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Existence problems of fibered links

Nozomu Sekino

A fibered link in a 3-manifold induces a fiber structure on the complement of the link in the
manifold. The fiber structure reduces the structure of the manifold into the property of the mapping
class of the monodromy. Conversely, for a mapping class of a surface with a boundary we can construct
a 3-manifold and a fibered link whose monodromy is the mapping class. Especially fibered knots are
important since the mapping class group of a surface with a connected boundary is widely studied.
Myers [16] showed that every connected orientable closed 3-manifold has a fibered knot. However, it is
difficult in general to find fibered links with a fibered surface of a fixed homeomorphism type in a given
3-manifold. There is an important topological invariant, called the openbook genus concerning with
this problem. This is defined as the minimum number of genus among fibered knots which a manifold
has. To attack this problem, there are several approaches. In this thesis, we argue by following some
of them in two parts, one concerns with Heegaard splittings and genus one fibered knots and the other
concerns with homologically fibered links.

We state the background of Part I briefly. By thickening a fiber surface of a fibered link, we get
a Heegaard splitting. Morimoto [15] started a study of genus one fibered knots by such an approach.
After that Baker [2] completely determined the number of genus one fibered knots in a given lens
space. At Section 1, we give a criterion for a simple closed curve on a genus 2g Heegaard surface being
a genus g fibered knot in terms of its Heegaard diagram. This is the main purpose of Part I. We use
this criterion especially when g = 1 in this thesis. Genus one fibered knots can be handled because of
their low genus. Applying the criterion, we research the openbook genera for some Seifert manifolds at
Sections 2, 3. In general, the technique for genus one cases is not similarly used for higher genus cases.
However using genus one fibered knots as building blocks, we get some information for higher genus
fibered links. At Section 4, we make examples of higher genus fibered knots in lens spaces which are
analogues of genus one fibered knots in lens spaces. There is a generalization for Heegaard splittings,
called relative trisections. They consist of multi curves on a surface and represent 4-manifolds with
boundaries with fibered links on their boundaries. Trisections are a way to study fibered links since
considering a 4-manifold bounded by a given 3-manifold is sometimes useful. At Section 5, we give an
example of a relative trisection for a 4-manifold whose boundary is a lens space and a fibered link on
it, which are obtained by a standard way.

We state the background of Part II. There is a generalization of fibered links, called homologically
fibered links. This loosens the condition for fibered links, inducing product structures into the condi-
tion, inducing homologically product structures. Thus the existence of homologically fibered links is a
necessary condition for that of fibered links (with fiber surfaces are homeomorphic to given surfaces).
We will give an algebraic condition of existing of some homologically fibered links in some manifolds at
Section 6. This is the purpose of Part II. Throughout this thesis, Σg,b denotes the connected orientable
surface of genus g with b boundary components.
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Part I

1 Genus g fibered knots and simple closed curves on genus 2g
Heegaard surfaces

1.1 Introduction

Let M be a connected, closed orientable 3-manifold. A link L in M is called a fibered link if there
is a Seifert surface F of L such that there is a homeomorphism between the complement of L in M
and a surface bundle over S1 mapping F to (a surface)×{∗}. The surface F in the definition is called
the fiber surface of L. For the case of knots, we say a fibered knot is a genus g fibered knot if its
fiber surface is of genus g. By thickening a fiber surface F of a genus g fibered knot K in M , we get
a genus 2g Heegaard splitting of M = V ∪S W . In this construction, we can put K on S being a
binding of both of V and W , where a binding of a genus 2g handlebody means a simple closed curve
l on the boundary of a genus 2g handlebody such that there exists a homeomorphism between (V, l)
and (Σg,1 × [0, 1], ∂Σg,1 × { 1

2}). It is like a connected binding in [11]. Conversely, suppose that we are
given a genus 2g Heegaard splitting M = V ∪S W and a simple closed curve l on S such that it is
a binding of both of V and W . Then the corresponding fiber structures of handlebodies induce the
global fiber structure of M \L and we know that l is a genus g fibered knot. Hence there is a one-to-one
correspondence between the set of genus g fibered knots with their fiber surfaces and the set of simple
closed curves on genus 2g Heegaard surfaces such that they are binding of both of handlebodies. In
this section, we give a criterion for whether a given simple closed curve on the boundary of a genus 2g
handlebody is a binding or not in terms of a cut system of the handlebody. Applying this criterion, we
know whether a simple closed curve on a genus 2g Heegaard surface is a genus g fibered knot inducing
this Heegaard splitting using the Heegaard diagram.
In this section, curves and disks are considered up to isotopy, and always assumed to intersect mini-
mally and transversely. In particular, the intersection of any disks in a handlebody contains no circle
components because of the irreducibility of the handlebody.

The setting Let V be a handlebody of genus 2g, and l be an oriented simple closed curve on ∂V .
We fix a cut system {D1, . . . , D2g} of V . A cut system of V means a set of pairwise disjoint properly
embedded 2g disks in V such that cutting V along these disks produces a 3-ball. Make l intersect
with {∂D1, . . . , ∂D2g} minimally and transversely. By giving {∂D1, . . . , ∂D2g} orientations and letters
{x1, . . . , x2g}, we assign a cyclic sequence of letters to l by following l and counting the intersections
with the disks. This is called the sequence of letters represented by l and we call the cyclically reduced
word obtained by reducing the sequence of letters represented by l the word represented by l. We define
the sign of an intersection of l with ∂Di such that it is positive (xi) if l hits ∂Di from the left side of
∂Di, negative (x−1

i ) if l hits ∂Di from the right side of ∂Di, where we see ∂D runs from bottom to
top.
Let F2g be the free group generated by the alphabets {x1, . . . , x2g}. The automorphism group Aut(F2g)
of F2g, and the outer automorphism group, Out(F2g) naturally act on the set of cyclic words of
alphabets {x1, . . . , x2g}.

For g = 1, we give one definition, and there are useful facts below due to Cho and Koda (we set
x1 = x, x2 = y):

Definition 1.1. (corresponding arc) Let B be the ball V \ (D1 ∪ D2). There are four cut ends on
∂B, D+

1 and D−
1 coming from D1, D+

2 and D−
2 coming from D2. Let l be a simple closed curve on

∂V . On ∂B, l is cut into arcs with their endpoints on the cut ends. Let c be a subarc of l on ∂B
representing a trivial word, say xx−1. It is on ∂B, putting its endpoints on ∂D+

1 and being disjoint
from cut ends in its interior. c separates the other three cut ends into one and two. Let A denote the
cut end in the part separated by c which contains just one cut end. Hence the interior of c is realized
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as a boundary of a neighborhood of A ∪ α in ∂B \ (D±
1 ∪D±

2 ) using an arc α starting from ∂D+
1 and

ending on A. Note that A cannot be D−
1 . If this is the case, every subarc of l on B with one of whose

endpoints on ∂D−
1 must have the other endpoint on ∂D+

1 . It leads a contradiction since the number
of the intersections of l with ∂D+

1 , and with ∂D−
1 must be same. We call the arc α the corresponding

arc for c.

Fact 1.1. [18] If the sequence of letters represented by l contains xx−1, then it contains also x−1x.

Fact 1.2. [4] [5] If the sequence of letters represented by l contains xynx−1 for non zero integer n,
then this is cyclically reduced.

Fact 1.3. [4] [5] If the sequence of letters represented by l contains both x2 (or x−2) and y2 (or y−2),
then this is cyclically reduced.

These Definition and Facts are heavily used in Sections 2, 3.

Under this setting, the author previously proved the following (here, “commutator” means xyx−1y−1

or yxy−1x−1):

Theorem 1.1. (criterion for g = 1) [18] For a genus 2 handlebody V and a simple closed curve l on
∂V , the following are equivalent:

(1) l is a binding of V .

(2) For some cut system {D,E}, the word represented by l is a commutator.

(3) For every cut system {D,E}, the word represented by l is a commutator.

In this section, we generalize this theorem:

Theorem 1.2. (criterion for general g) For a genus 2g handlebody V and a simple closed curve l on
∂V , the following are equivalent:

(1) l is a binding of V .

(2) For some cut system {D1, . . . , D2g}, the word represented by l is in Out(F2g)·[x1, x2] · · · [x2g−1, x2g].

(3) For every cut system {D1, . . . , D2g}, the word represented by l is in Out(F2g)·[x1, x2] · · · [x2g−1, x2g].

In the above, [xi, xj ] means xixjx
−1
i x−1

j and Out(F2g)· means the orbit of the action. Note that
when g = 1, the orbit of [x, y] is the set of commutators.

Operations Here we give some operations needed for arguments. Let V be a genus 2g handlebody
and D, E properly embedded essential non-separating disks in V .

Definition 1.2. (band-sum) Suppose D and E are disjoint, and V \ (D ∪ E) is connected.
Let α be an oriented arc on ∂V starting from ∂D, ending on ∂E and disjoint from ∂D and ∂E in its
interior. Then the boundary component of the regular neighborhood of ∂D ∪ α ∪ ∂E in ∂V which is
neither ∂D nor ∂E bounds an essential non-separating disk D′. We call D′ the disk obtained by the
band-sum from D by using α. We give D′ an orientation coming from D: A part of ∂D′, which is near
to ∂D has the parallel orientation to ∂D.

Definition 1.3. (band-sum for cut system) Let D = {D1, . . . , D2g} be a cut system of V . Take an
oriented arc α starting from ∂Di, ending on ∂Dj (i ̸= j) and disjoint from disks in D in its interior.
Then let D′

i be the disk obtained by the band-sum from Di by using α. Set D′ be (D \ {Di}) ∪ {D′
i},

which gives another cut system of V . We call D′ the cut system obtained by the band-sum for cut
system from D by using Di and α.
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Definition 1.4. (disk surgery) Suppose D and E intersect. Take an outermost disk ∆ in E cut-offed
by D. The arc ∆ ∩D cut D into two disks D′ and D′′. Then ∆ ∪D′ and ∆ ∪D′′ are essential disks
in V . Note that at least one of these disks is non-separating. We say that such a non-separating disk
(if there are two, choose one), say D′, is obtained by a disk surgery from D and E using ∆. We give
D′ an orientation coming from ∆. Note that D′ is disjoint from D and the number of components of
D′ ∩ E is less than that of D ∩ E.

Concerning with cut-systems, we claim the following:

Claim 1.1. Let D = {D1, . . . , D2g} and E = {E1, . . . , E2g} be cut systems of V . Then E is obtained
from D by applying finitely many times band-sums for cut system by using appropriate arcs(, and
reversing the orientations of the disks in the cut systems).

Proof. Let B be V \ (∪D∈DD), a ball having 4g cut ends of disks on the boundary.
At first, suppose there is a disk in E, say E1, intersecting some disks of D. Take an outermost disk ∆
in E1 cut-offed by disks of D. Suppose the disk Di cut off ∆ from E1. Then ∆ cuts B into two balls
B1 and B2. Assume B2 has the other cut end coming from Di (called D−

i ), which is not the one ∆
stemming from (called D+

i ). Note that B2 has a cut end which is not coming from Di since otherwise
the number of the intersections with the boundaries of the disks in E of ∂D+ and ∂D−

i would differ.
Take an oriented arc α starting from ∂Di, ending on the boundary of a cut end on B1 and it is on
the boundary of B1. See Figure 1. Let D′

i be the disk obtained by band-sum from Di using α. Note
that D′ = (D \ {Di}) ∪ {D′

i} is another cut system and cut the unique outermost disk ∆′ from ∆.
D′ is obtained by a band-sum for cut system from D. Let B′ be V \ (∪D∈D′D). Then ∆′ cuts B′

into two balls B′
1 and B′

2. Assume B′
2 has the other cut end coming from D′

i, which is not the one
∆′ intersecting. Note that the number of cut ends on B′

1 is less than that of B1. By repeating this
operation, we get a cut system D̃ = (D \ {Di}) ∪ {D̃i}. D̃i is a disk obtained by disk surgery from Di

and E1 using ∆. Then the number of components of the intersection of disks of D̃ and disks of E is
less than that of D and E.

By the above operation, we assume the disks of D and E are disjoint. If every disk of E is a disk
of D, then D = E. Suppose there exists Ek such that it is not a disk of D. Ek cut B into two balls B1

and B2. Since D and E are cut systems, there exists a disk Di such that the cut ends coming from Di

is separated by Ek in B and Di is not a disk of E. Take an oriented arc α starting from ∂Di, ending
on a cut end on B1 and being on the boundary of B1. Let D′

i be the disk obtained from a band-sum
from Di using α. Note that D′ = (D \ {Di}) ∪ {D′

i} is another cut system since Di is not a disk in E,
and D′ is obtained from D by the band-sum for cut system operation. Let B′ be V \ (∪D∈D′D). Ek

cuts B′ into two balls B′
1 and B′

2. The cut ends coming from D′
i are separated by Ek, and the one of

B′
1 and B′

2 has a smaller number of cut ends than B1 has. See Figure 2. By repeating this operation,
we get a cut system D̃ = (D \ {Di})∪ {D̃i} such that D̃i is Ek. This increases the number of common
disks in two cut systems. Hence by band-sums for cut system, we can change D into E.

2

Figure 1: change cut system
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Figure 2: change cut system

Definition 1.5. (reducing the word) Let l be a simple closed curve on ∂V , D = {D1, . . . , D2g} a cut
system of V and B a ball V \∪D∈DD. Suppose the sequence of letters represented by l is non-reduced
i.e. there exists a subarc c of l representing xix

−1
i , for example. We call two cut ends on ∂B coming

from Di D+
i and D−

i . The endpoints of c are on the same cut end coming from Di, say ∂D+
i . Let

δ be a properly embedded arc on D+
i connecting the endpoints of c. Then c ∪ δ bounds a properly

embedded disk ∆ in B. Performing a disk surgery from Di using ∆, we get two disks. Exactly one
of the two disks separates D+

i and D−
i in B. Take such a disk D′

i. Then D′ = (D \ {Di}) ∪ {D′
i} is

another cut system. We call this operation of changing cut systems reducing the word.

Note that after reducing the word, the length of the sequence of letters represented by l with respect
to D′ is less than that with respect to D. Moreover the length as not only the sequence of letters but
also the word does not increase as in claim below:

Claim 1.2. After reducing the word, the word represented by l with respect to D′ is obtained by deleting
some letters (, the deleted letters may be empty) from the word represented by l with respect to D and
then reducing as a cyclic word.

Proof. In the definition, δ separates D+
i . It is enough to show that there is no subarc of l on ∂V starting

from and ending on ∂D+
i , each side separated by δ and representing a trivial word with respect to D.

If we show this, then all subarcs of l representing trivial words with respect to D also represent trivial
word with respect to D′. Suppose there exists a subarc c̃ of l on ∂V starting from and ending on ∂D+

i ,
each side separated by δ and representing a trivial word with respect to D. Taking the subarc of c̃
if necessary, we assume c̃ is disjoint from ∂Di in its interior. By reducing the word operations using
subarcs of c̃ representing reducible sequences, like xjx

−1
j if necessary, we assume the interior of c̃ is

disjoint from the disks of D. Such c̃ must intersect c. It contradicts for l being a simple closed curve.
2

1.2 The proof of Theorem 1.2

(1)⇒(2)
Fix a homeomorphism between (V, l) and (Σg,1× [0, 1], ∂Σg,1×{ 1

2}). Take arcs {a1, . . . , a2g} on Σg,1 so
that they cut Σg,1 into a disk as in Figure 3. Let Di be ai× [0, 1] (with appropriate orientations). Then
D = {D1, . . . , D2g} is a cut system of V . About this cut system, the sequence of letters represented
by l is exactly [x1, x2] · · · [x2g−1, x2g].

(2)⇒(3)
First, note that under a band-sum for cut system {D1, . . . , D2g} using Dj and an arc α starting ∂Dj

and ending on ∂Di, the word represented by l changes like (xi 7→ xix
ϵ
j) or (xi 7→ xϵ

jxi) in Out(F2g)
action for ϵ ∈ {±1}: Realize ∂D′

j , the result of a band-sum, as the boundary component of a small
neighborhood of ∂Dj ∪ α ∪ ∂Di. Give D′

j the letter xj , same as the letter assigned to Di. The

intersections of l with ∂D′
j near α make no effect on the word (representing xjx

−1
j for example).

Hence it is enough to focus on the intersections of l with disks of D. For a disk Dk of D which is
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Figure 3: cut system of surface

neither Di nor Dj , the intersections do not change (xk 7→ xk). Moreover, in our definition of the
orientation of D′

j , the intersections near ∂Dj does not change (xj 7→ xj). Near ∂Di, the intersections
changes as (xi 7→ xix

ϵ
j) or (xi 7→ xϵ

jxi). The position of xi and xj and ϵ depend on which side of ∂Dj

and ∂Di an arc α starting and ending.
Next, we assume that the word represented by l is in Out(F2g) · [x1, x2] · · · [x2g−1, x2g] for a cut system
D. Take another cut system E. By Claim 1.1, we can change D into E by band-sums for cut system.
Note that if we change the orientation of Dk, a member of a cut system assigned the letter xk, then
the word represented by l changes as (xk 7→ x−1

k ) and that if we exchange the letters assigned to Di

and Dj , the word represented by l changes as (xi ↔ xj). By the above observation, we see that the
word represented by l for E is also in Out(F2g) · [x1, x2] · · · [x2g−1, x2g].

(3)⇒(1)
Suppose l represents a cyclic word in Out(F2g)·[x1, x2] · · · [x2g−1, x2g] with respect to D = {D1, . . . , D2g}.
As the above, band-sums for cut system using an arc starting from ∂Dj and ending on ∂Di changes
the alphabets (xj 7→ xϵ

ixj) or (xj 7→ xjx
ϵ
i), and reversing the orientation of ∂Di changes alphabets

(xi 7→ x−1
i ). Since theses type of changes form Nielsen’s generators for Aut(F2g), the action of every el-

ement of Out(F2g) is realized as band-sums for cut system and changing the orientations of disks. Thus
we assume that the word represented by l with respect to D is exactly [x1, x2] · · · [x2g−1, x2g]. If the
sequence of letters represented by l with respect to D is reducible, then we perform reducing the word
operations until the sequence of letters becomes reduced. We get a cut system D′ = {D′

1, . . . , D
′
2g}

such that the sequence of letters represented by l is reduced and length of equal to or less than 4g by
Claim 1.2.

Claim 1.3. Let w be a cyclically reduced word in Out(F2g) · [x1, x2] · · · [x2g−1, x2g]. Then for all i,

• the sum of xi in w is zero.

• there exists xi in w.

Proof. Assume w be a cyclically reduced word in Out(F2g) · [x1, x2] · · · [x2g−1, x2g]. As seen before,
there are a binding K of V and cut system D such that K represents the word [x1, x2] · · · [x2g−1, x2g],
and the action of Out(F2g) is realized by band-sums for cut system and orientations changes. Thus

there exist a binding K of V and cut system D̃ such that K represents the word w. Since K is
separating on ∂V , the algebraic intersection number of K and every essential disk in V is zero. This
is the first part of the statement.
Suppose w has no xi’s. If the sequence of letters represented by K is reducible, perform reducing
the word operations until the sequence of letters becomes reduced. Note that the obtained reduced
sequence of letters also contains no xi by Claim 1.2. This means a binding K is disjoint from an
essential disk in V . This is a contradiction. Thus the second part of the statement is proved. 2

By this claim, the sequence of letters represented by l with respect to D′ is reduced and has length
exactly 4g and l intersects each disk of D′ exactly two times in the opposite directions. Then on
B′ = V \ ∪D∈D′D, a simple closed curve consisting of the image of l and 2g-properly embedded arcs,

7



each of which is on one cut end, becomes a binding of B′, a handlebody of genus 0. This fiber structure
extends to V by pasting the cut ends coming from D′

i for all i. Thus we know that l is a binding of
V . This completes the proof. 2

1.3 Correspondence

Let M be a connected, closed and orientable 3-manifold. For a genus 2g Heegaard splitting M =
V ∪S W , take a Heegaard diagram (S; ∂D, ∂E), where D, E are cut systems of V , W respectively and
∂D, ∂E represent the sets of curves on S which are the boundary of disks of D, E respectively. Give
orientations and letters {x1, . . . , x2g}, {y1, . . . , y2g} to disks of D and E respectively. By the argument
in Section 1 and theorems, we have the following:

Corollary 1.1. There exists a one-to-one correspondence between the set of genus g fibered knots with
their fiber surfaces and the set of simple closed curves on some genus 2g Heegaard surfaces representing
the words in Out(F2g) · [x1, x2] · · · [x2g−1, x2g], Out(F2g) · [y1, y2] · · · [y2g−1, y2g] with respect to D, E
respectively.

We will give applications of this corollary where g = 1 in Sections 2, 3.
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2 Non-existence of genus one fibered knots in a Seifert mani-
fold whose base orbifold is a sphere with three exceptional
points of sufficiently complex coefficients

Every Seifert manifold M whose base orbifold is sphere with three exceptional points has a surgery
presentation as in Figure 4, (a, b), (c, d) and (e, f) are coprime pairs. We will show that there are no
GOF-knots in M if b ̸≡ ±1 (mod a), d ̸≡ ±1 (mod c), and f ̸≡ ±1 (mod e). We assume b ̸≡ ±1
(mod a), d ̸≡ ±1 (mod c), and f ̸≡ ±1 (mod e). In particular, |a|, |c|, |e| ≥ 5, and |b|, |d|, |f | ≥ 2.

0

a

b

c
d

e
f

Figure 4: surgery presentation of M

2.1 Heegaard splittings of genus two of M

By Corollary 1.1, for non-existence of GOF-knots, it is enough to check that we cannot put simple
closed curves on any Heegaard surface of genus two of M satisfying the condition in Corollary 1.1 for
g = 1. Note that the elements in Out(F2) · [x, y] are [x, y] and [x, y−1] as cyclic words.

Facts 2.1. • (See [12] for example) M is irreducible.

• [14] Every irreducible Heegaard splitting of Seifert manifolds is either horizontal or vertical.

It is known that every Heegaard splitting of genus grater than zero of every irreducible 3-manifold
is irreducible. Therefore, every Heegaard splitting of genus two of M is horizontal or vertical.

2.2 Horizontal Heegaard splittings

A Seifert manifold has a horizontal Heegaard splitting if there is a Seifert fiber which is a fibered
knot. By thickening the fiber surface, we get the horizontal Heegaard splitting. It is known that
the monodromy of this fibered knot is periodic as a boundary-free map. Hence for a genus two
horizontal Heegaard splitting, there is a Seifert fiber which is a genus one fibered knot with periodic
monodromy. It is known that the order of a periodic self-homeomorphism of Σ1,1 is 1, 2, 3, 4 or 6. This
means that this manifold admits a Seifert structure which has an exceptional fiber of coefficient p

q , for

p ∈ {1, 2, 3, 4, 6}. Note that M is not an exceptional Seifert manifold i.e. admits the unique Seifert
structure up to homeomorphism (see [12] for example). Thus |p| = |a| for example. This contradicts
to b ̸≡ ±1 (mod a). Hence M has no horizontal Heegaard splittings of genus two.

Therefore, we consider only vertical Heegaard splittings of genus two of M .

2.3 Vertical Heegaard splittings

Every vertical Heegaard splitting of genus two M = V ∪SW is obtained by the following way: In Figure
4, the 0−framed unknot bounds a disk. Take an arc α on this disk that connects two exceptional knots
K1 and K2 and is disjoint from exceptional knots in its interior. Let W be a regular neighborhood of
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K1 ∪ α ∪K2, and V be M \W .

By the above construction, we get standard Heegaard diagrams as in Figure 5 and Figure 6. In
figures, boxes represent curves as in Figure 7. {DL, E} (and {DR, E}) are cut systems of the inner
handlebodies, and {D′, E′} is a cut system of the outer handlebody. Note that DR is obtained from
DL by |f | times band-sums using E, hence these Heegaard splittings are equivalent. By applying
homeomorphisms on this Heegaard surface and band-sums, we assume a, b, c, d > 0 and a−b, c−d > 0.
Under these homeomorphisms, the condition f ̸≡ ±1 (mod e) is preserved. Note also that in some
cases, the diagrams in Figure 5 and Figure 6 may not be minimally and transversely. See Figure 8. In
our assumption, a− b, c− d ≥ 2, and ||e| − |f || ≥ 2.

∂E

∂D'

∂E'

a/b /c d

- /e f

…

…

…

…
…

…
∂DL

+

-

+

-

Figure 5: left-standard

∂E

∂D'

∂E'

a/b /c d

- /e f

…

…

…

…

…
…

∂DR

+

-

+
-

Figure 6: right-standard

Give DL, DR, E, D′, E′ letters xL, xR, y, x′, y′ respectively. For a contradiction, we suppose
there exists a simple closed curve l on the left-standard Heegaard diagram satisfying the condition
in Corollary 1.1. Since the left-standard diagram and the right-standard diagram are equivalent, l
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Figure 7: sign rule

|e| |f|> |e||f|>

=

…
… …

…
…|e|/
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…
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/|b|

…
… …

…

…|e|-|f|
/|f|

|a|-|b|
/
|b|

Figure 8: reduction

11



satisfies the condition also in the right-standard diagram.
First, we will show that l must represent cyclically reduced sequences of letters in both {xL, y} and
{x′, y′}. Next, we will show that such l cannot exist.

2.3.1 l must be cyclically reduced

Lemma 2.1. If the sequence of letters represented by l in {x′, y′} is cyclically reduced, then that in
{xL, y} is also cyclically reduced.

Proof. Since c > d, there exist consecutive (c − d) arcs with the same orientations connecting ∂E+

and ∂E− in the left-standard diagram, which are subarcs of ∂E′. Hence if there exists a xLx
−1
L or

x−1
L xL in the sequence of letters represented by l in {xL, y}, then that in {x′, y′} has a subsequence

y′±(c−d). However since the sequence of letters represented by l in {x′, y′} is cyclically reduced and is
a commutator, l must intersect ∂E′ exactly two times in the opposite directions. It is a contradiction
since c− d ≥ 2.
Note that in any choice of signs, even after making the diagrams minimally and transversely, there
are sharp shaped subdiagrams in the left-standard and the right-standard diagrams as in Figure 9.
Hence if there exists a yy−1 or y−1y in the sequence of letters represented by l in {xL, y}, that in
{x′, y′} has a subsequence x′±2 (and y′±2). However since the sequence of letters represented by l
in {x′, y′} is cyclically reduced and is a commutator, l must intersect ∂D′ exactly two times in the
opposite directions. It is a contradiction.

2

Figure 9: sharpe shaped

Similarly to the proof of Lemma 2.1, we can show that if the sequence of letters represented by l
is cyclically reduced in {xL, y} or {xR, y}, then that in {x′, y′} is also cyclically reduced.

Lemma 2.2. The sequences of letters represented by l in {xL, y} and {x′, y′} are cyclically reduced.

Proof. If the sequence of letters represented by l in {xL, y} contains yy−1, then it has x′±2 and y′±2

because of sharp shaped subdiagrams as in Figure 9. Hence by Fact 1.3, l represents a cyclically
reduced sequence of letters in {x′, y′} and it cannot represent a commutator. Similarly, we see that
the sequence of letters represented by l in {xR, y} does not contain yy−1.
If the sequence of letters represented by l in {xL, y} contains xLx

−1
L , then it has y′±(c−d). And If

the sequence of letters represented by l in {xR, y} contains xRx
−1
R , then it has x′±(a−b). Therefore

the sequence of letters represented by l at least one of in {xL, y} and in {xR, y} is cyclicaly reduced,
since otherwise the sequence of letters represented by l in {x′, y′} has x′±2 and y′±2. In both case, the
sequence of letters represented by l in {x′, y′} is cyclically reduced and hence that in {xL, y} must be
cyclically reduced by Lemma 2.1. 2
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2.3.2 l cannot exist

By the above, l represents cyclically reduced sequences of letters which are commutators in both of
{xL, y} and {x′, y′}. In the left-standard diagram, there is a subarc of l starting from ∂E+ and ending
on ∂D+

L by reversing the orientation of l if necessary. Next to this subarc, l starts from ∂D−
L and must

end on ∂E+ since it represents a commutator in {xL, y}. However these two subarcs prevent l from
being a commutator in {x′, y′}. See Figures 10,11,12,13 below.

Here we give figures of left-standard diagrams for four cases, where e
f > 0 with e > f , e

f > 0 with

e < f , e
f < 0 with |e| > |f |, and e

f < 0 with |e| < |f |. In the figures, the disks with three-holes
are obtained by cutting the Heegaard surfaces along ∂DL and ∂E. We can reconstruct the Heegaard
surfaces by pasting ∂D+

L and ∂D−
L so that the spade marks ♠ match, and pasting ∂E+ and ∂E− so

that the circle marks • match. Boxes with numbers represent parallel copies of arcs. In the cases where
|e| > |f |, sn for an integer n denotes a number of multiples of |f | in ((n− 1)|e|, n|e|), and i denotes
the least positive number such that (1 + Σi

n=1sn)|f | ≡ 1 mod |e|, this number is equal to 1 + i|e|
by definition. In the cases where |e| < |f |, tn for an integer n denotes a number of multiples of |e|
in ((n− 1)|f |, n|f |), and j denotes the least positive number such that (1 + Σj

n=1tn)|e| ≡ 1 mod |f |.
This number is equal to 1 + j|f | by definition. Note that sn, tn > 0 for any n.
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Figure 10: e
f > 0 with e > f
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3 Openbook genus of a Seifert manifold whose base orbifold is
sphere with three exceptional points of integral coefficients

For a connected, orientable closed 3-manifold X, its openbook genus op(X) is defined by
op(X) = min{g ≥ 0| X has a genus g fibered knot}.
We will compute the openbook genus for a Seifert manifold whose base orbifold is a sphere with three
exceptional points of integer coefficients. Every such manifold has a surgery presentation as in the
left-hand side of Figure 14 by introducing integer parameters a,b and c. It is denoted by M{a, b, c}.
It can be presented as a surgered manifold along the three component link as in the right-hand side
of Figure 14. Note that the homeomorphism type of M{a, b, c} is independent of the order of {a, b, c},
and that M{a, b, c} is homeomorphic to M{−a,−b,−c}.

0

a

c

b a b

c-
_1

≈

Figure 14: surgery presentation of M{a, b, c}

In this section, we will prove the following:

Theorem 3.1. op(M{a, b, c}) is computed as follows, where n is an integer:

• op(M{a,b,c}) = 0 if and only if {a, b, c} = {0,±1,±1}, {1,−1, n}, {±1,∓2,∓3}.

• op(M{a,b,c}) ≤ 1 if and only if at least one of {a, b, c} is 0, 2 or −2, or {a, b, c} = {1,−1, n},
{±1,∓4, n}, {±1,±1,±1}, {±1,±1,±3}, {±1,±1,∓3}, {±1,∓3,∓3}, {±1,∓3,∓5}.

• Otherwise op(M{a,b,c}) = 2.

In Subsection 3.1, we prove that op(M{a, b, c}) ≤ 2 for every {a, b, c}. In Subsection 3.2, we give
the necessary and sufficient condition for op(M{a, b, c}) = 0. In Subsection 3.3, we give the necessary
and sufficient condition for op(M{a, b, c}) ≤ 1 admitting some proposition. In Subsection 3.4, we prove
the proposition.

3.1 An upper bound

Regard M{a, b, c} as a surgered manifold as in the right-hand side of Figure 14. Let K ′
c denote the

(− 1
c )-framed unknot. In general, L(n, 1), the lens space of type (n, 1), has a fibered link whose fiber

surface is an annulus. Hence by the plumbing of fibered annuli, we get a fibered link whose fiber surface
is homeomorphic to Σ0,3 in L(−a, 1)#L(−b, 1), see Figure 15. Note that in the surgery presentation
of Figure 15, K ′

c can be put on the fiber of L(−a, 1)#L(−b, 1).

Fact 3.1. (See a part of “twisting” in [10]) Let X be a 3-manifold with a fibered link and F its fiber
surface, and K a knot on F . Give K the framing coming from F , surface framing. Let X( 1

n ) be the
manifold obtained from X by 1

n -surgery (according to the surface framing) along K for an integer n.
Then X( 1

n ) has a fibered link whose fiber surface is homeomorphic to F .

Since the canonical framing and the surface framing of K ′
c are identical, M{a, b, c} has a fibered

link whose fiber surface is homeomorphic to Σ0,3 by Fact 3.1. By the plumbings of Hopf annuli in S3

in order to make the boundary connected, we get a genus two fibered knot in M{a, b, c}. Therefore
op(M{a, b, c}) ≤ 2 for every {a, b, c}.
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Figure 15: one way of the plumbing fibered annuli

Figure 16: another way of the plumbing fibered annuli

3.2 The condition for op(M{a, b, c}) = 0

Suppose that op(M{a, b, c}) = 0. For a 3-manifold X, it is known that op(X) = 0 if and only if X = S3.
Hence π1(M{a, b, c}) must be trivial. We assume that |a| ≥ |b| ≥ |c|. From the surgery presentation, we
get a presentation π1(M{a, b, c}) =

⟨
x, y, h| xah = 1, ybh = 1, (xy)−ch = 1, [x, h] = [y, h] = 1

⟩
. Tak-

ing the quotient by the normal subgroup ⟨h⟩, we get a group G =
⟨
x, y| xa = 1, yb = 1, (xy)−c = 1

⟩
,

which must be also trivial. Since it is known that G is finite if and only if 1
|a| + 1

|b| + 1
|c| > 1, we get

|c| ≤ 2. Moreover, |c| ≤ 1 since |G| = |a||b| ≥ |c|2 ̸= 1 under |c| = 2. If c = 0, |a| and |b| must be one
since M{a, b, c} represents L(−a, 1)#L(−b, 1). We assume c = 1. Then π1(M{a, b, c}) =

⟨
x| xab+a+b

⟩
.

Therefore {a, b} = {−1, n}, {0, 1}, {−2,−3} for every integer n.
By the above, we see that {a, b, c} = {0,±1,±1}, {1,−1, n}, {±1,∓2,∓3} must hold for
op(M{a, b, c}) = 0. We see that this is also the sufficient condition for op(M{a, b, c}) = 0 by using the
Kirby calculus.

3.3 The condition for op(M{a, b, c}) ≤ 1

3.3.1 The case where at least one of {a, b, c} is zero

Assume one of {a, b, c}, say c, is zero. Then M{a, b, 0} = L(−a, 1)#L(−b, 1). This has a genus one
fibered knot, which is obtained by a plumbing of fibered annuli in L(−a, 1) and L(−b, 1), see Figure
16. Hence op(M{a, b, 0}) ≤ 1.

3.3.2 The case where at least one of {a, b, c} is ±1

Assume one of {a, b, c}, say c, is one. Then M{a, b, 1} = L(ab + a + b,−(b + 1)) by the Kirby calculus
and it is homeomorphic to L(ab + a + b, b + 1). Whether a given lens space has a genus one fibered
knot is completely determined as follows:

Fact 3.2. [2] A lens space has a genus one fibered knot if and only if there exist two non-negative
integers x, y and ϵ, which is 0 or 1 such that it is homeomorphic to L(2xy + x + y + ϵ, 2y + 1).
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By noting that every lens space has at most four representations of the form L(p, q) with p ≥ q ≥ 0,
we can determine whether a solution x, y, ϵ of Fact 3.2 exists for each {a, b} as follows:

L(ab+ a+ b, b+ 1) has a genus one fibered knot if and only if at least one of {a, b} is 0,−1,±2,−4
or {a, b} = {1, 1}, {1,±3}, {−3,−3}, {−3,−5}.

These are conditions for op(M{a, b, c}) ≤ 1 under c = 1. For under c = −1, a and b should be
replaced with −a and −b.

3.3.3 The case where at least one of {a, b, c} is ±2

Assume one of {a, b, c}, say c, is −2. We can put a knot K on the fiber surface of genus one of
L(−a, 1)#L(−b, 1) as in Figure 17 so that the surface framing of K is (+1)-framing according to the
canonical framing. Note that ( 1

2 )-framing of K according to the canonical framing corresponds to the
(− 1

2 )-framing according to the surface framing. Hence by Fact 3.1, M{a, b,−2} has a fibered knot
whose fiber surface is homeomorphic to Σ1,1 i.e. op(M{a, b,−2}) ≤ 1 for any a,b. For c = 2, the
similar argument holds.

Figure 17: K on the fiber surface

3.3.4 The case where |a|, |b|, |c| ≥ 3

Assume |a|, |b|, |c| ≥ 3.
We postpone the proof of the proposition below to the next subsection:

Proposition 3.1. M{a, b, c} has no genus one fibered knots.

By the above, we see that Theorem 3.1 holds.

3.4 Proof of Proposition 3.1

Assume |a|, |b|, |c| ≥ 3. We use the setting of Section 1. Hence, for the non-existence of GOF-knots, it
is enough to check that we cannot put simple closed curves on any Heegaard surfaces of genus two of
M satisfying the condition in Corollary 1.1. It is known that M is irreducible (see [12] for example).
By Facts 2.1, it is enough for Proposition 3.1 to prove the lemmas below:

Lemma 3.1. M{a, b, c} has no horizontal Heegaard splittings of genus two.

Lemma 3.2. There are no simple closed curves satisfying the condition in Corollary 1.1 on any
vertical Heegaard surfaces of genus two of M{a, b, c}.

18



3.4.1 Proof of Lemma 3.1

For a Seifert manifold X, a horizontal Heegaard splitting exists if there is a Seifert fiber which is a
fibered knot. By thickening the fiber surface, we get the horizontal Heegaard splitting. It is known that
the monodromies of the fibered knots of horizontal Heegaard splitting are periodic as boundary-free
maps.
By the above, if X has a horizontal genus two Heegaard splitting, there is a fibered knot which is
a fiber of the Seifert structure whose fiber surface is homeomorphic to Σ1,1, and the monodromy is
periodic. It is known that the order of a periodic map of Σ1,1 is 1, 2, 3, 4 or 6 and we have concrete
homeomorphisms of such orders. For the case where the order is 1, 2, 4 or 6, there exists an exceptional
fiber of coefficient p

q with |p| < 3. For the case where the order is 3, we see that X is homeomorphic
to a Seifert manifold whose base orbifold is a sphere with three exceptional points with coefficients
3
1 ,

3
1 and − 2+3k

1+2k for an integer k. Note that M{a, b, c} for |a|, |b|, |c| ≥ 3 is not an exceptional Seifert
space i.e. admits the unique Seifert fiber structure up to homeomorphism (see [12] for example). This
implies M{a, b, c} has no horizontal Heegaard splittings.

3.4.2 Proof of Lemma 3.2

Every vertical Heegaard splitting of M{a, b, c} is obtained as follows: Choose an arc α connecting
two of three exceptional fibers, say A and B. Then N(A ∪ α ∪ B) ∪ (M{a, b, c} \ N(A ∪ α ∪ B)) is
a vertical Heegaard splitting. A Heegaard diagram obtained by this construction is as in Figure18.
We call the top diagram left-standard and the bottom right-standard. {DL, E} and {DR, E} are cut
systems of the inner handlebody, and {D′, E′} is a cut system of the outer handlebody. Give letters
xL, xR, y, x

′, y′ to DL, DR, E,D′, E′ respectively. Note that the positions of a, b, c may interchange
and when the sign of a is different from that of c, the diagram is not minimally intersecting.

+3＝

-3 ＝

D

E

D'

E'

…

……

-c

a b

L

D

E

D'

E'

…

……

-c

a b

R

Figure 18: vertical diagram
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Suppose there exists a simple closed curve l on the Heegaard surface satisfying the condition in
Corollary 1.1. First we show l must represent reduced sequences of letters with respect to the inner
and outer cut systems of some left (or right)-standard diagram. Next, we show that such l cannot
exist.
We consider three cases: (1)a > 0, b > 0, c > 0, (2)a > 0, b > 0, c < 0, (3)a < 0, b > 0, c > 0. Their
left-standard diagrams are in Figures 19, 25, 31.
Note that in any case, if l represents a reduced sequence of letters with respect to {D′, E′}, then
its representing sequence of letters with respect to {DL, E} (and {DR, E}) are also reduced. This
is because there are (|b| − 1) arcs with the same orientations coming from ∂E′ connecting ∂E+ and
∂E−, (|c| − 1) arcs with the same orientations coming from ∂E′ connecting ∂D+

L and ∂D−
L in the

left-standard diagram. Therefore, if l has a subarc representing xLx
−1
L must intersect with ∂E′ in

the same orientation more than once. Since l represents a reduced sequence of letters with respect to
{x′, y′} and a commutator, this is a contradiction.
Similarly we can see that if l represents a reduced sequence of letters with respect to {DL, E} (or
{DR, E}), then its representing sequence of letters with respect to {D′, E′} is also reduced.
If there exists a subarc of l representing xLx

−1
L (or xRx

−1
R ) with respect to {DL, E} (or {DR, E}), a

part of this subarc represents y′±(|b|−1) (or x′±(|a|−1)) with respect to {D′, E′}. Hence with respect to
one of {DL, E} and {DR, E}, xx−1-type subarcs of l cannot exist. Otherwise, l represents a reduced
sequence of word by Fact 1.3. We assume that l does not have a subarc representing xLx

−1
L with

respect to {DL, E} for cases (1) and (2).

(1) the case where a > 0, b > 0, c > 0 Suppose that l has a subarc c̃ representing yy−1 with
respect to {DL, E}. We suppose that its corresponding arc α starts from ∂E−. We may assume that
α is put so that it is disjoint from D′ and E′ by Fact 1.2.
If α ends on ∂D+

L , we change an (inner) cut system as in Figure 20. In this diagram we see that l is
reduced with respect to this new cut system {D̄L, E}, or that l is reduced with respect to {D′, E′},
or l is reduced with respect to an (outer) cut system {D̄′, E′} as in Figure 21. For suppose l is not
reduced with respect to this new cut system {D̄L, E}. There exists a reducible subarc of l. Let α
denote the corresponding arc. If α intersects ∂D′ ∩ ∂E′, l represents a reduced sequence of letters
with respect to {D′, E′} by Fact 1.2. Suppose α is disjoint from ∂D′ ∩ ∂E′. If α starts at ∂D̄L and
ends on ∂E+ or ∂E−, l represents a reduced sequence of letters with respect to {D′, E′} by Fact 1.3.
If α started at ∂E− and ends on ∂D̄−

L , it would intersect c̃. If α starts at ∂E− and ends on ∂D̄+
L , l

represents a reduced sequence of letters with respect to {D̄′, Ē′} by Fact 1.3. First two cases imply
that l is reduced with respect to {DL, E}. In the last case, the new outer cut system is equal to the
outer cut system of right of Figure 22. The left of Figure 23 is a diagram obtained by cutting open
the diagram in the right of Figure 22 along the inner cut system. The right of Figure 23 is another
description of this diagram. Note that this diagram looks like the standard diagram. Hence l can be
put on some standard diagram so that it is reduced with respect to inner and outer cut systems.
If α ends on ∂D−

L , we change an inner cut system as in the left of Figure 22. Note that the number
of intersections of l with the inner cut system decreases. Then we change also an outer cut system as
in the right of Figure 22. Again, this diagram is equal to the standard diagram in the right of Figure
23. Return to the start of (1), and repeat the argument. After finitely many operations, l can be put
on some standard diagram so that it is reduced with respect to inner and outer cut systems.

Next we search such l on the left-standard diagram. By reversing the orientation if necessary, we
have a subarc l′ of l starting from ∂E− and ending on ∂D−

L . After l′, l must start from ∂D+
L and

end on ∂E−. Before l′, l must end on ∂E+ and start from ∂D−
L . They prevent l from representing a

reduced sequence of letters and a commutator. See Figure 24

(2) the case where a > 0, b > 0, c < 0 Suppose that l has a subarc representing yy−1 with respect
to {DL, E}. We suppose that its corresponding arc α starts from ∂E−. We can assume that α is put
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Figure 19: left-standard diagram for (1)

Figure 20: diagram for (1)

Figure 21: diagram for (1)
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→

Figure 22: diagram for (1)

Figure 23: diagram for (1)

Figure 24: parts of l for (1)
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so that it is disjoint from D′ and E′ by Fact 1.2.
If α ends on ∂D−

L , we change an (inner) cut system as in Figure 26. In this diagram we see that l
is reduced with respect to this new cut system, or that l is reduced with respect to {D′, E′}, or l is
reduced with respect to an (outer) cut system as in the right of Figure 27. First two cases imply that
l is reduced with respect to {DL, E}. In the last case, note that the new outer cut system is equal to
the outer cut system of right of Figure 28. The left of Figure 28 is a diagram obtained by cutting open
the diagram in the right of Figure 28 along the inner cut system. Note that this diagram looks like
the standard diagram of a′ = −b < 0, b′ = a > 0, c′ = −c > 0. Hence l can be put on some standard
diagram in the case (3) so that it is reduced with respect to the inner and outer cut systems.
If α ends on ∂D−

L , we change an inner cut system as in the left of Figure 27. Note that the number of
intersections of l with inner cut systems decreases. Then we change also an outer cut system as in the
right of Figure 27. Again, this diagram is equal to the standard diagram in the right of Figure 28. Go
to (3). After finitely many operations, l can be put on some standard diagram so that it is reduced
with respect to the inner and outer cut systems.

Next we search such l on the left-standard diagram. By reversing the orientation if necessary, there
is a subarc l′ of l starting from ∂E+ and ending on ∂D+

L . After l′, l must start from ∂D−
L and end on

∂E+. Before l′, l must end on ∂E− and start from ∂D+
L . They prevent l from representing a reduced

sequence of letters and a commutator. See Figures 29, 30

Figure 25: left-standard diagram for (2)

(3) the case where a < 0, b > 0, c > 0 The left (or right)-standard diagram is given in Figure 31
(or 32), respectively.
As mentioned before, not both of xRx

−1
R with respect to {xR, y} and xLx

−1
L with respect to {xL, y}

in the sequence of letters represented by l exist. Assume l does not have a subarc representing xRx
−1
R

with respect to {xR, y}. If l does not have a subarc representing yy−1 with respect to {xR, y}, l is
reduced with respect to {xR, y}, moreover {x′, y′}, {xL, y}. If l has a subarc representing yy−1 with
respect to {xR, y}, its corresponding arc α is disjoint from D′ and E′ by Fact 1.2. We assume α starts
from ∂E+. If α ends on ∂D+

R , we change the inner cut system as in Figure 34. Additionally, we change
also the outer cut system as in Figure 35. Note that this diagram looks like a right-standard diagram
(compare the rights of Figures 32 and 35) and note that the number of the intersections of l with the
inner cut systems decreases. If α ends on ∂D−

R , we change the outer cut system as in Figure 33. Then
l is reduced with respect to this outer cut system by Fact 1.3. This leads that l is reduced with respect
to also the inner cut system, {DR, E}. As before, l is reduced with respect to {xL, y}.
Assume l does not have a subarc representing xLx

−1
L with respect to {xL, y}. If l does not have a

subarc representing yy−1 with respect to {xL, y}, l is reduced with respect to {xL, y}. If l has a subarc
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Figure 26: diagram for (2)

Figure 27: diagram for (2)

Figure 28: diagram for (2)
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Figure 29: parts of l for (2)

Figure 30: parts of l for (2)
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representing yy−1 with respect to {xL, y}, its corresponding arc α is disjoint from D′ and E′ by Fact
1.2. We assume that α starts from ∂E+. If α ends on ∂D−

L , l is reduced with respect to {x′, y′} by
Fact 1.2, and then {xL, y}. If α ends on ∂D+

L , we change the inner cut system as in Figure 34. In this
diagram we can see that l is reduced with respect to this new cut system, or that l is reduced with
respect to {D′, E′}, or we have a right standard diagram whose inner cut system intersects l less times
than that of the left standard diagram where we start, or l is reduced with respect to an (outer) cut
system as in Figure 36. First two cases imply that l is reduced with respect to {DL, E}. Third case
takes us to the paragraph above. In the last case, l is reduced with respect to this outer cut system.
Note that this diagram looks like the left-standard diagram of (2). Then in finitely many times, we
can put l on some standard diagram. As mentioned before, if l is reduced with respect to {xR, y},
then it is also reduced with respect to {xL, y}.
Next we search such l on the left-standard diagram. By reversing the orientation if necessary, there is
a subarc l′ of l starting from ∂E+ and ending on ∂D+

L . After l′, l must start from ∂D−
L and end on

∂E+. Before l′, l must end on ∂E− and start from ∂D+
L . They prevent l from representing a reduced

sequence of letters and a commutator. See Figure 37.

Figure 31: left-standard diagram for (3)

Figure 32: diagram for (3)
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Figure 33: diagram for (3)

Figure 34: diagram for (3)

Figure 35: diagram for (3)
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Figure 36: diagram for (3)

Figure 37: parts of l for (3)
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4 Examples of fibered knots in lens spaces

We use the notation of the continue fraction expansion as follows:

Definition 4.1. For integers x1, x2, . . . , xn with xn ̸= 0, we define [x1, x2, . . . , xn] = x1 − 1
x2− 1

···− 1
xn

.

It is known that the lens space L(p, q) of type (p, q) has a surgery presentation of an n-components
chain link as in Figure 38 if p

q = [x1, x2, . . . , xn] for some integers x1, x2, . . . , xn. Moreover by this

presentation, we see that L(p, q) has a fibered link whose fiber surface is homeomorphic to Σ0,n+1.
The surface is depicted in the top of Figure 41. Thus by the plumbings of Hopf annuli, we have
op(L(p, q)) ≤ n for such L(p, q). However the existence of the universal upper bound for the openbook
genus of every lens space is unknown.
In this section, we give some examples for fibered knots in lens spaces by using analogues of genus one
fibered knots in lens spaces.

Figure 38: a surgery presentation of L(p, q)

4.1 Genus one fibered knots in lens spaces

As mentioned before, whether a given lens space has a genus one fibered knot is completely determined
(Fact 3.2). By changing variables, we have the below, equivalent to Fact 3.2:

Fact 4.1. A lens space has a genus one fibered knot if and only if it is homeomorphic to L(2xy + x +
y, 2y + 1) or L(2xy + x + y + 1, 2y + 1) for some integers x, y.

Since 2xy+x+y
2y+1 = [x,−2, y] and 2xy+x+y+1

2y+1 = [x,−2,−(y+1)], we can construct a genus one fibered

knot in L(2xy + x + y, 2y + 1) and L(2xy + x + y + 1, 2y + 1) as in Figure 39. Note that a lens space
corresponding to [x,+2, y] is homeomorphic to a lens space corresponding to [−x,−2,−y], and a lens
space corresponding to [x, 0, y] is homeomorphic to a lens space corresponding to [0,−2, x + y]. We
give surgery presentations of these in Figure 39. We use them as building blocks for our examples.

Figure 39: genus one fibered knots of [x,−2, y], [x,+2, y], [x, 0, y].
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4.2 Examples

Proposition 4.1. Suppose a pair (p, q) has a continue fraction expansion
p
q = [x1, 2ϵ1, y1, x2, 2ϵ2, y2, . . . , xn, 2ϵn, yn] for integers xi, yi, and ϵi ∈ {0,±1} (1 ≤ i ≤ n). Then

L(p, q) has a genus n fibered knot.

Proof. Note that
[x1, 2ϵ1, y1, x2, 2ϵ2, y2, . . . , xn, 2ϵn, yn]

= [x1, 2ϵ1, y1−1,−1, x2−1, 2ϵ2, y2−1,−1, . . . ,−1, xn−1−1, 2ϵn−1, yn−1−1,−1, xn−1, 2ϵn, yn].
Put p1

q1
= [x1, 2ϵ1, y1 − 1], pk

qk
= [xk − 1, 2ϵk, yk − 1] for 1 < k < n, pn

qn
= [xn − 1, 2ϵn, yn]. By the

observation in Section 4.1, L(pi, qi) has a genus one fibered knot for all 1 ≤ i ≤ n, each of which is
as in Figure 39. By the plumbings (using inessential arcs), we construct a genus n fibered knot in
L = L(p1, q1)#L(p2, q2)#L(pn, qn) as in the top of Figure 40. Moreover we put (−1)-framed knots
l1, . . . , ln−1 on the fiber surface as in the bottom of Figure 40. Note that since the canonical framings
of li’s are identical with the surface framings, the manifold L′ obtained by the surgery of L along l′is
also has a genus n fibered knot by Fact 3.1. Note also that since the surgery presentation of L′ on S3 is
a chain link with framing −x1,−2ϵ1,−(y1 − 1),−(−1), . . . ,−(xn − 1),−2ϵn,−yn, L′ is homeomorphic
to L(p, q). This completes the proof. 2

Figure 40: top: a surgery presentation of L, bottom: a surgery presentation of L(p, q)
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5 A minimal genus relative trisection corresponding to a chain
link

For a smooth, connected, orientable and compact 4-manifold X and an openbook decomposition of
its boundary ∂X, which is equivalent to a fibered link of ∂X with its fiber surface, we can construct
a relative trisection corresponding to these. For a chain link in S3, we can associate a compact
4-manifold and an openbook decomposition of its boundary. In this section, we give a minimal genus
relative trisection corresponding to these.

5.1 Relative trisection

We review the definition of relative trisections [8] (we consider only the case of 4-manifolds with
connected boundaries).

Definition 5.1. A (g, k1, k2, k3; p, b)-relative trisection diagram for b ≥ 1, p ≤ g, 2p + b − 1 ≤
k1, k2, k3 ≤ g+p+b−1 consists of (S, α, β, γ), where S is homeomorphic to Σg,b and α, β, γ are (g−p)
simple closed curves on S such that:

• (S, α, β) is a sutured decomposition of genus g of (Σp,b× [0, 1])#(#k1−(2p+b−1)S2×S1) ( defined
below).

• (S, β, γ) is a sutured decomposition of genus g of (Σp,b × [0, 1])#(#k2−(2p+b−1)S2 × S1).

• (S, γ, α) is a sutured decomposition of genus g of (Σp,b × [0, 1])#(#k3−(2p+b−1)S2 × S1).

We call g the genus of the relative trisection.

A sutured decomposition of (Σp,b × [0, 1])#(#k−(2p+b−1)S2 × S1) is obtained from the product de-
composition (Σp,b × [0, 1

2 ]) ∪Σp,b×{ 1
2}

(Σp,b × [ 12 , 1]) of Σp,b × [0, 1] by the (inner) connected sums of

S2 × S1’s and stabilizations. Note that for such decompositions a product cut system for Σp,b × [0, 1]
survives in this decomposition, and it cuts (Σp,b× [0, 1])#(#k−(2p+b−1)S2×S1) into a once punctured
(#k−(2p+b−1)S2 × S1). By a given relative trisection diagram, we can construct a 4-manifold with
boundary and an openbook decomposition of its boundary: Let Hα,Hβ ,Hγ be 3-dimensional handle-
bodies obtained by attaching 3-dimensional 2-handles along α, β, γ to S respectively. Let Y ′

1 ,Y ′
2 ,Y ′

3 be
Hα∪SHβ , Hβ∪SHγ ,Hγ∪SHα respectively. Y ′

i is (Σp,b×[0, 1])#(#ki−(2p+b−1)S2×S1). Let Y ′′
1 ,Y ′′

2 ,Y ′′
3

be copies of Σp,b × [0, 1] with a binding ∂Σp,b × { 1
2}. Let Yi be a result of pasting Y ′

i and Y ′′
i along

boundaries so that the upper (lower) boundary of Y ′
i is pasted to the upper (lower) boundary of Y ′′

i

by the “identical” way, which means the way so that the boundary of the product cut system of Y ′
i as

mentioned before also bounds a product cut system of Y ′′
i . Then Y is homeomorphic to #kiS2×S1. It

is known that smoothly there is the unique way for #kiS2×S1 bounding a 4-dimensional 1-handlebody
of genus ki. Let Zi be such a handlebody. We call Y ′

i , Y ′′
i are the inner, the outer boundaries of Zi.

Let X be a compact 4-manifold which is the result of identifying Hα,Hβ ,Hγ from Z1, Z2, Z3. The
boundary ∂X consists of Y ′′

i ’s, which are the product of the surface. Hence we have an openbook
decomposition of ∂X whose page is homeomorphic to Σp,b.
Note that for a relative trisection diagram representing a given a 4-manifold X (and an openbook
decomposition of ∂X), a new relative trisection diagram obtained from the old one by changing
α(,β,γ)-curves by the band-sums according to α(,β,γ)-curves on the old one also represents X and
the openbook decomposition of ∂X.

There is a way to compute some of homology groups (we consider the case of integer coefficients)
of the 4-manifold represented by a relative trisection diagram using the computation for non-relative
trisections [6] and the above construction:

Proposition 5.1. [6] Let (S, α, β, γ) be a relative trisection diagram for X. Let Lα,Lβ,Lγ be submod-
ules of H1(S) generated by the homology classes of curves in α,β,γ-curves respectively. Then
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• H1(X) = H1(S)/(Lα + Lβ + Lγ)

• H2(X) = {Lγ ∩ (Lβ + Lα)}/{(Lγ ∩ Lβ) + (Lγ ∩ Lα)}

5.2 Relative trisections and Kirby diagrams

For a Kirby diagram, we can construct a compact 4-manifold X by attaching 4-dimensional 2-handles
along links in the diagram to the boundary of the 4-dimensional ball B. Additionally, for an openbook
decomposition of ∂X, we can put its page F on the ∂B so that it is disjoint from surgery links. We put
this page in the diagram. There is a method to obtain a relative trisection for X and the openbook
decomposition of ∂X using the diagram due to [3]. We briefly review this in this section:

Regard F as a union of a disk and 2-dimensional 1-handles. Introduce 4-dimensional 1, 2-canceling
pairs and isotope F so that every 1-handle of F passes through some 4-dimensional 1-handle. Project
surgery links onto one side of F with finitely many double points with over/under information. Stabilize
F on the side ( and attach 3-dimensional 1-handles to F × [0, 1] on F × {1}) to get a surface F ′ so
that the surgery link is put on F ′ with no double points and the framing number for surgery of every
component is the same as the surface framing coming from F ′. F × [0, 1

2 ] is the outer boundary of Z1,
(F × [ 12 , 1])∪(1-handles) is Hβ , the complement of these in the connected sums of S2 × S1’s, which is
the diagram with 4-dimensional 1-handles is Hα. F ′ × [0, 1]∪(3-dimensional 2-handles along surgery
link) is Hγ . For these we can find α,β,γ-curves.

5.3 Construction of a relative trisection diagram

Assume that a coprime pair (p, q) satisfies p
q = [x1, . . . , xn] for integers x1, . . . , xn. Then L(p, q) has

a surgery presentation as in Figure 38. Let W be a compact 4-manifold obtained by attaching 4-
dimensional 2-handles along the surgery link in Figure 38 to the boundary of the 4-dimensional ball
B. Note that ∂W is L(p, q) and it has a fibered link whose fiber is homeomorphic to Σ0,n+1, which is
depicted in the top of Figure 41. We construct a (2n, n, n, n; 0, n+ 1)-relative trisection for W and the
openbook decomposition of ∂W by following the method of Section 5.2. In Figure 41, the top is a page
with the surgery link, the middle is the result of introducing 1,2-canceling pairs, and the bottom is the
result of isotoping the link on the front side of the page. Next we do handle slides of the (−xi)-framed
knot along the 0-framed knot which pass through the i-th 1-handle hi for every 1 ≤ i ≤ n. Stabilize
the page so that the link is on the surface and has the surface framing which is the same as the surgery
framing. Then we have a relative trisection diagram. Figure 42 is for n = 1, and Figure 43 is for n ≥ 2.
This is a (2n, n, n, n; 0, n + 1)-relative trisection diagram.

5.4 Minimal relative trisection

In this section, we will show that every (g, k1, k2, k3; p, b)-relative trisection (S, α, β, γ) for W and an
openbook decomposition of ∂W mentioned in Section 5.2 satisfies g ≥ 2n. This implies that a relative
trisection constructed in Section 5.2 is of the minimal genus.

At first, p = 0 and b = n+1 hold since the page is homeomorphic to Σ0,n+1. Note that α,β,γ-curves
are g-components. We set α = {a1, . . . , ag}, β = {b1, . . . , bg}, γ = {c1, . . . , cg}. We may make α,β-
curves standard as in the left of Figure 44 by the band-sums since (S, α, β) is a sutured decomposition
of genus g of (Σp,b× [0, 1])#(#k1−(2p+b−1)S2×S1). Also we take pairwise disjoint simple closed curves
{x1, . . . , xg, y1, . . . , yg, z1, . . . , zn}, which form a basis of H1(S). Every element in H1(S) is represented
as the linear combination of the basis in the unique way. We call the coefficient of xi for an element
the xi-component for the element, and so on.

We compare the homology groups computed by the Kirby diagram and by the relative trisection
diagram. By the Kirby diagram, we see H1(W ) = {0} and H2(W ) = Zn. Since {0} = H1(W ) =
H1(S)/(Lα + Lβ +  Lγ), and ai and bi have no zj-component for all i, j, there exists a c̃k, which is
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Figure 41: introduce canceling 1,2-canceling pairs

Figure 42: a relative trisection diagram for n = 1
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Figure 43: a relative trisection diagram for n ≥ 2
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Figure 44: left: standard α,β-curves right: a basis of H1(S)

a linear combination of γ-curves such that its zt-component is zero if k ̸= t and one if k = t for all
1 ≤ k, t ≤ n. Note that {c̃1, . . . , c̃n} can be a subset of some basis of Lγ : Let c̃1 = Σilici. Since the
z1-component of c̃1 is one, gcd(l1, . . . , lg) = 1. Thus c̃1 is a member of some basis of Lγ . In this new
basis, we can assume that all elements but c̃1 has zero z1-components by adding c̃1’s if necessary. Then
c̃2 is represented as a linear combination of this basis without c̃1’s, and so on. This implies g ≥ n. This
new basis is denoted by {c̃1, . . . , c̃n, c̃n+1, . . . , c̃g}. We choose c̃i for n + 1 ≤ i ≤ g so that it has zero
zk-component for all 1 ≤ k ≤ n by adding c̃k’s. Then Lγ ∩ (Lβ +Lα) is a submodule of ⟨c̃n+1, . . . , c̃g⟩.
Since Zn = H2(W ) = {Lγ ∩ (Lβ + Lα)}/{(Lγ ∩ Lβ) + (Lγ ∩ Lα)}, the rank of ⟨c̃n+1, . . . , c̃g⟩ must be
equal to or bigger than n. This implies g ≥ 2n.
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Part II

6 A connected sums of lens spaces represented as a closure of
a homology cobordism over Σ0,n+1 or Σg,1

A fibered link L with fiber surface F in a 3-manifold M requests that the sutured manifold M \F is a
product sutured manifold. There is one generalization of fibered links, homologically fibered links. A
homologically fibered link requests that the sutured manifold obtained by cutting the ambient manifold
along a “fiber surface” is a homology cobordism.

Definition 6.1. (Section 2.4 of [7]) A homology cobordism over Σg,n (n ≥ 1) is a triad (X, ∂+X, ∂−X),
where X is an oriented compact connected 3-manifold and ∂+X ∪ ∂−X is a partition of ∂X, and ∂±X
are homeomorphic to Σg,n satisfying:

• ∂+X ∪ ∂−X = ∂X.

• ∂+X ∩ ∂−X = ∂(∂+X).

• The induced maps (i±)∗ : H∗(∂±X) → H∗(X) are isomorphisms, where i± : ∂±X → X are the
inclusions.

Note that the third condition is equivalent to the condition that X is connected and i± induce
isomorphisms on H1(·). Moreover by using the Poincaré duality, we see that inducing isomorphism of
one of (i+)∗ and (i−)∗ is sufficient.

By pasting ∂+X and ∂−X using any boundary-fixing homeomorphism, we get a closed 3-manifold
M and a surface F in M , which is the image of ∂+X. In this situation, we say M is representable as
a closure of a homology cobordism over Σg,n.

Definition 6.2. [9] A link L with Seifert surface F in a 3-manifold M is called a homologically fibered
link if the sutured manifold M \ F is a homology cobordism over (a surface which is homeomorphic
to) F . The surface F is called a homologically fibered surface of L.

By the above observation, for a link L with its Seifert surface F in a 3-manifold M being homolog-
ically fibered link, it is enough to check that H1(M \F ) ∼= H1(F ) and the push-up’s (or push-down’s)
of simple closed curves on F which represent a basis of H1(F ) form a basis of H1(M \ F ).

In this section, we give the conditions for a connected sums of lens spaces of having a homologically
fibered link whose fiber is homeomorphic to Σ0,n+1 or Σg,1 in terms of some algebraic equations.

Let m be a positive integer. Let (pi, qi) be a coprime integer pair for 1 ≤ i ≤ m. Consider
M = #m

i=1L(pi, qi). Note that M has a surgery presentation as in Figure 45. We call the (−pi

qi
)-

framed unknot Ui.
We will show the below in Sections 6.2, 6.3. In Theorems 6.1, 6.2, P denotes the (m×m)- diagonal

matrix whose (i, i)-entry is pi and Q denotes the (m×m)-diagonal matrix whose (i, i)-entry is qi:

Theorem 6.1. M has a homologically fibered link whose homologically fibered surface is homeomorphic
to Σ0,n+1 if and only if there exist (m×n)-matrix of integer coefficients X and symmetric (n×n)-matrix
of integer coefficients Y satisfying the following equation:

∣∣∣∣ P −QX
tX Y

∣∣∣∣ = ±1 (1)

Theorem 6.2. M has a homologically fibered link whose homologically fibered surface is homeomorphic
to Σg,1 if and only if there exist (m × 2g)-matrix of integer coefficients X and (2g × 2g)-matrices of
integer coefficients Y which is symmetric, and Z whose (2i− 1, 2i)-entry is 1 or −1 for i = 1, . . . , 2g
and the other entries are 0 satisfying the following equation:
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Figure 45: A surgery presentation of M

∣∣∣∣ P −QX
tX Y − Z

∣∣∣∣ = ±1 (2)

Remark 6.1. In [17], Nozaki showed that every lens space has a homologically fibere knot whose
homologically fibered surface has genus one by solving the equation (2) for m = 1, g = 1. After that,
in [19], the author showed that every lens space has a homologically fibered link whose homologically
fiber surface is homeomorpic to Σ0,3 by solving the equation (1) for m = 1, n = 2 in a way similar to
Nozaki [17]. In Section 6.1, we will show this result admitting Theorem 6.1.

6.1 A solution for planar cases with m = 1, n = 2

We fix a lens space L(p, q) with p, q > 0 (every lens space has such a representation). We fix a positive
integers s and r such that ps− qr = 1.

By Theorem 6.1, that L(p, q) is realizable as a closure of a homology cobordism over Σ0,3 is

equivalent to that there exist integers a1, a2, l1,2, t1, and t2 satisfying

∣∣∣∣∣∣
p −qa1 −qa2
a1 t1 l1,2
a2 l1,2 t2

∣∣∣∣∣∣ = ±1. This

equation is equivalent to p(t1t2 − l21,2) − q(2l1,2a1a2 − t2a
2
1 − t1a

2
2) = ±1, and also equivalent to that

there exist integers a1, a2, l1,2, t1, t2, k and ϵ, which is 1 or −1 satisfying
t2a

2
1 − 2l1,2a1a2 + t1a

2
2 = −ϵ(r + kp)∣∣∣∣∣ t2 −l1,2

−l1,2 t1

∣∣∣∣∣ = ϵ(s + kq)
(3)

We use the following lemma (see Section 5.3 of [1] for example). Here the determinant of ax2 +
2bxy + cy2 is ac− b2.

Lemma 6.1. For n,D ∈ Z, there is a binary quadratic form f(x, y) ∈ Z[x, y] with determinant D
such that f(x, y) = n has a primitive solution if and only if the congruence equation −z2 ≡ D mod n
has a solution.

Proof. (if part) We set z0, C0 ∈ Z to be D = −z20 + C0n. Then f0(x, y) = nx2 + 2z0xy + C0y
2, whose

determinant is D satisfies f0(1, 0) = n.
(only if part) Suppose f(x, y) = Ax2 + 2Bxy + Cy2 has a primitive solution (x, y) = (x0, y0) for
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f(x, y) = n. Fix integers x̄, ȳ such that x0x̄− y0ȳ = 1. Then g(x, y) = f

(
U

(
x
y

))
= f(x0, y0)x2 +

2B′xy + C ′y2, where U =

(
x0 ȳ
y0 x̄

)
, and B′, C ′ are some integers, has the same determinant D as

f(x, y). Thus D = C ′n−B′2. This implies −B′2 ≡ D mod n. 2

By the above lemma, the existence of a solution of (2) is equivalent to the existence of integers k
and z′, non-zero integer w and ϵ′, which is +1 or −1 satisfying the following equation:{

−z′2 ≡ ϵ′(s + kq) mod − ϵ′ r+kp
w2

w2 | r + kp

Note that since (s + kq) and (r + kp) are coprime, z′2 and therefore z′ are prime to (r + kp). This
equation is equivalent to the following by setting z = z′−1 and ϵ = ϵ′:{

p ≡ ϵz2 mod r+kp
w2

w2 | r + kp
(4)

Since L(p, q) ∼= L(p, r), we can replace r in (4) with q.
We will show that for all (p, q), there exist integers satisfying (4) by using the following two facts,
which and whose use are fully explained in Section 3 of [17]:
Put K1 = Q(ζp) and K2 = Q(

√
−1), where ζp = exp( 2π

p

√
−1).

Fact 6.1. (A special case of the Chebotarev density theorem, for example Theorem 10 of [13] )
Suppose there exists σ ∈ Gal(K1K2/Q) satisfying:

• σ|K1
is [ζp 7−→ ζmp ], where m is prime to p.

• σ|K2
is [

√
−1 7−→ −

√
−1].

Then there exist infinitely many integers k satisfying:

• m + kp is prime.

• m + kp ≡ −1 mod 4.

Fact 6.2. (See Corollary 4.5.4 of [20] for example)
√
−1 ∈ Q(ζp) if and only if 4 | p.

From these we have the following:

Lemma 6.2. There exists an integer k satisfying at least one of the following:

• q + kp is prime and q + kp ≡ −1 mod 4.

• r + kp is prime and r + kp ≡ −1 mod 4.

Proof. (i) the case when 4 ∤ p
In this case, K1 ∩K2 = Q by Fact 6.2. Thus in Gal(K1K2/Q), [ζp 7−→ ζqp ] and [

√
−1 7−→ −

√
−1] are

coexistable. By Fact 6.1, we have an integer k such that q + kp is prime and q + kp ≡ −1 mod 4.
(ii) the case when 4 | p.
We write p = 4p′. In this case, K1K2 = K1 by Fact 6.2. Note that ζp

′

p =
√
−1. If ζp is mapped to
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ζmp (m is q or r), then
√
−1 is mapped to ζmp′

p , this is
√
−1 when mp′ ≡ p′ mod p and −

√
−1 when

mp′ ≡ −p′ mod p. Note that mp′ ≡ ±p′ mod p is equivalent to m ≡ ±1 mod 4. Since ps − qr = 1,
one of q and r is congruent to −1 modulo 4. Therefore, one of [ζp 7−→ ζqp ] and [ζp 7−→ ζrp ] maps

[
√
−1 7−→ −

√
−1]. By Fact 6.1, there exists an integer k such that q + kp is prime and q + kp ≡ −1

mod 4, or r + kp is prime and r + kp ≡ −1 mod 4. 2

For L(p, q), there exists an integer q′, which is q + kp or r + kp such that L(p, q) ∼= L(p, q′), q′ is
prime, and q′ ≡ −1 mod 4 by Lemma 6.2. By using the Legendre symbol and Euler’s criterion,(

−p
q′

)
≡

(
−1
q′

)(
p
q′

)
≡ (−1)

q′−1
2

(
p
q′

)
≡ −

(
p
q′

)
mod q′

This implies there exists ϵ ∈ {±1} such that
(

ϵp
q′

)
= 1, i.e. ϵp is a quadratic residue modulo q′.

Therefore, the condition (3) is satisfied.

6.2 Planar case

In this section, we consider whether M has a homologically fibered link whose homologically fibered
surface is homeomorphic to Σ0,n+1.
Suppose M has such a link L and its homologically fibered surface F . Put F on the surgery diagram
in Figure 38 so that it is disjoint from Ui’s. On F , we fix a spine K1 ∪ v1 ∪ · · · ∪ vn−1 ∪ Kn of F
as in Figure 46. These Ki’s represent a bisis of H1(F ). These Ki and vj have the framing coming
from F . Note that vj may have a half-integer framing. Conversely, for given framed (i.e. twisted)
knots Ki’s and half framed (i.e. half integer twisted) bands vj ’s connecting each other like the spine
as in Figure 46, we can construct an embedded Σ0,n+1 in M . Therefore we regard the surface F as
a set of framed knots Ki’s and half framed bands vj ’s connecting as in Figure 46. Note that parallel
copy of Ki with respect to the framing corresponds to the push-up or the push-down of Ki on F .
The meridian curves of Uk, Ki and vj are denoted by mUk

, mKi and mvj respectively. Note that
H1(M \ F ) ∼= H1(M \ (∪n

i=1Ki)) and the push-up and the push-down of Ki on F represent the same
element in H1(M\F ) since mvj is null-homologus in M\F . Thus by setting xi,j = lk(Ui,Kj) and yi,j =
lk(Ki,Kj), we see H1(M \ F ) ∼= ⟨mU1

, . . . ,mUm
,mK1

, . . . ,mKn
⟩/ (pimUi

− qiΣ
n
k=1xi,kmKk

)i=1,...,m.

Let Ai ∈ ⟨mU1 , . . . ,mUm ,mK1 , . . . ,mKn⟩ be pimUi − qiΣ
n
k=1xi,kmKk

.

Claim 6.1. {A1, . . . , Am} can be a subset of a basis of ⟨mU1
, . . . ,mUm

,mK1
, . . . ,mKn

⟩.

Proof. Let B be a basis {mU1
, . . . ,mUm

,mK1
, . . . ,mKn

}. Represent A1 in B. Let d1 be the positive
greatest common divisor of the coefficients of A1. Then, Ā1 = A1

d1
can be a member of a basis.

Let m1 = Ā1 and B1 be this new basis, which contains m1. Represent A2 in B1. Let A′
2 be a

result of deleting the m1-component from A2. Let d2 be a positive the greatest common divisor

of the coefficients of A′
2. Then Ā2 =

A′
2

d2
can be a member of a basis of the module generated by

B1 \ {m1}. Let m2 = Ā2 and B2 be this new basis, which contains m2. Repeat this procedure. As
a result, we get a basis of ⟨mU1

, . . . ,mUm
,mK1

, . . . ,mKn
⟩, {m1, . . . ,mm−1} ∪ Bm, where Bm contains

mm and has rank n + 1. Note that Āi = mi + (a linear combination of mj for j < i). This implies
⟨mU1

, . . . ,mUm
,mK1

, . . . ,mKn
⟩/(Ai)i=1,...,m, which is isomorphic to H1(M\F ), has a torsion subgroup

of order d1 · · · dm. Therefore di = 1 for all i = 1, . . . ,m since F is a homologically fibered surface. This
implies Ai = Āi = mi + (a linear combination of mj for j < i). Hence {A1, . . . , Am} can be a subset
of a basis of ⟨mU1

, . . . ,mUm
,mK1

, . . . ,mKn
⟩. 2

By using some integer ti, the framed Ki represents [Kfr
i ] = timKi

+ Σm
k=1xk,imUk

+ Σj ̸=iyi,jmKj

in ⟨mU1 , . . . ,mUm ,mK1 , . . . ,mKn⟩ for every 1 ≤ i ≤ n. Since these form a basis of
H1(M \ F ) = ⟨mU1 , . . . ,mUm ,mK1 , . . . ,mKn⟩/(Ak)k=1,...,m,

{A1, . . . , Am, [Kfr
1 ], . . . , [Kfr

n ]} is a basis of ⟨mU1
, . . . ,mUm

,mK1
, . . . ,mKn

⟩. Let X be an (m × n)-
matrix whose (k, j)-entry is xk,j and Y a symmetric (n×n)-matrix whose (i, i)-entry is ti, (i, j)-entry
is yi,j for i ̸= j. Then the equation (1) holds.
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Figure 46: A spine of F

Conversely, suppose the solution of the equation (1) exists. Then we can construct framed knots Ki

for 1 ≤ i ≤ n such that the framing number of Ki is ti, lk(Uk,Kj) is (X)k,j , and lk(Ki,Kj) = (Y )i,j .
Take annuli which is a neighborhood of Ki’s in M with respect to the framings and connect them
by any bands (corresponding to v′is). Then we get a surface homeomorphic to Σ0,n+1. This is a
homologically fibered surface by the computation.

6.3 Connected boundary case

In this section, we consider whether M has a homologically fibered knot whose homologically fibered
surface is homeomorphic to Σg,1.
Suppose M has such a knot K and its homologically fibered surface F . Put F on the surgery diagram
in Figure 38 so that it is disjoint from Ui’s. On F , we fix a spine K ′

1∪K ′
2∪w1∪· · ·∪wg−1∪K ′

2g−1∪K2g

of F as in the top of Figure 47. Note that these K ′
i’s represent a bisis of H1(F ). Since the meridian

of v′i is null-homologus in H1(M \ F ), we consider g-surfaces {F1, . . . , Fg} of genus one to be in the
bottom of Figure 47. H1(M \ (∪g

i=1Fi)) = Z2g and the push-ups of K ′
2i−1 and K ′

2i (or push-downs
of K ′

2j−1 and K ′
2j) form a basis of H1(M \ (∪g

i=1Fi)). Let zi be a point K ′
2i−1 ∩ K ′

2i. We identify
M \ (∪g

i=1Fi) and M \ (∪g
i=1Fi × [0, 1]). Let K2i−1 be K ′

2i−1 × {0} and K2i be K ′
2i × {1} and vi

be {zi} × [0, 1]. Note that K2i−1 ∪ vi ∪ K2i is a spine of Fi × [0, 1]. We can assign the suture from
framed K2i−1, framed K2i and framed vi as in Figure 48: Slide K2i−1 along the band vi. Then
we get K ′

2i−1 × {1}. The boundary of a regular neighborhood of (K ′
2i−1 × {1}) ∪ (K ′

2i × {1}) in
∂(Fi × [0, 1]) is the suture. Note that K ′

2i−1 × {1} represents K2i−1 ± (the meridian of K2i) as an
element of H1(M \ (∪g

i=1Fi)), the sign depends on whether vi contains half-twists or not. Thus we
regard ∪g

i=1Fi as framed K2i−1, K2i, vi connecting as in Figure 48 (, vi may be twisted). The meridian
curves of Uk, Ki and vj are denoted by mUk

, mKi
and mvj

respectively. Since mvj is null-homologus
in M \ (∪g

i=1Fi), by setting xi,j = lk(Ui,Kj) and yi,j = lk(Ki,Kj), we see H1(M \ (∪g
i=1Fi)) ∼=

⟨mU1
, . . . ,mUm

,mK1
, . . . ,mK2g⟩/

(
pimUi

− qiΣ
2g
k=1xi,kmKk

)
i=1,...,m

.

Let Ai ∈ ⟨mU1
, . . . ,mUm

,mK1
, . . . ,mK2g⟩ be pimUi

− qiΣ
2g
k=1xi,kmKk

. Similarly to Claim 6.1,
{A1, . . . , Am} can be a subset of a basis of ⟨mU1

, . . . ,mUm
,mK1

, . . . ,mK2g⟩. The framed Ki represents

[Kfr
i ] = timKi

+ Σm
j=1xj,imUj

+ Σk ̸=iyk,imKk
in H1(M \ (∪g

i=1Fi)) by introducing the integer ti.

As mentioned before, the push-ups of K ′
2i−1 × {1} and K ′

2i × {1} on Fi represent [Kfr
2i−1] + ϵimK2i

and [Kfr
2i ], ϵi ∈ {±1}. Set X be a (m × 2g)-matrix whose (k, j)-entry is xk,j and Y a symmetric

(2g× 2g)-matrix whose (i, i)-entry is ti, (i, j)-entry is yi,j for i ̸= j and Z be a (2g× 2g)-matrix whose
(2i− 1, 2i)-entry is ϵi, the others 0. Then the equation (2) holds.

Conversely, suppose we have a solution of the equation (2). Then we can construct the framed knots
and bands {K1, . . . ,K2g} and v1, . . . , vg such that lk(Ui,Kj) = (X)i,j , lk(Ki,Kj) = (Y )i,j and vk has
half-twisted framing if and only if (Z)2k−1,2k = −1. Moreover, we can construct g-surfaces {F1, . . . Fg}
of genus one by the operation as in Figure 48. Then by connecting these surfaces by arbitrary bands
as in the top of Figure 47, we get a surface homeomorphic to Σg,1. This is a homologically fibered
surface by the computation.
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Figure 47: top: A spine of F bottom: Spines of Fi’s

Figure 48: Construct a suture
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