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Preface

This thesis concerns complex projective compactifications of smooth affine 3-folds with
the same homology rings as that of the affine 3-space.

For an affine variety U , the pair (X,D) of a smooth proper variety X and its reduced
effective divisorD is called a compactification of U when the complementX\D is algebraically
isomorphic to U . F. Hirzebruch raised the problem to classify all the compactifications (X,D)
of the affine n-space An with second Betti number B2(X) = 1 in his problem list [Hir54].
Here we call this problem the Hirzebruch problem. This problem is trivial when n = 1
because the projective line P1 is the unique rational smooth proper curve, and when n = 2,
it was solved by R. Remmert and T. Van de Ven [RvdV60]. Also by the contribution
of M. Furushima, N. Nakayama, Th. Peternell, Y. Prokhorov and M. Schneider [Fur86,
Fur90,Fur93a,Fur93b,FN89a,FN89b,Pet89,PS88,Pro91], this problem was solved in
the projective case when n = 3. We note that the ambient space X is a Fano variety in the
projective case since it is rational withB2 = 1. There is also a generalization of the Hirzebruch
problem with B2 ≥ 2, which is studied by several authors [Mor73,MS90,Kis05,Nag18].

In this thesis, we will study three problems which originated from the Hirzebruch problem.
It is worth pointing out that up to the present all of them have been investigated only when
the dimension is at most 2 or when the ambient spaces are Fano. For this reason, we will
discuss three problems when ambient spaces are del Pezzo fibrations, which form a building
block of the minimal model program for 3-folds as well as Fano 3-folds.

The first one concerns characterizations of An. For n ∈ Z>0, an affine homology n-cell
is a smooth affine variety of dimension n with the same homology ring as that of An. By
several authors [Ram71,KR97, tDP90], it is known that there are many affine homology
n-cells not isomorphic to An. One of natural questions about affine homology n-cells is how
to characterize An among them. For this question, Furushima [Fur00] pointed out that
A3 can be characterized as the affine homology 3-cell which is compactified into a smooth
Fano 3-fold with B2 = 1. Chapter 2 of this thesis gives another characterization of A3 via
compactifications into quadric fibrations, i.e., del Pezzo fibrations of degree 8.

The second problem is a construction of standard maps preserving An from compacti-
fications of An to a standard one. In [Mor73], S. Mori introduced three kinds of explicit
birational transformations between Hirzebruch surfaces, and showed that any compactifi-
cations of A2 into Hirzebruch surfaces are constructed from the standard compactification
(P2,P1) of A2 with finite composition of these birational transformations. Chapter 2 of this
thesis deals a construction of standard maps for a certain family of compactifications of A3

into quadric fibrations, where the standard compactification is the pair (P3,P2).
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iv PREFACE

The third problem is the Hirzebruch problem for the affine n-space Gn
a equipped with the

additive group structure. A Gn
a-variety is defined to be a variety with a Gn

a-action whose
dense orbit is isomorphic to Gn

a . The study of smooth projective Gn
a-varieties is started by

B. Hassett and Y. Tschinkel [HT12], and they classified smooth projective Gn
a-varieties with

B2 = 1 when n ≤ 3, on which situation Gn
a-varieties are Fano. After that, smooth Fano Gn

a-
varieties are studied by several authors [HM18,FM19]. Chapter 3 discusses the existences
of G3

a-structures, i.e., G3
a-actions which give structures of G3

a-varieties, on del Pezzo fibrations.

This thesis consists of three chapters.
Chapter 1 is the preliminary chapter; we recall definitions and basic properties of del

Pezzo fibrations and certain elementary links, which we will use throughout this thesis.
Chapter 2 deals with compactifications of affine homology 3-cells into quadric fibrations

such that the boundary divisors contain fibers. In this chapter, we show that all such affine
homology 3-cells are isomorphic to A3, and give explicit birational maps from these compact-
ifications to P3 preserving A3 using the technique of elementary links.

Chapter 3 deals with G3
a-varieties with del Pezzo fibration structures. In this chapter, we

show that del Pezzo fibrations admit G3
a-structures if and only if they are P2-bundles.

Chapter 2 and 3 are based on papers [Nag19b] and [Nag19a] respectively.
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Notation and Convention

This chapter is devoted to fixing the notation, which will be used throughout this thesis.

Conventions. We work over the field of complex numbers C. For a surjective morphism
f : X → Y and divisors D1, D2 on X, the notation D1 ∼Y D2 means that D1−D2 is linearly
equivalent to the pullback of some divisor on Y .

Notation. We use the following notation:

• Q3: the smooth quadric hypersurface in P4. OQ3(1) := OP4(1)|Q3 .
• Q2

0: the quadric cone in P3. OQ2
0
(1) := OP3(1)|Q2

0
.

• Fd: the Hirzebruch surface of degree d.
• fd: a fiber of Fd.
• Σd: the minimal section of Fd.
• PX(E) := ProjOX ⊕m≥0 Sym

m(E): the projectivization of a locally free sheaf on a
variety X. We often write it P(E) for short.
• OP(E)(1): the tautological bundle of a projective bundle P(E).
• ξP(E): the tautological divisor of a projective bundle P(E).
• F(a, b, c) := PP1(OP1(a)⊕OP1(b)⊕OP1(c)).
• Ef : the exceptional divisor of a birational morphism f .
• SingX: the singular locus of a variety X.
• YX̃ : the strict transformation of a closed subscheme Y of a normal variety X in a

birational model X̃ of X.
• χtop(X): the topological Euler number of a topological space X.
• hi,j(X): the dimension of H i(X,∧jΩX) of a smooth projective 3-fold X.
• pa(C): the arithmetic genus of a smooth projective curve C.
• SuppY : the support of a closed subscheme Y of an ambient variety.
• NYX: the normal bundle of a smooth subvariety Y of a smooth variety X.
• Λeff(X): the cone of effective Cartier divisors on a projective variety X.
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CHAPTER 1

Preliminaries

In this chapter, we compile definitions and some facts on del Pezzo fibrations and ele-
mentary links, which will be needed in Chapter 2 and 3.

1.1. Del Pezzo fibrations

In this thesis, we employ the following definition for del Pezzo fibrations.

Definition 1.1.1. A del Pezzo fibration is an extremal contraction of relative Picard
number one from a smooth projective 3-fold to a smooth projective curve. The degree of
a del Pezzo fibration is the anti-canonical volume of a general fiber, which is a del Pezzo
surface. A quadric fibration is a del Pezzo fibration of degree 8.

We will use the following theorem without any mentions.

Theorem 1.1.2 ( [Mor82, Theorem 3.2, 3.5]). Let f : X → C be a del Pezzo fibration
of degree d. Then the following holds.

(1) d ≤ 9.

(2) We have an exact sequence 0 → PicC
f∗−→ PicX

( ·l)−−→ Z → 0, where l is a line in a
general f -fiber, which is a smooth del Pezzo surface.

(3) Each f -fiber is irreducible and reduced.
(4) If d = 9, then f is a P2-bundle.
(5) If d = 8, then X is embedded in a P3-bundle f : F→ C as a member of |2ξF + f ∗L|

for some L ∈ PicC. In particular, any f -fiber is isomorphic to either F0 or Q2
0.

1.2. Definition of elementary links

In this thesis, we define elementary links as follows.

Definition 1.2.1. Let X be a smooth 3-fold and σ : X → C be an extremal contraction
of relative Picard number one. Let r ⊂ X be a smooth curve (or x ∈ X be a point). Denote

by φ : X̃ → X the blow-up of X with center r (resp. with center x). We assume that −KX̃ is

(σ ◦φ)-ample. Then there exists the unique contraction ψ : X̃ → Y of the other KX̃-negative

ray in NE(X̃/C). Let τ : Y → C be the induced morphism.

(1.2.0.1) X̃
φ

||yy
yy
yy ψ

""E
EE

EE
E

X
σ
��

Y
τ
��

C C.
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4 1. PRELIMINARIES

When ψ is birational, we call the diagram (1.2.0.1) the elementary link with center along r
(resp. at x). In this thesis the pushforward of the φ-exceptional divisor by ψ is called the

exceptional divisor of the elementary link. We write it X ← X̃ → Y or X 99K Y for short
when the base variety C is obvious.

We note that this is a particular case of elementary links of type II in [Cor95, Definition
3.4] and that the exceptional divisor of the elementary link is actually a divisor by [Cor95,
Proposition 3.5].

In the following situation, the assumption of Definition 1.2.1 is satisfied, and hence we
can construct an elementary link. For the detail, see §1.3–1.6.

• σ is the blow-up at a point and τ is the blow-up along a curve.
• σ is a P2-bundle and r is a linear subspace of a fiber [Mar73].
• σ is a quadric fibration and r is a section [D’S88].
• σ is a quadric fibration and r is a ruling in a σ-fiber [HT12].

1.3. Elementary links between blow-ups

First we check that the change of the order of the blow-ups at a point and along a curve
does not change the output.

Lemma 1.3.1. Let X be a smooth 3-fold, C ⊂ X a smooth irreducible curve and p ∈ C
a point. Denote by φ1 : X1 → X the blow-up at p and by φ2 : X2 → X the blow-up along C.
Let C1 be the strict transform of C in X1 and fp := φ−1

2 (p). Then the following holds:

(1) BlC1(BlpX) ∼= Blfp(BlC X) over X.
(2) NCX ∼= NC1X1 ⊗OC1(p1), where p1 := Eφ1|C1.

Proof. (1): Let ψ1 : X̃ → X1 be the blow-up along C1 and χ := φ1 ◦ ψ1. Let Ep be the

strict transform of Eφ1 in X̃. Then we have −KX̃ ∼X −2Ep − Eψ1 .

Consider the divisor −Ep − Eψ1 . Each irreducible curve l ⊂ X̃ contracted by χ is either
a fiber of ψ1|Eψ1 : Eψ1 → C1 or a curve in Ep. The former satisfies (l · −Ep − Eψ1) = 1 and
the latter satisfies (l · −Ep −Eψ1) = (l · f1)Ep ≥ 0 regarding Ep as F1. Hence −Ep −Eψ1 is a

χ-nef divisor and R := (−Ep − Eψ1)
⊥ ∩ NE(X̃/X) is generated by f1 in Ep ∼= F1.

Since (−KX̃ · f1) = (−Ep · f1) > 0, there is the contraction morphism ψ2 : X̃ → X ′
2 of the

extremal ray R. Let φ′
2 : X

′
2 → X be the induced morphism. Since the centers of both ψ2

and φ′
2 is a curve, each of them is the blow-up along a smooth curve by [Mor82, Theorem

3.3]. Hence we have φ′
2 = φ2 and ψ2 is the blow up of X2 along fp, which proves (1).

(2): It holds that Ep = Eψ2 and ψ2∗Eψ1 = Eφ2 by (1). Hence we have:

(ψ2|Eψ1 )
∗OP(NCX∨)(1) ∼= OEψ1 (−ψ

∗
2Eφ2)(1.3.0.1)

∼= OEψ1 (−Eψ1)⊗OEψ1 (−Eψ2)

∼= OP(NC1
X∨

1 )(1)⊗OEψ1 (−ψ
∗
1Eφ1).

∼= OP(NC1
X∨

1 )(1)⊗ (ψ1|Eψ1
)∗OC1(−Eφ1).

Pushing forward (1.3.0.1) by χ|Eψ1 , we get NCX ∼= NC1X1 ⊗OC1(p1). □
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1.4. Elementary links between P2-bundles

Elementary links between projective bundles are considered by M.Maruyama [Mar73]
in any dimension. Here we restrict our attention to P2-bundles.

Lemma 1.4.1 ( [Mar73, Theorem 1.3]). Let p : P → C be a P2-bundle and L ⊂ P a

n-dimensional linear subspace of a p-fiber (n ≤ 1). Let φ : P̃ = BlL P → P be the blow-up
along L. Then

(1) There exists a divisorial contraction ψ : P̃ → P ′ over C such that the induced mor-
phism p′ : P ′ → C is a P2-bundle and ψ is the blow-up along a (1− n)-dimensional
linear subspace L′ of a p′-fiber.

(2) The exceptional divisor Eψ is the strict transform of the p-fiber containing L.
(3) For an associated vector bundle E to p : P → C, we can take a vector bundle E ′

associated to p′ : P ′ → C such that deg E ′ = deg E − (n+ 1).

(1.4.0.1) BlL P = P̃ = BlL′ P ′
φ

}}zz
zz
zz ψ

!!D
DD

DD
D

P
p
��

P ′

p′
��

C C.

Corollary 1.4.2. We follow the notation of Lemma 1.4.1. Suppose that C ∼= P1. Let
F be a p-fiber and D a sub P1-bundle of P . Take a ∈ Z such that D ∼ ξP + aF . Then the
following hold:

(1.4.0.2)

{
DP ′ ∼ ξP ′ + (a+ 1)F and L′ ⊂ DP ′ if L ̸⊂ D,

DP ′ ∼ ξP ′ + aF and L′ ̸⊂ DP ′ if L ⊂ D.

Proof. By the canonical bundle formula, we have:

−KP ∼ 3ξP − (deg E − 2)F,(1.4.0.3)

−KP ′ ∼ 3ξP ′ − (deg E − (3 + n))F.(1.4.0.4)

Also it holds that

(1.4.0.5) −KP̃ ∼ φ∗(−KP )− (2− n)Eφ ∼ ψ∗(−KP ′)− (n+ 1)Eψ.

Combining (1.4.0.3)–(1.4.0.5) and Eφ ∼ F −Eψ, we have 3φ∗ξP ∼ 3ψ∗ξP ′ +3(F −Eψ). Since
Pic P̃ is torsion-free, it holds that:

(1.4.0.6) φ∗ξP ∼ ψ∗ξP ′ + F − Eψ.
On the other hand, we have:

(1.4.0.7) DP̃ ∼

{
φ∗ξP + aF if L ̸⊂ D,

φ∗ξP + aF − Eφ if L ⊂ D.

Combining (1.4.0.6), (1.4.0.7) and Eφ ∼ F − Eψ, we have:

(1.4.0.8) DP̃ ∼

{
ψ∗ξP ′ + (a+ 1)F − Eψ if L ̸⊂ D,

ψ∗ξP ′ + aF if L ⊂ D.
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By pushing forward (1.4.0.8) by ψ, we have the assertion. □

1.5. Elementary links from quadric fibrations to P2-bundles

H. D’Souza [D’S88] showed the existence of elementary links from quadric fibrations to
P2-bundles. The precise statement is as follows.

Lemma 1.5.1 ( [D’S88, (2.7.3)], [Fuk18, Proposition 3.1]). Let q : Q → C be a quadric

fibration and s ⊂ Q a q-section. Let φ : Q̃ = BlsQ → Q be the blow-up of Q along s.

Then there exists a divisorial contraction ψ : Q̃→ P over C such that the induced morphism
p : P → C is a P2-bundle and ψ is the blow-up along a smooth connected p-bisection B ⊂ P .

(1.5.0.1) BlsQ = Q̃ = BlB P
φ

}}{{
{{
{{ ψ

!!C
CC

CC
C

Q
q
��

P
p
��

C C.

Moreover, let HQ be a q-ample divisor with 2HQ ∼C −KQ and HP a p-ample divisor such
that 3HP ∼C −KP . Then:

(1) It holds that Eψ ∼C φ∗HQ − 2Eφ and Eφ ∼C ψ∗HP − Eψ.
(2) The branched locus of p|B coincides with the closed set

(1.5.0.2) Σ := {t ∈ C | q−1(t) is singular }.
(3) It holds that (−KQ)

3 = 40− (8pa(B) + 32pa(C)).

Lemma 1.5.2. We follow the notation of Lemma 1.5.1. Let E := ψ∗(Eφ). Suppose that
HQ is a prime divisor containing s and assume that HQ is normal. Then (HQ)Q̃ ∼C ψ∗HP .

Moreover, when HP = (HQ)P , the following holds for t ∈ C.
(1) If t ̸∈ Σ, then (q|HQ)−1(t) is

smooth ⇐⇒ p−1(t) ∩B ∩HP = ∅.
reducible ⇐⇒ p−1(t) ∩B ∩HP ̸= ∅.

(2) If t ∈ Σ, then (q|HQ)−1(t) is

smooth ⇐⇒ p−1(t) ∩B ∩HP = ∅.
reducible ⇐⇒ p−1(t) ∩B ∩HP ̸= ∅ and E|p−1(t) ̸= HP |p−1(t).

non-reduced ⇐⇒ E|p−1(t) = HP |p−1(t).

Proof. The first assertion follows from Lemma 1.5.1 (1). we take the following diagram
as the base change of (1.5.0.1) at t ∈ C:

(1.5.0.3) Blst Qt = Q̃t = BlBt Pt
φt

}}{{
{{
{ ψt

!!C
CC

CC

Qt Pt.

Write Gt := (φ∗Eψ)|Qt , Ht := HQ|Qt , st := s|Qt and Bt := B|Pt .
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(1): In this case we have Qt
∼= F0. By lemma 1.5.1 (1), it holds that Ht ∼ Gt ∼ Σ0 + f0

and Gt is the union of two rulings containing st. Since Ht is smooth if and only if Ht is
irreducible, we only have to show that Ht is smooth ⇒ (Ht)Pt ∩Bt = ∅ ⇒ Ht is irreducible.

Let Gt = G1+G2 be the irreducible decomposition. Note that (Ht ·Gi)Qt = 1 for i = 1, 2.
Suppose that Ht is smooth. Then Ht ∩ Gi = st scheme-theoretically for i = 1, 2. Hence we
have (Ht)Q̃t ∩ Eψt = ∅ and (Ht)Pt ∩ Bt = ∅. On the other hand, if (Ht)Pt ∩ Bt = ∅, then
(Ht)Q̃t

∼= (Ht)Pt is irreducible and so is Ht, and (1) is proved.

(2): In this case, ψt is a weighted blow-up and hence Qt
∼= Q2

0. Since (s ·Qt)Q = 1, the point
st is not the vertex of Qt

∼= Q2
0. By lemma 1.5.1 (1), it holds that Ht ∼ Gt ∼ OQ2

0
(1), and

we have Gt = 2l′, where l′ is the unique ruling of Q2
0 containing st.

Suppose that Ht is smooth. Since Ht∩l′ = st scheme-theoretically, we have (Ht)Q̃t∩Eψt =
∅ and hence (Ht)Pt ∩Bt = ∅.

Suppose that Ht is reducible. Then Ht is the union of two distinct ruling of Qt
∼= Q2

0.
Since st ∈ Ht, there exists a ruling l ̸= l′ of Qt such that Ht = l + l′. Since Ht is smooth at
st, it holds that (Ht)Q̃t = lQ̃t +Eψt . Hence (Ht)Pt = lPt contains SuppBt but (HP )|Pt ̸= E|Pt

Suppose that Ht is non-reduced. Then SuppHt is a ruling of Qt
∼= Q2

0. Since st ∈ Ht, we
have Ht = Gt and hence HP |Pt = E|Pt .

Combining these results, we complete the proof. □

1.6. Elementary links between quadric fibrations

B. Hassett and Y. Tschinkel [HT12] considered elementary links between quadric fibra-
tions with center a ruling in a smooth fiber. We can prove that a similar elementary link
appears in the case of a singular fiber as follows.

Lemma 1.6.1. Let q : Q → C be a quadric fibration and l a ruling of a q-fiber. Let

φ : Q̃ = BllQ → Q be the blow-up of Q along l. Then there exists a divisorial contraction

ψ : Q̃ → Q′ over C such that the induced morphism q′ : Q → C is a quadric fibration and ψ
is the blow-up along a ruling l′ of a q′-fiber.

(1.6.0.1) BllQ = Q̃ = Bll′ Q
′

φ

}}{{
{{
{{ ψ

!!C
CC

CC
C

Q
q
��

Q′

q′
��

C C.

Proof. Let F ⊂ Q be the q-fiber containing l. When F is smooth, then the assertion is
already shown by [HT12, §5]. Hence we may assume that F ∼= Q2

0.
First we calculate NlQ. Let v ∈ F be the vertex of Q2

0 and h : Q1 → Q the blow-up at v.
Let F1 (resp. l1) be the strict transform of F (resp. l) in Q1. Then l1 is a fiber of F1

∼= F2

and F1 ∼ h∗F − 2Eh. Since Nl1F1
∼= Ol1 and (NF1Q1)|l1 ∼= Ol1((F1 · l1)) ∼= Ol1(−2), we have

Nl1Q1
∼= Ol1 ⊕ Ol1(−2) by the normal bundle sequence. Hence NlQ = Ol(1) ⊕ Ol(−1) by

Lemma 1.3.1 (2)
Therefore we have Eφ ∼= F2 and Eφ|Eφ ∼ −(Σ2 + f2). Since F1

∼= F2, it follows that
FQ̃
∼= F2 from Lemma 1.3.1 (1). Since (Eφ+FQ̃)|Eφ = φ∗F |Eφ ∼ 0, we have FQ̃|Eφ ∼ Σ2+f2.
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Hence FQ̃|Eφ is the sum of C1 ∼ Σ2 and C2 ∼ f2. On the other hand, in FQ̃, we have C1 ∼ f2
and C2 ∼ Σ2 because FQ̃ is the minimal resolution of F . By symmetry of Eφ and FQ̃, there
is the blow-down of FQ̃ as desired. □

The following is the key to proving Theorem 2.1.6 (1).

Lemma 1.6.2. Let q : Q → C be a quadric fibration and Dh ⊂ Q a prime divisor such
that 2Dh ∼C −KQ. Suppose that Dh is non-normal. Let R be the 1-dimensional component
of SingDh. Then:

(1) R is a q-section.

(2) If we take the elementary link Q
φ←− P̃

ψ−→ P with center along R, then we have
Dh = (Eψ)Q. In particular, we have R = SingDh.

Proof. (1): Let r be an irreducible component of R. To seek a contradiction, assume that
q(r) is a point. Take a q-fiber F containing r. Since Dh is singular along r, the restriction
Dh|F is non-reduced along r. If F ∼= F0, then Dh|F is reduced since Dh|F ∼ Σ0 + f0, a
contradiction. Therefore F ∼= Q2

0 and there is a ruling r ⊂ F such that Dh|F = 2r.

Let χ : Q̃→ Q be the blow-up along r. In the proof of Lemma 1.6.1, we have shown that
FQ̃
∼= F2 and FQ̃|FQ̃ ∼ −Eχ|FQ̃ ∼ −(Σ2 + f2). Hence we have:

((Dh)
2
Q̃
· FQ̃) = ((χ∗Dh − 2Eχ)

2 · (χ∗F − Eχ))(1.6.0.2)

= (D2
h · F )Q − 4(Dh · r)Q − 4(F · r)Q − 4E3

χ = −2,
((Dh)Q̃ · F

2
Q̃
) = ((χ∗Dh − 2Eχ) · (χ∗F − Eχ)2)(1.6.0.3)

= (Dh · F 2)Q − (Dh · r)Q − 4(F · r)Q − 2E3
χ = −1.

Take a, b ∈ Z such that (Dh)Q̃|FQ̃ ∼ aΣ2 + bf2. By (1.6.0.2) and (1.6.0.3), we have −2a2 +
2ab = −2 and a− b = −1. Hence (a, b) = (−1, 0), which is absurd.

Therefore r dominates C. Let F be a smooth q-fiber. Then we have ∅ ̸= Supp(R ∩ F ) ⊂
Sing(Dh|F ). Since Dh|F ∼ Σ0 + f0, it follows that Supp(R ∩ F ) = Sing(Dh|F ) is a point and
hence R is a q-section.
(2): By Lemma 1.5.1 (1), (Eψ)Q is singular along R. For each smooth q-fiber F , there is
the unique member of |Σ0 + f0| singular at Supp(R ∩ F ). Hence Dh|F = (Eψ)Q|F , and the
first assertion follows. Since φ is the blow-up along R and Eψ is smooth, the last assertion
follows. □



CHAPTER 2

Compactifications of affine homology 3-cells into quadric fibrations

2.1. Introduction to Chapter 2

In this chapter we are interested in compactifications of affine homology n-cells into
smooth projective n-fold. We recall that a compactification of an affine variety U is a pair
(X,D) of smooth proper variety X and its reduced effective divisor D such that the com-
plement X \D is algebraically isomorphic to U . Also by an affine homology n-cell we mean
a smooth affine n-fold U such that Hi(U,Z) = 0 for i > 0. The main problem is the follow-
ing, which is based on the characterization of A3 among all the affine homology 3-cells via
compactifications into Fano 3-folds by Furushima [Fur00].

Problem 2.1.1. Let f : X → C be an extremal contraction of relative Picard number one
from a smooth projective n-fold X to a smooth projective curve C. Let U ⊂ X be an open
subscheme.

(1) If U is an affine homology n-cell, then is it isomorphic to An?
(2) If U is isomorphic to An, then can we construct an explicit birational map from X

to a compactification of An with B2 = 1 preserving U ∼= An?

In this problem, we set not only Pn but also all compactifications of An with B2 = 1 as
the target of birational maps preserving An. It is because there is a copy of A3 in the quintic
del Pezzo 3-fold which we can regard naturally as an affine modification (for the detail,
see [KZ99]) of an another copy of A3 in P3 via the birational map constructed in [Fur00].

We note that even when n = 2, Problem 2.1.1 (1) have a negative answer in general. In
fact, T. tom Dieck and T. Petrie [tDP90] showed that there are infinitely many contractible
affine surfaces of logarithmic Kodaira dimension one in the blow-up of P2 at a point. However,
if we assume the following condition, the problem have an affirmative answer in the case where
n = 2.

Definition 2.1.1. Let f : X → C and U be as in Problem 2.1.1. Let D := X \U be the
boundary divisor. We say that (X,D, f) is a compactification of U compatible with f if D
contains a f -fiber. When Df ⊂ D is a f -fiber and Dh ⊂ D is the other components, we also
call (X,Dh, Df ) a compactification of U compatible with f .

By [vdV62, Proposition 2.1] and the Poincare duality, Dh in the setting of Definition
2.1.1 is a prime divisor. Suppose that (X,Dh, Df ) is a compactification of homology 2-cell
U compatible with P1-bundle. By [Fuj82, Corollary 1.20], it holds that Dh is a f -section.
Hence we have U ∼= A2 since f |U is an A1-bundle over A1.

Problem 2.1.1 (2) was solved when n = 2 by Mori [Mor73]. He introduced three kinds
of explicit birational transformations preserving A2 between Hirzebruch surfaces, which are
called J-, R-, and L-transform. He solved the problem as in the following theorem:

9
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Theorem 2.1.2. Let f : X → P1 be a P1-bundle and D a reduced effective divisor on X
such that X \D ∼= A2.

(1) There exists a compactification (X1, D1, f1) of A2 compatible with a P1-bundle f1 : X1 →
P1 and a birational map g1 : X 99K X1 preserving A2 which is a finite composition
of J-, R-, and L-transforms.

(2) Let X2 := F1 be a Hirzebruch surface of degree 1 with the P1-bundle structure f2.
Let D2 be the union of an f2-fiber and the minimal section. Then there exists a bira-
tional map g2 : X1 99K X2 preserving A2 which is a finite composition of elementary
transformations of P1-bundles.

Summarizing, we have the following diagram of birational maps preserving X \D ∼= A2:

(2.1.0.1) (X,D)
g1

//

f
��

(X1, D1)
g2

//

f1
��

(X2, D2)
g3

//

f2
��

(P2,P1)

P1 P1 P1,

where g3 : X2 → P2 is the blow-down of the minimal section.

In this chapter we consider Problem 2.1.1 when n = 3 and (X,Dh, Df ) is compatible with
f . In this case, f is a del Pezzo fibration. When f is a P2-bundle, then the problem is easy
by the same reason as when n = 2 (see §2.6). However, if the degree of f is smaller than 9,
then the problem is not obvious since a general (f |U)-fiber often differs from A2.

The main purpose of this chapter is to give a solution to Problem 2.1.1 for compactifica-
tions compatible with a quadric fibration. Our main result consists of three theorems. One
is the following theorem, which is the solution to Problem 2.1.1 (1).

Theorem 2.1.3. Let q : Q → C be a quadric fibration, Dh a reduced effective divisor on
Q, and Df a q-fiber. Then the following are equivalent.

(1) The complement Q \ (Dh ∪Df ) is an affine homology 3-cell.
(2) It holds that C ∼= P1 and Q \ (Dh ∪Df ) ∼= A3.

The others are Theorems 2.1.6 and 2.1.7, which give a solution to Problem 2.1.1 (2). Be-
fore stating the theorems, we introduce some examples of compactifications of A3 compatible
with del Pezzo fibrations and explicit birational maps preserving A3 from them to P3.

Example 2.1.4. Let g3 : P
′ → P3 be the blow-up along a line and Dh,2 the exceptional

divisor. Then the linear system |g∗3OP3(1)−Dh,2| defines a P2-bundle structure p′ : P ′ → P1.
Let Df,2 be a p′-fiber. Then (P ′, Dh,2, Df,2) is a compactification of A3 compatible with p′

because P ′ \ (Dh,2 ∪ Df,2) ∼= P3 \ g3∗Df,2
∼= A3. Hence g3 : P

′ → P3 is a birational map
preserving A3.

Example 2.1.5. Let h2 : Q
′ → Q3 be the blow-up of the smooth quadric Q3 ⊂ P4 along a

smooth conic and D′
h the exceptional divisor. Then the linear system |h∗2OQ3(1)−D′

h| defines
a quadric fibration structure q′ : Q′ → P1. Let D′

f be a singular q′-fiber, which is isomorphic

to the quadric cone Q2
0 ⊂ P3. Then h2 induces an isomorphism Q′ \ (D′

h∪D′
f )
∼= Q3 \Q2

0. Let

h3 : Q3 99K P3 be the projection from the vertex of Q2
0. Then, by the discussion in [Fur00,

pp.117–119], h3 induces an isomorphism Q3 \ Q2
0
∼= P3 \ P2 ∼= A3. Hence (Q′, D′

h, D
′
f ) is
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a compactification of A3 compatible with q′ and h3 ◦ h2 : Q′ 99K P3 is a birational map
preserving A3.

With the above examples, the other main theorems are stated as follows.

Theorem 2.1.6. Let (Q,Dh, Df ) be a compactification of A3 compatible with a quadric
fibration q : Q→ P1. Suppose that Dh is non-normal.

(1) Let g1 : Q 99K P be the elementary link with center along the singular locus of Dh,
which is a q-section. Let Df,1 be the strict transform of Df in P and Dh,1 the
exceptional divisor of the elementary link. Then P has a P2-bundle structure p over
P1 and (P,Dh,1, Df,1) is a compactification of A3 compatible with p.

(2) We follow the notation of Example 2.1.4. Regard p(Df,1) and p′(Df,2) as ∞ ∈ P1.
Then there is the composition g2 : P 99K P ′ of elementary links with center along
linear subspaces in the fibers at ∞ such that Dh,2 is the strict transform of Dh,1 in
P ′.

Summarizing, we have the following diagram of rational maps preserving Q\(Dh∪Df ) ∼= A3:

(2.1.0.2) (Q,Dh, Df )
g1

//

q
��

(P,Dh,1, Df,1)
g2

//

p
��

(P ′, Dh,2, Df,2)
g3

//

p′
��

(P3, H)

P1 P1 P1,

where H := g3∗Df,2.

Theorem 2.1.7. Let (Q,Dh, Df ) be a compactification of A3 compatible with a quadric
fibration q : Q → P1. Suppose that Dh is normal. We follow the notation of Example 2.1.5.
Regard q(Df ) and q′(D′

f ) as ∞ ∈ P1. Then there is the composition h1 : Q 99K Q′ of ele-
mentary links with center along rulings in the fibers at ∞ such that D′

h is the strict trans-
form of Dh in Q′. In particular, we have the following diagram of rational maps preserving
Q \ (Dh ∪Df ) ∼= A3:

(2.1.0.3) (Q,Dh, Df )
h1

//

q
��

(Q′, D′
h, D

′
f )

h2
//

q′
��

(Q3,Q2
0)

h3
// (P3, H)

P1 P1,

where we regard h2∗D
′
f as Q2

0 and H := P3 \ h3(Q3 \Q2
0).

In Example 2.5.4, we construct a compactification of an affine homology 3-cell into a
quadric fibration, which gives a negative answer to Problem 2.1.1 (1) in the case where n = 3
without the assumption on the compatibility. Problem 2.1.1 (2) for general compactifications
into del Pezzo fibrations is at present far from being solved.

2.2. Structure of Chapter 2

This article is structured as follows.
In §2.3, we determine the Hodge diamonds of del Pezzo fibrations containing affine ho-

mology 3-cells. We also show that the base curve must be P1.
In §2.4, we give precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by

using elementary links from quadric fibrations to P2-bundles.
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In §2.5, we construct several examples of compactifications of A3 compatible with quadric
fibrations as applications of Theorem 2.4.2. We note that these examples are erroneously
omitted from [Kis05, Table 1] or [MS90, Table 1]. We also construct an example of compact-
ifications of affine homology 3-cells. This gives a negative answer to Problem 2.1.1 (1) in the
case where n = 3 and the compactification is not compatible with the extremal contraction.

In §2.6, we give a solution to Problem 2.1.1 for compactifications compatible with P2-
bundles. Theorem 2.1.6 follows as a corollary.

In the rest of this chapter, we prove Theorem 2.1.7 as follows. Let (Q,Dh, Df ) be a
compactification of A3 compatible with a quadric fibration such that Dh is normal.

First, in §2.7.1, we determine the singularities of Dh and Df |Dh . We also assign a non-
negative integer to them, which we call the type of (Q,Dh, Df ). By definition, (Q,Dh, Df )
is of type 0 if and only if Dh is a Hirzebruch surface.

Next, in §2.7.2, we suppose that (Q,Dh, Df ) is of type m > 0. We construct a birational
map preserving A3 from (Q,Dh, Df ) to another compactification of type (m− 1) via elemen-
tary links between quadric fibrations. Composing such maps, we get a birational map from
(Q,Dh, Df ) to a compactification of A3 of type 0. Hence we reduce to proving Theorem 2.1.7
when (Q,Dh, Df ) is of type 0, i.e., when Dh is a Hirzebruch surface.

Finally, in §2.7.3, we suppose that Dh is a Hirzebruch surface of degree d ∈ Z≥0. When
d > 0, we give a birational map preserving A3 from (Q,Dh, Df ) to another compactification
(Q′, D′

h, D
′
f ) of A3 of type 0 such that D′

h is a Hirzebruch surface of degree (d − 1). When
d = 0, we show that (Q,Dh, Df ) is actually the same as (Q′, D′

h, D
′
f ) as in Example 2.1.5.

We have thus proved Theorem 2.1.7.

2.3. Topological invariants of the ambient space

In this section, we determine the Hodge diamonds of del Pezzo fibrations containing affine
homology 3-cells, and that of the base curves.

Lemma 2.3.1. Let f : X → C be a del Pezzo fibration and D a reduced effective divisor
on X such that X \ D is an affine homology 3-cell. Then the Hodge diamond of X is as
follows:

1
0 0

0 2 0

0 h1,2(X) h1,2(X) 0

0 2 0
0 0

1

Moreover, It holds that C ∼= P1.

Proof. By the Hodge symmetry, we only have to compute hi,0(X) for 1 ≤ i ≤ 3 and
h1,1(X). Since −KX is f -ample, we have the following by the relative Kawamata-Viehweg
vanishing theorem:

(2.3.0.1) hi(X,OX) = hi(C,OC) for i ≥ 0.

In particular, we have h2,0(X) = h3,0(X) = 0. Since the Picard number of X is two by
assumption, we have h1,1(X) = h1,1(X) + 2h2,0(X) = 2.
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On the other hand, by [vdV62, Proposition 2.1], we have H5(X,Z) ∼= H5(D,Z) = 0.
Hence H1(X,Z) = 0 by the Poincare duality and h1,0(X) = 0 by the Hodge decomposition,
which proves the first assertion. The second assertion follows from (2.3.0.1). □

2.4. Proof of Theorem 2.1.3.

This section is devoted to the proof of Theorem 2.1.3. First we determine the linear
equivalence class of the irreducible components of the boundary divisor. Then we give the
precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by using Lemma 1.5.1,
i.e. elementary links from quadric fibrations to P2-bundles.

Lemma 2.4.1. Let q : Q→ C be a quadric fibration, Dh a reduced effective divisor on Q,
and Df a q-fiber. If U := Q \ (Dh ∪ Df ) is an affine homology 3-cell, then Dh is a prime
divisor such that 2Dh ∼C −KQ.

Proof. By Lemma 2.3.1, it follows that Pic0(Q) = 0. By [Fuj82, Corollary 1.20], we
have PicU = 0 and the group of invertible functions on U coincides with non-zero constants
C∗. Hence Dh is a prime divisor such that PicQ = ZDf ⊕ ZDh. By Theorem 1.1.2 (5)
and the Grothendieck-Lefschetz theorem, there exists a divisor HQ on Q such that PicQ =
ZDf ⊕ ZHQ and 2HQ ∼C −KQ. Hence Dh ∼C HQ, which proves the lemma. □

The following is the precise statement of Theorem 2.1.3.

Theorem 2.4.2. Let q : Q → C be a quadric fibration, Dh a reduced effective divisor on
Q, and Df a q-fiber.

(A) Suppose that Dh is non-normal. Then the following are equivalent.
(1) The complement Q \ (Dh ∪Df ) is an affine homology 3-cell.
(2) C ∼= P1 and Dh is a prime divisor such that 2Dh ∼C −KQ.
(3) It holds that Q \ (Dh ∪Df ) ∼= A3.

(B) Suppose that Dh is normal. Then the following are equivalent.
(1) The complement Q \ (Dh ∪Df ) is an affine homology 3-cell.
(2) C ∼= P1 and Dh is a prime divisor such that 2Dh ∼C −KQ. Also we have

Df
∼= Q2

0 and h
1,2(Q) = 0. Moreover, each (q|Dh)-fiber is smooth except possibly

Df |Dh.
(3) It holds that Q \ (Dh ∪Df ) ∼= A3.

Proof. (A): Since (3)⇒ (1) is trivial and (1)⇒ (2) follows from Lemma 2.3.1 and Lemma
2.4.1, we only have to show (2)⇒ (3).

Suppose that (2) holds. Let s := SingDh, which is a q-section by Lemma 1.6.2. Construct

φ, ψ, p, Q̃ and P as in Lemma 1.5.1. Then we have (Eψ)Q = Dh by Lemma 1.6.2 (2). Therefore
we have:

(2.4.0.1) Q \ (Dh ∪Df ) ∼= Q̃ \ ((Dh)Q̃ ∪ (Df )Q̃ ∪ Eφ) ∼= P \ ((Df )P ∪ (Eφ)P ).

Since (Eφ)P is a sub P1-bundle by Lemma 1.5.1 (1) and (Df )P is a p-fiber, we have Q\ (Dh∪
Df ) ∼= A3 by [Kis05, Lemma 5.15].
(B): Since (3)⇒ (1) is trivial, we only have to show (1)⇒ (2)⇒ (3). Let U := Q\(Dh∪Df ).
We note that (1) implies C ∼= P1 by Lemma 2.3.1. Hence we may assume that C ∼= P1

throughout the proof. Let ∞ := q(Df ) and regard C \ {∞} as A1.
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(1) ⇒ (2): Suppose that (1) holds. Then the second assertion follows from Lemma 2.3.1.
Since U is an affine homology 3-cell, we have:

χtop(Q) = χtop(U) + χtop(Dh \ (Df |Dh)) + χtop(Df )(2.4.0.2)

= 1 + χtop(Dh \ (Df |Dh)) + χtop(Df ).

Let σ := {t ∈ A1 | (q|Dh)∗(t) is reducible}. For t ∈ A1, the divisor (q|Dh)∗(t) is a member
of either |Σ0 + f0| in F0 or |OQ2

0
(1)| in Q2

0. In particular, we have:

t ̸∈ σ ⇐⇒ Supp (q|Dh)∗(t) ∼= P1

⇐⇒ χtop((q|Dh)∗(t)) = 2.

t ∈ σ ⇐⇒ q∗(t) ∼= F0 and (q|Dh)∗(t) is reducible
⇐⇒ χtop((q|Dh)∗(t)) = 3.

Hence we have:

(2.4.0.3) χtop(Dh \ (Df |Dh)) = 2χtop(A1 \ σ) + 3χtop(σ) = 2 + ♯σ.

Also by Lemma 2.3.1, we have:

(2.4.0.4) χtop(Q) = 6− 2h1,2(Q).

Combining (2.4.0.2)–(2.4.0.4), we have:

(2.4.0.5) 6− 2h1,2(Q) ≥ 3 + ♯σ + χtop(Df ).

we note that χtop(Df ) = 3 when Df
∼= Q2

0 and χtop(Df ) = 4 when Df
∼= F0. Hence (2.4.0.5)

implies that h1,2(Q) = 0, σ = ∅ and Df
∼= Q2

0. In particular, we get the third and fourth
assertion of (2).

It remains to prove the last assertion. Take a q-section s ⊂ Dh and construct φ, ψ, p, Q̃, P
and B and as in Lemma 1.5.1. By (1.5.0.1), we have:

(2.4.0.6) χtop(Q) = 6− 2pa(B).

Combining (2.4.0.4) and (2.4.0.6), we have pa(B) = h1,2(Q) = 0. In particular, the branch
locus of p|B consists of two points. By Lemma 1.5.1 (2), there is exactly two singular q-
fibers. Since q∗(∞) = Df

∼= Q2
0, we may assume that q∗(0) is the other singular fiber. By

Lemma 1.5.2 and the fact that σ = ∅, each (q|Dh)-fiber is smooth except possibly Df |Dh and
(q|Dh)∗(0). Hence we only have to show that (q|Dh)∗(0) is smooth.

Conversely, suppose that (q|Dh)∗(0) is not smooth. Let E := ψ∗(Eφ) and U
′ := P\((Dh)P∪

(Df )P ) ∼= A3. Since U ∼= Q̃\((Dh)Q̃∪(Df )Q̃∪Eφ), we can regard U as the affine modification

of U ′ with the locus (B ∩U ′ ⊂ E ∩U ′) (see [KZ99] for the definition). By [KZ99, Theorem
3.1], the morphism between homologies τ : H1(B ∩ U ′,Z) → H1(E ∩ U ′,Z) induced by the
inclusion B ∩ U ′ ↪→ E ∩ U ′ is an isomorphism of Z-modules.

On the other hand, (q|Dh)∗(0) is non-reduced because σ = ∅. Lemma 1.5.2 now shows that
E∩U ′ ∼= A1×C∗ and B∩U ′ ∼= C∗, which is an unramified 2-section of the second projection
of E ∩ U ′. Hence H1(B ∩ U ′,Z) ∼= H1(E ∩ U ′,Z) ∼= Z, but τ = 2× idZ, a contradiction.
(2) ⇒ (3): Suppose that (2) holds. Let E := ψ∗(Eφ) and U

′ := P \ ((Dh)P ∪ (Df )P ) ∼= A3.
Then we can regard U as the affine modification of U ′ with the locus (B ∩U ′ ⊂ E ∩U ′). By
Lemma 1.5.2, we have E ∩ U ′ ∼= A2 and B ∩ U ′ ∼= A1. By the Abhyanker-Mor theorem over
Noetherian rings containing Q [BD93, Theorem B], there is a coordinate {x, y, z} of U ′ = A3
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such that E ∩ U ′ = {x = 0} and B ∩ U ′ = {x = y = 0}. Hence U is isomorphic to the affine
modification of A3

[x,y,z] with the locus ({x = y = 0} ⊂ {x = 0}), which is isomorphic to A3

as desired. □

2.5. Examples

This section provides several examples of compactifications of affine homology 3-cells com-
patible with quadric fibrations. For the construction, we often use Theorem 2.4.2. Through-
out this section, (Q,Dh, Df ) stands for a compactification of A3 compatible with a quadric
fibration q : Q→ P1. We note that KQ +Dh +Df is not nef since (KQ +Dh +Df · l) = −1
for each ruling l of a q-fiber.

First suppose that Q is a Fano 3-fold and Dh +Df is ample. Let us mention that then
in [Kis05, Lemma 5.9], Dh is erroneously claimed to be normal. In Example 2.5.1, we
construct examples with non-normal Dh.

Example 2.5.1. Let q : Q→ P1 be a Fano quadric fibration, i.e. either No. 18, No. 25 or
No. 29 in [MM82, Table 2]. Let Df be a q-fiber. By [Man66, Theorem 4.2], we can take a
q-section s. By Lemma 1.5.1 (1), there is a prime divisor Dh on Q such that 2Dh ∼P1 −KQ

and SingDh = s. Theorem 2.4.2 (A) now shows that (Q,Dh, Df ) is a compactification of A3

compatible with q.
Assume that Dh + Df is not ample. Then by [Kis05, Lemma 2.2] there is a birational

extremal contraction φ of Q such that Eφ = Dh or Df . Since Df is a q-fiber, we have
Eφ = Dh, which is impossible since Dh is non-normal and Eφ is normal by [Mor82, Theorem
3.3]. Hence Dh +Df is ample.

Secondly, suppose that Dh is normal and Q is No. 29 in [MM82, Table 2], i.e. the blow-up
of Q3 along a smooth conic. Let us mention that then in [Kis05, Lemma 5.13], Dh + Df

erroneously claimed to be not ample. In Example 2.5.2, we construct an example with
Dh +Df ample.

Example 2.5.2. Take H,S and C in Q3 = {X0X1 + X2
2 + X3X4 = 0} ⊂ P4

[X0:···:X4]
as

follows:

H := {X0X1 +X2
2 +X3X4 = X0 = 0},(2.5.0.1)

S := {X0X1 +X2
2 +X3X4 = X1X3 +X2

0 = 0},(2.5.0.2)

C := {X0X1 +X2
2 +X3X4 = X0 = X1 = 0}.(2.5.0.3)

Let P := {X0Y1 = X1Y0} ⊂ P4
[X0:···:X4]

× P1
[Y0:Y1]

, and Φ: P → P4 be the blow-up along

{X0 = X1 = 0}. Set Q, Df and Dh as the strict transformations of Q3, H and S in P
respectively. Then Φ|Q : Q → Q3 is the blow-up along C, and the second projection of
P4×P1 induces a quadric fibration q : Q→ P1

[Y0:Y1]
. The defining equations of Q, Df and Dh

in P are as follows:

Q = {X0X1 +X2
2 +X3X4 = 0},(2.5.0.4)

Df = {X0X1 +X2
2 +X3X4 = Y0 = 0},(2.5.0.5)

Dh = {X0X1 +X2
2 +X3X4 = Y1X3 + Y0X0 = 0}.(2.5.0.6)
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Then Df is a singular q-fiber and Dh has only one DuVal singularity of type D4. Also Dh is
a prime divisor with 2Dh ∼P1 −KQ. Since C ∼= P1, we have h1,2(Q) = 0. Also we have:

Dh \ (Df |Dh) ∼=
{
X0X1 +X2

2 +X3X4 = 0,
X1 = X0Y1, Y1X3 +X0 = 0

}
in P4

[X0:···:X4]
× A1

(Y1)

∼= {Y 3
1 X

2
3 +X2

2 +X3X4 = 0} in P2
[X2:X3:X4]

× A1
(Y1)

.

Hence each (q|Dh)-fiber is smooth except Df |Dh .
Theorem 2.4.2 (B) now shows that (Q,Dh, Df ) is a compactification of A3 compatible

with q. Since bothDh andDf differ from EΦ|Q , the ampleness ofDh+Df follows from [Kis05,
Lemma 2.2].

Thirdly, suppose that Q is an arbitrary quadric fibration and Df |Dh is smooth. Then Dh

is normal by Lemma 1.6.2. In fact, it holds that Dh
∼= Fd for some d ∈ Z≥0 by Theorem 2.4.2

(B). Let us mention that in [MS90, §4.4, Lemma 2], it is erroneously claimed that d = 0. In
Example 2.5.3, we construct an example with Dh

∼= Fd for each d ∈ Z≥0.

Example 2.5.3. Let d ∈ Z≥0 and P := F(0, 1, d) with the P2-bundle structure p : P → P1.
For i = 1, d, let Si be the sub P1-bundle of P associated with the projection OP1 ⊕OP1(1)⊕
OP1(d)→ OP1⊕OP1(i) and F a p-fiber. Then it holds that Si ∼= Fi and Si ∼ ξP−(d+1−i)F,.
Also we have:

(Si|S(d+1−i))
2 = (ξP − (d+ 1− i)F )2 · (ξP − iF )(2.5.0.7)

= ξ3P − (2d+ 2− i)ξ2P · F = −(d+ 1− i).

Hence Sd|S1 = Σ1 and S1|Sd = Σd.
Now take B ⊂ S1 as a smooth member of |2(Σ1 + f1)|, which is a p-bisection. Let

ψ : P̃ → P be the blow-up along B. Then −KP̃ is (p◦ψ)-ample. An easy computation shows
that there is the elementary link with center along B:

(2.5.0.8) P̃
ψ

}}zz
zz
zz
z φ

!!D
DD

DD
DD

P
p
��

Q
q
��

P1 P1

such that φ is the blow-up of a quadric fibration Q along a q-section. In fact, this is the
inverse of an elementary link as in Lemma 1.5.1. Since B ∼= P1, we have h1,2(Q) = 0 by
(2.4.0.4) and (2.4.0.6).

Let Dh := (Sd)Q and Df a singular q-fiber, which exists by Lemma 1.5.1 (2). Then
2Dh ∼P1 −KQ by Lemma 1.5.1 (1). Since B ∩ Sd = ∅ and Eφ = (S1)P̃ , it holds that
Dh
∼= Sd ∼= Fd. Theorem 2.4.2 (B) now shows that (Q,Dh, Df ) is a compactification of A3

compatible with q.

Finally, we give an example of compactifications of affine homology 3-cells into quadric
fibrations which gives a negative answer to Problem 2.1.1 (1) without the assumption on the
compatibility.
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Example 2.5.4. Take H,S and C in Q3 = {X0X1 + X2
2 + X3X4 = 0} ⊂ P4

[X0:···:X4]
as

follows:

H := {X0X1 +X2
2 +X3X4 = X0 = 0},(2.5.0.9)

S := {X0X1 +X2
2 +X3X4 = 0, X0X

2
3 = X3

4},(2.5.0.10)

C := {X0X1 +X2
2 +X3X4 = 0, X3 = X4 = X0}.(2.5.0.11)

As in Example 2.5.2, the blow-up Q := BlC Q3 has a quadric fibration structure q : Q→ P1.
Since each q-fiber is the strict transform of a hyperplane section of Q3 containing C, both
HQ and SQ are not q-fibers.

Now set U := Q \ (HQ ∪ SQ), Q0 := Q3 \H, S0 := S \ (S ∩H) and C0 := C \ (C ∩H).
Then U is the affine modification of Q0 with the locus (C0 ⊂ S0). In P4 \ H ∼= A4

[x1,...,x4]
,

we have an isomorphism Q0 ∼= {x1 + x22 + x3x4 = 0} ∼= A1
[x2]
× A2

[x3,x4]
. This isomorphism

sends S0 and C0 to A1
[x2]
× {x23 = x34} and A1

[x2]
× {(1, 1)} respectively. By [tDP90], U is

isomorphic to A1
[x2]
×V (3, 2), where V (3, 2) = {z2x34+3zx24+3x4−zx23−2x3 = 1} ⊂ A3

[x3,x4,z]

is an affine homology 2-cell of logarithmic Kodaira dimension one. Hence (Q,HQ ∪ SQ) is a
compactification of an affine homology 3-cell A1 × V (3, 2). We note that A1 × V (3, 2) ̸∼= A3

by [IF77, Theorem 1].

2.6. Compactifications of affine homology 3-cells compatible with P2-bundles

In this section, we will give a solution of Problem 2.1.1 for compactifications compatible
with P2-bundles. Theorem 2.1.6 follows as a corollary.

First we give the solution of Problem 2.1.1 (1) for such compactifications.

Lemma 2.6.1. Let p : P → C be a P2-bundle, Dh a reduced effective divisor on P , and
Df a p-fiber. Then the following are equivalent.

(1) The complement P \ (Dh ∪Df ) is an affine homology 3-cell.
(2) C ∼= P1 and Dh is a sub P1-bundle.
(3) It holds that P \ (Dh ∪Df ) ∼= A3.

Proof. Since (3) ⇒ (1) is trivial and (2) ⇒ (3) follows from [Kis05, Lemma 5.15], we
only have to show (1)⇒ (2).

Suppose that (1) holds. The first assertion follows from Lemma 2.3.1. By the same
argument as in the proof of Lemma 2.4.1, Dh is a prime divisor such that PicP = ZDf⊕ZDh.
On the other hand, we have PicP = ZDf ⊕ZξP . Hence Dh ∼C ξP , which implies that Dh is
a sub P1-bundle of P . □

Next we characterize (P ′, Dh,2, Df,2) as in Example 2.1.4.

Lemma 2.6.2. Let p : P → P1 be a P2-bundle with associated vector bundle E. Let F
be a p-fiber and D ⊂ P a sub P1-bundle. Suppose that deg E = 3n + 1, D ∼= F0 and
D ∼ ξP − (n+ 1)F for some n ∈ Z. Then we have E ∼= OP1(n)⊕OP1(n)⊕OP1(n+ 1), and
D is the exceptional divisor of the blow-up f : P ∼= F(0, 0, 1)→ P3 along a line.

Proof. By replacing E by E ⊗ OP1(−n), we may assume that n = 0. Let us show the
ampleness of −KP . It is obvious that −KP |F is ample. By the canonical bundle formula and
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the adjunction formula, we have:

−KP ∼ 3ξP + F ∼ 3D + 4F.(2.6.0.1)

D|D ∼ −1

2
(KP +D)|D − 2F |D ∼ −

1

2
KD − 2f0 ∼ Σ0 − f0.(2.6.0.2)

we thus get −KP |D ∼ (3D + 4F )|D ∼ 3Σ0 + f0, which is also ample.
Suppose that (−KP · r) ≤ 0 holds for some curve r ⊂ P . Since both −KP |F and −KP |D

are ample, (2.6.0.1) now shows that r must be disjoint from any p-fiber, a contradiction.
Hence −KP is strictly nef. On the other hand, we have (−KP )

3 = 54 since P is a P2-bundle
over P1. Hence −KP is big and semiample by the base-point free theorem. Since −KP is
strictly nef and semiample, it is ample.

Therefore P is a Fano P2-bundle. By [MM82, Table 2], P is isomorphic to either P1×P2

or F(0, 0, 1). Since deg E = 1, it holds that P ∼= F(0, 0, 1) and E ∼= OP1⊕OP1⊕OP1(1), which
is the first assertion.

Since F ∼ f ∗OP3(1)− Ef and −KP ∼ f ∗OP3(4)− Ef ∼ 3Ef + 4F , the second assertion
follows from (2.6.0.1). □

Now we can give a solution to Problem 2.1.1 (2) for compactification compatible with
P2-bundles.

Proposition 2.6.3. Let (P,Dh, Df ) be a compactification of A3 compatible with a P2-
bundle p : P → P1. We follow the notation of Example 2.1.4. Regard p(Df ) and p

′(Df,2) as
∞ ∈ P1. Then there is the composition g2 : P 99K P ′ of elementary links with center along
linear subspaces in the fibers at ∞ such that Dh,2 = (Dh)P ′. In particular, there exists the
following diagram of rational maps preserving P \ (Dh ∪Df ) ∼= A3:

(2.6.0.3) (P,Dh, Df )
g2

//

p
��

(P ′, Dh,2, Df,2)

p′
��

g3
// (P3, H)

P1 P1,

where H := g3∗Df,2.

Proof. Suppose that Dh
∼= Fd for some d > 0. Take the elementary link P 99K P1

with center at a point p ∈ Dh ∩ Df such that p ̸∈ Σd. This elementary link preserves
P \ (Dh ∪Df ) ∼= A3. Also we have (Dh)P1

∼= Fd−1 because P 99K P1 induces an elementary
transform of Dh with center at p. Taking such elementary links d times, we may assume that
Dh
∼= F0.
Let E be an associated vector bundle of P . Set d := deg E and take e ∈ Z such that

Dh ∼ ξP + eDf .
Let us show that d+e ∈ 2Z. By the canonical bundle formula and the adjunction formula,

we have:

−KX ∼ 3ξP − (d− 2)Df ∼ 3Dh − (d+ 3e− 2)Df .(2.6.0.4)

−KDh ∼ (2Dh − (d+ 3e− 2)Df )|Dh(2.6.0.5)

∼ 2(Dh − (e− 1)Df )|Dh − (d+ e)Df |Dh .

This gives d+ e ∈ 2Z because −KDh ∼ 2(Σ0 + f0) and Df |Dh ∼ f0.
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Now let L ⊂ Df be a linear subspace and P 99K P1 the elementary link with center along
L. This elementary link preserves P \ (Dh ∪ Df ) ∼= A3. Let F be a fiber of the induced
P2-bundle p1 : P1 → P1. Take an associated vector bundle E ′ of P1 as in Lemma 1.4.1.

Consider the case where L is a point outside Dh. Then we have (Dh)P1
∼= Dh

∼= F0. By
Lemma 1.4.1 and Corollary 1.4.2, we have deg E ′ = d− 1 and (Dh)P1 ∼ ξP1 + (e + 1)F . For
eachm ∈ Z≥0, taking such elementary linksm times, we can replace (d, e) with (d−m, e+m).

Consider the case where L = Df ∩Dh. Then we have (Dh)P1
∼= Dh

∼= F0. Replacing E ′
with E ′⊗ p∗1OP1(1), we have deg E ′ = d+1 and (Dh)P1 ∼ ξP1 +(e− 1)F by Lemma 1.4.1 and
Corollary 1.4.2. For each m ∈ Z≥0, taking such elementary links m times, we can replace
(d, e) with (d+m, e−m).

Now set m := d+3e
2

+1 ∈ Z and replace (d, e) with (d+m, e−m) = (3(d+e)
2

+1,−d+e
2
−1).

Applying Lemma 2.6.2 with n = d+e
2
, we have the assertion. □

Now we can prove Theorem 2.1.6.

Proof of Theorem 2.1.6. We have shown that SingDh is a q-section in Lemma 1.6.2.
By Lemma 1.5.1, there is the elementary link g1 : Q 99K P with center along SingDh and
the induced morphism p : P → P1 is a P2-bundle. Let E be the exceptional divisor of the
elementary link. As in the proof of Theorem 2.4.2 (A), we can show that g1 induces an
isomorphism A3 ∼= Q \ (Dh ∪Df ) ∼= P \ (E ∪ (Df )P ). Hence (P,Dh,1, Df,1) := (P,E, (Df )P )
is a compactification of A3 compatible with p, which proves (1). The assertions (2) follow
from Proposition 2.6.3. □

2.7. Proof of Theorem 2.1.7

The remainder of this chapter will be devoted to the proof of Theorem 2.1.7. From
now on, we assume that (Q,Dh, Df ) is a compactification of A3 compatible with a quadric
fibration q : Q→ C ∼= P1 such that Dh is normal. Also we use the following notation:

Notation 1. For d ∈ Z>0, we will denote by Sd the blow-up of Fd at a point outside Σd.
We note that Sd is also the blow-up of Fd−1 at a point in Σd−1.

2.7.1. Singularities of Dh and Df |Dh. First, we establish a relation between the singu-
larity of Df |Dh and that of Dh. Theorem 2.4.2 (B) shows that Df

∼= Q2
0 and Dh|Df ∼ OQ2

0
(1).

Hence Dh|Df is either a smooth conic, the union of two distinct rulings, or a non-reduced
curve supporting on a ruling of Q2

0.

Theorem 2.7.1. We have the following correspondence.

(1) If Df |Dh is smooth, then Dh
∼= Fd for some d ≥ 0.

(2) If Df |Dh is reducible, then Dh
∼= Sd for some d > 0.

(3) If Df |Dh is non-reduced, then Dh has either exactly two DuVal singularities of type
A1, or the unique DuVal singularity of type A3 or Dm (m ≥ 4).

Proof. Take a q-section s ⊂ Dh and construct φ, ψ, p, Q̃, P and B as in Lemma 1.5.1.
Write G := ψ∗Eφ, ∞ := q(Df ), f∞ := (p|G)∗(∞) and lt := (p|(Dh)P )∗(t) for t ∈ C.

Recall that B ∼= P1, Df
∼= Q2

0 and singular (q|Dh)-fibers are at most Df |Dh by Theorem
2.4.2 (B). In particular, p|B is ramified over ∞. By Lemma 1.5.2, (p|G)-fibers contained in
(Dh)P are at most f∞. Also f∞ ̸⊂ (Dh)P if and only if Df |Dh is reduced.
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By Lemma 2.4.1, we have 2Dh ∼C −KQ. Hence (Dh)P is a sub P1-bundle of P not
containing B by Lemma 1.5.1 (1). Since G is also a sub P1-bundle of P , there exists a unique
p-section s′ and a ∈ Z≥0 such that (Dh)P |G = s′ + af∞.

Let us show that (B · s′)G ≤ 1. For t ∈ C, it holds that lt ∩ B = ∅ if and only if
(q|Dh)∗(t) is smooth by Lemma 1.5.2. Since singular (q|Dh)-fibers are at most Df |Dh , we have
Supp((Dh)P ∩ B) ⊂ f∞. Hence Supp(s′ ∩ B) ⊂ Supp(f∞ ∩ B). Since p|B is ramified over
∞, the support of f∞ ∩B is a point. By the same reason, B and f∞ have the same tangent
direction at Supp(f∞ ∩B) in G. Since (f∞ · s′)G = 1, we have (B · s′)G ≤ 1 as desired.
(1): Suppose thatDf |Dh is smooth. Then we have a = 0 and l∞∩B = ∅ by Lemma 1.5.2. The
former implies that (Dh)P ∪G is a SNC divisor, and the latter implies that B ∩ (Dh)P = ∅.
Hence ψ is an isomorphism along (Dh)Q̃. Since (Dh)Q̃ ∪Eφ = (Dh)Q̃ ∪GQ̃ is a SNC divisor,

we have Dh
∼= (Dh)Q̃

∼= (Dh)P , which is a Hirzebruch surface, and (1) is proved.

(2): Suppose that Df |Dh is reducible. Then we have a = 0 and l∞ ∩B ̸= ∅ by Lemma 1.5.2.
Hence (Dh)P ∪ G is a SNC divisor. Also (Dh)Q̃ is the blow-up of (Dh)P at a point because

((Dh)P ·B)P = (e ·B)G = 1. Since (Dh)Q̃ ∩Eφ is the strict transform of s′ in Q̃, the divisor

(Dh)Q̃ ∪ Eφ is a SNC divisor and hence we have Dh
∼= (Dh)Q̃, which is the blow-up of a

Hirzebruch surface at a point, and (2) is proved.
(3): Suppose that Df |Dh is non-reduced. Then we have a ≥ 1 by Lemma 1.5.2. Set m :=
(B · (Dh)P )P = (B · s′)G + 2a ≥ 2.

For 0 ≤ i ≤ m− 1, we define Pi, Q̃i, xi, hi and ψi by induction as follows. Let P0 := P ,

Q̃0 := Q̃, x0 := Supp((Dh)P ∩B), h0 := idP and ψ0 := ψ. For i > 0, denote by hi : Pi → Pi−1

the blow-up at xi−1. Let xi := Supp((Dh)Pi ∩BPi), which is a point. We also define ψi : Q̃i →
Pi as the blow-up along BPi .

Then we have the following diagram by Lemma 1.3.1 (1), where φi : Q̃i → Q̃i−1 is the
blow-up along (ψi−1)

−1(xi−1) for 1 ≤ i ≤ m− 1.

(2.7.1.1) Q̃m−1

φm−1
//

ψm−1

��

Q̃m−2

φm−2
//

ψm−2

��

· · · φ2
// Q̃1

φ1
//

ψ1

��

Q̃0
φ

//

ψ0=ψ

��

Q

Pm−1
hm−1

// Pm−2
hm−2

// · · ·
h2

// P1
h1

// P0.

Let α : (Dh)Q̃m−1
→ Dh be the induced morphism. To know the singularities on Dh, it

suffices to detect that of (Dh)Q̃m−1
and the shape of Eα.

For 1 ≤ i ≤ m− 1, it holds that (Dh)Pi is smooth and ((Dh)Pi ·BPi)Pi = m− i because hi
is the blow-up at the point xi−1. Hence (Dh)Pm−1 intersects with BPm−1 at xm−1 transversally
and (Dh)Q̃m−1

is the blow-up of (Dh)Pm−1 at xm−1, which is also smooth.

Let us reveal the precise location of xi ∈ (Dh)Pi for 0 ≤ i ≤ m− 1 to detect the shape of
Eα. Note that xi ∈ Ehi by construction. We already showed that x0 = Supp(B ∩ f∞). Since
(B · f∞)G = 2, we have (BP1 · (f∞)P1)GP1 = 1. Hence we have x1 = Supp(BP1 ∩ (f∞)P1) =
Supp(Eh1 ∩ (f∞)P1).

We now turn to the case i ≥ 2. We have x2 ̸∈ (f∞)P2 since (BP2 · (f∞)P2)GP2 = 0. Also
we have x2 ̸∈ (Eh1)P2 since (BP2 · (Eh1)P2)P2 = 0. Hence x2 ∈ Eh2 and x2 ̸∈ (Eh1)P2 ∪ (f∞)P2 .
Similarly, for i ≥ 3, we have xi ∈ Ehi and xi ̸∈ (Ehi−1

)Pi .
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Let ei be the strict transform of Ehi |Dh,i in Q̃m−1 for 1 ≤ i ≤ m− 1. Set f̃∞ := (f∞)Q̃m−1
,

s̃ := s′
Q̃m−1

and r := Eψm−1|(Dh)Q̃m−1
. By the above observation on xi, the configuration of ei,

f̃∞, s̃ and r in (Dh)Q̃m−1
is as in FIGURE 1.

Case m = 2 Case m = 3 Case m ≥ 4 and m
is even

Case m ≥ 4 and m
is odd

Figure 1. The configuration of ei, f̃∞, s̃ and r in (Dh)Q̃m−1

It is clear that (f∞)Q̃ is the exceptional divisor of (Dh)Q̃ → Dh. On the other hand,

by Lemma 1.3.1 (1), em−1 is the exceptional divisor of (Dh)Q̃m−1
→ (Dh)Q̃m−2

. Repeated

application of Lemma 1.3.1 (1) shows us that Eα = f̃∞ ∪
∪m−1
i=1 ei. Since each of them is

(−2)-curve in (Dh)Q̃m−1
, the singularity of Dh is the DuVal singularity of type 2A1 when

m = 2, A3 when m = 3 and Dm when m ≥ 4, which completes the proof. □

The next aim is to construct explicit birational maps preserving A3 from (Q,Dh, Df )
to an another compactification (Q′, D′

h, D
′
f ) compatible with quadric fibration such that the

singularity of D′
h is milder than that of Dh. To do so, we define the type of (Q,Dh, Df ) as

follows.

Definition 2.7.2. Let m ∈ Z≥0. We call (Q,Dh, Df ) a compactification of

• type 0 when Dh
∼= Fd for some d ≥ 0.

• type 1 when Dh
∼= Sd for some d > 0.

• type 2 when Dh has two DuVal singularities of type A1.
• type 3 when Dh has a DuVal singularity of type A3

• type m(≥ 4) when Dh has a DuVal singularity of type Dm.



22 2. COMPACTIFICATIONS OF AFFINE HOMOLOGY 3-CELLS INTO QUADRIC FIBRATIONS

We note that Df |Dh contains a ruling of Q2
0
∼= Df if and only if m > 0. It is easy to check

that the number of the type coincides with (B · (Dh)P )P as in the proof of Theorem 2.7.1.
Hence we have the following.

Corollary 2.7.3. Take any q-section s ⊂ Dh and construct P and B as in Lemma
1.5.1. Then (Q,Dh, Df ) is of type m ∈ Z≥0 if and only if (B · (Dh)P )P = m.

2.7.2. The case of singular Df |Dh. Next we shall give an elementary link from each
compactification of A3 of type m > 0 to that of type (m − 1). Composing such elementary
links, we get a birational map from each compactification of A3 of type m > 0 to that of
type 0.

Lemma 2.7.4. Let q : Q → C be a quadric fibration, F a singular q-fiber, s ⊂ Q a q-
section and l the ruling of F ∼= Q2

0 which intersects with s. We use the same letter l and s
for their strict transformations by abuse of notation. Consider the following four elementary
links:

• Q φ1,1←−− Q1,1
ψ1,1−−→ Q′: the elementary link with center along l.

• Q′ φ1,2←−− Q1,2
ψ1,2−−→ P1: the elementary link with center along s.

• Q φ2,1←−− Q2,1
ψ2,1−−→ P : the elementary link with center along s.

• P φ2,2←−− Q2,2
ψ2,2−−→ P2: the elementary link with center at the point x := ψ2,1(l).

Summarizing these notation, we have the following diagram:

(2.7.2.1) Q1,2
ψ1,2

||yy
yy
y φ1,2

""E
EE

EE
Q1,1

ψ1,1

||yy
yy
y φ1,1

""E
EE

EE
E

Q2,1
φ2,1

||yy
yy
yy ψ2,1

""E
EE

EE
E

Q2,2
φ2,2

||yy
yy
yy ψ2,2

""E
EE

EE

P1

��

Q′

��

Q

��

P

��

P2

��

C C C C C,

Then the birational map ι : P1 99K P2 induced by (2.7.2.1) is an isomorphism.

Proof. By [Cor95, Proposition 3.5], we only have to show that ι is an isomorphism in
codimension one.

Let l′ be the strict transform of the center of ψ1,1 in Q1,2. Let χ1 : X1 → Q1,2 be the
blow-up along l′. Since s ⊂ Q1,1 is disjoint from FQ1,1 = Eψ1,1 , we have X1

∼= BlsQ1,1. On
the other hand, let B be the strict transform of the center of ψ2,1 in Q2,2. Let χ2 : X2 → Q2,2

be the blow-up along B. By Lemma 1.3.1 (1), we have X2
∼= BllQ2,1. Summarizing these

arguments, we have the following diagram:

(2.7.2.2) X1
χ1

||yyy
yyy Bls

""E
EEE

EE
X2

Bll

||yyy
yyy

χ2

""E
EEE

EE

Q1,2
ψ1,2

||yy
yy
y φ1,2

""E
EE

EE
Q1,1

ψ1,1

||yy
yy
y φ1,1

""E
EE

EE
E

Q2,1
φ2,1

||yy
yy
yy ψ2,1

""E
EE

EE
E

Q2,2
φ2,2

||yy
yy
yy ψ2,2

""E
EE

EE

P1 Q′ Q P P2,

In Q, the curve s intersects with l transversally. Hence the induced map X1 99K X2 is
the Atiyah flop. By construction both Eχ1 and Eψ2,2 are the strict transforms of F . By
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Lemma 1.6.2 (2) both Eχ2 and Eψ1,2 are the strict transforms of Eψ2,1 . Therefore ι is also an
isomorphism in codimension one, which completes the proof. □

Theorem 2.7.5. Suppose that (Q,Dh, Df ) is of type m > 0. Let l be an irreducible com-
ponent of Supp(Df |Dh) and take the elementary link Q← Q1,1 → Q′ with center along l. Let
E be the exceptional divisor of the elementary link. Then (Q′, (Dh)Q′ , E) is a compactification
of A3 compatible with a quadric fibration of type (m− 1).

Proof. By Lemma 1.6.1, we have Q \ ((Dh)Q′ ∪ E) ∼= A3. By Lemma 1.6.2, (Dh)Q′ is
normal. Hence it suffices to show that (Q′, (Dh)Q′ , E) is of type (m− 1).

By Theorem 2.7.1 we can take a q-section s ⊂ Dh intersecting with l. Take elementary
transformations as in Lemma 2.7.4. Let B ⊂ P1 be the center of ψ1,2. By Corollary 2.7.3, it
suffices to show that ((Dh)P1 ·B)P1 = m− 1.

By Lemma 2.7.4 we have P1
∼= P2 and BP is the center of ψ2,1. Since Dh|Df is not smooth,

Lemma 1.5.2 now implies x ∈ (Dh)P ∩BP . Hence (Dh)Q2,2 ∼ φ∗
2,2(Dh)P −Eφ2,2 ∼ ψ∗

2,2(Dh)P1

by Corollary 1.4.2 and ((Dh)P1 ·B)P1 = ((Dh)P ·BP )P−(Eφ2,2 ·BQ2,2)Q2,2 = m−1 by Corollary
2.7.3. □

An easy computation shows the following.

Corollary 2.7.6. We follow the notation of Theorem 2.7.5. Suppose that m = 1 and
take d > 0 such that Dh

∼= Sd. Then (Dh)Q′ ∼= Fd (resp. Fd−1) when l intersects with (resp.
is disjoint from) the strict transform of Σd in Sd.

2.7.3. The case of smooth Df |Dh. By Theorem 2.7.5, we are reduced to prove Theorem
2.1.7 for the case where (Q,Dh, Df ) is of type 0, i.e. where Dh is a Hirzebruch surface. First
we construct a birational map which decreases the degree of Dh as a Hirzebruch surface.

Lemma 2.7.7. Suppose that Dh
∼= Fd for some d > 0. Set ∞ := q(Dh). Then there are

an another compactification (Q′, D′
h, D

′
f ) of A3 compatible with a quadric fibration q′ and the

composition h : Q 99K Q′ of elementary links with center along rulings in the fibers at ∞ such
that (Dh)Q′ = D′

h
∼= Fd−1 and D

′
f = (q′)∗(∞). In particular, h preserves Q\ (Df ∪Dh) ∼= A3.

(2.7.3.1) (Q,Dh, Df )
h
//

q
��

(Q′, D′
h, D

′
f )

q′
��

P1 P1,

Proof. Take the elementary link f1 : Q 99K Q1 with center along a ruling of Df
∼= Q0

which is disjoint from Σd ⊂ Dh. Let E be the exceptional divisor of the elementary link.
Since f1 induces the elementary transformation of Dh with center a point outside Σd, we get
a compactification (Q1, (Dh)Q1 , E) of A3 such that (Dh)Q1

∼= Sd.
Now take the elementary link f2 : Q1 99K Q′ with center along the irreducible component

of Supp(E|(Dh)Q1
) which is disjoint from the strict transform of Σd in (Dh)Q1 . Then by

Corollary 2.7.6, we get a compactification (Q′, D′
h, D

′
f ) of A3 such that D′

h
∼= Fd−1. Hence

h := f2 ◦ f1 is the desired birational map. □
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Repeated application of Lemma 2.7.7 enables us to assume that (Q,Dh, Df ) satisfies
Dh
∼= F0. Next we show that such a compactification is the same as (Q′, D′

h, D
′
f ) as in

Example 2.1.5.

Lemma 2.7.8. Suppose that Dh
∼= F0. Then Q is the blow-up of Q3 along a smooth conic

and Dh is the exceptional divisor of the blow-up.

Proof. First let us show the ampleness of −KQ. By Lemma 2.4.1, we can take a ∈ Z
such that −KQ ∼ 2Dh+aDf . By the adjunction formula, we have Dh|Dh ∼ −KDh−aDf |Dh .
Since Dh

∼= F0, we have:

D3
h = (KDh + aDf |Dh)2(2.7.3.2)

= (KDh)
2 + 2a(KDh ·Df |Dh) = 8− 4a.

(−KQ)
3 = (2Dh + aDf )

3(2.7.3.3)

= 8D3
h + 12a(D2

h ·Df ) = 64− 8a.

On the other hand, by Lemma 1.5.1 (3), it holds that (−KQ)
3 = 40− (8pa(B)+32pa(C)).

We have C ∼= P1 by assumption. Combining Theorem 2.4.2 (B), (2.4.0.4) and (2.4.0.6), we
get pa(B) = 0. Hence (−KQ)

3 = 40. Substituting this into (2.7.3.3), we have a = 3. Hence
we have

(2.7.3.4) −KQ ∼ 2Dh + 3Df

and −KQ|Dh ∼ (2Dh + 3Df )Dh ∼ −2KDh − 3Df |Dh ∼ 4Σ0 + f0, which is ample. Clearly
−KQ|Df is also ample.

Suppose that (−KQ ·r) ≤ 0 holds for some curve r ⊂ Q. Since both −KQ|Dh and −KQ|Df
are ample, (2.7.3.4) now shows that r must be disjoint from any q-fiber, a contradiction.
Hence −KQ is strictly nef. Also −KQ is big since (−KQ)

3 = 40 and is semiample by the
base-point free theorem. Since −KQ is strictly nef and semiample, it is ample.

Therefore Q is a Fano quadric fibration with (−KQ)
3 = 40. By [MM82, Table 2], Q is

the blow-up of Q3 along a smooth conic, which is the first assertion.
Let h2 : Q → Q3 be the blow-up morphism. Since Df ∼ h∗2OQ3(1) − Eh2 and −KQ ∼

h∗2OQ3(3)− Eh2 ∼ 2Eh2 + 3Df , the second assertion follows from (2.7.3.4). □
Now we can prove Theorem 2.1.7.

Proof of Theorem 2.1.7. Suppose that (Q,Dh, Df ) is a compactification of A3 of
type m. Taking elementary links m times as in Theorem 2.7.5, we may assume that m = 0.
Repeated application of Lemma 2.7.7 enables us to assume that Dh

∼= F0. Then h1 := idQ
and (Q′, D′

h, D
′
f ) := (Q,Dh, Df ) satisfies all the assertion by Lemma 2.7.8. □



CHAPTER 3

G3
a-structures in del Pezzo fibrations

3.1. Introduction to Chapter 3

In this chapter, we are interested in compactifications of the affine n-space Gn
a with the

additive group structure in the following sense.

Definition 3.1.1 ( [HT99, Definition 2.1]). Let G be a connected linear algebraic group.
A G-variety X is a variety with a fixed (left) G-action such that the stabilizer of a general
point is trivial and the orbit of a general point is dense.

By a G-structure on X with the boundary divisor D, we mean a G-action on X which
makes X a G-variety whose dense open orbit is X \D. We note that when G = Gn

a , we can
reword a Gn

a-variety as a variety with a fixed Gn
a-action whose dense orbit is isomorphic to

Gn
a because Gn

a is simply connected.
B. Hassett and Y. Tschinkel [HT99] considered Gn

a-varieties originally, and classified all
the smooth projective Gn

a-varieties with the second Betti number B2 = 1 when n ≤ 3. Since
smooth rational projective varieties with B2 = 1 are Fano, we can rephrase their result as
the classification of all the smooth Fano Gn

a-varieties with B2 = 1 when n ≤ 3. After that, Z.
Huang and P. Montero [HM18] classified all the smooth Fano G3

a-varieties with B2 ≥ 2. B.
Fu and P. Montero [FM19] also classified all the smooth Fano Gn

a-varieties with Fano index
at least n− 2 for any dimension.

In this chapter, we consider smooth projective G3
a-varieties with B2 = 2, which are not

necessarily Fano. Take such a variety X, which is rational by definition. By virtue of the
Mori theory, it has an extremal contraction f : X → C of relative Picard number one with
dimC ≥ 1. The purpose of this chapter is to determine the structure of f when dimC = 1,
i.e., when f is a del Pezzo fibration. The main theorem of this chapter is the following,

Theorem 3.1.2. Let X be a smooth projective 3-fold, D a reduced effective divisor on X
and f : X → C a del Pezzo fibration. Then the following are equivalent.

(1) X has a G3
a-structure with the boundary divisor D.

(2) f is a P2-bundle over P1 and D consists of a sub P1-bundle D1 and a f -fiber D2

which generate Λeff(X).

3.2. Structure of Chapter 3

This chapter is structured as follows. In §3.3, we recall some facts on actions of algebraic
groups on algebraic varieties. Using them, we prove that Theorem 3.1.2 (1) implies (2) in
§3.4. The main step to prove this implication is Proposition 3.4.4, that is, the exclusion of
the case of quadric fibrations. For this, we use the results in Chapter 2. Finally, we prove

25
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the opposite implication in §3.5. For that, we construct a G3
a-structure for each P2-bundle P

over P1 via a sequence of elementary links from P1 × P2 to P .

3.3. Preliminaries on group actions

In this section, we compile some facts on actions of algebraic groups on algebraic varieties,
which will be needed in §3.4 and §3.5.

Theorem 3.3.1 ( [HT99, Theorem 2.5, 2.7]). Let X be a normal proper G3
a-variety with

the boundary divisor D and D = ∪ni=1Di the irreducible decomposition. Then we have the
following:

(1) Pic(X) =
⊕n

i=1 ZDi.
(2) −KX ∼

∑n
i=1 aiDi for some integers a1, . . . , an ≥ 2.

(3) Λeff(X) =
⊕n

i=1R≥0Di.

Theorem 3.3.2 ( [Bri17, Theorem 7.2.1]). Let G be a connected algebraic group, X a va-
riety with G-action, Y a variety and f : X → Y a proper morphism such that f ♯ : OY → f∗OX
is an isomorphism. Then there exists the unique G-action on Y such that f is equivariant.

3.4. Proof of Theorem 3.1.2 (1)⇒ (2)

In this section, we prove that Theorem 3.1.2 (1) implies (2). For this, we make the
following assumption in this section:

Assumption 1. X is a smooth projective G3
a-variety with the boundary divisor D.

f : X → C is a del Pezzo fibration of degree d.
By Theorem 3.3.1, D consists of two irreducible components, say D1 ∪D2.

Lemma 3.4.1. It holds that C ∼= P1.

Proof. X is rational since it contains G3
a as the dense open orbit. Since H0(C,ΩC) ↪→

H0(X,ΩX) ∼= 0, we have H0(C,ΩC) ∼= 0 and the assertion holds. □
Proposition 3.4.2. The boundary divisor D contains a f -fiber which is stable under

G3
a-action.

Proof. By Theorem 3.3.2, there is the G3
a-action on C such that f is G3

a-equivariant.
By the Borel fixed-point theorem [Hum75, §21.2], the action G3

a ↷ C has a fixed point, say
∞ ∈ C. Since the divisor f ∗(∞) is stable under the G3

a-action, it is contained in D. □
In the remainder of this section we require D2 to be a f -fiber.

Proposition 3.4.3. It holds that d ≥ 8.

Proof. Conversely, suppose that d ≤ 7. By Theorem 3.3.1 (1), we have Pic(X) =
ZD1 ⊕ ZD2. On the other hand, take a (−1)-curve l in a general f -fiber. Combining
(−KX · l) = 1 and [Mor82, Theorem 3.2] (2), we have Pic(X) = Z(−KX)⊕ZD2. Hence we
can write −KX ∼ a1D1 + a2D2 with a1 = 1 and a2 ∈ Z, a contradiction with Theorem 3.3.1
(2). □

Proposition 3.4.4. It holds that d ̸= 8.
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Proof. Conversely, suppose that d = 8.
Step 1: First we show that we get a contradiction if there is a G3

a-stable f -section, say
s. In this case, applying Lemma 1.5.1 with q replaced by f , we can obtain the following
commutative diagram:

(3.4.0.1) X̃
φ

||yy
yy
yy ψ

""E
EE

EE
E

X
f
��

P
p
��

C C

where φ is the blow-up along s, p is a P2-bundle and ψ is the blow-up along a smooth
connected p-bisection, say B.

Since s is G3
a-stable, X̃ admits the unique G3

a-action such that φ is equivariant. By
Theorem 3.3.2, P and C also admit the unique G3

a-actions such that ψ and p are equivariant
respectively. Since Eψ is G3

a-stable, so is B. Hence p|B : B → C is a G3
a-equivariant double

covering. Since X has the dense open orbit, so does C. Since p|B is surjective, finite and
G3
a-equivariant, B also has the dense open orbit. Since C and B have dominant maps from

G3
a, we obtain C ∼= B ∼= P1.
Let us show that B has the unique G3

a-fixed point. By [HM18, Proposition 3.6], G3
a

contains a subgroup G ∼= G2
a such that the G3

a-action on B factorizes via G3
a/G
∼= G1

a. Since
G1
a has no non-trivial algebraic subgroup, the stabilizer of a general point of this G1

a-action
is trivial. Hence this action is a G1

a-structure of B. By [HT99, Proposition 3.1], B has the
unique fixed point. By the same argument, C also has the unique G3

a-fixed point.
Let b ∈ B and c ∈ C are the G3

a-fixed points. Since p|B is equivariant, we have p(b) = c.
If p|B is unramified at b, then the point in (p|B)−1(c) \ {b} is also fixed, a contradiction.
Hence p|B is ramified at b. Since C ∼= B ∼= P1, p|B has the other ramification point, which is
also fixed, a contradiction.
Step 2: Now it suffices to find a G3

a-stable f -section. By Theorem 3.3.1 (2), there are integers
a1, a2 ≥ 2 such that −KX ∼ a1D1 + a2D2. For a smooth f -fiber F ∼= F0, the restriction
−KX |F ∼ a1D1|F is a divisor of bidegree (2, 2). Hence a1 = 2. On the other hand, by the
choice of D2, (X,D1, D2) is a compactification of A3 compatible with f (See Definition 2.1.1).

If D1 is non-normal, then s := SingD1 forms a section by Lemma 1.6.2. Since D1 is
G3
a-stable, so is s. Therefore we derive a contradiction as in Step 1.
Hence D1 is normal. By Theorem 2.4.2, we obtain D2

∼= Q2
0. Suppose that (X,D1, D2)

is of type m > 0 in the sense of Definition 2.7.2. Then Supp(D1|D2) contains a ruling of the
quadric cone D2 by Theorem 2.7.1, say l. applying Lemma 1.6.1 with q replaced by f , we
can obtain the following commutative diagram:

(3.4.0.2) X̃
φ

||yy
yy
yy ψ

""E
EE

EE
E

X
f
��

X ′

f ′
��

C C



28 3. G3
a-STRUCTURES IN DEL PEZZO FIBRATIONS

where φ is the blow-up along l, f ′ is a quadric fibration and ψ is the blow-up along a ruling
in a singular f ′-fiber such that Eψ = (D2)X̃ .

Since Supp(D1|D2) is G3
a-stable and G3

a is irreducible, l is also G3
a-stable. Hence X̃ admits

a G3
a-structure with the boundary divisor (D1∪D2)X̃∪Eφ. Theorem 3.3.2 now gives X ′ a G3

a-
structure with the boundary divisor (D1)X′∪(Eφ)X′ . By Theorem 2.7.5, (X ′, (D1)X′ , (Eφ)X′)
is of type m− 1.

By repeated application of the above construction, we only have to exclude the case
when (X,D1, D2) is of type 0. Then D1 is G3

a-stable and is isomorphic to Fn for some n by
definition. If n > 0, then the negative section s in D1 is a G3

a-stable f -section, and we derive a
contradiction as in Step 1. Hence n = 0. There is the P1-bundle structure h : D1 → P1 other
than f |D1 . Combining Theorem 3.3.2 and the Borel fixed-point theorem, we get a G3

a-stable
h-fiber s, which is a f -section. Therefore we derive a contradiction as in Step 1. □

Proof of Theorem 3.1.2 (1)⇒ (2). Suppose that (1) holds, Combining Propositions
3.4.3 and 3.4.4, we get d = 9. By Theorem 3.3.1 (2), there are integers a1, a2 ≥ 2 such that
−KX ∼ a1D1 + a2D2. By the adjunction formula, we have a1D1|D2 ∼ −KX |D2 ∼ −KD2 ∼
OP2(3). Hence a1 = 3 and D1 is a sub P1-bundle. The second assertion of (2) follows from
Theorem 3.3.1 (3). □

3.5. Proof of Theorem 3.1.2 (2)⇒ (1)

In this section, we prove that Theorem 3.1.2 (2) implies (1).

Notation 2. For this, we make the following notation in this section:

• pd1,d2 : the P2-bundle structure of F(−d1,−d2, 0).
• ξd1,d2 : a tautological divisor of F(−d1,−d2, 0).

To complete the proof of Theorem 3.1.2, we prepare the following five lemmas.

Lemma 3.5.1. Let P := F(−d1,−d2, 0) with d1 ≥ d2 ≥ 0, E a sub P1-bundle of P and
F a pd1,d2-fiber. Then E and F generate Λeff(P ) if and only if E ∼ ξd1,d2. Moreover, in this
case, the pair (E,F ) is unique up to Aut(X).

Proof. Recall from [Rei97, Chapter 2] that P = F(−d1,−d2, 0) is defined as the quo-
tient of (A2 \ {0})× (A3 \ {0}) by the following (Gm)

2-action:

(Gm)
2 × (A2 \ {0})× (A3 \ {0}) → (A2 \ {0})× (A3 \ {0})

((λ, µ), (t1, t2;x1, x2, x3)) 7→ (λt0, λt1;λ
d1µx1, λ

d2µx2, µx3).

We also have PicP = Zξd1,d2 ⊕ ZF , and for each a, b ∈ Z, the linear system |aξd1,d2 + bF |
is parametrized by the vector space of polynomials spanned by monomials tb11 t

b2
2 x

a1
1 x

a2
2 x

a3
3 ∈

C[t1, t2, x1, x2, x3] with a1+a2+a3 = a and b1+b2 = −d1a1−d2a2+b. Hence |aξd1,d2+bF | ̸= ∅
if and only if a ≥ 0 and b ≥ 0, and the first assertion follows.

Now suppose that E ∼ ξd1,d2 . Then E is defined by
∑3

i=1 uixi for some ui ∈ C for
i = 1, 2, 3 such that ui = 0 unless di = 0 for i = 1, 2. Suppose that u3 = 0. Then ui ̸= 0

for some i = 1, 2. Take h̃ ∈ Aut((A2 \ {0}) × (A3 \ {0})) which interchanges xi and x3,
which is (Gm)

2-equivariant. Since P is the geometric quotient by [MFK94, Proposition 1.9],
it descends to an element in Aut(P ). Hence we may assume that u3 = 1. By a similar
argument, we also may assume that F is defined by t1 + vt2 for some v ∈ C.
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Now let E ′ and F ′ be divisors on P defined by x3 and t1 respectively. Take h̃ ∈ Aut((A2 \
{0})× (A3 \ {0})) such that

h̃∗(x1) = x1, h̃
∗(x2) = x2, h̃

∗(x3) = c1x1 + c2x2 + x3,(3.5.0.1)

h̃∗(t1) = t1 + vt2, h̃
∗(t2) = t2.(3.5.0.2)

Since h̃ is (Gm)
2-equivariant, it descends to h ∈ Aut(P ) such that h(E) = E ′ and h(F ) = F ′,

which complete the proof. □
Lemma 3.5.2. We follow the situation of Lemma 1.4.1. Suppose that P = F(−d,−d, 0)

with d ≥ 0 and n = 1. If there exists H ∈ |ξd,d| containing L, then P ′ ∼= F(−d− 1,−d− 1, 0)
and HP ′ ∼ ξd+1,d+1.

Proof. Set F = p′∗OP ′(HP ′). It suffices to show that F = OP1(−d−1)⊕2⊕OP1 . Pushing
forward the standard exact sequence

(3.5.0.3) 0 // OP̃ (φ∗H − Eφ) // OP̃ (φ∗H) // OEφ(φ∗H|Eφ) // 0

by p ◦ φ, we get the following exact sequence

(3.5.0.4) 0 // F // OP1(−d)⊕2 ⊕OP1 // C⊕2 // 0

since φ∗H − Eφ ∼ ψ∗(HP ′) by Theorem 1.4.1 (2). On the other hand, we have HP ′ ∼= F0

because L ⊂ H and H ∼= F0. By the definition of F , the inclusion HP ′ ⊂ P ′ corresponds to
the exact sequence

(3.5.0.5) 0 // OP1 // F // OP1(−a)⊕2 // 0

for some a ∈ Z. Combining (3.5.0.4) and (3.5.0.5), we obtain −2a = degF = −2d−2. Hence
a = d+ 1 and (3.5.0.5) splits, which proves the lemma. □

Lemma 3.5.3. We follow the situation of Lemma 3.5.2. Set ∞ := p(L) ∈ C. If P admits
a G3

a-structure with the boundary divisor H∪p∗(∞), then so does P ′ with the boundary divisor
HP ′ ∪ p′∗(∞).

Proof. Since L = H ∩ p∗(∞), this is G3
a-stable. Hence P̃ admits a G3

a-structure with

the boundary divisor HP̃ ∪ (p ◦ φ)∗(∞). Applying Theorem 3.3.2 to ψ : P̃ → P ′, we obtain
a desired G3

a-structure on P ′. □
Lemma 3.5.4. We follow the situation of Lemma 1.4.1. Suppose that P = F(−d1,−d2, 0)

with d1 ≥ d2 ≥ 0 and n = 0. Assume that there exists H ∈ |ξd1,d2| containing L, and when
d1 > d2, assume that the negative section of H ∼= Fd1−d2 passes through L in addition. Then
P ′ ∼= F(−d1 − 1,−d2, 0) and HP ′ ∼ ξd1+1,d2.

Proof. Set F = p′∗OP ′(HP ′). It suffices to show that F = OP1(−d1−1)⊕OP1(−d2)⊕OP1 .
By similar arguments as in Lemma 3.5.2, we get the exact sequence

(3.5.0.6) 0 // F // OP1(−d1)⊕OP1(−d2)⊕OP1 // C // 0.

Hence degF = −d1 − d2 − 1. On the other hand, we have HP ′ ∼= Fd1−d2+1 by the choice of
L. By the definition of F , the inclusion HP ′ ⊂ P ′ corresponds to the exact sequence

(3.5.0.7) 0 // OP1 // F // OP1(−d1 − 1)⊕OP1(−d2) // 0.
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Since (3.5.0.7) splits, we get the assertion. □

Lemma 3.5.5. We follow the situation of Lemma 3.5.4. Set ∞ := p(L) ∈ C. If P admits
a G3

a-structure with the boundary divisor H ∪p∗(∞) such that L is a fixed point, then so does
P ′ with the boundary divisor HP ′ ∪ p′∗(∞).

Proof. Since L is G3
a-stable by assumption, we can prove the assertion in much the same

way as Lemma 3.5.3. □

Now we can prove that Theorem 3.1.2 (2) implies (1).

Proof of Theorem 3.1.2 (2)⇒ (1). In P1
[t1:t2]

× P2
[x1:x2:x3]

, set E := {x3 = 0} and

F := {t1 = 0}. Write ∞ := [0 : 1] ∈ P1. Then E and F generate Λeff(P1 × P2). By [HM18,
Lemma 3.7], P1 × P2 admits a G3

a-structure with the boundary divisor E ∪ F . Write this
structure as ρ : G3

a ↷ P1 × P2.
Now suppose that (2) follows. Then X ∼= F(−d1,−d2, 0) for some d1 ≥ d2 ≥ 0 and

f = pd1,d2 . By assumption and Lemma 3.5.1, it holds that D1 ∼ ξd1,d2 and D2 is a pd1,d2-fiber.
Suppose that d1 = d2 = 0. Then we may assume that (D1, D2) = (E,F ) by Lemma 3.5.1

and hence ρ is a desired structure.
Suppose that d1 = d2 > 0. Then by Lemma 3.5.2, we can inductively construct the

sequence of the elementary links from p0,0 : P1 × P2 → P1:

(3.5.0.8) P1 × P2 h0
//

p0,0
��

F(−1,−1, 0) h1
//

p1,1
��

· · ·
hd1−1

// F(−d1,−d1, 0)
pd1,d1=f ��

X

P1 P1 · · · P1,

where the center of hi is the intersection of Ei := EF(−i,−i,0) and Fi := p∗i,i(∞) for 0 ≤ i ≤ d1−1.
Set Ed1 := EX and Fd1 := f ∗(∞). Then Ei ∼ ξi,i for 0 ≤ i ≤ d1 by Lemma 3.5.2 and hence
we may assume that (D1, D2) = (Ed1 , Fd1) by Lemma 3.5.1.

For 0 ≤ i ≤ d1 − 1, suppose that F(−i,−i, 0) admits a G3
a-structure with the boundary

divisor Ei ∪ Fi. Then so does F(−(i+ 1),−(i+ 1), 0) with the boundary divisor Ei+1 ∪ Fi+1

by Lemma 3.5.3. Thus ρ induces a desired G3
a-structure on X.

Suppose that d1 > d2 ≥ 0. Set d = d1 − d2. Let ρ′ be a G3
a-structure of F(−d2,−d2, 0),

which we have already constructed. Write its boundary divisor as E ′∪F ′ such that E ′ ∼ ξd2,d2
and F ′ = p∗d2,d2(∞). By the Borel fixed-point theorem, there is a G3

a-fixed point in E ′ ∩ F ′,
say t0. Then by Lemma 3.5.4, we can inductively construct the sequence of the elementary
links from pd2,d2 : F(−d2,−d2, 0)→ P1:

(3.5.0.9) F(−d2,−d2, 0)
h0

//

pd2,d2
��

F(−d2 − 1,−d2, 0)
h1

//

pd2+1,d2
��

· · ·
hd−1

// F(−d1,−d2, 0)
pd1,d2=f ��

X

P1 P1 · · · P1,

where the center of hi is t0 for i = 0 and the intersection of the negative section of E ′
i :=

E ′
F(−d2−i,−d2,0)

∼= Fi and F ′
i := p∗d2+i,d2(∞) for 1 ≤ i ≤ d− 1. Set E ′

d := E ′
X and F ′

d := f ∗(∞).

Then E ′
i ∼ ξd2+i,d2 for 0 ≤ i ≤ d by Lemma 3.5.4 and hence we may assume that (D1, D2) =

(E ′
d, F

′
d) by Lemma 3.5.1.



3.5. PROOF OF THEOREM 3.1.2 (2) ⇒ (1) 31

Since t0 is a fixed point of the action ρ′, F(−d2 − 1,−d2, 0) admits a G3
a-structure with

the boundary divisor E ′
1 ∪ F ′

1 by Lemma 3.5.5.
For 1 ≤ i ≤ d−1, suppose that F(−d2−i,−d2, 0) admits aG3

a-structure with the boundary
divisor E ′

i ∪ F ′
i . Then ti is a G3

a-fixed point by construction. Hence F(−d2 − (i+ 1),−d2, 0)
admits a G3

a-structure with the boundary divisor E ′
i+1∪F ′

i+1 by Lemma 3.5.5. Thus ρ′ induces
a desired G3

a-structure on X. □
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