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1. Cluster algebra and the Teichmüller-Thurston theory

The study of cluster algebra is initiated by Fomin–Zelevinsky [FZ02] and Fock–Goncharov

[FG03] independently, and has been developed with fruitful connections with other areas

of mathematics, such as discrete integrable systems [GK13, FM, FH14], Teichmüller the-

ory and its higher analogue [FG03, FG07, GS19], and so on. The central objects of study

are seeds and their mutations.

A seed consists of two bunches of commutative variables called the A-variables and the

X-variables respectively, and a square matrix called the exchange matrix. A seed mu-

tation (in a specified direction) produces a new seed from a given one, transforming the

variables according to a rule determined by the exchange matrix, and changing the ex-

change matrix to another one at the same time. We call the transformation of A-variables

(resp. X-variables) the cluster A-transformation (resp. cluster X -transformation), which

are birational transformations. All the seeds obtained in this way are coherently assigned

to vertices of a regular tree so that any two seeds connected by an edge is related by a

seed mutation, and we call such an assignment a (Fomin–Zelevinsky) seed pattern. We

are interested in algebraic, combinatorial or geometric objects that are determined by an

isomorphism class of a seed pattern.

The transformation rule of the exchange matrices are purely combinatorial, and it uni-

fies and generalizes several classical notions such as sink/source sequence of acyclic quivers

(e.g. [Rin94]), flips of ideal triangulations of a marked surface (e.g. [Pen, FST08]), braid

moves of wiring diagrams or Thurston diagrams (e.g. [FWZ17, FM]), spider moves of

surface bipartite graphs (e.g. [GK13, FM]), and so on. The cluster transformations are

positive maps, which means that they admit a rational expression without subtraction.

It has turned out that this positivity nature also unifies some positivity notions emerging

from several di↵erent contexts, including Lusztig’s total positivity [Lus98] in the represen-

tation theory of quantum groups, positive representations of the fundamental group of a

surface in the higher Teichmüller theory [FG03], and the positivity of wall-crossing auto-

morphisms in the theory of wall-crossing structures [GHKK18]. The positivity of cluster

transformations also allows one to tropicalize it, by considering the cluster variables as

elements in a semifield P. These features make the cluster algebra strongly related to

broad topics in mathematics.

From a dynamical point of view, an interesting object is a mutation loop. A finite se-

quence of seed mutations and permutations of indices is called a mutation sequence, and

it is a mutation loop if it preserves the exchange matrix. A mutation loop defines a pair

of discrete dynamical system as the corresponding composition of cluster transformations

and permutations of coordinates. The mutation loops form a group �s called the cluster

modular group [FG09]. The cluster modular group acts on two schemes As and Xs called

the cluster A- and X -varieties, respectively. In this geometric context, the cluster A-

(resp. X-)variables are regarded as coordinate functions on the A- (resp. X -)variety,
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and the bunch of coordinates that belong to a common seed form a rational chart on the

respective cluster variety. The action of the cluster modular group is given by a compo-

sition of cluster transformations on such a rational chart. The tropicalization procedure

with respect to a semifield P gives the sets of P-valued points As(P) and Xs(P), which
also admit actions of the cluster modular group. Thus the discrete dynamical systems

induced by a mutation loop take place in these spaces.

It is known that many interesting discrete dynamical systems emerge in this way, and

in some special cases a geometric construction ensures an integrability nature [GK13,

FM]. As an outstanding feature, such a realization of a dynamical system by a mutation

loop automatically provides a quantization (i.e., a non-commutative deformation and

its operator representations) of this system via the theory of quantum cluster varieties

[FG08].

The combinatorial framework of cluster algebra especially fits into the Teichmüller–

Thurston theory. An ideal triangulation � of a marked hyperbolic surface ⌃ determines

a seed, and flips of ideal triangulations precisely induce mutations of the corresponding

seeds. Thus we get a seed pattern s⌃, whose isomorphism class only depends on the

surface ⌃. The associated objects are related to the following geometric objects (see

Table 1):

• The smooth manifold As⌃(R>0) (resp. Xs⌃(R>0)) of R>0-valued points is nat-

urally isomorphic to the decorated (resp. enhanced) Teichmüller space of ⌃

equipped with the Weil-Petersson presymplectic (resp. Poisson) structure [Pen,

FG07, FST08]. Roughly speaking they parametrize certain hyperbolic structures

on the surface ⌃.

• The piecewise-linear manifold As⌃(Rtrop) (resp. Xs⌃(Rtrop)) of Rtrop-valued points

is naturally isomorphic to the decorated (resp. enhanced) space of measured lami-

nations on ⌃ equipped with the canonical piecewise-linear structure [FG07]. Here

Rtrop = (Rtrop
,max,+) is the real tropical semifield or the max-plus algebra. The

space of measured laminations is particularly useful in the study of the mapping

class group of a surface. See, for instance, [FLP, PH].

• A simplicial complex called the cluster complex is defined [FG09, GHKK18], and

in this case it coincides with the tagged arc complex introduced by [FST08]. It

describes a certain “combinatorial part” of the space of enhanced measured lami-

nations.

• The cluster modular group includes the mapping class group MC(⌃) of ⌃ as a

subgroup of finite index [BS15]. They coincide with each other if the marked

surface has no punctures. The actions of the cluster modular group on the spaces

listed above restrict to the geometric actions of the mapping class group.

• The theory of quantum cluster varieties provides a deformation quantization of the

enhanced Teichmüller space of ⌃, and its operator representation on some Hilbert
2



Teichmüller–Thurston theory Cluster algebra

Decorated Teichmüller space Positive points of A-variety

Enhanced Teichmüller space Positive points of X -variety

The space of decorated measured laminations Tropical points of A-variety

The space of enhanced measured laminations Tropical points of X -variety

Mapping class group Cluster modular group

Arc complex Cluster complex

Quantum Teichmüller theory Representations of quantum X -variety

Table 1. Correspondence between Teichmüller–Thurston theory and the

cluster algebra.

space. The resulting quantum theory is explored by [CP07, BW11, GS19]. It

should be related to the Liouville conformal field theory [Tes07], which is a model

of (1 + 1)-dimensional theory of gravity.

2. Classification and dynamical properties of mutation loops

2.1. Nielsen–Thurston classification theory. From Table 1, it is natural to regard

the cluster modular group as a generalization of the mapping class group of a marked

surface. Then one can ask for a generalization of the theory of mapping class group

to that of cluster modular group. From this viewpoint, the author proposed a kind of

generalization of the Nielsen–Thurston classification theory for mapping class groups in

[Ish19]. The original Nielsen–Thurston theory (see e.g. [FLP]) gives a classification of

mapping classes into three types: periodic, reducible, and pseudo-Anosov. These types

are characterized by fixed point properties of the action on the Thurston compactification

of the Teichmüller space. In the same spirit, the author introduced a trichotomy for

mutation loops: periodic, cluster-reducible, and cluster-pseudo-Anosov. By studying the

action of the cluster modular group on the tropical compactification [FG16] of the (positive

points of) cluster varieties, he gave a characterization of these types in terms of fixed point

properties of this action.

2.2. Cluster Dehn twists. As an analogue of a Dehn twist on a surface, the author

introduced a cluster Dehn twist as a mutation loop which admits certain simple expres-

sion as a sequence of mutations in [Ish19]. Dehn twists and half-twists in mapping class

groups are cluster Dehn twists. It is proved that a cluster Dehn twist induces a parabolic

dynamics on the tropical compactification of the cluster A-variety, generalizing the cor-

responding fact on the action of a Dehn twist on the Thurston compactification. Later

we discuss a problem whether a cluster modular group can be generated by cluster Dehn

twists as in the case of mapping class groups.
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2.3. Sign stability. One drawback of the Nielsen–Thurston classification for cluster mod-

ular groups discussed above is that there exists a slight discrepancy between pseudo-

Anosov and cluster-pseudo-Anosov even for a mutation loop given by a mapping class: a

pseudo-Anosov mapping class provides a cluster-pseudo-Anosov mutation loop, but the

converse is not true for a general marked surface other than the once-punctured torus.

Our first aim in this paper is to introduce a property of mutation loops called the sign

stability, which is more closely related to being pseudo-Anosov. An idea of the defini-

tion comes from the theory of train tracks, which is a combinatorial model of measured

laminations and commonly used to study pseudo-Anosov mapping classes.

Figure 1. Train track splitting

Our key observation is that train track splittings can be translated into Rtrop-valued

cluster transformations. More precisely, some variants of train track splittings and their

reverse operations can be unified to “signed” mutations introduced in [IN14], which is

obtained by generalizing the usual seed mutation by putting an arbitrary sign in the

formula.

An intuitive (but not exact) definition of the sign stability is a stabilization property of

the presentation matrix of the piecewise-linear map obtained as the Rtrop-valued cluster

X -tranformation. More precisely, given a mutation sequence and a point of Xs(Rtrop), we

define a sequence of signs indicating which presentation matrices (among three choices

at each step of mutation) are applied to that point. A mutation loop is said to be sign-

stable on a R>0-invariant set L if the sign of each orbit in L stabilizes to a common

one. This stabilization property is also related to the sign coherence property of c-vectors

[FZ07, NZ12] found in the algebraic theory of cluster algebra.

A sign-stable mutation loop is associated with a numerical invariant which we call the

cluster stretch factor, which is a positive number greater or equal to 1. Now our main

theorem is the following:

Theorem 1. Let � = [�]s be a mutation loop with a representation path � which is

sign-stable on the set L(t0,`0). Assuming that the specral radius conjecture holds true, we

have

Ea
� = Ex

� = log ��,
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where Ea
� (resp. Ex

�) denotes the algebraic entropy of the cluster A- (resp. X -)transformation

induced by �, and �� � 1 is the cluster stretch factor.

This theorem gives a cluster algebraic analogue of the fact that the topological entropy

of a pseudo-Anosov mapping class coincides with the logarithm of the stretch factor.

As testing examples we study the mutation loops of length one, which are classified

by Fordy–Marsh [FM11]. We give a su�cient condition for such a mutation loop to be

sign-stable, and compute its cluster stretch factor when the condition is satisfied. As a

byproduct, we obtain a partial confirmation of [FH14, Conjecture 3.1] for these mutation

loops.

The precise relation between the sign stability and the pseudo-Anosov property for

mapping classes is investigated in [IK-a]. It is proved that the mutation loop obtained

from a mapping class is sign-stable on R>0Xs(Ztrop) if and only if the mapping class is

pseudo-Anosov, so we can honestly regard the sign-stable property as a cluster algebraic

generalization of the pseudo-Anosov property.

3. Cluster realizations of groups

Let us turn our attention to examples of cluster modular groups. As mentioned above,

the mapping class groups are particularly interesting examples.

In general, we call an embedding of a group G into some cluster modular group a cluster

realization of G. Such a realization provides several actions of G on the spaces obtained

from the cluster varieties, a quantum representation on a Hilbert space, and also allows us

to apply the dynamical study on cluster modular groups to G as discussed above. A cluster

realization of a group may not be unique if exists, and di↵erent cluster realizations can

provide di↵erent actions and representations, and can have di↵erent dynamical property.

For example, the higher Teichmüller theory [FG03, Le16b, GS19] allows us to construct

di↵erent cluster realizations of the mapping class group of a marked surface, depending

on the choice of the gauge group G (which is a semisimple algebraic group) of the theory.

Other known examples of groups which can be realized in cluster modular groups are:

Thomson’s group T [FG09], Artin-Tits braid groups of finite type [FG03, GS19], Weyl

groups of type An and eAn [ILP19], and so on. While the first two realization arise

from the universal and higher Teichmüller theory, the third one arises from a completely

di↵erent context in the discrete integrable systems. Our aim here is to add the Weyl

groups associated with symmetrizable Kac-Moody Lie algebras to this list, generalizing

the construction of [ILP19] for type An and eAn.

3.1. Cluster realizations of Weyl groups. For a symmetrizable Kac-Moody Lie al-

gebra g and an integer m � 2, we define a weighted quiver Qm(g) and a mutation loop

R(s) 2 �Qm(g) which corresponds to each Coxeter generator rs of the Weyl group W (g).

Now our main theorem is the following:
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Theorem 2. (1) We have an injective group homomorphism �m : W (g) ! �Qm(g)

which extends rs 7! R(s). Moreover, the mutation loop �m(w) for each w 2 W (g)

acts on the symplectic leaf UQm(g) = p(AQm(g)) trivially.

(2) We have aW (g)-equivariant embedding of the root lattice L(g) to the group Z(X|Qm(g)|)

of monomial Poisson Casimirs on XQm(g).

Thus we get a one-parameter family of cluster realization of Weyl groups, depending

on the integer m. These constructions give the first examples of infinite cluster modular

groups which act on the cluster U -variety trivially. In particular, the action on the cluster

X -variety is not properly discontinuous.

It turns out that these mutation loops R(s) are of special type, known as green se-

quences. Moreover for g of finite type, we can give a cluster Donaldson-Thomas transfor-

mation, whose existence is a highly non-trivial problem for a general cluster algebra and

implies several good properties of the cluster ensemble [GHKK18].

Theorem 3. (1) For each reduced expression w = rs1 . . . rsk 2 W (g), the mutation

sequence R(w) = R(s1) . . . R(sk) of Qm(g) is a green sequence.

(2) Moreover if g is of finite type, then the cluster Donaldson-Thomas transformation

for the quiver Qm(g) is given by � � R(w0). Here w0 = rs1 . . . rsl 2 W (g) is a

fixed reduced expression of the longest element and � is a certain explicit seed

isomorphism.

Our construction for type eAn includes the mutation loops used for the cluster realization

of discrete Painlevé equations in [BGM17].

3.2. Relation with the higher Teichmüller theory. Although the cluster realization

of Weyl groups given in Section 3.1 stems from the context of discrete integrable systems,

it turns out that it is also related to the higher Teichmüller theory.

For a marked surface ⌃ and a simply-connected semisimple algebraic group G with

the Lie algebra g = Lie(G), the moduli space of decorated twisted G-local systems on ⌃

has a special coordinate systems depending on ideal triangulations of ⌃ and other data,

and birationally isomorphic to the cluster A-variety associated with a suitable mutation

class Cg,⌃ of weighted quivers [FG03, Le16b, GS19]. Explicit weighted quivers in Cg,⌃ are

constructed by Fock–Goncharov [FG03] for type An, and by Le [Le16b] and Goncharov–

Shen [GS19] for other types.

The basic idea behind these constructions, which is due to Fock–Goncharov [FG03],

is that the additional data of decoration allows us to decompose the moduli space of

local systems on a marked surface into several copies of the corresponding moduli space

on a triangle, and the latter “local” moduli space has a canonical positive structure

extending the one studied by Lusztig (see e.g. [Lus98]). This extension of moduli space

by decorations in turn provides us a larger group of symmetry, the cluster modular group
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�g,⌃ := �Cg,⌃ , which is also called the higher mapping class group in this case. As we

mentioned in Section 1, the cluster modular group �sl2,⌃ includes the mapping class group

of ⌃ as a subgroup of finite index. It has been known that the higher mapping class group

�g,⌃ for general g contains the mapping class group MC(⌃) of ⌃ [FG03, Le16b] and the

outer automorphism group Out(G) of G [GS16, Le16b]. For g = sln+1, it also contains

the direct product of p copies of the Weyl group W (sln+1), where p denotes the number

of punctures [GS16].

On the relation to our work, a crucial observation is that if we attach suitable frozen

vertices and arrows to our quiver Qkh(g) with h being the Coxeter number, then the

resulting quiver eQkh(g) belongs to the mutation class Cg,D2k
. Here Dn denotes the once-

punctured disk with n marked points on its boundary. Hence our embedding W (g) ⇢
�g,D2k

induces an action of W (g) on the moduli space AG,D2k
. By viewing D2k as a local

model around a puncture, we get an action of W (g)p on the moduli space AG,⌃ for an

admissible pair (⌃, g). We call this action the cluster action.

On the other hand, Goncharov-Shen [GS16] gave a natural action of W (g)p on the

moduli space AG,⌃ for an arbitrary marked surface ⌃. This action only changes the

decorations and keeps the underlying G-local systems intact. We call this action the

geometric action. Therefore it is natural to ask whether the cluster action coincides with

the geometric one. See [GS16, Conjectures 1.13 and 1.20] for related conjectures. Our

goal is the following:

Theorem 4. Assume g is of classical finite type. For an admissible pair (⌃, g), the cluster

action of W (g)p on the moduli space AG,⌃ coincides with the geometric action.

Theorem 4 gives us a geometric interpretation of our cluster realization of Weyl groups.

We remark that another proof of Theorem 4 is recently given by Goncharov–Shen [GS19],

as well as a similar statement for the X -variety. Combining with the results by other

authors [FG03, Le16b, GS16], we conclude that the higher mapping class group �g,⌃ for

an admissible pair (⌃, g) contains the subgroup

Gg,⌃ := (MC(⌃)⇥Out(G))nW (g)p.

The following is still an open problem, except for the case g = sl2:

Problem 5. Is the index of the subgroup Gg,⌃ ⇢ �g,⌃ finite or not ?

4. Presentations of cluster modular groups and generation by cluster

Dehn twists

Next we discuss a problem to find presentations of cluster modular groups. Problem 5

is one of our motivation of study. However such a problem is apparently too di�cult for

a general cluster modular group: we are going to present a partial progress on the cluster

modular groups of finite mutation type.
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Figure 2. Quivers of type X6 and X7

4.1. Presentations of saturated cluster modular groups. Once trying to find a

presentation of a given cluster modular group, one immediately encounters the di�culty

which arises from the fact that a complete list of relations among the cluster transforma-

tions is not known in general. In simple cases they are exhaused by the standard (h+2)-gon

relations [FG09] such as the involutivity and the pentagon relation, while there are “non-

standard” relations in general, even for those associated with marked surfaces [FST08].

A survey on this problem is also found in [KY16]: not only an annoying thing is this, but

also related to certain “dualities” between supersymmetric gauge theories.

In order to isolate such a problem, we consider the saturated cluster modular group b�s

instead. It is defined by restricting the relations among cluster transformations to those

generated by standard ones, so that the cluster modular group is obtained as a quotient

of the saturated cluster modular group. We introduce a simplicial complex called the

saturated modular complex on which the saturated cluster modular group acts, and show

that it is simply-connected. Hence we can compute a presentation of the saturated cluster

modular group from the data of this action.

When the seed pattern is of finite mutation type, namely the mutation class of the

exchange matrix is finite, this method works well. In this case the “fundamental domain”

of the saturated modular complex is finite, and we can obtain a finite presentation of the

saturated cluster modular group. The mutation classes of finite mutation type has been

completely classified in [FeST12a, FeST12b]. In the case of skew-symmetric exchange

matrices, the list consists of the mutation classes associated with marked surfaces, several

classes associated with generalized Dynkin diagrams, and two mysterious classes called

X6 and X7. The initial quivers of type X6 and X7 are shown in Figure 2. Our main result

here is a computation of finite presentations of the saturated cluster modular groups of

type X6 and X7.

Theorem 6. The saturated cluster modular group b�X7 of type X7 is generated by elements

 k, �k for k = 1, 3, 5 and the permutation group S3 of numbers {1, 3, 5}, and the complete
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set of relations among them is given as follows:

� k�
�1 =  �(k),

��k�
�1 = ��(k) for � 2 S3, k = 1, 3, 5,

�1�3 = �3�1,

�1 =  
2
1�35,

1 = ( �1
3  1)

2
,

1 = �153 5 1 3 5 1,

and the usual relations of permutations. Here �ij denotes the tranposition of i and j and

�135 denotes the cyclic permutation 1 7! 3 7! 5 7! 1.

Theorem 7. The saturated cluster modular group b�X6 of type X6 is generated by five

elements ↵1, ↵2, �1, �2 and �, and the complete set of relations among them is given as

follows:

�
2 = 1,

↵2 = Ad�↵1, �2 = Ad��1,

↵1↵2 = ↵2↵1,

Ad�1
�1
↵2 = ↵1,

(�2�
�1
1 )2 = 1,

(↵2�2�
�1
1 ↵

�1
1 )3 = 1,

�2(�1↵1)
�1
�2 = Ad↵2�1�,

�1 = ↵1Ad�1(↵2)↵
�1
2 �

�1
.

Here Adxy := xyx
�1

denotes the conjugation.

First homology groups. As the first application, we compute the first homology groups

of b�X6 and b�X7 . Here the first homology group (=abelianization) of a group G is defined

to be H1(G;Z) = G/[G,G]. Here we present the results with proofs based on Theorems 6

and 7.

Corollary 8. We have H1(b�X7 ;Z) ⇠= Z/5 ⇥ Z/2. The generators are the images of  1

and �13.

Proof. It is well-known that the signature function gives an isomorphism H1(Sn;Z)
⇠=�!

Z/2. From the first relation in Theorem 6 we get  1 =  3 =  5 in the abelianization, and

the last relation implies  5
1 = 1. ⌅

Corollary 9. We have H1(b�X6 ;Z) ⇠= Z⇥ Z/2. The generators are the images of ↵1 and

�1.
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Proof. From the relations in the second line of Theorem 7, we get ↵1 = ↵2 and �1 = �2

in the abelianization. The last two relations imply that � = ↵
�1
1 �1 and ↵2

1 = �
2
1 . ⌅

4.2. Generation by cluster Dehn twists. It is a classical fact that the mapping class

group of a marked surface is generated by Dehn twists and half-twists. Since they are

also cluster Dehn twists, one can expect that a cluster modular group is generated by

cluster Dehn twists. We confirm it is indeed true for certain cluster modular groups of

finite mutation type:

Theorem 10. The cluster modular groups of finite mutation type eE6,
eE7,

eE8, G
(⇤,⇤)
2 and

X7 are generated by finitely many cluster Dehn twists. The cluster modular group of type

X6 is virtually generated by four cluster Dehn twists.

For the former three cases, the theorem follows from the computation of the clus-

ter modular groups given by Assem–Schi✏er–Shramchenko [ASS12] using the cluster

categories. The saturated cluster modular group of type G
(⇤,⇤)
2 is computed by Fock–

Goncharov [FG06]. For the last two cases we use Theorems 6 and 7.

We can also find cluster Dehn twists in the remaining cluster modular groups of finite

mutation type, at least for skew-symmetric cases. Our general expectation is that any

cluster modular group of finite mutation type is virtually generated by cluster Dehn twists.

It will be especially interesting to study the cases E(1,1)
7 and E

(1,1)
8 , since they appear as

the unfrozen parts of certain quivers in the mutation class Cg,⌃. See Table 2. For example,

we have the equality �
E

(1,1)
8

= �uf
sl3,6-gon. The groups �uf

sl3,6-gon and �sl3,6-gon are related by

the elimination homomorphism. The mutation classes of E(1,1)
7 and E

(1,1)
8 consist of 506

and 5739 quivers, respectively.

3-gon 4-gon 5-gon 6-gon 7-gon

sl2 ; A1 A2 A3 A4

sl3 A1 D4 E7 E
(1,1)
8 113

sl4 A3 E
(1,1)
7 115 121 127

sl5 D6 116 126 136 146

sl6 E
(1,1)
8 125 140 155 170

sl7 115 136 157 178 199

Table 2. Type of the mutation class Cg,⌃ for g = sln+1 and ⌃ an unpunc-

tured (m + 2)-gon with n = 1, . . . , 6 and m = 1, . . . , 5. Here ; denotes

the empty quiver, and 1N denotes a mutation class of a quiver of infinite

mutation type with N vertices.
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