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Abstract

Laser technologies to make laser pulses shorter and stronger have been drastically advanced
in the past couple of decades. The technique enables us to generate high-intensity fem-
tosecond (10−15 sec) laser pulses and leads to growth of the strong-field physics that studies
nonperturbative and nonlinear optics: Perturbation treatment of laser-fields breaks down
since the field intensity is too strong. Today, further shortening a duration of a laser pulse
has been achieved, and it reaches a few tens of attoseconds (10−18 sec) in the state-of-the-
art technology. Since the attosecond time scale corresponds to the timescale of electronic
dynamics in atoms and molecules, it became possible to observe ultrafast electronic dy-
namics by using attosecond laser pulses as ultrashort camera shutters. The appearance
of the attosecond laser pulses has arisen a new research area “attosecond physics”, where
observation and even control of the ultrafast electronic dynamics are studied.

Though such laser-induced electronic dynamics can be rigorously described by the
time-dependent Schrödinger equation, solving it for multielectron systems poses a major
challenge. To investigate many-electron dynamics in intense laser fields and attosecond
light pulses by theoretical simulations, time-dependent multiconfiguration self-consistent
field (TD-MCSCF) methods, which expresses a multielectron wave function as a su-
perposition of Slater determinants, have been developed. A well-known theory of the
TD-MCSCF methods is the multiconfiguration time-dependent Hartree-Fock (MCTDHF)
method, which considers all the possible configurations for a given number of orbitals, and
whose computational costs factorially increase against the number of electrons. To realize
computationally less demanding simulations, the time-dependent complete-active-space
self-consistent field (TD-CASSCF) method and the time-dependent occupation-restricted
multiple-active-space (TD-ORMAS) method have been proposed. The former introduces
orbital classification into doubly occupied core orbitals and fully correlated active orbitals.
The latter further divides active orbitals into subgroups and restricts the electronic con-
figurations. Flexible description of the wave function offered by the orbital classification
and occupation restriction enables converged ab initio simulations of highly nonlinear,
correlated multielectron dynamics in systems containing several tens of electrons.

While we have developed ab initio simulation methods, and enabled to simulate large
systems which are considered as subjects of real experiments, direct comparison between
ab initio simulations and experiments is still challenging. In particular, the extraction
of photoelectron energy spectra (PES) and angle-resolved photoelectron energy spectra
(ARPES), which are among important experimental probes for laser-matter interaction,
is difficult. In principle, they could be calculated by projecting the departing photoelec-
tron wave packet onto plane waves or Coulomb waves. This approach, however, requires
retaining the complete wave function without being absorbed, leading to a huge simulation
box and prohibitive computational cost. To circumvent this difficulty, the time-dependent
surface flux (tSURFF) method has been developed, which extracts PES by integrating a
wave function flux through a surface. Thus it allows one to use an absorbing boundary,
that absorbs the photoelectron wave packet when it reaches the end of the spatial grid
and suppresses unphysical reflections, bringing significant cost reduction. The tSURFF
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method was first developed for single-electron systems and then applied to multielectron
simulations with, e.g., the time-dependent configuration interaction singles method, and
the time-dependent density functional theory. However. it has not been applied to gen-
eral TD-MCSCF methods, which enable systematic improvement of accuracy, considering
multielectron effects such as electronic correlation and the multiple ionization.

Against this background, we set our objective to develop a realtime ab initio simulation
method to extract photoelectron spectra from multielectron atoms subject to intense laser
fields, applying the tSURFF method to the TD-ORMAS method.

In order to take full advantage of the tSURFF method, not needing to hold the com-
plete wave function within the simulation box, it is required to implement an efficient and
accurate absorbing boundary. we have introduced exterior complex scaling (ECS) and
infinite-range exterior complex scaling (irECS) as absorbing boundaries. ECS absorbs
photoelectron wave packets, by analytically continuing the wave function into the com-
plex plane without artificially modifying the system Hamiltonian or the wave function.
Furthermore, the infinite-range exterior complex scaling (irECS) method significantly im-
proves the efficiency over standard ECS by using an exponentially damped basis, thus
moving the reflecting boundary to infinity. ECS and irECS as absorbing boundaries were
originally formulated for single-electron systems. Thus We have applied these methods to
the TD-ORMAS method, by neglecting the Coulomb force from electrons residing in the
scaled region, which are far apart. However, we rigorously include all the other interactions
(e.g. external fields, the nuclear potential and the Coulomb force from electrons in the
unscaled region). In numerical demonstrations, we have shown that this implementation
works well even when atoms undergo significant double ionization, and enables several
times faster simulations than another absorbing boundary while keeping high accuracy.

To obtain photoelectron spectra from multiconfiguration wave functions, we have first
introduced the photoelectron reduced density matrix, whose diagonal elements in the
momentum space correspond to PES. In the application of the tSURFF method to the TD-
ORMAS method, based on a physically reasonable assumption that the nuclear potential
and interelectronic Coulomb interaction are negligible for photoelectron dynamics in the
region distant from the nuclei, we have derived the equations of motion for the momentum
amplitudes of each orbital. They contain an additional term arsing from interelectronic
interaction compared with the single-electron case.

The present development has been applied to neon, beryllium, and argon atoms. In
the simulations of a neon atom, we have compared PES obtained by the tSURFF method
and directly projecting onto plain waves, and found that they completely agree with each
other. This shows high accuracy of the tSRUFF method and the validity of the neglect
of the electron-electron and nucleus-electron Coulomb interaction assumed in the appli-
cation of the tSURFF method to the TD-ORMAS method. Next, we have computed one
photon ionization cross section of a beryllium atom including Fano resonance. The overall
structures of the cross sections obtained from TD-ORMAS simulations and experimental
results show a good agreement, which indicates that we can correctly simulate the au-
toionization process, where electronic correlation plays an essential role. Finally, we have
presented converged calculation of photoelectron spectra of above threshold ionization
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(ATI) in an argon atom including electronic correlation, which would require prohibitive
computational cost without tSURFF and irECS. Comparing the ATI ARPES computed
with the time-dependent Hartree-Fock (TDHF) method and the converged one with the
TD-ORMAS method, we have found a significant difference in a high energy region for
which rescattering from the parent ion is involved, and especially in a direction perpendic-
ular to the laser polarization. This indicates that electronic correlation is non-negligible
in a detailed discussion of ATI ARPES.

As an extension of the development for atoms, we have presented an implementation
of the TD-ORMAS method and the tSURFF method for molecules. From the theoretical
perspective, this extension is straightforward. However, from a perspective of numerical
simulations, the extension to molecular systems is not straightforward since the systems
have no longer spherical symmetry, thus the spherical harmonics expansion, which effi-
ciently discretizes atomic systems, is not suited for orbital discretization. In order to
achieve efficient discretization of molecular systems, we have introduced the adaptive fi-
nite element method with multiresolution mesh in the Cartesian coordinate, which does
not rely on the symmetry of systems. The concept of the multiresolution mesh is to dis-
cretize a region near the nuclei with fine mesh and the other regions with coarse mesh.
As an absorbing boundary, we have implemented smooth exterior complex scaling, which
is suited to the multiresolution method. For the demonstration of the present implemen-
tation, we have computed photoelecton momentum spectra from a hydrogen molecule.
The positions of the computed single photon ionization peaks were found sufficiently close
to the experimentally expected one. Moreover, comparing our results with photoelectron
momentum spectra obtained by Fermi’s golden rule, we have confirmed that photoelectron
momentum spectra reflecting a molecular structure and laser polarizations are successfully
computed by using our implementation.

In conclusion, to extract photoelectron spectra from laser-driven multielectron atoms,
we have applied and implemented irECS and the tSURFF method to the TD-ORMAS
method. In the application of the tSURFF method, we introduced photoelectron reduced
density matrix, whose diagonal elements in the momentum space correspond to PES, and
derived the equation of motion for the momentum amplitudes of each orbital. With this
development, we have achieved highly accurate calculations of PES and ARPES with con-
siderably reduced computational costs. In the simulations of an argon atom, we have
revealed that electronic correlation affects the angular distribution of photoelectron yields
in above threshold ionization spectra. Furthermore, we have extended the present develop-
ment to molecular systems, and successfully computed photoelectron momentum spectra
from a hydrogen molecule.

In this thesis, we have calculated photoelectron spectra without considering a state
of the parent ion. However, in order to understand electronic dynamics after ionization
or processes following photoemission, it is important to identify which ionic states are
generated and how they are correlated with photoelectron spectra. This can be achieved
by resolving the photoelectron reduced density matrix into contributions from an ionic
state. It is expected that such analyses will lead to a better understanding of exper-
imental results and precise prediction of high-field and ultrafast phenomena. Another
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direction of future prospects is an application to systems considering nuclear dynamics.
While we have presented the application of tSURFF to the TD-ORMAS method in this
study, it is straightforward to extend it to other multielectron ab initio methods using
time-dependent orbitals such as TD-MCSCF methods including nuclear dynamics. Such
applications would enable us to compute photoelectron spectra from even more compli-
cated systems and processes.
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Chapter 1

Introduction

Laser technologies to make laser pulses shorter and stronger have been drastically ad-
vanced in the past couple of decades. One of the biggest developments in laser physics
is chirped pulse amplification [1], which stretches a laser pulse and amplifies its intensity
and squeezes it again. This technique enables us to generate high-intensity femtosecond
(10−15 sec) laser pulses and leads to growth of the strong-field physics that studies nonper-
turbative and nonlinear optics: Perturbation treatment of laser-fields breaks down since
the field intensity is too strong. Today, further shortening a duration of a laser pulse has
been achieved, and it reaches a few tens of attoseconds (10−18 sec) in the state-of-the-art
technology. Since the attosecond timescale corresponds to that of electronic dynamics in
atoms and molecules, it became possible to observe ultrafast electronic dynamics by using
attosecond laser pulses as ultrashort camera shutters. The appearance of the attosec-
ond laser pulses has arisen a new research area “attosecond physics”, where observation
and even control of the ultrafast electronic dynamics are studied. It is expected that the
knowledge and technologies in this field are applied to, for instance, developments of new
optical devices and control of chemical reactions, where electronic dynamics plays the role
of elementary processes.

Photoelectron spectroscopy is the most widely used to experimentally understand op-
tical responses of matters exposed to laser pulses. It is well-known that photoelectron
spectra can reveal electronic structures of matters in static states, but also photoelectron
spectra are observed and analyzed to study strong-field phenomena and identify electronic
dynamics on an attosecond time scale. In parallel with this, it is required that theoret-
ical approaches to obtain accurate photoelectron spectra which can predict and explain
experimental results. With this background, we develop an ab initio method to simulate
photoelectron spectra from atoms and molecules exposed to strong and ultrashort laser
pulses in this work.

In the rest of this chapter, we give an overview of strong-field physics and attosecond
science, and ab initio simulation methods to describe multielectron dynamics subject to
laser pulses in Sec. 1.1 and 1.2, respectively. In Sec. 1.3, we describe the difficulty in
theoretically computing photoelectron spectra. In Sec. 1.4, the objective of this work
is stated. We use atomic units unless otherwise mentioned throughout this thesis (see
Appendix A for the details).
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1.1 Strong field physics and Attosecond science
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configurations. The negative energy states represent the ioniza-
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Figure 7 shows a number of Xe spectra at several laser
intensities, with peaks for S=0—10 or more. Each spec-
trum contains data of 2000—30000 laser pulses. In these
spectra as well as those of Figs. 8 and 9, the light was
linearly polarized along the detector axis. In order to
display them all on the same graph, they have been renor-
malized by scale factors as shown along the vertical axis.
The P3/p S peaks should be separated from the P»z
S—1 peaks by 0.132 eV. Unfortunately, the widths of
the peaks for 1064-nm excitation are too broad to allow
separate observation of these two series.
Similar data for Kr are shown in Fig. 8. In this case,
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Kruit, Kimman, and van der Wiel in 1981, and subse-
quently many authors commented on the absence of large
Stark shifts in the peak positions. There is now gen-
eral agreement that the shifts, if any, are quite small in
these experiments.
For excitation with 532-nm radiation the peaks are

separated by 2.33 eV, with the S=O threshold peak in Xe
occurring at 0.550 eV for the P&/z final state and 1.817
eV for the P3/z state. The peaks are separated sufficient-
ly in energy that there is no overlap. Typical spectra are
shown in Fig. 9; an alternation in intensity associated with
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Figure 1.1: Experimentally obserbed photoelectron energy spectra of ATI in a xenon atom
subject to 1064-nm light. This figure is cited from Ref. [2].

1.1 Strong field physics and Attosecond science

When we shine a strong laser pulse to atoms and molecules, various nonlinear optical phe-
nomena that cannot be described by the perturbation theory, called strong-field phenom-
ena, are observed. While laser technologies have been rapidly developed, the mechanism
and applications of strong-field phenomena have been actively studied. In this section,
we describe typical strong-field phenomena, above threshold ionization and high harmonic
generation, and an important application of attosecond laser pulses, an observation of the
charge migration.

1.1.1 Above threshold ionization

Under an intense laser with its intensity larger than about 1013 W/cm2, we can observe a
strong-field phenomenon, where atoms and molecules are ionized by absorbing more than
the minimally required number of photons. This is known as above threshold ionization
(ATI). Figure 1.1 presents an experimentally observed photoelectron energy spectra of ATI
in a xenon atom [2], where we clearly see multiple ATI peaks corresponding to absorbed
photon numbers. As shown in Fig 1.1, the ATI peaks do not obey the perturbation theory,
which indicates that the peak values monotonically decrease as the number of photons
increases. Another interesting feature in Fig. 1.1 is that the lowest order peak disappears
as the field intensity increases. This can be understood through the pondermotive energy,
which is the temporal averaged kinetic energy of a charged particle in an electromagnetic
field, given by,

Up =
q2E2

0
4mω0

, (1.1)
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Figure 1.2: High harmonic spectrum from a helium atom exposed to a laser pulse with 800
nm wavelength and 8.0× 1014 W/m2 peak intensity, calculated by the MCTDHF method.

where q is a charge, m is mass of a particle, E0 is an electric field amplitude, and ω0 is its
angular frequency. For electrons, it is given by,

Up[eV] = 9.337 × 10−14 I0[W/cm2]λ2
0[µm], (1.2)

with I0 and λ0 being a field intensity and wavelength, respectively. A free electron in a
laser field obtains the pondermotive energy Up, and thus the ionization potential energy
Ip effectively increases to Ip + Up. Since the pondermotive energy Up increases as a laser
intensity increase as shown in Eq. (1.1), the lowest order ATI peak disappears in higher
intensities.

1.1.2 High harmonic generation

Illuminating atoms and molecules by a laser pulse stronger than ∼ 1014 W/cm2, they emit
high order harmonics, which have integer multiples of the incident photon energy. This
process is high harmonic generation (HHG). Figure 1.2 shows a typical high harmonic
spectrum. We see a distinctive structure, which has a plateau region where the peak
intensities do not decrease with the harmonic order increasing, and a sudden cut-off at
which the peak intensities sharply decrease. The perturbation theory cannot explain this
structure, and thus HHG is a nonperturbative process. However, this can be understood
by a simple semiclassical model, called the three step model [3, 4]. This model describes
HHG as follows.

1. Tunneling ionization: Nuclear Coulomb potentials are drastically distorted by laser
fields and electrons ionize passing through the potential barrier by the tunneling
effect.

2. Acceleration: After tunneling ionization, electrons are accelerated by oscillating laser
fields.
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1.1 Strong field physics and Attosecond science

3. Recombination: A part of electrons comes back to the parent ion position and collides
with it, emitting a photon taking the kinetic energy of the electron and the ionization
potential Ip.

The cut-off energy Ec is given as the sum of the maximum kinetic energy and the ionization
potential within this model. By solving Newton’s equation of motion for an electron
under a periodically oscillating electric field [3], the maximum kinetic energy is obtained
as 3.17Up, and thus the cut-off energy is given by

Ec ≈ Ip + 3.17Up. (1.3)

It is known that this simple equation can successfully explain experimental results very
well [5].

One of the important applications of HHG is the generation of light pulses with at-
tosecond time width. As we mentioned above, high harmonic spectra have a plateau region
extending to the cut-off energy. The cut-off order typically reaches a few tens order, thus
by using HHG we can convert a laser pulse into a light with a frequency several tens times
that of the incident laser. This broad spectrum makes it possible to generate attosecond
light pulses.

1.1.3 Observation of the charge migration

The generation of attosecond light pulses using high order harmonics has enabled direct
observation of electron dynamics in atoms and molecules, which was difficult with fem-
tosecond laser pulses. Electrons bound to atoms and molecules move on an attosecond
scale. To measure them, a faster shutter than that the motion is required.

Recently, attosecond light pulses were applied to observe the charge migration. Illumi-
nating a molecule by a short light pulse with a photon energy sufficiently higher than the
ionization potential, plural coherent ionized states are generated at the same time. This
superposition of ionized states, which have different eigenenergies, has positively and neg-
atively charged parts, and it has been theoretically predicted that these charges migrate
in molecules on an attosecond time scale [6–8].

To cause this phenomenon, wave functions of ionized systems including photoelectrons
must be overlapped. For example, it is difficult to observe the charge migration by using
a femtosecond laser pulse. This is because in the case that a laser pulse with a longer
pulse duration than the electronic time scale, electrons are emitted at various timings
and thus the coherence of the system is lost. Hence, Calegari and et al. have employed
an attosecond pulse with a time width lower than 300 as to induce charge migration in
an amino acid molecule, and succeeded the first observation of this phenomenon in the
world [9] (Fig. 1.3).

Since such photoionization and associated electronic dynamics are an elementary pro-
cess that occurs when bio-molecules are exposed to radiation, it is expected that under-
standing of charge migration will lead to the elucidation of the effects of radiation on
organisms from the molecular level. On the other hand, from the viewpoint of chemistry,
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1.2 Ab-initio simulations for laser-induced electronic dynamics

substantial redistribution of this density is ob-
served on a sub-femtosecond scale. These charge
dynamics cannot be associated with a simple
migration from one side of the molecule to the
other. Despite the complexity of the charge con-
figuration calculated in a realistic (i.e., experi-
mentally accessible) situation, the concept of
charge migration is still valid. In particular, the
snapshots shown in Fig. 4 evidence a notable and
periodic variation of the charge density around
the amine group. This is because the dominant
beatings always involve delocalized orbitals with
substantial localization around the amine group
(see supplementarymaterials), thus showing that
evolution of the hole density around this func-
tional group provides a highly selective interac-
tion with the probe pulse.
Direct measurement of the ultrafast charge

dynamics in an amino acid, initiated by atto-
second pulses, represents a crucial benchmark
for the extension of attosecondmethodology to
complex systems. We have demonstrated that
charge fluctuations over large regions of a com-
plex molecule such as phenylalanine can be in-
duced by attosecond pulses on a temporal scale
much shorter than the vibrational response of
the system. This result was achieved in spite of
the broad bandwidth of the attosecond pulses
and, therefore, their low frequency selectivity,
thus showing that attosecond science offers the
possibility to elucidate processes ultimately lead-
ing to charge localization in complex molecules.
The latter has already been achieved in hydro-
gen molecules, where, after attosecond excitation,
charge localization was induced by the probe

NIR pulse as a result of the coupling with the
nuclear degrees of freedom at long time delays
(10). A similar achievement can be envisaged in
more complex molecules by performing more
sophisticated experiments, e.g., as those of (10),
combined with the extension of the existing
theoretical methods to account for the nuclear
motion.
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Fig. 4. Snapshots of hole dynamics. Relative variation of the hole density with respect to its time-averaged value as a function of time for themost abundant
conformer. Isosurfaces of the relative hole density are shown for cutoff values of +10−4 arbitrary units (yellow) and –10−4 (purple).Time is with reference to the
end of the XUV pulse (first snapshot). To guide the eye, time intervals between snapshots showing a similar accumulated density over the amine group are
indicated.These time intervals are close to the dominant periods associated with the electronic wave-packet motion shown in Fig. 3.The location of the amine
group is highlighted in the first snapshot with a shaded contour.
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atom, and a side chain (R), which in the case of
phenylalanine is a benzyl group (Fig. 1). In our
experiments, we used a two-color, pump-probe
technique. Charge dynamics were initiated by iso-
lated XUV sub-300-as pulses, with photon energy
in the spectral range between 15 and 35 eV and
probed by 4-fs, waveform-controlled visible/near
infrared (VIS/NIR, central photon energy of
1.77 eV) pulses (see supplementary materials).
A clean plume of isolated and neutral molecules
was generated by evaporation of the amino acid
from a thin metallic foil heated by a continuous
wave (CW) laser. The parent and fragment
ions produced by the interaction of the mol-
ecules with the pump and probe pulses were
then collected by a linear time-of-flight device for
mass analysis, where the metallic foil was in-
tegrated into the repeller electrode (23). Ionization
induced by the attosecond pulse occured in a
sufficiently short time interval to exclude sub-
stantial electron rearrangement during the exci-
tation process.
We measured the yield for the production of

doubly charged immonium ions as a function of
the time delay between the attosecond pump
pulse and the VIS/NIR probe pulse (the struc-
ture of the immonium dication is ++NH2−̇CH-R).
Figure 2A shows the results on a 100-fs time
scale. The experimental data display a rise time of
10 T 2 fs and an exponential decay with time
constant of 25 T 2 fs [this longer relaxation time
constant is in agreement with earlier experi-

mental results reported in (14)]. Figure 2B shows
a 25-fs-wide zoom of the pump-probe dynamics,
obtained by reducing the delay step between
pump and probe pulses from 3 to 0.5 fs. An os-
cillation of the dication yield is clearly visible. For
a better visualization, Fig. 2C shows the same
yield after subtraction of an exponential fitting
curve. The data have been fitted with a sinusoidal
function of frequency 0.234 PHz (corresponding
to an oscillation period of 4.3 fs), with lower and
upper confidence bounds of 0.229 and 0.238 PHz,
respectively (see supplementary materials). The
experimental data have been also analyzed by
using a sliding-window Fourier transform, which,
at the expense of frequency resolution, shows
frequency and time information on the same
plot. The result is shown in Fig. 3A. At short
pump-probe delays, two frequency components
are present, around 0.14 and 0.3 PHz. A strong
and broad peak around 0.24 PHz forms in about
15 fs and vanishes after about 35 fs, with a spec-
tral width that slightly increases upon increasing
the pump-probe delay, in agreement with the
frequency values obtained frombest fitting of the
data reported in Fig. 2C.
From these results, we can draw the following

conclusions: (i) the ultrafast oscillations in the
temporal evolution of the dication yield cannot
be related to nuclear dynamics, which usually
come into play on a longer temporal scale, ulti-
mately leading to charge localization in a par-
ticular molecular fragment. Indeed, standard

quantum chemistry calculations in phenylalanine
(see supplementary materials) show that the
highest vibrational frequency is 0.11 PHz, which
corresponds to a period of 9 fs, associated with
X-H stretching modes, whereas skeleton vibra-
tions are even slower, so that one can rule out
that the observed beatings are due to vibrational
motion. In any case, some influence of the nu-
clear motion cannot be completely excluded, be-
cause, for example, stretching of the order of a
few picometers of carbon bonds can occur in a
few femtoseconds, and this could modify the
charge dynamics (24, 25). (ii) Clear oscillatory
evolution of the dication yield is observed even
without any conformer selection. It is well known
that amino acids exist in many conformations
as a result of their structural flexibility. Typically,
the energy barrier to interconversion between
different conformers is small, of the order of a
few kcal/mol, so that, even at room temperature,
thermal energy is sufficient to induce conforma-
tional changes. Theoretical investigations have
shown that such changes can affect the charge
migration process (26). In the case of phenylala-
nine, 37 conformers have been found by ab initio
calculations (27), with a conformational distrib-
ution that depends on temperature. In our ex-
periment, at an average temperature of about
430 K, only the six most stable conformers are
substantially present, as discussed in the supple-
mentary materials, with the most abundant con-
figuration shown in Fig. 1.
To further investigate themeasured dynamics,

we also varied the photon energy and spectral
width of the attosecond pump pulse by inserting
an indium foil in the XUV beam path. The new
XUV spectrum was characterized by a 3-eV (full
width at half maximum) peak centered around
15 eV, followed by a broad and weak spectral
component extending up to 25 eV. In this case,
doubly charged immonium fragments were bare-
ly visible, suggesting that the dication formation
involves relatively highly excited states of the
cation. We have calculated the energy level dia-
gramwith all the states of singly charged phenyl-
alanine generated by the XUV pump pulse and
all the states of the dication (see supplementary
materials). A number of transitions from excited
states of the cation to the lowest states of the
dication are possible, which involve the absorp-
tion of just a few VIS/NIR photons. These states
cannot be accessed by low-energy excitation, as
in the case of XUV pulses transmitted by the in-
dium foil. In this case, transitions from cation
states to the lowest dication states would require
the less probable absorption of many VIS/NIR
photons.
We also performed theoretical calculations to

describe the hole dynamics induced by an atto-
second pulse similar to that used in the experi-
ment. Details of the method can be found in the
supplementary materials. Because of the high
central frequency and large spectral width of
the pulse, a manifold of ionization channels is
open, thus leading to a superposition of many
one-hole (1h) cationic states, i.e., to an electronic
wave packet. Ionization amplitudes for all 1h
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Fig. 2. Pump-probemeasurements. (A) Yield of doubly charged immonium ion (mass/charge = 60) as
a function of pump-probe delay, measured with 3-fs temporal steps.The red line is a fitting curve with an
exponential rise time of 10 fs and an exponential relaxation time of 25 fs. (B) Yield of doubly charged
immonium ion versus pump-probe delay measured with 0.5-fs temporal steps, within the temporal
window shown as dotted box in (A). Error bars show the standard error of the results of four measure-
ments.The red line is the fitting curve given by the sum of the fitting curve shown in (A) and a sinusoidal
function of frequency 0.234 PHz (4.3-fs period). (C) Difference between the experimental data and the
exponential fitting curve displayed in (A). Red curve is a sinusoidal function of frequency 0.234 PHz.
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Figure 1.3: (Left) Yield of doubly charged ions as a function of pump-probe delay. (Right)
Snapshots of relative variation of the charge density, calculated by the density functional
theory. Vibration periods observed in these figures show a good agreement. These figures
are cited from Ref. [9]

localized and oscillating charge in charge migration may influence molecular reactivity.
Thus, is it expected that understanding and controlling of light-induced charge migration
give a possibility of the control of chemical reaction.

1.2 Ab-initio simulations for laser-induced electronic dy-
namics

Electronic dynamics studied in the strong-field physics and attosecond science is com-
plicated phenomena, which includes non-perturbative and nonlinear effects, and involves
multiple states or paths excited by ultrashort pulses. Strong laser fields massively ionize
and excite atoms and molecules. Furthermore, not only one electron, but also multiple
electrons can be ionized and excited. This leads to a breakdown of the single-active elec-
tron (SAE) model [10], which considers only a valence electron, and requires to consider
multielectron systems. Ultrashort pulses have broad energy spectra width due to the un-
certainty principle of the Fourier transform. This yields many energy eigenstates through
photoexcitation or photoionization, and many channels or paths are involved in the dy-
namics. It is often difficult to apply models considering only a few specific states for the
dynamics. Ab initio simulations have an important role to understand and predict these
phenomena. Although solving the time-dependent Schrödinger equation (TDSE) gives an
exact description of the dynamics in the non-relativistic regime, it almost impossible to
directly solve TDSE for many-body systems due to the exponential growth of the compu-
tational cost or the curse of dimensionality. To overcome this problem and enable ab initio
simulations, the time-dependent multiconfiguration self-consistent field methods [11–15],
which we describe below, have been developed.
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1.2 Ab-initio simulations for laser-induced electronic dynamics

1.2.1 Target systems

Before moving on to further detail of theoretical approaches, we first define systems to be
handled in this work. We consider an atom or a molecule under a laser field. The total
number of electron is N, which are composed of N↑ up-spin and N↓ down-spin electrons
(N = N↑ + N↓). The atomic nuclei are spatially fixed and treated as point charges.

When the wavelength of the laser field is much larger than the system size, spatial
variation of the electromagnetic field can be negligible. This approximation is called the
dipole approximation or long wavelength approximation. Laser pulses assumed in this
work are mainly in the range of extreme ultraviolet (EUV) to near-infrared (NIR), whose
wavelengths are much larger than atoms and small molecules. Thus we consider the laser-
matter interaction within the dipole approximation [16]. Under the dipole approximation,
the electric field is a spatially constant and the magnetic field is zero.

We use r as a spatial coordinate, σ as a spin coordinate and x as a set of them.
The system Hamiltonian H(t) and the time-dependent Schrödinger equation giving the
dynamics of this system within the above condition is given by,

H(t) =
N

∑
i=1

h1(ri,∇i, t) +
1
2

N

∑
i=1

N

∑
j=1

h2(ri, rj), (1.4)

i
∂

∂t
Ψ(x1, x2, · · · , xN , t) = H(t)Ψ(x1, x2, · · · , xN , t), (1.5)

where h1(ri,∇i, t) and h2(ri, rj) denote one-body and two-body terms, respectively,

h1(ri,∇i, t) = −
∇2

i
2

+ VN(ri) + VL(ri,∇i, t), (1.6)

h2(ri, rj) =
1

|ri − rj|
. (1.7)

The one body term h1(ri,∇i, t) includes electronic kinetic energy, a Coulomb potential
from atomic nuclei VN(ri) and a potential of a laser field VL(ri,∇i, t), and the two body
term is an interelectronic Coulomb potential.

The nuclear Coulomb potential is given by,

VN(ri) =


− Z
|ri|

for atoms

−
nuclei

∑
A

ZA

|ri −RA|
for molecules

, (1.8)

where ZA(Z) and RA are the charge and position of a nucleus A, respectively. In the
atom case, the nucleus is located at the origin.

The form of VL(ri,∇i, t) depends on a gauge. There are two famous choice: one is the
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1.2 Ab-initio simulations for laser-induced electronic dynamics

length gauge, and the other is the velocity gauge.

VL(ri,∇, t) =

{
E(t) · ri length gauge
−iA(t) · ∇i velocity gauge

(1.9)

Physical observables are independent of the choice of the gauges.

1.2.2 Multiconfiguration self-consistent field method

As shown in Eq.(1.5), N-particle TDSE in 3D space is a 3N(+1) dimensional partial
derivative equation. If we try to numerically solve this equation by discretizing each
dimension by L points, the computational complexity scales as O(L3N). This exponential
growth depending on the number of particles causes difficulty in solving many-body TDSE.
Two-electron systems are currently the largest system that can be directly solved.

The multiconfiguration self-consistent field (MCSCF) method has been developed to
solve larger systems with low computational costs. The main idea is to express a multi-
electron wave function as a superposition of multiple Slater determinants (configurations)
composed of orthonormal single particle functions {χp(x, t)}, which are named spin or-
bitals.

Ψ(x1,x2, · · · ,xN , t) = ∑
I

CI(t)

∣∣∣∣∣∣∣∣∣∣
χI1(x1, t) χI2(x1, t) · · · χIN (x1, t)
χI1(x2, t) χI2(x2, t) · · · χIN (x2, t)

...
... . . . ...

χI1(xN , t) χI2(xN , t) · · · χIN (xN , t)

∣∣∣∣∣∣∣∣∣∣
(1.10)

This decomposition of the wave function above is called the multiconfiguration expansion
or configuration interaction (CI) expansion, and the space spanned by linear combination
of the Slater determinants is referred to as configuration interaction (CI) space. If the spin
orbitals constitute a complete basis set, which spans the single-particle Hilbert space, and
all the possible Slater determinants are considered for the multiconfiguration expansion,
Eq. (1.10) can always describe the exact wave function. However, the number of spin
orbitals in a complete basis set is, in principle, infinity, and even in numerically discretized
cases, it is numerous. Thus, for numerical computations, the CI space is restricted by using
a part of the spin orbitals and a part of the configurations. Spin orbitals considered in CI
expansion is referred to as occupied spin orbitals, and the rest is virtual spin orbitals or
unoccupied spin orbitals. Figure 1.4 schematically shows a concept of spin orbitals and the
MCSCF expansion. Expansion coefficients {CI}, called CI coefficients, and orbitals are
optimized within the restricted CI space based on the time-dependent variational principle
(TDVP) [17–19]. The more spin orbitals and configurations are used for CI expansion,
the better accuracy is achieved.

Time dependence of spin orbitals plays an important role for real-time simulations with
laser pulses. Since laser fields can drastically change electronic states, if spin orbitals are
fixed in time, numerous orbitals are required to accurately describe the dynamics. On the
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1.2 Ab-initio simulations for laser-induced electronic dynamics

|Ψ⟩ = 𝐶% 𝑡 +	𝐶) 𝑡 +	𝐶* 𝑡 +⋅⋅⋅

Spin orbitals

CI coefficient

Virtual orbitals

Occupied orbitals

A wave function |Ψ⟩ is expressed as a superposition of 
the Slater determinants, composed of occupied orbitals.

Figure 1.4: A schematic illustration of spin orbitals and a wave function expanded by the
MCSCF method.

other hand, time-dependent orbitals flexibly vary, and a small number of them is sufficient
to describe it.

Some representative methods in the MCSCF framework are reviewed below. For sim-
plicity we hereinafter only treat spin-restricted cases, where up-spin orbitals and down-spin
orbitals have same spatial dependency,

χp(x) =

{
φp(r)s↑(σ)

φp(r)s↓(σ)
. (1.11)

We call spacial function {φp(r)} spatial orbitals, or more simply orbitals. s↑(σ) and s↓(σ)
are up-spin and down-spin eigenfunction, respectively.

s↑(σ) =

{
1 (σ =↑)
0 (σ =↓)

, s↓(σ) =

{
0 (σ =↑)
1 (σ =↓)

(1.12)

Time-dependent Hartree-Fock method

The time-dependent Hartree-Fock (TDHF) method is the simplest MCSCF method, which
uses the same number of spin orbitals as the number of electrons. A wave function is
expressed by a single Slater determinant.

Though TDHF requires less computational costs than other methods reviewed next
and gives a good description of the ground-state, this method has difficulty in describing
excitation and ionization processes in multielectron systems under laser fields. This prob-
lem is observed, for example, in a He atom as the simplest multielectron system. Let us
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1.2 Ab-initio simulations for laser-induced electronic dynamics

consider a wave function of one up-spin and one down spin electrons, which is given by,

Ψ(x1,x2) =
1√
2

φ1(r1)φ1(r2)(s↑(σ1)s↓(σ2)− s↓(σ1)s↑(σ2)). (1.13)

In this wave function, electron 1 and electron 2 occupies the same orbital φ1. Thus it is
difficult to describe a situation where an electron is ionized and the other electron is bound
by the nuclear potential. It is reported than the unrestricted Hartree-Fock method [20–22],
which allows different spatial orbitals for up-spin and down-spin electrons, can improve
this problem, but not reach sufficient accuracy [23].

Multiconfiguration time-dependent Hartree-Fock

To realize more accurate simulations than the TDHF method, the multiconfiguration time-
dependent Hartree-Fock (MCTDHF) method has been proposed [11–13], which expands
a multielectron wave function with all the Slater determinants constructed from a given
number of spatial orbitals {φp(t)}. This construction of multiconfiguration wave function
using all the possible Slater determinants is called the full-CI expansion. Although this
method can systematically improve accuracy by increasing the number of orbitals, and,
in principle, reach the numerical convergence describing the exact wave function, its ap-
plications are limited to small systems, which include less than about 10 electrons, due to
heavy computational costs of the full-CI method. In the full-CI expansion, the number of
the Slater determinants is given by NorbCN↑ × NorbCN↓ , where Norb is the given number of
orbitals and N↑ (N↓) is the number of up-spin (down-spin) electrons. Thus, this factorial
increase of the full-CI dimension restricts the application of the MCTDHF method to
larger systems.

Time-dependent complete-active-space self-consistent field method

To overcome the problem of the MCTDHF method and apply the TD-MCSCF method
to the larger systems, it is required to decrease the number of the Slater determinants,
while keeping the accuracy. The configurations considered in The MCTDHF method can
include states where deeply-bound inner core electrons are excited or ionized. However,
for atoms or molecules subject to a strong laser pulse with a long wavelength whose
photon energy is considerably smaller than the ionization or excitation energy, it must
be reasonable to assume that only valence electrons are ionized or excited and inner core
excitation and ionization are negligible. Based on this assumption, the time-dependent
complete-active-space self-consistent field (TD-CASSCF) method introduces an orbital
classification, where spatial orbitals classified into doubly occupied and time-independent
frozen core, doubly occupied and time-dependent dynamical core, and fully correlated
active orbitals (Fig. 1.5). While dynamical core orbitals keeping the closed-shell model
describe electric polarization depending on incident laser pulses and the Coulomb forces
from other electrons, active orbitals can correctly describe ionization processes of valence
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1.2 Ab-initio simulations for laser-induced electronic dynamics

|Ψ⟩ = 𝐶% 𝑡 +	𝐶) 𝑡 +	𝐶* 𝑡 + 	 ⋅⋅⋅+𝐶, 𝑡 +𝐶- 𝑡 +𝐶. 𝑡

Core orbital

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

Frozen core orbitals

Dynamical core orbitals

Active orbitals

Occupied orbitals
Core orbitals

(a)

(b)

Figure 1.5: (a) Orbital classification in the TD-CASSCF method, where occupied orbitals
are classified into doubly occupied and time-independent frozen core, doubly occupied and
time-dependent dynamical core, and fully correlated active orbitals. (b) A schematic illus-
tration of a wave function described with the TD-CASSCF method, where a core orbital
is forced to be doubly occupied all the time, and thus the second and third configurations
in this figure are not included in the CI expansion.

electrons. The TD-CASSCF method significantly reduces the number of configurations
and the computational cost without degrading accuracy, and enables accurate simulations
of multielectron dynamics such as high-harmonic generation from a neon atom and an
argon atom [24, 25]. In addition to the advantage of the computational cost reduction,
by comparing simulation results computed with different numbers of orbitals or different
classifications of core and active orbitals, the TD-CASSCF method also enables analyses
to reveal which orbital takes a dominant role in strong-field phenomena [26].

Time-dependent occupation restricted multiple-active-space method

Although the computational costs of the TD-CASSCF method are significantly reduced
compared to the MCTDHF method, it still has factorial scaling. In order to solve this
problem, the time-dependent occupation restricted multiple-active-space (TD-ORMAS)
method further subdivide active orbitals into an arbitrary number of subgroups and poses
the occupation restriction by specifying the minimum and maximum numbers of electrons
distributed in each subgroup (theoretical details are given in Ch. 2) [15]. This method of-
fers highly flexible constructions of the CI space including the MCTDHF and TD-CASSCF
methods, and requires computational costs with polynomial scaling against the number
of electrons depending on the choice of the subdivision and the occupation restriction.
Because of the significant computational cost reduction, the TD-ORMAS method enables
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1.2 Ab-initio simulations for laser-induced electronic dynamics

scaled region
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Figure 1.6: Schematic illustration of radial exterior complex scaling contour R(r) with
scaling radius R0 and scaling angle η. In the scaled region (r > R0), outgoing waves
exponentially decay, and thus ECS performs as an absorbing boundary.

converged simulations of correlated multielectron dynamics in systems containing several
tens of electrons such as a krypton atom [27].

1.2.3 Absorbing boundary condition

One of the key issues in real-time ab initio simulations of laser-induced dynamics is a
huge computational cost arising from a large simulation box to describe photoionization.
If a simulation box is not sufficiently large, photoelectron wave packets can reach the
end of the box and be unphysically reflected. An absorbing boundary, which absorbs
the photoelectron wave packet when it reaches the end of the spatial grid and suppresses
unphysical reflection, plays a significantly important role to achieve large scale simulations.

Commonly used absorbing boundaries are the mask function [28] method, which mul-
tiplies a mask function to wave functions, and the complex absorbing potential [29, 30],
which adds a complex potential into the system Hamiltonian. Though these methods
partially suppress the unphysical reflection, reflection of unabsorbed outgoing waves still
occurs.

Exterior complex scaling (ECS) [31] is considered to be more sophisticated, which
analytically continues the wave function into the complex plane without artificially mod-
ifying the system Hamiltonian or the wave function (see Ch. 3 for the details). Figure 1.6
shows a schematic illustration of the analytical continuation in ECS. Furthermore, the
infinite-range exterior complex scaling (irECS) method introduced in Ref. [32] signifi-
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1.3 Photoelectron spectra

cantly improves the efficiency over standard ECS by using an exponentially damped basis,
thus moving the reflecting boundary to infinity.

The application of ECS and irECS, originally formulated for single-electron problems,
to strongly driven multielectron systems with the addition of the interelectronic Coulomb
interaction so far has been limited. McCurdy et al. [31] introduced ECS to two-electron
systems where the Coulomb interaction was approximated in the radial limit. Haxton et
al. [33] used ECS in their MCTDHF implementation but mainly dealt with photoionization
rather than strong-field phenomena. Telnov et al. [34] applied ECS to the time-dependent
density functional theory to simulate high-harmonic generation from Ar. In the scaled
region, however, they neglected the laser field and replaced the time-dependent Hartree
and exchange-correlation potentials with their initial values. Majety et al. [35] have re-
cently proposed the hybrid antisymmetrized coupled-channels method to calculate fully
differential photoelectron spectra of multielectron systems subject to strong laser fields.
Though irECS is used in the implementation, only an electronic coordinate is scaled in
each channel as the method allows only single ionization. Zielinski et al. [36] have applied
irECS to two-electron systems, where both the electronic coordinates are scaled. However,
irECS has never been applied to TD-MCSCF methods.

1.3 Photoelectron spectra

As ab initio simulations have developed, we have enabled to simulate large systems which
are considered as subjects of real experiments. Enabling a direct comparison between accu-
rate ab initio simulations and experiments is one of the next steps for further development
of technologies to observe and control the ultrafast electronic dynamics. Photoelectron en-
ergy spectra (PES) and their angular distribution, or angle-resolved photoelectron energy
spectra (ARPES) are among important experimental probes for laser-matter interaction.
Since PES have plenty of information on electronic states and photoemission dynamics,
many time-resolved and angular-resolve analyses have been conducted [37–41].

One of the important techniques used in attosecond science is the attosecond streaking
method [42–45], which first ionizes a target with an attosecond pulse, and modulates
the photoelectron momentum with a delayed strong laser pulse. By Sweeping the delay
time, we can obtain time-resolved information of photoelectron spectra. For instance, this
method was used to analyze photoemission from a neon atom [46]. The time-resolved
measurement with attosecond accuracy revealed that photoemission from the 2s orbital is
delayed by 21 attoseconds compared to that from the 2p orbital.

On the other hand for ab initio numerical simulations, photoelectron spectra could
be calculated, in principle, by projecting the departing photoelectron wave packet onto
plane waves or Coulomb waves. This approach, however, requires retaining the complete
wave function without being absorbed, leading to a huge simulation box and prohibitive
computational cost. To circumvent this difficulty, Tao and Scrinzi have devised the time-
dependent surface flux (tSURFF) method [47], which extracts PES by integrating the
wave function flux through a surface. Thus it allows one to use an absorbing boundary,
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1.4 Objective

bringing significant cost reduction.
The tSURFF method was first developed for single electron systems [47], and then ap-

plied to one-dimensional two-electron systems to obtain doubly differential photoelectron
spectra [48]. Majety et al. have proposed the hybrid antisymmetrized coupled channels
method [35], where only single ionization was allowed, and used the tSURFF method to
calculate fully differential photoelectron spectra in multielectron systems. Zielinski et al.
have applied the tSURFF method to three dimensional two-electron systems, and suc-
cessfully calculated correlated photoelectron momentum spectra in double ionization [36].
Karamatskou et al. have applied the tSURFF method to the time-dependent configura-
tion interaction singles (TDCIS) method [49] by neglecting all the multielectron meanfield
potentials. Though The TDCIS method can describe multielectron systems, it allows only
single ionization. Wopperer et al. have applied to the time-dependent density functional
theory (TDDFT) with an assumption that photoelectron spectra can be directly obtained
from the time-dependent Kohn-Sham orbitals [50]. However, the tSURFF has not been
applied to general TD-MCSCF methods, which enables systematic improvement of accu-
racy, considering multielectron effects such as the electronic correlation and the multiple
ionization.

1.4 Objective

Though photoelectron spectra are often observed in experiments to explore electronic dy-
namics and structures, it is difficult to theoretically compute accurate spectra including
multielectron effects. The objective of this thesis is to develop a realtime ab initio simula-
tion method to extract photoelectron spectra from multielectron atoms subject to intense
laser fields. To accomplish this challenging task, we combine irECS as an efficient and
accurate absorbing boundary and the tSURFF method with the TD-ORMAS method.

We have applied irECS to the TD-ORMAS method, by neglecting the Coulomb force
from electrons residing in the scaled region, which are far apart. However, we rigorously in-
clude all the other interactions (e.g. external fields, the nuclear potential and the Coulomb
force from electrons in the unscaled region). This implementation works well even when
atoms undergo significant double ionization, and enables several times faster simulations
than the mask function method while keeping high accuracy. In the application of the
tSURFF method, based on a physically reasonable assumption that the nuclear potential
and interelectronic Coulomb interaction are negligible for photoelectron dynamics in the
region distant from the nuclei, we have derived the equations of motion for the momentum
amplitudes of each orbital, and implemented the tSURFF method for atoms subject to
linearly polarized laser pulses. As a result of this development, we have achieved highly
accurate calculations of PES and angle-resolved PES with considerably reduced compu-
tational costs, and revealed that electronic correlation affects the angular distribution of
photoelectron yields in above threshold ionization spectra of an Ar atom. Furthermore,
we present an extension of this development to molecular systems implemented with the
adaptive finite element method.

19



1.4 Objective

This thesis is organized as follows. Chapter 2 gives a review of the theory of the TD-
ORMAS method and its implementation for atoms. In Ch. 3, we reviews ECS for single-
electron systems, and describe our numerical implementation of irECS and application of
irECS to the TD-ORMAS method. The accuracy and efficiency of irECS in the application
are also shown in this chapter. In Ch. 4, we describe the theoretical application and
numerical implementation of the tSURFF method to the TD-ORMAS method, and show
numerical applications. The extension to extract photoelectron spectra from molecules is
described in Ch. 5. Chapter. 6 concludes this thesis and discuss future prospects.
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Chapter 2

The Time-dependent occupation restricted
multiple-active-space method

In this chapter, we review the theory of the time-dependent occupation restricted multiple-
active-space (TD-ORMAS) method proposed in Ref. [15] and the derivation of equations of
motion. After the review of the theory, we explain our implementation of the TD-ORMAS
method for atoms subject to a linearly polarized laser pulse, detailed in Ref. [24].

2.1 The ORMAS model

In this section, we define the occupation restricted multiple-active-space (ORMAS) model.
The systems considered in this section are an atom and a molecule under a laser field,
which are detailed in Subsec. 1.2.1, including N↑ up-spin and N↓ down-spin electrons and
N(= N↑ + N↓) electrons in total.

We assume that single electron Hilbert space is spanned by the complete set of Nb

orthonormal spatial orbitals {φµ}. The Fermion creation and annihilation operator asso-
ciated with spatial orbitals {φµ} and a spin coordinate σ are defined as â†

µσ and âµσ. The
orbital set is divided into n occupied orbitals and Nb − n virtual orbitals. In the ORMAS
model, as the MCSCF method, the wave function is constructed by occupied orbital sets.

The core orbital technique introduced in the TD-CASSCF method [14], where orbitals
classified into doubly occupied and time-independent frozen core, doubly occupied and
time-dependent dynamical core, and fully correlated active orbitals, is also applicable to
the ORMAS model. We define core orbitals (nfc frozen and ndc dynamical cores) as the
first nc(= nfc + ndc) occupied orbitals, and thus the rest of na(= n − nc) orbitals are
classified into active orbitals. Since core orbitals are always doubly occupied, Nc(= 2nc)

electrons are classified into core electrons, and Na(= N − Nc) electrons are active electrons.
We refer to the core orbital and active orbital subset as C and A.

Based on the definition above, a MCSCF wave function, not restricted to the ORMAS
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2.1 The ORMAS model

model, respect to a given CI space P can be written as,

|Ψ〉 = CIΦ̂C

P

∑
I
|I〉 , (2.1)

Φ̂C = ∏
σ=↑,↓

∏
i∈C

â†
iσ, (2.2)

|I〉 = ∏
σ=↑,↓

∏
t∈A

(â†
tσ)

Itσ |〉 , (2.3)

where |〉 denotes the vacuum state, and Itσ, which equals to 1 or 0, means whether a spin
orbital φ(r)sσ(τ) is included in a configuration I or not. Φ̂C and |I〉 represent the core
and active orbital parts.

The ORMAS model further subdivides the active orbital subset A into a given number
G of subgroups. We consider a direct sum decomposition of A,

A = A1 ⊕A2 ⊕ · · · ⊕ AG, (2.4)

A1 = {φ
(1)
1 , φ

(1)
2 , · · · , φ

(1)
n1 },

A2 = {φ
(2)
1 , φ

(2)
2 , · · · , φ

(2)
n2 },

· · ·

AG = {φ
(G)
1 , φ

(G)
2 , · · · , φ

(G)
nG },

(2.5)

na =
G

∑
g

ng. (2.6)

ng orbitals belonging to A are assigned to Ag. The occupation restriction is achieved by
imposing a lower limit and an upper limit to the number of electrons in each group,

Nmin
1 ≤ N1 ≤ Nmax

1 ,

Nmin
2 ≤ N2 ≤ Nmax

2 ,

· · ·

Nmin
G ≤ NG ≤ Nmax

G ,

(2.7)

Na =
G

∑
g

Ng. (2.8)

Ng denote the number of electrons distributed in an orbital subgroup Ag. All the possible
configurations within those orbital subgrouping and occupation restriction construct the
ORMAS-CI space PORMAS. It should be noticed that this construction of the CI space
includes the MCTDHF method and the TD-CASSCF method, which are the case of G = 1.
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2.2 Derivation of the equations of motion

2.2 Derivation of the equations of motion

In this section, we derive the equations of motion in the TD-ORMAS method from the
time-dependent variational principle (TDVP) [19]. The system Hamiltonian is given in
Eqs.(1.4)-(1.9). Here we show it again in the second quantization form,

Ĥ = ∑ h1
µ
ν Êµ

ν +
1
2 ∑

µνλγ

h2
µλ
νγ Êµλ

νγ , (2.9)

where h1
µ
ν and h2

µλ
νγ are the matrix elements of one-electron and two-electron terms, re-

spectively,

h1
µ
ν =

∫
drφ∗

µ(r)h1(r,∇, t)φν(r) (2.10)

h2
µλ
νγ =

∫
dr1dr2φ∗

µ(r1)φ
∗
λ(r2)h2(r1, r2)φγ(r2)φν(r1). (2.11)

The operator Êµ
ν and Êµλ

νγ represent,

Êµ
ν = ∑

σ=↑,↓
â†

µσ âνσ, (2.12)

Êµλ
νγ = ∑

σ,τ=↑,↓
â†

µσa†
λτ âγτ âνσ. (2.13)

The time-dependent variational principle requires the action integral S,

S[Ψ] =
∫ t1

t0

dt 〈Ψ|Ĥ − i
∂

∂t
|Ψ〉 , (2.14)

to be stationary respect to variation of a wave function. The variation of the action integral
δS from variation of a wave function is given by,

δS[Ψ] = S[Ψ + δΨ]− S[Ψ]

=
∫ t1

t0

dt
{
〈δΨ|Ĥ − i

∂

∂t
|Ψ〉+ 〈Ψ|Ĥ − i

∂

∂t
|δΨ〉

}
=
∫ t1

t0

dt
{
〈δΨ|Ĥ − i

∂

∂t
|Ψ〉+

(
〈Ψ| Ĥ + i 〈Ψ̇|

)
|δΨ〉

}
. (2.15)

The transformation from the first to the second line uses the partial integral and a bound-
ary condition δΨ(t0) = δΨ(t1) = 0.

The variation of the ORMAS wave function is arisen from variation of CI coefficients
CI → CI + δCI and orbitals |φµ〉 → |φµ〉 + |δφµ〉. The variation of orbitals can be by
orbitals as a complete basis set of the Hilbert space,

|δφµ〉 = ∑
ν

∆ν
µ |φν〉 , (2.16)

∆ν
µ = 〈φν|δφµ〉 . (2.17)
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2.2 Derivation of the equations of motion

We impose orbital orthonormality on the orbital variation since orbitals are assumed to
keep orthonormal after time-propagation. This is achieved by making the matrix {∆ν

µ}
anti-Hermitian, which is derived from the following condition.

〈φν + δφν|φµ + δφµ〉 = δν
µ (2.18)

Time derivative of orbitals is also expanded, as well as the orbital variation,

|φ̇µ〉 = ∑
ν

Xν
µ |φν〉 , (2.19)

Xν
µ = 〈φν|φ̇µ〉 . (2.20)

Again, in order to keep orbital orthonormality after time-propagation, we assume the
matrix {Xν

µ} anti-Hermitian which comes from,

∂

∂t
〈φν|φµ〉 = 0. (2.21)

This condition is, in another way, achieved by the Lagrange multipliers method, which
adds,

∑
νµ

Lν
µ(〈φν|φµ〉 − δν

µ), (2.22)

with the Lagrange multipliers Lν
µ to the action integral S[Ψ] (Eq. (2.14)). Both the ways

lead to the same equations of motion. The time derivative of a wave function Ψ̇ and the
variation allowed in the ORMAS wave function |δΨ〉 are given by,

|Ψ̇〉 = ĊIΦ̂c

PORMAS

∑
I

|I〉+ X̂ |Ψ〉 , (2.23)

|δΨ〉 = δCIΦ̂c

PORMAS

∑
I

|I〉+ ∆̂ |Ψ〉 . (2.24)

(2.25)

The operator X̂ and ∆̂ are the second quantization expressions of the matrices {Xν
µ} and

{∆ν
µ}, respectively,

X̂ = ∑
νµ

Xν
µÊν

µ, (2.26)

∆̂ = ∑
νµ

∆ν
µÊν

µ. (2.27)
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2.2 Derivation of the equations of motion

The stationary condition of Eq (2.15) leads to,

δS
δCI

=
δS

δC∗
I
= 0 I ∈ PORMAS, (2.28)

δS
δ∆ν

µ

= 0. (2.29)

Here, We can independently treat CI and C∗
I based on the Wirtinger derivatives, which

enables us to consider derivatives with respect to δCI and δC∗
I instead of Re(δCI) and

Im(δCI). The condition δS/δ∆ν
µ
∗ = 0 is automatically considered in Eq. (2.29) due to the

anti-Hermiticity of the matrix {∆ν
µ}.

By inserting Eq. (2.23) and Eq. (2.24) to Eq (2.15), we obtain a more concrete expres-
sion of the stationary condition,

iĊI =
PORMAS

∑
J

(〈I|Φ̂†
C ĤΦ̂C|J〉 − i 〈I|Φ̂†

CX̂Φ̂C|J〉)CJ , (2.30)

i 〈Ψ|Êν
µΠ̂X̂ − X̂Π̂Êν

µ|Ψ〉 = 〈Ψ|Êν
µΠ̂Ĥ − ĤΠ̂Êν

µ|Ψ〉 . (2.31)

The operator Π̂ denotes a projector 1̂ − ∑PORMAS
I Φ̂c |I〉 〈I| Φ̂†

c , which projects out a wave
function into the orthogonal complement of the CI space PORMAS. Equation (2.30) is
the equations of motion of CI coefficients, which is determined when the orbital time
derivatives matrix {Xν

µ} are figured out. The matrix {Xν
µ} is determined as a solution

of Eq. (2.31). Note that, Eq. (2.31) has a complicated form, but this essentially forms a
system of linear equations of {Xν

µ}.

For the following discussion, we introduce a notion of orbital indices for each orbital
subspace. That is,

i, j, k, l ≡ core orbitals, (2.32a)
t, u, v, w ≡ active orbitals, (2.32b)

o, p, q, r, s, p′, q′ ≡ occupied orbitals, (2.32c)
a, b, c ≡ virtual orbitals, (2.32d)

µ, ν, λ, γ, δ ≡ general orbitals (all the subspaces). (2.32e)

Then, we first classify an orbital pair ν, µ based on orbital subspaces and the result of
Π̂Êν

µ |Ψ〉, where {Êν
µ} replaces an orbital φµ with φν in a wave function. All the possible

operators {Êν
µ} are listed as,

{Êν
µ} = {Êi

j, Êi
t, Êt

i , Êt
u, Êp

a , Êa
p, Êa

b}. (2.33)

The first class is the orbital pairs of core-core and virtual-virtual, which result in
Π̂Êν

µ |Ψ〉 = 0. For the core-core pair, Êi
j |Ψ〉 equals 2δi

j |Ψ〉, and thus Π̂Êi
j |Ψ〉 = 0. For

the virtual-virtual pair, an ORMAS wave function does not include virtual orbitals, then
Êa

b |Ψ〉 = 0. In this case, Eq. (2.31) reduces a trivial equation, where the matrix {Xν
µ} can
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2.2 Derivation of the equations of motion

be an arbitrary anti-Hermitian matrix including the zero matrix.

The second class is the orbital pairs of core-active {i, t}, active-core {t, i}, virtual-
occupied {a, p} and occupied-virtual {p, a}, where Eq. (2.31) reduces a simpler equation
and we can directly solve it. For the core-active and active-core pairs, Êi

t |Ψ〉 = 0, and then
Π̂Êi

t |Ψ〉 = 0 and Π̂Êt
i |Ψ〉 = Êt

i |Ψ〉. For the virtual-occupied and occupied-virtual pairs,
Êa

p |Ψ〉 = 0, and then Π̂Êa
p |Ψ〉 = 0, and Π̂Êp

a |Ψ〉 = Êp
a |Ψ〉. In this case, the projector Π̂

can be replaced with the identity operator in Eq. (2.31), and this leads to,

i 〈Ψ|[Êν
µ, X̂]|Ψ〉 = 〈Ψ|[Êν

µ, Ĥ]|Ψ〉 . (2.34)

Thus, we can write down Eq. (2.31) with respect to the matrix element Xµ
µ ,

i ∑
λ

(Xν
λDλ

µ − Dν
λXλ

µ) = ∑
λ

(h1
ν
λDλ

µ − Dν
λh1

λ
µ) + ∑

λ,δ,γ
(h2

νδ
λγPλγ

µδ − Pνδ
λγh2

λγ
µδ ). (2.35)

Dµ
ν and Pµλ

νγ denote the one-body and two-body reduced density matrix (RDM) elements,

Dµ
ν = 〈Ψ|Êν

µ|Ψ〉 , (2.36)

Pµλ
νγ = 〈Ψ|Êνγ

µλ|Ψ〉 . (2.37)

In Eq. (2.35), the dummy indices λ, δ, γ run over all the orbitals, but nonzero elements of
RDMs are, in general, Di

j = 2δi
j, Dt

u, Pij
kl = 4δi

lδ
j
k − 2δi

kδ
j
l , Pit

uj, Pit
ju, Ptu

vw. Thus, Eq. (2.35) can
be decomposed into,

i
active

∑
u

Xi
u(Du

t − 2δu
t ) =

active

∑
u

h1
i
u(Du

t − 2δu
t ) +

occupied

∑
p,q,r

(h2
iq
prPpr

tq − Piq
prh2

pr
tq )

for {ν, µ} = {i, t}, (2.38)

i
active

∑
u

(Dt
u − 2δt

u)Xu
i =

active

∑
u

(Dt
u − 2δt

u)h1
u
i −

occupied

∑
p,q,r

(h2
tq
prPpr

iq − Ptq
prh2

pr
iq )

for {ν, µ} = {t, i}, (2.39)

i2Xa
i = 2h1

a
i +

occupied

∑
q,r,s

h2
ar
qsPqs

ir for {ν, µ} = {a, i}, (2.40)

i2Xi
a = 2h1

i
a +

occupied

∑
q,r,s

Pir
qsh2

qs
ar for {ν, µ} = {i, a}, (2.41)

i
active

∑
u

Xa
uDu

t =
active

∑
u

h1
a
uDu

t +
occupied

∑
q,r,s

h2
ar
qsPqs

tr for {ν, µ} = {a, t}, (2.42)
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2.2 Derivation of the equations of motion

i
active

∑
u

Dt
uXu

a =
active

∑
u

Dt
uh1

u
a +

occupied

∑
q,r,s

Ptr
qsh2

qs
ar for {ν, µ} = {t, a}. (2.43)

Equations (2.39), (2.41) and (2.43) are identical to Eqs. (2.38), (2.40)and (2.42) due to
anti-Hermiticity of the matrix {Xν

µ}. Although we have introduced frozen core orbitals as
time-independent orbitals, this is justified only in the length gauge. As for the velocity
gauge, gauge-transformation of frozen core orbitals is required to preserve gauge-invariance
[24]. Then, a frozen core orbital at time t is given as

|φi(t)〉 =
{
|φi(0)〉 length gauge
exp(−iA(t) · r̂) |φi(0)〉 velocity gauge

, φi ∈ frozen core.

Thus, when orbital φi is a frozen core orbital, the orbital time-derivative element Xi
µ is

given by

Xi
µ = −Xµ

i
∗
=

{
0 length gauge
−iE(t) · 〈φµ|r̂|φi〉 velocity gauge

, φi ∈ frozen core.

On the other hand, when orbital φi is a dynamical core orbital, Eq. (2.39) and Eq. (2.40)
reads,

Xt
i = −Xt

i
∗
= −ih1

t
i + i

active

∑
u

((D − 2I)−1)t
u

occupied

∑
p,q,r

(h2
uq
pr Ppr

iq − Puq
pr h2

pr
iq )

φi ∈ dynamical core, (2.44)

Xa
i = −Xa

i
∗ = −ih1

a
i − i

1
2

occupied

∑
q,r,s

h2
ar
qsPqs

ir φi ∈ dynamical core, (2.45)

where D and I denote the one-body reduce matrix and identity matrix. And Eq. (2.42)
reads,

Xa
t = −Xt

a
∗
= −ih1

a
t − i

active

∑
u

occupied

∑
q,r,s

h2
ar
qsPqs

ur(D−1)u
t . (2.46)

Note that Eqs. (2.44) and (2.45) can be expressed as single equation,

Xa
p = −Xp

a
∗
= −ih1

a
p − i

occupied

∑
o,q,r,s

h2
ar
qsPqs

or (D−1)o
p. (2.47)

The third class is the orbital pairs of active-active {t, u}. This pair has two types,
which are an intragroup and intergroup pair. For the intragroup pair t, u, where φt and
φu belong to a same active orbital subgroup Ag, Π̂Êt

u |Ψ〉 = 0. Thus, as well as the first
class, Eq. (2.31) reduces to a trivial equation, and the matrix Xν

µ can be an arbitrary anti-
Hermitian matrix. For the intergroup pair t, u, where φt and φu belong to different active
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2.2 Derivation of the equations of motion

orbital subgroups, Π̂Êt
u |Ψ〉 includes components of both the PORMAS and the orthogonal

complement of PORMAS. Thus we need to directly solve Eq. (2.31), which forms a system
of linear equations within intergroup pairs {t, u},

i∑
v,w

′
(Atu,vw − Avw,tu)Xv

w = btu, (2.48)

where ∑v,w
′ denotes summation over all permutations of intergroup pairs and,

Atu,vw = 〈Ψ|Êt
uΠ̂Êv

w|Ψ〉 , (2.49)
btu = 〈Ψ|Êt

uΠ̂Ĥ|Ψ〉 − 〈Ψ|ĤΠ̂Êt
u|Ψ〉 . (2.50)

In this work, we numerically solve Eq. (2.48) by singular value decomposition. All the
matrix elements Xν

µ are determined up to here.

We finally derive the equations of motion of orbitals. Time derivatives of orbitals are
expressed as,

|φ̇p〉 = ∑
µ

|φµ〉 Xµ
p (2.51)

=
virtual

∑
a

|φa〉 Xa
p +

occupied

∑
q

|φq〉 Xq
p. (2.52)

Inserting Eq. (2.47) into the first term of above the equation, it is possible to remove
virtual orbitals,

virtual

∑
a

|φa〉 Xa
p = −i

virtual

∑
a

|φa〉 〈φa|
[

ĥ1 |φp〉+
occupied

∑
o,q,r,s

Ŵr
s |φq〉 Pqs

or (D−1)o
p

]
(2.53)

= −iQ̂

[
ĥ1 |φp〉+

occupied

∑
o,q,r,s

Ŵr
s |φq〉 Pqs

or (D−1)o
p

]
, (2.54)

where we introduce a projection operator Q̂ by using completeness of orbitals,

Q̂ =
virtual

∑
a

|φa〉 〈φa| = 1 −
occupied

∑
p

|φp〉 〈φp| (2.55)

and the mean field operator Ŵr
s , which is given by, in the coordinate space,

Wr
s (r1) =

∫
dr2φ∗

r (r2)h2(r1, r2)φs(r2) =
∫

dr2
φ∗

r (r2)φs(r2)

|r1 − r2|
. (2.56)

Thus, the equations of motion of dynamical core and active orbitals are obtained as,

i |φ̇p〉 = Q̂

[
ĥ1 |φp〉+

occupied

∑
o,q,r,s

Ŵr
s |φq〉 Pqs

or (D−1)o
p

]
+ i

occupied

∑
q

|φq〉 Xq
p, (2.57)
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2.3 Implementation of the TD-ORMAS method

with {Xq
p} given by Eqs. (2.2), (2.47) and (2.48).

2.3 Implementation of the TD-ORMAS method

In this section, we explain our implementation of the TD-ORMAS method, which con-
siders an atom under a linearly polarized laser field. The polarization axis is z direction.
Especially, the spatial discretization method of orbitals and the time propagation method
for orbitals and CI coefficients are described.

We assume orbitals in the polar coordinate (r, θ, φ), and that orbitals are expanded
with Lmax spherical harmonics,

φp(r, θ, φ) =
Lmax

∑
l=0

l

∑
m=−l

φlm
p (r)

r
Ylm(θ, φ). (2.58)

φlm
p (r) denote a radial part of orbitals with an angular quantum number l and a magnetic

quantum number m. The radial part is discretized with the finite-element discrete-variable-
representation (FEDVR) basis [51–53], which we describe the detail below. In numerical
simulations, we first prepare a ground state by using the imaginary time propagation, and
next propagate the ground state under a laser field in real-time. In both imaginary and
real-time propagation, we employ the exponential integrator scheme [54], which the detail
is also given below.

2.3.1 Finite-element discrete-variable-representation basis

The FEDVR basis is based on the finite element method with the Gauss-Lobatto quadra-
ture and polynomial basis passing through quadrature points. We consider a radial region
[0, Rmax] and divide it into NFE finite elements with boundaries

r(0) = 0, r(1), · · · , r(NFE−1), r(NFE) = Rmax.

In i th finite element [r(i−1), r(i)], we set MGL th order Gauss-Lobatto quadrature points
{ri,m |m = 1, · · · , MGL}, whose first and last points are identical to the left and right
boundary of a given region, and then Lagrange polynomial functions associated with the
m th quadrature point can be defined as,

Li,m(r) = ∏
m′ 6=m

r − ri,m′

ri,m − ri,m′
, (2.59)

where this function is defined only in [r(i−1), r(i)] and has zero value outside the region.
This polynomial has a delta function like property of Li,m(ri,m′) = δm

m′ , which can be easily
checked by inserting ri,m′ into Eq. (2.59). By using this property, we can construct an
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2.3 Implementation of the TD-ORMAS method

approximately orthonormal basis with the Gauss-Lobatto quadrature weights {wi,m},

L̃i,m(r) =
Li,m(r)√wi,m

, (2.60)

∫
drL̃i,m(r)L̃i,m′(r) '

MGL

∑
k=1

wi,k L̃i,m(ri,k)L̃i,m′(ri,k) = δm
m′ . (2.61)

MGL th order Gauss-Lobatto quadrature can exactly integrate up to 2MGL − 3 th order
polynomials, but L̃i,m(r)L̃i,m′(r) is 2MGL − 2 th order polynomial. This is the reason
why the orthonormality holds only within the approximation. The FEDVR method uses
L̃i,m′(r) as i th finite element basis.

Though we can construct a basis set supporting the whole region [0, Rmax] by collecting
the finite element basis belonging to each finite element, this basis set can describe a
discontinuous function at the finite element boundaries. Thus, to ensure the continuity
of discretized functions, we need to remove finite element basis functions associated with
quadrature points at each finite element boundary except for the left boundary of the first
finite element (r = 0) and the right boundary of the last finite element (r = Rmax), and
introduce the bridging function instead,

Li,MGL(r) + Li+1,1(r)√
wi,MGL + wi+1,1

. (2.62)

Then we obtain FEDVR basis fi,m(r),

fi,m(r) =


Li,MGL(r) + Li+1,1(r)√

wi,MGL + wi+1,1
m = 1, MGL and i 6= 1, NFE

L̃i,m(r) else
. (2.63)

For simplicity, we relabel fi,m(r) as fk(r), where k denote a set of indices (i, m), and define
integral wights w̃k for the whole region [0, Rmax] as,

w̃k = w̃i,m =


wi,MGL + wi+1,1 m = 1, MGL and i 6= 1, NFE

wi,m else
. (2.64)

With this definition, the orthonormality of the FEDVR basis can be expressed as,∫ Rmax

0
dr fk(r) fk′(r) ' ∑

κ

w̃κ fk(rκ) f ′k(rκ) = δk
k′ . (2.65)

The radial part of orbitals φlm
p (r) can be approximated or discretized with the FEDVR
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2.3 Implementation of the TD-ORMAS method

basis,

φlm
p (r) ' ∑

k
cp

klm fk(r), (2.66)

cp
klm =

√
w̃kφlm

p (rk). (2.67)

The second equation approximates
∫

dr fk(r)φlm
p (r) with the Gauss-Lobbato quadrature.

The expansion coefficient cklm is determined only by a function value φlm
p (rk) at a grid

point rk. Discrete-variable-representation (DVR) means this property. A local potential
V(r), for example Coulomb potential, is discretized as a diagonal matrix,

Vkk′ =
∫

dr fk(r)V(r) fk′(r) ' V(rk)δ
k
k′ . (2.68)

The radial derivative matrix {Kr
kk′} is evaluated as,

Kr
kk′ =

∫
dr fk(r)

∂

∂r
fk′(r) = ∑

κ

w̃κ fk(rκ)
∂ fk′

∂r
(rκ) (2.69)

and the radial derivative of polynomial ∂Li,m
∂r (r) at a grid point ri,m′ required for the eval-

uation of Eq. (2.69) is given by,

∂Li,m

∂r
(ri,m′) =


1

2wi,m
(δm

1 − δm
MGL

) m = m′

1
ri,m − ri,m′

∏
µ 6=m,m′

ri,m′ − ri,µ

ri,m − ri,µ
m = m′

. (2.70)

The second derivative of FEDVR basis has a delta-like singularity at finite element bound-
aries due to the discontinuity of the finite element basis Li,m(r). However, the second
derivative matrix Tr = {Tr

kk′} can be evaluated by using integration by parts as well as
the usual finite element method,

Tr
kk′ =

∫
dr fk(r)

∂2

∂r2 fk′(r) = −
∫

dr∂ fk∂r(r)
∂ fk′

∂r
(r) (2.71)

= −∑
κ

w̃κ
∂ fk

∂r
(rκ)

∂ fk′

∂r
(rκ). (2.72)

Both the first and second derivative matrices are band matrices since the FEDVR basis lies
only in one finite element or two finite elements. This structure enables efficient derivative
operations.

By inserting Eq. (2.66) into Eq. (3.8), we obtain the following orbital discretization,

φp(r, θ, φ) = ∑
klm

cp
klm

fk(r)
r

Ylm(θ, φ), (2.73)

where fk(r)
r Ylm(θ, φ) is called the spherical FEDVR basis [24, 52].
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2.3 Implementation of the TD-ORMAS method

2.3.2 Spatial discretization of the equations of motion

The Equation of motion for orbitals (2.57) is converted into a vector equation by inserting
Eq. (4.15) and projecting onto a FEDVR basis,

iċp = (1 − ∑
q
cqcq†)

[
h̃1c

p + ∑
o,q,r,s

W̃r
sc

qPqs
or (D−1)o

p

]
+ i ∑

q
cqXq

p. (2.74)

cp denote a coefficient vector of orbital p, whose elements are defined as {cp
klm}. h̃1 and W̃r

s
are matrices of the single-electron term of the Hamiltonian h1 and the mean field potential
Wr

s (Eq. (2.56)), respectively. This section considers an atom, whose nuclear Coulomb
potential is given by VN(r, θ, φ) = Z/r with nuclear charge Z, under a z polarized laser
field. Their matrix elements in the FEDVR basis are defined as,

h̃1
klm
k′ l′m′ =∫

r2dr sin θdθdφ
fk(r)

r
Y∗

lm(θ, φ)

[
−1

2
∆ − Z

r
− iAz(t)

∂

∂z

]
fk′(r)

r
Yl′m′(θ, φ),

(2.75)

W̃r
s

klm
k′ l′m′ =

∫
r2dr sin θdθdφ

fk(r)
r

Y∗
lm(θ, φ)Wr

s (r, θ, φ)
fk′(r)

r
Yl′m′(θ, φ). (2.76)

Az(t) denotes the z component of a laser vector potential.

The Equation of motion for CI coefficients (2.30) itself is also a vector equation,

iĊ = (H̃ − iX̃)C, (2.77)

where C is a coefficient vector {CI}, and H̃ = {HI J} and ˜X = {XI J} are matrices defined
as

HI J = 〈I|Φ̂†
C ĤΦ̂C|J〉

= ∑
µν

h1
µ
ν 〈I|Φ̂†

CÊµ
ν Φ̂C|J〉+

1
2 ∑

µνλγ

h2
µλ
νγ 〈I|Φ̂†

CÊµλ
νγ Φ̂C|J〉 , (2.78)

XI J = 〈I|Φ̂†
CX̂Φ̂C|J〉 = Xµ

ν 〈I|Φ̂†
CÊµ

ν Φ̂C|J〉 , (2.79)

with h1
µ
ν = (cµ)†h̃1c

ν and h2
µλ
νγ = 〈φµ|Ŵλ

γ |φν〉 = (cµ)†W̃λ
γc

ν. Xµ
ν , defined in Sec. 2.2, is

calculated with h1
µ
ν and 〈φµ|Ŵλ

γ |φν〉. We evaluate the matrices h̃1 and W̃r
s in the following

subsections.
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The matrix elements of the single-electron term

We first calculate the matrix elements of h̃1. The Laplace operator in the polar coordinate
is expressed as,

∆ =
1
r

∂2

∂r2 r +
1
r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

]
. (2.80)

The inside of the square bracket of the second term is the square of the angular momentum
operator. Thus, the Laplacian matrix element Lklm

k′ l′m′ is given by,

Lklm
k′ l′m′ =

∫
r2dr sin θdθdφ

fk(r)
r

Y∗
lm(θ, φ)∆

fk′(r)
r

Yl′m′(θ, φ)

=

(
Tr

kk′ −
l(l + 1)

r2
k

δk
k′

)
δl

l′δ
m
m′ , (2.81)

where Tr
kk′ denotes the radial second derivative matrix element defined in Eq. (2.71). The

atomic nuclear Coulomb potential is local and spherical symmetric, and thus the matrix
element Vklm

k′ l′m′ is straightforward calculated as,

VN
klm
k′ l′m′ = −Z

rk
δk

k′δ
l
l′δ

m
m′ . (2.82)

For the laser field potential, the derivative operator of the z direction is given as, in the
polar coordinate,

∂

∂z
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
, (2.83)

and then the matrix element VL
klm
k′ l′m′ is given as

VL
klm
k′ l′m′ = −iAz(t)

(
Kr

kk′ −
(l′ + 1)δl

l′+1 − (l + 1)δl+1
l′

rl
δkk′

)
αlm

l′m′ , (2.84)

αlm
l′m′ =

∫
sin θdθdφY∗

lm(θ, φ) cos θYl′m′(θ, φ) (2.85)

=

√ (l′ + 1)2 − m′2

(2l′ + 1)(2l′ + 3)
δl

l′+1 +

√
(l + 1)2 − m′2

(2l + 1)(2l + 3)
δl+1

l′

 δm
m′ . (2.86)

Thus, the matrix element of the single electron term reads

h̃1
klm
k′ l′m′ = −1

2
Lklm

k′ l′m′ + VN
klm
k′ l′m′ + VL

klm
k′ l′m′ . (2.87)
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The matrix elements of the mean field potential

The mean field potential Wr
s (r1) can be obtained by directly integrating

Wr
s (r1) =

∫
dr2

φ∗
r (r2)φs(r2)

|r1 − r2|
. (2.88)

However, this approach has disadvantages in accuracy due to the singularity 1/|r1 − r2|
and requires huge computational costs that scales O(N2

grid), where Ngrid denotes the total
number of spatial grids. For this potential, by taking advantage of 1/|r1 − r2| being a
Green function of the Laplacian, solving the following Poisson equation,

∆Wr
s (r) = −4πφ∗

r (r)φs(r), (2.89)

is more accurate and efficient [52]. To reduce this Poissonn equation in 3 dimensional
space into a radial Poisson equation, we introduce the multipole expansion of 1/|r1 − r2|,

1
|r1 − r2|

=
∞

∑
l=0

l

∑
m=−l

4π

2l + 1
rl
<

rl+1
>

Ylm(θ1, φ1)Y∗
lm(θ2, φ2), (2.90)

r< = min(r1, r2), r> = max(r1, r2), (2.91)

and the spherical harmonics expansions of Wr
s (r) and φ∗

r (r)φs(r),

Wr
s (r) = ∑

lm

(Vr
s )lm(r)

r
Ylm(θ, φ), (2.92)

φ∗
r (r)φs(r) = ∑

lm

(ρr
s)lm(r)

r
Ylm(θ, φ). (2.93)

By inserting Eqs. (2.90), (2.92) and (2.93) into Eq. (2.89), we obtain the radial Poisson
equation of (Vr

s )lm(r),(
∂2

∂r2 − l(l + 1)
r2

)
(Vr

s )lm(r) = −4π(ρr
s)lm(r), (2.94)

with the boundary conditions,

(Vr
s )lm(0) = 0, (2.95)

(Vr
s )lm(Rmax) =

1

R(2l+1)
max

∫ Rmax

0
drr(ρr

s)lm(r). (2.96)

This radial Poisson equation is discretized with the FEDVR basis and transformed
into a linear equation,

L̃l(ρ
r
s)lm(V

r
s )lm = −4π(ρr

s)lm, (2.97)

where L̃l = {(L̃l)
k
k′} is the matrix of

(
∂2

∂r2 − l(l+1)
r2

)
, and the coefficient vector (ρr

s)lm =
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{(ρr
s)klm} is evaluated as

(ρr
s)klm =

1√
w̃k

(cr
klm)

∗cs
klm, (2.98)

where we use the DVR property that the each coefficient corresponds to the discretized
function value at each grid point. As a solution of Eq. (2.97), we obtain (V r

s )lm =

{(Vr
s )klm}, and the mean field potential is given by

Wr
s (r) = ∑

klm
(Vr

s )klm
fk(r)

r
Ylm(θ, φ). (2.99)

Finally, the matrix elements of Wr
s (r) (Eq. (2.76)) is evaluated as

W̃r
s

klm
k′ l′m′ ' ∑

l1
∑
m1

(Vr
s )kl1m1√
w̃krk

δk
k′cl1m1 , (2.100)

cl1m1 =
∫

sin θdθdφY∗
lm(θ, φ)Yl1m1(θ, φ)Yl′m′(θ, φ)

=
∫ 1

−1
dxPlm(x)Pl1m1(x)Pl′m′(x)δm

m1+m′ , (2.101)

where Plm(x) denotes a normalized associated Legendre polynomial. The integral over the
product of three normalized associated Legendre polynomials is evaluated by the Gauss-
Legendre quadrature with a sufficient order for the polynomials.

2.3.3 The exponential integrator

The equations of motion (Eqs. (2.74) and (2.30)) are usually stiff differential equations.
Especially, the single-electron term h̃1 including the Laplacian and Coulomb potential with
the singularity makes time propagation unstable. To achieve stable time propagation with
a moderate time-step size , we employ the exponential integrator scheme, which solves a
linear and stiff term exactly and mitigates the stiffness. We first review the exponential
integrator for general cases, and next describe our application to the TD-ORMAS method.

A review of the exponential integrator

We consider a simple nonlinear partial derivative equation,

∂

∂t
u(t) = Lu(t) + N(u(t)), (2.102)

where u(t) is a function we want to propagate, L denote a linear operator, for example
the Laplacian, and N(u(t)) denotes a nonlinear term. This equation has a formal exact
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solution,

u(t) = eLtu(t) +
∫ t

0
dτeL(t−τ)N(u(τ)). (2.103)

In time discretization, we assume that a solution u(tn) at the n th time step, and then
the next time step solution is obtained as

u(tn+1) = eLhn u(tn) +
∫ hn

0
dτeL(hn−τ)N(u(τ)), (2.104)

hn = tn+1 − tn. (2.105)

This update scheme is called the exponential integrator. The contribution of the linear
operator L is exactly integrated as eLhn , and thus this scheme has a great advantage in the
time-propagation stability in a case that L is a stiff operator. The integral of the nonlinear
term can be evaluated with various approaches [54–56].

In our application, we use the 4th order Runge-Kutta type scheme [54] for the integral
in Eq. (2.104), which is called the 4th order exponential time differencing Runge-Kutta
method. This scheme first computes three preliminary estimations, similarly to the usual
Runge-Kutta method,

an = eLhn/2u(tn) +
hn

2
eLhn/2 − I

Lhn/2
N(u(tn)), (2.106a)

bn = eLhn/2u(tn) +
hn

2
eLhn/2 − I

Lhn/2
N(an), (2.106b)

cn = eLhn/2an +
hn

2
eLhn/2 − I

Lhn/2
(2N(bn)− N(an)), (2.106c)

and finally obtain the next time-step solution,

u(tn+1) = eLhn u(tn) + hn
−4 − Lhn + eLhn(4 − 3Lhn + (Lhn)2)

L3h3
n

N(u(tn))

+ hn
4 + 2Lhn + 2eLhn(−2 + Lhn)

L3h3
n

(N(an) + N(bn))

+ hn
−4 − 3Lhn − (Lhn)2eLhn(4 − Lhn)

L3h3
n

N(cn). (2.107)

Application of the exponential integrator to the TD-ORMAS method

To adapt the exponential integrator to the TD-ORMAS method, we split the equations of
motion (2.74) and (2.30) into linear terms and nonlinear terms. The equation of motion
for orbitals (2.74) is transformed as

ċp = −ih̃1c
p + ∑

q
(icq†h̃1c

p + Xq
p)c

q − i(1 − ∑
q
cqcq†) ∑

o,q,r,s
W̃r

sc
qPqs

or (D−1)o
p. (2.108)
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We treat only the first term of the right hand side as a linear term, and the rest as a
nonlinear term. For the equation of motion for CI coefficients (2.77), we treat it as a
linear equation, and the nonlinear term is absent.

Matrix functions eA and ϕ(A) = (eA − I)/A with a matrix A required in Eq. (2.106)
are evaluated by [3, 3] order Padé approximation (3rd order for both the numerator and
denominator). The other matrix functions in Eq. (2.107) are evaluated by substituting
the Padé approximation of ϕ(A) into the matrix exponential functions of Eq. (2.107).
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Chapter 3

Application of infinite-range exterior
complex scaling to the TD-ORMAS

method

One source of the huge computational cost of the TD-MCSCF simulations arises from
a large simulation box required to accommodate electrons ejected through laser-induced
ionization. These electrons can fly infinitely far away in principle. Therefore, the use of
an efficient absorbing boundary is key to reducing the computational cost and achieving
larger scale simulations. In this work, we introduce efficient absorbing boundaries of
exterior complex scaling (ECS) [31] and infinite-range exterior complex scaling (irECS)
[32] to the TD-ORMAS method [15, 57].

This chapter is organized as follows. In Sec. 3.1, we briefly review exterior complex
scaling for a single-electron system. In Secs. 3.2 and 3.3, we describe our numerical
implementation of ECS and irECS, adopting the spherical finite-element discrete variable
representation (FEDVR) basis. Section 3.4 discusses how to apply ECS and irECS to the
TD-ORMAS method. In Sec. 3.5, we numerically assess the efficiency and accuracy of
our application of ECS and irECS. We consider atomic systems in the polar coordinate
for the application of ECS described in this chapter. However, our application can be
straightforwardly extended to general coordinate systems such as the Cartesian coordinate.

3.1 Exterior complex scaling for a single-electron system

Let us consider TDSE for a single-electron system in a laser field with the velocity-gauge,
since ECS as an absorbing boundary properly works in the velocity-gauge [31],

i
∂

∂t
Ψ(r, t) = h1(t)Ψ(r, t)

=

(
−∇2

2
+ VN(r)− iA(t) · ∇

)
Ψ(r, t). (3.1)
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3.1 Exterior complex scaling for a single-electron system

ECS in the polar coordinate is based on the coordinate scaling,

r → R(r) =

{
r (r < R0)

R0 + (r − R0)eλ+iη (r > R0),
(3.2)

where λ and η is real numbers, and specifically η is called a scaling angle. For η > 0,
outgoing waves exponentially decay at radii r > R0 and numerically vanish before they
reach the simulation boundary and are unphysically reflected.

The transformation Eq. (3.2) defines an “exterior complex scaling operator” ÛηR0

(ÛηR0 Ψ)(r) :=

Ψ(R(r)) (r < R0)

e
λ+iη

2
R(r)

r
Ψ(R(r)) (r > R0),

(3.3)

where,

R(r) =
R(r)

r
r. (3.4)

The factor e
λ+iη

2 R(r)/r ensures that UηR0 is unitary for η = 0. In the unitary case, one
can replace h1(t) in Eq. (3.1) with

ĥη=0R0(t) = Ûη=0R0 ĥ1(t)Û−1
η=0R0

, (3.5)

without changing the dynamics. The solution for the scaled Hamiltonian is trivially
Ψη=0R0 := Ûη=0R0 Ψ and coincides with the unscaled solution Ψ for r < R0.

In the ECS case for η > 0, the scaled operator is ĥηR0(t) = ĥ1(t) on r < R0 and for
r > R0

ĥηR0 = −1
2
∇2

ηR0
+ VN[R(r)]− iA(t) · ∇ηR0 , (3.6)

with the scaled nabla operator ∇ηR0 given by

∇ηR0 = er
1

eλ+iηr
∂

∂r
r

+
1

R(r) sin θ

(
eθ

∂

∂θ
sin θ + eφ

∂

∂φ

)
. (3.7)

Note that terms depending on radial coordinates are only different from the original Hamil-
tonian. This form of the scaled operator is formally obtained by analytically continuing
that of the unitary case [Eq. (3.5)] with η = 0 → η 6= 0 [58]. The essential point of ECS
is that, given sufficient analyticity properties of hηR0 , also for η > 0 the solution ΨηR0

remains invariant on r < R0, while it decays exponentially in the absorbing region [32].
For the numerical solution of the complex scaled TDSE with the simple scaling of

Eq. (3.6) one needs to ensure that the discretization method can represent the discontin-
uous behavior of the solution at r = R0, Eq. (3.3). This is the case for the FEDVR basis
set described below.

While ECS is usually applied on a finite discretization range, one can infinitely extend
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the scaled region by using a finite number of exponentially damped basis functions [32].
This method, called infinite-range ECS, not only has a conceptual advantage of simulating
the entire space with artificially modifying neither the system Hamiltonian nor the wave
functions, but also has achieved high accuracy and efficiency with a considerably smaller
number of basis functions [32].

3.2 Implementation of ECS with FEDVR method

In this work, we implement ECS and irECS with a spherical-FEDVR basis [51, 52], whose
details are given in Subsec. 2.3.1. Here, as usual, we set λ = 0 in the scaling factor.
The implementation of usual ECS (not infinite-range) for single-electron systems with
a spherical FEDVR basis has been discussed by Rescigno and McCurdy [52, 59]. We
follow their approaches, where the factor e

λ+iη
2 appearing in Eq. (3.3) is dropped off, and

the factor R(r)/r is absorbed into a radial part of a wave function and basis functions.
Namely, we consider the following scaled wave function and discretization,

R(r)
r

Ψ(R(r), θ, φ) =
Lmax

∑
l=0

l

∑
m=−l

Ψlm(R(r))
r

Ylm(θ, φ), (3.8)

Ψlm(R(r)) = ∑
k

cklm fk(r), (3.9)

where fk(r) and Ylm(θ, φ) denote a FEDVR basis and a spherical harmonics, respectively.

Since we drop the factor e
λ+iη

2 , the scaled wave function is continuous. However, the first
and second derivatives are still discontinuous. To correctly represent these discontinuous
behaviors, we set R0 to be identical to a finite element boundary. Matrix elements of the
scaled single-electron Hamiltonian (Eq. (3.6)) in the FEDVR basis are obtained by simply
replacing each operator and potential with scaled one in Eqs. (2.68), (2.69) and (2.71).

3.3 Implementation of infinite-range ECS with extended FEDVR
method

In the original development of irECS presented by Scrinzi [32], Laguerre polynomials times
an exponential weight function has been used as an infinite-range basis function in the
last finite element. To combine the original concept of irECS and our FEDVR implemen-
tation, we introduce Gauss-Laguerre-Radau quadrature points [60, 61] to construct DVR
basis functions in the last finite element extending to infinity. Gauss-Laguerre-Radau
quadrature approximates the semi-infinite integral of an exponentially damped function
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as

∫ ∞

rL
dre−α(r−rL) f (r) ≈

Ngrid

∑
i=1

wi f (ri) (3.10)

rL = r1 < r2 < · · · < rNgrid

with wi’s and ri’s being quadrature weights and points, The left endpoint is included in the
quadrature points. which enables us to construct FEDVR-like basis functions introduced
below.

For irECS, we use the following exponentially damped functions as the finite element
basis functions on the last element,

yi(r) =

e−
α
2 (r−rL)

Li(r)√
wi

(r ≥ rL)

0 (r < rL)

(3.11)

with Lagrange polynomials,

Li(r) = ∏
j 6=i

r − rj

ri − rj
. (3.12)

Note that these basis functions are not truncated within a finite range unlike usual FEDVR
basis, but extend to the infinite range and decay exponentially due to the factor e−

α
2 (r−rL).

This infinitely-extended exponential tail can describe exponentially damped wave functions
by ECS and provides high accuracy with a small number of basis functions.

The basis functions appear as orthonormal under the approximate Gauss quadrature,

∫ ∞

0
dr yi(r)yj(r) ≈

Ngrid

∑
k=1

wkeα(rk−rL)yi(rk)
∗yj(rk)

= δij. (3.13)

Thus, in the last finite element a radial part of scaled wave functions ϕ(r) is expressed by

ϕ(r) ≈
Ngrid

∑
i

ciyi(r) (3.14)

ci =
∫ ∞

0
dr yi(r)ϕ(r) ≈

√
e−

α
2 (ri−rL)wi ϕ(ri). (3.15)

Likewise, the matrix elements of one-body potentials are diagonal,

Vij =
∫ ∞

0
dr yi(r)V(r)yj(r) ≈ V(ri)δij. (3.16)
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3.4 Application of ECS to the TD-ORMAS multielectron dynamics

The first derivative of the basis functions are given by

∂

∂r
yi(r) =

1√
wi

e−
1
2 α(r−rL)Pi(r), (3.17)

where

Pi(r) = −α

2
Li(r) +

∂

∂r
Li(r)

=


1

ri − rj
∏

k 6=i,j

rj − rk

ri − rk
for r = rj, i 6= j

− 1
2w1

δi1 for r = rj, i = j.
(3.18)

Thus, the matrix elements of the radial second derivative operator can be expressed under
Gauss quadrature by using a partial integral,

∫ ∞

0
dr yi(r)

∂2

∂r2 yj(r) = −
∫ ∞

0
dr

∂

∂r
(yi(r))

∂

∂r
(yj(r))

≈ −∑
k

wk√wiwj
Pi(rk)Pj(rk) (3.19)

For simplicity, we have discussed without considering the bridge function to connect
the element boundary between the last element and the second to last element. In the
actual implementation, we introduced this as well as in the usual FEDVR method [51].

3.4 Application of ECS to the TD-ORMAS multielectron
dynamics

In this section, we discuss how to apply ECS to TD-ORMAS method of the multielectron
dynamics involving the interelectronic Coulomb interaction. By analogy with the single-
electron case, we propagate the scaled orbital function ÛηR0

∣∣φp
〉

rather than the unscaled∣∣φp
〉
, by transforming Eq. (2.57) into the scaled equation of motion (EOMs) of the orbitals,

iÛηR0 |φ̇p〉 =
[

1 −
occpuied

∑
q′

(ÛηR0 |φq′〉)(〈φq′ | Û−1
ηR0

)

]

×
[
(ÛηR0 ĥ1Û−1

ηR0
)(ÛηR0

∣∣φp
〉
) +

occupied

∑
o,q,r,s

(ÛηR0Ŵr
s Û−1

ηR0
)(ÛηR0

∣∣φq
〉
)Pqs

or (D−1)o
p

]

+ i
occupied

∑
q

ÛηR0 |φq〉 Xq
p, (3.20)

A significant difference from the EOMs without ECS is that {
〈
φp
∣∣ Û−1

ηR0
}is required, instead

of {
〈
φp
∣∣}, to apply Q̂ = 1 − ∑q′ |φq′〉 〈φq′ | and evaluate matrix elements of W and X. It
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3.4 Application of ECS to the TD-ORMAS multielectron dynamics

is formally defined in the coordinate space as

(
〈
φp
∣∣ Û−1

ηR0
) |r〉 =

[
〈r|
(

Û(−η)R0

∣∣φp
〉)]∗

. (3.21)

It should be noticed that information of {
〈
φp
∣∣ Û−1

ηR0
} is available in the unscaled region

but not available in the scaled region during the simulation, which poses a problem. Al-
though formally one might attempt to obtain these by analytically continuing {ÛηR0

∣∣φp
〉
},

such a procedure turns out to be numerically unstable.

Since the scaled region is usually far from the origin, it is reasonable to assume that the
scaled part of the orbital functions hardly affects the electron dynamics close to the nucleus
and that the interaction between electrons residing in the scaled region is negligible. Thus,
we approximately neglect {

〈
φp
∣∣ Û−1

ηR0
} in the scaled region wherever their information is

necessary to evaluate the right-hand side (RHS) of Eq. (3.20).

Specifically, the scaled mean field operator is approximated as,

UηR0Ŵr
s (r)U

−1
ηR0

= Ŵr
s (R(r))

≈
∫

r′<R0

dr′
φ∗

r (r
′)φs(r′)

|R(r)− r′|
≡ Ŵ ′r

s(R(r)) (3.22)

Here, it should be noticed that the Coulomb force acting on a scaled-region electron
(r > R0) from an unscaled-region electron (r′ < R0) is not neglected. Hence, the effect of
the ionic Coulomb potential is properly taken into account in the dynamics of departing
electrons. The way to numerically evaluate the truncated scaled mean field operator
Ŵ ′r

s(R(r)) is given in Subsec. 3.4.1. Then, in the second term of the RHS of Eq. (3.20),

(〈φq′ | Û−1
ηR0

)(ÛηR0Ŵr
s Û−1

ηR0
)(ÛηR0 |φq〉), (3.23)

is approximated as, ∫
r<R0

drφ∗
q′(r)Ŵ

′r
s(R(r))φq(r). (3.24)

Similarly, the single-electron term of the Hamiltonian defined in Eq. (2.10) is approximated
as,

h1
q′
p ≈

∫
r<R0

drφ∗
q′(r)ĥ(r)φp(r). (3.25)

In order to evaluate the matrix elements h2
rp
sq = Wrp

sq required to evaluate the matrix ele-
ments of X (Eqs. (2.2), (2.47) and (2.48)) and to propagate CI coefficients using Eq. (2.77),
we need to evaluate the following Coulomb matrix elements,

Wrp
sq =

∫
drdr′

φ∗
r (r)φ

∗
p(r

′)φq(r′)φs(r)

|r− r′| , (3.26)
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3.4 Application of ECS to the TD-ORMAS multielectron dynamics

which we approximate as, truncating the integral within the unscaled region as well as
Eq. (3.24),

Wrp
sq ≈

∫
r<R0

drφ∗
p(r)Ŵ

′r
s(R(r))φq(r). (3.27)

3.4.1 Scaled interelectronic Coulomb interaction

We describes how to numerically evaluate Ŵ ′r
s(~R(r)) [Eq. (3.22)]. By using the multipole

expansion of 1/|~r −~r′| given in (2.90),

1
|~r −~r′| =

∞

∑
l=0

l

∑
m=−l

4π

2l + 1
rl
<

rl+1
>

Y∗
lm(θ

′, φ′)Ylm(θ, φ),

where r>(r<) is the greater (smaller) of r and r′, the truncated mean field operator Ŵ ′r
s (~r)

can be expanded as,

Ŵ ′r
s (~r) = ∑

lm

(V ′r
s)lm(r)

r
Ylm(θ, φ), (3.28)

where (V ′r
s)lm(r) is given by,

(V ′r
s)lm(r) =

4π

2l + 1
r
∫ R0

0
dr′

rl
<

rl+1
>

r′(ρr
s)lm(r′), (3.29)

with,

(ρr
s)lm(r′) = r′

∫
dΩ′Y∗

lm(θ
′, φ′)φ∗

r (r
′)φs(r

′). (3.30)

In the unscaled region (r < R0), we obtain (V ′r
s)lm(r) by solving Poisson equation [52],(

d2

dr2 − l(l + 1)
r2

)
((V ′r

s)lm(r)) = −4π(ρr
s)lm(r). (3.31)

In the scaled region (r > R0), on the other hand, (V ′r
s)lm(r) is simplified into,

(V ′r
s)lm(r) =

4π

2l + 1
1
rl

∫ R0

0
dr′r′l+1(ρr

s)lm(r′), (3.32)

which can be evaluated by numerical integration. Hence Ŵ ′r
s(~R(r)) is expressed as

Ŵ ′r
s(~R(r)) = ∑

lm

4π

2l + 1
1

R(r)l+1 Ylm(θ, φ)
∫ R0

0
dr′r′l+1(ρr

s)lm(r′). (3.33)
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Table 3.1: Absorbing boundaries tested for Be. nua (nab) denotes the number of grid points
in the non-absorption (absorption) region, and La the radial thickness of the absorption
region. The radius Rmax of the whole simulation region is given by Rmask + La or R0 + La.

absorber Rmask or R0 nua La nab
A mask 320 1600 80 400
B irECS 40 200 ∞ 40
C irECS 52 260 ∞ 40
D mask 52 260 8 40
E mask 88 440 56 280

3.5 Numerical examples

In this section, we assess the performance of the implementation of irECS to the TD-
ORMAS method described in the previous sections, simulating many-electron atoms in
an intense near-infrared laser pulse. We assume a laser field linearly polarized in the z
direction of the following form:

E(t) =
√

I0 sin ωt sin2
(

π
t

NT

)
, (0 ≤ t ≤ NT), (3.34)

where I0 is a peak intensity, T is a period at the central frequency ω = 2π/T and N is
the total number of optical cycles. We gauge the performance of simulations with irECS
against nominally “exact” results converged with respect to a simulation box size and
obtained with the mask function boundary. In the latter, orbital functions are multiplied
by a mask function,

M(~r) =


1 for |~r| < Rmask

cos
1
4

(
π

2
|~r| − Rmask

Rmax − Rmask

)
for |~r| ≥ Rmask,

(3.35)

after each time step, where Rmask and Rmax denote the absorption boundary and the
simulation box radius, respectively.

3.5.1 Beryllium

We first simulate a Beryllium atom subject to a laser field with I0 = 3.0 × 1014 W/cm2,
λ = 800nm (the quiver radius is 28.5 a.u.), N = 5, and (na, ndc, nfc) = (4, 0, 1). Each
orbital function is expanded with 47 spherical harmonics and discretized with radial finite
elements 4 a.u. long except for the last irECS element. Each finite element, including
the irECS element, has 21 grid points. The scaling angle η is set to be 15◦ and the
dumping factor alpha of irECS is set to be 0.5. Five different conditions used for absorption
boundaries are listed on Table 3.1.
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Figure 3.1: Electron radial distribution function ρ(r) after the laser pulse for the case of
Be exposed to a laser pulse with 800 nm wavelength and 3.0× 1014 W/cm2 peak intensity,
calculated with different absorbing boundaries listed in Table 3.1.

Figure 3.1 compares the electron radial distribution functions defined as

ρ(r) = Nr2
∫

dσdΩd~x2d~x3 · · ·~xn |Ψ(~x,~x2, · · · ,~xn)|2 , (3.36)

after the pulse, calculated with different absorption boundaries. The irECS delivers much
better results (B and C) than the mask function (D). Nevertheless, the irECS results
slightly deviate from the exact solution (A) even if the scaling radius is almost twice the
quiver radius. In the present case, the Be atom is nearly totally ionized, and double ion-
ization amounts to 50 % (Fig. 3.2). Hence, the deviation may be attributed to the neglect
of the Coulomb interaction in and from the scaled region and/or the loss of information
on the wave function in the scaled region.

In order to reveal the effect of the latter, we have performed a simulation with a
sufficiently large domain with the mask function (Rmask = 320 a.u. and Rmax = 400 a.u.)
but with the integrals truncated at r = 28 a.u., as described in Sec. 3.4. We compare
the result with the exact one and that from irECS with R0 = 28 a.u. in Fig. 3.3 . The
“truncated” and irECS results overlap each other and slightly deviate from the exact
solution, which indicates that the slight deviations in Figs. 3.1 and 3.3 stem from the
neglect of the Coulomb interaction in and from the scaled region. One may be surprised
that the loss of information on orbital functions at the absorption boundary hardly affects
simulation results within the absorption radius. This may be because the TD-ORMAS
(and MCTHDF, TD-CASSCF) equations of motion assume the orthonormality of the
true (, i.e., unscaled) orbital functions {|ψp〉}, even though their numerically propagated
portions {ÛηR0 |ψp〉} are not orthonormal in general. Consequently, information on the
absorbed part, though its explicit form is unknown, is partially retained, which enables
accurate simulations. It should also be noticed that, since we construct the total wave
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Figure 3.2: Time evolution of single, double, and total ionization probabilities of Be
exposed to a laser pulse with 800 nm wavelength and 3.0 × 1014 W/cm2 peak intensity.
For convenience, we define single (double) ionization probability as that of finding one
(two) electron(s) outside the 20 a.u. radius. The total ionization probability is calculated
as their sum.

function based on single-electron orbitals, even if one or more electrons are absorbed, we
can continue to follow the associated dynamics of the other unabsorbed electrons. This
is in great contrast to the time-dependent close-coupling simulations [62–65], where, if
one electron reaches the absorption boundary, the corresponding part of the total wave
function is completely lost.

In spite of the small discrepancy in Fig. 3.1, irECS gives the time evolution of sin-
gle/double ionization (Fig. 3.2) and the high-harmonic spectrum (Fig. 3.4), which is calcu-
lated as the magnitude squared of the Fourier transform of dipole acceleration, in excellent
agreement with the exact results. In particular, the mask function with Rmask = 52 fails
to reproduce, the sharp drop of the harmonic spectral intensity after the cutoff because
of unphysical reflection. It is remarkable that the neglect of the Coulomb interaction in
and from the scaled region is a good approximation and that irECS works excellently even
under such massive double ionization. We have reduced computational costs by 66% com-
pared with the best case of the mask function (E) to obtain a converged high harmonic
spectrum (B).
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Figure 3.3: Electron radial distribution function ρ(r) after the laser pulse for the case of
Be exposed to a laser pulse with 800 nm wavelength and 3.0× 1014 W/cm2 peak intensity.
We compare the results using the mask boundary (Rmask = 320 a.u.) without (thick solid)
and with (thin dashed) the integral truncations at 28 a.u., as described in Sec. 3.4, and
the result using the irECS with R0 = 28 a.u. (dotted).
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Figure 3.4: High harmonic spectra from Be exposed to a laser pulse with 800 nm wave-
length and 3.0 × 1014 W/cm2 peak intensity, calculated with different absorbing bound-
aries A-D listed in Table 3.1.
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Table 3.2: Absorbing boundaries tested for Ne.

absorber Rmask or R0 nua La nab
A mask 256 1280 64 320
B irECS 60 300 ∞ 60
C mask 60 300 12 60
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Figure 3.5: High harmonic spectra from Ne exposed to a laser pulse with 800 nm wave-
length and 8.0 × 1014 W/cm2 peak intensity, calculated with different absorbing bound-
aries listed in Table 3.2.

3.5.2 Neon

Finally, as a typical target atom used for attosecond-pulse generation, we simulate HHG
from a Neon atom subject to a laser pulse with I0 = 8.0 × 1014 W/cm2, λ = 800 nm, and
N = 3. We use 8 active orbitals and 1 dynamical core, i.e., (na, ndc, nfc) = (8, 1, 0). Each
orbital function is expanded with 47 spherical harmonics and discretized with radial finite
elements 4 a.u. long except for the last irECS element. Each finite element, including the
irECS element, has 21 grid points. The scaling angle η is fixed to 15◦ and the dumping
factor α of irECS is set to be 0.5. Three different conditions used for absorption boundaries
are listed in Table 3.2.

If we use the same radius R0, Rmask = 60 a.u. of the non-absorbing region and number
nab = 60 of grid points in the absorption region, the irECS result (B) perfectly overlaps
with the “exact” result (C) obtained with a large simulation box (Rmask = 256 a.u.), while
the mask boundary (C) fails (Fig. 3.5). As in the case of He, the ionization probability
(about 4 %) is relatively small due to the large ionization potential (21.6 eV) of a Ne atom,
so that the truncation of integrals introduced to apply ECS to the TD-CASSCF method
leads to almost no error. The computational cost of the irECS simulation B is reduced by
80% compared with case A.
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Chapter 4

Application of the tSURFF method to the
TD-ORMAS method

The photoelectron momentum amplitude (PMA) a(k, t) for momentum k and photoelec-
tron energy spectra (PES),

ρ(E, t) =
∫

dΩ|a(k, t)|2|k|2 (E = |k|2/2), (4.1)

can in principle be approximately calculated by projecting the outgoing wave packet re-
siding outside a given radius Rs onto the plane wave pk(r) = (2π)−3/2 exp(ik · r) at a
time t sufficiently after the pulse. Then, for example in single-electron systems, PMA is
given by,

a(k, t) = 〈pk(r, t)|θ̂(Rs)|Ψ(t)〉 ,

≡
∫

p∗k(r, t)θ(|r| − Rs)Ψ(r, t)d3r,

=
∫

r>Rs

p∗k(r, t)Ψ(r, t)d3r. (4.2)

where θ(x) denotes the Heaviside function to extract photoelectron wave packets. How-
ever, to use this approach, the complete wave function without being absorbed is required,
which leads to a prohibitive computational cost. If the system has low energy photoelec-
trons or a laser pulse with a long time duration is irradiated, the simulation duration gets
longer and the required size of the simulation box can reach a few thousand atomic units.
To overcome this problem, the time-dependent surface flux (tSURFF) method developed
by Tao and Scrinzi [47] converts the spatial integral of a wave function in Eq. (4.2) into
time integral of a surface flux of the wave function.

In this chapter, we combine this tSURFF method with the TD-ORMAS method to
extract photoelectron energy spectra from multielectron systems [66]. Under a physically
reasonable assumption that the nuclear potential and interelectronic Coulomb interaction
are negligible for photoelectron dynamics in the region distant from the nuclei, we apply
the tSURFF method and derive the equations of motion for the momentum amplitudes
of each orbital. As results of our application, we achieve highly accurate calculations of
angle-resolved PES with considerably reduced computational costs.
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4.1 the tSURFF method for single-electron systems

This chapter is organized as follows. We review the tSURFF method for single-electron
systems in Sec. 4.1. In Sec. 4.2, we describe our theoretical application and numerical
implementation of tSURFF to the TD-ORMAS method. Numerical results are presented
in Sec. 4.3.

4.1 the tSURFF method for single-electron systems

In this section, we briefly review the tSURFF method [47] for single-electron systems
governed by TDSE,

i
∂

∂t
Ψ(r, t) = h1(t)Ψ(r, t), (4.3)

h1(t) = −1
2
∇2 + V(r)− iA(t) · ∇, (4.4)

where V(r) denotes the nuclear potential.
The tSURFF method calculates PES by time integration of the wave function surface

flux, based on an assumption that the nuclear potential does not affect the time evolution of
the distant photoelectron wave packet. Under this assumption, the Volkov wave functions
and photoelectron wave packets in the region |r| > Rs are evolved by the same nuclear-
potential-free Hamiltonian

hs = −1
2
∇2 − iA(t) · ∇. (4.5)

By taking time derivative of Eq. (4.2), we obtain the EOM of the momentum amplitude,

−i
∂

∂t
a(k, t) = 〈χk(t)|[hs, θ(Rs)]|Ψ(t)〉 , (4.6)

where χk(t) denotes the Volkov wave function, which is a momentum eigenfunction of the
Hamiltonian hs. As shown in Ref. [47], since all the terms appearing in the commutator
[hs, θ(Rs)] contain delta functions δ(r − Rs) [see Eq. (4.18) below], wave functions and
their spatial derivative only on the surface |r| = Rs are required to solve Eq. (4.6). Hence,
it is no longer needed to keep the whole wave function and allowed to use an absorbing
boundary, which leads to a significant computational cost reduction.

4.2 Application of the tSURFF method to the TD-ORMAS
simulations

4.2.1 Photoelectron reduced density matrix

To obtain PES in multielectron systems described by the multiconfiguration expansion
Eq. (2.1), we define the photoelectron reduced density matrix (PRDM). Since our def-
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inition of ionization is based on the spatial domain |r| > Rs , the single particle reduced
density matrix of a photoelectron in the coordinate space can be defined as,

P(r, r′) = ∑
pq

〈r| θ(Rs) |φp〉 Dp
q 〈φq| θ(Rs) |r′〉 . (4.7)

In the momentum space, its elements are given by,

P̃(k,k′) =
∫

drdr′ 〈χk(t)|r′〉 P(r, r′) 〈r|χk(t)〉

= ∑
pq

〈χk(t)| θ(Rs) |φp〉 Dp
q 〈φq| θ(Rs) |χk′(t)〉 . (4.8)

The diagonal part P̃(k,k) is interpreted as photoelectron momentum distribution, and,
then, PES is given by,

ρ(E) =
∫

dΩP̃(k,k)|k|2. (4.9)

A similar definition of the PRDM as Eq. (4.8) and the direct projection onto scattering
states were used to compute photoelectron spectrum in Ref. [67].

4.2.2 EOMs of momentum amplitudes of orbitals

In this subsection, we derive the EOM of the momentum amplitude of orbital p,

ap(k, t) = 〈χk(t)|θ(Rs)|φp〉 , (4.10)

which appears in Eq. (4.8). We assume that the nuclear potentials are negligible for pho-
toelectrons as in the single-electron case and additionally that the interelectronic Coulomb
interaction does not affect the dynamics of photoelectrons in the region beyond the radius
Rs. Then, the orbital EOM Eq. (2.57) can be approximated as,

i |φ̇p〉 =(ĥs + V̂N) |φp〉+
occupied

∑
o,q,r,s

Ŵr
s |φq〉 Pqs

or (D−1)o
p

− ∑
q′
|φq′〉

[
ĥs

q′
p +

occupied

∑
o,q,r,s

Ŵq′r
qs Pqs

or (D−1)o
p + iXq′

p

]
(4.11)

'ĥs |φp〉 − ∑
q′
|φq′〉

[
ĥ1

q′
p +

occupied

∑
o,q,r,s

Ŵq′r
qs Pqs

or (D−1)o
p + iXq′

p

]
. (4.12)

It should be noticed that the nuclear and mean field potentials in the third term of
Eq. (4.11) remain after the approximation (Eq (4.12)), since they include the effect of
the potentials inside Rs (see also Fig. 4.1).
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Figure 4.1: A schematic illustration of the approximation of interelectronic Coulomb in-
teraction in the application of the tSURFF method to the TD-ORMAS method. In the
cases that one electron is inside Rs and another electron is outside Rs, or two electron are
outside Rs, the Coulomb interaction is neglected. However, in the case that two electrons
are inside Rs, the interelectronic Coulomb interaction is exactly considered.

By differentiating ap(k) in time, the EOMs of ap(k) is obtained as

∂

∂t
ap(k, t) =i 〈χk(t)|[hs, θ(Rs)]|φp(t)〉+ i ∑

q
aq(k, t)Rq

p, (4.13)

where for the simplicity of equations we define a matrix R as

Rq′
p = ĥ1

q′
p +

occupied

∑
o,q,r,s

Ŵq′r
qs Pqs

or (D−1)o
p + iXq′

p . (4.14)

Note the second term in Eq. (4.13) represents a significant difference from the single-
electron case [Eq. (4.6)]. As we stated above, this term includes the effect of nuclear and
interelectronic potentials inside Rs and is not negligible even when we consider photoelec-
trons outside Rs; for example, the phase variation due to the energy of the ionic core is
reflected in photoelectron momentum spectra through this term.

It may not be a priori obvious if the Coulomb interaction between electrons in the
outer region is negligible. A numerical validation of this approximation will be given in
Sec. 4.3.

4.2.3 Implementation

In this subsection, we describe the implementation of the tSURFF method to TD-ORMAS
simulations. We consider multielectron atoms subject to a laser pulse linearly polarized in
the z direction. The orbitals are discretized with spherical finite-element discrete-variable-
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representation (FEDVR) basis functions as shown in Eq. (4.15),

φp(r, θ, φ) = ∑
klm

cp
klm

fk(r)
r

Ylm(θ, φ). (4.15)

On the other hand, we discretize the orbital momentum amplitudes with grid points in
the spherical coordinates, where the Volkov wave function for a momentum k = (k, θk, ψk)

is given by,

χk(r, t) =
exp(−iΛ(k, t))

(2π)3/2

× ∑
lm

4πilY∗
lm(θk, ψk)jl(kr)Ylm(θ, ψ), (4.16)

with jl(kr) being the spherical Bessel function of the first kind and Λ(k, t) the Volkov
phase given by,

Λ(k, t) =
∫ t

0

1
2
[k−A(τ)]2dτ. (4.17)

The commutator in Eq. (4.6) can be rewritten as,

[hs, θ(Rs)] = −1
2

[
∂

∂r
δ(r − Rs) + δ(r − Rs)

∂

∂r

]
− δ(r − Rs)

r
+ iAz(t) cos(θ)δ(r − Rs), (4.18)

with z component Az(t) of the vector potential A(t). Using Eqs. (4.16) and (4.17) and
introducing gp

lm(r) = ∑k cp
klm fk(r)/r, we can decompose the first term of Eq. (4.13) into,

〈χk(t)|[hs, θ(Rs)]|φp(t)〉 =
exp iΛ(k, t)
(2π)3/2 4π ∑

lm
(−i)l×

[
Ylm(θk, ψk)

R2
s

2
{j∗l

′(kRs)gp
lm(Rs)− j∗l (kRs)gp

lm
′(Rs)}

+ iAz(t) ∑
l′m′

(−i)l′m′
Yl′m′(θk, ψk))R2

s j∗l (kRs)gp
lm(Rs)α

l′m′
lm
]
, (4.19)

where j∗l
′(r) and gp

l
′(r) denote the radial derivative of j∗l (r) and gp

l (r), respectively. αl′m′
lm

given in Eq. (2.85) denotes
∫

dΩY∗
l′m′(θ, φ)cosθYlm(θ, φ). For the second term in Eq. (4.13),

since the matrix R is evaluated during the orbital propagation [Eq. (2.57)], we can reuse
it.

We integrate Eq. (4.13) with the first order exponential integrator [54] by treating
Eq. (4.13) as simultaneous inhomogeneous linear differential equations. The evolution of
a vector a(k, t) ≡ {ap(k, t)} from the time t to t + ∆t is described as

a(k, t + ∆t) = a(k, t) exp[i∆tR(t)] +S(t)
exp[i∆tR(t)]− 1

R(t)
, (4.20)
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where the vector S(t) = {Sp(t)} are defined as,

Sp(t) = 〈χk(t)|[hs, θ(Rs)]|φp(t)〉 . (4.21)

We compute exp[i∆tR(t)] by directly diagonalizing R(t) at every time step, which is not
demanding since the size of R(t) is [Norb × Norb] and the number of orbitals Norb usually
falls within the range from a several to several tens.

4.3 Numerical results

In this section, we present numerical applications of the implementation of tSURFF to
the TD-MCSCF method described in the previous section. The electric field of the laser
pulse is assumed to have the following shape for simulations of a Ne atom (Sec. 4.3.1) and
a Be atom (Sec. 4.3.2):

E(t) =
√

I0 sin2
(

π
t

NoptT

)
sin ωt, 0 ≤ t ≤ NoptT, (4.22)

and for Ar atom (Sec. 4.3.3):

E(t) = e(t) sin ωt, (4.23)

e(t) =



√
I0

t
2T

, 0 < t ≤ 2T√
I0, 2T < t ≤ (Nopt − 2)T√
I0

NoptT − t
2T

, (Nopt − 2)T < t ≤ NoptT

, (4.24)

where I0 is a peak intensity, T is a period at the central frequency ω = 2π/T, and Nopt

is the total number of optical cycles.

4.3.1 Neon

We first calculate the PES of a neon atom subject to an attosecond pulse with a peak
intensity of 2.5× 1012W/cm2, a wavelength of 12.398 nm corresponding to 100 eV photon
energy, and Nopt = 16. The results by tSURFF and direct projection on plane waves are
compared. As an absorbing boundary, we use irECS with a scaling radius R0 of 40 a.u for
tSURFF and 400 a.u for direct projection. The latter is large enough to hold the departing
wave packet from two-photon ionization. Rs = 40 a.u. for tSURFF, and the wave packet
outside this radius is used for projection.

We do TD-CASSCF simulations with 3 kinds of orbital classifications (nfc, ndc, na) =

(0, 0, 5), (0, 0, 9), and (1, 0, 8), where nfc, ndc, and na are the number of frozen-core,
dynamical-core, and active orbitals, respectively. Note that the first and second correspond
to the time-dependent Hartree-Fock (TDHF) [68] and MCTDHF methods, respectively.
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The results are shown in Fig. 4.2. We see single photon ionization peaks (around 30 - 90
eV) and two photon above threshold ionization (ATI) peaks (around 130 eV - 190eV) from
2s and 2p orbitals. The agreement between the results by tSURFF and direct projection is
excellent. In Fig. 4.3, we compare the photoelectron angular distributions calculated with
the tSURFF method and direct projection. Again, we find excellent agreement. These
show the validity of the neglect of the electron-electron and nucleus-electron Coulomb in-
teraction beyond Rs assumed in the application of the tSURFF method to the TD-ORMAS
method.

While the single-photon ionization peaks from 2s and 2p orbitals are expected to be
at 51.5 and 78.4 eV, respectively, based on the experimental values of the binding energies
[69], the peaks in the calculated spectra are located at 47.5 and 76.7 eV in Fig. 4.2(a),
48.9 and 77.9 eV in (b), and 48.7 and 77.9 eV in (c), coming closer to the experimental
positions with increasing number of orbitals. Otherwise, TDHF gives results similar to
the MCTDHF and TD-CASSCF ones for this process.
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Figure 4.2: Photoelectron energy spectra of a Ne atom subject to an attosecond pulse
with 100eV photon energy calculated with orbital classification (a) (nfc, ndc, na) = (0, 0, 5)
(TDHF), (b) (0, 0, 9) (MCTDHF), and (c) (1, 0, 8) (TD-CASSCF). The results by tSURFF
and direct projection are compared.
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Figure 4.3: Photoelectron angular distribution from a Ne atom at (a) 48 eV and (b) 77 eV,
calculated with orbital classification (nfc, ndc, na) = (1, 0, 8). The results extracted with
the tSURFF method and direct projection are compared. The angle-integrated yield is
normalized to unity.
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Figure 4.4: Energy level diagram of a Be atom. There are many doubly excited states
leading to autoionization between the energy levels of the Be+ ground state and the first
excited state.

Figure 4.5: Temporal shape and intensity spectrum of the laser pulse considered for the
case of Be.

4.3.2 Beryllium

In this subsection, we compute one photon ionization cross section of a Be atom including
Fano resonance with the TD-CASSCF method. A Be atom has multiple doubly excited
states above the ground state of Be+, which lead to autoionization (Fig. 4.4) [70–72].
Photoelectron wave packets generated by direct ionization and autoionization can interfere
with each other, and photoionization cross section show a complicated resonance profile.
The shape of the profile was first theoretically described by U. Fano [73], and thus this
phenomenon is called Fano resonance.

In order to observe the Fano resonance of a Be atom, we simulate a Be atom subject
to a laser pulse with a peak intensity of 1.0 × 1014W/cm2, a wavelength of 56.31 nm
corresponding to about 22 eV photon energy, and Nopt = 3. The temporal shape and
energy spectrum of the pulse are shown in Fig. 4.5. In the TD-CASSCF method, we use
4 active orbitals and 1 frozen core, i.e., (na, ndc, nfc) = (4, 0, 1). irECS with a scaling
radius R0 of 88 a.u is used for an absorbing boundary. Photoelectron energy spectra are
extracted by the tSURFF method with Rs = 88 a.u. and the cross section σ(E) is calculated
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4.3 Numerical results

by dividing photoelectron energy spectra ρ(E) by the laser pulse energy spectra I(E),

σ(E) =
ρ(E)
I(E)

. (4.25)

Figure 4.6(a) presents one photon ionization cross section of a Beryllium atom with
respect to the total time of propagation, and Fig 4.6(b) presents an experimental result
measured with synchrotron radiation [74]. In Fig 4.6(a), we see that the doubly excited
states decay over time and a fine resonant structure gradually appears. The overall struc-
tures of the cross sections obtained from our simulation and the experiment show a good
agreement. This indicates that we can correctly simulate the autoionization process of
doubly excited states, where electronic correlation plays an essential role. Since the ion-
ization potential in the TD-CASSCF simulation depends on the number of orbitals, the
cross section computed with the simulation is slightly shifted to the lower energy side.
This can be improved by increasing the number of orbitals as well as the Ne simulations
in the previous subsection.

61



4.3 Numerical results

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 9.5  10  10.5  11  11.5  12  12.5  13

cr
os

s 
se

ct
io

n 
(a

rb
. u

ni
ts

)

photon energy (eV)

37fs 75fs 112fs
(a)

(b)

Figure 4.6: (a) One photon ionization cross section of a Beryllium atom calculated as the
ratio of photoelectron energy spectra to pulse energy spectra with respect to the total
time of propagation. The laser pulse used to calculate photoelectron energy spectra has
a photon energy of 22 eV, an intensity of 1.0 × 1014W/cm2 and 3 optical cycles. (b)
One photon ionization cross section of a Beryllium atom experimentally measured with
monochromatized synchrotron radiation.Figure (b) is cited from Ref. [74], and modified
to remove a least-square fitting curve in the original figure.
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Figure 4.7: Temporal shape and intensity spectrum of the laser pulse considered for the
case of Ar.

4.3.3 Argon

Next, we simulate ATI of an Ar atom subject to an intense visible laser pulse using the
TD-ORMAS method and discuss the effect of electronic correlation. We consider a pulse,
which has a peak intensity of 2.0× 1014 W/cm2, a wavelength of 532 nm, and a pulse width
of Nopt = 14 optical cycles. The ponderomotive energy Up is 5.285 eV. The temporal shape
and energy spectrum of the pulse are shown in Fig. 4.7. We continue simulations for 24 fs
after the end of the pulse without external fields so that the ejected electron wave packet
entirely passes through the surface, i.e., the total simulation duration is ca. 50 fs.

Here, we subdivide na active orbitals into 4 and (na − 4) orbitals, as schematically
illustrated in Fig. 4.8 for orbital decomposition (nc, nd, na) = (5, 0, 13). By setting the
maximum number of electrons in the second subgroup [(na − 4) active orbitals] to 2 or
3, the configurations with up to double (SD) or triple (SDT) excitation are considered,
respectively.

We first check the convergence with respect to the tSURFF radius Rs by using orbital
classification (nfc, ndc, na) = (5, 0, 4) without excitation restriction and setting R0 = Rs.
The calculated PES is virtually converged with Rs ≥ 40 a.u. (Fig. 4.9). For Rs = 12 and
20 a.u., on the other hand, we see deviation from the converged spectrum, considered to
be an error introduced by the neglect of the Coulomb interaction beyond Rs. Especially,
photoelectron yields in the lower energy region are overestimated, probably because low
energy scattering states are sensitive to the tail of the nuclear Coulomb potential [47]. We
set Rs and R0 to be 40 a.u. in the rest of this subsection.
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Figure 4.8: An example of the orbital subdivision of the TD-ORMAS method for an Ar
atom with 18 electrons, which wave function is composed of 5 frozen cores and 13 active
orbitals, (nc, nd, na) = (5, 0, 13). The excitation restrictions SD (SDT, · · · ) indicates that
single and double (single, double and triple, · · · ) excitation from the blue to red group
are only allowed.
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Figure 4.9: Photoelectron energy spectra of an Ar atom subject to a visible intense laser
pulse with a wavelength of 532 nm and an intensity of 2.0 × 1014 W/cm2. The results
calculated with different values of Rs = R0 are compared. The orbital classification used
is (nfc, ndc, na) = (5, 4, 0) without excitation restriction.
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Figure 4.10 shows PES calculated with different orbital classifications. We can recog-
nize the direct cutoff at 2Up and rescattering cutoff at 10Up. In Fig. 4.10(a), the results
with different numbers of active orbitals within single and double (SD) excitation are com-
pared. The spectrum is nearly converged with 25 and 29 active orbitals. Figure 4.10(b)
compares the results with SD and SDT excitation restriction and full CI (TD-CASSCF),
with 13 active orbitals. The SDT and full CI results almost overlap each other, indicating
that SDT is sufficient for numerical convergence. Thus, the result using 25 active orbitals
with SDT excitation is expected to be numerically nearly exact. Then, in Figs. 4.10(c)
and 4.11, we compare the PES calculated using 13, 20 and 25 active orbitals with SDT
excitation restriction and also the TDHF result. The peak positions slightly depend on
the number of orbitals, as we have also seen in Fig. 4.2. Moreover, in the TDHF case, the
peaks are significantly broadened. The ATI peak position En corresponding to n-photon
absorption is given by,

En = nh̄ω − Ip − Up, (4.26)

where Ip is the ionization potential. The difference in peak position observed in Fig. 4.10
can be attributed to that in Ip, which depends on the number of orbitals and excitation
restriction. In addition, in mean-field approaches such as TDHF, the ionization poten-
tial effectively increases as ionization proceeds and the electron density near the nucleus
decreases [75]. This results in the peak broadening.

To elucidate that this effect occurs in the TDHF simulation, we compare time evolution
of the single ionization probabilities calculated with TDHF method and TD-ORMAS
method using 25 active orbitals and SDT excitation restriction in Fig. 4.12. The ionization
probability is defined as the probability of finding one electron outside the 20 a.u. radius.
We can see the ionization probabilities agree with each other until around 5 optical cycles.
However, after that, the ionization rate of the TDHF method decreases as the ionization
proceeds, and thus the TDHF method underestimates the ionization probability. This
finally results in 7% less than the TD-ORMAS simulation, where the TDHF and TD-
ORMAS method show the probabilities to be approximately 22% and 29% at the end of
the simulations. This indicates that ionization is suppressed as ionization proceeds in the
TDHF method, which supports that the ionization potential effectively increases and the
peak broadening stems from that.
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Figure 4.10: Photoelectron energy spectra of an Ar atom subject to a visible intense laser
pulse with a wavelength of 532 nm and an intensity of 2.0 × 1014 W/cm2. The red and
blue dashed vertical lines show 2Up and 10Up (Up = 5.285 eV). The results with dif-
ferent number of orbitals (nfc, ndc, na) and excitation restrictions (SD, SDT, full-CI) are
compared.
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Figure 4.11: Enlarged view of Fig. 4.10(c)
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Figure 4.12: Time evolution of single ionization probabilities of an Ar atom exposed to a
laser pulse with 532 nm wavelength, 2.0× 1014 W/cm2 peak intensity and 14 optical cycles.
Single ionization probability is defined as probability of finding one electron outside the
20 a.u. radius. The results calculated with TDHF method and TD-ORMAS method using
(nfc, ndc, na) = (5, 0, 25) and SDT excitation restriction are compared.
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In Fig. 4.13, we show ARPES calculated with the TD-ORMAS method using 25 active
orbitals with SDT excitation restriction and with the TDHF method using 4 dynamical-
core orbitals. We see differences in detailed structure. In particular, the high-order
(> 2Up) rescattering contribution has much broader angular distribution in the TD-
ORMAS result. The difference can also be clearly observed in Fig 4.14, which shows
the photoelectron angular distribution (PAD) at 10 eV (< 2Up) and 40 eV (> 2Up), rep-
resentatives of the lower and higher energy regions, respectively. At 10 eV photoelectron
energy, where the main contribution is from direct ionization, all the results exhibit simi-
lar behavior. In contrast, at 40 eV photoelectron energy, for which rescattering from the
parent ion is involved and thus strong electron correlation is expected, the calculated PAD
varies with the number of orbitals till it approximately converges with na = 25. Especially,
the TDHF method significantly underestimates the yield in the direction (90◦) perpendic-
ular to the laser polarization. This indicates that electronic correlation is non-negligible
in detailed discussions of ATI ARPES.

Furthermore, we compare the TD-ORMAS simulations with classical simulations with
classical trajectory Monte Carlo (CTMC) method in a collaborative research with the
Institute of Nuclear Research of Hungarian Academy of Sciences [76]. The CTMC simu-
lations were performed by Károly Tökési in Hungarian Academy of Sciences. The CTMC
method numerically solves classical Newton’s equations of motions with randomly gener-
ated initial conditions, and obtains a huge number of trajectories [77–80]. In this work,
an Ar atom with 18 electrons is replaced with a one-electron atom [81, 82]. This model
is the classical analogue of the quantum-mechanical effective single-electron treatment.
The interaction between the ionic core and the active electron is described by a central
model potential developed by Green [83], which is based on Hartree-Fock calculations.
The potential can be written as

V(r) =
Z − (N − 1)

(
1 − Ω−1(r)

)
r

=
Z(r)

r
, (4.27)

where Z is the nuclear charge, N is the total number of electrons in the atom, and

Ω(r) =
η

ξ

(
erξ − 1

)
+ 1. (4.28)

The potential parameters ξ and η can be obtained by minimizing the energy for a given
atom. For an Ar atom we used η = 3.5 and ξ = 0.957.

Figure. 4.15 shows ARPES calculated with the CTMC method. Comparing Fig. 4.15
with Fig. 4.14(b) using the TD-ORMAS method, we see that ARPES obtained with the
CTMC method does not has the interference pattern, and the distribution is restricted to
classically reachable region. In Fig. 4.16, we compare the photoelectron angular distribu-
tions (PAD) calculated with the TD-ORMAS method using 25 active orbitals and SDT
excitation restriction and the CTMC method, at 10 eV and 40 eV. The PAD at 10 eV
calculated with TD-ORMAS method oscillates centering that of the CTMC method. This
indicates that the oscillation in the angular direction shows interference between different
partial waves, which cannot be considered in the classical simulations. In Fig. 4.16(b) pre-
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senting the PAD at 40 eV, the CTMC method shows a significantly different result from
the TD-ORMAS one. In particular, in the direction perpendicular to the laser polariza-
tion (around 50◦ - 130◦), the CTMC cannot reproduce the distribution of the TD-ORMAS
method at all, since this is a region which electrons treated within classical mechanics are
prohibited to reach.

As written in the first of this chapter, for direct projection, we would need to retain
the complete wave function without being absorbed. Since the duration of the simulations
in this subsection reaches ca. 50 fs, calculation of the photoelectron energy spectra at
40 eV, for example, would require the radius of the simulation box larger than 3500 a.u.,
which is unfeasibly large. Moreover, for Ar, an 18-electron atom, the computational cost of
MCTDHF would be prohibitive. The introduction of orbital classification including frozen
core and occupation restriction significantly reduces the number of Slater determinants,
while keeping accuracy. Thus, the combination of the TD-ORMAS and the tSURFF
methods enables converged simulations of ATI of an Ar atom and inspection of correlation
effects in the ATI spectra.
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(b)

(a)

Figure 4.13: Angle-resolved photoelectron energy spectra of an Ar atom subject to a visible
intense laser pulse with a wavelength of 532 nm and an intensity of 2.0 × 1014 W/cm2.
The laser polarization (z direction) corresponds to 0◦. (a) (nfc, ndc, na) = (5, 4, 0), i.e.,
TDHF (b) (nfc, ndc, na) = (5, 0, 25) and SDT excitation restriction.
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Figure 4.14: Angular distribution of photoelectron yields from an Ar atom at (a) 10 eV and
(b) 40 eV, averaged over a ±1.1eV energy range. The angle-integrated yield is normalized
to unity. The results with different orbital conditions are compared.
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Figure 4.15: Angle-resolved photoelectron energy spectra of an Ar atom calculated with
the CTMC method under the same laser parameter used in Fig. 4.13.
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Figure 4.16: Angular distribution of photoelectron yields from an Ar atom at (a) 10 eV and
(b) 40 eV, averaged over a ±1.1eV energy range. The angle-integrated yield is normalized
to unity. The results calculated with the TD-ORMAS and CTMC method are compared.
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Chapter 5

Extension to molecular systems

This chapter is not open to the public for the reason that the contents will be published
in journals within 5 years.

73





Chapter 6

Conclusions

6.1 Summary

In this thesis, aiming for theoretical computation of accurate angle-resolved photoelectron
spectra from multielectron atoms subject to intense and ultrafast laser pulses, we have
developed a realtime ab initio simulation method by combining the TD-ORMAS method,
irECS and the tSURFF method.

To reduce huge computational costs of the TD-ORMAS simulations due to a large
simulation box, we have first applied irECS as an efficient absorbing boundary to the
TD-ORMAS method. This application minimally neglects only the Coulomb force be-
tween electrons in the unscaled region and that acting from electrons in the scaled re-
gion on those in the unscaled region. For discretization of the scaled region, we have
introduced Gauss-Laguerre-Radau quadrature points to construct exponentially dumped
infinite-range FEDVR basis functions that are, conveniently, orthonormal and finite only
at a grid point associated with each basis function. In order to demonstrate efficiency
and accuracy, we have applied the present method to Be and Ne atoms and calculated
ionization probabilities and HHG spectra for intense near-infrared laser pulses. We have
obtained the results that perfectly agree with the converged results using much larger
absorbing radii, even when atoms were massively ionized. While achieving excellent accu-
racy, decreasing the size of the simulation box thanks to irECS has led to the significant
reduction of computational costs, by 66% for Be and 80% for Ne in the present case.

To obtain photoelectron spectra in systems described within the MCSCF framework
such as the TD-ORMAS method, the photoelectron reduced density matrix has been
introduced, whose diagonal elements in the momentum space correspond to photoelectron
spectra. We have applied to the tSURFF method based on the assumption that the
nuclear potentials and interelectronic Coulomb interaction do not affect the dynamics
of photoelectrons in a region at a large distance from nuclei, and derived the equation
of motion for photoelectron momentum amplitudes of each orbital. Since one of the
biggest benefits of tSURFF is not needing to hold the complete wave function within the
simulation box, it allows the combined use of an efficient absorbing boundary such as
irECS. We have applied the present development to compute photoelectron spectra from
Ne, Be and Ar atoms. In the calculation of a Ne atom subject to attosecond XUV pulses,
we have observed the perfect agreement between PES obtained by the tSURFF method
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6.2 Future prospects

and direct projection. This indicates that the neglect of electron-electron and nucleus-
electron Coulomb interaction is a good approximation. Next, we have simulated one
photon ionization process of a Be atom and computed one photon ionization cross section.
The result agrees with the experimental one. This process includes the autoionization of
doubly excited states, and thus this shows that we can correctly simulate phenomena in
which electronic correlation plays an essential role. As a final demonstration, we have
presented converged calculation of ATI spectra from an Ar atom including electronic
correlation, which would require prohibitive computational cost without tSURFF and
irECS. Comparing the ATI ARPES computed with the TDHF method and the converged
one with the TD-ORMAS method, we have found a significant difference in a high energy
region for which rescattering from the parent ion is involved, and especially in a direction
perpendicular to the laser polarization. This indicates that electronic correlation is non-
negligible in detailed discussions of ATI ARPES.

To extend the present development for atoms to molecules, we have implemented the
TD-ORMAS method and the tSURFF method with the adaptive finite element method
which employs a multiresolution mesh in the Cartesian coordinate. Smooth ECS, which
is suited to a multiresolution mesh, has been applied to this implementation. With this
implementation, we have performed TDHF simulations to compute photoelectron momen-
tum spectra from a hydrogen molecule. The spectra qualitatively agree with that obtained
by Fermi’s golden rule reflecting a molecular structure and laser polarizations.

6.2 Future prospects

6.2.1 Ion-state-resolved photoelectron spectra

Electronic dynamics induced by intense and ultrashort laser pulses usually involves mul-
tichannel effects and multiple ionization dynamics. Furthermore, under intense fields,
excitation and multiple ionization successively occur, and thus initially generated pho-
toions and finally generated ones possibly have completely different states. However, it is
difficult to understand such processes only from photoelectron spectra, in which all the
processes are superpositioned.

These processes can be identified by observing not only photoelectron spectra but also
associating photoionic states. This coincident observation can be achieved by introducing
the ion-state-resolved photoelectron reduced density matrix P̃I(k,k′), which is defined
by resolving the photoelectron reduced density matrix (PRDM) defined in Eq. (4.8) into
contributions from an ionic state I,

P̃I(k,k′) = 〈I, χk(t)|Ψ(t)〉 〈Ψ(t)|I, χk′(t)〉 . (6.1)

|I, χk(t)〉 denotes a wave function with an ionic eigenstate I and a scattered state χk. Ionic
eigenstates can be obtained by usual quantum chemistry computations for static states.
As well as the PRDM, the diagonal part of the ion-state-resolved photoelectron reduced
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6.2 Future prospects

density matrix is interpreted as photoelectron momentum spectra associated with an ionic
state I. Through resolving photoelectron spectra based on ionic states, for example, we
can study a correlation between generated ionic states and observed photoelectron spectra.

6.2.2 Application to larger systems and extension beyond the fixed-
nuclei approximation

In this study, the application of the implementation for molecular systems has been limited
to the TDHF method. The next step is to apply it to the TD-MCSCF methods such as the
TD-ORMAS method. Furthermore, the time-dependent optimized coupled-cluster (TD-
OCC) method has been recently proposed [84], which is size extensive, and thus applicable
to further large systems. Applications of our developments for atoms and molecules to the
TD-OCC method will enable to extract photoelectron spectra from larger systems.

Whereas we have treated systems under the fixed-nuclei approximation, electron-
nuclear dynamics in molecules driven by a laser pulse is recently intensively studied [85, 86].
One of the simplest methods to consider nuclear dynamics is the Ehrenfest method, which
classically treats nuclei [87, 88]. For the quantum treatment of nuclear dynamics, the multi-
configuration time-dependent Hartree method [89], which expresses a total wave function
as a superposition of Hartree products, has been applied to many phenomena [90–92].
In addition to this, a TD-MCSCF method for general particles have been recently pro-
posed [93]. Since our application of the tSURFF method is based on the equation of motion
of electronic orbitals and the reduced density matrix, it is straightforward to extend our
present approach to other multielectron ab initio methods. The extension to molecular
dynamics considering nuclear motion would enable precise prediction of photoelectron
spectra from complicated processes and lead to a better understanding of experimental
results such as electron-ion coincidence measurements in dissociation of molecules caused
by strong laser pulses.
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Appendix A

Atomic units

The atomic units (a.u.) is a convenient system for atomic physics, which defines the mass
of a electron me, the elementary charge e and the reduced Planck’s constant h̄ as 1. In
this system, the units of length and energy are given as the Bohr radius and the Hartree
energy, respectively. We show typical atomic units in Table A.1.

Table A.1: Atomic units
dimension value
length 5.29 × 10−11 m
energy 27.2 eV
time 0.00242 fs
velocity 2.19 × 106 m/s
electric field 5.14 × 1011 V/m
field intensity 3.51 × 1016 W/cm2

79



Bibliography

[1] D. Strickland and G. Mourou. Compression of amplified chirped optical pulses. Optics
Communications, 56(3):219 – 221, 1985.

[2] T. J. McIlrath, P. H. Bucksbaum, R. R. Freeman, and M. Bashkansky. Above-
threshold ionization processes in xenon and krypton. Phys. Rev. A, 35:4611–4623,
Jun 1987.

[3] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev.
Lett., 71:1994–1997, Sep 1993.

[4] K. C. Kulander, K. J. Schafer, and J. L. Krause. Dynamics of short-pulse excitation,
ionization and harmonic conversion. In Super-Intense Laser-Atom Physics, pages
95–110. Springer US, Boston, MA„ 1993.

[5] Z. Chang. Fundamentals of attosecond optics. CRC Press, 2011.

[6] F. Remacle and R. D. Levine. An electronic time scale in chemistry. Proceedings of
the National Academy of Sciences, 103(18):6793–6798, 2006.

[7] L. Cederbaum and J. Zobeley. Ultrafast charge migration by electron correlation.
Chemical Physics Letters, 307(3–4):205 – 210, 1999.

[8] J. Breidbach and L. S. Cederbaum. Universal attosecond response to the removal of
an electron. Phys. Rev. Lett., 94:033901, Jan 2005.

[9] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Fras-
setto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Mart’in, and M. Nisoli.
Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science,
346(6207):336–339, 2014.

[10] K. C. Kulander, K. J. Schafer, and J. L. Krause. Single-active electron calculation
of multiphoton process in krypton. International Journal of Quantum Chemistry,
40(S25):415–429, 1991.

[11] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, and A. Scrinzi. An mctdhf approach
to multielectron dynamics in laser fields an mctdhf approach to multielectron dynam-
ics in laser fields an mctdhf approach to multielectron dynamics in laser fields. Laser
Phys., 13:1064, 2003.

[12] T. Kato and H. Kono. Time-dependent multiconfiguration theory for electronic dy-
namics of molecules in an intense laser field. Chem. Phys. Lett., 392(4-6):533–540,
Jul 2004.

[13] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and A. Scrinzi. Correlated
multielectron systems in strong laser fields: A multiconfiguration time-dependent
hartree-fock approach. Phys. Rev. A, 71:012712, Jan 2005.

80



[14] T. Sato and K. L. Ishikawa. Time-dependent complete-active-space self-consistent-
field method for multielectron dynamics in intense laser fields. Phys. Rev. A,
88:023402, Aug 2013.

[15] T. Sato and K. L. Ishikawa. Time-dependent multiconfiguration self-consistent-field
method based on the occupation-restricted multiple-active-space model for multielec-
tron dynamics in intense laser fields. Phys. Rev. A, 91:023417, Feb 2015.

[16] A. D. Bandrauk, F. Fillion-Gourdeau, and E. Lorin. Atoms and molecules in intense
laser fields: gauge invariance of theory and models. Journal of Physics B: Atomic,
Molecular and Optical Physics, 46(15):153001, jul 2013.

[17] J. Frenkel. Wave Mechanics: Advanced General Theory. Oxford, U.K.: Clarendon
Press, 1934.

[18] P.-O. Löwdin and P. Mukherjee. Some comments on the time-dependent variation
principle. Chemical Physics Letters, 14(1):1 – 7, 1972.

[19] R. Moccia. Time-dependent variational principle. International Journal of Quantum
Chemistry, 7(4):779–783, 1973.

[20] K. C. Kulander. Time-dependent hartree-fock theory of multiphoton ionization: He-
lium. Phys. Rev. A, 36:2726–2738, Sep 1987.

[21] M. S. Pindzola, D. C. Griffin, and C. Bottcher. Validity of time-dependent hartree-
fock theory for the multiphoton ionization of atoms. Phys. Rev. Lett., 66:2305–2307,
May 1991.

[22] M. S. Pindzola, P. Gavras, and T. W. Gorczyca. Time-dependent unrestricted hartree-
fock theory for the multiphoton ionization of atoms. Phys. Rev. A, 51:3999–4004, May
1995.

[23] N. E. Dahlen and R. van Leeuwen. Double ionization of a two-electron system in the
time-dependent extended hartree-fock approximation. Phys. Rev. A, 64:023405, Jul
2001.

[24] T. Sato, K. L. Ishikawa, I. Březinová, F. Lackner, S. Nagele, and J. Burgdörfer. Time-
dependent complete-active-space self-consistent-field method for atoms: Application
to high-order harmonic generation. Phys. Rev. A, 94:023405, Aug 2016.

[25] T. Sato, Y. Orimo, T. Teramura, O. Tugs, and K. L. Ishikawa. Time-Dependent
Complete-Active-Space Self-Consistent-Field Method for Ultrafast Intense Laser Sci-
ence, pages 143–171. Springer International Publishing, Cham, 2018.

[26] I. S. Wahyutama, T. Sato, and K. L. Ishikawa. Time-dependent multiconfigura-
tion self-consistent-field study on resonantly enhanced high-order harmonic genera-
tion from transition-metal elements. Phys. Rev. A, 99:063420, Jun 2019.

81



[27] T. Sato and K. L. Ishikawa. Time-dependent multiconfiguration methods for intense
laser-driven multielectron dynamics. In High-Brightness Sources and Light-driven
Interactions, page HW1A.6. Optical Society of America, 2018.

[28] J. L. Krause, K. J. Schafer, and K. C. Kulander. Calculation of photoemission from
atoms subject to intense laser fields. Phys. Rev. A, 45:4998–5010, Apr 1992.

[29] U. V. Riss and H. Meyer. Investigation on the reflection and transmission properties
of complex absorbing potentials. J. Chem. Phys., 105(4):1409–1419, 1996.

[30] L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. A. Mazziotti, and R. Santra.
Implementation of the time-dependent configuration-interaction singles method for
atomic strong-field processes. Phys. Rev. A, 82:023406, Aug 2010.

[31] C. W. McCurdy, C. K. Stroud, and M. K. Wisinski. Solving the time-dependent
schrödinger equation using complex-coordinate contours. Phys. Rev. A, 43:5980–5990,
Jun 1991.

[32] A. Scrinzi. Infinite-range exterior complex scaling as a perfect absorber in time-
dependent problems. Phys. Rev. A, 81:053845, May 2010.

[33] D. J. Haxton, K. V. Lawler, and C. W. McCurdy. Multiconfiguration time-dependent
hartree-fock treatment of electronic and nuclear dynamics in diatomic molecules.
Phys. Rev. A, 83:063416, Jun 2011.

[34] D. A. Telnov, K. E. Sosnova, E. Rozenbaum, and Shih-I Chu. Exterior complex
scaling method in time-dependent density-functional theory: Multiphoton ionization
and high-order-harmonic generation of ar atoms. Phys. Rev. A, 87:053406, May 2013.

[35] V. P. Majety, A. Zielinski, and A. Scrinzi. Photoionization of few electron systems:
a hybrid coupled channels approach. New Journal of Physics, 17(6):063002, 2015.

[36] A. Zielinski, V. P. Majety, and A. Scrinzi. Double photoelectron momentum spectra
of helium at infrared wavelength. Phys. Rev. A, 93:023406, Feb 2016.

[37] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Aug’e, P. Balcou, H. G. Muller,
and P. Agostini. Observation of a train of attosecond pulses from high harmonic
generation. Science, 292(5522):1689–1692, 2001.

[38] E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi,
T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz.
Direct measurement of light waves. Science, 305(5688):1267–1269, 2004.

[39] V. Gruson, L. Barreau, Á. Jiménez-Galan, F. Risoud, J. Caillat, A. Maquet, B. Carré,
F. Lepetit, J.-F. Hergott, T. Ruchon, L. Argenti, R. Taïeb, F. Martín, and P. Sal-
ières. Attosecond dynamics through a fano resonance: Monitoring the birth of a
photoelectron. Science, 354(6313):734–738, 2016.

82



[40] A. Kaldun, A. Blättermann, V. Stooß, S. Donsa, H. Wei, R. Pazourek, S. Nagele,
C. Ott, C. D. Lin, J. Burgdörfer, and T. Pfeifer. Observing the ultrafast buildup of
a fano resonance in the time domain. Science, 354(6313):738–741, 2016.

[41] D. M. Villeneuve, P. Hockett, M. J. J. Vrakking, and H. Niikura. Coherent imaging
of an attosecond electron wave packet. Science, 356(6343):1150–1153, 2017.

[42] M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider,
P. B. Corkum, and F. Krausz. X-ray pulses approaching the attosecond frontier.
Science, 291(5510):1923–1927, 2001.

[43] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum.
Attosecond streak camera. Phys. Rev. Lett., 88:173903, Apr 2002.

[44] M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, and T. Brabec. Quantum theory of
attosecond xuv pulse measurement by laser dressed photoionization. Phys. Rev. Lett.,
88:173904, Apr 2002.

[45] Y. Mairesse and F. Quéré. Frequency-resolved optical gating for complete reconstruc-
tion of attosecond bursts. Phys. Rev. A, 71:011401, Jan 2005.

[46] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter,
S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pa-
zourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kien-
berger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev. Delay in
photoemission. Science, 328(5986):1658–1662, 2010.

[47] L. Tao and A. Scrinzi. Photo-electron momentum spectra from minimal volumes: the
time-dependent surface flux method. New Journal of Physics, 14(1):013021, jan 2012.

[48] A. Scrinzi. t-surff: fully differential two-electron photo-emission spectra. New J.
Phys., 14(8):085008, 2012.

[49] A. Karamatskou, S. Pabst, Y.-J. Chen, and R. Santra. Calculation of photoelectron
spectra within the time-dependent configuration-interaction singles scheme. Phys.
Rev. A, 89:033415, Mar 2014.

[50] P. Wopperer, U. De Giovannini, and A. Rubio. Efficient and accurate modeling of
electron photoemission in nanostructures with tddft. The European Physical Journal
B, 90(3):51, Mar 2017.

[51] T. N. Rescigno and C. W. McCurdy. Numerical grid methods for quantum-mechanical
scattering problems. Phys. Rev. A, 62:032706, Aug 2000.

[52] C. W. McCurdy, M. Baertschy, and T. N. Rescigno. Solving the three-body coulomb
breakup problem using exterior complex scaling. J. Phys. B: At. Mol. Opt. Phys.,
37(17):R137, 2004.

83



[53] B. I. Schneider, J. Feist, S. Nagele, R. Pazourek, S. Hu, L. A. Collins, and J. Burgdör-
fer. Recent Advances in Computational Methods for the Solution of the Time-
Dependent Schrödinger Equation for the Interaction of Short, Intense Radiation with
One and Two Electron Systems, pages 149–208. Springer New York, New York, NY,
2011.

[54] S. Cox and P. Matthews. Exponential time differencing for stiff systems. Journal of
Computational Physics, 176(2):430 – 455, 2002.

[55] M. Tokman. Efficient integration of large stiff systems of odes with exponential
propagation iterative (epi) methods. Journal of Computational Physics, 213(2):748 –
776, 2006.

[56] M. Tokman. A new class of exponential propagation iterative methods of runge–kutta
type (epirk). Journal of Computational Physics, 230(24):8762 – 8778, 2011.

[57] Y. Orimo, T. Sato, A. Scrinzi, and K. L. Ishikawa. Implementation of the infinite-
range exterior complex scaling to the time-dependent complete-active-space self-
consistent-field method. Phys. Rev. A, 97:023423, Feb 2018.

[58] A. Scrinzi and N. Elander. A finite element implementation of exterior complex
scaling for the accurate determination of resonance energies. The Journal of Chemical
Physics, 98(5):3866–3875, Mar 1993.

[59] T. N. Rescigno, M. Baertschy, D. Byrum, and C. W. McCurdy. Making complex
scaling work for long-range potentials. Phys. Rev. A, 55:4253–4262, Jun 1997.

[60] W. Gautschi. Gauss–radau formulae for jacobi and laguerre weight functions. Math.
Comput. Simulat., 54(4–5):403 – 412, 2000.

[61] M. Weinmüller, M. Weinmüller, J. Rohland, and A. Scrinzi. Perfect absorption in
schrödinger-like problems using non-equidistant complex grids. Journal of Computa-
tional Physics, 333(Supplement C):199 – 211, 2017.

[62] K. L. Ishikawa and T. Sato. A review on ab initio approaches for multielectron
dynamics. IEEE J. Sel. Topics Quantum Electron., 21(5):8700916, 2015.

[63] J. Parker, K. T. Taylor, C. W. Clark, and S. Blodgett-Ford. Intense-field multiphoton
ionization of a two-electron atom. J. Phys. B: At. Mol. Opt. Phys., 29(2):L33, 1996.

[64] J. Colgan, M. S. Pindzola, and F. Robicheaux. Time-dependent close-coupling calcu-
lations for the double photoionization of he and h 2. J. Phys. B: At. Mol. Opt. Phys.,
37(23):L377, 2004.

[65] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider, L. A. Collins, and
J. Burgdörfer. Nonsequential two-photon double ionization of helium. Phys. Rev. A,
77:043420, Apr 2008.

84



[66] Y. Orimo, T. Sato, and K. L. Ishikawa. Application of the time-dependent surface
flux method to the time-dependent multiconfiguration self-consistent-field method.
Phys. Rev. A, 100:013419, Jul 2019.

[67] J. J. Omiste, W. Li, and L. B. Madsen. Electron correlation in beryllium: Effects in
the ground state, short-pulse photoionization, and time-delay studies. Phys. Rev. A,
95:053422, May 2017.

[68] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical
Proceedings of the Cambridge Philosophical Society, 26(3):376–385, 007 1930.

[69] NIST ASD Team. Atomic spectra database. https://www.nist.gov/pml/atomic-
spectra-database.

[70] G. Mehlman-Balloffet and J. M. Esteva. Far-Ultraviolet Absorption Spectra with
Auto-Ionized Levels of Beryllium and Magnesium. Astrophys. J., 157:945, Aug 1969.

[71] P. F. O’Mahony and C. H. Greene. Doubly excited states of beryllium and magnesium.
Phys. Rev. A, 31:250–259, Jan 1985.

[72] B. Zhou and C. D. Lin. Photoionization of the beryllium atom. Phys. Rev. A,
51:1286–1290, Feb 1995.

[73] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys.
Rev., 124:1866–1878, Dec 1961.

[74] R. Wehlitz, D. Lukić, and J. B. Bluett. Resonance parameters of autoionizing be
2pnl states. Phys. Rev. A, 68:052708, Nov 2003.

[75] K. C. Kulander, K. J. Schafer, and J. L. Krause. Time-Dependent Studies of Multi-
photon Processes. In Atoms in Intense Laser Fields, page 247, 1992.

[76] Orimo, Yuki, Tökési, Károly, Sato, Takeshi, and Ishikawa, Kenichi L. Comparison
between quantum and classical calculations for above threshold ionization of argon.
Eur. Phys. J. D, 73(7):153, 2019.

[77] R. Abrines and I. C. Percival. Classical theory of charge transfer and ionization of
hydrogen atoms by protons. Proceedings of the Physical Society, 88(4):861–872, aug
1966.

[78] R. E. Olson and A. Salop. Charge-transfer and impact-ionization cross sections for
fully and partially stripped positive ions colliding with atomic hydrogen. Phys. Rev.
A, 16:531–541, Aug 1977.

[79] K. Tökési and G. Hock. Versatility of the exit channels in the three-body ctmc
method. Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 86(1):201 – 204, 1994.

85



[80] K. Tokési and G. Hock. Double electron capture in collisions up to 1500 keV/amu
projectile impact. Journal of Physics B: Atomic, Molecular and Optical Physics,
29(4):L119–L125, feb 1996.

[81] K. Tőkési and Á. Kövér. Existence of the electron capture to the continuum peak at
positron impact. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 154(1):259 – 262, 1999.

[82] K. Tökési and Á. Kövér. Electron capture to the continuum at 54.4 eV positron-
argon atom collisions. Journal of Physics B: Atomic, Molecular and Optical Physics,
33(16):3067–3077, aug 2000.

[83] A. Green. An analytic independent particle model for atoms: I. initial studies. vol-
ume 7 of Advances in Quantum Chemistry, pages 221 – 262. Academic Press, 1973.

[84] T. Sato, H. Pathak, Y. Orimo, and K. L. Ishikawa. Communication: Time-dependent
optimized coupled-cluster method for multielectron dynamics. The Journal of Chem-
ical Physics, 148(5):051101, 2018.

[85] F. Lépine, M. Y. Ivanov, and M. J. J. Vrakking. Attosecond molecular dynamics:
fact or fiction? Nature Photonics, 8(3):195–204, 2014.

[86] M. J. J. Vrakking and F. Lepine, editors. Attosecond Molecular Dynamics. Theoretical
and Computational Chemistry Series. The Royal Society of Chemistry, 2019.

[87] P. Ehrenfest. Bemerkung über die angenäherte gültigkeit der klassischen mechanik
innerhalb der quantenmechanik. Zeitschrift für Physik, 45(7):455–457, Jul 1927.

[88] X. Li, J. C. Tully, H. B. Schlegel, and M. J. Frisch. Ab initio ehrenfest dynamics.
The Journal of Chemical Physics, 123(8):084106, 2005.

[89] M. Beck, A. Jäckle, G. Worth, and H.-D. Meyer. The multiconfiguration time-
dependent hartree (mctdh) method: a highly efficient algorithm for propagating
wavepackets. Physics Reports, 324(1):1 – 105, 2000.

[90] L. Wang, H.-D. Meyer, and V. May. Femtosecond laser pulse control of multidimen-
sional vibrational dynamics: Computational studies on the pyrazine molecule. The
Journal of Chemical Physics, 125(1):014102, 2006.

[91] C. Jhala and M. Lein. Multiconfiguration time-dependent hartree approach for
electron-nuclear correlation in strong laser fields. Phys. Rev. A, 81:063421, Jun 2010.

[92] G. J. Halász, A. Vibók, N. Moiseyev, and L. S. Cederbaum. Nuclear-wave-packet
quantum interference in the intense laser dissociation of the d2

+ molecule. Phys. Rev.
A, 88:043413, Oct 2013.

[93] R. Anzaki, T. Sato, and K. L. Ishikawa. A fully general time-dependent multiconfig-
uration self-consistent-field method for the electron–nuclear dynamics. Phys. Chem.
Chem. Phys., 19:22008–22015, 2017.

86



Acknowledgement

I would like to express my deepest gratitude to my supervisor Prof. Kenichi L. Ishikawa.
Prof. Ishikawa has always kindly supported me and given a lot of opportunities to learn
various things including not only my study but also many experiences in international
conferences and joint researches. I also want to thank him for allowing me to freely choose
my research theme.

I am deeply grateful to Assoc. Prof. Takeshi Sato. Without his devoted support and
meaningful discussions with him, I could have never spent my beneficial doctoral course.
Using and studying his wonderful simulation codes have inspired me and opened a way to
develop a simulator for molecules presented in Ch. 5.

I greatly thank Prof. Armin Scrinzi in Ludwig Maximilian University of Munich. My
short stay in his laboratory was a valuable experience for me and became an important
opportunity to consider my advance to the doctoral course. I also appreciate his insightful
comments and suggestions for the application of ECS and irECS to the multielectron
systems presented Ch. 3.

I also really thank Prof. Károly Tökési in the Institute of Nuclear Research of Hungar-
ian Academy of Sciences. The collaborative research with him expanded my knowledge
and gave me a fruitful experience.

I would like to thank Dr. Yasushi Shinohara in Ishikawa laboratory. His advice on
developments of simulation codes and linear algebra algorithms were very helpful.

I want to thank all the members and the former members in Ishikawa laboratory,
namely, Dr. Himadri Pathak, Dr. Imam S. Wahyutama, Mr. Ryoji Anzaki, Mr. Takuma
Teramura, Mr. Kazma Komatsu, Ms. Oyunbileg Tugs, Ms. Chisa Koriyama, Mr. Mizuki
Tani, Mr. Yutaro Isono, and Mr. Kakeru Sasaki. I also express my thanks to Dr. Takuya
Ikemachi, a former student in Gonokami laboratory. I was able to spend my enjoyable
Ph.D. life thanks to them. I am also grateful to Ms. Yumiko Kumaoka, the secretary in
Ishikawa laboratory, for her plenty of support for me.

This research was supported by CREST (Grant No. JPMJCR15N1), JST, by JSPS and
HAS under the Japan-Hungary Research Cooperative Program, by the Graduate School
of Engineering, University of Tokyo, Doctoral Student Special Incentives Program (SEUT
Fellowship program), and by JSPS Research Fellowship for Doctoral Course Students
(DC2). I gratefully acknowledge all the financial supports.

Finally, I would like to express my sincere thanks to my family for their support and
encouragement.

87


	Abstract
	1 Introduction
	1.1 Strong field physics and Attosecond science
	1.1.1 Above threshold ionization
	1.1.2 High harmonic generation
	1.1.3 Observation of the charge migration

	1.2 Ab-initio simulations for laser-induced electronic dynamics
	1.2.1 Target systems
	1.2.2 Multiconfiguration self-consistent field method
	1.2.3 Absorbing boundary condition

	1.3 Photoelectron spectra
	1.4 Objective

	2 The Time-dependent occupation restricted multiple-active-space method
	2.1 The ORMAS model
	2.2 Derivation of the equations of motion
	2.3 Implementation of the TD-ORMAS method
	2.3.1 Finite-element discrete-variable-representation basis
	2.3.2 Spatial discretization of the equations of motion
	2.3.3 The exponential integrator


	3 Application of infinite-range exterior complex scaling to the TD-ORMAS method
	3.1 Exterior complex scaling for a single-electron system
	3.2 Implementation of ECS with FEDVR method
	3.3 Implementation of infinite-range ECS with extended FEDVR method
	3.4 Application of ECS to the TD-ORMAS multielectron dynamics
	3.4.1 Scaled interelectronic Coulomb interaction

	3.5 Numerical examples
	3.5.1 Beryllium
	3.5.2 Neon


	4 Application of the tSURFF method to the TD-ORMAS method
	4.1 the tSURFF method for single-electron systems
	4.2 Application of the tSURFF method to the TD-ORMAS simulations 
	4.2.1 Photoelectron reduced density matrix
	4.2.2 EOMs of momentum amplitudes of orbitals 
	4.2.3 Implementation

	4.3 Numerical results
	4.3.1 Neon 
	4.3.2 Beryllium 
	4.3.3 Argon 


	5 Extension to molecular systems
	6 Conclusions
	6.1 Summary
	6.2 Future prospects
	6.2.1 Ion-state-resolved photoelectron spectra
	6.2.2 Application to larger systems and extension beyond the fixed-nuclei approximation


	Appendix A Atomic units
	Bibliography
	Acknowledgement

