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Preface

It is known that most fluid flow is governed by the Navier–Stokes equations. The equation has lots of
difficulties; nonlinearity, nonlocal interactions.

In this paper, we consider two topics. One of them is machine-learning construction of a model for
fluid dynamics, the other one is refined regularity criterion for generalized Navier–Stokes equations.

We consider the three-dimensional incompressible Navier–Stokes equations:

∂tv + (v · ∇)v = −∇π + ν∆v in R3 × (0,∞)

div v = 0 in R3 × (0,∞)

v(x, 0) = v0(x) in R3,

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) is the velocity of the fluid flows, π = π(x, t) is the pressure,
ν > 0 is viscosity parameter, and v0(x) is a given initial velocity field satisfying div v0 = 0. J. Leary
(1934) and E. Hopf (1951) proved the existence of weak solutions of the equations. The existence of
global regular solution and the uniqueness with large initial field is one of the Millennium Prize Problems
which were stated by the Clay Mathematics Institute.

It is important describing the behavior of macroscopic variable such as the energy which is defined
by ‖v‖L2 , when we consider the problem. It is hard to derive an equation of macroscopic variables
analytically from the Navier–Stokes equations of microscopic variables. For example, in order to describe
a dynamics of n-th moment variables, we have to use n+ 1-th moment variables, which is called closure
problem. Until now, many researchers construct fluid models of macroscopic variables, however, most of
them are obtained with the nonlinear term of the Navier–Stokes equations replaced by some posteriori
term.

Here, our aim of investigation is construction of a model of macroscopic variables for fluid flow by
using Machine-learning. In this construction, we consider the Energy functions and the Reynolds number
as macroscopic variables.

In this paper, the “learning” of machine-learning corresponds to the finding of the relation “F1”
(F1 : RM → RM ) between u ∈ RM and s(t+ ∆t) ∈ RM , which satisfies

F1(u(t)) ≈ s(t+ ∆t) for any t ∈ [0, T ], (0.0.1)

where u is fluid data at the time t and s(t + ∆t) is data at the time t + ∆t, which corresponds to the
next step of time t. When we find “good” relation F1, for the new data u(T + 1),

ŝ(T + 1 + ∆t) = F1(u(T + 1)),

is similar to s(T + 1 + ∆t) which is the known data. This means that we succeeded in predicting a
s(T + 1 + ∆t).

In this paper, we deal with a time-series data and so high dimensional dynamical system. So, we use
the following form instead of eq. (0.0.1);

F2(F3(u(t), r(t))) ≈ s(t+ ∆t) for any t ∈ [0, T ], (0.0.2)

where r(t) = F3(u(t−∆t), r(t−∆t)) ∈ RN and N > M .
The vector r(t∗ + ∆t)(= F3(u(t∗), r(t∗))) is influenced by the time-series data {u(t)}t∗t=0. This means

that the vector r include the information of past states of u. Also, due to setting N > M , we can
decompose the input data u. In this paper, u is macroscopic variables.
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In our learning, we do not adjust a relation “F3” to save a great amount of computational costs.
Instead, we set a sufficiently large number as N(>> M), which enables us to deal with a complex
deterministic behavior. This way of learning is called reservoir computing. What is done is determination
of output layer F2 between reservoir states r and output data s in eq. (0.0.2).

Recently it is reported that the reservoir computing is effective in the inference of time-series and some
characteristics using the Lorenz system, Rossler system and Kuramoto-Sivashinsky system (J. Pathak,
Z. Lu, B. Hunt, M. Girvan, and E. Ott, Chaos 27, 121102 (2017)).

In Chapter 1, we infer macroscopic behaviors of a three-dimensional fluid flow with chaotic behaviors
using reservoir computing. This chapter is based on the following paper:

• K. Nakai and Y. Saiki, Machine-learning inference of fluid variables from data using reservoir
computing, Physical Review E 98, 023111:1-6, 2018.

In our procedure of the inference, we assume no prior knowledge of a physical process of a fluid flow
except that its behavior is complex but deterministic. We present an inference of the complex behavior,
which requires only past time-series data as training data.

We show that the reservoir dynamics constructed from only past data of energy functions can infer
the future behavior of energy functions and reproduce the energy spectrum. The energy function E0(k, t)
for wavenumber k ∈ N and at time t is defined by

E0(k, t) :=
1

2

∑
κ∈Dk

3∑
ζ=1

∣∣F[vζ ](κ, t)
∣∣2 ,

where Dk := {κ ∈ Z3|k − 0.5 ≤ |κ| < k + 0.5} and F[f ] is the Fourier transform of f . F2 is determined
by setting

u(t) = (Ẽ(1, t), Ẽ(2, t), · · · , Ẽ(9, t))t,

s(t) = (Ẽ(1, t), Ẽ(2, t), · · · , Ẽ(9, t))t,

where Ẽ(·, ·) is normalized value of E(·, ·). We found that an inference of energy functions is successful
for some time after finishing training 9-dimensional time-series data of energy functions.

Moreover, it is also shown that we can infer a time-series data from only one measurement by using
the delay coordinates. These imply that the obtained two reservoir systems constructed without the
knowledge of microscopic data are equivalent to the dynamical systems describing macroscopic behavior
of energy functions.

In Chapter 2, We construct a data-driven dynamical system model for the Taylor microscale Reynolds
number of a high-dimensionally chaotic fluid flow by training its scalar time-series data. This chapter is
based on the following paper:

• K. Nakai and Y. Saiki, Machine-learning construction of a model for a macroscopic fluid variable
using the delay-coordinate of a scalar observable, Discrete and Continuous Dynamical Systems
Series S (Accepted).

The Reynolds number, which represents the degree of complexity of a fluid flow at time t, is defined by

Řλ(t) :=

√
20E(t)2

3νε(t)
,

where,

ε(t) = 2ν
∑
κ∈D

3∑
ζ=1

|κ|2
(
F[vζ ](κ, t)

)2
,

is the average rate of energy dissipation per unit mass, E(t) =
∑
k E0(k, t) is the total energy at time t.

Here, in Chapter 1, we see that we can infer a time-series data from only one measurement by using
the delay coordinates. So, F2 is determined by setting

u(t) = (R̃λ(t), R̃λ(t−∆τ), · · · , R̃λ(t− (M − 1)∆τ))T,

s(t) = (R̃λ(t), R̃λ(t−∆τ), · · · , R̃λ(t− (M − 1)∆τ))T,
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where R̃λ(·) is normalized value of E(k, t). We found that an inference of the Reynolds number is
successful for some time.

Moreover, we investigate the appropriate choice of the delay-coordinate, especially the delay-time
∆τ and the dimension M , which enables us to construct a model having a relatively high-dimensional
attractor with low computational costs. The appropriate choice will be discussed in Sec. 2.5.

In Chapter 3, we consider a regularity criterion for generalized Navier–Stokes equations. This chapter
is based on the following paper:

• K. Nakai, Direction of Vorticity and a Refined Regularity Criterion for the Navier–Stokes Equations
with Fractional Laplacian, Journal of Mathematical Fluid Mechanics 21, 21, 2019.

We define the vorticity ω by using the differential operator rot;

ω = rotv.

For the solution v ∈ Es(T ) of the Navier–Stokes equations, if the vorticity ω belongs to L1(0, T ;L∞(R3)),
the velocity v can be continued to the strong solution in the class Es(T

∗) for some T < T ∗, where the
class Es(T

∗) is defined as following by using Sobolev space Hs;

Es(T ) := C([0, T ];Hs) ∩ C1([0, T ];Hs−1) (s ≥ 3).

J. T. Beale, T. Kato, A. Majda (1984) proved the above theorem for the Euler equations. However we
can also prove that for the Navier–Stokes equations.

P. Constantin, C. Fefferman [9] considered the continuity of direction vector of vorticity√
1− (ξ(x, t) · ξ(x+ h, t))2

|h|β
(=: ηβ(x, h, t)) . (0.0.3)

They proved that the Lipschitz continuity ηβ with β = 1 induces the regularity of velocity to the Navier–
Stokes equations. On the other hand, H. Beirão da Veiga, L. Berselli [3, 2] proved that the β-Hölder
continuity ηβ with β = 1/2 induces the regularity of velocity.

With these previous results in mind, we consider the following generalized Navier–Stokes equations:

∂tv + (v · ∇)v = −∇π − ν(−∆)α/2v in R3 × (0,∞) (0.0.4)

div v = 0 in R3 × (0,∞) (0.0.5)

v(x, 0) = v0(x) in R3. (0.0.6)

Here, a general fractional Laplacian (−∆)α/2 (α > 0) is defined by

F
[
(−∆)α/2f

]
(ξ) = |ξ|αF[f ](ξ),

where F[f ] is the Fourier transform of f . We denote the equations (0.0.4)–(0.0.6) by (NS)α. When α = 2,
the (NS)α reduce to the usual Navier–Stokes equations. In this paper we are concerned with the case
0 < α ≤ 2.

The (NS)α were first considered by J.L. Lions [28]. It is known in [48] that when α > 0, (NS)α with
v0 ∈ L2 possess a global weak solution. Furthermore, if α ≥ 5/2, (NS)α have a unique global smooth
solution [28].

In this thesis, we prove a refined regularity criterion for (NS)α (Teorem 3.1.4).
Let β ∈ (0, 1], a, b, q ∈ (1,∞], r ∈ (1, 3/β) satisfy

1

b
+

1

r
<
α+ β

3
,

α

a
+
α

q
+

3

b
+

3

r
≤ α+ β.

Suppose that

• ω ∈ Lq(0, T ;Lr)

• there exist g ∈ La(0, T ;Lb) such that ηβ ≤ g(x, t) in regions of high vorticity

Then v can be continued to the strong solution in the class Es(T
∗) for some T < T ∗.

Roughly speaking, this statement means that the assumption of regularity of the direction vector of
vorticity in regions of high vorticity induces the regularity of velocity to (NS)α as in the case of the usual
Navier–Stokes equations.
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Chapter 1

Machine-learning inference of fluid variables
from data using reservoir computing

Abstract: We infer both microscopic and macroscopic behaviors of a three-dimensional chaotic fluid
flow using reservoir computing. In our procedure of the inference, we assume no prior knowledge of a
physical process of a fluid flow except that its behavior is complex but deterministic. We present two
ways of inference of the complex behavior; the first called partial-inference requires continued knowledge
of partial time-series data during the inference as well as past time-series data, while the second called
full-inference requires only past time-series data as training data. For the first case, we are able to
infer long-time motion of microscopic fluid variables. For the second case, we show that the reservoir
dynamics constructed from only past data of energy functions can infer the future behavior of energy
functions and reproduce the energy spectrum. It is also shown that we can infer a time-series data from
only one measurement by using the delay coordinates. These implies that the obtained two reservoir
systems constructed without the knowledge of microscopic data are equivalent to the dynamical systems
describing macroscopic behavior of energy functions.

1.1 Introduction

Machine-learning has progressed significantly over the last decade in various areas of physical sciences [39,
14, 33] after some theoretical works in the area of neural networks (See [17, 10] for examples.)

In fluid dynamics area Ling et al. [27] presents a method of using deep neural networks to learn a model
for the Reynolds stress anisotropy tensor from high-fidelity simulation data (see also [26]). Gamahara
and Hattori [15] uses an artificial neural network to find a new subgrid model of the subgrid-scale stress
in large-eddy simulation. By using “Long Short-Term Memory (LSTM)” [16], Wan et al. [47] studies a
data-assisted reduced-order modeling of extreme events in various dynamics including the Kolomogorov
flow of the two-dimensional incompressible Navier–Stokes equation. See alsoVlachas et al. [46] for the
result on the barotropic climate model.

It is recently reported that reservoir computing, brain-inspired machine-learning framework that em-
ploys a data-driven dynamical system, is effective in the inference of a future such as time-series, frequency
spectra and the Lyapunov spectra [45, 19, 30, 36, 18, 35, 1]. Pathak et al. [36] exemplifies using the Lorenz
system and the Kuramoto-Sivashinsky system that the model obtained by reservoir computing can gen-
erate an arbitrarily long time-series whose Lyapunov exponents approximate those of the input signal.

A reservoir is a recurrent neural network whose internal parameters are not adjusted to fit the data in
the training process. What is done is to train the reservoir by feeding it an input time-series and fitting
a linear function of the reservoir state variables to a desired output time-series. Due to this approach of
reservoir computing we can save a great amount of computational costs, which enables us to deal with
a complex deterministic behavior. The framework was proposed as Echo-State Networks [22, 23] and
Liquid-State Machines [32].

It is known that an inference of a fluid flow is difficult but important in both physical and industrial
aspects. In this chapter, we infer variables of a chaotic fluid flow by applying the method of reservoir
computing without a prior knowledge of physical process.
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1. Machine-learning inference of fluid variables

After introducing the method of reservoir computing in Sec. 1.2 and a fluid flow in Sec. 1.3, we explain
how to apply the method to the inference of fluid variables, and show that inferences of both microscopic
and macroscopic behaviors are successful in Sec. 1.4 and Sec. 1.5, respectively. In Sec. 1.6, we exemplify
that a time-series inference of high-dimensional dynamics is possible by using delay coordinates, even
when the number of measurements is smaller than the Lyapunov dimension of the attractor. Discussions
and remarks are given in Sec. 1.7.

1.2 Reservoir computing

Reservoir computing is recently used in the inference of complex dynamics [30, 36, 35, 18, 29]. The
reservoir computing focuses on the determination of a translation matrix from reservoir state variables to
variables to be inferred (see eq. (1.2.4)). Here we review the outline of the method [23, 30]. We consider
a dynamical system

dφ

dt
= f(φ),

together with a pair of φ-dependent, vector valued variables

u = h1(φ) ∈ RM and s = h2(φ) ∈ RP .

We seek a method for using the continued knowledge of u to determine an estimate of s as a function
of time when direct measurement of s is not available, which we call the partial-inference. We also
consider the full-inference for which we have a knowledge u only for t ≤ T . Concerning the algorithm,
this is just a variant of the partial-inference [36, 35], and will be explained later.

The dynamics of the reservoir state vector

r ∈ RN (N �M),

is defined by
r(t+ ∆t) = (1− α)r(t) + α tanh(Ar(t) + Winu(t)), (1.2.1)

where ∆t is a relatively short time step. The matrix A is a weighted adjacency matrix of the reservoir
layer, and the M -dimensional input u(t) is fed in to the N reservoir nodes via a linear input weight
matrix denoted by Win. The parameter α (0 < α ≤ 1) in eq. (1.2.1) adjusts the nonlinearity of the
dynamics of r, and is chosen depending upon the complexity of the dynamics of measurements and the
time step ∆t.

Each row of Win has one nonzero element, chosen from a uniform distribution on [−σ, σ]. The matrix
A is chosen from a sparse random matrix in which the fraction of nonzero matrix elements is (D1+D2)/N ,
so that the average degree of a reservoir node is D1 +D2. The D1 non-zero components are chosen from a
uniform distribution on [−1, 1], and D2 from that on [−γ, γ] for γ (� 1), where D2 non-zero components
are introduced to reflect weak couplings among components of r. Then we uniformly rescale all the
elements of A so that the largest value of the magnitudes of its eigenvalues becomes ρ.

The output, which is a P -dimensional vector, is taken to be a linear function of the reservoir state r:

ŝ(t) = Woutr(t) + c. (1.2.2)

The reservoir state r evolves following eq. (1.2.1) with input u(t), starting from random initial state
r(−τ) whose elements are chosen from (0, 1] in order not to diverge, where τ/∆t (� 1) is the transient
time. We obtain L = T/∆t steps of reservoir states {r(l∆t)}Ll=1 by eq. (1.2.1). Moreover, we record the
actual measurements of the state variables {s(l∆t)}Ll=1.

We train the network by determining Wout and c so that the reservoir output approximates the
measurement for 0 < t ≤ T (training phase), which is the main part of this computation. We do this by
minimizing the following quadratic form with respect to Wout and c:

L∑
l=1

‖(Woutr(l∆t) + c)− s(l∆t)‖2 + β[Tr(WoutW
T
out)], (1.2.3)
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1. Machine-learning inference of fluid variables

where ‖q‖2 = qTq for a vector q, and the second term is a regularization term introduced to avoid over-
fitting Wout for β ≥ 0. When the training is successful, ŝ(t) should approximate the desired unmeasured
quantity s(t) for t > T (inference phase). Following eq. (1.2.2), we obtain

ŝ(t) = W∗
outr(t) + c∗, (1.2.4)

where W∗
out and c∗ denote the solutions for the minimizers of the quadratic form (1.2.3) (see [31] P.140

for details):

W∗
out = δSδRT (δRδRT + βI)−1,

c∗ = −[W∗
outr− s],

where r =
∑L
l=1 r(l∆t)/L, s =

∑L
l=1 s(l∆t)/L, and I is the N ×N identity matrix, δR (respectively, δS)

is the matrix whose l-th column is r(l∆t)− r (respectively, s(l∆t)− s).
In order to consider the effect of all the variables equally, we take the normalized value X̃(t) for each

parameter (a) (b) (c)
τ transient time 1000 2500 2350
T training time 10000 20000 20000
M dimension of measurements 270 9 36
P dimension of inferred variables 2 9 36
N number of reservoir nodes 6400 3200 3200
D1 parameter of determining elements of A 60 320 120
D2 parameter of determining elements of A 60 0 0
γ scale of input weights in A 0.1 0 0
ρ maximal eigenvalue of A 1.0 0.5 0.5
σ scale of input weights in Win 0.4 0.3 0.5
α nonlinearity degree of reservoir dynamics 0.7 0.3 0.4
∆t time step for reservoir dynamics 0.1 0.25 0.5
β regularization parameter 0 0.01 0.1

Table 1.1: Sets of parameters for our reservoir computing. The set (a) is used for the partial-
inference of microscopic Fourier variables, whereas the set (b) is for the full-inference of macroscopic
variables of energy functions and energy spectrum, and the set (c) is for the full-inference from only one
measurement.

variable X(t), which will be used throughout the whole procedure of our reservoir computing:

X̃(t) = [X(t)−X1]/X2,

where X1 is the mean value and X2 is the variance. When we reconstruct X(t) in the inference phase
from X̃(t), we employ X1 and X2 obtained in the training phase. Due to the normalization we can avoid
adjustments of σ.

1.3 Fluid flow

In order to generate measurements of the reservoir computing, we employ the direct numerical simulation
of the incompressible three-dimensional Navier–Stokes equation under periodic boundary conditions:{

∂tv − ν∆v + (v · ∇)v +∇π = f, ∇ · v = 0, T3 × (0,∞),

v
∣∣
t=0

= v0 with ∇ · v0 = 0, T3,

where T = [0, 2π), ν > 0 is viscosity parameter, π(x, t) is pressure, and v(x, t) = (v1(x, t), v2(x, t), v3(x, t))
is velocity. We use the Fourier spectral method [21] with N0(= 9) modes in each direction, meaning that
the system is approximated by 2(2N0+1)3 (= 13718)-dimensional ordinary differential equations (ODEs).

8



1. Machine-learning inference of fluid variables

The ODEs are integrated by the 4th-order Runge–Kutta method, and the forcing is input into the low-
frequency variables at each time step so as to preserve the energy of the low-frequency part. That is,
both the real and the imaginary parts of the Fourier coefficient of the vorticity ω (= rot v),

F[ωζ ](κ, t) :=
1

(2π)3

∫
T3

ωζ(x, t)e
−i(κ·x)dx,

are kept constant for ζ = 1, 2, κ = (1, 0, 0), (0, 1, 0). We use an initial condition, which has energy only
in the low-frequency variables. See [21] for the details.

1.4 Partial-inference of microscopic variables: Fourier variables of velocity.
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Figure 1.1: Partial-inference of time-series of microscopic variables in Fourier space of a
fluid flow. Fourier variables ãη1=(1,3,3,3) (top) and ãη2=(1,2,3,4) (bottom) are inferred by using measured
variables ãη for η ∈ S as well as the past time-series data for all the measured variables ãη for η ∈
S ∪ {η1, η2}. We can observe that the inferred time-series almost coincide with the actual ones obtained
by the direct numerical simulation of the Navier–Stokes equation even after sufficiently large time has
passed since the training phase finished. The inference errors in l1-norm averaged over t− T ∈ [0, 2000]
are 1.8% and 3.5% for ãη1 and ãη2 , respectively.

We consider the absolute value of Fourier variables of velocity F[vζ ](κ, t) as the representative micro-
scopic variables:

aη(t) =
∣∣F[vζ ](κ, t)

∣∣ :=

∣∣∣∣ 1

(2π)3

∫
T3

vζ(x, t)e
−i(κ·x)dx

∣∣∣∣ , (1.4.1)
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1. Machine-learning inference of fluid variables

where η = (ζ, κ) ∈ S0 := {(ζ, κ1, κ2, κ3) ∈ Z4| ζ ∈ {1, 2, 3}, κ1, κ2, κ3 ∈ [−N0, N0]}. Since v is real,
a(·,κ1,κ2,κ3) = a(·,−κ1,−κ2,−κ3). The reason why we take the absolute value in eq. (1.4.1) is to kill the
rotational invariance of a complex variable and to make an inference possible. We choose a chaotic
parameter ν = 0.05862, and set u(t) as the time-series of M = 270 Fourier variables ãη, where η ∈ S :=
{(2,±κ1, κ2, κ3) ∈ Z4| 1 ≤ κ1 ≤ N0, κ1 ≤ κ2 ≤ κ3 ≤ κ1 + 4} and each component is taken mod N0, that
is,

u(t) = ({ãη}η∈S)t.

We also set

s(t) = (ã(1,3,3,3), ã(1,2,3,4))
t,

where (1, 3, 3, 3), (1, 2, 3, 4) /∈ S. Under the set of parameters in TABLE 1.1 (a) we infer the time-series
s(t), which is successful for quite a long time (see Fig. 1.1).

The choice of variables to be trained is not very significant in this study, because the attractor does
not show a homogeneous isotropic turbulence, and it has less symmetries. We can see from the Poincaré
section of the microscopic variables that the flow is not isotropic and indeterminacy in inference due to the
continuous symmetry does not appear. However, by training variables with different types of behaviors,
we can construct a reservoir model in less computational costs with lower dimension N of the reservoir
system. In fact, we confirmed that we can infer some other fluid variables including both low-frequency
and high-frequency variables from some other training variables. We found that an inference of a high-
frequency variable tends to be more difficult, maybe because of the stronger intermittency. Remark that
D2 is useful to represent non-local relatively weak interactions among microscopic variables in the partial
inference.

1.5 Full-inference of macroscopic variables: Energy function and Energy spec-
trum

We study an energy function as the representative of a macroscopic variable. We set ν = 0.058 for which
the flow is more turbulent than the previous case. However, the complexity of the dynamics is much
less than that for a microscopic variable for the same viscosity. This is because the energy function can
be thought of as an averaged quantity of many microscopic variables. The energy function E0(k, t) for
wavenumber k ∈ N is defined by

E0(k, t) :=
1

2

∫
Dk

3∑
ζ=1

∣∣F[vζ ](κ, t)
∣∣2 dκ,

where Dk := {κ ∈ Z3|k − 0.5 ≤ |κ| < k + 0.5}. See eq. (1.4.1) for the expression of F[vζ ](κ, t). In order
to get rid of the high-frequency fluctuation, we take the short-time average

E(k, t) =

t∑
s=t−99∆s

E0(k, s)/100,

where ∆s = 0.05 is the time step of the integration of the Navier–Stokes equation. This helps us to obtain
essential low-frequency dynamics of an energy function and infer its time-series with less computational
costs with lower dimension N of the reservoir vectors. The averaged energy function E(k, t) will be called
an energy function hereafter.

In the training phase for t ∈ (0, T ], W∗
out and c∗ are determined by setting

u(t) = (Ẽ(1, t), Ẽ(2, t), · · · , Ẽ(9, t))t,

s(t) = (Ẽ(1, t), Ẽ(2, t), · · · , Ẽ(9, t))t,

and by following the same procedure as the partial-inference. In the inference phase for t > T , eq.(1.2.1)
is written as

r(t+ ∆t) = (1− α)r(t) + α tanh(Ar(t) + Winŝ(t)),

10



1. Machine-learning inference of fluid variables
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Figure 1.2: Full-inference of time-series of macroscopic variables of a fluid flow. Time-series
of energy function Ẽ(k, t) for k = 4 (top) and 9 (middle) are inferred from the reservoir system in
comparison with that of a reference data obtained by the direct numerical simulation of the Navier–

Stokes equation. The inference error defined by ε(t) =
∑N0

k=1 |Ẽ(k, t)− ˆ̃E(k, t)|/N0 (N0 = 9) is shown to
grow exponentially with time up to t− T = 100 (bottom), which is inevitable for a chaotic behavior of a
fluid flow. The growth of error within a short time highly depends on the direction of the perturbation

vector {Ẽ(·, T + ∆t)− ˆ̃E(·, T + ∆t)}, and its slope can vary in different settings.
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Figure 1.3: Energy spectrum E(k) reproduced from the reservoir computing. The spectrum is
obtained from the full-inference of an energy function E(k, t), which is compared with that for a reference
data obtained by the direct numerical simulation of the Navier–Stokes equation. The coincidence of the
two energy spectra implies that the reservoir system captures the dynamics of a fluid flow in statistical
sense, even after the time-series inference has failed due to the chaotic property (see Fig. 1.2). The
Kolmogorov −5/3 law of the energy spectrum is shown as a reference. The relative error of inferred

variable Ê(k) from E(k) (k = 1, · · · , 9) is up to 1.3%.

by setting u(t) as

ŝ(t) = ( ˆ̃E(1, t), ˆ̃E(2, t), · · · , ˆ̃E(9, t))t

obtained from eq. (1.2.4). A set of parameters employed here is shown in TABLE 1.1 (b).
We found that an inference of energy functions is successful for some time after finishing training

9-dimensional time-series data of energy functions. The two cases for Ẽ(4, t) and Ẽ(9, t) are shown in
Fig. 1.2 (top)(middle). The failure in the long-term time-series inference is inevitable just due to the
sensitive dependence on initial condition of a chaotic property of the fluid flow. In fact, the growth rate
of error in the energy functions is shown to be exponential for t−T . 100 in Fig. 1.2 (bottom). However,
the energy spectrum E(k) = 〈E(k, t)〉, the time average of an energy function E(k, t), can be reproduced
from the inferred time-series data for 1000 < t − T < 2000 (Fig. 1.3). This implies that the reservoir
system constructed without the knowledge of microscopic variables captures statistical property correctly,
and that the obtained system can be understood as a chaotic dynamical system describing a behavior of
energy functions.

1.6 Full-inference of Macroscopic variable from only one measurement using
delay coordinates

In various experiments and observations of high-dimensional complex phenomena, there are usually much
smaller number of measurements than the Lyapunov dimensions of the attractor. Even in such cases we
can infer a time-series data by generating high-dimensional input data u for the reservoir computation
through the delay-coordinate embedding method [41, 37].

Here we exemplify a full-inference of an energy function E(4, t) for the same flow as in Sec. 1.5, by
assuming that the accessible measurement is limited to only one variable E(4, t) among 9 measurements
E(k, t) (k = 1, · · · , 9) used in Sec. 1.5. In order to overcome the lack of sufficiently large number of

12



1. Machine-learning inference of fluid variables

measurements, we introduce 36-dimensional delay-coordinate function with a time delay ∆τ = 2.5, that
is,

u(t) = (Ẽ(4, t), Ẽ(4, t−∆τ), · · · , Ẽ(4, t− 35∆τ))t,

s(t) = (Ẽ(4, t), Ẽ(4, t−∆τ), · · · , Ẽ(4, t− 35∆τ))t.

An inferred time-series of Ẽ(4, t) is shown in Fig. 1.4, which is as successful as the case when there are 9
measurements in Fig. 1.2 (top). A set of parameters employed here is shown in TABLE 1.1 (c).
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Figure 1.4: Full-inference of a macroscopic variable using the delay coordinates of only one
measurement. We infer an energy function Ẽ(4, t) for the same time range as in Fig. 1.2 (top) from
only one measurement Ẽ(4, t). The inferred time-series of Ẽ(4, t) is shown together with a reference data
obtained by the direct numerical simulation of the Navier–Stokes equation (top). Errors for the inference

ε1(t) =
∑35
n=0 |Ẽ(4, t− n∆τ)− ˆ̃E(4, t− n∆τ)|2/36 and ε2(t) = |Ẽ(4, t)− ˆ̃E(4, t)| are shown (bottom).

1.7 Discussion and remarks

We have succeeded in inferring time-series of both microscopic and macroscopic variables of a three-
dimensional fluid flow by machine-learning technique using reservoir computing. The method is especially
useful in generating an arbitrarily long time-series data of macroscopic variables as well as a statistical

13



1. Machine-learning inference of fluid variables

property with small computational costs. That is, in order to generate a time-series data of a macroscopic
variable of a fluid flow, we do not need to refer microscopic behaviors. It takes roughly 1/80 of time to
obtain a time-series of the energy functions E(k) with the same time-lengths, when we use the model con-
structed by the reservoir computation. The Navier–Stokes equation is calculated by 13718-dimensional
ODEs with the 4-stage Runge–Kutta method (time step 0.05), whereas the model is calculated by 3200-
dimensional map whose iterate corresponds to the time step 0.25.

The difficulty in the construction of a reservoir model can vary mainly depending on the viscosity ν.
As the degree of turbulence increases by decreasing ν, longer training time T and higher dimension N
of the reservoir state vector r ∈ RN are required. However, for macroscopic variables the construction
is relatively easy, even when the flow is turbulent. Because the degree of instability of a macroscopic
behavior is relatively low in comparison with that of a microscopic behavior.

It is expected that our procedure will work, even if a high-frequency noise is added to the training
data, because even in our current computation we have applied a low-pass filter for the inference of
macroscopic variables. Although our approach focuses on constructing a model for a fluid flow with a
fixed parameter ν, it will be very interesting to consider a framework of the construction of a model with
a parameter.

When we do numerical computation of the Navier–Stokes equation, we employ some discretized expres-
sions using Fourier spectrum method, finite difference method and finite element method. The obtained
reservoir system constructed from data can be understood as one of such expressions, describing a macro-
scopic (or a microscopic) dynamics of a fluid flow.

It is known that there is a difficulty in obtaining a closed form equation of macroscopic behavior
of a fluid flow from the Navier–Stokes equation analytically, so called a “closure problem”. That is, in
order to express the dynamics of the n-th moment variables, the n+ 1-th moment variables are required
for any positive integer n. Our study on the data-driven modeling may give us insights on this kind of
problem. For a relatively large value of ν considered in this chapter, {E(k)}Kk=1 seems to be enough for
representing the dynamics of E(k), whereas {E(k)}Kk=1 will not be enough for more turbulent case with
a smaller value of ν, even if K is chosen large enough. In such a case time-delay variables can be used
for generating high-dimensional input data as are used in Sec. 1.6
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Chapter 2

Machine-learning construction of a model for
a macroscopic fluid variable using the
delay-coordinate of a scalar observable

Abstract: We construct a data-driven dynamical system model for a macroscopic variable the Reynolds
number of a high-dimensionally chaotic fluid flow by training its scalar time-series data. We use a
machine-learning approach, the reservoir computing for the construction of the model, and do not use
the knowledge of a physical process of fluid dynamics in its procedure. It is confirmed that an inferred
time-series obtained from the model approximates the actual one and that some characteristics of the
chaotic invariant set mimic the actual ones. We investigate the appropriate choice of the delay-coordinate,
especially the delay-time and the dimension, which enables us to construct a model having a relatively
high-dimensional attractor with low computational costs.

2.1 Introduction

Reservoir computing is a brain-inspired machine-learning technique that employs a data-driven dynamical
system. The framework was proposed as Echo-State Networks [22, 23] and Liquid-State Machines [32],
and it has been found to be effective in the inference of a future such as time-series, frequency spectra
and the Lyapunov spectra [1, 18, 19, 30, 35, 36, 45].

A reservoir is a recurrent neural network whose internal parameters are not adjusted to fit the data
in the training process. Only an output layer is trained. Therefore, the total computational costs are
relatively low in comparison with many other machine learning techniques having the same dimensional
neural networks. Many physical phenomena including a fluid flow are deterministic, and thus can be
described by a high-dimensional dynamical system, even though they have a complex behavior. That is
why the reservoir computing with a high-dimensional neural networks can be useful for the construction
of a model for such a phenomenon.

In previous chapter [34], we infer both microscopic and macroscopic behaviors of a three-dimensional
chaotic fluid flow using reservoir computing. We presented two ways of inference of the complex behavior:
the first, called partial inference, requires continued knowledge of partial time-series data during the
inference as well as past time-series data, while the second, called full inference, requires only past time-
series data as training data. For the first case, we are able to infer long-time motion of microscopic fluid
variables. For the second case, we showed that the reservoir dynamics constructed from only past data of
energy functions can infer the future behavior of energy functions and reproduced the energy spectrum.

In various experiments and observations of high-dimensional complex phenomena, there are usually
much smaller number of measurements than the Lyapunov dimensions of the attractor. Even in such
cases, we can efficiently construct a dynamical model by generating high-dimensional input data u for
the reservoir computing by using the delay-coordinate [34, 37, 41].

The previous chapter focuses on the model construction and the full-inference of a macroscopic vari-
able, the Taylor microscale Reynolds number, when the scalar time-series is accessible as measurements.
We evaluate the model in many ways, and discuss details of the appropriate choice of the delay-coordinate

15



2. Machine-learning construction using the delay-coordinate of a scalar observable

created from the single observable. This will be useful for readers who wish to construct a reservoir model
by themselves.

After reviewing the procedure of the reservoir computing in Sec. 2.2 and the generation of time-series
data of a fluid flow in Sec. 2.3, we show that the constructed reservoir model recovers various properties
of a fluid flow obtained from the Navier–Stokes equation in Sec. 2.4. We investigate the effective choice
of delay-coordinate in order to construct a model in Sec. 2.5. We summarize our results in Sec. 2.6.

2.2 Reservoir computing

Reservoir computing is recently used in the inference of complex dynamics [18, 29, 30, 35, 36]. It focuses
on the determination of a linear function from the reservoir state vector to variables to be inferred (see
eq. (2.2.5)). Here we review the outline of the method [23, 30]. In this chapter we construct a model
dealing with so called full-inference, in which there is no observable data in the inference phase [34].

We consider a dynamical system
dφ(t)

dt
= f(φ(t)),

together with a pair of φ-dependent, vector valued variables

u(t) = h1(φ(t)) ∈ RM and s(t) = h2(φ(t)) ∈ RM . (2.2.1)

We seek a method for using the knowledge of u to determine an estimate ŝ of s as a function of time
when direct measurement of s is not available. We have a knowledge u and s during the training phase
for t ≤ T , u and s are unknown during the inference phase for t > T . Therefore, u during the inference
phase is replaced by ŝ in the previous step. See eq. (2.2.8) for the detail.

The dynamics of the reservoir state vector

r(t) ∈ RN (N �M),

is defined by the neural network

r(t+ ∆t) = (1− α)r(t) + α tanh(Ar(t) + Winu(t)), (2.2.2)

where ∆t is a relatively short time step, and

tanh(q) = (tanh(q1), tanh(q2), · · · , tanh(qN ))T,

for a vector q = (q1, q2, · · · , qN )T. Here, T represents the transpose of a matrix. The matrix A is a
weighted adjacency matrix, and the M -dimensional input u is fed in to the N reservoir nodes via a linear
input weight matrix denoted by Win. The parameter α (0 < α ≤ 1) adjusts the nonlinearity of the
dynamics of r, and is chosen depending upon the complexity of the dynamics of measurements and the
time step ∆t.

Each row of Win has one nonzero element, chosen from a uniform distribution on [−σ, σ]. The matrix
A is chosen from a sparse random matrix in which the fraction of nonzero matrix elements is D/N , so
that the average degree of a reservoir node is D. The D non-zero components are chosen from a uniform
distribution on [−1, 1]. Then we uniformly rescale all the elements of A so that the largest value of the
magnitudes of its eigenvalues becomes ρ.

The output, which is a M -dimensional vector, is taken to be a linear function of the reservoir state
vector r:

ŝ(t) = Woutr(t) + c. (2.2.3)

The reservoir state vector r evolves following eq. (2.2.2) with input u(t), starting from random initial
state r(−T0) whose elements are chosen from (0, 1] in order not to diverge, where T0 = L0∆t (� 1) is
the transient time for r(t) (t > 0) to be on the attractor. We obtain L = T/∆t steps of reservoir state
vectors {r(l∆t)}Ll=1 by iterating eq. (2.2.2), while we record the variables {s(l∆t)}Ll=1 by using the actual
measurements from eq. (2.2.1) for the training phase.

Determination of Wout and c. We determine Wout and c so that the reservoir output ŝ (eq.
(2.2.3)) approximates the measurement s for 0 < t ≤ T (training phase), which is a training process in
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2. Machine-learning construction using the delay-coordinate of a scalar observable

the reservoir computing. We determine them by minimizing the following quadratic form with respect to
Wout and c:

L∑
l=1

‖(Woutr(l∆t) + c)− s(l∆t)‖2 + β[Tr(WoutW
T
out)], (2.2.4)

where ‖q‖2 = qTq for a vector q, and the second term is a regularization term introduced to avoid over-
fitting Wout for β ≥ 0. When the training is successful, ŝ(t) should approximate the desired unmeasured
quantity s(t) for t > T (inference phase). Following eq. (2.2.3), we obtain

ŝ(t) = W∗
outr(t) + c∗, (2.2.5)

where W∗
out and c∗ denote the solution for the minimizers of the quadratic form (2.2.4):

W∗
out = δSδRT (δRδRT + βI)−1, (2.2.6)

c∗ = −[W∗
outr− s], (2.2.7)

where r =
∑L
l=1 r(l∆t)/L, s =

∑L
l=1 s(l∆t)/L, and I is the N ×N identity matrix, δR (respectively, δS)

is the matrix whose l-th column is r(l∆t)− r (respectively, s(l∆t)− s) (see [31] P.140 and [43] Chapter
1 for details).

In the inference phase for t > T , eq.(2.2.2) is written as

r(t+ ∆t) = (1− α)r(t) + α tanh(Ar(t) + Winŝ(t)), (2.2.8)

by setting u(t) as ŝ(t) obtained from eq. (2.2.5).
We define a reservoir model by eqs. (2.2.5) and (2.2.8) under the values determined by eqs. (2.2.6)

and (2.2.7) through the training data in a time-interval [0, T ]. The main variables and matrices in the
reservoir computing are summarized in Table 2.1.

Normalization of a variable. In order to consider the effect of all the variables equally, we take
the normalized value x̃(t) for each variable x(t), which will be used in the procedure of our reservoir
computing:

x̃(t) = [x(t)−X1]/X2,

where X1 is the mean value and X2 is the variance. When we reconstruct x(t) in the inference phase
from x̃(t), we employ X1 and X2 obtained in the training phase. Due to the normalization we can avoid
adjustments of σ.

Parameter choice. We apply a method of reservoir computing described above in order to construct
a model. The sets of parameter values used are shown in Table 2.2.

variable
u (∈ RM ) input variable
r (∈ RN ) reservoir state vector
s (∈ RM ) actual output variable obtained from Navier–Stokes equation
ŝ (∈ RM ) inferred output variable obtained from reservoir computing
A (∈ RN×N ) weighted adjacency matrix
Win (∈ RM×N ) linear input weight
Wout (∈ RN×M ) matrix used for translation from r to output variable ŝ
c (∈ RM ) vector used for translation from r to output variable ŝ
x̃ normalized variable of x

Table 2.1: The list of variables and matrices in the reservoir computing.

2.3 Generation of a fluid flow data

Modelling and inference of a fluid flow are important problems in many areas [11, 34]. In this chapter,
we construct a model for a macroscopic variable of a fluid flow, especially the time-dependent “Taylor
microscale Reynolds number” which reflects the degree of complexity in the fluid flow. We generate
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parameter Sec. 2.4 Sec. 2.5
M dimension of input and output variables 14 Table. 2.3
∆τ delay-time of the delay-coordinate 4.0 Table. 2.3
N dimension of reservoir state vector 3000 2000
D parameter of determining A 120 80
∆t time step for reservoir dynamics 0.5
T0 transient time for r to be converged 3750
T training time 40000
L0 (= T0/∆t) number of iterations for the transient 7500
L (= T/∆t) number of iterations for the training 80000
ρ maximal eigenvalue of A 0.7
σ scale of input weights in Win 0.5
α nonlinearity degree of reservoir dynamics 0.6
β regularization parameter 0.1

Table 2.2: The list of parameters and their values used in the reservoir computing in each
section.

training data by the direct numerical simulation of the Navier–Stokes equation, which is also used for
the reference data in the inference phase in order to evaluate the constructed reservoir model. It should
be remarked that the Navier–Stokes equation and its physical property are not considered at all when
constructing a reservoir model.

Generation of training data. In order to generate measurements of the reservoir computing, we
employ the direct numerical simulation of the incompressible three-dimensional Navier–Stokes equation
under periodic boundary conditions:{

∂tv − ν∆v + (v · ∇)v +∇π = f, ∇ · v = 0, T3 × (0,∞),

v
∣∣
t=0

= v0 with ∇ · v0 = 0, T3,

where T = [0, 1), ν > 0 is a viscosity parameter, π(x, t) is pressure, and v(x, t) = (v1(x, t), v2(x, t), v3(x, t))
is velocity. Throughout this chapter, we set ν = 0.058, under which the fluid flow shows an intermittent
behavior between laminar and bursting states. See such a behavior in the bottom panel of Fig. 2.1. We
use the Fourier spectral method [21] with N0(= 9) modes in each of three directions, meaning that the
system is approximated by 2(2N0 + 1)3 (= 13718)-dimensional ordinary differential equations (ODEs).
The ODEs are integrated by the 4th-order Runge–Kutta scheme, and the forcing is input into the low-
frequency variables at each time step so as to preserve the energy of the low-frequency part. See [21, 34]
for the details.

Reynolds number Rλ. We focus on the time-series of the Taylor microscale Reynolds number,
a macroscopic variable representing the degree of complexity of a fluid flow. The total energy E(t) is
defined by

E(t) =
∑
κ∈D

3∑
ζ=1

(
F[vζ ](κ, t)

)2
,

where

F[vζ ](κ, t) :=
1

(2π)3

∫
T3

vζ(x, t)e
−i(κ·x)dx (ζ = 1, 2, 3),

and D = {(κ1, κ2, κ3) ∈ Z3 | κ1, κ2, κ3 ∈ [−9, 9]}. The Taylor microscale Reynolds number Řλ(t) [20] is
defined as follows:

Řλ(t) :=

√
(2/3)E(t)λ

ν
=

√
20E(t)2

3νε(t)
,

where

ε(t) = 2ν
∑
κ∈D

3∑
ζ=1

|κ|2
(
F[vζ ](κ, t)

)2
,
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is the average rate of energy dissipation per unit mass and

λ =

(
15ν(2/3)E(t)

ε(t)

)1/2

,

is the characteristic length of a turbulent fluid flow. The length roughly corresponds to that of an energy
input in this study.

In order to get rid of the high-frequency fluctuation, we take the short-time average

Rλ(t) =

0∑
l=99

Řλ(t− l∆t∗)/100,

where ∆t∗ = 0.05 is the time step of the integration of the Navier–Stokes equation. This helps us to
obtain essential low-frequency dynamics of a Reynolds number and construct a model with less compu-
tational costs with lower dimension N of the reservoir state vectors. The averaged Reynolds number Rλ
will be called the Reynolds number, and the time-series generated by the direct numerical simulation in
the inference phase will be called the “actual data”.

2.4 Construction of a model for a macroscopic variable: Reynolds Number

Using the reservoir computing discussed in Sec. 2.2, we construct a model by training a time-series data
of the Reynolds number Rλ (see Sec. 2.3) that shows an intermittent behavior between laminar and
bursting states. For its purpose a delay-coordinate vector created from a scalar observable is introduced
to the input and output variables.

2.4.1 Construction of variables based on delay-coordinate

The choice of variables for the reservoir model is significant. Here, we introduce an M -dimensional
delay-coordinate vector of the Reynolds number with a delay-time ∆τ as input and output variables
u(t) = (u1(t), u2(t), · · · , uM (t))T and s(t) = (s1(t), s2(t), · · · , sM (t))T in eq. (2.2.1), that is,

u(t) = (R̃λ(t), R̃λ(t−∆τ), · · · , R̃λ(t− (M − 1)∆τ))T, (2.4.1)

s(t) = (R̃λ(t), R̃λ(t−∆τ), · · · , R̃λ(t− (M − 1)∆τ))T. (2.4.2)

The appropriate choice of the dimension M and the delay-time ∆τ of the delay-coordinate will be
discussed in Sec. 2.5.
Determination of a model. Under the parameters listed in Table 2.2 and randomly chosen matrices
A and Win, we find a candidate of a reservoir model by fixing W∗

out and c∗ following the procedure
explained in Sec 2.2. If the candidate passes a certain criteria concerning the short time inference, the
candidate is considered as a model. See Sec. 2.5 for the details of the criteria. Remark that although we
can use a training data as some delay components of input data when t− (M − 1)∆τ < T , we do not use
any training data in the inference phase. Hereafter throughout this section, we choose one of the models,
and fix the corresponding set of values A, Win, W∗

out and c∗.

2.4.2 Evaluation of the model

We evaluate the constructed reservoir model for the Reynolds number from several points of view by
comparing its property with that of the actual data obtained from the direct numerical simulation of
Navier–Stokes equation.
Time-series. We confirm that an inference of a time-series of the Reynolds number s1 = R̃λ is successful

for some time after finishing the training phase. The time-series of the inferred variable ŝ1 = ˆ̃Rλ(t) (t > T )
is shown with the actual data s1 = R̃λ(t) obtained from the direct numerical simulation of Navier–Stokes
equation in the top left panel of Fig. 2.1. The failure in the long-term time-series inference is inevitable
just due to the sensitive dependence on the initial condition of a chaotic property of the fluid flow. The
two types of errors between the inferred value and the actual one are shown in the top right panel of Fig.
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Figure 2.1: Inference of a time-series of the Reynolds number of a fluid flow. Time-series of
s1 = R̃λ is inferred from the reservoir model in comparison with that of a reference data obtained by
the direct numerical simulation of the Navier–Stokes equation (top left). The variable t′ (= t − T > 0)
denotes the time after finishing the training phase at t = T . The inference errors ε1, ε2 defined by

ε1(t) = |s(t) − ŝ(t)|, and ε2(t) = |s1(t) − ŝ1(t)| = |R̃λ(t) − ˆ̃Rλ(t)| are shown to increase exponentially
due to the chaotic property (top right). In the bottom figure switching between laminar state with a
small amplitude fluctuation and bursting state with a large amplitude fluctuation appear in an inferred
time-series of s1 = R̃λ, which are observed in the actual time-series.

2.1. Moreover, the long-time behavior of ˆ̃Rλ(t) is shown in the bottom panel, which has qualitatively
similar intermittent behaviors to the actual one, intermittent switching between the state of low amplitude
fluctuations (laminar state) and the state of high amplitude fluctuations (burst state). Remark that the
model trajectory shows a chaotic behavior, but after a long transient it will diverge eventually around
t′ ≈ 290000.
Delay Property. As we employ the delay-coordinate vector for input and output variables of the
reservoir computing (eqs. (2.4.1),(2.4.2)), the relation s1(t) = sm(t+ (m− 1)∆τ) holds for any m (m =
2, · · · ,M) during the training phase. The corresponding relation should also be satisfied in the inference
phase. We show the time-series ŝ1(t) and ŝ14(t + 13∆τ) in Fig. 2.2, which satisfies the relation ŝ1(t) ≈
ŝ14(t + 13∆τ). We can confirm that for almost all t the relation ŝ1(t) ≈ ŝm(t + (m − 1)∆τ) is satisfied
for any m. The results imply that our reservoir computing successfully learns the delay property only
through training such data.
Poincaré plane. We investigate the chaotic set computed from a model trajectory to see whether the
inferred chaotic set mimics the actual one. For its purpose we describe the Poincaré plane in comparison
with that computed from a trajectory of the direct numerical simulation of the Navier–Stokes equation
with the same time length in the Fig. 2.3. The figure suggests that each of the chaotic set is hyper-
chaotic, that is the dimension of the unstable manifold is two or higher. Although the sections are similar
to each other, they are not very close to each other. This may be because the length of the intermittent
trajectory is not enough to cover various regions especially in the bursting state.
Distribution. Density distributions computed from two inferred trajectories {ŝ1(t)} and those from
two actual trajectories {s1(t)} are shown in Fig. 2.4. We can observe that the distributions computed
from trajectories of time lengths 5000 are fluctuating, but the inferred distributions seem to have similar
properties to the actual distributions. Relatively large fluctuations in distributions for |ŝ1(t)| > 1 should
be due to the intermittency.
The reservoir model can be used to infer time-series of another time-interval. We obtained a
model just by training the data and it enables us to infer short-time behavior, the shape of an attractor
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Figure 2.2: Reproducing the delay property which is to be satisfied for the successfully
inferred time-series ŝ. We observe that for all values of m = 2, · · · , 14 and for most t′, ŝ1(t′) ≈
ŝm(t′ + (m − 1)∆τ), although the time-series of only ŝ1(t′) and ŝ14(t′ + 13∆τ) (7000 ≤ t′ ≤ 8000) are
shown.

and the density distribution. Here we confirm that the model constructed using a certain training data
has the ability to infer a short-time behavior of the Reynolds number for the totally different time-interval.
In Fig. 2.5, the inferred time-series is shown in comparison with the actual one. For this inference we
use the same reservoir model as is used in Fig. 2.1. This means that the reservoir model constructed
using the training data at a certain time-interval can become the model for another time-interval. This
figure supports the accuracy of the constructed reservoir model. In Fig. 2.6, by using the same model
the inference of time-series of the Reynolds number in many different time intervals are shown. For
each time-interval, we confirm that the short time inference is successful. This implies that the obtained
model can describe the dynamics of the Reynolds number. Note that the time-interval for the successful
inference is limited to a relatively short time especially for the bursting phase with large fluctuations
maybe due to the high instability.

It should be remarked that the model satisfies the Echo State Property [22], that is, for a given
u, independent of the initial conditions the time-series of r become almost the same (less than 10−15

difference in double precision) after a certain transient time (greater than around 100). Therefore, the
obtained reservoir model is considered to be a closed form of u.
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Figure 2.3: Poincaré points on the plane (s2, s3) along the trajectory ŝ obtained from the
reservoir model (red) and s from the Navier–Stokes equation (blue). The time length of each
trajectory is 90000. The Poincaré section is defined by s1 = 0, ds1/dt > 0. Two sections are similar
to each other, although a trajectory generated from the reservoir model does not cover some region of
bursting states.
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Figure 2.4: Density distributions generated from trajectories for a variable s1 obtained from
the constructed reservoir model (reservoir output) and from the direct numerical simulation
of the Navier–Stokes equation (actual). Each trajectory with a time-length 50000 has a different
initial condition. The distributions are similar to each other in the sense that the peak is taken at
s1 ≈ 0.2, and the distribution has relatively long tails.
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Figure 2.5: Inference of a time-series of the Reynolds number for t′ > Tout (Tout = 1000) using
the reservoir model constructed by using the training data for t′ ≤ 0 (see Fig. 2.1). We
use the same Win,A,W

∗
out and c∗ as those used for the model inferring the trajectory in Fig. 2.1. But

we use the time-series s1(t′) for Tout − T1 < t′ < Tout as an initial condition, where T1 is the transient
time for the reservoir state vector r(t) to be converged. In the top panel, switching between laminar and
bursting states is observed in the inferred trajectory. The bottom panel is the enlargement of the top
panel, and shows that the model has a predictability for 1000 < t′ < 1080.
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Figure 2.6: Inference of time-series of the Reynolds number in many time-intervals Tout <
t′ < Tout + 250 (Tout = 500, 1000, · · · , 6000) using the same reservoir model constructed by
using the training data for t′ ≤ 0 (see Fig. 2.1 and 2.5.) As in Fig. 2.5, we only change the initial
condition for each case, while the model is fixed after the appropriate choice of Win,A,W

∗
out and c∗ is

determined by using the training data for t′ < 0.
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2.5 Choice of delay-coordinate.

We use an M -dimensional delay-coordinate vector with a delay-time ∆τ (eqs. (2.4.1),(2.4.2)) as input and
output variables u and s in eq. (2.2.1). In this section we investigate the appropriate choice of time-delay
∆τ and the dimension M .
Time-correlation. The auto-correlation function C(x) along a trajectory {Rλ(t))} with respect to the
time-difference x is computed by

C(x) =

1

J

J−1∑
j=0

(Rλ(t0 + j∆t∗)− R̄λ)(Rλ(t0 + j∆t∗ + x)− R̄λ)√√√√ 1

J

J−1∑
j=0

(Rλ(t0 + j∆t∗)− R̄λ)2

√√√√ 1

J

J−1∑
j=0

(Rλ(t0 + j∆t∗ + x)− R̄λ)2

, (2.5.1)

where R̄λ is the time average of Rλ(t), ∆t∗ is the time step of the discrete trajectory, and t0 is an initial
time of a trajectory. In Fig. 2.7, we show the auto-correlation function C(x) for a trajectory {Rλ(t)}
with respect to the delay-time x. It is observed from Fig. 2.7 (right) that as x increases from 0, C(x)
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Figure 2.7: Auto-correlation function C(x) for a trajectory {Rλ(t)} with respect to the value
of time-delay x (left), and its enlarged figure (right). Auto-correlation function C(x) is shown
together with the straight lines ±0.3,±0.5 (left panel), and 0.3, 0.7 (right panel). Each of the different
colors represents C(x) computed from a trajectory from a different initial condition with time-lengths
5000. The difference is mainly due to the intermittent property of the dynamics. In the left panel the
envelope Ce(x)(= exp(−x/60)) is shown to go below 0.5 when x ≈ 40, and also go below 0.3 when x ≈ 75.
From the right panel C(x) is shown to go below 0.7 at the first time, when x ≈ 3.0, and go below 0.3 at
the first time, when x ≈ 5.0.

goes below 0.7 and 0.3 when x ≈ 3.0 and 5.0, respectively.
The observation suggests that the value of the delay-time ∆τ is to be chosen around 3.0-5.0. If

∆τ < 3.0, the consecutive two components of a delay-coordinate vector in (2.4.1), Rλ(t) and Rλ(t−∆τ)
behave too similarly, and if ∆τ > 5.0, the consecutive two components behave too differently, and some
dynamics to be captured may be missing.

Delay-time and dimensions. Based on the above implication about the auto-correlation function
in Fig. 2.7, we investigate the effective delay-time ∆τ and dimensions M . We focus on the delay-time
∆τ ≈ 3.0-5.0 in Table 2.3. We infer time-series of the Reynolds number Rλ(t) (actually its normalized
value R̃λ(t)) using the procedure in Sec. 2.2 by employing the delay-coordinate in eq. (2.5). We tried 8160
cases for each set of parameters (∆τ,M), for which matrices A and Win are chosen randomly, and the
number of successful cases are counted in TABLE 2.3. We say that the inference of s1(t′) (t′ = t−T > 0)
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(a) (e60, e90) = (0.14, 0.30)
∆τ \ M 10 11 12 13 14 15 16 17 18 19 20
3.0 0 0 0 0 0 1 19 24 43 37 27
3.5 0 0 0 11 20 28 57 48 21 11 7
4.0 0 3 18 43 107 59 21 14 2 4 5
4.5 3 14 43 54 21 15 8 1 1 1 0
5.0 10 24 26 19 9 1 1 1 0 0 0

(b) (e60, e90) = (0.13, 0.17)
∆τ \ M 10 11 12 13 14 15 16 17 18 19 20
3.0 0 0 0 0 0 0 3 6 10 8 4
3.5 0 0 0 2 3 5 6 4 1 3 1
4.0 0 0 2 8 14 10 1 4 1 0 1
4.5 1 1 8 14 1 0 1 0 0 0 0
5.0 2 4 6 6 3 0 1 0 0 0 0

Table 2.3: The number of successful trials for each choice of the delay-time ∆τ and the
dimension M of the delay-coordinate. The matrices A and Win are chosen randomly, and the
number of successful cases are counted. See Table. 2.2 for the parameter values. We say the inference
is successful, if the three conditions (i)(ii)(iii) in (2.5.2) hold, where the criteria (e60, e90) are set as
(a)(0.14, 0.30) and (b)(0.13, 0.17). For each set of values (∆τ,M) we tried 8160 cases of A and Win. For
each value of ∆τ , the best choice of M is identified by the bold number(s) (blue), and the best among
each criterion is identified by the underlined bold number(s) (red).

is successful if the conditions
(i) the time average along |ŝ1(t′)| < 3 for t′ ≤ 3000,

(ii) the error ε2(t′) = |s1(t′)− ŝ1(t′)| = |R̃λ(t′)− ˆ̃Rλ(t′)| < e60 for all t′ ≤ 60,

(iii) the error ε2(t′) < e90 for all t′ ≤ 90,

(2.5.2)

hold, where the criteria (e60, e90) are set as (a)(0.14, 0.30) and (b)(0.13, 0.17). Remark that the condition
(i) is given so as to get rid of a candidate which diverges within a short time, as |s1(t′)| < 3 for almost
all t even in the bursting region. For each case we use the same training data and the starting time of
the inference as in Fig. 2.1.

It is observed that the delay-time ∆τ and the dimension M of the delay-coordinate are chosen so that
∆τ ≈ 4.0-4.5, and M∆τ ≈ 55-60, which correspond to C(∆τ) ≈ 0.45-0.55 and its envelope Ce(M∆τ) ≈
0.35-0.40, respectively (see the left panel of Fig. 2.7 for the envelope Ce). For ∆τ = 4.0 and M = 14, 15
by computing 16 times more cases, we confirmed that the rate of successful trials does not change much.
In addition, even when we change the value of N such as 1000 or 3000, we obtain almost the same results.

2.6 Summary and discussion

By training a time-series data of a macroscopic quantity the Reynolds number of a fluid flow, we construct
a closed form system describing its behavior without the knowledge of a physical process. We evaluate the
obtained model in many ways. In particular, the model is confirmed to have a time-series predictability
in many time intervals.

In order to construct a model from a scalar time-series data, we introduce a time-delay coordinate.
From our investigations, the time-delay should be chosen to be the lowest value ∆τ(> 0) so that the
auto-correlation function C is 0.45 < C(∆τ) < 0.55 at the first time, and that the dimension M of
the delay-coordinate should be chosen so that the envelope Ce of the auto-correlation function C is
0.35 < Ce(M∆τ) < 0.40.

It should be remarked that the obtained reservoir model has a chaotic set on which a trajectory
approximates the actual one, but the set is not an attractor. This may be due to the lack of training
data, especially in the bursting state. The clarification is remained as a future study.
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Chapter 3

Direction of Vorticity and a Refined Regularity
Criterion for the Navier–Stokes Equations with
Fractional Laplacian

Abstract: We give a refined regularity criterion for solutions of the three-dimensional Navier–Stokes
equations with fractional dissipative term (−∆)α/2v. The criterion is composed of the direction field
of the vorticity and its magnitude simultaneously. Our result is a generalized of previous results by H.
Beirão da Veiga and L. Berselli (2002), and Y. Zhou (2005). Moreover, our result mentioned about the
relation between the solution of the Navier–Stokes equations and the Euler equations.

3.1 Introduction

We consider the three-dimensional incompressible Navier–Stokes equations with fractional powers of the
Laplacian:

∂tv + (v · ∇)v = −∇π − (−∆)α/2v in R3 × (0,∞), (3.1.1)

div v = 0 in R3 × (0,∞), (3.1.2)

v(x, 0) = v0(x) in R3, (3.1.3)

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) is the velocity of the fluid flows, π = π(x, t) is the pressure,
and v0(x) is a given initial velocity field satisfying div v0 = 0. Furthermore, a general fractional Laplacian
(−∆)α/2 (α > 0) is defined by

F
[
(−∆)α/2f

]
(ξ) = |ξ|αF[f ](ξ),

where F[f ] is the Fourier transform of f . We denote the equations (3.1.1)–(3.1.3) by (NS)α. When α = 2,
the (NS)α reduce to the usual Navier–Stokes equations. In this chapter we are concerned with the case
0 < α ≤ 2.

The (NS)α were first considered by J.L. Lions [28]. It is known in [48] that when α > 0, (NS)α
with v0 ∈ L2 possess a global weak solution. By a weak solution, we mean (v, π) satisfies (NS)α in the
distribution sense. In addition, we have the basic regularity for the weak solution:

v ∈ L∞(0, T ;L2) ∩ L2(0, T ;Hα/2)

for any T > 0. Moreover, N.H. Katz and N. Pavlović [25] showed that if 2 < α < 5/2, the Hausdorff
dimension of the singular set at the time of first possible blow-up is at most 5 − 2α. Furthermore, if
α ≥ 5/2, (NS)α have a unique global smooth solution [28]. Also, the existence of time global solution
under α ≥ 5/2 is recovered by Y. Zhou [51].

In [7, 13], the authors claim that the vorticity ω which is defined by rot v plays an important role in
the regularity conditions for the Navier–Stokes equations, where rot is a differential operator. Taking the
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operator rot of (3.1.1), we obtain an equation:

∂tω + (−∆)α/2ω = (ω · ∇)v − (v · ∇)ω. (3.1.4)

The velocity can be written in terms of the vorticity through the Biot-Savart law:

v(x, t) =
−1

4π

∫
R3

∇y
(

1

|x− y|

)
× ω(y, t)dy, (3.1.5)

which follows from (3.1.2) provided vorticity decay near infinity. D. Chae, J. Fan and T. Ozawa proved
the following theorem on a solution to (NS)α in the class

C([0, T );Hs) ∩ C1([0, T );Hs−1) =: Es(T ) s > 5/2,

which we call a strong solution in the class Es(T );

Theorem 3.1.1 ([6, 12]). Let s > 5/2, T > 0, and α ∈ (0, 5/2]. Let v be a strong solution of (NS)α in
the class Es(T ). If the vorticity ω(x, t) satisfies

ω ∈ Lp(0, T ;Lq),
α

p
+

3

q
≤ α, (3.1.6)

where 6/α < q ≤ ∞. Then v can be continued to the strong solution in the class Es(T
′) for some T < T ′.

Let ξ(x, t) be the direction vector of vorticity ω(x, t)/|ω(x, t)|, which is defined in the region {(x, t) |
ω(x, t) 6= 0}. P. Constantin and C. Fefferman [9] first proved that if there exists a positive constant
number C such that √

1− (ξ(x, t) · ξ(x+ h, t))2

|h|
≤ C

holds in regions of high vorticity, then a solution to the Navier–Stokes equations is regular.
H. Beirão da Veiga, L. Berselli, and Y. Zhou [2, 3, 49, 50] improved this result.

Assumption (A1). There exist β ∈ [1/2, 1], a positive constant K, and g ∈ La(0, T ;Lb), where

2

a
+

3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞
]
,

such that √
1− (ξ(x, t) · ξ(x+ h, t))2

|h|β
≤ g(x, t)

for (x, t), (x+ h, t) ∈ ΩT (K) := {(x, t) ∈ R3 × (0, T ) | |ω(x, t)| > K}.
Assumption (A2). There exist β ∈ (0, 1/2] and positive constants K and C such that√

1− (ξ(x, t) · ξ(x+ h, t))2

|h|β
≤ C

for (x, t), (x+ h, t) ∈ ΩT (K). Furthermore,

ω ∈ Lq(0, T ;Lr) for
2

q
+

3

r
≤ 2 + β,

3

β + 2
≤ r < 3

β
.

Theorem 3.1.2 ([2, 3, 49, 50]). Let v be a weak solution of the Navier–Stokes equations with a initial
data v0 ∈ H1

σ, which means the Sobolev spaces of solenoidal vector fields. Suppose that the assumption
(A1) or (A2) on the vorticity is satisfied. Then the solution is regular in (0, T ).

In [4], regularity theorems for various cases are mentioned. D. Chae [6] proved that if the direction
of vorticity to (NS)α in the whole space is restricted by using some Triebel–Lizorkin norm ‖ · ‖Ḟβb,p (see

[6, pp.374]), then there is no singularity.
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Theorem 3.1.3 ([6]). Let α ∈ (0, 2]. Let v be a strong solution of (NS)α in the class Es(T ) with s > 5/2.
For the v, let ω be the vorticity and ξ be the direction vector of vorticity. Suppose there exists β ∈ (0, 1),
p ∈ (3/(3− β),∞], b ∈ (1,∞], r ∈ (1, 3/β) satisfying

β

3
<

1

b
+

1

r
<
α+ β

3
,

1

p
+

1

r
< 1 +

β

3

and a, q ∈ [1,∞] such that

ξ ∈ La(0, T ; Ḟβb,p) and ω ∈ Lq(0, T ;Lr)

with
α

a
+
α

q
+

3

b
+

3

r
≤ α+ β.

Then v can be continued to the strong solution in the class Es(T
′) for some T < T ′.

Here, M. Tanahashi et al. [42] pointed out the importance of fine scale structure in high vorticity
regions on turbulence. Therefore, it is more important to obtain a continuation principle under some
condition in regions of high vorticity.

Our result on continuation of strong solutions now reads;

Theorem 3.1.4 (Main Theorem). Let s > 5/2, T > 0, α ∈ (0, 2]. Let v be a strong solution of (NS)α in
the class Es(T ). For the v, let ω be the vorticity and ξ be the direction vector of vorticity. Let β ∈ (0, 1],
a, b, q ∈ (1,∞], r ∈ (1, 3/β) satisfy

1

b
+

1

r
<
α+ β

3
,

α

a
+
α

q
+

3

b
+

3

r
≤ α+ β.

Suppose that
(B1) ω ∈ Lq(0, T ;Lr),
(B2) there exist g ∈ La(0, T ;Lb) and K > 0 such that√

1− (ξ(x, t) · ξ(x+ h, t))2

|h|β
≤ g(x, t)

for (x, t), (x+ h, t) ∈ ΩT (K) := {(x, t) ∈ R3 × (0, T ) | |ω(x, t)| > K}.
Then v can be continued to the strong solution in the class Es(T

′) for some T < T ′.

Roughly speaking, Theorem 3.1.4 means that the assumption of regularity of the direction vector of
vorticity in regions of high vorticity induces the regularity of velocity to (NS)α as in the case of the usual
Navier–Stokes equations.

Remark 3.1.5. Theorem 3.1.4 is the generalization of Theorem 3.1.2 for (NS)α.

Remark 3.1.6. When β ∈ (0, 1), the Triebel–Lizorkin norm ‖·‖Ḟβ∞,∞ is equivalent to the Hölder–Zygmund

norm ‖ · ‖Cβ (see [44, Section 2.8], [6, Remark 1.4]). Theorem 3.1.4 with K = 0 and a = b =∞ reduces
to Theorem 3.1.3 with a = b = p =∞.

For simplicity, a = b = ∞, β = 5/2 − α. It is known that (NS)2 possess a global weak solution
which belongs L2(0, T ;H1) and a weak-strong uniqueness property was established [38]. Hence, when
α = 2, Theorem 3.1.4 reduces to Theorem 3.1.2. Furthermore, when α = 5/2, it is obvious that the weak
solution is automatically regular as J.L. Lions proved [28].

The proof of Theorem 3.1.4 is not a simple generalization of that of Theorem 3.1.2, since we cannot
absorb the convection term into the viscosity term just by taking L2 inner product of (3.1.4) by ω when
α < 3/2. To overcome this difficulty, we take L2 inner product of (3.1.4) by ω|ω|p−2, where p ≥ 3/α(> 2).

We assume the regularity of direction vorticity only for high vorticity regions. Therefore, we need
to split the convection term based on K (see equation (3.3.4)). A J2, which includes p high vorticity
terms is a difficult term to estimate among the divided the convection terms, since we cannot use the
assumption (B2) for estimating of the term J2. Fortunately, in the usual Navier–Stokes equations case,
we can use the energy estimate on ‖ω‖2 for this term J2 [2, 3, 49, 50]. However, we cannot obtain any
available estimate on ‖ω‖p. To overcome this difficulty, we use the assumption (B1) in order to estimate
J2.
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3.2 Deformation of the convection term

In this section we recall an important result proved by P. Constantin [8]. Let the strain matrix S be
((∂xjvi + ∂xjvi)/2)ij . By using (3.1.5) we have

S =
3

4π
P.V.

∫
R3

1

2
(ŷ ⊗ (ŷ × ω(x+ y, t)) + (ŷ × ω(x+ y, t))⊗ ŷ)

dy

|y|3
(3.2.1)

=: S[ω](x, t).

The integral is in the sense of principal value and ŷ is the direction vector of y. The tensor product ⊗
denotes the matrix

(a⊗ b)ij = aibj (a = (ai)i, b = (bi)i ∈ R3),

and × is cross product. By the formula

(ω · ∇)v · ω = Sω · ω(=: J),

and (3.2.1), the convection term can be written by

(ω(x, t) · ∇)v(x, t) · ω(x, t)

=
3

4π
P.V.

∫
R3

(ξ(x, t) · ŷ)(ξ(x+ y, t)× ξ(x, t) · ŷ)|ω(x+ y, t)| dy
|y|3
|ω(x, t)|2, (3.2.2)

where ξ := ω/|ω|. Based on this formula, we prove Theorem 3.1.4.

3.3 Proof of Theorem 3.1.4

Let p > max{6/α− 2, 3/α, 2}. Taking L2(R3) inner product of (3.1.4) by ω|ω|p−2, we have

1

p
∂t‖ω‖pp +

∫
R3

(−∆)α/2ω · ω|ω|p−2dx =

∫
R3

(ω · ∇)v · ω|ω|p−2dx. (3.3.1)

We write J as the right hand side of (3.3.1). The viscosity term on the left hand side is estimated by∫
R3

|ω|p−2ω · (−∆)α/2ωdx ≥ 2

p

∫
R3

∣∣∣(−∆)α/4|ω|p/2
∣∣∣2 dx

≥ C1

(∫
R3

|ω|3p/(3−α)dx

)(3−α)/3

= C1‖ω‖p3p
3−α

, (3.3.2)

where we used [24, Lemma 3.3] for the estimate of the fractional derivative in the first inequality, and
the Sobolev embedding in the second inequality. We note that C1 depends on α and p.

Let K be a positive constant in Theorem 3.1.4. We split ω into ω = ω(1) + ω(2), where

ω(1)(x, ·) =

{
ω(x, ·), if |ω(x, ·)| ≤ K
0, if |ω(x, ·)| > K

,

ω(2)(x, ·) =

{
0, if |ω(x, ·)| ≤ K
ω(x, ·), if |ω(x, ·)| > K

.

Let us decompose S[ω](x, t) = S(1)(x, t) + S(2)(x, t), where

S(1)(x, t) := S[ω(1)](x, t),

S(2)(x, t) := S[ω(2)](x, t).

Note that, by the Calderón-Zygmund inequality [5],

‖S(i)(t)‖ζ ≤ C2‖ω(i)(t)‖ζ (ζ ∈ (1,∞), i = 1, 2), (3.3.3)
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where C2 depends on ζ. Let us decompose the convection term J into the following three parts.

J1 :=

∫
R3

S(2)ξ · ξ|ω(2)|pdx,

J2 :=

∫
R3

S(1)ξ · ξ|ω(2)|pdx, (3.3.4)

J3 :=
∑
i=1,2

∫
R3

S(i)ξ · ξ|ω(1)|pdx.

The most difficult term is J1. We need the help of the assumption (B2). From (3.2.2) we get

S(2)(x, t)ω(2)(x, t) · ω(2)(x, t)

=
3

4π
P.V.

∫
R3

1

2
(ŷ ⊗ (ŷ × ω(2)(x+ y, t))

+ (ŷ × ω(2)(x+ y, t))⊗ ŷ)ω(2)(x, t) · ω(2)(x, t)
dy

|y|3

=
3

4π
P.V.

∫
R3

(ξ(x, t) · ŷ)(ξ(x+ y, t)× ξ(x, t) · ŷ)

|ω(2)(x+ y, t)| dy
|y|3
|ω(2)(x, t)|2.

Using the assumption (B2) and the Hölder inequality, we get

|J1| =
3

4π

∫
R3

∫
R3

|ξ(x+ y, t)× ξ(x, t)||ω(2)(x+ y, t)| dy
|y|3
|ω(2)(x, t)|pdx

≤ 3

4π

∫
R3

∫
R3

|g(x, t)| |ω(x+ y, t)|
|y|3−β

dy|ω(x, t)|pdx

≤ 3

4π
‖g‖b ‖Iβ(|ω|)‖δ ‖ω‖

p
pk,

where b, δ, and k satisfy

1

b
+

1

δ
+

1

k
= 1, b, δ, k ≥ 1, (3.3.5)

and Iβ(·), 0 < β < 3, are the operator defined by the Riesz potential as follows.

Iβ(|ω|)(x) := γ(β)

∫
R3

|ω(x+ y)|
|y|3−β

dy, γ(β) := 2βπ3/2 Γ(β2 )

Γ( 3−β
2 )

.

Using the Hardy-Littlewood-Sobolev inequality [40, Chapter 5], we have

‖Iβ(|ω|)‖δ ≤ C3‖ω‖r,

where

1

δ
=

1

r
− β

3
, δ ∈ (1,∞), r ∈

(
1,

3

β

)
. (3.3.6)

On the other hand, using the standard Lp-interpolation inequality, we have

‖ω‖ppk ≤ ‖ω‖
3+k(α−3)

αk p
p ‖ω‖

3(k−1)
αk p

3p
3−α

,

where k < 3
3−α . Furthermore, using the Young inequality and the relation (3.3.5) and (3.3.6), we have

|J1| ≤ C4‖g‖
αk

αk−3k+3

b ‖ω‖
αk

αk−3k+3
r ‖ω‖pp +

C1

4
‖ω‖p3p

3−α

= C4‖g‖
α

α+β− 3
b
− 3
r

b ‖ω‖
α

α+β− 3
b
− 3
r

r ‖ω‖pp +
C1

4
‖ω‖p3p

3−α
, (3.3.7)
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where C4 depends on α, β, and r.

We choose µ ∈ (1,min{ 3
3−α ,

r
r−1}) so that r(µ−1)

3−3µ+µα <
1

α+β− 3
b−

3
r

. We get

|J2| ≤ ‖S(1)‖ µ
µ−1
‖ω(2)‖ppµ

≤ C5‖ω(1)‖ µ
µ−1
‖ω(2)‖ppµ

by the Hölder inequality. Moreover, using the Lp-interpolation inequality and the Young inequality, we
obtain

|J2| ≤ C6‖ω(1)‖
αµ

3−3µ+µα
µ
µ−1

‖ω‖pp +
C1

4
‖ω‖p3p

3−α
, (3.3.8)

where C6 depends on α and µ. Using |ω(1)| ≤ K, we obtain

|J2| ≤ C7‖ω(1)‖
αr(µ−1)
3−3µ+µα
r ‖ω‖pp +

C1

4
‖ω‖p3p

3−α
, (3.3.9)

where C7 depends on α, K, µ, and r.
A direct calculation yields

|J3| ≤
∑
i=1,2

K

∫
R3

|S(i)||ω(1)|p−1dx

≤
∑
i=1,2

K‖S(i)‖p‖ω(1)‖p−1
p

≤ C8‖ω‖pp, (3.3.10)

by using the Hölder inequality and (3.3.3) with ζ = p. We note that C8 depends only on K and p.
Combining (3.3.1) with (3.3.2), (3.3.7), (3.3.9), and (3.3.10), we derive

∂t‖ω‖pp +
C1

2
‖ω‖p3p

3−α
≤ C4‖g‖

α

α+β− 3
b
− 3
r

b ‖ω‖
α

α+β− 3
b
− 3
r

r ‖ω‖pp

+ C7‖ω‖
αr(µ−1)
3−3µ+µα
r ‖ω‖pp + C8‖ω‖pp. (3.3.11)

The Gronwall lemma applied to (3.3.11) with the Hölder inequality provides

‖ω(t)‖pp

≤ ‖ω(0)‖ppexp

[∫ T

0

C4‖g(τ)‖
α

α+β− 3
b
− 3
r

b ‖ω(τ)‖
α

α+β− 3
b
− 3
r

r

+ C7‖ω(τ)‖
αr(µ−1)
3−3µ+µα
r + C8dτ

]

≤ ‖ω(0)‖ppexp

[
C4T

C9

{∫ T

0

‖g(τ)‖
k1α

α+β− 3
b
− 3
r

b dτ

} 1
k1

×

{∫ T

0

‖ω(τ)‖
k2α

α+β− 3
b
− 3
r

r dτ

} 1
k2

+ C7T
C10

{∫ T

0

‖ω(τ)‖
k2α

α+β− 3
b
− 3
r

r dτ

} r(µ−1)(α+β− 3
b
− 3
r
)

(3−3µ+µα)k2

+ C8T

]
<∞, (3.3.12)

for all t ∈ [0, T ] where 1/k1 + 1/k2 ≤ 1 for k1, k2 > 1, by the assumptions (B1) and (B2). Note that C9

depends on α, β, b, k1, k2, and r and that C10 depends on α, β, b, k2, µ, and r. Finally, integrating
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(3.3.11) over [0, T ], we obtain

‖ω(T )‖pp +
C1

2

∫ T

0

‖ω(τ)‖p3p
3−α

dτ

≤ ‖ω(0)‖pp + sup
t∈[0,T ]

‖ω(t)‖pp
∫ T

0

C4‖g(τ)‖
α

α+β− 3
b
− 3
r

b ‖ω(τ)‖
α

α+β− 3
b
− 3
r

r

+ C7‖ω(τ)‖
αr(µ−1)
3−3µ+µα
r + C8dτ

<∞,

by (3.3.12) and the assumptions (B1) and (B2). So, we get∫ T

0

‖ω(t)‖p3p
3−α

dt <∞.

Consequently, the vorticity satisfies (3.1.6). Hence, applying Theorem 3.1.1, we find that v can be
continued to the strong solution in the class Es(T

′) for some T < T ′.
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[18] D Ibáñez-Soria, J Garcia-Ojalvo, A Soria-Frisch, and G Ruffini. Detection of generalized synchro-
nization using echo state networks. Chaos, 28(3):033118, 2018.

[19] Masanobu Inubushi and Kazuyuki Yoshimura. Reservoir computing beyond memory-nonlinearity
trade-off. Scientific Reports, 7:10199, 2017.

[20] Takashi Ishihara and Yukio Kaneda. High resolution dns of incompressible homogeneous forced tur-
bulence—time dependence of the statistics—. In Statistical Theories and Computational Approaches
to Turbulence, pages 177–188. Springer, 2003.

[21] Keiichi Ishioka. ispack-0.4.1. http://www.gfd-dennou.org/arch/ispack/,, 1999. GFD Dennou
Club.

[22] Herbert Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
GMD Report, 148:13, 2001.

[23] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304:78–80, 2004.

[24] Ning Ju. The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic
equations. Comm. Math. Phys., 255(1):161–181, 2005.
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