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Abstract

Interpretation and execution of complex sequences is crucial for various cognitive

tasks such as language processing and motor control. The brain deals with com-

plex sequential inputs by concatenating frequently repeated segments into single

unis. While this process, called “chunking” is fundamental to time-series anal-

ysis in biological and artificial information processing systems, the underlying

mechanism of chunking is still poorly understood. Classical statistical method

for sequence learning relies on surprise over inputs, which is based on the bias

of transition probabilities over sequence elements. However, recent experimental

findings suggest that the brain is unlikely to adopt this method, as human subjects

can chunk sequences with uniform transition probabilities.

In this thesis, I examined the neural mechanisms of chunking hierarchical se-

quences and overcome the limitations of traditional frameworks through mod-

elling studies. The thesis consists of three works related to sequence learning.

In the first work, I examined the effect of independent components extracted

from the local field potential (LFP) recorded of rat motor cortex during reward-

motivated movement learning. I used the four major independent components to

train a recurrent network model for the same lever movements as the rats per-

formed. I found that the independent components differently contribute to the

formation of various task-related activities, but they also play overlapping roles

in motor learning. Although this research is not directly related to chunking, it

shows that reservoir computing, a kind of recurrent network, is effective in study-

ing the neural representation of sequences.

In the second work, I proposed a class of reservoir computing for detecting chunks

by predicting dynamical response patterns to sequence input rather than to di-

rectly learn transition patterns. In this model, a pair of reservoir computing sys-

tems, each of which comprises a recurrent neural network and readout units,

supervise each other to detect frequently recurring segments in sequences with
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various degrees of complexity. In addition, I demonstrate that background noise

plays a crucial role in correctly learning chunks in this model. In particular, the

model can successfully chunk sequences that conventional statistical approaches

fail to chunk due to uniform transition probabilities. In addition, the neural re-

sponses of the model exhibit an interesting similarity to those of the basal ganglia

observed after motor habit formation.

In the last work, by analogy with the effect of backpropagating action potentials

on synaptic plasticity in the dendrites of cortical pyramidal neurons, I proposed a

self-supervising learning rule in single neurons, minimizing the differences in the

probabilistic responses between somatic and dendritic activities. I further show

that a family of networks composed of the dendritic neurons performs a surpris-

ingly wide variety of complex unsupervised learning tasks including the chunking

of temporal sequences and the blind source separation of correlated mixed signals.

Common methods applicable to the two different temporal feature analyses were

previously unknown. These results suggest the powerful ability of networks of

dendritic neurons to analyze temporal features.

Although this thesis consists of model simulation research, yet the experimen-

tally testable prediction of my results are consistent with the experimental results.

Therefore, the results of this study may provide a new perspective on the mecha-

nism of sequence learning in the brain.

ii



Acknowledgements

It is my great pleasure to thank my supervisor, Dr. Tomoki Fukai for guiding

the PhD study. I thank to Dr. Gonzalo Martín-Vázquez, Dr. Yoshikazu Isomura

and Dr. Naoki Hiratani for collaborating my projects. I would like to acknowl-

edge Dr.Tomoki Kurikawa for mentoring project on motor cortex, and Dr. Masato

Okada for general mentoring. In addition, I would like to acknowledge Dr. Shun-

ichi Amari, Dr. Takashi Hayakawa, Dr. Tatsuya Haga, Dr. Chi Chung Alan Fung,

Dr. Anthony DeCostanzo, Dr. Keita Watanabe for helpful discussion. I would also

like to thank to Mr.Yuan Chieh Ling for technical assistance. Furthere, I would

like to acknowledge Mr. Kento Suzuki, Mr. Thomas Burns, Mr. Gastón Sivori and

Ms. Milena Menezes Carvalho for helpful discussion.

iii



Nomenclature

Acronyms/Abbreviations

FORCE First-Order Reduced and Controlled Error

ICA Independent Component Analysis

iSTDP Inhibitory Spike-Timing-Dependent Plasticity

MIM Mutual information maximization

MSNs Medium Spiny Neurons

NMDA N-Methyl-D-aspartic Acid

PCA Principal Component Analysis

PETH Peri-Event Time histogram

PSP Postsynaptic Potential

STDP Spike-Timing-Dependent Plasticity

iv



Copyright Statement

Most contents of chapter 2 and 3 are already published in following papers. In

the reference ( i ) , I am listed as equally contributed first author. These papers are

open to public under CC-BY licence, hence copy and distribution of these works

do not come under copyright infringement upon this attribution. Also, the content

of chapter 4 is currently under review and will be published later.

( i ) Martín-Vázquez, G., Asabuki, T., Isomura, Y., & Fukai, T. (2018). Learning

task-related activities from independent local-field-potential components across

motor cortex layers. Frontiers in neuroscience, 12, 429.

( i) Asabuki, T., Hiratani, N., & Fukai, T. (2018). Interactive reservoir computing

for chunking information streams. PLoS computational biology, 14(10), e1006400.

v



　　

vi



Contents

Abstract i

Acknowledgements iii

Nomenclature iv

Copyright Statement v

Table of Contents vii

List of Figures xi

1 Background 1

1.1 Temporal feature analysis in the brain . . . . . . . . . . . . . . . . . . 1

2 Learning Independent Signals in Reservoir Computing 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vii



2.2.1 Training Reservoir Computing Model with Each ICs Gener-

ated Distinct Patterns of Activity . . . . . . . . . . . . . . . . . 8

2.2.2 Activity Properties of the Reservoir Neurons . . . . . . . . . . 9

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Neural Network Model . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Simulations and Data Analysis . . . . . . . . . . . . . . . . . . 13

3 Chunk Learning by Interactive Reservoir Computing 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Reservoir computing modules with mutual supervision . . . 18

3.2.2 Chunk Learning from a Random Sequence . . . . . . . . . . . 19

3.2.3 Learning of Multiple Chunks . . . . . . . . . . . . . . . . . . . 23

3.2.4 Selective Recruitment of Reservoir Neurons for Chunk Learn-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 The Role of Low-dimensional Network Dynamics in Chunk

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.6 Network- and Chunk-size Dependences of Learning . . . . . 32

3.2.7 Crucial Role of Noise in Chunk Learning . . . . . . . . . . . . 34

3.2.8 Chunking Sequences of Realistic Inputs . . . . . . . . . . . . . 38

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Details of the Neural Network Models . . . . . . . . . . . . . 44

3.4.2 Connections Between the Reservoirs . . . . . . . . . . . . . . . 46

3.4.3 Selectivity of Reservoir Neurons . . . . . . . . . . . . . . . . . 47

3.4.4 Analysis of the Low-dimensional Dynamics of Reservoirs . . 48

3.4.5 Simulations of Visual Information Streams . . . . . . . . . . . 48

4 Temporal Feature Learning by Somatodendritic Mismatch Detection 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Neural implementation of minimization of regularized infor-

mation losss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Neural Network Model . . . . . . . . . . . . . . . . . . . . . . 54

4.2.3 Optimal learning rule for minimization of regularized infor-

mation loss (MRIL) . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Inhibitory plasticity . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Learning patterned temporal inputs in single neurons . . . . 59

4.2.6 Automatic chunking with MRIL and inhibitory STDP . . . . 61

4.2.7 BSS of mutually correlated signals . . . . . . . . . . . . . . . . 73

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Comparison with other computational principles . . . . . . . 78

4.3.2 Relationship to previous models . . . . . . . . . . . . . . . . . 79

ix



4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Improved learning rule with additional noise . . . . . . . . . 82

4.4.2 Evaluation of the degree of independency between signals . 82

4.4.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 86

5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Review: Reservoir Computing and FORCE Learning Rule 89

A.1 Details of Training Recurrent Neural Networks with FORCE Learn-

ing Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 93

x



List of Figures

2.1 Learned activity patterns in the reservoir network model. . . . . . 10

2.2 Population fraction of each functional subtype. . . . . . . . . . . . 11

3.1 Learning of a single chunk repeated in random sequence. . . . . . 21

3.2 Responses of readout neurons during learning procedure. . . . . . 22

3.3 Learning of multiple chunks repeated in random sequence. . . . . 24

3.4 Structure of teaching signals for multiple chunk learning. . . . . . 25

3.5 Cell assemblies selected in the reservoirs. . . . . . . . . . . . . . . . 28

3.6 Principal component analysis of recurrent networks. . . . . . . . . 30

3.7 Learning with different sizes of reservoirs and chunks. . . . . . . . 33

3.8 Effects of noise on successful chunk learning. . . . . . . . . . . . . 35

3.9 Learning random sequences of single characters. . . . . . . . . . . . 37

3.10 Learning chunks with mutual overlaps. . . . . . . . . . . . . . . . . 39

3.11 Chunking complex temporal inputs. . . . . . . . . . . . . . . . . . . 40

4.1 Two-compartment neuron model for MRIL. . . . . . . . . . . . . . 53

xi



4.2 Unsupervised learning in two-compartment neurons. . . . . . . . 60

4.3 Formation of temporal feature-specific cell assemblies. . . . . . . . 63

4.4 Roles of inhibitory STDP and regularization parameter. . . . . . . 64

4.5 Detection of cell assembly patterns from neural population data. . 66

4.6 Comparison with the STDP-based model in spike sequence de-

tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Segmentation and concatenation of various sequences. . . . . . . . 69

4.8 Chunking in the presence of distractors. . . . . . . . . . . . . . . . 70

4.9 Detection of temporal community. . . . . . . . . . . . . . . . . . . . 71

4.10 Learning an orientation tuning map. . . . . . . . . . . . . . . . . . . 72

4.11 BSS of correlated auditory streams. . . . . . . . . . . . . . . . . . . . 74

4.12 Spectrogram of true and estimated signals in BSS. . . . . . . . . . 75

4.13 Chunking of character sequences by SOBI. . . . . . . . . . . . . . . 77

4.14 Robustness of performance in BSS. . . . . . . . . . . . . . . . . . . . 77

xii



Chapter 1

Background

1.1 Temporal feature analysis in the brain

Temporal sequence learning plays an extremely important role in the high-order

functions of the brain, such as motor-skill learning and language acquisition. The

brain has the ability to encode the temporal structure of sequences and predict

the upcoming sensory input, which allows us to perform higher-level cognitive

activities. Although deep insights on these sequence learning is crucial, but the

underlying learning mechanism is still unknown.

To deal with complex sequential events, the brain seems to have an ability to

transform the temporal information into simpler one. This process, called“chunk-

ing” is thought to occur in two consecutive processes. Long and complex se-

quences are first segmented into short and simple sequences, and frequently re-

peated contiguous events are grouped into a single unit [117].

Direct evidences of chunking has been found in the striatum and prefrontal cor-

tex [34, 52]. In [52], Mice were trained in the task of fast sequential pushing of four

levers. After training, Peri-event time histogram (PETH) of medium spiny neurons
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1.1. Temporal feature analysis in the brain 2

(MSNs) in basal ganglia were calculated based on the first, second, third, fourth,

or last press timing. As a result, they found that activity patterns of each cell dras-

tically changes through acquisition of a sequential movements. Specifically, two

types of activities appeared after learning. In the former, MSNs showed phasic

response which was phased locked to the start or end of a sequential movements.

This type of activities had already been observed in nigrostriatal circuits [51], and

are believed to involved in segmenting sequences. In the latter, a large fraction

of MSNs were inhibited during the execution of the whole sequential movements.

Although the proportion was lower than that of the inhibited neurons, the rest of

the MSNs showed high activation during the whole sequential movements. These

results suggest that even single neuron can encode the chunks of sequences.

A widely accepted hypothesis of the mechanism of chunking is that it relies on

prediction errors or surprise. Evidence supporting this hypothesis is typically ob-

tained from studies of mismatch negativity, a brain signal (such as from electroen-

cephalogram and functional magnetic resonance imaging) indicating the detection

of deviance from a regular temporal pattern of sensory stimuli [7, 20, 100, 114]. In

this framework, deviant stimuli are detectable if the brain has learned to predict

a normal stimulus pattern. In other words, the brain should be able to identify

recurring sequence patterns before it can perceive deviance. In fact, chunking fa-

vors an account based on the temporal community detection, in which stimuli that

frequently go together in random sequence are grouped into a chunk [97]. In their

setting, 15 visual images were sequentially presented, each of which generated by

a random walks on a graph. The critical feature of their setting is that since each

node in the graph is connected to four other nodes, the transition probabilities are

uniform over every nodes. Due to this characteristic, detecting community struc-

tures is a difficult task for traditional chunking model, while the human subjects

can. They showed the critical evidence that the brain does not rely on the informa-

tion of local transition probabilities during chunking. However, the physiological
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mechanisms of the community detection remain difficult to pursue.

Several models related to chunk learning have been proposed. Below, I explain

the main theoretical models.

Predictive coding
The brain seems to predict a stimulus that will be input in the near future, and

processes the difference from the actual input to realize efficient information pro-

cessing. In the cortex, bidirectional connections exist between higher and lower

order regions. In predictive coding, it is assumed that the prediction generated in

the higher-order region propagates to the lower-order region, and the difference

between actual and predicted input (i.e., prediction error) is fed back from the

lower-order region to the higher-order region. As a result, a series of processes

are performed in which the prediction model in the brain is updated, making it

possible to make more accurate predictions.

Predictive coding has gained widespread attention as a general framework for

unsupervised learning of sequences. Wacongne et al. (2012) has proposed a spik-

ing neuron model that detects the regularity of sequences and mismatch detection

based on the predictive coding [114]. In their model, the transition probabilities of

each element in the sequences are stored in synaptic matrix and the model learns

the conditional probabilities of current input given the past one. Based on this,

the model generates mismatch responses when the expected sequential event is

violated.

Stable Heteroclinic Channel
Another powerful theory is based on a chain of sequentially changing metastable

states [55, 86]. In that theory, the metastable states are represented by a chain of

saddle points (stable heteroclinic channel; SHC) in a low-dimensional dynamical

system. While the theory of SHC is not directly related to the mechanisms of

"learning", a local synaptic plasticity rule has been proposed to perform segmen-
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tation of sequences in a network with metastable fixed points [31].

In the above frameworks, learning of sequences relies on the bias of transition

probabilities between each elements. However, as mentioned above, the brain

chunks temporally organized elements even if the transition probabilities are uni-

form. What mechanisms enables the brain to detect temporal features without

relying on predictive uncertainty or surprise? To approach this mechanism, let us

suppose a network receiving information streams as a input and generates corre-

sponding outpus. The goal here is to transform external information into a more

compact representation, and if this is accomplished, the representation of the net-

work should becoms much simpler through training, and the uncertainty of its

response should be decreased. Based on this assumption, I proposed a frame-

work for learning sequences by minimizing the uncertainty over the output, not

the input transition. The major contribution of my work is to bridge the gap be-

tween several sequence learning. I showed that the proposed model exhibits nice

performance over a variety of unsupervised learning tasks, including detection

of frequently appeared into distractors, grouping temporal community structures,

and even the blind source separation of mutually correlated signals, which were

previously performed by specialized networks and learning rules.

In Chapter 2, I trained the reservoir model with independent components of

local field potentials to reproduce the voluntary forelimb-movement of rats. The

results in this chapter will show that reservoir computing is useful for under-

standing the principles of sequence learning in the brain. On the other hand,

since supervised learning is used in conventional reservoir computing, it turns

out that it cannot be used directly to learn the characteristics of inputs flexibly. To

overcome this shortage, in Chapter 3, I will propose the new framework for train-

ing reservoir computing, which we term as "dual reservoir computing". In this

framework, a pair of networks supervise each other, which enables the network

to rely on unsupervised learning. While this framework shows nice performance
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in chunking, it requires some biologically implausible assumptions. Therefore, in

Chapter 4, I will propose much realistic model for sequence learning based on

two-compartment neuron models. The results will show that single dendritic neu-

ron model can solve a variety of sequence learning tasks. In Chapter 5, all results

from previous chapters will be summarized and the discussed the future direc-

tions. In Chapter 2 and 3, a powerful learning algorithm for training reservoir

computing, called "FORCE learning" was used. I reviewed the details of FORCE

in Appendix A.



Chapter 2

Learning Independent Signals in

Reservoir Computing

Cortical microcircuits generally receive synaptic inputs from several different brain

regions and local field potentials are thought to represent the total input to a local

volume of cortex. In motor cortex, how task-related neural activities are formed for

adequately associating local synaptic inputs to motor sequences remains largely

unclear. In this chapter, I examined the effect of independent components ex-

tracted from the local field potential (LFP) recorded of rat motor cortex during

reward-motivated movement learning. The results in this chapter will show that

the representation of sequence information in a dynamic network model is similar

to that in the brain, and is effective in studying the neural mechanisms of sequence

learning.

2.1 Introduction

While task-related neural activities have been studied in different layers of cortical

microcircuits [25, 39, 48, 68, 72, 108], direct recordings of presynaptic inputs to

6
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local cortical circuits are still technically challenging in behaving animals. The

lack of input information makes it difficult to address how inputs from different

brain regions contribute to the learning of task-related cortical activities. Here,

we ask this question by using the local field potentials (LFPs) recorded from the

motor cortex of the rats performing a voluntary sequential arm movement [48].

The major sources of LFP activity are widely thought to be synaptic inputs to

local cortical areas. Synaptic inputs from different brain regions generally project

to different layers of local cortical circuits. To segregate inputs to the motor cortex,

we conducted independent component analysis (ICA) on the LFP data recorded

at different cortical depths. If neural activities in different regions targeting the

motor cortex are partly correlated with one another, the components extracted by

ICA would not represent exact inputs from different brain areas. However, they

can be, at least approximately, regarded as independent inputs converging to the

primary motor cortex through multiple synaptic pathways.

As the LFP is produced mainly by synaptic currents we assume that the sources

are stable in space as it correspond to the transmembrane currents fixed in differ-

ent dendritic domains determined by anatomy [17, 80]). Thus we are assuming

spatial independence for the signal’s sources without any temporal constrains,

that allow us to perform temporal and coherence analysis between the extracted

components [8, 21, 46, 98]. In the case of spatially identical sources or spatially dif-

ferent sources that are perfectly coherent no separation of sources can be obtained

with ICA [71]. But even in situations of highly correlated activity, as in the case of

coupled oscillations in feedback/feedforward circuits in CA1 [98] and CA3 [71],

ICA can separate different sources successfully.

In this study, I recruited reservoir computing for exploring the roles of the inde-

pendent compponents (ICs) in motor learning. A dynamical system consisting of

a recurrent neural network and readout units is called reservoir computing when

readout connections, but no other connections including recurrent connections,
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are modifiable. In this system, the recurrent network is referred to as reservoir

[99]. I trained the network model receiving the independent inputs to replicate

the experimentally observed lever movements of the rats. The rat motor cortex

shows several functional subtypes of neurons, i.e., hold-related, pre-movement,

movement-related, and post-movement neurons, during the push-pull-hold move-

ment [48], and their relative ratio in population is different between the superficial

and deep cortical layers [47]. Results of our modeling study clarify whether the

contributions of different ICs to the formation of these functional subtypes are

similar or different, giving interesting insight into input- and layer-specific motor

information processing.

2.2 Results

2.2.1 Training Reservoir Computing Model with Each ICs Generated

Distinct Patterns of Activity

In order to separate and extract the independent signals contained in the LFP, we

performed independent component analysis (ICA). ICA is a mathematical tech-

nique that separates mixed signals into statistically independent ones with some

assumptions on the signal. First, each signal should be independent each other,

and it is assumed that they are linearly summed, as is the case for the LFP [30].

Also, it assumes that each signal does not follow the Gaussian distribution, typical

feature of brain dynamics [16].

We found four major ICs (i.e., IC1, IC2, IC3 and IC4), with different and recog-

nizable time dynamic and layer stratification along the motor cortex. To examine

whether the four ICs obtained from the rat motor cortex are sufficient for motor

learning, we trained a reservoir computing model of rate-coding neurons with-

out layer structure to generate experimentally observed arm movements (Figures
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2.1A,B; see Methods), and evaluated the contribution of each IC to organizing

functionally different neural activities. Training a realistic cortical microcircuit

model is beyond the scope of this study. The reservoir received the ICs (10 Hz

cut-off) as external inputs (Fig.2.1C) and FORCE learning was used for the train-

ing [106]. Because rate-coding neurons are insensitive to input changes faster than

the membrane time constant, the ICs were low-pass filtered without changing the

essential results. A related modeling study has been performed in the monkey

motor cortex by using movement-preparatory activity as input [107]. Here, we

aimed at generating all functional subtypes of neurons by using the ICs as input.

The reservoir model was trained simultaneously with all four ICs or separately

with each IC. The post-learning responses of individual neurons are shown for

each case (Fig.2.1D). In all the cases, the resultant population activity contained

neural responses which are similar to various task-related neurons found in ex-

periment. Examples of the Hold-related (or Movement-off), Movement-related

and Pre-movement activities learned by the network model are in Fig.2.1E.

2.2.2 Activity Properties of the Reservoir Neurons

Depending on the input conditions, the model exhibited a different fraction of

Movement-related neurons and Hold-related (or Movement-off) neurons (Fig.2.2A).

The fractions obtained from the simulations are compared with those observed in

experiment (Fig.2.2B, superficial plus deep layers). In the model, contributions

of individual ICs exhibited interesting differences. For IC1 and IC3, the fraction

of Hold-related neurons was small compared to that of Movement-related neu-

rons, while opposite was true for IC4. In experiment, movement-related neurons

were found dominantly in the superficial layer (Fig.2.2B), suggesting that the ma-

jor drivers of the superficial layer involve IC1 and IC3. In contrast, the deep layers

contained nearly identical fractions of these functional subtypes, from which a
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reliable assessment of the relative contributions of ICs seems to be difficult.

Figure 2.1: Learned activity patterns in the reservoir network model.
(A) The model is schematically illustrated. (B) Lever movements in 18 trials pro-
vided teaching signals for learning. Time 0 refers to the onset of lever pull. (C)
Typical examples of the independent components of LFP (yellow) and their low-
pass-filtered versions (blue) are shown. (D) The average normalized responses of
all neurons in five different conditions: external input to the reservoir involved
all ICs or just one IC. The activities of individual neurons were averaged over re-
peated trials and sorted according to the onset time of activation (see Methods).
(E) Examples of the average responses are shown for Hold-related or Movement-
off (top), Movement-related (middle) and Pre-movement (bottom) neurons.
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All ICs

IC1 IC2

IC3

Superficial 
 +Deep Superficial Deep

IC4

Hold-related or Movement-off
Pre-movement
Movement
Post-movement
Non-task-related

A

B

Figure 2.2: Population fraction of each functional subtype.
(A) The population ratios of functional subtypes were calculated in the models
with different settings of input. (B) Similar population ratios were obtained from
the experimental data reported in [47].
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2.3 Discussion

In this study, we showed that training a reservoir model with the ICs successfully

replicated the various functional subtypes of task-related motor cortical neurons

with relative portions similar to those obtained experimentally, except that the

model exhibited a larger portion of non-task-related neurons (Fig.2.2). The contri-

butions of different ICs to the generation of Hold-related and Movement- related

neurons were qualitatively similar, suggesting that they play overlapping rather

than specific roles in motor learning. In the modeling, we low-pass-filtered the

ICs as the model is insensitive to high frequency signals. This, however, should

not be interpreted as the unimportance of high-frequency oscillations to motor

learning. Gamma oscillations have been implicated in cross-area communication

[18, 23, 118], and a computational study suggests that dendritic low-pass filtering

makes gamma-band synchronized activity an optimal carrier of analog informa-

tion between cortical neurons [35].

2.4 Methods

2.4.1 Neural Network Model

Our reservoir network consists of NG neurons and the activity of each neuron xi

obeys the equation A.1 in Appendix A. In the present simulation, NG = 1300 and

τ = 50ms. Each neuron in the reservoir received an input to which one of the

IC1, IC2, IC3, and IC4 was randomly assigned. In some simulations, different

ICs projected to approximately the same numbers of neurons without overlaps.

In other simulations, all neurons received the same IC and the contributions of

each IC to motor learning were separately evaluated. The inputs were normalized

between -1 and +1 and were low-pass-filtered at 10Hz because the evolution of

the present rate model is not sensitive to high-frequency components of inputs.
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Neuron pairs were randomly connected with the connection probability p = 0.1,

and the weights of non-modifiable recurrent connections JGG were determined by

a normal distribution with mean 0 and variance 1/(pNG). The overall factor of

recurrent inputs was set as gG = 1.5 such that the pre-training network showed

chaotic activity [106]. All neurons in the reservoir projected to readout unit z(t)

and were projected back to by the readout unit. The feedback connections had

fixed weights JGz , which were taken randomly from a uniform distribution be-

tween -1 and +1. Synaptic weights to the readout were modifiable and trained by

FORCE learning algorithm as in [106].

2.4.2 Simulations and Data Analysis

Training data for arm trajectory and LFP data were obtained in [48]. In the be-

havioral task, rats spent the majority of task period for lever-hold and generated

movements only during a small portion of the task period. To enable efficient

learning of movements, we only used data segments containing lever pull in each

trial, namely, from 1 s before to 500 ms after lever pull onset. The data set used for

learning was obtained from 18 trials. After learning, activity of each neuron in the

reservoir was averaged over the 18 trials and normalized between its minimum

and maximum values. Then, activity was categorized into five distinct functional

subtypes as in [48]. Briefly, Movement-related activity was a phasic activation

during movements, whereas Hold-related and Movement-off neurons exhibited a

phasic decrease of activity during movements. The latter two types of functional

activity were not distinguished in this study. Pre-movement was a phasic activa-

tion starting earlier than 500 ms before movement onset and rapidly dropping by

more than the half of its peak activation after movement onset. Post-movement

was a phasic activation starting from movement onset and dropping within 350

ms from the onset. Activity profiles that were not categorized into any of these

functional subtypes were categorized as“others.” Phasic activity was defined as
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activity of each neuron that increased or decreased beyond µ ± 3σ for more than

60 ms, where µ and σ stand for the average and standard deviation of its activity

during 1,000 ‒ 250 ms before movement onset, respectively. In Fig.2.1C, neurons

were sorted according to the serial order of activation time, which was calculated

as

t̂i =
T
π

arg

∑T
t′=1 r̄i(2t′ − 1000) exp

(
i 2πt′

T

)
∑T

t′=1 r̄i(2t′ − 1000)

 [ms],

where r̄(t) is the normalized average response of each cell, T = 750ms and the

activation time was adjusted such that it falls within the range [-1000, +500] ms.



Chapter 3

Chunk Learning by Interactive

Reservoir Computing

In Chapter 2, I showed that specific neural activity was generated at each stage

of the movement by learning the recurrent network using animal behavior as a

teaching signal. In particular, some reservoir neurons showed increasing activities

at the beginning and end of the lever movement, which may be related to chunk

segmentation, and the model used in the previous chapter can be considered to

be a candidate for building chunk detection model. However, our goal is to build

a model for feature detection without external teachers, and the further extension

of the model is necessary. Therefore, in this chapter, I proposed a model that

uses two independent reservoir circuits and performs learning using each other’s

outputs as teaching signals. The proposed model was able to learn the chunks

in the time series without a teacher even in complicated situations such as when

there was overlap between chunks.

15
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3.1 Introduction

When a sequence of stimuli is repeated, they may be segmented into “chunks,”

which are then processed and stored as discrete units. This process, called“chunk-

ing” or "bracketing" [38], takes place during various cognitive behaviors that

require hierarchical sequence processing[22, 29, 77, 82]. For instance, in motor

learning, a sequence of smaller movements may be executed as one compound

movement after repetitive practice [34, 38, 51, 52, 104]. During language acquisi-

tion, continuous vocal sounds are segmented into familiar groups of contiguous

sounds that are processed as words [15, 36]. Chunking is believed to reduce the

complexity of sequence processing and hence the associated computational cost

[38, 87, 113]. In this regard, chunking constitutes a crucial step in representing the

hierarchical structure of sequential knowledge in neural circuits [26].

Chunking is believed to occur through two consecutive processes. Long and

complex sequences are first segmented into shorter and simple sequences, while

frequently repeated segments are concatenated into a single unit [117]. Various

mechanisms of chunking have been proposed based on Bayesian computation

[55, 82], statistical learning guided by prediction errors [89], and a bifurcation

structure (stable heteroclinic orbits) in nonlinear dynamical systems [31, 86]. In

addition, a neuromorphic hardware has been proposed [61]. However, none of

these mechanisms have been shown to chunk with the level of flexibility that the

brain offers. It also remains unclear whether a bifurcation theoretic mechanism

exists that enables the chunking of arbitrary complex sequences. Many studies

evaluating event segmentation in biological and artificial systems have focused on

mechanisms to detect boundaries between events by transient increases in sur-

prise signals, which are thought to form based on unequal transition probabilities

among sequence elements [26, 82, 84, 88]. However, human subjects can segment

sequences of visual stimuli that have uniform transition probabilities and hence
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cannot be chunked by any variation of such mechanisms [97]. These findings sug-

gest that biological neural networks favor a mechanism of chunking that is based

on temporal community detection, in which stimuli that frequently go together

are grouped into a chunk. A similar mechanism may also account for the brain’s

ability to detect repetitions of patterned stimuli in random sequences [2, 44, 93].

However, the logic and neural mechanism of flexible and automatic chunking by

the brain remain unknown. In this study, we propose a novel mechanism of unsu-

pervised chunk learning based on a unique computational framework that differs

from any of the previous proposals. In this mechanism, neural networks learn

the low-dimensional dynamical trajectories embedding stereotyped responses to

recurring segments (chunks) of a temporal input. We achieve this mechanism in a

framework of cortical computation [49, 65] by extending reservoir computing (RC)

to unsupervised learning. RC is a high-dimensional dynamical system consisting

of a recurrent neural network, readout units, with feedforward and feedback pro-

jections between them, and supervised learning in its original form [106]. We

were able to attain unsupervised learning in a pair of independent RC modules

supervising each other without any external instructive signal. As a consequence,

they learned to mimic, or predict, the preferential responses of partner modules

to chunks in a given temporal input.

The primary interest of this study was determining the novel computational

mechanism to segment information streams. However, an unexpected finding in-

cluded a surprising similarity between the temporal response patterns of readout

units in our model and a functional subtype of basal ganglia neurons, called stop

cells, which are observed after habituation [51, 52, 104]. This finding suggests that

the proposed paradigm of sequence processing has a biological relevance.
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3.2 Results

3.2.1 Reservoir computing modules with mutual supervision

I will describe the basic framework of our model. Our model receives the input

sequence which contains chunks and random sequences of discrete items. Here,

we first start with the simple case where the sequence has only a single chunk

of letters (i.e., a-b-c-d). The random sequences were chosen from the remaining

22 letters of the English alphabet (e to z) (Fig.3.1A). In a realistic setting, these

letters correspond to a brief stimulus in any sensory modality, but we assume

each of them gives phasic activation of a specific input neuron (Iµ(t) in Eq 3.4 in

the Methods) with slow rise and decay constants (Fig.3.1B). Thus, the number of

input neurons coincides with that of letters. The random sequence components

are introduced to unambiguously define the initial and end points of a chunk, and

their lengths vary with every repetition cycle within the length range of 5 to 8.

Our network model consists of two independent rate-based and all-to-all con-

nected reservoir computing (RC) modules. Each module receives an identical

input sequence (Fig.3.1C) and feed back the readout activity to the same reservoir.

To make each reservoir neuron selective to its preferred stimulus, we assumed

that each reservoir neuron receives input from one of the input neurons although

this constraint is not essential for chunk learning and can be relaxed, as shown

later. Although the two reservoirs have same structures, each of them has its own

wiring patterns and not identical. The activity of each readout unit z(t) is given

as a weighted sum of the activities r(t) of the reservoir neurons projecting to the

readout: z(t) = wTr(t). Although we will consider more complex case later, we

first test in a case that each of the RC modules connects to only a single readout

unit. We trained our model by FORCE learning algorithm, which is described

in Appendix A. Following their setup, we trained only the readout connections

w of both reservoirs, whereas the recurrent and feedback connections are always
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fixed. The initial states of the reservoirs are weakly chaotic as in the previous

model [106]. See the Methods for details of the model and values of the relevant

parameters.

The previous frameworks of RC relays on supervised learning, hence it requires

teacher signals from outside. In our model, on the other hand, the output of

each readout unit is used as a teacher signal to train the readout weights of the

other reservoir module. Although each module is supervised, the entire system

undergoes unsupervised learning, since the teacher signals are generated within

the model. The details of the teaching signals will be shown later.

3.2.2 Chunk Learning from a Random Sequence

The form of teaching signal is important for successful chunk learning in the pro-

posed model. The teaching signal is symmetric with respect to the interchange

of the two readout units and must be determined so that the two systems stop

learning when the two readout units output similar response patterns. In other

words, the teaching signal will eventually be the same between the two RC mod-

ules during learning. The teaching signal fi for successful chunk learning in the

dual RC system has the form:

fi(t) = [tanh(ẑj(t)/β)]+. (i, j = 1, 2; i ̸= j) (3.1)

where ẑi is the standalized output of the i-th readout unit (Methods), the thresh-

old linear function [x]+ returns 0 if x ≤ 0 and [x]+ = x if x > 0, and the constant

was set as β = 3. Defining error signals as ei(t) = zi(t) − fi(t), we trained RC

module pairs with the FORCE learning algorithm until the error was sufficiently

small (typically, about 0.01) and the readout weights converge to equilibrium val-

ues (within small fluctuations). The saturation part of nonlinear function prevents

the model from responding too strongly to a specific chunk and makes it easier
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to detect all the chunks embedded in the input sequence. This activity regulation

is particularly important in the learning of multiple chunks studied later. The

threshold linear function makes the outputs positive; these nonlinear transforma-

tions greatly improved the performance of learning. Note that the teaching signal

does not explicitly contain information about the temporal structure of the input

sequence. This dual RC system converged to a stable operating state when the

two RC systems generated teaching signals consistent with the temporal structure

of the input sequence (Fig.3.2). The readout units did not respond to the chunk

before learning (Fig.3.1D). After learning, the responses of the readout units were

tested for the input sequences that had not been used for the training. The test se-

quences contained the same chunk“a-b-c-d,”but the random sequence part was

different. Given these inputs, the readout units exhibited steady phasic responses

time-locked to the chunk (Fig.3.1E). The readout activity piled up gradually in

the beginning of the chunk, rapidly increased at its end, and then returned to a

baseline level. The selective responses to the chunk were also successfully learned

when each reservoir neuron was innervated by multiple input neurons. As shown

in Fig.3.1F, the system succeeded in learning when randomly-chosen 10% or 40%

of input neurons projected to each reservoir neuron, but failed when the fraction

was 70%. Thus, responses of the individual reservoir neurons should be suffi-

ciently independent of each other to robustly capture the recurrence of chunks.
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Figure 3.1: Learning of a single chunk repeated in random sequence.
(A) Input sequence repeating a single chunk. In this example, the chunk is com-
posed of four alphabets (a, b, c, d). The components and lengths of random se-
quences varied during the repetition of chunks. (B) Example responses are shown
for input neurons. (C) In the dual RC model, two non-identical reservoirs are
activated by the same set of input neurons. Readout weights of each RC system
undergo supervised learning with a teaching signal given by the output of the
partner network. (D) and (E) Pre- and post-learning trial averaged activities of a
readout unit are shown, respectively. Shaded intervals designate the presentation
periods of the chunk. The other readout unit exhibited a similar activity pattern.
(F) Readout activity was trained with many-to-one input projections. The fraction
of input neurons projecting to a reservoir neuron was 10% (red), 40% (green) and
70% (black).
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Figure 3.2: Responses of readout neurons during learning procedure.
Below, numerical results are shown for the model simulated in Fig.3.1. The re-
sponses of two readout neurons were initially incoherent (top). They gradually
developed strong coherent responses to the repetition of a chunk as learning pro-
ceeded (middle and bottom).
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3.2.3 Learning of Multiple Chunks

The proposed model can learn multiple chunks by extending previous learning

rules. To show this, we embedded three chunks in a random input sequence

(Fig.3.3A, top). The occurrence probability of the three chunks was 1/3. To handle

this complex input sequence, two changes were made to the previous model. First,

each reservoir was connected to three readout units (z1, z2, z3 for the 1st reservoir

and z4, z5, z6 for the 2nd reservoir), each responsible for the learning of one of the

three chunks (Fig.3.3B). Second, we modified the teaching signals as follows:

fa(t) = [tanh((ẑa′(t)− γ ∑
c=4,5,6

′
ẑc(t))/β)]+ (a = 1, 2, 3) (3.2)

fb(t) = [tanh((ẑb′(t)− γ ∑
c=1,2,3

′
ẑc(t))/β)]+ (b = 4, 5, 6) (3.3)

where a′ and b′ refer to the corresponding readout units of the partner RC modules

(i.e., a′ = a + 3 and b′ = b − 3), and dashes in the second term indicate that

the corresponding readout unit should be excluded from the summation. The

constant γ was set as 0.5. Therefore, as in the previous case, the teaching signal

was exchanged between the RC modules. Each readout unit receives three sets of

teaching signals from the partner network, one being cooperative and the other

two being competitive (Fig.3.4A). These signals cause each read unit to respond to

a particular chunk, but the chunks that the read unit learns are not pre-specified

because the teacher signal is symmetric with respect to the permutation of the

index per reservoir. A further extension of the learning rule to an arbitrary number

of chunks is straightforward.
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Figure 3.3: Learning of multiple chunks repeated in random sequence.
(A) Top, Three chunks a-b-c-d (red), e-f-g-h (green), and i-j-k-l (blue) separated by
random sequences are recurred at equal frequencies in input. Bottom, The three
chunks are repeated without the intervals of random sequences. (B) Each reservoir
was connected to three readout units. (C) Selective readout responses to the in-
dividual chunks (colored intervals) were self-organized. Input contained random
sequences. The responses are colored according to their selectivity to the chunks.
(D) The same chunks were repeated without breaks by random sequences. Pre-
vious models of chunking typically processed such input sequences. (E) Readout
activities formed with (left) and without (right) random sequence intervals were
averaged over the recurrence of chunk “a-b-c-d”. (f)FTime evolution of average
readout weights is shown at every step of learning with (gray) and without (black)
random sequence intervals.
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Figure 3.4: Structure of teaching signals for multiple chunk learning.
(A) A schematic illustration for the structure of teaching signals for z1. Since the
partner node of z1 is z4, the sign of the corresponding term in the teaching signal
is positive whereas the other terms are negative. (B) Teaching signals show inco-
herent activities (top) before learning, while the learning procedure makes these
activities much coherent (middle and bottom). Thick and thin lines represent
teaching signals from the pair of the readouts. (C) Lateral inhibitions by interneu-
rons are modeled. (D) The activities of readouts after learning with interneurons.
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As in the case with a single chunk, each readout unit displayed a ramping ac-

tivity selective to a specific chunk, signaling successful chunk learning (Fig.3.3C).

During this learning, teaching signals also self-organized such that each pair of

the readout units eventually exhibited a selective response to a specific chunk, in-

dicating that the teaching signals work adequately (Fig.3.4B). The complex form

of teacher signals looks somewhat biologically unrealistic, but they can easily be

implemented by inhibitory neurons (Fig.3.4C: see Methods) to generate chunk-

selective phasic readout responses (Fig.3.4D). Below, inhibitory neurons are not

explicitly modeled.

The question then arises whether the RC system could also learn multiple chunks

when they occur continuously without temporal separations by random sequences.

To study this, we trained the model by using input sequences in which three

chunks appear randomly and consecutively with equal probabilities, without any

interval of random sequences (Fig.3.3A, bottom). Thus, the same RC system as

before could easily learn multiple chunks (Fig.3.3D). A notable difference was

that, outside of the chunks, the readout activity decayed faster for undisturbed se-

quences than for temporally separated ones (Fig.3.3E). In fact, learning proceeded

faster for the former sequences (Fig.3.3F), suggesting that learning is more effec-

tive when chunks are not disrupted by random sequences. Throughout this study,

one learning step corresponds to 15 sec.

3.2.4 Selective Recruitment of Reservoir Neurons for Chunk Learning

Next, we investigated how the activities of reservoir neurons encode chunks.

Here, the network was trained on sequences containing three chunks and ran-

dom sequences. In each reservoir, a subset of neurons selectively responded to

each chunk after learning (Fig.3.5A). Therefore, we classified reservoir neurons

into three ensembles according to the selectivity of their responses to each chunk
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(Methods). Some reservoir neurons responded to more than one chunk, but they

were excluded from the following analysis for the sake of simplicity. Each neu-

ral ensemble received slightly stronger inputs from the specific chunk it encoded,

which then determines the selectivity of the encoding ensemble (Fig.3.5B).

Through learning, the neural ensemble encoding a particular chunk developed

stronger projections to the corresponding readout unit compared with other neu-

ral ensembles (Fig.3.5C). Consistent with this, the distribution of readout weights

was more positively skewed in encoding ensembles than in non-encoding ensem-

bles (Fig.3.5D). Moreover, the readout unit projected back to the corresponding

encoding neuron ensemble more strongly than to the other ensembles (Fig.3.5E).

Because feedback connections were not modifiable, these results imply that read-

out connections were strengthened between readout units and reservoir neurons

that happened to receive relatively strong feedback from the readout unit.
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Figure 3.5: Cell assemblies selected in the reservoirs.
(A) The activity of each reservoir neuron was averaged over repeated trials and
normalized by its maximum activity. Neurons were sorted according to the onset
times of their activations to reveal the cell assemblies encoding the three chunks
(Methods). (B) The distributions of input weights onto each cell assembly are
shown for input neurons belonging to the corresponding chunk (solid) and the
others (dashed). The solid and dashed distributions summed over all cell as-
semblies were significantly different (p = 0.011, t-test). (C) Temporal evolution is
shown for average weights from encoding cell assemblies to the corresponding
readout units. (D) Normalized distributions are shown for readout weights from
each cell assembly. (E) The distribution of feedback weights from readout units to
each cell assembly is shown.
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3.2.5 The Role of Low-dimensional Network Dynamics in Chunk Learn-

ing

To gain further insight into the mechanism of chunking, we explored the low-

dimensional characteristics of the dynamics of reservoir networks. In our model,

the two RC modules, termed R1 and R2, are thought to mimic others. This

would be possible when the two recurrent networks receiving the same input

sequence predict the responses of other modules well. To see how this predic-

tion is formed, we calculated the principal components (PCs) of the post-learning

activity of trained recurrent networks in the example shown in Fig.3.1. After

learning, the lowest principal component (PC1) but not the other PCs, of each

reservoir resembled the phasic response of the corresponding readout unit dur-

ing the presentation of chunks (Fig.3.6A, left). The learned trajectories wandered

in the low-dimensional PC space outside the chunks where teacher signals van-

ished, while, inside the chunks, non-vanishing teacher signals rapidly constrained

both trajectories in narrower regions showing similar PC1 values (Fig.3.6A, right).

This behavior is understandable because the eigenvalues of PCs decay rapidly

(Fig.3.6B). Interestingly, the correlation coefficient between each PC and the read-

out activity decayed more dramatically (Fig.3.6C). Accordingly, the direction of

readout weight vector was more strongly correlated with that of PC1 compared to

other PCs (Fig.3.6D). These results suggest that the low-dimensional characteris-

tics of neural dynamics play a pivotal role in encoding the chunks.
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Figure 3.6: Principal component analysis of recurrent networks.
Each recurrent network consists of 300 neurons. (A) Left, Activities of two reser-
voir networks are projected onto the top five eigenvectors of the correlation matrix.
Shaded areas indicate the intervals of the presentation of chunks. Numerals on
the right side show the variances explained. Right, The low-dimensional trajecto-
ries of the two reservoir modules are shown in the space spanned by PC1 to PC3.
Red/blue or magenta/cyan portions show trajectories during the epoch of non-
vanishing or vanishing teacher signals, respectively. (B) The eigenvalues of PCs are
shown in a logarithmic scale. (C) The correlation coefficient between each PC and
the readout activity is shown. (D) The length of readout weights projected onto
each eigenvector is shown for first 100 eigenstates. (E)“Within-self”difference be-
tween the R1-output and the projected R1-output (green) and“between-partner”
difference between the R2-output and the projected R1-output (blue) are shown
for all the eigenstates before (dashed) and after (solid) learning. Insets display
magnified versions for major eigenstates.
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We then determined to what extent the responses of R1 and R2 are represented

by the low-dimensional dynamical characteristics of R1. We calculated the PCs of

recurrent network dynamics in R1, and expanded its population rate vector and

readout weight vector up to the M-th order of these PCs (M ≦ NG). Then, we

reconstructed the output of R1 by using the M-th order rate vector and the M-th

order weight vector on the low-dimensional subspace spanned by the first M PCs

(Methods). In Fig.3.6E, we calculated the differences between the reconstructed

R1-output and the full outputs of R1 (within-self difference) and R2 (between-

partner difference). Before learning, both differences remained large as M was

increased. After learning, the“within-self”difference rapidly decreased for M <

30 − 40 and then gradually approached zero. The “between-partner” difference

also rapidly dropped for relatively small values of M, but it stopped decreasing

for M > 50, remaining at relatively large values. These results suggest that R1’

s reservoir, as well as R2’s reservoir, learns to mimic the partner’s response by

using the low-dimensional characteristics of its recurrent neural dynamics.

The role of low-dimensional neural dynamics in a broad range of computation

was recently explored in a class of recurrent network models with a minimal con-

nectivity structure [74], which is a combination of a low-rank structured matrix

and a random unstructured matrix. The low-rank matrix may be trained to give

task-related low-dimensional dynamics whereas the random matrix may gener-

ate chaotic fluctuations useful for learning. The RC system can be approximately

viewed as such a network, where the product of readout weight vector and feed-

back weight vector (JGZ)TW defines a rank-one matrix and recurrent connections

in the reservoir gives a random matrix. It will be intriguing to study the present

chunk learning in the theoretical framework.
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3.2.6 Network- and Chunk-size Dependences of Learning

Chunk learning may be easier and more accurate if chunks were shorter or net-

work size is larger. However, we did not find a sharp drop of performance when

the size of chunks was increased. To observe this, we first measured learning

performance for two chunks with the sizes 4 and 7 by varying the network size.

Instantaneous correlations were calculated between the activity of a readout unit

and a reference response pattern, which takes the value 1 during the presentation

of a chunk and is 0 otherwise, every 15 s during learning and were averaged over

20 independent simulations. Note that the maximum value of the correlation was

0.5 if the readout activity grows linearly from 0 to 1 during the chunk presenta-

tion. Fig.3.7A shows the correlations for input sequences containing the short or

long chunk in networks of sizes NG = 30, 300, and 500. Correlations were nearly

zero before learning, but reached similar maximum values approximately within

ten steps of learning. The average value of the correlations was generally larger

for chunk size 4 than for chunk size 7, but the differences were not significant

(Fig.3.7B).

Second, we measured learning performance by varying the size of chunks with

the network size fixed (NG = 300). In this simulation, we alternately presented

a single chunk with the size s and random sequences of the sizes s + 2 to s + 5,

where each element of the random sequences was chosen from a set of 4s elements.

Thus, the dual RC system had 5s input neurons. When the chunk size exceeded

10 (Fig.3.7C), the value of correlation rapidly dropped, suggesting the existence

of a critical chunk size beyond which learning performance is degraded. For

s = 4, learning performance showed unexpectedly large fluctuations due to some

unknown reason. The explicit evaluation of the critical chunk size requires an

analytic approach, which is beyond the scope of this study.

In addition, a larger network did not necessarily show better performance. The
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magnitude of the post-learning instantaneous correlation was not significantly in-

creased when the network size was 200 or greater (Fig.3.7B). Thus, the perfor-

mance of chunk learning does not scale with the network size. This is not so

surprising because increasing the size of the reservoirs does not necessarily in-

crease the variety of neural responses useful for learning if the size is already

sufficiently large. This seems to be particularly the case in the proposed mech-

anism because it heavily relies on the low-dimensional characteristics of neural

dynamics (Fig.3.6A).
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Figure 3.7: Learning with different sizes of reservoirs and chunks.
(A) The time course and performance of learning are shown for an input sequence
involving a single chunk of the length 4 (blue) or 7 (red). Three networks with
different sizes (NGs = 30, 300, 500) were tested. (B) The values of the correlation
after learning are plotted as a function of the network size. (C) The dependence of
the correlation on the chunk size is shown. (D) The dependence of the correlation
on the connection probability between the two reservoirs is presented.
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3.2.7 Crucial Role of Noise in Chunk Learning

We found that external noise plays an active role in successful chunking. We

demonstrated this in the case where the input only contained a single chunk

(Fig.3.8A). In the absence of noise readout units, phasic responses were still ob-

served, but these responses were not necessarily time-locked to chunks (Fig.3.8A,

vertical arrow). As shown later, the two RC modules in principle may agree on

an arbitrary feature of the input sequence, which implies the RC system may con-

verge to a local minimum of learning. Noise may help the system to escape from

the local minima. On the other hand, too strong of noise completely deteriorated

the phasic responses to chunks. Thus, the RC system could learn chunks only

when a modest amount of external noise existed (Fig.3.8B). In the presence of

adequate noise (σ = 0.25), the average weight of the readout connections rapidly

decreased to a small equilibrium value during learning (Fig.3.8C), leaving some

readout weights much stronger than the majority (Fig.3.8D). This reduction was

expected because external noise gives a regularization effect on synaptic weights

in error-minimization learning [12]. The strong weights were obtained for readout

connections from the reservoir neurons responding to the chunk, hence they were

crucial for chunk detection. However, this was not the case in the absence of noise

(σ = 0). We counted the fraction of strong readout connections that emerged from

chunk-encoding reservoir neurons, where strong connections included those that

were greater than the standard deviation of the weight distribution. Such a frac-

tion was significantly larger in the presence of adequate noise than in the absence

of noise. Under strong noise (σ= 1), although the weight distribution becomes

more bimodal, the noise disrupted learning and the system failed to capture the

chunks (Fig.3.8E).
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Figure 3.8: Effects of noise on successful chunk learning.
(A) Activity of a readout unit after learning a chunk at different noise levels: σ
= 0 (black), 0.25 (red) and 1 (green). Without noise, the readout unit still learned
to respond to a portion of input, but this portion did not necessarily belong to
a chunk (vertical arrow). (B) Learning performance is a non-monotonic function
of the noise level. The optimal performance was obtained at σ = 0.4 ‒ 0.6 when
the scaling factor in Equation 4 was set as gG = 1.5 (cyan). The effect of noise on
the learning performance was not significantly changed when the scaling factor
was simultaneously reduced with the noise level (gray). (C) Evolution of the norm
of readout weights during learning is shown for σ = 0 (black), 0.25 (red) and 1
(green). (D) The distributions of readout weights from chunk-encoding (red) and
non-encoding (blue) reservoir neurons are shown after learning at different noise
levels. Arrows indicate the maximum weight values from the chunk-encoding
neurons. (E) The fraction of strong readout weights (see the main text) from the
encoding neurons is shown for different noise levels. The fraction is significantly
larger for σ = 0.25 compared with σ = 0 and 1 (p < 0.01, Mann ‒ Whitney U test).
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Another possible mechanism in which the external noise would improve the

learning performance is that the dynamics of RC modules with weak noise are

too far in the chaotic regime and the external noise suppresses chaos to enable

proper chunk learning [101]. To test this possibility, we compensated a decrease

of σ by decreasing the strength of recurrent conections gG, which weakens the

influences of chaos, and investigated whether the deterioration of performance is

suppressed. The noise intensity was decreased from a modest level (σ = 0.5), and

the values of σ and gG were decreased at the same rate. Although the improvement

was not significant, the dual RC system better resisted the performance deterio-

ration (Fig.3.8B), suggesting that proper chunk learning requires a certain balance

between external noise and chaotic dynamics.

Though our results so far suggest that mutual supervision enables the RC sys-

tem to learn recurring groups of items in a sequence, these results do not indicate

how the system chooses particular groups for learning. The question then arises

whether our model detects a “chunk” if a sequence merely repeats each letter

randomly without temporal grouping. To study this, we constructed a set of in-

put sequences of ten letters, where all the letters appeared equally often in each

sequence. We then exposed the RC system with a readout unit to these sequences.

We found that the system learned to respond to one of the letters with approxi-

mately equal probabilities (Fig.3.9A). We then made the occurrence probability of

letter “a” twice as large as the occurrence probabilities of the others and found

that the system detected “a” about twice as frequent as the others (Fig.3.9B).

These results indicate that the learning performance of the dual RC system relies

on the occurrence frequency of repeated features if there are no other characteristic

temporal features in the input sequence.
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Figure 3.9: Learning random sequences of single characters.
The model shown in Fig.3.1 was exposed to random sequences consisting of 10
characters (a, b, …, j). Input sequences had no apparent temporally grouped
subsequences. (A The counts of simulation trials in which each character was
learned. All characters appeared equally often in input sequences. In total, 300
trials were performed. (B) Similar trial counts were taken when character “a”
appeared twice as often as others.

The frequency dependence of our model partially accounts for the features of

sequences that are grouped into chunks. As demonstrated in Fig.3.6, a pair of RC

modules engage in the mutual prediction of the partners’ response. This predic-

tion would be easier for the items in the input that repeatedly occur in a fixed

temporal order. However, the explicit role of temporal grouping in chunking re-

mains to be further clarified.

We then demonstrate that the RC system can simultaneously chunk multiple

sequences with overlaps, where input sequences share some letters as common

items. In some sequences, common subsequences appeared in the beginning or

the end of chunks (Fig.3.10A), whereas other sequences involved common subse-

quences in the middle of chunks (Fig.3.10D). In both cases, the RC system (with

two readout units) successfully chunked these input sequences without difficulty

(Fig.3.10B and 10E). Interestingly, the activity of the readout units averaged over
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repetitive presentations ceased to increase during the presentation of the overlap-

ping part of the chunks (Fig.3.10C and 10F). This seems reasonable as overlapping

in part does not contribute to the prediction of the following items in the chunks

and hence needs not be learned.

3.2.8 Chunking Sequences of Realistic Inputs

So far, we have only studied discrete sequences of letters with varying complexity.

However, the applicability of the proposed mechanism is not restricted to this rel-

atively simple class of temporal inputs. We first showed the potential advantage

of this mechanism over the conventional statistical methods, considering a system

with three readout units (per RC module) for processing sequence inputs gener-

ated by a random walk through a graph (Fig.3.11A, left). This was previously

used in examining the learning ability of event recognition by human subjects

[97]. Each node of this graph has exactly four neighbors, and hence is visited

by random walk with uniform transition probabilities over all neighbors. Despite

this uniformity, the graph has three clusters of densely connected nodes, which

define the communities in the graph [32, 79]. Human subjects and our model

(Fig.3.11A, right) can easily chunk these clusters according to community struc-

ture, but machine-learning algorithms based on surprise signals (e.g., [84]) cannot

[97].

We further demonstrated that the proposed system can learn to detect two im-

ages recurring in visual input streams with (Fig.3.11B) and without (Fig.3.11C)

random intervals of Gaussian noise stimuli. We examined whether learning speed

depends on the resolution of images and found that such a dependence was weak

if the network size was unchanged (Fig.3.11D). Our results show the potential abil-

ity of the proposed mechanism in analyzing the community structure of a broad

class of temporal inputs.
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Figure 3.10: Learning chunks with mutual overlaps.
(A) Two chunks shared the last component“d” in a random input sequence. (B)
Activities of two readout units were selective to different chunks after learning.
(C) The average response profiles are shown for the two readout units. (D) Two
chunks shared the middle components“d-e”in a random input sequence. (E) and
(F), Activities of two readout units and the average response profiles are shown,
respectively.
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Figure 3.11: Chunking complex temporal inputs.
(A) Sequence inputs were generated by a graph with uniform transition probabili-
ties and community structure. The graph was modified from [97]. (B) Sequence of
high -resolution (97x97x3) visual stimuli, where the factor 3 represents the three
RGB channels, was chunked. White intervals show periods of Gaussian noise. (C)
Sequence of high-resolution (97x97x3) visual stimuli was chunked. (D) Learning
curves are compared for the images shown in (C) between high (black) and low
(gray) resolution versions. The images were repeatedly presented without noise
intervals.
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3.3 Discussion

Conventional statistical methods of chunking use unequal transition probabilities

between sequence elements as cues for sequence segmentation. In contrast, we

propose a conceptually novel framework in which the neural system self-organizes

its internal dynamics to respond preferentially to chunks (i.e., frequently recurring

segments) with a temporal input, rather than attempts to predict the temporal pat-

terns of input sequences. We achieved this unsupervised learning in a network of

paired RC modules mutually learning the responses of the partners. Sequence

leaning with RC has been studied in motor control [27, 56, 57] and decision mak-

ing [102, 107]. Theoretical extensions to spiking neuron networks [69] and/or

reward-based learning [19] have thus been proposed. In this study, we showed

that RC can be used for the unsupervised learning of hidden structure of contin-

uous information streams.

Chunking has often been accounted for by predictive uncertainty or surprise

[1, 5, 42, 89]. However, recent evidence suggests the existence of an alternative

mechanism of chunking in which events are segmented based on the temporal

community structure of sequential stimuli [97]. Indeed, it has been shown that in-

dividual items in a sequence are concatenated into an event when they frequently

go together in the sequence. This dual RC system automatically chunks a contin-

uous flow of stimuli based on temporal clustering structure and the occurrence

probabilities of the stimuli without relying on predictive uncertainty or surprise.

In addition, the model can chunk clusters of sequence elements that cannot be

chunked by conventional statistical methods based on unequal transition proba-

bilities (Fig.3.11A). Unsupervised chunk learning was previously modeled by us-

ing heteroclinic orbits in a dynamical neural system [31]. Though this mechanism

enables the learning of prescribed chunks, whether it also offers flexible learning

of arbitrary chunks remains unclear.
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Our model has some advantages over the previous models of chunking. Our

model can detect multiple chunks embedded into random background sequences.

To our knowledge, the detection of multiple chunks has not been seriously at-

tempted in the presence of various types of input noise on chunking. Further,

as shown in Fig.3.10 our model can learn multiple partially overlapping chunks

without additional mechanisms, which was also previously difficult. On the other

hand, a weak point is that our model requires specially designed teaching signals,

which depend on the structure of chunks. Related to this, mutually inhibitory

teaching signals were introduced in an ad-hoc manner to prevent multiple read-

out units from learning the same chunk. A more flexible mechanism of learning

should be further explored.

The dual RC system described here shows good performance in the presence

of external noise. Without noise, the system also learns to respond to certain

segments of a sequence, but these segments may not coincide with any of the fre-

quently repeated chunks. An adequate amount of external noise eliminates such

spurious responses and enables the system to respond to the most prominent fea-

tures of a sequence, namely repeated chunks. This finding is interesting because

the initial state of the dual RC system is chosen on the so-called“edge of chaos,”

on which weakly chaotic neural dynamics provide an adequate amount of flexibil-

ity for supervised learning [96, 106, 120]. Moreover, the present system assumes a

similar initial state, but additionally requires the regularization of synaptic weight

dynamics by noise (Fig.3.8C). Training a recurrent neural network with an explicit

regularization term is known to eliminate the strange neuronal responses that are

not observed in the motor cortex [57].

The dual RC system learns sequence in an unsupervised fashion by using two

neural networks and, in this sense, is similar to Generative Adversarial Network

(GAN) in deep learning [110]. A critical difference, however, exists between the

two models. In GANs, a generative network learns to mimic the structure of
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training data and a discriminative network learns to distinguish between samples

from the training data and those generated by the generative network. Because

the generative model learns to deceive the discriminative model, GANs learn the

structure of data distribution under a conflicting cost function. By contrast, in the

dual RC system, two neural networks learn to help each other for the formation

of a consensus about the structure of temporal inputs. Therefore, our model is

conceptually different from GANs.

The structure of our model has an interesting similarity to cortico-basal ganglia

loops, where two reservoirs may represent bi-hemispheric cortical networks and

readout units may correspond to striatal neurons. The responses of readout units

and those of striatal neurons in the formation of motor habits also look similar.

Sequential motor behavior becomes more rigid and automatic over the course of

learning and practice, and the basal ganglia is thought to play a pivotal role in

habit formation [92, 104]. For instance, in rats running in a T maze, the majority

of dorsolateral striatal neurons exhibit burst firing when the run is initiated or

completed, or both [37]. Similarly, in mice an increased population of striatal

neurons selectively responds to the initial (Start cells), the last (Stop cells), or both

actions in the trained behavioral sequence [51, 52]. In our model, readout units

respond strongly to the last component of each chunk, similar to the Stop cells.

Our model predicts that the Stop-cell’s response may decrease when two motor

chunks have overlapping portions (Fig.3.10). On the other hand, our model does

not show Start cell-like responses. Whether and how Start cells are formed is an

intriguing open question.

The proposed learning scheme works most efficiently when two RC modules

are not interconnected, but rather work independently. In fact, the performance

of chunk learning drops below 50% of the initial level when the connection prob-

ability between the two reservoirs exceeds about 10% (Fig.3.7D, see the Methods).

This suggests that each RC module can obtain maximum information about tem-
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poral input when it receives the teaching signal completely from its outside. The

existence of inter-reservoir connections implies that some portion of the teaching

signal originates from its inside. Where can such independent networks be located

in the brain? One possibility is that they are represented by mutually disconnected

recurrent neuronal networks in a local cortical area. Because they are functionally

equivalent, it is unlikely that they are implemented in functionally distinct areas.

Another intriguing possibility is that they are distributed to functionally equiva-

lent cortical areas in different hemispheres. Indeed, the inferior frontal gyrus and

the anterior insula are bilaterally activated when human subjects chunk visual

information streams [13, 97]. Whether subnetworks of pyramidal cells perform

chunking in these or other cortical areas [119] remains an intriguing open ques-

tion.

In summary, we propose an unsupervised learning system by combining two

independent reservoir computing modules. During learning, the two systems

supervise each other to generate coincident outputs, which in turn allows the

entire system to consistently learn chunks hidden in irregular input sequences.

As chunking is a fundamental step in the analysis of sequence information, our

results have significant implications for understanding how the brain models the

external world.

3.4 Methods

3.4.1 Details of the Neural Network Models

In this study, the proposed model is composed of two recurrent networks (reser-

voirs). Each recurrent network is composed of NG neurons. Each neuron follows
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the following dynamics as i = 1, 2, . . . , NG

τẋi(t) = −xi(t) + gG

NG

∑
j=1

JGG
ij rj(t) + JGZ

i z(t) +
Nl

∑
µ=1

JGI
iµ Iµ(t) + σξi(t), (3.4)

ri(t) = tanh(xi(t)), (3.5)

where Iµ(t) is the activity of input neurons, ξi(t) is a random (Wiener) process and

σ is the standard deviation. NI is the number of input neurons. The parameter

gGdetermines the complexity of the behavior of the reservoir, and shows chaotic

spontaneous activity if gG > 1. The instantaneous output is given by z(t) =

wTr(t), where w is the readout weight vector. The readout unit is connected with

n reservoir neurons by the readout weights w. The readout weights are modified

according to the FORCE learning rule in which the error between the actual output

and the teaching signal is minimized [106]. The activity of the readout unit is

transmitted to the reservoir via the feedback.

The initial values of the readout weights w are generated by a Gaussian distri-

bution with the mean 0 and variance 1/n. Each element of the feedback coupling

JGz is randomly sampled from a uniform distribution [−1,+1]. In the connection

matrix JGG of the reservoir, each element is taken from a Gaussian distribution

with mean 0 and variance 1/(pNG), where p is the connection probability of the

reservoir neurons. In the connection matrix JGI between input neurons and the

reservoir, each row has only one non-zero element drawn from a normal distri-

bution of mean 0 and variance 1. We simulated the model with time steps of 1

[ms].

The values of parameters used in simulations are as follows: in Figs. 3.1, 3.2,

3.6, 3.7C, 3.7D, 3.8 and 3.9, NG = 300, p = 1, n = 300 and σ = 0.3; in Figs. 3.3, 3.4,

3.5, 3.9 and 3.11, NG = 600, p = 0.5, n = 300 and σ = 0.1; in Fig.3.7A and Fig.3.7B,

p = 1, σ = 0.3 and n = NG while the values of NG were varied; in Fig. 3.10,
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p = 1, n = 300, and NG = 800, σ = 0.15(B) or NG = 500, σ = 0.1 (E). The number

of input neurons was NI = 26 in all simulations except Fig.3.7C, in which NIwas

5s with s being the size of the chunk. In all simulations, τ = 10 [ms] and gG = 1.5.

The learning rate was set as α = 100 because larger values could cause instability

in the learning process. The network was trained typically for several hundreds of

seconds except in Figs. 3.3, 3.10B and 3.10E where the simulation time was 5000,

2500 and 25,000 [s], respectively.

Teaching Signals Mediated by Interneurons

In Fig.3.4D, the teaching signals were generated as

[tanh((ẑa′(t)− γ ∑
c=4,5,6

′
yc(t))/β)]+ (a = 1, 2, 3) (3.6)

where the activities of interneurons were calculated as

τẏc(t) = −yc(t) + ẑc(t) (3.7)

A similar formula applied to the partner network. Note that a dash in the sec-

ond term of Equation 3.6 indicates that the corresponding readout unit should be

excluded from the summation (Fig.3.4C).

3.4.2 Connections Between the Reservoirs

In Fig.3.7D, the weights of recurrent connections in each reservoir module and

those of connections between the modules were sampled from an identical Gaus-

sian distribution with mean 0 and variance 1/{(1 + q)NG}, where q is the con-

nection probability of inter-module connections. The recurrent connections were

all-to-all. The value 1 in the denominator was introduced such that the limit q → 0

gives the disconnected RC modules studied in other panels in Fig.3.7.
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Normalized Output for Teaching Signals

In our learning rule, we changed the outputs of readout units such that the mean

outputs coincide with zero and the standard deviation becomes unity:

z(t) → ẑ(t) = (z(t)− µ(t))/σ(t), (3.8)

where µ(t) and σ(t) were calculated as

µ(t) =
1
T

∫ t

t−T
z(t′)dt′, (3.9)

σ(t) =

√
1
T

∫ t

t−T
z(t′)2dt′ − µ(t)2, (3.10)

with a sufficiently long period T(= 15 [s]). The modified output ẑ(t) was then

transformed by two nonlinear functions to generate the teaching signal shown in

the Results.

3.4.3 Selectivity of Reservoir Neurons

In Fig.3.5A, the activities of all reservoir neurons were first averaged and then

normalized. To define the response selectivity of neurons, we sorted all of the

neurons by their mean activation phases defined as,

t̂i =
T
π

arg

∑T
t′=1 r̄i(t′) exp

(
i 2πt′

T

)
∑T

t′=1 r̄i(t′)

 [ms],

where r̄(t) is the normalized average response of each cell and T = 2400[ms].

Each reservoir neuron generally showed a significantly large and prolonged phasic

response to a particular chunk, which determined the selectivity of the reservoir

neuron. We defined a phasic response as such transient activity that exceeded

the threshold value µ + 3σ for more than 100 [ms], where µ and σ stand for the
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average and standard deviation of its activity during the presentation of input

sequence. Neurons that were not related to any chunks or responded to multiple

chunks were discarded in the analysis.

3.4.4 Analysis of the Low-dimensional Dynamics of Reservoirs

In Fig. 3.6, we projected the neural responses rR1(t) of recurrent network in R1

onto the M(≤ NG) dimensional subspace:

rR1,M(t) = VT
MrR1(t). (3.11)

Here, the (NG × M)-dimensional matrix VM is defined as VM = (ϕ
(R1)
1 ϕ

(R1)
2 . . . ϕ

(R1)
M )

in terms of the λ-th eigenvector of R1 reservoir ϕ
(R1)
λ . Similarly, we projected the

readout weight vectors from R1 onto the same subspace as

wR1,M = VT
MwR1. (3.12)

We then calculated the difference between the actual output of R1 and the output

reconstructed on the subspace as

Ez =

√
1
T

∫ T

0
|zR1(t)− wT

R1,MrR1,M(t)|2dt. (3.13)

The difference between the actual output of R2 and the projected R1-output was

calculated in a similar fashion.

3.4.5 Simulations of Visual Information Streams

In Fig. 3.11B and 3.11C, we constructed a pair of RC modules each having two

readout units. A stream of two images with high (97x97 pixels x 3 RGB channels)

or low (32x32 pixels x 3 RGB channels) resolutions was used as input, in which
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the presentations of two images (and Gaussian noise images in Fig. 3.11B) were

randomly switched at every 250 ms. Each reservoir neuron received input from

randomly chosen 10% of pixels. In Fig. 3.11D, the low-resolution versions of the

images used in Fig. 3.11C were created at the reduced size of 32 x32 pixels (x 3

RGB channels).



Chapter 4

Temporal Feature Learning by

Somatodendritic Mismatch

Detection

The mutually supervising reservoir network model proposed in Chapter 3 success-

fully learning chunks from sequences without any teaching signals from outside.

However, the previous model is not biologically plausible in at least two respects.

First, the number of outputs in each reservoir must be the same as the number

of chunks in the sequences. This means that it is necessary to know the number

of features prior to learning. Second, as shown in the previous chapter, learning

fails as the number of connections between circuits increases. This indicates that

the two circuits need to be sufficiently independent, but a completely independent

structure in the real neural circuit is unnatural. To overcome these disadvantages,

in this chapter, I will propose novel neuron model, which consists of two compart-

ments: dendrites and soma. In this model, dendrites change synaptic connections

so that they learn a statistical model of somatic activity. We will show that this

model can perform not only chunking, but also a wide range of sequence learning,

50
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including blind source separation of correlated signals.

4.1 Introduction

Cognitive functions of the brain entail modeling of externally or internally driven

dynamic processes. For this modeling, the brain has to identify the salient tem-

poral features of continuous information streams. How the brain conducts this

time-series analysis remains unknown, but the component processes necessary for

the analysis are partly known. The process by which frequently recurring seg-

ments of temporal sequences are concatenated into single units that are easy to

process is called “chunking” or “bracketing” [26]. Chunking underlies sen-

sory scene analyses, motor learning, episodic memory and language processing

[34, 51, 52, 97, 119]. In predictive coding [6, 33, 54], the brain may chunk bottom-up

and top-down information flows to identify variables relevant to the hierarchical

Bayesian modeling of mental processes. Another important class of temporal fea-

ture analysis is blind source separation (BSS: the so-called cocktail party effect) in

which the brain separates mixed sensory (typically auditory) signals from multi-

ple sources for recognition [75]. Despite of the fundamental importance, however,

the methods by which neural circuits in the brain analyze and learn temporal

features remain largely unclear. Whether the different temporal feature analyses

require specialized network architectures and learning rules is also unknown.

In this study, we provide a conceptually novel solution to these fundamental

problems of the brain computing. We show in a two-compartment neuron model

that the minimization of information loss between dendritic synaptic input and

neuron’s own output spike trains enables efficient learning of clustered temporal

events in a completely unsupervised manner. This learning proceeds intracellu-

larly and can be viewed as a self-supervising process in which a single neuron

(more precisely, the soma) generates an appropriate supervising signal to learn
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the spatiotemporal firing patterns repeated in upstream neurons (projecting to

the dendrite). The resultant learning rule conceptually resembles Hebbian learn-

ing with backpropagating action potentials, which crucially contribute to synaptic

plasticity in cortical neurons [59, 62, 67, 70, 103]. Furthermore, our model pre-

dicts that the gain and threshold of somatic responses should be modulated in an

activity history-dependent manner.

To our surprise, a family of competitive networks of the proposed neuron model

can perform a variety of unsupervised learning tasks ranging from chunking

to BSS, which were previously performed by specialized networks and learning

rules. Members of this family have the same network architecture but different

network parameters (e.g., synaptic weights). We emphasize that some chunking

tasks solvable with our model (and also by humans) are difficult for the conven-

tional machine learning methods due to uniform transition probabilities between-

consecutive items [97]. Furthermore, the same network model successfully sepa-

rates the mixed signals of highly correlated sources, namely, musical instruments

playing their own parts of the same note. BSS has been extensively studied in ma-

chine learning [3, 24, 46, 53], but how the brain solves this problem has not been

fully understood. Our results suggest the computational principles that underlie

the wide range of subconscious temporal feature analyses by cortical networks

and the active role of dendrites in these processes.

4.2 Results

4.2.1 Neural implementation of minimization of regularized informa-

tion losss

Our model entails the learning of temporal features of an input based on a novel

learning rule, which we term“minimization of regularized information loss (MRIL).”
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Suppose that the dendrite attempts to predict the responses of soma. In short,

MRIL achieves this by minimizing the information loss (within a certain recent

period) when the somatic activity is replaced with its model, that is, the dendritic

activity driven by given synaptic inputs. The loss can be easily minimized if the so-

matic responses are well predictable. This will be the case when the neuron learns

to selectively respond to temporal patterns recurring in synaptic input. Fig.4.1

schematically illustrates the present learning rule in a two-compartment spiking

neuron model. Mathematically, MRIL minimizes the Kullback ‒ Leibler (KL) di-

vergence between the probability distributions of somatic and dendritic activities.

Note that in the resultant learning rule the somatic response is fed back to the

dendrite to train dendritic synapses. Although the underlying biological mecha-

nisms are not modeled here, backpropagating action potentials may provide the

feedback signal in cortical pyramidal neurons [58].

−

+

Figure 4.1: Two-compartment neuron model for MRIL.
The model neuron consists of somatic and dendritic compartments and undergoes
MRIL learning. The dendritic component receives Poisson spike trains, and the
somatic membrane potential is given as an attenuated version of the dendritic
membrane potential. Output of the soma backpropagates to dendritic synapses
as a self-teaching signal. Learning stops when the dendrite minimizes the error
between its prediction and the actual somatic firing rate.
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The division of labor between the soma and dendrite was previously modeled

with a teaching signal given explicitly or implicitly to the soma [111]. Unlike the

previous model, our model modulates the gain and threshold of somatic responses

according to the recent history of somatic responses. These modulations enable

the model to avoid a trivial solution to the learning rule, and therefore ensure suc-

cessful learning of nontrivial temporal features. Differences between the present

and previous models will be further discussed later. Before going to the detail of

results, I will explain the details of consepts of our learning mdel.

4.2.2 Neural Network Model

Each output neuron has two compartments, i.e., somatic and dendritic compart-

ments. The dendritic membrane potential of output neuron i ∈ 1, 2, ..., Nout is

calculated as

vi(t) = ∑
j

wijej(t), (4.1)

where wij is the weight of synapse between output neuron i and input neuron j.

The somatic activity integrates the dendritic potential, and it evolves as

u̇i(t) = −gLui(t) + gD[−ui(t) + vi(t)]− ∑
j

Gijϕ
som
i (uj(t)), (4.2)

where τ = 15 ms and the conductance between the two compartments gD =

0.7. The last term describes lateral inhibition with synaptic weights Gij(≥ 0).

We calculated the inhibitory input in terms of the firing rates of output neurons.

However, as explained below, spike trains of these neurons were also generated for

simulating modifications of Gij by spike-timing-dependent plasticity. We assume

that the soma of neuron i generates a Poisson spike train with the instantaneous
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firing rate ϕsom
i (ui(t)) in terms of the nonlinear response function

ϕsom
i (ui) = ϕ0[1 + exp(βi(−ui + θi))]

−1. (4.3)

The parameters βi and θi are defined as follows:

βi = σi(t)−1β0, (4.4)

θi = µi(t) + σi(t)θ0, (4.5)

where µi(t) and σi(t) are the mean and variance of the membrane potential over a

sufficiently long period t0:

µi(t) =
1
t0

∫ t

t−t0

ui(t′)dt′, (4.6)

σi(t) =

√
1
t0

∫ t

t−t0

ui(t′)
2dt′ − µi(t)

2. (4.7)

We set β0 = 5 throughout this study, but the values of ϕ0 and θ0 are task-depend

and described later. We note that the slope of nonlinearity βi and the threshold

value θi are modified as the values of µi(t) and σi(t) change during learning. As

described later, these online modifications of the somatic response function main-

tain the dynamic range of output firing rate within a certain range, preventing

synaptic weights from converging to a trivial solution through learning.

In our model, sensory information given to the network is first encoded into

Poisson spike trains. Input neuron i ∈ 1, 2, ..., Nin generates a Poisson spike train

Xi(t) = ∑
f

δ(t − ti,q), (4.8)

where δ is the Dirac’ delta function and ti,q denotes the time of the q-th spike of
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input neuron i. The presynaptic spikes induce the following synaptic current Ii(t):

τsyn İi = −Ii +
1
τ

Xi, (4.9)

where the synaptic time constant τsyn = 5 ms (τsyn = 50 ms in Fig.4.7G and

Fig.4.8C). The synaptic currents in turn evoke postsynaptic potential (PSP) ei(t) as

ėi = − ei

τ
+ Ii. (4.10)

4.2.3 Optimal learning rule for minimization of regularized informa-

tion loss (MRIL)

To extract the characteristic features of temporal input, our model compresses the

high dimensional data carried by the input sequence onto a low dimensional man-

ifold of neural dynamics. The model performs this by modifying the weights of

dendritic synapses to minimize the time-averaged mismatch between the somatic

and dendritic activities over a certain interval [0, T]. We assumed that an attenu-

ated version of dendritic potential v∗i (t) well describes the somatic membrane po-

tential as ui(t) ≈ v∗i (t) = αvi(t) with the degree of attenuation α = gD/(gD + gL)

[111]. Explicitly representing the dependency of ui and v∗i on X, we define the cost

function for synaptic weights w as

E(w) =
∫

ΩX

dX
∫ T

0
dtP∗(X)∑

i
DKL

[
ϕsom

i (ui(t; X))
∣∣∣∣∣∣ϕdend(v∗i (t; X))

]
(4.11)

where P∗(X) stands for the true distribution of input spike trains, ΩX for the

space spanned by all possible combinations of input spike trains, and DKL for the

KL-divergence between the two Poisson distributions:

DKL

[
ϕsom

i (ui(t; X))
∣∣∣∣∣∣ϕdend(v∗i (t; X))

]
≡ ϕsom

i (ui(t; X)) log
ϕsom

i (ui(t; X))
ϕdend(v∗i (t; X))

(4.12)

+ϕdend(v∗i (t; X))− ϕsom
i (ui(t; X))
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with ϕdend(x) = ϕ0[1 + exp(β0(−x + θ0))]−1.

We minimize the cost function (i.e., the averaged KL-divergence) with respect

to w such that the responses of the two compartments become consistent with

each other. Thus, the unsupervised learning rule of “somatodendritic mismatch

detection” resolves the mismatch between the somatic and dendritic responses to

temporal input. We search the optimal weight matrix by the gradient descent as

∆wij ∝ − ∂

∂wij
E (4.13)

= − ∂

∂wij

∫
ΩX

dX
∫ T

0
dtP∗(X)∑

i′
DKL

[
ϕsom

i′ (ui′(t; X))
∣∣∣∣∣∣ϕdend(v∗i′(t; X))

]
= −

∫
ΩX

dX
∫ T

0
dtP∗(X)

∂

∂wij

[
ϕsom

i (ui(t; X)) log
ϕsom

i (ui(t; X))
ϕdend(v∗i (t; X))

+ϕdend(v∗i (t; X))− ϕsom
i (ui(t; X))

]
(4.14)

=
∫

ΩX

dX
∫ T

0
dtP∗(X)

∂ log(ϕdend(v∗i (t; X)))
∂wij

[
ϕsom

i (ui(t; X))− ϕdend(v∗i (t; X))
]

.

Note that the identity dϕdend(x)/dx = ϕdend(x)d log ϕdend(x)/dx was used in de-

riving the last expression. Since v∗i (t) = α ∑j wijej(t), the local learning rule is

written in a vector form as

∆wi ∝
∫

ΩX

dX
∫ T

0
dtP∗(X)ψ(v∗i (t; X))

[
ϕsom

i (ui(t; X))− ϕdend(v∗i (t; X))
]

e(t; X),(4.15)

where wi = [wi1, · · · , wiNin ] and the function ψ(x) is defined as

ψ(x) =
d

dx
log(ϕdend(x)). (4.16)

Note that the i-dependence of ∆wi arises in our network model from activity-

dependent modifications of recurrent inhibitory connections among output neu-

rons (see equation 4.2). The inhibitory connections are modifiable by STDP (see

Fig.4.3B).

In all simulations, we added the regularization term −γwito equation (4.15)
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to prevent the diverging growth of synaptic weights. Thus, the following online

learning rule was used:

ẇi(t) = η
{

ψ(v∗i (t))
[
ϕsom(ui(t))− ϕdend(v∗i (t))

]
ej(t)− γwi

}
, (4.17)

where η is the learning rate. The parameter γ controls the strength of regular-

ization and was adjusted in a task-dependent manner. The initial values of w

were generated by a Gaussian distribution with mean zero and standard devia-

tion 1/
√

Nin. Note that the above learning rule coincides with the Bienenstock-

Cooper-Munro (BCM) theory except a sign difference [11]. In BCM theory the

threshold between potentiation and depression is an unstable fixed point, while

in our model this point is a stable fixed point. The online modifications shown in

equations (4.3)-(4.5) avoids a trivial fixed point.

A similar learning rule was previously considered in a supervised learning

model in which the average“surprise”of somatic spike output driven by dendritic

synaptic input and a teaching signal given to the soma was minimized [111]. In the

framework, our learning rule may be interpreted as“self-consistent surprise min-

imization” in which the teaching signal itself is provided by the somatic response

to make the learning rule for dendritic neurons unsupervised. This summarizes

the essential difference between our model and the previous model.

4.2.4 Inhibitory plasticity

We modified lateral inhibitory connections through a symmetric anti-Hebbian

spike-timing-dependent plasticity (STDP): If a pair of presynaptic and postsy-

naptic spikes occur at the times tpre and tpost, respectively, weight changes were

calculated as

∆Gij = Cp exp
(
−
|tpre − tpost|

τp

)
− Cd exp

(
−
|tpre − tpost|

τd

)
, (4.18)
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where τp and τd are the decay time constants of LTP and LTD, respectively. Typi-

cally, we used τp = 40 ms, τd = 20 ms, Cp = 0.00525 and Cd = 0.0105. Inhibitory

weights Gij were modified between zero and an upper bound Gmax(∝ 1/
√

Nout)

Our learning rule (Eq. 4.17) looks similar to the maximum likelihood estima-

tion [85], a well-studied framework of supervised learning. However, there is a

conceptual difference between them. In the maximum likelihood estimation, the

target data distribution (somatic activity) is provided externally as teaching sig-

nals. By contrast, our model simultaneously learns the probability distributions

of input and output data without teaching signals. The consistency between the

two data sets constrains the self-supervised learning, thereby avoiding an overly

redundant or an overly simplistic categorization of temporal inputs. We empha-

size that MRIL fits particularly well with dendritic neurons, but the principle is

generic and applicable to a broad range of information processing systems.

4.2.5 Learning patterned temporal inputs in single neurons

We first demonstrate that the dendritic neuron model detects the salient temporal

features recurring in synaptic input. Learning to detect and discriminate repeated

temporal input patterns is crucial for various cognitive functions such as language

acquisition [15, 36] and motor sequence learning [34, 51, 52, 104]. In Fig.4.2A,

presynaptic spike trains intermittently repeated three fixed spatiotemporal pat-

terns with equal probabilities of occurrence. These patterns may be regarded as

chunks. As learning of temporal input proceeds through the mismatch check

between the soma and dendrite, a single neuron gradually learned to respond

selectively to an input pattern (Fig.4.2B, C). The neuron learned one of the input

patterns with approximately equal probabilities among the trials, although it re-

sponded to more than one input pattern in some trials (Fig.4.2D). We note that

all presynaptic neurons had the same average firing rates that were constant dur-
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ing the entire task period (Methods). Therefore, the discrimination does not rely

on differences in firing rate. Cortical neurons are actually capable of discriminat-

ing temporal inputs and generating sequence-selective spike output, although the

synaptic sequences tested in the experiment were relatively simple [14].
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Figure 4.2: Unsupervised learning in two-compartment neurons.
(A) Three frozen spatiotemporal patterns (red, blue, and green) were repeated in
irregular spike trains from 2,000 input neurons. (B) A dendritic neuron selectively
learned one of the recurring patterns. Examples of the somatic (red) and dendritic
(black dashed lines) activities are shown at the initial (top), middle (middle) and
final (bottom) stages of learning. (C) Leaning curve is shown, with circles indicat-
ing the time points at which the examples were drawn. Instantaneous correlations
were calculated between the activities of dendrite and soma, every 15 s during
learning. (D) The fraction of trials in which a single neuron model learned a se-
lective response to one of the three repeated spike patterns is shown. The number
of trials was 100. “Others” indicates trials in which the neuron had more than
one preferred pattern, i.e., the peak responses to the second preferred pattern was
greater than 50% of those to the most preferred pattern.
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4.2.6 Automatic chunking with MRIL and inhibitory STDP

Next, we considered a competitive network of the two-compartment model neu-

rons receiving similar presynaptic spike trains (Fig.4.3A). To study whether chunk-

specific cell assemblies can be formed, we made recurrent inhibitory connections

among these neurons modifiable by inhibitory spike timing-dependent plasticity

(iSTDP; Fig.4.3B). This rule weakens inhibition between two dendritic neurons

when both of them respond to the same temporal feature. The use of this plas-

ticity rule for lateral inhibition is realistic because this type of STDP has been

found at cortical excitatory synapses on inhibitory interneurons [64] and at in-

hibitory synapses in the hippocampus [116]. In either case, inhibitory circuits will

exhibit the desired changes. During learning, each neuron gradually increased

coherence between the somatic and dendritic activities (Fig.4.3C). The postsynap-

tic neurons self-organized into three neuron ensembles, each detecting one of the

input activity patterns (Fig.4.3D), and iSTDP enabled mutual inhibition between

the neural ensembles (Fig.4.3E). The strength of lateral inhibition, however, needs

to be within an appropriate range, as too strong (Fig.4.4A) or too weak (Fig.4.4B)

inhibition failed to generate chunk-specific cell assemblies. The regularization pa-

rameter γ (see Methods) also has to be in an appropriate range to enable the unsu-

pervised learning of chunk-specific cell assemblies, as values that were too large

suppressed all neural responses and those that were too small did not generate

selective responses to chunks (Fig.4.4C).

The ability of the network model to learn recurring input patterns was assessed

with various types of biological noise. Background presynaptic spikes degraded

the performance as the signal-to-noise ratio decreased (Fig.4.3F), whereas learning

was optimal at finite noise levels with synaptic transmission failure (Fig.4.3G) and

with jitters in presynaptic spike timing (Fig.4.3H). We speculate that this disparity

may reflect the different noise structures. Background spikes were uncorrelated

with the recurring input patterns and merely contaminated the signals, whereas
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transmission failures and timing jitters yielded the noise patterns that were cor-

related with the input and thus enhanced the sampling for learning. Presynaptic

noise may also induce a regularization effect during learning [12]. However, this

effect was unlikely to be prominent in our model, as not all types of presynaptic

noise improved the learning.
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Figure 4.3: Formation of temporal feature-specific cell assemblies.
(A) A competitive network of dendritic neurons was used throughout this study.
The input layer consists of Poisson spiking neurons and the output layer comprises
the dendritic neuron models. In this particular example, input neurons received
presynaptic spikes trains similar to those shown in Fig.4.2A. (B) Window function
of the iSTDP implemented at lateral inhibitory connections. Here, spike timing
refers to the time advance of postsynaptic firing from the preceding presynaptic
input. (C) The average correlation between the somatic and dendritic activities is
plotted against learning step. Shaded area represents the S.D. (D) Phasic responses
of output neurons are shown. Horizontal bars show the intervals in which three
chunks (green, red, blue) were presented. The responses sorted according to the
neurons’ onset response times indicate the emergence of chunk-specific cell as-
semblies. (E) Post-learning synaptic weight matrix of lateral inhibition is shown.
The correlations between reference responses and actual output responses were
evaluated in the presence of (F) contamination by background presynaptic spikes,
(G) failure in synaptic transmissions and (H) timing jitters in the target spiking
patterns. Each reference response takes unity during the presentation of the cor-
responding chunk and zero otherwise. The ordinates refer to the inverse of the
number ratio of background spikes to target-specific spikes in (F) and the s.d. of
spike timing jitters in (H). The mean (thick line) and s.d. (shaded area) over 20
trials are shown. The correlations are shown for the maximally correlated pairs of
cell assemblies and chunks (i.e., preferred chunks).
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Figure 4.4: Roles of inhibitory STDP and regularization parameter.
Here, simulations were performed with irregular spike trains of 200 input neurons.
The other settings were the same as in Figure 4.3. (A) Post-learning responses of
output neurons are shown for strong lateral inhibition (left). About half of the
neurons responded to all three chunks without stimulus selectivity, but the oth-
ers showed almost no responses. Synaptic weight matrix developed no clustering
structures (right). (B) Post-learning responses are shown for weak lateral inhibi-
tion (left). The majority of the neurons had more than one preferred stimulus.
Synaptic weight matrix developed overlapping clustering structures (right). (C)
The strength of the regularization term was changed in Equation 4.17 in the task
shown in Figure 4.3. Too weak regularization term impaired the self-organization
of selective responses to chunks (top), a moderate range of the regularization term
resulted in successful learning (middle), and too strong regularization term pro-
hibited the learning of features (bottom).
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The above results may account for the following perceptual ability of humans.

It has been shown that human subjects can detect the recurrence of frozen noise

patterns embedded in a noisy auditory signal [2]. As in Fig. 4.2A, both repeated

and background auditory signals may be represented by irregular synaptic inputs

to the auditory cortex. However, the subjects learned the noise without extensive

learning, indicating the possibility that the learning mechanisms might differ from

the method presented here.

We may use the present network model in analyzing large-scale neural activ-

ity data. To show this, we performed similar simulations using synthetic data

in which only a small fraction of (total 500) presynaptic neurons constituted a

recurring pattern (Fig.4.5A). It is unlikely that a large portion of recorded neu-

rons participate in recurring cell assemblies in real data. Learning was successful

when the fraction was 10% or 5%, but unsuccessful when the fraction was 3%

(Fig.4.5B, C). Then, we considered the case where the total number of presynaptic

neurons was 1000 and 25 neurons (2.5% of all neurons) belonged to a patterned

activity. Interestingly, the network still succeeded to learn the pattern, indicating

that successful learning requires a minimal number, but not a minimal fraction, of

pattern-encoding presynaptic neurons (Fig.4.5D).

Previously, STDP was used to detect repeated spike sequences [73, 78]. We com-

pared the detection performance between the present model and a STDP-based

model ([73]: see Fig.4.6A, B). Both models exhibited high success rates when re-

curring cell assemblies comprised a large portion of presynaptic neurons. An

interesting difference was found when only a small portion of presynaptic neu-

rons participated in the cell assemblies. In such cases, our model outperformed

the previous model (Fig.4.6C). We also note that the STDP-based model requires

a somewhat unrealistic implementation of STDP, in which postsynaptic neurons

need to know the times of future presynaptic spikes.
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Figure 4.5: Detection of cell assembly patterns from neural population data.
(A) Spike sequences with a fixed spatiotemporal pattern (red) of 50 (10%), 25 (5%)
and 15 (3%) neurons recurred (red horizontal bars) in Poisson spike trains of 500
presynaptic neurons. This example shows the 10% case. (B) Average correlations
over 40 independent trials are shown between chunk-selective responses and the
corresponding reference patterns. Vertical bars are standard errors. (C) Examples
of chunk-selective neuronal responses in the 10, 5 and 3% cases (from the top).
(D) A recurring firing pattern of 25 neurons was embedded into input spike trains
of 1000 presynaptic neurons. The average and standard error of the input-output
correlation (left) and a typical response after learning (right) are shown.
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Figure 4.6: Comparison with the STDP-based model in spike sequence detec-
tion.
(A) The previous model [73] generates a single spike when it successfully detects
recurring input spike patterns (shaded areas). (B) Bimodal distributions of self-
organized synaptic weights. (C) Success rates are plotted for the STDP model
(red) and our model (green) against the proportions of input neurons encoding
the recurring pattern.
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We further examined the ability of our network model in learning a variety of

information streams. First, we applied random sequences of three chunks com-

prising four characters each (Fig.4.7A) to a network model with 10 output neurons

and 1,000 input neurons. Each input neuron generated a 30 ms 10 Hz burst in

response to a randomly assigned preferred character (Fig.4.7B). This resulted in

the formation of three neuron ensembles that selectively responded to the chunks

(Fig.4.7C). Principal-component analysis of the low-dimensional dynamics of out-

put neurons revealed the emergence of the three chunks after learning (Fig.4.7D).

The network also learned the chunks when they were embedded with distractors,

which were given as random sequences comprising arbitrary English characters

(Fig.4.8). Then, we examined whether the model can learn partially overlapping

chunks. In this case, some characters were shared between three chunks (Fig.4.7E)

and learning was more difficult than in the previous case. The original model

with fast synaptic current failed to generate selective responses to the chunks

(Fig.4.7F). However, making the decay constant of synaptic current slower (50 ms:

see Methods) enabled the model to sense temporal inputs on a longer timescale

and to successfully learn the overlapping chunks (Fig.4.7G). The results suggest

that slow synaptic current such as NMDA receptor-mediated current is important

for chunking.
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Figure 4.7: Segmentation and concatenation of various sequences.
Ten output neurons were connected with all-to-all inhibitory synapses modifiable
by iSTDP. (A) Three chunks (a-b-c-d [red], e-f-g-h [green], and i-j-k-l [blue]) re-
curred in the input sequence with equal probabilities. (B) Each input neuron fired
at 10 Hz to encode one of the chunks. Neurons were sorted according to their
preferred stimuli. (C) Typical normalized responses of three output neurons are
shown after learning. Colors indicate the epochs of the corresponding chunks.
(D) Responses of output neurons were projected onto the three leading principal-
component (PC) vectors before (left) and after (right) learning. More than 99% of
the variance was explained by the three PCs. Epochs of high normalized responses
( f > 0.8 in all neurons) are indicated in red. (E) Character “b” is shared by the
red and green chunks, and character “e” appears in the green and blue chunks.
(F) Response of an output neuron to the overlapping chunks is shown. The time
constant of synaptic current was 5 ms. (G) Selective responses of output neurons
to the overlapping chunks are shown when the synaptic time constant was 50 ms.
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Figure 4.8: Chunking in the presence of distractors.
(A) Three chunks were separated by random sequences of arbitrary English char-
acters. The length of random sequences ranged from 3 to 7. (B) Typical responses
of output neurons are shown.
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Because the word segmentation shown above is relatively easy for other methods

as well [83], we next tested the same model with more complex input sequences

generated by a random walk on a graph with a community structure, where the

connection of each node to the other four occurred with an equal probability of

0.25 (Fig.4.9A). The detection of this community structure was easy for human

subjects but was difficult for the conventional machine learning methods that rely

on nonuniform transition probabilities between elements [97]. To our surprise,

each output neuron easily learned to respond selectively to members within a

temporal community (Fig.4.9B).
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Figure 4.9: Detection of temporal community.
(A) The input sequence represented a random walk with uniform transition prob-
abilities on a graph with community structure (modified from reference [97]). (B)
Normalized responses of three output neurons to input sequences defined in panel
A are shown.
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The network model could also learn feature detection maps from continuous

sensory streams. All sensory features, either static or dynamic, arrive at the brain

essentially in sequence. Therefore, we asked whether MRIL enables neural net-

works to learn the static features of input when they are repeatedly presented in

a temporal sequence. We applied a random sequence of noisy images of oriented

bars presented for 40 ms at 30 ms intervals to the network model (Fig.4.10A). The

output neurons, which initially had no preferred orientations (Fig.4.10B), devel-

oped well-defined preferences for specific orientations after learning (Fig.4.10C),

resembling a visual orientation map (Fig.4.10D) [43, 81].
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Figure 4.10: Learning an orientation tuning map.
(A) Examples of noisy images of oriented bars used for the training. Each image
was presented for 40 ms in a random order with intervals of 30 ms between im-
ages. (B and C) The feedforward synaptic weights before and after learning are
shown for the example stimuli shown in panel A. (D) The responses of all den-
dritic neurons before (left) and after (right) learning are shown. The neurons were
sorted according to the onset times of responses to their preferred stimuli. See
Methods for further details on the simulations.
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4.2.7 BSS of mutually correlated signals

The results shown above demonstrate that the MRIL successfully chunks a va-

riety of temporal inputs by detecting repeated temporal features. The question

then arises whether this ability of the MRIL enables learning of other types of

sequence processing tasks. Sequence processing of cognitive importance also in-

volves the so-called cocktail party problem [75]. We examined the performance

of our network model in the blind separation of signals within mixtures from

multiple sources. BSS is an extensively studied problem in auditory processing

[3, 24, 46], and various methods have been proposed for mixtures of mutually

independent signals. However, methods are limited when the original signals

comprise mutually correlated signals [53].

We applied the MRIL to sound mixtures from two music instruments, i.e., a

bassoon and a clarinet (Bach10 Dataset) [28], playing their respective parts of the

same score (Fig.4.11A); thus the two sound sources are correlated. The mixtures of

signals were encoded into irregular spike trains (Fig.4.11B), which in turn were ap-

plied to output neurons. After training, these neurons self-organized into two sub-

groups, each responding selectively to one of the true sources (Fig.4.11C). The orig-

inal sounds were then decoded from the average firing rates of these subgroups.

Although some high-frequency components were lost due to the low-pass filter-

ing effect corresponding to membrane dynamics (Fig.4.12), the decoded sounds

are easily identifiable with the original sounds. We compared our model with a

naive independent-component analysis (FastICA) [45, 46] and temporal ICA (Sec-

ond Order Blind Identification or SOBI) [9]. When the source signals are mutually

independent, all three methods showed excellent performance although the ICA-

based methods slightly outperformed our biology-inspired model (Fig.4.11D, top).

When the source signals are non-independent (i.e., mutually correlated), SOBI and

our model exhibited significantly better performance than FastICA (Fig.4.11D, bot-

tom).
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Figure 4.11: BSS of correlated auditory streams.
(A) Sound waveforms of a bassoon and a clarinet (left) were linearly transformed
to two mixture signals (right). The diagonal and off-diagonal elements of the mix-
ing matrix were 1 and 0.5, respectively. (B) Nonstationary Poisson spike trains of
200 input neurons (out of the total 500) are shown. The instantaneous firing rates
were proportional to the amplitudes of the mixed signals normalized between 0
Hz and 10 Hz. Each input neuron encodes either of the two mixed signals. (C)
Separated waveforms (bottom) are shown together with magnified versions (top,
solid) and true sources (top, dashed). The waveforms were averaged over 20 trials
with different realizations of input spike trains and the same initial weights. (D)
Cross-correlations between the separated and true sources are compared between
our model and independent-component analysis (ICA) for independent (top) and
dependent (bottom) auditory signals (see Methods). Error bars show S.D.s (invis-
ible).
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Figure 4.12: Spectrogram of true and estimated signals in BSS.
(A) The spectrograms of the true sources. The two sources were taken from the
same piece of music. (B) Example spectrograms of the estimated signals. The
network model cut off the high-frequency components above 60 Hz. This was
because the membrane dynamics act as a low-pass filter with the cut-off frequency
being the inverse of the membrane time constant.
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Although SOBI slightly outperformed our model in the present examples, SOBI

was unable to chunk the previous sequences of English characters (Fig.4.13), which

our model could easily solve (see Fig.4.7). The result demonstrates a virtue of the

present brain-inspired model, which exhibits high levels of task performance in a

wide range of temporal feature analysis. In addition, the model does not require

highly task-specific network architectures.

Finally, we examined the performance of the model by varying the magnitudes

of cross-talk noise between the two mixture sounds (Methods). We also performed

similar tests for the mixtures comprising two identical music instruments playing

different notes. In all cases, high performance was attained only at an intermedi-

ate level of cross-talk noise, implying that performance drops not only for strong

noise but also for weak noise (Fig.4.14A, dashed curves). Nevertheless, we could

rescue the model from this counterintuitive defect for weak cross-talk noise by

including another noise component (see Methods) in the somatodendritic interac-

tion (Fig.4.14A, solid curves). We speculate that the additional noise could sup-

press learning from harmful interferences between the original signals when both

signals were weak. However, this point requires further clarification. Next, we

examined whether the improved model trained on the original signals (i.e., van-

ishing cross-talk noise) exhibits better performance for other mixtures that were

not used in the training. The pre-training actually made the decomposition of

unexperienced mixtures easier (Fig.4.14B).
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Figure 4.13: Chunking of character sequences by SOBI.
We attempted to learn three chunks each consisting four non-overlapping English
characters. Post-learning outputs of 12 output units are shown. Note that the
number of output units needs to be coincide with that of English characters in-
volved in inputs (a, b, …, l) because SOBI is derived based on a linear algebra.
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Figure 4.14: Robustness of performance in BSS.
Curves represent the averages over five trials with different initial weights and
different realizations of noise, and shaded areas represent S.D.s. (A) Correlations
between the original and separated signals are plotted as a function of cross-talk
noise (Methods) in the cases where the mixtures consist of different (left) or iden-
tical (middle and right) instruments. Error bars are invisible. (B) Performance is
compared between the networks pre-trained (cyan) or untrained (magenta) on an
original signal. Cross-talk noise in the tests was 0.5.
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4.3 Discussion

We proposed the novel principle called“minimization of regularized information

loss” for enabling the self-supervised learning of multiple recurring temporal

features in a family of competitive networks of two-compartment neuron mod-

els. Our model not only performs chunking but also achieves BSS from mixtures

of mutually correlated signals. Importantly, although different values of parame-

ters were learned in different tasks, the circuit structure was essentially the same.

It is surprising that simple neural networks with identical circuit structures can

perform the broadly different tasks. In particular, our brain-inspired model can

solve some of the hard tasks, e.g., the detection of temporal community structure

(Fig.4.9) and the BSS of mixed correlated signals (Fig.4.11). To our knowledge,

such a multifunctional model was previously unknown in the learning of infor-

mation streams.

4.3.1 Comparison with other computational principles

Our learning rule minimizes the information loss between synaptically driven

dendritic activity and somatic output. The rule enabled mutually inhibiting den-

dritic neurons to learn the repetition of spatiotemporal activity patterns on a

slow timescale (typically, several tens to several hundreds of milliseconds). While

the aim of many previous methods for chunking is to predict input sequences

[55, 114], our model entails a different principle in which a neural system learns

to predict its own responses to a given input. To this end, the MRIL minimizes

the discrepancy between input data and output data to produce a predictable

low-dimensional representation of high-dimensional input data. This learning

continues until an agreement is formed by the somatic output and dendritic input

regarding the low-dimensional features (i.e., chunks).

We previously used paired reservoir computing for chunking, in which two
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recurrent networks supervise each other to mimic the partner’s responses to

a common temporal input [4]. Although the previous model also learns self-

consistency between input data and output data, performance of the previous

model was severely limited because exactly the same number of output neurons

as chunks had to be preconfigured. In contrast, the present model self-organizes

output neurons according to the number of temporal features, outperforming the

previous one.

Mutual information maximization (MIM) has often been hypothesized to de-

scribe the transfer of information between neurons [91], and Hebbian synaptic

plasticity may approximately follow MIM [63]. However, the aim of MRIL also

differs from that of MIM. As mentioned above, the MRIL attempts the detection

of recurring, and hence salient, temporal features without caring the loss of other

pieces of information, whereas the MIM principle ultimately implies that mes-

sages are faithfully copied at all layers of hierarchical processing. In other words,

MIM does not account for the compression or abstraction of temporal inputs, but

the MRIL aims at describing how these processes may proceed in the brain. Our

results suggest that such processes can even occur at the level of single cortical

neurons.

The method called“information bottleneck”also compresses data streams [109].

The method contains a free parameter to determine the degree of information loss

between the original and compressed data. To clarify whether there is a relation-

ship between information bottleneck and the proposed method is an intriguing

open question.

4.3.2 Relationship to previous models

A previous model [111] used a learning rule similar to the present one. How-

ever, while the somatic response function undergoes activity history-dependent
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modulations in our model (see equations (4.3)-(4.5)), such modulations were not

included in the previous model. Importantly, our model without these modifica-

tions (hence the previous model also) could not solve the present unsupervised

learning tasks. Networks of the previous model were shown to perform “semi-

unsupervised” learning, for instance, when recurrent synaptic input was config-

ured as an effective teaching signal to the soma. In contrast, our model indicates

that the recent history of somatic activity is sufficient for “self-supervising” the

learning of temporal features.

Dendritic computing has been studied from the various viewpoints of neural

computing. Capacity of leaky integrate-and-fire neurons was derived to imple-

ment desired transformations from streams of input spikes into desired output

spike sequences [76]. The capacity was estimated by calculating the available

volume of state space for generating the desired spike outputs, and an error-

correcting supervised learning rule was presented to attain the desired input-

output associations (this rule does not require dendrites). The role of nonlin-

ear dendritic processing in performing various logic operations was studied [60].

Their model combines the branch-strength potentiation of dendrites and spike-

timing-dependent plasticity to discriminate spatial activity patterns represented in

presynaptic neuron ensembles. A dendritic model to implement a classical error

backpropagation algorithm for supervised learning, in which deviations between

top-down predictive signals and bottom-up sensory signals provided an error sig-

nal was proposed [95]. Redundant synaptic connections between neuron pairs

were utilized to implement Bayesian filtering algorithm to infer input-output as-

sociations in single dendritic neurons [41]. The model showed that small number

of redundant synapses is sufficient for an optimal inference if the model includes

both the Hebbian learning of synaptic weights and structural plasticity on the

dendrites. All these models of dendritic processing are biologically more realistic

compared to the present model, but these studies did not address the ability of
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dendritic neurons in analyzing temporal features.

On the other hand, memory-related sequential activities of hippocampal neu-

rons were modeled in terms of nonlinear amplification of synchronous inputs

[50]. Furthermore, the discrimination of sequences on behavioral time scales was

recently formulated in terms of the reaction-diffusion processes triggered by se-

quential inputs along dendrites [10]. While these processes were implemented

in morphologically realistic neuron models, whether such models can perform

complex temporal feature analyses is yet to be clarified. In [40], they modeled

sequence processing in a cortical microcircuit model of formal neurons, each of

which receives top-down feedback inputs on apical synapses, feedforward inputs

on proximal synapses and lateral inputs from nearby neurons on multiple den-

dritic segments. Through coincidence detection and segment-basis Hebbian learn-

ing, the network learns sparse activity to predict next spikes in input sequence.

While their model emphasizes the role of dendrites and cortical microcircuit struc-

ture in predicting spike sequences, our model demonstrates the ability of single

dendritic neurons to learn recurring temporal input patterns.

To determine which neuron or synapse has credit for learning a desired out-

put of a hierarchical neural circuit is a difficult problem. Solutions to this ’credit

assignment problem’ require feedback signals conveying to neurons or synapses

information on credit. In cortical pyramidal neurons, feedforward signal carry-

ing sensory data and feedback signals possibly carrying credit information project

onto the basal and apical dendrites, respectively. It was recently argued that the

spatial separation between the two pathways enables these neurons to solve the

credit assignment problem through dendritic computing [90]. The current version

of our model does not solve the credit assignment problem, but this problem arises

on multiple timescales in hierarchical brain computation. How morphologically

complex neurons implement the proposed temporal feature analysis and how this

analysis helps the brain to solve hierarchically organized credit assignment prob-
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lems are intriguing open questions.

4.4 Methods

4.4.1 Improved learning rule with additional noise

In Fig.4.14, we included an additional noise term at each time step of learning as

follows:

ẇi(t) = η
{

ψ(v∗i (t))
[

f (ϕsom(ui(t)) + gϕ0ξi)− ϕdend(v∗i (t))
]

ej(t)− γwi

}
, (4.19)

where ξi is a random variable obeying a normal distribution. The parameter g

controls the strength of the noise, and we set g = 0.6 in Fig.4.14. The piecewise

linear function f is defined as

f (x) =


0 (x < 0)

x (0 ≤ x < ϕ0)

ϕ0 (x ≥ ϕ0)

Negative signals should be eliminated to suppress the learning during noise-

dominant epochs.

4.4.2 Evaluation of the degree of independency between signals

ICA was not valid for the auditory signals used for the simulations of BSS. This

was because the signals were not independent. In addition to the standard cor-

relations between two analog signals, negentropy (≥ 0) was used to evaluate the

independency of signals. Negentropy measures the deviation of a target distribu-

tion from a Gaussian distribution: negentropy vanishes if the target distribution

is Gaussian but otherwise takes a positive value; the larger the deviation is, the
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larger the value of negentropy is. The calculation of negentropy J(Y) for the sta-

tistical variable Y requires the true distribution, but it is unknown in the present

study. Therefore, we made the following approximation in the evaluation of J(Y)

using a certain function Q:

J(Y) ∝ [E{Q(Y)} − E{Q(ρ)}]2 , (4.20)

where E(x) refers to the expectation value of x and ρ obeys a Gaussian distribu-

tion. Typically, the logarithm of hyperbolic cosine function is used for Q [45]:

Q(u) =
1
a

log cosh(au), (4.21)

where 1 ≤ a ≤ 2. In this study, we set as a = 1.

4.4.3 Simulation details

In Figs 4.2, 4.3, synaptic input to an output neuron during the presentation of

a target input pattern was the superposition of a target-specific Poisson spike

train of rate rsig = r/(1 + (S/N)−1) and a background Poisson spike train of

rate r − rsig, where S/N refers to the signal-to-noise ratio rsig/(r − rsig). Note that

rsig < r. The temporal patterns of target-specific spike trains were kept unchanged

across the repetition of target patterns, whereas background input changed their

temporal patterns for each repeat. Outside the target patterns, Poisson spike trains

of rate r were given as input. Thus, the spike rate of synaptic input was always

r, which was fixed at 5 Hz. In Fig.4.3G, we did not model the realistic process

of failure in synaptic transmissions, i.e., failure in evoking postsynaptic potentials

by presynaptic spikes. Instead, we simulated transmission failure in the following

way. We first generated Poisson spike trains with a fixed Poisson rate r/(1 −

p f ail), where p f ail is the failure probability of presynaptic transmissions. Then,

assuming that the failure rate is small, we eliminated spikes with the probability
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p f ail . In Fig.4.3H, we introduced trial-by-trial jitters in presynaptic spikes. First,

we generated the reference spike trains used for the presentation of a chunk to

individual input neurons. Then, in each presentation of the chunk, spike times

were sifted by the amounts drawn by a Gaussian distribution with mean zero.

In Fig.4.7, the numbers of input and output neurons were 1000 and 10, respec-

tively and each input neuron selectively responded to a letter at the firing rate of 10

Hz. The individual chunks consisting of four English letters had the same length

of 30 ms and appeared in the input sequence with the same occurrence probabil-

ities of 1/3. Letters in each chunk appeared in a fixed order. Both feedforward

connections and lateral inhibitory connections were trained.

In Fig.4.10, the size of each image was 28 × 28(= 784) pixels and each bar has a

width of 7 pixels. Each pixel took its value on either 1 or 0. Noise was generated

by flipping pixels with the probability of 0.1, and the images were blurred by

circular masks to prevent artifacts from the edges of the images. Each input neuron

received input from an image pixel without overlaps between neurons, and the

neurons responding to the pixels of value 1 generated Poisson spike trains with

the mean firing rate of 40 Hz. The total time of training was 400 sec. The weights

of lateral inhibitory connections were not modifiable.

In Fig.4.11, the network had 500 input neurons and two output neurons with

non-modifiable lateral inhibition. Each input neuron generated a Poisson spike

train at an instantaneous firing rate equal to the waveform of the mixture signal

assigned randomly to the neuron. During training, the network model was repeat-

edly exposed to mixture signals 60 times, where each presentation had 500,000

time steps. In sampling spiking activities, we normalized the mixture signals be-

tween the minimum (0 Hz) and maximum (10 Hz) rates. Note that, input spike

trains varied from trial to trial although their rate profiles were unchanged. The

sampling rate of audio files was 44.1 kHz and the unit time step of network sim-

ulations was 1 ms. For comparison with ICA, we used the FastICA function of
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Python library scikit-learn with a log cosh function, and tolerance on update at

each iteration was 0.0001. FastICA is efficient and popularly used. Independence

of auditory signals was evaluated with the negentropy (negative entropy), which

measures the deviations of sampled signals from a Gaussian random process. Cor-

relations between signals were not sensitive enough to discriminate between our

model and ICA in performance. We compared our model and ICA in two cases.

In the first case, we used the sounds of two music instruments playing different

pieces of music. In the second case, we used the sounds of the same two instru-

ments playing their own repertoires of the same piece of music. The summed

negentropy of two source signals was 0.001 and 0.0004 for the former and latter

cases, respectively, indicating that the two signals were less independent in the

latter case than in the former case. Generally, the two source signals were highly

correlated. Our model gives output activities that are generally delayed behind the

input (Fig.4.11C). The delay was adjusted at about 13 ms to obtain the maximal

correlations between true sources and output neuron activities. We paired each

output activity with the true source that yields the largest correlation. In ICA,

the signs of the estimated signals can be opposite to those of the true sources.

Therefore, we calculated the correlations between all pairs and all possible com-

binations of signs (when the number of sources is two, 2! × 22 = 8 patterns) to

adopt the maximal value. In (C), each waveform was reconstructed from the firing

rate of each output neuron averaged over 20 trials with an identical set of initial

weights after standardization. Namely, we subtracted the temporal average of the

(trial-averaged) firing rate from the instantaneous values and divided the resul-

tant differences by the standard deviation. In (D), simulations were performed

400 times for all combinations of 20 different sets of input spike trains and 20

different sets of initial weights.



Chapter 5

Conclusion

In this thesis, I first made a hypothesis that minimization of uncertainty of net-

works responses enables them to learn temporal features without any additional

knowledge. I proposed novel neural network models to test this hypothesis.

The proposed frameworks can be viewed as self-supervised learning rules and I

showed that the rule enables the same network to learn surprisingly wide variety

of tasks, including chunking of recurring spatiotemporal patterns, detecting tem-

poral community structures of sequences with uniform transition probabilities,

and blind source separation of non-independent signals. Although my models in

Chapter 3 and 4 have different structures, yet they rely on common principle, in

which the models are trained to maximize the self-consistency of their responses

to minimize the uncertainty of its responses.

5.1 Summary of Results

In Chapter 2, I investigated the dynamics of reservoir model, trained with inde-

pendent components extracted from the LFP activity recorded at multiple depths

of rat motor cortex during reward-motivated movement. I showed that the trained
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model exhibits various functional subtypes of task-related neurons with relative

ratio is similar to the one confirmed in experiment. My study suggests that the

reservoir model is valid for probing the representation of sequences in the brain,

despite the learning rule used here (i.e., the FORCE learning rule) is biologically

implausible.

In Chapter 3, I extended the reservoir computing framework, which undergoes

supervised learning to unsupervised framework for automatic chunking of com-

plex streams of information. To this end, I proposed the novel structure of neural

network, which consists of two independent reservoir modules. In this framework,

the two network, which receive the same input sequences mutually supervise each

other. Since the teacher signal for training each reservoir modules is generated by

partner’s output, my novel learning model relies on unsupervised learning frame-

work. The proposed model showed chunk-related activities, which is similar to the

one observed in experiment. I tested the model with various types of tasks, includ-

ing separation of chunks with mutual overlaps, chunking community structures

of sequences, or even two images recurring in visual input streams with noisy

intervals. My model revealed a unique dynamical mechanism for embedding the

temporal community structure of inputs into low-dimensional neural trajectories.

From a biological viewpoint, my model based on pairwise computing suggests the

computational implications of brain’s bi-hemispheric information streams. Owing

to recent technological advances, the implementation of this model by electronic

devices should be straightforward.

In Chapter 4, I proposed the novel learning rule for two-compartment neuron

models. In this model, the teaching signals for training dendritic synapses are

generated by somatic compartments, thus it enables the unsupervised learning of

temporal features. I showed that the proposed model successfully learns temporal

community structures of complex sequences with uniform transition probabilities,

and separates mixtures of non-independent signals. These tasks are difficult for
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most of the previous machine learning techniques, and my model will provide

new insights for neural mechanism of chunking that does not require any prior

knowledge about temporal structure of sequences.

5.2 Future directions

In Chapters 3 and 4, I proposed two neural network models that learns salient fea-

tures in temporal sequences. Although these two models have different structures,

yet they rely on common principle, in which the models are trained to maximize

the self-consistency of their responses. One of the essential future works is to un-

derstand the underlying mechanism of such principles in sequence learning. In

particular, adding the Gaussian noise seems to have a large impact on training

processes in both of them, and a thorough theoretical analysis is essential.

Another interesting direction is to investigate the biological plausibility of the

model proposed in Chapter 4. My current dendritic learning rule is too mathe-

matical and limited to simple structure of dendritic compartments. Since this is

biological unrealistic, we are planing to propose a new learning rule for multi-

branch dendritic trees.

The final remark is on a extension of my dendritic learning model to the recur-

rent network model with excitatory and inhibitory connections. Since my current

models detects the community structures of sequences, much powerful model for

sequence learning is necessary.



Appendix A

Review: Reservoir Computing and

FORCE Learning Rule

In this section, l will overview pros and cons of recurrent neural networks for se-

quence learning. Since the recurrent neural networks have feedback connections

to hold the state of the model, they have been widely used in learning and recog-

nition of time series information. However, training the recurrent neural networks

is extremely difficult for some reasons. First, it is difficult due to their complex

structure of their connections. Although some powerful learning rules for recur-

rent neural networks have been proposed [94, 115], it is still difficult and complex

compared to training feedforward networks. Moreover, chaotic spontaneous activ-

ity is widely observed in the brain, but in most learning rules, training recurrent

neural networks with chaotic activity is unstable. Since spontaneous activities are

thought to be useful in learning complex dynamics [112], conventional methods

have some disadvantages.

In order to solve the problems of such recurrent learning, so called the reservoir

computing was proposed [49, 66]. In the reservoir computing, input signals are

transformed into a high dimensional space to which the neurons are randomly
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coupled. The advantage of reservoir computing is that the recurrent connections

are always fixed and only the synaptic weights to the outputs are modified even in

the learning phase. Reservoir computing has been developed from echo-state net-

works [49], in which the teaching signals, not the actual output is fed back to the

reservoir for stabilization of learning, and seemed to be biologically implausible.

Recently, the FORCE learning [106] was proposed to solve the problems ap-

peared in reservoir computing training. In the FORCE learning, training is per-

formed with the feedback of actual output, and it works well even if the pre-

trained network shows chaotic activities. In the FORCE learning, the magnitude

of weight change at each time step is very large, which differs from previous meth-

ods. Therefore, the error between output and the desired one must be small at any

time during learning. Due to these characteristics, the goal of FORCE learning is

not to bring the output close to the desired output as much as possible, but to

reduce the number of time steps required to reduce the error.

A.1 Details of Training Recurrent Neural Networks with

FORCE Learning Rule

The reservoir is composed of NG neurons. Each neuron follows the following

dynamics as i = 1, 2, ..., NG,

τẋi(t) = −xi(t) + gG

NG

∑
j=1

JGG
ij rj(t) + JGz

i z(t) +
Nl

∑
µ=1

JGI
iµ Iµ(t) (A.1)

Where xi is the potential of each neuron, NI is the number of neurons used in

input layer and ri = [tanh(xi)]+ is a firing rate, where [ ]+ is rectify (returns 0 if the

argument is negative, otherwise the argument itself). The parameter g determines

the complexity of the behavior of the reservoir, and shows chaotic spontaneous

activity if g > 1 [105].
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All neurons in the reservoir are connected to the readout neuron, and the output

at each time is given by z = wTr, where w is the synaptic weight from reservoir

to readout neuron. The initial value of w was 0, and these weights are modified

so that the error between output of the readout neuron and teaching signal is

minimized according to the learning rule described later. The activity of readout

neuron is transmitted to the reservoir via the feedback. Each element of the feed-

back coupling follows a uniform distribution and randomly takes a value between

−1 and 1. The connection matrix of the reservoir is a sparse matrix and each ele-

ment follows a gaussian distribution with zero mean and the standard deviation

is 1/(pNG) where p is a connection probability. In addition, JGI is the connec-

tion matrix between input neurons and the reservoir, and each row of it has only

one nonzero element according to the normal distribution of zero mean and unit

variance.

In the FORCE learning, an error between the actual output and the teaching

signal is used for modifying the synaptic weights between the reservoir and the the

readout neuron. Here, the output is calculated using the weights before update,

that is, in each learning step, the error is calculated as follows.

e−(t) = WT(t − ∆t)r(t)− f (t) (A.2)

Here, ∆t is the time step of learning.

To realize the rapid modification of readout weights, w is updated by the fol-

lowing algorithm with recursive least squares method (RLS) shown in below,

W(t) = W(t − ∆t)− e−(t)P(t)r(t). (A.3)

Here, P is a correlation matrix with size NG × NG, and is updated by the following
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procedure at the same time.

P(t) = P(t − ∆t)− P(t − ∆t)r(t)rT(t)P(t − ∆t)
1 + rT(t)P(t − ∆t)r(t)

(A.4)

The initial value of P is I/α, where I is the identity matrix, and α corresponds to

the learning rate. Larger α enable the quick learning, but the too large learning

rate cause the learning unstable. On the contrary, smaller learning rate makes

learning stable, but it takes too long time for learning. Usually, α is set in the

range 1 to 100.
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