Y )
]

≈ e−R
(2)
MC(X)−R

(2)
MC(Y ) + e−R

(2)
MC(X̄)−R

(2)
MC(Ȳ ). (6.85)
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Taking the logarithm on the both sides, we obtain the following representation of the 2-OSEE:

R
(2)
th (X,Y ) ≈ R

(2)
MC(X) +R

(2)
MC(Y ) − log

(
1 + eR

(2)
MC(X)+R

(2)
MC(Y )−R

(2)
MC(X̄)−R

(2)
MC(Ȳ )

)
. (6.86)

The leading contributions of the finite-temperature Page curve comes from the second Rényi
entropy of the reduced microcanonical state, which is the same as the case of the k-REE. The
third term on the right-hand side of Eq. (6.86) is a subleading correction and can be regarded as
the finite-temperature Page correction. The finite-temperature Page correction takes the max-
imum value log 2 at m = n = N/2. Moreover, Eq. (6.86) recovers the (infinite-temperature)
Page curve (6.83) if four terms R(2)

MC(X), R(2)
MC(X̄), R(2)

MC(Y ), and R
(2)
MC(Ȳ ) achieve the maxi-

mum of the subsystem entropy, i.e., R(2)
MC(X) ≈ m log 2, R(2)

MC(X̄) ≈ (N −m) log 2, R(2)
MC(Y ) ≈

n log 2, and R
(2)
MC(Ȳ ) ≈ (N − m) log 2. Therefore, we can say that R(2)

th (X,Y ) is the finite-
temperature Page curve of the 2-OSEE. In fact, we can show that R(2)

th (X,Y ) follows the
universal formula (6.61) as follows. From the assumption (6.62), we have

R
(2)
th (X,Y ) ≈ (m+ n) logw(u) − log

(
1 + w(u)2(m+n−N)

)
. (6.87)

By rewriting w(u) as a function of the inverse temperature in the same manner as in Sec. 6.4.2
and replacing n+m → n and 2N → N , we recovers the universal formula (6.61).

6.5.3 Relationship with the k-ETH

We next clarify the relationship between the k-ETH and the Page curve of the k-OSEE. If
the exact k-ETH for the PCP operator is satisfied, we have Φ(k)

L (C̃Y ) = Φ(k)
H (C̃Y ) and thus

R
(k)
L (X,Y ) = R

(k)
th (X,Y ), (6.88)

where R(k)
L (X,Y ) is the k-OSEE of the LTE. Therefore, we can conclude that the k-ETH for

the PCP operator leads not only to the Page curve of the k-REE of energy eigenstates but
also to the Page curve of the k-OSEE.

To investigate implications of the 2-ETH, let us reconsider the 2-ETH for SX in terms of
the 2-OSEE. We show that Eqs. (6.51) and (6.52) are crucial to achieve the Page curve of
the 2-OSEE in contrast to the case of the 2-REE. To see this, we consider the order of the
contributions to the 2-OSEE. The 2-OSEE is proportional to d−2Tr

[
S̃XΦ(2)

L (S̃Y )
]
, and it is

divided as

d−2Tr
[
S̃XΦ(2)

L (S̃Y )
]

= d−2
∑

i

⟨EiEi|S̃X |EiEi⟩ ⟨EiEi|S̃Y |EiEi⟩

+ d−2
∑
i̸=j

⟨EiEj |S̃X |EiEj⟩ ⟨EiEj |S̃Y |EjEi⟩

+ d−2
∑
i̸=j

⟨EiEj |S̃X |EjEi⟩ ⟨EiEj |S̃Y |EiEj⟩ . (6.89)
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We note that the first terms on the right-hand is evaluated by Eqs. (6.50), while the second
and the third terms are evaluated by a combination of Eqs. (6.51) and (6.52). In fact, for
d ≫ 1, we can show that

first term ≈ 0, (6.90)

second term ≈ e−R
(2)
MC(X)−R

(2)
MC(Ȳ ), (6.91)

third term ≈ e−R
(2)
MC(X̄)−R

(2)
MC(Y ). (6.92)

These equalities imply that only the second and the third terms contribute to the 2-OSEE.
This is reasonable because the summation in the first term of Eq. (6.89) runs over d matrix
elements, while the summations in the second and third terms run over d2 −d matrix elements.
Moreover, we can see that the leading contribution comes from Eq. (6.51) if m,n ≪ N , while it
comes from both Eq. (6.51) and Eq. (6.52) if m = n = N/2. Therefore, the implications of the
2-ETH for the partial swap operator is phrased as follows: Eq. (6.50) implies both the volume
law and the Page correction of the 2-REE of individual energy eigenstates, Eq. (6.51) implies
the volume law of the 2-OSEE for the LTE, and Eq. (6.52) implies the finite-temperature Page
correction of the 2-OSEE for the LTE.

Finally, we comment on previous numerical studies investigating the 1-OSEE of the time
evolution operator e−iHt of various integrable and nonintegrable models. References [57,261]
have shown that the 1-OSEE of the time evolution operator relaxes to the HRU value in
nonintegrable systems, while it does not saturate at the HRU value in noninteracting and
interacting integrable systems. These findings look reasonable from the viewpoint of the 2-
ETH for SX : the 1-OSEE saturates at the HRU value if the 2-ETH for SX is satisfied. This
relationship can be shown as follows. We expect that R(2)

U (X,Y ) ≈ R
(2)
L (X,Y ) holds at late

times, and we have R(2)
L (X,Y ) ≈ R

(2)
H (X,Y ), if the 2-ETH is true for SX . On the other hand,

R
(1)
U (X,Y ) ≤ R

(2)
U (X,Y ) follows from a standard property of the Rényi entropy. By combining

these fact, we have R(1)
U (X,Y ) ≳ R

(2)
H (X,Y ), which is the desired result. Therefore, previous

numerical results suggest that the 2-ETH for SX is only valid in nonintegrable systems. This
is also consistent with our argument based on numerical calculations presented in Sec. 6.6.

6.6 Numerical verification of the 2-ETH
In this section, we numerically investigate the validity of the approximate 2-ETH. We show

that, for both A⊗2 and SX , the 2-ETH is approximately satisfied in the nonintegrable param-
eter region of the spin-1/2 XXZ ladder model.
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Fig. 6.4 The structure of the ladder of our model (6.93). The sites in a short (long)
chain are labeled as 0, 1, . . . , p − 1 (p, p + 1, . . . , 2p). The coupling strength between two
chains is denoted by λ.

6.6.1 Setup and method

We study the one-dimensional spin-1/2 XXZ ladder model, introduced in Ref. [104]. In
order to break the reflection symmetry, we consider a ladder composed of short and long open
chains whose lengths are p and p+ 1, respectively (see Fig. 6.4) and denote the total number
of sites by N := 2p+ 1. The Hamiltonian of our model is given by

HXXZ :=
p−2∑
i=0

hi,i+1 +
2p−1∑
i=p

hi,i+1 + λ

p−1∑
i=0

hi,i+p, (6.93)

where the XXZ coupling hi,j is given by

hi,j := XiXj + YiYj + ∆ZiZj , (6.94)

andXi, Yi, Zi represent the Pauli operators of a spin located at site i. Because the total number
of up-spins N↑ :=

∑N
i=1(Zi+1)/2 is a conserved quantity, we focus on the energy eigenstates of

HXXZ within a sector of N↑ = p. In the following calculation, we fix the anisotropic parameter
as λ = 0.8 as in Ref. [104]. The model is nonintegrable except for a specific point λ = 0 and
satisfies the approximate 1-ETH and the off-diagonal ETH in the nonintegrable region [104].

We investigate the system-size (the total number of sites) dependence of the indicator of the
approximate 2-ETH I2(O) introduced in Sec. 6.2.3. In our calculation, we adopt the following
procedure in the same manner as Refs. [99, 104]. We use thicker and thinner energy shells to
overcome the smallness of the number of states in the energy shell. To reduce statistical errors,
we sample all the energy eigenstates in a thicker energy shell, which is given by [E − ∆E,E]
with ∆E = Nδ and an N -independent constant δ > 0. The number of energy eigenstates in
the thicker shell is denoted by d. On the other hand, in the calculation of the microcanonical
average in I2(O), we use a thinner energy shell defined as follows, in order to take account of
the energy changing. A thinner energy shell for calculation of ∆(2)

ij,ij(O) and ∆(2)
ij,ji(O) is given

by [Eij − δmc, Eij ] with Eij := (Ei +Ej)/2. Here, the energy width of the thinner energy shell
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(a) (b)

Fig. 6.5 (a) Log-log plot of I2(A⊗2) vs d with λ = 1.0 (nonintegrable). I2(A⊗2) tends
to zero and scales polynomially with d for all four observables. (b) The fitting result a of
I2(A⊗2) = O(d−a) is plotted against the nonintegrability parameter λ. In the integrable
case (λ = 0), the exponent a takes a value near 0 for Z0, Z1, and Z1Z2 and a negative
value for Z1Zp+1. In the nonintegrable cases (λ ̸= 0), the exponent a takes a value near
0.5. In both panels, the observable A is set to Z0, Z1, Z1Z2, and Z1Zp+1. Reproduced
from Fig. 4 of [226].

δmc is independent of the system-size N . In our numerical calculations, the parameters of the
energy shells are fixed as E = 0 (the energy at infinite temperature), δ = 0.02, and δmc = 0.1.

6.6.2 Tensor product operator

We first investigate the validity of the 2-ETH for the tensor-product form operator O = A⊗2

with a few-body operator A. We consider four operators, Z0, Z1, Z1Z2 and Z1Zp+1 for a single
replica operator A and calculate I2(A⊗2) by changing the system size as N = 11, 13, 15, 17.

The d-dependence of I2(A⊗2) with λ = 1.0 (nonintegrable) is shown in Fig. 6.5 (a). We
clearly see that I2(A⊗2) decays polynomially with d for all four observables. Thus, we conclude
that the approximate 2-ETH is true for all of those observables. This result is reasonable
because the XXZ ladder model (6.93) satisfies the approximate 1-ETH and the off-diagonal
ETH [104,105].

We next carry out the fitting to study the d-dependence of I2(A⊗2) in more detail. We nu-
merically fit log I2(A⊗2) with a fitting function f(d) := −a log d+b with two fitting parameters
a and b. Figure 6.5 (b) shows the values of a for the several values of λ. At λ = 0 (integrable),
the exponent a is not positive within the numerical error, which implies the violation of the
approximate 2-ETH. This is consistent with the fact that the XXZ ladder model (6.93) does
not satisfy the approximate 1-ETH and the off-diagonal ETH at the integrable point [104].
On the other hand, in nonintegrable cases, the exponent a is approximately 0.5 regardless of
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(a) (b)

Fig. 6.6 (a) Log-log plot of I2(SX) vs d with λ = 1.0 (nonintegrable). Similar to
Fig. 6.5 (a), I2(SX) tends to zero and scales polynomially with d in all cases. (b) The
fitting result a of I2(SX) = O(d−a) is plotted against the nonintegrability parameter
λ. In the integrable case (λ = 0), the exponent a takes a slightly negative value for
all choices of the subsystem size. In nonintegrable cases (λ ̸= 0), the exponent a takes
a value near 0.5 for n = 1, 2, 3 (local) and a value near 1.0 for n = p (nonlocal). In
both panels, X is taken as in Fig. 6.4, and the subsystem size is set to n = 1, 2, 3, p.
Reproduced from Fig. 5 of [226].

the observable. This result implies that the 2-ETH for A⊗2 holds only at the leading order.
In other words, a nontrivial higher-order correction of the 2-ETH is not found for A⊗2.

6.6.3 Partial swap operator

We next investigate the validity of the 2-ETH for the partial swap operator SX . We set
subsystem X as illustrated in Fig. 6.4 and denote the number of spins in X by n. Figure 6.6
shows the d-dependence of the indicator I2(SX) with λ = 1 (nonintegrable) for four subsystem
sizes n = 1, 2, 3, p. In the case of n = p, X corresponds to the shorter chain, which grows
linearly with the entire system size. As in the case of O = A⊗2, I2(SX) decays polynomially
with d, which implies that the approximate 2-ETH for SX holds regardless of locality of X.
The validity of the 2-ETH also implies that the 2-REE takes a value near the maximum for
all the energy eigenstates.

As in Sec. 6.6.2, we fit log I2(SX) with a fitting function f(d) = −a log d + b. Figure 6.6
shows the λ-dependence of the exponent a for I2(SX). As is the case for A⊗2, the exponent
a takes a nonpositive value in the integrable case (λ = 0), while takes a positive value in
the nonintegrable cases (λ ̸= 0). This result implies that the approximate 2-ETH for SX

holds only in the nonintegrable case and, a low-entanglement energy eigenstate exists in the
integrable case.

Moreover, the exponent a takes a different value depending on the locality of X in the
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nonintegrable cases. For n = 1, 2, 3 (local region), the exponent a is near 0.5, which is the
same as in the case of A⊗2. This correspondence can be explained as follows. The partial
swap operator can be represented as

SX = 1
dX

d2
X∑

i=1
A⊗2

i , (6.95)

where the summation runs over all the Pauli operators supported on X, including the many-
body Pauli operators. If X is local, the number of the terms in the summation does not grow
with d. Thus, the d-dependence of I2(SX) is the same as that of I2(A⊗2

i ).
In contrast to the case of local regions, the exponent a is approximately one for n = p.

Because the summation on the right-hand side of Eq. (6.95) grows with d in this case, the
argument below Eq. (6.95) cannot be applied. Moreover, the d−1 scaling implies that the
2-REE of the energy eigenstate follows the (infinite-temperature) Page curve (6.60). In our
numerical setup with n = p, the 2-ETH corresponding to the 2-REE is given by

⟨EiEi|SX |EiEi⟩ ≈ 2d−1/2, (6.96)

where we used an approximation R
(2)
MC(X) ≈ log d1/2. We note again that the factor of

2 in front of d−1/2 is crucial for the Page correction. The d−1 scaling of I2(SX) implies
that ⟨EiEi|SX |EiEi⟩ = 2d−1/2 + O(d−1) holds, and thus the 2-REE of the corresponding
eigenstate contains the Page correction. Because the Page correction cannot be explained
from the approximate 1-ETH, this result implies that three is a nontrivial contribution of the
2-ETH in the case of the nonlocal partial swap operator.

We remark that we used the following random vector technique in numerical calculations
of the trace over H⊗2 to reduce the computation time. From the mathematically rigorous
argument of typicality [132], the trace of O ∈ B(H⊗2) is well approximated by d2 ⟨ψ|O|ψ⟩,
where |ψ⟩ is a pure state uniformly sampled from H⊗2. We thus used d2 ⟨ψ|O|ψ⟩ instead of
directly calculating the trace.

6.6.4 Summary of numerical results

We present Table 6.1 to summarize our results in this section. From Figs. 6.5 and 6.6, we
conclude that the approximate 2-ETHs for A⊗2 and SX are not satisfied in the integrable
case because the exponent a does not take a positive value. This is consistent with the fact
that the approximate 1-ETH is violated in the integrable case. The next natural question is
whether typical energy eigenstates satisfy the 2-ETH, i.e., the weak 2-ETH. We can prove the
weak 2-ETH for a local operator from the weak 1-ETH and the weak off-diagonal ETH, while
that for a nonlocal partial swap is not obtained in a straightforward way. Thus, the numerical
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Table 6.1 Summary of the fitting exponent a defined through I2(O) = O(d−a). The
approximate 2-ETH for A⊗2 and SX is valid only in the nonintegrable cases.

A⊗2 SX

local local nonlocal

Integrable ∼ 0 ∼ 0 ∼ 0

Nonintegrable ∼ 0.5 ∼ 0.5 ∼ 1

verification of the weak 2-ETH for a nonlocal partial swap is important, while, unfortunately
that is not clear from the numerical calculation.

On the other hand, the approximate 2-ETH is valid for all considered operators in the
nonintegrable cases. In particular, we found the quantitative difference of the exponent a
between local and nonlocal operators: a ∼ 0.5 for local operators and a ∼ 1 for a nonlocal
partial swap. The former implies the absence of the nontrivial correction from the 2-ETH,
while the latter implies the presence of that corresponding to the Page correction.

6.7 Summary
In this chapter, we have formulated the k-ETH (6.12) and investigated its properties by

using quantum-information theoretic techniques. The k-ETH characterizes the hierarchical
structure of quantum chaos: The 1-ETH represents the conventional ETH, which is consistent
with our expectation that thermalization describes the lowest complexity of chaotic many-
body dynamics. For k ≥ 2, the k-ETH leads to the finite-temperature Page curve for the
k-REE of individual energy eigenstates and that for the k-OSEE of the LTE. These results
imply that the eigenstate Page curve describes the higher-order complexity.

To check the validity of the above scenario in a finite-size system, we have formulated an
approximation of the k-ETH by using the max-norm (6.19). Using this formulation, we have
provided the numerical evidence that the 2-ETH approximately holds in the nonintegrable
cases while not in the integrable case (see Table 6.1). These results imply that scrambling and
the entanglement structure crucially depend on the integrability, as well as thermalization.
Specifically, for the nonlocal operator swapping a half of the entire system, we found that the
finite-size deviation from the 2-ETH is proportional to d−1 in the nonintegrable cases, which
is the evidence of the presence of the Page correction.

As mentioned in Sec. 6.2, the k-ETH is related but not equivalent to unitary k-designs.
We consider the details of this relationship in the next chapter. Similar to the fact that
unitary k-designs are sufficient for the kth-order information scrambling, the exact k-ETH for
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tensor-product form operator implies the relaxation of the 2k-point OTOC to the HRU value.
However, we have pointed out that a naive definition of the approximate decay of the 2k-point
OTOC does not work well to characterize the higher-order complexity at least in the cases of
k = 2 [233]. The reason for the failure of the naive argument is that the approximate k-ETH
for A⊗k follows from the approximate 1-ETH and off-diagonal ETH for A. It is an important
issue to establish a more meaningful formulation of the approximate decay of the OTOC and
the approximate k-ETH.

The hierarchical appearance of chaotic behavior shown in Fig 6.2 is an essential aspect of
chaotic many-body dynamics as well as the late-time chaotic behavior investigated in this
chapter. The k-ETH is expected to give insights into the mechanism of such the structure.
In fact, several studies [245,262,263] have established essential connections between the Sred-
nicki’s ETH ansatsz (2.29) and the early time operator growth.
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Chapter 7

Partial unitary design

In this chapter, we reconsider the relationship among the k-scrambling (6.6), the
k-ETH (6.12) and unitary k-designs and propose a generalization of unitary k-
designs to give an information-theoretic view on the pseudorandomness of chaotic
Hamiltonian dynamics. In Sec. 7.1, we first point out that the long-time ensemble
(LTE) does not achieve a unitary k-design because of energy conservation. At the
same time, however, the LTE can still be almost indistinguishable from the Haar
random unitary (HRU) as long as one only observes a limited class of observables.
In Sec. 7.2, we formulate such pseudorandomness of ensembles as partial unitary
(PU) k-designs. We also introduce the set of k-scrambled operators, which is the
maximum set of operators that makes an ensemble a PU k-design. In Sec. 7.3,
we give the explicit expressions of the set of k-scrambled operators for specific
ensembles. Furthermore, we specify the linear space of operators satisfying the
exact k-ETH.

7.1 Basic idea
As already mentioned in Sec. 6.2, the LTE does not form a unitary k-design, which means

that the exact k-ETH (6.12) is not satisfied for some operators. We now explain how this
fact can be seen as a natural consequence of energy conservation. Because the time-evolution
operator e−iHt is diagonal in the energy eigenbasis of H for any t, it cannot randomize the
occupation probabilities of the energy eigenstates. This can be seen more clearly by considering
the projection to an energy eigenstate Pi := |Ei⟩ ⟨Ei|. By energy conservation, Pi is invariant
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under the action of the 1-fold channel of the LTE, while the HRU randomizes Pi as seen from
Eq. (6.10):

Φ(1)
L (Pi) = Pi ̸= I

d
= Φ(1)

H (Pi). (7.1)

Thus, the 1-scrambling (i.e., quantum ergodicity) for Pi is not satisfied, and the LTE is not
even a unitary 1-design.

However, we expect that chaotic dynamics and the HRU have a common feature in the
following sense. The important point here is that, in practice, one only has incomplete acces-
sibility to the system and cannot measure all the observables. Since the number of linearly
independent observables of many-body systems increases exponentially with the system size,
we need an exponentially large number of measurements to know all the details of dynam-
ics. On the other hand, our main concern is about few-body observables. The number of
O(1)-body operators grows only polynomially with the system size. Moreover, in practical
experimental setups [13, 17], one only can measure few-body observables and cannot access
highly nonlocal and many-body observables. In general, one cannot distinguish chaotic dy-
namics and the HRU just by measuring such the limited class of observables (see Fig. 7.1).
Or to put it the other way round, the behavior of observables outside the accessible class can
deviate from that of the HRU, which allows the dynamics itself not to be unitary designs.
As for the preceding argument, it will be hard to directly measure the occupation of a single
energy eigenstate in the experiment, because the projection operator Pi is highly nonlocal.
We also note that this situation is the same as the case of the second law, which has been
discussed in Sec. 5.1. In that case, cyclic operations, instead of observables, are limited to
accessible operations.

Thus, we need to consider partial randomness (i.e., randomness only on accessible observ-
ables) to bridge a gap between chaotic Hamiltonian dynamics and the HRU. This observation
brings us to the concept of partial unitary designs only on the set of accessible observables,
which will be formalized in the next subsection.

7.2 PU k-design

7.2.1 Definition of PU k-designs

We now formulate PU k-designs. Let us fix an arbitrary subset of B(H⊗k), which is not
necessarily a linear space and written as A. The subset A represents the set of accessible
operators. Then, PU k-designs are defined as ensembles of unitaries that act like unitary
k-designs at least on A.
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Fig. 7.1 Schematic illustration of the relationship between unitary k-designs and chaotic
dynamics. A represents the set of accessible operators.

Definition 7.1 Partial unitary k-design

An ensemble ν is a PU k-design on A ⊂ B(H⊗k) if

Φ(k)
ν (O) = Φ(k)

H (O) (7.2)

holds for any O ∈ A.

The definition of PU k-designs can be phrased as the k-scrambling (6.6) for all the accessible
operators. If ν is a PU k-design on A, ν is also a PU k-design on any subset of A. However,
the converse of this property is not true in general. If we can access all the observable, i.e.,
A = B(H⊗k), PU k-designs reduces to the conventional unitary k-designs (see Definition 4.1).

7.2.2 k-scrambled observables

We next consider the maximum subset of B(H⊗k), written as M(k)
ν , such that the ensemble

ν becomes a PU k-design, namely, the full set of the k-scrambled operators by ν. As shown
below, this set quantifies the randomness of a given ensemble. We define M(k)

ν ⊂ B(H⊗k) by

M(k)
ν := {O ∈ B(H⊗k) : Φ(k)

ν (O) = Φ(k)
H (O)}. (7.3)

In other words, M(k)
ν is the kernel of the channel ∆(k)

ν := Φ(k)
ν − Φ(k)

H . By definition, M(k)
ν

is a linear space. That is, for any O1, O2 ∈ M(k)
ν and c1, c2 ∈ C, c1O1 + c2O2 ∈ M(k)

ν holds.
We give some examples of M(k)

ν in Sec. 7.3. In particular, we show an explicit expression of
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Fig. 7.2 Schematic of relations (7.4) and (7.7). S(k) represents the set of the k-scrambled
operators for a single unitary ensemble (i.e., the minimally random ensemble) and is
placed at the center . If M(k)

ν includes M(k)
ν′ , ν can be regarded as more random than ν′

the k-scrambled operators for the LTE, which equals the complete set of operators satisfying
the exact k-ETH (6.12). The set of the k-scrambled observables M(k)

ν also provides a simple
representation of the definition of PU k-design as follows: ν is a PU k-design on a given set
A if and only if A ⊂ M(k)

ν .
Moreover, M(k)

ν allows us to represent the hierarchical structure of randomness. An ensem-
ble ν can be regarded as more random than another ensemble ν′ if the former is indistinguish-
able from the HRU for a broader class of operators than the latter:

M(k)
ν′ ⊂ M(k)

ν (7.4)

holds for all k. This subset relation gives a preorder relation on ensembles of unitaries.
Furthermore, the dimension of M(k)

ν as a linear space gives a simple necessary condition of
Eq. (7.4): If Eq. (7.4) is satisfied, we have

dim(M(k)
ν′ ) ≤ dim(M(k)

ν ). (7.5)

We remark that the subset relation does not give the total order, i.e., there exist ensembles
such that neither M(k)

ν′ ⊂ M(k)
ν nor M(k)

ν′ ⊃ M(k)
ν is satisfied, but the order of dimensions

gives the total order over ensembles of unitaries.
It is obvious that M(k)

ν = M(k)
H = B(H⊗k) holds if and only if ν is a unitary k-design. This

implies that unitary k-designs are the maximally random ensembles at the level of kth order.
On the other hand, the identity ensemble νid := {I}, where the identity operator I arises
with probability one, is a minimally random. As shown in Sec. 7.3, the set of k-scrambled
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observables of νid is a linear combination of the permutation operators on k replicas:

M(k)
νid

= S(k) := span {Wπ : π ∈ Sk} , (7.6)

where span {· · · } denotes the operator space linearly spanned by {· · · }. Since the cardinality
of Sk is k!, the dimension of M(k)

νid is k!. We note that the following relation holds for any
ensemble ν:

S(k) = M(k)
νid

⊂ M(k)
ν ⊂ M(k)

H = B(H⊗k). (7.7)

Here, M(k)
ν = S(k) is satisfied only if ν contains only a single unitary, and M(k)

ν = B(H⊗k) is
satisfied only if ν is a unitary k-design. The relation (7.7) leads to the following inequality of
the dimension:

k! ≤ dim(M(k)
ν ) ≤ dk. (7.8)

Therefore, we can say that ν has a nearly maximal randomness if dim(M(k)
ν ) ≈ dk and a

nearly minimal randomness if dim(M(k)
ν ) ≈ k!.

We can also show the following expression:

M(k)
ν = Ker(Φ(k)

ν ) ⊕ S(k), (7.9)

where Ker(Φ(k)
ν ) represents the kernel of Φ(k)

ν , i.e., Ker(Φ(k)
ν ) := {O ∈ B(H⊗k) : Φ(k)

ν (O) = 0}.
Thus, we can say that the kth randomness of ν is characterized by Ker(Φ(k)

ν ). Equation (7.9)
follows from the fact that S(k) is invariant under the action of the k-fold channel of any
ensemble, and S(k) is the image of the k-fold channel of the HRU. See also Fig. 7.3 for a
schematic. Equation (7.9) also implies

dim(M(k)
ν ) = k! + dim[Ker(Φ(k)

ν )]. (7.10)

7.3 Examples
We provide an explicit expression of the set of the k-scrambled operators for several ensem-

bles that are not full unitary designs.

7.3.1 Single unitary ensemble

The first example is the simplest ensemble containing only a a single unitary operator
U ∈ U(H). We denote a single unitary ensemble by νU := {U}, where U arises with probability
one. We note that the identity ensemble is a particular case of a single unitary ensemble νU

with U = I. As an immediate consequence of Eq. (7.9) and Ker(Φ(k)
νU ) = 0, we have

M(k)
νU

= S(k). (7.11)
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Fig. 7.3 Schematic of Eq. (7.9). The image of the k-fold channel of the HRU is equiv-
alent to S(k). The region surrounded by the red circle represents the kernel of the k-fold
channel of ν, and the blue region represents the set of the k-scrambled operators of ν,
which is mapped to S(k) by Φ(k)

ν .

and dim(M(k)
νU ) = k!. These results imply that νU has the minimum randomness.

7.3.2 Random diagonal-unitary ensemble

We next consider the ensemble of random diagonal-unitaries [198,237,238], which is defined
as follows. We fix an orthonormal basis J := {|j⟩}j∈{1,...,d} of H and define a random diagonal-
unitary in the basis J by

Udiag =
d∑

j=1
eiϕj |j⟩ ⟨j| , (7.12)

where ϕ1, . . . , ϕd are drawn uniformly and independently from [−π, π]. The ensemble of ran-
dom diagonal-unitaries in the basis J is denoted by DJ . The k-fold channel of a random
diagonal-unitary ensemble DJ is given by

Φ(k)
DJ

(O) =
∫ π

−π

d∏
j=1

dϕj

2π
∑
j,j′

e
−i
∑k

i=1
(ϕji

−ϕj′
i
) |j⟩ ⟨j|O|j′⟩ ⟨j′| (7.13)

=
∑
j∼j′

|j⟩ ⟨j|O|j′⟩ ⟨j′| . (7.14)

Therefore, the kernel of Φ(k)
DJ

is given by

Ker(Φ(k)
DJ

) = span{|j⟩ ⟨j′| : π ∈ Sk, j ̸∼ j′}. (7.15)

From this and Eq. (7.9), the set of the k-scrambled operators for DJ is given by

M(k)
DJ

= span{Wπ, |j⟩ ⟨j′| : π ∈ Sk, j ̸∼ j′}. (7.16)
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We next specify the complete set of observables that satisfy the exact k-ETH (6.12) from
the correspondence between the LTE and the diagonal ensemble. As in Sec. 6.2, we assume
the k-incommensurate condition (Assumption 3). We denote the energy eigenbasis by E :=
{|Ei⟩}∈{1,...,d}. By comparing Eq. (6.7) and Eq. (7.14), we obtain

Φ(k)
L (O) = Φ(k)

DE
(O) (7.17)

for any O ∈ B(H⊗k). Therefore, the LTE is indistinguishable from random diagonal-unitaries
in the energy eigenbasis as long as one looks at the action of the k-fold channel, which is
referred to as a diagonal-unitary k-design in E. Applying the result of random diagonal-
unitaries (7.16), we obtain the following explicit expression of the k-scrambled operators for
the LTE:

M(k)
L = M(k)

DE
= span{Wπ, |E(i)⟩ ⟨E(i′)| : π ∈ Sk, i ̸∼ i′}. (7.18)

This set is equivalent to the set of operators satisfying the exact k-ETH (6.12).

7.3.3 Pauli ensemble

The third example is the Pauli ensemble, which is a unitary 1-design, but not a 2-design [190].
We denote the set of tensor products of Pauli operators acting on each qubit (Pauli chains)
by

P := {σ1 ⊗ · · · ⊗ σN : σn = I, X, Y, Z}. (7.19)

P forms a basis of B(H). The uniform ensemble over P is called the Pauli ensemble and

denoted by P. From the completeness of P, we can show Φ(1)
P (O) = I

d
Tr[O]. Therefore, we

have

M(1)
P = B(H). (7.20)

On the other hand, the set of the 2-scrambled operators by P is given by

M(2)
P = span{Wπ, Pl ⊗ Pm ∈ P⊗2

N : π ∈ S2, l ̸= m}. (7.21)

Therefore, the Pauli ensemble is not a unitary 2-design. In contrast to the fact that
dim(M(k)

νU ) = 2 holds for a single unitary ensemble, we have dim(M(2)
P ) = d4 − d2 + 2 for

the Pauli ensemble. Because it is close to the maximum value d4, we can say that the Pauli
ensemble is much closer to a full unitary 2-design than a single unitary ensemble.

Equation (7.21) can be derived as follows. We first calculate the 2-fold channel of P. Any
nontrivial Pauli operator Pl ∈ P(Pl ̸= I) commutes with a half of the operators in P, while
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anti-commutes with the others. Accordingly, we introduce a Boolean-valued function

F (l,m) :=

{
0 for PlPm = PlPm

1 for PlPm = −PmPl.
(7.22)

This function satisfies

1
d2

∑
j

(−1)F (j,l)+F (j,m) = δlm (7.23)

for any l and m. Because P is an orthonormal basis of the operator space B(H), any operator
O ∈ B(H⊗2) is represented as O =

∑
l,m ⟨Pl ⊗ Pm|O⟩Pl ⊗ Pm. By using these facts, we can

calculate the action of the 2-fold channel of P as follows:

Φ(2)
P (O) = 1

d2

∑
j,l,m

⟨Pl ⊗ Pm|O⟩ (PjPlPj) ⊗ (PjPmPj) (7.24)

= 1
d2

∑
j,l,m

⟨Pl ⊗ Pm|O⟩ (−1)F (j,l)+F (j,m)Pl ⊗ Pm (7.25)

=
∑

l

⟨Pl ⊗ Pl|O⟩Pl ⊗ Pl. (7.26)

Therefore, the kernel of Φ(2)
P is given by

Ker(Φ(2)
P ) = span{Pl ⊗ Pm ∈ P⊗2

N : l ̸= m}. (7.27)

Then, Eq. (7.21) is follows from Eq. (7.9).
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Chapter 8

Conclusions and future perspectives

8.1 Conclusions
In this thesis, we have studied the fundamental properties of chaotic dynamics in iso-

lated quantum many-body systems. In particular, we have addressed two questions: (i) how
the second law of thermodynamics emerges from purely quantum dynamics and (ii) why
chaotic many-body systems share various common features, such as thermalization, informa-
tion scrambling, and the universal structure of entanglement. The eigenstate thermalization
hypothesis (ETH) connects the properties of energy eigenstates with those of statistical en-
sembles. Although the ETH has been mainly studied in the context of thermalization, it is
reasonable to expect that the ETH plays a key role in the mechanism of the second law. Thus,
it is important to confirm the validity of the second law at the level of individual energy eigen-
states for establishing the foundation of statistical mechanics. Moreover, because the ETH is
one of the significant features of quantum chaos, it may also be relevant for understanding
universal features of chaotic dynamics beyond the conventional statistical mechanics. Our
studies have clarified that the ETH and its extension are essential to understand not only the
foundation of statistical mechanics but also the origin of various chaotic features.

In Chapter 5, we have investigated the possibility of work extraction from a single energy
eigenstate and the role of the ETH. We have numerically calculated average work extraction
from individual energy eigenstates of the quantum Ising model by cyclic quenches and have
shown a clear difference between the integrable case and the nonintegrable cases (Fig. 5.2).
To obtain a more quantitative result, we have focused on the system-size dependence of the
number of work-extractable eigenstates (Fig. 5.4). As a result, we have found that no one can
extract a macroscopic amount of work from an energy eigenstate in the nonintegrable cases,
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which implies that the second law is valid for all the energy eigenstates. On the other hand,
the number of work-extractable eigenstates does not vanish in the integrable case. With
an analytical argument and a numerical verification (Fig. 5.5), we have argued that these
numerical results can be understood from the ETH for a nonlocal many-body observable.
Moreover, we have proved a rigorous upper bound (5.16) of the ratio of work-extractable
eigenstates, implying that one cannot extract work from most finite-temperature eigenstates.
This bound is true even in integrable systems as long as the Boltzmann entropy is extensive.
Our result suggests that the second law, as well as thermalization, is true at the level of
individual energy eigenstates for nonintegrable many-body systems.

In Chapter 6, we have addressed the unification of various features of quantum chaos by
introducing the k-ETH (Definition 6.1). The formulation of the k-ETH is based on a quantum
information-theoretic notion of statistical pseudorandomness, namely unitary k-designs. The
lowest-order ETH (i.e., the 1-ETH) is identical to the conventional ETH and thus characterizes
quantum ergodicity. Specifically, we have focused on two types of operators acting on the k-
replicated Hilbert space: one is the tensor-product form operator A⊗k, and the other is the
subsystem-permuting operator CX . The former is related to the out-of-time-ordered correlator
(OTOC), and the latter is related to the entanglement entropy. We have proved that, if the
k-ETH for A⊗k holds exactly, the corresponding 2k-point OTOC relaxes to the exact value
of the Haar random average. On the other hand, the k-ETH for CX implies that the kth-
Rényi entanglement entropy of an energy eigenstate and its extension to the operator space
obey the finite-temperature extension of the Page curve. We would like to emphasize that
the Page correction intrinsically originates from the k-ETH and cannot be explained by the
conventional ETH (the 1-ETH). Furthermore, we numerically verified that the 2-ETHs for
A⊗2 and CX approximately hold in the nonintegrable cases, but do not in the integrable case
(Figs. 6.5 and 6.6). These results imply that the k-ETH provides a unified view on quantum
many-body chaos.

In Chapter 7, to further study the information-theoretic structure behind the k-ETH, we
have proposed a partial unitary (PU) k-design (Definition 7.1) and proved its basic properties.
A PU k-design is a new type of approximation of random unitaries, in which one focuses on
a limited class of operators. Conventional unitary k-designs can be regarded as a special case
of PU k-designs where one focuses on all the operators acting on the k-replicated Hilbert
space. Moreover, we have shown that the set of the k-scrambled operators (i.e., the maximum
set that makes an ensemble a PU k-design) quantifies the randomness of ensembles that are
not completely unitary k-designs. We have also derived the explicit forms of the set of the
k-scrambled operators for specific ensembles. As a by-product, we have specified operators
satisfying the exact k-ETH (7.18).
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8.2 Future perspectives
As the epilogue, we discuss a few future perspectives. First, we note that there is no general

and rigorous mathematical proof of the ETH (2.23). Proving the ETH and our extensions of
the ETH is a most important future problem. The nonintegrability of the system is required
to satisfy the ETH, but it is not all. In fact, some many-body systems, such as many-body
localized (MBL) systems [102,222,223] and quantum many-body scar (QMBS) systems [264–
266], are not integrable but do not satisfy the ETH. Many researchers expect that the random
matrix-like behavior of a chaotic Hamiltonian inside its energy shell is related to the mechanism
of the ETH [35, 246, 267, 268]. However, some systems [98, 99, 269, 270] do not completely
obey the finite-size scaling of the variance of the eigenstate expectation values predicted from
random matrix theory, nevertheless they undoubtedly satisfy the ETH in the thermodynamic
limit. The reason for the failure of the finite-size scaling of the random matrix predictions
would lie in the fact that realistic Hamiltonians have additional structure, such as the locality,
and thus cannot be fully random. The k-ETH and PU k-designs might give an insight into
such incomplete randomness.

The second open question is how the circuit complexity of quantum dynamics grows with
time. The complexity growth is crucial to understand quantum many-body chaos and has also
been investigated in the context of the holographic duality [271, 272, 272]. However, as men-
tioned in Sec. 6.1, it is not very easy to estimate the complexity of many-body Hamiltonian
dynamics as well as quantum circuits. Recently, Brown and Susskind [230, 231] conjectured
that the quantum circuit complexity of highly chaotic dynamics grows linearly for an exponen-
tially long time and fluctuates around the maximum value once it reaches the maximum (see
Fig. 6.2). A very recent work [188] has shown a fascinating result based on unitary k-designs:
Random quantum circuits are expected to form approximate unitary k-designs in O(k) depth.
In fact, this expectation has been proved in the limit of large local dimension [273]. Because
the complexity of a unitary k-design is bounded from below by O(k), the complexity of random
quantum circuits with T depth is O(T ), i.e., the linear growth of the complexity. In the above
analysis, forming unitary k-designs is crucial to estimate the complexity of an ensemble, and
thus it is not applicable to an ensemble which is not a unitary design. By using PU k-designs,
it might be possible to generalize the above analysis to less random dynamics. The first step
for achieving this would be to derive the bound of the complexity of PU k-designs.

Third, we anticipate the experimental studies of the second law and the higher-order com-
plexity of quantum many-body dynamics. As reviewed in Sec. 1.3, the recent development of
experimental technologies has made it possible to realize isolated quantum many-body sys-
tems. In fact, not only thermalization but also the entanglement entropy [274, 275] and the
4-point OTOC [276, 277] have been observed in experiments. In addition, unitary 2-designs
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have been constructed by using nuclear magnetic resonance (NMR) systems [278, 279], but
the system size is very limited. Compared to unitary designs, PU designs requires much less
controllability to realize. Thus, we expect that one can realize PU designs in large quantum
systems.
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Appendix A

Review of the Weingarten calculus

In this Appendix, we provide a brief review of the Weingarten calculus, which
is a crucial tool to calculate the average over the Haar random unitary (HRU).
In Sec. A.1, we derive the explicit representation of the k-fold channel of the
HRU (6.10) by using the Weingarten matrix. In Sec. A.2, we introduce the Wein-
garten function [240–242] and investigate its properties to calculate the Weingarten
matrix.

A.1 k-fold channel of the HRU
We first prove the following expression of the k-fold channel of the HRU used to derive the

k-ETH in Sec. 6.2:

Φ(k)
H (O) =

∑
π,τ∈Sk

Wgπ,τ (d)Tr[OWτ ]Wπ, (A.1)

where O ∈ B(H⊗k), and the Weingarten matrix Wgπ,τ (d) is the inverse of the matrix
Qπ,τ (d) := Tr[WπWτ ]. The main tool of the proof is the Schur-Weyl duality [243], which
connects the irreducible representation of the unitary group U(H) and the symmetric group
Sk. The Schur-Weyl duality states that O ∈ B(H⊗k) satisfies [O,U⊗k] = 0 for any U ∈ U(H)
if and only if O is a linear combination of the permutation operators.

We prove Eq. (A.1). From the unitary invariance of the Haar measure, we have

U†⊗kΦ(k)
H (O)U⊗k = Φ(k)

H (O) (A.2)
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for any U ∈ U(H). From the Schur-Weyl duality, Φ(k)
H (O) can be written as

Φ(k)
H (O) =

∑
π∈Sk

cπ(O)Wπ (A.3)

with cπ(O) ∈ C. Because Φ(k)
H is a linear map on B(H⊗k), cπ is also a linear map on B(H⊗k)

and thus can be represented as

cπ(O) = Tr[CπO] (A.4)

with an appropriate choice of operator Cπ ∈ B(H⊗k). From Eq. (A.2), we can show that
[Cπ, U

⊗k] = 0 for any U ∈ U(H). Applying the Schur-Weyl duality again, we have

Cπ =
∑

τ∈Sk

cπ,τWτ (A.5)

with cπ,τ ∈ C. Therefore, the k-fold channel of the HRU is written as

Φ(k)
H (O) =

∑
π,τ∈Sk

cπ,τ Tr[OWτ ]Wπ. (A.6)

On the other hand, from the definition of the k-fold channel, Φ(k)
H (Wπ) = Wσ holds for all

σ ∈ Sk. We thus have

Wσ =
∑

π,τ∈Sk

cπ,τ Tr[WσWτ ]Wπ, (A.7)

which implies that cπ,τ is a matrix element of the inverse matrix of Qσ,τ = Tr[WσWτ ]. There-
fore, cπ,τ is a matrix element of the Weingarten matrix. This completes the proof.

By using results in Sec. A.2, we have the following representations of the k-fold channel of
the HRU for small k:

• k = 1

Φ(1)
H (O) = Tr[O]

d
I. (A.8)

• k = 2

Φ(2)
H (O) = dTr[O] − Tr[SO]

d(d2 − 1)
I⊗2 + dTr[SO] − Tr[O]

d(d2 − 1)
S. (A.9)

A.2 Weingarten function
We need the explicit values of the matrix elements of the Weingarten matrix to derive

Eqs. (A.8) and (A.9). As shown in the following, we can obtain them by using the mathemat-
ical results of Refs. [240–242].
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A.2.1 Definition of the Weingarten function

We here consider the HRU average of the degree k monomials of matrix elements. The
exact expression of the average is given by

EU∼H

[
Ui1j1 · · ·Uikjk

U∗
i′

1j′
1

· · ·U∗
i′

k
j′

k

]
=

∑
π,τ∈Sk

Wg(d, π−1τ)δπ(i, i′)δτ (j, j′), (A.10)

where δπ(i, i′) :=
∏k

m=1 δimi′
π(m)

, and Wg(d, σ) is a function on the symmetric group Sk

called the (unitary) Weingarten function [240–242]. We note that Eq. (A.10) is equivalent to
Eq. (A.1), and the Weingarten matrix Wgπ,τ (d) is written as

Wgπ,τ (d) = Wg(d, πτ). (A.11)

Thus, we analyze the properties of the Weingarten function Wg(d, σ) instead of the Weingarten
matrix Wgπ,τ (d).

By using the tool of representation theory of the symmetric group Sk [243], we show a
more explicit representation of Wg(d, σ). The conjugacy class of Sk is determined by the cycle
types of permutations. The cycle type of σ ∈ Sk is a list of the lengths of the disjoint cycles
appeared in the cycle decomposition of σ, and denoted as (l1, l2, . . . , lc) with l1 ≥ · · · ≥ lc ≥ 1,
where c = c(σ) is the number of the cycles, and lm = lm(σ) is the length of the mth cycle.
We say that λ = (λ1, . . . , λr) ∈ Zr is a partition of k and write λ ⊢ k if λ1 ≥ · · · ≥ λr ≥ 1 and∑r

i=1 λi = k hold. The cycle type of a permutation is also a partition of integer k. Because the
number of the irreducible representations of a finite group equals the number of its conjugacy
class, the irreducible representation of Sk can be labeled by a partition of integer k. Then,
the Weingarten function Wg(d, σ) is represented as

Wg(d, σ) = 1
k!
∑
λ⊢k

χλ(I)χλ(σ)
Cλ(d)

, (A.12)

where Cλ(d) :=
∏r(λ)

i=1
∏λi

j=1(d+ j − i), χλ(σ) is the character corresponding to an irreducible
representation of Sk labeled by λ, and the summation runs over all partitions of k [241, 242].
Moreover, the Weingarten function Wg(d, σ) depends only on the cycle type of σ because a
character takes a constant value on each conjugacy class. There is a combinatorial method
to calculate the characters of Sk [280]. Thus, we can numerically calculate the Weingarten
function Wg(d, σ) [281,282].

We give the values of the Weingarten function for k = 1, 2, 3:

• k = 1

Wg(d, (1)) = 1
d
. (A.13)
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• k = 2

Wg(d, (1, 1)) = 1
d2 − 1

, Wg(d, (2)) = − 1
d(d2 − 1)

. (A.14)

• k = 3

Wg(d, (1, 1, 1)) = d2 − 2
d(d2 − 1)(d2 − 4)

, Wg(d, (2, 1)) = − 1
(d2 − 1)(d2 − 4)

Wg(d, (3)) = 2
d(d2 − 1)(d2 − 4)

. (A.15)

A.2.2 Asymptotic behavior of the Weingarten function

Finally, we investigate the asymptotic behavior of the Weingarten function in large d. We
introduce the Möbius function on Sk by

Moeb(σ) :=
c(σ)∏
m=1

(−1)lm(σ)Catlm(σ), (A.16)

where (l1, l2, . . . , lc) is the cycle type of σ, and Catn is the nth Catalan number, defined
by Catn := 2n!/(n!(n + 1)!). Then, the Weingarten function has the following asymptotic
form [241,242]:

Wg(d, σ) = Moeb(σ)d−2k+c(σ) + O(d−2k−2+c(σ)). (A.17)

As a corollary, we have the asymptotic form of the Weingarten matrix:

Wgπ,τ (d) = Moeb(πτ)d−2k+c(πτ) + O(d−2k−2+c(πτ)), (A.18)

which leads to Eq. (6.30).
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