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Preface

This thesis concerns complex projective compactifications of smooth affine 3-folds with
the same homology rings as that of the affine 3-space.

For an affine variety U, the pair (X, D) of a smooth proper variety X and its reduced
effective divisor D is called a compactification of U when the complement X\ D is algebraically
isomorphic to U. F. Hirzebruch raised the problem to classify all the compactifications (X, D)
of the affine n-space A" with second Betti number By(X) = 1 in his problem list [Hir54].
Here we call this problem the Hirzebruch problem. This problem is trivial when n = 1
because the projective line P! is the unique rational smooth proper curve, and when n = 2,
it was solved by R. Remmert and T. Van de Ven [RvdV60]. Also by the contribution
of M. Furushima, N. Nakayama, Th. Peternell, Y. Prokhorov and M. Schneider [Fur86,
Fur90, Fur93a,Fur93b, FN89a, FN89b, Pet89, PS88, Pro91], this problem was solved in
the projective case when n = 3. We note that the ambient space X is a Fano variety in the
projective case since it is rational with By = 1. There is also a generalization of the Hirzebruch
problem with By > 2, which is studied by several authors [Mor73,MS90, Kis05, Nag18].

In this thesis, we will study three problems which originated from the Hirzebruch problem.
It is worth pointing out that up to the present all of them have been investigated only when
the dimension is at most 2 or when the ambient spaces are Fano. For this reason, we will
discuss three problems when ambient spaces are del Pezzo fibrations, which form a building
block of the minimal model program for 3-folds as well as Fano 3-folds.

The first one concerns characterizations of A". For n € Z-q, an affine homology n-cell
is a smooth affine variety of dimension n with the same homology ring as that of A". By
several authors [Ram71, KR97 tDP90], it is known that there are many affine homology
n-cells not isomorphic to A”. One of natural questions about affine homology n-cells is how
to characterize A" among them. For this question, Furushima [Fur00] pointed out that
A3 can be characterized as the affine homology 3-cell which is compactified into a smooth
Fano 3-fold with B, = 1. Chapter 2 of this thesis gives another characterization of A? via
compactifications into quadric fibrations, i.e., del Pezzo fibrations of degree 8.

The second problem is a construction of standard maps preserving A™ from compacti-
fications of A" to a standard one. In [Mor73], S. Mori introduced three kinds of explicit
birational transformations between Hirzebruch surfaces, and showed that any compactifi-
cations of A? into Hirzebruch surfaces are constructed from the standard compactification
(P2, P1) of A? with finite composition of these birational transformations. Chapter 2 of this
thesis deals a construction of standard maps for a certain family of compactifications of A?
into quadric fibrations, where the standard compactification is the pair (P3,P?).

iii



iv PREFACE

The third problem is the Hirzebruch problem for the affine n-space G] equipped with the
additive group structure. A G-variety is defined to be a variety with a G[-action whose
dense orbit is isomorphic to GJ;. The study of smooth projective G]!-varieties is started by
B. Hassett and Y. Tschinkel [HT'12], and they classified smooth projective G}-varieties with
By =1 when n < 3, on which situation GJ-varieties are Fano. After that, smooth Fano G-
varieties are studied by several authors [HM18 FM19|. Chapter 3 discusses the existences
of G3-structures, i.e., G3-actions which give structures of G3-varieties, on del Pezzo fibrations.

This thesis consists of three chapters.

Chapter 1 is the preliminary chapter; we recall definitions and basic properties of del
Pezzo fibrations and certain elementary links, which we will use throughout this thesis.

Chapter 2 deals with compactifications of affine homology 3-cells into quadric fibrations
such that the boundary divisors contain fibers. In this chapter, we show that all such affine
homology 3-cells are isomorphic to A3, and give explicit birational maps from these compact-
ifications to IP? preserving A3 using the technique of elementary links.

Chapter 3 deals with G3-varieties with del Pezzo fibration structures. In this chapter, we
show that del Pezzo fibrations admit G3-structures if and only if they are P%-bundles.

Chapter 2 and 3 are based on papers [Nagl9b| and [Nagl9a] respectively.
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Notation and Convention

This chapter is devoted to fixing the notation, which will be used throughout this thesis.

CONVENTIONS. We work over the field of complex numbers C. For a surjective morphism
f: X — Y and divisors Dy, Dy on X, the notation Dy ~y Dy means that Dy — Ds is linearly
equivalent to the pullback of some divisor on Y.

NoOTATION. We use the following notation:
e Q% the smooth quadric hypersurface in P*. Ogs(1) == Opa(1)|gs.
e Qf: the quadric cone in P?. Oga(1) := Ops(1)]gz.
e [F;: the Hirzebruch surface of degree d.
o f;: a fiber of Fy.
e > ;: the minimal section of F,.
o Px(£) = Projy, ®m>0Sym™(€): the projectivization of a locally free sheaf on a
variety X. We often write it P(€) for short.
e Op(g)(1): the tautological bundle of a projective bundle P(E).
® {pe): the tautological divisor of a projective bundle P(E).
° F(CL, b, C) = P]pl (O]pl (a) S5, O]pl (b) © O]pl (C))
e [Js: the exceptional divisor of a birational morphism f.
e Sing X: the singular locus of a variety X.
e Y5: the strict transformation of a closed subscheme Y of a normal variety X in a

birational model X of X.
® Xtop(X): the topological Euler number of a topological space X.
e h"(X): the dimension of H'(X, AN’Qx) of a smooth projective 3-fold X.
e p,(C): the arithmetic genus of a smooth projective curve C.
e Supp Y: the support of a closed subscheme Y of an ambient variety.
e Ny X: the normal bundle of a smooth subvariety Y of a smooth variety X.
o A (X): the cone of effective Cartier divisors on a projective variety X.






CHAPTER 1

Preliminaries

In this chapter, we compile definitions and some facts on del Pezzo fibrations and ele-
mentary links, which will be needed in Chapter 2 and 3.

1.1. Del Pezzo fibrations
In this thesis, we employ the following definition for del Pezzo fibrations.

DEFINITION 1.1.1. A del Pezzo fibration is an extremal contraction of relative Picard
number one from a smooth projective 3-fold to a smooth projective curve. The degree of
a del Pezzo fibration is the anti-canonical volume of a general fiber, which is a del Pezzo
surface. A quadric fibration is a del Pezzo fibration of degree 8.

We will use the following theorem without any mentions.

THEOREM 1.1.2 ( [Mor82, Theorem 3.2, 3.5]). Let f: X — C be a del Pezzo fibration
of degree d. Then the following holds.

(1) d<9.

(2) We have an ezact sequence 0 — PicC piex Wz o 0, where | is a line in a
general f-fiber, which is a smooth del Pezzo surface.

(3) Each f-fiber is irreducible and reduced.

(4) If d =9, then f is a P%-bundle.

(5) If d =8, then X is embedded in a P3-bundle f: F — C as a member of |2&p + f* L]
for some L € PicC. In particular, any f-fiber is isomorphic to either Fy or Q3.

1.2. Definition of elementary links
In this thesis, we define elementary links as follows.

DEFINITION 1.2.1. Let X be a smooth 3-fold and o: X — C be an extremal contraction
of relative Picard number one. Let » C X be a smooth curve (or x € X be a point). Denote

by ¢: X — X the blow-up of X with center r (resp. with center ). We assume that —K 3 is
(0 op)-ample. Then there exists the unique contraction ¢»: X — Y of the other K -negative
ray in NE(X /C). Let 7: Y — C be the induced morphism.

X P
YN
X Y
o I

—C.

C

(1.2.0.1)
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When ) is birational, we call the diagram (1.2.0.1) the elementary link with center along r
(resp. at x). In this thesis the pushforward of the p-exceptional divisor by 1 is called the
exceptional divisor of the elementary link. We write it X < X — Y or X --» Y for short
when the base variety C' is obvious.

We note that this is a particular case of elementary links of type II in [Cor95, Definition
3.4] and that the exceptional divisor of the elementary link is actually a divisor by [Cor95,
Proposition 3.5].

In the following situation, the assumption of Definition 1.2.1 is satisfied, and hence we
can construct an elementary link. For the detail, see §1.3-1.6.

o is the blow-up at a point and 7 is the blow-up along a curve.
o is a P2-bundle and r is a linear subspace of a fiber [Mar73].
o is a quadric fibration and r is a section [D’S88].

o is a quadric fibration and r is a ruling in a o-fiber [HT12].

1.3. Elementary links between blow-ups

First we check that the change of the order of the blow-ups at a point and along a curve
does not change the output.

LEMMA 1.3.1. Let X be a smooth 3-fold, C' C X a smooth irreducible curve and p € C
a point. Denote by p1: X1 — X the blow-up at p and by ps: Xo — X the blow-up along C'.
Let Cy be the strict transform of C in X, and f, = o5 " (p). Then the following holds:
(1) Blg, (BL, X) = Bly, (Ble X) over X.
(2) NeX = Ny X1 ® O, (p1), where p1 = Ey, |c, .

PROOF. (1): Let ¢ : X — X; be the blow-up along Cy and x = @1 0¢;. Let E, be the
strict transform of £, in X. Then we have —K 5 ~x —2E, — Ey,.

Consider the divisor —E, — Ey,. Each irreducible curve [ C X contracted by x is either
a fiber of ¢1|p, : Ey, — Cy or a curve in Ej,. The former satisfies (I - —F, — Ey,) = 1 and
the latter satisfies (I- —E, — Ey,) = (- fi)g, > 0 regarding E, as F,. Hence —E, — E,, is a
x-nef divisor and R = (—E, — Ey,)* N NE(X/X) is generated by fi in E,=TF,.

Since (=K g - f1) = (=E, - f1) > 0, there is the contraction morphism 1), : X — X}, of the
extremal ray R. Let ¢,: X}, — X be the induced morphism. Since the centers of both 1y
and ¢} is a curve, each of them is the blow-up along a smooth curve by [Mor82, Theorem
3.3]. Hence we have ¢}, = ¢, and 1), is the blow up of X, along f,, which proves (1).

(2): It holds that E, = Ey, and ¢, Ey, = E,, by (1). Hence we have:

(1.3.0.1) (ale,, ) Opvexvy(1) = Og, (—Y5E,,)
Og, (—Ey,) ® Og, (—Ey,)

Opne, xy)(1) @ O, (=1 Ey,).

= Opwe,xy) (1) @ (Y15, ) Oci (= Ep,).

Pushing forward (1.3.0.1) by x|g, , we get NcX = Ng, X1 ® Oc, (p1). O

I

2



1.4. ELEMENTARY LINKS BETWEEN P?-BUNDLES 5

1.4. Elementary links between P?-bundles

Elementary links between projective bundles are considered by M. Maruyama [Mar73]
in any dimension. Here we restrict our attention to P*-bundles.

LEMMA 1.4.1 ( [Mar73, Theorem 1.3]). Let p: P — C be a P*>-bundle and L C P a

n-dimensional linear subspace of a p-fiber (n < 1). Let p: P = Bl P — P be the blow-up
along L. Then

(1) There exists a divisorial contraction 1: P — P’ over C such that the induced mor-
phism p': P' — C'is a P2-bundle and v is the blow-up along a (1 — n)-dimensional
linear subspace L' of a p'-fiber.

(2) The exceptional divisor Ey, is the strict transform of the p-fiber containing L.

(3) For an associated vector bundle £ to p: P — C, we can take a vector bundle &'
associated to p': P — C such that degE' = deg& — (n + 1).

(1.4.0.1) Bl,P=P= Bwly P’
4 \
P - P
dl I
C——C.

COROLLARY 1.4.2. We follow the notation of Lemma 1.4.1. Suppose that C = P!. Let
F be a p-fiber and D a sub P'-bundle of P. Take a € Z such that D ~ £p + aF. Then the
following hold:

(1402) {DP,~§P/+(a+1)F and ' C Dpr if L ¢ D,
Dpr ~&épr+aF and L' ¢ Dp if L C D.
PROOF. By the canonical bundle formula, we have:
(1.4.0.3) —Kp ~ 3&p—(deg& —2)F,
(1.4.0.4) —Kp ~ 3p — (deg& — (3+n))F.
Also it holds that
(1.4.0.5) —Ks ~¢"(=Kp) — (2—n)E, ~ V" (=Kp/) — (n+ 1)Ey.

Combining (1.4.0.3)-(1.4.0.5) and E, ~ F'— Ey, we have 3p*{p ~ 3¢*{p + 3(F — Ey). Since
Pic P is torsion-free, it holds that:

(1.4.0.6) ' &p ~ Y Ep + F — Ey.
On the other hand, we have:
B ©*p +alF it Lg D,
(1.40.7) D~ {go*gp +aF - E, ifLcD
o .

Combining (1.4.0.6), (1.4.0.7) and E, ~ F' — E, we have:

1.4.0.8 D5 ~
( ) P {w*gp, +aF if L c D.
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By pushing forward (1.4.0.8) by v, we have the assertion. O

1.5. Elementary links from quadric fibrations to P?-bundles

H. D’Souza [D’S88] showed the existence of elementary links from quadric fibrations to
P2-bundles. The precise statement is as follows.

LeMMA 1.5.1 ( [D’S88, (2.7.3)], [Fuk18, Proposition 3.1]). Let q: Q — C be a quadric
fibration and s C ) a q-section. Let ¢: @ = Bl Q — @ be the blow-up of Q) along s.
Then there exists a divisorial contraction v : @ — P over C such that the induced morphism
p: P — C is a P2-bundle and v is the blow-up along a smooth connected p-bisection B C P.

(1.5.0.1) BL,Q=Q=BlzP
® %

Q/ \P

| Ik

C—0C.

Moreover, let Hg be a q-ample divisor with 2Hg ~c —Kg and Hp a p-ample divisor such
that 3Hp ~cC —Kp. Then:

(1) It holds that Ey ~c ¢*Hg —2E, and E, ~c Y Hp — Ey.
(2) The branched locus of p|g coincides with the closed set

(1.5.0.2) Y={teC|q*t) is singular }.
(3) It holds that (—Kg)® = 40 — (8pa(B) + 32p.(C)).
LEMMA 1.5.2. We follow the notation of Lemma 1.5.1. Let E = 1, (E,). Suppose that

Hgq is a prime divisor containing s and assume that Hg is normal. Then (Hg)g ~c ¥"Hp.
Moreover, when Hp = (Hg)p, the following holds for t € C.

(1) If t € B, then (qlu,) ' () is

smooth <= p'(t)Nn BN Hp=0.

reducible <= p '(t)N BN Hp # 0.
(2) Ift € B, then (qln,) ' () is

smooth <= p '(t)NBNHp=10.
reducible <= p '(t)NBNHp # 0 and E|,-14) # Hp|p-10)-
non-reduced <= E|,-1p) = Hp|,-1(1).
PRrROOF. The first assertion follows from Lemma 1.5.1 (1). we take the following diagram
as the base change of (1.5.0.1) at t € C"

(1.5.0.3) Bl, Q; = Q; = Blg, P,
Q: b
Write Gt = (QO*E¢>|Q“ Ht = HQ’Q“ St = 8’Qt and Bt = B’pt.
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(1): In this case we have Q; = Fy. By lemma 1.5.1 (1), it holds that H, ~ Gy ~ Xo + fo
and Gy is the union of two rulings containing s;. Since H; is smooth if and only if H; is
irreducible, we only have to show that H; is smooth = (H;)p, N By = ) = H, is irreducible.

Let Gy = G1+ G2 be the irreducible decomposition. Note that (H;-G;)qg, = 1 for i =1, 2.
Suppose that H; is smooth. Then H;, N G; = s; scheme-theoretically for ¢« = 1,2. Hence we
have (Ht)ét NEy, =0 and (H;)p, N B, = (. On the other hand, if (H;)p, N B, = (), then
(Hi)g, = (Hy)p, is irreducible and so is Hy, and (1) is proved.

(2): In this case, ¢ is a weighted blow-up and hence @, = QZ. Since (s-Q;)g = 1, the point
s; is not the vertex of Q; = Qf. By lemma 1.5.1 (1), it holds that H; ~ Gy ~ Og(1), and
we have Gy = 2I', where [’ is the unique ruling of Q2 containing s;.

Suppose that H; is smooth. Since H;Nl" = s; scheme-theoretically, we have (H;)g,NEy, =
0 and hence (H;)p, N By = 0.

Suppose that H; is reducible. Then H; is the union of two distinct ruling of Q; = Q3.
Since s; € H;, there exists a ruling [ # [" of Q; such that H; = [+ [I'. Since H; is smooth at
s¢, it holds that (Ht)@t = lg, + Ey,. Hence (H;)p, = lp, contains Supp B, but (Hp)|p, # F|p,

Suppose that H; is non-reduced. Then Supp H; is a ruling of Q; = Q2. Since s; € H;, we
have H; = G; and hence Hp|p, = E|p,.

Combining these results, we complete the proof. O

1.6. Elementary links between quadric fibrations

B. Hassett and Y. Tschinkel [HT12] considered elementary links between quadric fibra-
tions with center a ruling in a smooth fiber. We can prove that a similar elementary link
appears in the case of a singular fiber as follows.

LEMMA 1.6.1. Let q: Q — C' be a quadric fibration and | a ruling of a q-fiber. Let
Q: é = B, Q — Q be the blow-up of Q) along l. Then there exists a divisorial contraction
(K @ — @' over C' such that the induced morphism ¢': Q — C' is a quadric fibration and 1)
is the blow-up along a ruling ' of a ¢'-fiber.

(1.6.0.1) BlLQ=Q =Bl
V \“’
Q Q'
ql iq’
C ——=C.

PRrOOF. Let F' C @ be the g-fiber containing [. When F' is smooth, then the assertion is
already shown by [HT12, §5]. Hence we may assume that F' = Q3.

First we calculate N;Q. Let v € F be the vertex of Q2 and h: Q1 — Q the blow-up at v.
Let Fy (resp. [1) be the strict transform of F' (resp. ) in @;. Then [; is a fiber of F} & [y
and Fy ~ h*F — 2E),. Since N;, I} = O, and (Np,Q1)]i, = Oy ((F1 - 1)) = O (—2), we have
N, Q1 = O, @ O, (—2) by the normal bundle sequence. Hence N;Q = O,(1) @ Oy(—1) by
Lemma 1.3.1 (2)

Therefore we have E, = Fy and E,|g, ~ —(X2 + f2). Since Fy = Fy, it follows that
F5 = Fy from Lemma 1.3.1 (1). Since (B, + Fg)|p, = ¢"F|g, ~ 0, we have Fg|g, ~ X+ fo.
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Hence F@|E¢ is the sum of Cy ~ Y5 and C5 ~ f. On the other hand, in Fé, we have C ~ fy
and Cy ~ Yy because [ is the minimal resolution of F'. By symmetry of E, and F, there
is the blow-down of F@ as desired. O

The following is the key to proving Theorem 2.1.6 (1).

LEMMA 1.6.2. Let q: Q — C' be a quadric fibration and D, C @ a prime divisor such
that 2Dy, ~c —Kq. Suppose that Dy, is non-normal. Let R be the 1-dimensional component
of Sing Dy,. Then:

(1) R is a g-section.
(2) If we take the elementary link Q & P Y P owith center along R, then we have
Dy, = (Ey)q. In particular, we have R = Sing Dj,.

PROOF. (1): Let r be an irreducible component of R. To seek a contradiction, assume that
q(r) is a point. Take a g-fiber F' containing r. Since D}, is singular along 7, the restriction
Dy|F is non-reduced along r. If FF = Fy, then Dy|p is reduced since Dy|p ~ o + fo, a
contradiction. Therefore F' = Q2 and there is a ruling r C F such that Dy|r = 2r.

Let x: @ — @ be the blow-up along r. In the proof of Lemma 1.6.1, we have shown that

F5 = Fy and F@’F@ ~ —EX\F@ ~ —(X9 + f2). Hence we have:
(1602)  ((Dwh-Fa) = ((Da—2E)" ((F - Ey)

(Dh - F)q —4(Dy - 1)q — 4(F - 1)q — 4E} = ~2,
(1.6.0.3) ((Dn)g-F3) = ((X'Dn—2Ey) - (X'F - E\)?)

(

Dy-F)q—(Dyp-r)g—4(F-r)g —2E = —1.
Take a,b € Z such that (Dh)é|p(3 ~ a¥y + bfy. By (1.6.0.2) and (1.6.0.3), we have —2a” +
2ab = —2 and a — b = —1. Hence (a,b) = (—1,0), which is absurd.

Therefore r dominates C. Let F' be a smooth g-fiber. Then we have () # Supp(RN F) C
Sing(Dp|r). Since Dy|r ~ Xo + fo, it follows that Supp(R N F') = Sing(Dy|r) is a point and
hence R is a g-section.

(2): By Lemma 1.5.1 (1), (Ey)q is singular along R. For each smooth ¢-fiber F, there is
the unique member of |Xy + fy| singular at Supp(R N F'). Hence Dy|r = (Ey)g|r, and the

first assertion follows. Since ¢ is the blow-up along R and E), is smooth, the last assertion
follows. O



CHAPTER 2

Compactifications of affine homology 3-cells into quadric fibrations

2.1. Introduction to Chapter 2

In this chapter we are interested in compactifications of affine homology n-cells into
smooth projective n-fold. We recall that a compactification of an affine variety U is a pair
(X, D) of smooth proper variety X and its reduced effective divisor D such that the com-
plement X \ D is algebraically isomorphic to U. Also by an affine homology n-cell we mean
a smooth affine n-fold U such that H;(U,Z) = 0 for i > 0. The main problem is the follow-
ing, which is based on the characterization of A among all the affine homology 3-cells via
compactifications into Fano 3-folds by Furushima [Fur00].

PrOBLEM 2.1.1. Let f: X — C be an extremal contraction of relative Picard number one
from a smooth projective n-fold X to a smooth projective curve C'. Let U C X be an open
subscheme.

(1) If U is an affine homology n-cell, then is it isomorphic to A™?
(2) If U 1is isomorphic to A™, then can we construct an explicit birational map from X
to a compactification of A™ with By = 1 preserving U = A™?

In this problem, we set not only P™ but also all compactifications of A™ with By =1 as
the target of birational maps preserving A”. It is because there is a copy of A® in the quintic
del Pezzo 3-fold which we can regard naturally as an affine modification (for the detail,
see [KZ99]) of an another copy of A® in P? via the birational map constructed in [Fur00].

We note that even when n = 2, Problem 2.1.1 (1) have a negative answer in general. In
fact, T. tom Dieck and T. Petrie [tDP90] showed that there are infinitely many contractible
affine surfaces of logarithmic Kodaira dimension one in the blow-up of P? at a point. However,
if we assume the following condition, the problem have an affirmative answer in the case where
n=2.

DEFINITION 2.1.1. Let f: X — C and U be as in Problem 2.1.1. Let D := X \ U be the
boundary divisor. We say that (X, D, f) is a compactification of U compatible with f if D
contains a f-fiber. When D; C D is a f-fiber and D;, C D is the other components, we also
call (X, Dy, Dy) a compactification of U compatible with f.

By [vdV62, Proposition 2.1] and the Poincare duality, Dj in the setting of Definition
2.1.1 is a prime divisor. Suppose that (X, Dy, Dy) is a compactification of homology 2-cell
U compatible with P!-bundle. By [Fuj82, Corollary 1.20], it holds that Dy, is a f-section.
Hence we have U 2 A? since f|y is an A'-bundle over A'.

Problem 2.1.1 (2) was solved when n = 2 by Mori [Mor73]. He introduced three kinds
of explicit birational transformations preserving A? between Hirzebruch surfaces, which are
called J-, R-, and L-transform. He solved the problem as in the following theorem:

9
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THEOREM 2.1.2. Let f: X — P! be a P'-bundle and D a reduced effective divisor on X
such that X \ D = A2

(1) There exists a compactification (X1, D1, f1) of A® compatible with a P*-bundle f,: X, —
P! and a birational map g1: X --+ X, preserving A®> which is a finite composition
of J-, R-, and L-transforms.

(2) Let Xy = Ty be a Hirzebruch surface of degree 1 with the P-bundle structure fs.
Let Dy be the union of an fo-fiber and the minimal section. Then there exists a bira-
tional map go: X, --+ Xo preserving A? which is a finite composition of elementary
transformations of P*-bundles.

Summarizing, we have the following diagram of birational maps preserving X \ D = A?:

(2.1.0.1) (X, D) " (X1, D1) 5 (Xo, Do) = (B2, P)
fi fll f2l
P! P! P!

where gs: Xy — P? is the blow-down of the minimal section.

In this chapter we consider Problem 2.1.1 when n = 3 and (X, Dy, Dy) is compatible with
f. In this case, f is a del Pezzo fibration. When f is a P2-bundle, then the problem is easy
by the same reason as when n = 2 (see §2.6). However, if the degree of f is smaller than 9,
then the problem is not obvious since a general (f|y)-fiber often differs from AZ.

The main purpose of this chapter is to give a solution to Problem 2.1.1 for compactifica-
tions compatible with a quadric fibration. Our main result consists of three theorems. One
is the following theorem, which is the solution to Problem 2.1.1 (1).

THEOREM 2.1.3. Let q: Q — C' be a quadric fibration, Dy, a reduced effective divisor on
Q, and Dy a g-fiber. Then the following are equivalent.

(1) The complement Q \ (Dy, U Dy) is an affine homology 3-cell.
(2) It holds that C = P and Q \ (D, U Dy) = A3.

The others are Theorems 2.1.6 and 2.1.7, which give a solution to Problem 2.1.1 (2). Be-
fore stating the theorems, we introduce some examples of compactifications of A% compatible
with del Pezzo fibrations and explicit birational maps preserving A3 from them to P3.

EXAMPLE 2.1.4. Let g3: P’ — P? be the blow-up along a line and D}, » the exceptional
divisor. Then the linear system |g5Ops(1) — Dy, 5| defines a P*-bundle structure p': P’ — PL.
Let Dyy be a p/-fiber. Then (P’, Dy, Dys) is a compactification of A® compatible with p/
because P’ \ (Dp2 U Do) = PP\ g3.Dy2 = A3 Hence g3: P’ — P? is a birational map
preserving A3.

EXAMPLE 2.1.5. Let ho: Q' — Q? be the blow-up of the smooth quadric Q* C P* along a
smooth conic and D), the exceptional divisor. Then the linear system |h3Oqs (1) — Dy, | defines
a quadric fibration structure ¢’: Q' — P!. Let D’ be a singular ¢'-fiber, which is isomorphic
to the quadric cone Qf C P?. Then hy induces an isomorphism @'\ (Dj, UD’) = Q*\ Q5. Let
hs: Q* --» P? be the projection from the vertex of Q3. Then, by the discussion in [Fur00,
pp.117-119], h3 induces an isomorphism Q* \ Qf = P? \ P? = A’. Hence (Q', Dj, D}) is
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a compactification of A3 compatible with ¢’ and hs o ho: Q' --+ P3 is a birational map
preserving A3

With the above examples, the other main theorems are stated as follows.

THEOREM 2.1.6. Let (Q, Dy, Dy) be a compactification of A® compatible with a quadric
fibration q: Q — P'. Suppose that D;, is non-normal.

(1) Let g1: Q --+ P be the elementary link with center along the singular locus of Dy,
which is a g-section. Let Dy be the strict transform of Dy in P and Dy, the
exceptional divisor of the elementary link. Then P has a P2-bundle structure p over
P! and (P, Dpa, Dy1) is a compactification of A® compatible with p.

(2) We follow the notation of Example 2.1.4. Regard p(Dy1) and p'(Dy2) as oo € P
Then there is the composition go: P --» P’ of elementary links with center along
linear subspaces in the fibers at oo such that Dy, is the strict transform of Dy in
P

Summarizing, we have the following diagram of rational maps preserving Q\ (D,UD;) = A3:

(2.1.0.2) (Q, D, Dy) " (P, Dy, D) %> (P', Do, D) = (P*, H)
ai a V|
P! P! P!

where H := g3, Dy .

THEOREM 2.1.7. Let (Q, Dy, Dy) be a compactification of A* compatible with a quadric
fibration q: Q — P*. Suppose that Dy, is normal. We follow the notation of Example 2.1.5.
Regard q(Dy) and ¢'(D}) as oo € PL. Then there is the composition hi: Q --» Q' of ele-
mentary links with center along rulings in the fibers at oo such that Dj is the strict trans-

form of Dy, in Q. In particular, we have the following diagram of rational maps preserving
Q \ (Dh U Df) = A3.‘

(2.1.0.3) (Q, Dn, Dy) "> (@, D}, Dy) 22 (Q%,@3) - (B%, H)

a 7]
P! P!

where we regard hy Dy as Q32 and H =13\ hy(Q3\ Q3F).

In Example 2.5.4, we construct a compactification of an affine homology 3-cell into a
quadric fibration, which gives a negative answer to Problem 2.1.1 (1) in the case where n = 3
without the assumption on the compatibility. Problem 2.1.1 (2) for general compactifications
into del Pezzo fibrations is at present far from being solved.

2.2. Structure of Chapter 2

This article is structured as follows.

In §2.3, we determine the Hodge diamonds of del Pezzo fibrations containing affine ho-
mology 3-cells. We also show that the base curve must be P!

In §2.4, we give precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by
using elementary links from quadric fibrations to P2-bundles.
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In §2.5, we construct several examples of compactifications of A3 compatible with quadric
fibrations as applications of Theorem 2.4.2. We note that these examples are erroneously
omitted from [Kis05, Table 1] or [MS90, Table 1]. We also construct an example of compact-
ifications of affine homology 3-cells. This gives a negative answer to Problem 2.1.1 (1) in the
case where n = 3 and the compactification is not compatible with the extremal contraction.

In §2.6, we give a solution to Problem 2.1.1 for compactifications compatible with P2-
bundles. Theorem 2.1.6 follows as a corollary.

In the rest of this chapter, we prove Theorem 2.1.7 as follows. Let (Q, Dy, Dy) be a
compactification of A® compatible with a quadric fibration such that D is normal.

First, in §2.7.1, we determine the singularities of Dj, and Dy|p,. We also assign a non-
negative integer to them, which we call the type of (Q, Dy, Dy). By definition, (@, Dy, Dy)
is of type 0 if and only if D, is a Hirzebruch surface.

Next, in §2.7.2, we suppose that (Q, Dy, Dy) is of type m > 0. We construct a birational
map preserving A® from (Q, Dy, D) to another compactification of type (m — 1) via elemen-
tary links between quadric fibrations. Composing such maps, we get a birational map from
(Q, Dy, Dy) to a compactification of A% of type 0. Hence we reduce to proving Theorem 2.1.7
when (Q, Dy, Dy) is of type 0, i.e., when D), is a Hirzebruch surface.

Finally, in §2.7.3, we suppose that D), is a Hirzebruch surface of degree d € Z>,. When
d > 0, we give a birational map preserving A* from (Q, Dy, Dy) to another compactification
(Q', Dy, D}) of A® of type 0 such that Dj is a Hirzebruch surface of degree (d —1). When
d = 0, we show that (Q, Dy, Dy) is actually the same as (@', D}, D}) as in Example 2.1.5.
We have thus proved Theorem 2.1.7.

2.3. Topological invariants of the ambient space

In this section, we determine the Hodge diamonds of del Pezzo fibrations containing affine
homology 3-cells, and that of the base curves.

LEMMA 2.3.1. Let f: X — C be a del Pezzo fibration and D a reduced effective divisor
on X such that X \ D is an affine homology 3-cell. Then the Hodge diamond of X is as
follows:

1
0 0
0 2 0
0 RYM2(X)  hb2(X) 0
0 2 0
0 0
1

Moreover, It holds that C = P!,

PROOF. By the Hodge symmetry, we only have to compute h*°(X) for 1 < i < 3 and
h'1(X). Since —Kx is f-ample, we have the following by the relative Kawamata-Viehweg
vanishing theorem:

(2.3.0.1) RY(X,Ox) = h'(C,O¢) for i > 0.

In particular, we have h*°(X) = h*9(X) = 0. Since the Picard number of X is two by
assumption, we have hb(X) = A (X) + 2h29(X) = 2.
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On the other hand, by [vdV62, Proposition 2.1], we have H°(X,Z) = H*(D,Z) = 0.
Hence H'(X,Z) = 0 by the Poincare duality and A"°(X) = 0 by the Hodge decomposition,
which proves the first assertion. The second assertion follows from (2.3.0.1). O

2.4. Proof of Theorem 2.1.3.

This section is devoted to the proof of Theorem 2.1.3. First we determine the linear
equivalence class of the irreducible components of the boundary divisor. Then we give the
precise statement of Theorem 2.1.3 as in Theorem 2.4.2 and prove it by using Lemma 1.5.1,
i.e. elementary links from quadric fibrations to P2-bundles.

LEMMA 2.4.1. Let q: @ — C be a quadric fibration, Dy, a reduced effective divisor on @,
and Dy a g-fiber. If U == Q \ (D) U Dy) is an affine homology 3-cell, then Dy, is a prime
divisor such that 2D), ~c —Kg.

PROOF. By Lemma 2.3.1, it follows that Pico(Q)) = 0. By [Fuj82, Corollary 1.20], we
have PicU = 0 and the group of invertible functions on U coincides with non-zero constants
C*. Hence Dy, is a prime divisor such that PicQ = ZD; & ZD;. By Theorem 1.1.2 (5)
and the Grothendieck-Lefschetz theorem, there exists a divisor Hg on () such that Pic Q) =
2Dy ® ZHg and 2Hg ~¢c —Kg. Hence Dy, ~¢ Hg, which proves the lemma. O

The following is the precise statement of Theorem 2.1.3.

THEOREM 2.4.2. Let q: QQ — C be a quadric fibration, Dy a reduced effective divisor on

Q, and Dy a g-fiber.

(A) Suppose that Dy, is non-normal. Then the following are equivalent.
(1) The complement Q \ (Dy U Dy) is an affine homology 3-cell.
(2) C 2 P! and Dy, is a prime divisor such that 2Dj, ~c —Kg.
(3) It holds that Q \ (Dy U Dy) = A3.

(B) Suppose that Dy, is normal. Then the following are equivalent.

) The complement Q \ (Dy U Dy) is an affine homology 3-cell.

) C = P! and Dy, is a prime divisor such that 2D, ~¢ —Kg. Also we have
D; =2 Q3 and h'*(Q) = 0. Moreover, each (q|p,)-fiber is smooth except possibly
Df’Dh‘

(3) It holds that Q \ (Dy U Dy) = A3.

PROOF. (A): Since (3) = (1) is trivial and (1) = (2) follows from Lemma 2.3.1 and Lemma
2.4.1, we only have to show (2) = (3).

Suppose that (2) holds. Let s := Sing Dj,, which is a ¢g-section by Lemma 1.6.2. Construct
0,1, p, @ and P as in Lemma 1.5.1. Then we have (Ey)q = Dy, by Lemma 1.6.2 (2). Therefore
we have:

(2.4.0.1) Q\ (DLUDy) = Q\ ((Di)gU(Dy)gUE,) =P\ ((Dy)pU(E,)p).

Since (E,)p is a sub P'-bundle by Lemma 1.5.1 (1) and (Dy)p is a p-fiber, we have Q\ (Dj, U
D;) = A® by [Kis05, Lemma 5.15].

(B): Since (3) = (1) is trivial, we only have to show (1) = (2) = (3). Let U := Q\ (D,UDy).
We note that (1) implies C = P! by Lemma 2.3.1. Hence we may assume that C' = P!
throughout the proof. Let oo := ¢(Dy) and regard C'\ {oo} as Al.

(1
(2
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(1) = (2): Suppose that (1) holds. Then the second assertion follows from Lemma 2.3.1.
Since U is an affine homology 3-cell, we have:

(2.4.0.2) Xiop(@) = Xiop(U) + Xiop(Dn \ (D[ ;) + Xiop(Dy)
= 14 Xuop(Dn \ (Dflp,)) + Xtop(Dy)-

Let o == {t € A | (¢|p,)*(¢) is reducible}. For t € A', the divisor (¢|p, )*(t) is a member
of either |Eo + fo| in Fo or [Ogz(1)] in Q2. In particular, we have:

tdo <= Supp (q|p,)*(t) =P

<= Xiop((q]p,)" (1)) = 2.
teo <= q'(t) =2 Fyand (¢|p,)"(t) is reducible

<= Xiop((q]p,)* (1) = 3.
Hence we have:

(2.4.0.3) Xeop(Dn \ (Dflpy)) = 2Xt0p(Al \ o) + 3 Xtop(0) = 2+ fo.
Also by Lemma 2.3.1, we have:

(2404) Xtop(Q) =6— 2h’172<Q)'
Combining (2.4.0.2)—(2.4.0.4), we have:

(2.4.0.5) 6 — 2h"*(Q) > 3+ £0 + Xiop(Dy).

we note that xiop(Dy) = 3 when Dy = Q3 and Xiop(Dy) = 4 when Dy = Fy. Hence (2.4.0.5)
implies that A'*(Q) = 0, 0 = 0 and D; = Q3. In particular, we get the third and fourth
assertion of (2).

It remains to prove the last assertion. Take a ¢g-section s C D; and construct ¢, 1, p, @, P
and B and as in Lemma 1.5.1. By (1.5.0.1), we have:

(2406) Xtop(Q) =6— 2pa(B)

Combining (2.4.0.4) and (2.4.0.6), we have p,(B) = h'?*(Q) = 0. In particular, the branch
locus of p|p consists of two points. By Lemma 1.5.1 (2), there is exactly two singular g-
fibers. Since ¢*(c0) = Dy = Q2, we may assume that ¢*(0) is the other singular fiber. By
Lemma 1.5.2 and the fact that o = 0, each (¢|p, )-fiber is smooth except possibly D¢|p, and
(q|p,)*(0). Hence we only have to show that (¢|p,)*(0) is smooth.

Conversely, suppose that (¢|p, )*(0) is not smooth. Let E := 9, (E,) and U’ := P\((Dy,)pU
(Dy)p) = A3. Since U = @\((Dh)éu (Dy)gUE,), we can regard U as the affine modification
of U’ with the locus (BNU" C ENU’) (see [KZ99] for the definition). By [KZ99, Theorem
3.1], the morphism between homologies 7: H (B NU',Z) — H,(E NU’,Z) induced by the
inclusion BNU’' < E N U’ is an isomorphism of Z-modules.

On the other hand, (¢|p, )*(0) is non-reduced because ¢ = ). Lemma 1.5.2 now shows that
ENU' = A' x C* and BNU' = C*, which is an unramified 2-section of the second projection
of ENU’'. Hence H(BNU',Z) = Hi(ENU',Z) = 7Z, but T = 2 X idgz, a contradiction.

(2) = (3): Suppose that (2) holds. Let E = ¢.(E,) and U’' := P\ ((Dy)p U (Dy)p) = A3,
Then we can regard U as the affine modification of U’ with the locus (BNU" € ENU’). By
Lemma 1.5.2, we have ENU’ = A? and BN U’ = A!. By the Abhyanker-Mor theorem over
Noetherian rings containing Q [BD93, Theorem B], there is a coordinate {x,y, 2z} of U' = A3
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such that ENU’ = {x =0} and BNU' = {z =y = 0}. Hence U is isomorphic to the affine
modification of A?ﬂ:,y,z} with the locus ({x = y = 0} C {z = 0}), which is isomorphic to A3
as desired. O

2.5. Examples

This section provides several examples of compactifications of affine homology 3-cells com-
patible with quadric fibrations. For the construction, we often use Theorem 2.4.2. Through-
out this section, (Q, Dy, Dy) stands for a compactification of A® compatible with a quadric
fibration ¢: @ — P'. We note that K¢g + D), + Dy is not nef since (Kg + Dy, + Dy - 1) = —1
for each ruling [ of a ¢-fiber.

First suppose that @) is a Fano 3-fold and Dj, + Dy is ample. Let us mention that then
in [Kis05, Lemma 5.9], D), is erronecously claimed to be normal. In Example 2.5.1, we
construct examples with non-normal Dy,

EXAMPLE 2.5.1. Let ¢: Q — P! be a Fano quadric fibration, i.e. either No. 18, No. 25 or
No.29 in [MMS82, Table 2]. Let D be a ¢-fiber. By [Man66, Theorem 4.2], we can take a
g-section s. By Lemma 1.5.1 (1), there is a prime divisor D, on @ such that 2D, ~p1 —Kg
and Sing D), = s. Theorem 2.4.2 (A) now shows that (Q, Dy, Dy) is a compactification of A3
compatible with q.

Assume that Dy, + Dy is not ample. Then by [Kis05, Lemma 2.2] there is a birational
extremal contraction ¢ of @) such that E, = D) or D;. Since Dy is a g¢-fiber, we have
E, = Dy, which is impossible since D}, is non-normal and E, is normal by [Mor82, Theorem
3.3]. Hence Dy, + Dy is ample.

Secondly, suppose that Dy, is normal and @ is No. 29 in [MM82, Table 2], i.e. the blow-up
of @ along a smooth conic. Let us mention that then in [Kis05, Lemma 5.13], Dy + Dy
erroneously claimed to be not ample. In Example 2.5.2, we construct an example with
Dy, + Dy ample.

EXAMPLE 2.5.2. Take H,S and C in Q* = {XoX; + X2 + X3X, = 0} C P?Xo:---:m as
follows:

(2501) H = {X()Xl + X22 + X3X4 = X() = 0},
(2.5.0.2) S = XX+ XTI+ X3X, = X1 X3+ X7 =0},
(2.5.0.3) C = {XoX1+ X2+ X3X,= X=X, =0}.

Let P = {X,Y; = XYy} C IP’?XO:W:&] X P[lyozyl]7 and ®: P — P* be the blow-up along
{Xo = X1 = 0}. Set Q, D; and Dy, as the strict transformations of Q*, H and S in P
respectively. Then ®|g: Q@ — Q3 is the blow-up along C, and the second projection of
P* x P! induces a quadric fibration ¢: Q — IP’%YO:YI]. The defining equations of (), Dy and D,
in P are as follows:

(2.5.0.4) Q = {XoXi+ X7+ X3X, =0},
(2.5.0.5) Dy = {XoX)+ X5+ X3X, =Y, =0},
(2.5.0.6) Dy = {XoX1+ X5+ X3X, =Y X3+ YXp =0}
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Then Dy is a singular g-fiber and Dj, has only one DuVal singularity of type D4. Also D, is
a prime divisor with 2Dj, ~p1 —Kg. Since C' = P! we have h'*(Q) = 0. Also we have:

~ Xo X1+ X3+ X3X, =0, R 1
Di\ (D¢lp,) = { Xy = XV ViXst Xo=0 [ 7 Plxoraxi) X A

~ [YPX2+ X7+ X3X, =0} in ]P’[QXQ:XS:XA X A%Yl).

Hence each (¢|p, )-fiber is smooth except D¢|p, .

Theorem 2.4.2 (B) now shows that (@, Dy, Dy) is a compactification of A® compatible
with g. Since both Dy, and Dy differ from Eg),,, the ampleness of Dy, + Dy follows from [Kis05,
Lemma 2.2].

Thirdly, suppose that () is an arbitrary quadric fibration and Dy|p, is smooth. Then Dj,
is normal by Lemma 1.6.2. In fact, it holds that D;, = [F,; for some d € Z>( by Theorem 2.4.2
(B). Let us mention that in [MS90, §4.4, Lemma 2|, it is erroneously claimed that d = 0. In
Example 2.5.3, we construct an example with D), = F; for each d € Zxy.

EXAMPLE 2.5.3. Let d € Z>¢ and P := F(0, 1,d) with the P2-bundle structure p: P — P*.
For i = 1,d, let S; be the sub P!-bundle of P associated with the projection Op1 @& Op:1(1) &
Op1(d) = Op1 @ Op1(i) and F a p-fiber. Then it holds that S; = F; and S; ~ {p—(d+1—1)F,.
Also we have:

(2.5.0.7) (Silswpn o)’ = (Ep—(d+1—=0)F)* - (Ep —iF)
= & —02d+2—0)& F=—(d+1—1).
Hence Syls, = £1 and Si|s, = X4.
Now take B C S; as a smooth member of |2(3; + f1)|, which is a p-bisection. Let

(R P — P be the blow-up along B. Then —K is (po1))-ample. An easy computation shows
that there is the elementary link with center along B:

N
P Q

7] ls
]P)l IEDl

(2.5.0.8)

such that ¢ is the blow-up of a quadric fibration ) along a g-section. In fact, this is the
inverse of an elementary link as in Lemma 1.5.1. Since B = P! we have h'?(Q) = 0 by
(2.4.0.4) and (2.4.0.6).

Let D), = (S4)¢ and Dy a singular ¢-fiber, which exists by Lemma 1.5.1 (2). Then
2Dy, ~p —Kg by Lemma 1.5.1 (1). Since BN S; = 0 and E, = (S1)p, it holds that
Dy, =S4 = F,. Theorem 2.4.2 (B) now shows that (Q, Dy, D) is a compactification of A3
compatible with q.

Finally, we give an example of compactifications of affine homology 3-cells into quadric
fibrations which gives a negative answer to Problem 2.1.1 (1) without the assumption on the
compatibility.
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EXAMPLE 2.5.4. Take H,S and C in Q* = {XoX; + X3 + X3X; = 0} C ]P’?XD:_“:XA as
follows:

(2509) H = {X(]Xl —+ X22 —+ X3X4 = XO = 0},
(25011) C = {XOX1 + X22 + X3X4 = O, X3 = X4 = Xo}

As in Example 2.5.2, the blow-up @ := Blg Q? has a quadric fibration structure q: Q — P*.
Since each g-fiber is the strict transform of a hyperplane section of Q* containing C', both
Hg and Sg are not g-fibers.

Now set U == Q \ (HgU Sg), Q" :==Q*\ H, S =S\ (SNH) and C° = C\ (CNH).
Then U is the affine modification of Q° with the locus (C° C SY). In P*\ H = A}

[x1,...,za]?
we have an isomorphism Q° = {z; + 23 + z314 = 0} & A[lm] X A[ng’u]. This isomorphism
sends S° and C? to A[lm] x {r2 = x3} and A[lm] x {(1,1)} respectively. By [tDP90], U is
isomorphic to Aj, » x V(3,2), where V/(3,2) = {2*2 + 322} + 34 — 223 — 223 = 1} C A},
is an affine homology 2-cell of logarithmic Kodaira dimension one. Hence (Q, Hg U Sg) is a
compactification of an affine homology 3-cell A' x V/(3,2). We note that A' x V(3,2) % A3

by [IF77, Theorem 1].

2.6. Compactifications of affine homology 3-cells compatible with P?-bundles

In this section, we will give a solution of Problem 2.1.1 for compactifications compatible
with P2-bundles. Theorem 2.1.6 follows as a corollary.
First we give the solution of Problem 2.1.1 (1) for such compactifications.

LEMMA 2.6.1. Let p: P — C be a P2-bundle, D, a reduced effective divisor on P, and
D¢ a p-fiber. Then the following are equivalent.

(1) The complement P\ (Dy, U Dy) is an affine homology 3-cell.
(2) C = P! and Dy, is a sub P-bundle.
(3) It holds that P\ (D, U D;) = A®.

PROOF. Since (3) = (1) is trivial and (2) = (3) follows from [Kis05, Lemma 5.15], we
only have to show (1) = (2).

Suppose that (1) holds. The first assertion follows from Lemma 2.3.1. By the same
argument as in the proof of Lemma 2.4.1, D), is a prime divisor such that Pic P = ZD;®ZDj,.
On the other hand, we have Pic P = ZD; ® Z&p. Hence D}, ~¢ &p, which implies that Dj, is
a sub P-bundle of P. O

Next we characterize (P’, Dy 2, Dy2) as in Example 2.1.4.

LEMMA 2.6.2. Let p: P — P! be a P%-bundle with associated vector bundle €. Let F
be a p-fiber and D C P a sub P-bundle. Suppose that degf = 3n + 1, D = Fy and
D ~&p—(n+1)F for somen € Z. Then we have € = Opi1(n) @ Op1(n) ® Op:(n + 1), and
D is the exceptional divisor of the blow-up f: P = TF(0,0,1) — P? along a line.

PROOF. By replacing € by € ® Op1(—n), we may assume that n = 0. Let us show the
ampleness of —Kp. It is obvious that —Kp|r is ample. By the canonical bundle formula and
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the adjunction formula, we have:

(2.6.0.1) —Kp ~ 3¢p+F ~3D+4F.
1 1
(2602) D|D ~ _é(KP+D)|D_2F|DN_iKD_QfONEO_fO-

we thus get —Kp|p ~ (3D + 4F)|p ~ 3% + fo, which is also ample.

Suppose that (—Kp - r) < 0 holds for some curve r C P. Since both —Kp|r and —Kp|p
are ample, (2.6.0.1) now shows that r must be disjoint from any p-fiber, a contradiction.
Hence —Kp is strictly nef. On the other hand, we have (—Kp)® = 54 since P is a P%-bundle
over P!. Hence —Kp is big and semiample by the base-point free theorem. Since —Kp is
strictly nef and semiample, it is ample.

Therefore P is a Fano P>-bundle. By [MM82, Table 2], P is isomorphic to either P! x P?
or F(0,0,1). Since deg & = 1, it holds that P = F(0,0,1) and & = Op1 & Op: @ Op:1(1), which
is the first assertion.

Since F' ~ f*Ops(1) — Ey and —Kp ~ f*Ops(4) — Ef ~ 3E; + 4F, the second assertion
follows from (2.6.0.1). O

Now we can give a solution to Problem 2.1.1 (2) for compactification compatible with
P2-bundles.

PROPOSITION 2.6.3. Let (P, Dy, Dy) be a compactification of A* compatible with a P?-
bundle p: P — P'. We follow the notation of Example 2.1.4. Regard p(D;) and p'(Dy2) as
oo € PL. Then there is the composition ga: P -+ P of elementary links with center along
linear subspaces in the fibers at oo such that Dpo = (Dy)pr. In particular, there exists the
following diagram of rational maps preserving P\ (Dy U D) = A3:

(2.6.0.3) (P, Dy, Dy) ™5 (P, Dy, Do) 2 (B3, H)
pl p’l
IEDI — ]Pl

where H = g3, Dy 5.

PrROOF. Suppose that D), = F; for some d > 0. Take the elementary link P --» P,
with center at a point p € Dy N Dy such that p ¢ ¥;. This elementary link preserves
P\ (D, UDy) = A3 Also we have (Dp,)p, = F,_1 because P --» P; induces an elementary
transform of D), with center at p. Taking such elementary links d times, we may assume that
D, = TF.

Let £ be an associated vector bundle of P. Set d = deg& and take e € Z such that
Dh ~ f P + 6D f-

Let us show that d+e € 2Z. By the canonical bundle formula and the adjunction formula,
we have:

(2.6.0.4) ~Kx ~ 3¢ —(d—2)Ds ~ 3Dy — (d+ 3¢ — 2)Dy.
(2.6.0.5) —Kp, ~ (2D, —(d+3e—2)Dy)|p,

~ 2(Dp — (e = 1)Dy)|p, = (d+€)Dylp,.
This gives d + e € 27Z because —Kp, ~ 2(Xy + fo) and D¢|p, ~ fo.
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Now let L C Dy be a linear subspace and P --» P, the elementary link with center along
L. This elementary link preserves P\ (D, U Dy) = A3. Let F be a fiber of the induced
P2-bundle p;: P, — P'. Take an associated vector bundle & of P; as in Lemma 1.4.1.

Consider the case where L is a point outside Dj,. Then we have (Dp,)p, = D, = Fy. By
Lemma 1.4.1 and Corollary 1.4.2, we have deg& = d — 1 and (Dy)p, ~ Ep, + (e + 1)F. For
each m € Zs, taking such elementary links m times, we can replace (d, e) with (d—m, e+m).

Consider the case where L = Dy N Dj,. Then we have (Dy)p, = D), = Fy. Replacing &’
with & ® piOp1(1), we have deg &’ = d+ 1 and (Dp)p, ~ &p, + (e —1)F by Lemma 1.4.1 and
Corollary 1.4.2. For each m € Zs, taking such elementary links m times, we can replace
(d,e) with (d +m,e —m).

Now set m == 43 +1 €7 an(ill replace (d, e) with (d+m,e—m) = (@jtl, —dte 7).

+e

Applying Lemma 2.6.2 with n = %3¢, we have the assertion. 0

Now we can prove Theorem 2.1.6.

PROOF OF THEOREM 2.1.6. We have shown that Sing D), is a ¢g-section in Lemma 1.6.2.
By Lemma 1.5.1, there is the elementary link ¢,: () --+ P with center along Sing D), and
the induced morphism p: P — P! is a P?-bundle. Let E be the exceptional divisor of the
elementary link. As in the proof of Theorem 2.4.2 (A), we can show that g; induces an
isomorphism A* =~ Q \ (D, U Dy) = P\ (EU (Dy)p). Hence (P, D1, Dy1) = (P, E,(Dy)p)
is a compactification of A® compatible with p, which proves (1). The assertions (2) follow
from Proposition 2.6.3. O

2.7. Proof of Theorem 2.1.7

The remainder of this chapter will be devoted to the proof of Theorem 2.1.7. From
now on, we assume that (Q, Dy, Dy) is a compactification of A* compatible with a quadric
fibration ¢: Q — C = P! such that Dj, is normal. Also we use the following notation:

NOTATION 1. For d € Z~(, we will denote by Sy the blow-up of F; at a point outside .
We note that Sy is also the blow-up of Fy_; at a point in ¥4 ;.

2.7.1. Singularities of D), and Dy|p,. First, we establish a relation between the singu-
larity of Dy|p, and that of Dj,. Theorem 2.4.2 (B) shows that Dy = Qf and Dy|p, ~ Og(1).
Hence Dy|p ; is either a smooth conic, the union of two distinct rulings, or a non-reduced
curve supporting on a ruling of Q3.

THEOREM 2.7.1. We have the following correspondence.
(1) If Dy|p, is smooth, then D, = F, for some d > 0.
(2) If D¢|p, is reducible, then Dy, = Sy for some d > 0.
(3) If D¢|p, is non-reduced, then Dy, has either exactly two DuVal singularities of type
Ay, or the unique DuVal singularity of type As or D, (m > 4).

Proor. Take a g-section s C Dj and construct go,w,p,@, P and B as in Lemma 1.5.1.
Write G = 1, E,, 00 = q(Dy), foo = (p|la)*(c0) and l; == (p|(p,),)*(t) for t € C.

Recall that B = P', D; = Q2 and singular (g|p, )-fibers are at most Dy|p, by Theorem
2.4.2 (B). In particular, p|p is ramified over co. By Lemma 1.5.2, (p|¢)-fibers contained in
(Dp)p are at most foo. Also foo & (Dy)p if and only if D¢|p, is reduced.
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By Lemma 2.4.1, we have 2D;, ~c —Kg. Hence (Dy)p is a sub P'-bundle of P not
containing B by Lemma 1.5.1 (1). Since G is also a sub P*-bundle of P, there exists a unique
p-section s” and a € Z>q such that (Dp,)ple = s’ + afw.

Let us show that (B -s')g < 1. For t € C, it holds that [; N B = () if and only if
(q|p,)*(t) is smooth by Lemma 1.5.2. Since singular (¢|p, )-fibers are at most Dy|p,, we have
Supp((Dp)p N B) C fe. Hence Supp(s' N B) C Supp(fe N B). Since p|p is ramified over
00, the support of foo N B is a point. By the same reason, B and f., have the same tangent
direction at Supp(fe N B) in G. Since (fx - ') = 1, we have (B - s')g < 1 as desired.

(1): Suppose that D¢|p, is smooth. Then we have a = 0 and loNB = @) by Lemma 1.5.2. The
former implies that (Dj)p UG is a SNC divisor, and the latter implies that B N (Dp)p = 0.
Hence 1 is an isomorphism along (Dy)g. Since (Dy)g U E, = (Dy)5 U G is a SNC divisor,
we have D = (D)5 = (Dp)p, which is a Hirzebruch surface, and (1) is proved.

(2): Suppose that D¢|p, is reducible. Then we have a = 0 and I, N B # () by Lemma 1.5.2.
Hence (Dy)p U G is a SNC divisor. Also (Dj)g is the blow-up of (Dy)p at a point because
((Dn)p - B)p = (e B)g = 1. Since (Dy)g N E, is the strict transform of s in Q, the divisor
(Dn)g U Ey is a SNC divisor and hence we have Dy = (Dj)g5, which is the blow-up of a
Hirzebruch surface at a point, and (2) is proved.

(3): Suppose that Dy|p, is non-reduced. Then we have a > 1 by Lemma 1.5.2. Set m =
(B'(Dh)p)p:(B'Sl)G+2a22. _

_ For 0 <i<m—1, we define F;, Q;, x;, h; and ¢; by induction as follows. Let Fy := P,
Qo = Q, o = Supp((Dp)p N B), hg = idp and 1y := 9. For i > 0, denote by h;: P, — P,_;
the blow-up at ;1. Let z; := Supp((Dy)p, N Bp,), which is a point. We also define 1;: Q; —
P; as the blow-up along Bp,.

Then we have the following diagram by Lemma 1.3.1 (1), where ¢;: Q; — Q;_1 is the
blow-up along (¢;_1) ! (z;_1) for 1 <i <m — 1.

(2.7.1.1) Ot 5 Qs 25 2500 25 Qo —Q
ld)ml J(¢m2 l"bl J¢O¢
Py ﬁ Fins him—2 o ha B hi Fo.

Let a: (Dp) 3., — Dn be the induced morphism. To know the singularities on Dy, it
suffices to detect that of (Dp)5, _, and the shape of Ej,.

For 1 <i < m—1, it holds that (Dy)p, is smooth and ((Dy)p, - Bp,) p, = m — i because h;
is the blow-up at the point x;_;. Hence (Dy,)p, , intersects with Bp,_, at x,,,_; transversally
and (Dh>@m_1 is the blow-up of (Dy,)p, _, at x,,_1, which is also smooth.

Let us reveal the precise location of z; € (Dy)p, for 0 < i < m — 1 to detect the shape of
E,. Note that z; € Ej, by construction. We already showed that xq = Supp(B N f ). Since
(B - fx)a = 2, we have (Bp, - (foo)r)ap, = 1. Hence we have z; = Supp(Bp, N (f)p,) =
SUPP(Em N (foo)P1>'

We now turn to the case i > 2. We have x5 & (foo)p, since (Bp, - (fx)p,)ap, = 0. Also
we have zo g (Eh1>P2 since (Bp2 . (Eh1>P2)P2 = (0. Hence x4 € Eh2 and x ¢ (Ehl)Pg U (foo)Pg-
Similarly, for i > 3, we have z; € Ej, and z; & (En, ,)p..
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Let e; be the strict transform of Ehi|Dh,i in @m,l for1 <i<m-—1. Set foo = (fw>ém_1’

S = Sl@ and r = Ey | Dn)g, - By the above observation on x;, the configuration of e,
m—1 m—1

fxoo Fand v in (Dy)g . is as in FIGURE 1.

s s | s | s |
€1 foo Joo €1 €1 Jeo Joo €1
T | €2 | €2 | €2 |
r €3 €3
€4 €4
€m—1 Em—1
r r

Case m =2 Case m =3 Case m >4 and m Casem >4 and m
is even is odd

F1GURE 1. The configuration of e;, foo, s and r in (Dh)@

m—1

It is clear that (fx)g is the exceptional divisor of (Dy)5 — Dj. On the other hand,
by Lemma 1.3.1 (1), en—1 is the exceptional divisor of (Dy)5  — (Dn)g, _,- Repeated
application of Lemma 1.3.1 (1) shows us that E, = fx U U, e;. Since each of them is
(—2)-curve in (Dp)g, . the singularity of Dy is the DuVal singularity of type 2A; when
m = 2, A3 when m = 3 and D,,, when m > 4, which completes the proof. O

The next aim is to construct explicit birational maps preserving A® from (Q, Dy, D)
to an another compactification (@', D, D}) compatible with quadric fibration such that the
singularity of Dj, is milder than that of Dj. To do so, we define the type of (Q), Dy, Dy) as
follows.

DEFINITION 2.7.2. Let m € Zso. We call (Q, Dy, Dy) a compactification of

type 0 when D), = Fy for some d > 0.

type 1 when D), = S, for some d > 0.

type 2 when D), has two DuVal singularities of type A;.
type 3 when D, has a DuVal singularity of type A

type m(> 4) when D), has a DuVal singularity of type D,,.
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We note that Dy|p, contains a ruling of Q2 = Dy if and only if m > 0. It is easy to check
that the number of the type coincides with (B - (Dy)p)p as in the proof of Theorem 2.7.1.
Hence we have the following.

COROLLARY 2.7.3. Take any g-section s C Dy and construct P and B as in Lemma
1.5.1. Then (Q, Dy, Dy) is of type m € Zxq if and only if (B - (Dy)p)p =m.

2.7.2. The case of singular Dy|p,. Next we shall give an elementary link from each
compactification of A3 of type m > 0 to that of type (m — 1). Composing such elementary
links, we get a birational map from each compactification of A% of type m > 0 to that of
type 0.

LEMMA 2.74. Let q: Q — C be a quadric fibration, F a singular q-fiber, s C @ a q-
section and | the ruling of F = Q3 which intersects with s. We use the same letter | and s
for their strict transformations by abuse of notation. Consider the following four elementary
links:

o Q& Q11 E) Q': the elementary link with center along [.

o Q2 Q12 SEEN Py : the elementary link with center along s.

e () & Q2,1 % P: the elementary link with center along s.
v2,2 Y22

o P<— Q22 2% Py the elementary link with center at the point x = a1 (1).
Summarizing these notation, we have the following diagram:

(2.7.2.1) . Q12 . Q11 (2,1 . (2,2 .
1,2 ®1,2 Y11 ©1,1 92,1 2,1 92,2 2,2
Py Q' Q@ P P
l l l | L
C C C C C,

Then the birational map v: Py --+ Py induced by (2.7.2.1) is an isomorphism.

PRrROOF. By [Cor95, Proposition 3.5], we only have to show that ¢ is an isomorphism in
codimension one.

Let I’ be the strict transform of the center of 117 in Q12. Let x1: X3 — @12 be the
blow-up along I’. Since s C ()1 is disjoint from Fg,, = Ey,,, we have X; = Bl, Q1. On
the other hand, let B be the strict transform of the center of 951 in Q22. Let x2: Xo = Qa2
be the blow-up along B. By Lemma 1.3.1 (1), we have Xy = Bl;()2;. Summarizing these
arguments, we have the following diagram:

(2.7.2.2) .
1/ \S / \
Pwm/ \1 2 %x/ \cpi,;;g,/ \jl 9022/ \’Z"‘M

P27

In @, the curve s intersects with [ transversally. Hence the induced map X; --+ X5 is
the Atiyah flop. By construction both E,, and Ey,, are the strict transforms of F'. By
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Lemma 1.6.2 (2) both E,, and Ey, , are the strict transforms of E, ;. Therefore ¢ is also an
isomorphism in codimension one, which completes the proof. O

THEOREM 2.7.5. Suppose that (Q), Dy, Dy) is of type m > 0. Let | be an irreducible com-
ponent of Supp(Dy|p, ) and take the elementary link QQ <— Q11 — Q" with center along l. Let
E be the exceptional divisor of the elementary link. Then (Q)', (Dy)qr, E) is a compactification
of A% compatible with a quadric fibration of type (m — 1).

PROOF. By Lemma 1.6.1, we have Q \ ((Dy)g U F) = A3, By Lemma 1.6.2, (D})¢q is
normal. Hence it suffices to show that (Q)', (Dy)qr, E) is of type (m — 1).

By Theorem 2.7.1 we can take a g-section s C D), intersecting with [. Take elementary
transformations as in Lemma 2.7.4. Let B C P, be the center of ¢ 5. By Corollary 2.7.3, it
suffices to show that ((Dp)p, - B)p, = m — 1.

By Lemma 2.7.4 we have P, = P, and Bp is the center of 15 ;. Since Dh|Df is not smooth,
Lemma 1.5.2 now implies x € (Dy)p N Bp. Hence (Dy)q,, ~ ©52(Dn)p — Epyy ~ U5 9(Dp)py
by Corollary 1.4.2 and ((Dy)p,-B)p, = ((Drn)p-Bp)p—(Ey, - Bgys)q., = m—1 by Corollary
2.7.3. U

An easy computation shows the following.

COROLLARY 2.7.6. We follow the notation of Theorem 2.7.5. Suppose that m = 1 and
take d > 0 such that D, = Sy. Then (Dp)g = F4 (resp. Fq_1) when 1 intersects with (resp.
is disjoint from) the strict transform of ¥4 in Sy.

2.7.3. The case of smooth D¢|p,. By Theorem 2.7.5, we are reduced to prove Theorem
2.1.7 for the case where (Q, Dy, Dy) is of type 0, i.e. where D}, is a Hirzebruch surface. First
we construct a birational map which decreases the degree of Dj as a Hirzebruch surface.

LEMMA 2.7.7. Suppose that Dy, = F, for some d > 0. Set oo = q(Dy). Then there are
an another compactification (Q', Dy, D) of A3 compatible with a quadric fibration ¢’ and the
composition h: QQ --+ Q' of elementary links with center along rulings in the fibers at oo such
that (Dy)q = D}, 2 Fy1 and D = (¢')*(c0). In particular, h preserves Q\ (D;U D)) = A3,

(2.7.3.1) (Q, Dn, Dy) "+ (Q', D}, DY)
ql q’l
P! ————— P!,

Proor. Take the elementary link fi: @ --» Q)1 with center along a ruling of Dy = Q
which is disjoint from ¥; C D;,. Let E be the exceptional divisor of the elementary link.
Since f; induces the elementary transformation of D, with center a point outside »;, we get
a compactification (Q1, (Dy)g,, E) of A® such that (Dp)q, = Sy.

Now take the elementary link fy: Q1 --+ Q" with center along the irreducible component
of Supp(E|(p,),,) Which is disjoint from the strict transform of ¥4 in (Dy)g,. Then by
Corollary 2.7.6, we get a compactification (Q', D}, D’) of A3 such that D) = F, ;. Hence
h = fy o f; is the desired birational map. 0
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Repeated application of Lemma 2.7.7 enables us to assume that (Q, Dy, D) satisfies
Dy = Fy. Next we show that such a compactification is the same as (Q', D}, D}) as in
Example 2.1.5.

LEMMA 2.7.8. Suppose that D), = Fy. Then Q is the blow-up of Q3 along a smooth conic
and Dy, is the exceptional divisor of the blow-up.

PROOF. First let us show the ampleness of —Kg. By Lemma 2.4.1, we can take a € Z
such that —K¢g ~ 2D;, +aDy. By the adjunction formula, we have Dy|p, ~ —Kp, —aDy¢|p, .
Since D), = F,, we have:

(2.7.3.2) D} = (Kp, +aDslp,)’
= (Kp,)*+2a(Kp, - Dy|p,) = 8 — 4a.
(2.7.3.3) (-Kg)* = (2D, +aDy)?

= 8D} +12a(D; - D;) = 64 — 8a.

On the other hand, by Lemma 1.5.1 (3), it holds that (—Kg)* = 40 — (8p,(B) + 32p.(C)).
We have C' = P! by assumption. Combining Theorem 2.4.2 (B), (2.4.0.4) and (2.4.0.6), we
get po(B) = 0. Hence (—Kg)* = 40. Substituting this into (2.7.3.3), we have a = 3. Hence
we have

(2.7.3.4) —Kgo ~ 2D, + 3D

and _KQ|Dh ~ (2Dh + 3Df)Dh ~ _QKDh - 3Df|Dh ~ 420 + fo, which is ample. Clearly
—Kq|p, is also ample.

Suppose that (—Kgq-r) < 0 holds for some curve r C Q. Since both —Kq|p, and —Kg|p,
are ample, (2.7.3.4) now shows that r must be disjoint from any g¢-fiber, a contradiction.
Hence —Kj is strictly nef. Also —Kg is big since (—Kg)® = 40 and is semiample by the
base-point free theorem. Since — Ky is strictly nef and semiample, it is ample.

Therefore @ is a Fano quadric fibration with (—Kg)? = 40. By [MM82, Table 2], @ is
the blow-up of Q* along a smooth conic, which is the first assertion.

Let hy: Q@ — Q* be the blow-up morphism. Since Dy ~ h3Oqgs(1) — Ej, and —Kg ~
h5Oqgs(3) — Ep, ~ 2E}, + 3Dy, the second assertion follows from (2.7.3.4). O

Now we can prove Theorem 2.1.7.

PROOF OF THEOREM 2.1.7. Suppose that (@, Dy, D;) is a compactification of A* of
type m. Taking elementary links m times as in Theorem 2.7.5, we may assume that m = 0.
Repeated application of Lemma 2.7.7 enables us to assume that D;, = Fy. Then h; = idg
and (@', Dy,, D}) = (Q, Dy, Dy) satisfies all the assertion by Lemma 2.7.8. O



CHAPTER 3

G3-structures in del Pezzo fibrations

3.1. Introduction to Chapter 3

In this chapter, we are interested in compactifications of the affine n-space G with the
additive group structure in the following sense.

DEFINITION 3.1.1 ( [HT99, Definition 2.1]). Let G be a connected linear algebraic group.
A G-variety X is a variety with a fixed (left) G-action such that the stabilizer of a general
point is trivial and the orbit of a general point is dense.

By a G-structure on X with the boundary divisor D, we mean a G-action on X which
makes X a G-variety whose dense open orbit is X \ D. We note that when G = G, we can
reword a G[-variety as a variety with a fixed G['-action whose dense orbit is isomorphic to
G? because G is simply connected.

B. Hassett and Y. Tschinkel [HT99] considered G['-varieties originally, and classified all
the smooth projective GJ-varieties with the second Betti number By = 1 when n < 3. Since
smooth rational projective varieties with By, = 1 are Fano, we can rephrase their result as
the classification of all the smooth Fano GI'-varieties with By = 1 when n < 3. After that, Z.
Huang and P. Montero [HM18] classified all the smooth Fano G3-varieties with By > 2. B.
Fu and P. Montero [FM19] also classified all the smooth Fano G!-varieties with Fano index
at least n — 2 for any dimension.

In this chapter, we consider smooth projective G3-varieties with By = 2, which are not
necessarily Fano. Take such a variety X, which is rational by definition. By virtue of the
Mori theory, it has an extremal contraction f: X — C of relative Picard number one with
dim C' > 1. The purpose of this chapter is to determine the structure of f when dimC' =1,
i.e., when f is a del Pezzo fibration. The main theorem of this chapter is the following,

THEOREM 3.1.2. Let X be a smooth projective 3-fold, D a reduced effective divisor on X
and f: X — C a del Pezzo fibration. Then the following are equivalent.

(1) X has a G3-structure with the boundary divisor D.
(2) f is a P2-bundle over P! and D consists of a sub P'-bundle Dy and a f-fiber D,
which generate Aeg(X).

3.2. Structure of Chapter 3

This chapter is structured as follows. In §3.3, we recall some facts on actions of algebraic
groups on algebraic varieties. Using them, we prove that Theorem 3.1.2 (1) implies (2) in
§3.4. The main step to prove this implication is Proposition 3.4.4, that is, the exclusion of
the case of quadric fibrations. For this, we use the results in Chapter 2. Finally, we prove
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the opposite implication in §3.5. For that, we construct a G2-structure for each P>-bundle P
over P! via a sequence of elementary links from P! x P? to P.

3.3. Preliminaries on group actions

In this section, we compile some facts on actions of algebraic groups on algebraic varieties,
which will be needed in §3.4 and §3.5.

THEOREM 3.3.1 ( [HT99, Theorem 2.5, 2.7]). Let X be a normal proper G2 -variety with
the boundary divisor D and D = U}, D; the irreducible decomposition. Then we have the
following:

(1) Pic(X) = P, ZD;.
(2) =Kx ~ Y7, a;D; for some integers ay, ..., a, > 2.
(3) Aeff(X) - @?:1 RzoDi-

THEOREM 3.3.2 ( [Bril7, Theorem 7.2.1)). Let G be a connected algebraic group, X a va-
riety with G-action, Y a variety and f: X — Y a proper morphism such that f*: Oy — f.Ox
15 an isomorphism. Then there exists the unique G-action on'Y such that f is equivariant.

3.4. Proof of Theorem 3.1.2 (1) = (2)

In this section, we prove that Theorem 3.1.2 (1) implies (2). For this, we make the
following assumption in this section:

AsSUMPTION 1. X is a smooth projective G3-variety with the boundary divisor D.
f: X — Cis a del Pezzo fibration of degree d.
By Theorem 3.3.1, D consists of two irreducible components, say Dy U Ds.

LEMMA 3.4.1. It holds that C = P!,

PROOF. X is rational since it contains G2 as the dense open orbit. Since H°(C,Q¢) <
H(X,Qx) =0, we have H°(C,Q¢) = 0 and the assertion holds. O

PROPOSITION 3.4.2. The boundary divisor D contains a f-fiber which is stable under
G3-action.

PROOF. By Theorem 3.3.2, there is the G3-action on C' such that f is G3-equivariant.
By the Borel fixed-point theorem [Hum?75, §21.2], the action G2 ~ C has a fixed point, say
oo € C. Since the divisor f*(o0o) is stable under the G3-action, it is contained in D. O

In the remainder of this section we require Dy to be a f-fiber.
PROPOSITION 3.4.3. It holds that d > 8.

ProOF. Conversely, suppose that d < 7. By Theorem 3.3.1 (1), we have Pic(X) =
2Dy @ ZDy. On the other hand, take a (—1)-curve [ in a general f-fiber. Combining
(—=Kx -1) =1 and [Mor82, Theorem 3.2| (2), we have Pic(X) = Z(—Kx) & ZD,. Hence we
can write —Kx ~ a; Dy + a; Dy with a1 = 1 and ay € Z, a contradiction with Theorem 3.3.1
(2). O

PROPOSITION 3.4.4. It holds that d # 8.
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Proor. Conversely, suppose that d = 8.
Step 1: First we show that we get a contradiction if there is a G2-stable f-section, say

s. In this case, applying Lemma 1.5.1 with ¢ replaced by f, we can obtain the following
commutative diagram:

(3.4.0.1) . X .
YN

X P

dl »

C———C

where ¢ is the blow-up along s, p is a P?-bundle and 1 is the blow-up along a smooth
connected p-bisection, say B.

Since s is G3-stable, X admits the unique G3-action such that ¢ is equivariant. By
Theorem 3.3.2, P and C' also admit the unique G3-actions such that 1 and p are equivariant
respectively. Since E, is G2-stable, so is B. Hence p|p: B — C' is a G3-equivariant double
covering. Since X has the dense open orbit, so does C. Since p|p is surjective, finite and
G3-equivariant, B also has the dense open orbit. Since C' and B have dominant maps from
G3, we obtain C' & B ~ P!,

Let us show that B has the unique G3-fixed point. By [HM18, Proposition 3.6], G3
contains a subgroup G = G2 such that the G3-action on B factorizes via G3/G = G!. Since
G! has no non-trivial algebraic subgroup, the stabilizer of a general point of this G!-action
is trivial. Hence this action is a Gl-structure of B. By [HT99, Proposition 3.1], B has the
unique fixed point. By the same argument, C' also has the unique G3-fixed point.

Let b € B and ¢ € C are the G3-fixed points. Since p|p is equivariant, we have p(b) = c.
If p|p is unramified at b, then the point in (p|g)~*(c) \ {b} is also fixed, a contradiction.
Hence p|p is ramified at b. Since C' = B = P!, p|p has the other ramification point, which is
also fixed, a contradiction.

Step 2: Now it suffices to find a G?-stable f-section. By Theorem 3.3.1 (2), there are integers
ai,as > 2 such that —Kx ~ a; Dy + asDy. For a smooth f-fiber F' = [y, the restriction
—Kx|r ~ a1 D1|F is a divisor of bidegree (2,2). Hence a; = 2. On the other hand, by the
choice of Dy, (X, Dy, Dy) is a compactification of A® compatible with f (See Definition 2.1.1).

If D; is non-normal, then s = Sing D; forms a section by Lemma 1.6.2. Since D is
G3-stable, so is s. Therefore we derive a contradiction as in Step 1.

Hence D; is normal. By Theorem 2.4.2, we obtain Dy = Q2. Suppose that (X, Dy, Dy)
is of type m > 0 in the sense of Definition 2.7.2. Then Supp(D;|p,) contains a ruling of the
quadric cone Dy by Theorem 2.7.1, say [. applying Lemma 1.6.1 with ¢ replaced by f, we
can obtain the following commutative diagram:

(3.4.0.2) X
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where ¢ is the blow-up along [, f’ is a quadric fibration and v is the blow-up along a ruling
in a singular f’-fiber such that £, = (D) 5.

Since Supp(D1|p,) is G3-stable and G? is irreducible, [ is also G3-stable. Hence X admits
a G3-structure with the boundary divisor (D;UDs) 3 UE,,. Theorem 3.3.2 now gives X’ a G3-
structure with the boundary divisor (D;)x/U(E,)xs. By Theorem 2.7.5, (X', (D1)x+, (E,)x7)
is of type m — 1.

By repeated application of the above construction, we only have to exclude the case
when (X, Dy, Ds) is of type 0. Then D; is G3-stable and is isomorphic to F, for some n by
definition. If n > 0, then the negative section s in Dy is a G3-stable f-section, and we derive a
contradiction as in Step 1. Hence n = 0. There is the P'-bundle structure h: D; — P! other
than f|p,. Combining Theorem 3.3.2 and the Borel fixed-point theorem, we get a G3-stable
h-fiber s, which is a f-section. Therefore we derive a contradiction as in Step 1. 0

PROOF OF THEOREM 3.1.2 (1) = (2). Suppose that (1) holds, Combining Propositions
3.4.3 and 3.4.4, we get d = 9. By Theorem 3.3.1 (2), there are integers ay, as > 2 such that
—Kx ~ a1 Dy + asDy. By the adjunction formula, we have a1 Dq|p, ~ —Kx|p, ~ —Kp, ~
Op2(3). Hence a; = 3 and D is a sub P'-bundle. The second assertion of (2) follows from
Theorem 3.3.1 (3). O

3.5. Proof of Theorem 3.1.2 (2) = (1)
In this section, we prove that Theorem 3.1.2 (2) implies (1).

NoTATION 2. For this, we make the following notation in this section:

® D4, 4,: the P2-bundle structure of F(—dy, —ds, 0).
o &4,.4,: & tautological divisor of F(—d;, —ds,0).

To complete the proof of Theorem 3.1.2, we prepare the following five lemmas.

LEMMA 3.5.1. Let P = F(—dy, —dy,0) with dy > dy > 0, E a sub P'-bundle of P and
F a pg, ap-fiber. Then E and F generate Aeg(P) if and only if E ~ &g, 4,. Moreover, in this
case, the pair (E, F') is unique up to Aut(X).

PROOF. Recall from [Rei97, Chapter 2] that P = F(—d;, —d»,0) is defined as the quo-
tient of (A% )\ {0}) x (A%\ {0}) by the following (G,,)?-action:

(Gm)? x (A*\{0}) x (A*\ {0}) — (A*\{0}) x (A®\ {0})
(A, ), (t1ytos 1, 0, w3)) > (Mo, Ay A g, A2 pis, ).

We also have Pic P = Z&y, 4, ® ZF, and for each a,b € Z, the linear system |a&y, 4, + bF|
is parametrized by the vector space of polynomials spanned by monomials t5't2 2 23223 €
Clty, t2, x1, T2, x3] With a1 +as+az = a and by +by = —dya; —daas+b. Hence |a&y, 4, +bF| # ()
if and only if @ > 0 and b > 0, and the first assertion follows.

Now suppose that £ ~ &4, 4, Then E is defined by Zle w;x; for some u; € C for
@ = 1,2,3 such that u; = 0 unless d; = 0 for « = 1,2. Suppose that uz3 = 0. Then u; # 0
for some i = 1,2. Take h € Aut((A? \ {0}) x (A3 \ {0})) which interchanges z; and z3,
which is (G,,)*-equivariant. Since P is the geometric quotient by [MIFK94, Proposition 1.9],
it descends to an element in Aut(P). Hence we may assume that uz3 = 1. By a similar
argument, we also may assume that F' is defined by ¢; + vty for some v € C.
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Now let E’ and F” be divisors on P defined by x5 and #; respectively. Take i € Aut((A%\
{0}) x (A%\ {0})) such that

(3501) E*(xl) = xl,ﬁ*(xg) = .TQ,E*<.T3) = 121 + Coxo + Zs,

(3.5.0.2) B*(t) = ty + vta, B (t2) = ta.

Since & is (Gy,)%-equivariant, it descends to h € Aut(P) such that h(E) = E' and h(F) = F’,
which complete the proof. O

LEMMA 3.5.2. We follow the situation of Lemma 1.4.1. Suppose that P = F(—d, —d,0)
with d > 0 and n = 1. If there exists H € |£44| containing L, then P' = F(—d—1,—d —1,0)
and Hpr ~ 41,441

PROOF. Set F = p,Op/(Hp:). It suffices to show that F = Opi (—d—1)®?@® Op:. Pushing
forward the standard exact sequence

(3.5.0.3) 0— Op(p*H - E,) — Op(¢*H) — O, (¢*H|g,) — 0
by p o p, we get the following exact sequence
(3.5.0.4) 0—F — Op1(—=d)®? ® Op1 — C*? — 0

since p*H — E, ~ ¢*(Hp/) by Theorem 1.4.1 (2). On the other hand, we have Hp = F
because L C H and H = Fy. By the definition of F, the inclusion Hpr C P’ corresponds to
the exact sequence

(3.5.0.5) 0— Opr — F — Opi(—a)® — 0
for some a € Z. Combining (3.5.0.4) and (3.5.0.5), we obtain —2a = deg F = —2d —2. Hence
a=d+ 1 and (3.5.0.5) splits, which proves the lemma. O

LEMMA 3.5.3. We follow the situation of Lemma 3.5.2. Set oo :=p(L) € C. If P admits
a G3-structure with the boundary divisor HUp*(o0), then so does P’ with the boundary divisor
Hp/ U p/*(OO) .

PROOF. Since L = H N p*(co), this is G3-stable. Hence P admits a G3-structure with
the boundary divisor Hz U (p o ¢)*(c0). Applying Theorem 3.3.2 to 1: P — P', we obtain
a desired G3-structure on P’ 0

LEMMA 3.5.4. We follow the situation of Lemma 1.4.1. Suppose that P = F(—d;, —ds,0)
with dy > dy > 0 and n = 0. Assume that there exists H € |£4, a4, containing L, and when

dy > dy, assume that the negative section of H = Fy, _4, passes through L in addition. Then
P = ]F(—dl — 1, —dg, 0) and Hp/ ~ §d1+1,d2-

PROOF. Set F = p,Op/(Hp). It suffices to show that F = Opi(—d1 —1)BOp1 (—d2) B Op:.
By similar arguments as in Lemma 3.5.2, we get the exact sequence

(3506) 00— F— Opl(—dl) D Opl(-dz) D O]pl — C —0.

Hence deg ' = —d; — dy — 1. On the other hand, we have Hp = F;, 4,41 by the choice of
L. By the definition of F, the inclusion Hp: C P’ corresponds to the exact sequence

(3507) 0— Opl — F — O]}nl(—dl — 1) @D O]pl(—dz) — 0.
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Since (3.5.0.7) splits, we get the assertion. O

LEMMA 3.5.5. We follow the situation of Lemma 3.5.4. Set oo :=p(L) € C. If P admits
a G3-structure with the boundary divisor H U p*(0c0) such that L is a fized point, then so does
P" with the boundary divisor Hp U p"™*(c0).

PROOF. Since L is G3-stable by assumption, we can prove the assertion in much the same
way as Lemma 3.5.3. O

Now we can prove that Theorem 3.1.2 (2) implies (1).

PROOF OF THEOREM 3.1.2 (2) = (1). In Py, x P? . set E = {73 = 0} and
F = {t; = 0}. Write oo :=[0: 1] € P'. Then E and F generate Aog(P' x P?). By [HM18,
Lemma 3.7], P! x P? admits a G3-structure with the boundary divisor £ U F. Write this
structure as p: G3 ~ P! x P2

Now suppose that (2) follows. Then X = F(—d;, —ds,0) for some d; > dy > 0 and
f = Dy .4,- By assumption and Lemma 3.5.1, it holds that Dy ~ &4, 4, and Dy is a pg, 4,-fiber.

Suppose that d; = dy = 0. Then we may assume that (Dy, Ds) = (E, F') by Lemma 3.5.1
and hence p is a desired structure.

Suppose that d; = ds > 0. Then by Lemma 3.5.2, we can inductively construct the
sequence of the elementary links from pgq: P' x P? — P

hay -1
(3.5.0.8) Pl x P2 " F(=1,-1,0) " S F(—dy, —dy, 0) = X
po,ol p1,1l pdl,dIZfl
IP;l Pl . ]P;l

where the center of h; is the intersection of E; := Eg(_; _;,0) and F; := pj,;(oc0) for 0 < i < dy—1.
Set By, = Ex and Fy, = f*(0c0). Then E; ~ &;; for 0 < i < d; by Lemma 3.5.2 and hence
we may assume that (Dy, D) = (Eq4,, Fy,) by Lemma 3.5.1.

For 0 < i < d; — 1, suppose that F(—i, —i,0) admits a G3-structure with the boundary
divisor F; U F;. Then so does F(—(i + 1), —(i 4+ 1),0) with the boundary divisor E;;1 U Fj44
by Lemma 3.5.3. Thus p induces a desired G}-structure on X.

Suppose that d; > dy > 0. Set d = dy — dy. Let p/ be a G3-structure of F(—dy, —ds,0),
which we have already constructed. Write its boundary divisor as E'UF” such that E' ~ &4, 4,
and F' = pj, 4,(00). By the Borel fixed-point theorem, there is a G3-fixed point in E' N F',
say to. Then by Lemma 3.5.4, we can inductively construct the sequence of the elementary
links from pg, 4,: F(—dy, —ds,0) — P

1 ha—1
(3.5.0.9) F(—dy, —d,0) " F(—dy — 1, —d,0) " - - - S F(—dy, —dy, 0) = X
pd2,d2l Pd2+1,d2l Pdl,d2:fl
P! P! - P!,

where the center of h; is ¢ty for ¢ = 0 and the intersection of the negative section of E! :=
E’]’F(fdriﬁdw) =F,; and F] = pleH’dQ(oo) for 1 <i<d—1. Set £, == Es and F), .= f*(c0).
Then E; ~ &4y1ia, for 0 < i < d by Lemma 3.5.4 and hence we may assume that (D, Dy) =
(E), F}) by Lemma 3.5.1.
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Since t is a fixed point of the action p’, F(—dy — 1, —ds,0) admits a G2-structure with
the boundary divisor E{ U F| by Lemma 3.5.5.

For 1 <i < d—1, suppose that F(—dy—i, —ds, 0) admits a G3-structure with the boundary
divisor E! U F!. Then t; is a G3-fixed point by construction. Hence F(—dy — (i + 1), —ds, 0)
admits a G3-structure with the boundary divisor E/,; UF/,, by Lemma 3.5.5. Thus p’ induces
a desired G3-structure on X. O
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