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Chapter 1

Introduction

In this thesis, we are interested in two topics: one is the sparse estimation
and the other is statistical inference for stochastic processes. As a prologue,
we shall begin to introduce the general history of these two topics briefly.

1.1 A brief review of sparse estimation

For several decades, the sparse modeling has received attention from various
fields. The most commonly used sparse modeling in statistics is L1 regular-
ization, and typical one is the LASSO (least absolute shrinkage and selec-
tion operator), which is proposed by Tibshirani [35]. LASSO is a useful and
widely studied approach to the problem of variable selection. Compared with
other estimation methods, LASSO’s major advantage is simultaneous execu-
tion of both parameter estimation and variable selection ([16], [35]). Origi-
nally, LASSO was introduced for linear regression problems. Suppose that
y = [y1, . . . , yT ]′ is a response vector and xj = [x1j, . . . , xTj]′, j = 1, . . . , d, are
the linearly independent predictors.1 Then the LASSO estimator is defined
by

θ̂LASSO = argmin
θ∈Rd






∥∥∥∥∥y −
d∑

j=1

xjθj

∥∥∥∥∥

2

+ λ
d∑

j=1

|θj|




 , (1.1)

where λ is a nonnegative regularization parameter. The second term on the
right-hand side of (1.1) is the so-called L1 penalty. Thanks to the singular-
ity of the L1 penalty at the origin, LASSO can perform automatic variable
selection.

1The prime denotes the matrix transpose.
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CHAPTER 1. INTRODUCTION 5

LASSO has evolved in various directions over the last two decades, and
the directions of its development are roughly categorized into the following
three.

(1) Extension of models and penalties.

(2) Investigations to the properties of estimators.

(3) Developments of algorithms to calculate estimators.

First, regarding (1), LASSO is applied to not only the linear regression
model, but also the generalized linear regression model ([20], [33]), the graph-
ical model ([29], [48]), the multivariate analysis ([44], [53]), the (quasi-) like-
lihood analysis ([14]), etc. Regarding the penalty terms, there are various
extensions according to the analysis. One extension is to replace the L1-
penalty with another penalty like the adaptive LASSO ([52]), Bridge ([18]),
SCAD (smoothly clipped absolute deviation [16]), MCP (minimax concave
penalty [49]), etc. Another extension is using the relation among parameters
like the Group LASSO ([47]), the fused LASSO ([36]), etc.

In relation to (2), the concept of the LASSO is that “we sacrifice a little
bias to reduce the variance of the predicted values and hence may improve
the overall prediction accuracy” ([36]), but it is preferable that the estimator
of interest is consistent or asymptotically normal as the sample size is large
enough. Thus Knight and Fu ([26]) studied the asymptotic properties of the
LASSO estimator and showed that the LASSO type estimator is consistent
and asymptotically normal. Recently, the convergence rate and selection
consistency of the estimators have been well studied in the case where, not
only the sample size, the number of variables is also large ([5], [42], [50]).
However, when the number of variables is quite large, strong conditions are
required to derive the good properties of the LASSO estimator. Thus, the
LASSO cannot be used in the practical situation with high dimensional data.

With regards to (3), the LARS algorithm (Least Angle Regression [15])
was the first noticed algorithm for the LASSO. The estimator obtained by
the LARS algorithm is quite similar to the LASSO estimator and, more-
over, those two estimators coincide by using the slightly modified version of
the LARS algorithm. In recent years, fast and versatile algorithms such as
the coordinate decent ([19]) or the ADMM algorithm (Alternating Direction
Method and Multipliers [8]) have been proposed.

Based on the above, in this thesis, we will discuss the following.
Regarding (1), by replacing the first term on the right-hand side of (1.1)

with a general loss function LT , we can easily apply the LASSO to various
models. However, the asymptotic and numerical theories are established in a
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case-by-case manner. One of the solutions to this problem is the least squares
approximation (LSA) method proposed by Wang and Leng ([43]). The LSA
is defined by a simple approximation to the original loss function:

1

T
LT (θ) ≈ (θ − θ̃)′Ĝ(θ − θ̃)

where Ĝ is a non-singular matrix depending on the data and θ̃ is the mini-
mizer of the loss function LT . Using the LSA method, we can deal with many
different models in a unified frame. Choice of the penalty term is also a cru-
cial issue in regularization techniques. In this thesis, we adopt the Bridge
and the adaptive lasso type penalty, i.e., a weighted Lq penalty because the
Bridge estimator with 0 < q < 1 and the adaptive LASSO estimator have the
“oracle properties”. Oracle properties were recognized by Fan and Li ([16])
and a good estimator with variable selection should have these properties.
Let θ∗ = [θ∗j ]j is the true value of θ and A = {j; θ∗j #= 0}. An estimator θ̂ has

oracle properties if θ̂ satisfies

• selection consistency: P [θ̂Ac = 0] → 1, and

• asymptotic normality:
√
T (θ̂A − θ∗A) →d N(0, G−1), for some |A|× |A|

positive definite symmetric matrix G.

Then our objective function Q(q)
T (θ) consists of an LSA term and an weighted

Lq penalty term:

Q(q)
T (θ) = (θ − θ̃)′Ĝ(θ − θ̃) + λT

d∑

j=1

ŵj|θj|q. (1.2)

Moreover, for 0 < q ≤ 1, we define a penalized least squares approximation
(penalized LSA, pLSA) estimator by θ̂(q) = argminθQ

(q)
T (θ).

Next, respecting (2), we first show that the pLSA estimator defined above
has the oracle properties. Moreover, we investigate the properties of the
pLSA estimator in more detail. Specifically, we consider the Lp-boundedness
of the initial estimator. This concept is often used and plays an important
role in the statistical inference for stochastic processes. By assuming the
Lp-boundedness of the initial estimator, we have the Lp-boundedness of the
pLSA estimator and evaluate the convergence rate of selection consistency.

Finally, with respect to (3), since the pLSA objective function is non-
convex when q < 1, the pLSA methods have a disadvantage in optimization
in comparison with the L1 regularization methods. However, by simplifying
the objective function (1.2) by replacing the coefficient matrix Ĝ with the
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identity matrix, optimization of the pLSA objective function comes down
to the one-dimensional optimization. Due to that simplification, the pLSA
estimator loses the efficiency, but we can obtain the efficient estimator by
estimating the parameter again under the model which is selected by the
pLSA estimator.

1.2 A brief review of statistical inference for
stochastic processes

A stochastic process is the mathematical concept which describes random
phenomenon depending on time or space. Studies on the statistics of stochas-
tic processes began in the 1970s, and it grew rapidly, especially with the
development of the martingale limit theorem in the 1980s. In recent years,
research has bean conducted using not only martingale theory, but also the
Malliavin calculus and the theory of empirical processes, and the basic the-
ory has become wider and deeper. On the other hand, its applications to
various fields such as actually finance, actuarial science, biostatistics, and
survival analysis have been actively studied, and its importance has been
widely recognized.

This thesis treats some specific examples of continuous-time stochastic
processes, thus, we will mention this a little. The asymptotic inference for
continuous-time stochastic processes has been studied based on the likeli-
hood theory by many authors. There are many examples of this: Markov
processes with the general state space (Billingsley [6]), Markov branching
processes (Athreya and Keiding [2], Feigin [17]), point processes (Brown [11],
Brillinger [10]) and general Levy processes (Akritas and Johnson [1]), for in-
stance. In the 1990s, the asymptotic inference for stochastic processes began
to be discussed in the general framework of semimartingales that was a wide
class of stochastic processes.The LAMN property discussed by Jeganathan
[24] and Basawa and Scott [4] in general framework was applied to the class
of semimartingales by Luschgy [27], and he introduced the new concept of the
local asymptotic quadraticity (LAQ). Yoshida [46] gave a polynomial type
large deviation inequality in this LAQ setting to carry out the Ibragimov-
Has’minskii-Kutoyants scheme for stochastic processes. The polynomial type
large deviation inequality works in various settings, in particular, it is appli-
cable to our examples. As mentioned in [46], Lp-boundedness is derived from
the PLDI.
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1.3 Organization of this thesis

This thesis is mostly based on [34] and consists of three chapters.
In Chapter 2, we first define the penalized least squares approximation

estimator and derive the oracle properties of the pLSA estimator and the
convergence rate of selection consistency. This is the main part of this the-
sis. Next, we define P-O estimator, which does not have the oracle properties
but is consist. “P-O” is the abbreviation of “penalized method to ordinary
method”, i.e., P-O estimator is obtained by the following two steps : (i)
obtain an estimator which satisfies the selection consistency (not necessarily
having the oracle properties), (ii) obtain an estimator by using the ordi-
nary method under the model which is selected by the estimator in Step (i).

Specifically, instead of using the pLSA objective function Q(q)
T (θ), we use the

objective function

Q(q)
T,I(θ) = |θ − θ̃|2 + λT

d∑

j=1

ŵj|θj|q.

Thus, the optimization of the objective function is reduced the one-dimensional
one. This gives a computational advantage. We sill prove the theorems at
the end of Chapter 2.

In Chapter 3, we apply the pLSA methods to stochastic processes. We
focus on two types of processes: point process and diffusion type process. For
the point process, we first introduce the general theory of the point process.
Next, a Cox model and a Hawkes model will be considered as the specific
example. For the Cox model, we consider the intensity with following:

λ(t, θ) = exp
(∑

j∈J

θjX
j
t

)
,

where Xj = (Xj
t )t are ergodic covariate processes. For the Hawkes model, in

particular, we treat the exponential Hawkes process. In this model, since the
parameter space is a subset of Rd

+×Rd×d
+ ×Rd×d

+ , the true value of the param-
eter is on the boundary of the parameter space under the sparse situation.
We will derive the selection consistency of the pLSA estimator even in this
case. There are applications to various research field on the Hawkes process
and recently we often consider the high dimensional situation. Therefore,
it is worth considering the variable selection of the Hawkes model. For the
diffusion type process, we treat the both ergodic and non-ergodic cases and
also use QLA. In the ergodic case, drift parameter and volatility parameter
are simultaneously estimated by QLA and we show that the variable selec-
tion is also executed simultaneously by using the pLSA methods. In regard
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to the non-ergodic case, we consider only the volatility parameter. Since the
QMLE (or QBE) has the asymptotic mixed normality, this is an example
where the limit G of coefficient matrix Ĝ is random matrix.

In Chapter 4, we report three simulations: (i) Cox model, (ii) Hawkes
model and (iii) non-ergodic diffusion type process. For the Cox model, we
take 20 Ornstein-Uhlenbeck processes as the covariates. We use the P-O
estimator to avoid optimization involving the 20-dimensional parameter. For
the Hawkes process, we first show the results that the initial estimator (i.e.
QMLE) performs well even if the case where the true value of parameter is
on the boundary of the parameter space. It will be shown that the pLSA
estimator performs well. In the cases (i) and (iii), we also use the unified
LASSO type estimator and the Bridge type estimator for comparison.



Chapter 2

Penalized LSA estimator

In this chapter, we will discuss the theory of penalized LSA estimation. As
mentioned in the previous chapter, we can deal with various kinds of loss
functions in a unified way by using the penalized least squares approximation
(pLSA) methods defined in this chapter. Penalized methods in the general
case has often been discussed. For example, [28] gives some results for pe-
nalized methods in M-estimation. Since optimization is usually not easy for
a high dimensional parameter, it is worth considering LSA type estimation.

For the pLSA estimator, we will show the oracle property, and derive the
Lp-boundedness of pLSA estimator. Moreover we will obtain the convergence
rate of variable selection consistency from the Lp-boundedness of the initial
estimator. We also construct an objective function in a simpler form than
the conventional LSA type estimation by replacing the coefficient matrix by
the identity matrix. Optimization for such objective function is easy even if
the case q < 1.

2.1 Definition of penalized LSA estimator

Suppose that θ = [θ1, . . . , θp]′ ∈ Θ ⊂ Rp is a parameter of interest and
θ̃ = [θ̃1, . . . , θ̃p]′ ∈ Rp is an estimator of θ, where the parameter space Θ is an
open bounded subset of Rp. In many cases, θ̃ minimizes some loss function
LT (θ), but we will not assume the existence of the loss function. Here, T is
a time index and we often consider the case where T ∈ N with discrete time
observation or T ∈ R+ with continuous time observation. θ̃ depends on T ,
however, we omit T for the sake of notational simplicity : θ̃ = θ̃T .

Example. Consider a linear regression model yt = x′
tθ+εt, (t = 1, . . . , T, T ∈

N), where {εt}t are independent and identically distributed random variables

10



CHAPTER 2. PENALIZED LSA ESTIMATOR 11

with mean 0 and covariance σ2 and {xt}t is independent of {εt}t. Then we
can take θ̃ as the least square estimator for LT (θ) =

∑
t |yt − x′

tθ|2.

Example. If we consider a negative log-likelihood function as the loss func-
tion, then θ̃ is the maximum likelihood estimator (MLE) of θ.

Hereafter, we assume that there exists a true value θ∗ = [θ∗1, . . . , θ
∗
p]

′ ∈ Rp

of θ and that p0 components of θ∗ do not equal to 0, p0 = #{j; θ∗j #= 0}. Here,
for convenience of explanation, we consider a loss function LT (θ). In order
to carry out parameter estimation and variable selection simultaneously, we
add a penalty term to the loss function LT (θ). For example, we can take a
penalized loss function as the adaptive lasso objective function by Zou (2006
[52]):

1

T
LT (θ) +

p∑

j=1

κjT |θj|, (2.1)

where κjT = αT |θ̃j|−γ for a deterministic sequence (αT )T and a
√
T -consistent

estimator θ̃.
We consider quadratic approximation of the loss function instead of the

first term of (2.1). Thanks to this approximation, we can discuss the various
cases into a unified methodology, and because the behavior as T → ∞ is
simply described, we can have a more in-depth discussion like large deviation.
Moreover, we replace L1 penalty with Lq penalty (0 < q ≤ 1) instead. Under
this setting, we will show that the parameter estimation and the variable
selection can be executed simultaneously in this case. More precisely, for a
p× p almost surely positive definite symmetric random matrix Ĝ depending
on T , we use the objective function

Q(q)
T (θ) = Ĝ[(θ − θ̃)⊗2] +

p∑

j=1

κjT |θj|q,

where κjT are nonnegative random variables, A⊗2 = AA′ for a matrix or a
vector A, and A[B] = Tr(AB′) for matrices A and B of the same size.

For twice differentiable LT (θ), T−1LT (θ) is approximated as

1

T
LT (θ) ≈

1

T
LT (θ̃) +

1

T
(θ − θ̃)′∂θLT (θ̃) +

1

2

{ 1

T
∂2θLT (θ̃)

}
[(θ − θ̃)⊗2].

Here, the first term on the right hand side is constant with respect to θ and
the second term vanishes by the definition of θ̃. Thus, instead of minimizing
T−1LT (θ), we may minimize {T−1∂2θLT (θ̃)}[(θ− θ̃)⊗2] and in this case we can
take Ĝ = T−1∂2θLT (θ̃) for example.
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Let θ̂(q) = [θ̂(q)1 , . . . , θ̂(q)p ]′ be a minimizer of this objective function Q(q)
T (θ):

θ̂(q) ∈ argmin
θ∈Θ̄

Q(q)
T (θ)

We call θ̂(q) the penalized least squares approximation (penalized LSA) esti-
mator.

2.2 Main theorem

In this section, we will show asymptotic properties of the penalized LSA
estimator θ̂(q) based on Q(q)

T (θ). Suppose that the statistics are realized on
a probability space (Ω,F , P ). To describe the results, we may suppose that
θ∗1 #= 0, . . . , θ∗p0 #= 0 and θ∗p0+1 = · · · = θ∗p = 0 without loss of generality. Let

aT = max{κjT ; j ≤ p0} and bT = min{κjT ; j > p0}.

For a vector v = [v1, . . . , vp]′ ∈ Rp, we denote subvectors [v1, . . . , vp0 ]′ and
[vp0+1, . . . , vp]′ by vJ 1 and vJ 0 respectively.

We consider the following conditions with respect to θ̃ and Ĝ. Let rT be
a sequence of positive numbers tending to 0 as T → ∞. We often consider
the case that rT = T−1/2.

Assumption 1. There exists a positive definite symmetric random matrix
G such that Ĝ →p G.

Assumption 2. θ̃ is r−1
T -consistent, i.e., r−1

T (θ̃ − θ∗) = Op(1).

Assumption 3. r−1
T (θ̃ − θ∗) →ds Γ− 1

2 ζ holds, where Γ is a p × p positive
definite random symmetric matrix, ζ is a p-dimensional standard Gaussian
random vector defined on an extended probability space of (Ω,F , P ) and
independent of G, and ds denotes the G-stable convergence for some σ-field
G such that σ(Γ) ⊂ G ⊂ F .

Of course, Assumption 3 is stronger than Assumption 2, but r−1
T -consistency

and selection consistency of the penalized LSA estimator θ̂(q) are derived from
Assumptions 1 and 2. We need Assumption 3 to show asymptotic normality
of penalized LSA estimator θ̂(q).

For a p × p matrix M = [mij]1≤i≤p,1≤j≤p, we denote the p0 × p0 matrix
[mij]1≤i≤p0,1≤j≤p0 , p0 × (p − p0) matrix [mij]1≤i≤p0,p0<j≤p, (p − p0) × p0 ma-
trix [mij]p0<i≤p,1≤j≤p0 and (p − p0) × (p − p0) matrix [mij]p0<i≤p,p0<j≤p by
MJ 11 ,MJ 10 ,MJ 01 and MJ 00 respectively:

M =

[
MJ 11 MJ 10

MJ 01 MJ 00

]
.
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Theorem 2.1 (r−1
T -consistency). Under Assumptions 1 and 2, if r−1

T aT =
Op(1), then

r−1
T (θ̂(q) − θ∗) = Op(1).

Let Ĵ 1 = {j = 1, . . . , p; θ̂(q)j #= 0}.

Theorem 2.2 (Selection consistency). Under Assumptions 1 and 2, if r−1
T aT =

Op(1) and r−(2−q)
T bT →p ∞, then

P [Ĵ 1 = {1, . . . , p0}] → 1. (2.2)

Theorem 2.3 (Asymptotic normality). Let G =
[
Ip0 (GJ 11)−1GJ 10

]
for

p0 × p0 identity matrix Ip0 . Under Assumptions 1 and 2, if r−1
T aT = op(1)

and r−(2−q)
T bT →p ∞, then

r−1
T (θ̂(q) − θ∗)J 1 −G{r−1

T (θ̃ − θ∗)} →p 0.

In particular, under Assumption 3 and G = Γ, we have

r−1
T (θ̂(q) − θ∗)J 1 →ds GΓ− 1

2 ζ ∼ MNp0(0, (ΓJ 11)−1).

Hereafter, we consider κjT = αT |θ̃j|−γ, where γ is a constant satisfying
γ > −(1 − q) and (αT )T is a deterministic sequence. If (αT )T satisfies the
conditions

r−(2−q+γ)
T αT → ∞ and r−1

T αT = o(1), (2.3)

then the conditions in Theorems 2.1-2.3 are fulfilled. Moreover we will show
that the probability P [θ̂(q)J 0 = 0] can be evaluated by any power of rT .

Let ũ = r−1
T (θ̃ − θ∗) and û = r−1

T (θ̂(q) − θ∗).

Definition 2.4. For a stochastic process X = {XT}T is L∞−-bounded if and
only if supT E[|XT |p] < ∞ holds for all p ≥ 1.

Additionally, we consider the following conditions:

Assumption 4. {Ĝ}T , {Ĝ−1}T and {ũ}T are L∞−-bounded.

Remark. The Lp-boundedness of a sequence of estimators can be obtained
by the quasi-likelihood analysis with a polynomial type large deviation in-
equality for an associated statistical random field. See [46] for details.

Theorem 2.5. Let ε ∈
(
−1 + q, γ

)
. Assume that r1+γ−ε

T α−1
T = O(1) and

r−1
T αT = O(1). Then under Assumptions 1 and 4, {û}T is L∞−-bounded.
Moreover, for all L > 0, there exists a constant CL such that

P [Ĵ 1 = {1, . . . , p0}] ≥ 1− CLr
2L
T . (2.4)

for all T > 0.
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2.3 P-O estimator

We now discuss the coefficient matrix Ĝ. In the above theorems, we as-
sume convergence of Ĝ to G or L∞−-boundedness of {Ĝ} and {Ĝ−1} but
we should not necessarily find such coefficient matrix Ĝ. In fact, if we take
Ĝ = Ip, then we can apply Theorems 2.1-2.5 except that the conditional
asymptotic variance in Theorem 3 becomes (Γ−1)J 11 . Since (ΓJ 11)−1 =
(Γ−1)J 11−(Γ−1)J 10((Γ−1)J 00)−1(Γ−1)J 01 , this estimator is not efficient. How-
ever, the objective function has the following simple form

Q(q)
T (θ) =

p∑

j=1

(
(θj − θ̃j)

2 + κjT |θj|q
)
.

From a computational point of view, this fact is useful because it is difficult
to optimize the non-convex function in the high-dimensional case. Then we
obtain a new estimator under the model selected by the penalized LSA esti-
mator with coefficient matrix Ip. We call this estimator the P-O (penalized
method to ordinary method) estimator and denote it by θ̌. More precisely,
we define the P-O estimator as follows.

Let Θ be a bounded open subset of Rp. First, we assume the r−1
T -

consistency of the initial estimator θ̃. Second, we get the penalized LSA
estimator θ̂(q)Ip

with coefficient matrix Ip defined by

θ̂(q)Ip
∈ argmin

θ∈Θ̄
Q(q)

T (θ),

where κjT = αT |θ̃j|−γ, γ > −(1 − q) and αT satisfies (2.3). Let Ĵ 0
Ip

= {j =

1, . . . , p; θ̂(q)Ip,j
= 0} and Θ̂ = {θ ∈ Θ; θj = 0, j ∈ Ĵ 0

Ip
}. Here, we consider

another loss function LT (θ). Then, we define the P-O estimator θ̌ by

θ̌ ∈ argmin
θ∈ ¯̂Θ

LT (θ).

Before we turn to the statement of the results for the P-O estimator θ̌,

we consider some conditions. We denote a parameter θ =

[
φ
ψ

]
∈ Rp0+(p−p0)

and its true value θ∗ =

[
φ∗

ψ∗

]
=

[
φ∗

0

]
. Let L̄T (φ) = LT

([φ
0

])
and

φ̄ ∈ argminφL̄T (φ). (2.5)

Assumption 5. For any sequence of estimations {φ̄} satisfying (2.5),
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(i) {ũ}T = {r−1
T (θ̃ − θ∗)}T is L∞−-bounded.

(ii) r−1
T (φ̄−φ∗) →ds Λ− 1

2η, where Λ is a p0×p0 positive definite symmetric
random matrix, η is a p0-dimensional standard Gaussian random vector
independent of Λ.

(iii) {r−1
T (φ̄− φ∗)}T is L∞−-bounded.

Remark. In many cases, we take LT (θ) = LT (θ) and Λ = ΓJ 11 . Then, the
sufficient condition for Assumption 5 is as follows. We define the random
field ZT : UT → R+ by ZT (u) = exp{−LT (θ∗ + rTu) + LT (θ∗)}, where
UT = {u ∈ Rp; θ∗ + rTu ∈ Θ}. We denote B(R) = {u ∈ Rp; |u| ≤ R}.
If ZT (u) →ds Z(u) in C(B(R)) for every R > 0 as T → ∞ and {φ̄} is
tight, then Assumption 5 (ii) holds. Here, Z is a random field defined by

Z(u) = exp
(
u′Γ

1
2 ζ − 1

2u
′Γu
)
. Moreover, if the random field ZT satisfies the

polynomial type large deviation inequality (Theorem 1 in [46]), then by using
Proposition 1 in [46], Assumptions 5(i) and (iii) hold.

Theorem 2.6. (a) Under Assumption 2,

P
[
θ̌J 1 ∈ argminφL̄T (φ)

]
→ 1. (2.6)

Additionally, under Assumption 5(ii),

r−1
T (θ̌ − θ∗)J 1 →ds Λ− 1

2η ∼ MNp0(0,Λ
−1).

(b) Let ε ∈
(
−1 + q, γ

)
. Assume Assumptions 5(i) and (iii), r1+γ−ε

T α−1
T =

O(1) and r−1
T αT = O(1). Then {r−1

T (θ̌− θ∗)}T is L∞−-bounded. More-
over, for all L > 0 there exists a constant CL such that

P [J̌ 1 = {1, . . . , p0}] ≥ 1− CLr
2L
T . (2.7)

for all T > 0 where J̌ 1 = {j = 1, . . . , p; θ̌(q)j #= 0}.
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2.4 Proofs of main theorems

2.4.1 Proof of Theorem 2.1

Since θ̂(q) minimizes Q(q)
T (θ), we obtain

0 ≥ Q(q)
T (θ̂(q))−Q(q)

T (θ∗)

= Ĝ[(θ̂(q) − θ̃)⊗2] +
p∑

j=1

κjT |θ̂
(q)
j |q − Ĝ[(θ∗ − θ̃)⊗2]−

p∑

j=1

κjT |θ∗j |q

= Ĝ[(θ̂(q) − θ∗)⊗2] + 2(θ̂(q) − θ∗)′Ĝ(θ∗ − θ̃) +
p∑

j=1

κjT |θ̂
(q)
j |q −

p∑

j=1

κjT |θ∗j |q.

(2.8)

Since 0 ≤ |θ̂(q)j | < |θ∗j | implies (|θ∗j |q − |θ̂(q)j |q)/(|θ∗j | − |θ̂(q)j |) ≤ |θ∗j |q/|θ∗j | =
|θ∗j |q−1, we obtain |θ̂(q)j |q−|θ∗j |q ≥ −K∗|θ̂(q)j −θ∗j | whereK∗ = max1≤j≤p0 |θ∗j |q−1.
Thus

p∑

j=1

κjT |θ̂
(q)
j |q −

p∑

j=1

κjT |θ∗j |q ≥
p0∑

j=1

κjT (|θ̂
(q)
j |q − |θ∗j |q)

≥ −
p0∑

j=1

K∗κjT |θ̂
(q)
j − θ∗j |

≥ −p0K∗aT |θ̂(q) − θ∗|.

Therefore, by multiplying both sides of (2.8) by r−2
T , we obtain

0 ≥ Ĝ
[
{r−1

T (θ̂(q) − θ∗)}⊗2
]
+ 2{r−1

T (θ̂(q) − θ∗)}′Ĝ{r−1
T (θ∗ − θ̃)}−

p0K∗r−1
T aT |r−1

T (θ̂(q) − θ∗)|
≥ τmin(Ĝ)|r−1

T (θ̂(q) − θ∗)|2 − 2τmax(Ĝ)|r−1
T (θ̂(q) − θ∗)||r−1

T (θ̃ − θ∗)|−
p0K∗r−1

T aT |r−1
T (θ̂(q) − θ∗)|,

where τmin(Ĝ) and τmax(Ĝ) are the minimum and maximum eigenvalues of
matrix Ĝ, respectively. After all,

|r−1
T (θ̂(q) − θ∗)| ≤

{
1

τmin(Ĝ)

(
2τmax(Ĝ)|r−1

T (θ̃ − θ∗)|+ p0K∗r−1
T aT

)}
. (2.9)

Since the right hand side is Op(1) by the assumption, we obtain r−1
T (θ̂(q) −

θ∗) = Op(1).
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2.4.2 Proof of Theorem 2.2

First, we assume that θ̂(q) ∈ ∂Θ. Then, since |θ̂(q) − θ∗| ≥ ε0 where ε0 =
inf{|θ − θ∗|; θ ∈ ∂Θ} > 0, we obtain

P [θ̂(q) ∈ ∂Θ] ≤ P [r−1
T |θ̂(q) − θ∗| ≥ r−1

T ε0] → 0. (2.10)

Next, we assume θ̂(q) #∈ ∂Θ and θ̂(q)j #= 0 for some j(p0 < j ≤ p). Since

Q(q)
T (θ) is differentiable at θ = θ̂(q) with respect to the j-th component and

θ̂(q) minimizes Q(q)
T (θ),

0 = r−1
T

∂Q(q)
T (θ)

∂θj
|θ=θ̂(q)

= 2Ĝ(j){r−1
T (θ̂(q) − θ̃)}+ r−1

T κjT q|θ̂
(q)
j |q−1sgn(θ̂(q)j ),

where Ĝ(j) means the j-th row vector of Ĝ. Therefore, we have

2|Ĝ(j){r−1
T (θ̂(q) − θ̃)}||r−1

T θ̂(q)j |1−q = qr−(2−q)
T κjT (2.11)

≥ qr−(2−q)
T bT .

Since, by Theorem 2.1 and the assumption, the left hand side of above equa-
tion is Op(1) and r−(2−q)

T bT →p ∞, we obtain

P
[
θ̂(q)j #= 0, θ̂(q) #∈ ∂Θ

]

≤ P
[
|2Ĝ(j){r−1

T (θ̂(q) − θ̃)}||r−1
T θ̂(q)j |1−q ≥ qr−(2−q)

T bT
]
→ 0 (2.12)

for j = p0 + 1, . . . , p.
Thus we have

P [θ̂(q)J 0 #= 0] ≤ P [θ̂(q) ∈ ∂Θ] +
∑

j=p0+1,...,p

P
[
θ̂(q)j #= 0, θ̂(q) #∈ ∂Θ

]
→ 0.

In particular, since Ĵ 1 #= {1, . . . , p0} implies

|(θ̂(q) − θ∗)J 1 | ≥ min
j=1,...,p0

|θ∗j | > 0

or θ̂(q)J 0 #= 0, we have (2.2) by Theorem 2.1.
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2.4.3 Proof of Theorem 2.3

For θ =

[
θJ 1

θJ 0

]
∈ Rp,

Q(q)
T (θ) = Ĝ[(θ − θ̃)⊗2] +

p∑

j=1

κjT |θj|q

= ĜJ 11 [(θ − θ̃)⊗2
J 1 ] + 2(θ − θ̃)′J 1ĜJ 10(θ − θ̃)J 0 + ĜJ 00 [(θ − θ̃)⊗2

J 0 ]

+
p0∑

j=1

κjT |θj|q +
p∑

j=p0+1

κjT |θj|q.

In particular, for θ‡ =

[
θJ 1

0

]
∈ Rp,

Q(q)
T (θ‡) = ĜJ 11 [(θ − θ̃)⊗2

J 1 ]− 2(θ − θ̃)′J 1ĜJ 10 θ̃J 0 + ĜJ 00 [θ̃⊗2
J 0 ] +

p0∑

j=1

κjT |θj|q.

Let

AT =
{

min
1≤j≤p0

|θ̂(q)j | > 0, θ̂(q)J 0 = 0, det(ĜJ 11) #= 0
}
.

Then Theorems 2.1 and 2.2 imply P [AT ] → 1. Let Rp
0 = {θ ∈ Rp; θJ 0 = 0}.

Since Q(q)
T (θ̂(q)) = min

θ‡∈Rp
0

Q(q)
T (θ‡) on AT ,

0 =
1

2

∂Q(q)
T (θ)

∂θJ 1

∣∣∣
θ=θ̂(q)

= ĜJ 11(θ̂(q) − θ̃)J 1 − ĜJ 10 θ̃J 0 + V (θ̂(q)J 1)

holds on AT , where V (θ̂(q)J 1) =
[
2−1qκjT |θ̂

(q)
j |q−1sgn(θ̂(q)j )

]
j=1,...,p0

∈ Rp0 . Let

Ĝ =
[
Ip0 (ĜJ 11)−1ĜJ 10

]
. Since Ĝ →p G and 1AT {r−1

T (ĜJ 11)−1V (θ̂(q)J 1)} →p
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0, we have

r−1
T (θ̂(q) − θ∗)J 1 −G{r−1

T (θ̃ − θ∗)}

= 1AT

{
r−1
T (θ̃ − θ∗)J 1 + r−1

T (ĜJ 11)−1ĜJ 10 θ̃J 0

− r−1
T (ĜJ 11)−1V (θ̂(q)J 1)−G{r−1

T (θ̃ − θ∗)}
}

+ 1Ac
T

{
r−1
T (θ̂(q) − θ∗)J 1 −G{r−1

T (θ̃ − θ∗)}
}

= 1AT

{
(Ĝ−G){r−1

T (θ̃ − θ∗)}− r−1
T (ĜJ 11)−1V (θ̂(q)J 1)

}

+ 1Ac
T

{
r−1
T (θ̂(q) − θ∗)J 1 −G{r−1

T (θ̃ − θ∗)}
}

→p 0.

2.4.4 Proof of Theorem 2.5

By (2.9) and Assumption 4, {û} is L∞−-bounded. By (2.10) in the Proof of
theorem 2.2, we obtain

P [θ̂(q) ∈ ∂Θ] ≤ P [r−1
T |θ̂(q) − θ∗| ≥ r−1

T ε0]

≤ 1

(r−1
T ε0)L

E[|û|L],

for all L ≥ 1. For j > p0, by the equation (2.11) and the Markov’s inequality,
we have

P
[
θ̂(q)j #= 0, θ̂(q) #∈ ∂Θ

]

≤ P
[
2|Ĝ(j)| · |û− ũ| ≥ r−1

T κjT q
∣∣rT û

∣∣−(1−q)
]

≤ 1

r−(1−q+ε)M
T

2Mq−ME

[
|Ĝ(j)|M |û− ũ|M |û|M(1−q)

( 1

rε−1
T κjT

)M
]
,

where M = M(L) = 2L(1 − q + ε)−1 and L > 0 is an arbitrary constant.
Here, by Hölder inequality, we have

E

[
|Ĝ(j)|M |û− ũ|M |û|M(1−q)

( 1

rε−1
T κjT

)M
]

≤ E
[
|Ĝ(j)|4M

] 1
4
E
[
|û− ũ|4M

] 1
4
E
[
|û|4M(1−q)

] 1
4
E

[( 1

rε−1
T κjT

)4M
] 1

4

. (2.13)
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Since

E

[( 1

rε−1
T κjT

)4M
]
= E

[( |θ̃j|γ

rε−1
T αT

)4M
]

≤
(

1

r−(1+γ−ε)
T αT

)4M

E
[
|ũ|4γM

]

and {û}T ,{ũ}T and {Ĝ} are L∞−-bounded, the right-hand side of (2.13) is
bounded uniformly in T . Finally, the inequality (2.4) is obtained in a similar
way as the Proof of Theorem 2.2.

2.4.5 Proof of Theorem 2.6

(a) Since Ĵ 0
Ip
= {p0 + 1, . . . , p} implies θ̌J 1 ∈ argminφL̄T (φ), we obtain (2.6)

by Theorem 2.2.
(b) Next, let BT = {Ĵ 0

Ip
= {p0 + 1, . . . , p}} and diam(Θ) = sup{|θ1 −

θ2|; θ1, θ2 ∈ Θ}. By Theorem 2.5, P [Bc
T ] is evaluated by any power of rT .

Since

sup
T

E[|r−1
T (θ̌ − θ∗)|p]

≤ sup
T

E[|r−1
T (φ̄− φ∗)|p] + sup

T

{
P [Bc

T ] · (r−1
T diam(Θ))p

}
< ∞

for φ̄ = θ̌J 1 and all p > 0, we have L∞−-boundedness of {r−1
T (θ̌ − θ∗)}T . By

the definition of θ̌, Ĵ 0
Ip
= {p0 + 1, . . . , p} and |θ̌ − θ∗| < min1≤j≤p0 |θ∗j | imply

J̌ 1 = {1, . . . , p0}. Thus

P [J̌ 1 #= {1, . . . , p0}] ≤ P [Bc
T ] + P

[
|r−1

T (θ̌ − θ∗)| ≥ r−1
T min

1≤j≤p0
|θ∗j |
]

Therefore, by L∞−-boundedness of {r−1
T (θ̌ − θ∗)}T , we obtain the inequality

(2.7).



Chapter 3

Applications

In the previous chapter, we discussed the theory of pLSA estimator. In this
chapter, we consider the its application to analysis of stochastic processes.
In particular, we are interested in the point processes and the diffusion pro-
cesses. For the point process, first, we consider the general theory of ergodic
intensity model. Then, as an example, we treat the Cox process and Hawkes
process using the quasi-likelihood analysis (QLA) method. For the diffusion
process, we consider the ergodic and non-ergodic diffusion processes. We also
use QLA method in this case.

3.1 Point process

In this section, we will apply the results in Section 3 to a point process
with parameters containing zero components. We consider a multivariate
point process N = (Nα

t )α∈I,t∈R+ with intensity process λ(t, θ) = (λα(t, θ))α∈I,
t ∈ R+, where I = {1, 2, . . . , d} is an index set. More precisely, given a
stochastic basis B = (Ω,F ,F, P ) with a filtration F = (Ft)t∈R+ , we suppose
that N and λ(·, θ) are defined on B, the simple counting process N is F-
adapted right-continuous, λ(·, θ) is predictable locally integrable for every
θ ∈ Θ, and that N −

∫ ·
0 λ(s, θ

∗)ds is a d-dimensional local martingale with
respect to F. Assume that the components of N have no common jumps.
The parameter space Θ is a bounded open set in Rp that admits Sobolev’s
inequality

‖f‖∞ ≤ CΘ

∑

i=0,1

‖∂iθf‖Lr(Θ)

for elements f of the Sobolev space f ∈ W 1,r(Θ), with a constant CΘ in-
dependent of f , for r > p. We suppose that 0 ∈ Rp is in Θ and that the
mapping θ .→ λ(t, θ) is continuously extended to Θ̄.

21
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We will use the quasi-likelihood method ([12]) with the quasi-log likeli-
hood function

.T (θ) =
∑

α∈I

∫ T

0

log (λα(t, θ))dNα
t −

∑

α∈I

∫ T

0

λα(t, θ)dt. (3.1)

Then LT (θ) = −.T (θ) becomes a loss function. The conditions stated later
ensure the existence of the function (3.1). For the initial estimator θ̃, we
can use, for example, the quasi-maximum likelihood estimator θ̃M and the
quasi-Bayesian estimator θ̃B given by

θ̃M ∈ argmax
θ∈Θ̄

.T (θ)

and

θ̃B =

[∫

Θ

exp(.T (θ))π(θ)dθ

]−1 ∫

Θ

θ exp(.T (θ))π(θ)dθ,

respectively, where π is a prior density satisfying 0 < infθ π(θ) ≤ supθ π(θ) <
∞.

For ergodic point processes, asymptotic normality and convergence of
moments of θ̃M and θ̃B were proved in [12]. We recall their results briefly.
Hereafter θ∗ ∈ Θ denotes the true value of θ and the distribution of the
data is expressed by a multivariate point process N with intensity process

λ(t, θ∗). For a random variable X, we denote ‖X‖p = E[|X|p]
1
p . We write

C↑(R+ ×R+ ×Rp) the set of functions f satisfying the following conditions :
(i) f is continuous on (R+ − {0})× (R+ − {0})×Rp, (ii) for any (u, v, w) ∈
R+ × R+ × Rp, f(0, v, w) = f(u, 0, w) = 0 and (iii) f is of polynomial

growth in (u, v, w,
1{u>0}

u ,
1{v>0}

v ), i.e. there exists a constant C0 > 0 and
m1,m2,m3,m4,m5 ∈ N such that |f(u, v, w)| ≤ C0

(
1 + um1 + vm2 + |w|m3 +

(
1{u>0}

u )m4 + (
1{v>0}

v )m5
)
holds for all (u, v, w) ∈ R+ × R+ × Rp.

Assumption 6. The mapping λ : Ω×R+ ×Θ → Rd
+ is F ×B(R+)×B(Θ)-

measurable and almost surely satisfies

(i) for every θ ∈ Θ, the mapping s .→ λ(s, θ) is left continuous,

(ii) for every s ∈ R+, the mapping θ .→ λ(s, θ) is in C4(Θ) and admits a
continuous extension to Θ̄.

Assumption 7. (i) sup
t∈R+

4∑

i=0

∥∥ sup
θ∈Θ

∂iθλ(t, θ)
∥∥
p
< ∞ for every p > 1.
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(ii) sup
t∈R+

∥∥ sup
θ∈Θ

|λα(t, θ)−11{λα(t,θ) *=0}|
∥∥
p
< ∞ for p > 1 and α ∈ I.

(iii) For any θ ∈ Θ and α ∈ I, λα(t, θ) = 0 if and only λα(t, θ∗) = 0.

Assumption 8. For every (α, θ) ∈ I×Θ, there exists a probability measure
να(·, θ) on R+ × R+ × Rp and 0 < δ < 1

2 such that

sup
θ∈Θ

T δ

∥∥∥∥∥
1

T

∫ T

0

f
(
λα(t, θ∗),λα(t, θ), ∂θλ

α(t, θ)
)
dt

−
∫

f(x, y, z)να(dx, dy, dz, θ)

∥∥∥∥∥
p

→ 0

as T → ∞ for p > 1 and f ∈ C↑(R+ × R+ × Rp).

Let να(dx, dy, θ) =
∫
Rp να(dx, dy, dz, θ). Define YT (θ) by

YT (θ) =
1

T
(.T (θ)− .T (θ

∗)),

and Y(θ) by the limit in probability of YT (θ), where

Y(θ) =
∑

α∈I

∫

R+×R+

1{x,y>0}
{
x log(y/x)− (y − x)

}
να(dx, dy, θ).

Remark. From the above expression of Y(θ), we easily obtain Y(θ∗) = 0
and for all θ ∈ Θ,

Y(θ) ≤ 0. (3.2)

Then Lemma 3.10 of [12] gives

sup
θ∈Θ

∣∣YT (θ)− Y(θ)
∣∣→p 0

as T → ∞.
The index χ0 is defined by

χ0 = inf
θ∈Θ\{θ∗}

−Y(θ)
|θ − θ∗|2 .

Then identifiability is ensured by the condition

Assumption 9. χ0 > 0.
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The Fisher information matrix is well defined by

Γ =
∑

α∈I

∫

R+×R+×Rp

z⊗2x−11{x>0}ν
α(dx, dy, dz, θ∗).

The matrix Γ is non-degenerate by Assumption 9.
By Theorem 3.14 of [12], we have

Theorem 3.1. Suppose that Assumptions 6-9 are satisfied. Then for θ̃ = θ̃M

and θ̃B, the convergence

lim
T→∞

E
[
f
(√

T (θ̃ − θ∗)
)
] = E

[
f
(
Γ−1/2ζ

)]

holds for all f ∈ C(Rp) of polynomial growth, where ζ is a p-dimensional
standard normal random variable.

Now we are on the point of applying it to the penalized methods. Take
θ̃ = θ̃M or θ̃B. The penalized estimator will be denoted by θ̂. Let rT = T− 1

2

and let

Ĝ = −T−1∂2θ.T (θ̃)1{−∂2
θ )T (θ̃)∈S+} + T−1Ip

where S+ is the set of p× p positive definite symmetric matrices.
It is easy to show

lim
T→∞

∥∥T δ
(
Ĝ− Γ

)∥∥
p
= 0

for every p > 1 and 0 < δ < 1
2 . Therefore the conditions in Theorems 2.1-2.5

are fulfilled in this situation.

3.1.1 Cox type of process with ergodic covariates

Regularization methods for Cox proportional hazards model are proposed by,
for example, [9] and [23]. Here, we consider the multivariate point process
N in Section 3.1 with intensity processes

λα(t, θ) = exp
(∑

j∈J

θαj X
j
t

)
, (α ∈ I) (3.3)

where J = {1, . . . , J} is an index set and Xj = (Xj
t )t∈R+ (j ∈ J) are left-

continuous adapted stochastic covariate processes satisfying the following
conditions.
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Assumption 10. The J-dimensional process (Xj)j∈J is stationary andE[exp(uXj
0)] <

∞ for all u ∈ R and j ∈ J.

Denote by BI the σ-field generated by {Xj
t ; t ∈ I, j ∈ J} for I ⊂ R+.

Let

α(h) = sup
A∈B[0,t],B∈B[t+h,∞)

∣∣P [A ∩B]− P [A]P [B]
∣∣

for h > 0.

Assumption 11. There exists a > 0 such that α(h) ≤ a−1e−ah for all h > 0.

Let Xt = (Xj
t )j∈J. For the model (3.3), θ = (θαj )α∈I,j∈J, p = dJ and

Ĝ = diag [Ĝ1, . . . , Ĝd]

where

Ĝα =
1

T

∫ T

0

X⊗2
t exp

(∑

j∈J

θ̃αj X
j
t

)
dt+

1

T
IJ . (3.4)

It should be remarked that the first term on the right hand side of (3.4) may
degenerate in general. Under Assumptions 10 and 11, we obtain Ĝ →p Γ for
Γ = diag [Γ1(θ∗), . . . ,Γd(θ∗)], where

Γα(θ) = E

[
X⊗2

0 exp
(∑

j∈J

θαj X
j
0

)]
.

Write Γ(θ) = diag [Γ1(θ), . . . ,Γd(θ)].

Assumption 12. infθ∈Θ̄ detΓ(θ) > 0.

We assume that Θ is an open bounded convex subset in Rp, that admits
the Sobolev inequality in Section 3.1.

Lemma 3.2. Assumption 8 holds under Assumptions 10 and 11.

Proof. We remark that exp(|x|) < exp(x)+ exp(−x) for all x ∈ R. Thus, for
all (θ,α, j) ∈ Θ× I× J and p, q > 1 and t > 0,

E

[
|Xj

t |p
{
exp(θαj X

j
t )
}q
]
≤ E

[
exp(p|Xj

t |) exp(q|θαj ||X
j
t |)
]

= E

[
exp
{(

p+ q|θαj |
)
|Xj

0 |
}]

< Cp,q, (3.5)
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where Cp,q is a constant depend on p, q but not depending of θ, i, j. By the
definition of λα(t, θ), for all α ∈ I,

λα(t, θ) = exp
(∑

j∈J

θαj X
j
t

)
,

∂θα′λα(t, θ) =

{
Xt exp

(∑
j∈J θ

α
j X

j
t

)
if α′ = α

0 if α′ #= α
,

where θα = [θαj ]j. For f ∈ C↑(R+ ×R+ ×Rp), α ∈ I and θ ∈ Θ, define f̃α
θ by

f̃α
θ (x) = f(e

∑
j θ

∗α
j xj , e

∑
j θ

α
j xj ,

[
1{α′=α}xe

∑
j θ

α′
j xj
]
α′∈I)

for x ∈ RJ . Then we can write for all α ∈ I,

f̃α
θ (Xt) = f

(
λα(t, θ∗),λα(t, θ), ∂θλ

α(t, θ)
)
.

By (3.5), we obtain for all α ∈ I and p > 1,

sup
θ∈Θ

E[|f̃α
θ (Xt)|p] = sup

θ∈Θ
E[|f̃α

θ (X0)|p] < ∞.

Here, for (α, θ) ∈ I×Θ we define a probability measure να(·, θ) by

να(A, θ) = P
[(

e
∑

j θ
∗α
j Xj

0 , e
∑

j θ
α
j X

j
0 ,
[
1{α′=α}X0e

∑
j θ

α′
j Xj

0
]
α′∈I

)
∈ A

]

for A ∈ B(R+ × R+ × Rp). Since

∫
f(x, y, z)να(dx, dy, dz, θ) = E[f̃α

θ (X0)]

for all α ∈ I, we may show that for all p > 1, α ∈ I and f̃α
θ ,

sup
θ∈Θ

T
1
2

∥∥∥∥∥
1

T

∫ T

0

{
f̃α
θ (Xt)− E[f̃α

θ (X0)]
}
dt

∥∥∥∥∥
p

= O(1).

By Assumption 10, there exists a constant C0 such that
∥∥∥∥∥

∫ s2

s1

(
f̃α
θ (Xt)− E[f̃α

θ (X0)]
)
dt

∥∥∥∥∥
p

≤ C0(s2 − s1)
p
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for s1 < s2. Then, Lemma 4 in [46] implies under Assumption 11 that

E

[∣∣∣∣∣

∫ T

0

(
f̃α
θ (Xt)− E[f̃α

θ (X0)]
)
dt

∣∣∣∣∣

p]

= E




∣∣∣∣∣

,T -∑

l=1

∫ lT
$T%

(l−1)T
$T%

(
f̃α
θ (Xt)− E[f̃α

θ (X0)]
)
dt

∣∣∣∣∣

p




≤ C10T 1
p
2 + C20T 1

= O(T
p
2 ),

for T ≥ 1 and p ≥ 2, where C1 and C2 are constants depending on a and p.
Therefore, we have

sup
θ∈Θ

T
1
2

∥∥∥∥∥
1

T

∫ T

0

(
f̃α
θ (Xt)− E[f̃α

θ (X0)]
)
dt

∥∥∥∥∥
p

= O(1).

Next, we will give a sufficient condition for Assumption 9.

Lemma 3.3. We assume that Θ is convex. Then Assumption 9 follows from
Assumptions 10 and 12.

Proof. By the definition of Y(θ),

Y(θ) =
∑

α∈I

Yα(θ),

where Yα(θ) is given by

Yα(θ) = E

[
exp
(∑

j∈J

θ∗αj Xj
0

)(∑

j∈J

(θαj − θ∗αj )Xj
0

)

−
{
exp
(∑

j∈J

θαj X
j
0

)
− exp

(∑

j∈J

θ∗αj Xj
0

)}]

for α ∈ I. Thus we have

∂θY(θ) =





∂θ1Y1(θ)
∂θ2Y2(θ)

...
∂θdYd(θ)




,
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where

∂θαYα(θ) = E

[{
exp
(∑

j∈J

θ∗αj Xj
0

)
− exp

(∑

j∈J

θαj X
j
0

)}
X0

]
.

Similarly,

∂2θY(θ) = diag
[
∂2θ1Y1(θ), ∂2θ2Y2(θ), . . . , ∂2θdYd(θ)

]
,

where

∂2θαYα(θ) = −E
[
X⊗2

0 exp
(∑

j∈J

θαj X
j
0

)]
= −Γα(θ).

Therefore, we have

∂2θY(θ) = −Γ(θ).

By Assumption 12, for all θ ∈ Θ̄, −∂2θY(θ) is positive definite. Therefore, for
all θ ∈ Θ, there exists a vector θ† satisfying

−Y(θ) = −1

2
∂2θY(θ†)[(θ − θ∗)⊗2].

By positive definiteness of −∂2θY(θ) and Assumption 10,

inf
θ∈V (θ∗)\{θ∗}

−Y(θ)
|θ − θ∗|2 = inf

θ∈V (θ∗)\{θ∗}

−∂2θY(θ†)[(θ − θ∗)⊗2]

2|θ − θ∗|2

≥ inf
θ∈V (θ∗)

1

2
τmin(Γ(θ)) > 0. (3.6)

Therefore, by (3.6), we obtain χ0 > 0.

Assumption 6 follows from (3.3), and Assumption 7 follows from As-
sumption 10. Thus the conditions in Theorems 2.1-2.5 are fulfilled under
Assumptions 9-11.

3.1.2 Hawkes process

Hawkes (1971a[21], 1971b[22]) introduced a multivariate model for point pro-
cesses with mutually exciting components now referred to as the Hawkes
model. Ordinary, it was motivated by modeling after shocks and seismolog-
ical phenomena (cf. Vere-Jones 1970 [40], Vere-Jones and Ozaki 1982 [41],
Ogata 1999 [32]). However, the usage of the Hawkes model has been more
and more spread out to various research areas : high-frequency finance (c.f.
[3]), crime activity (c.f. [30]) and analysis of social networks (c.f. [13], [7],
[51], [45]).
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Example. For example, consider a finite network with d nodes (each node
corresponding to a user in a social network). For each node α in {1, . . . , d},
we observe the timestamps {tα,1, tα,2, . . .} of actions of node α on the network
(a message, a click etc.). To each node α is associated a counting process
Nα(t) =

∑
i≥1 1{tα,i}≤t. If N = (Nα)α is a Hawkes process with intensity

(3.7), then we can quantify the influence of β on α by the function hαβ(t).

Now we turn to the definition of a Hawkes process. Let Nt = (Nα
t )α∈I, I =

{1, . . . , d}, N0 = 0, be a multidimensional point process and write F =
(FN

t )t∈R+ , where we call that FN
t = σ{Ns|0 ≤ s ≤ t} is the canonical

filtration of N . We say that N is a linear Hawkes process or Hawkes’ self-
exciting process starting from 0 if there exist functions hαβ : R+ → Rd×d

+ and
ν ∈ Rd such that the FN -intensity λ(t) of N writes

λα(t) = να +
∑

β∈I

∫ t−

0

hαβ(t− s)dNβ
s , α ∈ I. (3.7)

The baseline intensities να’s represent the rate of spontaneous occurrences of
events, while the kernels hαβ’s model self-interaction in the system. Indeed,
if a shock occurs at time t0 on the covariate Nβ, an aftershock will happen
on the covariate Nα around time t1 with high probability if hαβ(t1 − t0) is
large. When hαβ = 0, covariate Nβ has no influence on the chain of events
related to Nα.

Let us define the matrix Φ = [φαβ]αβ where

φ =

∫ ∞

0

hαβ(s)ds,

and write ρ(Φ) its spectral radius. Finally, given A = [aαβ]αβ and C =
[cαβ]αβ ∈ Rd×d

+ , we say that N is an exponential Hawkes process if the kernel
functions hαβ are of the form

hαβ(s) = cαβe
−aαβs.

Note that the matrix Φ has the representation Φ = [ cαβ

aαβ
]αβ in this case.

Hereafter, we assume ρ(Φ) < 1, where ρ(Φ) is a spectral radius of Φ.
Now, we consider the exponential Hawkes process. Then the intensity

has the following representation.

λα(t) = να +
∑

β∈I

∫ t−

0

cαβe
−aαβ(t−s)dNβ

s , α ∈ I. (3.8)

Here let θ = (ν, C, A) ∈ Rd
+ × Rd×d

+ × Rd×d
+ . First, we consider the usual

case, i.e., the true value of the parameter θ∗ = (ν∗, C∗, A∗) is interior point
of Θ.
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Assumption 13. For every (α, θ) ∈ I×Θ, there exists a probability measure
να(·, θ) on R+ × R+ × Rp and 0 < δ < 1

2 such that

1

T

∫ T

0

f
(
λα(t, θ∗),λα(t, θ), ∂θλ

α(t, θ)
)
dt →p

∫
f(x, y, z)να(dx, dy, dz, θ)

as T → ∞ for f ∈ Cb(R+ × R+ × Rp).

Assumption 14. For any θ ∈ Θ̄− {θ∗},Y(θ) #= 0.

Proposition 3.4 (Theorem 3.9. of Clinet and Yoshida 2017 ([12])). Under
the Assumptions 6, 7, 13 and 14, the QMLE θ̃ is consistent.

θ̃ →p θ∗.

Next, we are interested in the case that some component of Φ∗, the true
value of Φ, is precisely 0. Then the graph structure has a form like the left
side of Figure 3.1 in contrast with the right side which represents the full
model.
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Figure 3.1: Graph structure; sparse model (left) and full model (right)

Now we consider the case where φ∗
αβ = 0 for some (α, β). Let

J ∗ = {(α, β) ∈ I× I; c∗αβ = 0}.
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For a constant ξ ∈ R+ we define a function pξ : Θ → Θ by pξ(θ) =

pξ(ν, C, A) = (ν, C, pξ0(A)), where pξ0(A) = [a(ξ)αβ]αβ and

a(ξ)αβ =

{
aαβ (α, β) ∈ J ∗

ξ (α, β) /∈ J ∗.

If c∗αβ = 0 for some (α, β), then the value of a∗αβ does not affect the model
and Proposition 3.4 does not hold. Thus we modify the Assumption 14.

Assumption 15. For any θ ∈ Θ̄− {pξ(θ∗) ∈ Θ; ξ ∈ R+},Y(θ) #= 0.

Proposition 3.5. Under the assumptions 6, 7, 13 and 15, (the QMLE) pξ(θ̃)
is consistent.

pξ(θ̃) →p pξ(θ∗)

In particular,
C̃ →p C∗.

Since the structure of C (or Φ) determine the model, define the pLSA
estimator Ĉ by

Ĉ ∈ argminCĜ[(C − C̃)⊗2] +
∑

α,β

καβT |cαβ|q,

where καβT = αT (|cαβ| + ηT )−γ, ηT → 0(T → ∞) and Ĝ = − 1
T ∂

2
C.T (θ).

Then by the Theorem 2.2, we obtain the selection consistency of the pLSA
estimator Ĉ.

Remark. By the Theorem 4.6. of [12], the exponential Hawkes model ver-
ifies the Assumptions 6-9 in the usual situation. By using the discussion in
Appendix, same results are possibly derived in the situation where the true
value of parameter θ∗ ∈ ∂Θ. However, since it is difficult to treat that case,
we omit the detailed description here.

3.2 Diffusion process

3.2.1 Ergodic case

Given a stochastic basis (Ω,F ,F, P ), F = (Ft)t∈R+ , we consider a d-dimensional
process X = (Xt)t∈R+ adapted to the filtration F = (Ft)t∈R+ and satisfying
the following stochastic integral equation

Xt = X0 +

∫ t

0

a(Xs, θ2)ds+

∫ t

0

b(Xs, θ1)dWs, t ∈ R+
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where W is an r-dimensional standard F-Wiener process, θ = (θ1, θ2) ∈
Θ1 × Θ2 = Θ with Θ1 and Θ2 being bounded domains of Rp1 and Rp2 ,
respectively, moreover b : Rd × Θ1 → Rd ⊗ Rr and a : Rd × Θ2 → Rd. We
define the function B by B(x, θ1) = b(x, θ1)b(x, θ1)′ and assume that B(x, θ1)
is invertible. We denote the true value of θ = (θ1, θ2) by θ∗ = (θ∗1, θ

∗
2) and

the number of active parameters of θ∗k by p0k for k = 1, 2. We assume that
each parameter space have a locally Lipschitz boundary.

In this subsection, we assume that the process X is ergodic. That is,
there exists a unique invariant probability measure µ = µθ∗ such that for any
bounded measurable function g : Rd → R, the convergence

1

T

∫ T

0

g(Xt)dt →p

∫

Rd

g(x)µ(dx)

holds.
We suppose that 0 ∈ Rp1+p2 is in Θ. Here we have the discrete-time

observations (Xti , Yti)
n
i=0 where ti = ih with h = hn depending on n. We

will consider the situation when hn → 0 and nhp
n → 0 as n → ∞, and there

exists ε0 ∈ (0, p−1
p ) such that nε0 ≤ nhn for large n.

Here, we assume the following properties of an initial estimator θ̃ =
(θ̃1,n, θ̃2,n) :

(
√
n(θ̃1,n − θ∗1),

√
nh(θ̃2,n − θ∗2))

→d (Γ
− 1

2
1 ζ1,Γ

− 1
2

2 ζ2) ∼ Np1+p2(0, diag(Γ
−1
1 ,Γ−1

2 ))

and

sup
n

(∥∥√n(θ̃1,n − θ∗1)
∥∥
p
+
∥∥√nh(θ̃2,n − θ∗2)

∥∥
p

)
< ∞

for every p > 1, where ζ1 and ζ2 are p1 and p2-dimensional standard normal
variables respectively, and Γ1 = (Γij

1 )i,j=1,...,p1 and Γ2 = (Γij
2 )i,j=1,...,p2 with

Γij
1 =

1

2

∫

Rd

Tr
{(
∂θi1B(x, θ∗1)

)
B−1(x, θ∗1)

(
∂θj1B(x, θ∗1)

)
B−1(x, θ∗1)

}
µ(dx),

Γij
2 =

∫

Rd

(∂θi2a(x, θ
∗
2)

′B(x, θ∗1)
−1∂θj2a(x, θ

∗
2))µ(dx).

We assume integrability and non-degeneracy of Γ1 and Γ2. It is known that
the quasi-maximum likelihood estimator, the quasi-Bayesian estimator and
the hybrid type estimators possess these properties under certain mild con-
ditions ([46], [37], [39], [25]). For instance, if we use the hybrid multistep
estimator θ̃H = (θ̃H1,n, θ̃

H
2,n) by Uchida and Kamatani ([25]) as an initial esti-

mator θ̃, then above conditions are satisfied by Theorem 1 of [25].
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For q1, q2 ∈ (0, 1], we define the objective functions Q(q1)
1,n and Q(q2)

2,n by

Q(q1)
1,n = Ĝ1,n[(θ1 − θ̃1,n)

⊗2] +
p1∑

i1=1

κi11,n|θi11 |q1

and

Q(q2)
2,n = Ĝ2,n[(θ2 − θ̃2,n)

⊗2] +
p2∑

i2=1

κi22,n|θi22 |q2 ,

respectively, where Ĝk,n (k = 1, 2) are some pk × pk random matrices such

that Ĝk,n →p Γk and that the family
{
|Ĝk,n| +

(
det Ĝk,n

)−1}
k,n

is L∞−-

bounded, and κikk,n = αk,n|θ̃ikk,n|−γk for some numbers γk > −(1−qk) and some
sequences (α1,n)n and (α2,n)n satisfying

(
√
n)2−q1+γ1α1,n → ∞,

√
nα1,n → 0

and
(
√
nh)2−q2+γ2α2,n → ∞,

√
nhα2,n → 0

respectively. Then we have the penalized LSA estimators θ̂(q1)1,n and θ̂(q2)2,n

satisfying

θ̂(q1)1,n ∈ argmin
θ1∈Θ̄1

Q(q1)
1,n (θ1)

and

θ̂(q2)2,n ∈ argmin
θ2∈Θ̄2

Q(q2)
2,n (θ2).

For these estimators θ̂(q1)1,n and θ̂(q2)2,n , Theorems 2.1-2.5 hold respectively. Addi-

tionally, we consider the limit distribution of the joint variable ((θ̂(q1)1,n )J 1
1
, (θ̂(q2)2,n )J 1

2
).

Here, J 1
k ,J 11

k and J 10
k are defined similarly to J 1,J 11 and J 10, respectively,

for each k = 1, 2.
Now we can rephrase Theorems 1-5 in the present situation. In particular,

Proposition 3.6. The convergence
(√

n(θ̂(q1)1,n − θ∗1)J 1
1
,
√
nh(θ̂(q2)2,n − θ∗2)J 1

2

)
→d

(
G1Γ

− 1
2

1 ζ1,G2Γ
− 1

2
2 ζ2

)

∼ Np01+p02

(
0, diag

(
((Γ1)J 11

1
)−1, ((Γ2)J 11

2
)−1
))

holds, where Gk =
[
Ip0k ((Γk)J 11

k
)−1(Γk)J 10

k

]
, k = 1, 2.
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Proof. By Theorem 2.3, we have

√
n(θ̂(q1)1,n − θ∗1)J 1

1
−G1

{√
n(θ̃1,n − θ∗1)J 1

1

}
→p 0

and √
nh(θ̂(q2)2,n − θ∗2)J 1

2
−G2

{√
nh(θ̃2,n − θ∗2)J 1

2

}
→p 0.

Therefore,

[ √
n(θ̂(q1)1,n − θ∗1)J 1

1√
nh(θ̂(q2)2,n − θ∗2)J 1

2

]
→d

[
G1Γ

− 1
2

1 ζ1

G2Γ
− 1

2
2 ζ2

]

∼ Np01+p02

(
0, diag

(
((Γ1)J 11

1
)−1, ((Γ2)J 11

2
)−1
))

3.2.2 Non-ergodic case

In this subsection, we will deal with the case where the Fisher information
matrix is not deterministic. We consider the following stochastic regression
model

Yt = Y0 +

∫ t

0

bsds+

∫ t

0

σ(Xs, θ)dWs, t ∈ [0, T ], (3.9)

where W is an r-dimensional standard Wiener process independent of the
initial value of Y0, X and b are progressively measurable processes with values
in Rd and Rm, respectively. σ is an Rm ⊗ Rr-valued measurable function
defined on Rd×Θ, and Θ is a bounded domain in Rp with a locally Lipschitz
boundary. Additionally, we define S = σ⊗2 = σσ′. The data set consists of
discrete observations (Xtj , Ytj)

n
j=0 with tj = jT/n and T is fixed.

Here, we assume that there exists an estimator θ̃n of θ∗ such that

√
n(θ̃n − θ∗) →ds Γ− 1

2 ζ

as n → ∞, and for any continuous functions f : Rp → R of at most polyno-
mial growth,

E[f(
√
n(θ̃n − θ∗))] → E[f(Γ− 1

2 ζ)],

where Γ is the Fisher information matrix given by

Γ =
1

2T

∫ T

0

Tr
(
(∂θS)S

−1(∂θS)S
−1(Xt, θ

∗)
)
dt,
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ζ is a p-dimensional standard normal random variable independent of Γ and
→ds means the σ(Γ)-stable convergence in distribution. Here we remark
that the Fisher information matrix Γ is not necessarily deterministic. In
fact, Uchida and Yoshida [38] proved that the quasi-maximum likelihood
estimator and the quasi-Bayesian estimator have these properties under mild
regularity conditions. An essential condition in their argument is the non-
degeneracy of a key index χ0:

Assumption 16. For every L > 0, there exists cL > 0 such that

P [χ0 ≤ r−1] ≤ cL
rL

(r > 0)

where

χ0 = inf
θ *=θ∗

−Y(θ)
|θ − θ∗|2

with

Y(θ) = − 1

2T

∫ T

0

{
log
( detS(Xt, θ)

detS(Xt, θ∗)

)

+ Tr
(
S−1(Xt, θ)S(Xt, θ

∗)− Id
)}

dt.

For the initial estimator, for example, we can take the maximum likeli-
hood type estimator θ̃Mn that satisfies

Hn(θ̃
M
n ) = sup

θ∈Θ
Hn(θ),

or the Bayes type estimator θ̃Bn for a prior density π : Θ → R+ with respect
to the quadratic loss defined by

θ̃Bn =
(∫

Θ

exp(Hn(θ))π(θ)dθ
)−1

∫

Θ

θ exp(Hn(θ))π(θ)dθ,

where Hn(θ) is a quasi-log likelihood function defined by

Hn(θ) = −1

2

n∑

i=1

{
log detS(Xti−1 , θ) +

1

h
S(Xti−1 , θ)

−1[(∆iY )⊗2]
}
. (3.10)

Then we can use the QLA method in [38] to show the stable convergence and
the Lp-boundedness of the estimators. In order to verify Assumption 16 in
practice, we may apply one of criteria given in [38].
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Here we define the objective function

Q(q)
n (θ) = Ĝn[(θ − θ̃n)

⊗2] +
p∑

i=1

κin|θi|q

and penalized LSA estimator θ̂(q)n ∈ argmin
θ∈Θ̄

Q(q)
n (θ). We can take

Ĝn = − 1

n
∂2θHn(θ̃

M)1{
−∂2

θHn(θ̃M )∈S+

} +
1

n
Ip (3.11)

when we use the QMLE as an initial estimator. Let κin = αn|θ̃n,i|−γ for the
number γ > −(1− q) and the sequence αn satisfying the conditions

(
√
n)2−q+γαn → ∞,

√
nαn → 0.

Similarly to the previous sections, we can show that Theorems 2.1-4 hold for
this penalized LSA estimator. On the other hand, we should choose Ĝn = Ip,
in place of (3.11), for the P-O estimator.
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Simulations

In this section we report three simulations. The first one is the Cox process
in Section 3.1.1, the second one is the Hawkes process in Section 3.1.2 and the
third one is the non-ergodic diffusion type process in Section 3.2.2. For each
simulation we perform 1000 Monte Carlo replications. %( method ) in this
chapter denotes the number of times, in percentage over 1000 iterations, that
the estimator obtained by the method chooses the true model. In the first and
third cases, for comparison we use the unified LASSO type estimator and the
Bridge type estimator. The unified LASSO type estimator is the special case
of penalized LSA estimator where q = 1. The Bridge estimator is not the
special case of penalized LSA estimator, but we use this phraseology when
the penalty has the form r−1

T

∑
i |θi|q, i.e., r = 1, γ = 0 and q < 1.

For the convenience of calculation, in the first and third cases, we use
identity matrix as a coefficient matrix Ĝ. Thus, the penalized LSA estimator
is not efficient, and we use the P-O estimator in order to obtain the efficient
estimator.

It has been shown through the simulation studies that the penalized LSA
estimator can select the correct model if we choose appropriate tuning param-
eters and the P-O estimator has good performance for the active parameters.
It is an important thing to give a “good” tuning parameter, however, we do
not refer to how to select the tuning parameter.

4.1 Simulation for the Cox model

We consider the Cox model (3.3) in Section 3.1.1 with α = 1. Let p = 20, then
the parameter space Θ is [−10, 10]20. The covariate process X = (Xt)t∈[0,T ]

is a 20-dimensional OU process satisfying the following stochastic differential

37
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equations

dX i
t = −aiX

i
tdt+ 0.4dW i

t , X0 = 0, t ∈ [0, T ]

where ai (i = 1, . . . , 20) are constants given by

a1 = a6 =a11 = a16 = 0.15,

a2 = a7 =a12 = a17 = 0.2,

a3 = a8 =a13 = a18 = 0.25,

a4 = a9 =a14 = a19 = 0.3,

a5 = a10 =a15 = a20 = 0.35.

and W = (W i)i=1,...,20 is a 20-dimensional standard Wiener process. Figure
4.1 shows a sample path of the covariate process. Data N = (Nt)t∈[0,T ] is a
sample path of the point process with intensity λ(t, θ∗) in (3.3), where the
true values θ∗ of the parameter is

θ∗ = [2,−1, 1,−0.5,−1.5, 1.5, 0.5, 0.75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]′.

Figure 4.2 and 4.3 show sample paths of intensity process λ(t, θ∗) and count-
ing process Nt on [0, 200] and [0, 3] respectively.

Let LT (θ) = LT (θ) = −.T (θ) in (3.1) and we use QMLE for the initial
estimator θ̃. Then the objective function is denoted by

Q(q)
T (θ) = (θ − θ̃)′(θ − θ̃) +

20∑

j=1

κjT |θj|q.

where κjT = αT |θ̃j|−γ,αT = ( 1√
T
)r, 1 < r < 2 − q + γ. Let the triplet of

tuning parameters (γ, r, q) = (1, 1.2, 0.3). We will consider the cases T =
50, 100, 200 and 400. Table 1 compares the results of the variable selection
of the penalized LSA estimator, the unified LASSO type estimator and the
Bridge type estimator. Here, we define the unified LASSO type estimator
and the Bridge type estimator as the penalized LSA estimator with tuning
parameter (γ, r, q) = (1, 1.2, 1) and (γ, r, q) = (0, 1, 0.3), respectively.

Table 2 compares the means and standard deviations (parentheses) for
the three estimators (initial estimator, penalized LSA estimator and P-O
estimator) and shows the results of the variable selection for penalized LSA
estimator in the case T = 200.
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4.2 Simulations for the Hawkes process

We consider the Hawkes model in Section 3.1.2. Let d = 3 and the parameter
space

Θ = {(ν, C, A) ∈ R+ × R3×3
+ × R3×3

+ ; ρ(Φ) < 1, να > 0, aαβ > 0, ∀(α, β)}.

For α ∈ I we generated the data (tαi )i=1,2,... which is jump point of the
counting process (Nα

t )t with the intensity

λα(t) = να +
∑

β∈I

∫ t−

0

cαβe
−aαβ(t−s)dNβ

s ,

where θ∗ = (ν∗, C∗, A∗) is the true value of the parameter;

ν∗ =




1
0.5
1



 , C∗ =




1 0 0
0.5 1 0
0 0.5 1



 , A∗ =




2 ∗ ∗
2 3 ∗
∗ 3 4



 .

In this simulation, we take ξ = 1 (in subsection 3.1.2), i.e.,

A∗ =




2 1 1
2 3 1
1 3 4



 .

Then the matrix Φ∗ is

Φ∗ =




1/2 0 0
1/4 1/3 0
0 1/6 1/4



 .

Figure 4.4 shows the graph structure of this model.
Let LT (θ) = −.T (θ) in (3.1) and we use QMLE for the initial estimator

θ̃ = (ν̃, C̃, Ã). Then the objective function is denoted by

Q(q)
T (C) = Ĝ[(C − C̃)⊗2] +

∑

α,β∈I

καβT |cαβ|q,

where καβT = αT (|cαβ| + 1/T )−γ,αT = T−r/2, 1 < r < 2 − q + γ and Ĝ =
∂2C.T (θ). In this simulation, we take a tuning parameter (γ, r, q) = (3, 1.2, 1).

Tables 4.3 and 4.4 show the means and standard deviations (parentheses)
for the QMLE (with T = 100, T = 200, T = 400 and T = 600) and Table 4.5
shows the results of the variable selection for the QMLE and the penalized
LSA estimator.
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Figure 4.4: Graph structure; true model (left) and full model (right)

Here, we refer to the algorithm for generating the sample path of Hawkes
process. Ogata [31] gave a proposition that states the simulation of multi-
variate point processes, by distributing accepted points to each dimension
with probabilities proportional to their intensities.

Lemma 4.1 (Ogata [31]). Let Nt = (N1
t , . . . , N

d
t ) be a d-variate point pro-

cess on an interval [0, T ] with stochastic intensities λα(t) = λα(t|FN
t−) for

α ∈ I. Suppose there is a one-dimensional FN -predictable process λ̄(t) which
is defined path-wisely satisfying

∑

α∈I

λα(t) ≤ λ̄(t), 0 < t ≤ T

and set

λ0(t) = λ̄(t)−
∑

α∈I

λα(t).

Let t̄1, . . . , t̄N̄T
∈ (0, T ] be the points of the process N̄t with stochastic

intensity λ̄(t). For each of the points t̄k, k = 1, . . . , N̄T , attach a mark
α = 0, 1, . . . , d with probability λα(t̄k)/λ̄(t̄k), respectively. Then the points
with marks α ∈ I, provide a d-variate point process with stochastic intensities
λα(t).

The simulation of a multivariate Hawkes process with exponential decays
on a fixed interval is similar to the univariate case, with only one extra step
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that decides which dimension an accepted point belongs to. By Lemma
4.1, given that a point is accepted at time s, it should be distributed to
dimension α with probability λα(s)/

∑
α∈I λ

α(s), for α ∈ I. The procedure
for simulating a d-variate Hawkes process on the interval [0, T ] is summarized
below, where T α represents the ordered set of accepted points in dimension
α and nα counts the number of points T α, for α ∈ I. As before, s is always
the newest candidate point generated.

(1) Set T 1 = · · · = T d = ∅, s = 0 and n1 = · · · = nd = 0.

(2) Repeat the following until s > T .

(i) Set λ̄ =
∑

α∈I λ
α(s) =

∑
α∈I

(
να +

∑
β∈I
∑

τ∈T β cαβe−aαβ(s−τ)
)
.

(ii) Generate u from a uniform distribution on [0, 1].

(iii) Generate w = − log u/λ̄ as the interarrival to the next candidate
point.

(iv) Set the new candidate point s = s+ w.

(v) Generate D from a uniform distribution on [0, 1].

(a) If D ≤
∑

α∈I λ
α(s)/λ̄, then do the following:

(a1) Find β ∈ I such that
∑β−1

α=1 λ
α(s) < Dλ̄ ≤

∑β
α=1 λ

α(s).

(a2) Assign candidate point s to dimension β by setting nβ =
nβ + 1, tβnβ = s and T β = T β

⋃
{tβnβ}.

(b) else, do nothing.

(3) If tβnβ > T , then T 1, . . . , T β−{tβnβ}, . . . , T d contain the simulated points
for each dimension;

(4) else T α,α ∈ I contain the simulated points.

Figures 4.5-4.7 show an example sample path of intensity λ1(t),λ2(t) and
λ3(t) and associated counting process N = (Nα)α∈I.
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Figure 4.7: Sample paths of intensity λ3(t) and counting processes N



CHAPTER 4. SIMULATIONS 50

Table 4.3. normal methods (ν, QMLE) ; T = 100, 200, 400, 600.

ν1 ν2 ν3

true 1 0.5 1

T = 100 0.9404 0.4581 0.9375

(0.2638) (0.2098) (0.2438)

T = 200 0.9622 0.4806 0.9828

(0.1748) (0.1547) (0.1710)

T = 400 0.9785 0.5008 1.0037

(0.1252) (0.1013) (0.1132)

T = 600 0.9837 0.5074 1.0122

(0.1040) (0.0808) (0.0901)
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4.3 Simulation for the diffusion type process

We consider the model (3.9) in Section 3.2.2. Let p = 10, i.e., the parameter
space Θ is [−10, 10]10. The process Y is defined by

Yt =

∫ t

0

σ(Xs, θ)dWs, t ∈ [0, 1],

where X is a 10-dimensional OU process satisfying the following stochastic
differential equation

dXt = −0.2Xtdt+ 0.5I10dwt, X0 = 0, t ∈ [0, 1]

and σ(x, θ) = exp(
∑10

j=1 θjxj) ∧ M0,M0 = 105. Here w is a 10-dimensional
standard Wiener process independent of W . We generated the data
(Yti , Xti)i=0,1,...,n, ti =

i
n with

θ∗ = [1, 1,−1,−1, 0.5, 0, 0, 0, 0, 0]′.

Let Ln(θ) = Ln(θ) = −Hn(θ) in (3.10). We used the QMLE for the initial
estimator θ̃.

In order to apply our methods to this model, we use Theorem 6 in ([38]).
By the definition of σ(x, θ), [A1] holds. [B2] is satisfied if we choose the
stopping time τ ≡ 0. Now we need to check [A3′]. Since suppL{X0} = {0},
we can take 0 ∈ U ⊂ {x ∈ R10; σ(x, θ) < M, ∀θ}. If we define f(x, θ) =
(m0

∑
j(θj−θ∗j )xj)/|θ−θ∗| for sufficiently small m0 when θ #= 0 and f(x, 0) =

ε0 for some positive number ε0, then (i) is satisfied for 6 = 2. Next we take a
covering {Θk}k=1,...,11 such that Θk = {θ ∈ Θ− {θ∗}; |θk − θ∗k| ≥ |θj − θ∗j |, ∀j}
for k = 1, . . . , 10 and Θ11 = {θ∗} ⊂ Θ. For Θk(k = 1, . . . , 10) if we take
ξ0 = ek and Ψ(P⊥

ξ0x, θ) = (
∑

j *=k(θj − θ∗j )xj)/(θk − θ∗k), then |f(x, θ)| ≥
1√
10
(ξ0 · x+Ψ(P⊥

ξ0x, θ)), and (ii) holds.
Then the objective function is denoted by

Q(q)
n (θ) = (θ − θ̃)′(θ − θ̃) +

10∑

j=1

κjn|θj|q

where κjn = αn|θ̃j|−γ, αn = ( 1√
n)

r, 1 < r < 2− q−γ. We considered the cases
where n = 2500, 50000, 10000, 20000 and the triplet of tuning parameters
(γ, r, q) = (3.2, 1.2, 0.3). In the same way as Table 1, Table 3 compares the
results of the variable selection of the penalized LSA estimator, the unified
LASSO type estimator and the Bridge type estimator.

Table 4 compares the means and the standard deviations (parentheses)
for the three estimators (initial estimator, penalized LSA estimator and P-O
estimator) in the case n = 10000.
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appendix

A1. Polynomial type large deviation for sparse
estimation

Polynomial type large deviation inequality

Let Θ be a bounded open set in Rd. The closure of Θ in Rd is denoted
by Θ̄. Our interest will be on inference for the parameter θ in Θ. Given
a probability space (Ω,F , P ), we consider a sequence of random fields HT :
Ω × Θ̄ → R, where T is a subset in (0,∞) such that supT = ∞; e.g. T
is R+ = [0,∞),Z+ = {0, 1, 2, . . .},N = {1, 2, . . .} etc. We suppose that the
mapping Θ̄ 8 θ .→ HT (ω, θ) ∈ R is continuous for all ω ∈ Ω.

Let θ∗ ∈ Θ̄. Let aT ∈ GL(p,R) (T ∈ T) such that limT→∞ |aT | = 0,
where |aT | = {Tr(aTa′T )}1/2. Let UT = {u ∈ Rd; θ∗ + aTu ∈ Θ̄}. Define a
statistical random field ZT : Ω× UT → (0,∞) by

ZT (u) = exp
{
HT (θ

†
T (u)−HT (θ

∗)
}

(u ∈ UT ),

where θ†T (u) = θ∗ + aTu.
Some notation will be necessary. We write

T [u1, . . . , uk] = T [u1 ⊗ · · ·⊗ uk] =
∑

i1,...,ik

Ti1,...,iku
i1
1 · · · uik

k

for a tensor-valued tensor T = (Ti1,...,ik)i1,...,ik and u1 = (uik
1 )ik . The brackets

[ ] will often be used for multilinear mappings. We simply denote the r times
product of u by u⊗r = u⊗ · · ·⊗ u.

It is useful to consider the situation where Z is locally asymptotically
quadratic (LAQ). Let ∆T be a d-dimensional random variable and let Γ be a
d×d nonnegative-definite symmetric random matrix. We defined the random
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field rT : Ω× UT → R by

ZT (u) = exp

(
∆T [u]−

1

2
Γ[u⊗2] + rT (u)

)
(u ∈ UT ).

It should be remarked that 0 ∈ Rd is in UT but any d-dimensional ball
centered at 0 may not included in UT even for large T . The restriction on
UT is common if u is banned from moving in all directions. Even in such a
case, the LAN property makes sense if the random field HT is smooth in θ
in restricted direction, as we will later see in application.

Though θ∗ may be in Θ, we are interested in the case where θ∗ ∈ ∂Θ,
since the former case was treated in Yoshida [46]. The aim of this note is to
remark that the same polynomial type large deviation as [46] holds, and to
illustrate an application in the context of sparse estimation. In what follows,
for simplicity, we will treat a single probability measure P , while a uniform
estimate in ξ is considered in [46]. Besides, we will not treat the random field
with a nuisance parameter τ in [46].

Let bT = λmin(a′TaT )
−1, where λmin denotes the minimum eigenvalue of a

real symmetric matrix. Since |aT | → 0, 0 < bT → ∞ as T → ∞. We assume
that

sup
T

{
bTλmax(a

′
TaT )

}
< ∞,

where λmax is the maximum eigenvalue of a real symmetric matrix.
Let

YT (θ) = b−1
T

{
HT (θ)−HT (θ

∗)
}
.

Fix a constant α ∈ (0, 1). Let

UT (r) =
{
u ∈ UT ; r ≤ |u| ≤ b(1−α)/2

T

}
.

Let ρ, ρ1, ρ2 and β2 be real constants. Let L > 0. The following conditions
were assumed in [46].

[A1] There exists a constant CL such that

sup
T∈T

P

[
sup

u∈UT (r)
(1 + |u|2)−1|rT (u)| ≥ r−ρ1

]
≤ CLr

−L (r > 0)

The supremum on the empty set reads −∞ by convention.
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[A2] There exists a constant CL such that

P [λmin(Γ) < 4r−ρ1 ] ≤ CLr
−L (r > 0)

Suppose that a random field Y : Ω× Θ̄ → R is given.

[A3] There exists a positive random variable χ0 such that

Y(θ) = Y(θ)− Y(θ∗) ≤ −χ0|θ − θ∗|ρ (θ ∈ Θ̄).

[A4] The following inequalities hold:

0 < ρ1 < 1, αρ < ρ2, β2 ≥ 0, 1− 2β2 − ρ2 > 0.

[A5] There exists a constant CL such that

P [χ0 ≤ r−(ρ2−αρ)] ≤ CLr
−L(r > 0)

[A6] supT∈T E[|∆T |M1 ] < ∞ for M1 = L(1− ρ1)−1. Moreover,

sup
T∈T

E








 sup
θ∈Θ̄,|θ−θ∗|≥b

−α/2
T

b
1
2−β2

T |YT (θ)− Y(θ)|






M2


 < ∞

for M2 = L(1− 2β2 − ρ2)−1.

Even in the case where θ∗ ∈ ∂Θ, the same proof as Theorem 1 of [46] can
be applied to the following theorem.

Theorem 4.2. Suppose that Conditions [A1]-[A6] are satisfied for a given
positive number L. Then there exists a constant CL such that

P

[
sup

u∈VT (r)
ZT (u) ≥ exp

(
−1

2
r2−(ρ1∨ρ2)

)]
≤ CLr

−L (r > 0, T ∈ T), (4.1)

where VT (r) = {u ∈ UT ; |u| ≥ r}.

We will consider simplified version of Theorem 2.1. Among many pos-
sibilities, we only treat HT of class C3. In what follows, we only con-
sider a bounded convex open set Θ. An extension of the results in this
appendix to a finite sum of bounded convex open sets is straightforward.
Let Ck(Θ̄) be the space of functions f : Θ̄ → R such that f |Θ ∈ Ck(Θ)
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and the derivatives ∂iθf ∈ C(Θ; (Rd)⊗i) are continuously extended to ∂Θ for
i ∈ {0, 1, . . . , k}, (Rd)⊗0 = R. For f ∈ Ck(Θ̄), Taylor’s formula is valid:

f(θ) =
k−1∑

i=0

1

k!
∂iθf(θ0)[(θ − θ0)

⊗i]

+
1

(k − 1)!

∫ 1

0

(1− s)k−1∂kθ f(θ0 + s(θ − θ0))ds[(θ − θ0)
⊗k]

for θ, θ0 ∈ Θ̄ since Θ̄ is convex and the derivatives ∂iθf are continuously
extended to ∂Θ.

We will assume that the mapping HT (ω, ·) ∈ C3(Θ̄) for all T and ω ∈ Ω.
Set β = α/(1− α). We replace Condition [A4] by

[A4’] Parameters β1, ρ1, ρ2 and β2 satisfy the following inequalities: 0 <
β1 < 1/2, 0 < ρ1 < min{1, β, 2β1/(1 − α)},αρ < ρ2, β2 ≥ 0 and 1 −
2β2 − ρ2 > 0.

Furthermore, we assume the following additional conditions:

[A1’] For M3 = L(β − ρ1)−1,

sup
T∈T

E

[(
b−1
T sup

θ∈Θ
|∂3θHT (θ)|

)M3
]
< ∞.

Moreover, for M4 = L( 2β1

1−α − ρ1)−1,

sup
T∈T

E
[
bβ1
T |ΓT (θ

∗)− Γ|
]
< ∞,

where a random matrix ΓT (θ) is defined by

ΓT (θ)[u, u] = −∂2θHT (θ)[aTu, aTu]

for u ∈ Rd.

Now it is easy to obtain a counterpart of Theorems 2 of [46].

Theorem 4.3. Let L > 0. Suppose that Conditions [A1’], [A2], [A3], [A4’],
[A5] and [A6] are satisfied. Then there exists a constant CL such that In-
equality (4.1) holds for all T > 0 and r > 0.
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Restricted tangents

For limit theorems, for simplicity, we will only consider the situation where
UT is asymptotically locally similar in the following sense. Let S be a subset
of Rd.

[S1] For every R > 0, there exists TR ∈ T such that

{u ∈ UT ; |u| ≤ R} = S ∩ {u ∈ Rd; |u| ≤ R}

for all T ∈ T with T ≥ TR.

Write B(0, R) = {u ∈ Rd; |u| ≤ R}. Assume [S1]. Define S(R) by

S(R) = {u ∈ UTR ; |u| ≤ R} = S ∪ B(0, R).

Then

S =
⋃

R>0

S(R) =
⋃

R>0

{u ∈ UTR ; |u| ≤ R} =
⋃

R>0

⋃

T≥TR

{u ∈ UT ; |u| ≤ R}.

Since S(R) = UTR ∩ B(0, R) is convex and increasing in R, the set S is
convex. BY definition, 0 ∈ S. If θ∗ ∈ Θ, then S = Rd. Conditions [S1]
imposes restrictions on the shape of Θ and aT when θ∗ ∈ ∂Θ.

Typically, the random field ZT is locally asymptotically mixed normal.
To simplify description, we set rT (u) = 0 for u ∈ Rd − UT . Let G be a sum
σ-field of F such that Γ is G-measurable. Let ∆ be a d-dimensional random
variable defined on an extension (Ω̄, F̄ , P̄ ) of (Ω,F , P ). Random variables
on Ω are naturally extended on Ω̄. The G-stable convergence is denoted by
ds(G). Let

Z(u) = exp
(
∆[u]− 1

2
Γ[u⊗2]

)
(u ∈ Rd).

We denote C(R) = C(S(R)) for R > 0 and equip C(R) with the supremum
norm. Then (C(R),B[C(R)]) is a measurable space with the Borel σ-field
B[C(R)].

Proposition 4.4. Suppose that [S1] and the following conditions are satis-
fied.

(i) For every R > 0, supu∈S(R) |rT (u)| →p 0 as T → ∞.

(ii) ∆T →ds(G) ∆ as T → ∞.

Then

ZT |C(R) →ds(G) Z|C(R) (T → ∞)

for every R > 0.
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quasi-maximum likelihood estimator

A measurable mapping θ̃MT : Ω → Θ̄ is called a quasi-maximum likelihood
estimator (QMLE) with respect to HT if

HT (θ̃
M
T ) = max

θ∈Θ̄
HT (θ).

Such a mapping exists according to the measurable selection theorem.
If Γ is positive definite a.s., then by convexity, ZT takes its maximum in

S at a single point ũM
S ∈ S a.s.:

ũM
S = argmaxu∈SZ(u).

Let ũM
T = a−1

T (θ̃MT − θ∗).

Proposition 4.5. Suppose that [S1] and the following conditions are ful-
filled.

(i) ZT |C(R) →ds(}) Z|C(R) as T → ∞ for every R > 0.

(ii) {ũM
T }T is tight.

Then ũM
T →ds(F) ũM

S as T → ∞.

Combining Theorem 3.2 with the PLD inequality, we obtain convergence
of moments of ũM

T as well as its tightness.

Theorem 4.6. Let L > p > 0. Suppose that Condition [S1] and the follow-
ing conditions are fulfilled.

(i) ∆T →ds(G) ∆ as T → ∞.

(ii) For every R > 0, supu∈S |rT (u)| →p 0 as T → ∞.

(iii) There exists a constant CL such that

P

[
sup

u∈VT (r)
ZT (u) ≥ 1

]
≥ CLr

−L (r > 0, T ∈ T)

Then

E[f(ũM
T )Y ] → E[f(ũM

S )] (T → ∞).

for every continuous function f : S → R satisfying supu∈S(1 + |u|)−p|f(u)| <
∞ and every bounded G-measurable random variable Y .

Proof. We apply Propositions 3.1 and 3.2. Condition (iii) gives Lp bounded-
ness of {ũM

T }T∈T for p < L.


