博士論文

論文題目 Studies of compactifications of affine homology 3－cells into del Pezzo fibrations （Del Pezzo ファイブレーションへのアフィンホモロジー 3－胞体 のコンパクト化の研究）

氏 名 長岡 大

Studies of compactifications of affine homology 3-cells into del Pezzo fibrations

Masaru Nagaoka

Contents

Preface iii
Acknowledgement v
Notation and Convention 1
Chapter 1. Preliminaries 3
1.1. Del Pezzo fibrations 3
1.2. Definition of elementary links 3
1.3. Elementary links between blow-ups 4
1.4. Elementary links between \mathbb{P}^{2}-bundles 5
1.5. Elementary links from quadric fibrations to \mathbb{P}^{2}-bundles 6
1.6. Elementary links between quadric fibrations 7
Chapter 2. Compactifications of affine homology 3-cells into quadric fibrations 9
2.1. Introduction to Chapter 2 9
2.2. Structure of Chapter 2 11
2.3. Topological invariants of the ambient space 12
2.4. Proof of Theorem 2.1.3. 13
2.5. Examples 15
2.6. Compactifications of affine homology 3 -cells compatible with \mathbb{P}^{2}-bundles 17
2.7. Proof of Theorem 2.1.7 19
Chapter 3. \mathbb{G}_{a}^{3}-structures in del Pezzo fibrations 25
3.1. Introduction to Chapter 3 25
3.2. Structure of Chapter 3 25
3.3. Preliminaries on group actions 26
3.4. Proof of Theorem 3.1.2 (1) $\Rightarrow(2)$ 26
3.5. Proof of Theorem 3.1.2 (2) $\Rightarrow(1)$ 28
Bibliography 33

Preface

This thesis concerns complex projective compactifications of smooth affine 3 -folds with the same homology rings as that of the affine 3 -space.

For an affine variety U, the pair (X, D) of a smooth proper variety X and its reduced effective divisor D is called a compactification of U when the complement $X \backslash D$ is algebraically isomorphic to U. F. Hirzebruch raised the problem to classify all the compactifications (X, D) of the affine n-space \mathbb{A}^{n} with second Betti number $B_{2}(X)=1$ in his problem list [Hir54]. Here we call this problem the Hirzebruch problem. This problem is trivial when $n=1$ because the projective line \mathbb{P}^{1} is the unique rational smooth proper curve, and when $n=2$, it was solved by R. Remmert and T. Van de Ven [RvdV60]. Also by the contribution of M. Furushima, N. Nakayama, Th. Peternell, Y. Prokhorov and M. Schneider [Fur86, Fur90, Fur93a, Fur93b, FN89a, FN89b, Pet89, PS88, Pro91], this problem was solved in the projective case when $n=3$. We note that the ambient space X is a Fano variety in the projective case since it is rational with $B_{2}=1$. There is also a generalization of the Hirzebruch problem with $B_{2} \geq 2$, which is studied by several authors [Mor73, MS90, Kis05, Nag18].

In this thesis, we will study three problems which originated from the Hirzebruch problem. It is worth pointing out that up to the present all of them have been investigated only when the dimension is at most 2 or when the ambient spaces are Fano. For this reason, we will discuss three problems when ambient spaces are del Pezzo fibrations, which form a building block of the minimal model program for 3 -folds as well as Fano 3 -folds.

The first one concerns characterizations of \mathbb{A}^{n}. For $n \in \mathbb{Z}_{>0}$, an affine homology n-cell is a smooth affine variety of dimension n with the same homology ring as that of \mathbb{A}^{n}. By several authors [Ram71,KR97, tDP90], it is known that there are many affine homology n-cells not isomorphic to \mathbb{A}^{n}. One of natural questions about affine homology n-cells is how to characterize \mathbb{A}^{n} among them. For this question, Furushima [Fur00] pointed out that \mathbb{A}^{3} can be characterized as the affine homology 3 -cell which is compactified into a smooth Fano 3 -fold with $B_{2}=1$. Chapter 2 of this thesis gives another characterization of \mathbb{A}^{3} via compactifications into quadric fibrations, i.e., del Pezzo fibrations of degree 8.

The second problem is a construction of standard maps preserving \mathbb{A}^{n} from compactifications of \mathbb{A}^{n} to a standard one. In [Mor73], S. Mori introduced three kinds of explicit birational transformations between Hirzebruch surfaces, and showed that any compactifications of \mathbb{A}^{2} into Hirzebruch surfaces are constructed from the standard compactification $\left(\mathbb{P}^{2}, \mathbb{P}^{1}\right)$ of \mathbb{A}^{2} with finite composition of these birational transformations. Chapter 2 of this thesis deals a construction of standard maps for a certain family of compactifications of \mathbb{A}^{3} into quadric fibrations, where the standard compactification is the pair $\left(\mathbb{P}^{3}, \mathbb{P}^{2}\right)$.

The third problem is the Hirzebruch problem for the affine n-space \mathbb{G}_{a}^{n} equipped with the additive group structure. $A \mathbb{G}_{a}^{n}$-variety is defined to be a variety with a \mathbb{G}_{a}^{n}-action whose dense orbit is isomorphic to \mathbb{G}_{a}^{n}. The study of smooth projective \mathbb{G}_{a}^{n}-varieties is started by B. Hassett and Y. Tschinkel [HT12], and they classified smooth projective \mathbb{G}_{a}^{n}-varieties with $B_{2}=1$ when $n \leq 3$, on which situation \mathbb{G}_{a}^{n}-varieties are Fano. After that, smooth Fano $\mathbb{G}_{a^{-}}^{n}$ varieties are studied by several authors [HM18, FM19]. Chapter 3 discusses the existences of \mathbb{G}_{a}^{3}-structures, i.e., \mathbb{G}_{a}^{3}-actions which give structures of \mathbb{G}_{a}^{3}-varieties, on del Pezzo fibrations.

This thesis consists of three chapters.
Chapter 1 is the preliminary chapter; we recall definitions and basic properties of del Pezzo fibrations and certain elementary links, which we will use throughout this thesis.

Chapter 2 deals with compactifications of affine homology 3-cells into quadric fibrations such that the boundary divisors contain fibers. In this chapter, we show that all such affine homology 3 -cells are isomorphic to \mathbb{A}^{3}, and give explicit birational maps from these compactifications to \mathbb{P}^{3} preserving \mathbb{A}^{3} using the technique of elementary links.

Chapter 3 deals with \mathbb{G}_{a}^{3}-varieties with del Pezzo fibration structures. In this chapter, we show that del Pezzo fibrations admit \mathbb{G}_{a}^{3}-structures if and only if they are \mathbb{P}^{2}-bundles.

Chapter 2 and 3 are based on papers [$\mathbf{N a g} \mathbf{1 9 b}$] and [$\mathbf{N a g} \mathbf{1 9 a}]$ respectively.

Acknowledgement

First of all, the author would like to express his sincere gratitude to my supervisor Professor Hiromichi Takagi for his encouragement, comments, and suggestions during the master course and doctoral course. The author also wishes to express his deep gratitude to Professor Keiji Oguiso for his encouragement and supervising in the author's last two years of doctoral course.

The author wishes to express his deep gratitude to Professor Takashi Kishimoto for his helpful comments and suggestions. The author also wishes to express his deep gratitude to Professor Adrien Dubouloz for his helpful comments, warm encouragement during my stay in University of Bourgogne, and for drawing his attention to [HM18].

The author is grateful to Takeru Fukuoka, Katsuhisa Furukawa, Akihiro Kanemitsu, Shugo Matsumoto and Takayuki Miura, for listening the author's talks in the weekly seminar and giving valuable comments. Especially, the author would like to express his gratitude to Takeru Fukuoka for several helpful discussions concerning the technique of elementary links.

This work was supported by JSPS KAKENHI Grant Number JP19J14397 and the Program for Leading Graduate Schools, MEXT, Japan.

Finally, the author would like to express his gratitude to his family for their support and warm encouragement.

Notation and Convention

This chapter is devoted to fixing the notation, which will be used throughout this thesis.
Conventions. We work over the field of complex numbers \mathbb{C}. For a surjective morphism $f: X \rightarrow Y$ and divisors D_{1}, D_{2} on X, the notation $D_{1} \sim_{Y} D_{2}$ means that $D_{1}-D_{2}$ is linearly equivalent to the pullback of some divisor on Y.

Notation. We use the following notation:

- \mathbb{Q}^{3} : the smooth quadric hypersurface in $\mathbb{P}^{4} . \mathcal{O}_{\mathbb{Q}^{3}}(1):=\left.\mathcal{O}_{\mathbb{P}^{4}}(1)\right|_{\mathbb{Q}^{3}}$.
- \mathbb{Q}_{0}^{2} : the quadric cone in \mathbb{P}^{3}. $\mathcal{O}_{\mathbb{Q}_{0}^{2}}(1):=\left.\mathcal{O}_{\mathbb{P}^{3}}(1)\right|_{\mathbb{Q}_{0}^{2}}$.
- \mathbb{F}_{d} : the Hirzebruch surface of degree d.
- f_{d} : a fiber of \mathbb{F}_{d}.
- Σ_{d} : the minimal section of \mathbb{F}_{d}.
- $\mathbb{P}_{X}(\mathcal{E}):=\operatorname{Proj}_{\mathcal{O}_{X}} \oplus_{m \geq 0} \operatorname{Sym}^{m}(\mathcal{E})$: the projectivization of a locally free sheaf on a variety X. We often write it $\mathbb{P}(\mathcal{E})$ for short.
- $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$: the tautological bundle of a projective bundle $\mathbb{P}(\mathcal{E})$.
- $\xi_{\mathbb{P}(\mathcal{E})}$: the tautological divisor of a projective bundle $\mathbb{P}(\mathcal{E})$.
- $\mathbb{F}(a, b, c):=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right)$.
- E_{f} : the exceptional divisor of a birational morphism f.
- Sing X : the singular locus of a variety X.
- $Y_{\tilde{X}}$: the strict transformation of a closed subscheme Y of a normal variety X in a birational model \widetilde{X} of X.
- $\chi_{\text {top }}(X)$: the topological Euler number of a topological space X.
- $h^{i, j}(X)$: the dimension of $H^{i}\left(X, \wedge^{j} \Omega_{X}\right)$ of a smooth projective 3-fold X.
- $p_{a}(C)$: the arithmetic genus of a smooth projective curve C.
- Supp Y : the support of a closed subscheme Y of an ambient variety.
- $N_{Y} X$: the normal bundle of a smooth subvariety Y of a smooth variety X.
- $\Lambda_{\text {eff }}(X)$: the cone of effective Cartier divisors on a projective variety X.

CHAPTER 1

Preliminaries

In this chapter, we compile definitions and some facts on del Pezzo fibrations and elementary links, which will be needed in Chapter 2 and 3.

1.1. Del Pezzo fibrations

In this thesis, we employ the following definition for del Pezzo fibrations.
Definition 1.1.1. A del Pezzo fibration is an extremal contraction of relative Picard number one from a smooth projective 3-fold to a smooth projective curve. The degree of a del Pezzo fibration is the anti-canonical volume of a general fiber, which is a del Pezzo surface. A quadric fibration is a del Pezzo fibration of degree 8 .

We will use the following theorem without any mentions.
Theorem 1.1.2 ([Mor82, Theorem 3.2, 3.5]). Let $f: X \rightarrow C$ be a del Pezzo fibration of degree d. Then the following holds.
(1) $d \leq 9$.
(2) We have an exact sequence $0 \rightarrow \operatorname{Pic} C \xrightarrow{f^{*}} \operatorname{Pic} X \xrightarrow{(\cdot l)} \mathbb{Z} \rightarrow 0$, where l is a line in a general f-fiber, which is a smooth del Pezzo surface.
(3) Each f-fiber is irreducible and reduced.
(4) If $d=9$, then f is a \mathbb{P}^{2}-bundle.
(5) If $d=8$, then X is embedded in a \mathbb{P}^{3}-bundle $f: \mathbb{F} \rightarrow C$ as a member of $\left|2 \xi_{\mathbb{F}}+f^{*} L\right|$ for some $L \in \operatorname{Pic} C$. In particular, any f-fiber is isomorphic to either \mathbb{F}_{0} or \mathbb{Q}_{0}^{2}.

1.2. Definition of elementary links

In this thesis, we define elementary links as follows.
Definition 1.2.1. Let X be a smooth 3-fold and $\sigma: X \rightarrow C$ be an extremal contraction of relative Picard number one. Let $r \subset X$ be a smooth curve (or $x \in X$ be a point). Denote by $\varphi: \widetilde{X} \rightarrow X$ the blow-up of X with center r (resp. with center x). We assume that $-K_{\tilde{X}}$ is $(\sigma \circ \varphi)$-ample. Then there exists the unique contraction $\psi: \widetilde{X} \rightarrow Y$ of the other $K_{\tilde{X}}$-negative ray in $\overline{\mathrm{NE}}(\widetilde{X} / C)$. Let $\tau: Y \rightarrow C$ be the induced morphism.

When ψ is birational, we call the diagram (1.2.0.1) the elementary link with center along r (resp. at x). In this thesis the pushforward of the φ-exceptional divisor by ψ is called the exceptional divisor of the elementary link. We write it $X \leftarrow \widetilde{X} \rightarrow Y$ or $X \rightarrow Y$ for short when the base variety C is obvious.

We note that this is a particular case of elementary links of type II in [Cor95, Definition 3.4] and that the exceptional divisor of the elementary link is actually a divisor by [Cor95, Proposition 3.5].

In the following situation, the assumption of Definition 1.2.1 is satisfied, and hence we can construct an elementary link. For the detail, see §1.3-1.6.

- σ is the blow-up at a point and τ is the blow-up along a curve.
- σ is a \mathbb{P}^{2}-bundle and r is a linear subspace of a fiber [Mar73].
- σ is a quadric fibration and r is a section [D'S88].
- σ is a quadric fibration and r is a ruling in a σ-fiber [HT12].

1.3. Elementary links between blow-ups

First we check that the change of the order of the blow-ups at a point and along a curve does not change the output.

Lemma 1.3.1. Let X be a smooth 3-fold, $C \subset X$ a smooth irreducible curve and $p \in C$ a point. Denote by $\varphi_{1}: X_{1} \rightarrow X$ the blow-up at p and by $\varphi_{2}: X_{2} \rightarrow X$ the blow-up along C. Let C_{1} be the strict transform of C in X_{1} and $f_{p}:=\varphi_{2}^{-1}(p)$. Then the following holds:
(1) $\mathrm{Bl}_{C_{1}}\left(\mathrm{Bl}_{p} X\right) \cong \mathrm{Bl}_{f_{p}}\left(\mathrm{Bl}_{C} X\right)$ over X.
(2) $N_{C} X \cong N_{C_{1}} X_{1} \otimes \mathcal{O}_{C_{1}}\left(p_{1}\right)$, where $p_{1}:=\left.E_{\varphi_{1}}\right|_{C_{1}}$.

Proof. (1): Let $\psi_{1}: \widetilde{X} \rightarrow X_{1}$ be the blow-up along C_{1} and $\chi:=\varphi_{1} \circ \psi_{1}$. Let E_{p} be the strict transform of $E_{\varphi_{1}}$ in \widetilde{X}. Then we have $-K_{\tilde{X}} \sim_{X}-2 E_{p}-E_{\psi_{1}}$.

Consider the divisor $-E_{p}-E_{\psi_{1}}$. Each irreducible curve $l \subset \widetilde{X}$ contracted by χ is either a fiber of $\left.\psi_{1}\right|_{E_{\psi_{1}}}: E_{\psi_{1}} \rightarrow C_{1}$ or a curve in E_{p}. The former satisfies $\left(l \cdot-E_{p}-E_{\psi_{1}}\right)=1$ and the latter satisfies $\left(l \cdot-E_{p}-E_{\psi_{1}}\right)=\left(l \cdot f_{1}\right)_{E_{p}} \geq 0$ regarding E_{p} as \mathbb{F}_{1}. Hence $-E_{p}-E_{\psi_{1}}$ is a χ-nef divisor and $R:=\left(-E_{p}-E_{\psi_{1}}\right)^{\perp} \cap \overline{\mathrm{NE}}(\widetilde{X} / X)$ is generated by f_{1} in $E_{p} \cong \mathbb{F}_{1}$.

Since $\left(-K_{\tilde{X}} \cdot f_{1}\right)=\left(-E_{p} \cdot f_{1}\right)>0$, there is the contraction morphism $\psi_{2}: \widetilde{X} \rightarrow X_{2}^{\prime}$ of the extremal ray R. Let $\varphi_{2}^{\prime}: X_{2}^{\prime} \rightarrow X$ be the induced morphism. Since the centers of both ψ_{2} and φ_{2}^{\prime} is a curve, each of them is the blow-up along a smooth curve by [Mor82, Theorem 3.3]. Hence we have $\varphi_{2}^{\prime}=\varphi_{2}$ and ψ_{2} is the blow up of X_{2} along f_{p}, which proves (1). (2): It holds that $E_{p}=E_{\psi_{2}}$ and $\psi_{2 *} E_{\psi_{1}}=E_{\varphi_{2}}$ by (1). Hence we have:

$$
\begin{align*}
\left(\left.\psi_{2}\right|_{E_{\psi_{1}}}\right)^{*} \mathcal{O}_{\mathbb{P}\left(N_{C} X^{\vee}\right)}(1) & \cong \mathcal{O}_{E_{\psi_{1}}}\left(-\psi_{2}^{*} E_{\varphi_{2}}\right) \tag{1.3.0.1}\\
& \cong \mathcal{O}_{E_{\psi_{1}}}\left(-E_{\psi_{1}}\right) \otimes \mathcal{O}_{E_{\psi_{1}}}\left(-E_{\psi_{2}}\right) \\
& \cong \mathcal{O}_{\mathbb{P}\left(N_{C_{1}} X_{1}^{\vee}\right)}(1) \otimes \mathcal{O}_{E_{\psi_{1}}}\left(-\psi_{1}^{*} E_{\varphi_{1}}\right) \\
& \cong \mathcal{O}_{\mathbb{P}\left(N_{C_{1}} X_{1}^{\vee}\right)}(1) \otimes\left(\psi_{\left.1\right|_{E_{\psi_{1}}}}\right)^{*} \mathcal{O}_{C_{1}}\left(-E_{\varphi_{1}}\right)
\end{align*}
$$

Pushing forward (1.3.0.1) by $\left.\chi\right|_{E_{\psi_{1}}}$, we get $N_{C} X \cong N_{C_{1}} X_{1} \otimes \mathcal{O}_{C_{1}}\left(p_{1}\right)$.

1.4. Elementary links between \mathbb{P}^{2}-bundles

Elementary links between projective bundles are considered by M. Maruyama [Mar73] in any dimension. Here we restrict our attention to \mathbb{P}^{2}-bundles.

Lemma 1.4.1 ([Mar73, Theorem 1.3]). Let $p: P \rightarrow C$ be a \mathbb{P}^{2}-bundle and $L \subset P$ a n-dimensional linear subspace of a p-fiber $(n \leq 1)$. Let $\varphi: \widetilde{P}=\mathrm{Bl}_{L} P \rightarrow P$ be the blow-up along L. Then
(1) There exists a divisorial contraction $\psi: \widetilde{P} \rightarrow P^{\prime}$ over C such that the induced morphism $p^{\prime}: P^{\prime} \rightarrow C$ is a \mathbb{P}^{2}-bundle and ψ is the blow-up along a $(1-n)$-dimensional linear subspace L^{\prime} of a p^{\prime}-fiber.
(2) The exceptional divisor E_{ψ} is the strict transform of the p-fiber containing L.
(3) For an associated vector bundle \mathcal{E} to $p: P \rightarrow C$, we can take a vector bundle \mathcal{E}^{\prime} associated to $p^{\prime}: P^{\prime} \rightarrow C$ such that $\operatorname{deg} \mathcal{E}^{\prime}=\operatorname{deg} \mathcal{E}-(n+1)$.

Corollary 1.4.2. We follow the notation of Lemma 1.4.1. Suppose that $C \cong \mathbb{P}^{1}$. Let F be a p-fiber and D a sub \mathbb{P}^{1}-bundle of P. Take $a \in \mathbb{Z}$ such that $D \sim \xi_{P}+a F$. Then the following hold:

$$
\begin{cases}D_{P^{\prime}} \sim \xi_{P^{\prime}}+(a+1) F \text { and } L^{\prime} \subset D_{P^{\prime}} & \text { if } L \not \subset D \tag{1.4.0.2}\\ D_{P^{\prime}} \sim \xi_{P^{\prime}}+\text { aF } \text { and } L^{\prime} \not \subset D_{P^{\prime}} & \text { if } L \subset D\end{cases}
$$

Proof. By the canonical bundle formula, we have:

$$
\begin{align*}
-K_{P} & \sim 3 \xi_{P}-(\operatorname{deg} \mathcal{E}-2) F \tag{1.4.0.3}\\
-K_{P^{\prime}} & \sim 3 \xi_{P^{\prime}}-(\operatorname{deg} \mathcal{E}-(3+n)) F \tag{1.4.0.4}
\end{align*}
$$

Also it holds that

$$
\begin{equation*}
-K_{\widetilde{P}} \sim \varphi^{*}\left(-K_{P}\right)-(2-n) E_{\varphi} \sim \psi^{*}\left(-K_{P^{\prime}}\right)-(n+1) E_{\psi} \tag{1.4.0.5}
\end{equation*}
$$

Combining (1.4.0.3)-(1.4.0.5) and $E_{\varphi} \sim F-E_{\psi}$, we have $3 \varphi^{*} \xi_{P} \sim 3 \psi^{*} \xi_{P^{\prime}}+3\left(F-E_{\psi}\right)$. Since Pic \widetilde{P} is torsion-free, it holds that:

$$
\begin{equation*}
\varphi^{*} \xi_{P} \sim \psi^{*} \xi_{P^{\prime}}+F-E_{\psi} \tag{1.4.0.6}
\end{equation*}
$$

On the other hand, we have:

$$
D_{\widetilde{P}} \sim \begin{cases}\varphi^{*} \xi_{P}+a F & \text { if } L \not \subset D \tag{1.4.0.7}\\ \varphi^{*} \xi_{P}+a F-E_{\varphi} & \text { if } L \subset D\end{cases}
$$

Combining (1.4.0.6), (1.4.0.7) and $E_{\varphi} \sim F-E_{\psi}$, we have:

$$
D_{\widetilde{P}} \sim \begin{cases}\psi^{*} \xi_{P^{\prime}}+(a+1) F-E_{\psi} & \text { if } L \not \subset D \tag{1.4.0.8}\\ \psi^{*} \xi_{P^{\prime}}+a F & \text { if } L \subset D\end{cases}
$$

By pushing forward (1.4.0.8) by ψ, we have the assertion.

1.5. Elementary links from quadric fibrations to \mathbb{P}^{2}-bundles

H. D'Souza [D'S88] showed the existence of elementary links from quadric fibrations to \mathbb{P}^{2}-bundles. The precise statement is as follows.

Lemma 1.5.1 ([D'S88, (2.7.3)], [Fuk18, Proposition 3.1]). Let $q: Q \rightarrow C$ be a quadric fibration and $s \subset Q$ a q-section. Let $\varphi: \widetilde{Q}=\mathrm{Bl}_{s} Q \rightarrow Q$ be the blow-up of Q along s. Then there exists a divisorial contraction $\psi: \widetilde{Q} \rightarrow P$ over C such that the induced morphism $p: P \rightarrow C$ is a \mathbb{P}^{2}-bundle and ψ is the blow-up along a smooth connected p-bisection $B \subset P$.

Moreover, let H_{Q} be a q-ample divisor with $2 H_{Q} \sim_{C}-K_{Q}$ and H_{P} a p-ample divisor such that $3 H_{P} \sim_{C}-K_{P}$. Then:
(1) It holds that $E_{\psi} \sim_{C} \varphi^{*} H_{Q}-2 E_{\varphi}$ and $E_{\varphi} \sim_{C} \psi^{*} H_{P}-E_{\psi}$.
(2) The branched locus of $\left.p\right|_{B}$ coincides with the closed set

$$
\begin{equation*}
\Sigma:=\left\{t \in C \mid q^{-1}(t) \text { is singular }\right\} . \tag{1.5.0.2}
\end{equation*}
$$

(3) It holds that $\left(-K_{Q}\right)^{3}=40-\left(8 p_{a}(B)+32 p_{a}(C)\right)$.

Lemma 1.5.2. We follow the notation of Lemma 1.5.1. Let $E:=\psi_{*}\left(E_{\varphi}\right)$. Suppose that H_{Q} is a prime divisor containing s and assume that H_{Q} is normal. Then $\left(H_{Q}\right)_{\tilde{Q}} \sim_{C} \psi^{*} H_{P}$.

Moreover, when $H_{P}=\left(H_{Q}\right)_{P}$, the following holds for $t \in C$.
(1) If $t \notin \Sigma$, then $\left(\left.q\right|_{H_{Q}}\right)^{-1}(t)$ is

$$
\begin{aligned}
\text { smooth } & \Longleftrightarrow p^{-1}(t) \cap B \cap H_{P}=\emptyset . \\
\text { reducible } & \Longleftrightarrow p^{-1}(t) \cap B \cap H_{P} \neq \emptyset .
\end{aligned}
$$

(2) If $t \in \Sigma$, then $\left(\left.q\right|_{H_{Q}}\right)^{-1}(t)$ is

$$
\begin{aligned}
\text { smooth } & \Longleftrightarrow p^{-1}(t) \cap B \cap H_{P}=\emptyset \\
\text { reducible } & \Longleftrightarrow p^{-1}(t) \cap B \cap H_{P} \neq \emptyset \text { and }\left.E\right|_{p^{-1}(t)} \neq\left. H_{P}\right|_{p^{-1}(t)} . \\
\text { non-reduced } & \left.\Longleftrightarrow E\right|_{p^{-1}(t)}=\left.H_{P}\right|_{p^{-1}(t)} .
\end{aligned}
$$

Proof. The first assertion follows from Lemma 1.5.1 (1). we take the following diagram as the base change of (1.5.0.1) at $t \in C$:

Write $G_{t}:=\left.\left(\varphi_{*} E_{\psi}\right)\right|_{Q_{t}}, H_{t}:=\left.H_{Q}\right|_{Q_{t}}, s_{t}:=\left.s\right|_{Q_{t}}$ and $B_{t}:=\left.B\right|_{P_{t}}$.
(1): In this case we have $Q_{t} \cong \mathbb{F}_{0}$. By lemma 1.5.1 (1), it holds that $H_{t} \sim G_{t} \sim \Sigma_{0}+f_{0}$ and G_{t} is the union of two rulings containing s_{t}. Since H_{t} is smooth if and only if H_{t} is irreducible, we only have to show that H_{t} is smooth $\Rightarrow\left(H_{t}\right)_{P_{t}} \cap B_{t}=\emptyset \Rightarrow H_{t}$ is irreducible.

Let $G_{t}=G_{1}+G_{2}$ be the irreducible decomposition. Note that $\left(H_{t} \cdot G_{i}\right)_{Q_{t}}=1$ for $i=1,2$. Suppose that H_{t} is smooth. Then $H_{t} \cap G_{i}=s_{t}$ scheme-theoretically for $i=1,2$. Hence we have $\left(H_{t}\right)_{\widetilde{Q}_{t}} \cap E_{\psi_{t}}=\emptyset$ and $\left(H_{t}\right)_{P_{t}} \cap B_{t}=\emptyset$. On the other hand, if $\left(H_{t}\right)_{P_{t}} \cap B_{t}=\emptyset$, then $\left(H_{t}\right)_{\widetilde{Q}_{t}} \cong\left(H_{t}\right)_{P_{t}}$ is irreducible and so is H_{t}, and (1) is proved.
(2): In this case, ψ_{t} is a weighted blow-up and hence $Q_{t} \cong \mathbb{Q}_{0}^{2}$. Since $\left(s \cdot Q_{t}\right)_{Q}=1$, the point s_{t} is not the vertex of $Q_{t} \cong \mathbb{Q}_{0}^{2}$. By lemma 1.5.1 (1), it holds that $H_{t} \sim G_{t} \sim \mathcal{O}_{\mathbb{Q}_{0}^{2}}(1)$, and we have $G_{t}=2 l^{\prime}$, where l^{\prime} is the unique ruling of \mathbb{Q}_{0}^{2} containing s_{t}.

Suppose that H_{t} is smooth. Since $H_{t} \cap l^{\prime}=s_{t}$ scheme-theoretically, we have $\left(H_{t}\right)_{\tilde{Q}_{t}} \cap E_{\psi_{t}}=$ \emptyset and hence $\left(H_{t}\right)_{P_{t}} \cap B_{t}=\emptyset$.

Suppose that H_{t} is reducible. Then H_{t} is the union of two distinct ruling of $Q_{t} \cong \mathbb{Q}_{0}^{2}$. Since $s_{t} \in H_{t}$, there exists a ruling $l \neq l^{\prime}$ of Q_{t} such that $H_{t}=l+l^{\prime}$. Since H_{t} is smooth at s_{t}, it holds that $\left(H_{t}\right)_{\widetilde{Q}_{t}}=l_{\widetilde{Q}_{t}}+E_{\psi_{t}}$. Hence $\left(H_{t}\right)_{P_{t}}=l_{P_{t}}$ contains Supp B_{t} but $\left.\left(H_{P}\right)\right|_{P_{t}} \neq\left. E\right|_{P_{t}}$

Suppose that H_{t} is non-reduced. Then Supp H_{t} is a ruling of $Q_{t} \cong \mathbb{Q}_{0}^{2}$. Since $s_{t} \in H_{t}$, we have $H_{t}=G_{t}$ and hence $\left.H_{P}\right|_{P_{t}}=\left.E\right|_{P_{t}}$.

Combining these results, we complete the proof.

1.6. Elementary links between quadric fibrations

B. Hassett and Y. Tschinkel [HT12] considered elementary links between quadric fibrations with center a ruling in a smooth fiber. We can prove that a similar elementary link appears in the case of a singular fiber as follows.

LEmma 1.6.1. Let $q: Q \rightarrow C$ be a quadric fibration and l a ruling of a q-fiber. Let $\varphi: \widetilde{Q}=\mathrm{Bl}_{l} Q \rightarrow Q$ be the blow-up of Q along l. Then there exists a divisorial contraction $\psi: \widetilde{Q} \rightarrow Q^{\prime}$ over C such that the induced morphism $q^{\prime}: Q \rightarrow C$ is a quadric fibration and ψ is the blow-up along a ruling l^{\prime} of a q^{\prime}-fiber.

Proof. Let $F \subset Q$ be the q-fiber containing l. When F is smooth, then the assertion is already shown by $[\mathbf{H T 1 2}, \S 5]$. Hence we may assume that $F \cong \mathbb{Q}_{0}^{2}$.

First we calculate $N_{l} Q$. Let $v \in F$ be the vertex of \mathbb{Q}_{0}^{2} and $h: Q_{1} \rightarrow Q$ the blow-up at v. Let F_{1} (resp. l_{1}) be the strict transform of F (resp. l) in Q_{1}. Then l_{1} is a fiber of $F_{1} \cong \mathbb{F}_{2}$ and $F_{1} \sim h^{*} F-2 E_{h}$. Since $N_{l_{1}} F_{1} \cong \mathcal{O}_{l_{1}}$ and $\left.\left(N_{F_{1}} Q_{1}\right)\right|_{l_{1}} \cong \mathcal{O}_{l_{1}}\left(\left(F_{1} \cdot l_{1}\right)\right) \cong \mathcal{O}_{l_{1}}(-2)$, we have $N_{l_{1}} Q_{1} \cong \mathcal{O}_{l_{1}} \oplus \mathcal{O}_{l_{1}}(-2)$ by the normal bundle sequence. Hence $N_{l} Q=\mathcal{O}_{l}(1) \oplus \mathcal{O}_{l}(-1)$ by Lemma 1.3.1 (2)

Therefore we have $E_{\varphi} \cong \mathbb{F}_{2}$ and $\left.E_{\varphi}\right|_{E_{\varphi}} \sim-\left(\Sigma_{2}+f_{2}\right)$. Since $F_{1} \cong \mathbb{F}_{2}$, it follows that $F_{\widetilde{Q}} \cong \mathbb{F}_{2}$ from Lemma 1.3.1 (1). Since $\left.\left(E_{\varphi}+F_{\widetilde{Q}}\right)\right|_{E_{\varphi}}=\left.\varphi^{*} F\right|_{E_{\varphi}} \sim 0$, we have $\left.F_{\widetilde{Q}}\right|_{E_{\varphi}} \sim \Sigma_{2}+f_{2}$.

Hence $\left.F_{\widetilde{Q}}\right|_{E_{\varphi}}$ is the sum of $C_{1} \sim \Sigma_{2}$ and $C_{2} \sim f_{2}$. On the other hand, in $F_{\widetilde{Q}}$, we have $C_{1} \sim f_{2}$ and $C_{2} \sim \Sigma_{2}$ because $F_{\widetilde{Q}}$ is the minimal resolution of F. By symmetry of E_{φ} and $F_{\widetilde{Q}}$, there is the blow-down of $F_{\widetilde{Q}}$ as desired.

The following is the key to proving Theorem 2.1.6 (1).
Lemma 1.6.2. Let $q: Q \rightarrow C$ be a quadric fibration and $D_{h} \subset Q$ a prime divisor such that $2 D_{h} \sim_{C}-K_{Q}$. Suppose that D_{h} is non-normal. Let R be the 1-dimensional component of $\operatorname{Sing} D_{h}$. Then:
(1) R is a q-section.
(2) If we take the elementary link $Q \stackrel{\varphi}{\leftarrow} \widetilde{P} \xrightarrow{\psi} P$ with center along R, then we have $D_{h}=\left(E_{\psi}\right)_{Q}$. In particular, we have $R=\operatorname{Sing} D_{h}$.
Proof. (1): Let r be an irreducible component of R. To seek a contradiction, assume that $q(r)$ is a point. Take a q-fiber F containing r. Since D_{h} is singular along r, the restriction $\left.D_{h}\right|_{F}$ is non-reduced along r. If $F \cong \mathbb{F}_{0}$, then $\left.D_{h}\right|_{F}$ is reduced since $\left.D_{h}\right|_{F} \sim \Sigma_{0}+f_{0}$, a contradiction. Therefore $F \cong \mathbb{Q}_{0}^{2}$ and there is a ruling $r \subset F$ such that $\left.D_{h}\right|_{F}=2 r$.

Let $\chi: \widetilde{Q} \rightarrow Q$ be the blow-up along r. In the proof of Lemma 1.6.1, we have shown that $F_{\widetilde{Q}} \cong \mathbb{F}_{2}$ and $\left.F_{\widetilde{Q}}\right|_{F_{\widetilde{Q}}} \sim-\left.E_{\chi}\right|_{F_{\widetilde{Q}}} \sim-\left(\Sigma_{2}+f_{2}\right)$. Hence we have:

$$
\begin{align*}
\left(\left(D_{h}\right)_{\widetilde{Q}}^{2} \cdot F_{\widetilde{Q}}\right) & =\left(\left(\chi^{*} D_{h}-2 E_{\chi}\right)^{2} \cdot\left(\chi^{*} F-E_{\chi}\right)\right) \tag{1.6.0.2}\\
& =\left(D_{h}^{2} \cdot F\right)_{Q}-4\left(D_{h} \cdot r\right)_{Q}-4(F \cdot r)_{Q}-4 E_{\chi}^{3}=-2 \\
\left(\left(D_{h}\right)_{\widetilde{Q}} \cdot F_{\widetilde{Q}}^{2}\right) & =\left(\left(\chi^{*} D_{h}-2 E_{\chi}\right) \cdot\left(\chi^{*} F-E_{\chi}\right)^{2}\right) \tag{1.6.0.3}\\
& =\left(D_{h} \cdot F^{2}\right)_{Q}-\left(D_{h} \cdot r\right)_{Q}-4(F \cdot r)_{Q}-2 E_{\chi}^{3}=-1
\end{align*}
$$

Take $a, b \in \mathbb{Z}$ such that $\left.\left(D_{h}\right)_{\widetilde{Q}}\right|_{\widetilde{Q}} \sim a \Sigma_{2}+b f_{2}$. By (1.6.0.2) and (1.6.0.3), we have $-2 a^{2}+$ $2 a b=-2$ and $a-b=-1$. Hence $(a, b)=(-1,0)$, which is absurd.

Therefore r dominates C. Let F be a smooth q-fiber. Then we have $\emptyset \neq \operatorname{Supp}(R \cap F) \subset$ $\operatorname{Sing}\left(\left.D_{h}\right|_{F}\right)$. Since $\left.D_{h}\right|_{F} \sim \Sigma_{0}+f_{0}$, it follows that $\operatorname{Supp}(R \cap F)=\operatorname{Sing}\left(\left.D_{h}\right|_{F}\right)$ is a point and hence R is a q-section.
(2): By Lemma 1.5.1 $(1),\left(E_{\psi}\right)_{Q}$ is singular along R. For each smooth q-fiber F, there is the unique member of $\left|\Sigma_{0}+f_{0}\right|$ singular at $\operatorname{Supp}(R \cap F)$. Hence $\left.D_{h}\right|_{F}=\left.\left(E_{\psi}\right)_{Q}\right|_{F}$, and the first assertion follows. Since φ is the blow-up along R and E_{ψ} is smooth, the last assertion follows.

CHAPTER 2

Compactifications of affine homology 3-cells into quadric fibrations

2.1. Introduction to Chapter 2

In this chapter we are interested in compactifications of affine homology n-cells into smooth projective n-fold. We recall that a compactification of an affine variety U is a pair (X, D) of smooth proper variety X and its reduced effective divisor D such that the complement $X \backslash D$ is algebraically isomorphic to U. Also by an affine homology n-cell we mean a smooth affine n-fold U such that $H_{i}(U, \mathbb{Z})=0$ for $i>0$. The main problem is the following, which is based on the characterization of \mathbb{A}^{3} among all the affine homology 3-cells via compactifications into Fano 3 -folds by Furushima [Fur00].

Problem 2.1.1. Let $f: X \rightarrow C$ be an extremal contraction of relative Picard number one from a smooth projective n-fold X to a smooth projective curve C. Let $U \subset X$ be an open subscheme.
(1) If U is an affine homology n-cell, then is it isomorphic to \mathbb{A}^{n} ?
(2) If U is isomorphic to \mathbb{A}^{n}, then can we construct an explicit birational map from X to a compactification of \mathbb{A}^{n} with $B_{2}=1$ preserving $U \cong \mathbb{A}^{n}$?

In this problem, we set not only \mathbb{P}^{n} but also all compactifications of \mathbb{A}^{n} with $B_{2}=1$ as the target of birational maps preserving \mathbb{A}^{n}. It is because there is a copy of \mathbb{A}^{3} in the quintic del Pezzo 3-fold which we can regard naturally as an affine modification (for the detail, see [KZ99]) of an another copy of \mathbb{A}^{3} in \mathbb{P}^{3} via the birational map constructed in [Fur00].

We note that even when $n=2$, Problem 2.1.1 (1) have a negative answer in general. In fact, T. tom Dieck and T. Petrie [tDP90] showed that there are infinitely many contractible affine surfaces of logarithmic Kodaira dimension one in the blow-up of \mathbb{P}^{2} at a point. However, if we assume the following condition, the problem have an affirmative answer in the case where $n=2$.

Definition 2.1.1. Let $f: X \rightarrow C$ and U be as in Problem 2.1.1. Let $D:=X \backslash U$ be the boundary divisor. We say that (X, D, f) is a compactification of U compatible with f if D contains a f-fiber. When $D_{f} \subset D$ is a f-fiber and $D_{h} \subset D$ is the other components, we also call $\left(X, D_{h}, D_{f}\right)$ a compactification of U compatible with f.

By [vdV62, Proposition 2.1] and the Poincare duality, D_{h} in the setting of Definition 2.1.1 is a prime divisor. Suppose that $\left(X, D_{h}, D_{f}\right)$ is a compactification of homology 2-cell U compatible with \mathbb{P}^{1}-bundle. By [Fuj82, Corollary 1.20], it holds that D_{h} is a f-section. Hence we have $U \cong \mathbb{A}^{2}$ since $\left.f\right|_{U}$ is an \mathbb{A}^{1}-bundle over \mathbb{A}^{1}.

Problem 2.1.1 (2) was solved when $n=2$ by Mori [Mor73]. He introduced three kinds of explicit birational transformations preserving \mathbb{A}^{2} between Hirzebruch surfaces, which are called J-, R-, and L-transform. He solved the problem as in the following theorem:

Theorem 2.1.2. Let $f: X \rightarrow \mathbb{P}^{1}$ be a \mathbb{P}^{1}-bundle and D a reduced effective divisor on X such that $X \backslash D \cong \mathbb{A}^{2}$.
(1) There exists a compactification $\left(X_{1}, D_{1}, f_{1}\right)$ of \mathbb{A}^{2} compatible with a \mathbb{P}^{1}-bundle $f_{1}: X_{1} \rightarrow$ \mathbb{P}^{1} and a birational map $g_{1}: X \rightarrow X_{1}$ preserving \mathbb{A}^{2} which is a finite composition of J-, R-, and L-transforms.
(2) Let $X_{2}:=\mathbb{F}_{1}$ be a Hirzebruch surface of degree 1 with the \mathbb{P}^{1}-bundle structure f_{2}. Let D_{2} be the union of an f_{2}-fiber and the minimal section. Then there exists a birational map $g_{2}: X_{1} \rightarrow X_{2}$ preserving \mathbb{A}^{2} which is a finite composition of elementary transformations of \mathbb{P}^{1}-bundles.
Summarizing, we have the following diagram of birational maps preserving $X \backslash D \cong \mathbb{A}^{2}$:

where $g_{3}: X_{2} \rightarrow \mathbb{P}^{2}$ is the blow-down of the minimal section.
In this chapter we consider Problem 2.1.1 when $n=3$ and $\left(X, D_{h}, D_{f}\right)$ is compatible with f. In this case, f is a del Pezzo fibration. When f is a \mathbb{P}^{2}-bundle, then the problem is easy by the same reason as when $n=2$ (see $\S 2.6$). However, if the degree of f is smaller than 9 , then the problem is not obvious since a general $\left(\left.f\right|_{U}\right)$-fiber often differs from \mathbb{A}^{2}.

The main purpose of this chapter is to give a solution to Problem 2.1.1 for compactifications compatible with a quadric fibration. Our main result consists of three theorems. One is the following theorem, which is the solution to Problem 2.1.1 (1).

THEOREM 2.1.3. Let $q: Q \rightarrow C$ be a quadric fibration, D_{h} a reduced effective divisor on Q, and D_{f} a q-fiber. Then the following are equivalent.
(1) The complement $Q \backslash\left(D_{h} \cup D_{f}\right)$ is an affine homology 3-cell.
(2) It holds that $C \cong \mathbb{P}^{1}$ and $Q \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$.

The others are Theorems 2.1.6 and 2.1.7, which give a solution to Problem 2.1.1 (2). Before stating the theorems, we introduce some examples of compactifications of \mathbb{A}^{3} compatible with del Pezzo fibrations and explicit birational maps preserving \mathbb{A}^{3} from them to \mathbb{P}^{3}.

Example 2.1.4. Let $g_{3}: P^{\prime} \rightarrow \mathbb{P}^{3}$ be the blow-up along a line and $D_{h, 2}$ the exceptional divisor. Then the linear system $\left|g_{3}^{*} \mathcal{O}_{\mathbb{P}^{3}}(1)-D_{h, 2}\right|$ defines a \mathbb{P}^{2}-bundle structure $p^{\prime}: P^{\prime} \rightarrow \mathbb{P}^{1}$. Let $D_{f, 2}$ be a p^{\prime}-fiber. Then $\left(P^{\prime}, D_{h, 2}, D_{f, 2}\right)$ is a compactification of \mathbb{A}^{3} compatible with p^{\prime} because $P^{\prime} \backslash\left(D_{h, 2} \cup D_{f, 2}\right) \cong \mathbb{P}^{3} \backslash g_{3 *} D_{f, 2} \cong \mathbb{A}^{3}$. Hence $g_{3}: P^{\prime} \rightarrow \mathbb{P}^{3}$ is a birational map preserving \mathbb{A}^{3}.

Example 2.1.5. Let $h_{2}: Q^{\prime} \rightarrow \mathbb{Q}^{3}$ be the blow-up of the smooth quadric $\mathbb{Q}^{3} \subset \mathbb{P}^{4}$ along a smooth conic and D_{h}^{\prime} the exceptional divisor. Then the linear system $\left|h_{2}^{*} \mathcal{O}_{\mathbb{Q}^{3}}(1)-D_{h}^{\prime}\right|$ defines a quadric fibration structure $q^{\prime}: Q^{\prime} \rightarrow \mathbb{P}^{1}$. Let D_{f}^{\prime} be a singular q^{\prime}-fiber, which is isomorphic to the quadric cone $\mathbb{Q}_{0}^{2} \subset \mathbb{P}^{3}$. Then h_{2} induces an isomorphism $Q^{\prime} \backslash\left(D_{h}^{\prime} \cup D_{f}^{\prime}\right) \cong \mathbb{Q}^{3} \backslash \mathbb{Q}_{0}^{2}$. Let $h_{3}: \mathbb{Q}^{3} \longrightarrow \mathbb{P}^{3}$ be the projection from the vertex of \mathbb{Q}_{0}^{2}. Then, by the discussion in [Fur00, pp.117-119], h_{3} induces an isomorphism $\mathbb{Q}^{3} \backslash \mathbb{Q}_{0}^{2} \cong \mathbb{P}^{3} \backslash \mathbb{P}^{2} \cong \mathbb{A}^{3}$. Hence $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ is
a compactification of \mathbb{A}^{3} compatible with q^{\prime} and $h_{3} \circ h_{2}: Q^{\prime} \rightarrow \mathbb{P}^{3}$ is a birational map preserving \mathbb{A}^{3}.

With the above examples, the other main theorems are stated as follows.
Theorem 2.1.6. Let $\left(Q, D_{h}, D_{f}\right)$ be a compactification of \mathbb{A}^{3} compatible with a quadric fibration $q: Q \rightarrow \mathbb{P}^{1}$. Suppose that D_{h} is non-normal.
(1) Let $g_{1}: Q \rightarrow P$ be the elementary link with center along the singular locus of D_{h}, which is a q-section. Let $D_{f, 1}$ be the strict transform of D_{f} in P and $D_{h, 1}$ the exceptional divisor of the elementary link. Then P has a \mathbb{P}^{2}-bundle structure p over \mathbb{P}^{1} and $\left(P, D_{h, 1}, D_{f, 1}\right)$ is a compactification of \mathbb{A}^{3} compatible with p.
(2) We follow the notation of Example 2.1.4. Regard $p\left(D_{f, 1}\right)$ and $p^{\prime}\left(D_{f, 2}\right)$ as $\infty \in \mathbb{P}^{1}$. Then there is the composition $g_{2}: P \rightarrow P^{\prime}$ of elementary links with center along linear subspaces in the fibers at ∞ such that $D_{h, 2}$ is the strict transform of $D_{h, 1}$ in P^{\prime}.
Summarizing, we have the following diagram of rational maps preserving $Q \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$:

$$
\begin{gather*}
\left(Q, D_{h}, D_{f}\right) \xrightarrow{g_{1}}\left(P, D_{h, 1}, D_{f, 1}\right){ }^{g_{2}}\left(P^{\prime}, D_{h, 2}, D_{f, 2}\right) \xrightarrow{g_{3}}\left(\mathbb{P}^{3}, H\right) \tag{2.1.0.2}\\
q \downarrow \\
q \downarrow \\
\mathbb{P}^{1} \xlongequal{p \downarrow} \mathbb{P}^{1} \xrightarrow{p^{\prime} \downarrow} \mathbb{P}^{1},
\end{gather*}
$$

where $H:=g_{3 *} D_{f, 2}$.
THEOREM 2.1.7. Let $\left(Q, D_{h}, D_{f}\right)$ be a compactification of \mathbb{A}^{3} compatible with a quadric fibration $q: Q \rightarrow \mathbb{P}^{1}$. Suppose that D_{h} is normal. We follow the notation of Example 2.1.5. Regard $q\left(D_{f}\right)$ and $q^{\prime}\left(D_{f}^{\prime}\right)$ as $\infty \in \mathbb{P}^{1}$. Then there is the composition $h_{1}: Q \rightarrow Q^{\prime}$ of elementary links with center along rulings in the fibers at ∞ such that D_{h}^{\prime} is the strict transform of D_{h} in Q^{\prime}. In particular, we have the following diagram of rational maps preserving $Q \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}:$

$$
\begin{align*}
& \left(Q, D_{h}, D_{f}\right) \xrightarrow{h_{1}}\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right) \xrightarrow{h_{2}}\left(\mathbb{Q}^{3}, \mathbb{Q}_{0}^{2}\right){ }^{h_{3}}\left(\mathbb{P}^{3}, H\right) \tag{2.1.0.3}\\
& \quad q \downarrow \\
& \quad q^{\prime} \downarrow \\
& \mathbb{P}^{1} \xlongequal{ }=\mathbb{P}^{1},
\end{align*}
$$

where we regard $h_{2 *} D_{f}^{\prime}$ as \mathbb{Q}_{0}^{2} and $H:=\mathbb{P}^{3} \backslash h_{3}\left(\mathbb{Q}^{3} \backslash \mathbb{Q}_{0}^{2}\right)$.
In Example 2.5.4, we construct a compactification of an affine homology 3-cell into a quadric fibration, which gives a negative answer to Problem 2.1.1 (1) in the case where $n=3$ without the assumption on the compatibility. Problem 2.1.1 (2) for general compactifications into del Pezzo fibrations is at present far from being solved.

2.2. Structure of Chapter 2

This article is structured as follows.
In §2.3, we determine the Hodge diamonds of del Pezzo fibrations containing affine homology 3 -cells. We also show that the base curve must be \mathbb{P}^{1}.

In $\S 2.4$, we give precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by using elementary links from quadric fibrations to \mathbb{P}^{2}-bundles.

In $\S 2.5$, we construct several examples of compactifications of \mathbb{A}^{3} compatible with quadric fibrations as applications of Theorem 2.4.2. We note that these examples are erroneously omitted from [Kis05, Table 1] or [MS90, Table 1]. We also construct an example of compactifications of affine homology 3-cells. This gives a negative answer to Problem 2.1.1 (1) in the case where $n=3$ and the compactification is not compatible with the extremal contraction.

In $\S 2.6$, we give a solution to Problem 2.1.1 for compactifications compatible with \mathbb{P}^{2} bundles. Theorem 2.1.6 follows as a corollary.

In the rest of this chapter, we prove Theorem 2.1.7 as follows. Let $\left(Q, D_{h}, D_{f}\right)$ be a compactification of \mathbb{A}^{3} compatible with a quadric fibration such that D_{h} is normal.

First, in $\S 2.7 .1$, we determine the singularities of D_{h} and $\left.D_{f}\right|_{D_{h}}$. We also assign a nonnegative integer to them, which we call the type of $\left(Q, D_{h}, D_{f}\right)$. By definition, (Q, D_{h}, D_{f}) is of type 0 if and only if D_{h} is a Hirzebruch surface.

Next, in $\S 2.7 .2$, we suppose that $\left(Q, D_{h}, D_{f}\right)$ is of type $m>0$. We construct a birational map preserving \mathbb{A}^{3} from $\left(Q, D_{h}, D_{f}\right)$ to another compactification of type $(m-1)$ via elementary links between quadric fibrations. Composing such maps, we get a birational map from $\left(Q, D_{h}, D_{f}\right)$ to a compactification of \mathbb{A}^{3} of type 0 . Hence we reduce to proving Theorem 2.1.7 when $\left(Q, D_{h}, D_{f}\right)$ is of type 0 , i.e., when D_{h} is a Hirzebruch surface.

Finally, in $\S 2.7 .3$, we suppose that D_{h} is a Hirzebruch surface of degree $d \in \mathbb{Z}_{\geq 0}$. When $d>0$, we give a birational map preserving \mathbb{A}^{3} from $\left(Q, D_{h}, D_{f}\right)$ to another compactification $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ of \mathbb{A}^{3} of type 0 such that D_{h}^{\prime} is a Hirzebruch surface of degree $(d-1)$. When $d=0$, we show that $\left(Q, D_{h}, D_{f}\right)$ is actually the same as $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ as in Example 2.1.5. We have thus proved Theorem 2.1.7.

2.3. Topological invariants of the ambient space

In this section, we determine the Hodge diamonds of del Pezzo fibrations containing affine homology 3 -cells, and that of the base curves.

Lemma 2.3.1. Let $f: X \rightarrow C$ be a del Pezzo fibration and D a reduced effective divisor on X such that $X \backslash D$ is an affine homology 3-cell. Then the Hodge diamond of X is as follows:

Moreover, It holds that $C \cong \mathbb{P}^{1}$.
Proof. By the Hodge symmetry, we only have to compute $h^{i, 0}(X)$ for $1 \leq i \leq 3$ and $h^{1,1}(X)$. Since $-K_{X}$ is f-ample, we have the following by the relative Kawamata-Viehweg vanishing theorem:

$$
\begin{equation*}
h^{i}\left(X, \mathcal{O}_{X}\right)=h^{i}\left(C, \mathcal{O}_{C}\right) \text { for } i \geq 0 \tag{2.3.0.1}
\end{equation*}
$$

In particular, we have $h^{2,0}(X)=h^{3,0}(X)=0$. Since the Picard number of X is two by assumption, we have $h^{1,1}(X)=h^{1,1}(X)+2 h^{2,0}(X)=2$.

On the other hand, by [vdV62, Proposition 2.1], we have $H^{5}(X, \mathbb{Z}) \cong H^{5}(D, \mathbb{Z})=0$. Hence $H^{1}(X, \mathbb{Z})=0$ by the Poincare duality and $h^{1,0}(X)=0$ by the Hodge decomposition, which proves the first assertion. The second assertion follows from (2.3.0.1).

2.4. Proof of Theorem 2.1.3.

This section is devoted to the proof of Theorem 2.1.3. First we determine the linear equivalence class of the irreducible components of the boundary divisor. Then we give the precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by using Lemma 1.5.1, i.e. elementary links from quadric fibrations to \mathbb{P}^{2}-bundles.

Lemma 2.4.1. Let $q: Q \rightarrow C$ be a quadric fibration, D_{h} a reduced effective divisor on Q, and D_{f} a q-fiber. If $U:=Q \backslash\left(D_{h} \cup D_{f}\right)$ is an affine homology 3-cell, then D_{h} is a prime divisor such that $2 D_{h} \sim_{C}-K_{Q}$.

Proof. By Lemma 2.3.1, it follows that $\operatorname{Pic}_{0}(Q)=0$. By [Fuj82, Corollary 1.20], we have $\operatorname{Pic} U=0$ and the group of invertible functions on U coincides with non-zero constants \mathbb{C}^{*}. Hence D_{h} is a prime divisor such that $\operatorname{Pic} Q=\mathbb{Z} D_{f} \oplus \mathbb{Z} D_{h}$. By Theorem 1.1.2 (5) and the Grothendieck-Lefschetz theorem, there exists a divisor H_{Q} on Q such that Pic $Q=$ $\mathbb{Z} D_{f} \oplus \mathbb{Z} H_{Q}$ and $2 H_{Q} \sim_{C}-K_{Q}$. Hence $D_{h} \sim_{C} H_{Q}$, which proves the lemma.

The following is the precise statement of Theorem 2.1.3.
Theorem 2.4.2. Let $q: Q \rightarrow C$ be a quadric fibration, D_{h} a reduced effective divisor on Q, and D_{f} a q-fiber.
(A) Suppose that D_{h} is non-normal. Then the following are equivalent.
(1) The complement $Q \backslash\left(D_{h} \cup D_{f}\right)$ is an affine homology 3-cell.
(2) $C \cong \mathbb{P}^{1}$ and D_{h} is a prime divisor such that $2 D_{h} \sim_{C}-K_{Q}$.
(3) It holds that $Q \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$.
(B) Suppose that D_{h} is normal. Then the following are equivalent.
(1) The complement $Q \backslash\left(D_{h} \cup D_{f}\right)$ is an affine homology 3-cell.
(2) $C \cong \mathbb{P}^{1}$ and D_{h} is a prime divisor such that $2 D_{h} \sim_{C}-K_{Q}$. Also we have $D_{f} \cong \mathbb{Q}_{0}^{2}$ and $h^{1,2}(Q)=0$. Moreover, each $\left(\left.q\right|_{D_{h}}\right)$-fiber is smooth except possibly $\left.D_{f}\right|_{D_{h}}$.
(3) It holds that $Q \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$.

Proof. (A): Since $(3) \Rightarrow(1)$ is trivial and $(1) \Rightarrow(2)$ follows from Lemma 2.3.1 and Lemma 2.4.1, we only have to show $(2) \Rightarrow(3)$.

Suppose that (2) holds. Let $s:=\operatorname{Sing} D_{h}$, which is a q-section by Lemma 1.6.2. Construct $\varphi, \psi, p, \widetilde{Q}$ and P as in Lemma 1.5.1. Then we have $\left(E_{\psi}\right)_{Q}=D_{h}$ by Lemma 1.6.2 (2). Therefore we have:

$$
\begin{equation*}
Q \backslash\left(D_{h} \cup D_{f}\right) \cong \widetilde{Q} \backslash\left(\left(D_{h}\right)_{\widetilde{Q}} \cup\left(D_{f}\right)_{\widetilde{Q}} \cup E_{\varphi}\right) \cong P \backslash\left(\left(D_{f}\right)_{P} \cup\left(E_{\varphi}\right)_{P}\right) \tag{2.4.0.1}
\end{equation*}
$$

Since $\left(E_{\varphi}\right)_{P}$ is a sub \mathbb{P}^{1}-bundle by Lemma 1.5.1 (1) and $\left(D_{f}\right)_{P}$ is a p-fiber, we have $Q \backslash\left(D_{h} \cup\right.$ $\left.D_{f}\right) \cong \mathbb{A}^{3}$ by [Kis05, Lemma 5.15].
(B): Since $(3) \Rightarrow(1)$ is trivial, we only have to show $(1) \Rightarrow(2) \Rightarrow(3)$. Let $U:=Q \backslash\left(D_{h} \cup D_{f}\right)$. We note that (1) implies $C \cong \mathbb{P}^{1}$ by Lemma 2.3.1. Hence we may assume that $C \cong \mathbb{P}^{1}$ throughout the proof. Let $\infty:=q\left(D_{f}\right)$ and regard $C \backslash\{\infty\}$ as \mathbb{A}^{1}.
$(1) \Rightarrow(2)$: Suppose that (1) holds. Then the second assertion follows from Lemma 2.3.1. Since U is an affine homology 3 -cell, we have:

$$
\begin{align*}
\chi_{\mathrm{top}}(Q) & =\chi_{\mathrm{top}}(U)+\chi_{\mathrm{top}}\left(D_{h} \backslash\left(\left.D_{f}\right|_{D_{h}}\right)\right)+\chi_{\mathrm{top}}\left(D_{f}\right) \tag{2.4.0.2}\\
& =1+\chi_{\mathrm{top}}\left(D_{h} \backslash\left(\left.D_{f}\right|_{D_{h}}\right)\right)+\chi_{\mathrm{top}}\left(D_{f}\right) .
\end{align*}
$$

Let $\sigma:=\left\{t \in \mathbb{A}^{1} \mid\left(\left.q\right|_{D_{h}}\right)^{*}(t)\right.$ is reducible $\}$. For $t \in \mathbb{A}^{1}$, the divisor $\left(\left.q\right|_{D_{h}}\right)^{*}(t)$ is a member of either $\left|\Sigma_{0}+f_{0}\right|$ in \mathbb{F}_{0} or $\left|\mathcal{O}_{\mathbb{Q}_{0}^{2}}(1)\right|$ in \mathbb{Q}_{0}^{2}. In particular, we have:

$$
\begin{aligned}
t \notin \sigma & \Longleftrightarrow \operatorname{Supp}\left(\left.q\right|_{D_{h}}\right)^{*}(t) \cong \mathbb{P}^{1} \\
& \Longleftrightarrow \chi_{\text {top }}\left(\left(\left.q\right|_{D_{h}}\right)^{*}(t)\right)=2 \\
t \in \sigma & \Longleftrightarrow q^{*}(t) \cong \mathbb{F}_{0} \text { and }\left(\left.q\right|_{D_{h}}\right)^{*}(t) \text { is reducible } \\
& \Longleftrightarrow \chi_{\text {top }}\left(\left(\left.q\right|_{D_{h}}\right)^{*}(t)\right)=3
\end{aligned}
$$

Hence we have:

$$
\begin{equation*}
\chi_{\mathrm{top}}\left(D_{h} \backslash\left(\left.D_{f}\right|_{D_{h}}\right)\right)=2 \chi_{\mathrm{top}}\left(\mathbb{A}^{1} \backslash \sigma\right)+3 \chi_{\mathrm{top}}(\sigma)=2+\sharp \sigma . \tag{2.4.0.3}
\end{equation*}
$$

Also by Lemma 2.3.1, we have:

$$
\begin{equation*}
\chi_{\mathrm{top}}(Q)=6-2 h^{1,2}(Q) \tag{2.4.0.4}
\end{equation*}
$$

Combining (2.4.0.2)-(2.4.0.4), we have:

$$
\begin{equation*}
6-2 h^{1,2}(Q) \geq 3+\sharp \sigma+\chi_{\mathrm{top}}\left(D_{f}\right) . \tag{2.4.0.5}
\end{equation*}
$$

we note that $\chi_{\text {top }}\left(D_{f}\right)=3$ when $D_{f} \cong \mathbb{Q}_{0}^{2}$ and $\chi_{\text {top }}\left(D_{f}\right)=4$ when $D_{f} \cong \mathbb{F}_{0}$. Hence (2.4.0.5) implies that $h^{1,2}(Q)=0, \sigma=\emptyset$ and $D_{f} \cong \mathbb{Q}_{0}^{2}$. In particular, we get the third and fourth assertion of (2).

It remains to prove the last assertion. Take a q-section $s \subset D_{h}$ and construct $\varphi, \psi, p, \widetilde{Q}, P$ and B and as in Lemma 1.5.1. By (1.5.0.1), we have:

$$
\begin{equation*}
\chi_{\mathrm{top}}(Q)=6-2 p_{a}(B) \tag{2.4.0.6}
\end{equation*}
$$

Combining (2.4.0.4) and (2.4.0.6), we have $p_{a}(B)=h^{1,2}(Q)=0$. In particular, the branch locus of $\left.p\right|_{B}$ consists of two points. By Lemma 1.5.1 (2), there is exactly two singular q fibers. Since $q^{*}(\infty)=D_{f} \cong \mathbb{Q}_{0}^{2}$, we may assume that $q^{*}(0)$ is the other singular fiber. By Lemma 1.5.2 and the fact that $\sigma=\emptyset$, each $\left(\left.q\right|_{D_{h}}\right)$-fiber is smooth except possibly $\left.D_{f}\right|_{D_{h}}$ and $\left(\left.q\right|_{D_{h}}\right)^{*}(0)$. Hence we only have to show that $\left(\left.q\right|_{D_{h}}\right)^{*}(0)$ is smooth.

Conversely, suppose that $\left(\left.q\right|_{D_{h}}\right)^{*}(0)$ is not smooth. Let $E:=\psi_{*}\left(E_{\varphi}\right)$ and $U^{\prime}:=P \backslash\left(\left(D_{h}\right)_{P} \cup\right.$ $\left.\left(D_{f}\right)_{P}\right) \cong \mathbb{A}^{3}$. Since $U \cong \widetilde{Q} \backslash\left(\left(D_{h}\right)_{\widetilde{Q}} \cup\left(D_{f}\right)_{\widetilde{Q}} \cup E_{\varphi}\right)$, we can regard U as the affine modification of U^{\prime} with the locus $\left(B \cap U^{\prime} \subset E \cap U^{\prime}\right)$ (see [KZ99] for the definition). By [KZ99, Theorem 3.1], the morphism between homologies $\tau: H_{1}\left(B \cap U^{\prime}, \mathbb{Z}\right) \rightarrow H_{1}\left(E \cap U^{\prime}, \mathbb{Z}\right)$ induced by the inclusion $B \cap U^{\prime} \hookrightarrow E \cap U^{\prime}$ is an isomorphism of \mathbb{Z}-modules.

On the other hand, $\left(\left.q\right|_{D_{h}}\right)^{*}(0)$ is non-reduced because $\sigma=\emptyset$. Lemma 1.5.2 now shows that $E \cap U^{\prime} \cong \mathbb{A}^{1} \times \mathbb{C}^{*}$ and $B \cap U^{\prime} \cong \mathbb{C}^{*}$, which is an unramified 2-section of the second projection of $E \cap U^{\prime}$. Hence $H_{1}\left(B \cap U^{\prime}, \mathbb{Z}\right) \cong H_{1}\left(E \cap U^{\prime}, \mathbb{Z}\right) \cong \mathbb{Z}$, but $\tau=2 \times \mathrm{id}_{\mathbb{Z}}$, a contradiction.
$(2) \Rightarrow(3)$: Suppose that (2) holds. Let $E:=\psi_{*}\left(E_{\varphi}\right)$ and $U^{\prime}:=P \backslash\left(\left(D_{h}\right)_{P} \cup\left(D_{f}\right)_{P}\right) \cong \mathbb{A}^{3}$. Then we can regard U as the affine modification of U^{\prime} with the locus ($B \cap U^{\prime} \subset E \cap U^{\prime}$). By Lemma 1.5.2, we have $E \cap U^{\prime} \cong \mathbb{A}^{2}$ and $B \cap U^{\prime} \cong \mathbb{A}^{1}$. By the Abhyanker-Mor theorem over Noetherian rings containing $\mathbb{Q}\left[\mathbf{B D} 93\right.$, Theorem B], there is a coordinate $\{x, y, z\}$ of $U^{\prime}=\mathbb{A}^{3}$
such that $E \cap U^{\prime}=\{x=0\}$ and $B \cap U^{\prime}=\{x=y=0\}$. Hence U is isomorphic to the affine modification of $\mathbb{A}_{[x, y, z]}^{3}$ with the locus $(\{x=y=0\} \subset\{x=0\})$, which is isomorphic to \mathbb{A}^{3} as desired.

2.5. Examples

This section provides several examples of compactifications of affine homology 3-cells compatible with quadric fibrations. For the construction, we often use Theorem 2.4.2. Throughout this section, $\left(Q, D_{h}, D_{f}\right)$ stands for a compactification of \mathbb{A}^{3} compatible with a quadric fibration $q: Q \rightarrow \mathbb{P}^{1}$. We note that $K_{Q}+D_{h}+D_{f}$ is not nef since $\left(K_{Q}+D_{h}+D_{f} \cdot l\right)=-1$ for each ruling l of a q-fiber.

First suppose that Q is a Fano 3 -fold and $D_{h}+D_{f}$ is ample. Let us mention that then in [Kis05, Lemma 5.9], D_{h} is erroneously claimed to be normal. In Example 2.5.1, we construct examples with non-normal D_{h}.

Example 2.5.1. Let $q: Q \rightarrow \mathbb{P}^{1}$ be a Fano quadric fibration, i.e. either No. 18, No. 25 or No. 29 in [MM82, Table 2]. Let D_{f} be a q-fiber. By [Man66, Theorem 4.2], we can take a q-section s. By Lemma 1.5.1 (1), there is a prime divisor D_{h} on Q such that $2 D_{h} \sim_{\mathbb{P}^{1}}-K_{Q}$ and Sing $D_{h}=s$. Theorem 2.4.2 (A) now shows that $\left(Q, D_{h}, D_{f}\right)$ is a compactification of \mathbb{A}^{3} compatible with q.

Assume that $D_{h}+D_{f}$ is not ample. Then by [Kis05, Lemma 2.2] there is a birational extremal contraction φ of Q such that $E_{\varphi}=D_{h}$ or D_{f}. Since D_{f} is a q-fiber, we have $E_{\varphi}=D_{h}$, which is impossible since D_{h} is non-normal and E_{φ} is normal by [Mor82, Theorem 3.3]. Hence $D_{h}+D_{f}$ is ample.

Secondly, suppose that D_{h} is normal and Q is No. 29 in [MM82, Table 2], i.e. the blow-up of \mathbb{Q}^{3} along a smooth conic. Let us mention that then in [Kis05, Lemma 5.13], $D_{h}+D_{f}$ erroneously claimed to be not ample. In Example 2.5.2, we construct an example with $D_{h}+D_{f}$ ample.

Example 2.5.2. Take H, S and C in $\mathbb{Q}^{3}=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0\right\} \subset \mathbb{P}_{\left[X_{0}: \cdots: X_{4}\right]}^{4}$ as follows:

$$
\begin{align*}
H & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=X_{0}=0\right\} \tag{2.5.0.1}\\
S & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=X_{1} X_{3}+X_{0}^{2}=0\right\} \tag{2.5.0.2}\\
C & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=X_{0}=X_{1}=0\right\} \tag{2.5.0.3}
\end{align*}
$$

Let $P:=\left\{X_{0} Y_{1}=X_{1} Y_{0}\right\} \subset \mathbb{P}_{\left[X_{0}: \cdots: X_{4}\right]}^{4} \times \mathbb{P}_{\left[Y_{0}: Y_{1}\right]}^{1}$, and $\Phi: P \rightarrow \mathbb{P}^{4}$ be the blow-up along $\left\{X_{0}=X_{1}=0\right\}$. Set Q, D_{f} and D_{h} as the strict transformations of \mathbb{Q}^{3}, H and S in P respectively. Then $\left.\Phi\right|_{Q}: Q \rightarrow \mathbb{Q}^{3}$ is the blow-up along C, and the second projection of $\mathbb{P}^{4} \times \mathbb{P}^{1}$ induces a quadric fibration $q: Q \rightarrow \mathbb{P}_{\left[Y_{0}: Y_{1}\right]}^{1}$. The defining equations of Q, D_{f} and D_{h} in P are as follows:

$$
\begin{align*}
Q & =\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0\right\} \tag{2.5.0.4}\\
D_{f} & =\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=Y_{0}=0\right\} \\
D_{h} & =\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=Y_{1} X_{3}+Y_{0} X_{0}=0\right\}
\end{align*}
$$

Then D_{f} is a singular q-fiber and D_{h} has only one DuVal singularity of type D_{4}. Also D_{h} is a prime divisor with $2 D_{h} \sim_{\mathbb{P}^{1}}-K_{Q}$. Since $C \cong \mathbb{P}^{1}$, we have $h^{1,2}(Q)=0$. Also we have:

$$
\begin{aligned}
D_{h} \backslash\left(\left.D_{f}\right|_{D_{h}}\right) & \cong\left\{\begin{array}{l}
X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0, \\
X_{1}=X_{0} Y_{1}, Y_{1} X_{3}+X_{0}=0
\end{array}\right\} \text { in } \mathbb{P}_{\left[X_{0}: \cdots: X_{4}\right]}^{4} \times \mathbb{A}_{\left(Y_{1}\right)}^{1} \\
& \cong\left\{Y_{1}^{3} X_{3}^{2}+X_{2}^{2}+X_{3} X_{4}=0\right\} \text { in } \mathbb{P}_{\left[X_{2}: X_{3}: X_{4}\right]}^{2} \times \mathbb{A}_{\left(Y_{1}\right)}^{1}
\end{aligned}
$$

Hence each $\left(\left.q\right|_{D_{h}}\right)$-fiber is smooth except $\left.D_{f}\right|_{D_{h}}$.
Theorem 2.4.2 (B) now shows that $\left(Q, D_{h}, D_{f}\right)$ is a compactification of \mathbb{A}^{3} compatible with q. Since both D_{h} and D_{f} differ from $E_{\left.\Phi\right|_{Q}}$, the ampleness of $D_{h}+D_{f}$ follows from $[$ Kis05, Lemma 2.2].

Thirdly, suppose that Q is an arbitrary quadric fibration and $\left.D_{f}\right|_{D_{h}}$ is smooth. Then D_{h} is normal by Lemma 1.6.2. In fact, it holds that $D_{h} \cong \mathbb{F}_{d}$ for some $d \in \mathbb{Z}_{\geq 0}$ by Theorem 2.4.2 (B). Let us mention that in [MS90, $\S 4.4$, Lemma 2], it is erroneously claimed that $d=0$. In Example 2.5.3, we construct an example with $D_{h} \cong \mathbb{F}_{d}$ for each $d \in \mathbb{Z}_{\geq 0}$.

Example 2.5.3. Let $d \in \mathbb{Z}_{\geq 0}$ and $P:=\mathbb{F}(0,1, d)$ with the \mathbb{P}^{2}-bundle structure $p: P \rightarrow \mathbb{P}^{1}$. For $i=1, d$, let S_{i} be the sub \mathbb{P}^{1}-bundle of P associated with the projection $\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1) \oplus$ $\mathcal{O}_{\mathbb{P}^{1}}(d) \rightarrow \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(i)$ and F a p-fiber. Then it holds that $S_{i} \cong \mathbb{F}_{i}$ and $S_{i} \sim \xi_{P}-(d+1-i) F$, . Also we have:

$$
\begin{align*}
\left(\left.S_{i}\right|_{S_{(d+1-i)}}\right)^{2} & =\left(\xi_{P}-(d+1-i) F\right)^{2} \cdot\left(\xi_{P}-i F\right) \tag{2.5.0.7}\\
& =\xi_{P}^{3}-(2 d+2-i) \xi_{P}^{2} \cdot F=-(d+1-i)
\end{align*}
$$

Hence $\left.S_{d}\right|_{S_{1}}=\Sigma_{1}$ and $\left.S_{1}\right|_{S_{d}}=\Sigma_{d}$.
Now take $B \subset S_{1}$ as a smooth member of $\left|2\left(\Sigma_{1}+f_{1}\right)\right|$, which is a p-bisection. Let $\psi: \widetilde{P} \rightarrow P$ be the blow-up along B. Then $-K_{\widetilde{P}}$ is $(p \circ \psi)$-ample. An easy computation shows that there is the elementary link with center along B :

such that φ is the blow-up of a quadric fibration Q along a q-section. In fact, this is the inverse of an elementary link as in Lemma 1.5.1. Since $B \cong \mathbb{P}^{1}$, we have $h^{1,2}(Q)=0$ by (2.4.0.4) and (2.4.0.6).

Let $D_{h}:=\left(S_{d}\right)_{Q}$ and D_{f} a singular q-fiber, which exists by Lemma 1.5.1 (2). Then $2 D_{h} \sim_{\mathbb{P}^{1}}-K_{Q}$ by Lemma 1.5.1 (1). Since $B \cap S_{d}=\emptyset$ and $E_{\varphi}=\left(S_{1}\right)_{\widetilde{P}}$, it holds that $D_{h} \cong S_{d} \cong \mathbb{F}_{d}$. Theorem 2.4.2 (B) now shows that $\left(Q, D_{h}, D_{f}\right)$ is a compactification of \mathbb{A}^{3} compatible with q.

Finally, we give an example of compactifications of affine homology 3-cells into quadric fibrations which gives a negative answer to Problem 2.1.1 (1) without the assumption on the compatibility.

Example 2.5.4. Take H, S and C in $\mathbb{Q}^{3}=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0\right\} \subset \mathbb{P}_{\left[X_{0}: \cdots: X_{4}\right]}^{4}$ as follows:

$$
\begin{align*}
H & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=X_{0}=0\right\} \tag{2.5.0.9}\\
S & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0, X_{0} X_{3}^{2}=X_{4}^{3}\right\} \tag{2.5.0.10}\\
C & :=\left\{X_{0} X_{1}+X_{2}^{2}+X_{3} X_{4}=0, X_{3}=X_{4}=X_{0}\right\} \tag{2.5.0.11}
\end{align*}
$$

As in Example 2.5.2, the blow-up $Q:=\mathrm{Bl}_{C} \mathbb{Q}^{3}$ has a quadric fibration structure $q: Q \rightarrow \mathbb{P}^{1}$. Since each q-fiber is the strict transform of a hyperplane section of \mathbb{Q}^{3} containing C, both H_{Q} and S_{Q} are not q-fibers.

Now set $U:=Q \backslash\left(H_{Q} \cup S_{Q}\right), \mathbb{Q}^{0}:=\mathbb{Q}^{3} \backslash H, S^{0}:=S \backslash(S \cap H)$ and $C^{0}:=C \backslash(C \cap H)$. Then U is the affine modification of \mathbb{Q}^{0} with the locus $\left(C^{0} \subset S^{0}\right)$. In $\mathbb{P}^{4} \backslash H \cong \mathbb{A}_{\left[x_{1}, \ldots, x_{4}\right]}^{4}$, we have an isomorphism $\mathbb{Q}^{0} \cong\left\{x_{1}+x_{2}^{2}+x_{3} x_{4}=0\right\} \cong \mathbb{A}_{\left[x_{2}\right]}^{1} \times \mathbb{A}_{\left[x_{3}, x_{4}\right]}^{2}$. This isomorphism sends S^{0} and C^{0} to $\mathbb{A}_{\left[x_{2}\right]}^{1} \times\left\{x_{3}^{2}=x_{4}^{3}\right\}$ and $\mathbb{A}_{\left[x_{2}\right]}^{1} \times\{(1,1)\}$ respectively. By [tDP90], U is isomorphic to $\mathbb{A}_{\left[x_{2}\right]}^{1} \times V(3,2)$, where $V(3,2)=\left\{z^{2} x_{4}^{3}+3 z x_{4}^{2}+3 x_{4}-z x_{3}^{2}-2 x_{3}=1\right\} \subset \mathbb{A}_{\left[x_{3}, x_{4}, z\right]}^{3}$ is an affine homology 2-cell of logarithmic Kodaira dimension one. Hence $\left(Q, H_{Q} \cup S_{Q}\right)$ is a compactification of an affine homology 3 -cell $\mathbb{A}^{1} \times V(3,2)$. We note that $\mathbb{A}^{1} \times V(3,2) \neq \mathbb{A}^{3}$ by [IF77, Theorem 1].

2.6. Compactifications of affine homology 3-cells compatible with \mathbb{P}^{2}-bundles

In this section, we will give a solution of Problem 2.1.1 for compactifications compatible with \mathbb{P}^{2}-bundles. Theorem 2.1.6 follows as a corollary.

First we give the solution of Problem 2.1.1 (1) for such compactifications.
Lemma 2.6.1. Let $p: P \rightarrow C$ be a \mathbb{P}^{2}-bundle, D_{h} a reduced effective divisor on P, and D_{f} a p-fiber. Then the following are equivalent.
(1) The complement $P \backslash\left(D_{h} \cup D_{f}\right)$ is an affine homology 3-cell.
(2) $C \cong \mathbb{P}^{1}$ and D_{h} is a sub \mathbb{P}^{1}-bundle.
(3) It holds that $P \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$.

Proof. Since $(3) \Rightarrow(1)$ is trivial and $(2) \Rightarrow(3)$ follows from [Kis05, Lemma 5.15], we only have to show $(1) \Rightarrow(2)$.

Suppose that (1) holds. The first assertion follows from Lemma 2.3.1. By the same argument as in the proof of Lemma 2.4.1, D_{h} is a prime divisor such that Pic $P=\mathbb{Z} D_{f} \oplus \mathbb{Z} D_{h}$. On the other hand, we have Pic $P=\mathbb{Z} D_{f} \oplus \mathbb{Z} \xi_{P}$. Hence $D_{h} \sim_{C} \xi_{P}$, which implies that D_{h} is a sub \mathbb{P}^{1}-bundle of P.

Next we characterize $\left(P^{\prime}, D_{h, 2}, D_{f, 2}\right)$ as in Example 2.1.4.
Lemma 2.6.2. Let $p: P \rightarrow \mathbb{P}^{1}$ be a \mathbb{P}^{2}-bundle with associated vector bundle \mathcal{E}. Let F be a p-fiber and $D \subset P$ a sub \mathbb{P}^{1}-bundle. Suppose that $\operatorname{deg} \mathcal{E}=3 n+1, D \cong \mathbb{F}_{0}$ and $D \sim \xi_{P}-(n+1) F$ for some $n \in \mathbb{Z}$. Then we have $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{1}}(n) \oplus \mathcal{O}_{\mathbb{P}^{1}}(n) \oplus \mathcal{O}_{\mathbb{P}^{1}}(n+1)$, and D is the exceptional divisor of the blow-up $f: P \cong \mathbb{F}(0,0,1) \rightarrow \mathbb{P}^{3}$ along a line.

Proof. By replacing \mathcal{E} by $\mathcal{E} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-n)$, we may assume that $n=0$. Let us show the ampleness of $-K_{P}$. It is obvious that $-\left.K_{P}\right|_{F}$ is ample. By the canonical bundle formula and
the adjunction formula, we have:

$$
\begin{align*}
-K_{P} & \sim 3 \xi_{P}+F \sim 3 D+4 F \tag{2.6.0.1}\\
\left.D\right|_{D} & \sim-\left.\frac{1}{2}\left(K_{P}+D\right)\right|_{D}-\left.2 F\right|_{D} \sim-\frac{1}{2} K_{D}-2 f_{0} \sim \Sigma_{0}-f_{0} \tag{2.6.0.2}
\end{align*}
$$

we thus get $-\left.\left.K_{P}\right|_{D} \sim(3 D+4 F)\right|_{D} \sim 3 \Sigma_{0}+f_{0}$, which is also ample.
Suppose that $\left(-K_{P} \cdot r\right) \leq 0$ holds for some curve $r \subset P$. Since both $-\left.K_{P}\right|_{F}$ and $-\left.K_{P}\right|_{D}$ are ample, (2.6.0.1) now shows that r must be disjoint from any p-fiber, a contradiction. Hence $-K_{P}$ is strictly nef. On the other hand, we have $\left(-K_{P}\right)^{3}=54$ since P is a \mathbb{P}^{2}-bundle over \mathbb{P}^{1}. Hence $-K_{P}$ is big and semiample by the base-point free theorem. Since $-K_{P}$ is strictly nef and semiample, it is ample.

Therefore P is a Fano \mathbb{P}^{2}-bundle. By [MM82, Table 2], P is isomorphic to either $\mathbb{P}^{1} \times \mathbb{P}^{2}$ or $\mathbb{F}(0,0,1)$. Since $\operatorname{deg} \mathcal{E}=1$, it holds that $P \cong \mathbb{F}(0,0,1)$ and $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$, which is the first assertion.

Since $F \sim f^{*} \mathcal{O}_{\mathbb{P}^{3}}(1)-E_{f}$ and $-K_{P} \sim f^{*} \mathcal{O}_{\mathbb{P}^{3}}(4)-E_{f} \sim 3 E_{f}+4 F$, the second assertion follows from (2.6.0.1).

Now we can give a solution to Problem 2.1.1 (2) for compactification compatible with \mathbb{P}^{2}-bundles.

Proposition 2.6.3. Let $\left(P, D_{h}, D_{f}\right)$ be a compactification of \mathbb{A}^{3} compatible with a \mathbb{P}^{2} bundle $p: P \rightarrow \mathbb{P}^{1}$. We follow the notation of Example 2.1.4. Regard $p\left(D_{f}\right)$ and $p^{\prime}\left(D_{f, 2}\right)$ as $\infty \in \mathbb{P}^{1}$. Then there is the composition $g_{2}: P \rightarrow P^{\prime}$ of elementary links with center along linear subspaces in the fibers at ∞ such that $D_{h, 2}=\left(D_{h}\right)_{P^{\prime}}$. In particular, there exists the following diagram of rational maps preserving $P \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$:

$$
\begin{align*}
& \left(P, D_{h}, D_{f}\right) \xrightarrow{g_{2}}\left(P^{\prime}, D_{h, 2}, D_{f, 2}\right) \xrightarrow{g_{3}}\left(\mathbb{P}^{3}, H\right) \tag{2.6.0.3}\\
& p \downarrow \square
\end{align*}
$$

where $H:=g_{3 *} D_{f, 2}$.
Proof. Suppose that $D_{h} \cong \mathbb{F}_{d}$ for some $d>0$. Take the elementary link $P \rightarrow P_{1}$ with center at a point $p \in D_{h} \cap D_{f}$ such that $p \notin \Sigma_{d}$. This elementary link preserves $P \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$. Also we have $\left(D_{h}\right)_{P_{1}} \cong \mathbb{F}_{d-1}$ because $P \rightarrow P_{1}$ induces an elementary transform of D_{h} with center at p. Taking such elementary links d times, we may assume that $D_{h} \cong \mathbb{F}_{0}$.

Let \mathcal{E} be an associated vector bundle of P. Set $d:=\operatorname{deg} \mathcal{E}$ and take $e \in \mathbb{Z}$ such that $D_{h} \sim \xi_{P}+e D_{f}$.

Let us show that $d+e \in 2 \mathbb{Z}$. By the canonical bundle formula and the adjunction formula, we have:

$$
\begin{align*}
-K_{X} & \sim 3 \xi_{P}-(d-2) D_{f} \sim 3 D_{h}-(d+3 e-2) D_{f} . \tag{2.6.0.4}\\
-K_{D_{h}} & \left.\sim\left(2 D_{h}-(d+3 e-2) D_{f}\right)\right|_{D_{h}} \tag{2.6.0.5}\\
& \left.\sim 2\left(D_{h}-(e-1) D_{f}\right)\right|_{D_{h}}-\left.(d+e) D_{f}\right|_{D_{h}} .
\end{align*}
$$

This gives $d+e \in 2 \mathbb{Z}$ because $-K_{D_{h}} \sim 2\left(\Sigma_{0}+f_{0}\right)$ and $\left.D_{f}\right|_{D_{h}} \sim f_{0}$.

Now let $L \subset D_{f}$ be a linear subspace and $P \rightarrow P_{1}$ the elementary link with center along L. This elementary link preserves $P \backslash\left(D_{h} \cup D_{f}\right) \cong \mathbb{A}^{3}$. Let F be a fiber of the induced \mathbb{P}^{2}-bundle $p_{1}: P_{1} \rightarrow \mathbb{P}^{1}$. Take an associated vector bundle \mathcal{E}^{\prime} of P_{1} as in Lemma 1.4.1.

Consider the case where L is a point outside D_{h}. Then we have $\left(D_{h}\right)_{P_{1}} \cong D_{h} \cong \mathbb{F}_{0}$. By Lemma 1.4.1 and Corollary 1.4.2, we have $\operatorname{deg} \mathcal{E}^{\prime}=d-1$ and $\left(D_{h}\right)_{P_{1}} \sim \xi_{P_{1}}+(e+1) F$. For each $m \in \mathbb{Z}_{\geq 0}$, taking such elementary links m times, we can replace (d, e) with $(d-m, e+m)$.

Consider the case where $L=D_{f} \cap D_{h}$. Then we have $\left(D_{h}\right)_{P_{1}} \cong D_{h} \cong \mathbb{F}_{0}$. Replacing \mathcal{E}^{\prime} with $\mathcal{E}^{\prime} \otimes p_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(1)$, we have $\operatorname{deg} \mathcal{E}^{\prime}=d+1$ and $\left(D_{h}\right)_{P_{1}} \sim \xi_{P_{1}}+(e-1) F$ by Lemma 1.4.1 and Corollary 1.4.2. For each $m \in \mathbb{Z}_{\geq 0}$, taking such elementary links m times, we can replace (d, e) with $(d+m, e-m)$.

Now set $m:=\frac{d+3 e}{2}+1 \in \mathbb{Z}$ and replace (d, e) with $(d+m, e-m)=\left(\frac{3(d+e)}{2}+1,-\frac{d+e}{2}-1\right)$. Applying Lemma 2.6.2 with $n=\frac{d+e}{2}$, we have the assertion.

Now we can prove Theorem 2.1.6.
Proof of Theorem 2.1.6. We have shown that $\operatorname{Sing} D_{h}$ is a q-section in Lemma 1.6.2. By Lemma 1.5.1, there is the elementary link $g_{1}: Q \rightarrow P$ with center along Sing D_{h} and the induced morphism $p: P \rightarrow \mathbb{P}^{1}$ is a \mathbb{P}^{2}-bundle. Let E be the exceptional divisor of the elementary link. As in the proof of Theorem 2.4.2 (A), we can show that g_{1} induces an isomorphism $\mathbb{A}^{3} \cong Q \backslash\left(D_{h} \cup D_{f}\right) \cong P \backslash\left(E \cup\left(D_{f}\right)_{P}\right)$. Hence $\left(P, D_{h, 1}, D_{f, 1}\right):=\left(P, E,\left(D_{f}\right)_{P}\right)$ is a compactification of \mathbb{A}^{3} compatible with p, which proves (1). The assertions (2) follow from Proposition 2.6.3.

2.7. Proof of Theorem 2.1.7

The remainder of this chapter will be devoted to the proof of Theorem 2.1.7. From now on, we assume that $\left(Q, D_{h}, D_{f}\right)$ is a compactification of \mathbb{A}^{3} compatible with a quadric fibration $q: Q \rightarrow C \cong \mathbb{P}^{1}$ such that D_{h} is normal. Also we use the following notation:

Notation 1. For $d \in \mathbb{Z}_{>0}$, we will denote by S_{d} the blow-up of \mathbb{F}_{d} at a point outside Σ_{d}. We note that S_{d} is also the blow-up of \mathbb{F}_{d-1} at a point in Σ_{d-1}.
2.7.1. Singularities of D_{h} and $\left.D_{f}\right|_{D_{h}}$. First, we establish a relation between the singularity of $\left.D_{f}\right|_{D_{h}}$ and that of D_{h}. Theorem 2.4.2 (B) shows that $D_{f} \cong \mathbb{Q}_{0}^{2}$ and $\left.D_{h}\right|_{D_{f}} \sim \mathcal{O}_{\mathbb{Q}_{0}^{2}}(1)$. Hence $\left.D_{h}\right|_{D_{f}}$ is either a smooth conic, the union of two distinct rulings, or a non-reduced curve supporting on a ruling of \mathbb{Q}_{0}^{2}.

Theorem 2.7.1. We have the following correspondence.
(1) If $\left.D_{f}\right|_{D_{h}}$ is smooth, then $D_{h} \cong \mathbb{F}_{d}$ for some $d \geq 0$.
(2) If $\left.D_{f}\right|_{D_{h}}$ is reducible, then $D_{h} \cong S_{d}$ for some $d>0$.
(3) If $\left.D_{f}\right|_{D_{h}}$ is non-reduced, then D_{h} has either exactly two DuVal singularities of type A_{1}, or the unique DuVal singularity of type A_{3} or $D_{m}(m \geq 4)$.

Proof. Take a q-section $s \subset D_{h}$ and construct $\varphi, \psi, p, \widetilde{Q}, P$ and B as in Lemma 1.5.1. Write $G:=\psi_{*} E_{\varphi}, \infty:=q\left(D_{f}\right), f_{\infty}:=\left(\left.p\right|_{G}\right)^{*}(\infty)$ and $l_{t}:=\left(\left.p\right|_{\left.\left(D_{h}\right)_{P}\right)}\right)^{*}(t)$ for $t \in C$.

Recall that $B \cong \mathbb{P}^{1}, D_{f} \cong \mathbb{Q}_{0}^{2}$ and singular $\left(\left.q\right|_{D_{h}}\right)$-fibers are at most $\left.D_{f}\right|_{D_{h}}$ by Theorem 2.4.2 (B). In particular, $\left.p\right|_{B}$ is ramified over ∞. By Lemma 1.5.2, $\left(\left.p\right|_{G}\right)$-fibers contained in $\left(D_{h}\right)_{P}$ are at most f_{∞}. Also $f_{\infty} \not \subset\left(D_{h}\right)_{P}$ if and only if $\left.D_{f}\right|_{D_{h}}$ is reduced.

By Lemma 2.4.1, we have $2 D_{h} \sim_{C}-K_{Q}$. Hence $\left(D_{h}\right)_{P}$ is a sub \mathbb{P}^{1}-bundle of P not containing B by Lemma 1.5.1 (1). Since G is also a sub \mathbb{P}^{1}-bundle of P, there exists a unique p-section s^{\prime} and $a \in \mathbb{Z}_{\geq 0}$ such that $\left.\left(D_{h}\right)_{P}\right|_{G}=s^{\prime}+a f_{\infty}$.

Let us show that $\left(B \cdot s^{\prime}\right)_{G} \leq 1$. For $t \in C$, it holds that $l_{t} \cap B=\emptyset$ if and only if $\left(\left.q\right|_{D_{h}}\right)^{*}(t)$ is smooth by Lemma 1.5.2. Since singular $\left(\left.q\right|_{D_{h}}\right)$-fibers are at most $\left.D_{f}\right|_{D_{h}}$, we have $\operatorname{Supp}\left(\left(D_{h}\right)_{P} \cap B\right) \subset f_{\infty}$. Hence $\operatorname{Supp}\left(s^{\prime} \cap B\right) \subset \operatorname{Supp}\left(f_{\infty} \cap B\right)$. Since $\left.p\right|_{B}$ is ramified over ∞, the support of $f_{\infty} \cap B$ is a point. By the same reason, B and f_{∞} have the same tangent direction at $\operatorname{Supp}\left(f_{\infty} \cap B\right)$ in G. Since $\left(f_{\infty} \cdot s^{\prime}\right)_{G}=1$, we have $\left(B \cdot s^{\prime}\right)_{G} \leq 1$ as desired.
(1): Suppose that $\left.D_{f}\right|_{D_{h}}$ is smooth. Then we have $a=0$ and $l_{\infty} \cap B=\emptyset$ by Lemma 1.5.2. The former implies that $\left(D_{h}\right)_{P} \cup G$ is a SNC divisor, and the latter implies that $B \cap\left(D_{h}\right)_{P}=\emptyset$. Hence ψ is an isomorphism along $\left(D_{h}\right)_{\widetilde{Q}}$. Since $\left(D_{h}\right)_{\widetilde{Q}} \cup E_{\varphi}=\left(D_{h}\right)_{\widetilde{Q}} \cup G_{\widetilde{Q}}$ is a SNC divisor, we have $D_{h} \cong\left(D_{h}\right)_{\widetilde{Q}} \cong\left(D_{h}\right)_{P}$, which is a Hirzebruch surface, and (1) is proved. (2): Suppose that $\left.D_{f}\right|_{D_{h}}$ is reducible. Then we have $a=0$ and $l_{\infty} \cap B \neq \emptyset$ by Lemma 1.5.2. Hence $\left(D_{h}\right)_{P} \cup G$ is a SNC divisor. Also $\left(D_{h}\right)_{\tilde{Q}}$ is the blow-up of $\left(D_{h}\right)_{P}$ at a point because $\left(\left(D_{h}\right)_{P} \cdot B\right)_{P}=(e \cdot B)_{G}=1$. Since $\left(D_{h}\right)_{\widetilde{Q}} \cap E_{\varphi}$ is the strict transform of s^{\prime} in \widetilde{Q}, the divisor $\left(D_{h}\right)_{\tilde{Q}} \cup E_{\varphi}$ is a SNC divisor and hence we have $D_{h} \cong\left(D_{h}\right)_{\tilde{Q}}$, which is the blow-up of a Hirzebruch surface at a point, and (2) is proved.
(3): Suppose that $\left.D_{f}\right|_{D_{h}}$ is non-reduced. Then we have $a \geq 1$ by Lemma 1.5.2. Set $m:=$ $\left(B \cdot\left(D_{h}\right)_{P}\right)_{P}=\left(B \cdot s^{\prime}\right)_{G}+2 a \geq 2$.

For $0 \leq i \leq m-1$, we define $P_{i}, \widetilde{Q}_{i}, x_{i}, h_{i}$ and ψ_{i} by induction as follows. Let $P_{0}:=P$, $\widetilde{Q}_{0}:=\widetilde{Q}, x_{0}:=\operatorname{Supp}\left(\left(D_{h}\right)_{P} \cap B\right), h_{0}:=\operatorname{id}_{P}$ and $\psi_{0}:=\psi$. For $i>0$, denote by $h_{i}: P_{i} \rightarrow P_{i-1}$ the blow-up at x_{i-1}. Let $x_{i}:=\operatorname{Supp}\left(\left(D_{h}\right)_{P_{i}} \cap B_{P_{i}}\right)$, which is a point. We also define $\psi_{i}: \widetilde{Q}_{i} \rightarrow$ P_{i} as the blow-up along $B_{P_{i}}$.

Then we have the following diagram by Lemma 1.3.1 (1), where $\varphi_{i}: \widetilde{Q}_{i} \rightarrow \widetilde{Q}_{i-1}$ is the blow-up along $\left(\psi_{i-1}\right)^{-1}\left(x_{i-1}\right)$ for $1 \leq i \leq m-1$.

Let $\alpha:\left(D_{h}\right)_{\widetilde{Q}_{m-1}} \rightarrow D_{h}$ be the induced morphism. To know the singularities on D_{h}, it suffices to detect that of $\left(D_{h}\right)_{\widetilde{Q}_{m-1}}$ and the shape of E_{α}.

For $1 \leq i \leq m-1$, it holds that $\left(D_{h}\right)_{P_{i}}$ is smooth and $\left(\left(D_{h}\right)_{P_{i}} \cdot B_{P_{i}}\right)_{P_{i}}=m-i$ because h_{i} is the blow-up at the point x_{i-1}. Hence $\left(D_{h}\right)_{P_{m-1}}$ intersects with $B_{P_{m-1}}$ at x_{m-1} transversally and $\left(D_{h}\right)_{\tilde{Q}_{m-1}}$ is the blow-up of $\left(D_{h}\right)_{P_{m-1}}$ at x_{m-1}, which is also smooth.

Let us reveal the precise location of $x_{i} \in\left(D_{h}\right)_{P_{i}}$ for $0 \leq i \leq m-1$ to detect the shape of E_{α}. Note that $x_{i} \in E_{h_{i}}$ by construction. We already showed that $x_{0}=\operatorname{Supp}\left(B \cap f_{\infty}\right)$. Since $\left(B \cdot f_{\infty}\right)_{G}=2$, we have $\left(B_{P_{1}} \cdot\left(f_{\infty}\right)_{P_{1}}\right)_{G_{P_{1}}}=1$. Hence we have $x_{1}=\operatorname{Supp}\left(B_{P_{1}} \cap\left(f_{\infty}\right)_{P_{1}}\right)=$ $\operatorname{Supp}\left(E_{h_{1}} \cap\left(f_{\infty}\right)_{P_{1}}\right)$.

We now turn to the case $i \geq 2$. We have $x_{2} \notin\left(f_{\infty}\right)_{P_{2}}$ since $\left(B_{P_{2}} \cdot\left(f_{\infty}\right)_{P_{2}}\right)_{G_{P_{2}}}=0$. Also we have $x_{2} \notin\left(E_{h_{1}}\right)_{P_{2}}$ since $\left(B_{P_{2}} \cdot\left(E_{h_{1}}\right)_{P_{2}}\right)_{P_{2}}=0$. Hence $x_{2} \in E_{h_{2}}$ and $x_{2} \notin\left(E_{h_{1}}\right)_{P_{2}} \cup\left(f_{\infty}\right)_{P_{2}}$. Similarly, for $i \geq 3$, we have $x_{i} \in E_{h_{i}}$ and $x_{i} \notin\left(E_{h_{i-1}}\right)_{P_{i}}$.

Let e_{i} be the strict transform of $\left.E_{h_{i}}\right|_{D_{h, i}}$ in \widetilde{Q}_{m-1} for $1 \leq i \leq m-1$. Set $\widetilde{f}_{\infty}:=\left(f_{\infty}\right)_{\widetilde{Q}_{m-1}}$, $\widetilde{s}:=s_{\widetilde{Q}_{m-1}}^{\prime}$ and $r:=\left.E_{\psi_{m-1}}\right|_{\left(D_{h}\right)_{\tilde{Q}_{m-1}}}$. By the above observation on x_{i}, the configuration of e_{i}, $\widetilde{f}_{\infty}, \widetilde{s}$ and r in $\left(D_{h}\right)_{\widetilde{Q}_{m-1}}$ is as in FIGURE 1.

Figure 1. The configuration of $e_{i}, \widetilde{f}_{\infty}, \widetilde{s}$ and r in $\left(D_{h}\right)_{\tilde{Q}_{m-1}}$

It is clear that $\left(f_{\infty}\right)_{\tilde{Q}}$ is the exceptional divisor of $\left(D_{h}\right)_{\tilde{Q}} \rightarrow D_{h}$. On the other hand, by Lemma 1.3.1 (1), e_{m-1} is the exceptional divisor of $\left(D_{h}\right)_{\widetilde{Q}_{m-1}} \rightarrow\left(D_{h}\right)_{\tilde{Q}_{m-2}}$. Repeated application of Lemma 1.3.1 (1) shows us that $E_{\alpha}=\tilde{f}_{\infty} \cup \bigcup_{i=1}^{m-1} e_{i}$. Since each of them is (-2)-curve in $\left(D_{h}\right)_{\tilde{Q}_{m-1}}$, the singularity of D_{h} is the DuVal singularity of type $2 A_{1}$ when $m=2, A_{3}$ when $m=3$ and D_{m} when $m \geq 4$, which completes the proof.

The next aim is to construct explicit birational maps preserving \mathbb{A}^{3} from $\left(Q, D_{h}, D_{f}\right)$ to an another compactification $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ compatible with quadric fibration such that the singularity of D_{h}^{\prime} is milder than that of D_{h}. To do so, we define the type of (Q, D_{h}, D_{f}) as follows.

Definition 2.7.2. Let $m \in \mathbb{Z}_{\geq 0}$. We call $\left(Q, D_{h}, D_{f}\right)$ a compactification of

- type 0 when $D_{h} \cong \mathbb{F}_{d}$ for some $d \geq 0$.
- type 1 when $D_{h} \cong S_{d}$ for some $d>0$.
- type 2 when D_{h} has two DuVal singularities of type A_{1}.
- type 3 when D_{h} has a DuVal singularity of type A_{3}
- type $m(\geq 4)$ when D_{h} has a DuVal singularity of type D_{m}.

We note that $\left.D_{f}\right|_{D_{h}}$ contains a ruling of $\mathbb{Q}_{0}^{2} \cong D_{f}$ if and only if $m>0$. It is easy to check that the number of the type coincides with $\left(B \cdot\left(D_{h}\right)_{P}\right)_{P}$ as in the proof of Theorem 2.7.1. Hence we have the following.

Corollary 2.7.3. Take any q-section $s \subset D_{h}$ and construct P and B as in Lemma 1.5.1. Then $\left(Q, D_{h}, D_{f}\right)$ is of type $m \in \mathbb{Z}_{\geq 0}$ if and only if $\left(B \cdot\left(D_{h}\right)_{P}\right)_{P}=m$.
2.7.2. The case of singular $\left.D_{f}\right|_{D_{h}}$. Next we shall give an elementary link from each compactification of \mathbb{A}^{3} of type $m>0$ to that of type $(m-1)$. Composing such elementary links, we get a birational map from each compactification of \mathbb{A}^{3} of type $m>0$ to that of type 0 .

Lemma 2.7.4. Let $q: Q \rightarrow C$ be a quadric fibration, F a singular q-fiber, $s \subset Q$ a q section and l the ruling of $F \cong \mathbb{Q}_{0}^{2}$ which intersects with s. We use the same letter l and s for their strict transformations by abuse of notation. Consider the following four elementary links:

- $Q \stackrel{\varphi_{1,1}}{\rightleftarrows} Q_{1,1} \xrightarrow{\psi_{1,1}} Q^{\prime}$: the elementary link with center along l.
- $Q^{\prime} \stackrel{\varphi_{1,2}}{\rightleftarrows} Q_{1,2} \xrightarrow{\psi_{1,2}} P_{1}$: the elementary link with center along s.
- $Q \stackrel{\varphi_{2,1}}{\rightleftarrows} Q_{2,1} \xrightarrow{\psi_{2,1}} P$: the elementary link with center along s.
- $P \stackrel{\varphi_{2,2}}{\stackrel{ }{L}} Q_{2,2} \xrightarrow{\psi_{2,2}} P_{2}$: the elementary link with center at the point $x:=\psi_{2,1}(l)$.

Summarizing these notation, we have the following diagram:

Then the birational map $\iota: P_{1} \rightarrow P_{2}$ induced by (2.7.2.1) is an isomorphism.
Proof. By [Cor95, Proposition 3.5], we only have to show that ι is an isomorphism in codimension one.

Let l^{\prime} be the strict transform of the center of $\psi_{1,1}$ in $Q_{1,2}$. Let $\chi_{1}: X_{1} \rightarrow Q_{1,2}$ be the blow-up along l^{\prime}. Since $s \subset Q_{1,1}$ is disjoint from $F_{Q_{1,1}}=E_{\psi_{1,1}}$, we have $X_{1} \cong \mathrm{Bl}_{s} Q_{1,1}$. On the other hand, let B be the strict transform of the center of $\psi_{2,1}$ in $Q_{2,2}$. Let $\chi_{2}: X_{2} \rightarrow Q_{2,2}$ be the blow-up along B. By Lemma 1.3.1 (1), we have $X_{2} \cong \mathrm{Bl}_{l} Q_{2,1}$. Summarizing these arguments, we have the following diagram:

In Q, the curve s intersects with l transversally. Hence the induced map $X_{1} \rightarrow X_{2}$ is the Atiyah flop. By construction both $E_{\chi_{1}}$ and $E_{\psi_{2,2}}$ are the strict transforms of F. By

Lemma 1.6.2 (2) both $E_{\chi_{2}}$ and $E_{\psi_{1,2}}$ are the strict transforms of $E_{\psi_{2,1}}$. Therefore ι is also an isomorphism in codimension one, which completes the proof.

Theorem 2.7.5. Suppose that $\left(Q, D_{h}, D_{f}\right)$ is of type $m>0$. Let l be an irreducible component of $\operatorname{Supp}\left(\left.D_{f}\right|_{D_{h}}\right)$ and take the elementary link $Q \leftarrow Q_{1,1} \rightarrow Q^{\prime}$ with center along l. Let E be the exceptional divisor of the elementary link. Then $\left(Q^{\prime},\left(D_{h}\right)_{Q^{\prime}}, E\right)$ is a compactification of \mathbb{A}^{3} compatible with a quadric fibration of type $(m-1)$.

Proof. By Lemma 1.6.1, we have $Q \backslash\left(\left(D_{h}\right)_{Q^{\prime}} \cup E\right) \cong \mathbb{A}^{3}$. By Lemma 1.6.2, $\left(D_{h}\right)_{Q^{\prime}}$ is normal. Hence it suffices to show that $\left(Q^{\prime},\left(D_{h}\right)_{Q^{\prime}}, E\right)$ is of type $(m-1)$.

By Theorem 2.7.1 we can take a q-section $s \subset D_{h}$ intersecting with l. Take elementary transformations as in Lemma 2.7.4. Let $B \subset P_{1}$ be the center of $\psi_{1,2}$. By Corollary 2.7.3, it suffices to show that $\left(\left(D_{h}\right)_{P_{1}} \cdot B\right)_{P_{1}}=m-1$.

By Lemma 2.7.4 we have $P_{1} \cong P_{2}$ and B_{P} is the center of $\psi_{2,1}$. Since $\left.D_{h}\right|_{D_{f}}$ is not smooth, Lemma 1.5.2 now implies $x \in\left(D_{h}\right)_{P} \cap B_{P}$. Hence $\left(D_{h}\right)_{Q_{2,2}} \sim \varphi_{2,2}^{*}\left(D_{h}\right)_{P}-E_{\varphi_{2,2}} \sim \psi_{2,2}^{*}\left(D_{h}\right)_{P_{1}}$ by Corollary 1.4.2 and $\left(\left(D_{h}\right)_{P_{1}} \cdot B\right)_{P_{1}}=\left(\left(D_{h}\right)_{P} \cdot B_{P}\right)_{P}-\left(E_{\varphi_{2,2}} \cdot B_{Q_{2,2}}\right)_{Q_{2,2}}=m-1$ by Corollary 2.7.3.

An easy computation shows the following.
Corollary 2.7.6. We follow the notation of Theorem 2.7.5. Suppose that $m=1$ and take $d>0$ such that $D_{h} \cong S_{d}$. Then $\left(D_{h}\right)_{Q^{\prime}} \cong \mathbb{F}_{d}$ (resp. \mathbb{F}_{d-1}) when l intersects with (resp. is disjoint from) the strict transform of Σ_{d} in S_{d}.
2.7.3. The case of smooth $\left.D_{f}\right|_{D_{h}}$. By Theorem 2.7.5, we are reduced to prove Theorem 2.1.7 for the case where $\left(Q, D_{h}, D_{f}\right)$ is of type 0 , i.e. where D_{h} is a Hirzebruch surface. First we construct a birational map which decreases the degree of D_{h} as a Hirzebruch surface.

Lemma 2.7.7. Suppose that $D_{h} \cong \mathbb{F}_{d}$ for some $d>0$. Set $\infty:=q\left(D_{h}\right)$. Then there are an another compactification $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ of \mathbb{A}^{3} compatible with a quadric fibration q^{\prime} and the composition $h: Q \rightarrow Q^{\prime}$ of elementary links with center along rulings in the fibers at ∞ such that $\left(D_{h}\right)_{Q^{\prime}}=D_{h}^{\prime} \cong \mathbb{F}_{d-1}$ and $D_{f}^{\prime}=\left(q^{\prime}\right)^{*}(\infty)$. In particular, h preserves $Q \backslash\left(D_{f} \cup D_{h}\right) \cong \mathbb{A}^{3}$.

Proof. Take the elementary link $f_{1}: Q \rightarrow Q_{1}$ with center along a ruling of $D_{f} \cong \mathbb{Q}_{0}$ which is disjoint from $\Sigma_{d} \subset D_{h}$. Let E be the exceptional divisor of the elementary link. Since f_{1} induces the elementary transformation of D_{h} with center a point outside Σ_{d}, we get a compactification $\left(Q_{1},\left(D_{h}\right)_{Q_{1}}, E\right)$ of \mathbb{A}^{3} such that $\left(D_{h}\right)_{Q_{1}} \cong S_{d}$.

Now take the elementary link $f_{2}: Q_{1} \rightarrow Q^{\prime}$ with center along the irreducible component of $\operatorname{Supp}\left(\left.E\right|_{\left(D_{h}\right)_{Q_{1}}}\right)$ which is disjoint from the strict transform of Σ_{d} in $\left(D_{h}\right)_{Q_{1}}$. Then by Corollary 2.7.6, we get a compactification $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ of \mathbb{A}^{3} such that $D_{h}^{\prime} \cong \mathbb{F}_{d-1}$. Hence $h:=f_{2} \circ f_{1}$ is the desired birational map.

Repeated application of Lemma 2.7.7 enables us to assume that (Q, D_{h}, D_{f}) satisfies $D_{h} \cong \mathbb{F}_{0}$. Next we show that such a compactification is the same as $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right)$ as in Example 2.1.5.

Lemma 2.7.8. Suppose that $D_{h} \cong \mathbb{F}_{0}$. Then Q is the blow-up of \mathbb{Q}^{3} along a smooth conic and D_{h} is the exceptional divisor of the blow-up.

Proof. First let us show the ampleness of $-K_{Q}$. By Lemma 2.4.1, we can take $a \in \mathbb{Z}$ such that $-K_{Q} \sim 2 D_{h}+a D_{f}$. By the adjunction formula, we have $\left.D_{h}\right|_{D_{h}} \sim-K_{D_{h}}-\left.a D_{f}\right|_{D_{h}}$. Since $D_{h} \cong \mathbb{F}_{0}$, we have:

$$
\begin{align*}
D_{h}^{3} & =\left(K_{D_{h}}+\left.a D_{f}\right|_{D_{h}}\right)^{2} \tag{2.7.3.2}\\
& =\left(K_{D_{h}}\right)^{2}+2 a\left(\left.K_{D_{h}} \cdot D_{f}\right|_{D_{h}}\right)=8-4 a . \\
\left(-K_{Q}\right)^{3} & =\left(2 D_{h}+a D_{f}\right)^{3} \tag{2.7.3.3}\\
& =8 D_{h}^{3}+12 a\left(D_{h}^{2} \cdot D_{f}\right)=64-8 a .
\end{align*}
$$

On the other hand, by Lemma 1.5.1 (3), it holds that $\left(-K_{Q}\right)^{3}=40-\left(8 p_{a}(B)+32 p_{a}(C)\right)$. We have $C \cong \mathbb{P}^{1}$ by assumption. Combining Theorem 2.4.2 (B), (2.4.0.4) and (2.4.0.6), we get $p_{a}(B)=0$. Hence $\left(-K_{Q}\right)^{3}=40$. Substituting this into (2.7.3.3), we have $a=3$. Hence we have

$$
\begin{equation*}
-K_{Q} \sim 2 D_{h}+3 D_{f} \tag{2.7.3.4}
\end{equation*}
$$

and $-\left.K_{Q}\right|_{D_{h}} \sim\left(2 D_{h}+3 D_{f}\right)_{D_{h}} \sim-2 K_{D_{h}}-\left.3 D_{f}\right|_{D_{h}} \sim 4 \Sigma_{0}+f_{0}$, which is ample. Clearly $-\left.K_{Q}\right|_{D_{f}}$ is also ample.

Suppose that $\left(-K_{Q} \cdot r\right) \leq 0$ holds for some curve $r \subset Q$. Since both $-\left.K_{Q}\right|_{D_{h}}$ and $-\left.K_{Q}\right|_{D_{f}}$ are ample, (2.7.3.4) now shows that r must be disjoint from any q-fiber, a contradiction. Hence $-K_{Q}$ is strictly nef. Also $-K_{Q}$ is big since $\left(-K_{Q}\right)^{3}=40$ and is semiample by the base-point free theorem. Since $-K_{Q}$ is strictly nef and semiample, it is ample.

Therefore Q is a Fano quadric fibration with $\left(-K_{Q}\right)^{3}=40$. By [MM82, Table 2], Q is the blow-up of \mathbb{Q}^{3} along a smooth conic, which is the first assertion.

Let $h_{2}: Q \rightarrow \mathbb{Q}^{3}$ be the blow-up morphism. Since $D_{f} \sim h_{2}^{*} \mathcal{O}_{\mathbb{Q}^{3}}(1)-E_{h_{2}}$ and $-K_{Q} \sim$ $h_{2}^{*} \mathcal{O}_{\mathbb{Q}^{3}}(3)-E_{h_{2}} \sim 2 E_{h_{2}}+3 D_{f}$, the second assertion follows from (2.7.3.4).

Now we can prove Theorem 2.1.7.
Proof of Theorem 2.1.7. Suppose that $\left(Q, D_{h}, D_{f}\right)$ is a compactification of \mathbb{A}^{3} of type m. Taking elementary links m times as in Theorem 2.7.5, we may assume that $m=0$. Repeated application of Lemma 2.7.7 enables us to assume that $D_{h} \cong \mathbb{F}_{0}$. Then $h_{1}:=\mathrm{id}_{Q}$ and $\left(Q^{\prime}, D_{h}^{\prime}, D_{f}^{\prime}\right):=\left(Q, D_{h}, D_{f}\right)$ satisfies all the assertion by Lemma 2.7.8.

CHAPTER 3

\mathbb{G}_{a}^{3}-structures in del Pezzo fibrations

3.1. Introduction to Chapter 3

In this chapter, we are interested in compactifications of the affine n-space \mathbb{G}_{a}^{n} with the additive group structure in the following sense.

Definition 3.1.1 ([HT99, Definition 2.1]). Let \mathbb{G} be a connected linear algebraic group. $A \mathbb{G}$-variety X is a variety with a fixed (left) \mathbb{G}-action such that the stabilizer of a general point is trivial and the orbit of a general point is dense.

By $a \mathbb{G}$-structure on X with the boundary divisor D, we mean a \mathbb{G}-action on X which makes X a \mathbb{G}-variety whose dense open orbit is $X \backslash D$. We note that when $\mathbb{G}=\mathbb{G}_{a}^{n}$, we can reword a \mathbb{G}_{a}^{n}-variety as a variety with a fixed \mathbb{G}_{a}^{n}-action whose dense orbit is isomorphic to \mathbb{G}_{a}^{n} because \mathbb{G}_{a}^{n} is simply connected.
B. Hassett and Y. Tschinkel [HT99] considered \mathbb{G}_{a}^{n}-varieties originally, and classified all the smooth projective \mathbb{G}_{a}^{n}-varieties with the second Betti number $B_{2}=1$ when $n \leq 3$. Since smooth rational projective varieties with $B_{2}=1$ are Fano, we can rephrase their result as the classification of all the smooth Fano \mathbb{G}_{a}^{n}-varieties with $B_{2}=1$ when $n \leq 3$. After that, Z. Huang and P. Montero [HM18] classified all the smooth Fano \mathbb{G}_{a}^{3}-varieties with $B_{2} \geq 2$. B. Fu and P. Montero [FM19] also classified all the smooth Fano \mathbb{G}_{a}^{n}-varieties with Fano index at least $n-2$ for any dimension.

In this chapter, we consider smooth projective \mathbb{G}_{a}^{3}-varieties with $B_{2}=2$, which are not necessarily Fano. Take such a variety X, which is rational by definition. By virtue of the Mori theory, it has an extremal contraction $f: X \rightarrow C$ of relative Picard number one with $\operatorname{dim} C \geq 1$. The purpose of this chapter is to determine the structure of f when $\operatorname{dim} C=1$, i.e., when f is a del Pezzo fibration. The main theorem of this chapter is the following,

Theorem 3.1.2. Let X be a smooth projective 3 -fold, D a reduced effective divisor on X and $f: X \rightarrow C$ a del Pezzo fibration. Then the following are equivalent.
(1) X has $a \mathbb{G}_{a}^{3}$-structure with the boundary divisor D.
(2) f is a \mathbb{P}^{2}-bundle over \mathbb{P}^{1} and D consists of a sub \mathbb{P}^{1}-bundle D_{1} and a f-fiber D_{2} which generate $\Lambda_{\mathrm{eff}}(X)$.

3.2. Structure of Chapter 3

This chapter is structured as follows. In §3.3, we recall some facts on actions of algebraic groups on algebraic varieties. Using them, we prove that Theorem 3.1.2 (1) implies (2) in $\S 3.4$. The main step to prove this implication is Proposition 3.4.4, that is, the exclusion of the case of quadric fibrations. For this, we use the results in Chapter 2. Finally, we prove
the opposite implication in $\S 3.5$. For that, we construct a \mathbb{G}_{a}^{3}-structure for each \mathbb{P}^{2}-bundle P over \mathbb{P}^{1} via a sequence of elementary links from $\mathbb{P}^{1} \times \mathbb{P}^{2}$ to P.

3.3. Preliminaries on group actions

In this section, we compile some facts on actions of algebraic groups on algebraic varieties, which will be needed in $\S 3.4$ and $\S 3.5$.

Theorem 3.3.1 ([HT99, Theorem 2.5, 2.7]). Let X be a normal proper \mathbb{G}_{a}^{3}-variety with the boundary divisor D and $D=\cup_{i=1}^{n} D_{i}$ the irreducible decomposition. Then we have the following:
(1) $\operatorname{Pic}(X)=\bigoplus_{i=1}^{n} \mathbb{Z} D_{i}$.
(2) $-K_{X} \sim \sum_{i=1}^{n} a_{i} D_{i}$ for some integers $a_{1}, \ldots, a_{n} \geq 2$.
(3) $\Lambda_{\text {eff }}(X)=\bigoplus_{i=1}^{n} \mathbb{R}_{\geq 0} D_{i}$.

Theorem 3.3.2 ([Bri17, Theorem 7.2.1]). Let G be a connected algebraic group, X a variety with G-action, Y a variety and $f: X \rightarrow Y$ a proper morphism such that $f^{\sharp}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$ is an isomorphism. Then there exists the unique G-action on Y such that f is equivariant.

3.4. Proof of Theorem 3.1.2 (1) \Rightarrow (2)

In this section, we prove that Theorem 3.1.2 (1) implies (2). For this, we make the following assumption in this section:

AsSumption 1. X is a smooth projective \mathbb{G}_{a}^{3}-variety with the boundary divisor D. $f: X \rightarrow C$ is a del Pezzo fibration of degree d.

By Theorem 3.3.1, D consists of two irreducible components, say $D_{1} \cup D_{2}$.
Lemma 3.4.1. It holds that $C \cong \mathbb{P}^{1}$.
Proof. X is rational since it contains \mathbb{G}_{a}^{3} as the dense open orbit. Since $H^{0}\left(C, \Omega_{C}\right) \hookrightarrow$ $H^{0}\left(X, \Omega_{X}\right) \cong 0$, we have $H^{0}\left(C, \Omega_{C}\right) \cong 0$ and the assertion holds.

Proposition 3.4.2. The boundary divisor D contains a f-fiber which is stable under \mathbb{G}_{a}^{3}-action.

Proof. By Theorem 3.3.2, there is the \mathbb{G}_{a}^{3}-action on C such that f is \mathbb{G}_{a}^{3}-equivariant. By the Borel fixed-point theorem [Hum75, §21.2], the action $\mathbb{G}_{a}^{3} \curvearrowright C$ has a fixed point, say $\infty \in C$. Since the divisor $f^{*}(\infty)$ is stable under the \mathbb{G}_{a}^{3}-action, it is contained in D.

In the remainder of this section we require D_{2} to be a f-fiber.
Proposition 3.4.3. It holds that $d \geq 8$.
Proof. Conversely, suppose that $d \leq 7$. By Theorem 3.3.1 (1), we have $\operatorname{Pic}(X)=$ $\mathbb{Z} D_{1} \oplus \mathbb{Z} D_{2}$. On the other hand, take a (-1)-curve l in a general f-fiber. Combining $\left(-K_{X} \cdot l\right)=1$ and [Mor82, Theorem 3.2] (2), we have $\operatorname{Pic}(X)=\mathbb{Z}\left(-K_{X}\right) \oplus \mathbb{Z} D_{2}$. Hence we can write $-K_{X} \sim a_{1} D_{1}+a_{2} D_{2}$ with $a_{1}=1$ and $a_{2} \in \mathbb{Z}$, a contradiction with Theorem 3.3.1 (2).

Proposition 3.4.4. It holds that $d \neq 8$.

Proof. Conversely, suppose that $d=8$.
Step 1: First we show that we get a contradiction if there is a \mathbb{G}_{a}^{3}-stable f-section, say s. In this case, applying Lemma 1.5 .1 with q replaced by f, we can obtain the following commutative diagram:

where φ is the blow-up along s, p is a \mathbb{P}^{2}-bundle and ψ is the blow-up along a smooth connected p-bisection, say B.

Since s is \mathbb{G}_{a}^{3}-stable, \widetilde{X} admits the unique \mathbb{G}_{a}^{3}-action such that φ is equivariant. By Theorem 3.3.2, P and C also admit the unique \mathbb{G}_{a}^{3}-actions such that ψ and p are equivariant respectively. Since E_{ψ} is \mathbb{G}_{a}^{3}-stable, so is B. Hence $\left.p\right|_{B}: B \rightarrow C$ is a \mathbb{G}_{a}^{3}-equivariant double covering. Since X has the dense open orbit, so does C. Since $\left.p\right|_{B}$ is surjective, finite and \mathbb{G}_{a}^{3}-equivariant, B also has the dense open orbit. Since C and B have dominant maps from \mathbb{G}_{a}^{3}, we obtain $C \cong B \cong \mathbb{P}^{1}$.

Let us show that B has the unique \mathbb{G}_{a}^{3}-fixed point. By [HM18, Proposition 3.6], \mathbb{G}_{a}^{3} contains a subgroup $G \cong \mathbb{G}_{a}^{2}$ such that the \mathbb{G}_{a}^{3}-action on B factorizes via $\mathbb{G}_{a}^{3} / G \cong \mathbb{G}_{a}^{1}$. Since \mathbb{G}_{a}^{1} has no non-trivial algebraic subgroup, the stabilizer of a general point of this \mathbb{G}_{a}^{1}-action is trivial. Hence this action is a \mathbb{G}_{a}^{1}-structure of B. By [HT99, Proposition 3.1], B has the unique fixed point. By the same argument, C also has the unique \mathbb{G}_{a}^{3}-fixed point.

Let $b \in B$ and $c \in C$ are the \mathbb{G}_{a}^{3}-fixed points. Since $\left.p\right|_{B}$ is equivariant, we have $p(b)=c$. If $\left.p\right|_{B}$ is unramified at b, then the point in $\left(\left.p\right|_{B}\right)^{-1}(c) \backslash\{b\}$ is also fixed, a contradiction. Hence $\left.p\right|_{B}$ is ramified at b. Since $C \cong B \cong \mathbb{P}^{1},\left.p\right|_{B}$ has the other ramification point, which is also fixed, a contradiction.
Step 2: Now it suffices to find a \mathbb{G}_{a}^{3}-stable f-section. By Theorem 3.3.1 (2), there are integers $\overline{a_{1}, a_{2}} \geq 2$ such that $-K_{X} \sim a_{1} D_{1}+a_{2} D_{2}$. For a smooth f-fiber $F \cong \mathbb{F}_{0}$, the restriction $-\left.\left.K_{X}\right|_{F} \sim a_{1} D_{1}\right|_{F}$ is a divisor of bidegree $(2,2)$. Hence $a_{1}=2$. On the other hand, by the choice of $D_{2},\left(X, D_{1}, D_{2}\right)$ is a compactification of \mathbb{A}^{3} compatible with f (See Definition 2.1.1).

If D_{1} is non-normal, then $s:=\operatorname{Sing} D_{1}$ forms a section by Lemma 1.6.2. Since D_{1} is \mathbb{G}_{a}^{3}-stable, so is s. Therefore we derive a contradiction as in Step 1 .

Hence D_{1} is normal. By Theorem 2.4.2, we obtain $D_{2} \cong \mathbb{Q}_{0}^{2}$. Suppose that (X, D_{1}, D_{2}) is of type $m>0$ in the sense of Definition 2.7.2. Then $\operatorname{Supp}\left(\left.D_{1}\right|_{D_{2}}\right)$ contains a ruling of the quadric cone D_{2} by Theorem 2.7.1, say l. applying Lemma 1.6 .1 with q replaced by f, we can obtain the following commutative diagram:

where φ is the blow-up along l, f^{\prime} is a quadric fibration and ψ is the blow-up along a ruling in a singular f^{\prime}-fiber such that $E_{\psi}=\left(D_{2}\right)_{\tilde{X}}$.

Since $\operatorname{Supp}\left(\left.D_{1}\right|_{D_{2}}\right)$ is \mathbb{G}_{a}^{3}-stable and \mathbb{G}_{a}^{3} is irreducible, l is also \mathbb{G}_{a}^{3}-stable. Hence \widetilde{X} admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $\left(D_{1} \cup D_{2}\right)_{\tilde{X}} \cup E_{\varphi}$. Theorem 3.3.2 now gives X^{\prime} a $\mathbb{G}_{a}^{3}{ }^{3}$ structure with the boundary divisor $\left(D_{1}\right)_{X^{\prime}} \cup\left(E_{\varphi}\right)_{X^{\prime}}$. By Theorem 2.7.5, $\left(X^{\prime},\left(D_{1}\right)_{X^{\prime}},\left(E_{\varphi}\right)_{X^{\prime}}\right)$ is of type $m-1$.

By repeated application of the above construction, we only have to exclude the case when $\left(X, D_{1}, D_{2}\right)$ is of type 0 . Then D_{1} is \mathbb{G}_{a}^{3}-stable and is isomorphic to \mathbb{F}_{n} for some n by definition. If $n>0$, then the negative section s in D_{1} is a \mathbb{G}_{a}^{3}-stable f-section, and we derive a contradiction as in Step 1. Hence $n=0$. There is the \mathbb{P}^{1}-bundle structure $h: D_{1} \rightarrow \mathbb{P}^{1}$ other than $\left.f\right|_{D_{1}}$. Combining Theorem 3.3.2 and the Borel fixed-point theorem, we get a \mathbb{G}_{a}^{3}-stable h-fiber s, which is a f-section. Therefore we derive a contradiction as in Step 1.

Proof of Theorem 3.1.2 (1) \Rightarrow (2). Suppose that (1) holds, Combining Propositions 3.4.3 and 3.4.4, we get $d=9$. By Theorem 3.3.1 (2), there are integers $a_{1}, a_{2} \geq 2$ such that $-K_{X} \sim a_{1} D_{1}+a_{2} D_{2}$. By the adjunction formula, we have $\left.a_{1} D_{1}\right|_{D_{2}} \sim-\left.K_{X}\right|_{D_{2}} \sim-K_{D_{2}} \sim$ $\mathcal{O}_{\mathbb{P}^{2}}(3)$. Hence $a_{1}=3$ and D_{1} is a sub \mathbb{P}^{1}-bundle. The second assertion of (2) follows from Theorem 3.3.1 (3).

3.5. Proof of Theorem 3.1.2 (2) \Rightarrow (1)

In this section, we prove that Theorem 3.1.2 (2) implies (1).
Notation 2. For this, we make the following notation in this section:

- $p_{d_{1}, d_{2}}$: the \mathbb{P}^{2}-bundle structure of $\mathbb{F}\left(-d_{1},-d_{2}, 0\right)$.
- $\xi_{d_{1}, d_{2}}$: a tautological divisor of $\mathbb{F}\left(-d_{1},-d_{2}, 0\right)$.

To complete the proof of Theorem 3.1.2, we prepare the following five lemmas.
LEmma 3.5.1. Let $P:=\mathbb{F}\left(-d_{1},-d_{2}, 0\right)$ with $d_{1} \geq d_{2} \geq 0$, E a sub \mathbb{P}^{1}-bundle of P and F a $p_{d_{1}, d_{2}}$-fiber. Then E and F generate $\Lambda_{\text {eff }}(P)$ if and only if $E \sim \xi_{d_{1}, d_{2}}$. Moreover, in this case, the pair (E, F) is unique up to $\operatorname{Aut}(X)$.

Proof. Recall from [Rei97, Chapter 2] that $P=\mathbb{F}\left(-d_{1},-d_{2}, 0\right)$ is defined as the quotient of $\left(\mathbb{A}^{2} \backslash\{0\}\right) \times\left(\mathbb{A}^{3} \backslash\{0\}\right)$ by the following $\left(\mathbb{G}_{m}\right)^{2}$-action:

$$
\begin{aligned}
\left(\mathbb{G}_{m}\right)^{2} \times\left(\mathbb{A}^{2} \backslash\{0\}\right) \times\left(\mathbb{A}^{3} \backslash\{0\}\right) & \rightarrow\left(\mathbb{A}^{2} \backslash\{0\}\right) \times\left(\mathbb{A}^{3} \backslash\{0\}\right) \\
\left((\lambda, \mu),\left(t_{1}, t_{2} ; x_{1}, x_{2}, x_{3}\right)\right) & \mapsto\left(\lambda t_{0}, \lambda t_{1} ; \lambda^{d_{1}} \mu x_{1}, \lambda^{d_{2}} \mu x_{2}, \mu x_{3}\right)
\end{aligned}
$$

We also have Pic $P=\mathbb{Z} \xi_{d_{1}, d_{2}} \oplus \mathbb{Z} F$, and for each $a, b \in \mathbb{Z}$, the linear system $\left|a \xi_{d_{1}, d_{2}}+b F\right|$ is parametrized by the vector space of polynomials spanned by monomials $t_{1}^{b_{1}} t_{2}^{b_{2}} x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} \in$ $\mathbb{C}\left[t_{1}, t_{2}, x_{1}, x_{2}, x_{3}\right]$ with $a_{1}+a_{2}+a_{3}=a$ and $b_{1}+b_{2}=-d_{1} a_{1}-d_{2} a_{2}+b$. Hence $\left|a \xi_{d_{1}, d_{2}}+b F\right| \neq \emptyset$ if and only if $a \geq 0$ and $b \geq 0$, and the first assertion follows.

Now suppose that $E \sim \xi_{d_{1}, d_{2}}$. Then E is defined by $\sum_{i=1}^{3} u_{i} x_{i}$ for some $u_{i} \in \mathbb{C}$ for $i=1,2,3$ such that $u_{i}=0$ unless $d_{i}=0$ for $i=1,2$. Suppose that $u_{3}=0$. Then $u_{i} \neq 0$ for some $i=1,2$. Take $\widetilde{h} \in \operatorname{Aut}\left(\left(\mathbb{A}^{2} \backslash\{0\}\right) \times\left(\mathbb{A}^{3} \backslash\{0\}\right)\right)$ which interchanges x_{i} and x_{3}, which is $\left(\mathbb{G}_{m}\right)^{2}$-equivariant. Since P is the geometric quotient by [MFK94, Proposition 1.9], it descends to an element in $\operatorname{Aut}(P)$. Hence we may assume that $u_{3}=1$. By a similar argument, we also may assume that F is defined by $t_{1}+v t_{2}$ for some $v \in \mathbb{C}$.

Now let E^{\prime} and F^{\prime} be divisors on P defined by x_{3} and t_{1} respectively. Take $\widetilde{h} \in \operatorname{Aut}\left(\left(\mathbb{A}^{2} \backslash\right.\right.$ $\left.\{0\}) \times\left(\mathbb{A}^{3} \backslash\{0\}\right)\right)$ such that

$$
\begin{align*}
& \widetilde{h}^{*}\left(x_{1}\right)=x_{1}, \widetilde{h}^{*}\left(x_{2}\right)=x_{2}, \widetilde{h}^{*}\left(x_{3}\right)=c_{1} x_{1}+c_{2} x_{2}+x_{3} \tag{3.5.0.1}\\
& \widetilde{h}^{*}\left(t_{1}\right)=t_{1}+v t_{2}, \widetilde{h}^{*}\left(t_{2}\right)=t_{2} \tag{3.5.0.2}
\end{align*}
$$

Since \widetilde{h} is $\left(\mathbb{G}_{m}\right)^{2}$-equivariant, it descends to $h \in \operatorname{Aut}(P)$ such that $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$, which complete the proof.

Lemma 3.5.2. We follow the situation of Lemma 1.4.1. Suppose that $P=\mathbb{F}(-d,-d, 0)$ with $d \geq 0$ and $n=1$. If there exists $H \in\left|\xi_{d, d}\right|$ containing L, then $P^{\prime} \cong \mathbb{F}(-d-1,-d-1,0)$ and $H_{P^{\prime}} \sim \xi_{d+1, d+1}$.

Proof. Set $\mathcal{F}=p_{*}^{\prime} \mathcal{O}_{P^{\prime}}\left(H_{P^{\prime}}\right)$. It suffices to show that $\mathcal{F}=\mathcal{O}_{\mathbb{P}^{1}}(-d-1)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^{1}}$. Pushing forward the standard exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\widetilde{P}}\left(\varphi^{*} H-E_{\varphi}\right) \longrightarrow \mathcal{O}_{\widetilde{P}}\left(\varphi^{*} H\right) \longrightarrow \mathcal{O}_{E_{\varphi}}\left(\left.\varphi^{*} H\right|_{E_{\varphi}}\right) \longrightarrow 0 \tag{3.5.0.3}
\end{equation*}
$$

by $p \circ \varphi$, we get the following exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}(-d)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^{1}} \longrightarrow \mathbb{C}^{\oplus 2} \longrightarrow 0 \tag{3.5.0.4}
\end{equation*}
$$

since $\varphi^{*} H-E_{\varphi} \sim \psi^{*}\left(H_{P^{\prime}}\right)$ by Theorem 1.4.1 (2). On the other hand, we have $H_{P^{\prime}} \cong \mathbb{F}_{0}$ because $L \subset H$ and $H \cong \mathbb{F}_{0}$. By the definition of \mathcal{F}, the inclusion $H_{P^{\prime}} \subset P^{\prime}$ corresponds to the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{1}} \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}(-a)^{\oplus 2} \longrightarrow 0 \tag{3.5.0.5}
\end{equation*}
$$

for some $a \in \mathbb{Z}$. Combining (3.5.0.4) and (3.5.0.5), we obtain $-2 a=\operatorname{deg} \mathcal{F}=-2 d-2$. Hence $a=d+1$ and (3.5.0.5) splits, which proves the lemma.

Lemma 3.5.3. We follow the situation of Lemma 3.5.2. Set $\infty:=p(L) \in C$. If P admits $a \mathbb{G}_{a}^{3}$-structure with the boundary divisor $H \cup p^{*}(\infty)$, then so does P^{\prime} with the boundary divisor $H_{P^{\prime}} \cup p^{\prime *}(\infty)$.

Proof. Since $L=H \cap p^{*}(\infty)$, this is \mathbb{G}_{a}^{3}-stable. Hence \widetilde{P} admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $H_{\widetilde{P}} \cup(p \circ \varphi)^{*}(\infty)$. Applying Theorem 3.3.2 to $\psi: \widetilde{P} \rightarrow P^{\prime}$, we obtain a desired \mathbb{G}_{a}^{3}-structure on P^{\prime}.

Lemma 3.5.4. We follow the situation of Lemma 1.4.1. Suppose that $P=\mathbb{F}\left(-d_{1},-d_{2}, 0\right)$ with $d_{1} \geq d_{2} \geq 0$ and $n=0$. Assume that there exists $H \in\left|\xi_{d_{1}, d_{2}}\right|$ containing L, and when $d_{1}>d_{2}$, assume that the negative section of $H \cong \mathbb{F}_{d_{1}-d_{2}}$ passes through L in addition. Then $P^{\prime} \cong \mathbb{F}\left(-d_{1}-1,-d_{2}, 0\right)$ and $H_{P^{\prime}} \sim \xi_{d_{1}+1, d_{2}}$.

Proof. Set $\mathcal{F}=p_{*}^{\prime} \mathcal{O}_{P^{\prime}}\left(H_{P^{\prime}}\right)$. It suffices to show that $\mathcal{F}=\mathcal{O}_{\mathbb{P}^{1}}\left(-d_{1}-1\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-d_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}$. By similar arguments as in Lemma 3.5.2, we get the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}\left(-d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-d_{2}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}} \longrightarrow \mathbb{C} \longrightarrow 0 \tag{3.5.0.6}
\end{equation*}
$$

Hence $\operatorname{deg} \mathcal{F}=-d_{1}-d_{2}-1$. On the other hand, we have $H_{P^{\prime}} \cong \mathbb{F}_{d_{1}-d_{2}+1}$ by the choice of L. By the definition of \mathcal{F}, the inclusion $H_{P^{\prime}} \subset P^{\prime}$ corresponds to the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{1}} \longrightarrow \mathcal{F} \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}\left(-d_{1}-1\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(-d_{2}\right) \longrightarrow 0 \tag{3.5.0.7}
\end{equation*}
$$

Since (3.5.0.7) splits, we get the assertion.
Lemma 3.5.5. We follow the situation of Lemma 3.5.4. Set $\infty:=p(L) \in C$. If P admits $a \mathbb{G}_{a}^{3}$-structure with the boundary divisor $H \cup p^{*}(\infty)$ such that L is a fixed point, then so does P^{\prime} with the boundary divisor $H_{P^{\prime}} \cup p^{\prime *}(\infty)$.

Proof. Since L is \mathbb{G}_{a}^{3}-stable by assumption, we can prove the assertion in much the same way as Lemma 3.5.3.

Now we can prove that Theorem 3.1.2 (2) implies (1).
Proof of Theorem 3.1.2 (2) \Rightarrow (1). In $\mathbb{P}_{\left[t_{1}: t_{2}\right]}^{1} \times \mathbb{P}_{\left[x_{1}: x_{2}: x_{3}\right]}^{2}$, set $E:=\left\{x_{3}=0\right\}$ and $F:=\left\{t_{1}=0\right\}$. Write $\infty:=[0: 1] \in \mathbb{P}^{1}$. Then E and F generate $\Lambda_{\mathrm{eff}}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}\right)$. By [HM18, Lemma 3.7], $\mathbb{P}^{1} \times \mathbb{P}^{2}$ admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $E \cup F$. Write this structure as $\rho: \mathbb{G}_{a}^{3} \curvearrowright \mathbb{P}^{1} \times \mathbb{P}^{2}$.

Now suppose that (2) follows. Then $X \cong \mathbb{F}\left(-d_{1},-d_{2}, 0\right)$ for some $d_{1} \geq d_{2} \geq 0$ and $f=p_{d_{1}, d_{2}}$. By assumption and Lemma 3.5.1, it holds that $D_{1} \sim \xi_{d_{1}, d_{2}}$ and D_{2} is a $p_{d_{1}, d_{2}}$-fiber.

Suppose that $d_{1}=d_{2}=0$. Then we may assume that $\left(D_{1}, D_{2}\right)=(E, F)$ by Lemma 3.5.1 and hence ρ is a desired structure.

Suppose that $d_{1}=d_{2}>0$. Then by Lemma 3.5.2, we can inductively construct the sequence of the elementary links from $p_{0,0}: \mathbb{P}^{1} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$:

where the center of h_{i} is the intersection of $E_{i}:=E_{\mathbb{F}(-i,-i, 0)}$ and $F_{i}:=p_{i, i}^{*}(\infty)$ for $0 \leq i \leq d_{1}-1$. Set $E_{d_{1}}:=E_{X}$ and $F_{d_{1}}:=f^{*}(\infty)$. Then $E_{i} \sim \xi_{i, i}$ for $0 \leq i \leq d_{1}$ by Lemma 3.5.2 and hence we may assume that $\left(D_{1}, D_{2}\right)=\left(E_{d_{1}}, F_{d_{1}}\right)$ by Lemma 3.5.1.

For $0 \leq i \leq d_{1}-1$, suppose that $\mathbb{F}(-i,-i, 0)$ admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $E_{i} \cup F_{i}$. Then so does $\mathbb{F}(-(i+1),-(i+1), 0)$ with the boundary divisor $E_{i+1} \cup F_{i+1}$ by Lemma 3.5.3. Thus ρ induces a desired \mathbb{G}_{a}^{3}-structure on X.

Suppose that $d_{1}>d_{2} \geq 0$. Set $d=d_{1}-d_{2}$. Let ρ^{\prime} be a \mathbb{G}_{a}^{3}-structure of $\mathbb{F}\left(-d_{2},-d_{2}, 0\right)$, which we have already constructed. Write its boundary divisor as $E^{\prime} \cup F^{\prime}$ such that $E^{\prime} \sim \xi_{d_{2}, d_{2}}$ and $F^{\prime}=p_{d_{2}, d_{2}}^{*}(\infty)$. By the Borel fixed-point theorem, there is a \mathbb{G}_{a}^{3}-fixed point in $E^{\prime} \cap F^{\prime}$, say t_{0}. Then by Lemma 3.5.4, we can inductively construct the sequence of the elementary links from $p_{d_{2}, d_{2}}: \mathbb{F}\left(-d_{2},-d_{2}, 0\right) \rightarrow \mathbb{P}^{1}$:

$$
\begin{gather*}
\mathbb{F}\left(-d_{2},-d_{2}, 0\right){ }^{h_{0}}>\mathbb{F}\left(-d_{2}-1,-d_{2}, 0\right) \stackrel{h_{1}}{h_{1}} \cdots \stackrel{h_{d-1}}{h_{d}} \mathbb{F}\left(-d_{1},-d_{2}, 0\right)=X \tag{3.5.0.9}\\
p_{d_{2}, d_{2}} \downarrow \\
\mathbb{P}^{1} \xlongequal{p_{d_{2}+1, d_{2}} \downarrow} \begin{array}{l}
\\
\mathbb{P}^{1} \xlongequal{p_{d_{1}, d_{2}}=f \downarrow} \downarrow \\
\end{array} \mathbb{P}^{1},
\end{gather*}
$$

where the center of h_{i} is t_{0} for $i=0$ and the intersection of the negative section of $E_{i}^{\prime}:=$ $E_{\mathbb{F}\left(-d_{2}-i,-d_{2}, 0\right)}^{\prime} \cong \mathbb{F}_{i}$ and $F_{i}^{\prime}:=p_{d_{2}+i, d_{2}}^{*}(\infty)$ for $1 \leq i \leq d-1$. Set $E_{d}^{\prime}:=E_{X}^{\prime}$ and $F_{d}^{\prime}:=f^{*}(\infty)$. Then $E_{i}^{\prime} \sim \xi_{d_{2}+i, d_{2}}$ for $0 \leq i \leq d$ by Lemma 3.5.4 and hence we may assume that $\left(D_{1}, D_{2}\right)=$ ($E_{d}^{\prime}, F_{d}^{\prime}$) by Lemma 3.5.1.

Since t_{0} is a fixed point of the action $\rho^{\prime}, \mathbb{F}\left(-d_{2}-1,-d_{2}, 0\right)$ admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $E_{1}^{\prime} \cup F_{1}^{\prime}$ by Lemma 3.5.5.

For $1 \leq i \leq d-1$, suppose that $\mathbb{F}\left(-d_{2}-i,-d_{2}, 0\right)$ admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $E_{i}^{\prime} \cup F_{i}^{\prime}$. Then t_{i} is a \mathbb{G}_{a}^{3}-fixed point by construction. Hence $\mathbb{F}\left(-d_{2}-(i+1),-d_{2}, 0\right)$ admits a \mathbb{G}_{a}^{3}-structure with the boundary divisor $E_{i+1}^{\prime} \cup F_{i+1}^{\prime}$ by Lemma 3.5.5. Thus ρ^{\prime} induces a desired \mathbb{G}_{a}^{3}-structure on X.

Bibliography

[BD93] S. M. Bhatwadekar and Amartya K. Dutta. On residual variables and stably polynomial algebras. Comm. Algebra, 21(2):635-645, 1993.
[Bri17] Michel Brion. Some structure theorems for algebraic groups. In Algebraic groups: structure and actions, volume 94 of Proc. Sympos. Pure Math., pages 53-126. Amer. Math. Soc., Providence, RI, 2017.
[Cor95] Alessio Corti. Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom., 4(2):223254, 1995.
[D'S88] Harry D'Souza. Threefolds whose hyperplane sections are elliptic surfaces. Pacific J. Math., 134(1):57-78, 1988.
[FM19] Baohua Fu and Pedro Montero. Equivariant compactifications of vector groups with high index. C. R. Math. Acad. Sci. Paris, 357(5):455-461, 2019.
[FN89a] Mikio Furushima and Noboru Nakayama. The family of lines on the Fano threefold V_{5}. Nagoya Math. J., 116:111-122, 1989.
[FN89b] Mikio Furushima and Noboru Nakayama. A new construction of a compactification of \mathbf{C}^{3}. Tohoku Math. J. (2), 41(4):543-560, 1989.
[Fuj82] Takao Fujita. On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29(3):503-566, 1982.
[Fuk18] Takeru Fukuoka. Relative linear extensions of sextic del pezzo fibrations. arXiv preprint arXiv:1803.01264, 2018.
[Fur86] Mikio Furushima. Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C ${ }^{3}$. Nagoya Math. J., 104:1-28, 1986.
[Fur90] Mikio Furushima. Complex analytic compactifications of C ${ }^{3}$. Compositio Math., 76(1-2):163-196, 1990. Algebraic geometry (Berlin, 1988).
[Fur93a] Mikio Furushima. The complete classification of compactifications of \mathbf{C}^{3} which are projective manifolds with the second Betti number one. Math. Ann., 297(4):627-662, 1993.
[Fur93b] Mikio Furushima. A new example of a compactification of \mathbf{C}^{3}. Math. Z., 212(3):395-399, 1993.
[Fur00] Mikio Furushima. A birational construction of projective compactifications of \mathbf{C}^{3} with second Betti number equal to one. Ann. Mat. Pura Appl. (4), 178:115-128, 2000.
[Hir54] Friedrich Hirzebruch. Some problems on differentiable and complex manifolds. Ann. of Math. (2), 60:213-236, 1954.
[HM18] Zhizhong Huang and Pedro Montero. Fano threefolds as equivariant compactifications of the vector group. arXiv preprint arXiv:1802.08090, 2018.
[HT99] Brendan Hassett and Yuri Tschinkel. Geometry of equivariant compactifications of \mathbf{G}_{a}^{n}. Internat. Math. Res. Notices, (22):1211-1230, 1999.
[HT12] Brendan Hassett and Yuri Tschinkel. Spaces of sections of quadric surface fibrations over curves. In Compact moduli spaces and vector bundles, volume 564 of Contemp. Math., pages 227-249. Amer. Math. Soc., Providence, RI, 2012.
[Hum75] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21.
[IF77] Shigeru Iitaka and Takao Fujita. Cancellation theorem for algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24(1):123-127, 1977.
［Kis05］Takashi Kishimoto．Compactifications of contractible affine 3－folds into smooth Fano 3－folds with $B_{2}=2$. Math．Z．，251（4）：783－820， 2005.
［KR97］M．Koras and Peter Russell．Contractible threefolds and \mathbf{C}^{*}－actions on \mathbf{C}^{3} ．J．Algebraic Geom．， 6（4）：671－695， 1997.
［KZ99］Sh．Kaliman and M．Zaidenberg．Affine modifications and affine hypersurfaces with a very transi－ tive automorphism group．Transform．Groups，4（1）：53－95， 1999.
［Man66］Ju．I．Manin．Rational surfaces over perfect fields．Inst．Hautes Études Sci．Publ．Math．，（30）：55－ 113， 1966.
［Mar73］Masaki Maruyama．On a family of algebraic vector bundles．In Number theory，algebraic geometry and commutative algebra，in honor of Yasuo Akizuki，pages 95－146．Kinokuniya，Tokyo， 1973.
［MFK94］D．Mumford，J．Fogarty，and F．Kirwan．Geometric invariant theory，volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete（2）［Results in Mathematics and Related Areas（2）］．Springer－ Verlag，Berlin，third edition， 1994.
［MM82］Shigefumi Mori and Shigeru Mukai．Classification of Fano 3－folds with $B_{2} \geq 2$ ．Manuscripta Math．， 36（2）：147－162，1981／82．
［Mor73］Shigefumi Mori． \mathbb{A}^{2} の rational ruled surfaces への埋め込みについて（An article about compactifi－ cations of \mathbb{A}^{2} into Hirzebruch surfaces）．Sūrikaisekikenkyūsho Kōkyūroku，183：31－50， 1973.
［Mor82］Shigefumi Mori．Threefolds whose canonical bundles are not numerically effective．Ann．of Math． （2），116（1）：133－176， 1982.
［MS90］Stefan Müller－Stach．Compactifications of \mathbf{C}^{3} with reducible boundary divisor．Math．Ann．，286（1－ 3）：409－431， 1990.
［Nag18］Masaru Nagaoka．Fano compactifications of contractible affine 3－folds with trivial log canonical divisors．Internat．J．Math．，29（6）：1850042，33， 2018.
［Nag19a］Masaru Nagaoka． \mathbb{G}_{a}^{3}－structures on del pezzo fibrations．arXiv preprint arXiv：1912．02524， 2019.
［Nag19b］Masaru Nagaoka．On compactifications of affine homology 3－cells into quadric fibrations．arXiv preprint arXiv：1906．10626， 2019.
［Pet89］Thomas Peternell．Compactifications of C ${ }^{3}$ ．II．Math．Ann．，283（1）：121－137， 1989.
［Pro91］Yu．G．Prokhorov．Fano threefolds of genus 12 and compactifications of \mathbf{C}^{3} ．Algebra i Analiz， 3（4）：162－170， 1991.
［PS88］Thomas Peternell and Michael Schneider．Compactifications of C ${ }^{3}$ ．I．Math．Ann．，280（1）：129－146， 1988.
［Ram71］C．P．Ramanujam．A topological characterisation of the affine plane as an algebraic variety．Ann． of Math．（2），94：69－88， 1971.
［Rei97］Miles Reid．Chapters on algebraic surfaces．In Complex algebraic geometry（Park City，UT，1993）， volume 3 of IAS／Park City Math．Ser．，pages 3－159．Amer．Math．Soc．，Providence，RI， 1997.
［RvdV60］Reinhold Remmert and Ton van de Ven．Zwei Sätze über die komplex－projektive Ebene．Nieuw． Arch．Wisk．（3），8：147－157， 1960.
［tDP90］Tammo tom Dieck and Ted Petrie．Contractible affine surfaces of Kodaira dimension one．Japan． J．Math．（N．S．），16（1）：147－169， 1990.
［vdV62］A．van de Ven．Analytic compactifications of complex homology cells．Math．Ann．，147：189－204， 1962.

