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Introduction

Superconductivity has been a major source of fascinating phenomena and unsolved puz-
zles in condensed matter physics for more than a century. Unconventional supercon-
ductors are superconductors which cannot be explained by a conventional theory for
superconductivity, BCS theory, and their superconducting mechanisms have been inves-
tigated for a long time. Among unconventional superconductors, iron-based supercon-
ductors shed new light on superconductivity by adding another perspective; nematicity.
A nematic state breaks rotational symmetry but preserves translational symmetry. The
relationship between nematicity and superconductivity attracts interest, however, it was
not clear because the antiferromagnetic ordering occurred at a temperature close to a ne-
matic transition in most iron-based superconductors. In an iron chalcogenide supercon-
ductor FeSe1−xSx, nematicity appears without magnetic ordering at ambient pressure,
making it an ideal material for investigating the relationship between the nematicity and
superconductivity.

Angle-resolved photoelectron spectroscopy (ARPES) enables the direct observation
of band structures of solids. Incident photons, with energy higher than the work function
of a sample, induce photoelectron effect, and by analyzing the kinetic energy and the
momentum of the photoelectrons one can directly measure the one-particle spectral
function. In particular, we used ultralow temperature and ultrahigh resolution laser-
based ARPES (laser ARPES) to probe the electronic structures in the superconducting
states of FeSe1−xSx. In this thesis, we explored novel superconducting states arising due
to nematicity in FeSe1−xSx.

This thesis is organized as follows. In Chapter 1, we describe basics of conven-
tional and unconventional superconductivity. In Chapter 2, we explain the principles
of ARPES, and in Chapter 3, we describe the laser ARPES system used in this thesis.
In Chapter 4, we present the superconducting gap anisotropy data of FeSe. The gap
anisotropy sensitively depends on the presence of nematic twin domain walls, which
suggests time-reversal symmetry breaking around the domain walls. In Chapter 5, we
present the substitution dependence of the band dispersions of FeSe1−xSx in the su-
perconducting states. Evidence of BEC superconductivity is shown, and it was found
that the nematicity controls the BCS-BEC crossover in this system. Finally, we present
concluding remarks in Chapter 6.
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1 Superconductivity

We describe the central phenomenon in this thesis, superconductivity, in this chapter [1,
2]. The conventional flamework of superconductivity called BCS theory is explained
in Sec. 1.1 and several important concepts including superconducting gap, Bogoliubov
quasiparticle dispersion, and gap equation are introduced. Superconducting gap and
Bogoliubov quasiparticle dispersion are observed in this thesis, and are governed by gap
equation. In Sec. 1.2, we discuss unconventional superconductivity, which can not be
understood by the BCS theory. In Sec. 1.3, we discuss iron-based superconductors. The
target material in this thesis, FeSe1−xSx, belongs to them.

1.1 BCS theory

Superconductivity is important for both application and pure scientific sense. Super-
conducting materials are good for application because of zero resistivity. Researchers
try to find superconducting materials with high transition temperature and with other
characteristics appropriate for application. Also, superconductivity is interesting for its
quantum many-body effect represented by Meissner effect. Therefore, researchers try to
understand its mechanism.

In 1911, superconductivity was experimentally discovered by Kamerlingh Onnes in
Netherlands. In 1957, it was theoretically explained in BCS theory by Bardeen, Cooper,
and Schrieffer. In the BCS theory, electron pairs are created by electron-electron inter-
action intermediated by phonon, and these electron pairs (Cooper pairs) condensate to
superconducting state. The BCS theory gave qualitative explanation for many experi-
mental facts. Here, the electronic state of the BCS theory is explained.

1.1.1 Superconducting gap equation

An attractive interaction is necessary for superconductivity. This comes in only when
one takes the motion of the ion cores into account. The physical idea is that the first
electron polarizes the medium by attracting positive ions; these excess positive ions in
turn attract the second electron, giving an effective attractive interaction between the
electrons.

An eigenstate that includes the scattering of two electrons at the Fermi surface (FS)
is selected as the ground state. In the BCS theory, only (k ↑,−k ↓) → (k′ ↑,−k′ ↓)
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scatterings are selected. This corresponds to superconductivity by spin singlet Cooper
pairing. The BCS approximated Hamiltonian is given by

HBCS = Σk,σξ(k)c
†
kσckσ + Σk,k′V (k,k′)c†k↓c

†
−k↑ck′↑ck′↓, (1.1)

where ξ(k) = ϵ(k)−µ is the band dispersion of electron, ϵ(k), with respect to the chem-
ical potential, µ. In the BCS theory, V (k,k′) is an attractive interaction intermediated
by phonon. Then, the Hamiltonian is rewritten using the mean field approximation as
follows

HBCS = Σk,ωξ(k)c
†
kωckω − Σk(∆(k)c†−k↓c

†
k↑ +∆∗(k)ck↓c−k↓) + Σk∆(k)⟨c†−k↓c

†
k↑⟩, (1.2)

where ∆(k) is BCS gap function given by

∆(k) = −Σk′V (k,k′)⟨ck′↑c−k′↓⟩. (1.3)

∆(k) breaks Gauge symmetry, because it changes if Gauge transformation c → ceiϕ, c†e−iϕ

is applied. To diagonalize the Hamiltonian, a linear transformation called Bogoliubov
transformation is defined by

{
αk↑ = ukck↑ − vkc

†
−k↓

α†
−k↓ = ukc

†
−k↓ + v∗kck↑.

(1.4)

To fulfill the commutation relation of Fermion, {α†
kσ, αkσ} = 1, uk and vk obey the

relation

u2
k + |vk|2 = 1. (1.5)

The inverse transformation of Eq. (1.4) is substituted to HBCS. HBCS is diagonal
if

2ξ(k)ukv
∗
k −∆(k)v∗2k +∆∗(k)u2

k = 0. (1.6)

Equations (1.5) and (1.6) turn into

u2
k =

1

2

[
1 +

ξ(k)

E(k)

]
, |v2k| =

1

2

[
1− ξ(k)

E(k)

]
, (1.7)

where

5



E(k) =
√

ξ(k)2 + |∆(k)|2. (1.8)

The Hamiltonian is diagonalized using Eqs. (1.7) and (1.8) as follows

HBCS = EGS + ΣkE(k)(α†
k↑αk↑ + α†

−k↓α−k↓), (1.9)

where

EGS = Σk[2ξ(k)|vk|2 + 2∆(k)ukv
∗
k +∆(k)⟨c†−k↓c

†
k↑⟩]. (1.10)

In equations (1.9) and (1.10), EGS gives the energy of the vacuum state for the quasi-
particle operator αkσ, and the second term in HBCS gives the excitation energy of a
quasiparticle from the vacuum state. Evidently, the energies of these excitations are
E(k) in Eq. 1.8. E(k) is called Bogoliubov quasiparticle dispersion. Thus, ∆(k) plays
the role of an energy gap since even at the FS, where ξ(k) = 0, E(k) = |∆(k)| > 0.

|ΨBCS⟩ is a vacuum of the quasiparticle, and obeys αk↑ |ΨBCS⟩ = α−k↓ |ΨBCS⟩. The
BCS wave function, therefore, is written as

|ΨBCS⟩ = Πk(uk + vkc
†
k↑c

†
−k↓) |0⟩ . (1.11)

Next, we will calculate ∆(k). The Bogoliubov quasiparticle is a non-interacting Fermion.
The average number of the Bogoliubov quasiparticles is given by the Fermi distribution
function f(E(k)),

⟨α†
k↑αk↑⟩ = ⟨α†

−k↓α−k↓⟩ = f(E(k)) ≡ 1/(eβE + 1), (1.12)

where β ≡ 1/kBTc. Here, kB is Boltzmann constant and Tc is superconducting transition
temperature. Equations (1.4) and (1.12) turn into

⟨ck↑c−k↓⟩ =
∆(k)

2E(k)
tanh

[
1

2
βE(k)

]
. (1.13)

From Eqs. (1.3) and (1.13), we obtain the gap equation

∆(k) = −Σk′V (k,k′)
∆(k′)

2E(k′)
tanh

[
1

2
βE(k′)

]
. (1.14)

The electron-electron interaction is approximated as the average value at the FS as
V (k,k′) = −V ≡ ⟨V (k,k′)⟩FS. In the BCS theory V is effective attractive interaction
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−V > 0. Therefore, the superconducting gap equation within the BCS theory is given
by

∆ = V Σk′
∆

2E(k′)
tanh

[
1

2
βE(k′)

]
, (1.15)

note that we assume ∆(k) is momentum independent.

1.1.2 Temperature dependence

To make the BCS superconducting gap equation in Eq. (1.15) easier to handle, we
convert the sum along k to an integral along energy. Assuming the range of the integral
is within the maximum energy of phonon, ωD, then, we obtain

∆ ∼= λ

∫ ωD

−ωD

dξ
∆

2
√

ξ2 +∆2
tanh

[
1

2

√
ξ2 +∆2

kBT

]
. (1.16)

The density of states of electrons, D(E), is approximated as constant, D(EF), the
value at EF, assuming that ωD is smaller than energy scale of the electrons. λ ≡ V D(EF)
is a dimensionless interaction.

We will determine Tc, below which ∆ is finite. The both sides Eq. (1.16) are divided
by ∆, and ∆ → 0, then, we obtain

1 ∼= λ

∫ ωD

0

dξ
1

ξ
tanh

[
1

2

ξ

kBTc

]
∼= λ log

(
2γωD

πkBTc

)
. (1.17)

In calculating the integral in Eq. (1.17), variable conversion x ≡ ξ/2kBTc is used for a
partial integration, and we assumed

kBTc << ωD, (1.18)

and we also used the following approximation

∫ ωD/2kBTc

0

dx
log x

cosh2 x
∼=

∫ ∞

0

log x

cosh2 x
= − log

4γ

π
, (1.19)

where log γ = 0.577 · · · is the Euler’s constant. Tc is finite only when the interaction is
attractive (λ < 0), and it is given by

kBTc = 1.13ωD exp

(
−1

λ

)
. (1.20)
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Then, we will calculate the superconducting gap at zero temperature, ∆0 ≡ ∆(T = 0).
Putting T = 0 in Eq. (1.16) and conducting similar algebra as above, one obtains

1 = λ

∫ ωD

−ωD

dξ

2
√

ξ2 +∆2
0

∼= λ log
2ωD

∆0

. (1.21)

Therefore, ∆0 is given by

∆0 = 2ωD exp

(
−1

λ

)
(1.22)

By considering equations (1.20) and (1.22), we can conclude an universal relation be-
tween ∆0 and Tc,

2∆0

kBTc

= 3.53. (1.23)

For example, if Tc = 10 K, ∆0 = 1.5 meV since kB = 0.086 meV/K.

The temperature dependence of ∆ is calculated numerically from Eq.(1.16). Phys-
ically speaking, ∆ is almost constant until a significant number of quasiparticles are
thermally excited. On the other hand, near Tc, ∆(T ) drops to zero with a vertical
tangent, approximately as

∆(T )

∆0

≈ 1.74

√
1− T

Tc

(T ≈ Tc). (1.24)

Numerical calculation and approximation near Tc for ∆(T ) are shown in Fig. 1.1(a).

Table (1.1) shows a comparison between Tc and the temperature scale of ωD, TD.
We can confirm that the assumption in inequality (1.18) is valid.

Table 1.1: Tc and TD for elemental metals

Material Tc (K) TD (K)
Al 1.14 428
Sn 3.72 200
Nb 9.50 275
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Figure 1.1: Characteristic of the BCS theory: (a) Temperature dependence of the su-
perconducting gap, ∆. The red line is the numerical solution of Eq. (1.16).
The blue dotted line is the approximation near Tc shown in Eq. (1.24). (b)
Density of states in the superconducting state shown in Eq. (1.26).

1.1.3 Density of states

In Sec. 1.1, we have seen that the quasiparticle excitations can be simply described as
fermions created by the α†, which are equivalent of the c† in the normal state. The
density of states in the superconducting state, Ns(E) and that in the normal state,
Nn(ξ), therefore, have following relation

Ns(E)dE = Nn(ξ)dξ. (1.25)

Within a few milli-electron volts from EF, we can take Nn = N(0), a constant. This
leads directly to the simple result

Ns(E)

N(0)
=

dξ

dE
=

{
|E|√

E2−∆2 , (|E| > ∆)

0, (|E| < ∆).
(1.26)

with a gap of 2∆ in the density of states. Of course, the total number of states is
conserved because of the one-to-one correspondence between the α† and the c†. The
density of states is shown in Fig. 1.1(b).
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1.2 Unconventional superconductivity

In the BCS theory described so far, the spin singlet Cooper pair has no momentum
dependence of the superconducting gap. Here, we discuss various unconventional super-
conductors, which cannot be explained by BCS theory.

1.2.1 Symmetry of wave function of Cooper pairs

A Cooper pair is made up of two electrons, which are Fermions, therefore, the sign of
its wave function is reversed when two electrons are exchanged. Since the wave function
consists of an orbital part and a spin part, either one is symmetric and the other is
antisymmetric.

The orbital part is classified like s-wave, p-wave, d-wave, and f -wave, using the
orbital classification by angular momentum in atomic orbitals. s-wave and d-wave are
symmetric, and p-wave and f -wave are antisymmetric. Other than the s-wave, the
superconducting gap functions have zero points in momentum space, which are called
nodes. Since these nodes are required by symmetry, the position of the nodes do not
change unless the symmetry of the wave function is changed. Adding to this, super-
conducting gap function may have anisotropy due to the details of the interaction that
forms the Cooper pair. If the node is not required by symmetry, it is called accidental
node. Nodes are classified into point nodes and line nodes, depending on the distribution
in momentum space.

Since each electron has spin 1/2, the spin part is either an anti-symmetric spin
singlet

1√
2
(|↑↓⟩ − |↓↑⟩), (1.27)

or symmetric spin triplet


|↑↑⟩
1√
2
(|↑↓⟩+ |↓↑⟩)

|↓↓⟩ .
(1.28)

Symmetry of orbital and spin parts of wave function is summarized in Tab. 1.2.
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Table 1.2: Symmetry of wave function of Cooper pairs.

Orbital Spin
s, d-wave (symmetric) singlet (antisymmetric)

p, f -wave (antisymmetric) triplet (symmetric)

1.2.2 Determination of gap function

Density of states has a gap at EF in a full gap s-wave superconductor as shown in
Fig. 1.1(b), while it has a linear energy dependence Ns(E)/N(0) ∝ |E| in the presence
of line nodes. This difference is used to distinguish between full gap and nodal gap states.
Several ways of determining the presence of superconducting gap nodes are summarized
in Tab. 1.3. The tunneling spectrum measured by scanning tunneling spectroscopy
(STS) around zero bias reflects density of states. The presence of a residual value
in thermal conductivity divided by temperature, κ/T , at T → 0, κ0/T , indicates the
presence of normal fluid, which can be attributed to the presence of line nodes in the
gap function [3]. In other experiments, thermally activated behavior (∼ exp(−∆/kBT ))
suggests a full gap state, and T -linear (or T 2) temperature dependence suggests the
presence of line nodes [4]. It should be noted that accidental nodes can disappear for
several reasons including impurity [5] and time-reversal symmetry breaking around twin
boundaries [6] (see Sec. 4.1.5 for details).

Table 1.3: Superconducting nodes determined by several properties. The tunneling spec-
tra determined by STS, dI/dV , the thermal conductivity divided by temper-
ature, κ/T , at T → 0, κ0/T [3], the temperature dependent part of the
London penetration depth, ∆λ(T ) = λ(T )− λ(0) [4], the electronic Sommer-
feld coefficient, γ = Cel/T , where Cel is the electronic specific heat, and the
NMR nuclear-spin-lattice relaxation rate, 1/T1T , are listed. ω0 is the nonzero
nuclear resonance frequency.

Observable Full gap Line nodes
dI/dV U-shape V-shape
κ0/T zero finite

∆λ (∆0/kBT )
1/2 exp(−∆0/kBT ) T

γ (∆0/kBT )
5/2 exp(−∆0/kBT ) T

1/T1T (∆0/kBT ) ln(kBT/ω0) exp(−∆0/kBT ) T 2

The angular dependence of superconducting gap and the positions of nodes can
be determined by Bogoliubov quasiparticle interference (BQPI) measured by scanning
tunneling microscopy [7], magnetic field angle-resolved specific heat measurements [8],
and angle-resolved photoemission spectroscopy (ARPES). In multiband superconduc-
tors, the assignment of energy bands and superconducting gaps is nontrivial in BQPI
and angle-resolved specific heat measurements. In this sense, ARPES is the most direct
probe to determine superconducting gap anisotropy (see Chap. 2 for details).
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Experimental techniques for determining the symmetry of the wave function of the
spin part of a Cooper pair include NMR Knight shift and the measurement of the upper
critical magnetic field. In the case of spin singlet superconductivity, the Knight shift
decreases below Tc. On the other hand, in the case of spin triplet superconductivity, the
Knight shift may be anisotropic with respect to the magnetic field below Tc.

The upper critical magnetic field is determined by the orbital effect due to Lorentz
force, and the Pauli paramagnetic effect due to Zeeman splitting. In the case of spin
triplet superconductivity, suppression of superconductivity due to the Pauli paramag-
netic effect does not work. Therefore, confirmation of the Pauli paramagnetic effect is
against the spin-triplet superconductivity.

1.2.3 Spin fluctuations

In BCS theory, we considered the phonon-mediated attractive interaction between elec-
trons as the Cooper pair scattering, V (k,k′) in Eq. (1.1). If V (k,k′) is isotropic, ∆(k)
has no momentum dependence. On the other hand, if V (k,k′) is repulsive, ∆(k) has
anisotropy. ∆(k) is determined by the gap equation described in Eq. (1.14)

∆(k) = −Σk′V (k,k′)
∆(k′)

2E(k′)
tanh

[
1

2
βE(k′)

]
. (1.29)

If V (k,k′) > 0, ∆(k) must change its sign depend on k.

In cuprate superconductors, when moving the FS by q = k′ − k ∼ (π, π), it almost
overlaps the original one. This is called nesting, and q is called nesting vector. For
this q, antiferromagnetic fluctuation is strong and V (k,k′) has a large value. Therefore,
the sign of ∆(k) changes between q ∼ (π, π) and d-wave superconductivity solution is
obtained.

1.2.4 Unconventional superconducting materials

Examples of unconventional superconductors are explained in the following.

Cuprate superconductors have high Tc higher than the boiling point of liquid nitro-
gen (77 K). They have layered structures and the parent material is Mott insulators. One
3d orbital of copper constitutes the FS. d-wave superconductivity due to spin fluctuations
is generally supported. Iron-based superconductors have layered structures similar to
cuprate superconductors, and the spin degree of freedom is related to superconductivity.
We describe them in detail in Sec. 1.3.

Heavy Fermion superconductors are a group of compounds containing cerium and
uranium. Many have an antiferromagnetic phase or a superconducting phase adjacent
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to the ferromagnetic phase. Because of its narrow bandwidth, it is called a“ heavy”
electron system. Heavy Fermion superconductor CeCu2Si2 has long been believed to be
a d-wave superconductor, but recent evidence is against it [9].

Recently, topological superconductivity is attracting attention [10, 11]. Also, su-
perconductivity was found in ”magic angle” twisted bilayer graphene [12] and quasi-
crstal [13]. Ruthenium oxide Sr2RuO4 has been considered to be a triplet p-wave super-
conductor, but recent reports denies this understanding [14]. Although it is explained
within the conventional flamework of superconductivity, the superconducting material
with the highest Tc to date is LaH10±x, which becomes superconducting at 260 K under
pressure of 190 GPa [15, 16].

1.3 Iron-based superconductors

The target material in this thesis, FeSe1−xSx, belongs to iron-based superconductors.
We explain several important properties of this material group in this section.

1.3.1 Basic properties

Research on iron-based superconductors begins with the discovery of superconductivity
in LaFePO by the Hosono group in 2006 [17]. In a short period, the maximum value of
Tc rose to 26 K in LaFeAsO1−xFx [18].

Figure 1.2: Crystal structure and phase diagram of iron-based superconductors [19]. (a)
Crystal structure. Fe ions are shown in red and pnictogen/chalcogen anions
are shown in gold. (b) Typical phase diagram. Each phase is paramagnetic
(PM), tetragonal (T), orthorhombic (O), antiferromagnetic order (AFM),
and superconducting phase (SC).
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The crystals have layered structures, as shown in Fig. 1.2(a). A two-dimensional
plane composed of Fe and pnictogen or chalcogen (Fe-Se (As) layer) is a basic component,
and iron-based superconductors are classified according to the number and arrangement
of atoms between the layers. A major difference from cuprate superconductors is that
multiple Fe 3d orbitals are involved in low-energy electronic structures. Although Tc

is lower than cuprate superconductors, the role of this multi-orbital property in super-
conductivity has attracted interests. Figure 1.2(b) shows a typical phase diagram. The
high-temperature phase of the parent material is paramagnetic and tetragonal, and the
low-temperature phase is orthorhombic with antiferromagnetic order. Chemical substi-
tution suppresses the antiferromagnetic phase and the superconducting phase grows.

1.3.2 Unit cell

Since it is confusing how a unit cell is determined in iron-based superconductors, a brief
explanation is given in the following. Figure 1.3(a) shows a typical Fe-Se (As) layer seen
from above (c-axis). Se (As) atoms are located above and below the Fe layer, so the
unit cell contains two Fe atoms (2 Fe/unit cell). However, a unit cell containing only
one Fe atom (1 Fe/unit cell) is also used for simplicity. The Brillouin zone (BZ) of the
2 Fe/unit cell is half the size of that of 1 Fe/unit cell. If antiferromagnetic order exists,
one can take AF unit cell and corresponding BZ. Note that in orthorhombic state, the
number of Fe atoms in the unit cell does not change.

Figure 1.3: Unitcell of iron-based superconductors. 1 and 2 Fe/unit cells, and antiferro-
magnetic (AF) unit cell are shown. (a) Fe-Se (As) layer seen from above. (b)
Corresponding BZ. (c) Same as (a) but in the orthorhombic state (a > b).
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1.3.3 Superconducting gap symmetry

Figure 1.4 shows candidates for superconducting gap symmetry in iron-based super-
conductors. s±-wave superconductivity mediated by spin fluctuations have attracted
attention from the beginning. If dominant paring interaction is mediated by spin fluc-
tuation with q = (π, 0), (0, π), (see Sec. 1.2.3 for details), the gap function has different
signs at the hole FS around Γ point and the electron FS around M point. Since iron-
based superconductors have multiple Fe 3d orbitals near the Fermi level, the electronic
structure near the FS changes sensitively depending on the elemental composition and
crystal structure, and the gap function depends on material. Therefore, nodal s±-wave
or d-wave are also possible. Nodal s±-wave is similar to s±-wave but accidental nodes
appear. If orbital fluctuation is dominant, the gap symmetry is s++-wave.

Figure 1.4: Candidates of superconducting gap symmetry in iron-based superconductors.
The sign of superconducting gap is color-coded in green (positive) and yellow
(negative). (a) FS of a typical iron-based superconductor, consisting of a hole
surface around the Γ point and an electron FS around the M point in the
BZ. (b) s±-wave. (c) Nodal s±-wave. (d) d-wave. (e) s++-wave.

An early study of iron-based superconductors by Kuroki et. al., proposed supercon-
ductivity by spin fluctuations (Fig. 1.5) [20]. Five Fe 3d orbitals are used to construct a
minimal model for LaFeAsO1−xFx. As shown in Fig. 1.5(b), spin fluctuations develop at
q ∼ (π, 0), (0, π), and the sign of the superconducting gap changes between the hole FS
at the Γ point and the electron FS at the M point. It was supposed to be s±-wave. Sim-
ilar superconductivity due to spin fluctuations was also proposed by Mazin et. al. [21].
Superconducting gap with s±-wave symmetry is supported by experiments including
scanning tunneling microscopy measurements[22] and inelastic neutron scattering [23].
Adding to spin fluctuations, importance of orbital fluctuations is pointed out [24]. Sev-
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eral ARPES reports suggest that orbital fluctuations participate in superconducting
pairing [25, 26].

Figure 1.5: Minimal model of band structure and spin fluctuation in LaFeAsO1−xFx [20].
(a) The band structure of the five-band model in the unfolded BZ, where the
interlayer hoppings are included. (b) FS, with the arrows indicating the
nesting vectors.

1.3.4 Nematicity

Nematic state is a state that breaks rotational symmetry but preserves translational
symmetry [27]. By analogy with classical nematicity in liquids of rod-like molecules, the
homogeneous anisotropic phase of strongly quantum mechanical systems is said to be
an electronic nematic phase. A metal that undergoes a transition from a tetragonal to
an orthorhombic or from an orthorhombic to a monoclinic crystal structure has under-
gone a nematic transition according to this definition. When the driving force for the
symmetry change comes from interesting electronic physics, and especially where the
effects of the symmetry breaking are much more pronounced on the electronic structure
than on the crystalline structure, the perspective of nematicity is appropriate. Neverthe-
less, symmetry breaking in the electron fluid necessarily implies symmetry breaking in
the crystal structure and vice versa. Nematicity has been observed in two-dimensional
electron systems under high magnetic fields, in strontium ruthenate materials, and in
cuprate superconductors.

Nematicity is also observed in iron-based superconductors [28]. The resistivity
anisotropy induced by an externally imposed lattice distortion (applied to a sample
via a piezo stack) was measured [29]. As shown in Fig. 1.6, indeed, the susceptibility
of an electronic nematic order parameter diverges on approaching Ts from above, in
agreement with the assumption that it drives the structural transition. The nematic
susceptibility has been evaluated by various techniques, including the above-described
elastoresistivity, the stress-dependent optical reflectivity, the elastic shear modulus and
the Raman response.
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Figure 1.6: Temperature dependence of the nematic response dη/dεP of BaFe2As2 mea-
sured by elastoresistivity [29]. Vertical line indicates the structural transition
temperature Ts = 138 K. Red line shows fit to mean field model. There is
no evidence for any additional phase transitions for temperatures above Ts.

17



2 Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is a powerful probe in condensed
matter physics which allows direct observation of band structure in crystals. In this
chapter, we describe the principle of ARPES and its experimental details [30–32].

2.1 Principle

Photoemission spectroscopy is based on photoelectric effect. The phenomenon of pho-
toemission was detected by H. Hertz in 1887, and A. Einstein theoretically explained
this phenomenon in 1905.

The energy diagram in a sample and a photoemission spectrum is shown in Fig. 2.1.
The electrons excited by photoelectric effect are analyzed by their kinetic energy, Ek.
Knowing the energy of the light, h̄ω, and the work function, Φ, one can determine the
binding energy of the electron in the sample, EB, from the following conservation of
energy

Ek = h̄ω − Φ− |EB|. (2.1)

Photoemission spectroscopy is, therefore, an appropriate probe to observe the band
structure in crystals.

2.2 Photoemission process

To understand the photoemission process, one has to calculate the transition probability,
wfi, for an optical excitation between the N-electron ground state, ΨN

i , and one of the
possible final state, ΨN

f . This probability is approximated by Fermi’s golden rule:

wfi =
2π

h̄
| ⟨ΨN

f |Hint|ΨN
i ⟩ |2δ(EN

f − EN
i − h̄ω), (2.2)

where EN
i = EN−1

i − |Ek
B| and EN

f = EN−1
f + Ek are the energy of the initial and

the final states of the N-electron system, respectively, and Ek
B is the binding energy of
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Figure 2.1: Relation between the energy levels in a crystal and the electron energy dis-
tribution produced by a photon. See text for details of parameters in the
image.

the photoelectron with kinetic energy Ek and momentum k. The interaction with the
photon is treated as a perturbation theory with the Hamiltonian shown as

Hint = − e

2mc
(A · p+ p ·A) = − e

mc
A · p, (2.3)

where p is the operator of electron momentum and A is the electromagnetic vector po-
tential. Here, scalar potential is chosen to be zero, and quadratic term in A is negligible
compared to the linear terms in the linear optical regime. In obtaining Eq. (2.3), the
commutation relation, [p,A] = −ih̄∇ ·A, and dipole approximation, ∇ ·A = 0, were
used.

For the remaining procedure, one of the methods to treat is so called one-step model.
In this method, light absorption, photoelectron excitation, and photoelectron detection
are included in one coherent process. Bulk state, surface, and vacuum are also included
in one Hamiltonian. The one-step model is precise but complicated, therefore, so called
three-step model is more widely used to understand the results of the photoemission
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spectroscopy. In the three-step model, photoemission process is separated into three
steps shown in Fig. 2.2: (i) photoexcitation process, (ii) transfer process, and (iii) escape
process. This separation is an arbitral one, however, it explains the experimental results
very well. These three steps are explained in the following sections.

Figure 2.2: Three-step model in photoemission [30].

2.2.1 Photoexcitation process

The first process in the three-step model is the photoexcitation process, in which photons
excite electrons in a crystal. This is a transition of electrons to excited states by ab-
sorption of light. Photoelectron spectra are mainly determined by this photoexcitation
process. In one-electron approximation, where electron-electron correlation is ignored,
photoelectron spectra give band structures in valence bands.

To calculate wfi in Eq. (2.2), it is convenient to separate the system into the pho-
toelectron and the (N − 1)-electron system. Here, we assume that the release of the
photoelectron occurs suddenly, and the excited electron and the (N−1)-electron system
do not interact (sudden approximation). In practice, the sudden approximation is not
trivial because the whole system is relaxed during the photoemission process. Under
sudden approximation, the final state is given by
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ΨN
f = Aϕk

fΨ
N−1
f , (2.4)

where A is an antisymmetric operator for the N -electron wave function, ϕk
f is the wave

function of the photoelectron with momentum k, and ΨN−1
f is the final state wave

function of the (N − 1)-electron system, which can be chosen as an excited state with
eigenfunction, ΨN−1

m and eigenenergy EN−1
m . The transition probability is obtained by

summation for m. For simplicity, the initial state is written as a Slater determinant
given by

ΨN
i = Aϕk

iΨ
N−1
i , (2.5)

where ϕk
i is a one electron state and ΨN−1

i is the (N − 1)-electron system left. By using
Eqs. (2.4) and (2.5), the matrix element can be written as

⟨ΨN
f |Hint|ΨN

i ⟩ = ⟨ϕk
f |Hint|ϕk

i ⟩ ⟨ΨN−1
f |ΨN−1

i ⟩ . (2.6)

Total photoelectron intensity, therefore, is given by

I(k, Ek) =
∑
f,i

wf,i

=
2π

h̄

∑
f,i

|Mk
f,i|2

∑
m

|cm,i|2δ(Ek + EN−1
m − EN

i − h̄ω), (2.7)

whereMk
f,i = ⟨ϕk

f |Hint|ϕk
i ⟩ ∝ ⟨ϕk

f |A · p|ϕk
i ⟩ is a one electron matrix element, and |cm,i|2 =

| ⟨ΨN−1
m |ΨN−1

i ⟩ |2 is the probability that the removal of an electron from state i will leave
the (N − 1)-electron system in the excited state m. If electron correlation is ignored,
one can think of ΨN−1

i = ΨN−1
m0

for one state m = m0, and one finds

|cm,i|2 =

{
1, (m = m0)

0, (m ̸= m0).
(2.8)

In this case, if |Mk
B|2 ̸= 0, the photoelectron spectrum is a delta function at Hartree-Fock

orbital energy Ek
B = −ϵk.

If electron correlation is strong and many |cm,i|2 are finite, Green’s function formal-
ism is commonly used to calculate the photoelectron spectra. Note that h̄ = 1 in the
following in this subsection. One particle Green’s function expresses the development of
the N -electron system after adding an electron or a hole, which is given by
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G(k, ω) =
∑
m

| ⟨ΨN+1
m |c†kσ|ΨN

i ⟩ |2

ω − EN+1
m + EN

i + iη
+
∑
m

⟨ΨN−1
m |ckσ|ΨN

i ⟩ |2

ω − EN−1
m + EN

i + iη
, (2.9)

where c†kσ(ckσ) is the operator that creates (annihilates) the electron with energy ω,
momentum k, and spin σ, to N -electron initial state ΨN

i , and η is positive infinitesimal.
The sum is taken along all possible (N ± 1)-electron eigenstates ΨN±1

m (with eigenen-
ergy EN±1

m ). In the limit η → 0+, one can make use of the identity (x ± iη)−1 =
P(1/x) ∓ iπδ(x), where P denotes the principal value, to obtain the one-particle spec-
tral function. Using Green’s function, photoelectron spectrum is given by one-particle
spectral function

A(k, ω) = − 1

π
ImG(k, ω). (2.10)

At finite temperature, one can use finite temperature formalism of Green’s function. In
this case, photoelectron intensity is given by

I(k, ω) ∝ |Mk
f,i|2f(ω)A(k, ω), (2.11)

where k = k∥ is the in-plane component of the photoelectron momentum, ω is the
energy of the photoelectron measured from Fermi level of the crystal, EF, and f(ω) =
(exp(ω/kBT ) + 1)−1 is Fermi Dirac function. In real measurements, background and
broadening of the spectra should be considered as well.

In Green’s function formalism, electron correlation can be treated by introducing
self energy, Σ(k, ω) = Σ′(k, ω) + iΣ′′(k, ω). The real and imaginary parts of self energy
contain all the information about energy renormalization and quasiparticle lifetime of
electrons with band energy ω and momentum k in many-body systems. The Green’s
function and the spectral function are written in the form using self-energy as follows

G(k, ω) =
1

ω − ϵk − Σ(k, ω)

A(k, ω) = − 1

π

Σ′′(k, ω)

[ω − ϵk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
.

(2.12)

If electron correlation is ignored, Σ(k, ω) = 0, and G(k, ω) = 1/(ω − ϵk ± iη) has
a pole. In this case, the spectral function, A(k, ω) = δ(ω − ϵk) represents one electron
density of state (Fig(2.3)(a)).

If electron correlation cannot be ignored, quasiparticle, an electron or a hole“
dressed by a cloud of virtual excitations” is generated instead of a bare electron or
hole. A quasiparticle is similar to a particle in a system without interaction, but has a
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renormalized energy εk, mass m∗, and a finite lifetime τ = 1/Γk. The Green’s function
and spectral function are separated into coherent pole parts and incoherent smooth parts
without poles as follows

G(k, ω) =
Zk

ω − εk + iΓk

+Ginch

A(k, ω) = Zk
Γk/π

(ω − εk)2 + Γ2
k

+ Ainch,
(2.13)

where Zk = (1 − ∂Σ′/∂ω)−1, εk = ε + Σ′, Γk = Zk|Σ′′|, Ginch and Ainch are incoherent
parts (Fig. 2.3(b)). The energy of the quasiparticle shifts by Σ′ from original energy,
and the lifetime is determined by Σ′′.

Figure 2.3: Angle-resolved spectra when removing and adding one electron [32]. (a) Non-
interacting electron system. (b) Fermi liquid system with electron-electron
interaction.

2.2.2 Transfer process and escape process

The second process in the three-step model is the transfer process. After the photoexci-
tation, some of the excited electrons are transported to the surface. Electrons that have
lost energy due to inelastic scatterings by other electrons or nuclei during transport are
called secondary electrons. The secondary electrons form a smooth large background
on the low energy side of the excited electron population, as shown in Fig. 2.2. Since
the excitation light used in photoelectron spectroscopy is between 10 and 10,000 eV, the
transition time between the initial and final states is estimated to be about 10−18−10−15

seconds. Similarly, the time for which photoelectrons having this level of energy are
transported to the surface is estimated to be about 10−15 seconds. On the other hand,
the time scale for the crystal lattice to oscillate is about 10−12 seconds, so the lattice is
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considered to be stationary during the photoelectron transport process (Frank-Condon
principle).

Since the excitation light used for photoelectron spectroscopy enters the material
about 100− 1000 Å, most of the electron excitations occur in the bulk rather than near
the surface. However, in order for the excited electrons to escape from the material with
the information of the band structure, they must reach to the surface without being
subjected to inelastic scattering in material. Figure 2.4 shows the average distance
(inelastic mean free path) that an electron can travel in a material without scattering.
The mean free path is equal to the escape depth when the excited electrons travel
in a direction perpendicular to the surface. Note that the reference of the energy of
the excited electrons is EF, hence, the horizontal axis is same as photon energy for
electrons at EF. The mean free path of electrons is determined by electron-electron
and electron-phonon scatterings, and electron-electron scattering is dominant except
for very low energies. For the energies of interest here, the electrons in the crystal
can be approximately described by a free-electron gas. In this case, mean free path is
determined by the plasma frequency which is only function of the electron density. The
mean free path follows a ”universal” curve since the electron density is roughly equal for
all materials. When the electron energy is 20 - 100 eV, the mean free path is 3 - 5 Å, so
it is surface sensitive, and when using the 7 eV laser used in this thesis, it is sufficiently
bulk sensitive, corresponding to several tens of Å.

Figure 2.4: Compilation for elements of inelastic mean free path measurements as a
function of energy above the EF [33]. The curve is fitting to an empirical
function λ = A/E2 +B

√
E, where A and B are fitting parameters.

The last process in the three-step model is the escape process, in which the electrons
escape from the surface. Since there is a potential called work function, Φ, on the
material surface, excited electrons with energy exceeding this potential can escape into
the vacuum. The work function is the energy difference between EF and the vacuum
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level, Evac. We describe Evac in more detail in Sec. 2.5.2. The photoelectron spectrum
is obtained by measuring the electron kinetic energy distribution.

2.3 Angle-resolved photoemission spectroscopy

By performing ARPES, the band structure and the Fermi surface of the sample are
determined experimentally.

Figure 2.5: Energy and momentum conservation of a photoelectron in the sample and
vacuum. (a) Energy conservation. (b) Escape of photoelectron. (c) Momen-
tum conservation. See text for details of parameters in the image.

The energy levels of photoelectrons are shown in Fig. 2.5(a). The final state of
the photoexcited electron in the sample is approximated as a free electron (free electron
approximation). To calculate the momentum of photoelectron, we take EF as the zero
point of energy. The final state energy Ef can be written as

Ef =
h̄2(K2

∥ +K2
⊥)

2m
− E0, (2.14)

where K∥ and K⊥ are parallel and perpendicular components of the momentum of the
excited electron in the sample, and E0 is the energy difference between EF and the
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bottom of the energy dispersion in the free electron approximation. The kinetic energy
of the photoelectron emitted out of the sample, Ek is given by

Ek = Ef − Φ. (2.15)

The components parallel and perpendicular to the sample surface of the momentum of
the photoelectrons emitted out of the sample can be written as follows

h̄k∥ =
√

2mEk sin θ

h̄k⊥ =
√

2mEk cos θ,
(2.16)

where θ is an angle measured from the crystal surface normal. In case of crystals, since
translational symmetry exists in the direction parallel to the surface, photoelectron
momentum component which is parallel to the surface is conserved when escaping from
the sample surface, i.e.

k∥ = K∥. (2.17)

This is the most important assumption in ARPES. The relationship between the momen-
tum of initial state and the kinetic energy of photoelectron is obtained from Eqs. (2.14)
and (2.17), and is

h̄K∥ =
√
2mEk sin θ

h̄K⊥ =
√
2m(Ek cos2 θ + V0),

(2.18)

where V0 = Φ + E0 is inner potential, used as a fitting parameter. Including in-plane
momentum of photoelectron, Eq. (2.18) is rewritten as

h̄Kx =
√

2mEk sin θ cosϕ

h̄Ky =
√
2mEk sin θ sinϕ

h̄Kz =
√

2m(Ek cos2 θ + V0),

(2.19)

where ϕ is an angle within the crystal surface, as shown in Fig. 2.5(b). Equation (2.18)
at EF (EB = 0) is rewritten into convenient form
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K∥ =

√
2m

h̄

√
h̄ω − Φ sin θ

= 0.512
√
(h̄ω − Φ) [eV] sin θ [Å

−1
],

(2.20)

where m = 0.511 MeV/c2, h̄ = 6.58 × 10−16 eV·s, and c = 3.00 × 108 m/s is the speed
of light.

Since the escape depth of photoelectrons is at most several atomic layers, the un-
certainty of momentum in the vertical direction is finite due to the uncertainty principle
(∆x∆k ≥ 1). If the energy of the excitation light is 20-40 eV, the escape depth is about
5 Å, and the momentum in the vertical direction k⊥ spreads about 0.2 Å−1. In case
of 7 eV excitation light, the escape depth is about several tens of millimeters, and the
spread of k⊥ is suppressed to 0.1 Å−1 or less.

A photoelectron spectrum obtained by measuring the photoelectron energy dis-
tribution with the momentum fixed is called Energy Distribution Curve (EDC), and
that with the energy fixed is called Momentum Distribution Curve (MDC), as shown in
Fig. 2.6.

Figure 2.6: Energy distribution curve (EDC) and momentum distribution curve (MDC).
(a) A sample dispersion. (b) EDC at #1 in (a). (c) MDC at #2 in (a).
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2.4 Selection rule

By switching the polarization of the linearly polarized incident light, the parity of the
initial wave function to be observed can be selected (selection rule). The photoelectron
intensity takes a finite value only when the matrix element, Mk

f,i, in Eq. 2.7 is finite.
The matrix element is given by

Mk
f,i ∝ ⟨ϕk

f |A · p|ϕk
i ⟩ (2.21)

Figure 2.7: Experimental configuration in this thesis. Parity is difined according to a
mirror plane x = 0.

Consider the parity according to the sample mirror plane x = 0 (the blue plane
in Fig. 2.7). Photoelectrons that pass through the slit (detector slit) in Fig. 2.7 are
detected. Consider the case where the detector slit is included in the mirror plane.
Since the detected photoelectron, ϕk

f , is assumed to be a free electron plane wave with
momentum in the mirror plane, the parity is even. On the other hand, the parity of
A · p is the same as the parity of A and is determined in the mirror plane (even)
or perpendicular to the mirror plane (odd). Therefore, the matrix elements are finite
when

⟨ϕk
f |A · p|ϕk

i ⟩ =

{
ϕf
k : even ⟨+|+ |+⟩ → A : even

ϕf
k : odd ⟨+| − |−⟩ → A : odd.

(2.22)

The linear polarizations of light source are classified into p-polarization, which is
parallel to the incident plane (ZX plane in Fig. 2.7), and s-polarization, which is perpen-
dicular to the entrance plane (”senkrecht” in German). They are also called L.H. (linear
horizontal, corresponding to p-polarization in the configuration shown in Fig. 2.7) and
L.V. (linear vertical, s-polarization). If s-polarized light is used, it is possible to observe
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an initial state having an odd parity (for example, 3dyz orbital) and not to observe an
initial state having an even parity (for example, 3dzx orbital).

2.5 Detection of photoelectrons

2.5.1 Analyzer

Two dimensional hemispherical analyzers are widely used to analyze photoelectrons.
Photoelectrons emitted from a sample travel through vacuum into an electron analyzer.
Firstly, electrons travel into electron lens, where electrons are retarded, then they go
through an analyzer slit to enter the electron analyzer. A hemispherical electron analyzer
is made up of two bowls, and voltage is applied between the outer sphere (radius R2)
and the sphere (radius R1). Electrons with a specific kinetic energy determined by this
voltage can reach the other side of the analyzer. Those electrons are multiplied by a
multi-channel plate (MCP), turned into light by a fluorescent screen, and those lights
are counted by a CCD or scientific complementary metal oxide semiconductor (sCMOS)
camera. This system enables two dimensional measurement (energy and momentum) at
once.

Figure 2.8: Schematic images of Photoelectron analyzer. (a) Side view. (b) Three di-
mensional view.

The energy resolution of the electron analyzer, ∆a, is approximated as
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∆a =
wEp

2R0

, (2.23)

where w is the slit width of the entrance of the electron analyzer, Ep is the kinetic energy
of photoelectrons which enters the electron analyzer (pass energy), and R0 = (R1+R2)/2
is the average radius of the hemisphere. One can reduce w to obtain better resolution,
but the number of photoelectrons that go into the analyzer decreases, which leads to a
longer measurement time.

2.5.2 Energy levels in detecting photoelectrons

In consideration of energy levels of sample and detector, one must distinguish the vac-
uum level of a finite-size sample, Evac(s), and the vacuum level at infinity, Evac(∞),
(Fig. 2.9(a) [34]). Evac(s) is defined as the energy of an electron at rest just outside the
surface of the crystal. In the case of a metal, this distance is also the one where there is
no effect of image forces, i.e., where the image potential is essentially zero. This vacuum
level is a characteristic of the surface, and depends sensitively on the atomic, chemical,
and band structures of the outer atomic layers of the crystal. Evac(∞) is defined as the
energy of an electron at rest at infinity distance from the surface. This energy level is
invariant, but experimentally not accessible. The energy difference between Evac(s) and
Evac(∞) stems from the contributions of surface dipoles to the work function, as shown
in Fig. 2.9(b). The surface dipole on metals normally raises the energy of the vacuum
level, as it is caused by spilling of the electronic charge density out of the surface, leaving
a positive charge inside.

Figure 2.9(c) shows energy levels in detecting photoelectron. If the sample under
investigation is a metal EF matches between the sample and the detector since they are
in electronic contact. The reference of kinetic energy at the detector is the vacuum level
of the detector, Evac(d). The minimum kinetic energy arriving at the detector, Ek(d)

min,
is given by

Ek(d)
min = Φs − Φd, (2.24)

where Φs and Φd are the work function of the sample and that of the detector, respec-
tively. On the other hand, the photoelectrons with initial state at EF give the maximum
kinetic energy at the detector

Ek(d)
max = h̄ω − Φd. (2.25)

Note that Ek(d)
max is independent of samples, since Φd is the property of the analyzer.

This means that one can refer EF of gold as the reference of EF of the sample, as long as
they are in electronic contact. Both Ek(d)

min and Ek(d)
max are not related to Evac(∞).
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Figure 2.9: Photoelectron detection. (a) Energy diagram of vacuum level. Vacuum level
close to the surface, Evac(s), work function, Φm, and vacuum level at infinity,
Evac(∞) are shown. (b) Position dependence of electron distribution density,
ρ(x). Inside (outside) the sample is x < 0 (x > 0). (c) Energy diagram of
the sample and the detector. (d) Energy diagram when voltage is applied to
the detector. See text for details of parameters in the image.

The energy resolution of the electron analyzer in Eq. (2.23) is proportional to Ep,
therefore, electrons are retarded at the electron lens to obtain better energy resolution
as shown in Fig. 2.9(d). Ep is given by
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Ep = Ek(s) + Φs − Φd − eVR, (2.26)

where Ek(s) is the kinetic energy of photoelectron measured from Evac(s), and VR is
retardation potential.

Note that the kinetic energy, Ek, the work function, Φ, and the vacuum level Evac

discussed in other sections are those at the sample unless explicitly stated.

2.6 Evaluation of superconducting gap

As introduced in Sec. 1.1, the superconducting gap, ∆, is an order parameter that
characterizes the superconducting state. Here, we explain how the superconducting gap
can be evaluated from ARPES measurements. The reference of energy is set to EF.
As shown in Eq. (1.8), the Bogoliubov quasiparticle dispersion, E(k), with respect to
momentum k is given by

E(k) =
√
ξ(k)2 + |∆(k)|2, (2.27)

where ξ(k) is quasiparticle dispersion in the normal state. The corresponding spectral
function is given by

A(k, ω) =
1

π

{
|uk|2Σ

′′

[ω − E(k)]2 + Σ′′2
+

|vk|2Σ
′′

[ω + E(k)]2 + Σ′′2

}
, (2.28)

where ω is the kinetic energy of the photoelectron, Σ
′′
is the broadening factor due to the

quasiparticle lifetime, and uk and vk are the coherence factors which obey the relation

u2
k =

1

2

[
1 +

ξ(k)

E(k)

]
, |v2k| =

1

2

[
1− ξ(k)

E(k)

]
, (2.29)

as in Eq. (1.7). Figure 2.10 shows calculated spectral function. In crystals, f(ω)A(k, ω)
gives distribution of electrons. The symmetrization of the spectra is used to obtain the
spectral function from measured data and to visualize SC gap. From Eqs (2.28) and
(2.29), at Fermi momenta kF, A(kF,−ω) = A(kF, ω). We obtain the spectral function
by adding raw EDC at kF and reversed spectra with respect to EF as follows

f(ω)A(kF, ω) + f(−ω)A(kF,−ω)

= f(ω)A(kF, ω) + [1− f(ω)]A(kF, ω)

= A(kF, ω).

(2.30)
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To quantify SC gap size, fitting to the BCS spectral function shown in Eq. (2.28)
is used. The BCS spectral function is multiplied by f(ω), convoluted with a Gaussian
corresponding to the experimental energy resolution, and the integral (Shirley-type)
background is added. Since the contribution from the background is quite small in the
vicinity of EF, the estimated gap size from the fitting should not be affected by the
background. Dynes’ function can be also used to quantify SC gap size [35, 36]. The
Dynes’ function is the BCS excitation spectrum (Eq. (1.26)) broadened by finite-lifetime
effect, which is given by

ρ(E) =

∣∣∣∣∣ℜ
[

E − iΓ√
(E − iΓ)2 −∆2

]∣∣∣∣∣ , (2.31)

where Γ is lifetime of the quasiparticle. Strictly, as a fitting function for the ARPES
EDCs in the SC state, the BCS spectral function is more appropriate than the Dynes ’
function. However, the Dynes’ function is sometimes easier in practical because it is not
necessary to consider a background function and the momentum resolution.

Figure 2.10: Spectral function in the superconducting state. (a) Spectral function cal-
culated using Eq. (2.28), with ∆ = 3 meV and Σ

′′
= 1 meV. (b) Same as

(a) but multiplied by f(ω). (c) Red line is raw EDC at #1 in (a), and blue
dotted line is symmetrized EDC using Eq. (2.30).
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3 Ultrahigh resolution and ultralow
temperature laser ARPES

In the early 2000s, Prof. S. Shin’s group started applying a vacuum ultraviolet (VUV)
laser to high energy resolution PES [37–39]. In 2012, Okazaki et. al. developed a laser
ARPES system achieving 70 µeV and 1 K [36]. This is the main system used in this
thesis. The sections about the realization of both high resolution and low temperature,
and test measurements are excluded, since we will publish these parts in a journal in
near future.

3.1 Measurement examples

In this section, we present the examples of the ARPES results obtained by the laser
ARPES system explained in this chapter. This system achieves very high energy resolu-
tion and very low temperature, therefore, one can study superconductivity with a very
low Tc and fine structures in band dispersions.

3.1.1 Iron-based superconductor FeTe0.55Se0.45

Topological superconductors are predicted to host exotic Majorana states that obey
non-Abelian statistics and can be used to implement a topological quantum computer.
Most of the proposed topological superconductors are realized in difficult-to-fabricate
heterostructures at very low temperatures. Zhang et. al. found a topological supercon-
ductivity on the surface of an iron-based superconductor FeTe0.55Se0.45 [10].

Figure 3.1(a) shows the Dirac-cone-type surface band observed around the Brillouin
zone center. An isotropic superconducting gap is observed at the Fermi surface of the
surface state (Fig. 3.1(b) and (c)). This topological superconductivity is also supported
by first-principles calculations of band structures and helical spin polarization observed
by the spin ARPES measurements.
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Figure 3.1: Dirac-cone-type band and its superconductivity of FeTe0.55Se0.45 [10]. (a)
Band dispersion around the Brillouin zone center. (b) Symmetrized EDCs
at different Fermi momenta recorded at 2.4 K. (c) Polar representation of
the superconducting gap size.

3.1.2 heterostructure film Bi2Se3/Nb

Topological superconductivity can be also realized in the heterostructure of a topological
insulator film and a simple isotropic s-wave superconductor substrate. Flötotto et. al.
observed the superconductivity of the surface state of Bi2Se3/Nb [11].

Figure 3.2: Superconductivity of topological states of Bi2Se3/Nb [11]. (a) Band disper-
sion of a sample with a 10-quintuple layers (QL) film. (b) EDCs at three se-
lected momenta corresponding to bulk states (BS), topological surface states
with positive and negative momentum (±TSS). (c) The zero temperature gap
∆(0) for a BS and TSS as a function of film thickness.

A novel ”flip-chip” technique enables to cleave ultrathin Bi2Se3 film at a predeter-
mined thickness in terms of quintuple layers. Figures 3.2(a) and (b) show a clear Dirac-
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cone surface state, and the coherence peaks of superconductivity below Tc of niobium
(9.4 K). The zero temperature gap ∆(0) is determined by the temperature dependence
of the superconducting gap at each thickness, and summarized in Fig. 3.2(c).

3.2 Summary

The values achieved in this ARPES system are summarized in Tab. 3.1. To our knowl-
edge, the total energy resolution of 70 µeV is the best among ARPES systems all over
the world. The combination of good energy resolution and cooling performance enable
us to explore fine electronic structures in low temperature phase.

Table 3.1: The values achieved in the laser ARPES system.

Photon energy 6.994, 5.8 eV
Lowest temperature 1 K
Total energy resolution 70 µeV
Spot size 180 µm
Light polarization p, s, σ+, σ−

36



4 Superconducting gap anisotropy of FeSe

In this chapter, we present our research on superconducting gap of FeSe. In Sec. 4.1,
we describe previous research on FeSe in both normal and superconducting state. After
Sec. 4.2, we present our results.

4.1 Previous research

4.1.1 Single crystals

Superconductivity in FeSe was first reported in 2008 [40]. At first, excess iron was mixed
in the sample, and it was difficult to grow pure single crystals for precise measurements.
However, a method to produce pure single crystalline FeSe by chemical vapor transport
was established in 2013 by Böhmer et. al. [41]. Fig. 4.1(a) shows the crystal structure
of FeSe, which is the simplest among iron-based superconductors.

Figure 4.1: Crystal structure and phase transition of FeSe. (a) Crystal structure. Deep
blue (light blue) circles represent Fe (Se) atoms. The flame corresponds to
2 Fe/unit cell. (b) STM topograph at 1.5 K. White bright spots are impuri-
ties or defects [42]. (c) Temperature dependence of the in-plane resistivity.
The structural transition occurs at Ts ∼ 90 K.

The lattice constants are a = 3.7707(12) Å and c = 5.521(3) Å, which is determined
by X-ray powder diffraction [41]. Structural optimization shows Fe : Se = 0.995(4) :
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1, a stoichiometric composition within the error bar. The structural phase transition
occurs at Ts = 90K̃, and the symmetry of the crystal structure changes from tetragonal
(P4/nmm) to orthorhombic (Cmma). The orthorhombic order parameter δ(= |a −
b|/(a + b) ≈ |a − b|/2a) is estimated to be 0.2 % at absolute zero temperature. Single
crystals with very good quality are obtained, demonstrated by large residual resistivity
ratio (> 40) [42]. From the STM measurement shown in Fig. 4.1(b), it is known that the
concentration of impurities and defects is very small, less than 1 for 2000 iron atoms.

The superconducting transition temperature, Tc, of the bulk FeSe is about 9.5 K
at atmospheric pressure, as shown in Fig. 4.1(c) [42]. Under pressure, Tc increases upto
37 K at 9 GPa [43]. In single-layer FeSe grown on SrTiO3 substrate, Tc estimated by
ARPES is above 60 K [44]. Tc also increases by intercalating a spacer layer between
layers, for example, in Lix(NH2)y(NH3)1−yFe2Se2 (x ∼ 0.6, y ∼ 0.2), Tc ∼ 43 K [45].

4.1.2 Nematicity without magnetism

Nematicity is a state that breaks rotational symmetry but preserves translational sym-
metry. In FeSe, nematic state appears without antiferromagnetic ordering, unlike other
iron-based superconductors.

Figure 4.2: Nematicity of FeSe. (a) Temperature dependence of the nematic susceptibil-
ity [46]. (b) Temperature dependence of Mössbauer spectra [47].

The divergence of nematic susceptibility is observed in FeSe by the elastoresistivity
measurements [46], as shown in Fig. 4.2(a). This demonstrates the existence of nematic
fluctuations. In many iron-based superconductors, structural transition, nematicity, and
antiferromagnetic ordering occur at temperatures close to each other [19]. When the an-
tiferromagnetic ordering sets in, band folding occurs via the ordering wave vector [48, 49],
which makes the band structure complicated. In case of FeSe, however, antiferromag-
netic order does not appear as demonstrated by Mössbauer spectra shown in Fig. 4.2(b).
This allows us to examine the relationship between nematicity and superconductivity.
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Absence of antiferromagnetic order is attributed to the frustration of magnetic fluctu-
ations [50, 51]. The band structure also changes significantly due to nematicity. It is
discussed in Sec. 4.1.3, mainly in Fig. 4.5 and Fig. 4.6. Nematicity without antiferro-
magnetism makes FeSe an ideal material to study the relationship between nematicity
and superconductivity.

4.1.3 Band structure

Figure 4.3(a) shows the Density functional theory (DFT) band calculation of FeSe [52].
The calculation was performed within the local-density approximation. The experimen-
tal lattice parameters were employed and the chalcogen height was relaxed via energy
minimization. It is expected that there are a hole band near the Γ point and an electron
band near the M point. Figures 4.3(b) and (c) show the band structure measurement by
ARPES and a comparison between the data and DFT calculations [53]. Only one Fermi
surface (FS) has been observed, while three hole FSs are expected in DFT calculations.
Compared to DFT calculations, the observed bands become flatter (renormalization) and
shift in energy due to electron correlation. Experimentally determined renormalization
and shift of energy are band-dependent.

Figure 4.3: Renormalization of band structure in FeSe. (a) Band structure in DFT
calculation [52]. (b) Energy momentum cut taken in Z-R direction. (c)
Comparison of calculated (solid black lines) and experimental (colored, with
markers) dispersions. (b) and (c) are adopted from Ref. [53].
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Temperature dependence of FSs observed by ARPES is shown in Fig. 4.4. The
band structure has four-fold symmetry above Ts. Below Ts, orbital polarization occurs
in the degenerate bands, and elliptical FSs from two different twin domains overlap in
momentum space.

Figure 4.4: Temperature dependence of FSs of FeSe above and below Ts (= 90 K), mea-
sured by ARPES. (a) and (b) are taken at 100 K and 7 K, respectively [54].

Many studies reported that the 3dyz and 3dzx bands of iron split around Ts at
M point and the splitting become as large as 50 meV [55–61], as shown in Fig. 4.5.
Since this polarization is sufficiently larger than the magnitude of the splitting expected
from the crystal field splitting due to the structural transition, it was interpreted as the
orbital order derived from the electron system. Some other studies proposed different
interpretations with the splitting between 3dyz and 3dzx smaller than 10 meV [54, 62,
63].

Figure 4.5: Orbital ordering of FeSe observed around M point by ARPES [55]. (a) Tem-
perature dependence of the energy second derivative image. (b) Temperature
dependence of dxz/dyz orbitals energy position. (c) Temperature dependence
of order parameter Φ0 = Eyz − Exz.

At the Γ point, ARPES measurement using uniaxial tensile strain shows that the
3dyz band and 3dzx bands, which are degenerated above Ts, are polarized below Ts to
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form an elliptic FS (Fig. 4.6 [63, 64]). This elliptical FS consists mostly of 3dxz.

Figure 4.6: Band structure at Γ point of FeSe investigated by detwinned ARPES [64].
(a) Experimental geometries. (b) and (c) E − k image divided by the Fermi
Dirac function and its energy second derivative detected in Geometry 1 at
30 K (in nematic state). (d) Schematic band dispersions and their orbital
characters. (e) Same as (a) but the sample axes are rotated by 90◦ in-plane.
(f)-(h) Same as (b)-(d) but taken in Geometry 2.

Based on the orbital ordering scenario, the FSs above and below Ts are summarized
in Fig. 4.7 [64]. Similar non-equivalent occupancy of electrons has been observed in
other iron-based superconductors, for example, Ba(Fe,Co)2As2 [48] and NaFeAs [65].

Figure 4.7: (a) and (b) Schematic FSs obtained by ARPES on detwinned FeSe in the
tetragonal and orthorhombic phase, respectively [64].
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4.1.4 Superconducting state

A node is a point in momentum space where the superconducting gap is zero. It is
important to determine if superconducting gap nodes exist or not, for clarifying the
mechanism of superconductivity. Low energy excitation of quasiparticles has been mea-
sured to determine the existence of nodes.

Figure 4.8: Measurements on superconducting gap nodes of FeSe. (a) Temperature de-
pendence of the London penetration length. (b) Temperature dependence of
the in-plane thermal conductivity. (c) Tunneling spectrum taken at 0.4 K.
(a)-(c) are adopted from Ref. [42]. (d) Tunneling spectrum reported by a
different group at 0.35 K [66].

Figures 4.8(a)-(c) suggest existence of line nodes, while Fig. 4.8(d) suggests full gap
state without nodes. Nodes are suggested if there are low energy excitations near zero
temperature. As shown in Fig. 4.8(a), the London penetration depth shows λL ∝ T 1.4

at T/Tc < 0.2, which suggests line nodes [42]. A residual thermal conductivity divided
by temperature, κ/T , at T → 0, κ0/T , is finite, suggesting line nodes (Fig. 4.8(b)). The
tunneling spectrum measured by scanning tunneling spectroscopy (STS) is V-shaped,
suggesting the presence of line nodes (Fig. 4.8(c)). Different reports shows, however, very
small κ0/T [67] and U-shaped tunneling spectrum (Fig. 4.8(d) [66]), which corresponds
to full gap state without nodes. Reports on superconducting gap nodes are summarized
in Tab. 4.1. The conclusions are different between different probes and reports. This may
come from different amount of impurities [5] and/or twin boundaries [6] (see Sec. 4.1.5
for details) in different samples.
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Table 4.1: Reports on superconducting gap nodes of FeSe. ⃝ is nodal, △ is nodal or
deep minima, and × is nodeless.

STS Penetration depth Specific heat Thermal conductivity Reference
× [68]

⃝ [69]
⃝ ⃝ ⃝ [42]

△ [70]
△ [71]
× [72]

× [67]
× △ [66]

The temperature dependence of the upper critical magnetic field suggests spin-
singlet superconductivity, as shown in Fig. 4.9 [73, 74]. The upper critical magnetic
field, determined by ρn (black) and 0.9ρn (red), is considered close to the actual value.
The temperature dependence of the upper critical magnetic field is suppressed more
than the curve by Werthamer, Helfand, Hohenberg (WHH) theory. It is because of the
spin paramagnetic effect, which is ignored in WHH theory. In spin-triplet superconduc-
tivity, the spin directions of electrons constituting the Cooper pair are aligned, so the
superconductivity is not suppressed by the spin paramagnetic effect derived from Zee-
man splitting. Thus, the presence of the spin paramagnetic effect suggests spin singlet
superconductivity in FeSe.

Figure 4.9: Temperature dependence of in-plane upper critical magnetic field measured
by magnetoresistance [73].
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4.1.5 Time-reversal symmetry breaking around twin boundaries

A steady wave function can be written as

Ψ(t) = e−iEt/h̄Ψ′, (4.1)

where E is the eigenenergy and Ψ′ is time independent wave function. If ℑ(E) ̸= 0,

Ψ(−t)∗ ̸= Ψ(t), (4.2)

which means time-reversal symmetry breaking. In other words, time-reversal symmetry
is broken if the imaginary part of SC gap is finite.

The position dependence of the tunneling spectra near twin boundaries (TBs) were
examined in detail by STS measurements [6]. Figure 4.10(b) shows that the quasipar-
ticle weight near the Fermi level is almost completely removed close to TBs. This is
qualitatively reproduced by a phenomenological model in which superconducting gap
is represented by a sum of the isotopic component ∆iso and the fourfold nodal compo-
nent ∆4ϕ. The sign of one component is reversed in two adjacent domains across TBs
(Fig. 4.10(c)). If the imaginary part of ∆4ϕ is finite during this sign change as shown in
Fig. 4.10(d), the local density of states in this model (Fig. 4.10(e)) explains observation
of the node removal. When the imaginary part of the superconducting gap is finite,
time-reversal symmetry is broken. It is noted that the gap nodes are affected by the TB
over a distance more than 10ξab, where ξab ∼ 5 nm is the in-plane coherence length.
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Figure 4.10: Time-reversal symmetry breaking near twin boundaries (TBs) in FeSe. (a)
STM image at 1.5 K with double TBs. (b) Tunneling spectra at the repre-
sentative points (I)-(IV) indicated in (a). (c) Schematic illustration of the
phases of the superconducting gaps across the TB shown by the red line.
The model superconducting gap is represented by a sum of the isotopic
component ∆iso and the fourfold nodal component ∆4ϕ. (d) A model order
parameter ∆4ϕ(x) with double TBs located at x = ±3.5ξ. (e) The local
density of states in the bulk, (I), at x = 7ξ, and (II)-(IV) indicated in (d).
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4.2 Motivation

As reviewed in Sec. 4.1, FeSe is an ideal material to study the relationship between
nematicity and superconductivity, since it does not show antiferromagnetism like other
iron-based superconductors. Also, there are disagreements about the existence of su-
perconducting gap nodes. To study these issues, we measured the superconducting gap
anisotropy at the hole Fermi surface (FS) at the Brillouin zone center by laser ARPES.

We used laser ARPES system described in Chap. 3. The overall energy resolution
was set to ∼ 1.3 meV to obtain large photoemission counts. The error bars of the su-
perconducting gap size were determined from the stability of EF position, and evaluated
to be 200 µeV.

4.3 Structural twins and polarization selection rule

Since it is important for understanding the experimental results, structural twins and
polarization selection rule of ARPES are summarized in this section. The formation of
twins accompanying the structural transition is summarized in Fig. 4.11. Above struc-
tural transition temperature (Ts = 90 K), the crystal structure is tetragonal (fourfold
symmetry). The dzx and dyz orbitals are degenerate and the hole FS at the Γ point is
circular. At Ts, the crystal structure becomes orthorhombic (twofold symmetric), and
dzx and dyz orbital polarization occurs. As explained in Sec 4.1.3, this is interpreted as
an orbital order derived by the electron system. For the domain with longer axis along x
direction (domain 1), the FS becomes an ellipse extending in the ky direction, and the dzx
orbital mainly forms the FS. There is an orthorhombic crystal rotated 90◦ from domain
1, which we call domain 2, because the orthorhombic crystal has an arbitrary direction
in the x direction or the y direction. The formation of twins is generally unavoidable
unless uniaxial strain is applied (detwinning). When measuring twinned samples, the
elliptical FSs rotated 90◦ relative to each other are superimposed.
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Figure 4.11: Band assignment for the twinned FeSe in the orthorhombic phase. (a) Re-
lationship between the crystal orientation and the FS shape around the
Brillouin-zone center. In the tetragonal phase, the dominant orbital char-
acter of Fe 3d is dxz/dyz and the FS is circular, whereas in the orthorhombic
phase, the dominant orbital character is dxz and the FS is elliptical. In the
orthorhombic phase, the crystal is twinned and the elliptical FSs overlap.
(b) Band dispersions around the zone center along the cut 1 in (a). Due
to the existence of the multiple twin domains, two dispersions are observed
along the cut 1, and these are labeled as α and α′. The dispersion below
EF is labeled as β.
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The parity selection rule enables orbital-selective observations in ARPES, as ex-
plained in Sec. 2.4. The experimental configuration is shown in Fig. 4.12. We select
yz(zx) plane as a mirror plane for the domain 1(2), and parity is defined with regard to
this mirror plane. Each iron 3d orbital can be classified into even or odd parity. For the
domain 1, dzx orbital has odd and dyz orbital has even parity. When the detector slit is
in the mirror plane (an analyzer normal configuration), a photoelectron which enters the
detector slit has even parity. In the analyzer normal configuration, the transition matrix
elements are finite only when the initial state and incident light has the same parity.
p-polarized light probes dzx orbital since it has odd parity portion, while s-polarized
light probes only dyz orbital since it has only even parity. The domain 2 is rotated to
90 degrees from the domain 1, and the parity selection rule for dzx and dyz becomes
opposite (note that each axis is fixed to the sample).

Figure 4.12: Experimental configuration. (a) Schematic illustration of experimental con-
figuration for two domains below Ts. Axis of each orbital is fixed to sample.
(b) Parity for each orbital in each domain.
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4.4 Results

4.4.1 Comprehensive band structure

Before the main results of 7 eV laser ARPES, overall band structure is discussed in
this section. Figure 4.13 shows the FS of FeSe0.87S0.13, taken with a helium discharge
lamp (21.2 eV). It is a substituted material, but the characters of the band structure
are similar [75]. Bands around Z (Γ) point are hole like, and those around A (M) point
are electron like [57]. We focused on the hole bands at the Brillouin-zone center in the
main results, since A (M) point is not accessible with low photon energy of 7 eV.

Figure 4.13: FS of FeSe0.87S0.13 observed by helium discharge lamp. Plots of the ARPES
intensity at EF as a function of the two-dimensional wavevector measured
with a helium discharge lamp (21.2 eV), taken at 15 K.
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To estimate kz measured by 7 eV laser, we performed measurements at One-Cube
beamline at the BESSY II light source in Germany, as shown in Fig. 4.14. Two hole
bands are seen in spectra taken with 7 eV and synchrotron light source, as shown in
Figs. 4.14(a)-(c). Note that hole bands originated from structural twinning are resolved
in spectra taken with 7 eV. Figure 4.14(d) shows kz dependence of energy distribution
curves (EDCs) at kx = ky = 0. We determined 23 (37) eV point corresponds to Z (Γ)
point, which is in good agreements in a previous report [57]. We estimated kz position
observed by 7 eV in two methods. Firstly, we compared the incident energy dependence
of the hole band below EF, β band, and the results of 7 eV (18 meV below EF), as
shown in Fig. 4.14(d). The β band top measured by 7 eV corresponds to that measured
by 28 eV, which is between Γ and Z point but closer to Z point. Secondly, we estimated
kz by free electron approximation. From Eq. 2.19, kz of the initial state is given by

h̄kz =
√
2m(Ek cos2 θ + V0), (4.3)

where Ek = h̄ω−Φ− |EB| is the kinetic energy of the photoelectron, h̄ω is the incident
energy, Φ is the work function, |EB| is the binding energy, and θ is the emission angle
measured from the crystal surface normal. V0 is the inner potential, used as a fitting
parameter. Using c = 5.521Å−1 as the length of c-axis of the unit cell [41], kz corresponds
to vertical emission (θ = 0) at EF (EB = 0) is given by

kz =
c

π

√
2m

h̄

√
h̄ω − Φ + |EB|+ V0

= 0.90
√
(h̄ω + V0 − Φ) [eV]

[π
c

]
,

(4.4)

If we assume V0 − Φ = 8 eV, Eq. 4.4 gives kz = 6.0 (Γ point) at 37 eV, and kz =
5.0 (Z point) at 23 eV. This is in good agreement with current results, as shown in
Fig. 4.14(e). At 7 eV, kz is estimated to be 3.5 (between Γ and Z point). The free
electron approximation, in which photoelectrons do not interact with the sample, is not
trivial in case of low energy excitation such as 7 eV. However, analysis using β band and
free electron approximation are in good agreement.
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Figure 4.14: kz dependence and estimation of kz measured by 7 eV. (a) ARPES intensity
plot parallel to Γ-M line, taken with 7 eV laser, s-polarization (L.V.), and
at 25 K. Dotted curves of α and β bands are guides for the eye. (b),(c)
Same as (a), but taken with synchrotron light source at 23 and 37 eV, re-
spectively. Incident light is p-polarized (L.H.), energy resolution is 12 meV,
and measurement temperature is 1.3 K. (d) Incident energy dependence of
EDCs at kx = ky = 0 from 20 to 39 eV. Red triangle shows band top of
β band in each spectrum. The red curve (28 eV) is estimated to be at the
same kz with that of 7 eV. (e) Incident energy dependence of kz estimated
by free electron approximation. Red dotted lines represent kz measured by
7 and 28 eV.
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4.4.2 Superconducting gap of twinned multi-domain FeSe

In this section, we examine normal state band structures and superconducting gap of
twinned FeSe. Figures 4.15(c) and (f) show the FS maps at the Brillouin-zone center
measured at 15 K (> Tc), taken with p- and s- polarized incident light. Two FSs were
observed and their shapes were two-fold symmetric and elliptical. They are rotated to
each other by 90 degrees and elongated along the ky and kx directions, respectively.
Photoemission intensity of the FS elongated along the ky (kx) direction was higher for
p- (s-) polarization. Observed polarization dependence can be explained by the orbital
character of these two FSs due to twinning. Due to the parity selection rule explained
in Sec. 4.3, p- (s-) polarized light predominantly observes orbital with odd (even) parity.
Considering orbital components of the FS determined by the previous work [64], the
FS of two domains can be selectively observed by p- (s-) polarized light as shown in
Figs. 4.15(c) and (f). In Figs. 4.15(d) and (g), one can see that a hole band crosses the
Fermi level (EF) at different Fermi wavevector kF positions for each polarization. The
different kF positions of the observed bands correspond to those of the major and minor
axes of the elliptical FS. The kF positions are determined from MDCs at EF.
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Figure 4.15: Electronic structure of the twinned FeSe at 15 K in the orbital ordered state.
(a) Schematic FSs at the zone center. x and y are coordinates along the
crystal axes of the orthorhombic setting. Due to the orbital ordering, two
elliptical FSs are overlapped. Portions of the orbital contributions in those
FSs are indicated by red and green for even and odd parity with respect to
the mirror plane defined in (b), respectively. (b) Experimental configura-
tion. A mirror plane is defined to be parallel to the detector slit. Definition
of p- and s-polarized light and sample axes is shown. (c) Plots of the ARPES
intensity at EF as a function of the two-dimensional wavevector measured
with p-polarized light. The intensity is obtained by integrating the spectra
within ± 3 meV with respect to EF. The experimental FS (solid ellipse)
and a duplicate rotated by 90◦ caused by twin domains (dashed ellipse) are
shown. (d) ARPES intensity plot, (e) Momentum second derivative of (d)
at #1 in (c). The arrow indicates a kF position. (f)-(h) The same as (c)-(e)
but taken with s-polarized light reflecting the other domain.
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Figures 4.16(b) and (e) show the EDCs at kF below and above Tc taken with p- and
s-polarized light, respectively. Each EDC is identified with a FS angle θ, and the kF
positions are shown in Figs. 4.16(a) and (d). To cancel out the effect of the Fermi-Dirac
cutoff, the EDCs were symmetrized with respect to EF, and the results are shown in
Figs. 4.16(c) and (f). Sharp superconducting coherence peaks can be recognized very
clearly in the spectra below Tc. The vertical dashed line in Fig. 4.16(c) indicates the
peak position of the EDC at θ = 91◦, which is at the end of major axis of the elliptical
FS. The EDC at θ = 61◦, for example, has a higher peak energy, indicating a finite SC
gap anisotropy. In order to quantify the SC gap sizes, we fitted the spectra to the BCS
spectral function and the results are shown as the solid lines (see Sec. 2.6 for details of
the fitting function). The observed spectra are well reproduced by the fitting function,
indicating reliability of the obtained SC gap sizes.

Figure 4.16: Superconducting gap anisotropy of twinned FeSe. (a) Definition of FS angle
in case of p-polarized light. Red points indicate the kF positions where EDCs
in (b) and (c) are taken. (b) EDCs at various kF points along the FS at
15 K (gray) and 2 K (red). Black lines show the fits to the BCS fitting
function. FS angle defined in (a) is shown for each EDC. (c) The same as
(b) but symmetrized with respect to EF. (d)-(f) The same as (a)-(c) but
taken with s-polarized light.
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4.4.3 Detwinning measurements

We observed the normal state FS of single domain by detwinning, as shown in Fig. 4.17.
Detwinning is the alignment of the direction of the orthorhombic crystal by applying
uniaxial tensile strain to the sample [55, 64, 76]. Absence of the elliptical FS for
s-polarized light, which shows a striking difference from the results for the twinned
sample (Fig. 4.15), confirms that the sample was successfully detwinned. The strain
necessary to detwin a crystal is estimated to be around 0.7 MPa in case of another
iron-based superconductor BaFe2As2, using a Belleville washer in neutron scattering
experiments [77]. We tried to obtain the gap structure of the detwinned samples, but
unfortunately, we found that precise measurements to obtain the gap structure within
the error bar of 200 µeV were very difficult with the detwinning device. This is probably
because the stability of the Fermi level (EF) position becomes worse and the lowest
achievable temperature becomes slightly higher due to the worse electrical and thermal
conductance of the sample holder attached with the detwinning device.

Figure 4.17: FS maps for the detwinned sample. (a) Schematic illustration of the ex-
perimental configuration. Uniaxial tensile strain was induced to the sample
to align the direction of the orthorhombic crystal (a > b). (b) Plots of the
ARPES intensity at EF for the detwinned FeSe as a function of the two-
dimensional wavevector measured with p-polarized light. The intensity is
obtained by integrating the spectra within 3 meV with respect to EF. The
black ellipse indicates the experimental FS. (c) Same as (b) but taken with
s-polarized light. The black dotted ellipse indicates absence of the FS.
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4.4.4 Superconducting gap of single-domain FeSe

We present data of accidental single-domain sample in this section. Figure 4.18 shows the
results for another sample, which has a different intensity ratio between two polarizations
from Fig. 4.15. The observed FSs are shown in Figs. 4.18(a) and (b). The intensity of
the FS observed by s-polarized light is much weaker compared to that by p-polarized
light, and this intensity difference is similar to that of the detwinned sample shown in
Fig. 4.17. By contrast, Figs. 4.15(c) and (f) show similar intensity of the FS between s-
and p- polarized light. Considering this difference, the results shown in Fig. 4.18 can be
interpreted as observation of the single-domain region, although any intentional uniaxial
tensile strain was not applied to the sample. This is probably owing to the small laser
spot size (∼ 200 µm) and the large domain size of the cleaved surface. Similar results
for the observation of the single-domain region has been reported for FeSe by Raman
scattering [78] and ARPES [63].

Figure 4.18(d) shows the E-k image below Tc (2 K) of cut #3 indicated in Fig. 4.18(a),
symmetrized with respect to EF. This shows no detectable gap, which may demonstrate
the existence of SC gap nodes. Figures 4.18(f) and (g) show the EDCs at kF and sym-
metrized EDCs with respect to EF, respectively, taken with p-polarized light. Each
EDC is identified with a FS angle θ, and the momentum positions in the FS is shown in
Fig. 4.18(e). It is clear from the spectra that the SC gap becomes smaller as θ reaches
to 90◦. Furthermore, the spectra around θ = 90◦ show an undetectable gap, and thus,
nodes may exist around θ = 90◦. On the other hand, since the experimental observa-
tion limit is estimated to be ∼ 0.2 meV, the SC gap minimum is at least smaller than
0.2 meV.
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Figure 4.18: Superconducting gap anisotropy of single-domain FeSe without uniaxial
tensile strain. (a) Plots of the ARPES intensity at EF of FeSe as a function
of the two-dimensional wavevector measured with p-polarized light. The
intensity is obtained by integrating the spectra within 3 meV with respect
to EF. Black ellipse indicates the experimental FS. (b) Same as (a) but
measured with s-polarized light. (c) ARPES intensity plot above Tc (15 K)
at the momentum line shown in (a), taken with p-polarized light. Black
markers represent the experimental band dispersion determined from mo-
mentum distribution curves and EDCs for the α and β band. The Fermi
energy εF is shown for the α band. (d) The same as (c) but taken below Tc

(2 K) and the data is symmetrized with respect to EF. The black arrow in-
dicates the kF position. (e) Definition of FS angle. The red points indicate
the kF values where EDCs in (f) and (g) are taken. (f) EDCs at different
kF values along the FS at 15 K (gray) and 2 K (red). Black lines show the
fits to the BCS fitting function. The FS angles defined in (e) is shown for
each EDC. (g) Same as (f) but symmetrized at EF.
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4.4.5 Distribution of twin domains in real space

In this section, we examine the distribution of twin domains, to support our observation
of accidental single domain in Sec. 4.4.4. We observed domain structures by polariza-
tion microscope [79]. Using this technique, twin boundaries can be visualized due to the
difference of reflectivity along orthorhombic crystal axes. In the multi-domain sample,
line structures were observed in the orthorhombic phase as shown in Fig. 4.19(c), and
they are tilted by 45◦ to the orthorhombic crystal axes. Above Ts, the crystal becomes
tetragonal, and these line structures were not observed as shown in Fig. 4.19(b). There-
fore, these structures correspond to twin boundaries as reported by Tanatar et. al. [80].
Note that the domains smaller than 1 µm is difficult to observed by optical microscope.
On the other hand, no line structure was observed in the single domain sample as shown
in Fig. 4.19(e).

Figure 4.19: Polarization microscope images of sample surfaces. (a) Direction of polar-
izations for the incident and detected light with respect to the orthorhombic
crystal axes. Polarizations of the incident and detected light (Ein and Eout)
are indicated by red and blue arrows, respectively. (b), (c) Images of the
multi-domain sample taken by polarization microscope at 100 K (b) and
9 K (c), respectively. The red circle corresponds to the spot size of the
incident laser (∼ 200 µm). Diagonal line structures in (c) correspond to
twin boundaries. (d), (e) Images of the single-domain sample at 100 K (d)
and 9 K (e), respectively.
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Figure 4.20 shows the position and polarization dependence of ARPES spectra. At
the spot 1 schematically drawn in Fig. 4.20(g), the ARPES images taken with p- and s-
polarized light show different dispersions as shown in Figs. 4.20(a) and (b), respectively,
similar to the results of the multi-domain sample shown in Figs. 4.15(d) and (g). On
the other hand, at the spot 2, the ARPES intensity is very weak for s-polarized light
compared to p-polarized light as shown in Figs. 4.20(c) and (d). The intensity of the
MDC taken at the spot 2 with s-polarized is very weak compared to the others and has
no peak as shown in Figs. 4.20(e) and (f). These differences demonstrate that both of
multi- and single-domain regions exist on one cleaved surface.

Figure 4.20: Position and polarization dependence of the ARPES spectra. (a), (b)
ARPES intensity plots along the ky direction taken at the spot 1 with p-
and s- polarized light, respectively. (c), (d) Same as (a) and (b) but taken
at the spot 2, which is 400 µm away from the spot 1. (e), (f) Momentum
distribution curves taken with p- and s- polarized light at the spot 1 and 2,
respectively. The energy integration window was ± 3 meV with respect to
EF. (g) Schematic image of the sample surface and the spots 1 and 2. The
solid lines indicate twin boundaries.

59



4.4.6 Summary of superconducting gap anisotropy

We summarize the results of superconducting gap anisotropy in this section. Figure 4.21
shows the obtained SC gap anisotropy. The results from the multi- and single-domain
samples are shown together. For the multi-domain samples, the results with p- and
s-polarized light are shown together, considering that each polarization shows a higher
intensity for the domain rotated to each other by 90 degrees. We fitted the results of the
multi-domain samples to the following two-fold symmetric formula of the summation of
harmonic series

∆(θ) = |A+B cos(2θ) + C cos(4θ) +D cos(6θ) + E cos(8θ)|, (4.5)

and the obtained fitting parameters were A = 1.19 meV, B = 0.079 meV, C = 0.02 meV,
D = 0.228 meV, and E = -0.141 meV.

Figure 4.21: Superconducting gap anisotropy of the elliptical FS. Results of the multi-
domain sample with p- (red circle) and s- (blue circle) polarized light are
shown together, considering that each polarization predominantly probes
different domains. Results of the single-domain sample (green triangle) are
also shown. Solid symbols are obtained from BCS spectra fitting of the
spectra and open symbols are symmetrized by taking into account the or-
thorhombic crystal symmetry. Error bars are determined by the systematic
and statistical error of the calibrated EF positions. The black curve is fitting
of the gap anisotropy of the multi-domain samples to Eq. 4.5.

The observed SC gap anisotropy shows two major characteristics. Firstly, it shows
two-fold symmetry. The orbital ordering makes the electronic structure two-fold sym-
metric, and the SC gap anisotropy follows the symmetry. The SC gap at θ = 90◦ shows a
minimum, while that at θ = 0◦ shows a maximum. This clearly demonstrates the break-
ing of the four-fold symmetry of the SC gap anisotropy. Fitting of the SC gap anisotropy
also shows the breaking of the four-fold symmetry as well. Secondly, the observed SC
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gap anisotropy shows sharp anisotropy around θ = 90◦. The gap shows a sharp drop
toward θ = 90◦. In contrast, the anisotropy becomes very weak around θ = 180◦. These
two observations show necessity for considering the four-fold symmetry breaking due
to the orbital ordering when one pursues the mechanism of superconductivity in FeSe.
Additionally, there are local minima around θ = ±45◦ and ±135◦. The breaking of four-
fold symmetry in SC gap anisotropy is consistent with very recent reports of ARPES
on similar compound FeSe0.93S0.07 [81] and Bogoliubov quasiparticle interference (BQPI)
measurements on FeSe [7]. Theoretically, two-fold symmetry of SC gap anisotropy is ex-
plained based on spin fluctuations with orbital selectivity [82, 83], cooperation between
spin and orbital fluctuations [84], or orbital nematic fluctuations [85].

The observed SC gap anisotropy summarized in Fig. 4.22(a) shows a considerable
difference between the multi- and single-domain samples. The results for the multi-
domain samples show finite gaps at any θ, while those for the single-domain samples
show an undetectable gap around θ = 90◦. The difference of the SC gap size between
the multi- and single-domain samples away from θ = 90◦ becomes small, and it is almost
within error bars at θ = 80◦ and 100◦.

Figure 4.22: Superconducting gap anisotropy of multi- and single-domain FeSe. (a) Su-
perconducting gap anisotropy of the elliptical FS, shown in Cartesian coor-
dinates. Results of the multi-domain samples (red circle) and single-domain
samples (green triangle) are shown together. Error bars are determined by
the systematic and statistical error of the calibrated EF positions. The
black curve is fitting of the gap anistropy of the multi-domain samples to
Eq. 4.5. Schematic description of gap signs on the Γ-centered FS assum-
ing (b) a single node and (c) two nodes at each vertex of the major axis
(θ = ±90◦). The Red (green) line indicates ∆ > 0 (< 0), and the black
circles are the positions of nodes.
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4.5 Discussion

We discuss the reason of the difference in superconducting gap anisotropy between multi-
and single-domain samples in this section. Superconducting gap symmetry is also com-
mented.

It is not likely that this different gap anisotropy is caused by the difference of
disorder level among the pieces of samples. Teknowijoyo et. al. have reported from the
London penetration depth measurements that the gap minimum increases by∼ 0.05 meV
after introducing point-like disorder by electron irradiation [71], when the created Frenkel
pairs of interstitial and vacancies is estimated to be ∼ 0.05 % per Fe and per Se (0.1 %
total pairs per formula). For our single crystals, the number of impurities and defects was
confirmed to be less than 0.05 % per Fe by scanning tunneling microscope topography [6,
42], and thus, the increase of the gap minimum due to impurities and defects is expected
to be less than ∼ 0.05 meV, much smaller than the difference of the gap minimum at
θ = 90◦ between the multi- and single-domain samples (∼ 0.5 meV).

Alternatively, SC gap anisotropy could be affected by existence of twin boundaries.
As explained in Sec. 4.1.5, time-reversal symmetry is broken and a fully gapped state
is observed over a distance several times larger than the coherence length near twin
boundaries [6]. Because there should exist many twin boundaries within the laser spot
for the multi-domain samples, the SC gap anisotropy for the multi-domain samples
could reflect a fully gapped state due to time-reversal symmetry breaking. This could
settle a contradiction between the different results of superconducting gap nodes, which
is discussed in Sec. 4.1.4. Whereas measurements by several probes suggest presence
of line nodes [42], other reports suggest a full gap state without superconducting gap
nodes [66, 67]. This difference might be due to the density of twin boundaries. Moreover,
the difference of the SC gap anisotropy between the multi- and single-domain samples
around θ = 90◦ is consistent with the theoretically calculated node disappearance due to
time-reversal symmetry breaking [86]. Therefore, the difference of the SC gap anisotropy
between the multi- and single-domain samples is considered as the effect of time-reversal
symmetry breaking near twin boundaries.

According to the superconducting gap determined from BQPI [7], significantly
anisotropic gap has been suggested for the zone-centered hole FS. Although the gap
nodes were not observed by BQPI, since its reason might be due to the finite scanned
area for the Fourier transform, our results should be totally consistent with the gap
anisotropy determined from BQPI. If a single node is assumed at the vertex, this means
that a sign change occurs at each vertex of the major axis (θ = ±90◦) as schematically
shown in Fig. 4.22(b). Although the signed values of the SC gap should become more
continuous at θ = ±90◦ in this case, the SC gap symmetry is considered as p-wave.
This would be difficult to expect because there is no theoretical argument for p-wave
pairing in this system and this seems inconsistent with the temperature dependence of
the upper critical field [73, 74]. Thus, two nodes are assumed to exist at each vertex of
the major axis (θ = ±90◦) as shown in Fig. 4.22(c), similar to KFe2As2, which shows an
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octet-line node structure where two nodes exist within the narrow FS angle range [36].
In this case, the sign changes occur twice around the vertices and the sign of the gap is
consistent with the s-wave symmetry.

4.6 Summary

We performed laser ARPES measurements on single crystalline FeSe to study the super-
conducting gap anisotropy of the zone-centered hole FS. We observed that the four-fold
symmetry is significantly broken in the superconducting gap anisotropy, which is con-
sidered to be due to the orbital ordering. We also found that the superconducting gap
nodes are not observed for the multi-domain sample, but they exist at the vertices of the
major axis of the elliptical FS for the single-domain sample. This is attributed to break-
ing of time-reversal symmetry at the twin boundaries and our results reveal the effects
of time-reversal symmetry breaking on the nodal superconducting gap anisotropy.

After our paper was accepted [87], magnetic field angle-resolved specific heat mea-
surements on gap structure of FeSe was reported [8]. Also, after the publication, ARPES
measurements of superconducting gap of FeSe were reported by several groups [88–90].
All of them observed two-fold symmetric anisotropy.
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5 BCS-BEC crossover in FeSe1−xSx

This chapter describes our research on BCS-BEC crossover in FeSe1−xSx. This chapter
is excluded since we will publish these results in a journal in near future.
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6 Conclusion

In this thesis, we present our discovery of the novel superconducting states in single
crystalline FeSe1−xSx arising from nematicity, by using the ultralow temperature and ul-
trahigh resolution laser ARPES. Followings are the main results about FeSe (Chapter 4)
and FeSe1−xSx (Chapter 5).

In FeSe, we observed the superconducting gap anisotropy at the Brillouin-zone
center with multiple twin domains (multi-domain sample) and that with a single large
domain within the laser spot (single-domain sample). It is shown that the supercon-
ducting gap anisotropy breaks four-fold symmetry, reflecting the orbital order. The
superconducting gap anisotropy is different between multi- and single-domain samples,
and we attributed this difference to time-reversal symmetry breaking around the twin
boundaries, which has been reported in scanning tunneling spectroscopy measurements.
Our results suggest that the intrinsic gap anisotropy has two nodes close to the end of
the long axis of the elliptical Fermi surface. This result is the first observation of the
angular dependent superconducting gap with time-reversal symmetry breaking around
twin boundaries, which was enabled by the direct comparison between the data of multi-
and single-domain samples.

In FeSe1−xSx, we found evidence of the systematic evolution of BCS-BEC crossover.
The details of our findings are excluded since we will publish these results in near fu-
ture.

We point out that both discoveries were made possible by high cooling power and
high energy resolution of our laser ARPES system. By discovering the novel supercon-
ducting states, we demonstrated the capability of laser ARPES and the nontrivial roles
that nematicity plays in iron-based superconductors. The limitation of our research,
however, is that we cannot access the electron bands around the M point at the Bril-
louin zone corner since we used 7 eV laser. There is no ARPES system both with high
energy resolution comparable to our system and high enough excitation energy to reach
the M point to our knowledge. It is highly desired in near future to combine a laser
with higher excitation energy, 11 eV laser [91] for example, and our knowledge of cooling
system.
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