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Abstract

Laser technologies to make laser pulses shorter and stronger have been drastically advanced
in the past couple of decades. The technique enables us to generate high-intensity fem-
tosecond (10712 sec) laser pulses and leads to growth of the strong-field physics that studies
nonperturbative and nonlinear optics: Perturbation treatment of laser-fields breaks down
since the field intensity is too strong. Today, further shortening a duration of a laser pulse
has been achieved, and it reaches a few tens of attoseconds (10718 sec) in the state-of-the-
art technology. Since the attosecond time scale corresponds to the timescale of electronic
dynamics in atoms and molecules, it became possible to observe ultrafast electronic dy-
namics by using attosecond laser pulses as ultrashort camera shutters. The appearance
of the attosecond laser pulses has arisen a new research area “attosecond physics”, where
observation and even control of the ultrafast electronic dynamics are studied.

Though such laser-induced electronic dynamics can be rigorously described by the
time-dependent Schrodinger equation, solving it for multielectron systems poses a major
challenge. To investigate many-electron dynamics in intense laser fields and attosecond
light pulses by theoretical simulations, time-dependent multiconfiguration self-consistent
field (TD-MCSCF) methods, which expresses a multielectron wave function as a su-
perposition of Slater determinants, have been developed. A well-known theory of the
TD-MCSCEF methods is the multiconfiguration time-dependent Hartree-Fock (MCTDHF)
method, which considers all the possible configurations for a given number of orbitals, and
whose computational costs factorially increase against the number of electrons. To realize
computationally less demanding simulations, the time-dependent complete-active-space
self-consistent field (TD-CASSCF) method and the time-dependent occupation-restricted
multiple-active-space (TD-ORMAS) method have been proposed. The former introduces
orbital classification into doubly occupied core orbitals and fully correlated active orbitals.
The latter further divides active orbitals into subgroups and restricts the electronic con-
figurations. Flexible description of the wave function offered by the orbital classification
and occupation restriction enables converged ab initio simulations of highly nonlinear,
correlated multielectron dynamics in systems containing several tens of electrons.

While we have developed ab initio simulation methods, and enabled to simulate large
systems which are considered as subjects of real experiments, direct comparison between
ab initio simulations and experiments is still challenging. In particular, the extraction
of photoelectron energy spectra (PES) and angle-resolved photoelectron energy spectra
(ARPES), which are among important experimental probes for laser-matter interaction,
is difficult. In principle, they could be calculated by projecting the departing photoelec-
tron wave packet onto plane waves or Coulomb waves. This approach, however, requires
retaining the complete wave function without being absorbed, leading to a huge simulation
box and prohibitive computational cost. To circumvent this difficulty, the time-dependent
surface flux (tSURFF) method has been developed, which extracts PES by integrating a
wave function flux through a surface. Thus it allows one to use an absorbing boundary,
that absorbs the photoelectron wave packet when it reaches the end of the spatial grid
and suppresses unphysical reflections, bringing significant cost reduction. The tSURFF



method was first developed for single-electron systems and then applied to multielectron
simulations with, e.g., the time-dependent configuration interaction singles method, and
the time-dependent density functional theory. However. it has not been applied to gen-
eral TD-MCSCF methods, which enable systematic improvement of accuracy, considering
multielectron effects such as electronic correlation and the multiple ionization.

Against this background, we set our objective to develop a realtime ab initio simulation
method to extract photoelectron spectra from multielectron atoms subject to intense laser
fields, applying the tSURFF method to the TD-ORMAS method.

In order to take full advantage of the tSURFF method, not needing to hold the com-
plete wave function within the simulation box, it is required to implement an efficient and
accurate absorbing boundary. we have introduced exterior complex scaling (ECS) and
infinite-range exterior complex scaling (irECS) as absorbing boundaries. ECS absorbs
photoelectron wave packets, by analytically continuing the wave function into the com-
plex plane without artificially modifying the system Hamiltonian or the wave function.
Furthermore, the infinite-range exterior complex scaling (irECS) method significantly im-
proves the efficiency over standard ECS by using an exponentially damped basis, thus
moving the reflecting boundary to infinity. ECS and irECS as absorbing boundaries were
originally formulated for single-electron systems. Thus We have applied these methods to
the TD-ORMAS method, by neglecting the Coulomb force from electrons residing in the
scaled region, which are far apart. However, we rigorously include all the other interactions
(e.g. external fields, the nuclear potential and the Coulomb force from electrons in the
unscaled region). In numerical demonstrations, we have shown that this implementation
works well even when atoms undergo significant double ionization, and enables several
times faster simulations than another absorbing boundary while keeping high accuracy.

To obtain photoelectron spectra from multiconfiguration wave functions, we have first
introduced the photoelectron reduced density matrix, whose diagonal elements in the
momentum space correspond to PES. In the application of the tSURFF method to the TD-
ORMAS method, based on a physically reasonable assumption that the nuclear potential
and interelectronic Coulomb interaction are negligible for photoelectron dynamics in the
region distant from the nuclei, we have derived the equations of motion for the momentum
amplitudes of each orbital. They contain an additional term arsing from interelectronic
interaction compared with the single-electron case.

The present development has been applied to neon, beryllium, and argon atoms. In
the simulations of a neon atom, we have compared PES obtained by the tSURFF method
and directly projecting onto plain waves, and found that they completely agree with each
other. This shows high accuracy of the tSRUFF method and the validity of the neglect
of the electron-electron and nucleus-electron Coulomb interaction assumed in the appli-
cation of the tSURFF method to the TD-ORMAS method. Next, we have computed one
photon ionization cross section of a beryllium atom including Fano resonance. The overall
structures of the cross sections obtained from TD-ORMAS simulations and experimental
results show a good agreement, which indicates that we can correctly simulate the au-
toionization process, where electronic correlation plays an essential role. Finally, we have
presented converged calculation of photoelectron spectra of above threshold ionization



(ATI) in an argon atom including electronic correlation, which would require prohibitive
computational cost without tSURFF and irECS. Comparing the ATI ARPES computed
with the time-dependent Hartree-Fock (TDHF) method and the converged one with the
TD-ORMAS method, we have found a significant difference in a high energy region for
which rescattering from the parent ion is involved, and especially in a direction perpendic-
ular to the laser polarization. This indicates that electronic correlation is non-negligible
in a detailed discussion of ATT ARPES.

As an extension of the development for atoms, we have presented an implementation
of the TD-ORMAS method and the tSURFF method for molecules. From the theoretical
perspective, this extension is straightforward. However, from a perspective of numerical
simulations, the extension to molecular systems is not straightforward since the systems
have no longer spherical symmetry, thus the spherical harmonics expansion, which effi-
ciently discretizes atomic systems, is not suited for orbital discretization. In order to
achieve efficient discretization of molecular systems, we have introduced the adaptive fi-
nite element method with multiresolution mesh in the Cartesian coordinate, which does
not rely on the symmetry of systems. The concept of the multiresolution mesh is to dis-
cretize a region near the nuclei with fine mesh and the other regions with coarse mesh.
As an absorbing boundary, we have implemented smooth exterior complex scaling, which
is suited to the multiresolution method. For the demonstration of the present implemen-
tation, we have computed photoelecton momentum spectra from a hydrogen molecule.
The positions of the computed single photon ionization peaks were found sufficiently close
to the experimentally expected one. Moreover, comparing our results with photoelectron
momentum spectra obtained by Fermi’s golden rule, we have confirmed that photoelectron
momentum spectra reflecting a molecular structure and laser polarizations are successfully
computed by using our implementation.

In conclusion, to extract photoelectron spectra from laser-driven multielectron atoms,
we have applied and implemented irECS and the tSURFF method to the TD-ORMAS
method. In the application of the tSURFF method, we introduced photoelectron reduced
density matrix, whose diagonal elements in the momentum space correspond to PES, and
derived the equation of motion for the momentum amplitudes of each orbital. With this
development, we have achieved highly accurate calculations of PES and ARPES with con-
siderably reduced computational costs. In the simulations of an argon atom, we have
revealed that electronic correlation affects the angular distribution of photoelectron yields
in above threshold ionization spectra. Furthermore, we have extended the present develop-
ment to molecular systems, and successfully computed photoelectron momentum spectra
from a hydrogen molecule.

In this thesis, we have calculated photoelectron spectra without considering a state
of the parent ion. However, in order to understand electronic dynamics after ionization
or processes following photoemission, it is important to identify which ionic states are
generated and how they are correlated with photoelectron spectra. This can be achieved
by resolving the photoelectron reduced density matrix into contributions from an ionic
state. It is expected that such analyses will lead to a better understanding of exper-
imental results and precise prediction of high-field and ultrafast phenomena. Another
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direction of future prospects is an application to systems considering nuclear dynamics.
While we have presented the application of tSURFF to the TD-ORMAS method in this
study, it is straightforward to extend it to other multielectron ab initio methods using
time-dependent orbitals such as TD-MCSCF methods including nuclear dynamics. Such
applications would enable us to compute photoelectron spectra from even more compli-
cated systems and processes.
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Chapter 1

Introduction

Laser technologies to make laser pulses shorter and stronger have been drastically ad-
vanced in the past couple of decades. One of the biggest developments in laser physics
is chirped pulse amplification [1], which stretches a laser pulse and amplifies its intensity
and squeezes it again. This technique enables us to generate high-intensity femtosecond
(10715 sec) laser pulses and leads to growth of the strong-field physics that studies nonper-
turbative and nonlinear optics: Perturbation treatment of laser-fields breaks down since
the field intensity is too strong. Today, further shortening a duration of a laser pulse has
been achieved, and it reaches a few tens of attoseconds (10718 sec) in the state-of-the-art
technology. Since the attosecond timescale corresponds to that of electronic dynamics in
atoms and molecules, it became possible to observe ultrafast electronic dynamics by using
attosecond laser pulses as ultrashort camera shutters. The appearance of the attosec-
ond laser pulses has arisen a new research area “attosecond physics”, where observation
and even control of the ultrafast electronic dynamics are studied. It is expected that the
knowledge and technologies in this field are applied to, for instance, developments of new
optical devices and control of chemical reactions, where electronic dynamics plays the role
of elementary processes.

Photoelectron spectroscopy is the most widely used to experimentally understand op-
tical responses of matters exposed to laser pulses. It is well-known that photoelectron
spectra can reveal electronic structures of matters in static states, but also photoelectron
spectra are observed and analyzed to study strong-field phenomena and identify electronic
dynamics on an attosecond time scale. In parallel with this, it is required that theoret-
ical approaches to obtain accurate photoelectron spectra which can predict and explain
experimental results. With this background, we develop an ab initio method to simulate
photoelectron spectra from atoms and molecules exposed to strong and ultrashort laser
pulses in this work.

In the rest of this chapter, we give an overview of strong-field physics and attosecond
science, and ab initio simulation methods to describe multielectron dynamics subject to
laser pulses in Sec. 1.1 and 1.2, respectively. In Sec. 1.3, we describe the difficulty in
theoretically computing photoelectron spectra. In Sec. 1.4, the objective of this work
is stated. We use atomic units unless otherwise mentioned throughout this thesis (see
Appendix A for the details).
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Figure 1.1: Experimentally obserbed photoelectron energy spectra of ATI in a xenon atom
subject to 1064-nm light. This figure is cited from Ref. [2].

1.1 Strong field physics and Attosecond science

When we shine a strong laser pulse to atoms and molecules, various nonlinear optical phe-
nomena that cannot be described by the perturbation theory, called strong-field phenom-
ena, are observed. While laser technologies have been rapidly developed, the mechanism
and applications of strong-field phenomena have been actively studied. In this section,
we describe typical strong-field phenomena, above threshold ionization and high harmonic
generation, and an important application of attosecond laser pulses, an observation of the
charge migration.

1.1.1 Above threshold ionization

Under an intense laser with its intensity larger than about 10> W/cm?, we can observe a
strong-field phenomenon, where atoms and molecules are ionized by absorbing more than
the minimally required number of photons. This is known as above threshold ionization
(ATTI). Figure 1.1 presents an experimentally observed photoelectron energy spectra of ATI
in a xenon atom [2], where we clearly see multiple ATI peaks corresponding to absorbed
photon numbers. As shown in Fig 1.1, the ATT peaks do not obey the perturbation theory,
which indicates that the peak values monotonically decrease as the number of photons
increases. Another interesting feature in Fig. 1.1 is that the lowest order peak disappears
as the field intensity increases. This can be understood through the pondermotive energy,
which is the temporal averaged kinetic energy of a charged particle in an electromagnetic
field, given by,

_ B

 dmwy’

(1.1)
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Figure 1.2: High harmonic spectrum from a helium atom exposed to a laser pulse with 800
nm wavelength and 8.0 x 10" W /m? peak intensity, calculated by the MCTDHF method.

where g is a charge, m is mass of a particle, Eg is an electric field amplitude, and wy is its

angular frequency. For electrons, it is given by,
Up[eV] = 9.337 x 10~ 1*Ij|W/cm?|A§[um], (1.2)

with Iy and Ag being a field intensity and wavelength, respectively. A free electron in a
laser field obtains the pondermotive energy Uy, and thus the ionization potential energy
I, effectively increases to I, + U,. Since the pondermotive energy U, increases as a laser
intensity increase as shown in Eq. (1.1), the lowest order ATI peak disappears in higher

intensities.

1.1.2 High harmonic generation

Iluminating atoms and molecules by a laser pulse stronger than ~ 10'* W /cm?, they emit
high order harmonics, which have integer multiples of the incident photon energy. This
process is high harmonic generation (HHG). Figure 1.2 shows a typical high harmonic
spectrum. We see a distinctive structure, which has a plateau region where the peak
intensities do not decrease with the harmonic order increasing, and a sudden cut-off at
which the peak intensities sharply decrease. The perturbation theory cannot explain this
structure, and thus HHG is a nonperturbative process. However, this can be understood
by a simple semiclassical model, called the three step model [3, 4]. This model describes
HHG as follows.

1. Tunneling ionization: Nuclear Coulomb potentials are drastically distorted by laser
fields and electrons ionize passing through the potential barrier by the tunneling
effect.

2. Acceleration: After tunneling ionization, electrons are accelerated by oscillating laser
fields.



1.1 Strong field physics and Attosecond science

3. Recombination: A part of electrons comes back to the parent ion position and collides
with it, emitting a photon taking the kinetic energy of the electron and the ionization
potential I,.

The cut-off energy E. is given as the sum of the maximum kinetic energy and the ionization
potential within this model. By solving Newton’s equation of motion for an electron
under a periodically oscillating electric field [3], the maximum kinetic energy is obtained
as 3.17Up, and thus the cut-off energy is given by

Ec ~ I, +3.17U,. (1.3)

It is known that this simple equation can successfully explain experimental results very
well [5].

One of the important applications of HHG is the generation of light pulses with at-
tosecond time width. As we mentioned above, high harmonic spectra have a plateau region
extending to the cut-off energy. The cut-off order typically reaches a few tens order, thus
by using HHG we can convert a laser pulse into a light with a frequency several tens times
that of the incident laser. This broad spectrum makes it possible to generate attosecond
light pulses.

1.1.3 Observation of the charge migration

The generation of attosecond light pulses using high order harmonics has enabled direct
observation of electron dynamics in atoms and molecules, which was difficult with fem-
tosecond laser pulses. Electrons bound to atoms and molecules move on an attosecond
scale. To measure them, a faster shutter than that the motion is required.

Recently, attosecond light pulses were applied to observe the charge migration. Illumi-
nating a molecule by a short light pulse with a photon energy sufficiently higher than the
ionization potential, plural coherent ionized states are generated at the same time. This
superposition of ionized states, which have different eigenenergies, has positively and neg-
atively charged parts, and it has been theoretically predicted that these charges migrate
in molecules on an attosecond time scale [6-8].

To cause this phenomenon, wave functions of ionized systems including photoelectrons
must be overlapped. For example, it is difficult to observe the charge migration by using
a femtosecond laser pulse. This is because in the case that a laser pulse with a longer
pulse duration than the electronic time scale, electrons are emitted at various timings
and thus the coherence of the system is lost. Hence, Calegari and et al. have employed
an attosecond pulse with a time width lower than 300 as to induce charge migration in
an amino acid molecule, and succeeded the first observation of this phenomenon in the
world [9] (Fig. 1.3).

Since such photoionization and associated electronic dynamics are an elementary pro-
cess that occurs when bio-molecules are exposed to radiation, it is expected that under-
standing of charge migration will lead to the elucidation of the effects of radiation on
organisms from the molecular level. On the other hand, from the viewpoint of chemistry,
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Figure 1.3: (Left) Yield of doubly charged ions as a function of pump-probe delay. (Right)
Snapshots of relative variation of the charge density, calculated by the density functional
theory. Vibration periods observed in these figures show a good agreement. These figures
are cited from Ref. [9]

localized and oscillating charge in charge migration may influence molecular reactivity.
Thus, is it expected that understanding and controlling of light-induced charge migration
give a possibility of the control of chemical reaction.

1.2 Ab-initio simulations for laser-induced electronic dy-
namics

Electronic dynamics studied in the strong-field physics and attosecond science is com-
plicated phenomena, which includes non-perturbative and nonlinear effects, and involves
multiple states or paths excited by ultrashort pulses. Strong laser fields massively ionize
and excite atoms and molecules. Furthermore, not only one electron, but also multiple
electrons can be ionized and excited. This leads to a breakdown of the single-active elec-
tron (SAE) model [10], which considers only a valence electron, and requires to consider
multielectron systems. Ultrashort pulses have broad energy spectra width due to the un-
certainty principle of the Fourier transform. This yields many energy eigenstates through
photoexcitation or photoionization, and many channels or paths are involved in the dy-
namics. It is often difficult to apply models considering only a few specific states for the
dynamics. Ab initio simulations have an important role to understand and predict these
phenomena. Although solving the time-dependent Schrédinger equation (TDSE) gives an
exact description of the dynamics in the non-relativistic regime, it almost impossible to
directly solve TDSE for many-body systems due to the exponential growth of the compu-
tational cost or the curse of dimensionality. To overcome this problem and enable ab initio
simulations, the time-dependent multiconfiguration self-consistent field methods [11-15],
which we describe below, have been developed.

11



1.2 Ab-initio simulations for laser-induced electronic dynamics

1.2.1 Target systems

Before moving on to further detail of theoretical approaches, we first define systems to be
handled in this work. We consider an atom or a molecule under a laser field. The total
number of electron is N, which are composed of N} up-spin and N| down-spin electrons
(N = N; + N|). The atomic nuclei are spatially fixed and treated as point charges.

When the wavelength of the laser field is much larger than the system size, spatial
variation of the electromagnetic field can be negligible. This approximation is called the
dipole approximation or long wavelength approximation. Laser pulses assumed in this
work are mainly in the range of extreme ultraviolet (EUV) to near-infrared (NIR), whose
wavelengths are much larger than atoms and small molecules. Thus we consider the laser-
matter interaction within the dipole approximation [16]. Under the dipole approximation,
the electric field is a spatially constant and the magnetic field is zero.

We use r as a spatial coordinate, ¢ as a spin coordinate and x as a set of them.
The system Hamiltonian H(t) and the time-dependent Schrodinger equation giving the
dynamics of this system within the above condition is given by,

N 1N N
H(t) = Z hl (ri/ vi/ t) + E Z ZhZ(ri/ 'I“]‘), (14)
i=1 i=1j=1
d
i—=Y(x1,x0,- -, xn,t) = H(t)¥(x1,x2,- -, xn, 1), (1.5)

ot

where hy(r;, Vi, t) and ha(r;,7j) denote one-body and two-body terms, respectively,

V2
hl(ri,Vi,t) = —71+VN(Ti)+VL(Ti,Vi,t), (16)
1
hz(’“i,’“j) = ‘,,,i_,r,],|' (1.7)

The one body term hy(7;, V;, t) includes electronic kinetic energy, a Coulomb potential
from atomic nuclei Vx(r;) and a potential of a laser field Vi,(r;, Vi, t), and the two body
term is an interelectronic Coulomb potential.

The nuclear Coulomb potential is given by,

Z
— for atoms
woy—] (18)
N\Ti) = lei ’ .
nuclel Z
oA for molecules
A "I‘i — RA’

where Z4(Z) and R4 are the charge and position of a nucleus A, respectively. In the
atom case, the nucleus is located at the origin.

The form of Vi,(r;, V;,t) depends on a gauge. There are two famous choice: one is the

12
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length gauge, and the other is the velocity gauge.

E(t)-r; length gauge

Vi(ri, V, t) = { (1.9)

—iA(t) - V; velocity gauge

Physical observables are independent of the choice of the gauges.

1.2.2 Multiconfiguration self-consistent field method

As shown in Eq.(1.5), N-particle TDSE in 3D space is a 3N(+1) dimensional partial
derivative equation. If we try to numerically solve this equation by discretizing each
dimension by L points, the computational complexity scales as O(L3N ). This exponential
growth depending on the number of particles causes difficulty in solving many-body TDSE.
Two-electron systems are currently the largest system that can be directly solved.

The multiconfiguration self-consistent field (MCSCF) method has been developed to
solve larger systems with low computational costs. The main idea is to express a multi-
electron wave function as a superposition of multiple Slater determinants (configurations)
composed of orthonormal single particle functions {xp(«,t)}, which are named spin or-
bitals.

xn(zt)  xp(et) - xi(zyt)
xo,t xo,t xo,t
Flan 2w t) = Y CH(H Xh(‘z ) Xlz('Z ) | XIN(‘Z ) (1.10)
I . : . :
xn(en, ) xp(ent) - xi(eN,t)

This decomposition of the wave function above is called the multiconfiguration expansion
or configuration interaction (CI) expansion, and the space spanned by linear combination
of the Slater determinants is referred to as configuration interaction (CI) space. If the spin
orbitals constitute a complete basis set, which spans the single-particle Hilbert space, and
all the possible Slater determinants are considered for the multiconfiguration expansion,
Eq. (1.10) can always describe the exact wave function. However, the number of spin
orbitals in a complete basis set is, in principle, infinity, and even in numerically discretized
cases, it is numerous. Thus, for numerical computations, the CI space is restricted by using
a part of the spin orbitals and a part of the configurations. Spin orbitals considered in CI
expansion is referred to as occupied spin orbitals, and the rest is virtual spin orbitals or
unoccupied spin orbitals. Figure 1.4 schematically shows a concept of spin orbitals and the
MCSCF expansion. Expansion coefficients {C;}, called CI coefficients, and orbitals are
optimized within the restricted CI space based on the time-dependent variational principle
(TDVP) [17-19]. The more spin orbitals and configurations are used for CI expansion,
the better accuracy is achieved.

Time dependence of spin orbitals plays an important role for real-time simulations with
laser pulses. Since laser fields can drastically change electronic states, if spin orbitals are
fixed in time, numerous orbitals are required to accurately describe the dynamics. On the

13
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Figure 1.4: A schematic illustration of spin orbitals and a wave function expanded by the
MCSCF method.

other hand, time-dependent orbitals flexibly vary, and a small number of them is sufficient
to describe it.
Some representative methods in the MCSCEF framework are reviewed below. For sim-

plicity we hereinafter only treat spin-restricted cases, where up-spin orbitals and down-spin
orbitals have same spatial dependency,

L [9si@)
X (@) { ) (111)

We call spacial function {¢,(r)} spatial orbitals, or more simply orbitals. s;(c) and s (o)
are up-spin and down-spin eigenfunction, respectively.

sw):{l e, sm:{o i (112)

Time-dependent Hartree-Fock method

The time-dependent Hartree-Fock (TDHF) method is the simplest MCSCF method, which
uses the same number of spin orbitals as the number of electrons. A wave function is
expressed by a single Slater determinant.

Though TDHF requires less computational costs than other methods reviewed next
and gives a good description of the ground-state, this method has difficulty in describing
excitation and ionization processes in multielectron systems under laser fields. This prob-
lem is observed, for example, in a He atom as the simplest multielectron system. Let us
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consider a wave function of one up-spin and one down spin electrons, which is given by,

¥ay ) = 1) (12) (51(00)5,(02) =54 (00)5 02) (1.13)

In this wave function, electron 1 and electron 2 occupies the same orbital ¢. Thus it is
difficult to describe a situation where an electron is ionized and the other electron is bound
by the nuclear potential. It is reported than the unrestricted Hartree-Fock method [20-22],
which allows different spatial orbitals for up-spin and down-spin electrons, can improve
this problem, but not reach sufficient accuracy [23].

Multiconfiguration time-dependent Hartree-Fock

To realize more accurate simulations than the TDHF method, the multiconfiguration time-
dependent Hartree-Fock (MCTDHF) method has been proposed [11-13], which expands
a multielectron wave function with all the Slater determinants constructed from a given
number of spatial orbitals {¢,(f)}. This construction of multiconfiguration wave function
using all the possible Slater determinants is called the full-CI expansion. Although this
method can systematically improve accuracy by increasing the number of orbitals, and,
in principle, reach the numerical convergence describing the exact wave function, its ap-
plications are limited to small systems, which include less than about 10 electrons, due to
heavy computational costs of the full-CI method. In the full-CI expansion, the number of
the Slater determinants is given by n_, CNT X Ny CNw where Ny, is the given number of
orbitals and Ny (N)) is the number of up-spin (down-spin) electrons. Thus, this factorial
increase of the full-CI dimension restricts the application of the MCTDHF method to
larger systems.

Time-dependent complete-active-space self-consistent field method

To overcome the problem of the MCTDHF method and apply the TD-MCSCF method
to the larger systems, it is required to decrease the number of the Slater determinants,
while keeping the accuracy. The configurations considered in The MCTDHF method can
include states where deeply-bound inner core electrons are excited or ionized. However,
for atoms or molecules subject to a strong laser pulse with a long wavelength whose
photon energy is considerably smaller than the ionization or excitation energy, it must
be reasonable to assume that only valence electrons are ionized or excited and inner core
excitation and ionization are negligible. Based on this assumption, the time-dependent
complete-active-space self-consistent field (TD-CASSCF) method introduces an orbital
classification, where spatial orbitals classified into doubly occupied and time-independent
frozen core, doubly occupied and time-dependent dynamical core, and fully correlated
active orbitals (Fig. 1.5). While dynamical core orbitals keeping the closed-shell model
describe electric polarization depending on incident laser pulses and the Coulomb forces
from other electrons, active orbitals can correctly describe ionization processes of valence
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1.2 Ab-initio simulations for laser-induced electronic dynamics
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Figure 1.5: (a) Orbital classification in the TD-CASSCF method, where occupied orbitals
are classified into doubly occupied and time-independent frozen core, doubly occupied and
time-dependent dynamical core, and fully correlated active orbitals. (b) A schematic illus-
tration of a wave function described with the TD-CASSCF method, where a core orbital
is forced to be doubly occupied all the time, and thus the second and third configurations
in this figure are not included in the CI expansion.

electrons. The TD-CASSCF method significantly reduces the number of configurations
and the computational cost without degrading accuracy, and enables accurate simulations
of multielectron dynamics such as high-harmonic generation from a neon atom and an
argon atom [24, 25]. In addition to the advantage of the computational cost reduction,
by comparing simulation results computed with different numbers of orbitals or different
classifications of core and active orbitals, the TD-CASSCF method also enables analyses
to reveal which orbital takes a dominant role in strong-field phenomena [26].

Time-dependent occupation restricted multiple-active-space method

Although the computational costs of the TD-CASSCF method are significantly reduced
compared to the MCTDHF method, it still has factorial scaling. In order to solve this
problem, the time-dependent occupation restricted multiple-active-space (TD-ORMAS)
method further subdivide active orbitals into an arbitrary number of subgroups and poses
the occupation restriction by specifying the minimum and maximum numbers of electrons
distributed in each subgroup (theoretical details are given in Ch. 2) [15]. This method of-
fers highly flexible constructions of the CI space including the MCTDHF and TD-CASSCF
methods, and requires computational costs with polynomial scaling against the number
of electrons depending on the choice of the subdivision and the occupation restriction.
Because of the significant computational cost reduction, the TD-ORMAS method enables
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1.2 Ab-initio simulations for laser-induced electronic dynamics
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Figure 1.6: Schematic illustration of radial exterior complex scaling contour R(r) with
scaling radius Ry and scaling angle 1. In the scaled region (r > Rp), outgoing waves
exponentially decay, and thus ECS performs as an absorbing boundary.

converged simulations of correlated multielectron dynamics in systems containing several

tens of electrons such as a krypton atom [27].

1.2.3 Absorbing boundary condition

One of the key issues in real-time ab initio simulations of laser-induced dynamics is a
huge computational cost arising from a large simulation box to describe photoionization.
If a simulation box is not sufficiently large, photoelectron wave packets can reach the
end of the box and be unphysically reflected. An absorbing boundary, which absorbs
the photoelectron wave packet when it reaches the end of the spatial grid and suppresses
unphysical reflection, plays a significantly important role to achieve large scale simulations.

Commonly used absorbing boundaries are the mask function [28] method, which mul-
tiplies a mask function to wave functions, and the complex absorbing potential [29, 30],
which adds a complex potential into the system Hamiltonian. Though these methods
partially suppress the unphysical reflection, reflection of unabsorbed outgoing waves still
occurs.

Exterior complex scaling (ECS) [31] is considered to be more sophisticated, which
analytically continues the wave function into the complex plane without artificially mod-
ifying the system Hamiltonian or the wave function (see Ch. 3 for the details). Figure 1.6
shows a schematic illustration of the analytical continuation in ECS. Furthermore, the
infinite-range exterior complex scaling (irECS) method introduced in Ref. [32] signifi-
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1.3 Photoelectron spectra

cantly improves the efficiency over standard ECS by using an exponentially damped basis,
thus moving the reflecting boundary to infinity.

The application of ECS and irECS, originally formulated for single-electron problems,
to strongly driven multielectron systems with the addition of the interelectronic Coulomb
interaction so far has been limited. McCurdy et al. [31] introduced ECS to two-electron
systems where the Coulomb interaction was approximated in the radial limit. Haxton et
al. [33] used ECS in their MCTDHF implementation but mainly dealt with photoionization
rather than strong-field phenomena. Telnov et al. [34] applied ECS to the time-dependent
density functional theory to simulate high-harmonic generation from Ar. In the scaled
region, however, they neglected the laser field and replaced the time-dependent Hartree
and exchange-correlation potentials with their initial values. Majety et al. [35] have re-
cently proposed the hybrid antisymmetrized coupled-channels method to calculate fully
differential photoelectron spectra of multielectron systems subject to strong laser fields.
Though irECS is used in the implementation, only an electronic coordinate is scaled in
each channel as the method allows only single ionization. Zielinski et al. [36] have applied
irECS to two-electron systems, where both the electronic coordinates are scaled. However,
irECS has never been applied to TD-MCSCF methods.

1.3 Photoelectron spectra

As ab initio simulations have developed, we have enabled to simulate large systems which
are considered as subjects of real experiments. Enabling a direct comparison between accu-
rate ab initio simulations and experiments is one of the next steps for further development
of technologies to observe and control the ultrafast electronic dynamics. Photoelectron en-
ergy spectra (PES) and their angular distribution, or angle-resolved photoelectron energy
spectra (ARPES) are among important experimental probes for laser-matter interaction.
Since PES have plenty of information on electronic states and photoemission dynamics,
many time-resolved and angular-resolve analyses have been conducted [37-41].

One of the important techniques used in attosecond science is the attosecond streaking
method [42-45], which first ionizes a target with an attosecond pulse, and modulates
the photoelectron momentum with a delayed strong laser pulse. By Sweeping the delay
time, we can obtain time-resolved information of photoelectron spectra. For instance, this
method was used to analyze photoemission from a neon atom [46]. The time-resolved
measurement with attosecond accuracy revealed that photoemission from the 2s orbital is
delayed by 21 attoseconds compared to that from the 2p orbital.

On the other hand for ab initio numerical simulations, photoelectron spectra could
be calculated, in principle, by projecting the departing photoelectron wave packet onto
plane waves or Coulomb waves. This approach, however, requires retaining the complete
wave function without being absorbed, leading to a huge simulation box and prohibitive
computational cost. To circumvent this difficulty, Tao and Scrinzi have devised the time-
dependent surface flux (tSURFF) method [47], which extracts PES by integrating the
wave function flux through a surface. Thus it allows one to use an absorbing boundary,
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1.4 Objective

bringing significant cost reduction.

The tSURFF method was first developed for single electron systems [47], and then ap-
plied to one-dimensional two-electron systems to obtain doubly differential photoelectron
spectra [48]. Majety et al. have proposed the hybrid antisymmetrized coupled channels
method [35], where only single ionization was allowed, and used the tSURFF method to
calculate fully differential photoelectron spectra in multielectron systems. Zielinski et al.
have applied the tSURFF method to three dimensional two-electron systems, and suc-
cessfully calculated correlated photoelectron momentum spectra in double ionization [36].
Karamatskou et al. have applied the tSURFF method to the time-dependent configura-
tion interaction singles (TDCIS) method [49] by neglecting all the multielectron meanfield
potentials. Though The TDCIS method can describe multielectron systems, it allows only
single ionization. Wopperer et al. have applied to the time-dependent density functional
theory (TDDFT) with an assumption that photoelectron spectra can be directly obtained
from the time-dependent Kohn-Sham orbitals [50]. However, the tSURFF has not been
applied to general TD-MCSCF methods, which enables systematic improvement of accu-
racy, considering multielectron effects such as the electronic correlation and the multiple
ionization.

1.4 Objective

Though photoelectron spectra are often observed in experiments to explore electronic dy-
namics and structures, it is difficult to theoretically compute accurate spectra including
multielectron effects. The objective of this thesis is to develop a realtime ab initio simula-
tion method to extract photoelectron spectra from multielectron atoms subject to intense
laser fields. To accomplish this challenging task, we combine irECS as an efficient and
accurate absorbing boundary and the tSURFF method with the TD-ORMAS method.

We have applied irECS to the TD-ORMAS method, by neglecting the Coulomb force
from electrons residing in the scaled region, which are far apart. However, we rigorously in-
clude all the other interactions (e.g. external fields, the nuclear potential and the Coulomb
force from electrons in the unscaled region). This implementation works well even when
atoms undergo significant double ionization, and enables several times faster simulations
than the mask function method while keeping high accuracy. In the application of the
tSURFF method, based on a physically reasonable assumption that the nuclear potential
and interelectronic Coulomb interaction are negligible for photoelectron dynamics in the
region distant from the nuclei, we have derived the equations of motion for the momentum
amplitudes of each orbital, and implemented the tSURFF method for atoms subject to
linearly polarized laser pulses. As a result of this development, we have achieved highly
accurate calculations of PES and angle-resolved PES with considerably reduced compu-
tational costs, and revealed that electronic correlation affects the angular distribution of
photoelectron yields in above threshold ionization spectra of an Ar atom. Furthermore,
we present an extension of this development to molecular systems implemented with the
adaptive finite element method.

19



1.4 Objective

This thesis is organized as follows. Chapter 2 gives a review of the theory of the TD-
ORMAS method and its implementation for atoms. In Ch. 3, we reviews ECS for single-
electron systems, and describe our numerical implementation of irECS and application of
irECS to the TD-ORMAS method. The accuracy and efficiency of irECS in the application
are also shown in this chapter. In Ch. 4, we describe the theoretical application and
numerical implementation of the tSURFF method to the TD-ORMAS method, and show
numerical applications. The extension to extract photoelectron spectra from molecules is
described in Ch. 5. Chapter. 6 concludes this thesis and discuss future prospects.
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Chapter 2

The Time-dependent occupation restricted
multiple-active-space method

In this chapter, we review the theory of the time-dependent occupation restricted multiple-
active-space (TD-ORMAS) method proposed in Ref. [15] and the derivation of equations of
motion. After the review of the theory, we explain our implementation of the TD-ORMAS
method for atoms subject to a linearly polarized laser pulse, detailed in Ref. [24].

2.1 The ORMAS model

In this section, we define the occupation restricted multiple-active-space (ORMAS) model.
The systems considered in this section are an atom and a molecule under a laser field,
which are detailed in Subsec. 1.2.1, including N up-spin and N| down-spin electrons and
N(= N; + N|) electrons in total.

We assume that single electron Hilbert space is spanned by the complete set of Nj
orthonormal spatial orbitals {¢, }. The Fermion creation and annihilation operator asso-
ciated with spatial orbitals {¢,} and a spin coordinate o are defined as ﬁ;rw and 4. The
orbital set is divided into n occupied orbitals and N, — n virtual orbitals. In the ORMAS
model, as the MCSCF method, the wave function is constructed by occupied orbital sets.

The core orbital technique introduced in the TD-CASSCF method [14], where orbitals
classified into doubly occupied and time-independent frozen core, doubly occupied and
time-dependent dynamical core, and fully correlated active orbitals, is also applicable to
the ORMAS model. We define core orbitals (ng frozen and ng4. dynamical cores) as the
first n.(= ng + ngc) occupied orbitals, and thus the rest of n,(= n — n.) orbitals are
classified into active orbitals. Since core orbitals are always doubly occupied, N.(= 2n,)
electrons are classified into core electrons, and N,(= N — N,) electrons are active electrons.
We refer to the core orbital and active orbital subset as C and A.

Based on the definition above, a MCSCF wave function, not restricted to the ORMAS
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2.1 The ORMAS model

model, respect to a given CI space P can be written as,

P
¥) = Cidc ) _|I), (2.1)
1
dc = T[4k (2.2)
o="1,4ieC
1) = (af,)" 1), (2:3)
o=",lteA

where |) denotes the vacuum state, and I;-, which equals to 1 or 0, means whether a spin
orbital ¢(r)s,(T) is included in a configuration I or not. ®c and |I) represent the core
and active orbital parts.

The ORMAS model further subdivides the active orbital subset A into a given number
G of subgroups. We consider a direct sum decomposition of A,

A=A A e -8 Ag, (2.4)

A= {p, o),
A ={p, 08, o2},

Ac = {998, .- 99y,

G
ng =) ng. (2.6)
8
ng orbitals belonging to A are assigned to Ag. The occupation restriction is achieved by
imposing a lower limit and an upper limit to the number of electrons in each group,
Npin <Ny < NP
Npim <Ny < NP,

(2.7)

Ng™ < Ng < Ng=,
G
N, =) _N,. (2.8)
8

N, denote the number of electrons distributed in an orbital subgroup Ag. All the possible
configurations within those orbital subgrouping and occupation restriction construct the
ORMAS-CI space Pormas. It should be noticed that this construction of the CI space
includes the MCTDHF method and the TD-CASSCF method, which are the case of G = 1.

22



2.2 Derivation of the equations of motion

2.2 Derivation of the equations of motion

In this section, we derive the equations of motion in the TD-ORMAS method from the
time-dependent variational principle (TDVP) [19]. The system Hamiltonian is given in
Egs.(1.4)-(1.9). Here we show it again in the second quantization form,

N . 1 A AUA
H:Zmﬁ$+52hﬁﬁ%, (2.9)
HvAy

A .
where Iy} and hgffy are the matrix elements of one-electron and two-electron terms, re-
spectively,

! = / dr g, (r)in (v, V, £, () (2.10)

holiy = /drldf'2¢;(7“1)4’i(7‘z)h2(r1,rz)%("z)(i)u(m)- (2.11)

The operator E/ and EA%\ represent,

El =Y il (2.12)
o=
AUA A A A
Ely = Y a0} 0,00, (2.13)
o=t

The time-dependent variational principle requires the action integral S,

S[¥] = /“ dt <‘I’|H—i§t|‘i’>, (2.14)

to

to be stationary respect to variation of a wave function. The variation of the action integral
éS from variation of a wave function is given by,

3S[¥] = S[¥ + 6¥] — S[¥]

2 . .0
_ dt{(é‘FlH—zat\‘Y)+(‘I’|H—zat]5‘I’)}

to

= [ L v i Y+ (%) |6
= t{(‘I’|H—1at\‘i’>+(<‘I’|H+z<‘P|)|‘P>}. (2.15)

The transformation from the first to the second line uses the partial integral and a bound-
ary condition 0¥ (tg) = 6¥ () = 0.

The variation of the ORMAS wave function is arisen from variation of CI coefficients
C; — C;+6Cy and orbitals |¢,) — |¢u) + [0¢y). The variation of orbitals can be by
orbitals as a complete basis set of the Hilbert space,

0¢u) = Y Al (2.16)

A:t = (Pv|o¢y) - (2.17)
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2.2 Derivation of the equations of motion

We impose orbital orthonormality on the orbital variation since orbitals are assumed to
keep orthonormal after time-propagation. This is achieved by making the matrix {A}}
anti-Hermitian, which is derived from the following condition.

(P + 0|y + 0py) = 9, (2.18)

Time derivative of orbitals is also expanded, as well as the orbital variation,
) =Y X5t |¢v) (2.19)
v
Xy = (Pvlen) - (2.20)

Again, in order to keep orbital orthonormality after time-propagation, we assume the
matrix {X}} anti-Hermitian which comes from,

& puln) =0. (2.21)

This condition is, in another way, achieved by the Lagrange multipliers method, which

adds,
YLy (ol — op), (2.22)
Vi

with the Lagrange multipliers Lj, to the action integral S[¥] (Eq. (2.14)). Both the ways
lead to the same equations of motion. The time derivative of a wave function ¥ and the
variation allowed in the ORMAS wave function |6'¥) are given by,

. .. Pormas R
¥) =Cide Y, D+ XY, (2.23)
I
_ Pormas ~
6F) =6Cid:. Y |I)+AJY). (2.24)

I
(2.25)

The operator X and A are the second quantization expressions of the matrices {X;;} and

{AZ }, respectively,

X=Y X,E, (2.26)
Vp

A=Y NE,. (2.27)
Vi
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2.2 Derivation of the equations of motion

The stationary condition of Eq (2.15) leads to,

oS 6S

— = =0 IeP , 2.2
5 = oCi € Pormas (2.28)

oS
oA},

=0. (2.29)

Here, We can independently treat C; and C; based on the Wirtinger derivatives, which
enables us to consider derivatives with respect to 6C; and dC; instead of Re(dC;) and
Im(8Cy). The condition §S/JAy" = 0 is automatically considered in Eq. (2.29) due to the
anti-Hermiticity of the matrix {A}}.

By inserting Eq. (2.23) and Eq. (2.24) to Eq (2.15), we obtain a more concrete expres-
sion of the stationary condition,

L Pormas s tos

iCr= Y ((I|&LAdC|]) —i(1|dEXDC|)))C, (2.30)
J

i (¥|ELTIX — XTIE|Y) = (¥|ENTIA — ATIE)|Y). (2.31)

The operator IT denotes a projector 1 — ZIIDORMAS &, |1) (I| D!, which projects out a wave
function into the orthogonal complement of the CI space Pormas. Equation (2.30) is
the equations of motion of CI coefficients, which is determined when the orbital time
derivatives matrix {X}} are figured out. The matrix {X} } is determined as a solution
of Eq. (2.31). Note that, Eq. (2.31) has a complicated form, but this essentially forms a
system of linear equations of {Xj}.

For the following discussion, we introduce a notion of orbital indices for each orbital
subspace. That is,

i,j,k,I = core orbitals, (2.32a)

t,u,v,w = active orbitals, (2.32b)
0,p,9,1,5, 1,9 = occupied orbitals, (2.32¢)
a,b,c = virtual orbitals, (2.32d)

U, v, A, v, 0 = general orbitals (all the subspaces). (2.32¢)

Then, we first classify an orbital pair v, based on orbital subspaces and the result of
fIEZ |'¥), where {E;} replaces an orbital ¢, with ¢, in a wave function. All the possible
operators {l:f;} are listed as,

{E} ={E, E,ElEl, E] B}, Ep}. (2.33)

The first class is the orbital pairs of core-core and virtual-virtual, which result in
IAIE;’! |'¥) = 0. For the core-core pair, E]Z |'¥) equals 2(5]1: |'¥), and thus ﬁﬁ; |'¥) = 0. For
the virtual-virtual pair, an ORMAS wave function does not include virtual orbitals, then
Ef |¥) = 0. In this case, Eq. (2.31) reduces a trivial equation, where the matrix {X5} can
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2.2 Derivation of the equations of motion

be an arbitrary anti-Hermitian matrix including the zero matrix.

The second class is the orbital pairs of core-active {i,t}, active-core {t,i}, virtual-
occupied {a, p} and occupied-virtual {p,a}, where Eq. (2.31) reduces a simpler equation
and we can directly solve it. For the core-active and active-core pairs, Ei [¥) = 0, and then
ITE{ [¥) = 0 and T1E! [¥) = E! |¥). For the virtual-occupied and occupied-virtual pairs,
EZ |¥) = 0, and then ﬂﬁ; |¥) = 0, and TTE! [¥) = EJ [¥). In this case, the projector IT
can be replaced with the identity operator in Eq. (2.31), and this leads to,

i (¥|[EL, R1¥) = (¥|[EL, A]¥). (2.34)
Thus, we can write down Eq. (2.31) with respect to the matrix element X/,

iy (X{D} — DyX}) =Y (liDp — Dyhi)) + 2 (2} P M PX‘Shz 7. (2.35)
A A

D! and Pff;\ denote the one-body and two-body reduced density matrix (RDM) elements,

Dy = (Y|E}|Y), (2.36)
Ply = (FIE[Y). (2.37)

In Eq. (2.35), the dummy indices A, d,y run over all the orbitals, but nonzero elements of
RDMs are, in general, D; = 25; D!, P’f = 45151 — 25151 Pit, pit Pt Thus, Eq. (2.35) can

u]’ ]u’ ow*
be decomposed into,

active active occupied .
i), Xu(Df—200) = Y mi(Df —251)+ Y. (hahPly — Pylhal))
U u P
for {v,u} = {i,t}, (2.38)
active active occupied . ; .
i ), (Dl —20)X} = Y, (D —26)luf = Y (hyPl) — Ppihaly)
u u p.Aa,r
for {v,u} ={t,i}, (2.39)
occupied s
2X{ =2+ Y, hglPT  for {v,u} = {a,i}, (2.40)
q.r,8
) ) occupied
22X, =2hi,+ Y. Plholy for {v,u} = {i,a}, (2.41)
q.1,5
active active occupied
i) XiDi = Z huDf 4+ Y hogePl for {v, u} = {a,t}, (2.42)
u q.r,s
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2.2 Derivation of the equations of motion

active active occupied
iy DIXi= Z Dyhg+ Y. Pihaly for {v,u} = {t,a}. (2.43)
u q,r,8

Equations (2.39), (2.41) and (2.43) are identical to Egs. (2.38), (2.40)and (2.42) due to
anti-Hermiticity of the matrix {X;’l} Although we have introduced frozen core orbitals as
time-independent orbitals, this is justified only in the length gauge. As for the velocity
gauge, gauge-transformation of frozen core orbitals is required to preserve gauge-invariance
[24]. Then, a frozen core orbital at time t is given as

i(0 length
|pi(t)) = 9:( )> CRELh sanse , ¢i € frozen core.
exp(—iA(t) - 7) |¢:(0)) velocity gauge
Thus, when orbital ¢; is a frozen core orbital, the orbital time-derivative element X;, is
given by
; * 0 length
X, = -X" = ereth Batse , ¢ € frozen core.
—iE(t) - (¢u|?|¢i) velocity gauge

On the other hand, when orbital ¢; is a dynamical core orbital, Eq. (2.39) and Eq. (2.40)
reads,

N active occupied u . y .
Xi=-X{"=—imi+i ), (D=20)""), Y (hp!P) — Pplhal)
u pAar
¢i € dynamical core, (2.44)
occupied
X? = X7 = —ihy} — 17 Y, ”qus ¢; € dynamical core, (2.45)
q,1,s

where D and I denote the one-body reduce matrix and identity matrix. And Eq. (2.42)

reads,
. active occupied
X{ = —X;" = —ihif —i 2 Yo hagiPR(DTHE. (2.46)
q.1,8

Note that Egs. (2.44) and (2.45) can be expressed as single equation,

. occupled
Xy ==X =—ilpy—i Y. hygPy (D). (2.47)
0,4,1,8

The third class is the orbital pairs of active-active {t,u}. This pair has two types,
which are an intragroup and intergroup pair. For the intragroup pair ¢, u, where ¢ and
¢, belong to a same active orbital subgroup A, T1EL [¥) = 0. Thus, as well as the first
class, Eq. (2.31) reduces to a trivial equation, and the matrix X‘]j can be an arbitrary anti-
Hermitian matrix. For the intergroup pair ¢, u, where ¢ and ¢, belong to different active
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2.2 Derivation of the equations of motion

orbital subgroups, TTE!, [¥) includes components of both the Poryas and the orthogonal
complement of Poryias. Thus we need to directly solve Eq. (2.31), which forms a system
of linear equations within intergroup pairs {t, u},

iZ,(Atu,vw - Avw,tu)XZJ - btur (2.48)
U,Ww

/ . . . .
where ), denotes summation over all permutations of intergroup pairs and,

, (2.49)
b, = (Y|ELTTH|Y) — (¥|HIIE! |¥) . (2.50)

In this work, we numerically solve Eq. (2.48) by singular value decomposition. All the
matrix elements X'}’, are determined up to here.

We finally derive the equations of motion of orbitals. Time derivatives of orbitals are
expressed as,

#p) =Y dw) Xp (2.51)
M
virtual occupied
= ) o) Xp+ Y Igg) X5 (2.52)
a q

Inserting Eq. (2.47) into the first term of above the equation, it is possible to remove
virtual orbitals,

virtual virtual . occupied . . )
Y, lpa) Xp=—i Y |da) {al [Iilpp)+ ) Wilgg) Py (D7) (2.53)
7 a 0,4,1,8
occupied .
A2 2 S(1y—
=—iQ | |pp) + Y Wilgg) Pr(D7)5 1, (2.54)
0,4,1,8
where we introduce a projection operator Q by using completeness of orbitals,
R virtual occupied
Q=) Ipa) (Pl =1— ) Igp)(¢pl (2.55)
a 14
and the mean field operator W; , which is given by, in the coordinate space,
. (r r
Wsr(rl) == /d’r’z(P,, (’I‘z)hz(’rl, ’I"z)(PS(’I’z) = /d’l‘zw. (2.56)
Thus, the equations of motion of dynamical core and active orbitals are obtained as,
occupied ) occupied
. . A ~ ~ S — .
ilgp) =Q |mlgp)+ Y Wilgg) Pr(D7N)y| +i ) l9g) Xy, (2.57)
0,4,1,5 q
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2.3 Implementation of the TD-ORMAS method

with {X}} given by Egs. (2.2), (2.47) and (2.48).

2.3 Implementation of the TD-ORMAS method

In this section, we explain our implementation of the TD-ORMAS method, which con-
siders an atom under a linearly polarized laser field. The polarization axis is z direction.
Especially, the spatial discretization method of orbitals and the time propagation method
for orbitals and CI coefficients are described.

We assume orbitals in the polar coordinate (7,6,¢), and that orbitals are expanded
with Lax spherical harmonics,

max )

¢p(r,0,¢) = ZZ

=0 m=-1

Y1 (6, P). (2.58)

(])i,m(r) denote a radial part of orbitals with an angular quantum number [ and a magnetic
quantum number m. The radial part is discretized with the finite-element discrete-variable-
representation (FEDVR) basis [51-53], which we describe the detail below. In numerical
simulations, we first prepare a ground state by using the imaginary time propagation, and
next propagate the ground state under a laser field in real-time. In both imaginary and
real-time propagation, we employ the exponential integrator scheme [54], which the detail
is also given below.

2.3.1 Finite-element discrete-variable-representation basis

The FEDVR basis is based on the finite element method with the Gauss-Lobatto quadra-
ture and polynomial basis passing through quadrature points. We consider a radial region
[0, Riax) and divide it into Npg finite elements with boundaries

r(o) — 0 1/(1) e ,r(NFE_l),r(NFE) p— R

7 7 max-

In i th finite element [r=1),r®], we set Mg, th order Gauss-Lobatto quadrature points
{rim Im =1,---,MgL}, whose first and last points are identical to the left and right
boundary of a given region, and then Lagrange polynomial functions associated with the
m th quadrature point can be defined as,
vV —7; 4
Lim(r)= ] ——, (2.59)

m' £m Yim — Vim!

where this function is defined only in [r~Y,r(®)] and has zero value outside the region.

This polynomial has a delta function like property of L (*i py) = 0",, which can be easily

m'

checked by inserting r;,, into Eq. (2.59). By using this property, we can construct an
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2.3 Implementation of the TD-ORMAS method

approzimately orthonormal basis with the Gauss-Lobatto quadrature weights {w;  },

3 L;
Lim(r) = im(r). (2.60)
Wim
/eri,m(r)Li,m’(r) ~ Y wikLiw (rig) Lipw (rig) = O (2.61)
=1

Mgy, th order Gauss-Lobatto quadrature can exactly integrate up to 2Mgy, — 3 th order
polynomials, but L;,(r)L; .(r) is 2Mgr, — 2 th order polynomial. This is the reason
why the orthonormality holds only within the approximation. The FEDVR method uses
L (r) as i th finite element basis.

Though we can construct a basis set supporting the whole region [0, Ryyax] by collecting
the finite element basis belonging to each finite element, this basis set can describe a
discontinuous function at the finite element boundaries. Thus, to ensure the continuity
of discretized functions, we need to remove finite element basis functions associated with
quadrature points at each finite element boundary except for the left boundary of the first
finite element (r = 0) and the right boundary of the last finite element (r = Ryax), and
introduce the bridging function instead,

Lime, (r) + Liz1,1(7)

2.62
VWiMg, T Wit11 ( )
Then we obtain FEDVR basis f; (),
L; L;
iMe, (1) + Li1a () m =1,Mgy, and i # 1, Npg
fim(r) ={  ViMor ¥ Wit L (263

Lim(r) else

For simplicity, we relabel f; ,,(1) as fi(r), where k denote a set of indices (i,m), and define
integral wights @y for the whole region [0, Ryax| as,

Wi Mgy, T Wiy11 m=1,Mgr and i # 1, Npg
W = Wiy = . (2.64)

Wi m else

With this definition, the orthonormality of the FEDVR basis can be expressed as,

/ dr fi(r) fio (r) = Y @ fi(ri) fi(r) = . (2:65)

The radial part of orbitals (pé,m(r) can be approximated or discretized with the FEDVR
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2.3 Implementation of the TD-ORMAS method

basis,
(1) ~ ZC,’f,mfk(V), (2.66)
Chim = F‘Pp (7%)- (2.67)

The second equation approximates [ dr fk(r)qbi,m (r) with the Gauss-Lobbato quadrature.
The expansion coefficient ¢y, is determined only by a function value (,b;,m(rk) at a grid
point r¢. Discrete-variable-representation (DVR) means this property. A local potential
V(r), for example Coulomb potential, is discretized as a diagonal matrix,

Vi = [ drfnV(n)fe (r) = V(r)of. (268)

The radial derivative matrix {K},, } is evaluated as,

K = / dr fi(r) fk’ wafk rx) f (o) (2.69)

ag;”" (r) at a grid point ;s required for the eval-
uation of Eq. (2.69) is given by,
1

Li ) P
or (ri,m/) - 1

(07" — 51"&1@) m = m'

Timt = Tip g (2.70)

Yim — Vim! ! Vim — 7i,y

The second derivative of FEDVR basis has a delta-like singularity at finite element bound-
aries due to the discontinuity of the finite element basis L;, (7). However, the second
derivative matrix T" = {T},,} can be evaluated by using integration by parts as well as
the usual finite element method,

Th = / Arfilr) Sy fir) = - [ dragear(r) 2 () 2.71)

=L afk aaff(x) (2.72)

Both the first and second derivative matrices are band matrices since the FEDVR basis lies
only in one finite element or two finite elements. This structure enables efficient derivative
operations.

By inserting Eq. (2.66) into Eq. (3.8), we obtain the following orbital discretization,

#o(r,0,9) = ¥, 20, 0,0), (273)

klm
where &0 )Ylm (0,¢) is called the spherical FEDVR basis [24, 52].
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2.3 Implementation of the TD-ORMAS method

2.3.2 Spatial discretization of the equations of motion

The Equation of motion for orbitals (2.57) is converted into a vector equation by inserting
Eq. (4.15) and projecting onto a FEDVR basis,

ier =(1-Y cle™) |ne? + Y We'PF(D7Y)o | +iY "X, (2.74)
q q

0,4,1,5

¢’ denote a coefficient vector of orbital p, whose elements are defined as { C,fl - fiy and W
are matrices of the single-electron term of the Hamiltonian /1 and the mean field potential
W! (Eq. (2.56)), respectively. This section considers an atom, whose nuclear Coulomb
potential is given by Vn(r,6,¢) = Z/r with nuclear charge Z, under a z polarized laser
field. Their matrix elements in the FEDVR basis are defined as,

Fllllﬁ’lﬁm’ =
/ r?drsin 9d9d4>fk£r)Yljn(9,<p) —%A - % - iAz(t)aaZ J k’r(r)yl,m,(e,@,
(2.75)
WKy = / rdr sin 9d9d<pfk£r)l/f;1(9,¢)wg(r, 0,0)7 k’r(r) Yiu (6, ). (2.76)

Az(t) denotes the z component of a laser vector potential.

The Equation of motion for CI coefficients (2.30) itself is also a vector equation,
iC = (H-iX)C, (2.77)

where C is a coefficient vector {C;}, and H = {Hy;} and X = {Xj;} are matrices defined
as

Hp = (I|OLADC|])

At AU A 1 A A4 AUA 2
= Iy (NPEEIDC|]) + 5 3 haby (IPLEL &), (2.78)
nv HvAy
Xy = (I|®EXdc|]) = XI (1|DEE D)), (2.79)

with Iyl = (¢*) hie¥ and hsz? = <¢},]ny\\cpy> = ()W'. X, defined in Sec. 2.2, is
calculated with h1} and (¢, ]Wé‘\(pV) We evaluate the matrices f; and W! in the following
subsections.
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2.3 Implementation of the TD-ORMAS method

The matrix elements of the single-electron term

We first calculate the matrix elements of /1;. The Laplace operator in the polar coordinate
is expressed as,

102 1 1 0 0 1 02
A= 7o TR [sineae ( m689> + sinﬁ&qbz] ’ (2:80)

The inside of the square bracket of the second term is the square of the angular momentum
operator. Thus, the Laplacian matrix element Llﬂ?ﬂm, is given by,

Lhm / Zdrsm@dedcpfk( >Y1m(9,<p) fk( fe®y, 6,9)

L l+1

k

where T];, denotes the radial second derivative matrix element defined in Eq. (2.71). The
atomic nuclear Coulomb potential is local and spherical symmetric, and thus the matrix
element Vk, i1y 18 straightforward calculated as,

Z
VNiZTm/ = _aéllg/&ll’ :Z/. (282)

For the laser field potential, the derivative operator of the z direction is given as, in the
polar coordinate,

d d sinf 8

and then the matrix element Vi X , is given as

Vi = —iA,(t) (K,Ck, s 1)511’“”_ U+ 1)55’“5,{ ) i, (2.84)
i, = /sin 0d0dpYy,, (0, ) cos 0Yy,, (6, ¢) (2.85)
(e e L

Thus, the matrix element of the single electron term reads
ki = —lLﬁf;’fm/ + Unkim vk (2.87)

2
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2.3 Implementation of the TD-ORMAS method

The matrix elements of the mean field potential

The mean field potential W!(71) can be obtained by directly integrating

/d Pr (r2)¢s(ra) (2.88)

71 — 72

However, this approach has disadvantages in accuracy due to the singularity 1/|r; — r;]
and requires huge computational costs that scales O( grld) where Ngpiq denotes the total
number of spatial grids. For this potential, by taking advantage of 1/|r; — 72| being a
Green function of the Laplacian, solving the following Poisson equation,

AW (1) = =47y (r)¢s(r), (2.89)

is more accurate and efficient [52]. To reduce this Poissonn equation in 3 dimensional
space into a radial Poisson equation, we introduce the multipole expansion of 1/|r; — 73|,

7l
‘1"1—7“2’ 2 Z 21+1 H_]Ylm(elf()bl)ylm(gz’q)z) (290)
=0

r< =min(ry, 1), > = max(ry,12), (2.91)

and the spherical harmonics expansions of W!(r) and ¢; (7)¢s(7),

Wi(r) = ZWYM(G/(P)/ (2.92)
Im
01 r)os(r) = Z Ly 0,9), (2.99)

By inserting Egs. (2.90), (2.92) and (2.93) into Eq. (2.89), we obtain the radial Poisson
equation of (V) (1),

2
(52— ") (o) = —am(etin ), (2.94)

72
with the boundary conditions,
(V) (0) =0, (2.95)

r 1 Rmax r
(VO n(Rows) = ey [, r(e)m(r) (296)

This radial Poisson equation is discretized with the FEDVR basis and transformed

into a linear equation,

il(p;)lm(‘/sy)lm = _47T(pg)lm/ (2'97)

1(1+1)
1’2

where L, = {(L;)} is the matrix of (W - ), and the coefficient vector (pl);,, =
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2.3 Implementation of the TD-ORMAS method

{(05)kim } 1s evaluated as

1 'a *
(08)kim = ﬁ(cklm) Chimr (2.98)

where we use the DVR property that the each coefficient corresponds to the discretized
function value at each grid point. As a solution of Eq. (2.97), we obtain (V) =
{(V)kim}, and the mean field potential is given by

We(r) = Z(Vr)klmfk( )Yzm(Q ). (2.99)

klm

Finally, the matrix elements of W!(r) (Eq. (2.76)) is evaluated as

kI
Wiy ~ YY" fl"“ S Clymys (2.100)

L m

Chomy = / in 6d6dg Y, (6, $) Vi, (8, 6) Yo (6, §)
1
= /_1 delm(x)Pllml(x)Pl/m/(x)(S,’Zler,, (2.101)

where Py, (x) denotes a normalized associated Legendre polynomial. The integral over the
product of three normalized associated Legendre polynomials is evaluated by the Gauss-
Legendre quadrature with a sufficient order for the polynomials.

2.3.3 The exponential integrator

The equations of motion (Egs. (2.74) and (2.30)) are usually stiff differential equations.
Especially, the single-electron term /11 including the Laplacian and Coulomb potential with
the singularity makes time propagation unstable. To achieve stable time propagation with
a moderate time-step size , we employ the exponential integrator scheme, which solves a
linear and stiff term exactly and mitigates the stiffness. We first review the exponential
integrator for general cases, and next describe our application to the TD-ORMAS method.

A review of the exponential integrator

We consider a simple nonlinear partial derivative equation,

9 u(t) = Lu(t) + N(u(t), (2.102)

where u(t) is a function we want to propagate, L denote a linear operator, for example
the Laplacian, and N(u(t)) denotes a nonlinear term. This equation has a formal exact
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2.3 Implementation of the TD-ORMAS method

solution,
ot
u(t) = eMu(f) + / dte"=IN(u(1)). (2.103)
0

In time discretization, we assume that a solution u(t,) at the n th time step, and then
the next time step solution is obtained as

I
W(tysr) = eMou(ty) + / dre = N(u(1)), (2.104)
0

Ny = tyg1 — b (2.105)

This update scheme is called the exponential integrator. The contribution of the linear

Ll - and thus this scheme has a great advantage in the

operator L is exactly integrated as e
time-propagation stability in a case that L is a stiff operator. The integral of the nonlinear
term can be evaluated with various approaches [54-56].

In our application, we use the 4th order Runge-Kutta type scheme [54] for the integral
in Eq. (2.104), which is called the 4th order exponential time differencing Runge-Kutta
method. This scheme first computes three preliminary estimations, similarly to the usual

Runge-Kutta method,

h, elmn/2 _ [
ap, = eLh”/zu(tn) + %T/ZN(U(I{'")), (2106&)
n
hy ethn/2 — |
by = et/ 2u(t,) + THT/ZN(””)’ (2.106b)
n
h eLhn/Z I
cn = e/ 2g, + fT/z(zN(bn) — N(ay,)), (2.106¢)
n

and finally obtain the next time-step solution,

—4 — Lh, + el (4 — 3Lh,, + (Lh,)?)

u(tprr) = eu(t,) + hy 373 N(u(ty))
L33
4 + 2Lh,, + 2elm (=2 + Lh,
+h, (N (a) + N (b))
A _ 2 ,Lhy, _
4 gy =2 =3 = (Lhn) e (4 = L) g (2.107)

313

Application of the exponential integrator to the TD-ORMAS method

To adapt the exponential integrator to the TD-ORMAS method, we split the equations of
motion (2.74) and (2.30) into linear terms and nonlinear terms. The equation of motion
for orbitals (2.74) is transformed as

¢l = —ilnc? + Z(icq+ﬁlcp + X7)et —i(1 - Zcch+) ) Wsrcqurs(Dfl);. (2.108)
q q 0,4,7,5
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2.3 Implementation of the TD-ORMAS method

We treat only the first term of the right hand side as a linear term, and the rest as a
nonlinear term. For the equation of motion for CI coefficients (2.77), we treat it as a
linear equation, and the nonlinear term is absent.

Matrix functions e and @(A) = (e — I)/A with a matrix A required in Eq. (2.106)
are evaluated by [3,3] order Padé approximation (3rd order for both the numerator and
denominator). The other matrix functions in Eq. (2.107) are evaluated by substituting
the Padé approximation of ¢(A) into the matrix exponential functions of Eq. (2.107).
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Chapter 3

Application of infinite-range exterior
complex scaling to the TD-ORMAS

method

One source of the huge computational cost of the TD-MCSCF simulations arises from
a large simulation box required to accommodate electrons ejected through laser-induced
ionization. These electrons can fly infinitely far away in principle. Therefore, the use of
an efficient absorbing boundary is key to reducing the computational cost and achieving
larger scale simulations. In this work, we introduce efficient absorbing boundaries of
exterior complex scaling (ECS) [31] and infinite-range exterior complex scaling (irECS)
[32] to the TD-ORMAS method [15, 57].

This chapter is organized as follows. In Sec. 3.1, we briefly review exterior complex
scaling for a single-electron system. In Secs. 3.2 and 3.3, we describe our numerical
implementation of ECS and irECS, adopting the spherical finite-element discrete variable
representation (FEDVR) basis. Section 3.4 discusses how to apply ECS and irECS to the
TD-ORMAS method. In Sec. 3.5, we numerically assess the efficiency and accuracy of
our application of ECS and irECS. We consider atomic systems in the polar coordinate
for the application of ECS described in this chapter. However, our application can be
straightforwardly extended to general coordinate systems such as the Cartesian coordinate.

3.1 Exterior complex scaling for a single-electron system

Let us consider TDSE for a single-electron system in a laser field with the velocity-gauge,
since ECS as an absorbing boundary properly works in the velocity-gauge [31],

iaat‘f’(r,t) = (¥ (r, 1)

= <_V22 + Vn(r) —iA(t) - v> Y¥(r,t). (3.1)
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3.1 Exterior complex scaling for a single-electron system

ECS in the polar coordinate is based on the coordinate scaling,

r (1’ < Ro)

) (3.2)
Ry + (7’ — Ro)eA_H” (7’ > RO)/

r— R(r) = {
where A and 7 is real numbers, and specifically # is called a scaling angle. For . > 0,
outgoing waves exponentially decay at radii r > Rg and numerically vanish before they
reach the simulation boundary and are unphysically reflected.

The transformation Eq. (3.2) defines an “exterior complex scaling operator” l:l,]RO

(B () = ‘I’(R(r)) (r < Ro) 53)
7 T e RY)‘Y(R(r)) (r > Ry), '
where,
R(r) = Rgr)r. (3.4)

Ai
The factor e ;WR(V)/ r ensures that Uyg, is unitary for 7 = 0. In the unitary case, one

can replace hi(t) in Eq. (3.1) with

}AZWZORO(t) = HWZORofll(t) ] J=0Ry’ (3.5)

without changing the dynamics. The solution for the scaled Hamiltonian is trivially
Yy=or, == AW:ORO‘F and coincides with the unscaled solution ¥ for r < Rj.

In the ECS case for 7 > 0, the scaled operator is flﬂRO(t) = ly(t) on r < Rg and for
r > Ry

A 1 .
g, = =5 Vg, + VN [R(r)] = iA(t) - Vyr,, (3.6)

with the scaled nabla operator Vg, given by
1 9
Cr e ting gr'
1 0 0
— — sinf — . 3.7
* R(r)sin6 <6686 sno -+ e‘Pqu) (37)

Note that terms depending on radial coordinates are only different from the original Hamil-

VTYRO

tonian. This form of the scaled operator is formally obtained by analytically continuing
that of the unitary case [Eq. (3.5)] with # =0 — # # 0 [58]. The essential point of ECS
is that, given sufficient analyticity properties of hyg,, also for 7 > 0 the solution ¥;g,
remains invariant on v < Ry, while it decays exponentially in the absorbing region [32].

For the numerical solution of the complex scaled TDSE with the simple scaling of
Eq. (3.6) one needs to ensure that the discretization method can represent the discontin-
uous behavior of the solution at r = Ry, Eq. (3.3). This is the case for the FEDVR basis
set described below.

While ECS is usually applied on a finite discretization range, one can infinitely extend
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3.2 Implementation of ECS with FEDVR method

the scaled region by using a finite number of exponentially damped basis functions [32].
This method, called infinite-range ECS, not only has a conceptual advantage of simulating
the entire space with artificially modifying neither the system Hamiltonian nor the wave
functions, but also has achieved high accuracy and efficiency with a considerably smaller
number of basis functions [32].

3.2 Implementation of ECS with FEDVR method

In this work, we implement ECS and irECS with a spherical-FEDVR basis [51, 52], whose
details are given in Subsec. 2.3.1. Here, as usual, we set A = 0 in the scaling factor.
The implementation of usual ECS (not infinite-range) for single-electron systems with
a spherical FEDVR basis has been discussed by Rescigno and McCurdy [52, 59]. We
follow their approaches, where the factor e# appearing in Eq. (3.3) is dropped off, and
the factor R(r)/r is absorbed into a radial part of a wave function and basis functions.
Namely, we consider the following scaled wave function and discretization,

max l
RY)‘P( ZO _ZZT"“ TR0y, (6,9), (3.8)
Yin(R(r)) =Y ciumfi(r), (3.9)

k

where fi(r) and Y}, (6, ¢) denote a FEDVR basis and a spherical harmonics, respectively.

Since we drop the factor e , the scaled wave function is continuous. However, the first
and second derivatives are still dlscontlnuous. To correctly represent these discontinuous
behaviors, we set Ry to be identical to a finite element boundary. Matrix elements of the
scaled single-electron Hamiltonian (Eq. (3.6)) in the FEDVR basis are obtained by simply
replacing each operator and potential with scaled one in Egs. (2.68), (2.69) and (2.71).

3.3 Implementation of infinite-range ECS with extended FEDVR
method

In the original development of irECS presented by Scrinzi [32], Laguerre polynomials times
an exponential weight function has been used as an infinite-range basis function in the
last finite element. To combine the original concept of irECS and our FEDVR implemen-
tation, we introduce Gauss-Laguerre-Radau quadrature points [60, 61] to construct DVR
basis functions in the last finite element extending to infinity. Gauss-Laguerre-Radau
quadrature approximates the semi-infinite integral of an exponentially damped function

41



3.3 Implementation of infinite-range ECS with extended FEDVR method

as

Ngrid

/: dre U f(r) & Y wif (r) (3.10)

i=1
T’L:1’1<T2<"'<7’Ngrid

with w;’s and r;’s being quadrature weights and points, The left endpoint is included in the
quadrature points. which enables us to construct FEDVR-like basis functions introduced
below.

For irECS, we use the following exponentially damped functions as the finite element
basis functions on the last element,

e~ 2(r=rL) Li(r) (1’ > VL)

yi(r) = VWi (3.11)
0 (r<rr)
with Lagrange polynomials,
r—7;
Li(r)=T] L (3.12)
j#i T

Note that these basis functions are not truncated within a finite range unlike usual FEDVR

basis, but extend to the infinite range and decay exponentially due to the factor e~ 2("~7L),
This infinitely-extended exponential tail can describe exponentially damped wave functions
by ECS and provides high accuracy with a small number of basis functions.

The basis functions appear as orthonormal under the approximate Gauss quadrature,
Ngricl

/0 dryi(n)y;(r) = Y wee Ty () i (re)
k=1

= 5. (3.13)

Thus, in the last finite element a radial part of scaled wave functions ¢(r) is expressed by

Ngrid
o(r) = Z ciyi(r) (3.14)

= [ dry)p(r) ~ e (). (3.15)
0

Likewise, the matrix elements of one-body potentials are diagonal,

Vi = [ drun)Vy) = Vi (3.16)
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3.4 Application of ECS to the TD-ORMAS multielectron dynamics

The first derivative of the basis functions are given by

0 1

Zyir) = sa(r=rr) p. 1
aryl(r) \/,aTze 2% l(r)/ (3 7)
where
o d
P,(T’) _ELi<r) + ng(”
1 T .,
r r'H.r]' r forr=rj,i#]
QT kTR (3.18)
1 .
—Twl(sil for r = 7’]‘, 1=1].

Thus, the matrix elements of the radial second derivative operator can be expressed under
Gauss quadrature by using a partial integral,

oo 2 oo
/0 dryz-(r)aarzyj(r) = —/0 dr(.?r(yi(r));r(yj(r))

Pi(ri) Pi(x) (3.19)

r V Wilj

For simplicity, we have discussed without considering the bridge function to connect
the element boundary between the last element and the second to last element. In the
actual implementation, we introduced this as well as in the usual FEDVR method [51].

3.4 Application of ECS to the TD-ORMAS multielectron
dynamics

In this section, we discuss how to apply ECS to TD-ORMAS method of the multielectron
dynamics involving the interelectronic Coulomb interaction. By analogy with the single-
electron case, we propagate the scaled orbital function l:l”RO ‘4)p> rather than the unscaled
|¢p), by transforming Eq. (2.57) into the scaled equation of motion (EOMs) of the orbitals,

occpuied
ityg, |§p) = [1— Y, (Uyr l¢g) (g | Ug,)
q/
R R occupled A .
(Uyroi Uy g ) (Uyry [0p)) + Y (Uyry WEUL 2 ) (Uyry | 9)) Por (D)5
n
0,4,1,5

occupled

Z Uyr, |9g) X3, (3.20)

A significant difference from the EOMs without ECS is that {(¢y| LAIW_ Rlo }is required, instead
of {(¢p|}, to apply O=1- Yy [¢g) (¢g| and evaluate matrix elements of W and X. It

43



3.4 Application of ECS to the TD-ORMAS multielectron dynamics

is formally defined in the coordinate space as

(o] 0d) 1) = [¢r] (T [9))] (3.21)

It should be noticed that information of {<¢)p‘ l:l,; 1%0} is available in the unscaled region
but not available in the scaled region during the simulation, which poses a problem. Al-
though formally one might attempt to obtain these by analytically continuing {LAI,7 Ry {4)p> |2
such a procedure turns out to be numerically unstable.

Since the scaled region is usually far from the origin, it is reasonable to assume that the
scaled part of the orbital functions hardly affects the electron dynamics close to the nucleus
and that the interaction between electrons residing in the scaled region is negligible. Thus,
we approximately neglect {<<pp‘ l:I,;RlO} in the scaled region wherever their information is
necessary to evaluate the right-hand side (RHS) of Eq. (3.20).

Specifically, the scaled mean field operator is approximated as,

Uy, WE (1)U, g, = W (R(r))
B )s(r)
r<ry |R(r)—r'|
= WL(R(r)) (3.22)

~

Here, it should be noticed that the Coulomb force acting on a scaled-region electron
(r > Rp) from an unscaled-region electron (' < Ry) is not neglected. Hence, the effect of
the ionic Coulomb potential is properly taken into account in the dynamics of departing
electrons. The way to numerically evaluate the truncated scaled mean field operator
W'L(R(r)) is given in Subsec. 3.4.1. Then, in the second term of the RHS of Eq. (3.20),

(g | Ty) (Uyry WEUL 2 ) (UL, [pg) ). (3.23)
is approximated as,

| (r) W Ry ). (324

Similarly, the single-electron term of the Hamiltonian defined in Eq. (2.10) is approximated

P [ gy (g (325)

In order to evaluate the matrix elements h2§5’ = Wsr; required to evaluate the matrix ele-
ments of X (Egs. (2.2), (2.47) and (2.48)) and to propagate CI coefficients using Eq. (2.77),
we need to evaluate the following Coulomb matrix elements,

rp_/d dr /¢r( )¢p( /)¢q(rl)¢s(T)

|r— /]

, (3.26)

44



3.4 Application of ECS to the TD-ORMAS multielectron dynamics

which we approximate as, truncating the integral within the unscaled region as well as
Eq. (3.24),

Wi ~ / drg; (r) PYW(R(r)) g (). (3.27)

3.4.1 Scaled interelectronic Coulomb interaction

We describes how to numerically evaluate W'2(R(r)) [Eq. (3.22)]. By using the multipole
expansion of 1/|F — 7| given in (2.90),

7

o [
Pk b - . lilYlm(e’ ¢') i (0,9),

where 7~ (r-) is the greater (smaller) of » and 7/, the truncated mean field operator W', (7)
can be expanded as,
_' Vlr r
WEF) =), (S);’”()Yzm(f%, P), (3.28)
Im

where (V');,,(r) is given by,

Ro I
V() = g7 [, 5 @), (3:29)
with,
() = [ 4, (0',9')97 (). (3:30)

In the unscaled region (r < Rp), we obtain (V'%);,,(r) by solving Poisson equation [52],

2
(& = M) () =~ (3.31)

In the scaled region (r > Ry), on the other hand, (V'});,(r) is simplified into,

; 4 1
(V/s)l'rn( 21_’_11,1/ dr’ /l+1 ps lm( ) (3'32)

which can be evaluated by numerical integration. Hence W'L(R(r)) is expressed as

WL(R(r)) = szflR(l)lHYzm (6,9) / dr' e (o) i (). (3.33)
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3.5 Numerical examples

Table 3.1: Absorbing boundaries tested for Be. 1y, (#,1) denotes the number of grid points
in the non-absorption (absorption) region, and L, the radial thickness of the absorption
region. The radius Ryax of the whole simulation region is given by Ryask + La or Rg + L.

absorber Rnask or Ro Nua L, Nab
A mask 320 1600 80 400
B irECS 40 200 00 40
C irECS 52 260 00 40
D mask 52 260 8 40
E mask 88 440 56 280

3.5 Numerical examples

In this section, we assess the performance of the implementation of irECS to the TD-
ORMAS method described in the previous sections, simulating many-electron atoms in
an intense near-infrared laser pulse. We assume a laser field linearly polarized in the z
direction of the following form:

t
E(t) = /Iy sin wt sin? <7TNT> , (0<t<NT), (3.34)

where Iy is a peak intensity, T is a period at the central frequency w = 27t/T and N is
the total number of optical cycles. We gauge the performance of simulations with irECS
against nominally “exact” results converged with respect to a simulation box size and
obtained with the mask function boundary. In the latter, orbital functions are multiplied
by a mask function,

1 for |7| < Ruask

M(ﬂ - 1 7T |?| — Rmask
costd | ——— for |7| > Rm ks
<2 Rmax - Rmask) ’ | o ask

(3.35)

after each time step, where R,k and Rp.x denote the absorption boundary and the
simulation box radius, respectively.

3.5.1 Beryllium

We first simulate a Beryllium atom subject to a laser field with Iy = 3.0 x 10" W /cm?,
A = 800nm (the quiver radius is 28.5 a.u.), N = 5, and (14, 14c,1¢c) = (4,0,1). Each
orbital function is expanded with 47 spherical harmonics and discretized with radial finite
elements 4 a.u. long except for the last irECS element. Each finite element, including
the irECS element, has 21 grid points. The scaling angle # is set to be 15° and the
dumping factor alpha of irECS is set to be 0.5. Five different conditions used for absorption
boundaries are listed on Table 3.1.
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Figure 3.1: Electron radial distribution function p(r) after the laser pulse for the case of
Be exposed to a laser pulse with 800 nm wavelength and 3.0 x 10* W/cm? peak intensity,
calculated with different absorbing boundaries listed in Table 3.1.

Figure 3.1 compares the electron radial distribution functions defined as
o(r) = Ni2 / d0dQdTodTs - - %o [¥(T To, -, %) 2, (3.36)

after the pulse, calculated with different absorption boundaries. The irECS delivers much
better results (B and C) than the mask function (D). Nevertheless, the irECS results
slightly deviate from the exact solution (A) even if the scaling radius is almost twice the
quiver radius. In the present case, the Be atom is nearly totally ionized, and double ion-
ization amounts to 50 % (Fig. 3.2). Hence, the deviation may be attributed to the neglect
of the Coulomb interaction in and from the scaled region and/or the loss of information
on the wave function in the scaled region.

In order to reveal the effect of the latter, we have performed a simulation with a
sufficiently large domain with the mask function (Ryask = 320 a.u. and Ryax = 400 a.u.)
but with the integrals truncated at r = 28a.u., as described in Sec. 3.4. We compare
the result with the exact one and that from irECS with Ry = 28a.u. in Fig. 3.3 . The
“truncated” and irECS results overlap each other and slightly deviate from the exact
solution, which indicates that the slight deviations in Figs. 3.1 and 3.3 stem from the
neglect of the Coulomb interaction in and from the scaled region. One may be surprised
that the loss of information on orbital functions at the absorption boundary hardly affects
simulation results within the absorption radius. This may be because the TD-ORMAS
(and MCTHDF, TD-CASSCF) equations of motion assume the orthonormality of the
true (, i.e., unscaled) orbital functions {|¢,)}, even though their numerically propagated
portions {U,, |¢p)} are not orthonormal in general. Consequently, information on the
absorbed part, though its explicit form is unknown, is partially retained, which enables
accurate simulations. It should also be noticed that, since we construct the total wave
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Figure 3.2: Time evolution of single, double, and total ionization probabilities of Be
exposed to a laser pulse with 800 nm wavelength and 3.0 x 10 W/cm? peak intensity.
For convenience, we define single (double) ionization probability as that of finding one
(two) electron(s) outside the 20 a.u. radius. The total ionization probability is calculated
as their sum.

function based on single-electron orbitals, even if one or more electrons are absorbed, we
can continue to follow the associated dynamics of the other unabsorbed electrons. This
is in great contrast to the time-dependent close-coupling simulations [62-65], where, if
one electron reaches the absorption boundary, the corresponding part of the total wave
function is completely lost.

In spite of the small discrepancy in Fig. 3.1, irECS gives the time evolution of sin-
gle/double ionization (Fig. 3.2) and the high-harmonic spectrum (Fig. 3.4), which is calcu-
lated as the magnitude squared of the Fourier transform of dipole acceleration, in excellent
agreement with the exact results. In particular, the mask function with Ry,,q = 52 fails
to reproduce, the sharp drop of the harmonic spectral intensity after the cutoff because
of unphysical reflection. It is remarkable that the neglect of the Coulomb interaction in
and from the scaled region is a good approximation and that irECS works excellently even
under such massive double ionization. We have reduced computational costs by 66% com-
pared with the best case of the mask function (E) to obtain a converged high harmonic
spectrum (B).
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Figure 3.3: Electron radial distribution function p(r) after the laser pulse for the case of
Be exposed to a laser pulse with 800 nm wavelength and 3.0 x 10'* W/cm? peak intensity.
We compare the results using the mask boundary (Rpyasx = 320a.u.) without (thick solid)
and with (thin dashed) the integral truncations at 28 a.u., as described in Sec. 3.4, and
the result using the irECS with Ry = 28a.u. (dotted).
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Figure 3.4: High harmonic spectra from Be exposed to a laser pulse with 800 nm wave-

length and 3.0 x 10 W/cm? peak intensity, calculated with different absorbing bound-
aries A-D listed in Table 3.1.
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Table 3.2: Absorbing boundaries tested for Ne.

absorber Rpask or Rp Nua L. Nab
A mask 256 1280 64 320
B irECS 60 300 00 60
C mask 60 300 12 60

intensity(arb. units)

harmonic order

Figure 3.5: High harmonic spectra from Ne exposed to a laser pulse with 800 nm wave-
length and 8.0 x 10 W /cm? peak intensity, calculated with different absorbing bound-
aries listed in Table 3.2.

3.5.2 Neon

Finally, as a typical target atom used for attosecond-pulse generation, we simulate HHG
from a Neon atom subject to a laser pulse with Iy = 8.0 x 10'* W/cm?, A = 800nm, and
N = 3. We use 8 active orbitals and 1 dynamical core, i.e., (1, ngc, 1gc) = (8,1,0). Each
orbital function is expanded with 47 spherical harmonics and discretized with radial finite
elements 4 a.u. long except for the last irECS element. Each finite element, including the
irECS element, has 21 grid points. The scaling angle 7 is fixed to 15° and the dumping
factor a of irECS is set to be 0.5. Three different conditions used for absorption boundaries
are listed in Table 3.2.

If we use the same radius Ry, Riaskc = 60 a.u. of the non-absorbing region and number
1,1, = 60 of grid points in the absorption region, the irECS result (B) perfectly overlaps
with the “exact” result (C) obtained with a large simulation box (Rpasx = 256 a.u.), while
the mask boundary (C) fails (Fig. 3.5). As in the case of He, the ionization probability
(about 4 %) is relatively small due to the large ionization potential (21.6 eV) of a Ne atom,
so that the truncation of integrals introduced to apply ECS to the TD-CASSCF method
leads to almost no error. The computational cost of the irECS simulation B is reduced by
80% compared with case A.
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Chapter 4

Application of the tSURFF method to the
TD-ORMAS method

The photoelectron momentum amplitude (PMA) a(k, t) for momentum k and photoelec-
tron energy spectra (PES),

o(E,t) = [ dOla(k, HPIKE (= |k[/2), (4.1)

can in principle be approximately calculated by projecting the outgoing wave packet re-
siding outside a given radius Ry onto the plane wave pg(r) = (271) 732 exp(ik - r) at a
time t sufficiently after the pulse. Then, for example in single-electron systems, PMA is
given by,

a(k,t) = (pr(r, 1) |0(Rs)[¥ (1)),
= /Pk r,1)0(|r] — Rs)¥ (r, t)d3r,
= /r>R pi(r, ¥ (r, t)dr. (4.2)

where 6(x) denotes the Heaviside function to extract photoelectron wave packets. How-
ever, to use this approach, the complete wave function without being absorbed is required,
which leads to a prohibitive computational cost. If the system has low energy photoelec-
trons or a laser pulse with a long time duration is irradiated, the simulation duration gets
longer and the required size of the simulation box can reach a few thousand atomic units.
To overcome this problem, the time-dependent surface flux (tSURFF) method developed
by Tao and Scrinzi [47] converts the spatial integral of a wave function in Eq. (4.2) into
time integral of a surface flux of the wave function.

In this chapter, we combine this tSURFF method with the TD-ORMAS method to
extract photoelectron energy spectra from multielectron systems [66]. Under a physically
reasonable assumption that the nuclear potential and interelectronic Coulomb interaction
are negligible for photoelectron dynamics in the region distant from the nuclei, we apply
the tSURFF method and derive the equations of motion for the momentum amplitudes
of each orbital. As results of our application, we achieve highly accurate calculations of
angle-resolved PES with considerably reduced computational costs.

51



4.1 the tSURFF method for single-electron systems

This chapter is organized as follows. We review the tSURFF method for single-electron
systems in Sec. 4.1. In Sec. 4.2, we describe our theoretical application and numerical
implementation of tSURFF to the TD-ORMAS method. Numerical results are presented
in Sec. 4.3.

4.1 the tSURFF method for single-electron systems

In this section, we briefly review the tSURFF method [47] for single-electron systems
governed by TDSE;,

i%‘l’(r,t) — (¥ (r, 1), (4.3)
I (t) = —%vz V() —iA(H) -V, (4.4)

where V(r) denotes the nuclear potential.

The tSURFF method calculates PES by time integration of the wave function surface
flux, based on an assumption that the nuclear potential does not affect the time evolution of
the distant photoelectron wave packet. Under this assumption, the Volkov wave functions
and photoelectron wave packets in the region |r| > Ry are evolved by the same nuclear-
potential-free Hamiltonian

h= 3 V2~ iA(1) V. (4.5)

By taking time derivative of Eq. (4.2), we obtain the EOM of the momentum amplitude,

i alk, 1) = Qb0 I B(R[¥ (1), (4.)

where X (t) denotes the Volkov wave function, which is a momentum eigenfunction of the
Hamiltonian hs. As shown in Ref. [47], since all the terms appearing in the commutator
[hs,0(Rs)] contain delta functions é(r — Rg) [see Eq. (4.18) below], wave functions and
their spatial derivative only on the surface |r| = Ry are required to solve Eq. (4.6). Hence,
it is no longer needed to keep the whole wave function and allowed to use an absorbing
boundary, which leads to a significant computational cost reduction.

4.2 Application of the tSURFF method to the TD-ORMAS
simulations

4.2.1 Photoelectron reduced density matrix

To obtain PES in multielectron systems described by the multiconfiguration expansion
Eq. (2.1), we define the photoelectron reduced density matrix (PRDM). Since our def-
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4.2 Application of the tSURFF method to the TD-ORMAS simulations

inition of ionization is based on the spatial domain |r| > Rs , the single particle reduced
density matrix of a photoelectron in the coordinate space can be defined as,

P(r,7') =3 (r|0(Rs) [¢p) Dy (9g] O(Rs) ). (4.7)

pq

In the momentum space, its elements are given by,

Pk, k') = [ drdr’ GBI’} Plr,v) (rluu(0)
= Z Xk (£)|0(Rs) |pp) DY (gl 0(Rs) [xar () . (4.8)

The diagonal part P(k:,k) is interpreted as photoelectron momentum distribution, and,
then, PES is given by,

— / dQP(k, k) |k|%. (4.9)

A similar definition of the PRDM as Eq. (4.8) and the direct projection onto scattering
states were used to compute photoelectron spectrum in Ref. [67].

4.2.2 EOMs of momentum amplitudes of orbitals

In this subsection, we derive the EOM of the momentum amplitude of orbital p,

ap(k,t) = (xu(£)|0(Rs)|Pp) , (4.10)

which appears in Eq. (4.8). We assume that the nuclear potentials are negligible for pho-
toelectrons as in the single-electron case and additionally that the interelectronic Coulomb
interaction does not affect the dynamics of photoelectrons in the region beyond the radius
Rs. Then, the orbital EOM Eq. (2.57) can be approximated as,

occupied

i1gp) =(hs + V) [¢p) + 3 Wi lgg) Pir (D)5
0,4,t,5
occupied ,

=Y lpg) hs,,+ ) st’P;’f( Do +iX] (4.11)

q 0,q,1,5
R occupied ,
~hg |pp) — Y pg) h1p+ ) W”’quS o +iX] (4.12)
q 0,4,1,5

It should be noticed that the nuclear and mean field potentials in the third term of
Eq. (4.11) remain after the approximation (Eq (4.12)), since they include the effect of
the potentials inside Rs (see also Fig. 4.1).
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CASE 1 CASE 2 CASE 3

Two electrons are inside R One electron is inside Rq, Two electrons are outside Ry

another electron is outside R; I

nucleus

Figure 4.1: A schematic illustration of the approximation of interelectronic Coulomb in-
teraction in the application of the tSURFF method to the TD-ORMAS method. In the
cases that one electron is inside Rg and another electron is outside Ry, or two electron are
outside Rg, the Coulomb interaction is neglected. However, in the case that two electrons
are inside Rg, the interelectronic Coulomb interaction is exactly considered.

By differentiating a,(k) in time, the EOMs of a,(k) is obtained as

9 0, 1) =i Qe OCR) 1y (1)) -+ 1 ag(k, )R, (4.13)
q

where for the simplicity of equations we define a matrix R as

y o occupied N B o

Ry =M} + Y, WLPF((D ), +ix]. (4.14)
0,4,1,5

Note the second term in Eq. (4.13) represents a significant difference from the single-
electron case [Eq. (4.6)]. As we stated above, this term includes the effect of nuclear and
interelectronic potentials inside R; and is not negligible even when we consider photoelec-
trons outside Rg; for example, the phase variation due to the energy of the ionic core is

reflected in photoelectron momentum spectra through this term.
It may not be a priori obvious if the Coulomb interaction between electrons in the
outer region is negligible. A numerical validation of this approximation will be given in

Sec. 4.3.

4.2.3 Implementation

In this subsection, we describe the implementation of the tSURFF method to TD-ORMAS
simulations. We consider multielectron atoms subject to a laser pulse linearly polarized in
the z direction. The orbitals are discretized with spherical finite-element discrete-variable-
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4.2 Application of the tSURFF method to the TD-ORMAS simulations

representation (FEDVR) basis functions as shown in Eq. (4.15),

¢p(r,0,¢) = chlmfk )Yzm((’ ). (4.15)

klm

On the other hand, we discretize the orbital momentum amplitudes with grid points in
the spherical coordinates, where the Volkov wave function for a momentum k = (k, 6, k)
is given by,

exp(—iA(k,
Xi(r,t) = p((2n)3(/2 D

x Y A7 G, (6, i) ji (kr) i (6, ), (4.16)
Im

with jj(kr) being the spherical Bessel function of the first kind and A(k,t) the Volkov
phase given by,

Al ) = /0 t %[k; _ A(7)Pdr. (4.17)

The commutator in Eq. (4.6) can be rewritten as,

e O(R:)) = = | 5:0(r = Ro) 480 = R 3.
_ ‘W;R) AL () cos(0)d(r — Ry), (4.18)

with z component A,(t) of the vector potential A(t). Using Egs. (4.16) and (4.17) and
introducing g7 (r) = Yx e}, fk(r)/r, we can decompose the first term of Eq. (4.13) into,

expiA(k,t)

( 3/242

[Ylm(gk/ ¢k)75{j7 '(kRq)gH,(Rs) — ji' (kR<)g,,'(Rs) }
A8 Y (=) Vi (8, 1)) R (kRo)gh, (Ro)a ™ Im], (4.19)

I'm’

(xk (£)[[1s, 0(Rs)]|¢p (£)) =

where ji'(r) and g/’(r) denote the radial derivative of ji(r) and g (r), respectively. af™
given in Eq. (2.85) denotes [ dQ)Yj; (6, ¢)c0s0Y,, (6, $). For the second term in Eq. (4.13),
since the matrix R is evaluated during the orbital propagation [Eq. (2.57)], we can reuse
it.

We integrate Eq. (4.13) with the first order exponential integrator [54] by treating
Eq. (4.13) as simultaneous inhomogeneous linear differential equations. The evolution of
a vector a(k,t) = {ay(k,t)} from the time t to t 4 At is described as

exp[iAtR(t)] —1

a(k,t+ At) = a(k,t) exp[iAtR(t)] + S(t) R(1) ,

(4.20)
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where the vector S(t) = {S,(t)} are defined as,

Sp(t) = (xk(t)[[hs, O(Rs)][¢p(t)) - (4.21)

We compute exp[iAtR(t)] by directly diagonalizing R(t) at every time step, which is not
demanding since the size of R(t) is [Nop X Nogp] and the number of orbitals Ny, usually
falls within the range from a several to several tens.

4.3 Numerical results

In this section, we present numerical applications of the implementation of tSURFF to
the TD-MCSCF method described in the previous section. The electric field of the laser
pulse is assumed to have the following shape for simulations of a Ne atom (Sec. 4.3.1) and
a Be atom (Sec. 4.3.2):

E(t) = /Iy sin? <7r t ) sinwt, 0 <t < NopiT, (4.22)
op
and for Ar atom (Sec. 4.3.3):
E(t) = e(t) sinwt, (4.23)
\@% 0<t<2T
e(t) =< VI, 2T <t < (Nopt —2)T (4.24)

NoptT — ¢
\/TOTz (Nopt - 2)T <t S NoptT
where [y is a peak intensity, T is a period at the central frequency w = 27t/T, and Nopt
is the total number of optical cycles.

4.3.1 Neon

We first calculate the PES of a neon atom subject to an attosecond pulse with a peak
intensity of 2.5 x 102W/ sz, a wavelength of 12.398 nm corresponding to 100 eV photon
energy, and Nopt = 16. The results by tSURFF and direct projection on plane waves are
compared. As an absorbing boundary, we use irECS with a scaling radius Rg of 40 a.u for
tSURFF and 400 a.u for direct projection. The latter is large enough to hold the departing
wave packet from two-photon ionization. R; = 40a.u. for tSURFF, and the wave packet
outside this radius is used for projection.

We do TD-CASSCF simulations with 3 kinds of orbital classifications (#g., e, 1a) =
(0,0,5), (0,0,9), and (1,0,8), where ng, nqe, and n, are the number of frozen-core,
dynamical-core, and active orbitals, respectively. Note that the first and second correspond
to the time-dependent Hartree-Fock (TDHF) [68] and MCTDHF methods, respectively.
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4.3 Numerical results

The results are shown in Fig. 4.2. We see single photon ionization peaks (around 30 - 90
eV) and two photon above threshold ionization (ATI) peaks (around 130 eV - 190eV) from
2s and 2p orbitals. The agreement between the results by tSURFF and direct projection is
excellent. In Fig. 4.3, we compare the photoelectron angular distributions calculated with
the tSURFF method and direct projection. Again, we find excellent agreement. These
show the validity of the neglect of the electron-electron and nucleus-electron Coulomb in-
teraction beyond R; assumed in the application of the tSURFF method to the TD-ORMAS
method.

While the single-photon ionization peaks from 2s and 2p orbitals are expected to be
at 51.5 and 78.4 eV, respectively, based on the experimental values of the binding energies
[69], the peaks in the calculated spectra are located at 47.5 and 76.7 €V in Fig. 4.2(a),
48.9 and 77.9 €V in (b), and 48.7 and 77.9 eV in (c), coming closer to the experimental
positions with increasing number of orbitals. Otherwise, TDHF gives results similar to
the MCTDHF and TD-CASSCF ones for this process.
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Figure 4.2: Photoelectron energy spectra of a Ne atom subject to an attosecond pulse
with 100eV photon energy calculated with orbital classification (a) (#5, H4c, 1a) = (0,0,5)
(TDHF), (b) (0,0,9) (MCTDHF), and (¢) (1,0,8) (TD-CASSCF). The results by tSURFF

and direct projection are compared.
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Figure 4.3: Photoelectron angular distribution from a Ne atom at (a) 48 eV and (b) 77 eV,
calculated with orbital classification (ng, 1ge, 1a) = (1,0,8). The results extracted with
the tSURFF method and direct projection are compared. The angle-integrated yield is
normalized to unity.
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Figure 4.4: Energy level diagram of a Be atom. There are many doubly excited states
leading to autoionization between the energy levels of the Be™ ground state and the first
excited state.
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Figure 4.5: Temporal shape and intensity spectrum of the laser pulse considered for the
case of Be.

4.3.2 Beryllium

In this subsection, we compute one photon ionization cross section of a Be atom including
Fano resonance with the TD-CASSCF method. A Be atom has multiple doubly excited
states above the ground state of Be™, which lead to autoionization (Fig. 4.4) [70-72].
Photoelectron wave packets generated by direct ionization and autoionization can interfere
with each other, and photoionization cross section show a complicated resonance profile.
The shape of the profile was first theoretically described by U. Fano [73], and thus this
phenomenon is called Fano resonance.

In order to observe the Fano resonance of a Be atom, we simulate a Be atom subject
to a laser pulse with a peak intensity of 1.0 x 1014W/ sz, a wavelength of 56.31 nm
corresponding to about 22 eV photon energy, and Nopt = 3. The temporal shape and
energy spectrum of the pulse are shown in Fig. 4.5. In the TD-CASSCF method, we use
4 active orbitals and 1 frozen core, i.e., (1,14, ntc) = (4,0,1). irECS with a scaling
radius Ry of 88 a.u is used for an absorbing boundary. Photoelectron energy spectra are
extracted by the tSURFF method with Ry = 88 a.u. and the cross section o (E) is calculated
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by dividing photoelectron energy spectra p(E) by the laser pulse energy spectra I(E),
E
o(E) = 2E) (4.25)

Figure 4.6(a) presents one photon ionization cross section of a Beryllium atom with
respect to the total time of propagation, and Fig 4.6(b) presents an experimental result
measured with synchrotron radiation [74]. In Fig 4.6(a), we see that the doubly excited
states decay over time and a fine resonant structure gradually appears. The overall struc-
tures of the cross sections obtained from our simulation and the experiment show a good
agreement. This indicates that we can correctly simulate the autoionization process of
doubly excited states, where electronic correlation plays an essential role. Since the ion-
ization potential in the TD-CASSCF simulation depends on the number of orbitals, the
cross section computed with the simulation is slightly shifted to the lower energy side.
This can be improved by increasing the number of orbitals as well as the Ne simulations
in the previous subsection.
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Figure 4.6: (a) One photon ionization cross section of a Beryllium atom calculated as the
ratio of photoelectron energy spectra to pulse energy spectra with respect to the total
time of propagation. The laser pulse used to calculate photoelectron energy spectra has
a photon energy of 22 eV, an intensity of 1.0 x 1014\7\7/0m2 and 3 optical cycles. (b)
One photon ionization cross section of a Beryllium atom experimentally measured with
monochromatized synchrotron radiation.Figure (b) is cited from Ref. [74], and modified
to remove a least-square fitting curve in the original figure.
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Figure 4.7: Temporal shape and intensity spectrum of the laser pulse considered for the
case of Ar.

4.3.3 Argon

Next, we simulate ATT of an Ar atom subject to an intense visible laser pulse using the
TD-ORMAS method and discuss the effect of electronic correlation. We consider a pulse,
which has a peak intensity of 2.0 x 1014 W /cm?, a wavelength of 532 nm, and a pulse width
of Nopt = 14 optical cycles. The ponderomotive energy U is 5.285 eV. The temporal shape
and energy spectrum of the pulse are shown in Fig. 4.7. We continue simulations for 24 fs
after the end of the pulse without external fields so that the ejected electron wave packet
entirely passes through the surface, i.e., the total simulation duration is ca. 50 fs.

Here, we subdivide n, active orbitals into 4 and (n, —4) orbitals, as schematically
illustrated in Fig. 4.8 for orbital decomposition (1n.,1q,1,) = (5,0,13). By setting the
maximum number of electrons in the second subgroup [(n, — 4) active orbitals] to 2 or
3, the configurations with up to double (SD) or triple (SDT) excitation are considered,
respectively.

We first check the convergence with respect to the tSURFF radius Ry by using orbital
classification (1, Hge, 1a) = (5,0,4) without excitation restriction and setting Ry = Rs.
The calculated PES is virtually converged with Ry > 40a.u. (Fig. 4.9). For Ry = 12 and
20 a.u., on the other hand, we see deviation from the converged spectrum, considered to
be an error introduced by the neglect of the Coulomb interaction beyond Rs. Especially,
photoelectron yields in the lower energy region are overestimated, probably because low
energy scattering states are sensitive to the tail of the nuclear Coulomb potential [47]. We
set Ry and Ry to be 40 a.u. in the rest of this subsection.
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atom with 18 electrons, which wave function is composed of 5 frozen cores and 13 active
orbitals, (1¢,1q,1,) = (5,0,13). The excitation restrictions SD (SDT, - - -) indicates that
single and double (single, double and triple, ---) excitation from the blue to red group
are only allowed.

_10° h, ]

% vy

;10'2 ATy ]

@ Rp=R;=12a.u.—

= 4 Rg=R;=20au.--- ‘

[ 10 7RO = RS =40 a.u.---- ' I I N

>  |Rg=R,=60a.u. 2P
10 RO=RS:89a.u —— |

0 10 20 30 40 50 60 70 80
photoelectron energy (eV)

Figure 4.9: Photoelectron energy spectra of an Ar atom subject to a visible intense laser
pulse with a wavelength of 532 nm and an intensity of 2.0 x 10'* W/cm?. The results
calculated with different values of Ry = Ry are compared. The orbital classification used
is (Mge, Nae, Ma) = (5,4,0) without excitation restriction.
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Figure 4.10 shows PES calculated with different orbital classifications. We can recog-
nize the direct cutoff at 2U, and rescattering cutoff at 10U,. In Fig. 4.10(a), the results
with different numbers of active orbitals within single and double (SD) excitation are com-
pared. The spectrum is nearly converged with 25 and 29 active orbitals. Figure 4.10(b)
compares the results with SD and SDT excitation restriction and full CI (TD-CASSCF),
with 13 active orbitals. The SDT and full CI results almost overlap each other, indicating
that SDT is sufficient for numerical convergence. Thus, the result using 25 active orbitals
with SDT excitation is expected to be numerically nearly exact. Then, in Figs. 4.10(c)
and 4.11, we compare the PES calculated using 13, 20 and 25 active orbitals with SDT
excitation restriction and also the TDHF result. The peak positions slightly depend on
the number of orbitals, as we have also seen in Fig. 4.2. Moreover, in the TDHF case, the
peaks are significantly broadened. The ATI peak position E, corresponding to n-photon
absorption is given by,

E, = nhw — I, — Up, (4.26)

where I, is the ionization potential. The difference in peak position observed in Fig. 4.10
can be attributed to that in I, which depends on the number of orbitals and excitation
restriction. In addition, in mean-field approaches such as TDHF, the ionization poten-
tial effectively increases as ionization proceeds and the electron density near the nucleus
decreases [75]. This results in the peak broadening.

To elucidate that this effect occurs in the TDHF simulation, we compare time evolution
of the single ionization probabilities calculated with TDHF method and TD-ORMAS
method using 25 active orbitals and SDT excitation restriction in Fig. 4.12. The ionization
probability is defined as the probability of finding one electron outside the 20 a.u. radius.
We can see the ionization probabilities agree with each other until around 5 optical cycles.
However, after that, the ionization rate of the TDHF method decreases as the ionization
proceeds, and thus the TDHF method underestimates the ionization probability. This
finally results in 7% less than the TD-ORMAS simulation, where the TDHF and TD-
ORMAS method show the probabilities to be approximately 22% and 29% at the end of
the simulations. This indicates that ionization is suppressed as ionization proceeds in the
TDHF method, which supports that the ionization potential effectively increases and the
peak broadening stems from that.
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Figure 4.10: Photoelectron energy spectra of an Ar atom subject to a visible intense laser
pulse with a wavelength of 532 nm and an intensity of 2.0 x 10'* W/cm?. The red and
blue dashed vertical lines show 2U, and 10U, (U, = 5.285 eV). The results with dif-
ferent number of orbitals (g, n4c, 1a) and excitation restrictions (SD, SDT, full-CI) are
compared.
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In Fig. 4.13, we show ARPES calculated with the TD-ORMAS method using 25 active
orbitals with SDT excitation restriction and with the TDHF method using 4 dynamical-
core orbitals. We see differences in detailed structure. In particular, the high-order
(> 2U,) rescattering contribution has much broader angular distribution in the TD-
ORMAS result. The difference can also be clearly observed in Fig 4.14, which shows
the photoelectron angular distribution (PAD) at 10 eV (< 2U,) and 40 eV (> 2U,), rep-
resentatives of the lower and higher energy regions, respectively. At 10 eV photoelectron
energy, where the main contribution is from direct ionization, all the results exhibit simi-
lar behavior. In contrast, at 40 eV photoelectron energy, for which rescattering from the
parent ion is involved and thus strong electron correlation is expected, the calculated PAD
varies with the number of orbitals till it approximately converges with n, = 25. Especially,
the TDHF method significantly underestimates the yield in the direction (90°) perpendic-
ular to the laser polarization. This indicates that electronic correlation is non-negligible
in detailed discussions of ATT ARPES.

Furthermore, we compare the TD-ORMAS simulations with classical simulations with
classical trajectory Monte Carlo (CTMC) method in a collaborative research with the
Institute of Nuclear Research of Hungarian Academy of Sciences [76]. The CTMC simu-
lations were performed by Karoly Tokési in Hungarian Academy of Sciences. The CTMC
method numerically solves classical Newton’s equations of motions with randomly gener-
ated initial conditions, and obtains a huge number of trajectories [77-80]. In this work,
an Ar atom with 18 electrons is replaced with a one-electron atom [81, 82]. This model
is the classical analogue of the quantum-mechanical effective single-electron treatment.
The interaction between the ionic core and the active electron is described by a central
model potential developed by Green [83], which is based on Hartree-Fock calculations.
The potential can be written as

Z-(N-1)(1-07'()) _ z(r)

V(T’) — . = p , (427)

where Z is the nuclear charge, N is the total number of electrons in the atom, and

Qr) = g (erg - 1) 41 (4.28)
The potential parameters ¢ and # can be obtained by minimizing the energy for a given
atom. For an Ar atom we used 17 = 3.5 and ¢ = 0.957.

Figure. 4.15 shows ARPES calculated with the CTMC method. Comparing Fig. 4.15
with Fig. 4.14(b) using the TD-ORMAS method, we see that ARPES obtained with the
CTMC method does not has the interference pattern, and the distribution is restricted to
classically reachable region. In Fig. 4.16, we compare the photoelectron angular distribu-
tions (PAD) calculated with the TD-ORMAS method using 25 active orbitals and SDT
excitation restriction and the CTMC method, at 10 eV and 40 eV. The PAD at 10 eV
calculated with TD-ORMAS method oscillates centering that of the CTMC method. This
indicates that the oscillation in the angular direction shows interference between different
partial waves, which cannot be considered in the classical simulations. In Fig. 4.16(b) pre-
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senting the PAD at 40 eV, the CTMC method shows a significantly different result from
the TD-ORMAS one. In particular, in the direction perpendicular to the laser polariza-
tion (around 50° - 130°), the CTMC cannot reproduce the distribution of the TD-ORMAS
method at all, since this is a region which electrons treated within classical mechanics are
prohibited to reach.

As written in the first of this chapter, for direct projection, we would need to retain
the complete wave function without being absorbed. Since the duration of the simulations
in this subsection reaches ca. 50 fs, calculation of the photoelectron energy spectra at
40 eV, for example, would require the radius of the simulation box larger than 3500 a.u.,
which is unfeasibly large. Moreover, for Ar, an 18-electron atom, the computational cost of
MCTDHF would be prohibitive. The introduction of orbital classification including frozen
core and occupation restriction significantly reduces the number of Slater determinants,
while keeping accuracy. Thus, the combination of the TD-ORMAS and the tSURFF
methods enables converged simulations of ATT of an Ar atom and inspection of correlation
effects in the ATI spectra.
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Figure 4.13: Angle-resolved photoelectron energy spectra of an Ar atom subject to a visible
intense laser pulse with a wavelength of 532 nm and an intensity of 2.0 x 10'* W/cm?.
The laser polarization (z direction) corresponds to 0°. (a) (Mg, e, 1a) = (5,4,0), ie.,
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Chapter 5

Extension to molecular systems

This chapter is not open to the public for the reason that the contents will be published
in journals within 5 years.

73






Chapter 6

Conclusions

6.1 Summary

In this thesis, aiming for theoretical computation of accurate angle-resolved photoelectron
spectra from multielectron atoms subject to intense and ultrafast laser pulses, we have
developed a realtime ab initio simulation method by combining the TD-ORMAS method,
irECS and the tSURFF method.

To reduce huge computational costs of the TD-ORMAS simulations due to a large
simulation box, we have first applied irECS as an efficient absorbing boundary to the
TD-ORMAS method. This application minimally neglects only the Coulomb force be-
tween electrons in the unscaled region and that acting from electrons in the scaled re-
gion on those in the unscaled region. For discretization of the scaled region, we have
introduced Gauss-Laguerre-Radau quadrature points to construct exponentially dumped
infinite-range FEDVR basis functions that are, conveniently, orthonormal and finite only
at a grid point associated with each basis function. In order to demonstrate efficiency
and accuracy, we have applied the present method to Be and Ne atoms and calculated
ionization probabilities and HHG spectra for intense near-infrared laser pulses. We have
obtained the results that perfectly agree with the converged results using much larger
absorbing radii, even when atoms were massively ionized. While achieving excellent accu-
racy, decreasing the size of the simulation box thanks to irECS has led to the significant
reduction of computational costs, by 66% for Be and 80% for Ne in the present case.

To obtain photoelectron spectra in systems described within the MCSCF framework
such as the TD-ORMAS method, the photoelectron reduced density matrix has been
introduced, whose diagonal elements in the momentum space correspond to photoelectron
spectra. We have applied to the tSURFF method based on the assumption that the
nuclear potentials and interelectronic Coulomb interaction do not affect the dynamics
of photoelectrons in a region at a large distance from nuclei, and derived the equation
of motion for photoelectron momentum amplitudes of each orbital. Since one of the
biggest benefits of tSURFF is not needing to hold the complete wave function within the
simulation box, it allows the combined use of an efficient absorbing boundary such as
irECS. We have applied the present development to compute photoelectron spectra from
Ne, Be and Ar atoms. In the calculation of a Ne atom subject to attosecond XUV pulses,
we have observed the perfect agreement between PES obtained by the tSURFF method
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and direct projection. This indicates that the neglect of electron-electron and nucleus-
electron Coulomb interaction is a good approximation. Next, we have simulated one
photon ionization process of a Be atom and computed one photon ionization cross section.
The result agrees with the experimental one. This process includes the autoionization of
doubly excited states, and thus this shows that we can correctly simulate phenomena in
which electronic correlation plays an essential role. As a final demonstration, we have
presented converged calculation of ATI spectra from an Ar atom including electronic
correlation, which would require prohibitive computational cost without tSURFF and
irECS. Comparing the ATI ARPES computed with the TDHF method and the converged
one with the TD-ORMAS method, we have found a significant difference in a high energy
region for which rescattering from the parent ion is involved, and especially in a direction
perpendicular to the laser polarization. This indicates that electronic correlation is non-
negligible in detailed discussions of ATT ARPES.

To extend the present development for atoms to molecules, we have implemented the
TD-ORMAS method and the tSURFF method with the adaptive finite element method
which employs a multiresolution mesh in the Cartesian coordinate. Smooth ECS, which
is suited to a multiresolution mesh, has been applied to this implementation. With this
implementation, we have performed TDHF simulations to compute photoelectron momen-
tum spectra from a hydrogen molecule. The spectra qualitatively agree with that obtained
by Fermi’s golden rule reflecting a molecular structure and laser polarizations.

6.2 Future prospects

6.2.1 Ion-state-resolved photoelectron spectra

Electronic dynamics induced by intense and ultrashort laser pulses usually involves mul-
tichannel effects and multiple ionization dynamics. Furthermore, under intense fields,
excitation and multiple ionization successively occur, and thus initially generated pho-
toions and finally generated ones possibly have completely different states. However, it is
difficult to understand such processes only from photoelectron spectra, in which all the
processes are superpositioned.

These processes can be identified by observing not only photoelectron spectra but also
associating photoionic states. This coincident observation can be achieved by introducing
the ion-state-resolved photoelectron reduced density matrix Pj(k,k’), which is defined
by resolving the photoelectron reduced density matrix (PRDM) defined in Eq. (4.8) into
contributions from an ionic state I,

Pi(k, k) = (L xi () [ (1)) (F (], xw (1)) - (6.1)

|I, xx(t)) denotes a wave function with an ionic eigenstate I and a scattered state xg. Ionic
eigenstates can be obtained by usual quantum chemistry computations for static states.
As well as the PRDM, the diagonal part of the ion-state-resolved photoelectron reduced
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density matrix is interpreted as photoelectron momentum spectra associated with an ionic
state I. Through resolving photoelectron spectra based on ionic states, for example, we
can study a correlation between generated ionic states and observed photoelectron spectra.

6.2.2 Application to larger systems and extension beyond the fixed-
nuclei approximation

In this study, the application of the implementation for molecular systems has been limited
to the TDHF method. The next step is to apply it to the TD-MCSCF methods such as the
TD-ORMAS method. Furthermore, the time-dependent optimized coupled-cluster (TD-
OCC) method has been recently proposed [84], which is size extensive, and thus applicable
to further large systems. Applications of our developments for atoms and molecules to the
TD-OCC method will enable to extract photoelectron spectra from larger systems.

Whereas we have treated systems under the fixed-nuclei approximation, electron-
nuclear dynamics in molecules driven by a laser pulse is recently intensively studied [85, 86].
One of the simplest methods to consider nuclear dynamics is the Ehrenfest method, which
classically treats nuclei [87, 88]. For the quantum treatment of nuclear dynamics, the multi-
configuration time-dependent Hartree method [89], which expresses a total wave function
as a superposition of Hartree products, has been applied to many phenomena [90-92].
In addition to this, a TD-MCSCF method for general particles have been recently pro-
posed [93]. Since our application of the tSURFF method is based on the equation of motion
of electronic orbitals and the reduced density matrix, it is straightforward to extend our
present approach to other multielectron ab initio methods. The extension to molecular
dynamics considering nuclear motion would enable precise prediction of photoelectron
spectra from complicated processes and lead to a better understanding of experimental
results such as electron-ion coincidence measurements in dissociation of molecules caused
by strong laser pulses.
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Appendix A

Atomic units

The atomic units (a.u.) is a convenient system for atomic physics, which defines the mass
of a electron me, the elementary charge e and the reduced Planck’s constant 7 as 1. In
this system, the units of length and energy are given as the Bohr radius and the Hartree
energy, respectively. We show typical atomic units in Table A.1.

Table A.1: Atomic units

dimension value

length 529 x 10~ m
energy 272 eV

time 0.00242 fs
velocity 2.19 x 10° m/s

electric field ~ 5.14 x 10! V/m
field intensity 3.51 x 10'® W /cm?
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