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Abstract

To analyze data, inferring the data generating mechanism is a widely used approach from natural
science to social science. Since completely describing the true data generating mechanism is
difficult except for controlled simulations or experimental environments, probabilities are widely
used as models to include such uncertainty. On the other hand, in statistical inference, we do not
necessarily focus on finding the true data generating mechanism. Rather, the purpose is to obtain a
model with a high generalization ability that makes good predictions about the unknown data based
on a limited number of data at hand.

When performing statistical inference, uncertainty appears due to the observation noise and
the limited sample size. Bayesian inference is an effective method for making predictions while
evaluating such uncertainty. In Bayesian inference, the probability is considered as a degree of
confidence, and thus we can evaluate the uncertainty through a probabilistic model. Bayesian
inference has been used in practical applications including social science and medical science recently
increasingly because Bayesian inference is useful for solving inverse problems. In inverse problems,
our goal is to find the probability of the cause for the given effects. With Bayesian inference, we can
estimate it easily by the posterior distribution. Another advantage of Bayesian inference is that we
can evaluate the uncertainty in the models and predictions. Then, the uncertainty can be used as a
criterion to select models or measure the reliability of the predictions. The major disadvantage of
Bayesian inference is that the posterior and predictive distributions cannot be obtained analytically
and we need approximation methods in many practical models. Although Bayesian inference has
a long history, its practical usage began only a few decades ago because of the necessity of huge
computational resources and approximation methods. The recent success of Bayesian inference
is mainly because of the advances of numerical calculators and the development of approximation
techniques such as sampling or parametric methods. Thus, developing better approximation methods
is essential for Bayesian inference.

In this dissertation, we discuss approximation methods for Bayesian inference focusing on outliers
in the observed data. When the observed data include outliers, it means there is an abnormality
in the true data generating mechanism. This is the situation where unrelated contamination is
somehow added to data that we are interested in. The behavior of such contamination is completely
different from the main body of the observed data. In many practical situations, the main body of
the observed data represents the phenomena we want to analyze and the proportion of contamination
is small. In such situations, although the proportion of outliers is small, outliers are usually located
in the tails of the empirical distribution of the data and thus they have a significant effect on the
results of estimation. Developing robust algorithms against such outliers is very important in actual
application these days since recent advances in sensor technology give a vast amount of data with
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spiky noise and crowd-annotated data is full of human errors.
In this dissertation, we present the following three contributions about robust inference and

approximation methods.
The first contribution is developing a computationally efficient algorithm for long-tailed distri-

butions. The most widely used approach for robustness in Bayesian inference is the model-based
approach. For example, we replace the Gaussian distribution in a model with a long-tailed distribu-
tion, such as the Student-t distribution to enhance robustness against outliers. However, the Student-t
distribution is not a member of the exponential family and does not have useful properties of the ex-
ponential family. Thus, it is difficult to develop a computationally efficient algorithm for the Student-t
distribution. To address this problem, with the special algebra called q-algebra, we show that the
useful properties of the exponential family can be inherited to a generalized exponential family
which includes the Student-t distribution. Then, we develop a generalized expectation propagation
algorithm for the generalized exponential family which provides a deterministic approximation to
the posterior or predictive distributions with simple moment matching.

The second contribution is the proposal of variational inference based on robust divergences.
While replacing a model to a heavy-tailed distribution is a useful approach for the robustness, it
can only be applied to simple models. Exploring a robust model by such replacements is not a
promising approach since we need a vast computational cost each time when we estimate complex
models. Hence a systematic approach for the robustness is required. For this purpose, we develop a
method by changing the inference itself in Bayesian inference instead of changing the model. Bayes’
theorem plays a central role in Bayesian inference, and we interpret the theorem as a solution of
an optimization problem. Based on this interpretation, we find that Bayes’ theorem treats all the
observed data with the same weight, and thus outliers have the same impact on the result as ordinary
data. Then, we propose to use robust divergences that give small weights to outliers. Furthermore,
we construct a computationally efficient algorithm based on variational inference and discuss its
robustness using the influence function.

The third contribution is the development of a new approximation approach based on the Frank
-Wolfe algorithm. The above two approximations for robustness are parametric approaches, that
is, we approximate the true posterior distribution with a parametric distribution. Such parametric
assumptions make the algorithm computationally tractable and can be applied to high-dimensional
problems. On the other hand, the disadvantage is that due to the strong assumptions, such as the
mean field assumption, it suffers from a large bias from the true posterior distribution which cannot
be bounded theoretically in general. There is an another approximation approach, a sampling-
based method. With this approach, we can approximate the true posterior distribution precisely
if we use a large number of samples. The bias is bounded theoretically. The disadvantage is
that vast computational resources are required to sample from multi-modal and high-dimensional
distributions. Then, based on these approximation approaches, we develop a new method that
combines the advantage of each approximation method, that is, the theoretical guarantee of the
sampling-based approach and the computational efficiency of the parametric approach. Our new
algorithm approximates the posterior distribution by an empirical distribution like sampling-based
approaches. The atoms of the empirical distribution are determined through a convex optimization
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problem. This optimization problem is solved efficiently with the Frank-Wolfe algorithm and the
quality of the solution is assured theoretically.
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Chapter 1

Introduction

1.1 Statistical inference

Suppose we have data from the phenomena which we are interested in. To analyze the data, consid-
ering the mechanism of how the data was generated is an effective and widely used way from social
science to natural science in general (Hastie et al., 2001). Since describing the true data generating
mechanism completely is difficult except for fully controlled simulations or experimental environ-
ments, probabilities are widely used as models for the mechanism while expressing uncertainty in
statistical inference (Bishop, 2006). Many models contain some tunable variables, and we call them
parameters. Under such probabilistic models, each observed data is treated as a random variable. If
there are an infinite number of data, we can estimate the parameter accurately (Van der Vaart, 1998).
However, since collecting an infinite number of observations is impossible in practice, we need to
infer a model based on limited finite data at hand. The schematic picture of statistical inference is
shown in Figure. 1.1. In this figure, “nature” expresses the phenomena what we are interested in,
and it generates the observed data {xi}Ni=1 following the unknown probability p∗(x). Our objective
is to infer the true data generating mechanism from the finite data. We adjust the model parameter
with the limited data at hand so that the model is close to the true data generating mechanism under
a specified criterion. Various criteria have been proposed to select an appropriate model. The most
widely used criterion is the likelihood, which is a measure of how likely the observed data is under
the given model (Bishop, 2006).

In natural science, we would like to find an exact data generating mechanism or its abstraction
under a given time and space scale. On the other hand, in statistical inference, we do not necessarily
focus on finding the true data generating mechanism. More emphasis is put on the ability to make
good predictions about unknown future data. We call this ability a generalization ability and the
objective of statistical inference is to obtain the model with a high generalization ability (Bishop,
2006). In particular, when estimating the parameter from finite limited data, the use of a complex
model that may be close to the true data generating mechanism does not necessarily result in a
model with a high generalization ability. Rather, it often suffers from overfitting due to the limited
sample size. For this reason, much research has been carried out to obtain a model with a high
generalization ability, for example, by restricting the space of feasible models with regularization
techniques (Bishop, 2006).
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Figure 1.1: Schematic description of statistical inference.

1.2 Bayesian inference

In this section, we describe how to estimate the parameter and how to make the prediction. For this
purpose, first, we describe Bayesian inference.

In Bayesian inference, the probability is regarded as a degree of confidence. This is very different
from the frequentist probability, that is, the probability is regarded as the limit of the frequency of
randomly repeated trials (Van der Vaart, 1998). Hence, in the frequentist theory, parameters in the
model are treated as unknown constants. On the other hand, in Bayesian inference, based on the
interpretation of the probability as a degree of confidence, we can define the probability for anything
which has uncertainty (Bishop, 2006). Hence, we can define the probability of uncertainty about a
model and prediction through its parameters.

In particular, in Bayesian inference, the parameter is treated as a random variable and its
distribution before the observation is called a prior distribution.

If there is some prior knowledge about the parameter or the model, we incorporate them into the
prior distribution as a degree of confidence. After we observed the data, the degree of confidence
changes by the information of the observed data. This means that the prior distribution is modified
based on the observed data. This modified distribution is called the posterior distribution. This is
achieved by using Bayes’ theorem (Bishop, 2006) (see Section 2.1.1 for the detail). In Bayesian
inference, the parameter is treated as a random variable that follows the prior distribution and the
prior distribution is updated to the posterior distribution based on the observed data with Bayes’
theorem. In this way, our confidence is updated.

In Bayesian inference, the uncertainty due to the observation noise and the finite sample size
is expressed through the probability distribution of the parameter. In particular, when the number
of the observed data is large, the influence of the prior distribution on the posterior distribution
becomes small. This means that if the number of observed data is large, inaccurate prior knowledge
will not be a problem. On the other hand, when the number of the observed data is small, it may be
possible to obtain a good estimate by using prior knowledge with high confidence (Bishop, 2006).
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Figure 1.2: Schematic procedure of Bayesian inference.

When prior knowledge cannot be used, a non-informative prior distribution is used to remove the
influence of a prior distribution as much as possible (Bishop, 2006).

The prediction is obtained by integrating out the parameter in the model by taking the expectation
with respect to the posterior distribution (Bishop, 2006). This means that we do not restrict the
parameter to a point estimate like the frequentist theory and we consider all the possibilities of the
parameter in the prediction through a weighted average using the posterior distribution. A schematic
illustration of Bayesian inference is shown in Figure. 1.2, In the figure, θ expresses the parameter in
the model. In Figure. 1.2, we assume that the model is composed of the likelihood function p(x|θ)
and the prior distribution p(θ). Then, the posterior distribution is obtained with Bayes’ theorem.
The prediction is performed by integrating out θ in the likelihood function with respect to θ by using
the posterior distribution.

In frequentist theory, as mentioned above, parameters are treated as unknown constants. There
are various methods to estimate the parameter from observed data and the most widely used method
would be to maximize the likelihood, which is called maximum likelihood estimation (see Sec-
tion 2.1.1 for the detail). To evaluate the uncertainty in the frequentist theory, for example, a method
called bootstrap is widely used for details (Bishop, 2006). In this method, first, we create new
datasets from the original dataset by the resampling. Then, we estimate the parameter for each
dataset. Finally, we obtain the uncertainty of the parameter as the variation of the estimated pa-
rameters across datasets. Since the parameter is a constant in the frequentist theory, a prediction is
obtained by directly substituting the estimated parameter into the model. A schematic illustration
of maximum likelihood estimation is shown in Figure. 1.3. In Figure. 1.3, θ is inferred by maxi-
mum likelihood estimation. The prediction is obtained by just substituting the estimated θ into the
likelihood function.

Next, we describe the advantages of Bayesian inference. Bayesian inference has been used in
real applications including social science and medical science recently increasingly (Bishop, 2006;
Murphy, 2012). The reason is that Bayesian inference is useful for solving inverse problems. In
inverse problems, when given the effects, our goal is to find a probability of the cause of them.
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Figure 1.3: Schematic procedure of Maximum likelihood estimation.

We can estimate it by the posterior distribution in Bayesian inference. The other advantage is the
evaluation of uncertainty about the model and the prediction. Uncertainty can be used as a criterion
for model selection and the reliability criterion of the prediction (Bishop, 2006; Murphy, 2012).
In particular about the prediction, in statistical inference, we usually assume that the past observed
data and unknown future data are generated from the same data generating mechanism. However,
it is difficult to verify whether this assumption holds in practice. For example, adversarial samples
(Elsayed et al., 2018) seem almost the same as the past observed data for human eyes, but it is
completely different from the past observed data for the model. So the prediction suffers from the
severe breakdown. One approach tackling this problem is to clarify what types of observed data the
model has already learned and for what kind of future data the model can make a reliable prediction.
For this purpose, we can use uncertainty as the criterion of how reliable the prediction is and this
approach showed promising results even for adversarial data (Li and Gal, 2017; Wang et al., 2019).
Other practical advantages of Bayesian inference are that the use of a prior distribution prevents the
overfitting and the probabilistic model is expressed as a graphical model, and thus it is intuitive and
easy to interpret (Bishop, 2006; Wang and Yeung, 2016). Note that, when performing Bayesian
inference, we need to carefully select the likelihood and a prior distribution based on the observed
data and what kind of information we want to extract from the data.

Finally, we remark the difference of predictions between frequentist and Bayesian inference.
Many studies have been conducted about the generalization ability of the frequentist theory and
Bayesian inference (Konishi and Kitagawa, 1996; Fushiki et al., 2005; Shimodaira, 2000; Efron
et al., 1998). However, it is difficult to say which prediction is superior in practical applications,
because, in these theoretical studies, impractical assumptions are used, for example, the parameter
in the frequentist model can be estimated accurately, the posterior distribution can be accurately
evaluated, and the space of feasible models contain the true data generating mechanism. These
assumptions are too strong and also too hard to confirm in practical settings. Therefore, it is
important to select an appropriate inference method based on the problem one wants to handle.
For example, when one wants to evaluate uncertainty or wants to solve inverse problems, Bayesian
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Table 1.1: History of approximations in Bayesian inference.

Years Methods

1763,1774 Birth of Bayes’ theorem by Bayes and Laplace (Fienberg et al., 2006)
1930s to 40s Formal description of Bayesian probability by Kolmogorov (Rukhin, 1990)
1930s Development of basic ideas of Monte Carlo sampling in nuclear physics (Robert and Casella, 2011)
1939 Summary of the modern concepts of Bayesian inference (Jeffreys, 1939)
1949 Birth of Monte Carlo sampling (Metropolis and Ulam, 1949)
1953 Metropolis sampling (Metropolis et al., 1953)
1970 (Formal formulation) Metropolis-Hasting sampling (Hastings, 1970)
1972 The first work that proposed hierarchical Bayesian models (Lindley and Smith, 1972)
1977 Expectation-Maximization algorithm (Dempster et al., 1977)
1982 Belief propagation (Pearl, 1982)
1984 Gibbs sampling (Geman and Geman, 1984)
1987 Hybrid Monte Carlo (Duane et al., 1987)

1990 The first work using Markov chain Monte Carlo for
the evaluation of the marginal probability (Gelfand and Smith, 1990)

1993 Sequential Monte Carlo (Gordon et al., 1993)
1994 Metropolis adjusted Langevin algorithm (Grenander and Miller, 1994)
1996(1993) Variational inference (Saul et al., 1996; Jaakkola and Jordan, 2013; Hinton and Van Camp, 1993)
2001 Expectation propagation (Minka, 2001)
2011 Stochastic gradient Langevin dynamics (Welling and Teh, 2011)
2013 Stochastic variational inference (Hoffman et al., 2013)
2014 Black-box variational inference (Ranganath et al., 2014)
2019 Zig-zag subsampling (Bierkens et al., 2019)

inference is a promising approach. For these reasons, this dissertation focuses on Bayesian inference.

1.3 Approximate Bayesian inference

Here, we describe the drawback of Bayesian inference and its solution. The biggest problem
of Bayesian inference is that the posterior and predictive distributions cannot often be obtained
analytically and we need to evaluate them numerically. Moreover, since practical models are usually
high-dimensional, it is difficult to obtain the exact numerical evaluation due to high computation
costs. Therefore, we need approximation methods for them. Bayesian inference has a long history,
but its practical deployment began only a few decades ago because of the necessity of computation
power and approximation methods. We summarized the history of approximations in Bayesian
inference in Table 1.1 (Fienberg et al., 2006; Robert and Casella, 2011). Originally, Bayes’ theorem
was derived in the 18th century. The modern concepts of Bayesian inference were established
until 1939. However, the first practical hierarchical models were proposed in 1972 and also the
first numerical approximation was performed in 1990. More than a half century passed from the
establishment of the concepts of Bayesian inference when Bayesian inference became practical. The
recent success of Bayesian inference is mainly due to the advances of numerical calculators and
the development of approximation methods such as sampling methods or parametric approximation
techniques. Therefore, developing better approximation methods is essential for Bayesian inference.

Currently, various approximation methods have been developed (see Chapter 2 for details). We
need to select an appropriate approximation method in consideration of the characteristics of the
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model and the data we use. Thus, we need to consider an appropriate combination of a model, a
prior distribution and an approximation method in practice.

Approximation methods are categorized into two types in general (Bishop, 2006; Murphy, 2012).
One is the parametric approximation and the other is the sampling-based approximation. The
advantage of the parametric approximation is that the parametric assumptions make the algorithm
computationally tractable and can be applied to high-dimensional problems. The disadvantage
is that since we express the complex posterior distribution by a simpler parametric distribution,
it is usually too restrictive to express the posterior distribution exactly, and thus, the obtained
approximate distribution could be far from the true posterior distribution in general. Moreover,
it is difficult to bound the magnitude of this difference theoretically in many situations. On the
other hand, the approximation by sampling can approximate any posterior distribution precisely if
a sufficient number of samples is used. However, especially in the case of a high-dimensional or
multimodal distribution, the computation cost to draw samples becomes very large. Depending on
these advantages, disadvantages, the complexity of the model, and the accuracy we want to achieve,
we need to design a suitable approximation method.

Finally, we describe the meaning of Bayesian inference in the age of deep learning. One of the
advantages of traditional Bayesian inference is that we can incorporate our prior knowledge or as-
sumptions into a model as a prior distribution. It is known empirically that Bayesian inference shows
more trustworthy results than the traditional maximum likelihood estimator for the small sample size
problems by choosing the appropriate prior distribution (McNeish, 2016). By using nonparametric
methods, we can construct flexible models even if solid assumptions for the prior distribution are
not available. Another interesting relation is a combination of deep learning and Bayesian inference.
Such combinations are known as deep Bayesian inference or deep graphical models (Johnson et al.,
2016; Wang and Yeung, 2016). Those methods can enjoy strong feature extraction properties of deep
learning and the structured representation power of Bayesian inference. Optimization algorithms
for those methods have been developed based on the traditional approximation methods in Bayesian
inference.

In this dissertation, we discuss the approximation techniques for Bayesian inference focusing on
outliers in the observed data. We first present two approaches about outlier robust inference and
corresponding approximation methods and then we finally present a new approximation approach
that has the hybrid nature of the parametric and sampling approach.

1.4 Robust inference

Here, we discuss robustness to outliers. By robustness, we mean that “an insensitivity to small
deviations from the assumptions”, following the seminal book (Huber and Ronchetti, 2011). When
we perform statistical inference, there are various assumptions, such as the i.i.d. (independent
identically distributed) assumption, distributional assumptions, and assumptions about the prior
knowledge. We say that an estimation method is robust if it is not sensitive to a slight deviation from
these assumptions.
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Figure 1.4: Schematic procedure of outliers.

Robustness we consider in this dissertation is related to the assumption of distributions. This is
the case when there is an abnormality in the data generating mechanism of the observed data. In
addition to the data that we want to analyze, unrelated contamination is added to the observed data
somehow. Usually, the data we want to analyze is the main body and the proportion of contamination
is small. Such contamination does not necessarily reflect the property we want to analyze and behaves
very differently from the other main body of the data. Such data are called outliers. Although the
proportion of outliers is small, outliers are usually located to a tail in the empirical distribution of
the observed data, they have a significant effect on the estimation results. Robustness to outliers is
getting more important these days since recent advances in sensor technology give a vast amount
of data with spiky noise and crowd-annotated data is full of human errors (Raykar et al., 2010;
Zhang et al., 2016; Liu et al., 2012; Bonald and Combes, 2017). A schematic description of outliers
is shown in Figure. 1.4. Compared to Figure. 1.3, there is contamination which are marked by a
red circle in the tail of the empirical distribution. We are not interested in such contamination is
statistical inference.

If an estimation method is not robust against outliers, the prediction will be strongly influenced
by outliers. In particular, when there is even one outlier in the observed data and it is located
infinitely far away from the main body of the data, it can have an infinite effect on the estimation
results. Thus, the development of an algorithm that is robust against outliers is a very important
problem in actual application.

For such outliers, we can apply a two-step method, that is, first we remove outliers from the
observed data, and then perform an ordinary estimation method assuming that the remaining data
do not have outliers anymore. However, this approach has several drawbacks (Huber and Ronchetti,
2011). First, there are two sources of bias and variance: removing outliers in the first stage and
the estimation of the parameter in the second stage. Second, removing outliers under multi-variable
models is a difficult problem itself. Even if we successfully eliminate outliers from the observed
data, the remaining data no longer satisfies the assumption of i.i.d., and it will be difficult to perform
theoretical analysis for such data (Huber and Ronchetti, 2011). Therefore, instead of this two-step
approach, developing robust inference which automatically eliminates the effect of outliers is more
important. A schematic description of robust inference is shown in Figure. 1.5. We want to eliminate
the effect of contamination which is marked by a red circle. We want to make a model which captures
the information of the main body of the observed data marked by a dotted line.

Important concepts in robust inference are efficiency, stability, and breakdown (Huber and
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Figure 1.5: Schematic procedure of Robust inference.

Ronchetti, 2011). Among them, the concept which is unique to robust inference is stability and
breakdown. Stability means that the estimation method is not sensitive to small deviations from
assumptions, which we have already described above as the definition of robustness. Breakdown
means that even if a small number of outliers have an infinitely large deviation from the majority of the
data, the estimation will not fail. About the efficiency, various theoretical results have been obtained
in existing researches (Van der Vaart, 1998; Huber and Ronchetti, 2011). In this dissertation, we
focus on the concept of breakdown.

So far, many methods to enhance robustness against outliers have been proposed (Huber and
Ronchetti, 2011). One of the most widely used approaches is a model-based approach. For example,
assume that the model uses the Gaussian distribution. Since outliers often appear in the tails of the
empirical distribution of the observed data and the Gaussian distribution has a short tail, the result of
estimation is strongly affected by outliers. Thus, the Gaussian distribution is not favorable in terms
of robustness. In the model-based approach, we replace the Gaussian distribution with a distribution
which has a long tail so that the model is less affected by outliers. One example is the Student-t
distribution, which has a very similar shape to the Gaussian distribution but has a longer tail.

1.5 Contributions

Here, we describe the contributions of this dissertation.

1.5.1 Expectation propagation for t-exponential family using q-algebra

Although the Student-t distribution is favorable for robustness, it is difficult to handle compared
to the Gaussian distribution as a component of probabilistic models. The advantage of using the
Gaussian distribution is that their moments, conditional distribution, and joint distribution can be
computed analytically and it is a member of the exponential family. Thus, the calculation can be
performed efficiently through natural parameters. On the other hand, the Student-t distribution is
not a member of this family, thus we cannot utilize the useful properties to develop computationally
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efficient approximation methods. To address this problem, we borrow the mathematical tools of
q-algebra (Nivanen et al., 2003; Suyari and Tsukada, 2005). from statistical physics and show that
the pseudo additivity of distributions under the q-algebra allows us to perform the calculation of
the Student-t distributions through natural parameters. We then develop an expectation propagation
(EP) algorithm for the Student-t distributions, which provides a deterministic approximation to the
posterior or predictive distribution with simple moment matching. We finally apply the proposed
EP algorithm to the Bayes point machine (Minka, 2001) and Student-t process classification, and
demonstrate their performance numerically.

1.5.2 Variational inference based on robust divergences

While replacing a model to a heavy-tailed one (e.g., from the Gaussian distribution to the Student-t
distribution) is a standard approach to enhance robustness, it can only be applied to simple models.
Exploring the choice of the replacement to find the robust model is not a promising approach since
we need a large computation cost for the estimation of complex models. Thus a systematic approach
to enhance robustness is required.

To address this problem, based on Zellner’s optimization and variational formulation of Bayesian
inference (Zellner, 1988), we propose an outlier-robust pseudo-Bayesian variational method by
replacing the Kullback-Leibler divergence used for data fitting in the reformulated Bayes’ theorem
to a robust divergence such as the β- and γ-divergences (Basu et al., 1998; Fujisawa and Eguchi,
2008). With these divergences, we can automatically ignore outliers since the weights of outliers
become small compared to ordinary data points. An advantage of our approach is that superior
but complex models such as deep networks can also be handled. We theoretically prove that, for
deep networks with ReLU activation functions, the influence function in our proposed method is
bounded, while it is unbounded in the ordinary variational inference. This implies that our proposed
method is robust to both input and output outliers, while the ordinary variational method is not.
We experimentally demonstrate that our robust variational method outperforms ordinary variational
inference in regression and classification with deep networks.

1.5.3 Bayesian posterior approximation via greedy particle optimization

The above proposed robust inference methods are parametric approximation methods, and there-
fore, bias from the true distribution can occur and it is hard to evaluate this bias theoretically in
general. As we described above, there are advantages and disadvantages between the parametric
approximation and sampling-based approximation. Based on this, we aimed to develop a method
that combines the advantages of each approximation, that is, flexibility and the theoretical guarantee
of the sampling-based approach and computational efficiency of the parametric approach. We de-
veloped an algorithm that the posterior distribution is approximated by an empirical distribution as
the sampling-based approach and the points of the empirical distribution are estimated by solving an
optimization problem. Specifically, we proposed minimizing a distance measure called Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012) by using the Frank-Wolfe algorithm (Jaggi, 2013).
The distance between the approximate posterior distribution and the true posterior distribution is
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minimized as a constrained convex optimization problem on the reproducing kernel Hilbert space
(RKHS). Based on this approach, the obtained algorithm is computationally efficient and can be
applied to high-dimensional problems, and the approximation quality is theoretically guaranteed.

1.6 Organization

Finally, this dissertation is organized into 6 chapters. In Chapter 2, we review the basics of Bayesian
inference and some widely used approximation methods. In addition to that, we introduce the concept
of robust inference. In Chapter 3, we present the computationally efficient algorithm for the long-
tailed distribution by using the q-algebra. In Chapter 4, we discuss the systematic robust inference
by changing the distance measure rather than changing the model. In Chapter 5, we introduce a
novel approximation strategy which combines the parametric and sampling approximation method.
Finally, in Chapter 6, we discuss the summary and future developments.
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Chapter 2

Preliminaries

In this chapter, we introduce the basics of approximate Bayesian inference. Then we introduce the
basics of outlier robust inference.

2.1 Basics of Bayesian inference

Here, we first describe a general formulation of Bayesian inference. Then we provide a simplified
formulation for the exponential family.

2.1.1 Formulation

Let us consider the problem of estimating an unknown probability distribution p∗(x) from its
independent samples x1:N = {xi}Ni=1. We also use D to express the observed data for simplicity.

To this end, we consider a parametric model p(x|θ) with the parameter θ ∈ Rd. This p(x|θ)
is called the likelihood function and expresses the plausibility of the observed data depending on
the choice of the parameter θ. If samples x1:N = {xi}Ni=1 are independent of each other, we can
express the likelihood as

∏N
i=1 p(xi|θ) = p(D|θ). In Bayesian inference, the parameter θ is regarded

as a random variable, having the prior distribution p(θ) which expresses our belief or assumption
about θ before observing the data. Then, we incorporate the information of the observed data into
the parameter by using Bayes’ theorem. With Bayes’ theorem, we obtain the posterior distribution
p(θ|D) which is defined as

p(θ|D) =
p(D|θ)p(θ)

p(D)
, (2.1)

where p(D) =
∫
p(D|θ)p(θ)dθ is called the marginal likelihood. Thus, given data {xi}Ni=1, we

express all the uncertainty thorough the probability distribution over the parameter. When new data
is given, we evaluate the uncertainty of the data by using the predictive distribution,

p(xnew|D) =

∫
p(θ|D)p(xnew|θ)dθ, (2.2)

where the parameter is integrated. Thus, calculating the posterior distribution is the central task in
Bayesian inference.
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Let us compare Bayesian inference with maximum likelihood (ML) estimation. In ML estimation,
we minimize the error measured by the Kullback-Leibler(KL) divergenceDKL from p∗(x) to p(x; θ):

DKL (p
∗(x)∥p(x; θ)) =

∫
p∗(x) log

(
p∗(x)

p(x; θ)

)
dx. (2.3)

Note that in ML estimation, θ is not a random variable. Compared to Bayesian inference, ML
estimation provides a point estimate of the parameter. Since p∗(x) is unknown in practice, it is
replaced with

DKL (p̂(x)∥p(x; θ)) = Const.− 1

N

N∑
i=1

ln p(xi; θ), (2.4)

where p̂(x) = 1
N

∑N
i=1 δ(x, xi) is the empirical distribution and δ is the Dirac delta function. Thus,

we minimize this empirical KL divergence to estimate the parameter. Equating the partial derivative
of Eq.(2.4) with respect to θ to zero, we obtain the following estimating equation:

0 =
1

N

N∑
i=1

∂

∂θ
ln p(xi; θ). (2.5)

By solving this equation, we get the ML estimate of θ.
Let us go back to Bayesian inference and re-interpret the posterior distribution as an optimization

problem. Zellner (1988) showed that the posterior distribution p(θ|D) can also be obtained by solving
the following optimization problem: 1

arg min
q(θ)∈P

L(q(θ)), (2.6)

where P is the set of all probability distributions, −L(q(θ)) is the evidence lower-bound (ELBO),

L(q(θ)) = DKL(q(θ)∥p(θ))−
∫

q(θ) (−NdKL (p̂(x)∥p(x|θ))) dθ, (2.7)

and dKL (p̂(x)∥p(x|θ)) denotes the cross-entropy:

dKL (p̂(x)∥p(x|θ)) = −
1

N

N∑
i=1

ln p(xi|θ). (2.8)

Note that the posterior distribution Eq.(2.1) can be expressed as

p(θ|D) =
e−NdKL(p̂(x)∥p(x|θ))p(θ)

p(D)
. (2.9)

This reformulation allows us to understand Bayesian inference as the minimization problem of
the cross entropy between a parametric model and the true data generating distribution with a

1Zellner’s formulation of Bayesian inference was also used for extending variational inference to constrained methods
(Zhu et al., 2014; Koyejo and Ghosh, 2013).
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regularization term. Compared to ML estimation, the dependency of θ in the objective function is
integrated out. This reformulation plays an important role in developing an approximation method
for the posterior distribution.

2.1.2 Exponential family

In statistical inference, an exponential family distribution is widely used as the likelihood function
due to the fact that their calculation can be performed efficiently and analytically through natural
parameters or sufficient statistics (Bishop, 2006). This property is particularly useful in Bayesian in-
ference since we can obtain an analytical expression of the posterior distribution if the corresponding
conjugate prior is used as the exponential family likelihood.

An exponential family is defined as

p(x; θ) = exp(⟨Φ(x), θ⟩ − g(θ)), (2.10)

where ⟨·, ·⟩ means the inner product on Rd, Φ(x) is some function of x, and g(θ) is the normalizing
constant. The parameter θ is called the natural parameter. Many distributions which are used in
Bayesian inference are categorized into this family. The most famous example is the Gaussian
distribution which is defined as

N(x;µ,Σ) =
1√

det2πΣ
exp
{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
, (2.11)

where µ,Σ are its mean vector and covariance matrix and det means the determinant of a matrix.
The Gaussian distribution is the most widely used because its moments, conditional distribution, and
joint distribution can be computed analytically. As a member of the exponential family, its natural
parameter and Φ(x) are expressed as

θ =

(
Σ−1µ

− 1
2Σ

−1

)
, Φ(x) =

(
x

xx⊤

)
. (2.12)

Other examples can be found in Bishop (2006). A useful property of the exponential family is that
the expectation of the sufficient static is equal to the gradient of the normalizing constant (Bishop,
2006):

Ep[Φ(x)] = ∇θg(θ), (2.13)

where Ep denotes the expectation with respect to p(x; θ). Another important property is that the
product of densities from the same exponential family results in an unnormalized density which is a
member of the same exponential family:

exp(⟨Φ(x), θ1⟩ − g(θ1)) exp(⟨Φ(x), θ2⟩ − g(θ2)) = exp(⟨Φ(x), (θ1 + θ2)⟩ − g̃(θ1, θ2)), (2.14)
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where g̃ is the normalizing constant. These properties are important in developing an estimation
method or an approximation method.

Next, we discuss how an exponential family is used in statistical inference. When we use the
exponential family as the likelihood function, it is written as

p(D; θ) = exp(⟨
N∑
i=1

Φ(xi), θ⟩ −Ng(θ)). (2.15)

We consider ML estimation for θ and we take the logarithm and derivative with respect to θ,

∇θ log p(D; θ) =

N∑
i=1

Φ(xi)−N∇θg(θ)), (2.16)

Then applying Eq.(2.13) and setting the left-hand side equal to 0, we obtain

0 =
1

N

N∑
i=1

Φ(xi)− Ep[Φ(x)]. (2.17)

This is called the moment matching property of the exponential family (Bishop, 2006). As we
can see, the solution of ML estimation for the exponential family only depends on Φ(x). Thus,∑N

i=1 Φ(xi) is often called the sufficient static.
To conclude this section, we describe the relation of the exponential family to Bayesian inference.

When the likelihood function is given by

p(D|θ) ∝ exp(⟨
N∑
i=1

Φ(xi), θ⟩) = exp(⟨N Φ̄, θ⟩), (2.18)

as a prior distribution, we use the conjugate prior distribution which is defined as

p(θ; τ0,Φ0) ∝ exp(⟨τ0Φ0, θ⟩). (2.19)

Then, we get the posterior distribution as

p(θ|D) ∝ p(D|θ)p(θ)

∝ exp(⟨(τ0Φ0 +N Φ̄), θ⟩)

= exp(⟨τ0Φ0 +N Φ̄

τ0 +N
(τ0 +N), θ⟩)

= p(θ; τ0 +N,
τ0Φ0 +N Φ̄

τ0 +N
). (2.20)

This means that the posterior distribution is expressed by the same function form as the conjugate
prior distribution and the parameter of the conjugate prior distribution is updated by the likelihood
function. Thus, by using the conjugate prior distribution, we obtain an analytical expression for
the corresponding posterior distribution. When the Gaussian distribution is used for the likelihood
function, the conjugate prior distribution of the mean variable is the Gaussian and that of the variance
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variable is the inverse gamma distribution (Bishop, 2006).

2.2 Approximate Bayesian inference

In the previous section, we reviewed the basics of Bayesian inference. When we apply Bayesian
inference in real-world problems, the difficult point is that we cannot evaluate the posterior dis-
tribution exactly in many cases since the likelihood and the prior distribution do not satisfy the
conjugate relation as we reviewed in the previous section. Thus, we need an approximation method
for the posterior distribution. Developing an appropriate approximation algorithm for the posterior
distribution given the likelihood and the prior distribution is the central task in Bayesian inference
in practice. Here, we introduce several approximation methods which are used widely in practice.

2.2.1 Variational inference (VI)

Variational inference (VI) is one of the most widely used approximation methods (Blei et al., 2017).
VI approximates the posterior distribution with the parametric distribution from which we can easily
draw samples. An exponential family is often used as the approximate distribution.

The procedure of VI is as follows: first, we prepare a parametric approximate distribution such
as an exponential family and then, we estimate the parameter of the approximate distribution by
minimizing a “distance” between the posterior distribution and the approximate distribution. The
most widely used distance is the KL divergence. Thus, VI can be interpreted as the minimization
problem of the KL divergence. Let us express the parametric approximate distributions as q(θ;λ) ∈
Q, where λ is the parameter to be optimized. Then, the optimization problem is written as

arg min
q(θ;λ)∈Q

DKL(q(θ;λ)∥p(θ|D)), (2.21)

where p(x|D) is the true posterior distribution.
We can reformulate the above minimization problem by using the marginal log-likelihood ln p(D)

as

DKL (q(θ;λ)∥p(x|D)) =

∫
q(θ;λ) log

(
q(θ;λ)

p(θ|D)

)
dθ

=

∫
q(θ;λ) log

(
q(θ;λ)

p(D|θ)p(θ)/p(D)

)
dθ

= log p(D)−
∫

q(θ;λ) log

(
p(D|θ)p(θ)
q(θ;λ)

)
dθ. (2.22)

Thus, minimizing the KL divergence is equivalent to maximizing the second term of Eq.(2.22). The
second term is called the evidence lower bound (ELBO) which is equivalent to Eq.(2.7). Since the
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KL divergence is always non-negative, we get

log p(D) =

∫
q(θ;λ) log

(
p(D|θ)p(θ)
q(θ;λ)

)
dθ +DKL (q(θ;λ)∥p(θ|D))

≥
∫

q(θ;λ) log

(
p(D|θ)p(θ)
q(θ;λ)

)
dθ := L(λ). (2.23)

We can confirm that the objective function of VI is L(λ) which is upper bounded by the marginal
log-likelihood and the bound is tight when the approximate distribution is equivalent to the true
posterior distribution. In conclusion, the optimization problem we solve becomes

arg min
q(θ;λ)∈Q

L(q(θ;λ)). (2.24)

In comparison with Eq.(2.6), which is the optimization formulation of the posterior distribution
with its domain being all densities, the domain of Eq.(2.24) is restricted to the prepared parametric
distributions.

2.2.2 Assumed density filtering (ADF) and expectation propagation (EP)

In Section 2.1.1, we introduced VI which minimizes the KL divergence. In VI, we approximate the
posterior distribution with a single parametric distribution q(θ;λ). Here, we consider a different
parametric approximate distribution which captures each factor of p(D|θ) =

∏
i p(xi|θ) in the

following way. For simplicity, we express the likelihood function for the i-th data as li(θ). The
total likelihood is given as

∏N
i=1 li(θ) and the posterior distribution is expressed as p(θ|D) ∝

p(θ)
∏

i li(θ). Then, we prepare the parametric approximate posterior distribution as the product of
data-corresponding terms as

p̃(θ) =
1

Z

∏
i

l̃i(θ), (2.25)

whereZ is the normalizing constant. In the above expression, the factors l̃i(θ), which are often called
the site approximations (Seeger, 2005), correspond to the local likelihood li(θ). An exponential
family distribution is often used as the site approximations. Then we minimize the reverse KL
divergenceDKL (p(θ|D)∥p̃(θ)). This reverse KL divergence and the product form of the approximate
posterior distribution can capture the different properties of the true posterior distribution than VI
(Bishop, 2006). We review two major algorithms to optimize DKL (p(θ|D)∥p̃(θ)). They are known
as assumed density filtering (ADF) and expectation propagation (EP) (Minka, 2001).

ADF is online approximation method for the posterior distribution. Suppose that i − 1 data
x1 . . . , xi−1 have already been processed and an approximation to the posterior distribution, p̃i−1(θ),
has already been obtained. Given i-th data xi, the posterior distribution pi(θ) can be obtained as

pi(θ) ∝ p̃i−1(θ)li(θ). (2.26)
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Since the posterior distribution pi(θ) cannot be obtained analytically, it is approximated by mini-
mizing the reverse KL divergence from pi(θ) to its approximation:

p̃i(θ) = arg min
p̃

DKL(pi(θ)∥p̃(θ)). (2.27)

Note that if pi and p̃ are both exponential family members, the optimization problem Eq.(2.27) is
reduced to moment matching (Bishop, 2006).

Although ADF is an effective method for online learning, it is not favorable for batch (i.e.,
not online) learning because the approximation quality depends heavily on the permutation of data
(Minka, 2001). To overcome this problem, EP was proposed (Minka, 2001). Contrary to ADF, the
EP algorithm is an effective method when the whole data is given in advance. EP updates the site
approximations iteratively with the following four steps.

1. First, when we update site l̃j(θ), we eliminate the effect of site j from the total approximation
as

p̃\j(θ) =
p̃(θ)

l̃j(θ)
, (2.28)

where p̃\j(θ) is often called a cavity distribution (Seeger, 2005). If an exponential family
distribution is used, the above calculation is reduced to subtraction of natural parameters.

2. Second, we incorporate likelihood lj(θ)by minimizing the divergenceDKL(p̃
\j(θ)lj(θ)/Z

\j∥p̃(θ)),
where Z\j is the normalizing constant. Note that this minimization is reduced to moment
matching for an exponential family distribution. After this step, we obtain p̃(θ).

3. Third, we exclude the effect of terms other than j, which is equivalent to calculating a cavity
distribution as l̃j(θ)new ∝ p̃(θ)

p̃\j(θ)
.

4. Finally, we update the site approximation by replacing l̃j(θ) by l̃j(θ)
new.

It should be noted that calculations of EP are reduced to addition or subtraction of natural parameters
for an exponential family distribution and it is computationally efficient.

2.2.3 Markov chain Monte Carlo

The drawback of the parametric approximation method is that the parametric assumption is often too
restrictive to approximate the true posterior distribution, and therefore the approximate distribution
never converges to the posterior distribution and no theoretical guarantee is assured in general.

Here, we review the approximation of the posterior by a set of points {θn}Nn=1, p̂(θ) =∑N
n=1 δ(θ, θn)/N , where N is the number of points. This approximation is more expressive

than the parametric approximation since no parametric assumptions are required. The Monte Carlo
(MC) method is typically used to obtain the points {θn}Nn=1, that is, we draw {θn}Nn=1 from the
posterior distribution randomly and independently (Bishop, 2006).

There are various types of MC methods, and here, we only review the stochastic gradient
Langevin dynamics (SGLD) algorithm (Welling and Teh, 2011) since it is one of the most widely



18 Chapter 2. Preliminaries

used MC methods in Bayesian inference. This method is an extension of the Langevin dynamics to
the stochastic gradient, which enjoys the scalability with respect to the number of data. First, we
introduce some notations. D represents full data, which is independent and identically distributed
(i.i.d.), and it can be decomposed to subsets of data as D = ∪|D|

q=1Dq . Thus, we can write the
likelihood function as p(D|θ) =

∏
q p(Dq|θ). We define the potential of the posterior distribution

as

Ũ(θ) = − log p(θ|D), (2.29)

and

U(θ|Dq) := − log p(θ|Dq). (2.30)

Then, the full potential can be expressed as the summation, Ũ(θ) =
∑

q U(θ|Dq). In SGLD, instead
of the full gradient, the stochastic gradient which uses a randomly chosen subset of data at each
iteration is used. We express the stochastic potential at time t as

Ut(θ) =
1

Bt

∑
q∈It

U(θ|Dq) (2.31)

, where It is a random subset of [1, 2, . . . , |D|] with size Bt. Based on these notations, the SGLD
algorithm works as

dθt = −β−1∇Ut(θt)dt+
√
2β−1dwt, (2.32)

where (wt)t≥0 is a Rd-valued Wiener process (Bakry et al., 2013). It is known that Eq.(2.32) has the
stationary distribution p(θ|D) if the dynamics of Eq.(2.32) is ergodic. Thus, we can get the samples
from the true posterior by using this dynamics.

To implement the SGLD algorithm, we need to discretize the above continuum stochastic differ-
ential equation (SDE). When we use the Euler-Maruyama scheme (Bakry et al., 2013) with a step
size h > 0, we can implement the SGLD algorithm at the l-th iteration as

θ(l+1)h = θlh − hβ−1∇Ul(θlh) +
√
2hβ−1ϵl, ϵl ∼ N(0, I). (2.33)

The purpose of the SGLD algorithm is to approximate the posterior average for a test function
f(θ), f̄ =

∫
f(θ)p(θ|D)dθ. Let us suppose that we get L samples {θlh}Ll=1 by running Eq.(2.33).

Then, we approximate f̄ with the ergodic average as f̂ = 1
L

∑L
l=1 f(θlh). It is known that the

SGLD algorithm decreases the KL divergence between the true posterior and the distribution of the
algorithm at each time step. Other types of sampling method such as Gibbs sampling also decrease
the KL divergence between the current state and the posterior distribution.



2.3. Robust inference 19

2.2.4 Comparison of the approximation methods

In Section 2.2, we reviewed widely used approximation methods in Bayesian inference. In general,
those approximation methods are categorized into two types. One is parametric approximations
such as VI, ADF, and EP. In these methods, we approximate the posterior distribution with a
parametric distribution and the parameter is estimated by solving the optimization problems as we
reviewed. In many common Bayesian models, these parametric assumptions are often too restrictive
to approximate the true posterior distribution exactly. Thus, the obtained approximation is biased
from the true posterior distribution even if we solve the optimization problem exactly. The advantage
of these parametric approximation methods is that they work well in practical Bayesian models which
are usually high dimensional.

The other approximation approach is the sampling method such as MC, which approximates the
posterior distribution by a finite set of points and these points are generated by random sampling.
If we have a large number of samples, we can approximate the posterior distribution precisely. The
drawbacks of this approach are that the vast computational cost is required to obtain samples from
multi-modal and high-dimensional distributions and it is hard to decide when to stop the algorithm
in practice.

Hence, there is a difference in terms of the approximation accuracy and computational cost
between the parametric approximation and the sampling-based approximation. We need to choose
an appropriate approximation method for a given Bayesian model based on these properties of
the approximation methods. Let us consider a Bayesian neural network as an example. This
model has a vast number of parameters, and therefore it is impossible to apply the sampling-based
methods. Instead, we should use the parametric approximation since it can work well in high
dimensional models. We also need to specify which parametric distribution we use and which
objective function we minimize. We should select such combination based on what properties of
the posterior distribution we want to capture.

In conclusion, Bayesian inference in practice is the combination of the choice of the likelihood
function, the prior distribution, and the approximation method. These combinations should be
determined based on what kind of data we treat and what kind of information we want to extract
from data and how much we can tolerate as a computational burden.

2.3 Robust inference

Here, we briefly review the notion of robustness and its relation to Bayesian inference.

2.3.1 Robustness and outliers

Robustness is a fundamental topic in machine learning and statistics (Huber and Ronchetti, 2011;
Murphy, 2012). Although a specific definition of robustness may be problem-dependent, a commonly
shared notion is “an insensitivity to small deviations from the assumptions”, according to the seminal
book by Huber and Ronchetti (2011). Although robustness to outliers is a classic problem, it is getting
more important these days since recent advances in sensor technology give a vast amount of data
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Figure 2.1: Schematic example of an outlier

with spiky noise and crowd-annotated data is full of human errors (Raykar et al., 2010; Zhang et al.,
2016; Liu et al., 2012; Bonald and Combes, 2017).

In this thesis, we simply refer to outliers as the data which are not the main body of the data.
Figure.2.1 shows a schematic view of outliers. This figure illustrates the empirical distribution and
an outlier which locates far away from the main body of the data. In practice, we want to extract the
information about the main body of the data and outliers are regarded as contamination to the main
body of the data. Thus, we want to reduce the effect of contamination since it does not reflect the
information that we are interested in. In conclusion, the objective of outlier robust inference is to
eliminate the effect of outliers automatically and extract the information only from the main body of
the data. Note that, in the field of anomaly detection, we actively try to discover outliers (Bishop,
2006).

Let us state the above intuition formally. We assume that the observed data are generated from
{xi}Ni=1

i.i.d.∼ p∗(x). Let P be an empirical measure of the observed data {xi}Ni=1:

P (x) =
1

N

N∑
i=1

∆xi
(x) , (2.34)

where ∆xi
(x) stands for a point-mass 1 at xi and also let Pε,z be a contaminated version of P at z:

Pε,z(x) = (1− ε)P (x) + ε∆z(x), (2.35)

where ε is the contamination proportion. This means that there exists contamination at a point z.
We also express the contaminated version of the corresponding density as

p∗(x) = (1− ε)p∗0(x) + εδ(x, z),

where p∗0(x) expresses the density of the main body data. We aim at placing an estimated probability,
e.g., p(x; θ) close to the main body of the unknown density p∗0(x). Figure.2.2 shows a schematic
picture about this.
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Figure 2.2: Schematic example of an outlier

2.3.2 Robustness and Bayesian inference

Here, we will explain a standard approach for outlier robust inference in Bayesian inference (Bishop,
2006; Murphy, 2012). Let us consider a regression problem as an example. Given pairs of
inputs and outputs D = {(xi, yi)}Ni=1, we assume a function yi = f(xi). We infer a distribution
over the function f , that is, p(f |D). We use a Gaussian process (GP) regression model as a
probabilistic model(Rasmussen and Williams, 2006). A GP is a typical Bayesian method based
on the Gaussian distribution, which is used for various purposes such as regression, classification,
and optimization (Rasmussen and Williams, 2006). A GP is defined as a stochastic process such
that any finite set of random variables has a joint distribution which is the Gaussian distribution.
From the definition of a GP, p(f(x1), . . . , f(xN )) follows the multivariate Gaussian distribution.
Thus, a GP is specified by a mean function µ(xi) = Ef(xi), and a covariance function k(xi, xj) =

E(f(xi)−µ(xi))(f(xj)−µ(xj))
⊤. We express this asGP(f |µ,K)whereµ = (µ(x1), . . . , µ(xN ))

and Kij = k(xi, xj). We express a GP prior as p(f |X) for simplicity. About the observation noise
p(y|f), we simply assume the Gaussian distribution since this is a regression problem. Thus, GP
regression is defined as

p(y|f) = N(y|f(x), β−1I), (2.36)

p(f |X) = GP(f |µ,K), (2.37)

where N(y|f(x), β−1I) expresses the Gaussian distribution of which mean and variance are
f(x), β−1I and I denotes the identity matrix and β is a hyperparameter. K is defined by a
kernel function and a common choice is

k(xi, xj) = λ0e
−

∑
m λm

1 (xm
i −xm

j )2 + λ2 + λ3δi,j , (2.38)

where xm
i denotes the m-th dimension of the i-th input data and {λi}3i=0s are hyperparameters.

Based on these notations, our task is to get the posterior distribution p(f |D) = p(f |X, y) and the
predictive distribution p(ynew|xnew, D) given new input xnew. We can calculate them analytically
in GP regression with the Gaussian likelihood function since all the related probability distributions
are the Gaussian distributions. The predictive distribution is the Gaussian distribution whose mean
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Figure 2.3: GP regression using the Gaussian likelihood function

function and variance is given as follows (Bishop, 2006)µ(xnew) = k(xnew)
⊤(K + β−1I)−1y,

σ2(xnew) = c− k(xnew)
⊤(K + β−1I)−1k(xnew),

(2.39)

where k(xnew) = (k(x1, xnew), . . . , k(xN , xnew)
⊤, y = (y1, . . . , yN )⊤, and c = k(xnew, xnew) +

β−1. We can predict the output of the new data xnew by using the above predictive distribution.
Let us confirm the behavior of GP regression on toy data. Figure.2.3 shows the toy data example;

the black crosses show the observed data generated by the relation y = x + sin(x) + ϵ where ϵ

is generated from the standard Gaussian distribution. In the left figure of Figure.2.3, the blue line
shows the mean of the predictive distribution and the shaded area is calculated by the mean plus
the variance of the predictive distribution. To check the robustness of GP regression, we artificially
added an outlier which is marked by the red circle in the right figure of Figure.2.3. The figure shows
that the single outlier has a significant impact on the predictive distribution of GP regression. This
means that GP regression is not robust to outliers.

There are various ways to achieve robustness. A standard approach to robustness in statistical
inference is a model-based method, which uses a log-tail distribution such as the Student-t distribution
instead of the Gaussian distribution ((Murphy, 2012)). The density of the k-dimensional Student-t
distribution whose mean is µ and the degree of the freedom is v is expressed as

St(x; v, µ,Σ) =
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ|1/2

(
1 + (x− µ)⊤(vΣ)−1(x− µ)

)− v+k
2

.

About its variance, when v > 2, it is v
v−2Σ and when 1 < v ≤ 2, it diverges.

Fig 2.4 shows the comparison of the Student-t and the Gaussian distribution which have the
same means and Σs. In the figure, we can see that the Student-t distribution has a very similar
shape to that of the Gaussian distribution, but it has longer tails compared to the Gaussian. The
length of the tail is controlled by the degree of the freedom v. When we take the limit of v → ∞,
the Student-t distribution is reduced to the Gaussian distribution. The long tail of the Student-t
distribution enables us to reduce the effect of outliers. We will clarify the reason for robustness of
the Student-t distribution in Section 2.3.3.
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Figure 2.4: Comparison of the Student-t and the Gaussian distribution

Figure 2.5: GP regression using the Student-t likelihood

Let us apply the Student-t distribution to GP regression (Rasmussen and Williams, 2006). We
replace the Gaussian likelihood with the Student-t likelihood in GP regression,

p(y|f) = St(y|v, f(x), β−1I),

where the degree of freedom v is treated as a hyperparameter. With this probabilistic model, we
got the predictive distribution shown in Figure.2.5. The left figure is the case that where no outlier
exists and the obtained predictive distribution is similar to that of the Gaussian likelihood. In the
right figure where an outlier exists, the obtained result is less affected by the outlier compared to
that of the Gaussian likelihood. Thus, the Student-t distribution is a promising candidate as the
probabilistic model for robust inference. The drawback of using the Student-t distribution is that
we cannot get an analytical expression for the posterior and predictive distributions. Thus, we need
an approximation method. Due to the long-tail density form, it is known that MC methods suffer
from computational inefficiency (Jylänki et al., 2011). The result of Figure.2.5 is obtained by EP
approximation which we described in Section 2.2.2.

2.3.3 Influence function (IF)

Here, we discuss why the Gaussian distribution is not robust and the Student-t distribution is robust
to outliers by using the influence function (IF) (Huber and Ronchetti, 2011). IFs have been used in
robust statistics to study how much contamination affects estimated statistics. For a statistic T with



24 Chapter 2. Preliminaries

an empirical distribution P , the IF at a point z is defined as follows (Huber and Ronchetti, 2011):

IF (z, T, P ) =
∂

∂ε
T (Pε,z(x))

∣∣∣∣
ε=0

= lim
ε→0

T (Pε,z(x))− T (P (x))

ε
. (2.40)

Intuitively, the IF is a relative bias of T caused by contamination at z. Thus, we can measure the
robustness of an estimation method with the IF. An important indicator to measure robustness with
the IF is

sup
z
|IF (z, T, P ) |.

If this indicator diverges, the estimation method is very sensitive to contamination and the effect
of outliers can be infinite. If this indicator is bounded, the effect of outliers is bounded and the
estimation method is robust to outliers.

Let us check the behavior of the IF of the Gaussian and Student-t distributions. We consider the
problem to infer the parameters of the Gaussian and Student-t distributions by ML estimation given
the empirical distribution Pε,z(x), which is defined in Eq.(2.35). Under this setting, we can derive
the formula for the IF as

IF (z, θ, P ) = − ∂θ ln p(z; θ)

EP [∂θ∂θ ln p(x; θ)]
. (2.41)

In the above expression, since the information related to an outlier only appears in the numerator,
we can express the IF as (Huber and Ronchetti, 2011)

IF (z, θ, P ) ∝ ∂θ ln p(z; θ). (2.42)

Thus, to study the behavior of the IF, it is sufficient to study the behavior of the score function2.
With this formula, let us calculate IFs of the Gaussian and Student-t distributions. For simplicity,

we only consider the mean parameter and the dimension of the distribution is one. First, we get the
score function of the Gaussian distribution as

∂

∂θ
lnN(x|µ, σ) ∝ (x− µ) /σ2. (2.43)

Then, we can confirm that

∂

∂θ
lnN(x|µ, σ) −−−−→

x→∞
∞. (2.44)

This means that the IF of the Gaussian distribution is not bounded. Thus, the Gaussian distribution
is not robust to outliers.

2The score function is defined as the gradient of the log likelihood function. Here, the likelihood corresponds to the
Gaussian and Student-t distributions.



2.3. Robust inference 25

Next, we consider the Student-t distribution and its score function is

∂

∂θ
ln St(x|v, µ, σ) ∝ (x− µ)

νσ2 + (x− µ)
2 . (2.45)

From this expression, we can confirm the behavior of the IF as

∂

∂θ
ln St(x|v, µ, σ) −−−−→

x→∞
0. (2.46)

This means that the IF of the Student-t distribution is bounded even if an outlier exists at an infinite
point. From this expression, we can confirm that the Student-t distribution is robust to outliers and
this is a desirable property of the Student-t distribution .

In this way, the IF is a useful tool to analyze the robustness of estimation methods. We will use
the IF in Chapter 4.
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Chapter 3

Expectation propagation for
t-exponential family using q-algebra

In this chapter, we discuss outlier robust inference based on the model-based approach by using
long-tail distributions. We present our contribution of the development of an computational efficient
algorithm for a generalized exponential family.

3.1 Introduction and summary of this chapter

As we have seen in Chapter 2, the Gaussian distribution is sensitive to outliers and heavier-tailed
distributions are preferred in robust inference. For example, the Student-t distribution and a Student-t
process (Rasmussen and Williams, 2006; Shah et al., 2014) are good alternatives to the Gaussian
distribution (Jylänki et al., 2011) and a Gaussian process (Shah et al., 2014), respectively.

A technical problem of the Student-t distribution is that it does not belong to the exponential
family unlike the Gaussian distribution and thus cannot enjoy good properties of the exponential
family. To cope with this problem, the exponential family was generalized to the t-exponential
family (Ding and Vishwanathan, 2010), which contains Student-t distributions as family members.
Following this line, the Kullback-Leibler divergence was generalized to the t-divergence, and ap-
proximation methods based on t-divergence minimization have been explored (Ding et al., 2011).
However, the t-exponential family does not allow us to employ standard useful mathematical tricks,
e.g., logarithmic transformation does not reduce the product of t-exponential family functions into
summation. For this reason, the t-exponential family unfortunately does not inherit an important
property of the original exponential family, that is, calculation can be performed through natural
parameters. Furthermore, while the dimensionality of sufficient statistics is the same as that of the
natural parameters in the exponential family and thus there is no need to increase the parameter size
to incorporate new information (Seeger, 2005), this useful property does not hold in the t-exponential
family.

The purpose of this chapter is to further explore mathematical properties of natural parameters
of the t-exponential family through pseudo additivity of distributions based on q-algebra used
in statistical physics (Nivanen et al., 2003; Suyari and Tsukada, 2005). More specifically, our
contributions of this chapter are three-fold:
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1. We show that, in the same way as ordinary exponential family distributions, q-algebra allows
us to handle the calculation of t-exponential family distributions through natural parameters.

2. Our q-algebra based method enables us to extend assumed density filtering (ADF) (Ding
et al., 2011) and develop an algorithm of expectation propagation (EP) (Minka, 2001) for the
t-exponential family. In the same way as the original EP algorithm for ordinary exponential
family distributions, our EP algorithm provides a deterministic approximation to the posterior
or predictive distribution for t-exponential family distributions with simple moment matching.

3. We apply the proposed EP algorithm to the Bayes point machine (Minka, 2001) and Student-t
process classification, and we demonstrate their usefulness as alternatives to the Gaussian
approaches numerically.

3.2 t-exponential family

In this section, we review the t-exponential family (Ding and Vishwanathan, 2010; Ding et al., 2011),
which is a generalization of the exponential family.

The t-exponential family is defined as,

p(x;λ) = expt(⟨Φ(x), λ⟩ − gt(λ)), (3.1)

where expt(x) is the deformed exponential function defined as

expt(x) =

{
exp(x) if t = 1,

[1 + (1− t)x]
1

1−t otherwise,
(3.2)

and gt(λ) is the log-partition function that satisfies

∇λgt(λ) = Epes [Φ(x)]. (3.3)

The notation Epes denotes the expectation over pes(x), where pes(x) is the escort distribution of
p(x) defined as

pes(x) =
p(x)t∫
p(x)tdx

. (3.4)

We call λ a natural parameter and Φ(x) sufficient statistics.
Let us express the k-dimensional Student-t distribution with v degrees of freedom as

St(x; v, µ,Σ) =
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ|1/2

(
1 + (x− µ)⊤(vΣ)−1(x− µ)

)− v+k
2

, (3.5)

where Γ(x) is the gamma function, |A| is the determinant of matrix A, and A⊤ is the transpose of
matrix A. We can confirm that the Student-t distribution is a member of the t-exponential family as
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follows. First, we have

St(x; v, µ,Σ) =
(
Ψ+Ψ · (x− µ)⊤(vΣ)−1(x− µ)

) 1
1−t , (3.6)

where Ψ =

(
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ|1/2

)1−t

. (3.7)

Note that relation −(v + k)/2 = 1/(1− t) holds, from which we have

⟨Φ(x), λ⟩ =

(
Ψ

1− t

)
(x⊤Kx− 2µ⊤Kx), (3.8)

gt(λ) = −

(
Ψ

1− t

)
(µ⊤Kµ+ 1) +

1

1− t
, (3.9)

whereK = (vΣ)−1. Then, we can express the Student-t distribution as a member of the t-exponential
family as:

St(x; v, µ,Σ) =
(
1 + (1− t)⟨Φ(x), λ⟩ − gt(λ)

) 1
1−t = expt

(
⟨Φ(x), λ⟩ − gt(λ)

)
. (3.10)

If t = 1, the deformed exponential function is reduced to the ordinary exponential function, and
therefore the t-exponential family is reduced to the ordinary exponential family, which corresponds
to the Student-t distribution with infinite degrees of freedom. For t-exponential family distributions,
the t-divergence is defined as follows (Ding et al., 2011):

Dt(p(x)∥p̃(x)) =
∫ (

pes(x) lnt p(x)− pes(x) lnt p̃(x)
)
dx, (3.11)

where

lnt x :=
x1−t − 1

1− t
(x ≥ 0, t ∈ R+) (3.12)

and pes(x) is the escort function of p(x).

3.3 ADF for t-exponential family

We briefly review the assumed density filtering for t-exponential family which was proposed in Ding
et al. (2011). This extension is achieved by using the t-divergence instead of the KL divergence in
the usual ADF in Section 2.2.2:

p̃ = arg min
p′

Dt(p(θ)∥p′(θ)) = arg min
p′

∫ (
pes(θ) lnt p(θ)− pes(θ) lnt p

′(θ;λ)
)
dθ. (3.13)
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When an approximate distribution is chosen from the t-exponential family, we can utilize the property
in Ding et al. (2011):

∇λgt(λ) = Ep̃es(Φ(θ)), (3.14)

where p̃es is the escort function of p̃(θ). Then, minimization of the t-divergence yields

Epes [Φ(θ)] = Ep̃es [Φ(θ)]. (3.15)

This is moment matching, which is a celebrated property of the exponential family. Since the
expectation is taken with respect to the escort function, this is called escort moment matching.

As an example, let us consider the situation where the prior is the Student-t distribution and the
posterior is approximated by the Student-t distribution: p(θ|D) ∼= p̃(θ) = St(θ; µ̃, Σ̃, v). Then the
approximated posterior p̃i(θ) = St(θ; µ̃(i), Σ̃i, v) can be obtained by minimizing the t-divergence
from pi(θ) ∝ p̃i−1(θ)l̃i(θ) as

arg min
µ′,Σ′

Dt(pi(θ)∥St(θ;µ′,Σ′, v)). (3.16)

This allows us to obtain an analytical update expression for t-exponential family distributions.

3.4 EP for t-exponential family

As shown in Section 2.2.2, ADF has been extended to EP for an ordinary exponential family
(which resulted in moment matching for the exponential family) and ADF is also extended to the
t-exponential family (which yielded escort moment matching for the t-exponential family). In this
section, we combine these two extensions and propose EP for the t-exponential family.

3.4.1 Pseudo additivity and q-algebra

Differently from ordinary exponential functions, deformed exponential functions do not satisfy the
product rule:

expt(x) expt(y) ̸= expt(x+ y). (3.17)

For this reason, the cavity distribution cannot be computed analytically for the t-exponential family.
On the other hand, the following equality holds for the deformed exponential functions:

expt(x) expt(y) = expt(x+ y + (1− t)xy), (3.18)

which is called pseudo additivity.
In statistical physics (Nivanen et al., 2003; Suyari and Tsukada, 2005), a special algebra called

q-algebra has been developed to handle a system with pseudo additivity. We will use the q-algebra
for efficiently handling t-exponential distributions.
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Definition 1 (q-product). Operation ⊗q called the q-product is defined as

x⊗q y :=

{
[x1−q + y1−q − 1]

1
1−q if x > 0, y > 0, x1−q + y1−q − 1 > 0,

0 otherwise.
(3.19)

Definition 2 (q-division). Operation ⊘q called the q-division is defined as

x⊘q y :=

{
[x1−q − y1−q − 1]

1
1−q if x > 0, y > 0, x1−q − y1−q − 1 > 0,

0 otherwise.
(3.20)

Definition 3 (q-logarithm). The q-logarithm is defined as

lnq x :=
x1−q − 1

1− q
(x ≥ 0, q ∈ R+). (3.21)

The q-division is the inverse of the q-product (and visa versa), and the q-logarithm is the inverse
of the q-exponential (and visa versa). From the above definitions, the q-logarithm and q-exponential
satisfy the following relations:

lnq(x⊗q y) = lnq x+ lnq y, (3.22)

expq(x)⊗q expq(y) = expq(x+ y), (3.23)

which are called the q-product rules. Also for the q-division, similar properties hold:

lnq(x⊘q y) = lnq x− lnq y, (3.24)

expq(x)⊘q expq(y) = expq(x− y), (3.25)

which are called the q-division rules.

3.4.2 EP for t-exponential family

The q-algebra allows us to recover many useful properties from the ordinary exponential family. For
example, the q-product of t-exponential family distributions yields an unnormalized t-exponential
distribution:

expt(⟨Φ(θ), λ1⟩ − gt(λ1))⊗t expt(⟨Φ(θ), λ2⟩ − gt(λ2)) = expt(⟨Φ(x), (λ1 + λ2)⟩ − g̃t(λ1, λ2)).

(3.26)

Based on this q-product rule, we develop EP for the t-exponential family.
Consider the situation where prior distribution p(0)(θ) is a member of the t-exponential family.

As an approximation to the posterior, we choose a t-exponential family distribution

p̃(θ;λ) = expt(⟨Φ(θ), λ⟩ − gt(λ)). (3.27)
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In the original EP for the ordinary exponential family, we considered an approximate posterior of
the form

p̃(θ) ∝ p(0)(θ)
∏
i

l̃i(θ), (3.28)

that is, we factorized the posterior to a product of site approximations corresponding to data. On the
other hand, in the case of the t-exponential family, we propose to use the following form called the
t-factorization:

p̃(θ) ∝ p(0)(θ)⊗t

∏
i

⊗t l̃i(θ). (3.29)

The t-factorization is reduced to the original factorization form when t = 1.
This t-factorization enables us to calculate EP update rules through natural parameters for the

t-exponential family in the same way as the ordinary exponential family. More specifically, consider
the case where factor j of the t-factorization is updated in four steps in the same way as original EP.

1. First, we calculate the cavity distribution by using the q-division as

p̃\j(θ) ∝ p̃(θ)⊘t l̃j(θ) ∝ p(0)(θ)⊗t

∏
i̸=j

⊗t l̃i(θ). (3.30)

The above calculation is reduced to subtraction of natural parameters by using the q-algebra
rules:

λ\j = λ− λ(j). (3.31)

2. The second step is inclusion of site likelihood lj(θ), which can be performed by p̃\j(θ)lj(θ).
The site likelihood lj(θ) is incorporated to approximate the posterior by the ordinary product
not the q-product. Thus moment matching is performed to obtain a new approximation. For
this purpose, the following theorem is useful.

Theorem 1. The expected sufficient statistic,

η = ∇λgt(λ) = Ep̃es [Φ(θ)], (3.32)

can be derived as

η = η\j +
1

Z2
∇λ\jZ1, (3.33)

where Z1 =

∫
p̃\j(θ)(lj(θ))

tdw, Z2 =

∫
p̃es

\j
(θ)(lj(θ))

tdw. (3.34)

A proof of Theorem 1 is given in Section 3.6.1. After moment matching, we obtain an
approximation, p̃new(θ).
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3. Third, we exclude the effect of sites other than j. This is achieved by

l̃newj (θ) ∝ p̃new(θ)⊘t p̃
\j(θ), (3.35)

which is reduced to subtraction of natural parameter

λ\j
new = λnew − λ\j . (3.36)

4. Finally, we update the site approximation by replacing l̃j(θ) with l̃j(θ)
new.

These four steps are our proposed EP method for the t-exponential family. As we have seen,
these steps are reduced to the ordinary EP steps if t = 1. Thus, the proposed method can be regarded
as an extension of the original EP to the t-exponential family. Since the updates of the proposed EP
algorithm is reduced to the simple escort moment matching when the t-exponential family is used
for the approximation, the computational cost is the same order as the original EP. This means that
our proposed algorithm is also computationally efficient.

3.4.3 Marginal likelihood for t-exponential family

In the above, we omitted the normalization term of the site approximation to simplify the derivation.
Here, we derive the marginal likelihood, which requires us to explicitly take into account the
normalization term C̃i:

l̃i(θ|C̃i, µ̃i, σ̃
2
i ) = C̃i ⊗t expt(⟨Φ(θ), λ⟩). (3.37)

We assume that this normalizer corresponds to Z1, which is the same assumption as that for the
ordinary EP. To calculate Z1, we use the following theorem (its proof is available in Section 3.6.2):

Theorem 2. For the Student-t distribution, we have∫
expt(⟨Φ(θ), λ⟩ − g)dθ =

(
expt(gt(λ)/Ψ− g/Ψ)

) 3−t
2

, (3.38)

where g is a constant, gt(λ) is the log-partition function and Ψ is defined in (3.7).

This theorem yields

logt Z
2

3−t

1 = gt(λ)/Ψ− g
\j
t (λ)/Ψ+ logt C̃j/Ψ, (3.39)

and therefore the marginal likelihood can be calculated as follows (see Section 3.6.3 for details):

ZEP =

∫
p(0)(θ)⊗t

∏
i

⊗t l̃i(θ)dθ

=

(
expt

(∑
i

logt C̃i/Ψ+ gt(λ)/Ψ− gpriort (λ)/Ψ
)) 3−t

2

. (3.40)
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By substituting C̃i in Eq.(3.40), we obtain the marginal likelihood. Note that, if t = 1, the
above expression of ZEP is reduced to the ordinary marginal likelihood expression (Seeger, 2005).
Therefore, this marginal likelihood can be regarded as a generalization of the ordinary exponential
family marginal likelihood to the t-exponential family.

In Section 3.6.4 and 3.6.5, we derive specific EP algorithms for the Bayes point machine (BPM)
and Student-t process classification.

3.5 Numerical experiments

In this section, we numerically illustrate the behavior of our proposed EP applied to BPM and Student-
t process classification. Suppose that data (x1, y1), . . . , (xn, yn) are given, where yi ∈ {+1,−1}
expresses a class label for covariate xi.

3.5.1 Bayes point machine (BPM)

The likelihood function of BPM is expressed as

li(θ) = p(yi|xi, θ) = ϵ+ (1− 2ϵ)Θ(yi⟨θ, xi⟩), (3.41)

where Θ(x) is the step function taking 1 if x > 0 and 0 otherwise and ϵ is the labeling error rate
which is treated as a hyperparameter. To estimate the parameter θ, we perform Bayesian inference.
We assume that the prior distribution of θis the Student-t distribution and our task is to obtain the
posterior distribution. We cannot obtain the analytical expression of the posterior distribution about
this model, we use ADF and EP as approximation methods.

We compare EP and ADF to confirm that EP does not depend on data permutation. We generate
a toy dataset in the following way: 1000 data points x are generated from Gaussian mixture model:

0.05N(x; [1, 1]⊤, 0.05I) + 0.25N(x; [−1, 1]⊤, 0.05I)

+ 0.45N(x; [−1,−1]⊤, 0.05I) + 0.25N(x; [1,−1]⊤, 0.05I), (3.42)

where N(x;µ,Σ) denotes the Gaussian distribution with respect to x with mean µ and co-
variance matrix Σ, and I is the identity matrix. For x, we assign label y = +1 when x

comes from N(x; [1, 1]⊤, 0.05I) or N(x; [1,−1]⊤, 0.05I) and label y = −1 when x comes from
N(x; [−1, 1]⊤, 0.05I) or N(x; [−1,−1]⊤, 0.05I). We evaluate the dependence of the performance
of BPM on data permutation. The derivation of the EP algorithm is shown in Section 3.6.4.

Figure.3.1 shows labeled samples by blue and red points, decision boundaries by black lines
which are derived from ADF and EP for the Student-t distribution with v = 10 by changing data
permutations. The top two graphs show obvious dependence on data permutation by ADF (to clarify
the dependence on data permutation, we showed the most different boundary in the figure), while
the bottom graph exhibits almost no dependence on data permutations by EP.



3.5. Numerical experiments 35

Figure 3.1: Boundaries obtained by ADF (left two, with different sample orders)
and EP (right).

3.5.2 Student-t process classification

In this section, we propose Student-t process classification (SPC) based on Student-t processes
(SPs) (Rasmussen and Williams, 2006; Shah et al., 2014). In Shah et al. (2014), SPs show the
superior performance than GPs for the noisy dataset in regression problems. Thus, we compare the
performance and the robustness of SPC with Gaussian process classification (GPC).

We first explain a SP. In the case of a GP, the prior distribution p(f |X) is the multivariate
Gaussian distribution whose covariance is specified by the kernel function (see Section 2.3.2). In the
case of a ST, the prior distribution is the multivariate Student-t distribution which is specified by the
covariance kernel and the degree of freedom v. When we use the likelihood p(y|f), we can express
the posterior distribution by p(f |X, y) = 1

Z p(f |X)
∏

i p(yi|fi) where the marginal likelihood is
given as Z = p(y|X) =

∫
p(f |X)

∏
i p(yi|fi)df for i.i.d. dataset. Here, we consider a binary

classification, and we use the likelihood function:

p(yi|fi) = li(fi) = ϵ+ (1− 2ϵ)Θ(yifi). (3.43)

This is similar to BPM where the input to the step function is given as a linear model. In GPC
and SPC, the input to the step function is a GP and a SP. This GPC model is proposed by Kim and
Ghahramani (2008) and this is called robust GPC since the labeling error rate is included in the
likelihood function.

Since the posterior distribution cannot be obtained analytically for GPC, we use EP for the
ordinary exponential family to approximate the posterior. For the approximation of the posterior
distribution of SPC, we use our proposed EP algorithm. The derivation of the EP algorithm is shown
in Section 3.6.5.

As numerical experiments, we consider a toy dataset problem and benchmark dataset problems.
We use a two-dimensional toy dataset, where we generate a two-dimensional data point xi

(i = 1, . . . , 300) following the Gaussian distributions: p(x|yi = +1) = N(x; [1.5, 1.5]⊤, 0.5I)

and p(x|yi = −1) = N(x; [−1,−1]⊤, 0.5I). We add eight outliers to the dataset and evaluate the
robustness against outliers (about 3% outliers). In the experiment, we used v = 10 for Student-t
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Figure 3.2: Classification boundaries.

processes. We furthermore used the following kernel:

k(xi, xj) = ω0 exp

{
−

D∑
d=1

ωd
1(x

d
i − xd

j )
2

}
+ ω2 + ω3δi,j , (3.44)

where xd
i is the dth element of xi, and ω0, ω1, ω2, ω3 are hyperparameters to be optimized. For this

optimization, we used the gradient descent algorithm to maximize the marginal log likelihood after
the EP algorithm converged. Following the discussion in Hernández-Lobato and Hernández-Lobato
(2016), we derive the expression for the gradient of logt Z

2
3−t

EP ,

∂ logt Z
2

3−t

EP

∂ωj
= η⊤

∂λprior

∂ωj
− η⊤prior

∂λprior

∂ωj
+
∑
i

∂ logt C̃i

∂ωj
, (3.45)

where, λprior is the natural parameters of the prior distribution and ηprior is the sufficient statistics
of the prior distribution. Then we used Adam optimizer for the updates of the algorithm (Kingma
and Ba, 2014).

Figure.3.2 shows the labeled samples by blue and red points, the obtained decision boundaries
by black lines, and added outliers by blue and red stars. As we can see, the decision boundaries
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Table 3.1: Classification
Error Rates (%)

Dataset Outliers GPC STC

Pima 0 34.0(3.0) 32.3(2.6)
N=767 5% 34.9(3.1) 32.9(3.1)
D=8 10% 36.2(3.3) 34.4(3.5)

Ionosphere 0 9.6(1.7) 7.5(2.0)
N=350 5% 9.9(2.8) 9.6(3.2)
D=34 10% 13.0(5.2) 11.9(5.4)

Thyroid 0 4.3(1.3) 4.4(1.3)
N=207 5% 4.8(1.8) 5.5(2.3)
D=5 10% 5.4(1.4) 7.2(3.4)
Sonar 0 15.4(3.6) 15.0(3.2)
N=207 5% 18.3(4.4) 17.5(3.3)
D=60 10% 19.4(3.8) 19.4(3.1)

Table 3.2: Approximate
log evidence

Dataset Outliers GPC STC

Pima 0 -74.1(2.4) -37.1(6.1)
5% -77.8(2.9) -37.2(6.5)
10% -78.6(1.8) -36.8(6.5)

Ionosphere 0 -59.5(5.2) -36.9(7.4)
5% -75.0(3.6) -35.8(7.0)
10% -90.3(5.2) -37.4(7.2)

Thyroid 0 -32.5(1.6) -41.2(4.3)
5% -39.1(2.3) -45.8(5.5)
10% -46.9(1.8) -45.8(4.5)

Sonar 0 -55.8(1.2) -41.6(1.2)
5% -59.4(2.5) -41.3(1.6)
10% -65.8(1.1) -67.8(2.1)

obtained by the Gaussian process classifier is heavily affected by outliers, while those obtained by
the Student-t process classifier are more stable. Thus, as expected, Student-t process classification is
more robust against outliers compared to Gaussian process classification, thanks to the heavy-tailed
structure of the Student-t distribution.

Next, we compared the performance of Gaussian process and Student-t process classification on
the UCI datasets1. We used four datasets from the UCI datasets which are widely used for binary
classification in GPC experiments. We used cross validation to select the degree of freedom. The
range of cross validation for the degree of freedom is from 5 to 15. We used the kernel given in
Eq.(3.44). Results are shown in Tables 3.1 and 3.2, where outliers mean how many percentages we
randomly flip training dataset labels to make additional outliers. As we can see Student-t process
classification outperforms Gaussian process classification in many cases.

3.6 Appendix

In this section, we describe the proofs, supplemental discussion, and detailed explanations for the
experimental settings.

3.6.1 Proof of Theorem 1

∇λ\jZ1 = ∇λ\j

∫
p̃\j(θ)lj(θ)

tdθ

=

∫
(Ψ(θ)−∇λ\jgt(λ

\j))p̃es
\j
(θ)lj(θ)

tdθ

=

∫
Ψ(θ)p̃es

\j
(θ)lj(θ)

tdθ −∇λ\jgt(λ
\j)

∫
p̃es

\j
(θ)lj(θ)

td.θ

1https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Using the definition Z2 =
∫
p̃es

\j
(θ)(lj(θ))

tdθ, and η = ∇λgt(λ),

∇λ\jZ1 = ηZ2 − η\jZ2.

Therefore,

η = η\j +
1

Z2
∇λ\jZ1.

3.6.2 Proof of Theorem 2

Here, we consider a one-dimensional distribution. We derive the multivariate formula in the same.
Considering the unnormalized t-exponential family, expt(⟨Φ(θ), λ⟩ − g), and g is a constant, not a
true log partition function. We integrate this expression as follows,∫ ∞

−∞
expt(⟨Φ(θ), λ⟩ − g)dθ =

∫ ∞

−∞
(1 + Ψ(−2µ⊤Kθ + θ⊤Kθ)− (1− t)g)

1
1−t dθ

=

∫ ∞

−∞
(1−Ψµ⊤Kµ− (1− t)g +Ψ(θ − µ)⊤K(θ − µ))

1
1−t dθ

= (1−Ψµ⊤Kµ− (1− t)g)
1

1−t

∫ ∞

−∞

(
1 +

Ψ(x− µ)⊤K(x− µ)

1−Ψµ⊤Kµ− (1− t)g

) 1
1−t

dθ.

Here, for simplicity, we put (1−Ψµ⊤Kµ− (1− t)g) = A, and use the formula,
∫∞
0

xm

(1+x2)n dx =
1
2B
(
2n−m−1

2 , m+1
2

)
, where B denote the beta function. We can get the expression,

∫ ∞

−∞
expt(⟨Φ(θ), λ⟩ − g)dθ =

1

2
B
( 3− t

2(t− 1)
,
1

2

)(Ψ
A
K
)− 1

2

A
1

1−t .

We can proceed with the calculation by using the definition of Ψ, B(x, y) = Γ(x)Γ(y)
Γ(x+y) , and Γ( 12 ) =√

π as follows, ∫ ∞

−∞
expt(⟨Φ(θ), λ⟩ − g)dθ = Ψ−

(
1
2+

1
1−t

)
A

1
2+

1
1−t .

Here, by using the definition ofA and the true log partition function gt(λ) = 1
1−t

(
1−Ψ(µ⊤Kµ+1)

)
,

A
1
2+

1
1−t = (1−Ψµ⊤Kµ− (1− t)g)

1
2+

1
1−t

= (Ψ + (1− t)(gt(λ)− g))
1
2+

1
1−t

= Ψ
1
2+

1
1−t (1 + (1− t)(gt(λ)− g)/Ψ)

1
2+

1
1−t

Therefore, by substituting this expression into the above integral result, we get the following.∫ ∞

−∞
expt(⟨Φ(θ), λ⟩ − g)dθ =

(
expt(gt(λ)/Ψ− g/Ψ)

) 3−t
2
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3.6.3 Derivation of Eq.(3.40), the marginal likelihood

We calculate the marginal likelihood from the definition:

ZEP =

∫
p(0)(θ)⊗t

∏
i

⊗t l̃i(θ)dθ

=

∫
expt

(∑
i

logt C̃i + ⟨Φ(θ), λ⟩ − gpriort (λ)
)
dθ

=

(
expt

(∑
i

logt C̃i/Ψ+ gt(λ)/Ψ− gpriort (λ)/Ψ
)) 3−t

2

.

3.6.4 Derivation of algorithms for BPM

In this section, we show the details of the update rule of ADF and EP for the Bayes point machine.

3.6.4.1 ADF algorithm for BPM

The detailed update rules of ADF for BPM by t-exponential family are derived in Ding et al. (2011)
and given as

µi = Eq[θ] = µi−1 + αyiΣ
i−1xi, (3.46)

Σi = Eq[θθ
⊤]− Eq[θ]Eq[θ

⊤] = rΣi−1 − (Σi−1xi)

(
αyi⟨xi, µ

i⟩
x⊤
i Σ

i−1xi

)
(Σi−1xi)

⊤, (3.47)

where q̃i(θ) ∝ p̃i(θ)
t, qi(θ) ∝ p̃i−1(θ)

t(li(θ))
t, and

z =
yi⟨xi, µ

i−1⟩√
x⊤
i Σ

i−1xi

, (3.48)

Z1 =

∫
p̃i−1(θ)(li(θ))

tdθ = ϵt + ((1− ϵ)t − ϵt)

∫ z

−∞
St(x; 0, 1, v)dx, (3.49)

Z2 =

∫
q̃i−1(θ)(li(θ))

tdθ = ϵt + ((1− ϵ)t − ϵt)

∫ z

∞
St(x; 0, v/(v + 2), v + 2)dx,(3.50)

r =
Z1

Z2
, (3.51)

α =
((1− ϵ)t − ϵt)St(z; 0, 1, v)

Z2

√
x⊤
i Σ

i−1xi

. (3.52)

3.6.4.2 EP algorithm for BPM

For the derivation of the proposed EP algorithm for BPM, we followed the derivation of the ordinary
EP algorithm in Minka (2001). We strongly recommend readers to read this article.
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Approximate posterior distribution and notations

Natural parameters of Student-t distribution St(θ; v, µ,Σ) is [λ1, λ2]:

λ1 = −2ΨKµ

1− t
, (3.53)

λ2 =
ΨK

1− t
, (3.54)

where K = (vΣ)−1. From these definitions, we calculate EP update rules through ΨKµ and ΨK

since natural parameters can be expressed through these two variables.
For BPM, we assume that the whole approximate posterior distribution is expressedk-dimensional

St(w;mθ, Vθ, v) and each site approximation is one-dimensional Student-t like function, expt(⟨Φ(θ), λ⟩).
This is the function which is the same expression as the Student-t density but unnormalized. Note
that for the whole approximation, the degree of freedom is v, but for the site approximation, it is
ṽ. We describe the relations between them later. As for this site approximation, from Eq.(3.8), we
define the i-th site approximation with

⟨Φ(θ), λ⟩ = Ψi

1− t

(
(θ⊤xi)

⊤(ṽσi)
−1(θ⊤xi)− 2mi(ṽσi)

−1(θ⊤xi)
)

∝ Ψi

1− t
ṽ−1σ−1

i (θ⊤xi −mi)
2. (3.55)

Note that the whole posterior approximation is the k-dimensional, but the site approximation is
the one-dimensional, therefore the degree of freedom are different from the total approximation and
the site approximation to make t consistent. The relation between v, ṽ, and t is given as

1

t− 1
=

v + k

2
=

ṽ + 1

2
. (3.56)

We expressΨ andK byΨi andKi for the i-th site approximation. Here, since σi is scalar, we can
express Ki = (ṽσi)

−1. If we express Ψ = (α/|Σ|1/2)1−t, then we can express Ψi = (αi/σ
1/2
i )1−t

(The definition of α is given in the ADF for BPM). We express Ψ and K by Ψθ and Kθ for the whole
approximation.

EP update rules

Let us consider the update of the j-th site approximation. Algorithm is composed from following 4
steps.

1. The first step is calculation of cavity distribution, which can be done by

Ψ\jK\j = Ψθ(vVθ)
−1 −Ψj(ṽσi)

−1xjx
⊤
j , (3.57)

Ψ\jK\jm\j = Ψθ(vVθ)
−1mθ −Ψj(ṽσi)

−1mjxj . (3.58)

2. Next step is moment matching. This is calculated in the same way as the ADF update rules.
To use the ADF update rule, we have to convert Ψ\jK\j and Ψ\jK\jm\j to V \j and m\j ,



3.6. Appendix 41

which are covariance matrix and mean of cavity distribution. When calculating V \j from
Ψ\jK\j , we have to be careful that Ψ\j contains the determinant of V \j . From the definition,

Ψ\jK\j =
( αj

|V \j |1/2
)1−t

(vV \j)−1. (3.59)

Since αj and v is the constant, when we put V \j−1

|V \j |(1−t)/2 = B, following relation holds,

|V \j | =
(
|B| 1k

) 1
t−1
2

− 1
k . (3.60)

Using this relation, we get V \j and m\j .

3. After moment matching, we get Vnew and mnew. Next step is the exclusion step of site other
than j. This step is calculated in the same way as the step of cavity distribution.

ΨjKj = ΨnewKnew −Ψ\jK\j , (3.61)

ΨjKjm̃j = ΨnewKnewmnew −Ψ\jK\jm\j . (3.62)

4. To update site parameters, we have to convert ΨjKj and ΨjKjm̃j into σj and mj , which are
scalar values. This can be done easily by using the fact that Kj is proportional to σ−1

j xjx
⊤
j

from the definition.

These steps are the update rules for the site approximation. We have to iterate these steps until
site parameters converge.

3.6.5 Derivation of algorithms for Student-t process classification

3.6.5.1 EP algorithm for Student-t process classification

In this section, we show the detailed derivation of the update rules of proposed EP algorithms for
Student-t process classification. Since we followed the derivation of the ordinary EP in Hernández-
Lobato and Hernández-Lobato (2016); Rasmussen and Williams (2006), we strongly recommend
readers to read these articles.

Approximate posterior distribution and notations

Following the ordinary EP algorithm, we approximate the posterior consisting from site approxima-
tion. We define the factorizing term that corresponds to data i as follows:

l̃i(fi|C̃i, µ̃i, σ̃
2
i ) := C̃i ⊗ St(fi; µ̃i, σ̃

2
i , ṽ). (3.63)
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For simplicity, we express the unnormalized Student-t like function by St(fi; µ̃i, σ̃
2
i , ṽ). This is

equivalent to expt(⟨Φ(fi), λ⟩), where

⟨Φ(fi), λ⟩ =
Ψi

1− t
(f⊤

i Kifi − 2µ̃⊤
i Kifi)

=
Ψi

1− t
(f⊤

i (vσ̃i)
−1fi − 2µ̃⊤

i (vσ̃i)
−1fi). (3.64)

These data corresponding factorizing terms are one-dimensional. In the same way as EP for BPM,
the degree of freedom for each site approximation is ṽ and for the whole approximation is v. Note
that the whole posterior approximation is the k-dimensional, and site approximation is the one
dimensional, the same relation as in the BPM between v, ṽ, and t holds as 1

t−1 = v+k
2 = ṽ+1

2 .
The q products of this data corresponding term can be expressed as follows:

∏
i

⊗t l̃i(fi) = St(µ̃, Σ̃, v)⊗t

∏
i

⊗tC̃i (3.65)

Here, we used the property that q products of Student-t distribution become a Student-t distribution.
In the above expression, µ̃ is the vector of µ̃i and Σ̃ is the diagonal and following relations are given,

K̃−1 = (vΣ̃), (3.66)

Ψ̃K̃ = diag(Ψ1K1 . . .ΨnKn), (3.67)

where Ψ̃ =

(
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ̃|1/2
.

)1−t

. (3.68)

Therefore, the total form of the approximation of the posterior can be expressed as follows.

q(f |X, y) = St(µ,Σ, v) ∝ p(f |X)⊗t

(∏
i

⊗t l̃i(fi)
)
. (3.69)

From this following relations are obtained,

ΨK = Ψ0K0 + Ψ̃K̃, (3.70)

ΨKµ = Ψ̃K̃µ̃. (3.71)

where Ψ0K0 corresponds to the prior distribution, that is p(f |X).
We consider the case that we update site i. For implementation, natural parameter based update

rule is preferable. Therefore we define the parameter as follows,

τ̃i = Ψ̃iK̃i, (3.72)

which is the (i,i) element of Ψ̃K̃. We also define,

ν̃i = Ψ̃iK̃iµ̃i. (3.73)
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For the cavity distribution, we define in the same way as,

τ−i = Ψ−iσ
−2
−i ṽ

−1, (3.74)

ν−i = τ−iµ−i. (3.75)

EP update rules

1. The first step is to calculate the cavity distribution, we eliminate the effect of site i. To do so,
we first integrate out non i terms by using the following formula. Let X and Y are random
variable that obey the Student-t distribution,(

X

Y

)
∼ St

((
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

)
, v

)
. (3.76)

The marginal distribution X is given as,

X ∼ St
(
µx,Σxx, v

)
. (3.77)

By utilizing the above formula, we get

q−i(fi) ∝
∫

p(f |X)⊗t

∏
j ̸=i

⊗tlj(fj)dfj (3.78)

∝ St(µi, σ
2
i , v). (3.79)

where, µi is the ith element of µ and σ2
i is the (i, i) element of Σ. In the above expression,

the degree of freedom is v in both the joint distribution and marginal distribution. This
is unfavorable for our Student-t process. To make the EP procedure consistent with t, we
approximate as

q−i(fi) ∝ St(µi, σ
′2
i , ṽ), (3.80)

σ′2
i = σ2

i v/ṽ. (3.81)

This is because for a one-dimensional Student-t distribution, its variance is given by (vσ2
i )

−1,
and in this case, ṽ > v, approximation by σ′2

i = σ2
i would result in the underestimate of the

variance.

We calculate the cavity distribution in the following way,

τ−i = ṽ−1σ′−2
i Ψi − τ̃i, (3.82)

ν−i = ṽ−1σ′−2
i Ψiµi − ν̃i. (3.83)

2. Next step is the inclusion of data i to the approximate posterior. This can be done in the same
way of BPM. To derive the update rule, we have to convert τ−i and ν−i into σ2

−i and µ−i. In
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this case, the site approximations are one-dimensional, following relation holds,

µ̂i = µ−i + σ2
−iα, (3.84)

σ̂2
i = σ2

−i(r − αµ̂i), (3.85)

where α =

(
(1− ϵ)t − ϵt

)
St(z :, 0, 1, ṽ)

Z2

√
σ2
−i

and z =
yiµ−i√
σ2
−i

, (3.86)

where the definition of Z2 and r is same as that of BPM. By using σ2
−i and µ−i, we can

include the data i information.

3. After the data inclusion step, we exclude the effect other than data i. The calculation of this
step can be done in the same way as that of cavity distribution,

τ̃newi = ṽ−1σ̂−2
i Ψ̂i − τ̃−i, (3.87)

ν̃newi = ṽ−1σ̂−2
i Ψ̂iµ̂i − ν̃−i. (3.88)

4. From this τ̃newi , we can update Ψ̃K̃. Since Ψ̃K̃ is the diagonal matrix, we just update (i, i)

element of Ψ̃K̃.

As a final step, we have to update Σ. To circumvent the calculation of inverse matrix, we put

∆τ = −τ̃newi − τ̃−i + ṽ−1σ̂−2
i Ψ̂i. (3.89)

From this, update of ΨK is given as,

ΨnewKnew = ΨoldKold +∆τeie
⊤
i , (3.90)

where Knew = (vΣnew)−1 and Kold = (vΣold)−1. Here, Σnew is the after the update of Σ
and Σold is the before the update of Σ and ei is the unit vector of i th direction. By using the
matrix formula, that is, for matrix A and B, (A−1 +B−1)−1 = A−A(A+B)−1A, we can
get the following expression,

Ψ−1newvΣnew = Ψ−1oldvΣold − ∆τ

1 + ∆τΨ−1oldvΣold
sis

⊤
i , (3.91)

where si is the i’s column of Ψ−1oldvΣold. From Ψ−1newvΣnew, we can get Σnew.

These steps are the update rules for the site approximation. We have to iterate these steps until site
parameters converge. After EP converges, we optimize the hyperparameters of the kernel function.

3.6.5.2 Prediction rule

Here, we describe how to obtain the prediction for the Student-t process classification. After
EP converges, we obtain the expression of the approximate posterior distribution as q(f |X, y) =

St(µ,Σ, v).
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When a new point x∗ is given, we would like to predict its label y∗. First we calculate the latent
variable f∗ of x∗. To get the expression of f∗, we use the following lemma (Shah et al., 2014)

Lemma 1. If X ∼ St(µ,Σ, v), and x1 ∈ Rn1 , x2 ∈ Rn2 express the first n1 and remaining n2

entries of X respectively. Then

x2|x1 ∼ St
(
µ̃2,

v + β1

v + n1
× Σ̃22, v + n1

)
, (3.92)

where

µ̃2 = Σ21Σ
−1
11 (x1 − µ1) + µ1, (3.93)

Σ̃22 = Σ22 − Σ21Σ
−1
11 Σ12, (3.94)

β1 = (x1 − µ1)
⊤K−1

11 (x1 − µ1). (3.95)

We consider the following expression,

p(f̃ |X,x∗) =

∫
p(f̃ |f, x∗)p(f |X)df. (3.96)

The mean of p(f̃ |X,x∗) is given by

E[f̃ ] =

∫
E[p(f̃ |f, x∗)]p(f |X)df (3.97)

=

∫
k⊤Σ−1fp(f |X)df (3.98)

= k⊤Σ−1µ, (3.99)

where, k = [k(x∗, x1), . . . k(x
∗, xn)]

⊤. Therefore, the prediction of x∗ is given by

sign
(
E[f̃ ]

)
= sign

(
k⊤Σ−1µ). (3.100)

Using this expression, we get the decision boundary.
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Chapter 4

Variational inference based on robust
divergences

In this chapter, we discuss the systematic approach for robust inference by using robust divergences.

4.1 Introduction

In Section 2.3, we discussed the model-based approach to enhance robustness. However, as pointed
out in Wang et al. (2017), the model-based method is applicable only to a simple modeling setup.

To handle more complex models, we employ the optimization and variational formulation of
Bayesian inference by Zellner (1988). In this formulation, the posterior model is optimized to fit
data under the KL divergence, while it is regularized to be close to the prior. In this chapter, we
propose the method replacing the KL divergence for data fitting to a robust divergence, such as the
β-divergence (Basu et al., 1998) and the γ-divergence (Fujisawa and Eguchi, 2008).

Another robust Bayesian inference method proposed by Ghosh and Basu (2016) follows a similar
line to our method, which adopts the β-divergence for pseudo-Bayesian inference. They rigorously
analyzed the statistical efficiency and robustness of the method, and numerically illustrated its
behavior for the Gaussian distribution.

Our approach can be regarded as an extension of their work to variational inference so that more
complex models such as deep networks can be handled. For deep networks with ReLU activation
functions, we prove that the influence function (IF) (Huber and Ronchetti, 2011) of our proposed
inference method is bounded, while it is unbounded in the ordinary variational inference. This
implies that our proposed method is robust to both input and output outliers, while the ordinary
variational method is not.

In Wang et al. (2017), another robust Bayesian inference method based on a weighted likelihood
was proposed, where weights are drawn from their prior distribution. They also conducted IF
analysis and showed that IF is bounded asymptotically. On the other hand, our method is guaranteed
to have a bounded IF for finite samples. In addition, by using IF, we numerically show that influence
to the predictive distribution by outliers is also bounded in our proposed method.

Finally, we experimentally demonstrate that our robust variational method outperforms ordinary
variational inference in regression and classification with neural networks.
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4.2 Robust divergences

Here, we review preliminary materials about robust divergences. In Section 2.1.1, we reviewed ML
estimation. Given the observed data, we assume the probabilistic model p(x; θ), ML estimation
equation is given by minimizing KL divergence,

DKL (p̂(x)∥p(x; θ)) = Const.− 1

N

N∑
i=1

ln p(xi; θ), (4.1)

and this yields

0 =
1

N

N∑
i=1

∂

∂θ
ln p(xi; θ). (4.2)

In terms of robustness, ML estimation is sensitive to outliers because it treats all data points equally.
To circumvent this problem, outlier-robust divergence estimation has been developed in statistics.
The density power divergence, which is also known as the β-divergence, is a vital example (Basu
et al., 1998). The β-divergence from functions g to f is defined as

Dβ (g∥f) =
1

β

∫
g(x)1+βdx− β + 1

β

∫
g(x)f(x)βdx+

∫
f(x)1+βdx. (4.3)

The γ-divergence (Fujisawa and Eguchi, 2008) is another family of robust divergences:

Dγ (g∥f) =
1

γ(1 + γ)
ln

∫
g(x)1+γdx− 1

γ
ln

∫
g(x)f(x)γdx+

1

1 + γ
ln

∫
f(x)1+γdx. (4.4)

In the limit of β → 0 and γ → 0, both the β- and γ-divergences converge to the KL divergence:

lim
β→0

Dβ (g∥f) = lim
γ→0

Dγ (g∥f) = DKL(g∥f). (4.5)

Similarly to ML estimation, minimizing the β-divergence (or the γ-divergence) from empirical
distribution p̂(x) to p(x; θ) gives an empirical estimator:

arg min
θ

Dβ (p̂(x)∥p(x; θ)) . (4.6)

This yields the following estimating equation:

0 =
1

N

N∑
i=1

p(xi; θ)
β ∂

∂θ
ln p(xi; θ)− Ep(x;θ)

[
p(x; θ)β

∂

∂θ
ln p(xi; θ)

]
, (4.7)

where the second term assures the unbiasedness of the estimator. The first term in Eq.(4.7) is the
likelihood weighted according to the power of the probability density for each data point. Since
the probability densities of outliers are usually much smaller than those of inliers, those weights
effectively suppress the likelihood of outliers.
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When β = 0, all weights become one and thus Eq.(4.7) is reduced to Eq.(4.2). Therefore,
adjusting β corresponds to controlling the trade-off between robustness and efficiency.

Eqs.(4.2) and (4.7) are called an M-estimator, and Eq.4.7 is also called a Z-estimator (Huber and
Ronchetti, 2011; Basu et al., 1998; Van der Vaart, 1998). In various machine learning applications,
those methods showed superior performance (Narayan et al., 2015; Samek et al., 2013; Cichocki
et al., 2011).

In Section 4.6.1 and 4.6.2, additional discussions including γ-divergence minimization, super-
vised settings about robust divergences are given. In Section 4.6.9, we discuss the theoretical
difference of β and γ divergence.

4.3 Robust variational inference based on robust divergences

4.3.1 Pseudo posterior distributions

Here, we propose a robust variational inference method based on robust divergences. In Section 2.1.1,
we reviewed the reformulation of Bayesian inference as the optimization problem,

arg min
q(θ)∈P

L(q(θ)), (4.8)

where P is the set of all probability distributions, −L(q(θ)) is the evidence lower-bound (ELBO),

L(q(θ)) = DKL(q(θ)∥p(θ))−
∫

q(θ) (−NdKL (p̂(x)∥p(x|θ))) dθ, (4.9)

and dKL (p̂(x)∥p(x|θ)) denotes the cross-entropy. As detailed in Section 4.6.3, Eq.(4.8) can be
equivalently expressed as

arg min
q(θ)∈P

Eq(θ)[DKL (p̂(x)∥p(x|θ))] +
1

N
DKL (q(θ)∥p(θ)) . (4.10)

The first term can be regarded as the expected likelihood (see Eq.(4.1)), while the second term
“regularizes” q(θ) to be close to prior p(θ).

To enhance robustness to data outliers, let us replace the KL divergence in the expected likelihood
term with the β-divergence:

arg min
q(θ)∈P

Eq(θ)[Dβ (p̂(x)∥p(x|θ))] +
1

N
DKL (q(θ)∥p(θ)) . (4.11)

Note that Eq.(4.11) can be equivalently expressed as

arg min
q(θ)∈P

Lβ(q(θ)), (4.12)
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where −Lβ(q(θ)) is the β-ELBO defined as

Lβ(q(θ) = DKL(q(θ)∥p(θ))−
∫

q(θ) (−Ndβ (p̂(x)∥p(x|θ))) dθ, (4.13)

and dβ(p̂(x)∥p(x|θ)) denotes the β-cross-entropy:

dβ(p̂(x)∥p(x|θ)) = −
β + 1

β

1

N

N∑
i=1

p(xi|θ)β +

∫
p(x|θ)1+βdx.

For its solution, we have the following theorem (its proof is available in Section 4.6.4):

Theorem 3. The solution of Eq.(4.11) is given by

q(θ) =
e−Ndβ(p̂(x)∥p(x|θ))p(θ)∫
e−Ndβ(p̂(x)∥p(x|θ))p(θ)dθ

. (4.14)

Interestingly, the above expression of q(θ) is the same as the pseudo posterior proposed in Ghosh
and Basu (2016).

4.3.2 Discussion about the pseudo posterior distribution

The expression Eq.(4.14) is a member of the pseudo posterior distributions in statistics and it is
defined as

q(θ) =
e−λR(θ)p(θ)∫
e−λR(θ)p(θ)dθ

. (4.15)

where p(θ) is prior and R(θ) expresses the empirical risk, which is not restricted to likelihood and
is not necessarily additive in general. This is also called the Gibbs posterior distribution and is
extensively studied in the field of PAC Bayesian theory (Germain et al., 2016). The pseudo posterior
distribution based on β cross entropy is also expressed as

q(θ) ∝ eN{
β+1
β

1
N

∑N
i=1 p(xi;θ)

β+
∫
p(x;θ)1+βdx}p(θ) =

[
N∏
i

elθ(xi)p(θ)

]
, (4.16)

where lθ(xi) = β+1
β p(xi; θ)

β − 1
N

∫
p(x; θ)1+βdx. As discussed in Basu et al. (1998), we can

understand the intuitive meaning of Eq.(4.16) by comparing it with the ordinary posterior distribu-
tion. In the ordinary posterior distribution, the prior belief is updated by likelihood p(xi|θ) which
represents the information from data xi. On the other hand, when using β cross entropy, the prior
belief is updated by elθ(xi) which has information about data xi. Therefore, although the pseudo
posterior is not equivalent to the posterior distribution derived by Bayes’ theorem, the spirit of
updating prior information by observed data is inherited. For this reason, we refer to Eq.(4.14)
simply as a posterior in this dissertation.
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Table 4.1: Cross-entropies for robust variational inference.

Unsupervised Supervised

β −β+1
β

1
N

∑N
i=1 p(xi|θ)β +

∫
p(x|θ)1+βdx −β+1

β

{
1
N

∑N
i=1 p(yi|xi, θ)

β
}
+

{
1
N

∑N
i=1

∫
p(y|xi, θ)

1+βdy
}

γ − 1
N

γ+1
γ

∑N
i=1

p(xi|θ)γ

{∫ p(x|θ)1+γdx}
γ

1+γ
- 1
N

γ+1
γ

∑N
i=1

p(yi|xi,θ)
γ

{∫ p(y|xi,θ)1+γdy}
γ

1+γ

4.3.3 The pseudo posterior as the solution of the variational problem

The optimization problem (4.11) is generally intractable. Following the same line as the discussion
of VI in Section 2.2.1, let us restrict the set of all probability distributions to a set of analytically
tractable parametric distributions, q(θ;λ) ∈ Q. Then the optimization problem yields

arg min
q(θ;λ)∈Q

Lβ(q(θ;λ)).

We call this method β-variational inference (β-VI).
We optimize objective functionLβ by black-box variational inference method and re-parameterization

trick (Ranganath et al., 2014). In our implementation, we estimate the gradient of the objective func-
tion (4.13) by Monte Carlo sampling.

So far, we focused on the unsupervised learning case and the β-divergence. Actually, we can
easily generalize the above discussion to the supervised learning case and also to the γ-divergence,
by simply replacing the cross-entropy with a corresponding one shown in Table 4.1. We denote the
objective function for the γ-divergence as Lγ in the same way as Eq.(4.13). Note that, there are
several choices for the γ-cross-entropy, as detailed in Section 4.6.7. Explicit expression of L, Lβ ,
and Lγ are summarized in Section 4.6.5.

4.4 Influence function analysis

Here, we analyze the robustness of our proposed method based on the influence function (IF) (Huber
and Ronchetti, 2011). About the definition of IFs, see Section 2.3.3

4.4.1 Derivation of IFs

Now we analyze how posterior distributions derived by VI are affected by contamination. In ordinary
VI, we approximate the true posterior with an approximate posterior q(θ;λ) parametrized by λ. The
parameter is estimated by maximizing the objective function:

L(λ) := Eq log

(
p(D|θ)p(θ)
q(θ;λ)

)
. (4.17)
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Table 4.2: Influence functions for robust variational inference.

Unsupervised Supervised z=(x’,y’)

l(z) ln p (z|θ) ln p (y′|x′, θ)

lβ(z)
β+1
β p(z|θ)β −

∫
p(x|θ)1+βdx β+1

β p(y′|x′, θ)β −
∫
p(y|x′, θ)1+βdy

lγ(z)
γ+1
γ

p(z|θ)γ

{
∫
p(x|θ)1+γdx}

γ
1+γ

γ+1
γ

p(y′|x′,θ)γ

{
∫
p(y|x′,θ)1+γdy}

γ
1+γ

Then, the objective function given by Eq.(4.17) can be regarded as a function of λ whose first-order
optimality condition yields

0 =
∂

∂λ
L

∣∣∣∣
λ=λ∗

. (4.18)

For notational simplicity, we denote q(θ;λ∗) by q∗(θ).
Recall that the definition of IFs is given as

IF (z, T, P ) =
∂

∂ε
T (Pε,z(x))

∣∣∣∣
ε=0

= lim
ε→0

T (Pε,z(x))− T (P (x))

ε
. (4.19)

Referring to Eq.(4.19), T corresponds to λ∗, and P is approximated empirically by the training
dataset in VI. Then substituting the contaminated distribution:

Pε,z(x) = (1− ε)P (x) + ε∆z(x), (4.20)

into Eq.(4.17) and using Eq.(4.19) and Eq.(4.18) yield the following theorem (its proof is available
in Section 4.6.5):

Theorem 4. When data contamination is given by Eq.(4.20), IF of ordinary VI is given by

(
∂2L

∂λ2

)−1
∂

∂λ
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nl(z)] , (4.21)

IF of β-VI is given by

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nlβ(z)] , (4.22)

and IF of γ-VI is given by

(
∂2Lγ

∂λ2

)−1
∂

∂λ
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nlγ(z)] , (4.23)

where l(z), lβ(z), and lγ(z) are defined in Table 4.2.

Using these expressions, we analyze how estimated variational parameters can be perturbed by
outliers. In practice, it is important to calculate supz |IF(z, θ, P )|, because if it diverges, the model
can be sensitive to small contamination of data.
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Table 4.3: Behavior of supz |IF(z,W, P )| in neural networks, “Regression” and
“Classification” indicate the cases of ordinary VI, while “β- and γ-Regression” and
“β- and γ-Classification” mean that we used β-VI or γ-VI. “Activation function”
means the type of activation functions used. “Linear” means that there is no
nonlinear transformation, inputs are just multiplied W and added b. (xo : U, yo : U)
means that IF is unbounded while (xo : B, yo : U) means that IF is bounded for

input related outliers, but unbounded for output related outliers.

Activation function Regression β- and γ-Regression Classification β- and γ-Classification

Linear (xo : U, yo : U) (xo : B, yo : B) (xo : U) (xo : B)
ReLU (xo : U, yo : U) (xo : B, yo : B) (xo : U) (xo : B)
tanh (xo : B, yo : U) (xo : B, yo : B) (xo : B) (xo : B)

4.4.2 IF analysis for specific models

In our analysis, we consider two types of outliers—outliers related to input x and outliers related to
output y. For true data generating distributions p∗(x) and p∗(y|x), input-related outlier xo does not
obey p∗(x) and output-related outlier yo does not obey p∗(y|x). Below we investigate whether IFs
are bounded even when xo →∞ or yo →∞.

Although general IF analysis has been extensively carried out in statistics (Huber and Ronchetti,
2011), few works exist focusing on specific models that we often use in recent machine learning
applications. Based on this, we consider neural network models for regression and classification
(logistic regression). In neural networks, there are parameters θ = {W, b} where outputs of
hidden units are calculated by multiplying W to input and then adding b. Our analysis shows that
supz |IF(z, b, P )| is always bounded (see Section 4.6.8 for details), and our exemplary analysis
results for supz |IF(z,W,P )| are summarized in Table 4.3.

From Table 4.3, we can confirm that ordinary VI is always non-robust to output-related outliers.
As for input-related outliers, ordinary VI is robust for the “tanh”-activation function, but not for the
ReLU and linear activation functions. On the other hand, IFs of our proposed method are bounded
for all three activation functions including ReLU. We have further conducted IF analysis for the
Student-t likelihood, which is summarized in Section 4.6.8. The notable difference of the behaviors
of the influence functions for the Student-t and our proposed VI is that the influence function of
our proposed VI converges to 0 as the position of the input related outlier goes to the infinite, on
the other hand that of the Student-t likelihood does not converge to 0 but converges to the finite
value. This means that there exists some affect from input related outliers even if those outliers are
infinitely different from other data. As for the output related outliers, the influence functions of both
our method and Student-t likelihood converge to 0 as the output related outliers go to infinite.

Actually, in Bayesian inference, what we really want to know in the end is the predictive
distribution at test point xtest:

p(xtest|x1:N ) =

∫
p(θ|x1:N )p(xtest|θ)dθ ≈

∫
q∗(θ)p(xtest|θ)dθ.

Therefore, it is important to investigate how the predictive distribution is affected by outliers. If
the training dataset is contaminated at a rate of ϵ at point z, we can analyze the effect of such data
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contamination on the predictive distribution by using IFs of the posterior distribution:

∂

∂ϵ
Eq∗(θ) [p(xtest|θ)] =

∂Eq∗(θ) [p(xtest|θ)]
∂λ

∂λ∗ (Pε,z(x))

∂ε
, (4.24)

where ∂λ∗(Pε,z(x))
∂ε can be analyzed with the IFs derived above. Since analytical discussion on this

expression is difficult, we numerically examined its behavior in Section 4.5.2.
The above expression looks similar to the ones derived in Giordano et al. (2015) and Koh and

Liang (2017). However, discussion in Giordano et al. (2015) focused on prior perturbation and the
formula of IF in Koh and Liang (2017) is applicable only to maximum likelihood estimation and
the definition of the contamination is different from ours (see Section 4.6.6 for the details). To our
knowledge, ours is the first work to derive IFs of variational inference for data contamination.

4.5 Experiments

Here, we report the experimental results of our proposed method on toy and benchmark datasets. In
all the experiments, we used mean-field black-box VI combined with the Adam optimizer (Kingma
and Ba, 2014) and assumed that the prior and approximated posterior are both Gaussian.

4.5.1 Toy data experiment

We performed a toy dataset experiment for both regression and classification tasks to analyze the
performance of the proposed method. We used a two-dimensional toy data and observed how the
performance and the predictive distribution are affected by outliers when using ordinary VI and our
method. The linear regression and logistic regression models are used.

For the regression task, we generated the toy data by y ∼ w⊤x + ϵ, where x ∈ R2, w⊤ =

(−0.5,−0.1), x ∼ N(0, I) where I is identity matrix, and ϵ ∼ N(0, 0.1). We generated 1000 data
points. Outliers are generated by x ∼ N(−15, 1), and we considered them as the measurement
error. We generate 24 outliers, which is 2.4% of the regular dataset. Then we considered the linear
regression model, p(y|x) = N(y|fθ(x), 1), fθ(x) = Wx+ b.

For the binary classification, the toy data are generated with the probability p(x|y = +1) =

N(x|µ1, σ1), p(x|y = −1) = N(x|µ2, σ2), whereµ⊤
1 = (−1,−1), µ⊤

2 = (1, 1), σ1 = I, σ2 = 4I ,
where I is identity matrix. We generate 1000 data for each class, and in total 2000 regular
points. As outliers we generate 30 outliers by using p(x|y = +1) = N(x|µo, σo), where µ⊤

o =

(7, 0), σ2 = 0.1I . For binary classification, we use logistic regression, where p(y = +1|x) =

logit(fθ(x)), fθ(x) = Wx+ b.
For regression, the toy data and predictive distribution are shown in Figure. 4.1, where the

horizontal axis indicates the first input feature x1 and the vertical axis indicates the output y. As
outliers, we considered input related outliers, which are caused by measurement error. The result of
ordinary VI is heavily affected by outliers when there exist outliers, while the result of the proposed
method is less affected by outliers.
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(a) Ordinary VI with outliers (b) Proposed VI (β = 0.1) with outliers

Figure 4.1: Linear regression. Predictive distributions are derived by variational
inference (VI).

Table 4.4: RMSE of VI and β=0.1 VI for toy data.

Outliers KL(Gaussian) β = 0.1(Gaussian)

No outliers 0.01 0.01
Outlier exists 0.69 0.01

For classification, we considered the situation where some of the labels are wrongly specified,
as shown in Figure. 5.6. We also illustrated obtained decision boundaries in Figure. 4.2(a), which
shows that the ordinary VI based method is heavily affected by outliers and Figure. 4.2(b) shows
that our method with β = 0.4 is less affected by outliers.

We also show the performance of this toy experiment in Table 4.4 and Table 4.5. Those tables
show that the ordinary VI is heavily affected by outliers, while our method is not affected so much.
The performance of ordinary VI significantly deteriorates when adding outliers. On the other hand,
the performance of our proposing method is not affected by outliers.

4.5.2 Influence to the predictive distribution

Based on Eq.(4.24), we numerically studied the influence of outliers on the predictive distribution.
In this study, we used a two-hidden-layer neural network with 20 units in each hidden layer for
regression and for classification with logistic loss.

For the calculation of the influence function, we have to evaluate the Hessian of ELBO. To save
the computational cost, we used the following relation,

∂2Lβ

∂λ2
v = arg min

t

1

2
t⊤

∂2Lβ

∂λ2
t− v⊤t. (4.25)
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(a) Ordinary VI with outliers (b) Proposed VI (β=0.4) with outliers

Figure 4.2: Boundaries of logistic regression using ordinary VI and the proposed
method

Table 4.5: Accuracy of VI and β=0.4 VI for toy data.

Outliers KL(logistic) β = 0.4(logistic)

No outliers 0.97 0.97
Outlier exists 0.95 0.97

This is the technique that instead of calculating the Hessian directly, we calculate the product of the
Hessian and a vector by solving the second order optimization problem. In our case, we consider

t =
∂

∂λ
Eq∗(θ) [ln p(xtest|θ)] and solve above optimization problem.

Based on the discussion of Section 4.6.8, the dominant term in IF of γ VI behaves similarly as β
VI, Thus, we numerically studied the perturbation of predictive distribution for the ordinary VI and
β VI. In each calculation, we used 200MC samples to approximate the expectation.

Regression

We used the powerplant dataset in UCI (Lichman, 2013) which has four features for each input.
Since it is difficult to visualize the behavior of the influence of predictive distributions, instead, we
plot how the log-likelihood of a test point is influenced by an outlier. We compared the influence of
ordinary VI based method and proposed method (β=0.1).

We investigated three cases where there are 1) only input related outliers, 2) only output related
outliers, and 3) both input and output outliers. In this section, we only show 1) and 2), and the
experimental results of 3) are shown in Section 4.6.9.1. To visualize and reduce the computational
cost, we contaminated the chosen single feature of the inputs. Since the inputs have 4-dimensional
features, x ∈ R4, we chose the first feature x1 to contaminate. To investigate how predictive
distribution depends on the contamination of the input, we randomly chose a single data point from
the training data and moved the value of the first feature of the chosen training data from −∞ to∞
as the contamination.
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For the output related outlier setting, we randomly chose a single data point from the training
data and moved the output value of chosen data from −∞ to∞. In both input and output related
outlier setting, we randomly chose a single data point from the training data and moved the first
feature of the input and the output of chosen data from −∞ to∞ as contamination.

To calculate Eq.(4.24), we have to specify an outlier and a test data point. As an input related
outlier, we randomly chose a single data point from the training data and moved the first feature
of the chosen data from −∞ to +∞. Similarly, as an output related outlier, we moved randomly
chosen output y from −∞ to +∞. As the test data point, we randomly chose a single data point
from the test data.

The results are shown in Figure. 4.3, where the horizontal axis indicates the value of the perturbed
feature, and the vertical axis indicates the value of ∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)].

The results in Figure. 4.3 show that the model using the ReLU activation inferred by ordinary VI
can be affected infinitely by input related outliers, while the influence is bounded in our method. As
for output related outliers, models inferred by ordinary VI are infinitely influenced, while influence
in our method is bounded. From those results, we can see that our method is robust for both
input and output related outliers in the sense that test point prediction is not perturbed infinitely by
contaminating a single training point.

A notable difference from the IF analysis in Section. 4.4.2 is that for the perturbation by input
related outliers for the tanh activation function, the value of ∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)], does not converge

to zero even for the proposed method in the limit that the absolute value of the input related outlier
goes to∞.

This might be due to the fact that in the limit, the input to the next layer goes to ±1 when the
tanh activation function is used. For the next layer, an input which has value ±1 might not be so
strange compared to regular data, and thus it is not regarded as an outlier. Therefore, during the
optimization process, the likelihood of input related outliers is not downweighted so much in the
robust divergence and the influence of outliers remains non-zero. If we use the ReLU activation
function, in the limit, the input to the next layer becomes much larger than the regular data, and thus
it is regarded as an outlier.

Classification

We used the eeg dataset in UCI which has 14 features as input. In the same way as the regression
experiment, as an input related outlier, we randomly chose a single data point from the training data
and moved the third feature of the chosen data from −∞ to +∞. In the classification problem,
first, we considered how predictive distribution depends on the input related outlier. The method is
as same as the regression problem. Since inputs have 14-dimensional features, x ∈ R14, we chose
the third feature x3 to move. The result of how the test log-likelihood is influenced is given in
Figure. 4.4. For ordinary VI, using the ReLU activation function causes unbounded influence, while
our method keeps the influence bounded. We can also confirm that the influence in our method
converges to smaller value than that in ordinary VI in the limit even in the case of tanh.

As an output related outlier, we investigated the influence of label misspecification. We flipped
one of the labels in the training data and observed how the test log-likelihood changes. From this
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(a) Influence by input related outlier

(b) Influence by output related outlier

Figure 4.3: Influence on the test log-likelihood for neural net regression. The
horizontal axis indicates the value of the perturbed feature, while the vertical axis

indicates the value of ∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)].



4.5. Experiments 59

Figure 4.4: Influence on the test log-likelihood by input related outlier for neural
net classification with logistic loss.

Table 4.6: Average change in the test log-likelihood

Ordinary VI Proposed VI (β = 0.1)

ReLU -1.65e-3 -3.29e-5
tanh -2.3e-3 -3.49e-4

experiment, we measured how the label misspecification by chosen training data influences the
prediction. We repeated this procedure for every training data point and took the average. By this
experiment, we measured how one flip of training data would influence the prediction on average.
By assuming ϵ = 1

N , where N is the number of training data, we calculated

1

N

1

N

∑
i

1

Ntest

∑
j

∂

∂ϵi
Eq∗(θ)

[
ln p(yjtest|x

j
test, θ)

]
, (4.26)

which represents the averaged amount of change in the test log-likelihood, and the term inside the
sum over j means the change in the log-likelihood for the jth test data caused by flipping the label
of the ith training data. Without IF, this is difficult to calculate because we have to retrain a neural
network with flipped data and this is extremely demanding .

Table 4.6 shows that the change in the test log-likelihood in our method is smaller than that in
ordinary VI. This implies that our method is robust against label misspecification.

From these case studies, we confirmed that our method is robust for both input and output related
outliers in both regression and classification settings in the sense that the prediction is less influenced
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Table 4.7: Test regression accuracy in RMSE

Dataset Outliers KL(G) KL(St) WL Rényi BB-α β γ

concrete 0% 8.87(2.57) 7.34(0.41) 7.89(0.77) 7.62(0.44) 7.34(0.31) 7.58(0.38) 7.34(0.76)
N=1030 10% 15.7(2.50) 8.94(2.65) 12.3(2.41) 14.2(1.74) 11.4(2.69) 8.11(0.89) 8.26(0.98)
D=8 20% 16.8(0.70) 11.1(3.78) 14.3(2.91) 15.6(1.90) 11.9(2.64) 8.15(0.99) 9.25(1.27)
powerplant 0% 4.41(0.13) 4.43(0.15) 4.46(0.17) 4.48(0.15) 4.38(0.83) 4.37(0.15) 4.45(0.17)
N=9568 10% 6.44(1.88) 4.54(0.14) 5.12(0.41) 5.49(0.45) 5.91(1.63) 4.39(0.14) 4.47(0.16)
D=4 20% 9.97(4.7) 4.56(1.45) 6.44(0.52) 6.87(1.09) 5.52(1.31) 4.41(0.15) 4.53(1.46)
protein 0% 5.61(0.38) 4.79(0.05) 5.50(0.62) 5.62(0.25) 4.89(0.05) 4.86(0.05) 4.79(0.04)
N=45730 10% 6.13(0.02) 4.92(0.05) 6.13(0.03) 6.11(0.03) 6.13(0.03) 4.91(0.04) 4.90(0.06)
D=9 20% 6.14(0.03) 4.98(0.07) 6.14(0.03) 6.12(0.03) 6.10(0.28) 4.96(0.05) 4.95(0.06)

Table 4.8: Test classification accuracy

Dataset Outliers KL KL(ϵ) WL Rényi BB-α β γ

spam 0% 90.9(5.8) 91.2(4.4) 89.2(5.7) 90.0(0.7) 92.9(1.5) 93.3(1.3) 92.2(0.8)
N=4601 10% 76.5(37.6) 90.0(5.1) 89.1(5.7) 92.6(1.4) 91.6(1.4) 92.4(1.2) 92.1(1.1)
D=57 20% 60.6(48.3) 89.8(5.5) 88.3(5.3) 91.6(1.6) 91.6(1.6) 92.2(1.3) 91.6(1.4)
eeg 0% 72.8(2.9) 77.7(3.2) 81.3(2.4) 68.4(7.9) 77.5(3.3) 75.9(5.5) 80.2(3.4)
N=14890 10% 56.0(2.6) 62.7(0.09) 56.0(2.4) 57.5(9.6) 67.9(8.2) 60.8(8.1) 72.5(2.6)
D=14 20% 56.0(2.7) 60.0(7.1) 56.0(2.4) 57.7(2.4) 67.4(8.8) 56.0(2.4) 72.2(6.4)
covertype 0% 65.2(8.8) 73.1(6.2) 73.4(6.3) 72.0(6.6) 73.2(4.8) 70.5(5.9) 73.4(6.1)
N=581012 10% 60.2(16.9) 74.4(6.2) 73.7(5.5) 65.4(8.5) 70.6(5.9) 65.7(9.0) 72.4(7.7)
D=54 20% 56.4(18.7) 71.4(10.4) 71.2(7.2) 67.6(9.7) 67.1(8.1) 66.2(9.6) 72.3(5.9)

by outliers.

4.5.3 Choosing β and γ

Finally we show that by choosing parameters β and γ by cross validation, our method can achieve
even better performance compared to ordinary VI and other existing robust methods on several
benchmark datasets in UCI. In benchmark dataset experiments, we determined β and γ by cross
validation and we choose β and γ from 0.1 to 0.9.

We compared proposed methods with several VI methods. KL(G) means ordinary VI with
the Gaussian likelihood, KL(St) is ordinary VI with the Student-t likelihood, WL means the
method proposed in Wang et al. (2017), Rényi is the Rényi divergence minimization method pro-
posed in Li and Turner (2016) and BB-α is the black-box α divergence minimization method
proposed in Hernandez-Lobato et al. (2016) and Li and Gal (2017). For Rényi VI, we chose
α from {−1.5,−1.0,−0.5, 0.5, 1.0, 1.5} by the cross-validation. For BB-α, we chose α from
{0, 0.25, 0.5, 0.75, 1.0} by cross-validation. For the Student-t distribution, we chose the degree of
freedom from 3 to 10 by cross-validation.

We optimized the variational parameters by black-box variational inference with Adam optimizer
and the learning rate at 0.01. For the black-box VI, we use 5 MC samples except for covertype dataset.
For the covertype dataset, the learning rate of Adam was set to 0.001 and we used 20 MC samples.
The minibatch size of the gradient descent was set to 128.
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In both of the regression and classification problems, we artificially increased the percentage
of both input and output related outliers in the training dataset. We randomly chose the training
dataset for the contamination. To make the input related outliers, we selected the input features
for the contamination in the following way. In regression tasks, since the input dimensions of the
datasets are not so large, we contaminated all the input features by adding the Gaussian noise.
In classification tasks, when the training data has D dimensional features, we randomly chose
D/2 dimensions to contaminate and add the Gaussian noise. Since the input features had been
preprocessed by standardization, the noise we use is the Gaussian distribution which follows ϵ ∼
N(0, 6I) where this magnitude of noise is considered as the kinds of the measurement error. From
the numerical calculation of IF, we confirmed that the noise which has “6” times larger variance
than the standardization is large enough as outliers. For output related outlier, we randomly chose
the dataset for the contamination. In the regression task, we added the Gaussian noise which follows
ϵ ∼ N(0, 6) and for the classification task, we flip the label.

Regression

We used a neural net which has two hidden layers each with 20 units and the ReLU activation
function. As outliers, we added both input and output related outliers. The experimental results are
summarized in Table 5.1. In Table 5.1, “Outliers” means the percentage of outliers in the training
dataset we contamined artificially. Our method compares favorably with ordinary VI and existing
robust methods for all the datasets. We noticed that when we did not contaminate the datasets, β, γ
VI show better performance than other methods. We considered that this is because the training
datasets contain some harmful data for the prediction of the test data sets and our proposed method
gave small weights to those harmful data. Thus, the predictive performance was improved.

Classification

We used a neural net which has two hidden layers each with 20 units except for the covertype dataset.
For the covertype dataset, we used a neural net which has one hidden layer with 50 units. We used
the ReLU activation function for all the networks. As outliers, we considered both input and output
related outliers. The experimental results are in Table 4.8. In Table 4.8, KL(ϵ) means that we used
the robust loss function which is p(y = 1|g(x, θ)) = ϵ+(1− 2ϵ)σ(g(x, θ)), where σ is the sigmoid
function, g(x, θ) is the input to the final layer and ϵ is the hyperparameter.

Our method performs equally to or better than ordinary VI and other existing methods for all the
datasets.

4.6 Appendix

In this section, we describe the proofs, supplemental discussion, and detailed explanations for the
experimental settings.
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4.6.1 Discussion about γ divergence minimization

Usupervised setting

We explain the γ divergence minimization. We minimize the following γ cross entropy,

dγ(p
∗(x), p(x; θ)) = − 1

γ
ln

∫
p∗(x)p(x; θ)γdx+

1

1 + γ
ln

∫
p(x; θ)1+γdx. (4.27)

This is empirically approximated as

Ln(θ) = dγ(p̂(x), p(x; θ)) = −
1

γ
ln

1

n

n∑
i=1

p(xi; θ)
γdx+

1

1 + γ
ln

∫
p(x; θ)1+γdx. (4.28)

By minimizing Ln(θ), we can obtain following estimation equation,

0 = −

∑n
i=1 p(xi; θ)

γ ∂

∂θ
ln p(xi; θ)∑n

i=1 p(xi; θ)γ
+

∫
p(x; θ)1+γ∫
p(x; θ)1+γdx

∂

∂θ
ln p(x; θ)dx. (4.29)

This is a weighted likelihood equation, where the weights are p(xi;θ)
γ∑n

i=1 p(xi;θ)γ
. The second term is for

the unbiasedness of the estimating equation.
In Eq.(4.29), we derived the gamma divergence minimization equation for the unsupervised

setting. This estimation equation is equivalent to minimizing following expression,

L′
n(θ) = −

1

n

n∑
i=1

γ + 1

γ

p(xi|θ)γ{∫
p(x|θ)1+γdy

} γ
1+γ

. (4.30)

In the following derivation, we use L′
n(θ) as γ cross entropy instead of using the original form of γ

cross entropy. The reason is discussed in Section 4.6.7.

Supervised setting

Here, we explain the γ divergence minimization for the supervised setting. We denote the true
distribution as p∗(y, x) = p∗(y|x)p∗(x). We denote the regression model by p(y|x; θ).

Following Fujisawa and Eguchi (2008), we define the divergence between true distribution and
the model by

Dγ(p
∗(y|x), p(y|x; θ); p∗(x))

=
1

1 + γ
ln

∫ {∫
p(y|x; θ)1+γdy

}
p∗(x)dx− 1

γ
ln

∫ {∫
p∗(y|x)p(y|x; θ)γdy

}
p∗(x)dx+Const.

(4.31)

As discussed in Fujisawa and Eguchi (2008), in the limit where γ → 0, this divergence becomes
ordinary KL divergence,

lim
γ→0

Dγ(p
∗(y|x), p(y|x; θ)|p∗(x)) =

∫
DKL(p

∗(y|x), p(y|x; θ))p∗(x)dx. (4.32)
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What we minimize is following γ cross entropy over the distribution p∗(x). Actually, minimizing γ

divergence is equivalent to minimizing the second term of Eq.(4.31). By empirical approximation,
what we minimize is following expression,

Ln(θ) = −
1

n

n∑
i=1

ln(θ) = −
1

n

n∑
i=1

p(yi|xi; θ)
γ{∫

p(y|xi; θ)1+γdy
} γ

1+γ

. (4.33)

As γ → 0, above expression goes to

Ln(θ) = −
1

n

n∑
i=1

ln p(yi|xi; θ). (4.34)

This is ordinary KL cross entropy.

4.6.2 Discussion about β divergence minimization

Here, we consider supervised setup for β divergence minimization. The empirical approximation of
β cross entropy for supervised settings is

Ln(θ) = dβ(p̂(y|x), p(y|x; θ); p̂(x)) = −
β + 1

β

{
1

n

n∑
i=1

p(yi|xi; θ)
β

}
+

{
1

n

n∑
i=1

∫
p(y|xi; θ)

1+βdy

}
.

(4.35)

For the unsupervised setting, the empirical approximation of β cross entropy is

Ln(θ) = dβ(p̂(x), p(x; θ)) = −
β + 1

β

1

n

n∑
i=1

p(xi; θ)
β +

∫
p(x; θ)1+βdx. (4.36)

4.6.3 Proof of Eq.(4.10)

From the definition of KL divergence Eq.(4.1), the cross entropy can be expressed as

dKL (p̂(x)∥p(x|θ)) = DKL (p̂(x)∥p(x|θ)) + Const. (4.37)

By substituting the above expression into the definition of L(q(θ)), we obtain

L(q(θ)) = DKL(q(θ)∥p(θ)) +NEq(θ)[DKL (p̂(x)∥p(x|θ))] + Const.

What we have to consider is

arg min
q(θ)∈P

L(q(θ)), (4.38)

We can disregard the constant term in L(q(θ)), and above optimization problem is equivalent to

arg min
q(θ)∈P

1

N
L(q(θ)). (4.39)
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Therefore Eq.(4.10) is equivalent to Eq.(4.17)

4.6.4 Proof of Theorem 3

The objective function is given as

Lβ = Eq(θ)[Dβ (p̂(x)||p(x|θ))] + λ′DKL (q(θ)||p(θ)) , (4.40)

where λ′ is the regularization constant. We optimize this with the constraint that
∫
q(θ)dθ = 1. We

calculate using the method of variations and Lagrange multipliers, we can get the optimal q(θ) in
the following way,

d(Lβ + λ(
∫
q(θ)dθ − 1))

dq(θ)
= Dβ (p̂(x)|p(x|θ))] + λ′ ln

q(θ)

p(θ)
− (1 + λ) = 0. (4.41)

By rearranging the above expression, we can get the following relation,

q(θ) ∝ p(θ)e−
1
λ′ dβ(p̂(x)|p(x|θ)) (4.42)

If we set 1
λ′ = N and normalize the above expression, we get the Theorem 3, that is,

q(θ) =
e−Ndβ(p̂(x)|p(x|θ))p(θ)∫
e−Ndβ(p̂(x)|p(x|θ))p(θ)dθ

. (4.43)

We can get the similar expression for γ cross entropy.
Interestingly, if we use KL cross entropy instead of β cross entropy in the above discussion,

following relation holds,

q(θ) ∝ p(θ)e−
1
λ′ dKL(p̂(x)|p(x|θ)) = p(θ)e−N(− 1

N

∑
i ln p(xi|θ))

= p(θ)
∏
i

p(xi|θ)

= p(θ)p(D|θ). (4.44)

The normalizing constant is ∫
p(θ)

∏
i

p(xi|θ)dθ = p(D). (4.45)

Finally, we get the optimal q(θ)

q(θ) =
p(D|θ)p(θ)

p(D)
. (4.46)

This is the posterior distribution which can be derived by Bayes’ theorem.
In the above proof, we set regularization constant as 1

λ′ = N to derive the expression. In this
dissertation, we only consider the situation that regularization constant is 1

λ′ = N based on the
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Table 4.9: Cross-entropies for robust variational inference.

Unsupervised Supervised

dβ −β+1
β

1
N

∑N
i=1 p(xi|θ)β +

∫
p(x|θ)1+βdx −β+1

β

{
1
N

∑N
i=1 p(yi|xi, θ)

β
}
+

{
1
N

∑N
i=1

∫
p(y|xi, θ)

1+βdy
}

dγ − 1
N

γ+1
γ

∑N
i=1

p(xi|θ)γ

{∫ p(x|θ)1+γdx}
γ

1+γ
- 1
N

γ+1
γ

∑N
i=1

p(yi|xi,θ)
γ

{∫ p(y|xi,θ)1+γdy}
γ

1+γ

similarity of Bayes’ theorem.

4.6.5 Proof of Theorem 4

We consider the situation where the distribution is expressed as

Pε,z (x) = (1− ε)Pn (x) + ε∆z (x) . (4.47)

Before going to the detail, we summarize the objective function of VI and proposed method.
First, the objective function of ordinary VI is given by

L = DKL(q(θ)∥p(θ)) +NEq(θ) [NdKL (p̂(x)∥p(x|θ))] . (4.48)

In the same way, objective functions of β-VI and γ-VI are given by

Lβ = DKL(q(θ)∥p(θ)) +NEq(θ) [Ndβ (p̂(x)∥p(x|θ))] , (4.49)

Lγ = DKL(q(θ)∥p(θ)) +NEq(θ) [Ndγ (p̂(x)∥p(x|θ))] , (4.50)

where dβ and dγ are summarized in Table 4.9. By using these expressions, we will derive the IFs.

4.6.5.1 Derivation of the IF for ordinary VI

We start from the first order condition,

0 =
∂

∂λ
L

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

∫
dPϵ,z(x) ln p(x|θ) + ln p(θ)− ln q(θ;λ∗(ϵ))

]
. (4.51)

We differentiate above expression with respect to ϵ, then we obtain following expression,

0 = ∇λ

∫
dθ

∂λ∗(ϵ)

∂ϵ

∂q

∂λ∗(ϵ)

{
(1− ϵ)N

∫
dPn(x) ln p(x|θ) + ϵN ln p(z|θ) + ln p(θ)

}
+∇λEq(θ;λ∗(ϵ))

[
−N

∫
dPn(x) ln p(x|θ) +N ln p(z|θ)

]
−∇λ

∫
dθ

∂λ∗(ϵ)

∂ϵ

∂q

∂λ∗(ϵ)
ln q(θ;λ∗(ϵ))−∇λEq(θ;λ∗(ϵ))

[
∂λ∗(ϵ)

∂ϵ
.
∂ ln q

∂λ∗(ϵ)

]
. (4.52)
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From above expression, if we take ϵ→ 0, we soon obtain following expression,

∂λ∗ (ε)

∂ε
= −

(
∂2L

∂λ2

)−1
∂

∂λ
Eq(θ)

[
N

∫
dPn(x) ln p (x|θ)−N ln p (z|θ)

]
. (4.53)

Actually, this can be transformed to following expression by using the first order condition,

∂λ∗ (ε)

∂ε
=

(
∂2L

∂λ2

)−1
∂

∂λ
Eq(θ) [DKL(q(θ;λ)|p(θ)) +N ln p (z|θ)] . (4.54)

4.6.5.2 Derivation of the IF for β VI

Next we consider IF for β VI. To proceed calculation, we have to be careful that empirical approx-
imation of β cross entropy takes different form between unsupervised and supervised setting as
shown in Eq.(4.36) and Eq.(4.35).

For the unsupervised situation, we can write the first order condition as,

0 =
∂

∂λ
Lβ

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

∫
dPϵ,z(x)

β + 1

β
p(x|θ)β −N

∫
p(x|θ)1+βdx+ ln p(θ)− ln q(θ;λ∗(ϵ))

]
.

(4.55)

We can proceed calculation in the same way as ordinary VI. We get the following expression

∂λ∗ (ε)

∂ε
= −β + 1

β

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
N

∫
dPn(x)p(x|θ)β −Np (z|θ)β

]
. (4.56)

Next, we consider the supervised situation. We consider the situation where the contamination is
expressed as

Pε,z=(x′,y′) (x, y) = (1− ε)Pn (x, y) + ε∆z=(x′,y′) (x, y) . (4.57)

The first order condition is

0 =
∂

∂λ
Lβ

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

∫
dPϵ,z(x, y)

β + 1

β
p(y|x, θ)β −N

∫
dPϵ,x′(x)

{∫
p(y|x, θ)1+βdy

}]
+∇λEq(θ;λ∗(ϵ)) [ln p(θ)− ln q(θ;λ∗(ϵ))] . (4.58)
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We can proceed the calculation and derive the IF as follows

∂λ∗ (ε)

∂ε
=−N

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
β + 1

β

(∫
dPn(y, x)p(y|x, θ)β − p (y′|x′, θ)

β
)]

+N

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[∫
dPn(x)

(∫
p(y|x, θ)1+βdy

)
−
∫

p(y|x′, θ)1+βdy

]
.

(4.59)

If we take the limit β to 0, the above expression reduced to IF of ordinary VI.

4.6.5.3 Derivation of the IF for γ VI

We can derive IF for γ VI in the same way as β VI. For simplicity, we focus on the transformed cross
entropy, which is given Eq.(4.34). For unsupervised situation, the first order condition is given by

0 =
∂

∂λ
Lγ

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

∫
dPϵ,z(x)

p(x|θ)γ{∫
p(x|θ)1+γdx

} γ
1+γ

+ ln p(θ)− ln q(θ;λ∗(ϵ))

]
. (4.60)

In the same way as β VI, we can get the IF of γ VI for unsupervised setting as,

∂λ∗ (ε)

∂ε
= −

(
∂2Lγ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
N

∫
dPn(x)p(x|θ)γ − p(z|θ)γ{∫

p(x|θ)1+γdx
} γ

1+γ

]
. (4.61)

For supervised situation, the first order condition is give by,

0 =
∂

∂λ
Lγ

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

∫
dPϵ,z(x, y)

p(y|x, θ)γ{∫
p(y|x, θ)1+γdy

} γ
1+γ

+ ln p(θ)− ln q(θ;λ∗(ϵ))

]
.

(4.62)

In the same way as β VI, we can get the IF of γ VI for supervised setting as,

∂λ∗ (ε)

∂ε
= −N

(
∂2Lγ

∂λ2

)−1
∂

∂λ
Eq(θ)

[∫
dPn(x, y)

p(y|x, θ)γ{∫
p(y|x, θ)1+γdy

} γ
1+γ

− p(y′|x′, θ)γ{∫
p(y|x′, θ)1+γdy

} γ
1+γ

]
.

(4.63)

4.6.6 Discussion about the different definition of the IF

So far, we considered that outliers are added to the original training dataset. We can consider another
type of contamination, for example, one of the observed data is perturbed. This is a situation that
observed data z = (x, y) is perturbed, for example, like zϵ = (x + ϵ, y). We call this type of data
contamination as a data perturbation. This is the contamination Koh and Liang (2017) discussed.
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As for a data perturbation, the IF of ordinary VI is given as

∂λ∗ (ε)

∂ε
= −

(
∂2L

∂λ2

)−1
∂

∂λ
Eq(θ)

[
∂

∂x
ln p (z|θ)

]
. (4.64)

IF of β divergence based VI is given as

∂λ∗ (ε)

∂ε
= −

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
∂

∂x
p (z|θ)β

]
. (4.65)

4.6.7 Discussion about another type of γ VI

So far, we used the transformed γ cross entropy, which is given in Eq.(4.33). The reason we used
the transformed cross entropy instead of the original expression is that we can interpret the pseudo
posterior when using the transformed cross entropy much easier than that uses original cross entropy.

In the same way as Eq.(4.16), we can derive the pseudo posterior using transformed cross entropy,

q(θ) ∝ e
N γ+1

γ
1
N

∑N
i=1

p(xi|θ)
γ

{∫
p(x|θ)1+γdy}

γ
1+γ p(θ)

=

[
N∏
i

elθ(xi)p(θ)

]
, (4.66)

where lθ(xi) =
γ+1
γ

p(xi|θ)γ

{
∫
p(x|θ)1+γdy}

γ
1+γ

. In this formulation, it is easy to consider that the information

of data xi is utilized to update the prior information through elθ(xi).
However, when using original cross entropy, such interpretation cannot be done because the

pseudo posterior is given by,

q(θ) ∝ eN( 1
γ ln 1

N

∑N
i p(xi|θ)γdx− 1

1+γ ln
∫
p(x|θ)1+γdx)p(θ), (4.67)

Since this pseudo posterior has not additivity, it is difficult to understand how each training data xi

contributes to update the parameter. Moreover it is not straight forward to apply stochastic variational
inference framework. Accordingly, we decided to use the transformed cross entropy.

Even thought the interpretation is difficult we can dirive IF in the same way as we discussed. For
unsupervised situation, the first order condition is given by

0 =
∂

∂λ
Lγ

∣∣∣∣
λ=λ∗

= ∇λEq(θ;λ∗(ϵ))

[
N

γ
ln

∫
dPϵ,z(x)p(x|θ)γdx−

N

1 + γ
ln

∫
p(x|θ)1+γdx+ ln p(θ)− ln q(θ;λ∗(ϵ))

]
.

(4.68)
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In the same way as β VI, we can get the IF of γ VI of original cross entropy for unsupervised setting
as,

∂λ∗ (ε)

∂ε
= −N

γ

(
∂2Lγ

∂λ2

)−1
∂

∂λ
Eq(θ)

[∫
dPn(x)p(x|θ)γ −Np(z|θ)γ∫

dPn(x)p(x|θ)γ

]
. (4.69)

For a supervised situation, we can derive the estimation equation in the same way.

4.6.8 Discussion of the IF for neural networks

Here, we describe the discussion of the IF’s behavior when using a neural network model for
regression and classification problems with the logistic loss.

We analyze the IF of the variational parameter in the approximate posterior distribution. We
use mean-field variational inference and use the Gaussian distribution for the approximate posterior
distribution for the neural network parameters. q(θ) denote the approximate posterior and θ cor-
responds to {W, b} in the neural network. Since q(θ) is the Gaussian distribution, we parametrize
it by λ = {E[θ],E[θθ⊤]}, that is, the first moment and the second moment. Then the variational
posterior is expressed as q(θ;λ). We first analyze the IF of E[θ] since this is mean parameter and
more important than E[θθ⊤]. For simplicity, λ indicates only λ = E[θ] below. We discuss about
E[θθ⊤] later.

Let us start from ordinary variational inference. In Eq.(4.54), we focus on the term,
∂

∂λ
Eq(θ;λ) [ln p (y|θ)],

because this is the only term that is related to outlier. When we assume that approximate posterior
is the Gaussian distribution, we can transform this term in the following way,

∂

∂λ
Eq(θ;λ) [ln p (y|θ)] =

∂

∂λ

{∫
q (θ;λ) ln p (y|θ) dθ

}
=

∫
∂q (θ;λ)

∂λ
ln p (y|θ) dθ

= −
∫

q (θ;λ)
∂

∂θ
ln p (y|θ) dθ

= −Eq(θ;λ)

[
∂

∂θ
ln p (y|θ)

]
, (4.70)

where we used partial integration for the second line to third line and we also used the following
relation which holds for the Gaussian distribution,

∂q (θ;λ)

∂λ
=

∂q (θ;λ)

∂θ
. (4.71)

This relation also holds for the Student-t distribution. From the above expression, it is clear that

studying the behavior of
∂

∂θ
ln p (y|θ) is crucial for analyzing the IF. In this case, the behavior of IF

in this expression is similar to that of maximum likelihood.
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About the parameter λ = E[θθ⊤],

∂

∂λ
Eq(θ;λ) [ln p (y|θ)] =

∂

∂λ

{∫
q (θ;λ) ln p (y|θ) dθ

}
= Eq(θ;λ) [∇λ ln q (θ;λ) ln p (y|θ)] ,

(4.72)

Then, outlier related term is ln p (y|θ), thus, this term will be crucial to analyze the IF of λ = E[θθ⊤].

4.6.8.1 Regression

Here, we consider the regression problem by a neural network. We denote the input to the final layer
as a function fθ(x), where x is the input data and θs are random variables which obeys approximate
posterior q(θ;λ). We consider the output layer as the Gaussian distribution as p(y|fθ(x)) =

N(y|fθ(x), σ−1I). From above discussion, what we have to consider is
∂

∂θ
ln p (y|fθ(x)) for the

analysis of [θ]. We denote input related outlier as xo, which means xo does not follow the same
distribution as the ordinary training dataset. Also, we denote the output related outlier as yo that it
does not follow the same observation noise as the ordinary training dataset.

Output related outlier

Since we consider the model of which output layer is the Gaussian distribution, following relation
holds for IF of ordinary VI,

∂

∂θ
ln p (yo|fθ(xo)) ∝ (yo − fθ(xo))

∂fθ(xo)

∂θ
. (4.73)

We can see that this term does not bounded when yo → ±∞. And thus IF of ordinary VI is
unbounded as output related outlier become large. About the parameter λ = E[θθ⊤], ln p (y|θ) ∝
(yo − fθ(xo))

2 thus this is also not bounded.
As for the β divergence, we have to treat Eq.(4.59). Fortunately, when we use the Gaussian

distribution for the output layer, the second term in the bracket of Eq.(4.59) will be constant by the
analytical integration, and thus its derivative will be zero. Therefore the output related term is only
the first term of Eq.(4.59). Thanks to this property, the denominator of Eq.(4.63) will also be a
constant. Therefore IF of β VI and γ VI behaves in the same way. Therefore, we only consider β VI
for the regression. We get the following expression,

∂

∂θ
p (yo|fθ(xo))

β ∝ e−
β
2 (yo−fθ(xo))

2

(yo − fθ(xo))
∂fθ(xo)

∂θ

=
(yo − fθ(xo))

e
β
2 (yo−fθ(xo))2

∂fθ(xo)

∂θ
. (4.74)

From this expression, we can see that IF of β VI is bounded because Eq.(4.74) goes to 0 as yo → ±∞.
This means that the influence of this contamination will become zero. This is the desired property
for robust estimation. About the second moment parameter λ = E[θθ⊤], we can show that the output
related term is p (yo|fθ(xo))

β and this term is proportional to e−
β
2 (yo−fθ(xo))

2

. Thus it is always
bounded. Thus, we can say that IFs of the second moment parameter is also always bounded.
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Input related outlier

Next, we consider input related outlier. We consider whether Eq.(4.73) and Eq.(4.74) are bounded
or not when xo → ±∞. As for ordinary VI, from Eq.(4.73), if fθ(x) → ±∞, the IF will diverge.
For β-VI, from Eq.(4.74), even if fθ(x) → ±∞, the IF will not diverge. Thus, we need to study
fθ(x) will diverge or not.

To proceed the analysis, we have to specify models.

1. We start from the linear regression, fθ(xo) = W1xo + b1, where θ = {W1, b1}. In this case
∂fθ(xo)

∂W1
= xo and

∂fθ(xo)

∂b1
= 1. When xo → ±∞, fθ(xo)→ ±∞.

From these, we can easily find that Eq.(4.73) is unbouded. As for Eq.(4.74), the exponential
function in the denominator of Eq.(4.74) plays a crucial role. Thanks to this exponential
function,

∂

∂W1
p (yo|fθ(xo))

β ∝ (yo − fθ(xo))

e
β
2 (yo−fθ(xo))2

xo

−−−−→
xo→∞

0. (4.75)

From these, ordinary VI is not robust against input related outliers, however β VI is robust.

2. Next we consider the situation that there is a hidden layer, that is fθ(xo) = W2(W1xo+b1)+b2,
where θ = {W1, b1,W2, b2}. Here, we do not consider activation function and the model
which has activation is described later. Following relations hold,

∂

∂W1
fθ(xo) = W2xo,

∂

∂W2
fθ(xo) = W1xo + b1 (4.76)

From these relations, the behavior of IF in the case of xo → ±∞ is actually as same as the
case where there is no hidden layers. Therefore, IF of input related outlier is bounded in β

VI and that is unbounded in ordinary VI. Even if we add more layers the situation does not
change in this situation where no activation exists.

3. Next, we consider the situation that the model has an activation function. We consider
relu and tanh as activation function. In the situation that there is only one hidden layers,
fθ(xo) = W2(relu (W1xo + b1)) + b2,

∂fθ(xo)

∂W2
= relu (W1xo + b1) ,

∂fθ(xo)

∂W1
=

W2xo, W1xo + b1 ≥ 0

0, W1xo + b1 < 0,
(4.77)

Actually, this is almost the same situation as when there are no activation functions, because
there remains possibility that IF will diverge in ordinary VI, while IF in β VI is bounded.

When we use tanh as a activation function, fθ(xo) = W2tanh (W1xo + b1) + b2,

∂fθ(xo)

∂W1
=

W2xo

cosh2 (W1xo + b1)
−−−−→
xo→∞

0. (4.78)
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The limit of above expression can be easily understand from Figure.4.5. From this expression,

−30 −20 −10 0 10 20 30

−0.4

−0.2

0.0

0.2

0.4

x/(cosh(x))2

Figure 4.5: Behavior of x
cosh2 x

we can understand IF of W1 is bounded in both ordinary estimator and β estimator, when we
consider the model, fθ(xo) = tanh (W1xo + b1). As for W2,

∂fθ(xo)

∂W2
= tanh(W1xo + b1). (4.79)

In this expression, even if input related outlier goes to infinity, the maximum of the above
expression is 1. Accordingly, the IF of W2 is bounded in any case. And thus IF of both
ordinary VI and β VI is bounded when we use tanh activation function.

4. Up to now, we have seen the model which has a hidden model. The same discussion can be
held for the model which has more hidden layers. If we add layers, the above discussion holds
and there remains a possibility that IF using relu in ordinary VI will diverge.

We can say that ordinary VI is not robust to output related outliers and input related outliers.
The exception is that using tanh activation function makes the IF of ordinary VI bounded. In
β VI, the IF of parameters is always bounded.

About the second moment parameter λ = E[θθ⊤], the similar discussion holds as the case of
the output related outlier, and hence the IF in usual VI is not bounded but those in β, γ VI is always
bounded.

Using the Student-t distribution for the output layer

We additionaly consider the property of the Student-t loss in stead of the Gaussian. When we denote
degree of freedom as v, and the variance as σ2, following relation holds,

∂

∂θ
ln p (yo|fθ(xo)) ∝

(yo − fθ(xo))

vσ2 + (yo − fθ(xo))
2

∂fθ(xo)

∂θ
. (4.80)
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By comparing Eq.(4.80) with Eq.(4.73) and Eq.(4.74), we can confirm that the behavior of IF in the
case of the Student-t loss in ordinary VI is similar to the Gaussian loss model in β VI. First, consider
output related outlier,

∂

∂θ
ln p (yo|fθ(xo)) −−−−→

yo→∞
0. (4.81)

From above expression, we can find that Student-t loss is robust to output related outlier. This is the
desiring property of the Student-t.

Next consider input related outlier. We consider the model, fθ(xo) = W1xo + b1, where
θ = {W1, b1}

∂

∂W1
ln p (yo|fθ(xo)) ∝

(yo − fθ(xo))

vσ2 + (yo − fθ(xo))
2xo

=
(yo − fθ(xo))

2

vσ2 + (yo − fθ(xo))
2

xo

yo − fθ(xo)

=
(yo − fθ(xo))

2

vσ2 + (yo − fθ(xo))
2

fθ(xo)− b1
W1(yo − fθ(xo))

−−−−→
xo→∞

−W−1
1 . (4.82)

This is an interesting result that in β VI, the IF of input related outlier goes to 0 in the limit, on the
other hand for the Student-t loss, the IF is bounded but finite value remains.

4.6.8.2 Classification

Here, we consider the classification problem. We focus on the binary classification, and output y
can take +1 or 0. We only consider the input related outlier because the influence caused by label
misspecification is always bounded.

As the model, we consider the logistic regression model,

p(y|fθ(x)) = fθ(x)
y(1− fθ(x))

(1−y), (4.83)

where

fθ(x) =
1

1 + e−gθ(x)
, (4.84)

where gθ(x) is input to sigmoid function. We consider a neural net for gθ(x).

1. We first assume gθ(x) = Wx+ b, then
∂g

∂W
= x and

∂g

∂b
= 1. Let us start from ordinary VI

and consider outlier related term of it. From the relation Eq.(4.70),

∂

∂θ
ln p(y|fθ(x)) =

∂

∂θ
(y ln fθ(x) + (1− y) ln(1− fθ(x)))

= −y(1− f)
∂g

∂θ
+ (1− y)f

∂g

∂θ
. (4.85)
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Let us consider, for example y = +1

∂

∂θ
ln p(y = +1|fθ(x)) =

1

1 + egθ(x)
∂g

∂θ
. (4.86)

As for θ = b, this is always bounded. As for θ = W ,

∂

∂W
ln p(y = +1|fθ(x)) =

1

1 + eWx+b
x. (4.87)

In above expression, if we take limit x → +∞, and if Wx → −∞, above expression can
diverge. If Wx→∞when x→ +∞, above expression goes to 0. From this observation, it is
clear that there is a possibility that IF for input related outlier diverges in a logistic regression
for ordinary VI.

As for β VI, we have to consider Eq.(4.59). The first term is:

p(y = +1|fθ(x))β
∂

∂θ
ln p(y = +1|fθ(x)) =

1

(1 + e−gθ(x))β
1

1 + egθ(x)
∂g

∂θ
. (4.88)

If we take the limit g → ±∞, 1
1+eg

1
1+e−g → 0. Thus, this expression converges to 0 when

xo → ±∞.

Next, we consider the second term in Eq.(4.59), which is constant in regression. The second
term of Eq.(4.59) can be written as

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
N

∫
p(y|xo, θ)

1+βdy

]
= N

(
∂2Lβ

∂λ2

)−1
∂

∂λ
Eq(θ)

[
fθ(xo)

1+β + (1− fθ(xo))
1+β
]
. (4.89)

To proceed the analysis, we can use the relation Eq.(4.70). Since the inverse of hessian matrix
is not related to outlier, what we have to consider is∫

dθq (θ)
∂

∂θ
fθ(xo)

1+β +
∂

∂θ
(1− fθ(xo))

1+β

= −
∫

dθq (θ)

(
fθ(xo)

1+β(1− fθ(xo))
∂g

∂θ
+ (1− fθ(xo))

1+βfθ(xo)
∂g

∂θ

)
= −

∫
dθq (θ)

{
(1− fθ(xo))

β + fθ(xo)
β
}
(1− fθ(xo))fθ(xo)

∂g

∂θ
. (4.90)

Since in the logistic regression situation, fθ is bounded under from 0 to 1, the term (1 −
fθ(xo))

β + fθ(xo)
β is always larger than 0. Therefore, what we have to consider is the term

(1− fθ(xo))fθ(xo)
∂g

∂θ
. Then,

(1− fθ(xo))fθ(xo)
∂g

∂θ
=

1

1 + eg
1

1 + e−g

∂g

∂θ
−−−−→
xo→∞

0. (4.91)
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Thus, both the first and the second term is bounded and therefore, IF of logistic regression
when using β VI is bounded.

2. Consider the case where there exists activation functions such as relu or tanh. Let us start
from the ordinary VI. Since we do not use the activation function for the final layer g and
∇θg are not bounded and thus, the IF of logistic regression using relu activation function
is not bounded. When using tanh activation function, as we discussed in regression g and
∇θg are bounded and thus, IF are always bounded. Accordingly, we conclude that for the
logistic regression, relu activation function is not robust against input related outliers when
using ordinal VI, while tanh activation function is robust.

As for β VI, it is clear from Eq.(4.88) and Eq.(4.91) that IF is bounded for both relu and tanh
even using neural net since g → ±∞, 1

1+eg
1

1+e−g → 0.

3. Next, we consider the case of γ VI. The difference from β VI is the second term of Eq.(4.63).
With the relation Eq.(4.70), and the inverse of hessian matrix is not related to outlier, the
outlier related term is,∫

dθq (θ)
∂

∂θ

p(y′|x′)γ

{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

=

∫
dθq (θ)

{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

∂

∂θ
p(y′|x′)γ − p(y′|x′)γ

∂

∂θ
{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

{
∫
p(y|x′, θ)1+γdy}

2γ
1+γ

.

(4.92)

In the above expression, what we have to consider is the numerator. The analysis of first term
can be done in the same way as Eq.(4.88). Therefore it is bounded for both relu and tanh. The
second term can be analyzed in the same way as Eq.(4.90), we do not have to consider it in
the limit. From above discussion, the behavior of IF for γ VI is the same as that for β VI in
the limit, accordingly, it is bounded even if using relu activation function. If we increase the
number of layers, the same discussion holds.

4.6.9 Discussion about the comparison of β VI and γ VI

Here, we compare the proposed β VI and γ VI theoretically. Although β VI and γ VI have robustness,
their robustness property is different when the proportion of contamination is large. If the proportion
of contamination is large the assumption of discussion of IF does not hold because we assumed that
the ϵ is near zero to derive the IF.

If the proportion of contamination is not small, other kinds of discussion are needed. Such
a discussion is given in in Fujisawa and Eguchi (2008), therefore we review it and use it for our
variational objectives.

Following the notation in Fujisawa and Eguchi (2008), g(x) denotes the contaminated probability
density function,

g(x) = (1− ϵ)f(x) + ϵδ(x), (4.93)
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where f(x) is the underlying true probability density function, δ(x) denotes the contamination
probability density function, and ϵ is the contamination proportion.

We assume that when a data point x∗ is an outlier f(x∗) is sufficiently small. We express this
assumption by saying that the following quantity is sufficiently small for an appropriate large γ0 > 0,

νf =

{∫
δ(x)f(x)γ0dx

}1/γ0

. (4.94)

This means that δ(x) exists on the tail of f(x). If δ(x) is the Dirac function at x∗, νf = f(x∗), and
above assumption simply means when a data point x∗ is an outlier f(x∗) is sufficiently small.

Under this assumption, following lemma and theorem holds (this is lemma3.1 and theorem 3.2
in Fujisawa and Eguchi (2008)) that

Lemma 2. Suppose that the positive function h satisfies the above assumption, where f is replaced
by h. It then holds

dγ(g, h) = dγ((1− ϵ)f, h) +O(ϵνγh)

= dγ(f, h)−
1

γ
log(1− ϵ) +O(ϵνγ). (4.95)

Theorem 5. Suppose that the positive function h satisfies the above assumption, where f is replaced
by h. Let ν = max{νf , νh}. Then, the Pythagorean relation among g, f , and h approximately
holds:

∆(g, f, h) = Dγ(g, h)−Dγ(g, f)−Dγ(f, h) = O(ϵνγ). (4.96)

This theorem means that the minimizing divergence from the model h to contaminated density
g is approximately equivalent to minimizing the divergence h to true distribution f and its order of
error is given by O(ϵνγ).

Recall that the objective function of our proposed is given by

Lγ(q(θ)) =

∫
q(θ) (Ndγ (g(x)∥p(x|θ))) dθ +DKL(q(θ)∥p(θ)), (4.97)

where g(x) is the contaminated distribution and p(x|θ) is the model we prepared. By using the
Pythagorean relation, we can rewrite the above expression in the following way by using the true
underlying distribution,

Lγ(q(θ)) =

∫
q(θ)

(
Ndγ(f(x)∥p(x|θ))−

1

γ
log(1− ϵ) +O(ϵνγ)

)
dθ +DKL(q(θ)∥p(θ)).

(4.98)

This equation means that by using the γ cross entropy, we can utilize the γ cross entropy between
true distribution to our model. We optimized the objective function by using the black-box variational
inference method and optimize the variational parameters by gradient decent, and thus the constant
terms inside the integral are neglected.
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Figure 4.6: Perturbation on test log-likelihood for neural net regression.

This relation is obtained under the assumption of Eq. (4.94). The assumption is not the as-
sumption that we used in the IF that contamination proportion of ϵ is small. Therefore even if the
contamination proportion is large, we can obtain the The robustness of β divergence is assured by the
IF (Basu et al. (1998)) and thus it is not guaranteed if the contamination proportion is not sufficiently
small. Following this observation, γ divergence based method is superior to β divergence method.

4.6.9.1 Additional results of influence function experiments

Regression

In Section 4.5.2, the figure of input and output related outlier settings are shown. Here, we show
both the input and output related outlier situation. Figure. 4.6 is the case when the first feature of the
input and the output value increase simultaneously.

From Figure. 4.6, we confirmed again that in this situation, the perturbation on ordinary VI is
not unbounded and the perturbation on our proposed method is bounded.

IF of the parameter of the neural network

Here, we show the IF of parameters. Figure. 4.7 shows the plot of IF (x1,W, P ) where W is a
chosen one affine parameter in the case of relu activation function (Since we consider VI, this W
means the mean of the approximate posterior distribution after the optimization). Figure. 4.7(a)
shows the case of ordinary VI, which diverges as absolute value of x1 become large. This means
outliers have an unlimited influence on the estimated static. On the other hand, Figure. 4.7(b) shows
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the case of the proposed method and the influence is bounded, that is the effect of outliers goes to
zero. These results are compatible with our theoretical analysis in the previous section.

(a) VI (b) Proposed method

Figure 4.7: IF of one affine parameter in Bayesian neural net.

However, this is not sufficient analysis because we would like to have robust predictive distribu-
tion. Accordingly, it is necessary to study whether the prediction is robust against outliers. For the
analysis of prediction, we simulated the test log-likelihood and this is what we had seen so far. If the
test log-likelihood has affected so much by an outlier, that is a prediction on the test point is affected
so much. Accordingly, such a model is not robust even under the contamination of one outlier.
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Chapter 5

Bayesian posterior approximation via
greedy particle optimization

In this chapter, we present a new approximation approach which combines benefits of parametric
approaches and sampling approaches.

5.1 Outline

In Chapters 3 and 4, we approximate the posterior distribution with parametric distributions, from
which we can easily draw samples. In the parametric approximation, we often consider the mean
field assumption and use an exponential family for the approximate posterior distribution (Blei
et al., 2017). Since these assumptions are used to make optimization more tractable, they are often
too restrictive to approximate the posterior distribution. Therefore, the approximate distribution
often never converges to the posterior distribution, which means that the approximation is biased
and no theoretical guarantee is assured. An alternative way is a discrete approximation of the
posterior distribution by using a set of particles (Bishop, 2006), p̂(θ) =

∑N
n=1 δ(θ − θn)/N .

Particle approximation is free of parametric assumptions and more expressive. The Monte Carlo
(MC) method is used to draw particles randomly and independently (Bishop, 2006). However, the
drawback of MC is that vast computational resources are required to sample from multi-modal and
high-dimensional distributions.

Recently, methods that optimize particles through iterative updates have been explored. A
representative example is Stein variational gradient descent (SVGD) (Liu and Wang, 2016), which
iteratively updates all particles in the direction that is characterized by kernelized Stein discrepancy
(KSD). The update is actually implemented by gradient descent and SVGD empirically works well
in high-dimensional problems. However, theoretical properties of SVGD have not been clarified and
no finite sample bound of the convergence rate is known (Liu, 2017). Another example is the Stein
points (SP) (Chen et al., 2018), which directly minimizes KSD. Although this method is assured by
a finite sample convergence bound, it is not practically feasible in high-dimensional problems due
to the curse of dimensionality, because gradient descent is not available and sampling or grid search
needs to be used for optimization. Moreover, the number of evaluations of the gradient of the log
probability, which usually requires vast computation costs, is four times that of SVGD.
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We aim to develop a discrete approximation method that is computationally efficient, works well
in high-dimensional problems, and also has a theoretical guarantee for the convergence rate. In
this chapter, we propose maximum mean discrepancy minimization by the Frank-Wolfe algorithm
(MMD-FW) in a greedy way. Our convex formulation of discrete approximation enables us to use the
Frank-Wolfe (FW) algorithm (Jaggi, 2013) and to derive a finite sample bound of the convergence
rate.

Our contributions in this chapter are three-fold:

1. We formulate a discrete approximation method in terms of convex optimization of MMD in a
reproducing kernel Hilbert space (RKHS), and solve it with the FW algorithm.

2. Our algorithm is computationally efficient and empirically works well in high-dimensional
problems. It has a guaranteed finite sample bound of the convergence rate.

3. We show empirically that our method compares favorably with existing particle optimization
methods.

5.2 Preliminary

Here, we review two existing particle optimization methods, SVGD and SP. After that, we introduce
MMD which is our objective function. We assume that θ ∈ Rd and let k : Θ × Θ → R be the
reproducing kernel of an RKHS H of functions Θ → R with the inner product ⟨·, ·⟩ and ∥ · ∥H is
the assosiated norm, where Θ ⊆ Rd denotes the input domain.

5.2.1 Stein variational gradient descent (SVGD)

We first prepare initial particles p̂0(θ) =
∑N

n=1 δ(θ, θn)/N and iteratively update them by a trans-
formation, T (θ) = θ + ϵϕ(θ), where ϕ(θ) is a perturbation direction. When the current empirical
distribution is p̂(θ) =

∑N
n=1 δ(θ, θn)/N , then ϕ(θ) is chosen to maximally decrease the Kullback-

Leibler (KL) divergence between the empirical distribution p̂ formed by the particles and the posterior
distribution p,

ϕ∗(θ) = arg max
ϕ∈F

{
− d

dϵ
KL(p̂[T ]∥p)|ϵ=0

}
, (5.1)

where F denotes a set of candidate functions from which we choose map ϕ, and

p̂[T ](θ) = p̂(T−1(θ)) · | det(∇zT
−1(θ))|. (5.2)

Liu and Wang (2016) proved that this problem is characterized by the Stein operator,

− d

dϵ
KL(p̂[ϵϕ]∥p)|ϵ=0 = Eθ∼p̂[Spϕ(θ)], (5.3)
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Algorithm 1: Stein Variational Gradient Descent
1: Input: A posterior density p(θ) and initial particles {θ0n}Nn=1

2: Output: Particles {θi}ni=1 which approximate p(θ)
3: for iteration l do
4: θ

(l+1)
n ← θ

(l)
n + ϵ(l)ϕ̂∗(θ

(l)
n ), where

ϕ̂∗(θ) = 1
N

∑N
n=1

[
k(θ

(l)
n , θ)∇

θ
(l)
n

ln p(θ
(l)
n ) +∇

θ
(l)
n
k(θ

(l)
n , θ)

]
5: end for

where Sp denotes the Stein operator

Spϕ(θ) = ∇ ln p(θ)ϕ(θ)⊤ +∇ · ϕ(θ), (5.4)

which acts on a d× 1 vector function ϕ and returns a scalar value function. Thus, the optimization
problem is

S(p̂∥p) := max
ϕ∈F
{Eθ∼p̂[Spϕ(θ)]} . (5.5)

The problem is how to choose an appropriate F . Liu and Wang (2016) showed that when F is the
unit ball in an RKHS with kernel k, the optimal map can be expressed in the following way. LetH0

be an RKHS defined by a kernel k(θ, θ′) andH = H0×· · ·×H0 be the d×1 vector-valued RKHS.
We define Sp ⊗ k(θ, ·) := ∇ ln p(θ)k(θ, ·) +∇θk(θ, ·), then, the optimal direction is given by

ϕ∗
p̂,p(·) = Eθ∼p̂[∇θ ln p(θ)k(θ, ·) +∇θk(θ, ·)]. (5.6)

We iteratively update particles following the above direction and obtain the empirical approximation
with {θn}Nn=1. Theoretical analysis has been conducted in terms of the gradient flow and has shown
convergence to the true posterior distribution asymptotically (Liu, 2017). However, no finite sample
bound has been established. The norm of the optimal direction,

S(p̂∥p) = ∥ϕ∗
p̂,p∥H =

√
Eθ,y∼p̂ks(θ, θ′), (5.7)

where

ks(θ, θ
′) =∇θ∇θ′k(θ, θ′) +∇θk(θ, θ

′)∇θ′ ln p(θ′) +∇θ′k(θ, θ′)∇θ ln p(θ) + k(θ, θ′)∇θ ln p(θ)∇θ′ ln p(θ′),

(5.8)

is called kernelized stein discrepancy (KSD) (Liu et al., 2016). In summary, the algorithm of SVGD
is shown in Alg.1.
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5.2.2 Stein points(SP)

SP (Chen et al., 2018) minimizes the above KSD directly. When q is given by a discrete approximation
p̂ =

∑N
n=1 δ(θ, θn)/N , KSD can be written as

S(p̂∥p) =

√√√√ N∑
i,j=1

ks(θi, θj). (5.9)

In SP, to obtain the n-th particle, we solve

arg min
θ

n−1∑
i=1

ks(θi, θ) or arg min
θ

n−1∑
i=1

ks(θi, θ) + ks(θ, θ)/2. (5.10)

To solve these problems, Chen et al. (2018) proposed using sampling methods or grid search.
However, those methods are not applicable to high-dimensional problems due to the curse of
dimensionality. Although an alternative way is to use gradient descent, this is computationally
difficult in high-dimensional problems since this method needs to calculate the Hessian at each
iteration. Moreover, the computation cost for evaluating the derivative of the log probability is 4
times compared to SVGD. An advantage of this method is that a finite sample convergence bound is
assured theoretically.

5.2.3 Maximum mean discrepancy (MMD)

SVGD and SP use KSD as the direction of the update and the objective function. In our proposed
method, we use MMD as the objective function. MMD is a kind of the worst-case error between
expectations. For a given test function f , we express the integral with respect to the true posterior
distribution p as Zf,p =

∫
f(θ)p(θ)dθ. We denote an approximation of Zf,p as Zf,p̂, where p is

approximated by p̂ in the same way as Eq. (1). From here, we consider the weighted empirical
distribution p̂(θ) =

∑N
n=1 wnδ(θ, θn), where wn are the weights of each particle. Then MMD

(Gretton et al., 2012) is defined as

MMD({wi, θi}Ni=1)
2 :=

1

2
sup

f∈H:∥f∥H=1

∣∣∣∣∣Zf,p −
N∑
i=1

wif(θi)

∣∣∣∣∣
2

=
1

2
∥µp − µp̂∥2H

=
1

2

∣∣∣∣∣
∣∣∣∣∣µp −

N∑
i=1

wik(θi, ·)

∣∣∣∣∣
∣∣∣∣∣
2

H

, (5.11)

where µp =
∫
k(·, θ)p(θ)dθ ∈ H and we introduce the coefficient 1

2 for convenience in later
calculation. We also express MMD({wi, θi}Ni=1)

2 as MMD(µp̂)
2 for simplicity.
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Algorithm 2: Frank-Wolfe (FW) Algorithm
1: Let θ0 ∈ D
2: for n = 0, . . . , N do
3: Compute s = argmins∈D⟨s,∇f(θn)⟩
4: Constant step: λn = 1

n+1
5: Update θn+1 = (1− λn)θn + λns
6: end for

5.3 Proposed methods

Here, we formally develop our MMD-FW. We will introduce the FW algorithm in an RKHS, propose
our MMD-FW, and give a finite sample convergence bound of our method.

5.3.1 MMD minimization by the FW algorithm (MMD-FW)

On the basis of the existing methods reviewed in Section 5.2, we would like to obtain a method
to approximate the posterior by discrete particles, which has high computational efficiency and
theoretical guarantee. The key idea is to perform discrete approximation by minimizing MMD,
instead of KSD since it causes computational problems as we described above. We minimize
MMD(µp̂)

2 = 1
2∥µp − µp̂∥2H, introduced by Eq. (5.11), in a greedy way. Since this is a convex

function in an RKHS, we can use the FW algorithm.
The FW algorithm, also known as the conditional gradient method (Jaggi, 2013), is a convex

optimization method. It focuses on the problem min
θ∈D

f(θ), where f is a convex and continuous
differentiable function and D is the domain of the problem, which is also convex. As the procedure
is shown in Alg. 2, the FW algorithm optimizes the objective in a greedy way. In each step, we solve
the linearization of the original f at the current state θn as shown in Line 3 of Alg. 2. This step
is often called the linear minimization oracle (LMO). The new state θn+1 is obtained by a convex
combination of the previous state θn and the solution of the LMO, s, in Line 6 of Alg. 2. The
common choice of the coefficient of the convex combination is the constant step or the line search.

Bach et al. (2012) and Briol et al. (2015) clarified the equivalence between kernel herding (Chen
et al., 2010) and the FW algorithm for MMD. In our situation, we minimize MMD on the marginal
polytopeM of the RKHS H, which is defined as the closure of the convex hull of k(·, θ). We also
assume that all sample points θi are uniformly bounded in the RKHS, i.e., for any sample point θi,
∃r > 0 : ∥k(·, θ)∥H ≤ r.

By applying the FW algorithm, we want to obtainµp̂ which minimizes the objectiveMMD(µp̂)
2 =

1
2∥µp−µp̂∥2H. We express the solution after n-steps FW algorithm as µn

p̂ =
∑n

i=1 w
n
i k(·, θi), where

{θi}ni=1 are the particles and wn
i denote the weights of the i-th particle at the n-th iteration. We

can obtain {θi}ni=1 in a greedy way by the FW algorithm. The method of deriving the weights are
discussed later.

The LMO calculation in each step is

argming∈M⟨µn
p̂ − µp, g⟩. (5.12)



84 Chapter 5. Bayesian posterior approximation via greedy particle optimization

It is known that the minimizer of a linear function in a convex set is one of the extreme points of the
domain (Bach et al., 2012), and thus we derive

arg min
g∈M

⟨µn
p̂ − µp, g⟩ = arg min

θ
⟨µn

p̂ − µp, k(·, θ)⟩

= arg min
θ

n∑
i=1

wn
i k(θi, θ)− µp(θ). (5.13)

We solve this LMO by gradient descent. We initialize each θ to prepare g = k(·, θ) in LMO by
sampling it from the prior distribution. Since the objective of LMO is non-convex, we cannot obtain
the global optimum by gradient descent in general. Fortunately, even if we solve LMO approximately,
FW enables us to establish a finite sample convergence bound (Locatello et al., 2017a; Jaggi, 2013;
Lacoste-Julien et al., 2013; Lacoste-Julien and Jaggi, 2015; Locatello et al., 2017b). In such an
approximate LMO, we set the accuracy parameter δ ∈ (0, 1] and consider the following approximate
problem which returns approximate minimizer g̃ of Eq.(5.13) instead of the original strict LMO:

⟨µ(n)
p̂ − µp, g̃⟩ = δ min

g∈M
⟨µ(n)

p̂ − µp, g⟩

= δmin
θ

n∑
i=1

wn
i k(θi, θ)− µp(θ). (5.14)

This kind of relaxation of the LMO has been widely used and shown to be reliable (Locatello et al.,
2017a; Jaggi, 2013; Lacoste-Julien et al., 2013; Lacoste-Julien and Jaggi, 2015; Locatello et al.,
2017b), which is much easier to solve than the original strict LMO. We call this step Approx-LMO,
and we will use gradient descent to solve Approx-LMO. The derivative with respect to θ when we
use the symmetric kernel k can be written as follows:

∇θ⟨µ(n)
p̂ − µp, g⟩ ≈

1

n

n∑
i=1

w
(n)
i (∇θk(θi, θ) + k(θ, θi)∇θi ln p(θi)) . (5.15)

The derivation of Eq.(5.15) is given in Section 5.6.1. Using this gradient, we solve Eq.(5.14).
As repeatedly pointed out in Locatello et al. (2017a); Jaggi (2013); Lacoste-Julien et al. (2013);
Lacoste-Julien and Jaggi (2015); Locatello et al. (2017b), an approximate solution of the LMO is
enough to assure the convergence which we describe later. For this reason, we will use gradient
descent in our algorithm and also a rough estimate of the gradient is enough in our situation. A
similar technique has also been discussed in Locatello et al. (2017a).

For the FW algorithm, we have to specify the initial particle θ1 and the step size choice of
the algorithm. We found that the initial particle θ1 by the MAP estimation or approximate MAP
estimation shows good performance empirically and it is recommended to prepare θ1 as a near MAP
point (we will discuss other choices in Section 5.6.2). In this approach, the constant step size and
line search are not recommended because those methods uniformly reduce the weights of all the
particles which has already been obtained. When we use θ1 as a near MAP point, it is located
near the highest probability mass regions, and thus we should not reduce its weight uniformly.
Based on this observation, we set the step size in the same way as the fully corrective Frank-Wolfe
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Algorithm 3: Approx-LMO

1: Input: µ(n)
p̂

2: Output: k(·, θL+1)
3: Prepare g0 = k(·, θ0) where θ is initialized by

randomly or sample from prior
4: for l = 0 . . . L do
5: Compute∇θ⟨µ(n)

p̂ − µp, g
l⟩ by Eq.(5.15)

6: Update θ(l+1) ← θ(l) + ϵ(l) · ∇θ⟨µ(n)
p̂ − µp, g

i⟩
7: end for

Algorithm 4: MMD minimization by Frank-Wolfe algorithm (MMD-FW)
1: Input: A posterior density p(θ)
2: Output: A set of particles ({wi, θi}Ni=1)

3: Calculate approximate MAP estimation for µ(1)
p̂

4: for n = 2 . . . N do
5: k(·, θn) =Approx-LMO(µ(n−1)

p̂ )
6: Empirical BQ weight: ŵn

i =
∑n

m=1 ẑmK−1
im , ẑm =

∑n
l=1 k(θl, θm)/n

7: Update µ(n+1)
p̂ =

∑n
i=1 ŵ

n
i k(θ, θi)

8: end for

algorithm (Lacoste-Julien and Jaggi, 2015), this method calculates all the weights at each iteration,
and we can circumvent the above problem. For full correction, we use the Bayesian quadrature
(BQ) weight (Huszár and Duvenaud, 2012), wi =

∑
m zmK−1

im , where K is the Gram matrix,
zm =

∫
k(θ, θm)p(θ)dθ, and we approximately compute the integral with particles. Since we use

the empirical approximation, this makes the convergence rate slower. We will analyze the effect of
this inexact step size later.

To summarize, our proposed algorithms are given in Alg. 3 and Alg. 4, which greedily increase
the number of particles whithin the FW framework to minimize MMD.

5.3.2 Theoretical guarantee

First, we describe the condition of the approximated BQ weights for the convergence rate. This
is necessary condition for the theoretical guarantee of the particle approximation when the finite
dimensional kernel is used in our algorithm.

Theorem 6. (Approximate step size) In Alg. 4 at the n-th iteration, let βn
i be the ratio between ẑni

and zni , i.e., βn
i = ẑni /z

n
i . WhenH is finite dimensional, if

∫
k(θ, θ)p(θ)p(θ′)dθdθ′ −

n∑
i,j=1

βn
i β

n
j z

n
i K

−1
ij znj > 0 (5.16)

holds, then Theorems 7 and 8 hold. When H is infinite dimensional, no condition about the
approximation of the weight is needed for Theorems 7 and 8 to hold.

In Eq.(5.16), since
∫
k(θ, θ)p(θ)p(θ′)dθdθ′ is determined by the choice of the kernel and p(θ)

and
∫
k(θ, θ)p(θ)p(θ′)dθdθ′ −

∑n
i,j=1 z

n
i K

−1
ij znj > 0 holds, thus βn

i should be in some moderate
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range to satisfy the condition of Eq.(5.16). More intuitively, this condition states that if the deviation
of the empirical estimate of BQ weights from the true ones is below a certain criterion, then
convergence guarantee of the algorithm still holds even if the step size is inexact. The range of the
moderate deviation is determined by the kernel and p(θ). The proof is given in Section 5.6.5. We
also analyzed the effect of inexact step size in line search and the result states that if the ratio is
between 0 to 2, then the linear convergence holds; see Section 5.6.4 for details.

Next, we state the theoretical guarantee of our algorithm. We obtain p̂(θ) =
∑N

n=1 wnδ(θ, θn)

by Alg. 4 which approximates the true posterior p(θ). Let f be the test function, then we can bound
the error |Zf,p − Zf,p̂| = |

∫
f(θ)p(θ)dθ −

∑N
i=1 wif(θi)| as follows:

Theorem 7. (Consistency) Under the condition of Theorem 6, the error |Zf,p − Zf,p̂| of Alg. 4 is
bounded at the following rate:

|Zf,p − Zf,p̂| ≤ MMD({(wn, θn)}Nn=1) ≤


√
2re−δBQ

R2δ2N
2r2 ifH is finite dimensional,√

(δBQδ+1)22r2

δ(NδBQδ+2) ifH is infinite dimensional,

(5.17)

where r is the diameter of the marginal polytopeM, δ is the accuracy parameter of the LMO, and
R is the radius of the smallest ball centered at µp includedM (R is strictly above 0 only when the
dimension of H is finite). δBQ denote the error caused by the empirical approximation of the BQ
weights; for details, please see Section 5.6.3.

A proof of Theorem 7 can be found in Section 5.6.3. Moreover, on the basis of the Bayesian
quadrature, we can regard Zf,p̂ as the posterior distribution of the Gaussian process (Huszár and
Duvenaud, 2012) (see Section 5.6.13 for details) and assure the posterior contraction rate (Briol et al.,
2015). Intuitively, the posterior contraction rate indicates how fast the probability of the estimated
parameter residing outside a specified region (which includes the true parameter) decreases when
the size of the region is increased.

Theorem 8. (Contraction) Let S ⊆ R be an open neighborhood of the true integral Zf,p and let
γ = infr′∈Sc |r′−Zf,p| > 0. Then the posterior probability on Sc = R\S vanishes at the following
rate:

prob(Sc) ≤


2r√
πγ

e−δBQ
R2δ2N

2r2
− γ2

4r2
e
δBQ

R2δ2N
r2 ifH is finite dimensional,√

2
π

√
(δBQδ+1)22r2

δ(NδBQδ+2) e
− γ2

2

δ(NδBQδ+2)

(δBQδ+1)22r2 ifH is infinite dimensional,

(5.18)

where r is the diameter of the marginal polytopeM, δ is the accuracy parameter, and R is the radius
of the smallest ball centered at µp that includesM. δBQ denotes the error caused by the empirical
approximation of the BQ weights; for details, please see Section 5.6.6.

In the proposed method, kernel selection is crucial both numerically and theoretically. In the
above convergence proof, linear convergence occurs only under the assumption that there exists a
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ball with centered at µp whose radius R is positive within the affine hull M. Bach et al. (2012)
proved that, for infinite dimensional RKHSs, such as the case of radial basis function (RBF) kernels,
such an assumption never holds. Thus, we can only have sub-linear convergence for RBF kernels
in general. However, as pointed out by Briol et al. (2015) , even if we use RBF kernels, thanks to
finite-precision rounding error in computers, we are treating in simulations are actually essentially
finite dimensional. This also holds in our situation, and in experiments, we empirically observed the
linear convergence of our algorithm. We will show such a numerical result later.

A theory for the constant step size and line search step size are shown in Section 5.6.2.

5.3.3 Discussion

For specifying the initial particle θ1, we can sample it from the prior distribution. The merit of this
approach is that we can choose the step size in a computationally less demanding way such as the
constant step size and line search (shown in Section 5.6.2) since the initial particle is not in a high
probability mass region, uniformly decreasing less important weights by constant step size or line
search. However, we empirically found in our preliminary experiments that this initialization does
not perform well compared to MAP initialization. We suspect that the gradient of Eq.(5.15) is too
inexact when initial particles are sampled from the prior.

Let us analyze the reason why MAP initialization performs well as follows. Although the
gradient is incorrect, the LMO can be solved with error to some extent because the first particle is
close to the MAP estimation and the evaluation points of the expectation include, at least, a high
density region on p(θ). If the LMO is δ-close to the true value, the weights of old incorrect particles
will be updated to be small enough to be ignored as the algorithm proceeds. For such a reason, the
framework using processed particles works.

The empirical approximation of the BQ weights can also be justified almost in the same way as
above. Since the empirical distribution includes, at least, a high density region on p(θ), the deviation
of the step size (e.g., error due to the empirical approximation) from the exact BQ weight is smaller
than the criterion in Theorem 6.

In summary, since we prepare the initial particles at a high probability mass region, the FW
algorithm successfully finds the next particle even though the gradient for LMO or weights are
inexact. As the algorithm proceeds, the weights of less reliable particles become small and accuracy
of the estimation is increased. This is an intuition how the proposed algorithm works.

5.4 Related works

Here, we discuss the relationship between our method and SVGD, SP and variational boosting.

5.4.1 Relation to SVGD

SVGD is a method of optimizing a fixed number of particles simultaneously. On the other hand,
MMD-FW is a greedy method adding new particles one per step. Both methods can work in
high-dimensional problems since they use the information of the gradient of the score function.
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To approximate a high-dimensional posterior distribution, we may need many particles, but it is
unclear how many particles are needed beforehand. Thus, a greedy approach is preferable for high-
dimensional problems. Since in SVGD it is unclear how we can increase the number of particles after
we finish the optimization, MMD-FW is more convenient in such a case. However, simultaneous
optimization is sometimes computationally more efficient and show better performance compared
to a greedy approach(see the experimental results).

Based on this fact, we combine SVGD and MMD-FW by focusing on the fact that the update
equations of SVGD and MMD-FW are almost the same except for the weights. More specifically,
we prepare particles by SVGD first, and then apply MMD-FW by treating particles obtained by
SVGD as the initial state of each greedy particle. This combination enables us to enjoy the efficient
simultaneous optimization of SVGD and the greedy property and theoretical guarantee of MMD-FW.
The detailed explanation is in Section 5.6.11.

In terms of computation costs, SVGD is O(N2) per iteration. In MMD-FW, we only optimize
one particle, and thus, its computation cost is O(N) at each step inside Approx-LMO . Up to the
N -th particle, the total cost is O(N(N + 1)/2), which is in the same order as SVGD. However,
the number of LMO iterations in MMD-FW is much smaller than that of SVGD since the problem
involves only one particle in MMD-FW, which is much easier to solve than SVGD which treats N
particles simultaneously. Therefore, we can expect the computation cost of MMD-FW to be cheaper
than SVGD.

5.4.2 Relation to SP

The biggest difference between MMD-FW and SP is the objective function. Due to this difference,
we use gradient descent to obtain new particles which is still computationally effective in high-
dimensional problems. However, SP minimizes KSD, so we cannot use gradient descent since the
calculation of the gradient requires evaluations of the Hessian at each step, which is impossible
in high-dimensional problems. To cope with this problem, SP uses sampling or grid search for
optimization, which does not work in high-dimensional problems due to the curse of dimensionality.
As we will see later, SP does not work well with complex models (see the experimental results of
SP).

Another difference is that our method can reliably use an approximate step size for the weights
of particles. We have shown how the deviation of the approximate weights from the exact ones
affects the convergence rate, which justified the use of our method even when the exact step size is
unavailable.

Lastly, we use FW to establish a greedy algorithm. This enables us to utilize many useful variants
of the FW algorithm. For details, see Section 5.6.12.

However, compared with SP, we cannot evaluate the objective function directly, so we resort to
other performance measures such as the log likelihood, accuracy, or RMSE in test datasets. For SP,
we can directly evaluate KSD at each iteration.
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5.4.3 Relation to variational boosting

The proposed method is closely related to variational boosting (Locatello et al., 2017a). In Locatello
et al. (2017a), the authors analyzed the variational boosting by using the FW algorithm and showed the
convergence to the posterior distribution. In variational boosting, a mixture of Gaussian distributions
are used as an approximate posterior and its flexibility is increased the number of components in the
mixture of Gaussian distributions. An intuition behind the convergence of variational boosting is
that any distribution can be expressed by appropriately combining Gaussian mixture distributions.
That situation is quite similar to MMD-FW, where we increase the number of particles greedily. In
MMD-FW, we can regard each particle as being corresponding to each component of variational
boosting. In both methods, the flexibility of the approximate posterior grows as we increase the
number of components or particles and this allows us to establish the linear convergence under
certain conditions. The difference is that we consider the solution in an RKHS and minimize MMD
to approximate the posterior for MMD-FW, while variational boosting minimizes the KL divergence
and treats the posterior in the parameter space.

5.4.4 Relation to kernel herding and Bayesian quadrature

In this chapter, we assume that p(θ) is the posterior distribution. On the other hand, if p(θ) is a prior
distribution, kernel herding (Chen et al., 2010) or Bayesian quadrature (Ghahramani and Rasmussen,
2003), are useful. In those methods, θn’s are decided to directly minimize some criterions. For
example, the kernel herding method (Chen et al., 2010; Bach et al., 2012) minimizes MMD in a
greedy way. The biggest difference from our method is that if p(θ) is the prior distribution, we can
sample many particles from p(θ) and thus we can only choose the best particle that decreases the
objective function maximally at each iteration. In MMD-FW, on the other hand, we cannot prepare
the particles beforehand, and thus, we directly derive particles by gradient descent.

Other related work

Recently, there has been a tendency to combine an approximation of the posterior with optimization
methods, which assures us of some theoretical guarantee, e.g, Locatello et al. (2017a); Dai et al.
(2016). Our approach also performs discrete approximation by convex optimization in an RKHS.
Another related example is sequential kernel herding (Lacoste-Julien et al., 2015). They applied the
FW algorithm to particle filtering in state space models. While their method focused on the state
space models, our proposed method is a general approximation method for Bayesian inference.

5.5 Numerical experiments

We experimentally confirmed the usefulness of the proposed method compared with SVGD and
SP in both toy datasets and real world datasets. Other than comparing the performance measured
in terms of the accuracy or RMSE of the proposed method with SVGD and SP, we also have the
following two purposes for the experiments. The first purpose of the experiments is to confirm that
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our algorithm is faster than SVGD in terms of wall clock time. This is because, as mentioned before
in the section of relation to SVGD, it solves simple problems compared with SVGD, thus we need
less number of iterations to optimize each particle than that of SVGD in Section 5.4.1. The second
purpose is to confirm the convergence behavior.

In all experiments, we used the radial basis function kernel, k(θ, θ′) = exp(− 1
2h2 ∥θ − θ′∥22)

for proposed method and SVGD, where h is the kernel bandwidth. The choice of h is critical to
the success of the algorithms. There are three methods to specify the bandwidth, fixed bandwidth,
median trick, and the gradient descent. We experimented on the above three choices and found
that a fixed kernel bandwidth and the median trick are stable in general, and thus, we only show
the results obtained by the median trick here. For the kernel of SP, we used the three kernels
proposed by the original paper (Chen et al., 2018): IMQ kernel k1(θ, θ′) = (α + ||θ − θ′||22)β ,
inverse log kernel k2(θ, θ′) = (α + log(1 + ||θ − θ′||22))−1, and IMQ score kernel k3(θ, θ′) =

(α + ||∇ log p(θ) − ∇ log p(θ′)||22)β , where α = 1.0 and β = 0.5 are used as suggested in the
original paper. For the approx-LMO, we used Adam (Kingma and Ba, 2014) for all experiments.

Toy data

To clarify how our method works, we applied our algorithm to a two dimensional toy dataset
and observed how the particles approximate the target distribution. The true distribution is a two
dimensional mixture of Gaussians which is composed of 11 Gaussian distributions. First, we studied
the results of MMD-FW and SVGD by median trick visually and the result is shown in Figure. 5.1.
In the figure, the target distribution is represented in contour and red lines mean the high probability
mass regions and on the other hand, blue lines mean the low probability mass regions.

(a) 2D gaussian with particles obtained by MMD-
FW

(b) 2D gaussian with particles obtained by SVGD

Figure 5.1: Toy data example results of MMD-FW and SVGD by the median trick

We also visualized how the choice of the bandwidth affects the results. In Fig 5.3, we used the
fixed bandwidth in MMD-FW. As shown in Fig 5.3(a), the small bandwidth h = 0.1 makes the
particles scattered. This is because the second term of the update equation, which corresponds to
the entropy term, becomes very large due to the small bandwidth. When we use a large bandwidth
h = 1.0, the results is shown in Fig 5.3(b) and particles are collapsed to modes. This is because
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the entropy term becomes small, and thus the repulsion force between particles become small (see
Section 5.6.1 for the detailed explanation).

We also observed how the positions of particles change as we increase the total number of
particles. In Figure. 5.2, we visualized the results when 300 and 500 particles were used. From the
figure, as we increase the number of particles, the particles are more dispersed.

(a) 2D gaussian with 300 particles obtained by MMD-
FW

(b) 2D gaussian with 500 particles obtained by MMD-
FW

Figure 5.2: Toy data example results of MMD-FW by the median trick

Finally, by changing the number of particles and L, which is the number of gradient descent in
the approx-LMO, we studied how the final MMD changes. The result is shown in Fig 5.4. For the
comparison, the result of SVGD is also shown in the figure. We found that both in MMD-FW and
SVGD, MMD decreases as we increase the number of particles, while the number of L does not
affect MMD so much compared to the number of the particles.

(a) 2D gaussian with particles obtained by MMD-
FW with fixed bandwidth h = 0.1

(b) 2D gaussian with particles obtained by MMD-
FW with fixed bandwidth h = 1.0

Figure 5.3: The results of the toy data by MMD-FW of fixed bandwidth
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Figure 5.4: Final MMDs changing the number of particles and L

Stein Points Experiments

Next, we applied the stein points (SPs) to the toy dataset. SPs utilizes two algorithms for the
objective function, the greedy algorithm and the herding algorithm. Chen et al. (2018) proposed
3 methods for the optimization: the Nelder-Mead method, the Monte Carlo method and the grid
search method. Thus, we conducted experiments in 6 different combinations. Detailed explanation
of the experimental settings of SP is shown in Section 5.6.8. The result shown in Figure. 5.5 is
not favorable as expected. As the figure shows SPs failed to capture the character of the posterior
distribution since it only does exploration. Since the greedy algorithm together with Monte Carlo
seems to perform the best fit, we use this setting in the Bayesian logistic regression experiment in
the next section.

We also tried to test the SP method on Bayesian neural network settings. However, it is not
realistic since the dimension of the parameter space is too large.

Bayesian logistic regression

We considered Bayesian logistic regression for binary classification. The settings were the same
as in those Liu and Wang (2016), where we put a Gaussian prior p0(w|α) = N(0, α−1) for
regression weights w and p0(α) = Gamma(1, 0.01). As the dataset, we used Covertype (Dheeru
and Karra Taniskidou, 2017), with 581,012 data points and 54 features. The posterior dimension is
56. In this experiment, we used Adam with a learning rate of 0.005 and we split the data, 90% are
used for training and 10% are used for the test. Minibatch size is 100. For the LMO calculation, we
set L = 250. We used the median trick for the kernel bandwidth. To calculate the MMD, we have
to fix the bandwidth of the kernel and we used h = 2.5. The results are shown in Figure. 5.6. In
Figure. 5.6(a), the vertical axis is the test accuracy and the horizontal axis is wall clock time.
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(a) Greedy Monte Carlo (b) Herding Monte Carlo

(c) Greedy Nelder-Mead (d) Herding Nelder-Mead

(e) Greedy Grid Search (f) Herding Grid Search

Figure 5.5: Plots of the toy experiments by SPs

As we discussed in Section 5.4.1, our algorithm was faster than SVGD in terms of wall clock
time. SP did not work well. We also compared MMD-FW with stochastic gradient Langevin
dynamics (SGLD) (Welling and Teh, 2011) and faster than SGLD.
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Figure. 5.6(b) shows the convergence behavior, where the vertical axis isMMD2 and the horizon-
tal one is the number of particles in the log scale. To calculate MMD, we generated “true samples”
by Hamiltonian Monte Carlo (Neal et al., 2011). Since RBF kernel is an infinite dimensional kernel,
to further check the convergence behavior under the finite dimensional kernel, we approximated the
RBF kernel by random Fourier expansion (RFF). In Figure. 5.6(b), D is the number of frequency
of RFF. Also, we still compared with SP on MMD although this comparison is a little unfair since
the objective of SP is kernelized Stein discrepancy. As discussed in Section 5.3.2, although the
convergence is sub-linear order theoretically since we used RBF kernel which is an infinite dimen-
sional kernel, we observed the linear convergence thanks to the rounding error in the computer. The
convergence speed of RBF kernel approximated by RFF showed the linear, which is the expected
behavior since the approximated kernel by RFF is the finite dimensional kernel.

SVGD had a smaller MMD than the proposed method, which is due to the fact that SVGD
simultaneously optimizes all particles and tries to put particles in the best position in correspondence
with the global optima. In contrast, MMD-FW only increased the particles greedily, and this resulted
in local optima. Hence, the better performance of SVGD compared with MMD-FW with the same
number of particles in terms of MMD is a natural result.

Bayesian neural net regression

We experimented with Bayesian neural networks for regression. The settings were the same as
those in Liu and Wang (2016). We used a neural network with one hidden layer, 50 units, and
the ReLU activation function. As the dataset, we used the Naval data from the UCI (Dheeru and
Karra Taniskidou, 2017), which contains 11,934 data points and 17 features. In this experiment, we
used Adam with a learning rate of 0.005 and we split the data, 90% are used for training and 10%
are used for the test. minibatch size is 100 except for year dataset, where we used 500 minibatch
sizes. We use the zero mean Gaussian for the prior of the weights and we put Gamma(1, 0.1) prior
for the inverse covariances. For the LMO calculation, we set L = 1000 except for year dataset
where we set L = 2000. The posterior dimension was 953. The results are shown in Figure. 5.7.
In Figure. 5.7(a), the vertical axis is the test RMSE, and the horizontal axis is wall clock time. In
Fig 5.7(b), the vertical axis is the MMD2, and the horizontal axis is the number of particles. We
show the additional experimental results in Section 5.6.10.The posterior dimension was much higher
than that of the logistic regression, but our algorithm was faster than SVGD in terms of wall clock
time and linearly converged, which is consistent with the theory.

Table 5.1: Benchmark results on test RMSE and log likelihood by Bayesian neural
net regression model

Dataset Posterior Avg. Test RMSE Avg. Test log likelihood Fixed Wall clock
dimension SVGD Ours SVGD Ours Time (Secs)

Naval (N=11,934, D=17) 953 4.9e-4±7.5e-5 4.2e-4±5.3e-5 6.08± 0.11 6.00±0.12 150
Protein (N=45730, D=9) 553 4.51± 0.057 4.43±0.035 −2.93± 0.013 -2.91±0.0073 40
Year (N=515344, D=91) 9203 9.54± 0.08 9.50±0.09 -3.65±0.005 -3.65±0.011 300
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Figure 5.7: Comparison for the Bayesian neural net regression model

Results for other datasets are shown in Table 5.1, where we fixed the wall clock time and applied
MMD-FW and SVGD within that period. SP did not work well because of the high dimensionality
so its results are not shown. We experimented 5 random trials for changing the splitting of the
dataset. For the Protein data, we used the same model as the Naval data, and for the Year data, we
used the same model as others except that the number of hidden units is 100. From these benchmark
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dataset experiments, we confirmed that our method shows almost the same performance as SVGD
in many cases but shows faster optimization. Moreover, it shows linear convergence.

5.6 Appendix

In this section, we describe the proofs, additional discussions, and detailed explanations for the
experimental settings.

5.6.1 Proof of the gradient Eq.(5.15)

For the symmetric kernel k, the relation ∇θk(θ, θ
′) = ∇θ′k(θ′, θ) holds, and we apply the partial

integral method to the first term, then

∇θn

∫
k(θ, θn)p(θ)dθ =

∫
∇θnk(θ, θn)p(θ)dθ =

∫
{∇θk(θn, θ)}p(θ)dθ

= k(θn, θ)p(θ)
∣∣∞
−∞ −

∫
k(θn, θ)∇θp(θ)dθ = −Ep(θ) [k(θ, θn)∇θ ln p(θ)] . (5.19)

To approximate the integral, we usually use importance sampling when the analytic form of the
integral is not available. Instead, MMD-FW is the greedy approach, therefore we have particles which
had already been processed. Thus, we approximate the expectation by the empirical distributions
which are composed of already obtained particles. The FW framework does not need the exact
solution of the LMO and we just approximately solve it. At the early stage of the algorithm, there
are not so many particles and there might exist the unreliable particles, hence the expectation is not
so reliable. Since we only need to solve the approx-LMO, we can use these particles. Specifically,
the justification of using the existing particle for the integral approximation is based on no need to
strictly solve the LMO. Although the gradient is incorrect, the LMO can be solved with error to
some extent because the first particle is close to MAP and the evaluation points of the expectation
include, at least, one region with high density on p(θ). If the LMO is δ-close to the true value,
the weights of old incorrect particles will be updated to be small enough to ignore as the algorithm
proceeds. Therefore the framework using processed particles works. The key trick for this is that
the initial particle is close to the MAP. This kind of inexact gradient descent is widely used in the
FW algorithm. And as the algorithm proceeds, the weights of those early unreliable particles are
gradually reduced by the step size. Thus, we solve the LMO by the gradient descent of which
gradient is written by

∇θn

∫
k(θ, θn)p(θ)dθ ≃ −

1

N

N∑
m=1

k(θm, θn)∇θm ln p(θm). (5.20)

Thus, we can obtain the update equation,

∇θ⟨µ(n)
p̂ − µp, g⟩ =

1

n

n∑
l=1

w
(n)
l ∇θk(θl, θ) +

1

n

n∑
l=1

w
(n)
l k(θ, θl)∇θl ln p(θl). (5.21)



98 Chapter 5. Bayesian posterior approximation via greedy particle optimization

Algorithm 5: MMD minimization by Frank-Wolfe algorithm (MMD-FW)

1: Input: A posterior density p(θ)
2: Output: A set of particles ({wi, θi}Ni=1)

3: Calculate approximate MAP estimation for µ(1)
p̂

4: for n = 2 . . . N do
5: k(·, θn) =Approx-LMO(µ(n−1)

p̂ )
6: if Constant step then
7: λn = 1

γ+1

8: Update µ(n+1)
p̂ = (1− λl)µ

(n)
p̂ + λnḡn

9: else if Line search: then
10: λn = argminλ∈[0,1]J((1− λ)µ

(n)
p̂ + λḡn)

11: Update µ(n+1)
p̂ = (1− λl)µ

(n)
p̂ + λnḡn

12: else
13: Empirical BQ weight: ŵn

i =
∑n

m=1 ẑmK−1
im , ẑm =

∑n
l=1 k(θl, θm)/n

14: Update µ(n+1)
p̂ =

∑n
i=1 ŵ

n
i k(θ, θi)

15: end if
16: end for

In the above expression, the first term corresponds to the regularization term, which tries to scatter
the particles. When we use the RBF kernel, the first term is proportional to the inverse of the
bandwidth. Thus, it is easily understood that small bandwidth makes regularization term large, and
vise Versa. The second term tries to move particles in high mass regions.

5.6.2 Discussion about the step size of FW

A step size selection is crucial for the success of the FW algorithm since both the empirical
performance and theoretical convergence rate strongly depends on the step size. Generally, there are
three choices as shown in Alg 5. Common choices of the step sizes are the constant step size and
Line search. The step size of line search can be written as

λn =
⟨µ(n)

p̂ − µp, µ
(n)
p̂ − ḡn−1⟩

∥gi−1 − ḡn∥2H
. (5.22)

The point is that they constantly reduce the weights of earlier particles. Thus, those step sizes are
preferable when the early particles are not reliable. In our algorithm, those weights are not preferable
since we use the near MAP initialization.

Another choice of the step size is the fully correction. As the name means, this method updates
the weights of all particles which have already been obtained at the previous steps. The Bayesian
quadrature (BQ) weights are categorized into this type. In our algorithm, we used the BQ weights
since they are the optimal weights for the MMD. For more details of the Bayesian Quadrature, please
see Section 5.6.13 The weights of BQ can be calculated by

w
(n)
BQ =

∑
m

z⊤j K−1
nm, (5.23)
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where K is the gram matrix, zn =
∫
k(θ, θn)p(θ)dθ and we approximate the integral by particles.

Fully correction is preferable when the early particles are important. So, this choice is preferable in
our algorithm

The step size choice affects the convergence rate directly. In Section 5.3.2, we only showed the
results of the BQ weights. Actually, line search error bound is the same as the BQ weights. Also,
the infinite RKHS result of constant step is the same sa the BQ weights. Here we show the error
bound of constant step andH is finite dimensional.

Theorem 9. (Consistency) Under the condition of Theorem 7, the error |Zf,p − Zf,p̂| of Alg. 5
with constant step size is bounded at the following rate:

|Zf,p − Zf,p̂| ≤ MMD({(wn, θn)}Nn=1) ≤
2r2

RδN
, (5.24)

where r is the diameter of the marginal polytopeM, δ is the accuracy parameter, and R is the radius
of the smallest ball of center µp includedM.

Also, after MMD-FW algorithm converges, when we reweight the obtained particles by using
Bayesian quadrature weights. Then we can interpret it as the posterior, the following contraction
property holds (line search result is the same as the BQ, and infinite RKHS result of constant step is
the same as BQ, we only show the result of constant step in finite RKHS).

Theorem 10. (Contraction) Let S ⊆ R be an open neighborhood of the true integral Zf,p and let
γ = infr∈Sc |r − Zf,p| > 0. Then the posterior probability of mass on Sc = R \ S by Alg 5 with
constant step size vanishes at the rate:

prob(Sc) ≤ 2
√
2r2√

πRδγN
e−

γ2R2δ2N2

8r4 ,

(5.25)

where d is the diameter of the marginal polytopeM, δ is the accuracy parameter, R is the radius of
the smallest ball of center µp includedM.

5.6.3 Proof of Theorem 7

First, we consider the case of Line search variants. The proof goes almost in the same way as Beck
and Teboulle (2004) for the finite dimensional RKHS. (The proof of Guélat and Marcotte (1986) is
also useful.)

Finite dimensional RKHS

Since RKHS is finite-dimensional, we can prove the theorem in the same way as

1. First, we rewritten the proof of Proposition 3.2. in Beck and Teboulle (2004) where the proof
is done on Rn and then we extend it to the situation where we use the approximate LMO. The
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problem in Beck and Teboulle (2004) is

v∗ = min
h∈S

1

2
∥Mh− g∥2, (5.26)

and we solve this by FW. Here, g is m-dimensional function and h is the n-dimensional
function, and M is the projection matrix. And S denotes the feasible space of functions that
we are considering, such as RKHS. First, we state the general strategy of proving the linear
convergence of the above problem by the line search FW algorithm. If you want to see the
whole proof, please check Beck and Teboulle (2004).

We consider to solve the above problem by FW algorithm. We express the solution of the
linearization of the above problem as p, that is, if we express the initial point as h0 ∈ M,
and express the k − 1-th linearization problem and its solution as pk−1 := arg min

p∈S
{⟨p −

hk−1,∇f(hk−1)⟩}. And if the step size λk−1 is obtained via constant step or Line search, then
the next state is calculated byhk = hk−1+λk−1(pk−1−hk−1). We express vk := g−Mhk−1,
wk := g −Mpk−1. Base on this definition, ∇f(hk−1) = M⊤(Mhk−1 − g), thus LMO
problem can be written as

pk−1 : = arg min
p∈S

{⟨p− hk−1,M
⊤(Mhk−1 − g)⟩}

= arg min
p∈S

{⟨M(p− hk−1)− g + g,Mhk−1 − g⟩}

= arg min
p∈S

{⟨Mp− g + vk−1,−vk−1⟩}

= arg min
p∈S

{⟨g −Mp, vk−1⟩}. (5.27)

Thus, the LMO problem can be characterized as

⟨wk−1, vk−1⟩ = min
p∈S
{⟨g −Mp, vk−1⟩} (5.28)

Also ∥vk∥2 denotes the error of the algorithm at k-th step.

Let us consider the line search step size. By the straightforward calculation of the definition
of the line search, we can show that the line search step size is

λk−1 =
⟨vk−1, vk−1 − wk−1⟩
∥vk−1 − wk−1∥2

. (5.29)

if this λk−1 ≤ 1, since we assumed that the step size is smaller than 1. Based on this step
size, we can show that

∥vk∥2 = ∥g −Mhk∥2 =
∥vk−1∥2∥wk−1∥2 − ⟨vk−1, wk−1⟩2

∥vk−1 − wk−1∥2
. (5.30)
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From Proposition 3.1 in Beck and Teboulle (2004), following relation holds,

⟨vk, wk⟩ ≤ −Rs(ĥ,M)∥vk∥. (5.31)

This says that there exists a ball whose radius is Rs(ĥ,M) centerted lies withinM. By using
this relation, we can show that

∥vk∥2 ≤
(
1− R2

∥wk−1∥2

)
∥vk−1∥2. (5.32)

Finally, since the domain S is the bounded set, it is contained in some larger ball whose radius
is ρS and thus, the relation ∥wk−1∥ ≤ ∥g −Mpk−1∥ ≤ ∥g∥+ ∥M∥ρs holds. Thus

∥vk∥2 ≤

(
1−

(
R

∥g∥+M∥ρs∥

)2
)
∥vk−1∥2, (5.33)

holds and this means the linear convergence of the problem, since ∥vk∥ express the error of
the algorithm at iteration k.

2. Base on the original proof, let us consider the approximate LMO whose accuracy parameter
is δ. As we saw, the solution of the LMO problem can be written as Eq.(5.28). Approximate
LMO returns w̃ which deviates from the true w in the following way Also ∥vk∥2 denotes the
error of the algorithm at k-th step.

Let us consider the line search step size. By the straightforward calculation of the definition
of the line search, we can show that the line search step size is

⟨vk, w̃k⟩ ≤ δ⟨vk, wk⟩. (5.34)

This is derived straightforwardly from the definition of the approximate LMO. From this
definition, following holds by Eq.(5.31)

⟨vk, w̃k⟩ ≤ −δRs(ĥ,M)∥vk∥. (5.35)

Here after, for simplicity, we assume that step size of the line search and BQ are obtained
without approximation(In our algorithm, they are approximated by empirical approximation).
Later, we will discuss the those inexact step sizes.

Based on the above approximate LMO relation, we replace the wk by w̃k in the proof of
Proposition 3.2. in Beck and Teboulle (2004), and we obtain the variant of Eq.(12) in Beck
and Teboulle (2004) which uses approximate LMO not LMO. After this, we use Eq.(5.35) for
the evaluation of ∥vk∥2 and we can obtain the following expression,

∥vk∥2 ≤

1−

(
δRs(ĥ,M)

∥g∥+ ρs∥M∥

)2
 ∥vk−1∥2 (5.36)
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Finally let us rewrite Eq.(5.36) by using the notations which we used in Section 5.3. From the
assumption that ∥k(·, θ)∥H ≤ r, this means that r is the diameter of the marginal polytope.
Thus ∥g∥+ ρs∥M∥ ≤ r and ∥v0∥2 = ∥g −Mh0∥2 ≤ r2. Thus,

∥vk∥2 ≤ r2 exp

(
−N

(
δR

r

)2
)
. (5.37)

Based on this bound, we can apply the result of Ch.4.2 in Bach et al. (2012).

Then, by utilizing the discussion of Section B in Briol et al. (2015), we can obtain the following
expression.

|Zf,p − Zf,p̂| ≤ MMD({(wn, hn)}Nn=1) ≤ ∥µp − µp̂∥. (5.38)

This is derived Cauchy Schwartz inequality and the definition of MMD and ∥f∥H ≤ 1. Thus,
we have proved the theorem in the case of line search.

3. Since fully corrective variants optimize all the weights, the upper bound of this is superior to
that of the line search (In particular, BQ weights are the optimal weights). Hence

|Zf,p − Zf,p̂|2 ≤ ∥vFCk ∥2 ≤ ∥vk∥2 ≤ r2 exp

(
−N

(
δR

r

)2
)
, (5.39)

where vFCk is derived by fully corrective variants. Thus we can bound the fully corrective
variant in the same expression as line search. Also, geometric convergence of fully correction
variant is discussed in Locatello et al. (2017a); Lacoste-Julien and Jaggi (2015). They also
discussed it by using the fact that fully correction is superior to line search. So far we have
worked on the problem in Beck and Teboulle (2004), but this result is directly applicable to
the finite-dimensional RKHS problem, see Bach et al. (2012).

This is the result when the exact step size is available. In Section 5.6.5.2, we will consider the
effect of inexact step size (and introduce δBQ)

Finite dimensional RKHS and constant step size case

Next, we consider the constant step case. This proof is completely same as Chen et al. (2010); Bach
et al. (2012) except for replacing the LMO to approx-LMO and introduce the accuracy parameter δ.

Different accuracy of approx-LMO

In the above proof, we consider the fixed accuracy parameter δ for the approximate LMO. However,
the δ can be different at each approximate LMO calls. In that situation, we express the accuracy
parameter of the k-th call as δk. We consider the worst accuracy LMO call and define δ = mink δk.
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About the Line search, if we put q2 =
(

Rs(θ̂,M)
∥g∥+ρs∥M∥

)2
, then following relation holds,

∥vk∥2 ≤ ∥v0∥2e−q2
∑k

l=0 δk

≤ ∥v0∥2e−q2kmink δk

= ∥v0∥2e−q2kδ. (5.40)

Infinite dimensional RKHS

The above discussion depends on the existence of a ball inside the domain. Next we discuss about
the infinite RKHS situation, where a ball does not exist. For the proof, we just utilize the standard
FW proof. The proof is the same in Locatello et al. (2017b). We use the same notation in the finite
RKHS case. We define the objective function as f(h) = 1

2∥h− µ∥2. This norm should be written
as ∥ · − · ∥H, but for simplicity, we write in the above form. Let us assume that after the k-th step
of FW, we get the solution of approx-LMO and which is expressed by p. Then, the solution hk−1 is
updated to hk = hk−1 + λ(p− hk−1) where λ is the step size. We study how f(hk) and f(hk−1)

is different. We expand f(hk) as

f(h+ λ(p− h)) = f(h) + λ⟨p− h,∇f(h)⟩+ λ2

2
∥(h− p)∥2. (5.41)

About the third term, from the assumption that ∥k(·, θ)∥H ≤ r, thus this means that r is the
diameter of the marginal polytope it is upper bounded by λ2

2 (2r)2. Then we set vk = ∇f(hk),
then ∥vk∥2/2 = f(hk). About the second term, by using this definition and the approx-LMO,
⟨pk−1 − hk−1,∇f(hk−1)⟩ ≤ −δ∥vk−1∥2.

So far we do not specify the step size. Here let us assume that Line search step size is used.
Then line search step size minimizes the right hand side of the above inequality with respect to λ.
From this, by using the approx-LMO with accuracy parameter δ, we get the following inequality

∥vk+1∥2 ≤ ∥vk∥2 +min
λ

{
−λδ∥vk∥2 +

λ2

2
(2r)2

}
≤ ∥vk∥2 −

2

δk + 2
δ∥vk∥2 +

2

(δk + 2)2
(2r)2, (5.42)

where in the second line, we set λ = 2
δk+2 . This step size is not optimal, on the other hand line

search step size is optimal, thus we get the inequality in the second line on the above expression.
Finally, by the induction, we get prove

∥vk∥2 ≤ 2
(1 + δ)(2r)2

δ(δk + 2)
, (5.43)

this is the same way as the standard FW algorithm. This ends the proof when exact step size
calculation is available. In Section 5.6.5.2, we will consider the effect of inexact step size (and
introduce δBQ).
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5.6.4 Discussion about the inexact step size for line search step size

Here, we analyze the effect of inexact step size on the convergence rate.
First, we will see the step size of the line search in finite-dimensional case. The calculation of

the step size in the line search includes ⟨µp, g⟩ =
∫
k(θ, θ′)p(θ′)dθ′ which is intractable in general

if p(θ) is posterior distribution. For the analysis, we express the exactly calculated step size by the
line search by λ and λ′ denotes the step size in which the above integration is approximated by
empirical distribution. We also express the ratio of λ and λ′ as α, where λ′ = αλ. This α express
the deviation from the exact step size λ. We analyze what range of α is required to assure the linear
convergence in finite dimensional kernel

Theorem 11. (Inexact step size in for line search) If the ratio α is bounded inside (0, 2), then
exponential convergence still holds.

Proof. First, let us go back to the proof of exponential convergence for line search step size. Since
we express the approximated step size by λ′ = αλ,

∥v2k+1∥

= ∥g −Mhk+1∥2

= λ′2∥vk − wk∥2 + 2λ′⟨vk, wk − vk⟩+ ∥vk∥2

= (1− α)2∥vk∥2 − 2(1− α)2⟨vk, wk⟩+ (α2 − 2α)⟨vk, wk⟩2 + ∥vk∥2∥wk∥2. (5.44)

From this, we can bound the right hand side in the same way as before, but which includes the
additional coefficients

∥v2k+1∥ ≤
{
1− α(2− α)R2

r2

}
∥v2k∥. (5.45)

Thus, to enhance the geometrical decrease, α(2− α) > 0 is needed. This ends the proof. Note that
the convergence rate is maximized at α = 1, that is, the correct step size is used.

5.6.5 Discussion about BQ weights and proof of Theorem 6

Next, we analyze the approximate BQ weights. To do that, we need to evaluate how MMD changes
between the k+1-th step of FW and k-th step of FW. To evaluate this difference, we first review the
Bayesian Quadrature (BQ).

5.6.5.1 Discussion about Bayesian quadrature and inexact step size

In the Bayesian Quadrature method (Ghahramani and Rasmussen, 2003; Huszár and Duvenaud,
2012), we put on the Gaussian process prior on f with kernel k and mean 0. In usual Gaussian
processes, after conditioned on f(Θ) = (f(θ1), . . . , f(θN ))

⊤, we can obtain the closed-form
posterior distribution of f ,

p(f(θ∗)|p(f(θ))) = N(f(θ∗)|µ,Σ), (5.46)
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where µ = k(θ∗, θ)K
−1f(Θ), Σ = k(θ∗, θ∗) − k(θ∗, θ)K

−1k(θ, θ∗), here Ki,j = k(θi, θj) and
N(x|µ,Σ) means the Gaussian distribution with mean µ and the covariance Σ. Thanks to the
property of Gaussian process that linear projection preserves the normality, the integrand is also
Gaussian, and thus we can obtain the posterior distribution of the integrand as follows,

EGP[Zf,p] = EGP

[∫
f(θ)p(θ)dθ

]
=

∫∫
f(θ)p (f(θ)|p(f(Θ))) p(θ)dθdf

=

∫
k(θ,Θ)K−1f(Θ)p(θ)dθ

= z⊤K−1f(Θ), (5.47)

where zn =
∫
k(θ, θn)p(θ)dθ. From the above expression,

EGP[Zf,p] =

N∑
n=1

w
(n)
BQf(θn), w

(n)
BQ =

∑
m

z⊤j K−1
nm. (5.48)

In the same way as the expectation, we can calculate the variance of the posterior,

V[Zf,p|f(θ1), . . . f(θN )] =

∫∫
k(θ, θ′)p(θ)p(θ′)dθdθ′ − z⊤K−1z. (5.49)

Huszár and Duvenaud (2012) proved that in the RKHS setting, minimizing the posterior variance
corresponds to minimizing the MMD,

V[Zf,p|f(θ1), . . . f(θN )] = MMD2({(w(n)
BQ, θn)}

N
n=1). (5.50)

The BQ minimize the above discrepancy greedily in the following way,

θN+1 ← arg min
θ

V[Zf,p|f(θ1), . . . f(θN ), f(θ)]. (5.51)

Huszár and Duvenaud (2012) showed that

MMD({(w(n)
BQ, θn)}

N
n=1) = inf

w∈RN
sup

f∈H:∥f∥H=1

|Zf,p − Ẑf,p|, (5.52)

and thus,

MMD({(w(n)
BQ, θn)}

N
n=1) ≤ MMD({(wn =

1

N
, θn)}Nn=1) (5.53)
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Now we analyze how MMD({(w(n)
BQ, θn)}

k+1
n=1)

2 and MMD({(w(n)
BQ, θn)}kn=1)

2 differs. This is
explicitly calculated by Eq.(5.49),

MMD({(w(n)
BQ, θn)}

k+1
n=1)

2 −MMD({(w(n)
BQ, θn)}

k
n=1)

2

= −z⊤
(k+1)K

−1
(k+1)z(k+1) + z⊤

(k)K
−1
(k)z(k), (5.54)

whereK(k) denotes the Gram matrix using data θ1 to θk andz(k) = (
∫
k(θ1, θ)dθ, . . . ,

∫
k(θk, θ)dθ)

⊤.
Since this quantity is the difference of quadratic form, it is convenient for the analysis based on their
eigenvalues. Here we assume thatK(k) andK(k+1) are full rank. Since they are gram matrix of posi-
tive definite kernel, there exists different positive k eigenvalues for the matrix K(k). We denote those
eigenvalues by γi, i = 1 . . . k, and let ei be its eigenvector, K(k)ei = γei. Let U = (e1, . . . , ek),
then by diagonalization

K(k) = U


γ1 . . . 0

. . .

0 . . . γk

U⊤ (5.55)

= UΓU⊤. (5.56)

From the inverse matrix property,

K−1
(k) = U


γ−1
1 . . . 0

. . .

0 . . . γ−1
k

U⊤ (5.57)

= UΓ−1U⊤. (5.58)

By diagonalization,

MMD({(w(n)
BQ, θn)}

k
n=1)

2 =

k∑
i=1

γ−1
i z′⊤i z′i, (5.59)

where z′i = U⊤zi. Next, about K(k+1), we investigate its eigenvalues. We can express K(k+1) as

K(k+1) =

(
K(k) k̃(k+1)

k̃⊤(k+1) 1

)
, (5.60)

where k̃⊤k+1 = (k(θk+1, x1) . . . k(θk+1, θk))
⊤. Let Ek be the k × k identity matrix. Then the

eigenvalue of K(k+1) can be calculated by solving the following equation.

0 = det

(
K(k) − γ∗Ek k̃(k+1)

k̃⊤(k+1) 1− γ∗

)
. (5.61)
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We solve the above equation with respect to γ∗ and the obtained γ∗ correspond to the eigenvalues.
We use the determinant formula,

det

(
A B

C D

)
= detA det(D − CA−1B), (5.62)

where regularity is assumed for A and D. Then,

0 = det(K(k) − γ∗Ek)
(
(1− γ∗)− k̃⊤n+1(K(k) − γ∗Ek)

−1k̃n+1

)
. (5.63)

From the first term, we can see that K(k+1) have (γ1, . . . , γk) as the eigenvalues. This is equivalent
to the eigenvalue of Kn. The newly appearing eigenvalue is the solution of

0 = (1− γ∗)− k̃⊤(k+1)(K(k) − γ∗Ek)
−1k̃(k+1). (5.64)

This eigenvalue is also positive and it is different from other eigenvalues (γ1, . . . , γk). We express
the solution of the above equation as γk+1. Let us goes back to the evaluation of the difference of
MMD between k + 1 and k-th step of FW,

MMD({(w(n)
BQ, θn)}

k+1
n=1)

2 −MMD({(w(n)
BQ, θn)}

k
n=1)

2. (5.65)

For the evaluation of the above difference, in addition to the eigenvalue, we also need the eigenvector
of the gram matrix K(k+1). From Eq.(5.60), we expand this matrix. For simplicity, we express
a = k̃(k+1). Then we can express K(k+1) as,

K(k+1) = Q⊤

(
K(k) 0

0 1− a⊤K−1
(k)a

)
Q, (5.66)

where

Q =

(
Ek K−1

(k)a

0 1

)
. (5.67)

This is tricky but you can easily verify it by just substituting the definitions. Here we consider the
following where d = 1− a⊤K−1

(k)a for simplicity,

(
K(k) 0

0 d

)(
ei

0

)
=

(
K(k)ei

0

)
= λi

(
ei

0

)
:= λie

′
i, (5.68)

where (ei, λi)
k
i=1 are the eigenvectors and eigenvalues for K(k). Thus, this e′i can be regarded as the

eigenvector for K(k+1) whose eigenvalue is λi. Also, by noticing the fact that(
K(k) 0

0 d

)(
0

1

)
= d

(
0

1

)
=: dek+1. (5.69)
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This is also the eigenvector whose eigenvalue is d, also this is orthogonal to e′1, . . . , e
′
k. By setting

U ′ = (e′1, . . . , e
′
k, ek+1), we can diagonalize K(k+1) as

K(k+1) = Q⊤U ′


γ1 . . . 0

. . .

γk

0 . . . d

U ′⊤Q (5.70)

= Q⊤U ′Γ′U ′⊤Q. (5.71)

Thus,

K−1
(k+1) = Q⊤U ′Γ′−1U ′⊤Q. (5.72)

Let us calculate U ′⊤Q furthur,

U ′⊤Q =

(
U⊤ 0

0 1

)(
Ek K−1

(k)a

0 1

)
=

(
U⊤ U⊤K−1

(k)a

0 1

)
. (5.73)

Let us multiply (z1, . . . , zk, zk+1)
⊤ = (z, zk+1)

⊤ to the above expression,

U ′⊤Q

(
z

zk+1

)
=

(
U⊤ U⊤K−1

(k)a

0 1

)(
z

zk+1

)

=

(
U⊤z

0

)
+ zk+1

(
U⊤K−1

(k)a

1

)

Based on these results, let us calculate how the variance changes when we add the one data in BQ.
Let us go back to Eq.(5.54),

MMD({(w(n)
BQ, θn)}

k+1
n=1)

2 −MMD({(w(n)
BQ, θn)}

k
n=1)

2

= −z2k+1

(
(U⊤K−1

(k)a)
⊤, 1

)
Γ−1′

(
U⊤K−1

(k)a

1

)
= −αz2k+1 < 0. (5.74)

Thus, we confirm that how much each step of the FW algorithm decreases MMD.

5.6.5.2 Proof of Theorem 6

Based on these results, let us describe the proof of Theorem 6 for the inexact step sizes. For the
notation, let us denoteMMD({(w(n)

BQ, θn)}
k+1
n=1)

2 as ∥vk+1∥2. Then we analyze how the convergence
rate is affected by the inexact step size. To do that, from Eq.(5.49, 5.50, 5.74), we check the ratio of
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the variance between k-th and k + 1-th step as

∥vk+1∥2

∥vk∥2
= 1−

αz2k+1

Eθ,θ′∼p(θ)k(θ, θ′)−
∑k

i=1 γ
−1
i z′⊤i z′i

. (5.75)

Remember that this is the similar expression in the proof of the line searh FW. Since the convergence
speed of BQ is at least faster than the line search, the convergence coefficient of BQ is larger than
that of the line search, we can say that

R2

(∥g∥+ ρs∥M∥)2
≤

αz2k+1

Eθ,θ′∼p(θ)k(θ, θ′)−
∑k

i=1 γ
−1
i z′⊤i z′i

. (5.76)

Now let us consider the empirical approximation effect. We express it via the ratio

βi =
∑
l

k(θi, θl)/

∫
k(θi, θ

′)p(θ′)dθ, (5.77)

where z̃i =
∑

l k(θi, θl) and zi =
∫
k(θi, θ

′)p(θ′)dθ. This is the ratio between exact weight and
empirical approximation. Thus,

z̃i = βizi. (5.78)

Then if we use the approximate BQ step, the approximated ∥ṽk+1∥2

∥ṽk∥2 (we stress that those ṽs are the
variance which is calculated based on the approximated BQ weights) can be written as

∥ṽk+1∥2

∥ṽk∥2

= 1−
β2
k+1αz

2
k+1

Eθ,θ′∼p(θ)k(θ, θ′)−
∑n

i,j=0 βjzjK
−1
ij βizi

= 1−
αz2k+1

Eθ,θ′∼p(θ)k(θ, θ′)−
∑k

i=1 γ
−1
i z′⊤i z′i

β2
k+1(Eθ,θ′∼p(θ)k(θ, θ

′)−
∑k

i=1 γ
−1
i z′⊤i z′i)

Eθ,θ′∼p(θ)k(θ, θ′)−
∑n

i,j=0 βjzjK
−1
ij βizi

.

(5.79)

For the geometric convergence, Eθ,θ′∼p(θ)k(θ, θ
′)−

∑n
i,j=0 βjzjK

−1
ij βizi must be positive. (Since

Eθ,θ′∼p(θ)k(θ, θ
′)−

∑k
i=1 γ

−1
i z′⊤i z′i is always positive.) If this condition is satisfied then we express

δBQ =
β2
k+1(Eθ,θ′∼p(θ)k(θ, θ

′)−
∑k

i=1 γ
−1
i z′⊤i z′i)

Eθ,θ′∼p(θ)k(θ, θ′)−
∑n

i,j=0 βjzjK
−1
ij βizi

. (5.80)

which is some positive constant. Then

δBQR
2

(∥g∥+ ρs∥M∥)2
≤

δBQαz
2
k+1

Eθ,θ′∼p(θ)k(θ, θ′)−
∑k

i=1 γ
−1
i z′⊤i z′i

, (5.81)

holds. This ends the proof of Theorem 6 and Theorem 7 of the case of finite dimension.
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Infinite dimensional RKHS

Next we consider the infinite dimensional RKHS. By using the above notation, when we use the
inexact BQ step size,

∆̂BQ := ∥ṽk+1∥2 − ∥ṽk∥2 = −β2
k+1αz

2
k+1. (5.82)

In the same way, we express the above quantity under exactly calculated BQ step as

∆BQ := ∥vk+1∥2 − ∥vk∥2 = −αz2k+1. (5.83)

Let us goes back to the discussion of the previous section. From Eq.(5.42), we get

∆BQ ≤ min
γ

{
−γδ∥vk∥2 +

γ2

2
(2r)2

}
. (5.84)

Then, following relation holds,

∆̂BQ ≤ β2
k+1 min

γ

{
−γδ∥vk∥2 +

γ2

2
(2r)2

}
. (5.85)

To eliminate the dependence of k form βk+1, let β′ is the largest of (β1, . . . , βk+1). And in the same
way as the previous discussion, we can conclude by the induction that

∥vk∥2 ≤ 2
(1 + β′2δ)(2r)2

δ(β′2δk + 2)
. (5.86)

If we set δBQ = β′2, this ends the proof.

5.6.6 Proof of Theorem 8

Our results are directly obtained by Section B of Briol et al. (2015), which is the proof of the
contraction theorem. The calculations after Eq.(26) and Eq.(31) in Briol et al. (2015) holds in our
settings. Thus all we need to do is to substitute the variance of ours into Eq.(31) in Briol et al. (2015).
In Briol et al. (2015), author proved that since the posterior distribution is the Gaussian distribution
N(Zf,p̂, σ

2
N ) where

σN = MMD({θi, wBQ
i }

N
i=1), (5.87)

and wBQ
i is the Bayesian Quadrature weight. Then posterior probability mass on Sc is calculated by

MN =

∫
Sc

N(Zf,p̂, σ
2
N ), (5.88)
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and this value is approximated by the following (this is the Eq.(31) in Briol et al. (2015))

MN ≤

√
wσ2

N

πγ2
exp(−γ2/(2σ2

N )). (5.89)

Our variance is derived by reweighting the particles obtained by MMD-FW with Bayesian
Quadrature weight and calculate the weighted MMD. This is upper bounded by the bound of the
result Theorem 7 because MMD with Bayesian quadrature weights is optimal (see Section 5.6.5).
Thus, by substituting the result of Theorem 7 into Eq.(31) in Briol et al. (2015), we obtain the result.

Actually, we cannot calculate the Bayesian Quadrature weight analytically, so we approximate
it by obtained particles. Even in such a case, we can obtain the upper bound. The posterior distri-
bution is denoted by N(Zf,p̂, σ

2
N ), where σN = MMD({θi, wBQ

i }Ni=1), and wBQ
i is the Bayesian

Quadrature weight. Since we approximate this weight empirically and denote the corresponding
variance by σ̂N = MMD({θi, ŵBQ

i }Ni=1). Since Bayesian Quadrature weight is the optimal weight
and this means σN ≤ σ̂N . Thus we can upper bound Eq.(31) in Briol et al. (2015) by this variance
whose weight is approximated by particles. Then, we get the expression of Theorem 8.

5.6.7 Discussion about the choice of the kernel

The choice of the kernel is crucial numerically and theoretically. In convergence proofs, we assumed
that within the affine hullM, there exists a ball with center θ̂ and radius R that is included inM.
Bach et al. (2012); Briol et al. (2015) proved that for infinite-dimensional RKHS, e.g., RBF kernel,
this assumption never holds. Thus, we can only have the sub-linear convergence for RBF kernels
in general. However, as pointed in Briol et al. (2015), even if we use RBF kernels, thanks to the
rounding in a computer, what we treat in a simulation are finite-dimensional. This holds to our
situation, and in the experiments, we observed the linear convergence of our algorithm.

5.6.8 Detailed experimental settings of SPs

We describe the additional explanation about SPs. In the optimization of SPs, to perform on step
optimization in a n dimension parameter space, the Nelder-Mead method needs to evaluate the
objective function at least n+1 times, and the grid search method needs to evaluate dn times, where
d is the number of grids in one dimension.

The details of the greedy algorithm are elaborated as follows. The distance we want to minimize
between n sampled points and the posterior distribution is defined as

D =

√√√√ 1

n2

n∑
i,j=1

k0(θi, θj). (5.90)
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Starting from the first MAP data point, the greedy algorithm tries to find a data points that minimize
the distance. The greedy algorithm solves the optimization problem

θn = argminθ
k0(θ, θ)

2
+

n−1∑
i=1

k0(θi, θ), (5.91)

for the nth data point, where k0(θ, θ′) is the Stein repoducing kernel defined as

k0(θ, θ
′) = ∇θ · ∇θ′k(θ, θ′) +∇θk(θ, θ

′) · ∇θ′ log p(θ′) +∇θ′k(θ, θ′) · ∇θ log p(θ)+

k(θ, θ′)∇θ log p(θ)∇θ′ log p(θ′). (5.92)

The Gaussian kernel is used for the base kernel k(θ, θ′).
The details of the Monte Carlo methods are elaborated as follows. The first sample is drawn by

performing MAP approximation, for which we looped 100 times. From the second sample, we take
the strategy below. First, we uniformly select 20 base points within existing points. Then, we sample
20 points from a Gaussian distribution, whose location is the base point and scale is set to be 1.
We resampled the points until the elements of the 20 points all fall in the range [−1, 1]. Finally, we
evaluate the 20 points and select the one that performs the best. However, the experiment is hardly
feasible. Sampling only 4 data points took 3 minutes and the accuracy is only 56%.

5.6.9 Additional toy data experiments

In this section, we give the situation where our method fails. One failure situation is that there are
many modes which have same heights. Since our method relies on finding the near MAP point in
the first step of the algorithm and approximating the expectation, when there are many modes with
same heights, finding the modes will be meaningless to approximate the expectation and then our
method will fail.

In Figure. 5.8, we consider the two dimensional mixture Gaussian distribution with same heights.
There are 9 Gaussian distributions with same heights. We approximate it by our method and SVGD.
As shown in Figure. 5.8, neither methods represent the target distribution. Since SVGD is the
deterministic method, many particles are trapped in the same mode. In this kind of situation, we
need the stochasticity to escape from those local modes.

5.6.10 Additional benchmark dataset experiments

Here, we present that of the protein data in Figure. 5.9.

5.6.11 Discussion about Cache-MMD-FW

As we discussed in Section 5.4.1, we can combine MMD-FW and SVGD. The algorithm is simple.
We just replace the Approx-LMO in MMD-FW by Cached approx-LMO as described in Alg. 6. To
use the Cached approx-LMO, we first optimize N particles by SVGD. After finishing the SVGD, we
store the optimized particles in the “Cache”. Then, in the Cached approx-LMO, in each iteration,
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(a) 2D gaussians with same heights approximated
by SVGD

(b) 2D gaussians with same heights approximated
by MMD-FW

Figure 5.8: Toy data example of the mixture Gaussian with same heights and
results of MMD-FW and SVGD

we first choose the particle which minimizes the absolute value of ∇θMMD(θ)2 from the Cache.
Then we adopt the chosen particle as the initial state of the solution and update it. By doing this,
the number of iteration will be drastically small for each iteration. And we eliminate the chosen
particle from the cache to prevent from choosing the same particle many times. Based on this Cached
approx-LMO, the whole algorithm is given in Alg. 7. We name this algorithm, Cache-MMD-FW.
When we use all the particles which are obtained by SVGD, then we will use the usual Approx-LMO
in the Algorithm. The theoretical property of this algorithm is as same as the MMD-FW.

Algorithm 6: Cached approx-LMO

1: Input: µ(k)
p̂

2: Output: k(·, θL+1)
3: θ(0) = argminθ∈cache|∇θMMD(θ)2|
4: Eliminate the chosen θ from the Cache
5: for l = 0 . . . L do
6: Compute∇θMMD2 by Eq.(5.15)
7: Update θ(l+1) ← θ(l) + ϵ(l) · ∇θMMD2

8: end for

Algorithm 7: Cached MMD minimization by Frank-Wolfe algorithm
. . . as Alg. 3 , except for the input of step 1
and use the Cached approx-LMO at step 3.
Input: A posterior density p(θ) and particles {θ(0)n }nn=1

obtained by SVGD
ḡn =Cached approx-LMO(µ(n)

p̂ )

We did the numerical experiment about this algorithm on the toy data which we had explained
in the previous section. First, we optimized 200 particles by SVGD. We set the number of iteration
L = 10 in Cached approx-LMO. The results are shown in Fig 5.10.
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Figure 5.9: Comparison of MMD-FW and SVGD in terms of wall clock time with
test accuracy(Protein data)

Figure 5.10: Toy data results by Cached-MMD-FW

5.6.12 Other variant of FW: Lazy FW algorithm

As we discussed in Section 5.4.1, we can utilize the many variants of the FW to our setting. Here
we pick up the Lazy FW Braun et al. (2017).

In Lazy FW, instead of calling the LMO at each step, we re-use the particles which had already
been processed and satisfied the criterion. We call such a procedure as Lazy-LMO and shown in Alg
8. This method never improves the sample complexity of the bound, however, it drastically reduces
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the wall-clock time. When no stored particles satisfy the criterion, we will solve the LMO or update
the criterion. When we solve the LMO, we use the Cached approx-LMO of Alg. 6 which contributes
to the reduction of the wall clock time of approximate LMO calculation.

Algorithm 8: Lazy LMO

1: Input: Φn, K, µ(n)
p̂

2: Output: false or k(·, θ)
3: if θ cached with Dg(µ

(n)
p̂ , θ) ≤ −Φn/K exists then

4: return k(θ, ·){Cache call}
5: else
6: k(·, θ) =Cached approx-LMO(µ(n)

p̂ ) of of Alg. 6
7: if Dg(µ

(n)
p̂ , θ) ≤ −Φ/K then

8: return k(θ, ·) and add θ to cache
9: else

10: return false
11: end if
12: end if

Algorithm 9: Lazy MMD-FW
1: Input: Accuracy parameter K, a posterior density p(θ),

initial particles {θ(0)n }nn=N obtained by SVGD
2: Add all the initial particles into the cache.
3: θ0 = argminθ∈cache|∇θ ln p(θ)|
4: µ

(0)
p̂ = k(·, θ0)

5: Φ0 = −minθ∈cache Dg(µ
(0)
p̂ , θ)/2

6: for iteration n do
7: ḡn =Lazy-LMO(Φn,K, µ

(n)
p̂ )

8: if ḡn =false then
9: µ

(n+1)
p̂ = µ

(n)
p̂

10: Φn+1 = Φn
2

11: else
12: λn = argminλ∈[0,1]J((1− λ)µ

(n)
p̂ + λḡn)

13: Update µ(n+1)
p̂ = (1− λn)µ

(n)
p̂ + λnḡn

14: Φn+1 = Φn

15: end if
16: end for

To skip the calling of the LMO, we have to calculate the criterion, which is often called the
duality gap:

Dg(µ
(n)
p̂ , θ) : = ⟨µ(n)

p̂ − µp, µ
(n)
p̂ − (̨θ, ·)⟩

=

n−1∑
l′,l=0

w
(n−1)
l′ w

(n−1)
l k(θl′ , θl)−

n−1∑
l=0

w
(n−1)
l (k(θl, θ) + µp(θl)) + µp(θ). (5.93)

The whole algorithm is given in Alg. 9, where we consider the situation that we have already
pre-processed particles via SVGD to further reduce the wall clock time. We can also consider the
case that particles are not processed by SVGD. In that case, we simply initialize particle sampling
from prior or randomly.
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Practically, we have to calculate Eq. (5.93) and this is difficult since this includes the integral µp.
We tried to approximate this term by the technique of biased importance sampling (Bamler et al.,
2017), but not work well. Thus, the practical implementation of this algorithm is future work.

The theoretical behavior of Alg. 9 is almost similar to that of ordinary MMD-FW.
I

5.6.13 Discussion about herding and quadrature

When exact integration cannot be done, we often resort to use the quadrature rule approximations.
A quadrature rules approximate the integral by weighted sum of functions at the certain points,

Ẑf,p =

N∑
n=1

wnf(θn), (5.94)

where we approximated p(θ) by p̂(θ) =
∑N

n=1 wnδ(θn) and δ(θn) is a Dirac measure at θn. There
are many ways to specifying the combination of {(wn, θn)}Nn=1. We call wns as weights and θns
as particles. Most widely used quadrature rule is the Monte Carlo(MC). We simply set all the
wn = 1

N and we produce θns by drawn from p(θ) randomly. This non-deterministic sampling based
approximation converges at a rateO( 1√

N
). On the other hand, in the Quasi Monte Carlo, we decide

θns to directly minimize the some criterion.
In the kernel herding method (Chen et al., 2010; Bach et al., 2012), the discrepancy measure is

the Maximum Mean Discrepancy (MMD). LetH be a Hilbert space of functions equipped with the
inner product ⟨·, ·⟩H and associated norm ∥ · ∥H. The MMD is defined by

MMD({(wn, θn)}Nn=1) = sup
f∈H:∥f∥H=1

|Zf,p − Ẑf,p|. (5.95)

If we consider H be a reproducing kernel Hilbert space(RKHS) with a kernel k. In this setup, we
can rewrite the MMD using k(θ, θ′) and set all the wi =

1
N ,

MMD2({(wi =
1

N
, θi)}Ni=1)

= sup
f∈H:∥f∥H=1

|Zf,p − Ẑf,p|2 = ∥µp − µp̂∥2H

= Const.− 2

∫∫
k(θ, θ′)p(θ)p̂(θ′)dθdθ′+∫∫
k(θ, θ′)p̂(θ)p̂(θ′)dθdθ′

= Const.− 2

N

N∑
n=1

∫
k(θ, θn)p(θ)dθ +

1

N2

N∑
n,m=1

k(θn, θm), (5.96)
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where µp =
∫
k(·, θ)p(θ)dθ ∈ H. The herding algorithm greedily minimize the above discrepancy

in the following way,

θN+1 ← arg min
θ

[MMD2({(wn =
1

N + 1
, θn)}Nn=1, (wN+1 =

1

N + 1
, θ))]

= arg max
θ

[
2

N + 1

∫
k(θ, θ′)p(θ′)dθ′ − 2

N + 1

N∑
n=1

k(θ, θn)]. (5.97)

It is widely known that, under certain assumption, they converges at a rate O( 1
N ).
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Chapter 6

Conclusion

In this chapter, we present conclusions and discuss future research directions of this dissertation.

6.1 Conclusions

6.1.1 Expectation Propagation for t-Exponential Family Using q-Algebra

In Chapter 3, we enabled the t-exponential family to inherit the important property of the exponential
family whose calculation can be efficiently performed thorough natural parameters by using the q-
algebra. With this natural parameter based calculation, we developed EP for the t-exponential family
by introducing the t-factorization approach. The key concept of our proposed approach is that the
t-exponential family has pseudo additivity. When t = 1, our proposed EP for the t-exponential
family is reduced to the original EP for the ordinary exponential family and t-factorization yields
the ordinary data-dependent factorization. Therefore, our proposed EP method can be viewed as a
generalization of the original EP. Through illustrative experiments, we confirmed that our proposed
EP applied to the Bayes point machine can overcome the drawback of ADF, i.e., the proposed EP
method is independent of data permutations. We also experimentally illustrated that proposed EP
applied to Student-t process classification exhibited high robustness to outliers compared to Gaussian
process classification. Experiments on benchmark data also demonstrated superiority of Student-t
process.

6.1.2 Variational inference based on robust divergences

In Chapter 4, we proposed outlier robust variational inference based on robust divergences. We
can make our estimation robust against outliers without changing models. We also theoretically
compared our proposed method with ordinary variational inference by using the influence function.
By using the influence function, we can evaluate how much outliers affect our predictions. The
analysis showed that the influence of outliers is bounded in our model, but is unbounded by ordinary
variational inference in many cases. Further, experiments demonstrated that our method is robust
for both input and output related outliers in both regression and classification settings. In addition,
our method outperforms ordinary VI on benchmark datasets.
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6.1.3 Bayesian posterior approximation via greedy particle optimization

In Chapter 5, we proposed MMD-FW, a novel approximation method for posterior distributions. Our
method enjoys empirically good performance and theoretical guarantee simultaneously. In practice,
our algorithm is faster than existing methods in terms of wall clock time and works well even in
high-dimensional problems. We also provide the theoretical analysis about the convergence rate and
the effect of the inexact step sizes of our proposed method.

6.2 Future work

Here, we present the future research directions.

6.2.1 Future direction of the reformulation of Bayesian inference

We discuss the future research about the reformulation of Bayesian inference. The reformulation of
Bayesian inference as the optimization problem is gathering attention recently. In the optimization
formulation, the objective function is decomposed to the expected loss that is defined by the cross
entropy and the regularization term from the prior distribution. In this dissertation, we used robust
divergence for the loss function to enhance robustness.

Theoretically, the use of the cross entropy is only validated when the space of feasible models
includes the true data generating mechanism and this is called M-closed world setting (Bissiri et al.,
2016). On the other hand, if the space of feasible models does not include the true model, which
is called M-open world setting, there is no theoretical validation for using the cross entropy (Bissiri
et al., 2016). When the observed data include outliers, then it is less likely that our model can express
the mechanism of outliers, and thus, it corresponds to the M-open world settings. The method that
replaces the cross entropy is called generalized Bayesian inference and extensive studies have been
done recently (Bissiri et al., 2016; Jewson et al., 2018; Knoblauch et al., 2018).

Other than robust inference, replacing the cross entropy term is widely used especially in the
deep generative model research. The cross entropies are replaced with other loss functions that is
suitable to capture the structured information of the observed data. Tolstikhin et al. (2018) replaced
the cross entropy with the Wasserstein distance instead of the cross entropy.

To incorporate the structured information, there is an another approach, called loss-calibrated
approximate Bayesian inference (Lacoste-Julien et al., 2011). This is motivated from Bayesian
decision theory, that is, we would like to make an optimal decision given the utility function u(θ, h)

where h denotes a decision. It is known that optimal decision maximize the utility,

Gu(h) =

∫
p(θ|D)u(θ, h)dθ, (6.1)

where we take the expectation with respect to the posterior distribution. When we set a loss function
l(θ, h) as l(θ, h) = −u(θ, h), then optimal decision minimize the expected loss.
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The approach of loss-calibrated variational inference is to approximate the utility as

logGu(h) = log

∫
p(θ|D)u(θ, h) = log

∫
q(θ;λ)

p(θ|D)u(θ, h)

q(θ;λ)
dθ

≥
∫

q(θ;λ) log u(θ, h)dθ +

∫
q(θ;λ) log

p(θ|D)

q(θ;λ)
dθ

= Eq[log u(θ, h)] + L(λ)− log p(D). (6.2)

Thus, the new optimization problem is:

arg max
λ,h

L(λ) + Eq[log u(θ, h)], (6.3)

and we iteratively optimize the above objective function with respect to λ and h.
The difference from usual variational inference is that there is an additional regularization term

Eq[log u(θ, h)], which captures the information of the utility function. This means that we restrict
the space of the feasible approximate posterior distributions by using the information of the utility
function. Lacoste-Julien et al. (2011) clarified that this loss-calibration is especially useful for the
structured utility functions, and Cobb et al. (2018) applied it to Bayesian neural networks.

Compared to generalized Bayesian inference, this approach tries to incorporate the structured
information via regularization term. To incorporate the additional information, regularization ap-
proaches are widely used in the field of the maximum entropy (Dudík et al., 2007; Ganchev et al.,
2010). It is still unclear to what problems we should replace the cross entropy to other loss functions
or add the regularization term about the utility functions or combine both approaches together.
Since no comparison or theoretical analysis have been done about it, we need to clarify about this.
Another research direction is to explore robust inference for Bayesian decision making based on
loss-calibrated approximate inference. Theoretical and numerical comparison between generalized
Bayesian inference and the loss-calibrated approach in terms of the structured data and robustness
is needed.

6.2.2 Future direction of the particle approximation

Finally, we describe the extension of the particle approximation method. The approximation method
proposed in Chapter 5 is not favorable for problems which need a compuIn such a situation, unlike
greedy approximation, a simultaneous optimization for all the particles like SVGD is preferable. The
drawbacks of SVGD is that it suffers from the lack of theoretical guarantee and when the posterior
density is non-convex, many particles of SVGD are collapsed to the same mode empirically, which
results in the failure to approximate the posterior.

To solve these problems, a simple extension of SVGD is to treat it as a stochastic process by
combining the Langevin dynamics. Here, we express the target distribution as π ∝ e−U . The
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dynamics for the i-th particle is (∀i = 1, . . . , N ):

dθit = −β−1∇θU(θit) +
1

N

N∑
n=1

[
−∇θU(θnt )k(θ

n
t , θ

i
t) +∇θk(θ

n
t , θ

i
t)
]
+
√

2β−1dwt, (6.4)

where θi is the i-th particle and β′ is some constant. Compared to usual SGLD for the i-th particle
(∀i = 1, . . . , N ),

dθit = −β−1∇Ut(θ
i
t)dt+

√
2β−1dwt, (6.5)

there is an additional term:

1

N

N∑
n=1

R(θnt , θ
i
t) =

1

N

N∑
n=1

[
−∇θU(θnt )k(θ

n
t , θ

i
t) +∇θk(θ

n
t , θ

i
t)
]
, (6.6)

which expresses the repulsion between the i-th particle and others. When the Gaussian kernel is
used, according to Ma et al. (2015), the stationary distribution of the joint distribution of all the
particles {θit}Ni=1 ∈ RdN of Eq.(6.4), Eq.(6.5) are the same.

The natural question is that what is the advantage of introducing the repulsion term R. We
present the intuitive discussion about the convergence speed of the joint and marginal distributions
of the particle system.

First, we consider the convergence speed of the joint distribution of {θit}Ni=1 ∈ RdN to the
stationary distribution. For Eq.(6.4), we need to consider the convergence of the whole N -particle
system. For Eq.(6.5), the convergence of the joint distribution corresponds to the convergence of
N -parallel SGLD. According to the spectral analysis (Duncan et al., 2016; Kaiser et al., 2017),
the convergence speed of Eq.(6.4) is faster than Eq.(6.5) under the moderate assumptions about the
potentialU and the repulsion termR. Thus, introducing the repulsion term improves the convergence
speed for the joint distribution.

Next, we consider the convergence speed of the marginal distribution of each particles, that is,
we consider the convergence speed for each particle, ∀i = 1, . . . , N , {θit} ∈ Rd. The marginal
distributions of each particle are the same ∀i = 1, . . . , N since all the particles are exchangeable with
each other. In Eq.(6.5), since each particle is independent with each other, the convergence speed to
the stationary can be considered independently. Since the convergence speed strongly depends on
the dimension of the particle, and it depends on d which is the dimension of one particle. On the
other hand, in Eq.(6.4), we need to consider the coupling of all the particles and then we consider
the marginalization. Thus, the related dimension of the process is dN , which is the whole particle
system. Thus, in terms of the dimension, introducing the repulsion term makes the convergence
speed of the marginal distributions slow.

The above two intuitive discussions raise the question that introducing the repulsion term really
accelerate the convergence speed since its behavior is completely different between the joint and
marginal distributions. To tackle this question, one promising approach is to use the Mckean-Vlasov
process (Eberle et al., 2018; Bolley et al., 2013; Veretennikov, 2006), which is known as the nonlinear
stochastic process. In Mckean-Vlasov process, we do not consider the dN -dimensional stochastic
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process, but we regard the whole stochastic process as N -particle approximation of the original
stochastic process:

dθt = −β−1∇θU(θit) + Eθ′
t
[−∇θU(θ′t)k(θ

′
t, θt) +∇θk(θ

′
t, θt)] +

√
2β′−1dwt. (6.7)

The advantage of this direction is that we do not have to treat the dN -dimensional system and only
need to treat the particle system as the d-dimensional system. Instead, the error due to the empirical
approximation by N particles appears. Thus, we need to control this empirical approximation error.
For this control, using Girsanov theorem (Bakry et al., 2013) seems promising tool and we leave this
control to the future work. If we successfully control this error, we can say that Eq.(6.4) is superior
to parallel SGLD due to the repulsion term since the obtained algorithm optimize all the particles
simultaneously with theoretical guarantee.

Another approach to tackle the above question is to use the functional inequalities (Bakry et al.,
2013). For example, the Poincare inequality and the logarithmic Sobolev inequality are used to
derive the exponential convergence of the Markov process to the stationary measure (Raginsky et al.,
2017). Here, we express the measure which is induced by the stochastic process at time t as µt. We
say that π satisfies the Poincare inequality with a constant c if π if it satisfies for all µ≪ π

χ2(µ∥π) ≤ c E

(√
dµ

dπ

)
, (6.8)

where E(g) is the Dirichlet form which is defined as

E(g) :=
∫
Rd

∥∇g∥2dπ, (6.9)

and χ2(µ∥π) is the chi-divergence which is defined as

χ(µ∥π) :=
∫
Rd

∣∣∣∣dµdπ − 1

∣∣∣∣2 dπ. (6.10)

Also we say that π satisfies the logarithmic Sobolev inequality with a constant c for all µ≪ π,

KL(µ∥π) ≤ 2c E

(√
dµ

dπ

)
. (6.11)

It is known that when π satisfies the logarithmic Sobolev inequality, then π also satisfies the Poincare
inequality. The consequence of these functional inequalities is the exponential convergence in the
variance and the entropy. For example, when π satisfies the logarithmic Sobolev inequality with a
constant c, it implies the exponential convergence of the KL divergence with a rate 2/c (Theorem
5.2.1 in Bakry et al. (2013)), that is,

KL(µt∥π) ≤ e−2t/cKL(µ0∥π). (6.12)

A similar relation holds for the Poincare inequality (Bakry et al., 2013)). Thus, deriving the
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constant c for those functional inequalities means the deriving the convergence rate. The constant
of the Poincare inequality and the logarithmic Sobolev inequality are closely related with each
other (Raginsky et al., 2017). Also, the constant of the Poincare inequality is closely related to the
spectrum of the generator. For example, when the following stochastic differential equation (SDE)
is given

dθt = −β−1∇U(θt)dt+
√
2β−1dwt, (6.13)

we denote the corresponding Markov semigroup as P = {Pt}t>0 and the Kolmogorov operator as
Ps which is defined as

Psf(θt) = E[f(θt+s)|θt], (6.14)

where f : Rd → R is a bounded test function. The generator of the associated semigroup is given as

Lf(θt) := lim
h→0+

E[f(θt+h)|θt]− f(θt)

h
=
(
−β−1∇U(θt) · ∇+ β−1∇2

)
f(θt). (6.15)

If a constant c satisfies Eq.(6.8), then 1/c ≥ λ,

λ := inf

{
E(g)∫

Rd g2dπ
: g ̸= 0,

∫
Rd

gdπ = 0

}
. (6.16)

Thus, by studying the spectrum of the Markov diffusion operator, we can get the insight about the
convergence speed.

Back to our setting, that is, there is an additional term in the SDE,

γ(θt) :=
1

N

N∑
n=1

R(θnt , θ
i
t). (6.17)

Then, the corresponding generator is written as

Lf(θt) =
(
−β−1∇U(θt) · ∇+ γ(θt) · ∇+ β−1∇2

)
f(θt). (6.18)

Thus, by studying the eigenvalue of this generator, we can get the insight for the convergence rate.
This is the another future direction.
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