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Chapter 1

Introducition

1.1 Quasi-likelihood analysis
Stochastic processes are useful to describe phenomena which depend on time.
Ibragimov and Has’minskii (1981) developed the scheme to verify the asymptotic
properties of maximum likelihood estimators. They reduced the asymptotic prop-
erties of the maximum likelihood estimator to the convergence of the random field
corresponding to likelihood ratios. They also studied large deviation inequality
which provides useful asymptotic properties of the maximum likelihood estima-
tor including moment convergence.

While the likelihood estimator has good asymptotic properties, it is hard to
calculate it in practice, since we can’t often gain the complete data. Therefore
we consider the quasi-(log) likelihood function HT alternatively. Here, T = N or
R+ and HT : Ω × Θ → R is some sequence of random fields where Θ ∈ Rp is
a parameter space and (Ω,F ,Ft, P ) is a stochastic basis. Even in this case, it is
useful to consider the quasi-likelihood ratio

ZT = exp(HT (θ
∗ + aTu)−HT (θ

∗))

where aT ∈ GL(p) is a deterministic sequence in the general linear group over R
of degree p.

Yoshida (2011) studied ZT and proposed the polynomial type large deviation
inequality (PLDI)

P
[
sup

u;|u|≥r

ZT (u) ≥ r−N
]
≤ CN

rN
(r > 0).

This inequality plays a crucial role in quasi likelihood analysis (QLA) because it
implies the uniform boundedness

sup
T>0

E[|a−1
T (θ̂T − θ∗)|m] < ∞

3



and moment convergence

E[|a−1
T (θ̂T − θ∗)|m′

] → E[|û∞|m′
]

for some large m > 0, every m′ ∈ (0,m) and a random variable û∞ such that
a−1
T (θ̂T − θ∗)

d→ û∞. These properties are useful to investigate an asymptotic
behavior of statistics which depends on the moment of a−1

T (θ̂T − θ∗); see e.g.
Chan and Ing (2011), Shimizu (2017), Suzuki and Yoshida (2018) and Umezu
et al. (2019).

Yoshida (2011) also provided the tractable conditions to derive PLDI under the
locally asymptotically quadratic (LAQ) setting (Yoshida 2011). Actually, PLDI is
obtained with LAQ on many kinds of models, e.g. Clinet and Yoshida (2017),
Masuda (2013), Ogihara and Yoshida (2014) and Uchida and Yoshida (2013).

1.2 Variable selection via regularization methods
Regularization methods, that impose a penalty term on a loss function, provide
a tool for variable selection. The method is useful because it performs estima-
tion and variable selection simultaneously. Penalized estimators are generally ex-
pressed in the following form

θ̂penalty ∈ argmin
θ∈Θ

{
−Ln(θ) + p(θ)

}
,

where Ln is a log likelihood function or −Ln is equal to the sum of squared
residuals and p is a penalty term. One of the most simple regularization methods
is the Bridge (Frank and Friedman 1993) that imposes the penalty term

pBridge
λ (θ) = λ

p∑
i=1

|θi|q

on the least square loss function, where q > 0 is a constant, p is a dimension of an
unknown parameter θ and λ > 0 is a tuning parameter. For q ≤ 1, the estimator
performs variable selection. Especially, when q = 1, the estimator is called the
Lasso (Tibshirani 1996). Other than Bridge, various regularization methods have
been proposed, e.g. the smoothly clipped absolute deviation (SCAD; Fan and Li
2001) and the minimax concave penalty (MCP; Zhang 2010). These methods are
widely studied and extended in the regression analysis. Knight and Fu (2000)
derived a

√
n-consistency of the Bridge estimator θ̂Bridge and studied the limit dis-

tribution of
√
n(θ̂Bridge− θ∗) where θ∗ is the true value of θ. Zou (2006) proposed

the adaptive Lasso and derived its oracle property. These results clarified the ad-
vantage of Bridge estimator with q < 1 and adaptive Lasso estimator compared
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to Lasso estimator θ̂Lasso in the sense of asymptotic efficiency because the limit
distribution of

√
n(θ̂Lasso − θ∗) has a redundant term.

Applications of regularization methods to the quasi-likelihood analysis (QLA)
for stochastic models have been recently studied. The penalized quasi-maximum
likelihood estimator is defined by

θ̂T ∈ argmin
θ∈Θ

{
−HT (θ) + p(θ)

}
(1.1)

for a given quasi-likelihood function HT in these situations. These approaches
works well for various kinds of quasi-likelihood functions; see e.g. Belomestny
and Trabs (2018), De Gregorio and Iacus (2012) and Gaı̈ffas and Matulewicz
(2019). Masuda and Shimizu (2017) studied the moment convergence of the Lasso
estimator under more general settings. They derived the polynomial type large
deviation inequality (PLDI) for the L1-penalized contrast functions under suitable
conditions.

1.3 Organization of this thesis
In this thesis, we consider the quasi-likelihood function HT with LAQ property
and PLDI, and we study the penalized maximum likelihood estimator defined
in (1.1). Our penalty term can deal with many kinds of penalties including the
Lasso, the Bridge and the adaptive Lasso. The objective in this thesis consists
of two parts. One is to derive a polynomial type large deviation inequality for
the penalized quasi-likelihood random field and another is to study asymptotic
behavior of the penalized quasi-maximum likelihood estimators. The main results
in Chapter 2 and Chapter 3 are based on the work in Kinoshita and Yoshida (2019).

The rest part of this thesis is organized as follows. In Chapter 2, we derive
asymptotic properties of the penalized quasi-likelihood estimator. The PLDI is
given in Section 2.2 and limit theorem is given in Section 2.4. We will apply
the results in Chapter 2 to Itó Process in Chapter 3. In order to treat jumps, we
consider the global filter in Chapter 4.
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Chapter 2

Penalized quasi-likelihood estimator

2.1 Penalized quasi-likelihood estimator
Let Θ be a bounded open set in Rp. We denote by θ∗ ∈ Θ the true value of an
unknown parameter θ ∈ Θ. Given a probability space (Ω,F , P ), we consider a
sequence of random fields HT : Ω × Θ → R, T ∈ T, where T is a subset of
R≥0 with supT = ∞ and Θ is a closure of Θ. We assume HT (θ) is continuous
for all ω ∈ Ω, where HT (θ) denotes the mapping Θ ∋ θ → HT (θ, ω) for each
ω ∈ Ω. We call HT (θ) a quasi-likelihood function and define the quasi-maximum
likelihood estimator (QMLE) θ̂QMLE

T by

θ̂QMLE
T ∈ argmax

θ∈Θ
HT (θ).

Here we use this expression in the sense that θ̂QMLE
T : Ω → Θ is a measurable

mapping satisfying

HT (θ̂
QMLE
T ) = max

θ∈Θ
HT (θ)

for all ω ∈ Ω.
If θ∗ has sparsity, we can construct an estimator which performs parameter

estimation and variable selection simultaneously by adding a penalty term to the
quasi-likelihood function. Let us consider the penalized quasi-likelihood function

H†
T (θ) = HT (θ)− pT (θ) (2.1)

and the penalized estimator

θ̂T ∈ argmax
θ∈Θ

H†
T (θ),
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where pT : Θ → R≥0 is a penalty function for every T ∈ T. In this thesis, we
assume that pT has the following expression

pT (θ) =

p∑
j=1

ξjTp(θj), (2.2)

where ξjT are (possibly random) positive sequences and p : R → R≥0 is a function
satisfying p(0) = 0. Indeed, this function is defined on Rp, but we consider the
restriction to Θ.

In the following sections, we will denote {j; θ∗j = 0} and {j; θ∗j ̸= 0} by J (0)

and J (1), respectively. Furthermore, for a vector x ∈ Rp and a matrix A ∈ Rp×p,
the vector (xj)j∈J (k) and the matrix (Aij)i∈J (k),j∈J (l) will be denoted by x(k) and
A(kl), respectively, and we will express x as (x(0), x(1)). We write s(A, x) = Ax,
sj(A, x) = (Ax)j and s(k)(A, x) = (Ax)(k). For tensors A = (Ai1,...,id) and
B = (Bi1,...,id), we denote A[B] =

∑
i1,...,id

Ai1,...,idBi1,...,id . Moreover we write
A[u1, . . . , ud] = A[u1 ⊗ · · · ⊗ ud] =

∑
i1,...,id

Aı1,...,idu
i1
1 · · ·uid

d for vectors u1 =

(ui1
1 )i1 , . . . , ud = (uid

d )id . We denote by u⊗r = u ⊗ · · · ⊗ u the r times tensor
product of u.

2.2 Polynomial type large deviation inequality
We make use of the quasi-likelihood analysis (QLA) of Yoshida (2011) to examine
the moment convergence of estimators for θ and to derive a limit theorem of it.
Let aT ∈ GL(p) be a deterministic sequence satisfying ||aT || → 0 as T → ∞
and UT = {u ∈ Rp; θ∗ + aTu ∈ Θ}. Here ||A|| denotes the square root of the
maximum eigenvalue of A′A for A ∈ Rp×p and A′ is the transpose of A. Based
on QLA, we define the random fields ZT and Z†

T on UT by

ZT (u) = exp

(
HT (θ

∗ + aTu)−HT (θ
∗)

)
and

Z†
T (u) = exp

(
H†

T (θ
∗ + aTu)−H†

T (θ
∗)

)
.

Let L > 0 and VT (r) = {u ∈ UT ; r ≤ u} for r > 0. We assume a polynomial
type large deviation inequality (PLDI) in Yoshida (2011) for ZT .

[A1] There exist constants CL > 0 and εL ∈ (0, 1) such that

P

[
sup

u∈VT (r)

ZT (u) ≥ exp(−r2−εL)

]
≤ CL

rL
(2.3)
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for all r > 0, T > 0.

Here the supremum of the empty set should read −∞ by convention. In this thesis
we assume that aT is a diagonal matrix, and write

aT =


α1
T 0

α2
T

. . .
0 αp

T

 .

Moreover we suppose
∏

1≤j≤p α
j
T ̸= 0 for all T ∈ T. Let c0 be a positive constant.

In order to estimate Z†
T , we consider the following three conditions for the penalty

term.

[A2] p is differentiable except the origin.

[A3] For some positive constant ε,

sup
−ε<x<ε

p(x) < ∞.

[A4] For all j ∈ J (1),

sup
T∈T

|αj
T ξ

j
T | ≤ c0

almost surely.

Remark 2.2.1. Given ξT , we can construct ξ′T satisfying [A4] by taking ξ′T such
that ξ′jT = min(ξjT , (α

j)−1
T c0).

Example 2.2.2 (LASSO). Define ξjT by ξjT = |αj
T |−1 and p by p(x) = |x|, then

the penalty term pT (θ) =
∑p

j=1 |α
j
T |−1|θj| satisfies [A2]-[A4].

In the above setting, we can derive the PLDI for Z†
T .

Theorem 2.2.3. Given L > 0, assume Conditions [A1]-[A4]. Then there exist
constants C ′

L > 0 and ε′L ∈ (0, 1) such that

P

[
sup

u∈VT (r)

Z†
T (u) ≥ exp(−r2−ε′L)

]
≤ C ′

L

rL
(2.4)

for all r > 0, T > 0.
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Proof. By [A1], there exist constants CL > 0 and εL ∈ (0, 1) satisfying (2.3) for
all r > 0, T > 0. Let ε′L ∈ (εL, 1). For every T > 0 and r > 0, we have

P

[
sup

u∈VT (r)

Z†
T (u) ≥ exp(−r2−ε′L)

]

≤ P

[
sup

u∈VT (r)

Z†
T (u) exp

{ ∑
j∈J (0)

ξjTp
(
sj(aT , u)

)}
≥ exp(−r2−ε′L)

]

≤
∞∑
n=0

P

 sup
2nr≤|u|≤2n+1r

u∈VT (r)

ZT (u) exp(B1) ≥ exp(−r2−ε′L)

 ,

where

B1 = −
∑

j∈J (1)

ξjT

[
p
(
θ∗j + sj(aT , u)

)
− p(θ∗j )

]
.

Conditions [A2] and [A3] imply

sup
x∈U\{0}

p(θ + x)− p(θ)

x
< ∞

for every θ ∈ R \ {0} and every compact set U ⊂ R. Moreover, by definition of
UT , we observe that supT∈T supu∈UT

|aTu| < ∞. Therefore, from [A4], we have

|B1| ≤
∑

j∈J (1)

ξjT |sj(aT , u)|

∣∣∣∣∣p(θ∗j + sj(aT , u))− p(θ∗j )

sj(aT , u)

∣∣∣∣∣
≤ c0K|u|

for some K > 0 which does not depend on T and r. Then we have

∞∑
n=0

P

 sup
2nr≤|u|≤2n+1r

u∈VT (r)

ZT (u) exp(B1) ≥ exp(−r2−ε′L)


≤

∞∑
n=0

P

 sup
2nr≤|u|≤2n+1r

u∈VT (r)

ZT (u) ≥ exp
(
−r2−ε′L − 2n+1c0Kr

) .

Since 1 < 2− ε′L < 2− εL, there exists a constant R1 > 0 such that

−r2−ε′L − 2n+1c0Kr ≥ −(2nr)2−εL
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for all n ∈ N and r ≥ R1. By this inequality and [A1], we obtain

∞∑
n=0

P

 sup
2nr≤|u|≤2n+1r

u∈VT (r)

ZT (u) ≥ exp
(
−r2−ε′L − 2n+1c0Kr

)
≤

∞∑
n=0

P

 sup
|u|≥2nr
u∈VT (r)

ZT (u) ≥ exp
(
−(2nr)2−εL

)
≤

∞∑
n=0

CL

(2nr)L
=

1

rL
2LCL

2L − 1

for every r ≥ R1. Let C ′
L = max{RL

1 ,
2LCL

2L−1
}, we complete the proof.

Let ûT = a−1
T (θ̂T − θ∗) then

ûT ∈ argmax
u∈UT

Z†
T (u).

PLDI derives the Lm-boundedness of ûT (Proposition 1 of Yoshida (2011)).

Proposition 2.2.4. Let L > m > 0. Suppose that there exists a constant CL such
that

P

[
sup

u∈VT (r)

Z†
T (u) ≥ 1

]
≤ CL

rL

for all T > 0 and r > 0. Then it holds that

sup
T>0

E[|ûT |m] < ∞. (2.5)

In particular, ûT = Op(1) as T → ∞ (i.e., for every ϵ > 0, there exist T ∈ T and
M > 0 such that P (|ûT | > M) < ϵ for all T ≥ T ), under Conditions [A1]-[A4].

2.3 Consistency of variable selection

In this section, we will derive the selection consistency of θ̂T . Let q ∈ (0, 1], we
consider the conditions for p.

[A5] There exists λ > 0 such that

lim
x→0

p(x)

|x|q
= λ.
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[A6] For every j ∈ J (0),

(ξjT )
− 1

q |αj
T |

−1 p→ 0

as T → ∞.

LASSO penalty in Example 2.2.2 derives PLDI, however, it does not satisfy [A6].
We give another example for [A6].

Example 2.3.1 (Bridge type). Let q < 1 and q′ ∈ (q, 1]. Define ξjT by ξjT =
|αj

T |−q′ and p by p(x) = |x|q, then the penalty term p(θ) =
∑p

j=1 |α
j
T |−q′|θj|q

satisfies [A2]-[A6].

Let ãT be a diagonal matrix in Rp×p satisfying (ãT )jj = (ξjT )
− 1

q for j ∈ J (0)

and (ãT )jj = ajT for j ∈ J (1). Denote a−1
T ãT by GT .

[A7] For every M > 0,

sup
u,v∈UT
|u|,|v|<M

u̸=v

|HT (θ
∗ + aTu)−HT (θ

∗ + aTv)|
|u− v|q

||G(00)
T ||q p→ 0

as T → ∞.

Remark 2.3.2. Condition [A6] implies that

||G(00)
T || p→ 0 (2.6)

as T → ∞. We usually assume [A6] to ensure this convergence in this thesis.

Remark 2.3.3. Condition [A7] is a technical one, however, we can derive it easily
from the differentiability of HT .

[A7′] For some R > 0, the following conditions hold:

(i) For every T ∈ T, HT is almost surely thrice differentiable with respect
to θ on B = BR(θ

∗,Θ) = {θ ∈ Θ; |θ − θ∗| < R},

(ii) ||aT ||∂θHT (θ
∗) = Op(1),

(iii) ||aT ||2 sup
θ∈B

|∂2
θHT (θ)| = Op(1),

(iv) ||aT ||2 sup
θ∈B

|∂3
θHT (θ)| = Op(1).

Proposition 2.3.4. Assume [A6] and [A7′], then [A7] holds.
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Proof. Take R′ < R satisfying BR′(θ∗) = {θ ∈ Rp; |θ − θ∗| ≤ R′} ⊂ Θ. For
M > 0, there exists a constant TM ∈ T such that θ∗ + aTu ∈ BR′(θ∗) for every
T > TM and u ∈ R satisfying |u| < M . Therefore, by Taylor’s theorem∣∣HT (θ

∗ + aTu)−HT (θ
∗ + aTv)

∣∣
≤
∣∣∂θHT (θ

∗)[aTu]− ∂θHT (θ
∗)[aTv]

∣∣
+

∣∣∣∣∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTu)[(aTu)
⊗2]ds

−
∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTv)[(aTv)
⊗2]ds

∣∣∣∣
≤A1 + A2 + A3.

for every T > TM and every u, v ∈ R satifying |u|, |v| < M , where

A1 = ||aT || ·
∣∣∂θHT (θ

∗)
∣∣ · |u− v|,

A2 =

∣∣∣∣∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTu)[(aTu)
⊗2]ds

−
∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTu)[(aTv)
⊗2]ds

∣∣∣∣
and

A3 =

∣∣∣∣∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTu)[(aTv)
⊗2]ds

−
∫ 1

0

(1− s)∂2
θHT (θ

∗ + saTv)[(aTv)
⊗2]ds

∣∣∣∣.
However, [A7′](ii) and (2.6) implies

sup
u,v∈UT
|u|,|v|<M

u̸=v

A1

|u− v|q
||G(00)

T ||q p→ 0 (2.7)

as T → ∞. If θ∗ + aTu ∈ BR′(θ∗), then

A2 ≤ ||aT ||2 · |u+ v| · |u− v| · sup
θ∈B

|∂2
θHT (θ)|.

Therfore [A7′](iii) and (2.6) implies

sup
u,v∈UT
|u|,|v|<M

u̸=v

A2

|u− v|q
||G(00)

T ||q p→ 0 (2.8)
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as T → ∞. From Taylor’s theorem, we have

∂2
θHT (θ

∗ + saTu) =∫ 1

0

∂3
θHT

(
θ∗ + saTu+ s′(saTu− saTv)

)
ds′[saTu− saTv]

for every s ∈ [0, 1], T > TM and every u, v ∈ R satifying |u|, |v| < M . Since
θ∗ + saTu+ s′(saTu− saTv) ∈ BR′(θ∗) ⊂ B, it follows that

A3 ≤ ||aT ||3 · |v|2 · |u− v| · sup
θ∈B

|∂3
θHT (θ)|

for every T > TM and every u, v ∈ R satifying |u|, |v| < M . Therefore [A7′](iv)
and (2.6) implies

sup
u,v∈UT
|u|,|v|<M

u̸=v

A3

|u− v|q
||G(00)

T ||q p→ 0 (2.9)

as T → ∞. From (2.7), (2.8) and (2.9), we have the desired result.
The following theorem ensures that θ̂T enjoys the consistency of variable se-

lection.

Theorem 2.3.5. Assume Conditions [A5]-[A7]. If ûT = Op(1), then

P
(
θ̂
(0)
T = 0

)
→ 1 (2.10)

as T → ∞.

Proof. Let S1
T = {(0, û(1)

T ) ∈ UT}. For M > 0 and T ∈ T, define S2
T by

S2
T,M =

{
|û(0)

T | < M,
∑

j∈J (0)

ξjTp
(
sj(aT , ûT )

)
≥ λ

2
|(G(00)

T )−1û
(0)
T |q

}
and define CT,M by

CT,M = sup
u,v∈UT
|u|,|v|<M

u̸=v

|HT (θ
∗ + aTu)−HT (θ

∗ + aTv)|
|u− v|q

.

By definition,

Z†
T (û

(0)
T , û

(1)
T )− Z†

T (0, û
(1)
T ) = exp

(
H†(θ∗ + aT ûT

)
−H†(θ∗ + aT (0, û

(1)
T )

))
13



= exp
(
H
(
θ∗ + aT ûT

)
−H

(
θ∗ + aT (0, û

(1)
T )

))
× exp

(
−

∑
j∈J (0)

ξjTp
(
sj(aT , ûT )

))
. (2.11)

Therefore we have

P (θ̂
(0)
T ̸= 0) ≤ P

(
Z†

T (û
(0)
T , û

(1)
T ) ≥ Z†

T (0, û
(1)
T ), û

(0)
T ̸= 0, (0, û

(1)
T ) ∈ UT

)
+ P ((S1

T )
c)

≤ P
(
CT,M |û(0)

T |q ≥ λ

2
|(G(00)

T )−1û
(0)
T |q, û(0)

T ̸= 0
)

+ P ((S1
T )

c) + P ((S2
T,M)c).

Therefore it suffices to estimate the following three probabilities:

P1 := P
(
CT,M ||G(00)

T ||q ≥ λ

2

)
,

P2 := P ((S1
T )

c)

and

P3 := P ((S2
T,M)c).

However, by [A7] we have P1 → 0 as T → ∞. Take R > 0 satisfying BR(θ
∗) =

{θ ∈ Rp; |θ − θ∗|} ⊂ Θ. Since ûT = Op(1), |aT ûT | < R for large T with large
probability, therefore P2 → 0 as T → ∞. Moreover, from [A5] and [A6], for
every ϵ > 0, there exist constants M > 0 and T ∈ T such that P3 < ϵ for every
T > T .

2.4 Limit distribution
In this section, we consider the limit theorem of θ̂T . Let ũT = ã−1

T (θ̂T − θ∗) and
ŨT (= ŨT (ω)) = {u ∈ Rp; θ∗ + ãTu ∈ Θ}. Define the random field Z̃†

T on ŨT by

Z̃†
T (u) = exp

(
H†

T (θ
∗ + ãTu)−H†

T (θ
∗)

)
,

then

ũT ∈ argmax
u∈ŨT

Z̃†
T (u)

14



and

ûT = GT ũT .

For convenience, we extend Z̃T to Rp so that the extension has a compact support
and sup

u∈Rp\ŨT

Z̃†
T (u) ≤ max

u∈∂ŨT

Z̃†
T (u). In order to describe the limit distribution of

ũT , we consider the following two conditions.

[A8] For all M > 0,

sup
u∈UT
|u|<M

∣∣∣HT (θ
∗ + aTu)−HT (θ

∗)
∣∣∣ = Op(1)

as T → ∞.

[A9] For all M > 0,

sup
u,v∈UT
|u|,|v|<M

u̸=v

|HT (θ
∗ + aTu)−HT (θ

∗ + aTv)|
|u− v|q

= Op(1)

as T → ∞.

Proposition 2.4.1. Assume Condition [A7′] is fulfilled, then [A8] and [A9] hold.

Proof. Similar to the proof of Proposition 2.3.4.

Theorem 2.4.2. Assume [A1], [A5], [A6], [A8] and [A9]. If ûT = Op(1), then

ũT = Op(1)

as T → ∞.

Proof. By assumption and the definition of ũT ,

ũ
(1)
T = û

(1)
T = Op(1), (2.12)

therefore it suffices to prove that ũ(0)
T = Op(1). For T ∈ T, R > 0, M > 0 and εL

as in [A1], define S1
T,R,M by

S1
T,R,M = {|ûT | < R, |ZT (0, û

(1)
T )| > exp(−M2−εL)}.

15



Moreover define P1, P2 and P3(R) by

P1 = P

 sup
|G(00)

T u(0)|≥M

(G
(00)
T u(0),û

(1)
T )∈UT

Z†
T (G

(00)
T u(0), û

(1)
T ) ≥ Z†

T (0, û
(1)
T ),S1

T,R,M

 ,

P2 = P

 sup
0<|G(00)

T u(0)|≤M

(G
(00)
T u(0),û

(1)
T )∈UT

Z†
T (G

(00)
T u(0), û

(1)
T ) ≥ Z†

T (0, û
(1)
T ),S1

T,R,M

 ,

and

P3(R) = P
(
(S1

T,R,M)c
)
.

Then for every M > 0 and T ∈ T,

P (|ũ(0)
T | > M)

≤ P

 sup
|u(0)|≥M

(u(0),ũ
(1)
T )∈ŨT

Z̃†
T (u

(0), ũ
(1)
T ) ≥ Z̃†

T (0, ũ
(1)
T )


≤ P1 + P2 + P3(R).

By [A1],

P1 ≤ P

 sup
|G(00)

T u(0)|≥M

(G
(00)
T u(0),û

(1)
T )∈UT

ZT (G
(00)
T u(0), û

(1)
T ) ≥ ZT (0, û

(1)
T ),S1

T,R,M


≤ P

[
sup

u∈VT (M)

ZT (u) ≥ exp(−M2−εL)

]
≤ CL

ML
(2.13)

for every R > 0, M > 0 and T ∈ T. Take R′ > 0 satisfying BR′(θ∗) ⊂ Θ
and take TR satisfying supT>TR ||aT ||R < R′, then for every R > 0, M > 0 and
T > TR, (0, û(1)

T ) ∈ UT on S1
T,R,M . Similarly to (2.11), by definition of CT,R, for

every u(0) and û
(1)
T such that (0, û(1)

T ) and (G
(00)
T u(0), û

(1)
T ) belong to UT ,

Z†
T (G

(00)
T u(0), û

(1)
T )− Z†

T (0, û
(1)
T ) ≤ CT,R|G(00)

T u(0)|q −
∑

j∈J (0)

ξjTp
(
(ξjT )

− 1
quj

)
.

16



Denote B1 = −
∑

j∈J (0)

ξjTp
(
(ξjT )

− 1
quj

)
. For M > 0 and T ∈ T, define S2

T,M by

S2
T,M =

{
sup

0<|G(00)
T u(0)|≤M

B1

|u(0)|q
< −λ

2

}
.

Then we have

P2 ≤ P
(

sup
0<|G(00)

T u(0)|≤M(
G

(00)
T u(0),û

(1)
T )∈UT

(CT,R||G(00)
T ||q − λ

2

)
|u(0)|q > 0

)

≤ P
(
CT,R||G(00)

T ||q > λ

2

)
+ P

(
(S2

T,M)c
)

for every R > 0, M > 0 and T > TR. By [A9] and (2.6), for every δ > 0, R > 0
and M > 0, there exists a constant T1(δ, R,M) > TR such that

P
(
CT,R||G(00)

T ||q > λ

2

)
< δ

for every T ≥ T1(δ, R,M). Moreover [A5] implies that for every δ > 0 and
M > 0, there exists a constant T2(δ,M) such that

P
(
(S2

T,M)c
)
< δ

for every T > T2(δ,M). Therefore, for every δ > 0, R > 0 and M > 0, there
exists a constant T3(δ, R,M) such that

P2 < 2δ (2.14)

for every T > T3(δ, R,M). From (2.12), for every δ > 0, there exist R1 > 0 and
T4 > 0 such that

P (|ûT | ≥ R1) < δ

for every T > T4. Moreover, [A8] implies that for every δ > 0, there exist
constants T5 > 0 and M1 > 0 such that

P3(R1) < δ (2.15)

for every T > T5 and M > M1. We have the desired result from (2.13), (2.14)
and (2.15).

We write B(R) = {u ∈ Rp; |u| ≤ R}. In order to describe the limit distribu-
tion of ũT , we introduce the local asymptotic quadraticity of HT .
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Definition 2.4.3. The family HT is called locally asymptotically quadratic (LAQ)
at θ∗ if there exist random vectors ∆T ,∆ ∈ Rp, random matrices ΓT ,Γ ∈ Rp×p

and random fields rT : Ω× UT → R such that

[A10] (i) for every T ∈ T and u ∈ UT

HT (θ
∗ + aTu)−HT (θ

∗) = ∆′
Tu− 1

2
u′ΓTu+ rT (u),

(ii) Γ is almost surely positive definite,

(iii) (∆T ,ΓT )
d→ (∆,Γ) as T → ∞,

(iv) For all R > 0, sup
u∈B(R)

|rT (u)|
p→ 0 as T → ∞.

Remark 2.4.4. One needs a certain global non-degeneracy of the random fields
HT as well as the LAQ property to prove the PLDI. Therefore [A1] is not redun-
dant under [A10]. Moreover, the LAQ property will be used to identify the limit
distribution of the estimators.

Let

Z(u) = exp

(
∆′u− 1

2
u′Γu

)
(u ∈ Rp)

and let Ĉ(Rp) = {f ∈ C(Rp); lim|u|→∞ |f(u)| = 0}. Equip Ĉ(Rp) with the
supremum norm. It is possible to extend ZT from UT to Rp in such a way that
the extended ZT takes values in Ĉ(Rp) and 0 ≤ ZT (u) ≤ maxv∈∂UT

ZT (v) for all
u ∈ Rp \ UT . We will write ZT for the extended random field on Rp.

Proposition 2.4.5. Given L > 0, suppose that [A1] and [A10] are fulfilled. Let
m ∈ (0, L), then

E
[
f
(
a−1
T (θ̂ML − θ∗)

)]
→ E[

[
f
(
Γ−1∆

)]
as T → ∞ for any continuous function f : Rp → R satisfying lim sup

|u|→∞
|f(u)||u|m <

∞.

Proof. The finite-dimensional convergence ZT →df Z is obvious. By [A10], we
see that for any ϵ > 0,

lim
δ→∞

lim sup
T→∞

P
(
wT (δ, R) ≥ ϵ

)
= 0 (2.16)

where

wT (δ, R) = sup
u1,u2∈B(R)
|u1−u2|≤δ

∣∣logZT (u
1)− logZT (u

2)
∣∣.

Now the desired result follows from Theorem 4 of Yoshida (2011).
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Remark 2.4.6. As a matter of fact, for Proposition 2.4.5, the inequality of [A1]
can be weakened. See Yoshida (2011) for details.

[A11] For every j ∈ J (1), there exists a constant βj ∈ R such that

ξjTα
j
T

p→ βj

as T → ∞.

Example 2.4.7. Bridge type penalty p(θ) =
∑p

j=1 |α
j
T |−q′ |θj|q as in Example

2.3.1 satisfies [A11]. Especially, if q′ < 1, then βj = 0 for all j ∈ J (1).

Define the random field Z̃† on Rp by

Z̃†(u) = exp
(
(∆(1))′u(1) − 1

2
(u(1))′Γ(11)u(1)

−
∑

j∈J (0)

λ|uj|q −
∑

j∈J (1)

βj
d

dx
p(θ∗j )uj

)
then Z̃† has an unique maximizer ũ∞ = argmax

u∈Rp
Z̃†(u) where ũ

(0)
∞ = 0 and

ũ
(1)
∞ = (Γ(11))−1(∆(1) − ψ(1)). Here ψ is some p-dimensional vector such that
ψj = βj

d
dx
p(θ∗j ) for j ∈ J (1). In the above setting, we estimate the asymptotic

distribution of ũT .

Theorem 2.4.8. Assume Conditions [A2], [A5], [A6], [A10] and [A11]. If ũT =
Op(1), then

(ã
(0)
T )−1(θ̂

(0)
T − θ∗(0))

p→ 0

and

(ã
(1)
T )−1(θ̂

(1)
T − θ∗(1))

d→ (Γ(11))−1(∆(1) −ψ(1))

as T → ∞.

Proof. It suffices to verify ũT
d→ ũ∞ as T → ∞. From [A2], [A5], [A6], [A10]

and [A11], it follows that(
Z̃†

T (u
1), . . . , Z̃†

T (u
n)
) d→

(
Z̃†(u1), . . . , Z̃†(un)

)
(2.17)

as T → ∞, for every n ∈ N and u1, . . . , un ∈ R.
For δ > 0 and R > 0, define w̃T (δ, R) by

w̃T (δ, R) = sup
u1,u2∈B(R)
|u1−u2|≤δ

∣∣log Z̃†
T (u

1)− log Z̃†
T (u

2)
∣∣.
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Then, from [A2], [A5], [A6], [A10] and [A11], we have

lim
δ→0

lim sup
T→∞

P
(
w̃T (δ, R) > ϵ

)
= 0 (2.18)

for each R > 0 and ϵ > 0. From (2.17) and (2.18), it follows that Z̃†
T |B(R)

d→
Z̃†|B(R) in C(B(R)) for every R > 0, where Z̃†

T |B(R) and Z̃|B(R) denote the
restriction of Z̃†

T and Z̃† on B(R) respectively. Since ũT = Op(1), we have
ũT

d→ ũ∞ as T → ∞.

Remark 2.4.9. The convergence of distribution of the result of Theorem 2.4.8 can
be extended to the stable convergence, if we replace the convergence of distribu-
tion in [A10](iii) by the stable convergence.

2.5 Probability of variable selection
PLDI provides uniformly boundedness of ûT as mentioned in (2.5). It enable us to
estimate a probability that a correct model is selected. Let η ∈ (0, 1]. For T ∈ T
and R > 0, define cT,R by

cT,R = sup
u,v∈UT

|aTu|,|aT v|<R||aT ||1−η

u̸=v

|HT (θ
∗ + aTu)−HT (θ

∗ + aTv)|
|u− v|q

.

For m > 0, we denote E[|cT,R|m||G(00)
T ||qm] by cT (m,R). If E[|cT,R|m||G(00)

T ||qm]
= ∞, we define cT (m,R) = ∞.

Remark 2.5.1. The sequence cT (m,R) is expected to be small as T → ∞. We
will estimate it at the end of this section.

Theorem 2.5.2. Given m > 0, suppose that the inequality (2.5) is fulfilled. More-
over assume [A5]. Then for every R > 0 and m0 > 0 there exists a positive
constant Dm,m0,R such that

P (θ̂
(0)
T ̸= 0) < Dm,m0,R(||aT ||mη + cT (m0, R)) (2.19)

for every T ∈ T.

Proof. By [A5], there exists a positive constant R1 such that p(x) > λ|x|q/2 for
every x satisfying |x| < R1. Take R2 > 0 satisfying BR2(θ

∗) = {θ ∈ Rp; |θ −
θ∗| ≤ R2} ⊂ Θ and let R3 = min{R1, R2}. For T ∈ T define ST by

ST = {|aT ûT | < R3, |aT ûT | < R||aT ||−η}.
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By (2.11) and definition of R3 and cT,R,

P (θ̂
(0)
T ̸= 0) ≤ P

(
Z†

T (û
(0)
T , û

(1)
T ) ≥ Z†

T (0, û
(1)
T ), û

(0)
T ̸= 0

)
≤ P

(
cT |û(0)

T |q ≥ λ

2
|(G(00)

T )−1û
(0)
T |q, û(0)

T ̸= 0
)
+ P (Sc

T ).

Therefore it suffices to estimate the following two probabilities:

P1 := P
(
cT ||G(00)

T ||q ≥ λ

2

)
,

and

P2 := P (Sc
T ).

By Markov’s inequality,

P1 ≤
(2
λ

)m0

cT (m0, R) (2.20)

and

P2 ≤ (R−m||aT ||mη +R−m
3 ||aT ||m) sup

T∈T
E[|ûT |m] (2.21)

for every T ∈ T.
From (2.5), (2.20) and (2.21), we have (2.19) for some Dm,m0,R.

Theorem 2.5.2 gives an upper bound of the probability of overfitting, however,
we need to estimate the probability of underfitting. Let θ̂

(1)

T = minj∈J (1) |θ̂T,j|.

Theorem 2.5.3. Given m > 0, suppose that the inequality (2.5) is fulfilled. Then
there exists a positive constant Dm such that

P (θ̂
(1)

T = 0) < Dm||aT ||m (2.22)

for every T ∈ T.

Proof. Let θ∗(1) = minj∈J (1) |θ∗j |, then

P (θ̂
(1)

T = 0) ≤ P (|aT ûT | ≥ θ∗(1)).

Moreover, by Markov’s inequality,

P (θ̂
(1)

T = 0) ≤ ||aT ||m

|θ∗(1)|m
sup
T∈T

E[|ûT |m]

for all T ∈ T. Therefore from assuption, we have (2.22).

We obtain the following corollary from Theorem 2.5.2 and Theorem 2.5.3:
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Corollary 2.5.4. Given m > 0, suppose that the inequality (2.5) is fulfilled.
Moreover assume that Condition [A5] holds. Then for every R > 0 and m0 > 0,
there exists a positive constant Dm,m0,R such that

P
(
{j; θ̂T,j = 0} ̸= J (0)

)
< Dm,m0,R(||aT ||mη + cT (m0, R))

for every T ∈ T.

2.5.1 Estimation of cT (m0, R)

In this subsection, we assume that GT is deterministic for simplicity and denote
G

(00)
T by gT . Let R∗

0 > 0 and m1 > 0.

[A12] (i) For every T ∈ T, HT is almost surely thrice differentiable with respect
to θ on B∗ = BR∗

0
(θ∗,Θ) = {θ ∈ Θ; |θ − θ∗| < R∗

0},

(ii) supT∈TE
[
||aT ||m1|∂θHT (θ

∗)|m1

]
< ∞,

(iii) supT∈TE
[
||aT ||2m1 sup

θ∈B∗
|∂2

θHT (θ)|m1

]
< ∞,

(iv) supT∈TE
[
||aT ||2m1 sup

θ∈B∗
|∂3

θHT (θ)|m1

]
< ∞.

Proposition 2.5.5. Assume that Condition [A12] holds. Then there exist positive
constants R0 > 0 and K > 0 such that

cT (m1, R0) ≤ K(||aT ||−η(2−q)gqT )
m1

for every T ∈ T satisfying ||aT || ≤ 1.

Proof. Take R0 ≤ R∗
0 satisfying that BR0(θ

∗) ⊂ Θ, then θ∗+ aTu ∈ B∗ for every
u satisfying that |aTu| < R0. Similarly to the proof of Proposition 2.3.4, we have∣∣HT (θ

∗ + aTu)−HT (θ
∗ + aTv)

∣∣ ≤ A1 + A2 + A3

for every u, v ∈ R satisfying |aTu|, |aTv| < R0 where

A1 = |aT (u− v)| · |∂θHT (θ
∗)|,

A2 = |aT (u+ v)| · |aT (u− v)| · sup
θ∈B∗

|∂2
θHT (θ)|

and

A3 = |aTv|2 · |aT (u− v)| · sup
θ∈B∗

|∂3
θHT (θ)|.
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If both |aTu| and |aTv| are less than ||aT ||1−ηR0, then

|aT (u− v)|
|u− v|q

≤ |aT (u− v)|1−q ||aT ||q|u− v|q

|u− v|q

≤ (2R0||aT ||1−η)1−q||aT ||q

= (2R0)
1−q||aT ||(1−η)(1−q)+q.

Therefore

E[|cT,R0|m1 ] ≤ E

[
sup

u,v∈UT

|aTu|,|aT v|<R0||aT ||1−η

u̸=v

(
A1 + A2 + A3

|u− v|q

)m1
]

≤ E

[
sup

u,v∈UT

|aTu|,|aT v|<R0||aT ||1−η

u̸=v

3m1−1(Am1
1 + Am1

2 + Am1
3 )

|u− v|qm1

]

≤ 3m1−1(A′
1 + A′

2 + A′
3)

for every T ∈ T satisfying ||aT || ≤ 1 where

A′
1 = E

[(
(2R0)

1−q||aT ||(1−η)(1−q)+q|∂θHT (θ
∗)|

)m1
]
,

A′
2 = E

[(
(2R0)

2−q||aT ||(1−η)(2−q)+q sup
θ∈B∗

|∂2
θHT (θ)|

)m1
]

and

A′
3 = E

[(
21−qR3−q

0 ||aT ||(1−η)(3−q)+q sup
θ∈B∗

|∂3
θHT (θ)|

)m1

]
.

If ||aT || ≤ 1, then Conditions [A12](ii), (iii) and (iv) imply

A′
1 ≤ K ′||aT ||−η(1−q)m1 ≤ K ′||aT ||−η(2−q)m1 ,

A′
2 ≤ K ′||aT ||−η(2−q)m1

and

A′
3 ≤ K ′||aT ||(1−η(3−q))m1 ≤ K ′||aT ||−η(2−q)m1

for some K ′ > 0, respectively. Let K > 3m1K ′, we have the desired result.
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Example 2.5.6. Define p(θ) =
∑p

j=1 |α
j
T |−q′|θj|q as in Example 2.3.1, then we

have gT = ||aT ||(q
′−q)/q. Let m,m1 > 0 and suppose that the inequality (2.5)

is fulfilled. Moreover assume that Conditions [A5] and [A12] hold. Let η =
(q′ − q)m1/(m + 2(1 − q)m1). Then by Proposition 2.5.5 and Corollary 2.5.4,
there exists a constant Dm,m1 such that

P
(
{j; θ̂T,j = 0} ̸= J (0)

)
< Dm,m1||aT ||

(q′−q)mm1
m+2(1−q)m1

for every T ∈ T.

2.5.2 The case of random G
(00)
T

Now we turn to the estimation of cT (m0, R) in the case where G
(00)
T is random.

Let m2 > 0.

Proposition 2.5.7. Assume that Condition [A12] holds. Then for every m2 > 0,
there exist positive constants R0 > 0 and K > 0 such that

cT

( m1m2

qm1 +m2

, R0

)
≤ K||aT ||−

η(2−q)m1m2
qm1+m2

(
E[||G(00)

T ||m2 ]
) qm1

qm1+m2

for every T ∈ T satisfying ||aT || ≤ 1.

Proof. Similarly to the proof of Proposition 2.5.5, there exist constants R0 > 0
and K ′ > 0 such that

E[|cT,R0|m1 ] ≤ K ′||aT ||−η(2−q)m1

for every T ∈ T satisfying that ||aT || ≤ 1. Therefore from Hölder’s inequality,
we have

E[|cT,R0|m0 ||G(00)
T ||qm0 ] ≤

(
E[|cT,R0|m1 ]

) m2
qm1+m2

(
E[||G(00)

T ||m2 ]
) qm1

qm1+m2

≤ K
′ m2
qm1+m2 ||aT ||−

η(2−q)m1m2
qm1+m2

(
E[||G(00)

T ||m2 ]
) qm1

qm1+m2

where m0 = m1m2/(qm1 +m2).

Example 2.5.8. In example 2.5.6, we have gT = ||aT ||(q
′−q)/q. Here we as-

sume that there exist positive constants m2 and K ′ such that E[||G(00)
T ||m2 ] ≤

K ′||aT ||(q
′−q)m2/q for every T ∈ T. Suppose that Condition [A12] holds. Then

by proposition 2.5.7, there exists a constant K > 0 such that

cT ≤ K||aT ||
(q′+qη−2η−q)m1m2

qm1+m2
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for every T ∈ T satisfying that ||aT || ≤ 1. Let m > 0 and suppose that the
inequality (2.5) is fulfilled. Moreover assume that Condition [A5] holds. Let
η = (q′− q)m1m2/(qmm1+mm2+2m1m2− qm1m2), then by Corollary 2.5.4,
there exists a constant Dm such that

P
(
{j; θ̂T,j = 0} ̸= J (0)

)
< Dm,m1,m2||aT ||

(q′−q)mm1m2
qmm1+mm2+(2−q)m1m2

for every T ∈ T

2.6 Moment convergence
In this section, we will study the moment convergence of ûT . The following
theorem is a consequence of PLDI:

Theorem 2.6.1. Given m > 0, suppose that (2.5) holds. Moreover assume that
the conclusion of Theorem 2.4.8 holds. Then we have

E[f(ûT )] → E[f(ũ∞)]

as T → ∞ for any continuous function f : Rp → R satisfying lim sup
|u|→∞

|f(u)||u|−m =

0.

Proof. Condition (2.5) implies an uniform integrability of {f(ûT )}T∈T. By as-
sumption, ûT

d→ ũ∞ as T → ∞. Therefore we can obtain the desired result.

Theorem 2.6.1 suggests that limT→∞E
[
|(a(00)T )−1θ̂

(0)
T |m

]
= 0 for m ∈ (0, L).

From Theorem 2.5.2, we have another estimation of θ̂(0)T . Let ΨT ∈ GL(|J (0)|)
be a deterministic sequence of positive matrices. For m > 0, we consider the
condition

[A13] ||ΨT ||m
∗
(||aT ||mη + cT (m0, R)) → 0 as T → ∞.

Theorem 2.6.2. Given m,m∗,m0 > 0, suppose that Condition [A13] and the
inequality (2.19) hold. Then

E[|ΨT θ̂
(0)
T |m∗

] → 0

as T → ∞.

Proof. Let Θmax = supθ∈Θ |θ|, then

E[|ΨT θ̂
(0)
T |m∗

] ≤ Θm∗

max||ΨT ||m
∗
P (θ̂

(0)
T ̸= 0).

Therefore, from [A13], we have the desired result.

25



2.7 Group lasso
In this section, we divide the unknown parameter into g different groups for exam-
ple factor-level indicators of categorical data. Let p1 + · · ·+ pg = p and gθ ∈ Rpg

for g = 1, . . . , g. We write θ = (1θ, . . . , gθ) and aT = diag(1αT , . . . ,
gαT ).

Moreover we denote diag(gαT ) ∈ Rg×g by gaT . In this situation, the group lasso
provides group-wise sparsity (Simon et al. 2013, Yuan and Lin 2006). The group
lasso has the following penalty:

pT (θ) =

g∑
g=1

gξTpg(
gθ)

where gξT is a (possibly random) positive sequence and pg : Rpg → R≥0 is a
function satisfying pg(0) = 0 for g = 1, . . . , g.

Example 2.7.1. Let K1 ∈ Rp1×p1 , . . . , Kg ∈ Rpg×pg be positive definite matrices.
Define pg by pg(

gθ) = ||gθ||Kg . Here ||gθ||Kg denotes (gθ′Kg
gθ)1/2. Then we have

pT (θ) =

g∑
g=1

gξT ||gθ||Kg .

We denote {g; gθ∗ = 0} and {g; gθ∗ ̸= 0} by G(0) and G(1), respectively.

[A2′] pg is differentiable except the origin (g = 1, . . . , g).

[A3′] For some positive constant ε,

max
1≤g≤g

sup
|x|<ε

pg(x) < ∞.

[A4′] For all g ∈ G(1),

sup
T∈T

|gαT |gξT ≤ c0

almost surely.

Theorem 2.7.2. Given L > 0, assume Conditions [A1] and [A2′]-[A4′]. Then
there exist constants C ′

L > 0 and ε′L ∈ (0, 1) such that

P

[
sup

u∈VT (r)

Z†
T (u) ≥ exp(−r2−ε′L)

]
≤ C ′

L

rL

for all r > 0, T > 0.
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Proof. The proof is similarly to the proof of Theorem 2.2.3. By [A1], there exist
constants CL > 0 and εL ∈ (0, 1) satisfying (2.3) for all r > 0, T > 0. Let
ε′L ∈ (εL, 1). Similarly to the proof of Theorem 2.2.3, for every T > 0 and r > 0,
we have

P

[
sup

u∈VT (r)

Z†
T (u) ≥ exp(−r2−ε′L)

]

≤
∞∑
n=0

P

 sup
2nr≤|u|≤2n+1r

u∈VT (r)

ZT (u) exp(B2) ≥ exp(−r2−ε′L)

 .

where

B2 = −
∑

g∈G(1)

gξT

[
pg

(
gθ∗ + gaT

gu)
)
− pg(

gθ∗)

]
.

Conditions [A2′] and [A3′] imply

max
1≤g≤g

sup
x∈Ug\{0}

pg(
gθ + gx)− pg(

gθ)

x
< ∞

for every gθ ∈ Rg \ {0} and every compact set Ug ⊂ Rg. Moreover, by definition
of UT , we observe that supT∈T supu∈UT

|aTu| < ∞. Therefore, from [A4′], we
have

|B2| ≤ c0K|u|

for some K > 0 which does not depend on T and r. Therefore, similarly to the
proof of Theorem 2.2.3, we have the desired result.

As above, grouped penalty dose not disturb PLDI. We now turn to the selection
consistency of the grouped penalized estimator.

[A5′] There exists positive constants {λg}g=1,...,g such that

lim
gx→0

pg(
gx)

|gx|q
= λg

for every g = 1, . . . , g.

[A6′] For every g ∈ G(0),

(gξT )
− 1

q |gαT |−1 p→ 0

as T → ∞.
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We write λ̃g = min
1≤g≤g

λg.

Theorem 2.7.3. Assume Conditions [A5′], [A6′] and [A7]. If ûT = Op(1), then

P
(
θ̂
(0)
T = 0

)
→ 1

as T → ∞.

Proof. Let S1
T = {(0, û(1)

T ) ∈ UT}. For M > 0 and T ∈ T, define S2
T by

S2
T,M =

{
|û(0)

T | < M,
∑

g∈G(0)

gξTp
(
gaT

gûT

)
≥ λ̃g

2
|(G(00)

T )−1û
(0)
T |q

}
and define CT,M by

CT,M = sup
u,v∈UT
|u|,|v|<M

u̸=v

|HT (θ
∗ + aTu)−HT (θ

∗ + aTv)|
|u− v|q

.

Similarly to the proof of Theorem 2.3.5, we have

P (θ̂
(0)
T ̸= 0) ≤ P

(
CT,M |û(0)

T |q ≥ λ̃g

2
|(G(00)

T )−1û
(0)
T |q, û(0)

T ̸= 0
)

+ P ((S1
T )

c) + P ((S2
T,M)c).

Therefore it suffices to estimate the following three probabilities:

P1 := P
(
CT,M ||G(00)

T ||q ≥ λ

2

)
,

P2 := P ((S1
T )

c)

and

P3 := P ((S2
T,M)c).

However, by [A7] we have P1 → 0 as T → ∞. Take R > 0 satisfying BR(θ
∗) =

{θ ∈ Rp; |θ − θ∗|} ⊂ Θ. Since ûT = Op(1), |aT ûT | < R for large T with large
probability, therefore P2 → 0 as T → ∞. Moreover, from [A5′] and [A6′], for
every ϵ > 0, there exist constants M > 0 and T ∈ T such that P3 < ϵ for every
T > T .

The last part of this section is the limit theorem of grouped penalized estimator.
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Theorem 2.7.4. Assume [A1], [A5′], [A6′], [A8] and [A9]. If ûT = Op(1), then

ũT = Op(1)

as T → ∞.

Proof. For T ∈ T, R > 0, M > 0 and εL as in [A1], define S1
T,R,M as in the proof

of Theorem 2.4.2. Similarty to the proof of Theorem2.4.2, it suffice to calculate
P1, P2 and P3(R) where

P1 = P

 sup
|G(00)

T u(0)|≥M

(G
(00)
T u(0),û

(1)
T )∈UT

Z†
T (G

(00)
T u(0), û

(1)
T ) ≥ Z†

T (0, û
(1)
T ),S1

T,R,M

 ,

P2 = P

 sup
0<|G(00)

T u(0)|≤M

(G
(00)
T u(0),û

(1)
T )∈UT

Z†
T (G

(00)
T u(0), û

(1)
T ) ≥ Z†

T (0, û
(1)
T ),S1

T,R,M

 ,

and

P3(R) = P
(
(S1

T,R,M)c
)
.

By [A1],

P1 ≤
CL

ML
(2.23)

for every R > 0, M > 0 and T ∈ T. Take R′ > 0 satisfying BR′(θ∗) ⊂ Θ
and take TR satisfying supT>TR ||aT ||R < R′, then for every R > 0, M > 0 and
T > TR, (0, û(1)

T ) ∈ UT on S1
T,R,M . Similarly to (2.11), by definition of CT,R, for

every u(0) and û
(1)
T such that (0, û(1)

T ) and (G
(00)
T u(0), û

(1)
T ) belong to UT ,

Z†
T (G

(00)
T u(0), û

(1)
T )− Z†

T (0, û
(1)
T ) ≤ CT,R|G(00)

T u(0)|q −
∑

g∈G(0)

gξTpg
(
(gξjT )

− 1
q gu

)
.

Denote B2 = −
∑

g∈G(0)

gξTpg
(
(gξT )

− 1
q gu

)
. For M > 0 and T ∈ T, define S2

T,M by

S2
T,M =

{
sup

0<|G(00)
T u(0)|≤M

B2

|u(0)|q
< − λ̃g

2

}
.
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Then we have

P2 ≤ P
(

sup
0<|G(00)

T u(0)|≤M(
G

(00)
T u(0),û

(1)
T )∈UT

(CT,R||G(00)
T ||q − λ̃g

2

)
|u(0)|q > 0

)

≤ P
(
CT,R||G(00)

T ||q > λ̃g

2

)
+ P

(
(S2

T,M)c
)

for every R > 0, M > 0 and T > TR. By [A9] and (2.6), for every δ > 0, R > 0
and M > 0, there exists a constant T1(δ, R,M) > TR such that

P
(
CT,R||G(00)

T ||q > λ̃g

2

)
< δ

for every T ≥ T1(δ, R,M). Moreover [A5′] implies that for every δ > 0 and
M > 0, there exists a constant T2(δ,M) such that

P
(
(S2

T,M)c
)
< δ

for every T > T2(δ,M). Therefore, for every δ > 0, R > 0 and M > 0, there
exists a constant T3(δ, R,M) such that

P2 < 2δ (2.24)

for every T > T3(δ, R,M). From (2.12), for every δ > 0, there exist R1 > 0 and
T4 > 0 such that

P (|ûT | ≥ R1) < δ

for every T > T4. Moreover, [A8] implies that for every δ > 0, there exist
constants T5 > 0 and M1 > 0 such that

P3(R1) < δ (2.25)

for every T > T5 and M > M1. We have the desired result from (2.23), (2.24)
and (2.25).

[A11′] For every g ∈ J (1), there exists a constant gβ ∈ R such that

gξT |gαT |
p→ gβ

as T → ∞.
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Define the random field Z̃†
g on Rp by

Z̃†
g(u) = exp

(
(∆(1))′u(1) − 1

2
(u(1))′Γ(11)u(1)

−
∑

g∈G(0)

λg|gu|q −
∑

g∈G(1)

gβ
d

d(gx)
p(gθ∗)gu

)
then Z̃† has an unique maximizer ũ∞ = argmax

u∈Rp
Z̃†

g(u) where ũ
(0)
∞ = 0 and

ũ
(1)
∞ = (Γ(11))−1(∆(1) − ψ(1)

g ). Here ψg is some p-dimensional vector such that
gψg =
gβ d

d(gx)
pg(

gθ∗) for g ∈ G(1). In the above setting, we estimate the asymptotic
distribution of ũT .

Theorem 2.7.5. Assume Conditions [A2′], [A5′], [A6′], [A10] and [A11′]. If
ũT = Op(1), then

(ã
(0)
T )−1(θ̂

(0)
T − θ∗(0))

p→ 0

and

(ã
(1)
T )−1(θ̂

(1)
T − θ∗(1))

d→ (Γ(11))−1(∆(1) −ψ(1)
g )

as T → ∞.

Proof. It suffices to verify ũT
d→ ũ∞ as T → ∞. From [A2′], [A5′], [A6′], [A10]

and [A11′], it follows that(
Z̃†

T (u
1), . . . , Z̃†

T (u
n)
) d→

(
Z̃†

g(u
1), . . . , Z̃†

g(u
n)
)

(2.26)

as T → ∞, for every n ∈ N and u1, . . . , un ∈ R.
For δ > 0 and R > 0, define w̃T (δ, R) by

w̃T (δ, R) = sup
u1,u2∈B(R)
|u1−u2|≤δ

∣∣log Z̃†
T (u

1)− log Z̃†
T (u

2)
∣∣.

Then, from [A2′], [A5′], [A6′], [A10] and [A11′], we have

lim
δ→0

lim sup
T→∞

P
(
w̃T (δ, R) > ϵ

)
= 0 (2.27)

for each R > 0 and ϵ > 0. From (2.26) and (2.27), it follows that Z̃†
T |B(R)

d→
Z̃†|B(R) in C(B(R)) for every R > 0, where Z̃†

T |B(R) and Z̃|B(R) denote the
restriction of Z̃†

T and Z̃†
g on B(R) respectively. Since ũT = Op(1), we have

ũT
d→ ũ∞ as T → ∞.
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Chapter 3

Application to volatility estimation

3.1 Volatility model
In this section, we apply our results to an Itó Process. Consider a stochastic re-
gression model specified by the stochastic integral equation

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σ(Xs, θ)dws, t ∈ [0, T ]. (3.1)

Here given a stochastic basis (Ω,F , (Ft)t∈[0,T ], P ), w is an r-dimensional standard
Wiener process, and b and X are progressively measurable processes taking values
in Rm and Rd, respectively. The function σ : Rd×Θ → Rm⊗Rr has an unknown
parameter θ ∈ Θ, a bounded open set of Rp. If bt = b(Yt, t) and Xt = (Yt, t), then
Y can be a time-inhomogeneous diffusion process. We want to estimate θ from
the observations (Xtj , Ytj)j=0,...,n, tj = jh for h = hn = T/n. No data of bt is
available.

High frequency data under finite time horizon will be treated, that is, T is
fixed and n tends to ∞. This is a standard setting in finance. We will consider
the penalized quasi-likelihood analysis for the volatility parameter θ. To apply the
results in Sections 2.1-2.6, we will use n for T of Section 2.1, while T denotes the
fixed terminal of the observations in what follows.

Let S(x, θ) = σ(x, θ)⊗2 = σ(x, θ)σ(x, θ)′. For estimation, we use the quasi-
log likelihood function

Hn(θ) = −1

2

n∑
j=1

{
log detS(Xtj−1

, θ) + h−1S−1(Xtj−1
, θ)[(∆jY )⊗2]

}
,

where ∆jY = Ytj−Ytj−1
. Then the quasi-maximum likelihood estimator (QMLE)

θ̂Mn is any estimator that satisfies

θ̂Mn ∈ argmax θ∈ΘHn(θ). (3.2)
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The quasi-Bayesian estimator (QBE) θ̂Bn with respect to the quadratic loss and a
prior density π : Θ → R+ is given by

θ̂Bn =

(∫
Θ

exp(Hn(θ))π(θ)dθ

)−1 ∫
Θ

θ exp(Hn(θ))π(θ)dθ. (3.3)

The prior density π is assumed to be continuous and to satisfy 0 < infθ∈Θ π(θ) ≤
supθ∈Θ π(θ) < ∞.

Definition 3.1.1. The space Ca,b
↑ (Rd ×Θ;Rm ×Rr) is the set of continuous func-

tions f : Rd ×Θ → Rm × Rr that satisfy the following conditions.

(i) f has continuous derivatives ∂s1 · · · ∂slf for all (s1, . . . , sl) ∈ {θ, x}l such that
#{i ∈ {1, . . . , l}; si = x} ≤ a and #{i ∈ {1, . . . , l}; si = θ} ≤ b.

(ii) Each derivative appearing in (i) satisfies

sup
θ∈Θ

|∂s1 · · · ∂slf(x, θ)| ≤ C(s1, . . . , sl)(1 + |x|C(s1,...,sl)) (x ∈ Rd)

for some positive constant C(s1, . . . , sl).

We denote by →ds(F) the F-stable convergence in distribution. Suppose that
Θ has a Lipschitz boundary.

The following Condition [H1] is Condition [H1♯] of Uchida and Yoshida (2013).

[H1] (i) sup0≤t≤T ∥bt∥p < ∞ for all p > 1.

(ii) σ ∈ C2,4
↑ (Rd ×Θ;Rm ⊗ Rr) and infx,θ detS(x, θ) > 0.

(iii) The process X has a representation

Xt = X0 +

∫ t

0

b̃sds+

∫ t

0

asdws +

∫ t

0

ãsdw̃s,

where b̃, a and ã are progressively measurable processes taking values
in Rd, Rd ⊗ Rr and Rd ⊗ Rr1 , respectively, and satisfy

∥X0∥p + sup
t∈[0,T ]

(∥b̃t∥p + ∥at∥p + ∥ãt∥p) < ∞

for every p > 1. w̃ is an r1-dimensional Wiener process independent
of w,
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Let

Y(θ) = − 1

2T

∫ T

0

{
log

(
detS(Xt, θ)

detS(Xt, θ∗)

)
+ Tr

(
S−1(Xt, θ)S(Xt, θ

∗)− Id
)}

dt.

A key index χ0 is defined by

χ0 = inf
θ ̸=θ∗

−Y(θ)
|θ − θ∗|2

. (3.4)

Non-degeneracy of χ0 plays an important role in the discussion.

[H2] For every L > 0, there exists a constant cL such that

P
[
χ0 ≤ r−1

]
≤ cL

rL

for all r > 0.

Define the random field Zn on Un by

Zn(u) = exp

{
Hn

(
θ∗ +

1√
n
u

)
−Hn(θ

∗)

}
(3.5)

for u ∈ Un. Then following the proof of Theorem 3 of Uchida and Yoshida
(2013), we see that Condition [H2] together with [H1] implies that for every L >
0,

P

[
sup

u∈Vn(r)

Zn(u) ≥ e−r2−ϵ

]
≤ CL

rL
(r > 0, n ∈ N) (3.6)

for some constant CL and some ϵ ∈ (0, 1). Thus Condition [A1] is fulfilled for
an = n−1/2Ip×p in the present situation.

Let

Γ(θ∗)[u, u] =
1

2T

∫ T

0

Tr
(
(∂θS)S

−1(∂θS)S
−1(Xt, θ

∗)[u⊗2]
)
dt,

Now we have

Theorem 3.1.2. (Theorems 4 and 5 of Uchida and Yoshida (2013)) Suppose that
[H1] and [H2] are satisfied. Then, for A = M and B,

√
n(θ̂An − θ∗) →ds(F)

Γ(θ∗)−1/2ζ and

E
[
f(
√
n(θ̂An − θ∗))

]
→ E

[
f(Γ(θ∗)−1/2ζ)

]
as n → ∞ for all continuous functions f of at most polynomial growth, where ζ
is a p-dimensional standard Gaussian vector independent of F .
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Let

∆n[u] =
1√
n
∂θHn(θ

∗)[u]

= − 1

2
√
n

n∑
j=1

{
(∂θ log detS(Xtj−1

, θ∗))[u]

+h−1(∂θS
−1)(Xtj−1

, θ∗)[u, (∆kY )⊗2]

}
,

Γn(θ)[u, u] = − 1

n
∂2
θHn(θ)[u, u]

=
1

2n

n∑
j=1

{
(∂2

θ log detS(Xtj−1
, θ))[u⊗2]

+h−1(∂2
θS

−1)(Xtj−1
, θ))[u⊗2, (∆kY )⊗2]

}
and

rn(u) =

∫ 1

0

(1− s)
{
Γ(θ∗)− Γn(θ

∗ + sn−1/2u)
}
[u, u]ds.

Then, for u ∈ Rp and large n, we have

Zn(u) = exp

(
∆n[u]−

1

2
Γ(θ∗)[u, u] + rn(u)

)
.

Lemma 3.1.3. (Lemma 7 of Uchida and Yoshida (2013)) Assume [H1]. Then,
for every q > 0,

(i) supn∈NE
[
(
√
n |Γn(θ

∗)− Γ(θ∗)|)q
]
< ∞,

(ii) supn∈NE
[(

1
n
supθ∈Θ |∂3

θHn(θ)|
)q]

< ∞.

Then [A12](iv) is verified by using Lemma 3.1.3 for Γ = Γ(θ∗) under the
Condition [A6]. It is not difficult to check [A10](iii) and (iv) with stability of the
convergence if one follows the proof of Lemma 9 of Uchida and Yoshida (2013).
The Lp boundedness of {∆n}n is obvious for all p > 1. Almost sure positive
definiteness of Γ (i.e., [A10](ii)) and Lp integrability of det Γ−1 follow from [H2].
Thus all the conditions in Condition [A10] are satisfied. Lp integrability of Γ
is obvious, therefore |Γ−1| is Lp integrable, which implies Conditions [A12](ii)
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and (iii). Thus all the conditions in [A12] are satisfied. Condition [A7’] holds
obviously under [A12]. Condtions [A2-6], [A11] and [A13] are fulfilled easily
for some Ψn ∈ GL(|J (0)|). (See Example 2.3.1 in Section 2.3 for instance.)
Consequently, the results in Sections 2.1-2.6 about the penalized estimators for
(2.1) are valid.

Condition [H2] can be easily verified if we apply the analytic criterion or the
geometric criterion of Uchida and Yoshida (2013).

3.2 Simulation of volatility model
In this section, we report the resutl of the simulation study to check the perfor-
mance of the variable selection based on our penalized method. The model is a
volatility regression model in Section 3.1. Let p = d, an = n−1/2Ip×p, q < 1,
σ(θ, x) = exp

(∑p
k=1 θk sin(x

k
s)
)

and

Xk
t =

∫ t

0

sin(2kπs)

(1 + (Xk
s )

2)
dwk

s k = (1, . . . , d),

where w1, . . . , wd are independent standard Brownian motions.

Obviously, Condition [H1] is fulfilled. Following the Section 3.1, we define
Hn by

Hn(θ) = −1

2

n∑
j=1

{
log detS(Xtj−1

, θ) + h−1S−1(Xtj−1
, θ)[(∆jY )⊗2]

}
.

Similarly to the proof of Theorems 5 of Uchida and Yoshida (2013)), we have
[A1]. Moreover we have [A10] and [A13] as discussed in Section 3.1. Define
p by p(x) = |x|q and ξjn by ξjn = nq′/2. By definition, we have [A2-6], [A11]
and [A14]. We set q = 0.3, q′ = 2/3, p = d = 10 and T = 1. The true value
θ∗ of an unknown parameter θ is θ∗ = (0, 1, 0, 1, 2, 0, 1, 1, 1, 0)′. Four cases of
n are considered: n = 1000, 2000, 3000 and 10000. We used the local quadratic
approximation in Fan and Li (2001) for the optimization of the penalized quasi-
likelihood function.

Table 4.1 compares the averages and standard deviations (parentheses) of quasi-
maximum likelihood estimator (QMLE) and penalized estimator (p-QL) over 1000
iterations for each cases. Table 4.1 also shows the probability that correct model
is selected is selected:

P (θ̂n.j = 0)
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Table 3.1: Simulation results for the volatility regression model.

True 1000 2000 3000 10000
QMLE 0.023(0.260) -0.006(0.181) 0.007(0.152) 0.001(0.083)

θ̂1 0 p-QL -0.005(0.081) 0.002(0.051) 0.000(0.022) 0.000(0)
prob 0.981 0.989 0.997 1

QMLE 0.989(0.271) 1.002(0.180) 0.999(0.148) 1.000(0.085)
θ̂2 1 p-QL 0.792(0.396) 0.893(0.244) 0.937(0.160) 0.972(0.077)

prob 0.869 0.971 0.996 1
QMLE 0.003(0.263) -0.004(0.181) -0.009(0.146) 0.007(0.084)

θ̂3 0 p-QL 0.003(0.088) 0.000(0.030) -0.002(0.042) 0.000(0)
prob 0.982 0.992 0.995 1

QMLE 0.986(0.263) 1.007(0.176) 1.003(0.146) 0.998(0.083)
θ̂4 1 p-QL 0.808(0.392) 0.898(0.241) 0.932(0.160) 0.968(0.073)

prob 0.88 0.977 0.993 1
QMLE 1.997(0.258) 2.000(0.184) 2.006(0.148) 1.996(0.084)

θ̂5 2 p-QL 1.912(0.328) 1.940(0.231) 1.965(0.139) 1.980(0.076)
prob 0.999 0.999 1 1

QMLE -0.010(0.272) 0.001(0.185) -0.004(0.155) -0.001(0.083)
θ̂6 0 p-QL 0.001(0.123) -0.003(0.059) 0.000(0.028) 0.000(0)

prob 0.968 0.989 0.995 1
QMLE 0.997(0.262) 0.996(0.179) 0.998(0.153) 0.998(0.081)

θ̂7 1 p-QL 0.789(0.390) 0.892(0.246) 0.927(0.172) 0.971(0.078)
prob 0.867 0.967 0.992 1

QMLE 1.000(0.267) 0.991(0.187) 1.002(0.150) 1.000(0.818)
θ̂8 1 p-QL 0.811(0.399) 0.883(0.248) 0.936(0.162) 0.972(0.076)

prob 0.881 0.968 0.995 1
QMLE 1.006(0.269) 0.997(0.182) 1.002(0.152) 0.999(0.083)

θ̂9 1 p-QL 0.788(0.394) 0.891(0.241) 0.937(0.167) 0.973(0.071)
prob 0.871 0.971 0.994 1

QMLE 0.022(0.264) -0.008(0.181) 0.007(0.145) 0.000(0.081)
θ̂10 0 p-QL 0.000(0.089) -0.004(0.048) 0.000(0.027) 0.000(0.007)

prob 0.975 0.986 0.993 0.998
Under model 0.91 0.958 0.98 0.998

Total Over model 0.606 0.9 0.979 1
True model 0.591 0.878 0.962 0.998
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for j ∈ J (0) and

P (θ̂n.j ̸= 0)

for j ∈ J (1). Under model is the probability that the estimator selects an under
model:

P
(
{j; θ̂n,j = 0} ⊃ J (0)

)
and Over model is the probability that the estimator selects an over model:

P
(
{j; θ̂n,j = 0} ⊂ J (0)

)
.

True model is the probability that the true model is selected:

P
(
{j; θ̂n,j = 0} = J (0)

)
.

From Table 4.1, it can seen that when sample size n is large , penalized method
performs variable selection very well. Moreover, the bias of non-zero parameters
decrease as the sample size increases.
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Chapter 4

Volatility estimation with a global
jump filter

4.1 Volatility with a jump global filter
Given a stochastic basis (Ω,F ,F, P ) with a filtration F = (Ft)t∈[0,T ], we suppose
that an m-dimensional semimartingale Y = (Yt)t∈[0,T ]

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σ(Xs, θ)dws + Jt, t ∈ [0, T ]. (4.1)

depending on an unknown parameter θ in the closure of a bounded open set Θ
in Rp. Here w = (wt)t∈[0,T ] is an r-dimensional standard F-Wiener process, and
the diffusion coefficient σ : Rd × Θ → Rm ⊗ Rr is a continuous function. The
process b = (bt)t∈[0,T ] is an m-dimensional progressively measurable process. J =
(Jt)t∈[0,T ] is the jump part of Y with J0 = 0. In this thesis, we will assume that J is
finitely activate in that

∑
t∈[0,T ] 1{∆Jt ̸=0} < ∞ a.s. and Jt =

∑
s∈[0,t] ∆sYs, where

∆Ys = Ys − Ys− and ∆Y0 = 0. The model (4.1) is a stochastic regression model
with a covariate process X = (Xt)t∈[0,T ] that is supposed to be a d-dimensional
cádlág adapted process.

We will discuss estimation of the value of the unknown parameter θ based on
the high frequency data (Xtj , Ytj)j=0,1,...,n,tj = T n

j = jT/n. In estimation, any
structure of b is unknown and the data of b is not available. The jump part J is
also structurally unknown and unobservable. In this situation, we cannot tell each
increment ∆jY = Ytj − Ytj−1

has jumps or not. Estimation of the volatility pa-
rameter θ is usually carried out by using a weighted sum of (∆jY )⊗2. However,
the existence of jumps ∆J severely biases the estimate. To avoid the effects of
contamination by ∆J , threshold methods were developed; see e.g. Shimizu and
Yoshida (2006) and Ogihara and Yoshida (2011). They proved asymptotic opti-
mality of their estimators for the volatility parameter. However, in practice, it is

39



known that the performance of a threshold method heavily depends on a choice of
the tuning parameter involved in the threshold. The same kind fault appears even
if the threshold is tuned by an estimator of the spot volatility. It is because, for op-
timal estimation, the threshold should be set at a relatively high level to catch all
Brownian increments, and it causes incorrect acceptance of non-negligible jumps.
These threshold methods are local filters, since the threshold for ∆jY is deter-
mined by the data in a local neighborhood of tj . Differently from the local filters,
Inatsugu and Yoshida (2018) recently proposed new jump filters. Their filters use
a kind of order statistics of {∆jY }j=1,··· ,n. Due to time-global dependency of
the filter, the martingale structure in the likelihood function is destroyed but they
showed it can be re-caputured asymptotically and proved asymptotic optimality of
the estimator. The resulting threshold becomes smaller because it is determined
by the data endogenously.

The aim of this section is to formulate the quasi-likelihood analysis for sparse
estimation of volatility with the global jump filters.

Some of the components of the jump part can vanish in some situations by na-
ture of the phenomena. Then we do not need filtering jumps for such components,
and component-wise construction of jump filters is necessary. It will be assumed
that σ is a block matrix:

σ = diag[σ(1)(x, θ), . . . , σ(k)(x, θ)] (4.2)

where σ(k)(x, θ) is a mk ×mk matrices, k = 1, . . . , k. Let

S(x, θ) = diag[S(1)(x, θ), . . . , S(k)(x, θ)]

for the mk × mk matrices S(k)(x, θ) = σ(k)(σ(k))′(x, θ), k = 1, . . . , k. According
to the decomposition (4.2), we denote v = (v(k))k=1,...,k for r-dimensional matrix
v with r =

∑
k mk = m, and

Yt =

Y
(1)
t
...

Y
(k)
t

 , bt =

b
(1)
t
...

b
(k)
t

 , wt =

w
(1)
t
...

w
(k)
t

 , Jt =

J
(1)
t
...

J
(k)
t

 .

4.1.1 The global jump filter and the quasi-likelihood function
For estimation of θ, we will use the quasi-log likelihood function Hn(θ) defined
by

Hn(θ) = −1

2

k∑
k=1

∑
j∈K(k)

n

{
(q(k)n )−1h−1S(k)(Xtj−1

, θ)−1[(∆jY
(k))⊗2]K

(k)
n,j
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+ (p(k)n )−1 log detS(k)(Xtj−1
, θ)

}
(4.3)

when all S(k)(Ttj−1
) are almost surely invertible. The index sets K(k)

n in {1, . . . , n}
select the indices j for which we judge J (k) did not jump on the interval (tj−1, tj].
These index sets form our jump filter. The function Hn has scales q(k)n and p

(k)
n to

avoid the bias caused by removing data by K(k)
n in {1, . . . , n}. However, at least

theoretically, we do not need to be nervous about choices of q(k)n and p
(k)
n . In fact,

the forthcoming asymptotic theory is valid even for q(k)n = p
(k)
n = 1. We will

return to this point in Remark 4.1.3.
The factors K(k)

n,j are defined by

K
(k)
n,j = 1{

|∆jY (k)|<C
(k)
∗ n

1
4

} (4.4)

where C
(k)
∗ are arbitrarily given positive constants. The threshold of each K

(k)
n,j

is much larger than ordinary thresholds used in existing local jump filters. As
a matter of fact, the factors K

(k)
n,j are not necessary if we know boundedness of

moments of ∆Jt. Thanks to K
(k)
n,j , we can remove such a condition we cannot

verify in practice.
Now our concern is how to construct the global filter K(k)

n . Fix δ
(k)
1 ∈ (0, 1/2)

for k = 1, . . . , k. Let s(k)n = n−B(k)⌊nδ
(k)
1 ⌋ with positive constants B(k). In what

follows, we will only consider sufficiently large n. Moreover, let S(k)
n,j−1 be an

m×m positive definite symmetric random matrix. Let

V
(k)
j = |(S(k)

n,j−1)
−1/2∆jY

(k)|.

We denote by V
(k)
(j) the j-th order statistic of V (k)

1 , . . . , V
(k)
n . Then the global filter

we will work with is defined by

K(k)
n = {j ∈ {1, . . . , n};V (k)

j < V
(k)

(s
(k)
n )

}.

Let

αn = (α(1)
n , . . . , α(k)

n ) with α(k)
n = 1− s(k)n /n. (4.5)

Then the numbers (s
(k)
n )k=1,...,k are determined by αn. We can use αn to specify

the jump filter K(k)
n .

Remark 4.1.1. The filter K(k)
n uses all the increments {∆jY }j=1,...,n. In this sense,

we call it a global jump filter. The function Hn(θ) has lost the martingale structure
due to K(k)

n . This makes analysis harder but we can asymptotically recover the
martingale property in the score function. See Inatsugu and Yoshida (2018) for
details.
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Remark 4.1.2. The factor K(k)
n,j stabilizes the effect of ∆jY . It is not for filtering.

The functional K(k)
n,j is defined by (4.4). On the other hand, it is possible to use

K
(k)
n,j = 1{

V
(k)
j <C

(k)
∗ n− 1

4−δ0

}
for constants δ0 ∈ (0, 1/4) and C

(k)
∗ ∈ (0,∞).

Remark 4.1.3. We only require that (S(k)
n,j−1)

−1 is uniformly bounded in L∞−

and that both q
(k)
n and p

(k)
n are sufficiently close to 1. Therefore, we may choose

them as q(k)n = q
(k)
n = 1 and S

(k)
n,j−1 = Imk

. In this special case, Hn(θ) becomes
simply H̊n defined by

H̊n(θ) = −1

2

k∑
k=1

∑
j∈K(k)

n

{
h−1S(k)(Xtj−1

, θ)[(∆jY
(k))⊗2]K

(k)
n,j

+ log detS(k)(Xtj−1
, θ)

}
with K(k)

n for V (k)
j = |∆jY

(k)|. Since H̊n satisfies the conditions specified later,
for the estimators with respect to H̊n, the same asymptotic results hold as those of
Hn.

On the other hand, it is also natural to take some local volatility estimator for
S

(k)
n,j−1 since V

(k)
j compares (Sk

n,j−1)
−1/2 and ∆jY

(k). For α = (α(k))k∈{1,...,k} ∈
[0, 1)k, let p(α(k)) = 1− α(k) and

q(k)(α(k)) =
Tr

(∫
|z|≤c(α(k))1/2

z⊗2ϕ(z; 0, Imk
)dz

)
Tr

(∫
Rm z⊗2ϕ(z; 0, Imk

)dz
)

where ϕ(z;µ,C) denotes the density function of the multi-dimensional normal
distribution with mean vector µ and covariance matrix C. Then another possibility
for q(k)n and p

(k)
n is to use q

(k)
n = q(k)(α

(k)
n ) and p

(k)
n = p(k)(α

(k)
n ) where α

(k)
n are

given by (4.5)

4.1.2 Regularity conditions
To develop asymptotic theory, we will need some notation and regularity condi-
tions. Denote by ||V ||p = (E[|V |p])1/p the Lp-norm of a vector-valued random
variable V for p > 0. Write L∞− = ∩p>1L

p. Let NX
t =

∑
s≤t 1{∆X

(k)
s ̸=0}, N

(k)
t =∑

s≤t 1{∆J
(k)
s ̸=0} and Nt =

∑
s≤t 1{∆Js ̸=0}. In [C1]κ below, we will impose the
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condition that NX
T < ∞ almost surely. Then the jump part JX of X is written as

JX =
∑

s≤t ∆Xs. Let X̃ = X − JX for JX =
∑

s∈[0,·] ∆Xs.
We consider the following regularity conditions.

[C1]κ (i) For every p > 1, supt∈[0,T ] ||Xt||p < ∞ and there exists a constant C(p)
such that

||X̃t − X̃s||p ≤ C(p)|t− s|1/2 (t, s ∈ [0, T ]).

(ii) supt∈[0,T ] ||bt||p < ∞ for every p > 1.

(iii) σ ∈ C2,κ
↑ (Rd×Θ;Rm×Rr), S(Xt, θ) is invertible a.s. for every (t, θ) ∈

[0, T ]×Θ

(iv) Nt +NX
T ∈ L∞−.

[C2] (i) S(k)
n,j−1(k ∈ {1, . . . , k}, n ∈ N, j ∈ {1, . . . , n}) are positive-definite

measurable random matrices and satisfy

sup
k∈{1,...,k}

n∈N,j∈{1,...,n}

(
||S(k)

n,j−1||p + ||(S(k)
n,j−1)

−1||p
)
< ∞

for every p > 1.

(ii) q
(k)
n and p

(k)
n are positive numbers satisfying |q(k)n − 1| = o(n−1/2) and

|1− p
(k)
n | = o(n−1/2).

For consistent estimation, we need an identifiability condition. Our argument
will provide more precise modes of convergence (e.g. convergence of the mo-
ments of the estimation error) than just consistency. Then a certain quantitative
estimate of identifiability is necessary. The following key index χ0 serves to it:

χ0 = inf
θ ̸=θ∗

−Y(θ)
|θ − θ∗|2

where

Y(θ) = − 1

2T

k∑
k=1

∫ T

0

{
Tr

(
S(k)(Xt, θ)

−1S(k)(Xt, θ
∗)− Imk

)
+ log

detS(k)(Xt, θ)

detSk)(Xt, θ∗)

}
dt.

Since the degree of separation of the model is random, we need a stochastic
estimate of identifiability, through χ0.

[C3 ] For every positive number L, there exists a constant CL such that

P [χ0 < r−1] ≤ CLr
−L (r > 0)
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Remark 4.1.4. When X is a non-degenerate diffusion process, Uchida and Yoshida
(2013) gave some easily verifiable criteria are known for Condition [C3]. For fur-
ther information, see Remark 2.11 of Inatsugu and Yoshida (2018).

Remark 4.1.5. Conditions [C1]κ, [C2] and [C3] are Conditions [F1]κ, [F2’] and
[F3] of Inatsugu and Yoshida (2018), respectively.

Suppose that the parameter space Θ admits Sobolev’s embedding inequality

sup
θ∈Θ

|f(θ)| ≤ CΘ,p

{ 1∑
i=0

∫
Θ

|∂i
θf(θ)|pdθ

}1/p

(f ∈ C1(Θ))

where CΘ,p is a constant and p > p. For example, this inequality holds if Θ has a
Lipschitz boundary. We are assuming that the diffusion coefficient σ is continuous
on Rd ×Θ.

4.1.3 Quasi-likelihood analysis based on Hn: polynomial type
large deviation

Define the quasi-likelihood ratio random field Zn by

Zn(u) = exp
{
Hn(θ

∗ + n−1/2u)−Hn(θ
∗)
}

(u ∈ Un)

where Un = {u ∈ Rp; θ∗ + n−1/2u ∈ Θ}.
Let Vn(r) = {u ∈ Un; |u| ≥ r}. The following result is given in Theorem 3.3

of Inatsugu and Yoshida (2018).

Theorem 4.1.6. Suppose that [C1]4, [C2] and [C3] are satisfied. Then, for every
c0 ∈ (1, 2) and every positive number L, there exist a constant C(c0, L) such that

P
[

sup
u∈Vn(r)

Zn(u) ≥ e−rc0
]
≤ C(c0, L)

rL

for all r > 0 and n ∈ N.

The quasi-maximum likelihood estimator (QMLE) θ̂M,αn
n for θ is any sequence

of measurable mappings from Ω to Θ satisfying

Hn(θ̂
M,αn
n ) = max

θ∈Θ
Hn(θ).

Such a measurable mapping always exists by the measurable mapping theorem.
We write “α” in the symbol of the QMLE in order to emphasize the dependency
of it on αn determining the global filter.
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The quasi-Bayesian estimator (QBE) θ̂B,αn
n for θ is defined by

θ̂B,αn
n =

[∫
Θ

exp(Hn(θ))ϖ(θ)dθ

]−1 ∫
Θ

θ exp(Hn(θ))ϖ(θ)dθ,

where ϖ is a continuous function on Θ such that 0 < infθ∈Θ ϖ(θ) ≤ supθ∈Θϖ(θ) <
∞. As a consequence of PLDI in Theorem 4.1.6, the Lp-boundedness of the esti-
mators follows. We denote

ûA,αn
n =

√
n(θ̂A,αn

n − θ∗)

for A = M,B.

Proposition 4.1.7. Suppose that [C1]4, [C2] and [C3] are satisfied. Then

sup
n∈N

||ûA,αn
n ||p < ∞ (A = M,B)

for every p > 1.

4.1.4 Quasi-likelihood analysis based on Hn: limit theorem and
convergence of moments

We will consider the situation where the process X admits a representation

Xt = X0 +

∫ t

0

b̃sds+

∫ t

0

ãsdw̃s + JX
t (t ∈ [0, T ]) (4.6)

where JX = (JX
t )t∈[0,T ] is a càdlàg adapted pure jump process, w̃ = (w̃t)t∈[0,T ]

is an r1-dimensional F-Wiener process, b̃ = (b̃t)t∈[0,T ] is a d-dimensional càdlàg
adapted process and ã = (ãt)t∈[0,T ] is an Rd×Rr1-valued progressively measurable
processes such that

||X0||p + sup
t∈[0,T ]

(||b̃t||p + ||ãt||p + ||JX
t ||p) < ∞ (4.7)

for every p > 1. The Wiener process w̃ is possibly correlated with w.
We strengthen Condition [C1] as follows.

[C1′] The process X admits a representation (4.6)-(4.7) in addition to Conditions
(ii), (iii) and (iv) of [C1]κ.

Define the p× p symmetric matrix Γ(k) by

Γ(k)[u⊗2] =
1

2T

∫ T

0

Tr
(
(∂θS

(k)[u])(S(k))−1(∂θS
(k)[u])(S(k))−1(Xt, θ

∗)
)
dt,
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where u ∈ Rp, and Γ by Γ =
∑k

k=1 Γ
(k).

On an extension (Ω,F ,F) of (Ω,F ,F), we make a p-dimensional standard
Gaussian random vector ζ independent of F . Then Theorem 3.13 of Inatsugu and
Yoshida (2018) is rephrased:

Theorem 4.1.8. Suppose that [C1’]4, [C2] and [C3] are fulfilled. Then ûA,αn
n →d

Γ−1/2ζ (F-stably) and

E[f(ûA,αn
n ] → E[f(Γ−1/2ζ)]

as n → ∞ for any continuous function f of at most polynomial growth for A ∈
{M,B}.

4.1.5 Sparse estimation
We now focus on sparse estimation of volatility parameter for a process with
jumps. To apply the results in Sections 2.1-2.6, we will use n for T of Section
2.1, while T denotes the fixed terminal of the observations.

We will consider the penalized logarithmic quasi-likelihood function

H†
n(θ) = Hn(θ)− pn(θ)

where Hn is given in (4.3) and the penalty term pn is given in (2.2).
The penalized quasi-maximum likelihood estimator (penalized QMLE) is any

Θ-valued mapping θ̂n that is a measurable function of the data such that

H†
n(θ̂n) = max

θ∈Θ
H†

n(θ).

Let an = n−1/2Im, then from Theorem 4.1.6, we can derive [A1].

Proposition 4.1.9. Suppose that [C1]4,[C2] and [C3] are satisfied. Then for every
positive number L, Condition [A1] holds.

Moreover, we can apply Theorem 2.2.3 to our penalized QMLE θ̂n.

Theorem 4.1.10. Suppose that Condition [A2]-[A4], [C1]4 and [C2]-[C3] are
satisfied. Then for every positive number L, there exist constants CL > 0 and
εL ∈ (0, 1) such that

P

[
sup

u∈Vn(r)

Zn(u) ≥ exp(−r2−εL)

]
≤ CL

rL

for all r > 0, T > 0.
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Let ûn = a−1
n (θ̂n − θ∗) =

√
n(θ̂m − θ∗). The Lp-bounded ness of ûn is a

simple consequence from the above theorem.

Corollary 4.1.11. Under the conditions of Theorem 4.1.10,

sup
n∈N

||ûn||p < ∞

for every p > 1.

4.1.6 Selection consistency and limit theorem
Let

H̃n(θ) = −1

2

k∑
k=1

n∑
j=1

{
h−1S(k)(Xtj−1

, θ)−1[(∆jỸ
(k))⊗2] + log detS(k)(Xtj−1

, θ)
}

where Ỹ (k) = Y (k)−J (k). The following lemma gives a key estimate of the effect
in replacing the sums in j. See Lemma 3.5 of Inatsugu and Yoshida (2018)

Lemma 4.1.12. Suppose that [C1]4, [C2] and [C3] are satisfied. Then

4∑
i=0

sup
θ∈Θ

∣∣∣∣∣∣n−1/2∂i
θHn(θ)− n−1/2∂i

θH̃n(θ)
∣∣∣∣∣∣
p
→ 0

as n → ∞ for every p ≥ 1.

Lemma 4.1.13. Suppose that [C1]4, [C2] and [C3] are satisfied. Then

3∑
i=0

sup
n∈N

E
[(

n−1 sup
θ∈Θ

|∂i
θHn(θ)| < ∞

)p]
for every p > 1.

Proof. By sovolev’s inequality and Lemma 4.1.12, it suffices to show

4∑
i=0

sup
θ∈Θ

||n−1∂i
θH̃n(θ)||p < ∞ (4.8)

for every p > 1. But it is easy to verify (4.8).

Let

∆n = n−1/2∂θHn(θ
∗) and Γn = −n−1∂2

θHn(θ
∗).
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Lemma 4.1.14. Suppose that [C1]4, [C2] and [C3] are satisfied. Then supn∈N ||∆n||p
< ∞ for every p > 1.

Proof. Let

∆̃n = n−1/2∂θH̃n(θ
∗) =

1√
n

k∑
k=1

n∑
j=1

ftj−1
[D

(k)
j ]

where

ftj−1
=

1

2
((S(k))−1(∂θS

(k))(S(k))−1)(Xtj−1
, θ∗)

and

D
(k)
j = h−1(∆jỸ

(k))⊗2 − S(k)(Xtj−1
, θ∗).

By Lemma 4.1.12, it sufficient to verify

sup
n∈N

E[|∆̃n|p] < ∞. (4.9)

Since NX
T ∈ L∞− and∣∣∣∣∣∣ max

j=1,...,n
|ftj−1

[D
(k)
j ]

∣∣∣∣∣∣
p
= O(n1/4)

for every p > 1, we see∣∣∣∣∣∣n−1/2

n∑
j=1

ftj−1
[D

(k)
j ]

∣∣∣∣∣∣
p
=

∣∣∣∣∣∣n1/2

n∑
j=1

1{∆jNX=0}ftj−1
[D

(k)
j ]

∣∣∣∣∣∣
p
+ o(1)

for every p > 1. Thus we need to show∣∣∣∣∣∣n1/2

n∑
j=1

1{∆jNX=0}ftj−1
[D

(k)
j ]

∣∣∣∣∣∣ = O(1) (4.10)

as T → ∞ for every p > 1.
Fix k. We have

1{∆jNX=0}∆jỸ
(k) = 1{∆jNX=0}(ξ1,j + ξ2,j + ξ3,j)

with

ξ1,j = σ(k)(Xtj−1
, θ∗)∆jw

(k),
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ξ2,j =

∫ tj

tj−1

{σ(k)(Xtj−1
+ X̃t − X̃tj−1

, θ∗)− σ(k)(Xtj−1
, θ∗)}dw(k)

t ,

ξ3,j =

∫
tj−1

tjb
(k)
t dt.

Let

C(x, y) =

∣∣∣∣∫ 1

0

∂xσ
(k)(x+ r(y − x), θ∗)dr

∣∣∣∣.
Then by the same reason as in (4.10), and by Itô’s formula and the Burkholder-
Davis-Gundy inequality, we obtain∣∣∣∣∣∣n−1/2

n∑
j=1

1{∆jNX=0}h
−1ftj−1

[ξ1,j ⊗ ξ2,j]
∣∣∣∣∣∣

p

=
∣∣∣∣∣∣n−1/2

n∑
j=1

h−1ftj−1
[ξ1,j ⊗ ξ2,j]

∣∣∣∣∣∣
p
+ o(1)

≲
∣∣∣∣∣∣n−1/2

n∑
j=1

h−1ftj−1

∣∣σ(k)(Xtj−1
, θ)

∣∣×
∫ tj

tj−1

∣∣σ(k)(Xtj−1
+ X̃t − X̃tj−1,θ∗)− σ(k)(Xtj−1

, θ∗)
∣∣dt∣∣∣∣∣∣

p
+O(1)

≲
∣∣∣∣∣∣n−1/2

n∑
j=1

h−1ftj−1

∣∣σ(k)(Xtj−1
, θ)

∣∣×
∫ tj

tj−1

C(Xtj−1
, X̃t − X̃tj−1

)
∣∣X̃t − X̃tj−1

∣∣dt∣∣∣∣∣∣
p
+O(1)

≲n−1/2

n∑
j=1

h−1

∫ tj

tj−1

∣∣∣∣∣∣|ftj−1
|
∣∣σ(k)(Xtj−1

, θ)
∣∣×

C(Xtj−1
, X̃t − X̃tj−1

)
∣∣X̃t − X̃tj−1

∣∣∣∣∣∣∣∣
p
dt+O(1)

≲n−1/2

n∑
j=1

sup
t∈[tj−1,tj ]

||X̃t − X̃tj−1
||2p×

sup
t∈[tj−1,tj ]
j=1,...,n

∣∣∣∣∣∣|ftj−1
|
∣∣σ(k)(Xtj−1

, θ∗)
∣∣C(Xtj−1

, X̃t − X̃tj−1
)
∣∣∣∣∣∣
2p
+O(1)

=O(1)

for p > 1 since ||X̃t − X̃tj−1
||2p ≤ C(2p)n−1/2 and supt∈[0,T ] ||Xt||p + supt∈[0,T ]

||X̃t||p < ∞ by the continuity of the mapping t 7→ X̃t ∈ Lp for every p > 1. In a
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similar manner, we obtain∣∣∣∣∣∣∣∣n−1/2

n∑
j=1

1{∆jNX=0}h
−1ftj−1

[ξi1,j ⊗ ξi2,j]

∣∣∣∣∣∣∣∣
p

= O(1)

for every p > 1 and (i1, i2) ∈ {1, 2, 3}2 \ {(1, 1)}. For (i1, i2) = (1, 1),∣∣∣∣∣∣∣∣n−1/2

n∑
j=1

1{∆jNX=0}ftj−1
[h−1ξ1,j ⊗ ξ1,j − S(k)(Xtj−1

, θ∗)]

∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣n−1/2

n∑
j=1

ftj−1
[h−1ξ1,j ⊗ ξ1,j − S(k)(Xtj−1

, θ∗)]

∣∣∣∣∣∣∣∣+ o(1)

=O(1)

by the Burkholder-Davis-Gundy inequality. Therefore we obtained (4.10) and
hence (4.9).

Lemma 4.1.13 and Lemma 4.1.14 imply Condition [A7’]. Then we can apply
Proposition 2.3.4 and Theorem 2.3.5 to our estimator.

Theorem 4.1.15. Suppose that [A5]-[A6], [C1]4 and [C2]-[C3] are satisfied. Then

P
(
θ̂(0)n = 0

)
→ 1

as n → ∞.

If Condition [A11] holds, we can apply Theorem 2.4.8 to our penalized esti-
mator. Let

Ξn = diag[(ξjn)
1/q(j ∈ J (0))].

The penalized QMLE has limit distribution different from the QMLE.

Theorem 4.1.16. Assume Conditions [A2], [A5]-[A6], [A11], [C1]4 and [C2]-
[C3]. Then

Ξn(θ̂
(0)
n − θ∗(0))

p→ 0

and
√
n(θ̂(1)n − θ∗(1))

d→ (Γ(11))−1((Γ1/2ζ)−ψ(1)) (F − stably)

as T → ∞.

Moreover,

E[f(ûn)] → E[f(0, (Γ(11))−1((Γ1/2ζ)−ψ(1)))]

as n → ∞ for any continuous function f of at most polynomial growth.
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4.2 Simulation of volatility with a jump global filter
In this section, we conduct some numerical simulations of volatility estimation
with a jump global filter in Section 4.1. Let d = 10 and

Xd
t =

∫ t

0

sin(2dπs)

(1 + (Xd
s )

2)
dw̃d

s + Ñd
t , t ∈ [0, T ]

for d = 1, . . . , 10 where w̃1, . . . , w̃10 are independent standard Wiener processes
and Ñ1, . . . , Ñ10 are independent homogeneous Poisson processes with intensity
λ = 10. We assume

σ(Xt, θ) =


1 0 0 0 0

θ1f(X
1
t ) 1 0 0 0

θ2f(X
2
t ) θ3f(X

3
t ) 1 0 0

θ4f(X
4
t ) θ5f(X

5
t ) θ6f(X

6
t ) 1 0

θ7f(X
7
t ) θ8f(X

8
t ) θ9f(X

9
t ) θ10f(X

10
t ) 1


where f : R → R is a function defined by f(x) = 2 + sin(x). Then p = 10,
m = r = 5 and κ = 1. Let (Nm

t )m=1,...,5 be independent homogeneous Poisson
processes with intensity λ = 10 and (zmi )i∈N be an infinite independent identically
distributed standard normal random variables for m = 1, . . . , 5. Define Jt by
Jt = (J1

t , . . . , J
5
t )

′ where

Jm
t =

Nm
t∑

i=1

zmi (m = 1, . . . , 5).

When Nm
t = 0, we define Jm

t = 0. Let Y0 = bs = 0, then the model (4.1)
becomes

Yt =

∫ t

0

σ(Xs, θ)dws + Jt, t ∈ [0, T ],

where ws is 5-dimensional standard Wiener process. We assume w̃d
t , wt, Ñ

d
t , Nm

t ,
zmi are independent.

According to Remark 4.1.3, let qn = pn = 1 and Sn,j−1 = I5. Moreover let
C∗ = 10000, then factors Kn,j is defined by

Kn,j = 1
{|∆jY |<10000n− 1

4 }
.

Let δ1 = 1/4 and B = 1, then sn = n− ⌊n1/4⌋,

Vj = |∆jY
(k)|
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and

Kn = {j ∈ {1, . . . , n};Vj < V(n−⌊n1/4⌋)}.

In these settings, we consider the quasi-likelihood function

Hn(θ) = −1

2

∑
j∈Kn

{
h−1S(Xtj−1

, θ)−1[(∆jY )⊗2]Kn,j

+ log detS(k)(Xtj−1
, θ)

}
.

According to Section 4.1, let an = n−1/2I10. In these settings, it is easy to verify
Conditions [C1]4 and [C2]. We will derive the Condition[C3].

Proposition 4.2.1. Under settings in this section, Condition [C3] holds.

Proof. We denote the Hessian matrix of Y(θ) by H(Y). By definition,

detS(Xt, θ) = detS(Xt, θ
∗) = 1

and

σ−1(Xt, θ) =


1 0 0 0 0

−θ1f(X
1
t ) 1 0 0 0

σ−1
31 −θ3f(X

3
t ) 1 0 0

σ−1
41 σ−1

42 −θ6f(X
6
t ) 1 0

σ−1
51 σ−1

52 σ−1
53 −θ10f(X

10
t ) 1


where

σ−1
31 = θ1θ3f(X

1
t )f(X

3
t )− θ2f(X

2
t ),

σ−1
41 = θ1θ5f(X

1
t )f(X

5
t )− θ4f(X

4
t )

− θ1θ3θ6f(X
1
t )f(X

3
t )f(X

6
t ) + θ2θ6f(X

2
t )f(X

6
t ),

σ−1
42 = θ3θ6f(X

3
t )f(X

6
t )− θ5f(X

5
t ),

σ−1
51 = θ1θ8f(X

1
t )f(X

8
t )− θ7f(X

7
t )− θ1θ3θ9f(X

1
t )f(X

3
t )f(X

9
t )

+ θ2θ9f(X
2
t )f(X

9
t )− θ1θ5θ10f(X

1
t )f(X

5
t )f(X

10
t ) + θ4θ10f(X

4
t )f(X

10
t )

+ θ1θ3θ6θ10f(X
1
t )f(X

3
t )f(X

6
t )f(X

10
t )− θ2θ6θ10f(X

2
t )f(X

6
t )f(X

10
t ),

σ−1
52 = θ3θ9f(X

3
t )f(X

9
t )− θ8f(X

8
t )

− θ3θ6θ10f(X
3
t )f(X

6
t )f(X

10
t ) + θ5θ10f(X

5
t )f(X

10
t )

and

σ−1
53 = θ6θ10f(X

6
t )f(X

10
t )− θ9f(X

9
t ).
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Therefore

Tr
(
S(Xt, θ)

−1S(Xt, θ
∗)
)

= Tr
(
(σ(Xt, θ)

−1σ(Xt, θ
∗))(σ(Xt, θ)

−1σ(Xt, θ
∗))′

)
=

5∑
i=1

5∑
j=1

(
σ(Xt, θ)

−1σ(Xt, θ
∗)
)2
ij

= 5 + (θ1 − θ∗1)
2f(X1

t )
2 + (θ3 − θ∗3)

2f(X3
t )

2 + (θ6 − θ∗6)
2f(X6

t )
2

+ (θ10 − θ∗10)
2f(X10

t )2 + {θ3(θ1 − θ∗1)f(X
1
t )f(X

3
t )− (θ2 − θ∗2)f(X

2
t )}2

+ {θ6(θ3 − θ∗3)f(X
3
t )f(X

6
t )− (θ5 − θ∗5)f(X

5
t )}2

+ {θ10(θ6 − θ∗6)f(X
6
t )f(X

10
t )− (θ9 − θ∗9)f(X

9
t )}2

+
[
{θ5f(X5

t )− θ3θ6f(X
3
t )f(X

6
t )}(θ1 − θ∗1)f(X

1
t )

+ θ6f(X
6
t )(θ2 − θ∗2)f(X

2
t )− (θ4 − θ∗4)f(X

4
t )
]2

+
[
{θ9f(X9

t )− θ6θ10f(X
6
t )f(X

10
t )}(θ3 − θ∗3)f(X

3
t )

+ θ10f(X
10
t )(θ5 − θ∗5)f(X

5
t )− (θ8 − θ∗8)f(X

8
t )
]2

+
[
{θ8f(X8

t )− θ3θ9f(X
3
t )f(X

9
t )− θ5θ10f(X

5
t )f(X

10
t )

+ θ3θ6θ10f(X
3
t )f(X

6
t )f(X

!0
t )}(θ1 − θ∗1)f(X

1
t )

+ {θ9f(X9
t )− θ6θ10f(X

6
t )f(X

10
t )}(θ2 − θ∗2)f(X

2
t )

θ10f(X
10
t )(θ4 − θ∗4)f(X

4
t )− (θ7 − θ∗7)f(X

7
t )
]2
. (4.11)

Hence

H(Y)|θ=θ∗

= − 1

T

∫ T

0

diag
[
f(X1

t )
2[1 + (θ∗3f(X

3
t ))

2 + (θ∗5f(X
5
t )− θ∗3θ

∗
6f(X

3
t )f(X

6
t ))

2

+ (θ∗8f(X
8
t )− θ∗3θ

∗
9f(X

3
t )f(X

9
t )− θ∗5θ

∗
10f(X

5
t )f(X

10
t )

+ θ∗3θ
∗
6θ

∗
10f(X

3
t )f(X

6
t )f(X

!0
t ))

2],

f(X2
t )

2[1 + (θ∗6f(X
6
t ))

2

+ (θ∗9f(X
9
t )− θ∗6θ

∗
10f(X

6
t )f(X

10
t ))2],

f(X3
t )

2[1 + (θ∗6f(X
6
t ))

2

+ (θ∗9f(X
9
t )− θ∗6θ

∗
10f(X

6
t )f(X

10
t ))2],

f(X4
t )

2[1 + (θ∗10f(X
10
t ))2],

f(X5
t )

2[1 + (θ∗10f(X
10
t ))2],

f(X6
t )

2[1 + (θ∗10f(X
10
t ))2],

f(X7
t )

2, f(X8
t )

2, f(X9
t )

2, f(X10
t )2

]
dt
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and

det[H(Y)|θ=θ∗ ] ≤ − 1

T

∫ T

0

10∏
i=1

(
f(X i

t)
2

)
dt ≤ 1.

Therefore, if |θ − θ∗| is small, then −Y(θ)/|θ − θ∗|2 is large. On the other hand,
if |θ1 − θ∗1| is large, then the term (θ1 − θ∗1)

2f(X1
t )

2 in (4.11) is large. In this case,
−Y(θ)/|θ − θ∗|2 is large since Θ is compact. Moreover, if |θ1 − θ∗1| and |θ3 − θ∗3|
are small and |θ2 − θ∗2| is large, then the term {θ3(θ1 − θ∗1)f(X

1
t )f(X

3
t ) − (θ2 −

θ∗2)f(X
2
t )}2 in (4.11) is large. Similarly, if |θ − θ∗| is large, −Y(θ)/|θ − θ∗|2 is

large. Then we can complete the proof.
Let ξjn = n1/3, q = 1/2 and p(x) = |θ|1/2, then

pn(θ) = n1/3

10∑
j=1

|θj|1/2

and

H†
n(θ) = Hn(θ)− n1/3

10∑
j=1

|θj|1/2.

It is easy to verify Conditions [A2]-[A6] and [A11]. Thus we can obtain results
in Theorem 4.1.10, 4.1.15 and 4.1.16. We calculate MQLE

θ̂Mn ∈ argmax
θ∈Θ

Hn(θ)

and penalized MQLE

θ̂n ∈ argmax
θ∈Θ

H†
n(θ)

by numerical simulations. Through the simulation, we fix terminal T = 1. The
true value of θ is

θ∗ = (0, 0,−0.5, 1, 0, 0, 0, 2, 0,−1)′.

We iterated 300 times for n = 500, 2000, respectively.
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Table 4.1: Simulation results for the volatility regression model.
True 500 2000

QMLE -0.002(0.033) 0.001(0.022)
θ̂1 0 p-QL -0.002(0.027) 0.000(0.018)

prob 0.906 0.943
QMLE 0.02(0.041) -0.001(0.023)

θ̂2 0 p-QL 0.002(0.030) 0.000(0.016)
prob 0.893 0.950

QMLE -0.473(0.063) -0.493(0.025)
θ̂3 -0.5 p-QL -0.468(0.064) -0.491(0.025)

prob 0.997 1.000
QMLE 0.932(0.147) 0.981(0.051)

θ̂4 1 p-QL 0.931(0.147) 0.981(0.051)
prob 1.000 1.000

QMLE 0.009(0.063) 0.004(0.035)
θ̂5 0 p-QL 0.007(0.059) 0.003(0.032)

prob 0.803 0.926
QMLE -0.008(0.055) 0.002(0.023)

θ̂6 0 p-QL -0.007(0.051) 0.001(0.019)
prob 0.813 0.946

QMLE -0.014(0.127) 0.003(0.091)
θ̂7 0 p-QL -0.014(0.115) 0.002(0.085)

prob 0.567 0.797
QMLE 1.872(0.257) 1.961(0.119)

θ̂8 2 p-QL 1.869(0.257) 1.959(0.119)
prob 1.000 1.000

QMLE -0.065(0.167) -0.031(0.095)
θ̂9 0 p-QL -0.063(0.161) -0.030(0.093)

prob 0.680 0.856
QMLE -0.829(0.242) -0.927(0.1127)

θ̂10 -1 p-QL -0.826(0.241) -0.925(0.127)
prob 1.000 1.000

Under model 0.363 0.67
Total Over model 0.997 1

True model 0.363 0.673

55



Bibliography

Belomestny, D., Trabs, M. (2018). Low-rank diffusion matrix estimation for
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