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The main results in this thesis consist of the following four parts.

• Classification of minimal representations ([Tam19]).
• Construction of minimal representations.
• Construction and classification of analogues of minimal representations for
simple Lie groups of type A.

• New expression of unramified local L-functions by certain Hecke operators
([OST], joint work with Masao Oi and Ryotaro Sakamoto).

1. Classification of minimal representations

Let G be a connected simple real Lie group not of type A, and g0 = k0 + p0
a Cartan decomposition of g0 := Lie(G), and K the analytic subgroup with Lie
algebra k0. For simplicity, assume that the complexification g of g0 is simple. An
irreducible admissible representation of G is called minimal if the annihilator of
the underlying (g,K)-module is the Joseph ideal J0 [Jos76], which is the unique

completely prime two-sided ideal whose associated variety is the closure Omin of
the minimal nilpotent orbit Omin in g [GS04, Theorem 3.1].

For G = Mp(n,R) (the connected double cover of the real symplectic group
Sp(n,R)), the two irreducible components of the Weil representation, which is also
referred to as the harmonic, Segal–Shale–Weil, oscillator, or metaplectic represen-
tation, are classical examples of minimal representations.

Unitary minimal representations are the smallest “unipotent” representations,
and are considered to be a part of building blocks of the unitary dual of G. From
such qualities, minimal representations for various simple real Lie groups have
been studied and constructed in various ways (see [BSZ06, BZ91, BJ98, Bry98,
BK94a, BK94b, BK94c, BK95, EPWW85, GS05, Gon82, GW94, GW96, HKM14,
HKMØ12, Hua95, HL99, Kaz90, KS90, Kob11, KM11, KØ98, KØ03a, KØ03b,
KØ03c, Kos90, Li00, LS08, Sab96, Sal06, Tor97, Vog81, Vog94] for example).

An easy necessary condition for the existence of minimal (g,K)-modules comes
from their associated varieties. That is, if the intersection of the minimal nilpotent
orbit Omin and p, as a subset of g, is empty, then there exist no minimal (g,K)-
modules. Moreover, R. Howe and D. Vogan [Vog81, Theorem 2.13] proved that for
g0 = so(p, q) with p, q ≥ 4 and p+ q odd, there exists no irreducible (g,K)-module
whose Gelfand–Kirillov dimension is p+ q− 3, namely half the complex dimension
of Omin.

The above previous studies on the construction of minimal representations imply
that the converse to the non-existence statement holds: if g0 is not of type A, not
isomorphic to so(p, q) with p, q ≥ 4 and p + q odd, and Omin ∩ p ̸= ∅, then there
exists a minimal (g,K)-module for some covering K.

The first main theorem in this thesis argues that there are no new minimal
representations up to infinitesimal equivalence.

Theorem 1 ([Tam19, Theorem 4.1]). Let G be a connected simply connected simple
Lie group not of type A. Then the number of infinitesimal equivalence classes of
minimal representations of G is are given as in Table 1.

As corollaries, we obtain the following

Corollary 2.

(1) When the Riemannian symmetric space G/K is Hermitian, minimal rep-
resentations are highest (or lowest) weight representations.

(2) Minimal representations are infinitesimally equivalent to unitary represen-
tations.
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Table 1. The number of infinitesimal equivalence classes of min-
imal representations for simply connected G

g0 number

sp(n,R)(n ≥ 2) 4
so(p, 2)(p ≥ 5), so∗(2n)(n ≥ 4), e6(−14), e7(−25) 2

so(p, q)(p, q ≥ 3, p+ q ≥ 8 even), so(p, 3)(p ≥ 4 even), 1
e6(6), e6(2), e7(7), e7(−5), e8(8), e8(−24), f4(4), g2(2)

sp(n)(n ≥ 2), so(n)(n ≥ 7), e6, e7, e8, f4, g2, so(n, 1)(n ≥ 6), 0
sp(p, q)(p, q ≥ 1), e6(−26), f4(−20), so(p, q)(p, q ≥ 4, p+ q odd)

sp(n,C)(n ≥ 2) 2
so(n,C)(n ≥ 7), e6(C), e7(C), e8(C), f4(C), g2(C) 1

Our argument is based on the idea of W. T. Gan and G. Savin. They obtained a
relation of Casimir elements for two simple components of kmodulo the Joseph ideal
J0, and consideredK-types satisfying the relation. The key point of their proof is to
apply a proposition by B. Kostant: if two minimal (g,K)-modules have a common
K-type, then they are isomorphic when g is simple not of type A, Omin∩p ̸= ∅ and
G/K is a non-Hermitian symmetric space. As is implicit in [GS05], the proposition
can be generalized to any connected simple real Lie group G not of type A similarly.

From an explicit description of homogeneous elements of degree two in J0 in
terms of weight vectors in g with respect to a Cartan subalgebra of k, we see
that highest weights of K-types in minimal representations belong to some one
or two lines which depend only on the k0-module p0. Hence we obtain an upper
bound for the number of infinitesimal equivalent classes of minimal representations.
Moreover, we obtain a simple proof of the non-existence of minimal representations
for g0 ∼= so(p, q)(p, q ≥ 4, p + q odd) as a corollary of the description K-types of
minimal representations.

2. Construction of minimal representations

T. Kobayashi and B. Ørsted [KØ03a] constructed minimal representations of
the indefinite orthogonal group G = O(p, q)(p, q ≥ 2, p+ q ≥ 8 even) via conformal
geometry. They showed that the Yamabe operator on the pseudo-Riemannian man-
ifold Sp−1×Sq−1 of signature (p−1, q−1), whereG acts conformally, is aG-invariant
differential operator between some degenerate principal series representations, and
that the kernel is a minimal representation of G. Based on the construction, they
described discrete branching laws of the minimal representation [KØ03b] and con-
structed conservative quantities of ultrahyperbolic equations [KØ03c]. In this way,
researches on minimal representations from analytic viewpoints has been active
since 2000’s [Kob11, KM11].

Our next main theorem construct minimal representations as the kernel of inter-
twining differential operator between parabolically induced representations, as the
construction by [KØ03a].

Let G be a connected split real simple Lie group of type D or E, and B a Borel
subgroup of G. Write B = MAN for a Langlands decomposition. Let ν be a
character of the Lie algebra of A, and write trivν for the character of B where the
action of M,N is trivial and the one of A agrees with exp(ν). The group G acts
the induced representation

C∞(G, trivν)
B := {f ∈ C∞(G, trivν) | f(gb) = trivν(b

−1)f(g) for g ∈ G, b ∈ B}
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by the left transition. By the differentiation with respect to the right transition,
we define a G-intertwining differential operator

D : C∞(G, trivν)
B → C∞(G,W∨ ⊗ trivν)

B .

Here W∨ denotes the dual of a quotient B-module of the ad(g)-submodule of J0
spanned by homogeneous elements of degree two in J0.

Theorem 3. Let G be a connected split real simple Lie group of type Dn(n ≥
4), E6, E7 or E8. Then the following are equivalent:

(i) The subrepresentation KerD is minimal.
(ii) The annihilator AnnL(−ν) of the irreducible highest weight g-module with

highest weight −ν equals J0.
(iii) The weight ν is the unique element in (ρ(α1,−1) + Cα1) ∩ α⊥

2 for some
simple roots α1, α2 with (α1, α̌2) = −1. Here α̌ is the coroot of α, ρ(α1,−1)
denotes half the sum of positive roots ϕ with (ϕ, α̌1) = −1, and α⊥

2 denotes
the set of weights orthogonal to Cα2.

When one of the above conditions holds, the K-spherical functions in C∞(G, trivν)
B

are annihilated by D(G, trivν).

Our classification of weights λ satisfying AnnL(λ) = J0 seems to include weights
which cannot be obtained from the previous researches [Jos76, Gar82, GW94, BJ98]
and the work on primitive ideals with a fixed infinitesimal character [Duf77, Jos77].
According to the classification, Theorem 3 gives rank(g)-ways of constructing a
minimal representation of G as the kernel of a G-intertwining differential operator
between parabolically induced representations.

3. Construction and classification of analogues of minimal
representations for simple Lie groups of type A

Minimal representations are of interest in physics. For example, the oscillator
representation of the metaplectic group (whose irreducible components are minimal)
has a realization as the bound states of the quantum harmonic oscillator, and the
minimal representation of the indefinite orthogonal group O(p, 2)(p ≥ 6) has a
realization as some solution space of the wave equation in Minkowski space (see
[KØ03c, Theorem 1.4] for example).

On the other hand, there exist representations called “minimal” even when g is
simple of type A, that is, when the definition of the Joseph ideal (hence the one
of minimality) is not given. Here the vague term “minimal” means that there is
an interest in physics as in the previous examples, the k-types are as simple as
possible (called pencil), or there is a relation with the minimal nilpotent orbit.
Such representations include the ladder representation of O(2, 4) (which is locally
isomorphic to SU(2, 2)) expressing the bound states of the Hydrogen atom [KØ03a,
Remark 3.6.2 (3)] and the irreducible unitary representations of the double cover

S̃L(3,R) of SL(3,R) given by Torasso (see [Tor83, Théorème VII.1], [RS82]).
We define minimality in terms of annihilators of (g, k)-modules so that the above

representations are minimal, and to classify minimal representations for connected
simple real Lie groups of type An−1 (n ≥ 3). Hence this study can be regarded as a
small step of classifying irreducible (g, k)-modules associated with a fixed completely
prime primitive ideal.

Let g = sl(n,C)(n ≥ 3). Set Ti,j := Ei,j − δi,j/nIn, where In denotes the unit
n-by-n matrix, Ei,j denotes the matrix whose (i, j)-th component is one and the
others are zero, and δi,j denotes the Kronecker delta. For a ∈ C, write Ja for the
two-sided ideal of U(g) generated by

T1,nT2,n−1 − T1,n−1T2,n(if n ≥ 4),
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1

2

n∑
i=1

(T1,iTi,n + Ti,nT1,i)−
a(n− 2)

n
T1,n,

∑
1≤i,j≤n

Ti,jTj,i −
(n− 1)(2a+ n)(2a− n)

4n
.

A condition characterizing the Joseph ideal for simple Lie algebra not of type A
defines a family of two-sided ideals in U(g) parametrized by complex numbers:

Theorem 4. Let J be a two-sided ideal of U(g). The following are equivalent:

(i) J = Ja for some a ∈ C.
(ii) the associated graded ideal gr J of the symmetric algebra S(g) is equal to

the ideal I(Omin) defined by the closure Omin of the minimal nilpotent orbit
in g∨.

(iii) J is completely prime, primitive and has Omin as its associated variety.

Let G be a Lie group whose Lie algebra is isomorphic to g0. Fix a ∈ C. Let us
call an irreducible admissible representations of G a-minimal if the annihilator of
the underlying (g,K)-module is Ja. By applying methods in the proofs of Theorems
1 and 3, we classify a-minimal representations:

Theorem 5. Let a ∈ C and G a connected simply connected simple Lie group of
type An(n ≥ 2). Assume that the complexification g is simple. Then the number
of the infinitesimal equivalence classes of a-minimal representations of G is as in
Table 2.

Table 2. The number of the isomorphism classes of a-minimal
(g,K)-modules for simply connected K

g a number

su(p, 1)(p ≥ 2) C 2
su(p, q)(p, q ≥ 2) (p+ q)/2 + Z 2

C \ ((p+ q)/2 + Z) 0
sl(3,R) Z 3

C \ Z 2
sl(n,R)(n ≥ 4) C 2

su(n)(n ≥ 3), sl(n,H)(n ≥ 2) C 0

We construct the underlying (g,K)-modules of a-minimal representations as
highest weight modules L(λ) when g0 ∼= su(p, n− p), and construct a-minimal rep-
resentations as a subquotient of the kernel of a G-intertwining differential operator.
The construction of Torasso’s genuine 0-minimal representation of the double cover

S̃L(3,R) of SL(3,R) agrees with the one given by T. Kubo and B. Ørsted [KØ19].
Unlike the proof of Theorem 1, we need to calculate the kernel of G-intertwining

differential operators for the non-existence of a-minimal representations of S̃L(3,R)
with certain K-types.

We remark that many of minimal (g, k)-modules do not admit nondegenerate
invariant Hermitian form and are not unitarizable, which does not occur when g0
is not of type A.
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4. New expression of unramified local L-functions by certain Hecke
operators.

This content is a joint work with Masao Oi and Ryotaro Sakamoto.
Let G be a split connected reductive group over a non-archimedean local field

F . The unramified representations of G := G(F ) are one of the most fundamental
classes in representation theory of the group G. Their importance can be explained
in relation to the global theory, that is, almost all local components of automor-
phic representations are unramified. Hence unramified representations have been
investigated from the early days, and a lot of results have been obtained so far.

One of such accumulation is a construction of the local L-functions for unramified
representations, while the existence of the local L-functions for irreducible smooth
representations is conjectural in general. Since the existence of the local L-functions
for unramified representations enables us to define the global (partial) L-functions
for automorphic representations, local L-functions for unramified representations
have an important meaning.

The local L-functions for unramified representations are defined by using a clas-
sification of unramified representations. More precisely, by using the Satake isomor-
phism, we can parametrize unramified representations of G via Satake parameters,

which are semisimple conjugacy classes in the Langlands dual group “G of G. Then
we can attach the local L-function L(s, π, r) to each unramified representation π

of G and finite-dimensional representation r of “G by considering the image of the
Satake parameter under r.

The aim of this paper is to give a new formula describing the local L-functions
for unramified representations. Before we explain the main result of this paper, let
us introduce some motivative examples.

The first example is the case of the standard L-function of GL2. Let π be
an irreducible unramified representation of GL2(Qp). We can take an unramified
character χ of the diagonal maximal torus of GL2 such that π is realized as a sub-
quotient of the normalized parabolic induction (Iχ, Vχ) of χ. Consider the standard
representation Std of the Langlands dual group GL2(C) of GL2. Then, by an easy
computation, we can check the following equality:

L(s, π, Std) = det(1− p−(s+1/2)Iχ(UK) | V K
χ )−1.

Here K is the open compact subgroup of GL2(Qp) defined by

K =

ßÅ
a b
c d

ã
∈ GL2(Zp)

∣∣∣∣ c ∈ pZp

™
and UK is the characteristic function of the open compact subset K diag(p, 1)K
normalized so that UK(diag(p, 1)) = vol(K)−1.

The second example is the case of the spin L-function of GSp4. We put

GSp4 :=

ß
g ∈ GL4

∣∣∣∣ tg Å −J2
J2

ã
g = x

Å
−J2

J2

ã
for some x ∈ Gm

™
,

where J2 denotes the anti-diagonal matrix whose anti-diagonal entries are one.

We consider the spin representation Spin of GSpin5(C) = ’GSp4. Let (π, V ) be
an irreducible unramified principal series representation of GSp4(Qp). Then, in
[Tay88, Section 2.4] (see also [LSZ17, Section 3.4.2]), Taylor established a similar
identity to above for the spin L-function L(s, π, Spin) in his study of p-adic family
of Siegel modular forms. More precisely, by using the Siegel parahoric subgroup K
of GSp4(Qp), which is defined by

K =

ßÅ
A B
C D

ã
∈ GSp4(Qp)

∣∣∣∣A,D ∈ GL2(Zp), B ∈ M2(Zp), C ∈ M2(pZp)

™
,
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Taylor proved that

L(s, π, Spin) = det(1− p−(s+3/2)π(UK) | V K)−1,

where UK is the characteristic function of the open compact subsetK diag(p, p, 1, 1)K
normalized so that UK(diag(p, p, 1, 1)) = vol(K)−1.

These formulas are, in addition to their original importance in a study of modular
forms, also interesting from the purely representation-theoretic viewpoint as follows.
In the original definition of the local L-functions for unramified representations via
the Satake isomorphism, we consider the action of the whole spherical Hecke algebra
on the subspace of spherical vectors, which is 1-dimensional. In contrast to this
original definition, in the above examples, the local L-function is expressed by the
characteristic polynomial of the action of some specific test function on the subspace
whose dimension is the same as the degree of the local L-function.

In this paper, we establish these kind of formulas for split connected reductive
groups and general finite-dimensional representations of the Langlands dual groups.
For a dominant cocharacter γ̌ of a fixed maximal torus T, we consider some open
compact subgroup Kγ̌ of G and a normalized characteristic function 1γ̌ of a certain
Kγ̌-double coset. For a finite-dimensional representation r of the Langlands dual

group “G, we put P+(r) to be the set of dominant weights in r with respect to a

fixed maximal torus of “G. Note that each element γ̌ of P+(r) can be regarded as a
dominant cocharacter of T. For each γ̌ ∈ P+(r), we write mγ̌ for the multiplicity
of γ̌ in r. In this setting, the following is the last main theorem of this thesis.

Theorem 6 ([OST, Theorem 4.2]). Let π be an irreducible unramified representa-
tion of G. We take an unramified character χ of T(F ) such that π is realized as a
subquotient of the normalized parabolic induction (Iχ, Vχ) of χ. Then we have an
equality

L(s, π, r) =
∏

γ̌∈P+(r)

det
(
1− q−(s+⟨ρ,γ̌⟩)Iχ(1γ̌)

∣∣V Kγ̌
χ

)−mγ̌
,

where ρ is the half sum of the positive roots of T in G.

Here note that if (G, r) is (GL2,Std) or (GSp4,Spin), then the set P+(r) is a
singleton and the formula in Theorem 6 is nothing but the identity in the above
examples. More generally, when r is a quasi-minuscule representation, we get a
similar formula to the above examples.

The proof of this theorem is given by computing the eigenvalues of the action

1γ̌ on the space V
Kγ̌
χ . First, by considering the generalized Iwasawa decomposition

with respect to the open compact subgroup Kγ̌ of G, we take an explicit basis

of the space V
Kγ̌
χ of Kγ̌-invariant functions on G. Second, to describe the action

of 1γ̌ on V
Kγ̌
χ in terms of the basis, we write the support of 1γ̌ , which is a Kγ̌-

double coset, as the disjoint union of right Kγ̌-cosets. To carry it out, we prove
several technical results on group-theoretic properties of our group Kγ̌ . Third,
we consider how the generalized Iwasawa decomposition behaves under the right
multiplication by support of the function 1γ̌ , and show that the action of 1γ̌ on

V
Kγ̌
χ can be triangulated in an appropriate order on our basis. Once we achieve

such a triangulation, we can compute the eigenvalues easily and our result follows.
Here we note that most of the arguments in the second and third steps are based
on the general results by Bruhat and Tits established in [BT72] and [BT84].
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[BT72] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci.

Publ. Math. (1972), no. 41, 5–251.
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