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1 Introduction

1.1 Microlocal sheaf theory and symplectic geometry

The microlocal sheaf theory due to Kashiwara—Schapira [KS85, KS90] has been applied
to symplectic geometry for about a decade. After the pioneering works by Nadler-
Zaslow [NZ09] and Tamarkin [Tam18], many statements in symplectic geometry are (re-
)proved via microlocal sheaf theory.

Guillermou [Guil2, Guil9] and Viterbo [Vit19] independently associtated an object of
the derived category of sheaves on M x R to each compact exact Lagrangian submanifold
L C T*M so that the microsupport of the object is contained in a conification of L. Using
this object, Guillermou gave an alternative proof to the homotopy equivalence of 7| : L —
M (which was originally proved by Abouzaid and Kragh [AK18] in a stronger form).
Guillermou’s construction does not depends on Floer theory while Viterbo’s construction
is based on Floer theory.

1.2 Rational Lagrangian immersions and our main results

In [AI17], we gave a sheaf theoretic method to estimate the displacement energy of compact
subsets in cotangent bundles. See also Zhang [Zhal8]. The main theorem of [AI17] asserts
that an estimate of displacement energy is given by two sheaves whose microsupports are
contained in the conification of the subsets. However the main theorem claims nothing
about construction or existence of sheaves which give a good estimate. In this paper,
we give an explicit estimate of the displacement energies for Lagrangian immersions with
intersection estimates based on the method by [AI17].

Let M be a connected manifold without boundary and denote by T*M its cotangent
bundle and by w the symplectic form on T*M. A Lagrangian immersion ¢: L — T*M is
said to be rational if there exists o, € R>q such that
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Let I be an open interval containing [0, 1]. A compactly supported C*°-function H =
(Hs)ser: T*M x I — R defines a time-dependent Hamiltonian vector field Xy = (Xu,)s
on T*M. By the compactness of the support, Xz generates a Hamiltonian isotopy ¢ =

(v,0) € ZL} =0,7Z, (1.1)
where

v: D* - T*M,v: 0D? — L,
. (1.2)
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() g: T*M x I — T*M. Following Hofer [Hof90], for a compactly supported function
H:T*M x I — R, we define

p
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Let ¢v: L — T*M be a rational Lagrangian immersion. We give a bound of #{(y,v’) €
LxL|uy) = ¢ ou(y)} and condition for ||H|. One defines

v: D* - T*M,s: [0,1] = L,
K, =< (v,0) | 9(0) # 9(1),t09(0) = tov(1), p . (1.4)

v|gp2 0 exp(2mi—) =100

=

Before stating our main result, we put an assumption on rational Lagrangian immer-
sions.

and

(v,7) € K} U {ab}) N ]R>0> . (1.5)

Assumption 1.1. There exists no (v,0) € K, with [, v'w = 0.
Our main theorems are the following.

Theorem 1.2 (cf. Chekanov [Che98] and Akaho [Akal5)). Letv: L — T*M be a compact
rational Lagrangian immersion satisfying Assumption 1.1. If |H| < e, and ¢: L — T*M
intersects ¢ o 12 L — T*M transversally, then

dim L

#{(,y) e LxL|uy) =of ouly)} = Y bi(L). (1.6)
=0

As a corollary, we obtain an estimate for the displacement energy of «(L) since the
empty intersection is transversal.

Corollary 1.3. Let v: L — T*M be a compact rational Lagrangian immersion satisfying
Assumption 1.1. For any Hamiltonian function H: T*M x I — R with |H|| < e,, ¢«(L) N

o1 (e(L)) # 0.

Theorem 1.4 (cf. Liu [Liu05]). Let v: L — T*M be a compact rational Lagrangian im-
mersion satisfying Assumption 1.1. If || H|| < min ({e,} U ({0,/2} NRx0)), then

#{(,v) € LxL|uly) =1 ou(y))} > cl(L) +1, (1.7)
where cl(L) is the cup-length of L over Fs.

Not only the proofs of the theorems above but also their statements are new. Our
proofs can be regarded as a refinement of the arguments in [AI17]. Additionally, we use
local property of phom’s, what is called ”microlocal property” of sheaves, directly and
essentially to prove Theorem 1.4. This part is essentially new compared to [AI17] and
more straightforward compared to Floer theoretic arguments.



1.3 Related works

It seems to be possible to prove our main theorems via Floer theory. Indeed, Chekanov[Che98],
Liu[Liu05], and Akaho[Akal5] respectively proved Theorem 1.2 for rational embeddings,
Theorem 1.4 for rational embeddings, and Theorem 1.2 for exact immersions (for more
general symplectic manifolds). Moreover, Floer theory would give better estimates in the
cases that bounding cochains exist [FOO009, FOOO13].

1.4 Organization

This paper is organized as follows. In Section 2, we recall some results of the microlocal
sheaf theory. In Section 3, we define parametrized and circled Tamarkin category and
give a sheaf-theoretic energy estimate, which is a generalization of the result obtained
by Asano-lke [AI17]. In Section 4, we prove the existence of the sheaf quantizations
of rational Lagrangian immersions in cotangent bundles. Finally in Section 5, we prove
Theorems 1.2 and 1.4.
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2 Preliminaries on microlocal sheaf theory

In this paper, we assume that all manifolds are real manifolds of class C*° without bound-
ary. Throughout this paper, let k be a field, which we specialize k = Z/27Z later.

In this section, we recall some definitions and results from [KS90]. We mainly follow
the notation in [KS90]. Until the end of this section, let X be a C°*°-manifold without
boundary.

2.1 Geometric notions

See [KS90, §4.3, §A.2] for details concerning this subsection. For a locally closed subset
A of X, we denote by A its closure and by Int(A) its interior. We also denote by Ax
the diagonal of X x X. We denote by 7x: TX — X the tangent bundle of X, and by
wx: T*X — X the cotangent bundle of X. If there is no risk of confusion, we simply
write 7 and 7 instead of 7x and mx, respectively. For a submanifold M of X, we denote
by T X the normal bundle to M in X, and by 773,X the conormal bundle to M in X.
In particular, T X denotes the zero-section of T*X. We set T*X == T*X \T%X. For
two subsets S7 and S of X, we denote by C(S1,S2) C TX the normal cone of the pair
(S1,52).

Let f: X — Y be a morphism of manifolds. With f we associate the following mor-



phisms and commutative diagram:

X < Xy Y LTy

Tk

)

where f; is the projection and fy is induced by the transpose of the tangent map f': TX —
X xyTY.

We denote by (z;€) a local homogeneous coordinate system on 7% X. The cotangent
bundle 7*X is an exact symplectic manifold with the Liouville 1-form o = (£,dx). We
denote by ax: T*X — T*X, (z;€) — (x; =) the antipodal map. For a subset A of T*X,
we denote by A% its image under the antipodal map ax. We also denote by h: T*T*X
TT*X the Hamiltonian isomorphism given in local coordinates by h(dz;) = —0/9¢; and
h(d¢;) = 0/0x;. We will identify T*T*X and TT*X by —h.

2.2 Microsupports of sheaves

See [KS90, §5.1, §5.4, §6.1] for details concerning this subsection. Note that our notation
is the same as in [Guil2, Guil9] and slightly differs from that of [KS90].

We denote by kx the constant sheaf with stalk k and by Mod (k) the abelian category
of sheaves of k-vector spaces on X. Moreover, we denote by DP(X) or DP(kx) the
bounded derived category of sheaves of k-vector spaces. One can define Grothendieck’s
six operations RHom, ®, Rf., f~', Rfi, ' for a morphism of manifolds f: X — Y. For a
locally closed subset Z of X, we denote by kz the zero-extension of the constant sheaf
with stalk k on Z to X, extended by 0 on X \ Z. Moreover, for a locally closed subset Z
of X and F € DP(X), we define Fz, RI'7(F) € D?(X) by

Fy; :=F®ky, sz(F) = RHom(kZ, F) (2.2)

One denotes by wy € DP(X) the dualizing complex on X, that is, wy := a!Xk, where
ax: X — pt is the natural morphism. Note that wx is isomorphic to orx[dim X], where
orx is the orientation sheaf on X. More generally, for a morphism of manifolds f: X — Y,
we denote by wy = wx/y 1= f'ky ~wx ® f*1w§_1 the relative dualizing complex.

Let us recall the definition of the microsupport SS(F) of an object F' € DP(X).

Definition 2.1 ([KS90, Def. 5.1.2]). Let F € DP(X) and p € T*X. One says that
p & SS(F) if there is a neighborhood U of p in T* X such that for any z¢p € X and any
C*>-function ¢ on X (defined on a neighborhood of () satisfying dy(xg) € U, one has
BRI o> p(ag)y () ao = 0.

One can check the following properties:

(i) The microsupport of an object in D(X) is a conic (i.e., invariant under the action
of Ryg on T*X) closed subset of T*X.

(ii) For an object F' € D"(X), one has SS(F) N T%X = 7(SS(F)) = Supp(F).

(iii) The microsupports satisfy the triangle inequality: if Fy — Fy — Fj3 s a
distinguished triangle in DP(X), then SS(F;) C SS(F}) U SS(Fy) for j # k.



We also set SS(F) := SS(F)NT*X = SS(F) \T%X.

The following proposition is called (a particular case of) the microlocal Morse lemma.
See [KS90, Prop. 5.4.17 and Corollary 5.4.19] for more details. The classical theory corre-
sponds to the case F'is the constant sheaf k.

Proposition 2.2. Let F € D*(X) and ¢: X — R be a C>®-function. Let moreover
a,be R witha <b oracR,b=+oc0. Assume

(1) ¢ is proper on Supp(F),
(2) do(z) & SS(F) for any x € ¢~ 1([a,b)).

Then the canonical morphism
R (7 ((=00,b)); F) — RI (¢ ((—00,a)); F) (2.3)
s an tsomorphism.

By using microsupports, we can microlocalize the category DP(X) as follows. For
a subset A C T*X, we denote by Db (X) the subcategory of DP(X) consisting of F
with SS(F) c A. Note that Db (X) contains locally constant sheaves on X. By the
triangle inequality, the subcategory DZ(X ) is a triangulated subcategory. For a subset
Q of T*X, we define DP(X;Q) as the categorical localization of DP(X) by Db*X\Q(X):
D"(X:Q) := Db(X)/Dl%*X\Q(X). For a subset A of 2, DY (X;Q) denotes the full trian-
gulated subcategory of DP(X; Q) consisting of F with SS(F)NQ C A.

For a subset A of T*X, D'(O A)(X ) denotes the full triangulated subcategory of DP(X)

consisting of F for which there exists a neighborhood U of A such that SS(F)NU C A.

2.3 Functorial operations

We consider behavior of the microsupports with respect to functorial operations. See
[KS90, §5.4] for details concerning this subsection.

Definition 2.3 ([KS90, Def. 5.4.12]). Let f: X — Y be a morphism of manifolds and A
be a closed conic subset of T*Y. The morphism f is said to be non-characteristic for A if

FHA NN TEX) € X xy TyY. (2.4)

™

See (2.1) for the notation fr and fg. In particular, any submersion from X to Y is
non-characteristic for any closed conic subset of 7*Y. Note that submersions are called
smooth morphisms in [KS90]. One can show that if f: X — Y is non-characteristic for a
closed conic subset A of T*Y, then f;f-1(A) is a closed conic subset of T*X.

Proposition 2.4 ([KS90, Prop. 5.4.4, Prop. 5.4.13, and Prop. 5.4.5]). Let f: X — Y be
a morphism of manifolds, F € D(X), and G € DP(Y).

(i) Assume that f is proper on Supp(F). Then SS(fiF) C frf; (SS(F)).

(ii) Assume that f is non-characteristic for SS(G). Then the canonical morphism
G @wy — f'G is an isomorphism and SS(f~'G) USS(f'G) C fuf=1(SS(G)).

(iii) Assume that f is a submersion. Then SS(F) C fq(X xy T*Y') if and only if locally
on X there exists H € DP(Y) satisfying F ~ f~YH. Moreover if f: X — Y is a
vector bundle over Y, then SS(F') C f4(X xyT*Y) if and only if the counit morphism
f'Rf.F — F is isomorphic.



For closed conic subsets A and B of T* X, let us denote by A+ B the fiberwise sum of
A and B, that is,

A+ B:={(z;a+b) |z en(A)nn(B),ac ANn '(z),be BNr '(z)} CT*X. (25)
Proposition 2.5 ([KS90, Prop. 5.4.14]). Let F,G € D(X).

(i) If SS(F)NSS(G)* C Tx X, then SS(F ® G) C SS(F') + SS(G).

(ii) If SS(F)NSS(G) C Tx X, then SS(Hom(F,G)) C SS(F)* + SS(G).

Let ¢: X — R be a C*™-function and assume that dp(x) # 0 for any = € ¢ =1(0). Set
U:={x € X |e(x) <0} Forsuch U C X, define

N*(U) = $S(kp)" = T X|o U{(w: Mdip(a)) | () = 0, A < 0}. (2.6)

Proposition 2.6 ([KS90, Prop. 6.3.1]). Let U be an open subset of X as above and
j: U — X be the open embedding. For G € DP(U), let SS(G) denote the closure of SS(G)
i T*X.

(i) If SS(G) N N*(U)* C T4 X, then SS(Rj.G) C SS(G) + N*(U).

(ii) IfSS(G) N N*(U) C T4X, then SS(RjG) C SS(G) + N*(U)2.

Lemma 2.7. Let ¢: X — R be a C®-function and assume that dp(x) # 0 for any
r€p H0). SetU:={xeX|px)<0},Z:={xecX|p)<0}andletj:U— X be
the inclusion.

(i) IfSupp(F) C Z and SS(F)NN*(U) C Tx X, then there exists a natural isomorphism
FU ~ F.

(ii) If SS(F)NN*(U)* C T%X, then there ezists a natural isomorphism Fz ~ Rj,j~'F

Proof. (i) Consider the distinguished triangle Fyy — F' — F,-1(g) iy By SS(Fy) C
N*(U)* 4+ SS(F), (N*(U)* + SS(F)) N N*(U) C T%X, and the triangle inequality, we
have F,-1(9) N N*(U) C T%X. However, for any G € D"(X) supported on a closed
submanifold N C X, SS(G) contains T, X |[gupp(c), Which intersects with N*(U) outside
the zero-section unless Supp(G) = (. Hence, we obtain F,-1 ) = 0.

(ii) This morphism is obtained by applying Ri. to the unit morphism i ~'F — Rj.j'~1i~lF
where i: Z — X and j': U — Z are the inclusions. The cone of F; — Rj,j 'F is
supported on ¢~1(0). By [KS90, 5.4.8], SS(Fyz) U SS(Rj.j 1F) C N*(U) + SS(F) and
hence the cone is 0 as in (i). O

2.4 Kernels

See [KS90, §3.6] for details concerning this subsection. For i = 1,2, 3, let X; be a manifold.
We write X;; := X; x X; and Xy23 := X7 x X3 x X3 for short. We use the same symbol
g; for the projections X;; — X; and Xj23 — X;. We also denote by ¢;; the projection
X123 — Xj;. Similarly, we denote by p;; the projection T X723 — T X;;. One denotes by
p12a the composite of pi1o and the antipodal map on T X,.

Let A C T*X15 and B C T*Xo3. We set

Ao B := plg(pﬁluA N pgng) C T Xq3. (2.7)



We define the operation of composition of kernels as follows:
o D"(X12) x D"(X23) — D"(X13)
(K12, Ka3) — K12 2 Ko3 := Rqi3) (413 K12 @ g5y Ko3). (28)
If there is no risk of confusion, we simply write o instead of 2 By Proposition 2.4(i)-(ii)
and Proposition 2.5, we have the following.
Proposition 2.8. Let K;; € D(X;;) and set A;j := SS(K;;) C T*X;; (ij = 12,23).
Assume
(1) qu3 is proper on iy Supp(K12) N a3 Supp(Kas),
(2) praefia Npyg Aos N (Tk, X1 x T* Xy x T, X3) C Tk, X123.
Then
SS(K2 )?2 Ko3) C Ajg 0 Ags. (2.9)

2.5 phom functor

See [KS90, §4.4] for details concerning this subsection. Let ¢i,¢2: X x X — X be the
projections. We identify Tx (X x X)) with 7" X through the first projection (z,z;§, —§)
(;6).
Definition 2.9. For F,G € D"(X), one defines
phom(F, G) := pua RHom(g; 'F,¢|G) € DP*(T*X). (2.10)
For a closed submanifold M of X and F € DP(X), we have an isomorphism
phom(kar, F) =~ iprepns (F), (2.11)
where ips: Ty, X — T*X is the embedding.
Proposition 2.10 ([KS90, Cor. 5.4.10 and Cor. 6.4.3]). Let F,G € D*(X). Then
Supp(puhom(F, G)) C SS(F) N SS(G), (2.12)
SS(phom(F,G)) € —h~1(C(SS(G), SS(F))), (2.13)
where C(S1,S2) is the normal cone and h: T*T*X = TT*X is the Hamiltonian isomor-
phism (see Subsection 2.1).
The functor phom gives D(X) an enrichment in DP(7*X). For each F € DP(X), a
morphism
id%: kpsx — phom(F, F) (2.14)
is given. For each F,G, H € D"(X), a composition morphism
g whom(G, H) @ phom(F,G) — phom(F, H) (2.15)

is defined. This composition is unital and associative.

For an open subset  C T*X, the restriction of phom to ) also gives D(X;Q) an
enrichment in DP(Q). The 0-th cohomology of uhom gives a new category whose objects
are those of D”(X; Q) and Hom-set is defined by Homfp(—, —) := H(Q; phom(—, —)|q).
Moreover for F,G € DP(X;Q) there exist a natural map mpg: Hompy x,0)(F,G) —
HO(Q; uhom(F,G)|q) and these maps give a functor from DP(X;) to the new cate-
gory. For v € Hompp(x.,0)(F,G), we denote v by the corresponding morphism ko —
phom(F, G)|q. This notation is compatible with (2.14).



2.6 Simple sheaves

Let A C T*X be a locally closed conic Lagrangian submanifold and p € A. Simple sheaves
along A at p are defined in [KS90, Def. 7.5.4]. In this subsection, we recall them.

For a C*°-function ¢: X — R such that ¢(7(p)) = 0 and Iy, intersects A transversally
at p, one can define 7, = 7, , € Z (see [KS90, §7.5 and A.3]).

Proposition 2.11 ([KS90, Prop. 7.5.3]). Fori = 1,2, let ¢;: X — R be a C*-function
such that @;(m(p)) = 0 and Ty,, intersects A tmnsversally at p. Let F € DP(X) and
assume that SS(F') C A in a neighborhood of p. Then

R, 50y (F)r(p) = R{py500(F)r) [5(Tor — T1)] - (2.16)

Definition 2.12 ([KS90, Def. 7.5.4]). In the situation of Proposition 2.11, F' is said to
have microlocal type L € D”(Mod(k)) with shift d € 3Z at p if

RF{@ZO}(F)W(IJ) ~L [d - %dimX - %Tw] (2.17)

for some (hence for any) C*°-function ¢ such that ¢(7(p)) = 0 and I'g, intersects A
transversally at p. If moreover L ~ k, I is said to be simple along A at p. If F' is simple
at all points of A, one says that F' is simple along A.

One can prove that if F' € DP(X) is simple along A, then id% |z : ka — phom(F, F)|a
is isomorphic. When A is a conormal bundle to a closed submanifold M of X in a neigh-
borhood of p, that is, 7|5: A — X has constant rank, then F' € D"(X) is simple along A
at p if F ~ kj,[d] in DP(X;p) for some d € Z.

Lemma 2.13 ([Guil2, Lem. 6.14]). If two conic Lagrangian submanifolds Ay, Ao C T*X
intersect cleanly along N = A1 N Ag. Then —h~1C(A1, As) = TxX. Moreover, let F €
D](DA )( ),G € D(A )( ) be simple along A1 and Ay respectively. Then there exist d € Z
and a rank 1 local system L on N such that phom(F,G)|n ~ L[d].

2.7 'Triangulated orbit category

For a C°°-manifold X, Guillermou [Guil2] introduced the triangulated orbit category
D]/Dm (X) !, in which any object F is isomorphic to its shift F'[n] for any n € Z. Guillermou

also defined the microsupport SS(F') C T* X of an object F' € D/[l]( ). See [Guil2, Guil9]
for details.

Let K be the k-algebra k[e]/(¢?) and perf(Ky) be the full triangulated subcategory
of DP(Kx) generated by the image of the functor ¢: DP(kx) — DP(Kx), F — K @y F.
We denote by Dl/)[l] (X) or Dl/)[l] (kx) the quotient category Db(KX)/perf(KX). We also
denote by i the composite functor i: DP(X) — DP(Kx) — D/[l}( ) where the former is
the functor induced by the k as the K-algebra with the trivial e-action and the latter is
the quotient functor.

Define SS(F) = (\p~p SSk(F’) where F’ runs objects of D’(Kx) which are iso-
morphic to F' in Dl/’[l] (X) and SSk(F”) is the usual microsupport of F’ as an object of
D"(Ky).

The Grothendieck’s six operations are defined on the orbit categories. Similar proper-
ties for the Grothendieck’s six operations and microsupports also hold. The same results
as Proposition 2.4 (i) (ii) and Proposition 2.5 are proved in [Guil9].

!The original idea is due to Keller[Kel05).



It is also proved in [Guil9] that for F' € D?[ll (R™) with SS(F) C T.R™ there exists
an L € Mod(k) such that F' ~ Lgn. The orbit categorical version of Proposition 2.2 can
be seen as a corollary of this result.

The categories D}/J[l} (X;9Q), D}/J[l],A(X) and D}/J[l},A(X; Q) are similarly defined.

A cohomological functor H*: D]/D[l] (X) — Mod(ky) is defined so that H*(F') is the

sheafification of the presheaf (U HomD?[I](U)(kU,F |r)) on X. This functor satisfies

H*(i(F)) = @,z H"(F) for the image of an object F' of DP(ky). The functor H* for
X = pt gives an equivalence between D?[l] (pt) and Mod(k).

We define Hom¢,(F, G) := H*RI'(Q; phom(F,G)|y) and Endf(F) := Hom{,(F, F) for
F.G e D';m (X;Q).
Definition 2.14. Let U = {U,}, be an open covering of X and V = {V,}, be an open
covering of an open subset  C T*X.

(i) An object F' € D]/D[l] (X;Q) is said to be locally tame with respect to U if for each
Uy € U F|y, is isomorphic to some i(G) as an object of Dljm(U; QNT*U).

(ii) An object F' € D]/D[ll (X; ) is said to be locally tame if F is locally tame with respect
to some open covering of X.

(iii) An object F € D}/J[l} (X;Q) is said to be microlocally tame with respect to V if for

each V, € V F is isomorphic to some i(G) as an object of Dl/’[l] (X;V).

(iv) An object F € Dl/’m (X; ) is said to be microlocally tame if F is microlocally tame
with respect to some open covring of €.

If F.G € D?[l] (X; ) are microlocally tame, then phom(F,G)|q € D}’[l](ﬂ) is locally
tame.

Definition 2.15. Let A C T*X be a locally closed conic Lagrangian submanifold. F €
D}/)[l} (kx) is simple along A if for each p € A there is an open neighborhood U of p in T* X

such that there exist an object G € DP(X;U) which is simple along A and an isomorphism

i(G) =~ F in DYy (X; ).

Remark 2.16. We have not prepared all the counterparts of the statements in the previ-
ous subsections for the triangulated orbit categories. Some of such statements for locally
tame or microlocally tame objects can be verified from the original statements easily.
For example, Proposition 2.4(iii) for locally tame objects is deduced from the original
statement directly.

The statements for the triangulated orbit categories which we will use are stated above
in this subsection (whose proofs are given in [Guil9]) or direct corollaries of the corre-
sponding statements for the usual derived categories under locally tame or microlocally
tame conditions.

3 Parametrized and circled Tamarkin category and sheaf-
theoretic energy estimate

From now on, until the end of this paper, let M be a non-empty connected manifold
without boundary and k be the field Fy = Z/27Z.



In this section, we give generalizations of the Tamarkin categories defined in [Tam18|
and [GS14]. Our generalization consists of three aspects. The first one is generalizing the
definition to the setting parametrized by another manifold. This modification is crucial
to give better estimate of displacement energy. The second one is replacing the additive
variable space R with S'. The last one is to use the orbit category (see Subsection 2.7).
We omit the details and refer to Appendix A.

Let 0 € R>o and put Sj := R/0Z. Note that if @ = 0 then Sj = R. We denote the
image of ¢ € R under the quotient map R — S(} by [¢] or ¢ simply. Moreover, let P be a
manifold. Denote by (z;¢) a local homogeneous coordinate system on T*M, by (y;n) that
on T*P, and by (¢;7) the homogeneous coordinate system on 7*S; and T*R. We define
mapsql,(jg,sséz M><P><S91 XS; —>Z\4><P><Se1 by

@1($7y7t17t2) = (xayvtl)v
G@(z,y,t,t2) = (2,9, 12), (3.1)
ss1 (2, y,t1,ta) = (2,9, b1 + ba).

If there is no risk of confusion, we simply write s for s Sk We also set

i: M xPxSy—MxP xS} (z,y,t) — (z,y, —t),

3.2
(: MxPxR—MxPxSy (z,y,t) — (z,y, [t]). (3.2
Note also that if § = 0 then ¢ is the identity map.
Definition 3.1. For F,G € Dl/’m(M x P x S}), one sets
FxG:=Rs( 'F©d,'0), (33)

Hom*(F,G) := Rgi. RHom(3, ' F,s'G)
~ Rs, RHom(q, i 'F, ¢, G).

Note that the functor * is a left adjoint to Hom*.

We set Q04 (N)g := {(z,t;&,7) | 7 > 0} € T*(N x S}) for any manifold N and write
Q4 = Q4 (M x P)y for short.

One can show the equivalence of categories

Py i= ROK ) pujooo) * (¥): DYy (M x P x Sg;94) = “Diy; (M x P x 53),
Py := Hom* (RUK 1w pxjotoc)s *): D (M x P x S3;Q4) = DYy o0 (M x P x Sg)*.
We define the map
p: Qy M

W W (3.5)
(z,y,t;&,n,7) —— (2;§/7).

Definition 3.2. We define a category DF(M)y by
D (M) := DYy (M x P x S5;Qy) (3.6)
and identify it with the left orthogonal J_Dl/j[l],{rgo} (M x P x S}) or the right orthogonal

DY) rcoy (M X P x Sh)t. Set SS1.(F) := SS(F) Ny for F € DP(M),.
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For a closed subset A of T*M, we define a full subcategory Di(M )o by

DY (M)g := DYy -1y (M x P x S3; Q). (3.7)

For an open subset U of T*M and a closed subset A of U, we define categories
DP(M;U)g := DYyy(M x P x S5 p~ 1 (U)), (3.8)
DY(M;U)g := Djpyy 14y (M x P x Sg; p~H(U). (3.9)

We omit P from above notation if P = pt.

Next we consider Hamiltonian deformations of sheaves. Let I be an open interval
containing the closed interval [0,1]. Let H: T*M x I — R be a compactly supported
Hamiltonian function and denote by ¢f: T*M x I — T*M the Hamiltonian isotopy
generated by H. Following Hofer [Hof90], we set

a1 = [ (o)~ i ) ) s (3.10)

p

Let K € DP(M x S} x M x S} x I) be the sheaf quantization associated with ¢,
whose existence was proved by Guillermou—Kashiwara—Schapira [GKS12]. For s € I, we
set K1 .= KH‘stgxstgx{s} Then the composition with K Mkn , induces a functor

o = (KFRka,)o (x): DY (M)g — DY (M), (3.11)

which restricts to DY (M) — D(I;H (4) (M) for any compact subset A of T*M.

Now we measure the difference between G' € DF(M)g and its deformation ®(G), by
introducing a distance on D¥(M)y. For ¢ € R or Sy, we define the translation map

T.: M x P xSy — MxP xS} (z,y,t) — (z,y,t +c). (3.12)
For F € DP(M)g and d € Rxy, there is the canonical morphism
Ted(F): TesF — Teqq, F. (3.13)
Using the morphism, we define the translation distance dpr(yp, as in [AIL7].
Definition 3.3. Let F,G € DF(M),.

(i) Let a,b € R>g. Then the pair (F,G) is said to be (a,b)-interleaved if there exist
morphisms «,§: F — T,,G and 8,v: G — Ty, F satisfying the following conditions:

(1) F 2 TG 222 T,y F s equal to mo440(F): F — Tayp, F and

(2) G N Tb—*6> Tots,G is equal to 70 445(G): G = Tyt G.
(ii) One defines
dpp (), (F,G) :=inf{a + b € Rxg | a,b € Rxo, (F, G) is (a,b)-interleaved}, (3.14)
and calls dpr(yp), the translation distance.

(iii) One defines

epp (), (Fy G) :==dppy), <RQS;*H0m*(F7 G)70)

(3.15)
=inf {C € R>p ‘ T[)’C(RqS;*HOm*(F, Q) = 0} .
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Note that by Proposition A.3, we have

epr (), (£ G) > inf {c € R>p ‘ Hompr yp, (F, G) = Hompe ), (F, Tel G) is Zero} .
(3.16)

Proposition 3.4. Let ¢ : T*M x I — T*M be the Hamiltonian isotopy generated by a
compactly supported Hamiltonian function H: T*M x I — R. Denote by CID{I: DP(M)y —
DF(M)g the functor associated with ¢. Let G € DY (M)y. Then dpr (), (G, (@) <
IH].

Combining Proposition A.4 with Proposition 3.4, we obtain the following generalization
of the main theorem of [AI17]. We may use this to estimate the the displacement energy
of Lagrangian immersions. However, we need more precise arguments for the intersection
number estimates and will not use this proposition in this paper.

Proposition 3.5. Let A and B be compact subsets of T*M. Then for any F € DE(M)Q
and G € DE(M)g such that qs} is proper on Supp(F) U Supp(G), one has

G(A, B) 2 €DP(M)0(F7 G) (317)
In particular, for any F € DY (M)y and G € DE(M),,

e(A, B) > inf{c € Rxo | Hompr (pp), (F, G) — Hompryy), (F, Te.G) is zero}.  (3.18)

4 Sheaf quantization of rational Lagrangian immersions

In this section, we prove the existence of sheaf quantizations of certain class of Lagrangian
immersions, by following ideas of Guillermou [Guil2, Guil9)].

4.1 Definitions

First we introduce some notions for Lagrangian immersions. We assume that L is compact
and connected.

Definition 4.1. (i) A Lagrangian immersion ¢: L — T*M is said to be strongly rational
if there exists a non-negative number 6, € R>g such that the image of the pairing
map with *a; H1(L;Z) = R,y — f7 a is 0,7Z. We call 6, the period of ¢.

(ii) For a strongly rational Lagrangian immersion ¢: L — T* M, one defines

. o 100 = L1 £ 1(),
— L))

tol(0)=1vol(1)
The infimum of the empty set is defined to be +oo.

Notation 4.2. Let ¢«: L — T*M be a compact strongly rational Lagrangian immersion
with period 6 and f: L — Sel be a function satisfying (*a = df. We define a conic
Lagrangian immersion

Ti=Tp L xR = T(M x 8g), (y,7) = (T(y), (= (4); 7)) (4.2)
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and put its image
A= A= {(a,5:6,7) € TH(M x Sg) | 7> 0,3y € L, (;:6/7) = 1), t = —f(y)}. (4.3)
We also set

Ay =N, gq = {(z,u,;€6,0,7) € T*(M x (0,7,) x S§) | (x,4;€,7) € A, s},

A=A gri={(m,u,t;6, —7,7) € TH(M x (0,7,) x Sg) | (v,t —w;&,7) € A, s}
Assumption 4.3. There exists no curve l: [0,1] — L with [(0) # (1), tol(0) = to (1)
and [, *o = 0.

Note that if Assumption 4.3 is satisfied, 7 is an embedding.

Theorem 4.4. Lett: L — T*M be a compact strongly rational Lagrangian immersion sat-
isfying Assumption 4.3. Then for each a € (0,r,) there exists an object G0, € Dg]’a)(M)g
satisfying the following conditions.

(1) SS(G(o.0) C (AuyqUA,p) NTH(M x (0,a) x S}),

(2) G0, is simple along A, 5. NT*(M x (0,a) x Sp),

(3) Fp:= (Rj*G(O,a))’Mx{o}xsg is isomorphic to 0, where j is the inclusion M x (0,a) X
St — M xR x Sp,

(4) there is an open covering {Vata of Q4.(M)g such that G4y is microlocally tame
with respect to {Vy x T*(0,a) }q.

Moreover, this G (o 4) automatically satisfies d(G g q),0) < a.

4.2 Construction

Theorem 4.4 is essentially proved by Guillermou [Guil9, Thm. 12.2.2 and Sec. 12.3]. We
prepare some notions introduced in [Guil9].

4.2.1 Kashiwara-Schapira stacks
Notation 4.5. Let A be a locally closed conic Lagrangian submanifold of 7% X.

(i) For V. C A, ,uShr/rfﬁoA(V) is a category with the same objects to D?V) (kx). For F,G €

mt,0 L . . . mt,0
uSh/[l],A(V), Hom#Sh%],’oA(V)(F, G) = Hoth/)[l](kX;V)O(F),1(G)). This puShip;i s

forms a prestack on A.

(ii) We define the Kashiwara—Schapira stack #Sh%], A on A as the associated stack to

mt,0
“Sh/m,/\'

(iii) The quotient functor gives a functor mp : D]/Dﬁt(/\) (kx) — uSh%],A(A) where D?fﬁt(A) (kx)
is the full subcategory of D?m (X)) consisting of F' for which there exists a neigh-

borhood U of A such that SS(F)NU C A and F € D?[ll (X;U) is microlocally
tame.

(iv) F € pShyp)a(V) is said to be simple if F is obtained by gluing simple objects.
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Remark 4.6. The stack ,uSh’/’"[”” A is smaller than or equal to the Kashiwara—Schapira
stack pShpj(ka) in [Guil9]. We put the microlocally tameness condition since they are
easier to treat. They would become equivalent to each other after additional arguments.

The next lemma is proved in [Guil9, §10.4].

Proposition 4.7. Let A is a locally closed conic Lagrangian submanifold of T*X. The
category ,uSh%fLA(A) has a unique simple object.

4.2.2 doubling functor ¥

We introduce a variant of the convolution functor * in Section 3. Set v := {(u,t) | 0 <
t<u} CRsoxR.

For an open subset U C M x Sj, define U, := {(z,u,t) € M x Rs x S} | (z,t —[a]) €
U(Va € [0,u])}.

The functor ¥y : DYy, (U) — DY (U) is defined by Wy (F) := Rsy(FBk,)|y, where
su: UxRsg xR —= M xRy x Sjis (z,t1,u,t2) = (z,u,t1 + [ta]).

We will construct G g ) for sufficiently small € > 0 so that G(g) is locally isomorphic
to an image of Uy.

The next lemma follows from [Guil9, Thm. 11.1.7].

Lemma 4.8. Let so3 be the swapping map M x S§ x R — M x R x S§, (x,t,u) — (2, u,t)
and ju be the open embedding U, — Uy U sa3(U x R<q). Then Rju, Wy (F)|sywx{oy) = 0-
4.2.3 doubled sheaves

Definition 4.9. Let A C Q4 (M)p be a conic Lagrangian submanifold such that A/Rsg
is compact and A/Rs¢ — M is finite. A finite family V = {V,, | a € A} of open subsets of
M x S} is said adapted to 7 if the following conditions hold:

() Tarxsy(A) € U, Va,

(ii) foreacha € A, V, = W,x1, where W, is an open subset of M and I, is a contractible
open subset of S, and TS} (A) NV, Cc W, x K for some compact subset K of I, .

(iii) for all Ay C A RHom(kya,,Kyyysy) = kppar where VA = U, g, Vo
(iv) put Ay =AU Oprxsy then
(SS(kyai )+ SS(kya5)*) N (AyF(A4)?) C Oppesy (4.4)

for each A1, Ay C A.
See [KS90] or [Guil9] for the definition of F in (4.4).

Lemma 4.10. Let A C Q4 (M)g be a conic Lagrangian submanifold such that A/Rsq
is compact and let {Aj}jcs be a finite open covering of A; by conic subsets. Then there
exists a homogeneous Hamiltonian isotopy ¢ on Qi (M)g, as closed to id as desired, and
a finite family {Va}aea of open subsets of M x Sy which is adapted to ¢(A ) such that each
connected component of ¢p(A) NT*V,, for each a € A, is contained in qﬁ( i), for some
jedJ.

Definition 4.11. Let A and V = {V, }4c4 be as in Definition 4.9. Let V' C M x Sel be an
open subset. We denote by Dc/a[’llm’v(kv) the subcategory of Dl/)[l] (kv xr.,) formed by G
such that, for sufficiently small € > 0,
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(i) Supp(G) N (V x (0,¢)) C {(x,t+ [a],u) € V x (0,¢) | (z,t) € 7(A),a € [0,u]}

(ii) every point of V has a neighborhood W such that mo(ANT*W) = {A;} is finite, and
for each A; there exist 4; C A and F; € DR .(kw) with SS(F;) = A; such that

Glw= =~ EB Uy (RLy 4, (i(F)))we- (4.5)

As well as the alteration remarked in Remark 4.6, our definition of doubled sheaves
is slightly different from Guillermou’s definition. These alternations do not revoke the
arguments in [Guil9].

For G € D%’H ap(kv), there exists a well-defined open subset SS®UG) of ANT*V

locally defined by ssdbl(G) NTW = |, (A; N T*VA).
dl(a) e ,uSh/m (SS™(@)) is also defined so that m‘f\bl(G)|AimT*VAi >~ mp, (Fi)| o, qzepai-
Replacmg some R’s in [Guil9] to S(}’s, one can check the following theorem.

Theorem 4.12 ([GuilQ Thm. 2.2.2]). Let A andV = {V }aGA be as in Definition 4.9. For
any object F € MSh/m (A) there exists an object F' € D/[l] A (M x S§) with SSPHF) = A
and mP(F) ~ F.

Proof of Theorem 4.4. Since the conditions in Theorem 4.4 are preserved by the actions
of the homogeneous Hamiltonian isotopies on Q4 (M)g, we may assume that there exists
a family V' adapted to A by Lemma 4.10. By Proposition 4.7 and Theorem 4.12, there
exists F' € D?lm Ap(M % S§) with SS®(F) = A and m@!(F) is simple. The additional
condition is equlvalent to

Flye ~ EB Yy (i(F3)) w= (4.6)

where each F; is simple. Then, for sufficiently small 0 < a, F|MX(07a)XSé € DP(M x(0,a) x
Sy) satisfies (1)—(4) in Theorem 4.4, where (3) follows from Lemma 4.8.

The construction for larger a € (0,r,) is parallel to [Guil9, Subsection 12.3.]. Although
there may exist some Reeb chords in our situation, the length of any Reeb chord is longer
than a. Hence a parallel argument will go on M x (0,a) x Sj. (Then (1)—(4) are obvious.
The boundedness is maintained since we don’t touch {u = r,}-part.) 2

Take o' € (a,r) and G4 € D(Lo’a )(M )o satisfying the conditions in Theorem 4.4
so that G (o, |arx(0,a)xsy 18 isomorphic to G(q). Define Dy := {(u,s) € R2|0<u<
s<a'}and p: M x Dy x S}, (v,u,s,t) = (v,u,t) and G := p*IG(O,a) € Df“’(o’a/)(M)g.
Consider g: M x Dy x S} — M x (—00,a) x (—o0,a’) x S}, (x,u,8,t) = (z,u—s+a,s,t)
and Rglg Rg*g € D( o0.a)x(= Ooa)(M)e' Then g/ = Rg!g‘MX(O,a)X(—oo,a’)xSé satisfies
G'l(s=0y =0, G'l{s—ay ~ G(0,q) and SS(G') C {0 < o < 7}. By Lemma A.6, d(G(g,4),0) < a
holds. O

5 Intersection and displacement energy of rational Lagrangian
immersions

In this section, we give an estimate of their displacement energy and the number of in-
tersections, which overlaps with theorems of Chekanov [Che98] and Akaho [Akal5] (see
Theorem 5.4), and that of Liu [Liu05] (see Theorem 5.5).

2If the boundedness is presereved near {u = r}, we can prove Theorem 4.4 for a = r and a better
estimate than that in Theorem 5.5.
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5.1 Statements of main thoerems

Definition 5.1. (i) A Lagrangian immersion ¢: L — T*M is said to be rational if there
exists 0, € R>g such that
{/ v'w
D2

Y, = {(v, )

We call o, the rationality constant of .

(v,0) € EL} =o0,Z, (5.1)

where

v:D2%1“Mﬂk8DL%L}

V|lgp2z =tov

(ii) For a rational Lagrangian immersion ¢: L — T* M, one define

it ({[ e woentop)nr). 6o

v: D* - T*M,v: [0,1] = L,
K, =< (v,0) | 9(0) # 9(1),t09(0) = rov(l), p . (5.4)

V|lgp2 =t0D

where

Remark 5.2. A strongly rational Lagrangian immersion is rational. Indeed, if such 6,
exists, then ¢ is rational and its rationality constant is nf, for some n € Z>. However the
converse is not true. For example, the graph of any closed 1-form S on a closed manifold
M is rational with rationality constant 0, though this embedding has a period 6, if and
only if there exist a primitive element b € H'(M;Z) such that [5] = 6,b € H'(M;R).

Assumption 5.3. There exists no (v,7) € K, with [, v*'w = 0.

The relation between Assumption 4.3 and Assumption 5.3 will be explained in Sub-
section 5.2 below.

Theorem 5.4 (cf. Chekanov [Che98] and Akaho [Akal5)). Let v: L — T*M be a compact
rational Lagrangian immersion satisfying Assumption 5.3. If |H|| < e, and v: L — T*M
intersects ¢ o 12 L — T*M transversally, then

dim L

#{(yy)eLxL|uy) =o{ ouly))} > > bi(L). (5:5)
=0
Theorem 5.5 (cf. Liu [Liu05]). Let v: L — T*M be a compact rational Lagrangian sat-
isfying Assumption 5.3. If | H|| < min ({e,} U ({0,/2} NRxy)), then
#{(wy) € Lx L] uy) = o1 ou(y)} > (L) +1, (56)
where cl(L) is the cup-length of L over Fy.

Remark 5.6. There seem to be proofs via Floer theory of slightly stronger statements
than our main results.

(i) Floer theoretic proofs will not need Assumption 5.3.

(ii) In [Liu05], min ({e,} U ({0,/2} NRsp)) in Theorem 5.5 is replaced by e,. Note that
min ({e,} U ({0,/2} NRxp)) = ¢, if 0, # e,.

(iii) It is possible to study the cases ||H|| > e, if bounding cochains exists [FOOO09,
FOOO13|.
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5.2 Proof of main theorems

This subsection is devoted to the proofs of Theorems 5.4 and 5.5.
First we reduce the problems to the strongly rational cases.

Lemma 5.7. Let v: L — T*M be a compact (connected) rational Lagrangian immersion
with rationality constant o,. Assume that m(mot): m (L) — w1 (M) is surjective. Then,
there exists a closed 1-form B on M such that the immersion + + : L — T*M,y
L(y) + B(mow(y)) is strongly rational with period o,. Moreover, r 453 = €,45 = €,.

Proof. If m (L) — m1 (M) is surjective, then the induced homomorphism [my (L), 71 (L)] —
[m1 (M), m1(M)] is also surjective. By this surjectivity and the nine lemma for groups, one
can check Ker(m (7 o)) — Ker(Hy(mo;Z)) is surjective.

1 1

(1 (L), 1 (L)) —= [y (M), m (M)] — 1

1

Ker(m(mo¢))C m1(L) w1 (M)

|

0 —— Ker(Hy(mo;2))— Hy(L;Z)

Hy(M;Z) ——>0

0 0

Choose a retraction r: H'(L;R) — H'(M;R) of v*: H*(M;R) — H'(L;R) and take an
I-form B on M so that [8] = —r([t*a]) € HY(M;R). Then r[(¢ + 8)*a] = 0 € H*(M;R)

and
{A(L + 6)

Ve (I | - {L(t+ﬁ)*a € Kerlthi(r o)}

-{ [ o] v exetinies Z)} (5.5)

{f

For the third equality, we used the surjectivity of Ker(m (7w o)) — Ker(Hy(mw o ¢;Z)).

Let E, be the set {(y,y') € Lx L |y # v,/ (y) = /(y)} of the non-injective points
for a Lagrangian immersion ¢/: L — T*M. By the surjectivity of m1 (L) — 71 (M), for any
(yo,y1) € E,43 = E, there is an element (v,v) € K, such that 9(i) = y; (¢ = 0,1). Hence
r+3 = e,4+3 = €,. (Take a path conncting yo and y; in L and composing 7 o ¢ to this
path gives an element of m (M, 7o t(yo)). Choose a preimage of this element in 7 (L, yo).
Concatenating a representative path of the preimage to the original path on L, we obtain
a path connecting yo and y; which bounds a disk in T%M.) O

~ € Ker(m(m o L))} =o0,Z

Lemma 5.8. Assume that Theorems 5.4 and 5.5 are true for any strongly rational La-
grangian immersion t: L — T*M satisfying Assumption 4.3, 0, = o, and r, = e,. Then
Theorems 5.4 and 5.5 are true for any rational Lagrangian immersion.
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Proof. Take the covering p: M — M corresponding to t(m (L)) C m1(M). Note that
or=o0, Alift . L — T*M of ¢ induces a surjection on the fundamental groups. By the
construction of p, a non-injective point (y,y’) € E, of ¢, whose definition is given in the
proof of Lemma 5.7, is a non-injective point of 7 if and only if there exists (v,v) € K,
with (y,4") = (9(0),9(1)). Hence e; = e, and Assumption 5.3 for ¢ is equivalent to
Assumption 5.3 for ©.

Take an 1-form £ on M satisfying the conclusion of Lemma 5.7 for v. By the surjectivity
of m1(7), Assumption 4.3 for 7+ f is equivalent to Assumption 5.3 for 7+ /3, which is also
equivalent to Assumption 5.3 for 7 and ¢. s

For a Hamiltonian function H on T*M, let H be the Hamiltonian function on T*M
obtained by pulling H back. Note that |H|| = ||H||. By the inclusions between intersection
points

{wy) e LxL]uy) =60 oy} > {wy) e Lx L |ily) = off 070}
={wy)eLxL|@+8)w) =of o C+HW)}.
(5.9)
Theorems 5.4 and 5.5 for ¢ is reduced to those for v+ . O

Hereafter we assume the following.

Assumption 5.9. An immersion v: L — T*M is a strongly rational Lagrangian immer-
sion satisfying Assumption 4.3, 0, = o, and r, = e,.

Notation 5.10. We sometimes write {P(z)}x as an abbreviation for {x € X | P(z)} if
there is no fear of confusion.

Notation 5.11. For cones C; C Q4 (M)g and Co C Q4 (P)g, define
Cl & CQ = {((L’,y,tl ‘|‘t2;fﬂ777’) | ($7t1;£,7') € Clv (yatQ;n7T) € 02} - Q+(M X P)@

(5.10)
Notation 5.12. Let a € (0,7,) and denote by j, the open embedding M x (0,a) x S§ —
M xR x S}
Define
Fo.) = RjaG (0,05 (5.11)
Floa) = RjaxG(0,0)- (5.12)

Hom(F{g 4y, Fjo,q) is naturally isomorphic to End(G g q)) by the adjunction Rja, ja' (or
ja~' A Rja,).

Moreover let ¢ : T*M x I — T*M be the Hamiltonian isotopy generated by a com-
pactly supported Hamiltonian function H: T*M x I — R and denote by CID{I . DF (M) —
DF(M)g the functor associated with ¢7. One sets

Fly =o' (Foa)- (5.13)
Notation 5.13. We define subsets of T*R, for a > 0,

{(0;v) | -1 <v<0}U{(u;v) |0 <u<av=0,-1},
c(a) U{(a;v) [v = -1},

c(a) U{(av) | v <0},
{(

a;v) | =1 <wv < 0}.

cla

(
d(
(
(

a

a

q
I(a

):
):
):
):

18



We also define their “conifications”, which are subsets of Q4 (R)g, by

c(a) :={(u, —uv;Tv,7) | (4;0) € c(a)},

a(a) =c(a) U{(a,0;v,7) |v>0}U{(a,[a];v,7) | v > —T},
q(a) :=<¢(a) U{(a,0;v,7) | v < 0} U{(a,[al;v,T) | v < —T},
1a) := {(a,[a];v,7) | =7 < v < 0}.

Note that there uniquely exist continuous maps A B q(a) — A and A Bd(a) — A
satisfying (z,u,t;&,v,7) — (x,t';€,7) for some t'.

Lemma 5.14. The microsupports of F(gq) and Fg o satisfy the following.
(i) SS+(Fioq) C ABG(a) and SS+(Floa) C ABd(a).

(i) SOS(F(O,a))ﬂ{T = 0} (mrxmxsy) © {u=a,§=0,0 2 0}r-(nrxrxsy): SOS(F[O,a])m{T =
O}T*(MxRxsé) C{u=a,§=0,v< O}T*(MxRxsg)- Here F{o 4y and Flg 4) are regarded
as objects of Dl/)[l](M x R x S3) by P,.
Proof. (By Proposition 2.6 and Theorem 4.4(1)(3).) (We regard G,y as an object of DP
by P,.) ({P} are abbreviations of {(z,u,t;&,v,7) € T*(M x R x S}) | P})

AgUA, € {v=0,—7}, N*(M x (0,a) x Sj) C {r = 0} and hence SS(Gg,4)) N N*(M x
(0,a) x S§) and SS(G(gq)) N N*(M x (0,a) x Sz)* are contained in the zero-section.
By Proposition 2.6, SS(Fig4)) C SS(G(o,a) + N*(M x (0,a) x S§)* and SS(Fjg ) C
SS(G(0,0)) + N*(M x (0,a) x Sj) are satisfied. Fiberwise comuptations show

SS(Flo,a)) N{u =0} C{(z,t;¢,7) € A,v <0} U{T =0, =0,v < 0},
SS(Fjo,q) N{u =0} C{(z,8;€,7) € A,v > —7}U{T =0, =0,v > 0},
SS(Flo,0)) N{u = a} C{(z,t;¢,7) € A,v >0} U{(z,t —a;{,7) € A,v > —7}
U{r =0, =0,v >0},
SS(Fjo,q) N{u = a} C{(x,t;§,7) € A,v < =7} U{(2,t —a;§,7) € A, v < —7}
U{r=0,£ =0,v <0}
The cone of the natural map Fg ) — Foq is supported on {u = a} since Fjg |{u—0o} 18

isomorphic to 0 by Theorem 4.4(3). Hence SS(F(gq)) N {u = 0} = SS(Fjg ) N {u = 0} by
the triangle inequality and

SS(Fg,0)) N {u=0} =SS(Flq) N{u=0} C {(z,t;6,7) €A, —T <v <0} (5.14)

by the above inclusions. These inclusions show SS(Fjg 4))N$2+ C ABq(a), SS(F(g,q))N24 C
ABd(a), SS(F(g,) N {7 =0} C {u=a,& =0,0>0}, SS(Foq) N{r =0} C {u=a,&=
0,v < 0}. O

From now on, we omit , from T,.
Proposition 5.15. Let H be a Hamiltonian function.

(i) One has dD(M)g(F[O,a]vF[ga]) < ||H||. In particular, for any b > ||H||, there ex-
ist ¢ € [0,b] and morphisms a: Flgq — TCF[ga},B: F[I({a} — Tp—cFlo,q such that
Tob: F[O,a} — TbF[O,a] 1s equal to TC,B o (.
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(ii) One has
7(SS(¢'Rgs Hom*(F(O,a),F[ga]))) c—ceR|c(y,y)=c mod8 or (5.15)

where £ is the quotient map R — 5’(}.
(iii) If b < a, then 10p: Hom(F{(g 4, Flo,q) — Hom(F(gq), TyFloq)) is an isomorphism.

Proof. (i) By Proposition 3.4 and Definition 3.3.
(ii) Let T, be the translation map Q, — Q4 or Q4 (R)s — Q4 (R)g which is the lift of

Ty. For F1, Fy € D*(M)g with SS(i ' F1) NSS(F2) C Ty 5, 1 (M X R x Sp),
0

7(SS(¢' Rq, Hom*(Fy, Fy)) C {—¢ | SS4(F1) N T, (SS4 (Fy)) # 0} (5.16)

by Proposition 2.5(ii) and Proposition 2.4. By Lemma 5.14 and a property of the compo-

sition, SS(iilF(O,a)) N SOS(F[SIG}) = (). Hence again by Lemma 5.14,

m(SS(¢' Rg, Hom* (Fg 4, Fii ) C{=¢ | SS4(Foa) NTu(SS+(F ) # 0} (5.17)

c{—d | ABd(a)NT,(N BG(a)) # 0} (5.18)

If (x,u,t;&,v,7) € AH a(a) NT', (N Bq(a)), then there exist t1,ta,t3,ts € S with

t =t + 1ty = t3 + 14+ ¢ such that (z,£1;§,7) € A, (u,t25v,7) € d(a), (z,t5;6,7) €
N, (u,tg;v,7) € q(a). Then (u,to;v,7) € d(a) NTY, 4, (d(a)). Since

cla) (d=0)
d(a) NTH(d(a)) = Ua) (¢ = [a)) (5.19)
0 (otherwise),

to — ty = 0,[a]. There exist y,y € L such that «(y) = /() = (x,&/7),t1 = —f(y) and
ts = —f'(y') and then c(y,y’) = —t3 +t1 = ¢ — (t2 — 14).
(iii) By Proposition A.3,
Hom(F(QG) y TbF[07a}) =~ H*RF[,b’Jroo) (ZIRQ* Hom*(F(o’a) y TbF[07a])) (5.20)

. By (i),

7(SS4 (¢ Ry, Hom*(Flo,0), TyFloq)))) € § —¢ €R | c(y,¥') =¢ modfor ». (5.21)
Hence [—b,0) N7 (SS, (¢ Ry Hom™(Fig,q), Ty Flo,a))) = 0. By the microlocal Morse lemma
(Proposition 2.2) for £'Rqs Hom™(Fg ), ThFlo,q)) and the five lemma,

Ry 4 o0) (' Rge Hom* (F(g,0), TyFlo o)) — RI1_p 1o0) (¢ Rgs Hom™* (F(g,0), TyFlo.ap)) (5.22)

is an isomorphism. O
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Now fix a,b € Ryg such that |H|| < b < a. Then by the above proposition, the
isomorphism 7y factors

Hom(F,), Flo,a)) = Hom(Fga), TeFfi ) = Hom(F(g,a), ToFlo,q)) (5.23)
for some ¢ € [0,b]. We also fix this ¢ in what follows.
Proposition 5.16. Let H be a Hamiltonian function with |H| < a.

(1) Assume that ¢ € R is not an accumulation point of 7(SS (£' Rq. Hom™(Fg,q), F[{)Ia}))'
Let d,d" € R satisfying

(1) d< - <d and
(2) [—d',—d] N7 (SS+(¢' Rg. Hom*(Flg.q), F[ga])) c {c}.

For a sufficiently small €, define

We = H*RIy o 4) (€ Rge Hom™ (Fo,ay, Fia)))e (5.24)

and
Ay = Coker(Hom(F{qq), TdF[ga]) — Hom(F(Oya),Td/F[ga])), (5.25)
B = Ker(Hom(Fg q), TaFy ) — Hom(Fg a), T Fifl 1)) (5.26)

Then the modules W, Ap and B are independent of the choice of d,d’, e and canon-
ically isomorphic to each other. Moreover, there is a short exact sequence of right

End(G (g,q))-modules
0— Ay — Wy — By — 0. (5.27)
(ii) Assume that 7(SS,(¢' Ry, Hom™(Flo,q), F[ga])) N[—c—a,—c) is a finite set and let
{c1,. - en} = m(SS4 (€' Rgw Hom* (Flo,0), Fifl o)) N [—¢ — a, —¢) (5.28)
with ¢c1 < +++ < ¢,. Take dy,...,d,_1 € R satisfying
cte<—di<cgte<---<—dp1<c,+c (5.29)
and set dy = a,d, = 0. Define
Vi := Im(Hom(Flg,q), TeFf ) — Hom(Flg,a), TeyaFifr o)) (5.30)

for d € [0,a]. Then for any i =0,...,n there exists a submodule Eci of B, and an
ezact sequence of right End(G g o)-modules

0— B, — Vg, — Vg, —> 0. (5.31)

i—1

(iii) Assume that 7(SS(¢'Rqs 7—[0m*(F<07a),F[ga})) N [—c,—c+a) is a finite set and let

{ent1s- s Cnpm} = w(SS(¢' Rge Hom* (Flo,a), Fif ) N [—¢, —c + a) (5.32)
with cpy1 < -+ < Cpam- Take dy, ..., dp—1 € R satisfying
Cnt1 < —dpt1 < Cpyo < -+ < —dp—1 < Cpym + € (5.33)
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and set dp, = 0,dp+m = —a. Define
Vi := Im(Hom(F(g,q), TeyaFjfy o)) = Hom(F(g ), ToFiff 7)) (5.34)

for d € [—a,0]. Then for anyi=n+1,...,n+ m there exists a quotient module of
Ae; and an exact sequence of right End(G|q q))-modules

0— Vg, — Vg, — Ae, — 0. (5.35)

(iv) Vg, =0,Vg,,, =0.

n—+m

Proof. (i) Set H = Rqx Hom™(F(g,q), F[ga]) € D(pt)g. Then there is a distingushed triangle

RV, o) (Ri (1) — RIT 4, e o) (R ('H) — Il 4o ((H)e > (5.36)

in Db[l] (k), whenever —d;_1 — ¢ is not an accumulated point of 7(SS(#/#)). The cohomol-
ogy of the distinguished triangle is isomorphic to

Hom(F(g,4), Tera, Fitt ) — Hom(Flg oy, Tevd, , Fio)) — We, = . (5.37)
There exists a short exact sequence
0— A, — W, — B, — 0 (5.38)

where A., = Coker(Hom(F{g q), Te1d; [[U{a]) — Hom(F(Oﬂ),Tc+di71F[€I’a]))
and B, = Ker(Hom(F(gq), Tetd; [O’a]) — Hom(F(o,a),Tc+dile[ga])). Defining B,, :=
B, N'Vy, gives (5.31).

The induced morphism A., — Coker(Vy, — Vy,_,) is surjective (and Coker(Vy, —
Va,_,) is isomorphic to a quotient module Zci of A,).

This construction is natural with respect to H and hence we obtain left actions of
End(#H) and maps become End(H )-equivariant. Through the natural ring homomorphism

EDd(G(Oﬂ))Op — End(F(Ova))OP — EDd(H), (539)

we obtain an exact sequence of right End(G/q 4))-modules.
(iv) We only give a proof for Vg, ~ 0 since the other is parallel. It is enough to show
70,a(G(0,0)) = 0 since Vg, ~ Im(Hom(G 9,4, T G(O a) = Hom(G([)’a),TchaG{é’a))).
70,a(G(0,a)) = 0 is equivalent to Im(Hom (G g4y, G(0,a)) — Hom(G(0,q), TG (0,a))) = 0.

Im(Hom(G (9,q), G(0,a)) — Hom(G (g,q), TG (0,4))) 18 isomorphic to Im(Hom(G g 4y, G(0,0)) —

Hom(G (9,4); Ta+G(0,0))) for sufficiently small ¢ > 0 as in (ii). Hence it is deduced from
d(G(0,a),0) < a stated in Theorem 4.4.

]
Let o/ := ¢l ovand f':= f — h: L — S}, where h(y) fo X)) (o2 (u(y)))ds
One sets C(%H) ={(y.y) e LxL|uy) =)} and c(y,y ) = f’(y) f). For
y €L, 1(y) = {(z,—f(y); & 1) € M| (2:€/7) = ()} C T*(M x Sp).

Proposition 5.17. Let H be a Hamiltonian function and ¢ € Sgl.

(i) There is an isomorphism

H*RI_o _ o4 (Rage Hom™ (F(o,a), Fi(l o)) et = H*RI(Q1; phom(Fga), T Fii 1))
(5.40)
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(ii) One has

Supp(uham(F(O,a)aTC’F[{){Q])|Q+) cCy (a¢ C,) U CQ(OH Cl)7 (541)

where Ci(a, ') := U=« Hy) BC(a) and Ca(a,d) == Uy ) +ame HY) B 1(a).
Proof. (i) Similar to [Ikel7, §4.3]. R
(i) Supp(uhom(Foa), To FAL lay) © 5S4 (Fow) N TH(SS+(FA,) € A8 d(a) 0
T.(A'Hq(a)) by Proposition 2.10 and Lemma 5.14. ABd(a) NT. (A'Bq(a)) = Ci(a,d)N

Cs(a, ) is checked in the proof of Proposition 5.15(ii).
O

Proposition 5.18. (i) Fgq) is simple along A B d(a) \ €(a) and Flo,q) is simple along
ABq(a)\c(a).

(ii) There exists an isomorphism phom(F o q), Flo,a))l0, = kAEa(a) such that the diagram

ko

+ AHBd(a)

. 5.42
k | (5.42)

/J/hom(F(Oﬂ,) 9 F(O,CL)) ‘Q+
commutes.

In particular, Endé+ (Flo,a)) = H*(L) (as k-vector spaces).

Moreover, oF, .\ Fo.a)Fo.a) induces the cup product on H*(L) through this isomor-
phism.

(iii) There exists an isomorphism phom(F(g q), Flo.a))le, =~ Kame(a) such that the diagram

K \md(a) KAme(a)

| (5.43)

l phom(F(o,q),:m)la
* phom(Fo.q); Flo.a)) |

/.,Lhom(F(Oﬂ)y F(O,a)) [N

commutes where n: Floq) — Floq s the unit morphism of the adjunction jo b A
Rja, and the morphism in the left column is the isomorphism given in (ii).

In particular, Hom’{hr (Flo,a)> Flo,a) =~ H*(L) (as k-vector spaces).

Moreover, O F(0,0)F(0,0)Flo.a] induces the usual right H*(L)-module structure on H*(L)

through this isomorphism and the isomorphism in (ii).
Proof. (ii) By Proposition 2.10 and Lemma 5.14, SS(uhom(Fg o), F(o,0))]0.) € —h ™ (C(AH
d(a), A8 d(a))). On the other hand, SS(kygg.,)) C —h ™' (C(AEd(a), ABd(a))).

Since Supp(phom(F(o,a), Flo))le, ) C ABd(a), idg, ., ko, = phom(Fo), Foa)lo,

factors through K\ Let & be the cone of K i) — phom(F(o.q), Flo,q))- By the
triangle inequality, SS(£) ¢ —h~Y(C(ABd(a),AB d(a))) C —h~1((dp)~'C(d(a),d(a))).
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Decompose d(a) into nine parts

Dy :={(a,0;v,7) | v > 0}, D3 :={(a,0;0,7)},
D3 := {(u,0;0,7) | 0 < u < a}, Dy :={(0,0;0,7)},
D5 :={(0,0;v,7) | =1 <v <0}, Dg:={(0,0;—7,7)},
Dy :={(u,[u]; —7,7) |0 <u < a}, Dg:={(a,la];—7,7)},
Dy :={(a, [a];v,T) | v > —T}.

Let p: A B a(a) — A be the unique continuous map satisfying p(z,u,t;§,v,7) =
(x,t';¢,7) for any (x,u,t;§,v,7) € AHd(a) and some t'. Define A; := A B D; and
Q; :=for i =1,...,9. Let p; be the projection A; — A (restriction of p). (For even i, p; is
bijective.) For odd i, consider extensions of p;’s,

3: Q3 ={0<u<a,v=0}, = (M), (z,u,t;£0,7) = (x,8;§,7),

g5: 5 ={u=0,-7 <v <0}g, = Qu (M), (2,0,;§,v,7) = (x,t;§,7)

qgr: Y ={0<u<a,v=—-7ro, = Q (M), (x,u,t;§, —7,7) = (z,t —w;§,7),
q9: Q9 ={u=a,—7 <v}o, = QU (M), (z,a,t;§,v,7) = (z,t —a;&,7).

The image of (g;)q contains SS(€|q,) for each even i. We treat i = 7 case here for
example. We write the conormal coordinates of T*), by putting tildes on the coordinate
functions of the base manifold Q, and hence (z,u,t,&, v, 7; 2,4, , é, U,7) denotes a point
of T*Q4. Let i7: Q7 — Q4 be the inclusion. It is enough to check SS(E) N T*Q |q., is
contained in ((i7)qg) "' (Im(q7)q). A direct computation shows ((i7)q) !(Im(gr)q) = {0 <
u < a,v=—7,4=—t}r-q,. On the other hand, —h_l(C(AEEa(a),AEEa(a))) NT*Q |q,
is the conormal bundle of A7 and hence contained in {&i = —t}7+q .- Hence the image of
(g7)a contains SS(&|q,)-

By Proposition 2.4(iii) and Theorem 4.4(4), there exists an E; € D}?[”(QJ'_(M)Q) with
Supp(E;) C A satisfying E|q, ~ qflEi. We also define E; := E|q_ (ar),mp, for even i. By
Theorem 4.4(2), Elq, (m),mp, 18 0.

On a neighborhood of Az, —h~!C(A B a(a),A B a(a)) doesn’t intersect to {uv <
0}r+q,. Using Lemma 2.7(ii) for ¢ = +(u + ¥ — a), we obtain F; ~ Ey ~ E3 and
moreover that E is of the form obtained by pulling back F; on this neighborhood. By
similar arguments for A4, Ag and Ag, we get 5|A533(a) ~ p~1(F3lp) ~ 0.

Via the isomorophism kAEBa(a) =~ phom(F 0y, Flo,a))|0y idllf“(o,a) corresponds to 1 €
H*(L) ~ H*RI(Q45K,g50)
phom(Fg ), F(o,q)) |0, is determined as follows. A morphism v € Hom((kAHHa(a))‘m, kAEa(a))
is determined by the image H*(v)(1 ® 1) € H*(L) of 1 ® 1 € H*(L)®?. The composition
morphism has to correspond to 1 € H*(L) by the unitality. This is the unique morphism
which comes from a morphism of DP(Q,).

Note alos that phom(Fjg ), Flo,q) |0, = Kamg(a) is proved parallelly.

(i) The statement is a corollary of (ii) (and the parallel statement for Fjy,) and
Theorem 4.4 (4).

(iii) phom(F(oq),n)a, factors through kymg(q). Since 17|{u<a}Q+ is an isomorphism,

The composition morphism ,uhom(F(O,a),F(O’a))\gi —

Kame(a) — phom(Fo.q); Fio,q)) is also isomorphic on {u < a}q,. The cone £ of kyme(e) —
phom(F 0,4y, Flo,a)) |, is supported on {u = a}q, . Since the microsupports of both kge(a)
and phom(Fg 4, Fio.a))|a, are contained in —h~'C(AHBG(a), A B d(a)), SS(&") does not
intersect to {@ > 0}r+q_, . These two properties requires £ ~ 0.
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The composition morphism
Mhom(F(O,a)v F[O,a})’QJr ® Mhom(F(O,a)7 F(O,a))|Q+ — :Uhom(F(O,a)a F‘[O,a])|94r

is also determined by the unitality as in (ii).

Proposition 5.19. End(G g q)) is isomorphic to H*(L) as a ring.
Proof. By the functoriality of m_ _ and Proposition 5.18, the ring homomorphism

End(Go.) —2= End(Fo.q)

mF(O,a)vF<0,H.) d“ ~ *
———— Endg, (Flo,0)) =~ H*(L) (5.44)
is obtained. We check this is a bijection.

Take 0 < ¢ <7 —a. There is an exact triangle of End(G g 4)) modules

HOH](F(O’Q),T_EF[O7CL]) — HOII](F(O,G), F[07a]) — H*(RF[(]’E/)(E!RQ* ’HOTI’L*(F(O’G), F[O,a]))O) — .
(5.45)

The second module is isomorphic to End(G(g 4)) and the third module is isomorphic
to Hom"(F\g 4), Flo,q]) by Proposition 5.17(i), which is isomorphic to H*(L) by Proposi-
tion 5.18(iii).

By the commutativity of the following diagram, it is enough to prove the first module
is 0.

End(G(o,q))
R(ja)
End(Fg,q)) Hom(F(g,q); Flo,q))
" E(0,a)F(0,a) ME(0,0)F10,a] (5.46)

Endg, (Flo,0)) — Homg, (F(0,a): Flo.a)

H*(L) H*(L)

All the morphism in this diagram are right End(G g 4))-module morphism and morphisms
in the left column are ring homomorphism. Note that unlabeled arrows above are isomor-
phisms.

If a < r/2, we can choose 0 < 1,69 < r — a so that e3 — &1 > a. The isomorphism
Hom(F (g q), T—c; Fo,a) — Hom(F{g 4), T-¢, Flo,q)) is induced by 7, ¢, ¢, (G) and this is 0
since d(G(g,q),0) < a by Theorem 4.4.

For the remained case, consider an object H € D) (pt)y on such that H‘ng{a} ~
Rqgy Hom™(F{o,a), Flo,a) for any a € (0, a’). This H is constructed as follows...

Let j: M x Dy xSy — MxRx(0,a’)xSj be the inclusion. Set Fy := RjiG, Fo := Rj.G
and H := 9(0,0') xS} Hom™* (F1, Fa) where 4(0,0")x S} is the projection to (0,a’) x Sj.

H|{—s}x55 is locally constant for 0 < ¢ < r—a’. This shows (Hom(F(g o), T=F0.q]))ac(0,a")
are isomorphic to each other and hence they are 0.

O
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5.2.1 Betti number estimate: Proof of Theorem 5.4
In this subsection, we assume the following.

Assumption 5.20. The strongly rational Lagrangian immersion ¢: L — T*M and the
Hamiltonian function H: T*M x I — R satisfy

(1) [H[ <7,
(2) ¢ and ¢¥ o intersect transversally.

Note that under the assumption, 7(SS(¢' Ry, Hom™(F{o,q), F[ga])ﬂf‘dt) N[—c—a,—c+a)
is a finite set.

Lemma 5.21. Let
{c1, - Cnm} = 7(SS(¢ Rgw Hom* (Floa), FiiLg) NTar) N [—c —a,—c+a),  (5.47)

withey < - <cp < —c<cCpy1 < ...Cppm. Fori=1,....,n+m, define W, A.,, and B,
as in Proposition 5.16(i). Fort € S}, take any t € £71(t) and define Wy := Wy, Ay := Ay,
and By :== By . Then

Z dim B; > Z dim B, > dim H*(L),

tes; i=1 £ 48
n+m ( ' )
D dimA; > ) dim A, > dim H*(L).
teS; i=n+1
In particular,
> dimW; > 2dim H*(L). (5.49)
teS;

Proof. Since the composite (5.23) is an isomorphism and Hom(F{q 4, Flo,q]) =~ End(Go,,))
contains H*(L) as a submodule, we have

dim Hom(F(g ), T.Fjfl o)) > dim H*(L). (5.50)

By Proposition 5.16(iii), noticing that Vy, ~ 0 and Vg, ~ Hom(F(O’a),TcF[g a]), we get

n n
> dim B, > dim B, = dim Hom(Fgq), T-Ffl,))- (5.51)
i i
By Proposition 5.16(iv), noticing that Vg,  ~ 0 and Vg, ~ Hom(F(O,a),TcF[ga]), we
get
n+m
> dim A, > dim Hom(Fg q), T.F|f ). (5.52)
1=n—+1

By Proposition 5.16(ii), dim By + dim A; = dim W} and hence

Y dimBi+ Y dimA, =Y dim W, (5.53)

teS; teS; teS;

Combining these inequalities, we obtain the result. ]
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Proposition 5.22. One has

Mhom(F(07a),TC*F[€I’a])’Q+ ~ @ kl(y)EﬂE(a) (&) @ kl(y)BﬂT(a)' (554)
c(yy')=c (yy')+a=c
Proof. We use the same notation to Proposition 5.17 and the proof of Proposition 5.18.
We additionally put Dy :=1(a), Dyo := {(a, [a];0,7)}, qi1: Q11 = {u=a, -7 <v < 0} —
Qi (M)g, (x,a,t;6,0,7) — (z,t —a;&,7) and F := uhom(F(O’a),F[ga])|Q+.

By Proposition 5.17(ii), Supp(F) C Ci(a,c) U Ca(a,c). Since C1(a,c) and Cs(a,c) are
disjoint, F admits a direct sum decomposition F ~ F' @ F” with Supp(F’) C Ci(a,c)
and F” C Cy(a,c).

By Proposition 2.10 and Lemma 5.14, SS(F) C —h=L(C(A 8 d(a), A’ B q(a))) C
—h~!((dp)"'C(d(a), a(a))).

The image of (g;)q contains SS(F'|q,)for each odd i. By Proposition 2.4(iii), there
exists a locally tame F] € D}/J[l} (Q4(M)g) with Supp(F!) C A satisfying F'|q, ~ ¢; 'F/.

2

We also define F} := F'|q, (ar),mp, for odd i.
By Theorem 4.4 and Lemma 2.13, Fj ~ @C(y,y,):c K@D, -

On a neighborhood of Ay, —h " C(A B d(a), A B G(a)) doesn’t intersect to {@d < 0}.
Using Lemma 2.7(ii) for ¢ = u — 2 — a, we obtain Fy ~ F3 and moreover that F'| me(q) is
of the form obtained by pulling back F} on this neighborhood. By similar arguments for
A4, Ag and Ag, we get Fl~ @c(y,y’):c kl(y)HﬂE(a)‘

By Proposition 5.18(i) and Lemma 2.13, F’|q,, =~ @c(y,y’)+a=ckl(y)BﬂT(a)’QII' By
Lemma 2.7(i) for ¢ =u—2 —a,—(u+ % —a) = L, 7" 2 D (, )+ ac K, )ii(a)- Hence we
obtain the assertion.

O

Proof of Theorem 5.4. By Proposition 5.17(i) and Proposition 5.22, we have

dim Wy = dim H* RI'(Qy; phom(Fg a), T-c. i 1))

=#{(y,y) € C(, H) | ey, y) = —t} (5.55)

+#{(y,y") € C(1, H) | e(y,9) = —t — a}.
Hence, we get Ztesg dim W; = 2#C(¢, H). Combining this with Lemma 5.21, we obtain
the result. O

5.2.2 Cup-length estimate: Proof of Theorem 5.5

First we introduce the algebraic counterpart of cup-length and study some properties.

Definition 5.23. Let R be an associative algebra? over k. For a right R-module A, define

k € Z>0,Y(ri); € R¥,Vag € A,

aO'Tl"'TkZO

ClR(A) := inf {]{7 —1

} € ZZ—l U {OO} (5.56)

Note that
(i) clr(A) = —1 if and only if A = 0.

(ii) clr(A) =0 if and only if A # 0 and ar =0 for any a € A and any r € R.

3not necessarily commutative nor unital
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If there is no risk of confusion, we simply write cl(A) for clg(A).

Lemma 5.24. For an ezxact sequence A — B — C of right R-modules, one has cl(B) <
cl(A) +cl(C) + 1.

Lemma 5.25. Let R’ be a non-zero unital ring and R — R’ is a ring homomorphism.
Assume that the action of R on A is factor as R — R’ — End(A)?. Then clr(A) <
clr(R).

Let X be a topological space. We define the ring Ry := @,~; H'(X; k) equipped with
the cup product and cl(X) := clg, (H*(X;k)). The number cl(X) € Z>_1U{oc} is called
the cup-length of X.

Now we start the proof of Theorem 5.5. We assume the following.

Assumption 5.26. The Hamiltonian function H satisfies |H|| < min(r,,6,/2). Leta € R
satisfying | H|| < a < min(r,,6,/2).

From now on, until the end of this subsection, set R := @f;HfLH ‘(L). Note that
H*(L) is isomorphic to the unitization of R, since L is connected.

Proposition 5.27. Assume that 7(SS(Rg. Hom™(Fg,q), F[éla])) N[—a — ¢, —c) is a finite
set and let

{c1,. s en} = T(SS(Rg. Hom* (Fg,a), Fiil ) N [—a — ¢, —c) (5.57)
with ¢y < -+ < ¢p. Fori=1,...,n, set
We, := H*RIe, ¢ y)(Rage Hom* (F(o,a), Fil o)) (5.58)
Then
> (W) +n > c(H*(L)) + 1. (5.59)
i=1

Proof. Since the composite (5.23) is an isomorphism and Hom(F(g q), Flo ) is isomorphic
to H*(L) as an R-module by Proposition 5.19, we have

cl(Hom(Fgq), TeF(i o)) > cl(H*(L)). (5.60)

Note also the exact sequence (5.31) is equipped with R-module structure. Applying
Lemma 5.24 to the exact sequence (5.31), we have

Cl(de) S Cl(WCz) + Cl(Vdi71) + 1. (561)
Noticing that Vg, >~ 0 and Vg, >~ Hom(F{q ), TcF| [SI a]), by induction we obtain

> (W) +n > cl(Hom(Fg.a), TeFifl o)) + 1, (5.62)

i
which proves the result. ]

It remains to see the action of R on each W,,, which is isomorphic to the section of
phom (Proposition 5.17).
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Proposition 5.28. Let U be an open subset of T*M. Then
clp <H*RF(/)_1(U);Mhom(F(O,a),F[I(){a])|p—1(U))) < ClR(H*(b_l(U)))- (5.63)

Proof. The action of R on H*RF(,O*I(U); ,uhom(F(o’a), F[{){a])|pf1(U)) factors an action of
H*RI (p~H(U); phom(Fg 4y, Fo.0) o1 0))- H*RT (07" (U); phom(F(g.a), Flo.0))lp-1 () 18
isomorphic to H*RF(p_l(U);kAHad(a)mp_1(U)) ~ H*(:71(U)) by . Hence the assertion is
obtained by Lemma 5.25.

]

Proof of Theorem 5.5. We may assume that C(¢, H) is discrete and let ¢y, ..., ¢, be as in
Proposition 5.27. Since a < /2, for any (y,y’) € C(i, H), the set

{C'ER

is a singleton or empty. Hence, we have #C(¢, H) > n.

Let ¢’ be any of ¢1,...,¢cn. Let (y1,v)), ..., (Uk, yi) € C(¢, H) satisfying c(y,y') = —¢
mod 6 or c(y,y’) = —c —a mod f. Set p; = 1(y;) = ((y;) and take a sufficiently
small contractible open neighborhood U; of p; in T*M and set U := U§:1 U; Then, by
Proposition 5.17(i), we obtain

5.64
=——a mod¥6 ( )

N=— déo
c(y,y) ¢ mod 6 or }ﬂ[ac,c)

W = H* RI(Qy; phom(Fg q), T, Fifl 1)

R . (5.65)
~ H*RI'(p~ (U); phom(F(o,a), T . Flg o)) -1 (1))-

Therefore, by Proposition 5.28, we have cl(W.) < cl(H*(:~*(U))) = 0. Thus, by Propo-
sition 5.27, we obtain the result. ]

A Parametrized and circled Tamarkin category

In this section, we give more detailed definitions and proofs in Section 3. We continue to
use the notation given in Section 3.
A.1 Separation theorem

First, noticing that £: M x PxR — M x P x S} is a covering map, we obtain the following.

Lemma A.1. (i) Let G € D'/’m(M x P x S}). If G ~0 then G ~ 0.

(ii) The functors (' D?[ll(M x P xS)— D?[ll(M x P x R) is conservative. That is,

for any morphism f in Dl/’m(M X P x Sgl), 0'f is an isomorphism if and only if f
s an isomorphism.

The proper base change and the projection formula prove the following.

Lemma A.2. For F,G € Dl/)m(M x P x R), there is an natural isomorphism

R(HF x RUHG ~ RUO(F * Q) (A.1)

where * in the right hand side is the star product x for the case 6 = 0.
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As in [GS14], using Lemmas A.1 and A.2 additionally, one can show the equivalence
of categories (recall that we have set Q1 := {r > 0} C T*(M x S}))

Py i= ROKppxoo0) * (%) DYy (M x P x Sg;94) = “DYyy (M x P x Sp),

For F' € DP (M), we take the canonical representative P;(F) € J-D'f{’TSO}(M x P x R)

unless otherwise specified. For a compact subset A of T*M and F € Di(M ), the canonical

representative Pj(F) € LDl{’TSO}(M x P x R) satisfies SS(P;(F)) C p~!(A). The support of

an object F' € DF(M) is that of Pj(F). One can show that the functor Hom* induces an
internal Hom functor Hom*: DY (M)°P x DF (M) — DP (M) (see [AIL7] for the details).

Proposition A.3 (cf. [GS14, Lem. 4.18]). For F,G € DP (M), there is an isomorphism
Hompre (ypy, (F, G) = H* Ry [0, 400) (M % Ry Hom™ (F, G)). (A.2)

The following is a slight generalization of Tamarkin’s separation theorem. Let qs}
denote the projection M x P x 5’; — Sg.

Proposition A.4. Let A and B be compact subsets of T*M . Let moreover F € Di(M)g
and G € DE(M)y. Assume

(1) AnB =0,
(2) qs} is proper on Supp(F') U Supp(G).

Then one has Rqgy Hom™(F,G) ~ 0.

A.2 Sheaf quantization of Hamiltonian isotopies

In this subsection, we briefly recall the existence theorem of sheaf quantizations of Hamilto-
nian isotopies due to Guillermou—Kashiwara—Schapira [GKS12], with a slight modification
so that it fits our setting. See [GKS12, Subsection A.3| for more details.

Let I be an open interval containing the closed interval [0,1]. Let H: T"M x I — R
be a compactly supported Hamiltonian function and denote by ¢ : T*M x I — T*M the
Hamiltonian isotopy generated by H. We consider conification of ¢ . Define H:T*M x
10“*5’91 x I — R by ﬁ[s(x,t;f,T) := 171 Hg(x;&/7). Note that H is homogeneous of degree
1, that is, ﬁs(m,t; cert) =c- ﬁs(x,t;é,r) for any ¢ € R~g. The Hamiltonian isotopy
g/b\: T*M x T*Sg1 x 1 — T*M x T*SG1 associated with H makes the following diagram
commute (recall that we have set p: Qi — T*M, (z,t;&,7) — (2;£/7)):

Q+XI$Q+

pxidi lp (A.3)
T*M x [ —— T* M.
¢)H

Moreover there exists a C°°-function w: T*M x I — R such that

as(x,t;f,r) = (2’ t +us(w;&/7); €, 7), (A.4)
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where (¢ /1) = @\f (x;&/7). By construction, gg is a homogeneous Hamiltonian isotopy:
os(x, t;c&,er) = c-ds(x, t; &, 7) for any ¢ € Rg. We define a conic Lagrangian submanifold
Ay CT*M x T*Sj x T*M x T*Sj x T*I by

(z:€) € T"M,
Az = (Bula 56,7, (2856, —7), (5~ Ho 0 u(w, 56,7))) | (1) € T°8h, 5+ (AD)
sel
By construction, we have
Hy o u(w,t;€,7) = 7+ (Hs 0 ¢ (2:6/7)). (A-6)

Note also that

~ * — - . [ — ] * S}
AjoTSI {<¢S($,Ii,§,7),(x7t7 5,0 T)) ‘ (@,6;6,7) €T"M x T S‘)} (A7)
C T*M x T*S} x T*M x T*S}

for any s € I (see (2.7) for the definition of A o B). The following was essentially proved
by Guillermou-Kashiwara-Schapira [GKS12].

Theorem A.5 (cf. [GKS12, Thm. 4.3]). In the preceding situation, there exists a unique
object K € DP(M x Sel X M x S; x I) satisfying the following conditions:

(1) SS(K*H) C A,
(2) KH|stéxMX5;X{O} ~ kAst;’ where Ay, g1 is the diagonal of M x Sgx M x S}

Moreover both projections Supp(KH) — M x Sel x I are proper.

The object K is called the sheaf quantization of gg or associated with ¢ .

A.3 Hamiltonian deformation of sheaves and translation distance

In this subsection, we recall the detail of the translation distance and give the outline of
the proof of Proposition 3.4.

Let I € DP(M)y. Then the canonical morphism ROKpr px[o400) * 1 — F s
an isomorphism. Moreover, for any ¢ € R, we find that Te,(ROKpx px[0,400) * F) =
ROK 1« pxje,+00) * F'. Hence, for any ¢,d € R with ¢ < d, the canonical morphism
Karx Pxje,4o0) = Kirx Px([d,+00) Induces a morphism in D (M)y:

Ted(F): Teo ' — Ty, F. (A.8)
Using the morphism, we define the translation distance as in Definition 3.3.

Lemma A.6 (cf. [GS14, Prop. 6.9]). Let H € Dl{)T>O}(M x P x Sy x1I) and s1 < s2 be in

I. Denote by q: M x P x S§ x I — M x P x S} the projection. Assume that there exist
a,b,r € Ryg satisfying

SS(H) N7 ' (M x P x S§ x (s1—r,s20+7)) CT*(M x P) x (Sg x I) X Yap, (A.9)
where Yqp := {(1,0) € R? | —ar < o <br} CR2. Then

(i) dDP(M)g(RQ*(/HMxPxSé><[51,52))7O) < a(s2 — s1),
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(il) dpr(aryy (B (Harx pxsix (s1,52))), 0) < bs2 — 1),
(iii) dDP(M)g(H’MXPXS;X{Sl}WH|M><P><Sé><{82}) < (a+0b)(s2 — s1).

Outline of the proof. One can prove (i) and (ii) similarly to that of [AIl7, Prop. 4.3],
using Lemma A.7 below instead of the usual microlocal cut-off lemma. Similarly to

[AI17, Lem. 4.14], we can show that if ' — G — H s a distinguished triangle in
D?TZO}(M X P x Sel X I) and d’DP(M)g(Fv 0) < cwith c € RZ()? then dDP(M)Q(G7 H) <ec
Hence, applying it to the distinguished triangles

+1

RQ*(HMXPXS;X(sl,SQ]) — Rq*(HMPXSGIX[Sl,SQ]) — H|M><P><Sel><{sl} — (A 10)
+1 )
Rq*(HMXPXS;X[Sl,SQ)) - RQ*(HMxszgx[sl,sﬂ) — H|M><P><S§><{32} "
we obtain (iii) by the triangle inequality for dpr(ap),- O

Lemma A.7. Define

5:MxPxSyxRxRxR—=MxPxS; xR,
(@, y, 1, 51,12, 82) = (2,4, t1 + [t2], 51+ s2),
andlet 1: M X Px Sj x RxRxR—=MxP xS} xR, g: MxPxS) xRxRxR—
M x P x R x R be the first and second projections. Let v be a closed convex cone in R>

with 0 € v and let F € DP(M x P x S} x R). Then SS(F) C T*(M x P) x (S§ x R) x 7°
if and only if the canonical morphism R§*((jf1F ® (ElkMprv) — F is an isomorphism.

Outline of the proof of Proposition 3.4. Let K™ be the sheaf quantization associated with
¢". Define H := G o KIDP(M x P x S} x I). Note that H|MXP><55X{O} ~ G and

%‘MXPXS;X{l} ~ ®(@). By Proposition 2.8 and (A.5), we get

SS(H) C T*(M x P) x {(t,s;r, o)

—max Hy(p) - 7 < 0 < —min Hy(p) 7'} . (A1)
J2 P

Using Lemma A.6(iii) and arguing similar to [AI17, Prop. 4.15], we obtain

n—1
dpp (), (G, (@) < Z % . <seF’3a’§“] f(s) +seﬁ€1a’3{+1]g(s)> , (A.12)
k=0 n’ n n n

where f(s) = max, H(p) and g(s) = —min, H,(p). For any € € R, there exists n € Z>¢
such that the right-hand side of (A.12) is less than ||H|| + e, which proves the result. [
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