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Introduction

Magnitude is an invariant of enriched categories introduced by Leinster
([12]) as a generalization of the cardinality of sets, the rank of vector spaces,
and the Euler number of topological spaces. In this thesis, we take a look on
magnitude of metric spaces which can be seen as a [0,∞)-enriched category.
The definition of magnitude for a finite metric space is given as follows.

Definiton . We call a metric spaces which consists of finitely many
points a finite metric space. For a finite metric space (X, d), let AX be the
symmetric matrix whose entries are the number e−d(x,y) for x, y ∈ X. If AX

is invertible, magnitude of X is defined by the summation of all entries of
A−1

X . Further, for t ∈ R≥0, we call magnitude of the metric space (X, td)
magnitude function of X which is a function on t.

We note that one can define magnitude for almost all finite metric spaces,
since the set of invertible matrices are dense in the space of all matrices. It
is pointed out by Leinster that magnitude measures the number of efficient
points of a metric space.

Magnitude homology, introduced by Hepworth-Willerton and Leinster-
Shulman ([10], [13]), is a bigraded Z-module MHℓn indexed by positive real
numbers ℓ and positive integers n, and is defined for general metric spaces.
As shown by them, for a finite metric space X, magnitude homology is a
categorification of magnitude in a sense that magnitude function of X is
equal to the “Euler charactersitic”

∑
ℓ,n(−1)nrankMHℓn(X)e−tℓ. The defini-

tion of magnitude homology is given as follows. Let (X, d) denotes a metric
space.

Definiton . Magnitude chain complexMCℓ∗(X), ∂∗ :=
∗∑

i=1

(−1)i∂i
n


is a graded free Z-module generated by tuples (x0, . . . , xn) ∈ Xn+1 satisfying∑n−1

i=0 d(xi, xi+1) = ℓ, with a differential defined by

∂i
n(x0, . . . , xn) =

(x0, . . . , x̂i, . . . , xn) d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1)
0 otherwise.

The homology group of magnitude chain complex is called magnitude ho-
mology group of X, and is denoted by MHℓ∗(X).
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Magnitude homology is defined as a homology of a pointed simplicial
set, however, sometimes it behaves like usual homology theory and it looks
something more than just a homology of a chain complex. For example,
Hepworth-Willerton [10] shows a kind of Künneth theorem and Mayer-
Vietoris theorem for magnitude homology by restricting it on graphs. Gu
[7] computes magnitude homology for several classes of graphs by using
an algebraic Morse method. Kaneta-Yoshinaga [11] describes magnitude
chain complex from a view point of ordered complex of posets, and the
author [1] computed magnitude homology of CAT(κ) spaces by using their
frameworks. Gomi [5][6] constructed a spectral sequence for magnitude
homology by using a filtration on numbers of “smooth points”, and com-
pletely computed magnitude homology for a wide class of geodesic metric
spaces. Their computations show that magnitude homology has some in-
formation about uniqueness of geodesics for a wide class of metric spaces
including Riemannian manifolds. Further, Otter [16] studies “blurred” ver-
sion of magnitude homology, and relates it to singular homology theory.
She and Cho [3] studies magnitude homology from a view point of per-
sistent theory which plays a central role in the area of Topological Data
Analysis.

On the other hand, we can consider a simplicial complex which is as-
sociated to metric spaces called Vietoris-Rips complex. It was first intro-
duced by Vietoris ([18]) as one of the first homology theory for compact
metric spaces. Later Rips used this simplicial complex to construct a con-
tractible space with hyperbolic group action([4]). The n-simplex of this
complex consists of (n + 1)-points subsets {x0, . . . , xn} whose diameter is
not greater than ε. Another chain complex whose n-simplex consists of
(n + 1)-points subsets {x0, . . . , xn} with the diameter strictly smaller than ε
is often referred to by the same name. We discuss both of the complexes
in this thesis. The associated chain complex VC≤ε∗ or VC<ε∗ of the above
complex is called Vietoris-Rips chain complex, and its homology VH≤ε∗ or
VH<ε∗ is called Vietoris-Rips homology.

The idea and the definition of magnitude homology and Vietoris-Rips
homology is quite similar, however, there are few studies comparing them
each other. Further, the author considers that these ideas have been get-
ting more and more important from a view point of algebraic topology for
metric spaces which is effectively applicable to data science, in particular
to Topological Data Analysis. For example, magnitude homology is a can-
didate for another criterion of approximative size of data sets instead of
Vietoris-Rips homology which is now majorly used. Hence to reveal the
relationship between each other is a pivotal problem. Further, the author
has an eye on constructing a parametrized view point of geometry which
connects discrete and continuous studies of geometry so far, and studying
the above two homology theories are our first step to realize it.
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In this thesis, we reveal some properties of magnitude homology and
Vietoris-Rips homology restricted to the category of geodesic metric spaces.
This thesis consists of four chapters, and the first one is devoted to some
preliminaries on fundamental elements of topology and geometry. In the
remained three chapters, we prove our main theorems. The following is a
summary of this thesis.

In chapter 2, we prove an analogy to the fundamental fact that “ the
ordinary homology of a contractible space is trivial” for blurred magnitude
homology. Blurred magnitude homology is a variant of magnitude homol-
ogy coined by Otter ([16]), and it is defined as follows. Let (X, d) be a
metric space.

Definiton . Let ℓ ∈ R≥0. Let us consider a simplicial set whose n-
simplices consist of tuples (x0, . . . , xn) satisfying

n−1∑
i=0

d(xi, xi+1) ≤ ℓ.

We denote its associated chain complex by (MC≤ℓ∗ (X), ∂≤ℓ∗ ), and we denote
its homology group by MH≤ℓ∗ (X). We call MH≤ℓ∗ (X) blurred magnitude
homology of X. Similarly, we define a chain complex (MC<ℓ∗ (X), ∂<ℓ∗ ) to be
a chain complex which consists of tuples (x0, . . . , xn) satisfying

n−1∑
i=0

d(xi, xi+1) < ℓ.

We denote its homology by MH<ℓ∗ (X). We also refer to it as blurred magni-
tude homology.

As remarked in the above, the definition of magnitude homology and
blurred magnitude homology is quite simple, however, little property of
them has been revealed so far. For example, the invariance of magnitude
homology is one of the tantalizing problems. In this chapter, we discuss
magnitude homology of crushable spaces.

Definiton . A metric space is called crushable if there exists a map
F : X × [0, 1] −→ X satisfying the following conditions.

(1) F(x, 1) = x for all x ∈ X,
(2) F(x, 0) = a for all x ∈ X,
(3) F(a, t) = a for all t ∈ [0, 1],
(4) d(F(x, s), F(y, s)) ≤ d(F(x, t), F(y, t)) for all x, y ∈ X and s ≤ t ∈

[0, 1].

To study magnitude homology, the notion of blurred magnitude homol-
ogy seems to make it easy to deal with algebraically. Our main result is the
following which appears as Proposition 2.5.
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Theorem . If (X, d) is crushable, then

MH<ℓn (X) = 0

for all ℓ ∈ R>0 and n ∈ Z>0.

We use some techniques from singular homology theory for the proof.
As a corollary of these theorems, we can compute blurred magnitude ho-
mology of Euclidean spaces (Corollary 2.6).

In chapter 3, we study magnitude homology of geodesic metric spaces
of curvature ≤ κ, especially CAT(κ) spaces. We will show that magnitude
homology MHℓn(X) of such a metric space X vanishes for small ℓ and all n >
0. Consequently, we can compute a total Z-degree magnitude homology for
small ℓ for the spheres Sn, the Euclid spaces En, the hyperbolic spaces Hn,
and real projective spaces RPn with the standard metric. We also show
that an existence of closed geodesic in a metric space guarantees the non-
triviality of magnitude homology.

Some computations of magnitude homology is studied for graphs by
Hepworth-Willerton([10]), for convex subsets in Rn by Leinster-Shulman
([13]), for the geodesic circle by Kaneta-Yoshinaga ([11]), and for geodesic
spheres by Gomi ([4]).

Since the motivation and the formulation of magnitude homology are
algebraic, several authors study it from a view point of algebra and cate-
gory theory. On the other hand, its geometric meaning is gradually getting
clarified in the study of Leinster-Shulman, Kaneta-Yoshinaga, and Gomi
([13], [11], [4]).

In this chapter, we study magnitude homology from a view point of met-
ric geometry, and clarify that the curvature of metric spaces effects heavily
on the triviality of magnitude homology. We also investigate its connection
with closed geodesics.

Let (X, d) be a metric space. A quadruple (x0, x1, x2, x3) ∈ X4 is called
4-cut if (1) xi , xi+1 for 0 ≤ i ≤ 2, (2) d(xi, xi+2) =

∑i+1
j=i d(x j, x j+1) for

0 ≤ i ≤ 1, and (3) d(x0, x3) <
∑2

j=0 d(x j, x j+1) are satisfied. Let mX be the
infimum of the length

∑2
j=0 d(x j, x j+1) of 4-cuts (x0, x1, x2, x3) in X. This

invariant is first introduced in ([11]) and is very important for the study of
magnitude homology. We clarify its metric geometrical interpretation by
the following theorem stated as Theorem 3.5 in this artcle. The invariant
lX measures the infimum length of locally geodesic path which is not a
geodesic. See Definition 3.3 for the detail. Let Dκ be π/

√
κ for κ > 0 or +∞

for κ ≤0. The main result of this chapter is the following.

Theorem . For a geodesic CAT(κ) space (X, d), we have

Dκ ≤ mX ≤ lX.

The following is stated as Corollary 3.6.
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Corollary . Let (X, d) be a geodesic CAT(κ) space. Then for any n > 0
and 0 < ℓ < Dκ, magnitude homology MHℓn(X) vanishes.

The following is stated as Theorem 4.3. See Definition 4.1 for the defi-
nition of closed geodesics.

Theorem . Let X be a metric space. If there exists a closed geodesic of
radius r in X, then we have MHπr2 (X) , 0.

Most part of our results in this chapter overlaps with Gomi’s works ([5],
[6]). He computes magnitude homology for a wide class of geodesic spaces
by using spectral sequence. Only he requires on a metric space is a non-
branching condition on geodesics, hence every complete Riemannian man-
ifold and every CAT(κ) space with non-positive κ can be dealt with in his
frame work. However, the approach of ours is quite different from his, and
the author does not know whether CAT(κ) spaces with positive κ can be
covered by his work.

In chapter 4, we study Vietoris-Rips homology of geodesic spaces for
small parameters ε, and see that it is similar to magnitude homology case.
Vietoris-Rips homology theory is an origin of modern homology theory,
and getting more and more interested in recent growth of Topological Data
Analysis. From a view point of Topological Data Analysis, it is impor-
tant to know about Vietoris-Rips homology of Riemannian manifolds as an
“ideal” state of datasets. In this thesis, we discuss Vietoris-Rips homology
with small and large parameters for Riemannian manifolds with some cur-
vature requirements. We prove that Vietoris-Rips homology is isomorphic
to singular homology when the parameter is small, and not isomorphic in
large case. The techniques we use are analogy from the singular homol-
ogy theory, and they are applicable to two slightly different definitions of
Vietoris-Rips homology. We also consider a relationship with magnitude
homology.

Although its origin is natural and fundamental, the Vietoris-Rips ho-
mology is not widely studied compared to other homology theories. In this
chapter, we study the theory for geodesic metric spaces with some curvature
requirements. Hausmann ([9]) proves the following in this context.

Theorem (Hausmann, Proposition 3.4[9]). The Vietoris-Rips homol-
ogy with sufficiently small ε is isomorphic to the singular homology for
Riemannian manifolds with some curvature requirement.

His proof depends on the strictness of the inequality in the definition
of complex. We give another proof to the above statement, which can be
applied to the both definition of Vietoris-Rips complex and is slightly a
refinement of Hausmann’s. Let r(X) be the supremum of non-negative real
numbers r satisfying the following:

(1) There uniquely exists a geodesic between every pair of points x, y
with d(x, y) ≤ r,
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(2) For any three points x, y, z with diam {x, y, z} ≤ r, and for every
point w on the geodesic between y, z, they satisfy

d(x,w) ≤ max{d(x, y), d(x, z)}.
It is well known that Riemannian manifolds X with strictly positive injectiv-
ity radius satisfies (1) above. It is also easy to see such an X with an upper
bound on its sectional curvature satisfies (2), hence we have r(X) > 0. In
particular, we have r(X) > 0 for compact Riemannian manifolds. Haus-
mann considers similar number as the threshold but not greater than ours,
hence our result is a refinement of the above theorem. The following is our
main theorem, which appears as Theorem 2.3 in this chapter.

Theorem . For any 0 < ε′ ≤ ε < r(X), the following inclusion of chain
complexes is a chain homotopy equivalence :

VC≤ε
′

n (X) −→ VC≤εn (X).

As a corollary of this theorem, we obtain the following, which appears
as Corollary 2.23.

Corollary . For Riemannian manifolds X with r(X) > 0, we have

VH≤ε∗ (X) � H∗(X;Z),

for sufficiently small 0 < ε.

Vietoris-Rips complex also plays a pivotal role in recent and fast growth
of Topological Data Analysis, and is receiving more and more attention.
One of the novel and remarkable viewpoints on it is coined by Otter ([16])
via magnitude homology. Cho ([3]) also relates them from a view point of
quantales.

This thesis is organized as follows. In Chapter 1, we review some fun-
damental elements on metric geometry and algebraic topology which are
used in the following chapters. In Chapter 2, we study blurred magnitude
homology of crushable spaces. First we review on blurred magnitude ho-
mology defined by Otter [16] and make another description for magnitude
homology from this view point by using general theory of simplicial abelian
groups in section 1. In section 2, we prove the main theorem by formulat-
ing “prism operator” for blurred magnitude homology analogous to singular
homology theory. We also indicate a computation of blurred magnitude ho-
mology of Euclidean space, hyperbolic space, and the semi-sphere.

In Chapter 3, we study magnitude homology of CAT(κ) spaces. In sec-
tion 1, we briefly recall some notation and fundamental facts on metric ge-
ometry. In section 2, we briefly recall the definition of magnitude homology
and some facts on them studied in ([11]). In section 3, we study magnitude
homology of CAT(κ) spaces through the invariants mX and lX. We also com-
pute magnitude homology of some simply connected complete Riemannian
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manifolds as examples. In section 4, we study how closed geodesic in a met-
ric space effects on magnitude homology. This is motivated by the fact that
magnitude homology is defined as a generalization of Hochschild homology
in ([13]). In section 5, we study magnitude homology of non-CAT(κ) met-
ric spaces whose curvature is bounded from above through the invariants
ιX and Sys(X). We also compute magnitude homology of real projective
spaces RPn with standard metric as an example.

In Chapter 4, we study the Vietoris-Rips homology of Riemannian man-
ifolds for small parameters. We briefly review the construction of Vietoris-
Rips homology in section 1. We also construct chain complexes used in
this thesis which are not isomorphic to the associated chain complex of the
Vietoris-Rips complex but are chain homotopy equivalent to it. We prove
the main theorem in section 2. For that purpose, we discuss some analogies
from singular homology theory.
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CHAPTER 1

Preliminary

In this chapter, we briefly review some fundamental elements which
appear in this thesis.

1. Metric space and metric geometry

Definition 1.1. A set X equipped with a map d : X × X → R≥0 is called
a metric space if they satisfies the following:

d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x) for any x, y ∈ X,

d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

Definition 1.2. Let (X, d) be a metric space, and c be a positive number.
A path γ : [0, c]→ X is a linearly reparametrized geodesic connecting γ(0)
and γ(1) if it satisfies d(γ(t), γ(s)) = λ|t − s| for any 0 ≤ s ≤ t ≤ 1 and for
some λ ≥ 0. When λ = 1 we call such a path a geodesic.

Definition 1.3. A metric space X is geodesic if for each pair of points
a, b ∈ X, there exists a geodesic connecting them. Furthermore, if such a
geodesic is unique, then X is called uniquely geodesic.

We sometimes denote a geodesic from some interval connecting a and
b in a metric space X, by [a, b].

Definition 1.4. Let a, b, c be points in a metric space X. The union of
these geodesic images ∆abc := [a, b] ∪ [b, c] ∪ [c, a] is called a geodesic
triangle.

Let S κ be a simply connected surface of constant sectional curvature
κ for κ ∈ R. Note that for every geodesic triangle ∆abc in a metric space
X, there exists a geodesic triangle ∆̃abc in S κ whose sides have the length
precisely equal to the length of corresponding sides of ∆abc. We also note
that if the inequality

d(a, b) + d(b, c) + d(c, a) < 2Dκ

is satisfied for

Dκ :=

π/
√
κ κ > 0

+∞ κ ≤ 0
,

then such a triangle is uniquely determined up to congruence.
10
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Definition 1.5. A geodesic triangle ∆abc in a metric space X is κ-small
if the inequality d(a, b) + d(b, c) + d(c, a) < 2Dκ is satisfied. For a κ-small
geodesic triangle ∆abc, the corresponding triangle ∆̃abc in S κ is called the
comparison triangle in S κ.

Definition 1.6. Let ∆abc = [a, b]∪ [b, c]∪ [c, a] be a geodesic triangle in
a metric space (X, d), and let ∆̃abc = [ã, b̃] ∪ [b̃, c̃] ∪ [c̃, ã] be its comparison
trinangle in S κ. A point s̃ ∈ [ã, b̃] is the comparison point of s ∈ ∆abc if s ∈
[a, b] and d(ã, s̃) = d(a, s) is satisfied. We similarly define the comparison
points for points on [b̃, c̃] and [c̃, ã].

The following notion of CAT(κ) space plays a fundamental role in this
thesis.

Definition 1.7. A metric space (X, d) is CAT(κ) if for every κ-small ge-
odesic triangle ∆abc in X and for every pair of points s, t ∈ ∆abc, the CAT(κ)
inequality

d(s, t) ≤ dS κ(s̃, t̃)
holds for the comparison points s̃ and t̃.

Example 1.8. Apparently, the 2-sphere S κ of constant sectional curva-
ture κ, the Euclid plane S 0, and the hyperbolic plane S −κ of sectional curva-
ture −κ < 0 are CAT(κ),CAT(0), and CAT(−κ) respectively.

More generally, the following is well known.

Fact 1.9. A complete simply connected Riemannian manifold with sec-
tional curvature ≤ κ is CAT(κ).

We have the following examples of CAT(κ) spaces. Let Sn
κ = {(x0, . . . , xn) ∈

Rn+1 | ∑n
i=0 x2

i = 1/κ} be the n-sphere of radius 1/
√
κ equipped with the ge-

odesic metric.

Example 1.10. Let n ≥ 2. The n-sphere Sn
κ of radius 1/

√
κ, the n-

dimensional Euclid space En, and the n-dimensional hyperbolic space Hn

of sectional curvature −κ < 0 are CAT(κ),CAT(0), and CAT(−κ) respec-
tively.

We denote the circle {(x0, x1) ∈ R2 | x2
0 + x2

1 = r2} of radius r equipped
with the geodesic metric by Cr.

Example 1.11. The circle C1/
√
κ is CAT(κ).

Proof. Because the perimeter of the circle C1/
√
κ is 2Dκ, every κ-small

triangle in this space lies in a semi-circle, which implies the triangle is de-
generated. Hence the CAT(κ) inequality holds. □

A connected undirected metric graph with no cycles is called a tree.

Example 1.12. Every tree is CAT(0).

Proof. Because there is no cycles in a tree, every triangle in a tree is
degenerated. Hence the CAT(0) inequality holds. □
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We introduce the following notion of the angle.

Definition 1.13. Let c1 and c2 be geodesics in X with the same start
point C. We define the angle between c1 and c2 at C by

∠C := limsupϵ,ϵ′→0∠̃c1(ϵ)Cc2(ϵ′),

where ∠̃c1(ϵ)Cc2(ϵ′) is the angle of the comparison triangle ∆̃c1(ϵ)Cc2(ϵ′) at C̃
in the Euclid plane S 0.

2. Simplicial sets

The notion of simplicial sets is sometimes very useful, and it appears in
this thesis. We briefly review its definition.

Definition 2.1. The simplex category ∆ is a category whose objects are
ordered sets

[n] := {0 ≤ · · · ≤ n}
for n ∈ N, and morphisms are order preserving maps between them.

Remark 2.2. Every morphism in ∆ is generated by the following mor-
phisms:

di : [n] −→ [n + 1]; j 7→
 j j < i

j + 1 j ≥ i
,

si : [n + 1] −→ [n]; j 7→
 j j ≤ i

j − 1 j > i
,

for 0 ≤ i ≤ n and all n ∈ N.

Definition 2.3. A simplicial object in a category C is a functor

∆op −→ C.
A simplicial object in the category of sets Set is called a simplicial set, and
a simplicial object in the category of abelian groups Ab is called a simplicial
abelian group.

Definition 2.4. Let S be a simplicial abelian group. We define the as-
sociated chain complex C∗S of S by

CnS := S [n],

∂n :=
n∑

i=0

(−1)idi : CnS −→ Cn−1S .

Definition 2.5. Let S be a simplicial abelian group. The images of
degeneracy maps of S are called degenerated simplices. We denote the set
of degenerated n-simplices by Nn(S ).

The following are fundamental facts on simplicial abelian group theory.

Fact 2.6. The family of set N = {N∗(S )} is a sub-simplicial abelian
group of S .
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Fact 2.7. The quotient map S −→ S/N induces chain homotopy equiv-
alence

C∗S −→ C∗S/N
.

3. Magnitude homology

One of the main subjects of this thesis is the notion of magnitude homol-
ogy. Through this section, (X, d) denotes a metric space unless otherwise
mentioned.

Definition 3.1. An (n + 1)-tuple (x0, . . . , xn) ∈ Xn+1 is called an n-chain
of X. An n-chain is proper if xi , xi+1 for all 0 ≤ i ≤ n. The length |x| of
n-chain x is defined by

|x| :=
n−1∑
i=0

d(xi, xi+1).

We denote the set of all proper n-chains of length ℓ by Pℓn(X), and Pn(X)
denotes the union of them running through all ℓ ≥ 0. Let MCℓn(X) be the
abelian group freely generated by Pℓn(X).

Definition 3.2. Let a and b be points in X. A point c ∈ X is smooth
between a and b if the equality d(a, b) = d(a, c) + d(c, b) holds. We denote
a ≺ c ≺ b if c is a smooth point between a and b with a , c and b , c.

Definition 3.3. Magnitude chain complex

(MCℓ∗(X), ∂∗ :=
∗∑

i=1

(−1)i∂i
n)

is defined by

∂i
n(x0, . . . , xn) =

(x0, . . . , x̂i, . . . , xn) (if xi−1 ≺ xi ≺ xi+1)
0 (otherwise).

The homology group of magnitude chain complex is called the magnitude
homology group of X, and is denoted by MHℓ∗(X).

Remark 3.4. It is easily seen that the first magnitude homology mea-
sures Menger convexity, where a metric space is Menger convex if for all
x, y ∈ X there exists z , x, y ∈ X such that d(x, z) + d(z, y) = d(x, y).



CHAPTER 2

Magnitude homology of crushable space is trivial

1. Blurred magnitude homology

Let (X, d) be a metric space.

Definition 1.1. Let ℓ ∈ R≥0. Let us consider a simplicial set whose
n-cells consist of tuples x = (x0, . . . , xn) satisfying

|x| :=
n−1∑
i=0

d(xi, xi+1) ≤ ℓ.

We denote its associated chain complex by (MC≤ℓ∗ (X), ∂≤ℓ∗ ), and we denote
its homology group by MH≤ℓ∗ (X). We call MH≤ℓ∗ (X) blurred magnitude
homology of X. Similarly, we define chain complex (MC<ℓ∗ (X), ∂<ℓ∗ ) to be a
chain complex which consists of tuples x = (x0, . . . , xn) satisfying

|x| :=
n−1∑
i=0

d(xi, xi+1) < ℓ.

We denote its homology by MH<ℓ∗ (X). We also refer to it as blurred magni-
tude homology.

Definition 1.2. Let ℓ ≤ ℓ′. We denote by ιℓ≤ℓ
′

♯
either the chain maps

MC≤ℓ∗ (X) −→ MC≤ℓ
′

∗ (X)

or
MC<ℓ∗ (X) −→ MC<ℓ

′

∗ (X)
both induced from the natural inclusion. The homomorphism induced on
the homology is denoted by ιℓ≤ℓ

′
∗ .

Definition 1.3. Magnitude chain complex MCℓ∗(X) is the quotient com-
plex of MC≤ℓ∗ (X) by a subcomplex MC<ℓ∗ (X). Its homology denoted by
MHℓ∗(X) is called magnitude homology of X.

Remark 1.4. Although this definition of magnitude chain complex is
different from the original definition due to Hepworth-Willerton [10] and
Leinster- Shulman [13], we can easily see that its homology is isomorphic
to the original magnitude homology by the standard argument of simplicial
abelian group as follows. This is also remarked in [10] Remark 45.

Definition 1.5. Let S be a simplicial abelian group. The image of de-
generacy maps of S are called degenerated simplices. We denote the set of
degenerated n-simplices by Nn(S ).

14
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Lemma 1.6 ([15]). The family of set N = {N∗(S )} is a sub-simplicial
abelian group of S .

We denote the associated chain complex of S by C∗S .

Theorem 1.7 ([15] Corollary 22.3). The quotient map S −→ S/N in-
duces chain homotopy equivalence

C∗S −→ C∗S/N.

If we take C∗S as our definition of magnitude homology, C∗S/N is the
original definition.

The following is clear from the standard argument of homological alge-
bra.

Proposition 1.8. There is a long exact sequence

· · · −→ MH≤ℓn+1(X) −→ MH<ℓn (X) −→ MH≤ℓn (X) −→ MHℓn(X) −→ . . . .

Proof. It is a fundamental fact of homological algebra that if we have a
short exact sequence of chain complexes 0 −→ A −→ B −→ C −→ 0, then
we can derive a long exact sequence

· · · −→ Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ . . . .
We substitute MH<ℓ∗ (X),MH≤ℓ∗ (X) and MHℓ∗(X) for A, B and C respectively,
and this completes a proof. □

2. Results

Let (X, d) be a metric space, and a ∈ X.

Definition 2.1. (X, d) is crushable if there exists a map F : X×[0, 1] −→
X satisfying the following conditions.

(1) F(x, 1) = x for all x ∈ X,
(2) F(x, 0) = a for all x ∈ X,
(3) F(a, t) = a for all t ∈ [0, 1],
(4) d(F(x, s), F(y, s)) ≤ d(F(x, t), F(y, t)) for all x, y ∈ X and s ≤ t ∈

[0, 1].

Remark 2.2. This definition of crushable space is coined by Hausmann
[9] in his study of Vietoris-Rips complex of metric space.

Definition 2.3. For a chain x ∈ MC<ℓn (X) expressed as

x =
k∑

i=0

αixi with αi ∈ Z,

we set L(x) := maxi |xi| and δ(x) := ℓ − L(x).

Lemma 2.4. Let f , g : X −→ X be maps satisfying

d(g(a), g(b)) ≤ d( f (a), f (b)) for all a, b ∈ X.
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Let x = (x0, . . . , xn) be a chain in MC<ℓn (X). We denote

f x = ( f (x0), . . . , f (xn)), gx = (g(x0), . . . , g(xn)),

and assume that they are in MC<ℓn (X). Suppose that they satisfy

d( f (xi), g(xi)) < δ( f x)

for all 0 ≤ i ≤ n. Then an n + 1-chain

P f ,gx :=
n∑

i=0

(−1)i( f (x0), . . . , f (xi), g(xi), . . . , g(xn)) ∈ MC<ℓn+1(X)

can be defined, and it satisfies

∂<ℓP f ,gx + P f ,g∂
<ℓx = gx − f x.

Proof. The former part is clear. The latter part can be checked by calcu-
lating ∂<ℓP f ,gx + P f ,g∂

<ℓx as follows. We calculate ∂<ℓP f ,gx first by setting
x = (x0, . . . , xn) as follows.

∂<ℓP f ,gx = ∂<ℓ
n∑

i=0

(−1)i( f (x0), . . . , f (xi), g(xi), . . . , g(xn))

=

n∑
i=0

(−1)i
( i∑

j=0

(−1) j( f (x0), . . . , ˇf (x j), . . . , f (xi), g(xi), . . . , g(xn)

+

n∑
j=i

(−1) j+1( f (x0), . . . , f (xi), g(xi), . . . , ˇg(x j), . . . , g(xn))
)

=
∑

0≤ j≤i≤n

(−1)i+ j( f (x0), . . . , ˇf (x j), . . . , f (xi), g(xi), . . . , g(xn)

−
∑

0≤i≤ j≤n

(−1)i+ j( f (x0), . . . , f (xi), g(xi), . . . , ˇg(x j), . . . , g(xn)

The i = j part in the above is further calculated as follows.
n∑

i=0

(
f (x0), . . . , f (xi−1), g(xi), . . . , g(xn)

)
−

n∑
i=0

(
( f (x0), . . . , f (xi), g(xi+1), . . . , g(xn))

)
= (g(x0), . . . , g(xn)) − ( f (x0), . . . , f (xn))

On the other hand, we can see that the i , j part is equal to −P f ,g∂
<ℓx. This

completes a proof. □

Proposition 2.5. If (X, d) is crushable, then

MH<ℓn (X) = 0,

for all ℓ ∈ R>0 and n ∈ Z>0.
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Proof. Assume that there exists a non-zero homology class

[x] ∈ MH<ℓn (X),

for some ℓ > 0 and n > 0. We fix such a chain x =
∑k

i=0 αixi with xi =

(xi
0, . . . , x

i
n). Take a sequence t0 = 0 < t1 < · · · < tN = 1 satisfying

d(F(xi
j, tm), F(xi

j, tm+1)) ≤ δ(x),

for all 0 ≤ i ≤ k, 0 ≤ j ≤ n and 0 ≤ m ≤ N − 1. We set

F(x, tm) :=
∑

i

αiF(xi, tm) ∈ MC<ℓn (X).

By Lemma 2.4, we know inductively that two chains F(x, tm) and F(x, tm+1)
are homologous in MC<ℓn (X). Hence two chains x and

F(x, t0) =
∑

i

αi(a, . . . , a)

are homologous, where the latter is null-homologous. Therefore we obtain
[x] = 0, which is a contradiction. □

Corollary 2.6. Blurred magnitude homology of Euclidean space RN

and hyperbolic spaces HN are trivial, namely

MH<ℓn (RN) = MH<ℓn (HN) = 0,

for any ℓ > 0 and any n > 0.

Proof. We have a distance decreasing contraction x 7→ tx for x ∈ RN

and 0 ≤ t ≤ 1. For hyperbolic spaces, we can apply the same contraction
for the ball model. □

Example 2.7. Let X be the semi-sphere of the standard sphere SN with
the geodesic metric. This space is crushable, hence we have MH<ℓ∗ (X) = 0.
On the other hand, by Gomi’s work [6] and the authors work in chapter 2,
we know that magnitude homology of X is non-trivial, because there are
infinitely many shortest geodesics connecting two distinct points. There-
fore, by considering the long exact sequence for magnitude homologies, we
obtain that blurred magnitude homology MH≤ℓ∗ (X) is non-trivial.



CHAPTER 3

Magnitude homology of CAT(κ) spaces

1. Preliminary on metric geometry

In this section, we briefly recall some notations on metric geometry
from ([2]).

Definition 1.1. Let (X, d) be a metric space, and c be a positive number.
A path γ : [0, c]→ X is a linearly reparametrized geodesic connecting γ(0)
and γ(1) if it satisfies d(γ(t), γ(s)) = λ|t − s| for any 0 ≤ s ≤ t ≤ 1 and for
some λ ≥ 0. When λ = 1 we call such a path geodesic.

Definition 1.2. A metric space X is geodesic if for each pair of points
a, b ∈ X, there exists a geodesic connecting them. Furthermore, if such a
geodesic is unique, then X is called uniquely geodesic.

We sometimes denote a geodesic from some interval connecting a and
b in a metric space X, by [a, b].

Definition 1.3. Let a, b, c be points in a metric space X. The union of
these geodesic images ∆abc := [a, b] ∪ [b, c] ∪ [c, a] is called a geodesic
triangle.

Let S κ be a simply connected surface of constant sectional curvature
κ for κ ∈ R. Note that for every geodesic triangle ∆abc in a metric space
X, there exists a geodesic triangle ∆̃abc in S κ whose sides have the length
precisely equal to the length of corresponding sides of ∆abc. We also note
that if the inequality

d(a, b) + d(b, c) + d(c, a) < 2Dκ

is satisfied for

Dκ :=

π/
√
κ κ > 0

+∞ κ ≤ 0
,

then such a triangle is uniquely determined up to congruence. The follow-
ing is a fundamental fact on elementary geometry known as Alexandrov’s
lemma.

Proposition 1.4 ([2] Lemma I.2.16). Let A, B, B′,C be distinct points in
S κ. If κ > 0, we assume that d(A, B) + d(B,C) + d(C, B′) + d(B′, A) < 2Dκ
and d(B,C)+d(C, B′) < Dκ. We suppose that B and B′ lie on opposite sides
of the line through A and C. Let α, β, γ(respectively α′, β′, γ′) be the angles
of a triangle ∆(resp. ∆′) with vertices A, B,C(resp. A, B′,C). We assume

18
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that γ + γ′ ≥ π. Let ∆ be a triangle on S κ with vertices A, B, B′ such that
d(A, B) = d(A, B), d(A, B′) = d(A, B′) and d(B, B′) = d(B,C)+d(C, B′). Let
α, β, β′ be the angles of ∆ at A, B, B′. Then we have

β ≥ β, β′ ≥ β′.

Definition 1.5. A geodesic triangle ∆abc in a metric space X is κ-small
if the inequality d(a, b) + d(b, c) + d(c, a) < 2Dκ is satisfied. For a κ-small
geodesic triangle ∆abc, the corresponding triangle ∆̃abc in S κ is called the
comparison triangle in S κ.

Definition 1.6. Let ∆abc = [a, b]∪ [b, c]∪ [c, a] be a geodesic triangle in
a metric space (X, d), and let ∆̃abc = [ã, b̃] ∪ [b̃, c̃] ∪ [c̃, ã] be its comparison
trinangle in S κ. A point s̃ ∈ [ã, b̃] is the comparison point of s ∈ ∆abc if s ∈
[a, b] and d(ã, s̃) = d(a, s) is satisfied. We similarly define the comparison
points for points on [b̃, c̃] and [c̃, ã].

The following notion of CAT(κ) space plays a fundamental role in this
thesis.

Definition 1.7. A metric space (X, d) is CAT(κ) if for every κ-small ge-
odesic triangle ∆abc in X and for every pair of points s, t ∈ ∆abc, the CAT(κ)
inequality

d(s, t) ≤ dS κ(s̃, t̃)
holds for the comparison points s̃ and t̃.

Example 1.8. Apparently, the 2-sphere S κ of constant sectional curva-
ture κ, the Euclid plane S 0, and the hyperbolic plane S −κ of sectional curva-
ture −κ < 0 are CAT(κ),CAT(0), and CAT(−κ) respectively.

More generally, we have the following.

Proposition 1.9. A complete simply connected Riemannian manifold
with sectional curvature ≤ κ is CAT(κ).

We have the following examples of CAT(κ) spaces. Let

Sn
κ = {(x0, . . . , xn) ∈ Rn+1 |

n∑
i=0

x2
i = 1/κ}

be the n-sphere of radius 1/
√
κ equipped with the geodesic metric.

Example 1.10. Let n ≥ 2. The n-sphere Sn
κ of radius 1/

√
κ, the n-

dimensional Euclid space En, and the n-dimensional hyperbolic space Hn

of sectional curvature −κ < 0 are CAT(κ),CAT(0), and CAT(−κ) respec-
tively.

We denote the circle {(x0, x1) ∈ R2 | x2
0 + x2

1 = r2} of radius r equipped
with the geodesic metric by Cr. The following is immediate.

Example 1.11. The circle C1/
√
κ is CAT(κ).
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Proof. Because the perimeter of the circle C1/
√
κ is 2Dκ, every κ-small

triangle in this space lies in a semi-circle, which implies the triangle is de-
generated. Hence the CAT(κ) inequality holds. □

A connected undirected metric graph with no cycles is called a tree.

Example 1.12. Every tree is CAT(0).

Proof. Because there is no cycles in a tree, every triangle in a tree is
degenerated. Hence the CAT(0) inequality holds. □

We introduce the following notion of the angle.

Definition 1.13. Let c1 and c2 be geodesics in X with the same start
point C. We define the angle between c1 and c2 at C by

∠C := limsupϵ,ϵ′→0∠̃c1(ϵ)Cc2(ϵ′),

where ∠̃c1(ϵ)Cc2(ϵ′) is the angle of the comparison triangle ∆̃c1(ϵ)Cc2(ϵ′) at C̃
in the Euclid plane S 0.

The following are fundamental. See for example [2] for the proof.

Proposition 1.14 ([2] Proposition I.1.14). Let X be a metric space and
let c, c′ and c′′ be geodesics in X starting from the same point p. Then we
have

∠(c′, c′′) ≤ ∠(c, c′) + ∠(c, c′′).
Proposition 1.15 ([2] Proposition II.1.7). Let κ ∈ R. For a geodesic

metric space (X, d), the following are equivalent.
(i) (X, d) is CAT(κ).

(ii) For every κ-small geodesic triangle ∆abc, the angles at a, b and c
are not greater than the corresponding angles of the comparison
triangle ∆̃abc in S κ.

The following proposition is technical but significant in this chapter.

Proposition 1.16 ([2] Lemma II.4.11). Let κ be a real number, and
X be a metric space of curvature ≤ κ. Let q : [0, 1] → X be a linearly
reparametrized geodesic connecting two distinct points q(0) and q(1), and
let p be a point in X which is not on the image of q. Assume that for each
s ∈ [0, 1], there is a linearly reparametrized geodesic cs : [0, 1] → X con-
necting p and q(s), varying continuously with s. We further assume that the
geodesic triangle ∆q(0)pq(1) is κ-small. Then the angles of ∆q(0)pq(1) at q(0), p
and q(1) are not greater than the corresponding angles of any comparison
triangle ∆̃q(0)pq(1) in S κ.

We study not only CAT(κ) spaces, but also locally CAT(κ) spaces. We
recall some fundamental notions on them.

Definition 1.17. A metric space X is of curvature ≤ κ if for each point
x ∈ X there exists rx > 0 such that the ball B(x, rx) with the induced metric
is CAT(κ).
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The following well-known fact due to Alexandrov supports the signifi-
cance for studying metric spaces of curvature ≤ κ.

Proposition 1.18 ([2] Theorem I.1A.6). A smooth Riemannian mani-
fold is of curvature ≤ κ if and only if its sectional curvature is ≤ κ.

Example 1.19. The standard projective space RPn for n ≥ 2 is of cur-
vature ≥ 1. Furthermore, it is not CAT(1) since a closed geodesic which
lifts to the geodesic semi-circle on Sn does not satisfy the CAT(1) angle
condition.

Definition 1.20. For a metric space X, the injectivity radius ιX is the
supremum of r ≥ 0 such that any two point of distance < r is connected
by the unique geodesic. The systole Sys(X) is the infimum of the length of
closed geodesic in X if there exists some, or 0 otherwise.

The following proposition shows the significance of the notions of the
injectivity radius and the systole. See for example [2] for the proof. A
metric space X is called cocompact if there exists a compact subset K ⊂ X
such that X =

∪
f∈Isom(X) f K holds.

Proposition 1.21 ([2] Proposition II.4.16). Let X be a cocompact proper
geodesic metric space of curvature ≤ κ. Then X fails to be CAT(κ) if and
only if there exists a closed geodesic of length < 2Dκ. Moreover, if there
exists such a closed geodesic, then there exists a closed geodesic of length
Sys(X) = 2ιX.

2. Preliminary on magnitude homology

In this section, we briefly recall some notations on magnitude homol-
ogy from [11]. Through this section, (X, d) denotes a metric space unless
otherwise mentioned.

Definition 2.1. An (n + 1)-tuple (x0, . . . , xn) ∈ Xn+1 is called an n-chain
of X. An n-chain is proper if xi , xi+1 for all 0 ≤ i ≤ n. The length |x| of
n-chain x is defined by

|x| :=
n−1∑
i=0

d(xi, xi+1).

We denote the set of all proper n-chains of length ℓ by Pℓn(X), and Pn(X)
denotes the union of them running through all ℓ ≥ 0. Let MCℓn(X) be the
abelian group freely generated by Pℓn(X).

Definition 2.2. Let a and b be points in X. A point c ∈ X is smooth
between a and b if the equality d(a, b) = d(a, c) + d(c, b) holds. We denote
a ≺ c ≺ b if c is a smooth point between a and b with a , c and b , c.

Definition 2.3. The magnitude chain complex

(MCℓ∗(X), ∂∗ :=
∗∑

i=1

(−1)i∂i
n)
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is defined by

∂i
n(x0, . . . , xn) =

(x0, . . . , x̂i, . . . , xn) (if xi−1 ≺ xi ≺ xi+1)
0 (otherwise).

The homology group of magnitude chain complex is called the magnitude
homology group of X, and denoted by MHℓ∗(X).

Definition 2.4. If the point xi of x = (x0, . . . , xn) ∈ Pn(X) is not a smooth
point between xi−1 and xi+1, then we call it a singular point of x. We set the
endpoints x0 and xn singular points. Let φ(x) = (xs0 = x0, xs1 , . . . , xsk =

xn) ∈ Pk(X) be the tuple of all singular points of x. We call φ(x) the frame
of x. A chain x ∈ Pℓn(X) is geodesically simple if |φ(x)| = |x| holds.

Let PF
n (X) be the set of all geodesically simple n-chains whose frame is

F ∈ P|F|≤n(X) :=
∪

k≤n P|F|k (X). We denote the abelian group freely generated
by PF

n (X) by MCF
n (X). We set

MCsimp,ℓ
n (X) :=

⊕
F∈Pℓ≤n(X)

MCF
n (X).

Note that both MCF
∗ (X) and MCsimp,ℓ

n (X) are subcomplexes of MC∗∗(X), and
we denote their homology by MHF

∗ (X) and MHsimp,ℓ
n (X) respectively.

Definition 2.5. A proper 3-chain x = (x0, x1, x2, x3) is a 4-cut if φ(x) =
(x0, x3) and d(x0, x3) < |x| holds.

Definition 2.6. We define mX to be the infimum of the length of 4-cuts
in X.

The following theorem is shown in [11].

Theorem 2.7 ([11] Theorem 3.12, Theorem 5.11). (1)

MHsimp,ℓ
n (X) �

⊕
F∈Pℓ≤n

MHF
n (X).

(2) For n > 0 and 0 < ℓ < mX,

MHsimp,ℓ
n (X) � MHℓn(X).

(3) For a proper 1-chain F = (x0, x1), the natural map

MHF
n (X)→ MH |F|n (X)

is injective.

Definition 2.8. Let a and b be points in X. The interval poset I(a, b)
is a poset which consists of smooth points between a and b, and the partial
order ≤ among them is defined by

x ≤ y⇔ a ≺ x ⪯ y.

Note that this definition is equivalent to

x ≤ y⇔ x ⪯ y ≺ b.
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We recall the definition of the order complex and its reduced chain com-
plex of a poset.

Definition 2.9. Let P be a poset. The order complex of P denoted by
∆(P) is the abstract simplicial complex whose n-simplices are the subsets
{x0, . . . , xn} of P such that x0 ≺ · · · ≺ xn. Its reduced chain complex denoted
by (C∗(∆(P)), ∂∗) is defined by

Cn(∆(P)) =


⊕

x0≺···≺xn
Z⟨x0, . . . , xn⟩ n ≥ 0,

Z n = −1,
0 n < −1,

and ∂n =
∑n

i=0(−1)i∂i
n with

∂i
n(⟨x0, . . . , xn⟩) =

⟨x0, . . . , x̂i, . . . , xn⟩ n ≥ 0,
0 n < 0.

The following theorem is also shown in [?].

Theorem 2.10 ([11] Corollary 4.5). For a proper chain F = (x0, . . . , xm),
we have

MHF
n (X) � Hn−2m(C∗(∆0,1) ⊗C∗(∆1,2) ⊗ · · · ⊗C∗(∆m−1,m)),

where C∗(∆i,i+1) is the reduced chain complex of the complex ∆(I(xi, xi+1)).

3. Magnitude homology of CAT(κ) spaces

In this section, we study magnitude homology of a CAT(κ) space X.
We will show that magnitude homology MHℓn(X) vanishes for 0 < ℓ < Dκ
and n > 0. Consequently, we can compute a total Z-degree magnitude
homology for some length ℓ for the spaces in Examples 1.10, 1.11, and
1.12. For the purpose, we introduce a quantity lX for a metric space X.

Definition 3.1. Let X be a metric space. A continuous map γ : [0, c]→
X is locally geodesic if for every t ∈ [0, c], there exists a neighborhood U
of t such that γ|U is a geodesic.

Definition 3.2. Let (X, d) be a metric space, and let γ : [0, c] → X be a
continuous map. We define the length of γ by

|γ| := sup
0=t0≤t1≤···≤tn=c

n∑
i=0

d(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions of [0, c].

Definition 3.3. For a metric space X, we define lX to be the infimum of
length of locally geodesic paths which is not geodesics.

Lemma 3.4. For a geodesic CAT(κ) space (X, d), we have

Dκ ≤ lX.
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Figure 1

Proof. Assume lX < Dκ. Then there exists a map γ : [0, c] → X which
is locally geodesic but not a geodesic, satisfying lX ≤ |γ| < Dκ. Let a
be the supremum of the numbers 0 < t < c such that γ|[0,t] is a geo-
desic. Then γ|[0,a] is a geodesic by the continuity of d. Note that a is
positive since γ is locally geodesic. Let b be the supremum of numbers
a < t ≤ c such that γ|[a,t] is a geodesic. Then γ|[a,b] is also a geodesic,
and b is positive. Let δ be a geodesic between γ(0) and γ(b). See Figure
1. By the assumption |γ| < Dκ, the geodesic triangle ∆γ(0),γ(a),γ(b) satisfies
d(γ(0), γ(a)) + d(γ(a), γ(b)) + d(γ(b), γ(0)) < 2Dκ. Hence ∆γ(0),γ(a),γ(b) is
κ-small. We note that its angle at γ(a) is π because γ is locally geodesic.
Therefore by the CAT(κ) condition for angles in Proposition 1.15, the angles
of the comparison triangle of ∆γ(0),γ(a),γ(b) at γ̃(0) and γ̃(b) are both 0. By the
CAT(κ) condition for length, there is a 1-1 correspondence between γ|[0,b]

and δ, which implies γ|[0,b] is a geodesic. This contradicts the definition of
a. □

We recall that the quantity mX is the infimum of the length of 4-cuts in
X. (Definition 2.6.)

Theorem 3.5. For a geodesic CAT(κ) space (X, d), we have

Dκ ≤ mX ≤ lX.

Proof. We first show the former inequality. Assume mX < Dκ. Then
there exists a 4-cut x = (x0, x1, x2, x3) in X with mX ≤ |x| < Dκ. Let
{γi j : [0, d(xi, x j)] → X | 0 ≤ i < j ≤ 3, (i, j) , (0, 3)} be a family of
geodesics between these points, and ∆x0 x1 x2 and ∆x1 x2 x3 be its geodesic tri-
angles. See Figure 2. Because |x| is smaller than Dκ, the geodesic trian-
gles ∆x0 x1 x2 and ∆x1 x2 x3 are both κ-small. Note that the comparison triangles
∆̃x0 x1 x2 and ∆̃x1 x2 x3 are both degenerated because they are on some semi-
spheres of S κ. Hence by the CAT(κ) inequality, the unions of geodesics
γ01 ∪ γ12 and γ12 ∪ γ23 coincide with γ02 and γ13 respectively. Therefore
the map γ02 ∪ γ23 can be defined and is locally geodesic, which is actually
a geodesic because of the inequality |x| < Dκ ≤ lX as shown in Lemma 3.4.
Then we have d(x0, x3) = d(x0, x1) + d(x1, x2) + d(x2, x3), which contradicts
that the chain x is a 4-cut. Thus we obtain mX ≥ Dκ.
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Figure 2

Figure 3

Next we show the latter inequality. Assume lX < mX. Then there exists a
locally geodesic map γ : [0, c]→ X which is not a geodesic and is satisfying
lX ≤ |γ| < mX. Take a > 0 as the supremum of the number t such that γ|[0,t]
is a geodesic. Let ϵ be a sufficiently small positive number. Let b > a be
the supremum of the number t such that γ|[a−ϵ,t] is a geodesic. See Figure 3.
If
∣∣∣γ|[0,b]

∣∣∣ is smaller than lX, then γ|[0,b] is a geodesic, which contradicts the
assumption a < c. Hence we have

∣∣∣γ|[0,b]

∣∣∣ ≥ lX. Note that the proper chain
(γ(0), γ(a − ϵ), γ(a), γ(b)) has no singular points other than end points, but
is not a 4-cut because we have

∣∣∣γ|[0,b]

∣∣∣ ≤ |γ| < mX. Similarly, neither is
(γ(t1), γ(a − ϵ), γ(a), γ(t2)) for 0 ≤ t1 ≤ a − ϵ and a ≤ t2 ≤ b . Hence
we have d(γ(t2), γ(t1)) = (a − ϵ − t1) + (a − (a − ϵ)) + (t2 − a) = t2 − t1,
which implies that γ|[0,b] is a geodesic. Thus we obtain a contradiction and
conclude lX ≥ mX. □

Corollary 3.6. Let (X, d) be a geodesic CAT(κ) space. Then for any
n > 0 and 0 < ℓ < Dκ, magnitude homology MHℓn(X) vanishes.

Proof. By Theorem 2.7 (3) and Theorem 3.5, we have

MHℓn(X) �
⊕
|F|=ℓ

MHF
n (X)

for 0 < ℓ < Dκ. We show that every interval poset I(x, y) is totally ordered
for d(x, y) < Dκ, which implies that MHF

n (X) = 0 for |F| < Dκ by Theo-
rem 2.10. Let a be a smooth point between x and y. Let xy, xa and ay be
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geodesics connecting each pair of points. Then the geodesic triangle ∆xay is
κ-small since d(x, y) < Dκ, hence the point a is on xy. Thus we conclude
that xy is the unique geodesic connecting x and y, and the interval poset
I(x, y) is precisely equal to xy which is totally ordered. □

Example 3.7. For the circle C1/
√
κ of radius 1/

√
κ and the n-sphere Sn

κof
radius 1/

√
κ, we have

MHℓn(C1/
√
κ) = MHℓn(Sn) = 0,

for 0 < ℓ < π/
√
κ and n > 0.

Example 3.8. For the Euclidean space En, the hyperbolic space Hn, and
every tree T , magnitude homology MHℓn(En),MHℓn(Hn), and MHℓn(T ) van-
ishes for all ℓ > 0 and n > 0.

4. Closed geodesics represent non-trivial Magnitude homology classes

In this section, we show that an existence of closed geodesic in a metric
space X guarantees the non-triviality of the second magnitude homology
MH∗2(X). As a corollary, we give a criterion of being CAT(κ) for a cocom-
pact proper geodesic metric space X of curvature ≤ κ from a viewpoint of
the second magnitude homology. We begin by clarifying the definition of a
closed geodesic.

Definition 4.1. Let X be a metric space, and let Cr be the circle of radius
r. An isometry ρ : Cr → X is called a closed geodesic of radius r (or of
length 2πr ) in X.

Proposition 4.2. Let (X, d) be a metric space, and let ρ : Cr → X be
a closed geodesic. Let 0, 1 ∈ Cr be a pair of antipodal points. Then the
interval poset I(ρ(0), ρ(1)) has at least two connected components.

Proof. Let U,V be semicircles in Cr with Cr = U∪V and U∩V = {0, 1}.
Take points x ∈ U − {0, 1} and y ∈ V − {0, 1}, and assume ρ(x) ≤ ρ(y) in the
poset I(ρ(0), ρ(1)). Namely, we have

d(ρ(0), ρ(y)) = d(ρ(0), ρ(x)) + d(ρ(x), ρ(y)).

Since we have ρ(0) ≺ ρ(x) ≺ ρ(1) and ρ(0) ≺ ρ(y) ≺ ρ(1), we obtain

d(ρ(x), ρ(1)) = d(ρ(0), ρ(1)) − d(ρ(0), ρ(x))
= d(ρ(0), ρ(1)) − d(ρ(0), ρ(y)) + d(ρ(x), ρ(y))
= d(ρ(y), ρ(1)) + d(ρ(x), ρ(y))

We also have either

d(ρ(x), ρ(y)) = d(ρ(x), ρ(1)) + d(ρ(1), ρ(y))

or
d(ρ(x), ρ(y)) = d(ρ(x), ρ(0)) + d(ρ(0), ρ(y)).
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Hence we obtain
d(ρ(y), ρ(1)) = 0,

or
d(ρ(x), ρ(1)) − d(ρ(x), ρ(0)) = πr,

respectively. Each case implies y = 1 or x = 0, which is a contradiction.
Hence any pair of points in ρ(U−{0, 1}) and ρ(V−{0, 1}) are not comparable,
which implies the order complex ∆(I(ρ(0), ρ(1))) is not connected. □

Theorem 4.3. Let X be a metric space. If there exists a closed geodesic
of radius r in X, then we have MHπr2 (X) , 0.

Proof. Let ρ be a closed geodesic of radius r, and let ρ(0) and ρ(1) be
antipodal points of it. Then for the proper 1-chain F = (ρ(0), ρ(1)), there
exists an injection MHF

2 (X)→ MH |F|2 (X) by Theorem 2.7 (3). Furthermore,
we have MHF

2 (X) � H0(C∗(∆(I(ρ(0), ρ(1))))) by Theorem 2.10, and Propo-
sition 4.2 implies this is non-zero. Hence the statement follows. □

Corollary 4.4. Let X be a cocompact proper geodesic metric space of
curvature ≤ κ. Then the following are equivalent.

(i) X fails to be CAT(κ).
(ii) there exists a closed geodesic of length < 2Dκ.

(iii) MH<Dκ
2 (X) , 0.

Proof. By Proposition 1.21, (i) implies (ii). By Theorem 4.3, (ii) im-
plies (iii). By Corollary 3.6, (iii) implies (i). □

In particular, the equivalence of (i) and (iii) in Corollary 4.4 gives a
criterion of being CAT(κ) for a cocompact proper geodesic metric space
( especially for compact or homogeneous Riemannian manifold ) whose
curvature is bounded from above.

5. Magnitude homology of non-CAT(κ) metric spaces of curvature ≤ κ
In this section, we study magnitude homology of proper geodesic met-

ric spaces by using the injectivity radi and the systoles. As a corollary, we
obtain a vanishing theorem for magnitude homology of cocompact proper
geodesic metric spaces, and give a partial computation of magnitude ho-
mology of the projective spaces RPn with the standard metric.

Proposition 5.1. For a metric space X, we have

2ιX ≤ Sys(X),

and
2lX ≤ Sys(X).

Proof. The former inequality is immediate. For the latter, suppose

Sys(X) < 2lX.

Then there exists a closed geodesic c : Cr → X of length 2πr < 2lX − 2δ for
small δ > 0. Then the restriction of c on the interval [0, πr + δ] is locally
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Figure 4

geodesic but not a geodesic, with length πr + δ < lX. Hence we obtain a
contradiction. □

Proposition 5.2. Let (X, d) be a proper geodesic metric space of curva-
ture ≤ κ. If the injectivity radius ιX is not greater than Dκ, then we have

ιX ≤ lX.

For the proof of Proposition 5.2, we use the Arzelà-Ascoli theorem of
the following form. Recall that a sequence of maps { fn : Y → X} between
metric spaces is called equicontinuous if for any positive number ϵ there
exists a positive number δ such that d( fn(a), fn(b)) < ϵ holds for any n and
a, b ∈ Y with d(a, b) < δ.

Lemma 5.3. Let X be a compact metric space, and {γn : [0, 1] → X} be
an equicontinuous sequence of maps. Then there exists a subsequence {γni}
which uniformly converges to a continuous map γ : [0, 1]→ X.

Proof. See for example [2] Chapter I Lemma 3.10. □

Proof of Proposition 5.2. Suppose lX < ιX. Then there exists a locally
geodesic path γ : [0, L] → X which is not a geodesic, satisfying lX ≤ |γ| <
ιX. Let 0 < a < 1 be the supremum of the number 0 ≤ t < 1 such that
γ|[0,t] is a geodesic. Then γ|[0,a] is a geodesic by the continuity of d. Let α
be a positive number such that γ|[a,a+α] is a geodesic. We have α > 0 by the
assumption. We linearly reparametrize γ|[0,a] and γ|[a,a+α] so that the domain
of each map is [0, 1]. Let δ : [0, 1] → X be the linearly reparametrized
geodesic connecting γ(0) and γ(a + α). Let γs : [0, 1] → X be the linearly
reparametrized geodesic connecting γ(a) and δ(s) for 0 ≤ s ≤ 1. Note that
γ|[0,a] = γ0 and γ|[a,a+α] = γ1. We show that the maps {γs} vary continuously
with s. Let {sn} be a sequence of points of the interval [0, 1] converging to a
point s′ ∈ [0, 1]. If γsn does not converge, there exists a number t0 ∈ [0, 1], a
number δ > 0 and a subsequence {sni} such that d(γsni

(t0), γs′(t)) > δ. Then
by Lemma 5.3, there exists a geodesic connecting γ(a) and γ(s′) which is
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different from γs′ . It contradicts the uniqueness of geodesic. Therefore the
sequence {γsn} uniformly converges to γs′ , which implies that geodesics vary
continuously. Then by Proposition 1.16, the angles of ∆γ(0)γ(a)γ(a+α) are not
greater than the corresponding angles of comparison triangle in S κ. Since
γ is locally geodesic, the angle at γ(a) is π, hence the comparison triangle
is degenerated. Thus the angles at γ(0) and γ(a + α) are both 0. Let p be a
point on δ apart from γ(a+α) by α. Then by Proposition 1.4 and Proposition
1.16, the angle at γ(a + α) of the comparison triangle ∆̃γ(a)pγ(a+α) in S κ is 0.
Hence ∆̃γ(a)pγ(a+α) is degenerated, and we obtain γ(a) = p. Then we have
γ|[0,a+α] = δ by |γ| < ιX, which contradicts to the definition of a. Therefore
we obtain lX ≥ ιX. □

Proposition 5.4. Let (X, d) be a proper geodesic metric space of curva-
ture ≤ κ. If the injectivity radius ιX is not greater than Dκ, then we have

ιX ≤ mX.

Proof. Suppose mX < ιX. Then there exists a 4-cut x = (x0, x1, x2, x3)
with mX ≤ |x| < ιX. Let γ01, γ12 and γ02 be the linearly reparametrized
geodesics connecting each pair of points x0, x1 and x2. By a similar argu-
ment as in the proof of Proposition 5.2, the geodesics connecting x1 and
points on γ02 varies continuously. Then by Proposition 1.16, the angles of
∆x0 x1 x2 are not greater than the corresponding angles of comparison triangle
in S κ. Note that the comparison triangle ∆̃x0 x1 x2 is degenerated because it is
κ-small and x1 is smooth between x0 and x2, hence x1 is on the image of γ02

by the similar argument in the proof of Proposition 5.2. Similarly, we obtain
a geodesic γ13 connecting x1 and x3, and going through x2. Then geodesics
γ02 and γ13 coincide between x1 and x2 by the assumption mX < ιX, hence
we obtain a locally geodesic path by glueing them. The obtained path turns
out to be a geodesic since we have |x| < ιX ≤ lX by Proposition 5.2, which
contradicts that d(x0, x3) < |x|. □

Corollary 5.5. Let X be a cocompact proper geodesic metric space of
curvature ≤ κ which is not CAT(κ), or the standard sphere. Then for any
n > 0 and any 0 < ℓ < ιX = Sys(X)/2, magnitude homology MHℓn(X)
vanishes.

Proof. For the standard sphere, it follows from Corollary 3.6. For X
being a proper geodesic metric space of curvature ≤ κ which is not CAT(κ),
we have ιX = Sys(X)/2 < Dκ by Proposition 1.21. Furthermore, we have
ιX ≤ mX by Proposition 5.4. Hence the statement follows from the similar
argument in the proof of Corollary 3.6 and Proposition 5.4. □

Example 5.6. As mentioned in Example 1.19, the standard projective
space RPn for n ≥ 2 is of curvature ≥ 1 and is not CAT(1). Furthermore,
we can immediately check that Sys(RPn) = π. Hence by Corollary 5.5, we
obtain

MHℓ∗(RP
n) = 0,

for 0 < ℓ < π/2 and ∗ > 0.



CHAPTER 4

Vietoris-Rips and singular homology of Riemannian
manifolds

1. Vietoris-Rips homology

Let (X, d) be a metric space. Let ε be a positive number or ∞. In this
chapter, we consider two kinds of simplicial complexes which are both re-
ferred to as Vietoris-Rips complex.

Definition 1.1. The Vietoris-Rips complex with parameter ε is a simpli-
cial complex whose n-simplices are (n+1) points subsets σ = {x0, . . . , xn} ⊂
X with diam σ ≤ ε.

Remark 1.2. Consider a simplicial set whose n-simplices consist of (n+
1)-tuples (x0, . . . xn) with diam σ ≤ ε equipped with the standard face and
degeneracy maps. It is well known that the associated chain complex is
naturally homotopy equivalent to that of Vietoris-Rips complex. See [14]
Theorem 13.6 for example. We consider this chain complex in this chapter.

Definition 1.3. We denote VC≤ε∗ (X) the chain complex associated to
the simplicial set constructed in Remark 1.2, and we call it Vietoris-Rips
chain complex. We denote its homology by VH≤ε∗ (X), and call it Vietoris-
Rips homology. We also define another chain complex VC<ε∗ (X) and its
homology VH<ε∗ (X) by considering strict inequality instead. We also refer
to them as Vietoris-Rips chain complex and homology.

Remark 1.4. Although we only discuss chain complex with ≤ in this
chapter, the same argument is applicable for strict inequality case.

2. Results

Let (X, d) be a metric space.

Definition 2.1. Let r(X) be the supremum of non-negative real numbers
r satisfying the following:

(1) There uniquely exists a geodesic between every pair of points x, y
with d(x, y) < r,

(2) For any three points x, y, z with diam {x, y, z} < r, and for every
point w on the geodesic between y, z, they satisfy

d(x,w) ≤ max{d(x, y), d(x, z)}.
30
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Remark 2.2. It is well known that r(X) > 0 for Riemannian manifolds X
with strictly positive injectivity radius and an upper bound on its sectional
curvature. In particular, r(X) > 0 for compact Riemannian manifolds.

The purpose of this section is to prove the following.

Theorem 2.3. The following inclusions of chain complexes are chain
homotopy equivalences :

VC≤ε
′

n (X) −→ VC≤εn (X),

VC<ε
′

n (X) −→ VC≤εn (X),

VC<ε
′

n (X) −→ VC<εn (X),

for any 0 < ε′ ≤ ε < r(X), and

VC≤ε
′

n (X) −→ VC<εn (X),

for any 0 < ε′ < ε ≤ r(X).

To prove Theorem 2.3, we transfer some standard arguments in singu-
lar homology theory to Vietoris-Rips homology theory. For a reference for
original singular homology theory, see [8] section 2.1 for example. Af-
ter preparing a series of definitions and propositions, we prove Proposition
2.22, which completes a proof of Theorem 2.3.

Definition 2.4. Let b be a point on X. We define a homomorphism

bn : VC≤εn (X) −→ VC≤∞n+1(X)

by
bn(x0, . . . , xn) = (b, x0, . . . , xn).

Proposition 2.5. If Imb∗ ⊂ VC≤ε∗ (X), then b∗ satisfies

bn−1∂n + ∂n+1bn = idn.

Proof. It is immediate from the following calculation:

∂n+1bn(x0, . . . , xn) = ∂n+1(b, x0, . . . , xn)

= (x0, . . . , xn) +
n∑

i=0

(−1)i+1(b, x0, . . . , x̌i, . . . , xn)

= (x0, . . . , xn) − bn−1∂n(x0, . . . , xn).

□

Definition 2.6. Let (X, d) be a metric space. Suppose that

σ = (x0, . . . , xn) ∈ Xn+1

satisfies diam {x0, . . . , xn} < r(X). We define the barycenter bσ ∈ X of σ
inductively on n as follows:

• n = 0 : b(x) = x
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• n = k : Let σi = (x0, . . . , xi). bσk is defined to be the point
on the geodesic between bσk−1 and xk satisfying 2kd(bσk , bσk−1) =
d(xk, bσk−1).

Proposition 2.7. Let σ = (x0, . . . , xn) be a tuple with

diam {x0, . . . , xn} < r(X).

Then it satisfies
d(bσ, xi) ≤ (1 − 1

2n )diam σ,

for every 0 ≤ i ≤ n.

Proof. We prove by the induction on n:
• n = 0 : It is trivial.
• n = k : By definition, we have

d(bσ, xk) = (1 − 1
2k )d(xk, bσk−1) ≤ (1 − 1

2k )diam σ.

For the other xi’s, we have

d(bσ, xi) ≤ d(bσ, bσk−1) + d(bσk−1 , xi)

≤ 1
2k d(xk, bσk−1) + (1 − 1

2k−1 )diam σ

≤ (1 − 1
2k )diam σ.

□

Proposition 2.8. Let σ = (x0, . . . , xn) be a tuple with

diam {x0, . . . , xn} < r(X).

Let λ be a subtuple of σ. Then it satisfies

d(bσ, bλ) ≤ diam σ.

Proof. We prove inductively on the size of λ. We denote |λ| = m if λ
consists of m coordinates.

• |λ| = 0 : It reduces to Proposition 2.7.
• |λ| = k ≤ n : By definition of r(X), we have

d(σ, λ) ≤ max{d(bσ, bλ′), d(bσ, xi)},
where λ′ is the subtuple of λ obtained by eliminating the last coor-
dinate, and bλ locates between bλ′ and xi. Then it reduces to lower
size case.

□

Definition 2.9. We inductively define a homomorphism

S n : VC≤εn (X) −→ VC≤∞n (X),

for any n ≥ 0 and ε < r(X) by

S nσ = bσ(S n−1∂nσ),
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for any (n + 1)-tuples σ ∈ VC≤εn (X).

Proposition 2.10. The image of S n is contained in VC≤εn (X) for every n.

Proof. It follows from Proposition 2.8 and by induction on n. The n = 0
case is clear. Assume that the statement is true for n ≤ k. Then the chain
S k+1σ consists of simplices of the form bσ∗, whose diameter is less than ε <
r(X) by the assumption and Proposition 2.8. This completes a proof. □

Proposition 2.11. The family of homomorphisms S ∗ is a chain map.

Proof. We extend the grading of the chain complex from Z≥0 to Z by
putting 0-modules on the negative part. We prove the statement by the
induction on n:

• S −1∂0 = ∂0S 0 : It is trivial.

• S k∂k+1 = ∂k+1S k+1 : It follows from the following calculation:

∂k+1S k+1σ = ∂k+1bσ(S k∂k+1σ)
= (−bσ∂k + idk)(S k∂k+1σ)
= −bσ∂kS k∂k+1σ + S k∂k+1σ

= −bσS k−1∂k∂k+1σ + S k∂k+1σ

= S k∂k+1σ,

where the second equality is by Proposition 2.5 and the 4th equal-
ity is by the assumption.

□

Definition 2.12. We inductively define a homomorphism

Tn : VC≤εn (X) −→ VC≤∞n (X),

for any n ≥ 0 and ε < r(X) by

Tnσ = bσ(σ − Tn−1∂nσ),

for any (n + 1)-tuples σ ∈ VC≤εn (X).

Proposition 2.13. The image of S n is contained in VC≤εn (X) for every n.

Proof. It follows from Proposition 2.8 and by induction on n. The n = 0
case is clear. Assume that the statement is true for n ≤ k. Then the chain
Tk+1σ consists of simplices of the form bσ∗, whose diameter is less than
ε < r(X) by the assumption and Proposition 2.8. This completes a proof.

□

Proposition 2.14. The family of homomorphisms T∗ is a chain homo-
topy between id∗ and S ∗, namely,

∂n+1Tn + Tn−1∂n = idn − S n,

for every n.
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Proof. We prove inductively on n. It is trivial for n = 0. For the general
case, it follows from the following calculation:

∂k+1Tkσ = ∂k+1bσ(σ − Tk−1∂kσ)
= (−bσ∂k + idk)(σ − Tk−1∂kσ)
= −bσ∂kσ + bσ∂kTk−1∂kσ + σ − Tk−1∂kσ

= −bσ∂kσ + bσ(−Tk−2∂k−1 + idk−1 − S k−1)∂kσ + σ − Tk−1∂kσ

= −bσS k−1∂kσ + σ − Tk−1∂kσ

= −S kσ + σ − Tk−1∂kσ,

where the second equality is by Proposition 2.5 and the 4th equality is by
the assumption. □

Definition 2.15. We define a homomorphism

Dm
n : VC≤εn (X) −→ VC≤εn (X)

by

Dm
n :=

m−1∑
i=0

TnS i
n,

for any m and n.

Proposition 2.16. For any m and n, we have

∂n+1Dm
n + Dm

n−1∂n = idn − S m
n .

Proof. It follows from the following calculation:

∂n+1Dm
n + Dm

n−1∂n =

m−1∑
i=0

∂n+1TnS i
n + Tn−1S i

n−1∂n

=

m−1∑
i=0

∂n+1TnS i
n + Tn−1∂nS i

n

=

m−1∑
i=0

(idn − S n)S i
n

= idn − S m
n .

□

Definition 2.17. Let σ ∈ Xn+1 and ε > 0. We define mε(σ) to be the
minimum number m satisfying S mσ ∈ VC≤εn (X).

Definition 2.18. Let 0 < ε′ ≤ ε. We define a homomorphism

Dε
′

n : VC≤εn (X) −→ VC≤εn+1(X)

by
Dε

′

n σ := Dmε
′
(σ)

n σ,

for every n. We further define a homomorphism

ρε
′

n : VC≤εn (X) −→ VC≤εn (X)
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by
ρε
′

n := idn − ∂n+1Dε
′

n − Dε
′

n−1∂n,

for every n.

Proposition 2.19. The family of homomorphisms ρε
′
∗ is a chain map.

Proof. It follows from the following calculation:

∂nρ
ε′

n = ∂n(idn − ∂n+1Dε
′

n − Dε
′

n−1∂n) = ∂n − ∂nDε
′

n−1∂n

ρε
′

n−1∂n = (idn−1 − ∂nDε
′

n−1 − Dε
′

n−2∂n−1)∂n = ∂n − ∂nDε
′

n−1∂n.

□

Proposition 2.20. The image of ρε
′
∗ is contained in the chain complex

VC≤ε
′

∗ (X).

Proof. Let σ ∈ Xn+1. By Proposition 2.16, we have

ρε
′

n σ = σ − Dε
′

n−1∂nσ − ∂n+1Dε
′

n σ

= σ − Dε
′

n−1∂nσ − (idn − S mε
′
(σ)

n − Dmε
′
(σ)

n−1 ∂n)σ

= S mε
′
(σ)

n σ − Dε
′

n−1∂nσ + Dmε
′
(σ)

n−1 ∂nσ.

Here, S mε
′
(σ)

n σ ∈ VC≤ε
′

n (X) by definition. For each component σ′ of ∂nσ, it
is clear that mε

′
(σ′) ≤ mε

′
(σ), and we have

Dmε
′
(σ)

n − Dmε
′
(σ′)

n =

mε
′
(σ)−1∑

i=mε′ (σ′)

TnS i
n,

whose image is contained in VC≤ε
′

∗ (X). Hence the statement follows. □

Remark 2.21. By Proposition 2.20, the chain map ρε
′
∗ : VC≤ε∗ (X) −→

VC≤ε∗ (X) factors through VC≤ε
′

∗ (X). We also denote the obtained chain map
VC≤ε∗ (X) −→ VC≤ε

′
∗ (X) by ρε

′
∗ .

Proposition 2.22. The chain map ρε
′
∗ : VC≤ε∗ (X) −→ VC≤ε

′
∗ (X) is the

chain homotopy inverse to the inclusion ιε
′≤ε
∗ : VC≤ε

′
n (X) −→ VC≤εn (X).

Proof. The composition ρε
′
∗ ι
ε′≤ε
∗ is an indentity on VC≤ε

′
n (X) by defini-

tion of mε
′
. On the other hand, by definition of ρε

′
∗ , we have

∂n+1Dε
′

n − Dε
′

n−1∂n = idn − ρε
′

n ,

for every n. It implies ρε
′
∗ is chain homotopic to id∗. This completes a

proof. □

Proof of Theorem 2.3. We can also consider a chain map

ρε
′

∗ : VC≤ε∗ (X) −→ VC<ε
′

∗ (X),

and we can similarly show that the other inclusions for example

VC<ε
′

n (X) −→ VC≤εn (X)
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are chain homotopy equivalences. This completes a proof of Theorem 2.3.
□

Corollary 2.23. For a Riemannian manifold X with r(X) > 0, we have

VH≤ε∗ (X) � H∗(X;Z),

and
VH<ε∗ (X) � H∗(X;Z),

for sufficiently small 0 < ε.

Proof. It follows from Theorem 2.3 and Hasumann’s Proposition 3.4
([9]). □
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