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Chapter 1

Introduction

1.1 Meaning

In order to create truly intelligent machines, we need to teach them first how to

use Language. Alas, what is the proof that humans themselves are intelligent, if not

the use of Language? By Language I do not mean a specific instantiation of it such as

the Japanese or Spanish languages, nor the modality with which they are used, such

as writing, speaking, signaling, or touching. I mean the ability humans possess for

manipulating symbols capable of communicating meaning.

A symbol, by definition, is something that can be perceived by the human senses –

letters, ideograms, drawings, sounds, currency –, and represents something other than

itself. “Meaning”, however, is harder to define. As Sahlgren (2006) stated:

In one sense, everyone knows what meaning is [. . .] but in another sense,

no one seems to be able to pin down exactly what this “meaning” is.

I offer the following definition:

Meaning is the agreed-upon representation of an aspect of reality shared by

a group of humans.

Note that this agreement is tacit, meaning that humans did not explicitly chose how

to map symbols to reality, and emergent, meaning that it raises from local interactions

between humans, and cannot be controlled in a centralized way.

Indeed, Saussure (2013) defined Language as a system of signs composed of two

elements: the signifier, which he described as a “sound image” or “sound pattern”,

and the signified, corresponding to the psychological concept related to it. He further

suggested that the correspondence between signifier and signified, or symbol and the

aspect it represents, was purely arbitrary. In other words, there is no underlying reason

for any symbol to mean what it means, other than convention and tradition:
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It is because the linguistic sign is arbitrary that it knows no other law than

that of tradition, and because it is founded upon tradition that it can be

arbitrary. (p. 108)

This fact can be further abstracted to the systems we use for creating arrangements

of symbols to create new concepts; not only the symbols are arbitrary but also the rules

used for combining them into more complex ones. A simple example of this is that

there are languages, such as Spanish, that use a Subject-Verb-Object (SVO) ordering

for composing words into sentences, whereas others, such as Japanese, use a Subject-

Object-Verb (SOV) ordering. Humans’ ability to use Language seems to be independent

of the arbitrary symbols and rules used in a specific instance of it.

1.2 Computational Models of Meaning

All this being said, how can we model meaning computationally? Sahlgren (2006)

discusses the vector-space model, in which words are represented as vectors, and the

spatial properties of these vectors represent information about their meaning (seman-

tics). Simple algebraic operations on these vectors allow the creation of sentence and

document representations useful for applications such as information retrieval, word-

sense disambiguation, and machine translation, among others.

In the simplest realization of this model, every known word is represented as a vector

containing 1 in a single dimension, and 0s in every other dimension (this is also called

a one-hot encoding). Different words will be represented by vectors containing a 1 in

different dimensions. However, a drawback of this particular encoding is that the only

semantic information it contains is that different words mean different things.

That is to say, any two different words will be equally different to any two other

words. For example the difference between “house” and “home”, when one-hot encoded,

will be exactly the same as the difference between “house” and “deoxyribose”, despite

the first pair being semantically closer than the second.

Words can be related to other words in different ways. These relationships exist

both when words are considered independently of context (paradigmatic or associative

relationship), and when they are co-present in a sentence (syntagmatic relationship)

(Saussure, 2013).

Paradigmatic relationships relate to the meaning of words themselves. Some exam-

ples include:

• synonymy : Words that have similar meaning, e.g., “ball” and “sphere”.

• antonymy : Words that have opposite meanings, e.g., “happiness” and “sadness”.

• holonymy : Represents a has-a relationship. For example “car” is a holonym of

2
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“wheel” (“wheel” is a meronym of “car”).

• hyponymy : Represents a is-a relationship. For example “cat” is a hyponym of

“mammal” (“mammal” is a hypernym of “cat”).

Syntagmatic relationships, on the other hand, concern changes in meaning rising

from composing single words into sequences of words; for example the role a word

plays in a phrase (part of speech (POS)), or how it interacts with neighboring words

(dependency relations).

One-hot encodings are unable to capture this type of semantic information. How

then can we create vector representations of words that encode a notion of meaning?

Harris (1954) suggested that words with different meaning are used in different ways,

resulting in different distributions:

difference of meaning correlates with difference of distribution. (p. 156)

The previous statement is roughly equivalent to saying that words with similar distri-

butions have similar meanings. This fact is known as the distributional hypothesis.

Methods exploiting the distributional nature of meaning for creating word-space

models, nowadays commonly called word embeddings, evolved from using purely-statistical

methods, from term frequency and inverse document frequency (TF-IDF) (Jurafsky and

Martin, 2018), co-occurrence statistics (Schütze, 1993), to more recent neural mod-

els such as word2vec (Mikolov et al., 2013b) and contextualized word representations

(Peters et al., 2018a).

What all these methods have in common is that they create a mapping between

words and vectors that encode semantic information. The type of vectors they create fall

into two categories: sparse and dense (Jurafsky and Martin, 2018). Classical methods

such as TF-IDF create sparse vectors, with a number of dimensions close to the size of

the vocabulary (tens of thousands), only a few of which are nonzero, and where each

dimension represents a word of the vocabulary. Neural methods, on the other hand,

create dense representations: low-dimensional vectors having around 300 dimensions,

most of which are nonzero, and generally represent an uninterpretable quantity. These

vectors are also called distributed representations.

1.3 Neural Methods and Distributed Representa-

tions

Distributed representations are often defined in opposition to local representations

(Hinton et al., 1986), also called symbolic representations (Goodfellow et al., 2016). In

local representations, each feature represents a single property of the element being

3
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represented; one-hot vectors being the canonical example. On the other hand, in dis-

tributed representations a single feature can represent several properties, and a single

property can be represented by several features. Further, they are called distributed,

because the concept they encode is spread out in a computational network, as opposed

to condensed in a single computing unit.

An obvious disadvantage of preferring distributed rather than local representations

is the added difficulty when trying to interpret what each feature encodes; nowadays

we even have specific workshops devoted to interpreting neural networks and the repre-

sentations they create1. However, the benefits of using distributed representations out-

weighs the downsides. Distributed representations are capable of efficiently using the

processing abilities of neural networks, resulting in the appearance of beneficial emer-

gent properties, such as being able to capture the similarity between concepts according

to the similarity of their representations, and automatically generalizing (Hinton, 1986).

1.4 Broader Impact

The ultimate application of Natural Language Processing (NLP) is arguably an

agent that can communicate naturally. This agent could either work to solve user

requests in a manner similar to how a personal assistant would, or it could pose as

another human for both purpose-driven and open-ended conversations.

Spoken or written communication, however is just an interface for transmitting

knowledge to and from humans. This interface represents the highest level of abstraction

of a hierarchical structure of sorts, since in order to have natural conversations the agent

must first solve a plethora of other problems to simulate understanding and knowledge.

In order for there to be anything to communicate, there have to be mechanisms able to

extract and generate information.

These mechanisms can be broadly categorized as Natural Language Understand-

ing (NLU) and Natural Language Generation (NLG). NLU deals with all the machin-

ery necessary for encoding natural language into a machine-actionable representation,

whereas NLG attempts to solve the problem of decoding a machine representation into

human language.

The latest surge of interest in NLP has been caused, in part, by the migration from

manually engineering these representations, or feature vectors, to manually engineering

the neural architectures capable of learning them. The new ultimate desideratum there-

fore is to gain a deeper understanding of how to create systems capable of producing

good representations.

1https://blackboxnlp.github.io/
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Representations are good when they provide good performance in the end task,

naturally, and when they are invariant to the task at hand, or in other words, gen-

eralizable. The recent success of pre-trained language models is due precisely to this

reason; the contextualized representations they produce are easily adaptable to all kinds

of downstream NLU tasks, while providing unprecedented performance.

These pre-trained language models perform so well in fact, that they are beginning

to uncover how prone models are to latch onto annotation artifacts and biases present

in training data, sparking interest in studying how to prevent this.

Creating better representations would bring NLP systems closer to human perfor-

mance, enabling limitless applications. In their ideal form these systems should be able

to answer questions pertaining to any domain, from the mundane “Is it going to rain

today?” to the more complex “What is the standard prophylactic regime of oral amox-

icillin for dental procedures for male adults allergic to penicillin?” Consumers would

be able to buy through these agents, get recommendations, and find items suiting their

specific needs; while professionals in need of critical data such as medical doctors and

heavy machinery operators would be able to quickly get the information they need.

These systems could also have a wide range of humanitarian applications. Artificial

teachers could teach almost any topic one on one at almost zero cost, while adapting to

the specific needs of each learner. The deepest benefits of such a teacher would be mostly

felt by those without access to good education, giving them better opportunities and

helping them bridge the income gap with those better off. Similarly, these agents would

be deployed in areas with worse access to healthcare to advise health practitioners, and

even non-professionals, in preemptive and immediate emergency care.

Making these systems perform closer to and better than humans would clearly have

a deep economic impact, it would potentially save lives and probably make the world

a better a place.

1.5 Creating Better Representations

Every improvement of a pre-existing machine learning or deep learning model,

whether for NLP, Computer Vision (CV), or any other related field, is accompanied by

an improvement of the representations it relies upon. In fact, one could argue that “cre-

ating better representations” and “improving a deep learning model” mean essentially

the same.

Now the question we face is “how can we create better representations, in the context

of Natural Language Processing?”

5
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Recent Breakthroughs

The deep learning breakthrough that propelled the field into what it is today, the

invention of AlexNet (Krizhevsky et al., 2012), was a paradigm shift concerning the

way of creating representations of images; from manually crafted features, to an end-

to-end Neural Network (NN) architecture possessing a Convolutional Neural Network

(CNN) capable of learning the features by itself. CNNs, among other things, encode

the knowledge that pixels in images do not occur uniformly at random, that local

neighborhoods of pixels are often semantically related, and that representations should

be translation and rotation invariant. If we were to use a NN composed of dense

layers instead, the architecture not only would contain a significantly greater number

of parameters but it would also ignore this knowledge and have to discover it on its

own, for which there are no guarantees. The astonishing result of AlexNet on the

ImageNet Challenge (Russakovsky et al., 2015), was a strong indicator that this new

method, encoding these previously-mentioned inductive biases, was better at creating

image representations than manually engineering them.

A similar breakthrough in NLP was the invention of pre-trained word embeddings.

This breakthrough is often referred to as word2vec2 (Mikolov et al., 2013a,b), and it

consisted on training a NN to predict the context of a word (Skip-gram), or predicting

a word given its context (Continuous Bag of Words (CBOW)). This task resulted

in portable and highly performant word representations that could be used in totally

different domains while still providing significant boosts in performance.

The principle guiding the creation of this system was the Distributional Hypothesis,

or the fact that similar words occur in similar contexts. The same principle guides

the most recent breakthrough in NLP: contextualized word embeddings, also known as

pre-trained language models. These contextualized word embeddings are similar to tra-

ditional word embeddings in the sense that their final product is vector representations

for words, but different in that they rely on a specific encoding architecture, and are

trained for longer in bigger datasets. This makes them perform better than simple word

embeddings, but with the downside of being less portable given their dependence on

a specific implementation (Devlin et al., 2019; Howard and Ruder, 2018; Peters et al.,

2018a; Radford et al., 2019; Yang et al., 2019).

In one of the most popular implementations of an architecture producing contex-

tualized word representations, BERT (Devlin et al., 2019), the model was trained in

a masked language model task, where it had to learn how to predict a masked word

given its context, and whether a sentence followed from another sentence. Even though

2word2vec is the name of the repository containing the code implementing the ideas presented in the
papers. It can be found here: https://code.google.com/archive/p/word2vec/ and is mirrored in
https://github.com/tmikolov/word2vec.

6
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the authors do not mention the Distributional Hypothesis at all, the similarities with

word2vec are clear.

From the inductive biases encoded by CNNs to the Distributional Hypothesis in

word embeddings, the most recent breakthroughs in Deep Learning stem from simple

ideas encoded into specific NN architectures.

Combining Different Modalities in NLP

In an attempt to find general methods for creating better word representations in NLP,

I will investigate the interactions between different modalities for representing words,

and their influence in the performance of several models in diverse tasks.

A “modality” in this context is simply a method for obtaining a computational

representation of a word; in our case a vector representation (word representations

are discussed in detail in Section 2.1). For example, word embeddings are a common

modality for representing words, and are often implemented as a mapping between

words and distributed word representations. I will refer to this modality simply as

the “word modality”. Representations obtained through this modality will be referred

to as “word representations”, or “pre-trained word representations” in case they were

initialized from pre-trained embeddings such as GloVe (Pennington et al., 2014).

Another modality is creating word representations by modeling the interactions

among patterns occurring within words, or in other words, learning word represen-

tations from “subwords”, henceforth the “subword modality”. The simplest instance

of such modality is modeling the interactions between characters, where each charac-

ter representation is stored in a lookup table, and word representations are built by

aggregating them in some way (subword representations are discussed in detail in Sec-

tions 2.4 and 5.3). We will refer to this modality as the “character modality” and

word representations built with it as “character-derived word representations”. Other

instances include modeling morphemes (Botha and Blunsom, 2014), character n-grams

(Bojanowski et al., 2017), byte-pair encoded tokens (Sennrich et al., 2016), wordpieces

(Devlin et al., 2019), or combinations of them (Kudo, 2018).

In this thesis I will focus in studying how character-derived word representations

contribute to model performance in several tasks, first without controlling for the way

in which the character and word modalities are combined; to understand how they

perform in isolation (Chapters 3 and 4). Then I will experiment with different methods

combining both character-derived and pre-trained word representations, and study how

they impact performance in several NLP tasks (Chapters 5 and 6).

Particularly, in Chapter 2 I will explain some concepts necessary for understanding

remainder of this work, separated into background knowledge for word representations,
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modeling interactions between them, and aggregating them for producing sentence rep-

resentations. This chapter will also introduce recent work incorporating the character

modality in several scenarios.

In Chapter 3 I will study whether incorporating character-derived word represen-

tations into the Natural Language Inference (NLI) task has any benefits. We chose

this task because it requires models to capture high-level semantic properties of sen-

tences (Bowman et al., 2015). Therefore it will give us insights about how characters

contribute to the overall meaning representation of a sentence.

In Chapter 4 I will study how an architecture that relies purely on character-derived

word representations, and pre-trained in a self-supervised fashion, performs in implicit

emotion classification with data from Twitter. To perform well in this task, models need

to be capable of handling the inherently noisy data from the microblogging platform

(Aisopos et al., 2012; Mart́ınez-Cámara et al., 2014). This task will show us how well

character-derived representations can help in handling the high number of alternative

spellings, and uncommon words frequently found in this context.

In Chapter 5, I will investigate the role that different ways of combining charac-

ter and word representations play in creating final word and sentence representations.

Specifically, I will study how using gating mechanisms impacts word representation

quality when combining character-derived and pre-trained word representations, mea-

sured with both intrinsic and extrinsic metrics.

Finally, in Chapter 6, I will test the hypothesis that word representations, no mat-

ter the modality for obtaining them, should be similar since they represent the same

underlying meaning. To do so, I will apply adversarial regularization to force character-

derived representations to be similar to pre-trained word representations, and will study

how these new representations perform when compared to traditional ones.

8
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Technical Background

2.1 Word-Level Representations in NLP

Distributed word representations, also known as word embeddings, are vectors as-

sociated to words that encode syntactic and semantic information. This means that

words that have similar meanings will be “close” in the embedding space, according to

a certain distance metric. In GloVe embeddings (Pennington et al., 2014), for example,

the nearest neighbors of the word Japan, according to the cosine distance, are Tokyo,

Japanese, and Korea.

Moreover, arithmetic operations in this space often have an intuitive semantic equiv-

alent:

houses− house + dog ≈ dogs

In other words, the difference between vector representations can encode inflectional

phenomena such as the plural, in the example above, or even more complex semantic

relationships such as gender in the following:

princess− prince + king ≈ queen

There are several methods for obtaining mappings from words to vectors, but I will

focus only in neural-based ones, namely, those that rely in predicting the relationship

between a word and its neighborhood. Mikolov et al. (2013a) proposed explicitly to

learn how to represent words by either predicting a word given its neighborhood, method

which they called CBOW, or by predicting a word given another word in the same

sentence, referred to as Skip-gram. They called this method word2vec1.

The skip-gram model is as follows. Given a vocabulary of words V = {v1, . . . , v|V|}

1https://code.google.com/archive/p/word2vec/.
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and a sequence of words w1, . . . , wn ⊂ V , we want to predict words in the vicinity of wt

for t = 1, . . . , n. Borrowing the notation used by Bojanowski et al. (2017), let us define

Ct as the context of word wt, containing the k previous and k following elements of wt,

such that:

Ct = {wt−k, wt−k+1, . . . , wt−1, wt+1, . . . , wt+k−1, wt+k}

Note that Ct will contain |Ct| = 2k elements. Predicting c ∈ Ct given wt is equivalent to

maximizing the probability p(c|wt). Usually independence is assumed between words,

so we can say that predicting the whole context of word wt amounts to maximizing the

probability:

p(Ct|wt) =
∏
c∈Ct

p(c|wt) (2.1)

Further, computing sums is less expensive than computing multiplications, thus instead

of directly maximizing Eq. (2.1), we instead maximize:

log p(Ct|wt) = log
∏
c∈Ct

p(c|wt) (2.2)

=
∑
c∈Ct

log p(c|wt) (2.3)

Finally, solving the problem of predicting the context of each word in a sequence is

equivalent to maximizing the average log probability of predicting a context Ct given

word wt:

1

n

n∑
t=1

log p(Ct|wt) =
1

n

n∑
t=1

∑
c∈Ct

log p(c|wt) (2.4)

In order to solve this problem we need to parameterize the probability p(c|wt) of

observing a context word c around wt. To do so, we represent each word vi ∈ V as a

parameter vector vi ∈ Rd. Analogously we denote the vector representations of words

wt in a generic sentence as wt ∈ Rd, and context words cj ∈ Ct as cj ∈ Rd. We also

need to define a scoring function s : Rd × Rd → R, such that s(wt, c) returns a single

scalar value as a proxy for the probability p(c|wt). This function is defined as the dot

product of the vector representations of the two words being compared s(wt, c) = wt ·c.
Finally, to make s(wt, c) behave like an actual probability we normalize it by feeding
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it to a softmax function:

p(c|wt) = softmax(s(wt, c)) =
exp(s(wt, c))∑|V|
j=1 exp(s(wj, c))

(2.5)

The problem with this formulation, however, is that obtaining the denominator

requires summing over the whole vocabulary V for each pair (wt, c) which is computa-

tionally intensive. Instead, the problem of predicting context words for a single word is

reframed as a set of binary classification tasks. A word in the vocabulary belongs to the

positive class if it appears in the context of wt, otherwise it belongs to the negative one.

However, using the whole negative class would be, again, quite expensive, so instead

we take a random sample Nt,c of negative examples from the corpus. Then, for each

context word c the binary logistic loss is defined as2:

log(1 + exp(−s(wt, c))) +
∑

n∈Nt,c

log(1 + exp(s(wt,n))) (2.6)

Therefore for each context word associated with wt the logistic binary loss will be:

∑
c∈Ct

log(1 + exp(−s(wt, c))) +
∑

n∈Nt,c

log(1 + exp(s(wt,n))) (2.7)

Finally, defining the binary logistic loss function as l(x) = log(1 + e−x), the overall loss

for the corpus is:

|V|∑
t=1

[∑
c∈Ct

l(−s(wt, c)) +
∑

n∈Nt,c

l(s(wt,n))

]
(2.8)

Minimizing Eq. (2.8) will thus make the word representations of words appearing fre-

quently in similar contexts similar, and those of words appearing in different contexts

dissimilar.

2.2 Modeling Interactions Between Words

The method described in Section 2.1 produces word representations based on the

distributional hypothesis. That is, they encode semantic information as a by-product

of encoding information about the neighborhoods in which words are often found. In

this section we present the most widely-used methods for modeling syntagmatic rela-

tionships between words, i.e., the changes in meaning when in presence of other words.

2We make abuse of notation to refer to the vector representation of n ∈ Nt,c as n ∈ Nt,c.

11



Chapter 2

2.2.1 Recurrent Neural Networks

Plain RNN

Recurrent Neural Networks (RNNs) are useful for modeling dependencies between ele-

ments of a sequence. For each element of the sequence they take two inputs: the current

element to be modeled and the output of the previous time step. By repeating this

operation for each element, this network effectively learns how to accumulate knowledge

about the elements in the sequence.

Elman (1990), proposed allowing time to be represented by the effect it has on

processing the elements of the input sequence, instead of treating it as an additional

dimension of the input. Among other things, this formulation can obtain comparable

representations of variable-length inputs (such as sentences).

Assume we have a sequence of words w1, . . . , wn, represented by a sequence of vectors

x1, . . . ,xn where xi ∈ Rdin , ∀i. The Elman RNN is defined as:

ht = σh(W hht−1 +Uhxt + bh) (2.9)

(2.10)

Where W h ∈ Rdh×dh and Uh ∈ Rdh×din are trainable weight matrices; bh ∈ Rdh is

a trainable bias vector; and σh is an activation function. The initial state vector h0

is a hyperparameter of the model chosen by the user. The resulting state vector ht ∈
Rdh for word wt encodes paradigmatic information represented by xt and syntagmatic

information from past elements represented by ht−1. From this it follows that hn

encodes semantic information for the whole sentence.

Long Short-Term Memory Network

A downside of plain RNNs is that they do not perform well at modeling long-term depen-

dencies between elements of the sequence. Further, these are difficult to train because of

vanishing and exploding gradients when performing Back Propagation Through Time

(BPTT). Hochreiter and Schmidhuber (1997) proposed a variation on the previously-

described RNN model precisely to address this issue. They called their architecture

“Long Short-Term Memory Networks” (LSTMs).

At an abstract level, LSTMs receive and return elements in the same format as

RNNs. They receive a sequence of vectors as input, and return a sequence of vectors

encoding both semantic information about each element and information about their

interactions as output. Specifically, they follow the following equations:

12
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gt = tanh(W ght−1 +U gxt + bg) (2.11)

it = σ(W iht−1 +U ixt + bi) (2.12)

ft = σ(W fht−1 +U fxt + bf ) (2.13)

ct = ft � ct−1 + it � gt (2.14)

ot = σ(W oht−1 +U oxt + bo) (2.15)

ht = ot � tanh(ct) (2.16)

(2.17)

Where W i,W f ,W g,W o ∈ Rdh×dh , and U i,U f ,U g,U o ∈ Rdh×din are trainable weight

matrices; bi, bf , bg, bo ∈ Rdh are trainable bias vectors; and � corresponds to the

element-wise product of vectors (Hadamard product). The sigmoid (σ) and hyperbolic

tangent (tanh) functions are applied element-wise to each of their arguments.

gt ∈ Rdh (Eq. (2.11)) corresponds to the same vector obtained by a plain RNN mod-

ulo the activation function, as shown in Eq. (2.9). it and ft ∈ [0, 1]dh , called input and

forget gates, correspond to sigmoidal gates controlling how much the previous cell state

ct−1, and current pre-gated state gt, should influence the current cell state ct ∈ Rdh ,

conditioned on the current input element xt and the previous output ht−1 (Eqs. (2.12)

to (2.14)). ot ∈ [0, 1]dh corresponds to a gate for controlling how much of the activated

cell state tanh(ct) should be returned (Eqs. (2.15) and (2.16)). The LSTM will finally

return ht for word wt, which will correspond to a word representation roughly repre-

senting the same as one produced by a plain RNN, with the added guarantees of being

easier to train, and capable of modeling long-range dependencies.

Bidirectional LSTM

At each time step, a normal LSTM only encodes information from previous elements,

that is, ht encodes information from h1, . . . ,ht−1. However some NLP applications,

such as dependency parsing, require knowledge about future elements in the sequence.

To achieve this goal Graves and Schmidhuber (2005) proposed the Bidirectional Long

Short-Term Memory Network (BiLSTM).

A BiLSTM (Graves et al., 2013; Graves and Schmidhuber, 2005), is composed of two

LSTMs, one that reads the input sequence from left to right (i.e., from w1 to wn), and

produces the representations
−→
h1, . . . ,

−→
hn, and another that reads the input from right to

left (i.e., from wn to w1), and produces
←−
h1, . . . ,

←−
hn, where each

←−
ht encodes information

about
←−−
ht+1, . . . ,

←−
hn. The former is often referred to as forward LSTM, and the latter

as backward LSTM. The final output of the BiLSTM will be the concatenation of the

13
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forward and backward outputs for each time step: ht = [
−→
ht;
←−
ht], which will ensure that

each ht encodes information from both the past and future elements of the sequence.

2.2.2 Convolutional Neural Networks

Another way to encode sequence information into each sequence element is through the

use of CNNs. Collobert and Weston (2008) proposed using a specific instance of CNN

called Time Dilated Neural Network (TDNN) (Waibel et al., 1989), for achieving this.

The output of a TDNN at time t is defined as:

ht =
n−t∑

j=1−t

Lj · xt+j (2.18)

Where · corresponds to the dot product between vectors, andLj ∈ Rdh×din(−n ≤ j ≤ n)

is a trainable parameter matrix (L ∈ R2n×dh×din is a trainable parameter tensor).

The previous definition can be constrained by defining a kernel size or window size

w to consider only a limited vicinity of each element instead of the whole sequence at

each time step. Imposing a window size implies enforcing the following conditions:

|j| > (w − 1)

2
=⇒ Lj = 0 (2.19)

⇐⇒ −(w − 1)

2
≤ j ≤ (w − 1)

2
=⇒ Lj 6= 0 (2.20)

(2.21)

Which simplifies the convolution operation (Eq. (2.18)) to:

ht =
∑

|j|≤ (w−1)
2

Lj · xt+j (2.22)

For example, setting w = 3 would result in:

ht =
∑
−1≤j≤1

Lj · xt+j = L−1 · xt−1 +L0 · xt +L1 · xt+1 (2.23)

In general, setting a window size of w will result in a parameter tensor L ∈ Rw×dh×din .

The final output of the TDNN will be analogous to that of the RNNs: a sequence of

vectors h1, . . . ,hn encoding syntagmatic and paradigmatic information for each word

w1, . . . , wn.
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2.3 Sentence-level Representations

It is also possible to represent whole sentences as vectors that encode a notion of

meaning. As we saw in Section 2.2, RNNs and CNNs are useful for imbuing word-level

vector representations with information about their context. However, the resulting

sequence of vector representations will have a variable length depending on the amount

of elements in the sequence. Dense (or classical) NNs though, are not able to deal with

inputs of varying length (Collobert and Weston, 2008), thus the next question to ask is:

How can we combine word representations to form meaningful sentence representations

of fixed length?

Assuming we have a sequence of words w1, . . . , wn, and their corresponding vector

representations h1, . . . ,hn where hi ∈ Rd ∀i, there are several ways in which we can

aggregate or pool them. The most straightforward is to use one of the mean, sum

or max pooling operations over the sequence dimension. Another option when using

unidirectional RNNs is to take the last hidden state hn for representing the whole

sentence. When using bidirectional RNNs the common practice is to concatenate the

last hidden states of the forward and backward passes: hn = [
−→
hn;
←−
h1]. Using any of

these methods will return a single vector h ∈ Rd representing the whole sentence.

To illustrate how this can be achieved we will explain the work by Conneau et al.

(2017), who attempted to create a universal sentence encoder by answering the following

questions:

1. What is the best neural network architecture for achieving such task?

2. How should this network be trained?

Being universal means being general enough to be trained in a single dataset and

performing well tasks and datasets for which it was not explicitly trained. They tested

4 different architectures trained on the Natural Language Inference task and showed

that a BiLSTM followed by a max-pooling layer trained on a combination of SNLI and

MultiNLI datasets performed better than the other methods.

In the following sections we will first introduce the NLI task and later present the

sentence encoding architectures that Conneau et al. (2017) tested.

2.3.1 The Natural Language Inference Task

NLI, also known as Recognizing Textual Entailment (RTE), is a task designed for

testing the ability of models to capture high level semantic properties of sentences. It

consists in predicting whether a premise sentence and a hypothesis sentence are related

by entailment, neutral, or contradiction relationships. If the hypothesis can be inferred

from the premise we say that the premise entails the hypothesis. If the premise being
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true means that the hypothesis cannot be true, then they contradict each other. If the

truth value of the premise is independent of that of the hypothesis we say they are

neutral to each other. Examples for each relationship include:

Entailment:

Premise: At the other end of Pennsylvania Avenue, people began to line up for

a White House tour.

Hypothesis: People formed a line at the end of Pennsylvania Avenue.

Neutral

Premise: The new rights are nice enough.

Hypothesis: Everyone really likes the newest benefits.

Contradiction

Premise: This site includes a list of all award winners and a searchable database

of Government Executive articles.

Hypothesis: The Government Executive articles housed on the website are not

able to be searched.

To perform well at the NLI task a model has to be capable of capturing sentence

meaning, which in turn requires handling lexical ambiguity, coreference, belief, tense

and modality, among other phenomena (Williams et al., 2018). The SNLI dataset3

(Bowman et al., 2015), was the first large scale NLI dataset, containing 570,000 exam-

ples; two orders of magnitude larger than the other NLI datasets at the time, making

it ideal for training and testing NN models.

SNLI was later supplemented by MultiNLI4 (Williams et al., 2018) which was created

from several sources: fiction novels, government-related documents, magazine articles,

telephone conversation transcripts, and travel guides. Moreover, it comes with two

validation datasets, the matched validation dataset containing examples from domains

matching the training data, and the mismatched validation set containing examples

from five different domains: A 9/11 report, face-to-face conversation transcriptions,

letters, non-fiction works, and articles on linguistics.

Additionally, the XNLI5 dataset (Conneau et al., 2018b), was recently released as

an additional validation set for MultiNLI for testing the cross-lingual abilities of NLI

models.

Other recent examples include the dataset presented by Lai et al. (2017) where the

task is to predict the relationship between several premises and a single hypothesis6,

3https://nlp.stanford.edu/projects/snli/
4https://www.nyu.edu/projects/bowman/multinli/
5https://www.nyu.edu/projects/bowman/xnli/
6At the time of writing, however, almost two years after the paper was published, the dataset is still
not available.
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and the SciTail dataset (Khot et al., 2018), created from multiple-choice science-related

questions.

Predating SNLI, there was the SICK dataset7 (Marelli et al., 2014), created from

the Flickr-8k image caption dataset8 (Rashtchian et al., 2010), and the MSR video

description dataset9. Also worth mentioning: SNLI was created from the extension to

Flickr-8k, the Flickr-30k dataset (Young et al., 2014).

2.3.2 Architectures

Conneau et al. (2017) performed their universal sentence encoder study on MultiNLI.

This section briefly describes the architectures they experimented with.

LSTM and GRU

The first and simplest models Conneau et al. (2017) trained were an LSTM and a

Gated Recurrent Unit (GRU) (Cho et al., 2014), where the final sentence representation

corresponded to the last hidden vector hn for a sequence of length n. They also tried

using a Bidirectional Gated Recurrent Unit (BiGRU), which is analogous to a BiLSTM,

and represented each sentence as the concatenation of the last forward and backward

hidden states (see. Section 2.2.1 on BiLSTMs).

GRUs rely on the same gating mechanism concept found in LSTMs. They are

defined by the following equations:

rt = σ(W rht−1 +U rxt + br) (2.24)

zt = σ(W zht−1 +U zxt + bz) (2.25)

gt = tanh(W g(rt � ht−1) +U gxt + bg) (2.26)

ht = zt � ht−1 + (1− zt)� gt (2.27)

Where the output at time step t, ht, can be interpreted as containing information

analogous to that produced by an LSTM.

BiLSTM with Mean and Max Pooling

This architecture is equivalent to the BiLSTM described in Section 2.2.1. To create a

single sentence representation from the word-level outputs h1, . . . ,hn returned by the

BiLSTM, Conneau et al. (2017) tried max-pooling and mean-pooling them. Assuming

7http://clic.cimec.unitn.it/composes/sick.html
8http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
9https://www.cs.york.ac.uk/semeval-2012/task6/index.php%3Fid=data.html
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we concatenate the word representations into a matrix H = [h1; . . . ;hn] ∈ Rdh×n,

max-pooling corresponds to picking the maximum element across each row. In other

words, each element sj of the sentence representation s ∈ Rdh will be defined as:

sj = max(Hj), where Hj ∈ Rn is the j-th row of H . Mean-pooling is analogous:

sj = mean(Hj).

Self-attentive Network

The self-attentive network uses a BiLSTM to produce context-aware word representa-

tions h1, . . . ,hn, and then defines the following operations for obtaining the sentence

representation s:

gt = tanh(W ght + bg) (2.28)

zt = gtu (2.29)

αt =
exp(zt)∑
j exp(zj)

⇐⇒ α = Softmax(z) (2.30)

s =
∑
t

αtht (2.31)

Where W g ∈ Rdu×dh , bg ∈ Rdu and u ∈ Rdu are parameters, and α ∈ [0, 1]n can

be interpreted as a probability distribution over the input sequence. Consequently

this architecture learns a weighting scheme for each element of the input sequence

conditioned on the other elements.

Hierarchical CNN

This architecture stacks L CNN layers (see Section 2.2.2), obtaining a representation

hl
t for each element of the sequence l = 1, . . . , L. Each layer obtains a representation

H l = [hl
1, . . . ,h

l
n] ∈ Rdl×n which is later max-pooled for obtaining an aggregated rep-

resentation of the input: hl = max(H l) ∈ Rdl . The final sentence representation is the

concatenation of these aggregated input representations: s = [h1, . . . ,hL] ∈ RLdl .

Conneau et al. (2017) concluded that the BiLSTM with max-pooling was the best

architecture overall. They called this model InferSent. I used this sentence encoding

architecture throughout the work leading to the writing of this manuscript given its

proven superior performance.
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2.4 Subword-Level representations

Similar to how CNNs and LSTMs can be used for modeling contextual word informa-

tion within sentences, they can also be used to model contextual subword information

within words. The specific type of subword to use for a given problem or dataset is not

trivial to choose, and is in and of itself an unsolved research problem (Kudo, 2018).

Besides representing phenomena occurring within words, subwords also allow us to

represent words not seen during training. These unknown words are often referred

to as Out-of-Vocabulary (OOV) or UNK words. Throughout this thesis we use both

terms interchangeably. Below we describe a few works at the forefront of subword-level

representations research.

Wu et al. (2016) use what they call “wordpieces,” a set of common sub-word units,

based on previous work by Schuster and Nakajima (2012). They claim their method

provides a good balance between the flexibility of character-based models and the ef-

ficiency of word-based models, and is capable of naturally handling the translation of

rare words, resulting in overall better performance.

Sennrich et al. (2016) propose encoding OOV words, and rare words as sequences

of subword units (byte-pair encoding). They claim subword models achieve higher

accuracy than large-vocabulary models and back-off dictionaries, and are capable of

generating words not seen at training time. Further, these models are able to learn

transliteration and compounding from subword representations.

Vulić et al. (2017) use a post-processing system (ATTRACT-REPEL) for refining

word vectors based on a simple set of morphological constraints. They were able to

beat the state of the art in the intrinsic evaluation task of semantic similarity of sev-

eral pre-trained word vectors by using hand-crafted rules, and obtained good results

in the downstream task of Dialogue State Tracking. Their method differs from the

previously-mentioned works in that the Morph-fitting method is decoupled from the

training process by incorporating morphological knowledge in the form of linguistic

constraints, obtained from inflectional and derivational rules.

Avraham and Goldberg (2017) show that the base-form of words is related to se-

mantic aspects of word similarity in embedding space, whereas affixes are related to

their morphological similarity. Additionally they show that there is a trade-off between

morphological and semantic performance.

There are also hybrid systems that combine both word and character-level represen-

tations. However, there is no theory or experimental data supporting any specific way

of combining both hierarchies. For example Luong and Manning (2016) fall back to

the last hidden state of a character-level RNN when they encounter an unknown word,

thus ignoring character-level information for common words. Others just add the vector
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representations at both hierarchies (Bojanowski et al., 2017; Botha and Blunsom, 2014)

without justifying this choice.

In Section 5.3 we provide a more formal explanation of how to combine character

subwords with word representations.
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The Importance of Characters and

Self-Attention in the NLI Task

3.1 Abstract

In this chapter we tackle the task of Natural Language Inference. We use an archi-

tecture that separately encodes a pair of sentences into variable-length representations

with a BiLSTM. Then, it creates a fixed-length raw representation by means of simple

aggregation functions, which are later refined with a self-attention mechanism. Finally,

it combines the representations for both the premise and hypothesis into a single vector

to be classified. We also experimented with adding character-level information by con-

catenating character-derived and pre-trained word representations, however this proved

not to be very helpful.

Our best model we obtained test accuracies of 72.057% and 72.055% respectively

in the matched and mismatched evaluation tracks of the RepEval 2017 shared task,

outperforming an LSTM baseline, and obtaining performances similar to a model that

relies on shared information between sentences. When using an ensemble both accura-

cies increased to 72.247% and 72.827% respectively. Code for replicating this chapter

is available at https://github.com/jabalazs/repeval_rivercorners.

3.2 Introduction

The task of Natural Language Inference (NLI) aims at characterizing the semantic

concepts of entailment and contradiction, and is essential in tasks ranging from infor-

mation retrieval to semantic parsing to commonsense reasoning, as both entailment

and contradiction are central concepts in natural language meaning (Katz, 1972; van

Benthem, 2008).
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The aforementioned task has been addressed with a variety of techniques, including

those based on symbolic logic, knowledge bases, and neural networks. With the advent

of deep learning techniques, NLI has become an important testing ground for approaches

that employ distributed word and phrase representations, which are typical of these

models.

In this chapter we work exclusively with the MultiNLI dataset (Williams et al.,

2018). As mentioned in Section 2.3.1, this dataset features two evaluation sets; a

standard in-domain (matched) evaluation in which the training and test data were

drawn from the same sources, and a cross-domain (mismatched) evaluation in which

the training and test data differ substantially. This cross-domain evaluation is aimed at

testing the ability of models to learn representations of sentence meaning that capture

broadly useful features.

3.3 Proposed Model

Our proposed model draws inspiration from intra-sentence attention models for

sentence representation such as the ones described by Liu et al. (2016) and Lin et al.

(2017). In particular, our architecture is based on the notion that it is usually necessary

to re-read certain portions of text in order to obtain a comprehensive understanding of

it. To model such phenomenon, we rely on an attention mechanism able to iteratively

obtain a richer and more expressive version of a raw sentence representation.

The architecture is composed of 5 layers mapping a premise and a hypothesis to one

of the three characteristic classes of the NLI task. The Word Representation Layer in

charge of creating vector representations from character-derived and pre-trained word

embeddings; the Context Representation Layer modeling the interactions between word

representations; the Pooling Layer tasked with creating a sentence representations from

the contextualized representations; an Inner Attention Layer for refining these; an Ag-

gregation Layer for combining both the premise and hypothesis representations into a

single pair representation vector; and finally a Dense Layer projecting this vector into

three dimensions corresponding to the size of the classification space. Below we describe

each layer in more detail.

Word Representation Layer: This layer is in charge of generating a comprehensive

vector representation of each token for a given sentence. We construct this representa-

tion based on up to two basic components:

• Pre-trained word embeddings: We take pre-trained word embeddings and use

them to generate a raw word representation. This can be seen as a simple lookup-

layer that returns a word vector for each provided word index.
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• Character embeddings: We generate a character-derived representation of each

word, which we concatenate to the pre-trained word vectors. We start by gen-

erating a randomly initialized character embedding matrix C. Then, we split

each word into its component characters, get their corresponding character em-

bedding vectors from C and feed them into a unidirectional LSTM (Hochreiter

and Schmidhuber, 1997). We then choose the last hidden state returned by the

LSTM as the fixed-size character-based vector representation for each token. Our

embedding matrix C is trained with the rest of the model (Wang et al., 2017).

Context Representation Layer: This layer complements the vectors generated by

the Word Representation Layer by incorporating contextual information into them. To

do this, we utilize a BiLSTM that reads the embedded sequence and returns the hidden

states for each time step. Formally, let S be a sentence such as S = {x1, . . . ,xn}, where

each xi is an embedded word vector as returned by the Word Representation Layer.

The contextualized word representation hi for each time step i = 1, . . . , n is calculated

as follows:

−→
h i = LSTM(xi,

−→
h i−1) (3.1)

←−
h i = LSTM(xi,

←−
h i+1) (3.2)

hi = [
−→
h i;
←−
h i] (3.3)

Where
−→
h i is the forward contextual vector representation of xi,

←−
h i the backward one,

and [ · ; · ] represents the concatenation of two vectors. The output of this layer is a

variable-length sentence representation for both the premise and hypothesis. We then

define a pooling layer in charge of a generating a raw fixed-size representation of each

sentence.

Pooling Layer: This layer is in charge of generating a crude sentence representation

vector by reducing the sequence dimension using one of four simple operations, all of

which are fed the context-aware token representations {hi}ni=1 obtained previously:
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h̄ =
1

n

n∑
i=1

hi (3.4)

h̄ =
n∑

i=1

hi (3.5)

h̄ = [
−→
h n;
←−
h 1] (3.6)

h̄ = max
i=1,...,n

hi (3.7)

These operations correspond to the mean of the word representations (Eq. (3.4)), their

sum (Eq. (3.5)), the concatenation of the last hidden state for each direction (Eq. (3.6)),

and the maximum one (Eq. (3.7)).

Inner Attention Layer: To refine the representations generated by the pooling strat-

egy, we use a global attention mechanism (Luong et al., 2015; Vinyals et al., 2015) that

compares each context-aware token representation hi with the raw sentence represen-

tation h̄. Formally,

ui = v> tanh(W [h̄;hi]) (3.8)

αi =
expui∑n
k=1 expuk

(3.9)

h̄′ =
n∑

i=1

αihi (3.10)

Where both v and W are trainable parameters and h̄′ is the refined sentence represen-

tation1.

Aggregation Layer: To produce a single pair representation from the premise and

hypothesis representations we apply the sentence matching mechanism proposed by

Mou et al. (2015). Concretely, we concatenate the representations of the premise h̄′P
and hypothesis h̄′H in addition to their element-wise product (Eq. (3.11)) and their

absolute difference (Eq. (3.12)), obtaining the vector r (Eq. (3.13)).

1The refined sentence representation h̄′ for both premise and hypothesis is the final representation in
which both are treated as separate entities. The representations produced by our best-performing
model are available in https://zenodo.org/record/825946.
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hmul = h̄′P � h̄′H (3.11)

hdif = |h̄′P − h̄′H | (3.12)

r = [h̄′P ; h̄′H ;hmul;hdif ] (3.13)

Dense Layer: Finally, r is fed to a fully-connected layer whose output is a vector con-

taining the logits for each class, which are then fed to a softmax function for obtaining

their probability distribution. The class with the highest probability is chosen as the

predicted relationship between premise and hypothesis. The model is trained through

backpropagation by minimizing the Cross Entropy between the output distribution and

the real class distribution.

3.4 Experiments

To make our results comparable to those obtained by similar models we randomly

sampled 15% of the SNLI corpus (Bowman et al., 2015) and added it to the MultiNLI

corpus.

We used the pre-trained 300-dimensional GloVe vectors trained on 840B tokens (Pennington

et al., 2014). These embeddings were not fine-tuned during training and unknown

word vectors were initialized by randomly sampling from the uniform distribution in

(−0.05, 0.05).

Each character embedding was initialized as a 20-dimensional vector and the character-

level LSTM output dimension was set to 50. The word-level LSTM output dimension

was set to 300, which means that after concatenating word-level and character-level rep-

resentations the word vectors for each direction are 350-dimensional (i.e., hi ∈ R700).

For the Inner Attention Layer we defined the parameter W as a square matrix

matching the dimension of the concatenated vector [h̄;hi] (i.e., W ∈ R1400×1400),

and v as a vector matching the same dimension (i.e., v ∈ R1400). Both W and v

were initialized by randomly sampling from the uniform distribution on the interval

(−0.005, 0.005).

The final layer was created as a 3-layer Multi-Layer Perceptron (MLP) with 2000

hidden units each, and with ReLU activations (Nair and Hinton, 2010).

Additionally, we used the rmsprop optimizer2 with an initial learning rate of 0.001.

We applied dropout of 0.25 only between the layers of the MLP.

2This optimizer has no associated peer-reviewed publication, and was first proposed in one of Geoffrey
Hinton’s lectures: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf
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Further, we found out that normalizing the capitalization of words by making all

characters lowercase, and transforming numbers into a specific numeric token improved

the model’s performance while reducing the size of the embedding matrix. We also

ignored the sentence pairs with a premise longer than 200 words during training (for

improved memory stability), and those without a valid label (“-”) both during training

and validation.

Since one of the most conceptually important parts of our model was the raw sen-

tence representation created in the Pooling Layer, we used four different methods for

generating it (Eqs. (3.4) to (3.7)). Results are reported in Table 3.2.

We also tried using other architectures that rely on some variant of “inner” attention

such as the self-attentive model proposed by Lin et al. (2017) and the co-attentive model

by Xiong et al. (2016), but our preliminary results were not promising so we did not

attempt to fine-tune them.

All the experiments were repeated without using the character modality (i.e., hi ∈
R600), to evaluate their contribution to overall performance.

3.5 Results

In Table 3.1 we report the accuracies obtained by our best model in both matched

(first 5 genres) and mismatched (last 5 genres) development sets. We can observe that

our implementation performed like ESIM overall, however ESIM relies on the parse tree

of the input sentences, and on a TreeLSTM (Tai et al., 2015), to process them (Chen

et al., 2017; Williams et al., 2018), while ours works in a more constrained setting, only

with access to the their surface representations.

It is also worth noting that the ESIM model presented in table Table 3.1, was

trained in MultiNLI only, while ours was trained in MultiNLI with an added slice of

SNLI, so both columns are not perfectly comparable. However, Williams et al. (2018)

also reported the overall performance of an ESIM model trained with this setting: it

obtained 72.4% and 71.9% in the matched and mismatched setting respectively.

We picked the best model based on the best validation accuracy score obtained

on the matched development set (72.257%). We submitted these predictions to the

RepEval 2017 competition (Nangia et al., 2017), and obtained test accuracies of 72.057%

in the matched and 72.055% in the mismatched settings, on private test sets for each

setting. Additionally, we created an ensemble by training 4 models as described earlier

but initialized with different random seeds. The prediction was made by averaging

the probability distributions returned by each model and then picking the class with

the highest probability for each example. This improved our test results to 72.247%
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Genre CBOW ESIM InnerAtt

Fiction 67.5 73.0 73.2
Government 67.5 74.8 75.2
Slate 60.6 67.9 67.2
Telephone 63.7 72.2 73.0
Travel 64.6 73.7 72.8

Avg. Matched Acc. 64.8 72.3 72.3

9/11 63.2 71.9 70.5
Face-to-face 66.3 71.2 74.5
Letters 68.3 74.7 75.4
Non-fiction 62.8 71.7 71.5
Linguistics 62.7 71.9 69.5

Avg. Mismatched Acc. 64.7 72.3 72.3

MultiNLI Overall 64.7 72.3 72.3

Table 3.1 – Validation accuracies (%) for our best model broken down by genre. Both CBOW and
ESIM results are reported as in (Williams et al., 2018).

(+0.19%) in the matched, and to 72.827% (+0.77%) in the mismatched evaluation

tracks.

Effect of Pooling Method and Character Modality

To assess the importance of character-derived word representations and pooling mech-

anisms, we performed an ablation study on these components. We can see in Table 3.2

that that both the mean method, and picking the last hidden state for both directions

performed slightly better than the two other strategies, however at 95% confidence we

cannot assert that any of these methods is statistically different from one another.

This could be interpreted as any of the four methods being good enough for cap-

turing the overall meaning of the sentence, and letting the attention mechanism do

the heavy lifting. As future work we intend to test these four strategies without the

presence of attention to see whether it really plays an important role in this task or

whether the predictive power lies within the sentence matching mechanism.

Another interesting result, as shown by Tables 3.2 and 3.3, is that the model seemed

to be insensitive to the usage of character embeddings. To test whether this effect was

tied to our architecture or whether it was a more general trend we added character-

derived word representations to a reimplementation of the ESIM model3, without de-

pending on the sentences’ parse trees, but sharing information between premise and

hypothesis. Without the character modality it obtained matched and mismatched ac-

3https://github.com/coetaur0/ESIM
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Method w/o. chars w. chars

mean 71.3 ± 1.2 71.3 ± 0.7
sum 70.7 ± 1.0 70.9 ± 0.8
last 70.9 ± 0.6 71.0 ± 1.2
max 70.6 ± 1.1 71.0 ± 1.1

Table 3.2 – Mean matched validation accuracies (%) broken down by type of pooling method and
presence or absence of character embeddings. Confidence intervals are calculated at 95% confidence
over 10 runs for each method.

Method w/o. chars w. chars

mean 72.3 71.8
sum 71.6 71.6
last 71.4 72.1
max 71.1 71.6

Table 3.3 – Best matched validation accuracies (%) obtained by each pooling method in presence
and absence of character embeddings.

curacies of 75.94% and 75.95% respectively. After adding the character-derived repre-

sentations, these accuracies slightly increased to 76.10% (+0.16%) and 76.15% (+0.2%)

respectively. These results show that character-level representations do carry informa-

tion useful for the task at hand, but their usefulness might be dependent on the down-

stream modules of the architecture. A possible explanation for this is that English is

not a morphologically rich language, hence does not contain meaningful patterns at

the subword level, and therefore complex architectures at the word level are enough for

capturing syntactic and semantic information.

3.6 Conclusions and Future work

We presented a model for tackling the NLI task. Despite being conceptually simple

and not relying on parse trees for encoding each sentence, our implementation achieved

results as good as the ESIM model.

Future venues for improvement include incorporating part-of-speech embeddings by

concatenating them with the pre-trained word embeddings as we did with the character

embeddings. Incorporating pre-trained character embeddings could also have a posi-

tive impact in performance. We also did not perform an exhaustive hyperparameter

search, and think results could be further improved by finding a better hyperparameter

configuration. Specifically, we did not try using different types of attention; for this

implementation we used the concat scoring scheme (Eq. (3.8)), as described by Luong

et al. (2015), but there are several others that could provide better results.

Finally, we were surprised at character embeddings not providing performance im-
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provements in this task with our architecture, despite our preliminary observations that

they did improve results in a different model (Wang et al., 2017). This might be due

to the fact that the architecture following the character-aware word-encoding mecha-

nism in our model is not sophisticated enough to exploit character-level information.

Indeed, later experiments showed that enhancing the ESIM model with characters did

provide performance improvements in MultiNLI, suggesting that benefits provided by

the character modality might be dependent on specific architectural details.

In the next chapter we study another architecture exploiting the character modality,

pre-trained in a self-supervised fashion, and evaluated in the task of implicit emotion

classification.

29



Chapter 4

Contextualized Word

Representations for Predicting

Implicit Emotion

4.1 Abstract

In this chapter we introduce an architecture for tackling the task of implicit emo-

tion recognition. The system is composed of a single pre-trained ELMo layer for ob-

taining word representations, a Bidirectional Long-Short Memory Network BiLSTM

for enriching word representations with context, a max-pooling operation for creating

sentence representations from them, and a Dense Layer for projecting the sentence

representations into label space. Our model obtained 69.23% validation accuracy. We

submitted our system to the WASSA 2018 Implicit Emotions Shared Task (IEST) and

obtained an f1-score of 71.05 on a held-out test set, with an ensemble of 6 models,

obtaining 2nd place out of 30 teams. Code for replicating this chapter is available at

https://github.com/jabalazs/implicit_emotion.

4.2 Introduction

Although the definition of emotion is still debated among the scientific community,

the automatic identification and understanding of human emotions by machines has

long been of interest in computer science. It has usually been assumed that emotions

are triggered by the interpretation of a stimulus event according to its meaning.

As language usually reflects the emotional state of an individual, it is natural to

study human emotions by understanding how they are reflected in text. We see that

many words indeed have affect as a core part of their meaning, for example, dejected
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and wistful denote some amount of sadness, and are thus associated with sadness. On

the other hand, words like failure and death, despite not having affect in themselves,

are usually used in sad contexts and thus could be considered as words conveying sad

affect.

The task of automatically recognizing emotions from text has recently attracted the

attention of researchers in Natural Language Processing. This task is usually formalized

as the classification of words, phrases, or documents into predefined discrete emotion

categories. Some approaches have also aimed at predicting to which degree an emotion

is expressed in text (Mohammad and Bravo-Marquez, 2017).

In light of this, the WASSA 2018 Implicit Emotions Shared Task (Klinger et al.,

2018) was proposed to help find ways to automatically learn the link between situations

and the emotion they trigger. The task consisted in predicting the emotion of a masked

word in the context of a tweet. Masked words, or trigger-words, included the terms

“sad”, “happy”, “disgusted”, “surprised”, “angry”, “afraid” and their synonyms, and

the task was to predict the emotion they conveyed, specifically sadness, joy, disgust,

surprise, anger and fear.

From a machine learning perspective, this problem can be seen as sentence classi-

fication, in which the goal is to classify a sentence, into one of several categories. In

the case of IEST, the problem is specially challenging since tweets contain informal

language, and use of emoji, hashtags and username mentions.

Our system did not require manual feature engineering and relied on minimal use

of external data. Concretely, our approach is composed of a single pre-trained Embed-

dings from Language Models (ELMo) layer for encoding words (Peters et al., 2018a), a

BiLSTM, for modeling word context, a max-pooling operation for aggregating contextu-

alized word representations into sentence representations, and finally a Dense Layer for

projecting sentence representations into label space. To the best of our knowledge our

system was the first to utilize ELMo (or any pre-trained language model), for implicit

emotion recognition.

4.3 Proposed Approach

4.3.1 Preprocessing

As our model is purely character-based, we performed little data preprocessing. Ta-

ble 4.1 shows the special tokens found in the datasets, and how we substituted them.

Furthermore, we tokenized the text using a variation of the twokenize.py1 script, a

1https://github.com/myleott/ark-twokenize-py
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Figure 4.1 – Proposed architecture.

Original Replacement

[#TRIGGERWORD#] TRIGGERWORD

@USERNAME USERNAME

[NEWLINE] NEWLINE

http://url.removed URL

Table 4.1 – Preprocessing substitutions.

Python port of the original Twokenize.java (Gimpel et al., 2011). Concretely, we cre-

ated an emoji-aware version of it by incorporating knowledge from an emoji database,2

which we slightly modified for avoiding conflict with emoji sharing unicode codes with

common glyphs used in Twitter,3 and for making it compatible with Python 3.

4.3.2 Architecture

Figure 4.1 summarizes our proposed architecture. Our input is based on ELMo by

Peters et al. (2018a). ELMo uses a set of convolutional neural networks to extract

features from character embeddings, and builds word vectors from them. These are

then fed to a multi-layer Bidirectional Language Model (BiLM) which returns context-

sensitive vectors for each input word.

We used a single-layer BiLSTM as context fine-tuner on top of the pre-trained

ELMo encoder, and then max-pooled the returned hidden states to form the sentence

vector representation, method which has been shown to perform well on classification

tasks (Conneau et al., 2017).

Finally, we used a single-layer fully-connected network for projecting the sentence

representation into a vector corresponding to the label logits for each predicted class.

Note that the ELMo word encoding architecture is essentially different to that eval-

2https://github.com/carpedm20/emoji/blob/e7bff32/emoji/unicode_codes.py
3For example, the hashtag emoji is composed by the unicode code points U+23 U+FE0F U+20E3, which
include U+23, the same code point for the # glyph.
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uated in Chapter 3 in that it only relies in the character modality, and does not keep

a separate word embedding lookup-table, therefore avoiding the problem of having to

combine different modalities of the same concept. This has the advantage that the

model does not depend on a single word vocabulary and can consequently deal with

any input containing characters seen during training. On the other hand it has the

downside that it is unable to exploit pre-trained word embeddings encoding associative

relationships between words.

4.3.3 Implementation Details and Hyperparameters

ELMo Layer: We used the official AllenNLP implementation of the ELMo model4,

with the official weights pre-trained on the 1 Billion Word Language Model Benchmark,

which contains about 800M tokens of news crawl data from WMT 2011 (Chelba et al.,

2014).

Dimensionalities: By default the ELMo layer outputs a 1024-dimensional vector,

which we then feed to a BiLSTM with output size 2048, resulting in a 4096-dimensional

vector when concatenating forward and backward directions for each word of the se-

quence5. After max-pooling the BiLSTM output over the sequence dimension, we ob-

tain a single 4096-dimensional vector corresponding to the tweet representation. This

representation is finally fed to a single-layer fully-connected network with input size

4096, 512 hidden units, output size 6, and a ReLU nonlinearity after the hidden layer.

The output of the dense layer is a 6-dimensional logit vector for each input example.

Loss Function: As this corresponds to a multiclass classification problem (predict-

ing a single class for each example, with more than 2 classes to choose from), we used

the Cross-Entropy Loss as implemented in PyTorch (Paszke et al., 2017).

Optimization: We optimized the model with Adam (Kingma and Ba, 2014), using

default hyperparameters (β1 = 0.9, β2 = 0.999, ε = 10−8), following a slanted triangular

learning rate schedule (Howard and Ruder, 2018), also with default hyperparameters

(cut frac = 0.1, ratio = 32), and a maximum learning rate ηmax = 0.001, over T =

23, 970 iterations6.

Regularization: we used a dropout layer (Srivastava et al., 2014), with probability

of 0.5 after both the ELMo and the hidden fully-connected layer, and another one

with probability of 0.1 after the max-pooling aggregation layer. We also reshuffled the

4https://allenai.github.io/allennlp-docs/api/allennlp.modules.elmo.html
5A BiLSTM is composed of two separate LSTMs that read the input in opposite directions and whose
outputs are concatenated at the hidden dimension. This results in a vector double the dimension of
the input for each time step.

6This number is obtained by multiplying the number of epochs (10), times the total number of batches,
which for the training dataset corresponds to 2396 batches of 64 elements, and 1 batch of 39 elements,
hence 2397× 10 = 23, 970.
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training examples between epochs, resulting in a different batch for each iteration.

Model Selection: To choose the best hyperparameter configuration we measured

the classification accuracy on the validation (trial) set.

4.3.4 Ensembles

Once we found the best-performing configuration we trained 10 models using different

random seeds, and tried averaging the output class probabilities of all their possible∑9
k=1

(
9
k

)
= 511 combinations. As Figure 4.2 shows, we empirically found that a specific

combination of 6 models yielded the best results (70.52%), providing evidence for the

fact that using a number of independent classifiers equal to the number of class labels

provides the best results when doing average ensembling (Bonab and Can, 2016).
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Figure 4.2 – Effect of the number of ensembled models on validation performance.

4.4 Experiments and Analyses

We performed several experiments to gain insights on how the proposed model’s

performance interacts with the shared task’s data. We performed an ablation study to

see how some of the main hyperparameters affect performance, and an analysis of tweets

containing hashtags and emoji to understand how these two types of tokens help the

model predict the trigger-word’s emotion. We also observed the effects of varying the

amount of data used for training the model to evaluate whether it would be worthwhile

to gather more training data.
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4.4.1 Ablation Study

We performed an ablation study on a single model having obtained 69.23% accuracy

on the validation set. Results are summarized in Table 4.2.

Variation Accuracy (%) ∆%

Submitted 69.23 -

No emoji 68.36 −0.87

No ELMo 65.52 −3.71

Concat Pooling 68.47 −0.76

LSTM hidden=4096 69.10 −0.13
LSTM hidden=1024 68.93 −0.30
LSTM hidden=512 68.43 −0.80

POS emb dim=100 68.99 −0.24
POS emb dim=75 68.61 −0.62
POS emb dim=50 69.33 +0.10
POS emb dim=25 69.21 −0.02

SGD optim lr=1 64.33 −4.90
SGD optim lr=0.1 66.11 −3.12
SGD optim lr=0.01 60.72 −8.51
SGD optim lr=0.001 30.49 −38.74

Table 4.2 – Ablation study results.

Accuracies were obtained from the validation dataset. Each model was trained with the same random
seed and hyperparameters, save for the one listed. “No emoji” is the same model trained on the training
dataset with no emoji, “No ELMo” corresponds to having switched the ELMo word encoding layer
with a simple pre-trained GloVe embedding lookup table, and “Concat Pooling” obtained sentence
representations by using the pooling method described by Howard and Ruder (2018). “LSTM hidden”
corresponds to the hidden dimension of the BiLSTM, “POS emb dim” to the dimension of the part-of-
speech embeddings, and “SGD optim lr” to the learning rate used while optimizing with the schedule
described by Conneau et al. (2017).

We can observe that the architectural choice that had the greatest impact on our

model was the ELMo layer, providing a 3.71% increase in performance as compared to

using GloVe pre-trained word embeddings.

We can further see that emoji also contributed significantly to the model’s perfor-

mance. In Section 4.4.4 we give some pointers to understanding why this is so.

Additionally, we tried using the concatenation of the max-pooled, average-pooled

and last hidden states of the BiLSTM as the sentence representation, following Howard

and Ruder (2018), but found out that this impacted performance negatively. We hy-

pothesize this is due to tweets being too short for needing such a rich representation.

Also, the size of the concatenated vector was 4096× 3 = 12, 288, which probably could

not be properly exploited by the 512-dimensional fully-connected layer.

Using a greater BiLSTM hidden size did not help the model, probably because of

the reason mentioned earlier; the fully-connected layer was not big or deep enough to
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exploit the additional information. Similarly, using a smaller hidden size neither helped.

We found that using 50-dimensional part-of-speech embeddings slightly improved

results, which implies that better fine-tuning this hyperparameter, or using a better

Part-of-Speech (POS) tagger could yield an even better performance.

Regarding optimization strategies, we also tried using SGD with different learning

rates and a step-wise learning rate schedule as described by Conneau et al. (2018a),

but we found that doing this did not improve performance.

Finally, Figure 4.3 shows the effect of using different dropout probabilities. We

can see that having higher dropout after the word-representation layer and the fully-

connected network’s hidden layer, while having a low dropout after the sentence encod-

ing layer yielded better results overall.
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Figure 4.3 – Dropout Ablation.

Rows correspond to the dropout applied both after the ELMo layer (word encoding layer) and after
the fully-connected network’s hidden layer, while columns correspond to the dropout applied after the
max-pooling operation (sentence encoding layer.)

4.4.2 Error Analysis

Figure 4.5 shows the confusion matrix of a single model evaluated on the test set, and

Table 4.3 the corresponding classification report. In general, we confirm what Klinger

et al. (2018) report: anger was the most difficult class to predict, followed by surprise,

whereas joy, fear, and disgust are the better performing ones.

To observe whether any particular pattern arose from the sentence representations

encoded by our model, we projected them into 3d space through Principal Component

Analysis (PCA), and were surprised to find that 2 clearly defined clusters emerged (see

Figure 4.4), one containing the majority of datapoints, and another containing joy

tweets exclusively. Upon further exploration we also found that the smaller cluster was

composed only by tweets containing the pattern un TRIGGERWORD , and further, that

all of them were correctly classified.
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Figure 4.4 – 3d Projection of the Test Sentence Representations.

It is also worth mentioning that there are 5827 tweets in the training set with this

pattern. Of these, 5822 (99.9%) correspond to the label joy. We observe a similar

trend on the test set; 1115 of the 1116 tweets having the un TRIGGERWORD pattern

correspond to joy tweets. We hypothesize this is the reason why the model learned

this pattern as a strong discriminating feature.

Finally, the only tweet in the test set that contained this pattern and did not belong

to the joy class, originally had unsurprised as its triggerword7, and unsurprisingly, was

misclassified.
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Figure 4.5 – Confusion Matrix (Test Set).

4.4.3 Effect of the Amount of Training Data

As Figure 4.6 shows, increasing the amount of data with which our model was trained

consistently increased validation accuracy and validation macro F1 score. The trend

7We manually searched for the original tweet.
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Precision Recall F1-score

anger 0.643 0.601 0.621
disgust 0.703 0.661 0.682
fear 0.742 0.721 0.732
joy 0.762 0.805 0.783
sad 0.685 0.661 0.673

surprise 0.627 0.705 0.663

Average 0.695 0.695 0.694

Table 4.3 – Classification Report (Test Set).

suggests that the proposed model is expressive enough to learn from more data, and is

not overfitting the training set.
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Figure 4.6 – Effect of the amount of training data on classification performance.

4.4.4 Effect of Emoji and Hashtags

Present Not Present

Emoji 4805 (76.6%) 23952 (68.0%)
Hashtags 2122 (70.5%) 26635 (69.4%)

Table 4.4 – Number of tweets on the test set with and without emoji and hashtags. The number
between parentheses is the proportion of tweets classified correctly.

Table 4.4 shows the overall effect of hashtags and emoji on classification perfor-

mance. Tweets containing emoji seem to be easier for the model to classify than those

without. Hashtags also have a positive effect on classification performance, however it

is less significant. This implies that emoji, and hashtags in a smaller degree, provide

tweets with a context richer in sentiment information, allowing the model to better

guess the emotion of the trigger-word.
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Emoji alias N
emoji no-emoji

∆%

# % # %

mask 163 154 94.48 134 82.21 - 12.27
two hearts 87 81 93.10 77 88.51 - 4.59
heart eyes 122 109 89.34 103 84.43 - 4.91
heart 267 237 88.76 235 88.01 - 0.75

rage 92 78 84.78 66 71.74 - 13.04
cry 116 97 83.62 83 71.55 - 12.07
sob 490 363 74.08 345 70.41 - 3.67
unamused 167 121 72.46 116 69.46 - 3.00

weary 204 140 68.63 139 68.14 - 0.49
joy 978 649 66.36 629 64.31 - 2.05
sweat smile 111 73 65.77 75 67.57 1.80
confused 77 46 59.74 48 62.34 2.60

Table 4.5 – Fine grained performance on tweets containing emoji, and the effect of removing them.

N is the total number of tweets containing the listed emoji, # and % the number and percentage
of correctly-classified tweets respectively, and ∆% the variation of test accuracy when removing the
emoji from the tweets.

Table 4.5 shows the effect specific emoji have on classification performance. It is clear

some emoji strongly contribute to improving prediction quality. The most interesting

ones are mask, rage, and cry, which significantly increase accuracy. Further, contrary

to intuition, the sob emoji contributes less than cry, despite representing a stronger

emotion. This is probably due to sob being used for depicting a wider spectrum of

emotions.

Finally, not all emoji are beneficial for this task. When removing sweat smile and

confused accuracy increased, probably because they represent emotions other than the

ones being predicted.

4.4.5 Model Comparison

Table 4.6 shows an overview of the information sources and methodologies used by each

team in the shared task.

It is clear that relying on Language Models (LMs) was key to performance in this

task. Indeed, the top 4 teams made use of them. The 1st team pre-trained a LM

architecture in 5 × 109 tweets, while the 3rd team did so in three different Twitter

corpora with 2 million, 3 million and 5 million examples respectively. Both our team

and the 4th team relied on a pre-trained ELMo architecture. Every team not using LMs

obtained worse results (Klinger et al., 2018).

The usage of characters was spread among teams along the whole rank spectrum,

meaning that using characters alone was not a good predictor of performance. Further,

in our case, the usage of characters along with the pre-trained ELMo architecture

confounds the contribution of each, therefore it is not possible to accurately assess to

which extent the pre-training procedure or the character modality explain performance.
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NTUA-SLP 3 70.29 X X X X X X X X
UBC-NLP 4 69.28 X X X X X X X X

Sentylic 5 69.20 X X X X X
HUMIR 6 68.64 X X X X X X X

nlp 7 68.48 X X X X
DataSEARCH 8 68.04 X X X X X X

YNU1510 9 67.63 X X X X X
EmotiKLUE 10 67.13 X X X X
wojtek.pierre 11 66.15 X X X X X X X

hgsgnlp 12 65.80 X X X X X X X
UWB 13 65.70 X X X X

NL-FIIT 14 65.52 X X X X X
TubOslo 15 64.63 X X

YNU Lab 16 64.10 X X X
Braint 17 62.61 X X X X

EmoNLP 18 62.11 X X X X X X X X X X
RW 19 60.97 X

Baseline 20 59.88 X X X X X

20 6 6 8 7 3 18 17 10 8 6 4 2 2

Table 4.6 – Overview of information sources and methods employed by different teams in the WASSA
2018 Implicit Emotions Shared Task. Table adapted from (Klinger et al., 2018) with modifications.

The 1st and 3rd teams used LMs that did not rely on the character modality, show-

ing that it might actually not be essential when copious amount of data from the same

domain are available. In such scenario the amount of potential OOV words is effectively

reduced, and pre-training might be enough to produce highly-performant word repre-

sentations. ELMo, however, was pre-trained on a dataset containing data significantly

dissimilar to that found in Twitter while obtaining competitive performance. This fact

entertains the possibility that using the character modality might ease the knowledge

transfer between different domains.

4.5 Conclusions and Future Work

We described an architecture for tackling the Implicit Emotion Classification task

and obtained 2nd place in WASSA 2018 IEST. Despite its simplicity, and low amount

of dependencies on libraries and external features, it performed almost as well as the

system that obtained the first place.

Our ablation study revealed that our hyperparameters were indeed quite well-tuned

for the task, which agrees with the good results obtained in the official submission. The

ablation study also showed that we could obtain better performance by incorporating
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POS embeddings as additional features, however, further experiments are required to

accurately measure their impact. We also think performance can be improved by adding

more elaborate components to the architecture, concretely, by using a BiLSTM with

multiple layers and skip connections in a way akin to (Peters et al., 2018a), or by making

the fully-connected network deeper.

We also showed that, what was probably an annotation artifact, the un TRIGGERWORD

pattern, resulted in increased performance for the joy label. This pattern was probably

originated by a heuristic näıvely replacing the ocurrence of happy by the trigger-word

indicator. We think the dataset could be improved by replacing the word unhappy, in

the original examples, by TRIGGERWORD instead of un TRIGGERWORD , and labeling

it as sad, or angry, instead of joy.

Further, our studies regarding the importance of hashtags and emoji showed that

both of them carry a strong sentiment signal, as they contributed significantly to implicit

emotion classification performance.

The significance of the character modality was again proven to be ambiguous as its

usage provided mixed results among different teams. The usage of LMs on the other

hand proved to be key in obtaining the highest performances, as the four teams that

used them obtained the four top ranks in the shared task leaderboard.

Finally, even though it was not possible to accurately estimate how useful the charac-

ter modality was in this scenario, we argued that exploiting character-level information

might explain how ELMo was able to transfer its knowledge and apply it to inherently

noisy data from Twitter.

In the next chapter we attempt to gain further insights into the character modality.

Specifically, we will study how combining both character and word modalities affects

representation quality in several scenarios.
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Vector Gates for Combining

Character-derived and Pre-trained

Word Representations

5.1 Abstract

In this chapter we study how different ways of combining character and word-level

representations affect the quality of both final word and sentence representations. We

provide strong empirical evidence that modeling characters improves the learned rep-

resentations at the word and sentence levels, and that doing so is particularly useful

when representing less frequent words. We further show that a feature-wise sigmoid

gating mechanism is a robust method for creating representations that encode semantic

similarity, as it performed reasonably well in several word similarity datasets. Finally,

our findings suggest that properly capturing semantic similarity at the word level does

not consistently yield improved performance in downstream sentence-level tasks. Code

for replicating this chapter is available at https://github.com/jabalazs/gating.

5.2 Introduction

Incorporating sub-word structures like substrings, morphemes and characters to the

creation of word representations significantly increases their quality as reflected both

by intrinsic metrics and performance in a wide range of downstream tasks (Bojanowski

et al., 2017; Ling et al., 2015; Luong and Manning, 2016; Wu et al., 2016).

The reason for this improvement is related to sub-word structures containing in-

formation that is usually ignored by standard word-level models. Indeed, when rep-

resenting words as vectors extracted from a lookup table, semantically related words
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resulting from inflectional processes such as surf, surfing, and surfed, are treated as be-

ing independent from one another1. Further, word-level embeddings do not account for

derivational processes resulting in syntactically-similar words with different meanings

such as break, breakable, and unbreakable. This causes derived words, which are usually

less frequent, to have lower-quality (or no) vector representations.

Previous works have successfully combined character-level and word-level word rep-

resentations, obtaining overall better results than using only word-level representa-

tions. For example Luong and Manning (2016) achieved state-of-the-art results in a

machine translation task by representing unknown words as a composition of their

characters. Botha and Blunsom (2014) created word representations by adding the

vector representations of the words’ surface forms and their morphemes (
−−−−−→
perfectly =

−−−−−−→
perfectly +

−−−−−→
perfect +

−→
ly ), obtaining significant improvements on intrinsic evaluation

tasks, word similarity and machine translation. Lample et al. (2016) concatenated

character-level and word-level representations for creating word representations, and

then used them as input to their models for obtaining state-of-the-art results in Named-

Entity Recognition (NER) on several languages.

What these works have in common is that the models they describe first learn

how to represent subword information, at character (Luong and Manning, 2016), mor-

pheme (Botha and Blunsom, 2014), or substring (Bojanowski et al., 2017) levels, and

then combine these learned representations at the word level. The incorporation of in-

formation at a finer-grained hierarchy results in higher-quality modeling of rare words,

morphological processes, and semantics (Avraham and Goldberg, 2017).

There is no consensus, however, on which combination method works better in which

case, or how the choice of a combination method affects downstream performance, either

measured intrinsically at the word level, or extrinsically at the sentence level.

In this paper we aim to provide some intuitions about how the choice of mechanism

for combining character-level with word-level representations influences the quality of

the final word representations, and the subsequent effect these have in the performance

of downstream tasks. Our contributions are as follows:

• We show that a feature-wise sigmoidal gating mechanism is the best at combining

representations at the character and word-level hierarchies, as measured by word

similarity tasks.

• We provide evidence that this mechanism learns that to properly model increas-

ingly infrequent words, it has to increasingly rely on character-level information.

• We finally show that despite the increased expressivity of word representations it

offers, it has no clear effect in sentence representations, as measured by sentence

1Unless using pre-trained embeddings with a notion of subword information such as
fastText (Bojanowski et al., 2017)
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evaluation tasks.

5.3 Background

We are interested in studying different ways of combining word representations,

obtained from different hierarchies, into a single word representation. Specifically, we

want to study how combining word representations (1) taken directly from a word em-

bedding lookup table, and (2) obtained from a function over the characters composing

them, affects the quality of the final word representations.

Let W be a set, or vocabulary, of words with |W| elements, and C a vocabulary of

characters with |C| elements. Further, let x = w1, . . . , wn; wi ∈ W be a sequence of

words, and ci = ci1, . . . , c
i
m; cij ∈ C be the sequence of characters composing wi. Each

token wi can be represented as a vector v
(w)
i ∈ Rd extracted directly from an embedding

lookup table E(w) ∈ R|W|×d, pre-trained or otherwise, and as a vector v
(c)
i ∈ Rd built

from the characters that compose it; in other words, v
(c)
i = f(ci), where f is a function

that maps a sequence of characters to a vector.

The methods for combining word and character-level representations we study, are

of the form G(v
(w)
i ,v

(c)
i ) = vi where vi is the final word representation.

5.3.1 Mapping Characters to Character-level Word Represen-

tations

The function f is composed of an embedding layer, an optional context function, and

an aggregation function.

The embedding layer transforms each character cij into a vector rij of dimension

dr, by directly taking it from a trainable embedding lookup table E(c) ∈ R|C|×dr . We

define the matrix representation of word wi as Ci = [ri1, . . . , r
i
m], Ci ∈ Rm×dr .

The context function takes Ci as input and returns a context-enriched matrix

representation H i = [hi
1, . . . ,h

i
m], H i ∈ Rm×dh , in which each hi

j contains a measure

of information about its context, and interactions with its neighbors. In particular,

we chose to do this by feeding Ci to a BiLSTM (Graves et al., 2013; Graves and

Schmidhuber, 2005)2.

Informally, we can think of an LSTM (Hochreiter and Schmidhuber, 1997) as a

function Rm×dr → Rm×dh that takes a matrix C = [r1, . . . , rm] as input and returns

a context-enriched matrix representation H = [h1, . . . ,hm], where each hj encodes

2Other methods for encoding the characters’ context, such as CNNs (Kim et al., 2016), could also be
used.
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information about the previous elements h1, . . . ,hj−1
3.

A BiLSTM is simply composed of 2 LSTMs, one that reads the input from left to

right (forward), and another that does so from right to left (backward). The output

of the forward and backward LSTMs are
−→
H = [

−→
h 1, . . . ,

−→
hm] and

←−
H = [

←−
h 1, . . . ,

←−
hm]

respectively. In the backward case the LSTM reads rm first and r1 last, therefore
←−
h j

will encode the context from
←−
h j+1, . . . ,

←−
hm.
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Figure 5.1 – Character and Word-level combination methods.

The aggregation function takes the context-enriched matrix representation of

word wi for both directions,
−→
H i and

←−
H i, and returns a single vector v

(c)
i ∈ Rdh . To do

so we followed Miyamoto and Cho (2016), and defined the character-level representation

v
(c)
i of word wi as the linear combination of the forward and backward last hidden states

returned by the context function:

v
(c)
i = W (c)[

−→
hi

m;
←−
hi

1] + b(c) (5.1)

where W (c) ∈ Rdh×2dh and b(c) ∈ Rdh are trainable parameters, and [◦; ◦] represents the

concatenation operation between two vectors.

5.3.2 Combining Character and Word-level Representations

We tested three different methods for combining v
(c)
i with v

(w)
i : simple concatenation, a

learned scalar gate (Miyamoto and Cho, 2016), and a learned vector gate (also referred

to as feature-wise sigmoidal gate). Additionally, we compared these methods to two

baselines: using pre-trained word vectors only, and using character-only features for

representing words. See Fig. 5.1 for a visual description of the proposed methods.

3In terms of implementation, the LSTM is applied iteratively to each element of the input sequence
regardless of dimension m, which means it accepts inputs of variable length, but we will use this
notation for the sake of simplicity.
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word-only (w) considers only v
(w)
i and ignores v

(c)
i :

vi = v
(w)
i (5.2)

char-only (c) considers only v
(c)
i and ignores v

(w)
i :

vi = v
(c)
i (5.3)

concat (cat) concatenates both word and character-level representations:

vi = [v
(c)
i ;v

(w)
i ] (5.4)

scalar gate (sg) implements the scalar gating mechanism described by Miyamoto

and Cho (2016):

gi = σ(w>v
(w)
i + b) (5.5)

vi = giv
(c)
i + (1− gi)v(w)

i (5.6)

where w ∈ Rd and b ∈ R are trainable parameters, gi ∈ (0, 1), and σ is the sigmoid

function.

vector gate (vg):

gi = σ(Wv
(w)
i + b) (5.7)

vi = gi � v(c)
i + (1− gi)� v(w)

i (5.8)

where W ∈ Rd×d and b ∈ Rd are trainable parameters, gi ∈ (0, 1)d, σ is the element-

wise sigmoid function, � is the element-wise product for vectors, and 1 ∈ Rd is a vector

of ones.

The vector gate is inspired by Miyamoto and Cho (2016) and Yang et al. (2017),

but is different to the former in that the gating mechanism acts upon each dimension

of the word and character-level vectors, and different to the latter in that it does not

rely on external sources of information for calculating the gating mechanism.

Finally, note that word only and char only are special cases of both gating mech-

anisms: gi = 0 (scalar gate) and gi = 0 (vector gate) correspond to word only; gi = 1

and gi = 1 correspond to char only.

5.3.3 Obtaining Sentence Representations

To enable sentence-level classification we need to obtain a sentence representation from

the word vectors vi. We achieved this by using a BiLSTM with max pooling, which
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was shown to be a good universal sentence encoding mechanism (Conneau et al., 2017).

Let x = w1, . . . , wn, be an input sentence and V = [v1, . . . ,vn] its matrix represen-

tation, where each vi was obtained by one of the methods described in Section 5.3.2.

S = [s1, . . . , sn] is the context-enriched matrix representation of x obtained by feed-

ing V to a BiLSTM of output dimension ds
4. Lastly, s ∈ Rds is the final sentence

representation of x obtained by max-pooling S along the sequence dimension.

Finally, we initialized the word representations v
(w)
i using GloVe embeddings (Pennington

et al., 2014), and fine-tuned them during training. In the following section we specify

the hyperparameters we used for our experiments.

5.3.4 Hyperparameters

We only considered words that appear at least twice, for each dataset. Those that

appeared only once were considered UNK. We used the Treebank Word Tokenizer as

implemented in NLTK5 for tokenizing the training and development datasets.

In the same fashion as Conneau et al. (2017), we used a batch size of 64, an SGD

optmizer with an initial learning rate of 0.1, and at each epoch divided the learning

rate by 5 if the validation accuracy decreased. We also used gradient clipping when

gradients where > 5.

We defined character vector representations as 50-dimensional vectors randomly

initialized by sampling from the uniform distribution in the (−0.05; 0.05) range.

The output dimension of the character-level BiLSTM was 300 per direction, and

remained of such size after combining forward and backward representations as depicted

in eq. 5.1.

Word vector representations where initialized from the 300-dimensional GloVe vec-

tors (Pennington et al., 2014), trained in 840B tokens from the Common Crawl6, and

finetuned during training. Words not present in the GloVe vocabulary where randomly

initialized by sampling from the uniform distribution in the (−0.05; 0.05) range.

The input size of the word-level LSTM was 300 for every method except concat in

which it was 600, and its output was always 2048 per direction, resulting in a 4096-

dimensional sentence representation.

4si = [−→si ;←−si ] for each i, and both −→si and ←−si ∈ R
ds
2 .

5https://www.nltk.org/
6https://nlp.stanford.edu/projects/glove/
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5.4 Experiments

5.4.1 Experimental Setup

We trained our models for solving the Natural Language Inference (NLI) task in two

datasets, SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018), and val-

idated them in each corresponding development set (including the matched and mis-

matched development sets of MultiNLI).

For each dataset-method combination we trained 7 models initialized with differ-

ent random seeds, and saved each when it reached its best validation accuracy7. We

then evaluated the quality of each trained model’s word representations vi in 10 word

similarity tasks, using the system created by Jastrzebski et al. (2017)8.

Finally, we fed these obtained word vectors to a BiLSTM with max-pooling and

evaluated the final sentence representations in 11 downstream transfer tasks (Conneau

et al., 2017; Subramanian et al., 2018).

5.4.2 Datasets

Word-level Semantic Similarity A desirable property of vector representations of

words is that semantically similar words should have similar vector representations.

Assessing whether a set of word representations possesses this quality is referred to

as the semantic similarity task. This is the most widely-used evaluation method for

evaluating word representations, despite its shortcomings (Faruqui et al., 2016).

This task consists of comparing the similarity between word vectors measured by

a distance metric (usually cosine distance), with a similarity score obtained from hu-

man judgements. High correlation between these similarities is an indicator of good

performance.

A problem with this formulation though, is that the definition of “similarity” often

confounds the meaning of both similarity and relatedness. For example, cup and tea

are related but dissimilar words, and this type of distinction is not always clear (Agirre

et al., 2009; Hill et al., 2015).

To face the previous problem, we tested our methods in a wide variety of datasets,

including some that explicitly model relatedness (WS353R), some that explicitly con-

sider similarity (WS353S, SimLex999, SimVerb3500), and some where the distinction is

not clear (MEN, MTurk287, MTurk771, RG, WS353). We also included the RareWords

(RW) dataset for evaluating the quality of rare word representations. In the next sec-

7We found that models validated on the matched development set of MultiNLI, rather than the mis-
matched, yielded best results, although the differences were not statistically significant.

8
https://github.com/kudkudak/word-embeddings-benchmarks/tree/8fd0489
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tions we describe both word and sentence level datasets in detail.

Word Similarity Datasets

Dataset Reference URL

MEN Bruni et al. (2014) https://staff.fnwi.uva.nl/e.bruni/MEN

MTurk287 Radinsky et al. (2011) https://git.io/fhQA8 (Unofficial)
MTurk771 Halawi et al. (2012) http://www2.mta.ac.il/~gideon/mturk771.html

RG Rubenstein and Goodenough (1965) https://git.io/fhQAB (Unofficial)
RareWords (RW) Luong et al. (2013) https://nlp.stanford.edu/~lmthang/morphoNLM/

SimLex999 Hill et al. (2015) https://fh295.github.io/simlex.html

SimVerb3500 Gerz et al. (2016) http://people.ds.cam.ac.uk/dsg40/simverb.html

WS353 Finkelstein et al. (2002) http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

WS353R Agirre et al. (2009) http://alfonseca.org/eng/research/wordsim353.html

WS353S Agirre et al. (2009) http://alfonseca.org/eng/research/wordsim353.html

Table 5.1 – Word similarity and relatedness datasets.

Table 5.1 lists the word-similarity datasets and their corresponding reference. As

mentioned in Section 5.4.2, all the word-similarity datasets contain pairs of words an-

notated with similarity or relatedness scores, although this difference is not always

explicit. Below we provide some details for each.

MEN contains 3000 annotated word pairs with integer scores ranging from 0 to 50.

Words correspond to image labels appearing in the ESP-Game9 and MIRFLICKR-1M10

image datasets.

MTurk287 contains 287 annotated pairs with scores ranging from 1.0 to 5.0. It was

created from words appearing in both DBpedia and in news articles from The New

York Times.

MTurk771 contains 771 annotated pairs with scores ranging from 1.0 to 5.0, with

words having synonymy, holonymy or meronymy relationships sampled from WordNet

(Fellbaum, 1998).

RG contains 65 annotated pairs with scores ranging from 0.0 to 4.0 representing “sim-

ilarity of meaning”.

RW contains 2034 pairs of words annotated with similarity scores in a scale from 0 to

10. The words included in this dataset were obtained from Wikipedia based on their

frequency, and later filtered depending on their WordNet synsets, including synonymy,

hyperonymy, hyponymy, holonymy and meronymy. This dataset was created with the

purpose of testing how well models can represent rare and complex words.

SimLex999 contains 999 word pairs annotated with similarity scores ranging from 0

to 10. In this case the authors explicitly considered similarity and not relatedness,

addressing the shortcomings of datasets that do not, such as MEN and WS353. Words

include nouns, adjectives and verbs.

9http://www.cs.cmu.edu/~biglou/resources/
10http://press.liacs.nl/mirflickr/
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SimVerb3500 contains 3500 verb pairs annotated with similarity scores ranging from

0 to 10. Verbs were obtained from the USF free association database (Nelson et al.,

2004), and VerbNet (Kipper et al., 2008). This dataset was created to address the lack

of representativity of verbs in SimLex999, and the fact that, at the time of creation,

the best performing models had already surpassed inter-annotator agreement in verb

similarity evaluation resources. Like SimLex999, this dataset also explicitly considers

similarity as opposed to relatedness.

WS353 contains 353 word pairs annotated with similarity scores from 0 to 10.

WS353R is a subset of WS353 containing 252 word pairs annotated with relatedness

scores. This dataset was created by asking humans to classify each WS353 word pair

into one of the following classes: synonyms, antonyms, identical, hyperonym-hyponym,

hyponym-hyperonym, holonym-meronym, meronym-holonym, and none-of-the-above.

These annotations were later used to group the pairs into: similar pairs (synonyms,

antonyms, identical, hyperonym-hyponym, and hyponym-hyperonym), related pairs

(holonym-meronym, meronym-holonym, and none-of-the-above with a human similar-

ity score greater than 5), and unrelated pairs (classified as none-of-the-above with a

similarity score less than or equal to 5). This dataset is composed by the union of

related and unrelated pairs.

WS353S is another subset of WS353 containing 203 word pairs annotated with simi-

larity scores. This dataset is composed by the union of similar and unrelated pairs, as

described previously.

5.4.3 Sentence Evaluation Datasets

Dataset Reference URL

CR Hu and Liu (2004) https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#datasets

MPQA Wiebe et al. (2005) https://mpqa.cs.pitt.edu/corpora/mpqa_corpus/

MR Pang and Lee (2005) http://www.cs.cornell.edu/people/pabo/movie-review-data/

SST2 Arora et al. (2017) https://github.com/PrincetonML/SIF/tree/master/data

SST5 See caption. https://git.io/fhQAV

SUBJ Pang and Lee (2004) http://www.cs.cornell.edu/people/pabo/movie-review-data/

TREC Li and Roth (2002) http://cogcomp.org/Data/QA/QC/

SICKE Marelli et al. (2014) http://clic.cimec.unitn.it/composes/sick.html

SICKR Marelli et al. (2014) http://clic.cimec.unitn.it/composes/sick.html

STS16 Agirre et al. (2016) http://ixa2.si.ehu.es/stswiki/index.php/Main_Page

STSB Cer et al. (2017) http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

Table 5.2 – Sentence representation evaluation datasets. SST5 was obtained from a GitHub repos-
itory with no associated peer-reviewed work.

Table 5.2 lists the sentence-level evaluation datasets used in this paper. The pro-

vided URLs correspond to the original sources, and not necessarily to the URLs where

SentEval11 got the data from12.

11
https://github.com/facebookresearch/SentEval/tree/906b34a

12A list of the data used by SentEval can be found in its data setup script: https://git.io/fhQpq
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The version of the CR, MPQA, MR, and SUBJ datasets used in this paper were the

ones preprocessed by Wang and Manning (2012)13. Both SST2 and SST5 correspond

to preprocessed versions of the Stanford Sentiment Treebank (SST) dataset by Socher

et al. (2013)14. SST2 corresponds to a subset of SST used by Arora et al. (2017)

containing flat representations of sentences annotated with binary sentiment labels,

and SST5 to another subset annotated with more fine-grained sentiment labels (very

negative, negative, neutral, positive, very positive).

Sentence-level Evaluation Tasks Unlike word-level representations, there is no

consensus on the desirable properties sentence representations should have. In response

to this, Conneau et al. (2017) created SentEval15, a sentence representation evaluation

benchmark designed for assessing how well sentence representations perform in various

downstream tasks (Conneau and Kiela, 2018).

Some of the datasets included in SentEval correspond to sentiment classification

(CR, MPQA, MR, SST2, and SST5), subjectivity classification (SUBJ), question-type

classification (TREC), recognizing textual entailment (SICK E), estimating semantic

relatedness (SICK R), and measuring textual semantic similarity (STS16, STSB). The

datasets are described by Conneau et al. (2017), and we provide pointers to their original

sources in Table 5.2.

To evaluate these sentence representations SentEval trained a linear model on top

of them, and evaluated their performance in the validation sets accompanying each

dataset. The only exception was the STS16 task, in which our representations were

evaluated directly.

5.5 Word-level Evaluation

5.5.1 Word Similarity

Table 5.3 shows the quality of word representations in terms of the correlation between

word similarity scores obtained by the proposed models and word similarity scores

defined by humans.

First, we can see that for each task, character only models had significantly worse

performance than every other model trained on the same dataset. The most likely

explanation for this is that these models are the only ones that need to learn word

representations from scratch, since they have no access to the global semantic knowledge

encoded by the GloVe embeddings.

13
https://nlp.stanford.edu/~sidaw/home/projects:nbsvm

14
https://nlp.stanford.edu/sentiment/

15
https://github.com/facebookresearch/SentEval/tree/906b34a
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MEN MT287 MT771 RG65 RW SL999 SV3500 WS WSR WSS

SNLI w 71.78 35.40 49.05 61.80 18.43 19.17 10.32 39.27 28.01 53.42
c 9.85 -5.65 0.82 -5.28 17.81 0.86 2.76 -2.20 0.20 -3.87
cat 71.91 35.52 48.84 62.12 18.46 19.10 10.21 39.35 28.16 53.40
sg 70.49 34.49 46.15 59.75 18.24 17.20 8.73 35.86 23.48 50.83
vg 80.00 32.54 62.09 68.90 20.76 37.70 20.45 54.72 47.24 65.60

MNLI w 68.76 50.15 68.81 65.83 18.43 42.21 25.18 61.10 58.21 70.17
c 4.84 0.06 1.95 -0.06 12.18 3.01 1.52 -4.68 -3.63 -3.65
cat 68.77 50.40 68.77 65.92 18.35 42.22 25.12 61.15 58.26 70.21
sg 67.66 49.58 68.29 64.84 18.36 41.81 24.57 60.13 57.09 69.41
vg 76.69 56.06 70.13 69.00 25.35 48.40 35.12 68.91 64.70 77.23

Table 5.3 – Word-level evaluation results. Each value corresponds to average Pearson correla-
tion of 7 identical models initialized with different random seeds. Correlations were scaled to the
[−100; 100] range for easier reading. Bold values represent the best method per training dataset,
per task; underlined values represent the best-performing method per task, independent of training
dataset. For each task and dataset, every best-performing method was significantly different to other
methods (p < 0.05), except for w trained in SNLI at the MTurk287 task. Statistical significance was
obtained with a two-sided Welch’s t-test for two independent samples without assuming equal vari-
ance (Welch, 1947). MT corresponds to MTurk, SL999 Corresponds to SimLex999 and SV3500 to
SimVerb3500

Further, bold results show the overall trend that vector gates outperformed the

other methods regardless of training dataset. This implies that learning how to combine

character and word-level representations at the dimension level produces word vector

representations that capture a notion of word similarity and relatedness that is closer

to that of humans.

Additionally, results from the MNLI row in general, and underlined results in

particular, show that training on MultiNLI produces word representations better at

capturing word similarity. This is probably due to MultiNLI data being richer than

that of SNLI. Indeed, MultiNLI data was gathered from various sources (novels, re-

ports, letters, and telephone conversations, among others), rather than the single image

captions dataset from which SNLI was created.

Exceptions to the previous rule are models evaluated in MEN and RW. The former

case can be explained by the MEN dataset16 containing only words that appear as image

labels in the ESP-Game17 and MIRFLICKR-1M18 image datasets (Bruni et al., 2014),

and therefore having data that is more closely distributed to SNLI than to MultiNLI.

More notably, in the RareWords dataset (Luong et al., 2013), the word only,

concat, and scalar gate methods performed equally, despite having been trained in

different datasets (p > 0.1), and the char only method performed significantly worse

when trained in MultiNLI. The vector gate, however, performed significantly better

than its counterpart trained in SNLI. These facts provide evidence that this method is

capable of capturing linguistic phenomena that the other methods are unable to model.

16https://staff.fni.uva.nl/e.bruni/MEN
17http://www.cs.cmu.edu/~biglou/resources/
18http://press.liacs.nl/mirflickr/
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Figure 5.2 – Visualization of gating values for 5 common words (freq. ∼ 20000), 5 uncommon words
(freq. ∼ 60), and 5 rare words (freq. ∼ 2), appearing in both the RW and MultiNLI datasets.

0 250 500 750 1000 1250 1500 1750
Frequency Rank

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e 

Ga
tin

g 
Va

lu
e

Figure 5.3 – Average gating values for words appearing in both RW and MultiNLI. Words are sorted
by decreasing frequency in MultiNLI.

5.5.2 Word Frequencies and Gating Values

Figure 5.2 shows that for more common words the vector gate mechanism tends to

favor only a few dimensions while keeping a low average gating value across dimensions.

On the other hand, values are greater and more homogeneous across dimensions in rarer

words. Further, Fig. 5.3 shows this mechanism assigns, on average, a greater gating

value to less frequent words, confirming the findings by Miyamoto and Cho (2016), and

Yang et al. (2017).

In other words, the less frequent the word, the more this mechanism allows the

character-level representation to influence the final word representation, as shown by

Eq. (5.8). A possible interpretation of this result is that exploiting character information

becomes increasingly necessary as word-level representations’ quality decrease.

Another observable trend in both figures is that gating values tend to be low on
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average. Indeed, it is possible to see in Fig. 5.3 that the average gating values range

from 0.26 to 0.56. This result corroborates the findings by Miyamoto and Cho (2016),

stating that setting g = 0.25 in Eq. (5.6), was better than setting it to higher values.

In summary, the gating mechanisms learn how to compensate the lack of expressivity

of underrepresented words by selectively combining their representations with those of

characters.

5.6 Sentence-level Evaluation

Table 5.4 and Table 5.4 show the impact that different methods for combining

character and word-level word representations have in the quality of the sentence rep-

resentations produced by our models.

We can observe the same trend mentioned in Section 5.5.1, and highlighted by

the difference between bold values, that models trained in MultiNLI performed better

than those trained in SNLI at a statistically significant level, confirming the findings of

Conneau et al. (2017). In other words, training sentence encoders on MultiNLI yields

more general sentence representations than doing so on SNLI.

The two exceptions to the previous trend, SICKE and SICKR, benefited more

from models trained on SNLI. We hypothesize this is again due to both SNLI and

SICK (Marelli et al., 2014) having similar data distributions19.

Additionally, there was no method that significantly outperformed the word only

baseline in classification tasks. This means that the added expressivity offered by ex-

plicitly modeling characters, be it through concatenation or gating, was not significantly

better than simply fine-tuning the pre-trained GloVe embeddings for this type of task.

We hypothesize this is due to the conflation of two effects. First, the fact that mor-

phological processes might not encode important information for solving these tasks;

and second, that SNLI and MultiNLI belong to domains that are too dissimilar to the

domains in which the sentence representations are being tested.

On the other hand, the vector gate significantly outperformed every other method

in the STSB task when trained in both datasets, and in the STS16 task when trained

in SNLI. This again hints at this method being capable of modeling phenomena at the

word level, resulting in improved semantic representations at the sentence level.

19SICK was created from Flickr-8k (Rashtchian et al., 2010), and SNLI from its expanded version:
Flickr30k (Young et al., 2014).
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CR MPQA MR SST2 SST5 SUBJ TREC

SNLI w 80.50 84.59 74.18 78.86 42.33 90.38 86.83
c 74.90∗ 78.86∗ 65.93∗ 69.42∗ 35.56∗ 82.97∗ 83.31∗

cat 80.44 84.66 74.31 78.37 41.34∗ 90.28 85.80∗

sg 80.59 84.60 74.49 79.04 41.63∗ 90.16 86.00
vg 80.42 84.66 74.26 78.87 42.38 90.07 85.97

MNLI w 83.80 89.13 79.05 83.38 45.21 91.79 89.23
c 70.23∗ 72.19∗ 62.83∗ 64.55∗ 32.47∗ 79.49∗ 74.74∗

cat 83.96 89.12 79.23 83.70 45.08∗ 91.92 90.03
sg 83.88 89.06 79.22 83.71 45.26 91.66∗ 88.83∗

vg 83.45∗ 89.05 79.13 83.87 45.88 91.55∗ 89.49

Table 5.4 – Experimental results on classification tasks. Each value shown in the table is the average
result of 7 identical models initialized with different random seeds. Values represent accuracy (%).
Bold values represent the best method per training dataset, per task; underlined values represent
the best-performing method per task, independent of training dataset. Values marked with an asterisk
(∗) are significantly different to the average performance of the best model trained on the same dataset
(p < 0.05). Results for every best-performing method trained on one dataset are significantly different
to the best-performing method trained on the other. Statistical significance was obtained in the same
way as described in Table 5.3.

Entailment Relatedness Semantic Textual Similarity

SICKE SICKR† STS16† STSB†

SNLI w 86.37 88.52 59.90∗ 71.29∗

c 84.13∗ 83.89∗ 59.33∗ 67.20∗

cat 86.40 88.44 59.90∗ 71.24∗

sg 86.10∗ 88.57 60.05∗ 71.34∗

vg 85.67 88.31∗ 60.92 71.99

MNLI w 84.92 86.33 66.08 71.96∗

c 81.53∗ 75.92∗ 51.47∗ 61.74∗

cat 85.06 86.45 66.17 71.82∗

sg 84.96 86.40 65.49∗ 71.87∗

vg 84.82 86.50 65.75 72.82

Table 5.5 – Experimental results on semantic tasks. The same conditions specified in Table 5.4
apply here. In addition, columns marked with † represent Pearson correlation scaled to the range
[−100, 100] for easier reading.

5.7 Relationship Between Word- and Sentence-level

Evaluation Tasks

It is clear that the better performance the vector gate had in word similarity

tasks did not translate into overall better performance in downstream tasks. This

confirms previous findings indicating that intrinsic word evaluation metrics are not

good predictors of downstream performance (Chiu et al., 2016; Faruqui et al., 2016;
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Gladkova and Drozd, 2016; Tsvetkov et al., 2015).

Figure 5.4b shows that the word representations created by the vector gate trained

in MultiNLI had positively-correlated results within several word-similarity tasks. This

hints at the generality of the word representations created by this method when mod-

eling similarity and relatedness.

However, the same cannot be said about sentence-level evaluation performance;

there is no clear correlation between word similarity tasks and sentence-evaluation

tasks. This is clearly illustrated by performance in the STSBenchmark, the only in

which the vector gate was significantly superior, not being correlated with perfor-

mance in any word-similarity dataset. This can be interpreted simply as word-level

representations capturing word-similarity not being a sufficient condition for good per-

formance in sentence-level tasks.

In general, Fig. 5.4 shows that there are no general correlation effects spanning both

training datasets and combination mechanisms. For example, Fig. 5.4a shows that, for

both word-only and concat models trained in SNLI, performance in word similarity

tasks correlates positively with performance in most sentence evaluation tasks, however,

this does not happen as clearly for the same models trained in MultiNLI (Fig. 5.4b).

5.8 Related Work

5.8.1 Gating Mechanisms for Combining Characters and Word

Representations

To the best of our knowledge, there are only two recent works that specifically study

how to combine word and subword-level vector representations.

Miyamoto and Cho (2016) propose to use a trainable scalar gating mechanism capa-

ble of learning a weighting scheme for combining character-level and word-level repre-

sentations. They compared their proposed method to manually weighting both levels;

using characters only; words only; or their concatenation. They found that in some

cases taking the weighted average of the character and word-level representations, with

weights of 25% and 75% respectively, yielded the best results, while in others the learned

scalar gate performed better.

Yang et al. (2017) further expand the gating concept by making the mechanism work

at a finer-grained level, learning how to weight each vector’s dimensions independently,

conditioned on external word-level features such as part-of-speech and named-entity

tags. Similarly, they compared their proposed mechanism to using words only, charac-

ters only, and a concatenation of both, with and without external features. They found

56



Vector Gates for Combining Character-derived and Pre-trained Word Representations

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Word Only

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Char Only

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Concat

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Scalar Gate

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Word-level Sentence-level

Vector Gate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Models trained in SNLI.

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Word Only

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Char Only

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Concat

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Scalar Gate

M
EN

M
T2

87
M

T7
71

RG
65 RW

SL
99

9
SV

35
00

W
S3

53
W

S3
53

R
W

S3
53

S CR
M

PQ
A

M
R

SI
CK

E
SI

CK
R

SS
T2

SS
T5

ST
S1

6
ST

SB
SU

BJ
TR

EC

MEN
MT287
MT771

RG65
RW

SL999
SV3500
WS353

WS353R
WS353S

CR
MPQA

MR
SICKE
SICKR
SST2
SST5

STS16
STSB
SUBJ
TREC

Word-level Sentence-level

Vector Gate

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Models trained in MultiNLI.

Figure 5.4 – Spearman correlation between performances in word and sentence level evaluation
tasks.
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that their vector gate performed better than the other methods in all the reported

tasks, and beat the state of the art in two reading comprehension tasks.

Both works showed that the gating mechanisms assigned greater importance to

character-level representations in rare words, and to word-level representations in com-

mon ones, reaffirming the previous findings that subword structures in general, and

characters in particular, are beneficial for modeling uncommon words.

5.8.2 Sentence Representation Learning

The problem of representing sentences as fixed-length vectors has been widely studied.

Zhao et al. (2015) suggested a self-adaptive hierarchical model that gradually com-

poses words into intermediate phrase representations, and adaptively selects specific

hierarchical levels for specific tasks. Kiros et al. (2015) proposed an encoder-decoder

model trained by attempting to reconstruct the surrounding sentences of an encoded

passage, in a fashion similar to Skip-gram (Mikolov et al., 2013b). Hill et al. (2016)

overcame the previous model’s need for ordered training sentences by using autoen-

coders for creating the sentence representations. Jernite et al. (2017) implemented a

model simpler and faster to train than the previous two, while having competitive per-

formance. Similar to Kiros et al. (2015), Gan et al. (2017) suggested predicting future

sentences with a hierarchical CNN-LSTM encoder.

Conneau et al. (2017) trained several sentence encoding architectures on a combina-

tion of the SNLI and MultiNLI datasets, and showed that a BiLSTM with max-pooling

was the best at producing highly transferable sentence representations. More recently,

Subramanian et al. (2018) empirically showed that sentence representations created in

a multi-task setting (Collobert and Weston, 2008), performed increasingly better the

more tasks they were trained in. Zhang et al. (2018) proposed using an autoencoder

that relies on multi-head self-attention over the concatenation of the max and mean

pooled encoder outputs for producing sentence representations. Finally, Wieting and

Kiela (2019) show that modern sentence embedding methods are not vastly superior to

random methods.

The works mentioned so far usually evaluate the quality of the produced sentence

representations in sentence-level downstream tasks. Common benchmarks grouping

these kind of tasks include SentEval (Conneau and Kiela, 2018), and GLUE (Wang

et al., 2019). Another trend, however, is to probe sentence representations to understand

what linguistic phenomena they encode (Adi et al., 2017; Conneau et al., 2018a; Linzen

et al., 2016; Perone et al., 2018; Zhu et al., 2018).
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5.8.3 General Feature-wise Transformations

Dumoulin et al. (2018) provide a review on feature-wise transformation methods, of

which the mechanisms presented in this paper form a part of. In a few words, the g

parameter, in both scalar gate and vector gate mechanisms, can be understood as

a scaling parameter limited to the (0, 1) range and conditioned on word representations,

whereas adding the scaled v
(c)
i and v

(w)
i representations can be seen as biasing word

representations conditioned on character representations.

The previous review extends the work by Perez et al. (2018), which describes the

Feature-wise Linear Modulation (FiLM) framework as a generalization of Conditional

Normalization methods, and apply it in visual reasoning tasks. Some of the reported

findings are that, in general, scaling has greater impact than biasing, and that in a

setting similar to the scalar gate, limiting the scaling parameter to (0, 1) hurt per-

formance. Future decisions involving the design of mechanisms for combining character

and word-level representations should be informed by these insights.

5.9 Conclusions

We presented an empirical study showing the effect that different ways of combin-

ing character and word representations has in word-level and sentence-level evaluation

tasks.

We showed that a vector gate performed consistently better across a variety of word

similarity and relatedness tasks. Additionally, despite showing inconsistent results in

sentence evaluation tasks, it performed significantly better than the other methods in

semantic similarity tasks.

We further showed through this mechanism, that learning character-level represen-

tations is always beneficial, and becomes increasingly so with less common words.

In the future it would be interesting to study how the choice of mechanism for

combining subword and word representations affects the more recent language-model-

based pretraining methods such as ELMo (Peters et al., 2018b), GPT (Radford et al.,

2018, 2019) and BERT (Devlin et al., 2019).
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Chapter 6

The Interplay Between Gating

Mechanisms and Adversarial

Learning

6.1 Introduction

Vector representations of words are supposed to capture syntactic and semantic phe-

nomena occurring between words. The way to obtain these vary from purely statistical-

based approaches, such as the GloVe embeddings (Pennington et al., 2014), to neural

approaches such as word2vec (Mikolov et al., 2013a) and FastText (Bojanowski et al.,

2017). GloVe and word2vec capture paradigmatic information from corpus level inter-

actions, following the distributional hypothesis; while the FastText further incorporates

modeling phenomena occurring within words.

In Chapter 5 we obtained insights on the question of how combining word repre-

sentations obtained by different methods affected downstream performance in several

NLP tasks. We showed that explicitly learning how to combine word representations ob-

tained with different methods, i.e. using a vector gate, provided consistent performance

increases in word-level semantic similarity tasks. We also showed that these increases

did not propagate to downstream tasks, with a single exception, the STSBenchmark.

This means that for most tasks, properly modeling lexical semantic similarity is not a

sufficient condition for increased performance.

This does not mean, however, that modeling other phenomena at the word level

could not be beneficial. In this chapter we attempt to incorporate character-level in-

formation into word representations, guided by the intuition that since they represent

the same underlying meaning, character-derived and pre-trained word representations

should be similar. In other words, vectors representing the same word should be similar
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no matter the method used for obtaining them.

6.2 Preliminaries

In Chapter 5 we showed the differences in performance between models that simply

concatenate character and word level representations (cat models), and those that learn

how to combine them through a vector gate (vg model). To motivate this chapter, we

look deeper into the representations learned by these modalities.

Figure 6.1 – Token level representations of an example sentence created by a cat model trained on
SNLI. * denotes an UNK word.

Figure 6.1 shows how a cat model encodes a simple sentence at the word and

character levels. The main rectangles represent the encoded sentence, where the vertical

axis represents the words, and the horizontal one their vector representations. We can

see that the activations in the character-level setting (average norm: ∼ 0.3), are barely

visible when using the same scale as the GloVe word vectors (average norm: ∼ 6).

Figure 6.2 – Rescaled character-level representations created by a cat model trained on SNLI

Figure 6.2 shows that character representations are in fact being learned, but at a

much smaller scale. At this point it could be argued that simply normalizing represen-

tations would get rid of this phenomenon. Preliminary experiments showed that this

was in fact the case, but performance in downstream tasks dropped drastically, which

is why I did not pursue this direction further.

On the other hand Fig. 6.3 shows that character-level representations learned by a

vg model are closer in magnitude to word-level ones, as their activations are visible,
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Figure 6.3 – Token level representations of an example sentence created by a vg model trained on
SNLI

but they are still smaller in general. It is also possible to observe that a limited number

of specific dimensions seem to be significant across words, resulting in a clearly visible

banded pattern that occurs only to a lesser extent in the character representations

obtained by the cat model.

Figure 6.4 – Character-level representations, vector gate and gated character representations ob-
tained by vg model trained on SNLI. Gated characters are obtained by multiplying element-wise the
vector gate values with the character-level representations: g�w(c). See Section 5.3.2 for more details.
Also note that the scale for the gated characters is different to that of the un-gated ones; this was done
deliberately to highlight the differences between them.

Figure 6.4 shows this phenomenon more clearly. A possible explanation is that

the interactions between the gating mechanism and the character-level representations

might have enough modeling power allowing the model to create similar character rep-

resentations for different words and relying on the gating mechanism for modeling their

differences. Indeed Fig. 6.4 shows that the gate, learning a non-banded pattern, ends

up producing gated character representations that are less banded than the ones output
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by the encoder. Another explanation is that, similar to what Bahdanau et al. (2015)

hypothesize, the gating mechanism is relieving the character encoder from the burden

of having to encode all the information in the character-level word representations.

(a) cat model (b) vg model

Figure 6.5 – t-SNE projection of the representations for the 1000 most frequent words of SNLI

Further, Fig. 6.5 displays a 2D t-SNE projection (van der Maaten and Hinton, 2008)

of character and word level representations where it is possible to see that character

representations cluster together among themselves, but are clearly separated from word

representations. This could be interpreted as character and word representations being

different enough that the simple t-SNE projection is capable of telling them apart.

All this being said, it is clear that the character and word representations being

created by these models differ greatly. Our hypothesis is that they might benefit from

being forced closer together, given that they represent the same underlying meaning.

6.3 Related Work

Miyamoto and Cho (2016) and Yang et al. (2017), introduced in Chapter 5 propose

gating mechanisms for combining character and word representations.

Rei et al. (2016) implemented a gating mechanism similar to the vector gate in-

troduced in Chapter 5, with a slightly different gating architecture, and an added loss

component for making non OOV character-level word representations similar to pre-

trained word representations. During training, the cosine distance between character-

and word-level word representations is minimized, but only character-level gradients are

backpropagated. This effectively forces the character-level encoder to produce repre-

sentations similar to the pre-trained word embeddings, without interfering with them.

The downside to their approach is that the authors do not report ablation results on

adding this loss term, so it is impossible to tell how it contributes to the overall perfor-

mance. Further, the choice of cosine distance as distance metric is not well justified, as

it ignores the vectors’ norms, which might have a significant impact in representation
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quality.

Ganin et al. (2016) introduce the “Gradient Reversal Layer” (GRL), a simple

method for forcing Neural Network representations from different domains to be similar

to each other. This mechanism implements the insight from Domain Adaptation that

in order to have effective domain transfer, the features representing elements from dif-

ferent domains should not contain information about the domains themselves. In other

words, successful domain adaptation relies on features being domain-invariant. For

example, a successful speech recognition system should be able to transcribe a speech

signal into text regardless of the speaker and the characteristics that identify them,

such as the pitch of their voice. Therefore, these characteristics should not be encoded

into the features representing the signal.

To achieve this, the authors propose pairing a gradient reversal layer with a domain

classifier whose task is to discriminate between domains. During backpropagation, the

gradients beneficial to the discriminator, i.e. those useful for discriminating between

domains, are reversed by the GRL, effectively updating the feature extractors with

gradients working against distinguishable features. This results in feature extractors

creating feature representations that are difficult for the domain discriminator to clas-

sify.

On a similar vein, Adi et al. (2018) found out that reversing the gradient was the

same as not doing so, or in other words, representations learned by a deep architecture

on big data created indistinguishable features (the potentially discriminating factor was

the speaker, in the context of speech recognition).

To test test how “unrecognizable” their features were, they trained classifiers on top

on the representations created by a baseline model. They found out that the earliest

features (those closest to the data) were good at predicting the speaker (the domain),

but the later ones were not, meaning that the architecture itself was able to generate

domain-invariant features.

6.4 Method

Our goal is to make character-derived and pre-trained word representations closer

to each other, with the hope that this inductive bias will produce better final word

representations. As an additional requirement, we want to enforce this closeness without

specifying any particular distance metric, like Rei et al. (2016) did when minimizing

the cosine distance.

In both concatenation (cat) and vector gate (vg) settings, introduced in Chap-

ter 5, we study the effect of pushing character-derived and pre-trained closer by means
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of adversarial regularization. Figure 6.6 shows the adversarial regularization setting,

inspired by Ganin et al. (2016).
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Figure 6.6 – Adversarial Regularization Architecture

The main purpose of adversarial regularization in this context is to make character-

derived representations harder for the discriminator to distinguish from word-level ones,

or in other words to make them similar. To achieve this we train a discriminator

designed for telling the difference between word- and character-level representations,

while manipulating the gradients during backpropagation.

Data flows normally during the forward pass, the discriminator produces an output

from which we obtain the binary cross-entropy when comparing it to the real class

of each representation. This loss value is then backpropagated normally through this

component, which will make it better at classifying them. After the gradients produced

by the word-level representations flow back through the discriminator we multiply them

by 0, effectively nullifying their effect on the rest of the architecture. On the other hand,

the gradients produced by the character-level representations are flipped (multiplied

by −1), right after flowing back from the discriminator. This will make the previous

components from the architecture, specifically the f layer and the character embeddings

themselves, produce character-level representations that are harder for the discriminator

to tell apart.

The rationale behind pushing the character-level word representations closer to the

pre-trained ones through adversarial means, as opposed to only adding a term to the

loss function, is that this gives a higher degree of freedom to the model. Indeed, since

we are not explicitly defining any measure of similarity between this representations,

other than “easy for the discriminator to classify”, we are letting the architecture learn

whatever works best for itself. Moreover, by not modifying the mechanisms to produce

word-level word representations we ensure that no information acquired during pre-
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training is lost.

We follow a procedure similar to the one introduced in Chapter 5 for training our

models: we pre-train them in SNLI and test them in several test sets. Again, the

choice of this task is justified by it allegedly requiring models to produce good semantic

representations in order to have good performance.

6.5 Results

6.5.1 Effect of Adversarial Regularization in NLI tasks

SNLI MNLIm MNLImis

Majority 33.33 33.33 33.33
Hyp-only 68.62 55.92 55.43
Infersent 84.57 70.81 70.99

+ cat 84.95 71.58 71.15
+ adv 84.15 71.06 71.00

+ vg 84.23 71.09 71.16
+ adv 84.06 71.35 71.51

Table 6.1 – Performance of cat and vg models in the test set of SNLI and the matched and
mismatched evaluation sets of MultiNLI

Table 6.1 shows that incorporating character-level information through the cat

method is beneficial in every case, as doing this beats the Infersent baseline. The same

cannot be said about vg models, which are only slightly beneficial in the MultiNLI

dataset. Further, adversarial regularization is not beneficial when applied to cat mod-

els, but it is when applied when applied to vg in MultiNLI.

6.5.2 Effect of Adversarial Regularization in NLI Diagnostic

tasks

We test our models in two NLI diagnostic tasks. Breaking NLI (Glockner et al., 2018)

is designed to show the deficiencies of NLI models that require both lexical and world

knowledge. Similarly, HANS (McCoy et al., 2019) tests whether NLI models are “cheat-

ing” by relying on specific heuristics categorized as lexical overlap, subsequence and

constituent.

We compare our models to four state-of-the-art architectures. The “Enhanced Se-

quential Inference Model” (ESIM, Chen et al. (2017)), which is a BiLSTM that uses

an inter-sentence attention mechanism for creating the premise-hypothesis pair repre-

sentation. The version of ESIM that does not share information between hypothesis
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and premise, i.e. that has to encode both sentences individually first and then combine

them, which we denote as ENC NLI. The “Knowledge-based Inference Model” (KIM,

Chen et al. (2018)), which is essentially an ESIM model with added external WordNet

information. Finally, BERT (Devlin et al., 2019), a pre-trained language model, trained

on 700 million words from English books and 2.5× 109 words from Wikipedia.

BERT KIM ESIM ENC NLI Infersent + cat + adv + vg + adv

antonyms 90.1 86.5 70.4 40.5 76.9 66.1 61.0 56.2 83.0
cardinals 97.4 93.4 75.5 47.0 71.1 68.6 64.7 58.9 79.3
nationalities 100.0 73.5 35.9 16.4 60.0 53.6 42.4 62.5 82.3
drinks 93.6 96.6 63.7 81.5 92.9 95.8 87.6 91.0 93.8
antonyms (WN) 83.4 78.8 74.6 59.2 73.9 73.1 65.4 67.0 75.2
colors 97.3 98.3 96.1 72.8 95.0 94.3 94.3 91.0 95.3
ordinals 77.5 56.6 21.0 5.9 9.0 15.8 14.8 8.6 20.4
countries 99.3 70.8 25.4 57.6 89.9 82.4 86.1 76.2 87.1
rooms 94.8 77.6 69.4 51.9 76.5 80.5 72.1 77.3 74.3
materials 96.0 98.7 89.7 41.8 96.0 90.2 90.9 89.4 91.7
vegetables 70.6 79.8 31.2 24.8 47.7 49.5 45.9 41.3 43.1
instruments 98.5 96.9 90.8 83.1 96.9 96.9 98.5 96.9 98.5
planets 91.7 5.0 3.3 5.0 85.0 91.7 81.7 80.0 78.3

synonyms 99.7 92.1 99.7 99.4 86.0 92.2 98.8 95.3 91.7

BNLI acc. 93.2 83.5 65.6 52.6 74.7 73.3 70.0 69.4 79.5
SNLI test acc. 90.7 88.6 87.9 85.0 84.6 85.0 84.2 84.2 84.1

Table 6.2 – Performance of cat and vg models trained in SNLI and tested in BreakingNLI

Table 6.2 shows our results in the Breaking NLI dataset. The setting that is closest

to ours in terms of size, architecture and training setting is the ENC NLI that does not

share information between sentences and does not rely on external information. The

table shows that a simple Infersent baseline already beats this model by a margin of

more than 20%, despite it having a test accuracy in SNLI 0.4% lower. Similarly, the

baseline beats ESIM by 8.9%, despite it having a test accuracy in SNLI 3.3% lower.

This is indicative that there is a trade-off between relying in heuristics and having good

performance in SNLI.

Our models with added characters were not able to surpass the baseline, and again

the adversarial setting did not contribute in the cat model’s performance. However the

vg + adversarial setting provided a significant improvement over the baseline, beating

it by 4.8% while trading-off only 0.5% in test accuracy. What is more, our setting

is only 4% short of achieving the same performance as KIM which has both external

knowledge and shared knowledge between sentences. This supports the hypothesis that

our model creates representations that are less reliant on annotation heuristics.

Similarly, Table 6.3 shows that our vector gate model paired with adversarial reg-

ularization significantly beats every model by more than 10% in the Non-Entailment

case, except BERT. This increased performance, however, comes at a cost in perfor-
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BERT KIM ESIM ENC NLI Infersent + cat + adv + vg + adv

E

LO 0.97 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.92
S 1.00 0.99 0.99 1.00 0.98 0.99 0.99 0.99 0.96
C 1.00 0.96 0.98 0.97 0.97 0.98 0.99 0.98 0.95

avg 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.94

NE

LO 0.42 0.01 0.01 0.01 0.07 0.02 0.05 0.05 0.28
S 0.06 0.00 0.00 0.01 0.02 0.02 0.01 0.01 0.06
C 0.02 0.02 0.04 0.03 0.06 0.05 0.03 0.05 0.09

avg 0.17 0.01 0.02 0.02 0.05 0.03 0.03 0.04 0.14

Table 6.3 – Performance of cat and vg models trained in SNLI and tested in HANS. E stands for
“Entailment”, NE for “Non-Entailment”, LO for “Lexical Overlap”, S for “Subsequence”, and C for
“constituent”

mance in the Entailment case, where every model performs almost perfectly our model

drops to 94%.
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Conclusions

In this thesis we studied the character modality, and how to combine it with word

representations. We began by proposing two models; one for tackling the NLI task,

and another for the Implicit Emotion Recognition task. The former was competitive to

other systems developed in the same context, while the latter was superior. We learned

from these studies that the usefulness of the character modality is likely to depend

on other parts of the architecture, on the task being tackled, and on the dataset that

embodies it.

Later, we proposed letting the model learn how to combine both character and word

modalities through gating mechanisms and showed that this was beneficial in some

cases. Finally, we cast the problem of making character-derived representations similar

to pre-trained word embeddings as multi-modal domain adaptation, an addressed it

with an adversarial regularization setting. We showed that imbuing models with this

inductive bias significantly reduced their reliance on dataset annotation artifacts.

7.1 Contributions

In Chapter 3 we showed that a self-attentive architecture that uses the output of a

max-pooled BiLSTM as context query vector, is capable of performing as well as a more

complex model with access to more information, in the NLI task. We further provided

evidence that such architecture does not benefit from having access to character-derived

word representations in the NLI task, despite this modality being helpful, to a limited

extent, in more complex models. We argued this might be due to English not being

a morphologically rich language, hence not containing meaningful patterns at the sub-

word level, and therefore complex architectures at the word level might be enough for

capturing syntactic and semantic information.

In Chapter 4 we presented an architecture that relies on character-derived repre-
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sentations only, and was pre-trained in a self-supervised manner. We showed that it

performed comparably well to a more complex model despite having been trained on

significantly less data. This model also proved to be good at domain transfer, since

it was trained in data from a vastly different domain, and performed as well as mod-

els pre-trained in data from the same domain. We argue this high transfer capability

might be attributable to the character modality. Additionally, we show that emoji and

hashtags are important features when attempting to predict implicit emotion, and that

different emoji contribute differently and often counter-intuitively to this task. This

architecture got 2nd place out of 30 teams in the IEST at WASSA 2018.

In Chapter 5 we proposed a feature-wise sigmoidal gating mechanism for selectively

combining character and word representations, and showed that it is better than other

commonly-used methods, as measured by word-similarity tasks. We also observed that

this mechanism learns that to build good word representations it has to increasingly rely

on character-level information as it models increasingly infrequent words. We further

demonstrated that despite the increased expressivity of word representations it offers,

it has no clear effect in sentence representations as measured by sentence evaluation

tasks, which could be interpreted as these specific sentence-level tasks not requiring

complex modeling at the subword level.

In Chapter 6 we showed that combining character-derived and pre-trained word

representations with a vector gate, while forcing them to be similar, obtains state-of-

the-art results in datasets aimed at measuring how much models rely in annotation

artifacts. This means that our models encode representations of meaning better than

comparable architectures.

In all, we provided evidence that the character modality is often useful for ob-

taining better meaning representations, but the way in which it is combined with the

word modality plays an essential role. Further, we demonstrated that letting mod-

els selectively combine character-derived and pre-trained word representations through

gating mechanisms leads to better word representations. Moreover, we showed that

the assumption that the character and word modalities should produce similar word

representations, based on the fact that they represent the same meaning, proved to be

true in some experimental settings.

Finally, since our findings pertain to the domain of learning word representations,

they are roughly task-independent. The same gating architectures and adversarial

methods used in combining character-derived and pre-trained word representations

could be used in diverse applications such as SPAM detection, Part-of-Speech tagging,

Named-Entity Recognition, Machine Translation, or Question Answering. In short, any

system relying on word representations could potentially benefit from our findings.

70



Chapter 8

Publications

8.1 First Author

• (Planned) Jorge A. Balazs, Edison Marrese-Taylor and Yutaka Matsuo. Ad-

versarial training of word and subword representations.

• Jorge A. Balazs and Yutaka Matsuo. Gating Mechanisms for Combining Char-

acter and Word-level Word Representations: An Empirical Study, in Proceed-

ings of NAACL-HLT: Student Research Workshop, Minneapolis, USA, Associ-

ation for Computational Linguistics (ACL), June 2019. https://aclweb.org/

anthology/N19-3016/

• Jorge A. Balazs, Edison Marrese-Taylor, and Yutaka Matsuo. IIIDYT at

IEST 2018: Implicit Emotion Classification With Deep Contextualized Word

Representations, in Proceedings of the 9th Workshop on Computational Ap-

proaches to Subjectivity, Sentiment and Social Media Analysis (WASSA) col-

located with EMNLP, Brussels, Belgium, Association for Computational Lin-

guistics (ACL), November 2018. (Best System Analysis Paper) https:

//aclweb.org/anthology/W18-6208/

• Jorge A. Balazs, Edison Marrese-Taylor, Pablo Loyola, and Yutaka Matsuo.

Refining Raw Sentence Representations for Textual Entailment Recognition via

Attention, in Proceedings of the 2nd Workshop on Evaluating Vector Space

Representations for NLP (RepEval) collocated with EMNLP, Copenhagen, Den-

mark, Association for Computational Linguistics (ACL), September 2017. https:

//aclweb.org/anthology/W17-5310/

71

https://aclweb.org/anthology/N19-3016/
https://aclweb.org/anthology/N19-3016/
https://aclweb.org/anthology/W18-6208/
https://aclweb.org/anthology/W18-6208/
https://aclweb.org/anthology/W17-5310/
https://aclweb.org/anthology/W17-5310/


Chapter 8

8.2 Others

• Pablo Loyola, Edison Marrese-Taylor, Jorge A. Balazs, Yutaka Matsuo, and Fu-

miko Satoh, Content Aware Source Code Change Description Generation, in Pro-

ceedings of the 11th International Conference on Natural Language Generation

(INLG), Tillburg, The Netherlands, Association for Computational Linguistics,

November 2018. https://aclweb.org/anthology/W18-6513/

• Suzana Ilic, Edison Marrese-Taylor, Jorge A. Balazs, and Yutaka Matsuo,

Deep contextualized word representations for detecting sarcasm and irony, in

Proceedings of the 9th Workshop on Computational Approaches to Subjectivity,

Sentiment and Social Media Analysis (WASSA), Brussels, Belgium, Association

for Computational Linguistics (ACL), November 2018. https://aclweb.org/

anthology/W18-6202/

• Edison Marrese-Taylor, Suzana Ilic, Jorge A. Balazs, Yutaka Matsuo, Hel-

mut Prendinger, IIIDYT at SemEval-2018 Task 3: Irony detection in English

tweets, in Proceedings of the 12th International Workshop on Semantic Evaluation

(SemEval-2018), New Orleans, USA, Association for Computational Linguistics

(ACL), June 2018. https://aclweb.org/anthology/S18-1087/

• Edison Marrese-Taylor, Jorge A. Balazs, and Yutaka Matsuo, Mining fine-

grained opinions on closed captions of YouTube videos with an attention-RNN in

Proceedings of the 8th Workshop on Computational Approaches to Subjectivity,

Sentiment & Social Media Analysis (WASSA) collocated with EMNLP, Copen-

hagen, Denmark, Association for Computational Linguistics (ACL), September

2017. https://aclweb.org/anthology/W17-5213/

72

https://aclweb.org/anthology/W18-6513/
https://aclweb.org/anthology/W18-6202/
https://aclweb.org/anthology/W18-6202/
https://aclweb.org/anthology/S18-1087/
https://aclweb.org/anthology/W17-5213/


Bibliography

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. 2017.
Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks.
In Proceedings of the 5th International Conference on Learning Representations
(ICLR). Toulon, France. https://openreview.net/pdf?id=BJh6Ztuxl. 58

Yossi Adi, Neil Zeghidour, Ronan Collobert, Nicolas Usunier, Vitaliy Liptchinsky, and
Gabriel Synnaeve. 2018. To reverse the gradient or not: An empirical compar-
ison of adversarial and multi-task learning in speech recognition. arXiv e-prints
abs/1812.03483. http://arxiv.org/abs/1812.03483. 64

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and
Aitor Soroa. 2009. A Study on Similarity and Relatedness Using Distributional
and WordNet-based Approaches. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics . Association for Computational Linguistics, Boulder,
Colorado, pages 19–27. http://aclweb.org/anthology/N09-1003. 48, 49, 49

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada
Mihalcea, German Rigau, and Janyce Wiebe. 2016. SemEval-2016 Task 1: Se-
mantic Textual Similarity, Monolingual and Cross-Lingual Evaluation. In Proceed-
ings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).
Association for Computational Linguistics, San Diego, California, pages 497–511.
http://www.aclweb.org/anthology/S16-1081. 50

Fotis Aisopos, George Papadakis, Konstantinos Tserpes, and Theodora Varvarigou.
2012. Content vs. context for sentiment analysis: a comparative analysis over mi-
croblogs. In Proceedings of the 23rd ACM Conference on Hypertext and Social
Media. ACM, pages 187–196. https://dl.acm.org/citation.cfm?id=2310028. 8

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A Simple but Tough-to-Beat
Baseline for Sentence Embeddings. In International Conference on Learning Rep-
resentations . https://openreview.net/pdf?id=SyK00v5xx. 50, 51

Oded Avraham and Yoav Goldberg. 2017. The Interplay of Semantics
and Morphology in Word Embeddings. arXiv preprint arXiv:1704.01938
https://arxiv.org/abs/1704.01938. 19, 43

73

https://openreview.net/pdf?id=BJh6Ztuxl
https://openreview.net/pdf?id=BJh6Ztuxl
http://arxiv.org/abs/1812.03483
http://arxiv.org/abs/1812.03483
http://arxiv.org/abs/1812.03483
http://aclweb.org/anthology/N09-1003
http://aclweb.org/anthology/N09-1003
http://aclweb.org/anthology/N09-1003
http://www.aclweb.org/anthology/S16-1081
http://www.aclweb.org/anthology/S16-1081
http://www.aclweb.org/anthology/S16-1081
https://dl.acm.org/citation.cfm?id=2310028
https://dl.acm.org/citation.cfm?id=2310028
https://dl.acm.org/citation.cfm?id=2310028
https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=SyK00v5xx
https://arxiv.org/abs/1704.01938
https://arxiv.org/abs/1704.01938
https://arxiv.org/abs/1704.01938


Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. In Proceedings of the 3rd Inter-
national Conference on Learning Representations (ICLR). San Diego, California,
USA. 63

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
2017. Enriching Word Vectors with Subword Information. Trans-
actions of the Association for Computational Linguistics 5:135–146.
https://transacl.org/ojs/index.php/tacl/article/view/999. 7, 10, 20, 42, 43,
43, 60

Hamed R. Bonab and Fazli Can. 2016. A theoretical framework on the ideal
number of classifiers for online ensembles in data streams. In Proceedings
of the 25th ACM International on Conference on Information and Knowl-
edge Management . ACM, New York, NY, USA, CIKM ’16, pages 2053–2056.
https://doi.org/10.1145/2983323.2983907. 34

Jan Botha and Phil Blunsom. 2014. Compositional Morphology for Word Represen-
tations and Language Modelling. In Eric P. Xing and Tony Jebara, editors, Pro-
ceedings of the 31st International Conference on Machine Learning . PMLR, Bejing,
China, volume 32 of Proceedings of Machine Learning Research, pages 1899–1907.
http://proceedings.mlr.press/v32/botha14.html. 7, 20, 43, 43

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning.
2015. A Large Annotated Corpus for Learning Natural Language Inference. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing . Association for Computational Linguistics, Lisbon, Portugal, pages 632–642.
http://aclweb.org/anthology/D15-1075. 8, 16, 25, 48

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014. Multimodal Dis-
tributional Semantics. Journal of Artificial Intelligence Research 49:1–47.
https://www.jair.org/index.php/jair/article/view/10857/25905. 49, 52

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual
Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver,
Canada, pages 1–14. https://doi.org/10.18653/v1/S17-2001. 50

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. 2014. One billion word benchmark for measuring
progress in statistical language modeling. Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH pages
2635–2639. https://doi.org/10.1016/j.csl.2015.07.001. 33

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2018. Neural Nat-
ural Language Inference Models Enhanced with External Knowledge. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, Melbourne,
Australia, pages 2406–2417. https://doi.org/10.18653/v1/P18-1224. 67

74

https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.1145/2983323.2983907
https://doi.org/10.1145/2983323.2983907
https://doi.org/10.1145/2983323.2983907
http://proceedings.mlr.press/v32/botha14.html
http://proceedings.mlr.press/v32/botha14.html
http://proceedings.mlr.press/v32/botha14.html
http://aclweb.org/anthology/D15-1075
http://aclweb.org/anthology/D15-1075
https://www.jair.org/index.php/jair/article/view/10857/25905
https://www.jair.org/index.php/jair/article/view/10857/25905
https://www.jair.org/index.php/jair/article/view/10857/25905
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1016/j.csl.2015.07.001
https://doi.org/10.1016/j.csl.2015.07.001
https://doi.org/10.1016/j.csl.2015.07.001
https://doi.org/10.18653/v1/P18-1224
https://doi.org/10.18653/v1/P18-1224
https://doi.org/10.18653/v1/P18-1224


Bibliography

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017.
Enhanced lstm for natural language inference. In Proc. ACL. 26, 66

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016. Intrinsic Evaluation of Word
Vectors Fails to Predict Extrinsic Performance. In Proceedings of the 1st Workshop
on Evaluating Vector-Space Representations for NLP . Association for Computa-
tional Linguistics, Berlin, Germany, pages 1–6. http://anthology.aclweb.org/W16-
2501. 55

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational Linguistics, pages 1724–1734.
https://doi.org/10.3115/v1/D14-1179. 17

Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning. In Andrew
McCallum and Sam Roweis, editors, Proceedings of the 25th Annual International
Conference on Machine Learning (ICML 2008). Helsinki, Finland, pages 160–167.
https://icml.cc/Conferences/2008/papers/391.pdf. 14, 15, 58

Alexis Conneau and Douwe Kiela. 2018. SentEval: An Evaluation Toolkit for Universal
Sentence Representations. In Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC-2018). European Language Resource
Association, Miyazaki, Japan. http://aclweb.org/anthology/L18-1269. 51, 58

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes.
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BiGRU Bidirectional Gated Recurrent Unit

BiLM Bidirectional Language Model

BiLSTM Bidirectional Long Short-Term Memory Network

BPTT Back Propagation Through Time

CBOW Continuous Bag of Words

CNN Convolutional Neural Network

CV Computer Vision

ELMo Embeddings from Language Models

GRU Gated Recurrent Unit

IEST Implicit Emotions Shared Task

LM Language Model

LSTM Long Short-Term Memory Network

MLP Multi-Layer Perceptron

MT Machine Translation

NER Named-Entity Recognition

NLG Natural Language Generation

NLI Natural Language Inference

NLP Natural Language Processing

NLU Natural Language Understanding

NN Neural Network
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POS Part-of-Speech

QA Question Answering

RNN Recurrent Neural Network

SST Stanford Sentiment Treebank

TDNN Time Dilated Neural Network
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