Doctoral Thesis

博士論文

Recognition of Genes and Regulatory Elements Interactions by Multi-omics and Network Analysis

(がん細胞多層オーミクス統合ネットワーク解析 による遺伝子発現制御領域塩基変異の機能解析)

セリーワッタナウート サラン

Contents

General Introduction	3
Chapter I: Identification of Potential Regulatory Elements by Multi-Omics Analysis and Hap Phasing in Lung Adenocarcinoma Cell Lines	••
Introduction	5
Multi-omics Analysis	6
Bridging Regulatory and Coding Regions with Haplotype Phasing	8
Material and Methods	10
Cell lines	10
Multi-omics datasets for each cell line	11
SNPs/SNVs from whole genome sequencing data	11
Regulatory regions defined by ChIP-seq	12
Whole Transcriptome Sequencing	12
Transcriptional Start Site Sequencing	12
Background Germline Variant Filtering	13
Synthetic long read library preparation by 10x GemCode	13
Non-diploid phasing using 10x Genomics GemCode	15
Physical long-read sequencing by MinION	16
Validation of 10x GemCode Phase Block by MinION Physical Long Reads	17
Functional Analysis of Regulatory Mutations	17
Luciferase Assay	18
ChIP-qPCR	18
Survival Analysis	19
Results	25
Mutations Detected in Lung Adenocarcinoma Cell Lines	25
Multi-omics Approach in Mutation Analysis	
RNA-seq Reveals Transcript Allelic Imbalance Expression	27
ChIP-seq Reveals Allelic Preference Modifications in Regulatory Mutations	
Phasing of Variants Detected in WGS with 10x Genomics GemCode	
Phasing of Regulatory SNVs into Functional Regulatory Mutations	42
Cis-regulatory mutations causing transcriptional dysregulations	49

Discussion	58
Chapter II: Pan-cancer Multi-omics Network Analysis in The Cancer Genome Atlas	61
Introduction	61
Material and Methods	64
TCGA projects used in this study	64
RNA expression data	64
Methylation Level	64
Rank covariance-based distance	65
Clustering of synchronized features into units	65
Functional Unit Phenotype Activity Analysis	66
Linking units with similar phenotypes activities into networks	67
Database cross referencing	67
Results	70
Genes, methylation sites and phenotypes selected for networking	70
Clustering of 2-omics feature units	70
Linking Units into Networks with Phenotype Activities	77
Network analysis captures the regulators and effects of NFATC1	85
Networks of Interactions Involving DNA Replication, Repair and Methylation	88
2-Omics Melanoma Specific Network	92
Ineffective Wnt Pathway Negative Feedback in COAD	95
Discussion	97
Conclusion	100
Reference	101
Acknowledgements	108

General Introduction

Cancer is the second leading cause of death worldwide. It is responsible for 1 in 6 documented deaths with an estimated 9.6 million deaths worldwide in 2018 (Bray et al., 2018; Ferlay et al., 2019). Though diverse in tissues of origin and presentations, the processes of cancer development, or carcinogenesis, follow a common multistep transformation from normal cells into cancer cells. These transformations are caused by genetic and epigenetic changes in the cells (Weinberg, 2013). To better understand the biology behind them, many large-scale international studies have been conducted to elucidate these genetic (International Cancer Genome Consortium et al., 2010; The Cancer Genome Atlas Research et al., 2013) and epigenetic changes (Bradley E. Bernstein et al., 2010; Davis et al., 2018) with great success. Highly successful projects, such as lung adenocarcinoma in The Cancer Genome Atlas project (TCGA), have identified genomic driver mutations in genes such as *EGFR* and *ALK* (The Cancer Genome Atlas Research et al., 2014). Discoveries of these mutations have subsequently led to the development of many successful anticancer drugs currently employed in treatment regimens (The American Cancer Society, 2019).

Given the complexities observed in essential and fundamental processes such as DNA replication and the cell cycle (Cooper, 2000) or glycolysis (Berg, Tymoczko, & Stryer, 2002), it is natural to suppose that genes work together in concert to give rise to complex functions and diverse phenotypes. Supporting this notion, pivotal cancer driver genes, such as *EGFR*, have been shown to exert various functions (Sigismund, Avanzato, & Lanzetti, 2018) and act as key regulators in various pathways (Wee & Wang, 2017) in a wide variety of cancers. Additionally, the regulation of genes, both at the genetic level such as by transcription factors or at the epigenetic level by DNA or histone methylations (Klemm, Shipony, & Greenleaf, 2019; Vihervaara, Duarte, & Lis, 2018), and even by noncoding RNAs (Olive, Jiang, & He, 2010; Peng & Croce, 2016), has been shown to also play an important role in influencing gene functions. Indeed, epigenetics projects, such as ENCODE and Roadmap, have highlighted important epigenetic regions and have described

the regulatory landscapes of human genes both in normal and malignant settings, which has opened up the frontier of epigenetic research and has attracted great attention. Despite great efforts, our understanding of a comprehensive picture of genetic-epigenetic interactions and regulations remains far from perfect.

Coding sequences only account for a small number of mutations in cancer genomes (The Cancer Genome Atlas Research et al., 2013). Mutations in cis-regulatory elements, promoters and enhancer regions have also been shown to be as important, if not more, than their coding counterparts (Khurana et al., 2016). This is especially evident in melanoma, where mutations in the *TERT* promoter region have been identified as some of the important driver mutations (Huang et al., 2013; Vinagre et al., 2013). Moreover, the roles of promoter and enhancer regions in cell fate determination and development are becoming clearer (Cantone & Fisher, 2013), especially in hematopoietic cell linages (Cullen, Mayle, Rossi, & Goodell, 2014). These findings solidified the notion that the interactions between genetic and epigenetic elements give rise to specific phenotypes. To fully study these interactions, an integrative network study from both sides proves to be an interesting approach to answer how genetics and epigenetics interact with each other to translate genotypic information to phenotypes.

In this thesis, I intend to elucidate the interaction between genomes and their regulatory epigenomes by multi-omics and integrative network analysis and propose how these insights could help bridge genotypes and phenotypes. This thesis consists of two chapters, where I attempt to I) Elucidate how noncoding regions might regulate their downstream coding counterparts by combining short and long read sequencing and multi-omics analysis in a cancer cell line setting and II) Explore TCGA for large-scale and systemic network detection of both single and multi-omics interactions.

Chapter I: Identification of Potential Regulatory Elements by Multi-Omics Analysis and Haplotype Phasing in Lung Adenocarcinoma Cell Lines

Introduction

Lung cancer is one of the most widely studied cancers. The adenocarcinoma subtype comprises half of all lung cancer cases in both smokers and nonsmokers (Collisson et al., 2014; Dela Cruz, Tanoue, & Matthay, 2011). Many environmental and lifestyle risk factors, mainly air pollution and smoking, have been identified. Despite the reduction in risk factor exposure and lifestyle changes, the lung cancer incidence rates are increasing, especially in nonsmokers. This invariably suggests unknown carcinogenic causes (Dela Cruz et al., 2011). This observation is in contrast to the squamous cell subtype, which has been declining along with the reduction in smoking and other risk factors. This unique feature has placed lung adenocarcinoma as the focus of many research groups.

Recurrent genomic driver mutations in *EGFR* and *KRAS* and *ALK-RET* fusions have been documented. Several successful anticancer drugs targeting these genes have been developed (Chan & Hughes, 2014; TheAmericanCancerSociety, 2019). Nevertheless, the driver genes in more than a third (38%) of the cases are yet unknown (Collisson et al., 2014), posing a challenge in curative treatments. The known driver mutations were identified and interpreted only from the coding region of the genome, which accounts for less than 5% of the entire genome. Noncoding regions have not yet been fully investigated, and recent studies have elucidated that these regions have no less importance than coding regions (Vinagre et al., 2013) (Huang et al., 2013) (Chan & Hughes, 2014) and could also harbor biologically relevant mutations. Many novel therapeutic options might be discovered from mutations in noncoding regions.

The benefits of focusing on noncoding regions are not limited to cases with unknown driver mutations (38%). Resistant cancer clones rapidly develop in almost all of the target therapy cases, resulting in remission and relapse. The drug-resistance mutation T790M in *EGFR* (Ma, Wei, & Song, 2011; Yun et al., 2008) or point mutations in *KRAS* or *PIK3CA* in *EGFR*-resistant clones are well-known examples (Del Re et al., 2017; S. Li et al., 2014). Despite substantial efforts, the causative mutations of a large number of relapse cases are still unknown; thus, countering drug resistances has not been widely successful. These difficulties indicate the diversity in tumor responses to each treatment, which could arise from both coding and noncoding mutation backgrounds (Holohan, Van Schaeybroeck, Longley, & Johnston, 2013). A more comprehensive understanding of the interaction between coding and noncoding regions might hold the key in combating drug resistance.

In this chapter, using sequencing data from lung adenocarcinoma cell lines, I will focus on identifying the functional regulatory mutations that are shown to have transcriptional effects that are detectable in their downstream transcripts by multi-omics analysis and haplotype phasing.

Multi-omics Analysis

Next-generation sequencing (NGS) has enabled detailed studies of genomic mutations by short read high-throughput data generation (Behjati & Tarpey, 2013; Chmielecki & Meyerson, 2014). Whole genome sequencing (WGS) and whole exome sequencing (WES) are the main strategies in outlining the mutation landscapes of cancers. WES focuses exclusively on the coding regions, enabling a detailed and cost-effective approach in studying coding region mutations. WGS provides a more complete landscapes of both coding and noncoding regions, albeit at lower resolution at the same sequencing cost. Both approaches are being utilized extensively according to the expertise and interests of the researchers.

Following the central dogma of DNA-RNA-protein information transfer (Crick, 1970), RNAs and their regulation are indispensable in determining cell functions and

phenotypes. After the postgenomic era, cell type-specific marker genes have been identified and utilized (Redwine & Evans, 2002). More recently, tissue-specific proteins, such as surfactants in the lung epithelium or keratin in the epidermal epithelium, and their RNA expression were found to be correlated in the Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013; Melé et al., 2015; Sonawane et al., 2017). Quantitative dynamic responses of mRNA levels to external stress have been shown to dominate the housekeeping functions of the cell as well (Jovanovic et al., 2015). Therefore, an RNA expression level could be used as a quantitative surrogate for cell functions and phenotypes. These quantitative assessments are obtained by NGS-based whole transcriptome sequencing (RNA-seq).

An equally important aspect of understanding mRNA expression is analyzing their regulatory regions. These regions are termed promoters and enhancers. Their presence and functions are represented by histone modifications and DNA methylation. The epigenetic status of histone modifications can be identified by chromatin immunoprecipitation followed by sequencing (ChIP-seq) and targeting the histone modifications of interest (Table 1). This technique has been highly successful at capturing promoter and enhancer regions and has been widely adopted in the ENCODE and Roadmap databases (B. E. Bernstein et al., 2012; Davis et al., 2018).

MARKER	EFFECTS	REGION
POLYMERASE-II	Transcriptional Activation	RNA-Polymerase
H3K4ME1	Transcriptional Activation	Enhancer
H3K4ME3	Transcriptional Activation	Promoter
H3K9ME3	Repression	Heterochromatin and repetitive elements
H3K9/14AC	Transcriptional Activation	Promoter Preference
H3K27AC	Transcriptional Activation	Enhancer
H3K27ME3	Repression	Repressive Domain and Silencing
H3K36ME3	Transcriptional Elongation	Transcribed Regions

Table 1 ChIP-seq markers and their functions

Bridging Regulatory and Coding Regions with Haplotype Phasing

One of the limitations of the current NGS technologies is the lack of allele haplotype information due to the reliance on short-read sequencing. This limitation hinders the integration between the regulatory mutations and their transcripts. Without prior information of the allele configurations, it is not known whether the pairs are in *cis*- or *trans*- (or mixed in regions with copy number aberrations (CNA). The effects of the mutations could not be confidently evaluated. The effects of heterozygous somatic mutations are limited to only one of the alleles. Disregarding allele configurations would lead to incorrect conclusions of the effects of regulatory mutations.

To overcome this limitation, "Long Read Sequencing" (Pollard, Gurdasani, Mentzer, Porter, & Sandhu, 2018) technologies were developed. One of the approaches is called "Synthetic Long Read Sequencing". The GemCode system, developed by 10x Genomics (Zheng et al., 2016), is based on the reconstruction of haplotype alleles from uniquely barcoded short read sequences by a conventional NGS short read sequencer. The reconstructions are achieved by capturing high molecular weight DNA (HMW-DNA) inside confined oil droplets with unique gel-embedded barcodes (GEMs). After hybridization and extension, each unique barcode, collectively called a "molecular identifier" or MI, is attached to the DNA molecule in the same droplets. The barcoded reads from HMW-DNA are sequenced by a conventional Illumina short-read sequencer. The origin of the individual HMW-DNA is identified by computational re-assembly of the reads with the same MIs. These connecting reads are termed "Linked Reads" and play a key role in this "Synthetic Long Read" technology.

Another approach in long read sequencing is nanopore sequencing, which was developed by Oxford Nanopore Technologies (ONT). Instead of relying on NGS for sequencing, the Nanopore-based MinION sequencer conducts direct sequencing of the long DNA strand (Jain, Olsen, Paten, & Akeson, 2016), called "Physical Long Read Sequencing". Read lengths often reach tens of kilobases, although the sequencing accuracy is still far less than that of NGS sequencing.

With the advent of long read sequencing technologies, haplotype phasing between two or more variants, often more than tens of kilobases apart, has now become a reality, enabling the association of regulatory mutations in promoter and enhancer regions with their transcript counterparts.

In this chapter, by combining multi-omics and haplotype phasing analysis, I aimed to document allele-based transcriptional effects of regulatory mutations, elucidate how the interactions between regulatory mutations and their transcriptional counterparts could be investigated and demonstrate their potential roles in cancer biology.

Material and Methods

Cell lines

Twenty-three human lung adenocarcinoma cell lines were cultured in RPMI medium (RPMI 1640, Nissui), Dulbecco's modified Eagle's medium (Nissui) or Eagle's minimal essential medium (Nissui) with 10% FBS, MEM nonessential amino acid solution (SIGMA) and antibiotics (antibiotic-antimycotic, Gibco). The cells were cultured at 37°C and 5% CO2. Cell line information and COSMIC reported mutations are shown in Table 2.

Cell	Sex	Ethnicity	Distributor	Catalog	Average	Mutation Reported by
Line				Number	Ploidy	COSMIC
A427	Male	Caucasian	ATCC	HTB-53	3.13	KRAS, MSI
A549	Male	Caucasian	ATCC	CCL-185	2.76	KRAS, SMARCA4
ABC-1	Male	Japanese	JCRB	JCRB0815	2.39	TP53, ALK
H322	Unspecified	Caucasian	ATCC	CRL-5806	2.35	ALK, ERBB2, TP53, BRCA
H1299	Male	Caucasian	ATCC	CRL-5803	4.75	NRAS, SMARCA4, TP53,
						KMT2D
H1648	Male	African	ATCC	CRL-5882	2.44	TP53, ARID1A, BRCA2
H1650	Male	Caucasian	ATCC	CRL-5883	1.99	EGFR, TP53, SMARCA4
H1703	Male	Caucasian	ATCC	CRL-5889	2.32	CDKN2A, TP53, ROS1,
						BRCA1
H1819	Female	Caucasian	ATCC	CRL-5897	-	-
H1975	Female	Unspecified	ATCC	CRL-5908	2.83	EGFR, TP53, PIK3CA
H2126	Male	Caucasian	ATCC	CCL-256	3.24	TP53, SMARCA4
H2228	Female	Unspecified	ATCC	CRL-5935	3.74	RET, ALK, KMT2C, TP53
H2347	Female	Caucasian	ATCC	CRL-5942	3.76	KRAS, ALK, TP53, NRAS
II-18	Unspecified	Japanese	RIKEN	RCB2093	-	-
			BRC			
LC2ad	Female	Japanese	RIKEN	RCB0440	3.37	RET, TP53, TET2
			BRC			
PC-9	Unspecified	Japanese	RIKEN	RCB4455	-	-
			BRC			

Table 2 Characteristics of the Cell Lines Used in This Study

PC-14	Unspecified	Japanese	IBL	-	3.14	CDKN2A, CCND2, TP53,
						EGFR, KMT2S
RERF-	Male	Japanese	JCRB	JCRB1020	-	-
LC-Ad1						
RERF-	Male	Japanese	JCRB	JCRB1021	-	-
LC-Ad2						
RERF-	Male	Japanese	RIKEN	RCB1313	2.72	EGFR, TP53. BRCA2
LC-KJ			BRC			
RERF-	Unspecified	Japanese	JCRB	JCRB0081	4.33	FGFR2, TP53
LC-MS						
VMRC-	Male	Japanese	JCRB	JCRB0814	2.4	ARID1A, TP53, KDM5A,
LCD						MAP2K4
RERF-	Unspecified	Japanese	JCRB	JCRB0811	-	-
LC-OK						

Multi-omics datasets for each cell line

The FASTQ files from whole-genome sequencing; chromatin immunoprecipitation sequencing (ChIP-Seq) for H3K9me, H3K9/14ac, H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K27ac, RNA polymerase II and input DNA; whole transcriptome sequencing (RNA-seq) and transcriptional start site sequencing (TSS-Seq) for each cell line were retrieved (Suzuki et al., 2014). Annotations of the coding regions were obtained from the KERO database using the UCSC hg38 human genome reference (http://kero.hgc.jp/) (Suzuki et al., 2015). The sequencing and mapping statistics for whole genome sequencing, RNA-seq and input ChIP-seq are shown in Table 3, and each ChIP-seq antibody is shown in Table 4.

SNPs/SNVs from whole genome sequencing data

The FASTQ files from whole genome sequencing of each cell line were mapped to the UCSC hg38 human genome reference (Speir et al., 2016) using BWA (H. Li & Durbin, 2009) (version 7.15) and the aln algorithm with default setting. PCR duplicates were then removed by SAMtools (H. Li et al., 2009) (version 1.18). SNPs/SNVs were called by

GATK (McKenna et al., 2010) (version 3.3) with default parameters. The SNPs/SNVs called by GATK and those with more than 5 supporting tags and greater than 5% variant frequency were selected. The variant frequencies were calculated by the SAMtools (v1.18) mpileup command with the default setting. (see Table 3 for details)

Regulatory regions defined by ChIP-seq

ChIP-seq data for 7 histone modifications (H3K9me, H3K9/14Ac, H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K27Ac) and polymerase-II were processed. The FASTQ files were remapped to the UCSC hg38 human genome reference using BWA (version 7.15) and the aln algorithm with default settings. PCR duplicates were then removed by SAMtools (version 1.18). Peaks were called by MACS2 (Zhang et al., 2008) broad-peak with default parameters with input DNA as a control. Peaks that were within 150 kb of the transcriptional start site according to TSS-seq data were treated as regulatory regions. If there were multiple transcriptional start sites, the closest transcriptional start site was selected. SNVs that fell within the peaks were then defined as regulatory SNVs. The number of regulatory SNVs was counted collectively. SNVs with multiple markers were counted multiple times and treated separately.

Whole Transcriptome Sequencing

FASTQ files for RNA-seq were remapped to the UCSC hg38 human genome reference by GSNAP using default parameters. Splice sites and introns were provided by the KERO database. (see Table 3 for details)

Transcriptional Start Site Sequencing

For transcriptional start site studies, data from 26 lung adenocarcinoma cell lines and 1 small airway epithelium cell line were compared and merged. The TSSs used were generated from the merged dataset. The promoter region for each gene was defined as the region 500 bp upstream to 500 bp downstream of the transcriptional start site clusters. The promoters were treated as regulatory regions.

Background Germline Variant Filtering

SNPs/SNVs called by GATK in the whole genome sequencing that were located within the regulatory regions were filtered by NCBI's dbSNP v142 for benign germline variants.

Synthetic long read library preparation by 10x GemCode

From 23 cell lines, high molecular weight DNA was extracted and quantified by the Qiagen MagAttract HMW kit according to the manufacturer's recommendations (10x Genomics, Qiagen #67653).

For each cell line, 1×10^6 cells were suspended in 200 µl of PBS buffer, 20 µl of proteinase K mixture, 4 µl of RNase A and 150 µl of buffer AL. The samples were then incubated at 25°C for 30 minutes. Fifteen microliters of Qiagen MagAtrract suspension G was added to each sample along with 280 µl of buffer MB. The samples were mixed and incubated at 1400 rpm at 15–25°C for 3 minutes. To wash the beads, samples were placed on a magnetic rack for 1 minute, and the clear supernatant was discarded. The beads were removed from the magnetic rack, suspended in 700 µl of Buffer MW1, mixed and incubated at 1400 rpm at 15–25 °C for 1 minute. The samples were put on to the magnetic rack, and the procedure was repeated once. After Buffer MW1, samples were then washed twice with 700 µl of Buffer PE. Beads with Buffer PE were placed on the magnetic rack for 1 minute. The supernatant was removed on the magnetic rack, 700 μ l of nuclease-free water was added and incubated for 60 seconds, the supernatant was discarded, and the processes were repeated once. After the beads were washed with Buffer MW1, PE and nuclease-free water twice, the beads were removed from the magnetic rack, and 150 µl of buffer AE was added to the bead pellets. The samples were mixed and incubated at 1400 rpm at 15-25 °C for 3 minutes. The samples were placed on the magnetic rack and incubated for 1 minute. The supernatant was transferred and stored at 4 °C for DNA quantification by a Qubit dsDNA HS Assay kit (Thermo Fisher Scientific) at a target concentration of 10-20 ng/µl.

For GemCode library preparation, partitioning was performed by GemCode Gel-Beads and Chip (10x Genomics). Indexing and library preparation were performed by the GemCode library preparation kit (10x Genomics) according to the manufacturer's instructions. In brief, quantified high molecular weight DNA was further diluted by nuclease-free water to a concentration of 1 ng/ μ l, and 1.2 μ l was used. The sample mix was prepared by adding 1.2 μ l of diluted genomic DNA to the Master Mix, consisting of nuclease-free water, GemCode Reagent Mix, Primer Release Mix and GemCode Polymerase supplied in the GemCode Reagents Kt. The sample mix, gel beads and Partitioning Oil were applied onto the GemCode Chip. The GemCode Chip was loaded into the GemCode instrument.

Gel beads in emulsions (GEMs) were retrieved from the instrument according to the manufacturer's recommendation and transferred to a 96-well plate for a designated thermal cycling amplification. For post-cycling recovery, 1 μ l of Additive 1 and 125 μ l of Recovery Agent were added and mixed with each GEM according to the manufacturer's instructions. The aqueous solutions were transferred, and the Recovery Agent and Partitioning Oil were removed. The mixture of Recovery Agent and Partitioning Oil at the bottom was first removed by 135 μ l of pipetting. The leftover was removed with DynaBeads MyOne SILANE beads and 0.6X SPRI solution on the GemCode magnetic rack. Beads were washed with Elution Buffer I (Elution Buffer, 10% Tween-20, Additive 2) with SPRI reagent twice and washed with Elution Buffer II (Elution Buffer II (Elution Buffer, Additive 2) once.

The barcoded samples were subjected to library construction by shearing using the Covaris system. Fragmentation was performed with a target peak of 250 bp for whole exome and regulome sequencing and 800 bp for whole genome sequencing. End repair and A-tailing were performed by thermal cycling of the fragmented DNA with the End Repair and A-Tailing Buffer and Enzyme Mix supplied by the GemCode library preparation kit (10x Genomics). Products from end repair and A-tailing were ligated by thermal cycling with Adaptor Mix and DNA Ligase. Post ligation cleanup was performed by 0.8X SPRI solution on the GemCode magnetic rack. Sample indexing PCR with the P5 primer was conducted. The post-PCR cleanup was performed by 1.0X SPRI cleanup on the GemCode magnetic rack.

Target enrichment was performed using the Agilent SureSelectXT protocol with SureSelect V5 plus regulome baits according to the manufacturer's instructions (Agilent, 10x Genomics). See Figure 1 for a summarized workflow.

The FASTQ files were processed using the 10x Genomics LongRanger (version 1.3) pipeline with default setting together with the pre-called SNPs. (see Table 5 for details)

Non-diploid phasing using 10x Genomics GemCode

The phasing of nondiploid genomes was not supported by the 10x Genomics GemCode LongRanger (version 1.3) pipeline; however, I deemed adaptation of the molecular index (MI), also called unique molecular identifiers (UMIs), in nondiploid genomes phasing a possibility. The approach was based on the exhaustive process of merging UMIs that overlapped at the same nucleotide variant together to reconstruct the extended haplotypes.

First, indexes of WGS-detected SNPs and 10x GemCode UMIs covering each of those SNPs were generated by cross referencing the VCF file of WGS SNPs called by GATK to the bam file of 10x GemCode LongRanger (version 1.3).

From those indexes, I exhaustively merged and extended the overlapping and compatible UMIs into a longer "Pre-Haplotype"; UMIs were deemed compatible if #1 at least one SNP position overlapped and the nucleotide variant matched and #2 there were no different nucleotide variants in any of the overlapped SNP positions. Incompatible UMIs that overlapped were not merged but were designated into their own distinct "Pre-Haplotypes" in the same phase blocks, and a UMI could be a member of more than one "Pre-Haplotype" if the combination allowed it. Only reads with mapping scores >20 and SNPs with scores >20 (in base substitution only, 10x GemCode bam file) were considered. These processes were repeated exhaustively until every UMI was considered.

Due to the random nature of the barcoding and shearing of 10x GemCode library preparations, these "Pre-Haplotypes" did not contain the entire lengths of the alleles. It was often found that in many SNPs, only one variant was covered by a UMI, and the other was left isolated, thus prematurely stopping the extensions. This resulted in a phase block with multiple short and isolated haplotypes, which were not useful in the SNP-to-SNP linkage analysis. To address this, a second round of merging was performed inside each phase block with the goal of filling the gaps and connecting the "Pre-Haplotypes" so that each final haplotype now spanned the entire phase block.

The second merging was performed in a greedy manner. First, in each phase block, every "Pre-Haplotype" missing a position was determined by checking its SNPs against the full-length allele, and "Pre-Haplotypes" with no missing positions were considered complete and final. For those with missing positions, I searched for the most similar haplotype that could fill in the gaps from the other Pre-Haplotypes. Similarity was determined by the number of compatible SNPs subtracted by the number of incompatible SNPs, and 0 was set for nonoverlapping pairs. This process was repeated until the haplotype was complete with no missing position and no pre-haplotypes remaining. Only the final haplotypes were used in further analysis; see Figure 3 for graphic representation.

Physical long-read sequencing by MinION

For MinION sequencing, H1975, LC2/ad, and RERF-LC-KJ cells were used.

High molecular weight DNAs were extracted in the same manner as described above. Library preparations were performed according to the manufacturer's instructions (Oxford Nanopore Technologies). In brief, extracted high molecular weight DNA was subjected to end repair and dA-tailing by the NEBNext End repair/dA-tailing module (E7546S, NEB). Purifications were performed using Agencourt AMPure XP beads (Beckman Coulter). Ligation and tethering were performed with NEBNext Blunt/TA Ligase Master Mix (M0367S, NEB) and Ligation Sequencing Kit SQK-LSK208 for 2D, SQK-LSK108 for 1D and SQK-LSK308 for 1D² (Oxford Nanopore Technologies). The obtained libraries were purified by MyOne C1 beads (65001, Thermo Fisher Scientific). Sequencing was performed in 48-hour run mode by MinION Mk 1B with the SpotION Flow Cell (FLO-MIN106, R9.4 version for 2D; FLO-MIN107, R9.5 version for 1D and 1D², Oxford Nanopore Technologies). Base calling was performed by Metrichor. The FAST5 files were converted into FASTQ format with poretools (Loman and Quinlan 2014). FASTQ files were mapped to the UCSC hg38 human genome reference using BWA-MEM with ont2d settings for 2D reads (H1975, RERF-LC-KJ) and default settings for 1D and 1D² reads (LC2/ad). Conversion to the bam format and sorting were performed by SAMtools (version 1.18). See also Figure 2 for the workflow.

Validation of 10x GemCode Phase Block by MinION Physical Long Reads

Phased SNPs were checked for coverage with MinION reads with mapping quality scores > 10 and spanned more than one SNP position. Combinations of covered SNP configurations were then referenced with those reads. Because of the lack of single nucleotide resolutions of the MinION reads (90% sequence identity in 2D and 80% in 1D and $1D^2$ combined), phase blocks that had more than twice the number of supporting reads compared with the number of nonsupporting reads were considered evidenced by MinION sequencing.

Functional Analysis of Regulatory Mutations

Involvements of the mutations in regulatory RNA binding sites were investigated by referencing the location of the regulatory mutations to FANTOM CAT lv3 robust lncRNA region (FANTOM_CAT.lv3_robust.all_lncRNA.bed.gz) (Hon et al., 2017) and FANTOM5 phase 1 and 2 permissive enhancer (human permissive enhancers phase 1 and 2.bed.gz) (Andersson et al., 2014). The regions were downloaded from the RIKEN database and then mapped to the USCS hg38 human genome by liftover (Kent et al., 2002).

Transcriptional factor (TF) binding sites in A549 cells were analyzed using 50 ChIP-seq targeting TFs, chromatin remodeling factors and RNA binding proteins in the A549 cell line deposited in the ENCODE database (Davis et al., 2018). Optical idr threshold peaks in the narraowPeak bed file of GRCh38 were used in the analysis. TF motif analysis was performed by searching reference and alternative sequences ± 10 bp around the inquired motifs in the TRANSFAC database (2015.1) (Matys et al., 2006) using MATCH (Kel et al., 2003). Hits with matrix similarity scores >0.95 were selected, and the results from alternative sequences were compared with the reference sequences. Graphical representation of the positional weight matrix of the biding consensus sites was created from TRANSFAC matrices using seqLogo R Library (Bembom, 2017).

Luciferase Assay

pNL3.1 (#N1031, Promega) was selected as the vector, and pGL4.53 (#E5011, Promega) was selected as the control. Mutant and wild-type DNA fragments were inserted into the pNL3.1 vector by the Quick Ligation Protocol (M2200, New England Biolabs) using NheI-HF (R3131S, New England Biolabs) and HindII-HF (R3104S, New England Biolabs) according to the manufacturer's instructions (Table 6A). Transformation was performed using the 5 Minute Transformation Protocol (C2987H/C2987I) (New England Biolabs), and plasmids were purified by PureLink[™] HiPure Plasmid Kits (K2100, Thermo Fisher Scientific) according to the instructions. Transfection was performed using the ViaFect Transfection Reagent (E4981, Promega) according to the manufacturer's instructions with a medium to final volume ratio of 4:1. Cells were assayed after 24 hours using the Nano-Glo Dual-Luciferase Reporter Assay System (N1610, Promega) according to the manufacturer's instructions with CentroXS3 LB960 (Berthold Technology) and a measurement time of 1 second for both ONE-Glo and NanoDLR.

ChIP-qPCR

Chromatin immunoprecipitation was performed using 20 μ l of ETS-1 (D8O8A) rabbit mAb (#14069, Cell Signaling Technology). After precipitation, quantitative real-time PCR was performed using Power SYBR Green PCR Master Mix (4367659, Applied Biosystems, Thermo Fisher Scientific) with previously reported control primers (RPS26) (Plotnik, Budka, Ferris, & Hollenhorst, 2014) and primers targeting ±100 bp of the motif region (Table 6B) on the 7900HT Fast Real-Time PCR System (Applied Biosystems). The qPCR products of Primer_F_2_123bp and Primer_R_shared were then subjected to Sanger sequencing on a 3730xl DNA Analyzer (Applied Biosystems) with their respective primer sets.

Survival Analysis

RNA-seq v2 and clinical data of TCGA lung adenocarcinoma (TCGA-LUAD) donors were downloaded from the NCI Genomic Data Commons using TCGA-Assembler v2.0.1 (Zhu, Qiu, & Ji, 2014) (data accessed 2017/03/09). Normalized gene expression counts were log2 transformed and used in the analysis. Overall survival and disease-free survival duration were retrieved from follow-up data in clinical data files. High expression donors were defined as donors with expression z scores > 0.5; likewise, low expression donors were defined as donors with expression z scores < -0.5. Statistical significance was determined using the Kaplan-Meyer estimator with the log-rank test using the survival package in R with each group of donors as cases and others as controls.

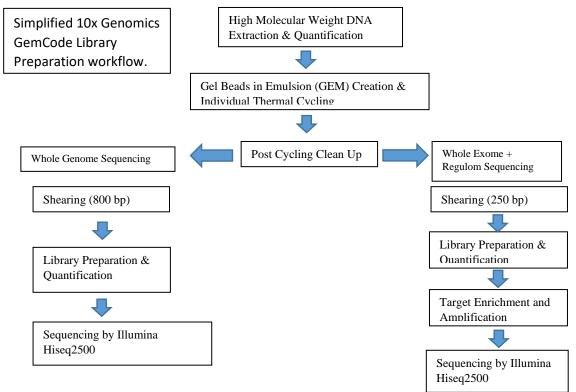


Figure 1 Simplified workflow for the 10x GemCode Library preparation System (10x Genomics).

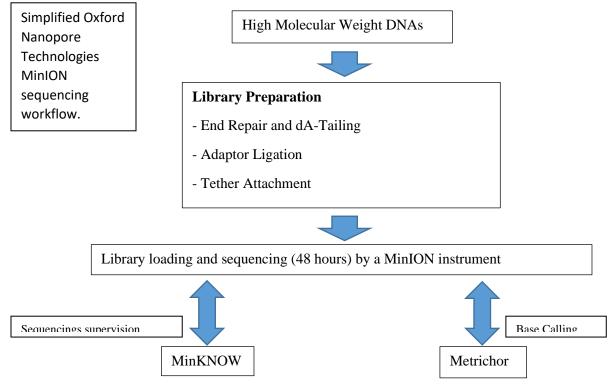


Figure 2 Simplified workflow for MinION physical long read sequencing (Oxford Nanopore Technologies).

Mapped Read% Mapped ReadMapped Read% Mapped ReadMapped Read% Mapped Read% Mapped Read% Mapped ReadA4271,084,672,07594.0%34.6295,046,69497.0%58,870,14597.0%A549577,537,02271.0%15.9251,009,04998.0%23,063,61580.0%ABC-11,198,942,50394.0%38.3689,577,66198.0%4,959,93252.0%H322921,462,66295.0%29.13128,407,54997.0%5,186,26246.0%H1299930,092,53295.0%29.93121,767,23396.0%11,053,64093.0%H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H17031,056,952,13194.0%33.3776,888,08298.0%11,285,58572.0%H228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H228855,605,01390.0%27.36153,260,05296.0%10,210,75158.0%H228855,605,01390.0%26.75153,260,05296.0%10,210,75158.0%H228855,605,01390.0%26.75
A549577,537,02271.0%15.9251,009,04998.0%23,063,61580.0%ABC-11,198,942,50394.0%38.3689,577,66198.0%4,959,93252.0%H322921,462,66295.0%29.13128,407,54997.0%5,186,26246.0%H1299930,092,53295.0%29.93121,767,23396.0%11,053,64093.0%H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%11,285,58572.0%H2126668,355,91288.0%21.31106,874,13298.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
ABC-11,198,942,50394.0%38.3689,577,66198.0%4,959,93252.0%H322921,462,66295.0%29.13128,407,54997.0%5,186,26246.0%H1299930,092,53295.0%29.93121,767,23396.0%11,053,64093.0%H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H322921,462,66295.0%29.13128,407,54997.0%5,186,26246.0%H1299930,092,53295.0%29.93121,767,23396.0%11,053,64093.0%H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H226668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%IC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H1299930,092,53295.0%29.93121,767,23396.0%11,053,64093.0%H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H16481,303,832,73690.0%40.7886,409,90198.0%18,636,86196.0%H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H16501,093,147,18796.0%34.9866,205,12798.0%107,477,95196.0%H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H17031,035,232,01187.0%31.94190,122,57497.0%25,836,88582.0%H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H18191,197,312,85692.0%38.13180,743,24298.0%47,573,72295.0%H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H19751,056,952,13194.0%33.3776,888,08298.0%36,642,87697.0%H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H2126668,355,91288.0%21.31106,874,13298.0%11,285,58572.0%H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H2228855,605,01390.0%27.36129,887,38496.0%41,236,99992.0%H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
H2347983,271,90285.0%31.62119,783,09995.0%55,967,65497.0%II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
II-18890,312,52584.0%26.75153,260,05296.0%10,210,75158.0%LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
LC2ad1,400,218,66293.0%44.78103,957,72597.0%2,909,09324.0%PC-91,326,079,00894.0%42.40121,730,78296.0%3,845,35929.0%
PC-9 1,326,079,008 94.0% 42.40 121,730,782 96.0% 3,845,359 29.0%
PC-14 979.278.917 97.0% 31.33 82.194.427 98.0% 12.005.835 51.0%
RERF-LC-Ad1 1,265,604,463 95.0% 40.60 128,209,153 97.0% 22,741,126 75.0%
RERF-LC-Ad2 1,284,008,781 95.0% 41.10 103,865,898 97.0% 32,887,224 77.0%
RERF-LC-KJ 1,113,739,330 95.0% 35.59 138,119,858 97.0% 8,693,898 59.0%
RERF-LC-MS 1,319,743,295 93.0% 42.30 119,134,144 97.0% 12,701,625 66.0%
VMRC-LCD 1,394,724,167 93.0% 44.64 109,941,326 98.0% 10,201,434 50.0%
RERF-LC-OK 684,830,042 86.0% 21.02 78,730,703 97.0% 19,353,474 97.0%
Average1,068,041,55491.1%33.82112,255,03597.1%25,362,69373.1%

Cell line	Polymer	ase-II	H3K4	me1	H3K4	me3	H3K9	me3	H3K9_	14Ac	H3K2	7Ac	H3K27	/me3	H3K3	6me3
inic	Mapped Read	% Mapped														
A427	19,919,326	95%	35,907,915	96%	40,834,430	96%	16,099,060	98%	16,267,399	98%	45,852,658	98%	13,751,977	98%	14,511,308	98%
A549	42,205,011	98%	24,557,168	98%	28,481,237	98%	16,398,873	93%	25,914,697	98%	13,996,665	98%	24,826,664	97%	33,981,484	98%
ABC- 1	30,106,498	97%	23,448,072	96%	32,348,875	97%	24,035,880	95%	15,643,097	98%	28,957,286	96%	25,120,033	96%	42,806,924	97%
H322	20,592,481	95%	19,565,669	98%	29,291,795	97%	48,815,268	95%	22,819,233	97%	39,589,006	97%	28,757,036	97%	23,973,241	98%
H129 9	15,517,082	92%	15,500,143	91%	6,845,054	89%	23,174,212	94%	26,347,198	98%	25,902,379	98%	11,715,556	92%	7,919,777	93%
H164 8	42,151,483	96%	29,424,483	97%	26,008,969	96%	31,893,831	96%	20,124,185	97%	32,995,085	95%	16,764,970	96%	34,563,616	97%
H165 0	34,512,016	95%	25,494,598	96%	38,951,570	95%	49,297,255	82%	21,953,905	98%	42,526,121	97%	21,855,198	82%	21,719,937	98%
H170 3	33,931,810	91%	34,798,266	98%	17,985,220	91%	33,066,974	97%	27,913,705	98%	31,111,917	98%	18,727,226	98%	21,500,912	98%
H181 9	14,617,601	97%	35,015,007	97%	17,947,000	96%	38,744,549	93%	22,921,204	95%	23,747,865	97%	19,250,082	91%	27,777,531	94%
H197 5	34,211,588	98%	33,758,149	98%	18,206,422	95%	29,297,788	96%	25,467,485	98%	22,661,866	97%	16,865,773	97%	29,859,308	97%
H212 6	27,096,982	96%	13,390,733	98%	16,108,148	96%	18,365,403	95%	34,921,354	98%	14,662,278	97%	27,126,917	97%	37,864,976	97%
H222 8	34,065,433	97%	40,528,026	98%	18,474,115	96%	45,956,295	97%	26,180,133	96%	33,453,676	97%	26,892,026	97%	24,160,581	98%
H234 7	36,045,314	97%	30,548,297	83%	24,573,340	96%	44,156,118	97%	32,312,697	97%	36,153,407	83%	20,204,256	96%	39,717,531	97%
II-18	33,022,666	96%	23,130,969	95%	22,114,574	97%	20,440,344	93%	13,650,439	98%	41,775,051	97%	38,796,482	98%	33,065,234	96%
LC2a d	32,914,384	95%	54,113,092	98%	29,315,441	96%	11,690,048	86%	14,170,753	92%	35,788,989	98%	40,973,180	97%	24,914,911	95%
PC-9	36,269,970	97%	24,034,872	98%	32,779,453	95%	25,383,329	89%	13,592,966	98%	20,925,733	97%	61,498,760	97%	15,533,061	96%
PC- 14	43,079,306	91%	36,150,087	98%	29,881,364	92%	42,868,733	97%	14,871,279	96%	37,398,511	97%	36,399,198	96%	35,516,283	98%
RERF -LC- Ad1	31,866,960	96%	42,742,931	97%	29,130,354	92%	29,272,804	92%	25,338,362	97%	26,551,483	97%	13,240,117	96%	25,750,673	97%
RERF -LC- Ad2	32,740,273	94%	44,180,544	98%	32,501,541	93%	22,862,593	87%	13,817,685	98%	33,367,124	96%	13,408,679	95%	28,652,285	96%
RERF -LC- KJ	29,962,594	94%	26,907,433	97%	43,186,043	95%	27,254,351	93%	20,979,344	97%	29,811,965	98%	23,546,066	93%	38,833,258	95%
RERF -LC- MS	21,367,869	97%	20,275,585	96%	33,129,718	86%	23,077,592	94%	12,496,785	98%	17,481,918	92%	20,814,990	94%	16,599,485	91%
VMR C- LCD	35,513,867	97%	22,012,353	97%	32,101,470	94%	29,637,264	96%	14,310,001	97%	23,498,455	97%	40,330,632	97%	42,317,596	98%
RERF -LC- OK	23,185,350	97%	38,441,077	97%	64,308,969	96%	19,515,810	92%	25,671,164	97%	27,821,894	97%	19,185,968	97%	65,905,050	97%
Avera	31,376,285	96%	29,950,476	96%	29,389,005	94%	28,752,719	93%	21,125,630	97%	30,103,794	96%	25,490,987	96%	29,984,883	97%

Table 4 Sequencing statistics for individual Chip-seq antibodies for each cell line.

WES+R		Sequer	cing Statistics			Pha	sing Statistics	
Cell Line	Number of Reads	Mapped Read%	PCR Duplication	Bait Coverage	Dept h	Longest Phase Block	N50 Phase Block	SNPs Phased
A427	99,593,100	99.5%	3.01%	99.4%	59.65	835,114	116,420	11.50%
A549	95,848,264	99.5%	3.21%	99.3%	56.27	729,146	76,070	11.80%
ABC-1	94,462,990	99.4%	17.60%	99.0%	52.33	1,049,789	106,062	11.80%
H322	88,136,374	99.5%	3.56%	99.1%	51.35	1,249,705	112,172	11.50%
H1299	103,133,700	99.4%	5.63%	99.4%	61.15	1,087,437	88,677	11.50%
H1648	85,929,520	99.5%	3.46%	99.4%	51.49	1,073,574	94,214	10.70%
H1650	85,269,994	99.5%	5.59%	99.0%	50.05	769,042	89,937	10.00%
H1703	97,084,096	99.4%	5.52%	99.3%	54.65	781,297	104,174	11.80%
H1819	93,562,794	99.3%	6.80%	99.2%	52.51	709,032	95,635	11.50%
H1975	83,093,898	99.2%	2.63%	99.1%	48.99	652,676	84,566	9.51%
H2126	95,109,618	99.4%	7.52%	99.3%	53.93	918,379	125,972	11.40%
H2228	91,567,448	99.2%	3.15%	99.4%	54.40	896,157	123,272	10.20%
H2347	93,224,434	99.4%	8.65%	99.3%	53.37	811,704	100,329	10.60%
II-18	85,938,160	99.5%	1.75%	99.1%	50.97	468,750	78,308	10.60%
LC2ad	87,391,948	99.1%	3.19%	99.3%	51.01	1,085,664	130,385	10.20%
PC-9	93,671,674	99.1%	8.50%	98.9%	55.43	909,689	98,398	10.80%
PC-14	85,912,630	99.5%	2.15%	99.3%	51.62	559,312	88,049	9.15%
RERF-LC-Ad1	95,459,772	99.5%	3.49%	99.3%	55.92	773,885	98,237	11.00%
RERF-LC-Ad2	85,929,050	99.5%	3.56%	99.4%	51.22	781,428	97,919	10.10%
RERF-LC-KJ	102,867,672	99.4%	5.20%	99.5%	60.16	793,178	87,920	11.90%
RERF-LC-MS	73,659,054	99.4%	4.91%	99.1%	41.65	748,538	103,805	9.16%
VMRC-LCD	83,375,866	99.4%	5.12%	99.1%	47.48	876,641	89,340	10.30%
RERF-LC-OK	101,048,218	99.5%	3.86%	99.4%	60.36	622,497	90,476	10.50%
Average	91,269,545	99.4%	5.0%	99.2%	53	826,778	98,131	10.7%

Table 5 Sequencing and phasing characteristics for 10x GemCode synthetic long read whole exome with regulome sequencing

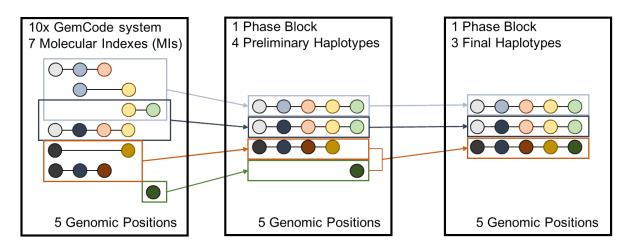


Figure 3 Graphic Representation of Haplotype Phasing. (Left) Overlapping MIs are retrieved; (Center) Compatible MIs are merged into single "Pre-haplotypes"; (Right) Missing positions are filled to produce final Haplotypes

Table 6 DNA fragments and Primers Used for Experimental Validation

DNA Fragment	Sequence
	GCTAGCTCGATTTATGGTTTCTACACACCAGACACTTTAACCTCCAACCCCCCCATCCAAA
	GCCAACAAGAAAATGCGGTGCCGTGTTGGCAGCTGAGCTGCGCCGGAAGAGACGCAGGG
NFATC1 Mutant	AGACGTGAGAGAGGAAAGTGTGAGTGGCCGGGGGGCCTCCCCCGTCAGAAGTCGCGCA
	GTCGCGCCCATAAAACGCCCCCTCCGGAAGCTT
	GCTAGCTCGATTTATGGTTTCTACACACCAGACACTTTAACCTCCAACCCCCCCATCCAAA
	GCCAACAAGAAAATGCGGTGCCGTGTTGGCAGCTGAGCTGCGCCCGAAGAGACGCAGGG
NFATC1 Wild type	AGACGTGAGAGAGGAAAGTGTGAGTGGCCGGGGGGCCTCCCCCGTCAGAAGTCGCGCA
	GTCGCGCCCATAAAACGCCCCCTCCGGAAGCTT

(B) Primers Used for qPCR						
Primer Name	Sequence					
Target region						
Primer_F_1_97bp	CCATCCAAAGCCAACAAGAA					
Primer_F_2_123bp	CCAGACACTTTAACCTCCAACC					
Primer_F_3_164bp	CACATAAGGGTGTCGTGCAA					
Primer_R_shared	GGCCACTCACACTTTCCTCT					
Positive control						
RPS26_F	CAGCAGAAATGCTGAATGTAAAGG					
RPS26_R	CATGAGATCCCTACGCGGAC					
Negative control						
Negative_control_1_F	CTGCCACTTGAGGGTGAGG					
Negative_control_1_R	CCATCTTGCATGCAGTTAGCC					

Results

Mutations Detected in Lung Adenocarcinoma Cell Lines

Whole genome sequencing data of all 23 lung adenocarcinoma cell lines were retrieved and reanalyzed. On average, 4,017,667 SNVs per cell line were detected. An average of 1,375,802 coding region SNVs were annotated, with 19,086 SNVs in exon regions per cell line. For the regulatory regions, promoters and enhancers plus repressive marks were defined for the individual cell lines by considering ChIP-seq peaks and consensus TSS-seq. The SNVs in those regulatory regions were filtered for benign germline variants by overlapping with dbSNP. As a result, 46,149 potential regulatory SNVs were identified per cell line (Table 7). The functions of these potential regulatory SNVs were interpreted and categorized based on promoter- or enhancer-specific ChIP-seq markers. A summary of the detected variants is shown in Table 7.

Cell line	All SNPs/SNVs	Coding SNPs/SNVs	Exon SNPs/SNVs	Regulatory SNVs
A427	4,024,063	1,397,615	18,775	70,336
A549	3,762,488	1,007,875	16,143	37,976
ABC-1	3,918,935	1,359,715	18,666	16,068
H322	3,710,129	1,273,472	17,904	20,721
H1299	3,910,954	1,343,074	18,287	49,799
H1648	4,834,699	1,701,139	24,819	55,458
H1650	3,738,924	1,272,227	17,280	68,525
H1703	3,908,849	1,340,392	18,276	48,520
H1819	4,169,230	1,441,883	19,326	61,870
H1975	4,026,746	1,333,864	19,389	36,275
H2126	4,233,027	1,457,113	19,789	76,104
H2228	4,407,002	1,512,216	19,312	80,690
H2347	3,265,345	1,316,041	18,102	37,756
II-18	4,122,525	1,428,765	20,231	37,923
LC2ad	3,955,271	1,372,090	18,855	9,568
PC-9	3,949,215	1,368,717	18,717	43,016
PC-14	3,712,268	1,259,609	17,977	10,717
RERF-LC-Ad1	4,368,425	1,514,733	20,936	68,911
RERF-LC-Ad2	4,213,008	1,449,905	19,887	70,040
RERF-LC-KJ	4,135,667	1,426,828	19,961	33,263
RERF-LC-MS	3,949,142	1,348,821	17,980	48,424
VMRC-LCD	4,078,677	1,383,592	19,613	36,918
RERF-LC-OK	4,011,742	1,333,768	18,749	42,540

Table 7 Summary of the SNPs/SNVs detected by GATK

Average	4,017,667	1,375,802	19,086	46,149
Multi-omics	Approach in M	Iutation Analy	sis	

To distinguish between functional regulatory mutations and functionally silent "passenger" mutations (The Cancer Genome Atlas Research et al., 2013; The Cancer Genome Atlas Research Network, 2014), I examined whether the detected SNVs activated or repressed their downstream transcript targets. The activated or repressed status of an allele could be determined from frequencies of the SNVs or SNPs of that particular allele in the transcriptome. Activating regulatory mutations should increase the frequency of the variant sequences in the RNA-seq "tags", while repressive regulatory mutations would decrease it. This followed the so-called "allelic imbalance" detection approach (Figure 4) (Baran et al., 2015; Melé et al., 2015; Sonawane et al., 2017). To implement this, I considered the ratio between variant frequencies of alternative/reference nucleotides of SNPs/SNVs in mRNA transcripts as surrogates for allele expression patterns and the ratio between variant frequencies of alternative/reference nucleotides of regulatory mutations in each individual ChIP-seq as representative of functionality of each mutation.

To address potential problems associated with copy number aberrations (CNAs) common to cancer cell lines (Table 2), I normalized both alternative and reference frequencies of the variants in RNA and ChIP-seq by the corresponding genomic variant frequencies in WGS. Because sequencing depths in WGS could represent ploidy in the genome (Abyzov, Urban, Snyder, & Gerstein, 2011; Roller, Ivakhno, Lee, Royce, & Tanner, 2016), the normalized frequencies should only represent the functional bias of the regulatory modifications and transcripts.

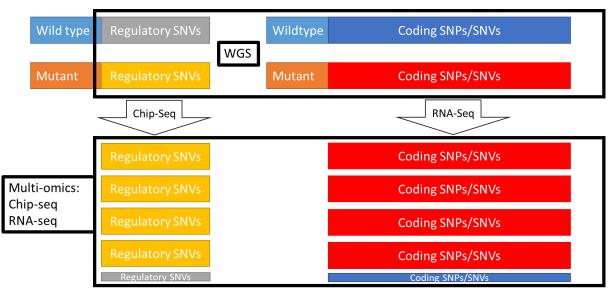


Figure 4 Approach in detecting allelic imbalance expression. (Top) WGS Variants are classified into regulatory variants or coding variants; (Bottom) Variant frequencies in ChIP-seq (regulatory variants) and RNA-seq (coding variants) are investigated for biases.

RNA-seq Reveals Transcript Allelic Imbalance Expression

I examined which RefSeq transcripts exhibited allelic imbalance expression and thus were potentially under mono-allelic transcriptional regulation. Using the ratio of WGS-normalized alternative/reference variants in RNA-seq, I considered variants with the following 2 criteria: #1) the ratio in WGS and RNA-seq was significantly different in 2 by 2 contingency tables at p<0.01, Fisher's exact test and #2) the ratio in RNA-seq was at least 5-fold, favoring either alternative or reference variants. From the coding regions of 29,251 transcript counts (averaging 1,271 per cell line), 107,155 coding variants (18,330 per cell line) were detected. Allelic imbalance expression was detected in 7,915 transcripts (596 per cell line) or 14,233 coding variants (619 per cell line, Figure 5A, Table 8).

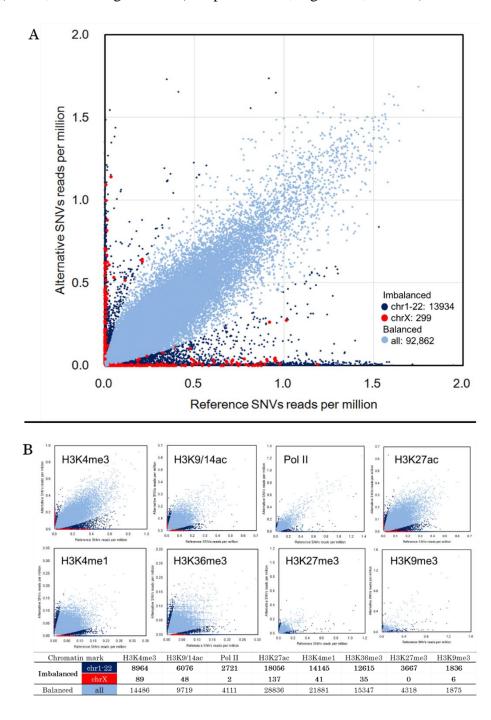


Figure 5 Allelic imbalance expression plots; X-axis represents reference reads' frequencies; Y-axis represents alternative read's frequencies; Non-X chromosome variants with more than 5 fold bias are in dark blue; X chromosome imbalances are in red. (A) RNA-seq imbalances; (B) ChIP-seq imbalance.

			Autosor	ne + Y		Х						
Sex	Cell line	Heterozygous SNPs		Expressio	n	Heterozygous	Expression					
			Balanced	Imbalanced	%imbalance	SNPs	Balanced Imbalanced %imbalance					
Female	LC2/ad	1833572	5071	422	7.68	74265	13	78	85.7			
	H1819	1760876	4402	679	13.4	6276	28	39	58.2			
	H1975	2190422	5288	591	10.1	4192	0	4	100.0			
	H2228	2331330	5904	671	10.2	14467	7	38	84.4			
	H2347	2370936	5462	585	9.7	92483	15	140	90.3			
Male	A427	1856941	4147	490	10.6	4796	6	1	14.3			
	A549	2084037	3422	479	12.3	33667	0	18	100.0			
	ABC-1	1423400	2981	381	11.3	4283	3	8	72.7			
	H1299	1566125	3346	378	10.2	7107	0	10	100.0			
	H1648	2441256	5377	706	11.6	3363	2	21	91.3			
	H1650	1136166	2372	343	12.6	2677	1	21	95.5			
	H1703	1634715	3645	433	10.6	4480	2	8	80.0			
	H2126	1573235	3680	423	10.3	5148	0	6	100.0			
	RERF- LC-Ad1	2275585	5607	776	12.2	3557	0	4	100.0			
	RERF- LC-Ad2	1975614	4826	541	10.1	4601	2	9	81.8			
	RERF- LC-KJ	1892689	4741	546	10.3	3997	0	10	100.0			
	VMRC- LCD	1873618	4595	544	10.6	5253	5	8	61.5			
Unknown	PC-14	1120101	303	2304	88.4	2177	1	17	94.4			
	PC-9	1538099	3825	432	10.2	5973	13	13	50.0			
	H322	1222734	3358	433	11.4	3316	2	11	84.6			
	II-18	1345778	3039	354	10.4	3733	1	1	50.0			
	RERF- LC-MS	1491318	3191	633	16.6	4590	1	4	80.0			
	RERF- LC-OK	1855675	4147	513	11.0	74904	31	107	77.5			

Table 8 The number of heterozygous SNVs with imbalanced and balanced transcriptions

To validate the allelic imbalance of RefSeq transcripts, I first inspected whether the imprinting from X inactivation was presented. From 5 cell lines of known female origin and 12 cell lines of known male origin, I observed much larger amounts of heterozygous coding variants in the female cell lines (72 vs 16 on average, Table 8). For the female cell

lines, out of 362 total variants, 299 (83%) were considered to be under mono-allelic regulatory effects. Based on the number of detected variants, the unknown sex origin cell line RERF-LC-OK should be of female origin. These variant imbalances were also observed at the transcript level (Figure 6). Cross-referencing to previously reported X-inactivation imprinted transcripts found 67 transcripts from 17 genes (Morison, Paton, & Cleverley, 2001).

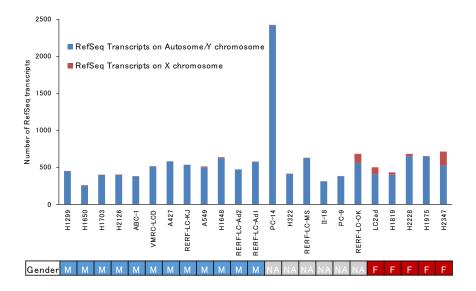
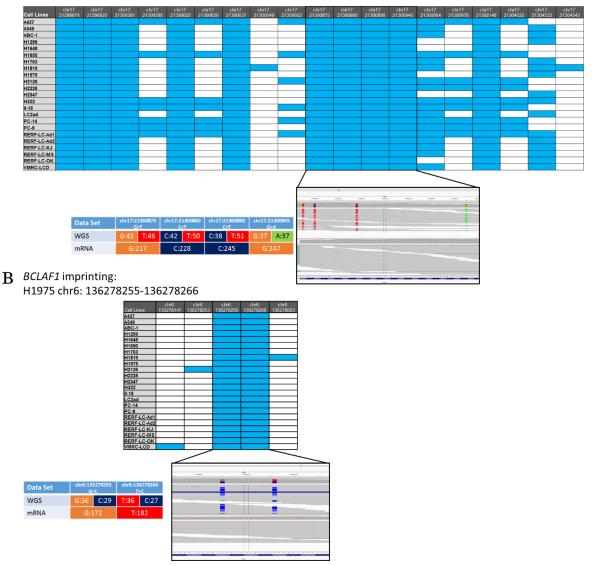
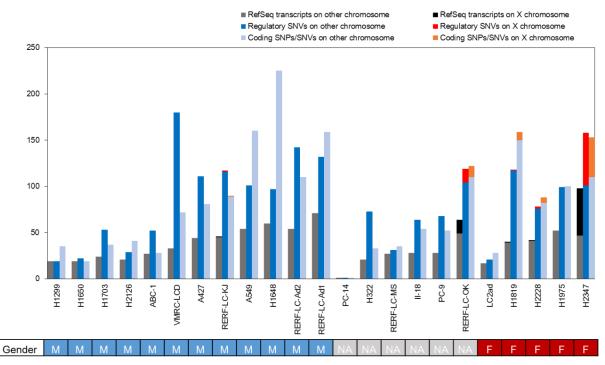


Figure 6 RefSeq transcripts with mRNA allele imbalance in each cell line. Transcripts on X-chromosome are shown in red, others in blue. Sex of origin is shown on bottom panel. RERF-LC-OK is likely to have a female origin.

Imprinting is not limited to the X-chromosome. Genes on autosomes also exhibit parental-specific expression via epigenetic controls (Barlow & Bartolomei, 2014). Such imprinting results from linage-specific, sex-specific or developmental-specific processes, which are not the goal of this study. I discarded RefSeq transcripts that were found to be imbalanced in more than 1/3 (7) of the cell lines regardless of the presence of regulatory mutations. A total of 124 transcripts in 76 genes (Table 9) were removed. Two examples of *MAP2K3* and *BCLAF1* imprinting are shown in Figure 7.

A *MAP2K3* imprinting: H1975 chr17: 21298879-21304543




Figure 7 Two examples of transcripts considered imprinted by RNA-seq imbalance in every cell line. Presences of variants are indicated by blue boxes. Frequencies in H1975 cell line are shown in table and IGV's graphics. (A) MAP2K3 (B) BCLAF1

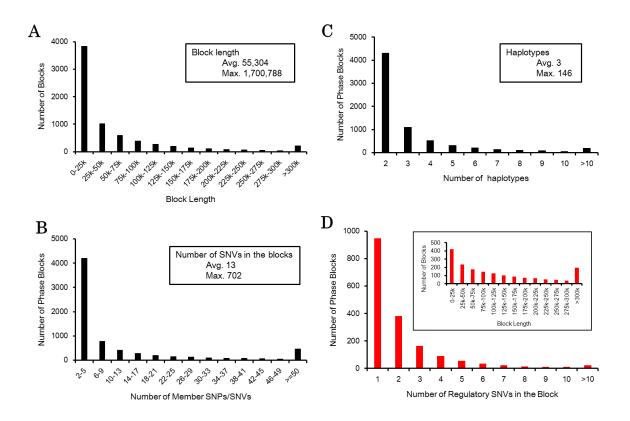
RefSeq	Gene	# Cell Lines	RefSeq	Gene	# Cell Lines	RefSeq	Gene	# Cell Lines	RefSeq	Gene	# Cell Lines	RefSeq	Gene	# Cell Lines	RefSeq	Gene	# Cell Lines
NM_00275 6	MAP2 K3	23	NM_00101 2636	IL32	16	NM_01961 0	RBMXL1	13	NM_00129 0208	ZNF717	11	NM_13337 8	TTN	9	NM_02095 7	PCDHB 16	8
NM_01473 9	BCLAF 1	23	NM_00101 2635	IL32	16	NM_00103 7501	NBPF8	13	NM_00112 8223	ZNF717	11	NM_00331 9	TTN	9	NM_02044 5	ACTR3B	8
NM_14510 9	MAP2 K3	23	NM_00101 2634	IL32	16	NM_00256 8	PABPC1	13	NM_01427 2	ADAMT S7	11	NM_18261 9	CLEC18 A	9	NM_00104 0135	ACTR3B	8
NM_00107 7441	BCLAF 1	23	NM_00101 2633	IL32	16	NM_00116 2536	RBMXL1	13	NM_00119 8832	PDE4DI P	11	NM_00119 3318	RNF212	9	NM_00129 1420	GOLGA 6L9	8
NM_00107 7440	BCLAF 1	23	NM_00101 2632	IL32	16	NM_02469 0	MUC16	13	NM_14468 2	SLFN13	10	NM_00127 7444	NBPF9	9			
NM_17060 6	KMT2C	22	NM_00101 2631	IL32	16	NM_00127 1223	OBSCN	13	NM_00137 3	DNAH1 4	10	NM_00066 1	RPL9	9			
NM_00116 4315	ANKRD 36	22	NM_00101 2718	IL32	16	NM_05284 3	OBSCN	12	NM_00228 1	KRT81	10	NM_14506 1	SKA3	9			
NM_00104 2414	PSPC1	21	NM_00128 6555	DUSP2 2	15	NM_01775 0	RETSAT	12	NM_00129 0210	ZNF717	10	NM_00113 6214	CLEC18 A	9			
NM_02266 2	ANAPC 1	20	NM_00439 9	DDX11	15	NM_03292 6	TCEAL3	12	NM_03097 9	PABPC3	10	NM_00127 1197	CLEC18 A	9			
NM_00643 7	PARP4	19	NM_03365 5	CNTNA P3	15	NM_00109 8623	OBSCN	12	NM_00136 9	DNAH5	10	NM_00201 6	FLG	8			
NM_01826 4	TYW1	19	NM_00100 5751	FAM21 A	15	NM_00100 6933	TCEAL3	12	NM_00100 9931	HRNR	10	NM_00120 1380	CNTNA P3B	8			
NM_00127 1733	MST1L	19	NM_00389 0	FCGBP	15	NM_00127 8141	NBPF12	12	NM_00129 0209	ZNF717	10	NM_00125 6417	NBPF3	8			
NM_18262 3	FAM13 1C	19	NM_00108 0400	PLIN4	15	NM_00498 7	LIMS1	12	NM_00109 9771	POTEF	10	NM_00125 6416	NBPF3	8			
NM_17360 1	GXYLT 1	18	NM_00129 1398	FAM21 A	15	NM_00119 3488	LIMS1	12	NM_00116 6017	SKA3	10	NM_01912 0	PCDHB8	8			
NM_01794 0	NBPF1	18	NM_00108 5457	CBWD 6	15	NM_00119 3484	LIMS1	12	NM_01893 7	PCDHB 3	10	NM_00321 1	TDG	8			
NM_00128 4	AP3S1	18	NM_00125 7145	DDX11	15	NM_00119 3485	LIMS1	12	NM_13842 0	AHNAK 2	9	NM_18258 8	RGPD4	8			
NM_00109 9650	GXYLT 1	18	NM_15243 8	DDX11	15	NM_00119 3482	LIMS1	12	NM_00103 7675	NBPF9	9	NM_00101 8115	FANCD2	8			
NM_01960 1	SUSD2	17	NM_01467 5	CROCC	15	NM_00119 3483	LIMS1	12	NM_19818 1	GOLGA 6L9	9	NM_00124 3776	CEP57	8			
NM_00317 4	SVIL	16	NM_00125 7144	DDX11	15	NM_00172 0	BMP8B	11	NM_00693 1	SLC2A3	-	NM_03226 4	NBPF3	8			
NM_00422 1	IL32 BRD9	16	NM_00213 9	RBMX DDX11	15	NM_00107 9809	TMEM1 83B KCNJ12	11	NM_00102 4921	RPL9 TTN	9	NM_01538 3	NBPF14 DUSP22	8			
NM_02392 4 NM 01469	GPRIN	16 16	NM_03065 3 NM 02478	ZDHHC	15 14	NM_02101 2 NM 00480	HS6ST1	11 11	NM_00125 6850	TTN	9	NM_02018 5 NM 03214	RAB6C	8			
6	2 BRD9		6	11 WASH		7	DNAH11		NM_13343 2	TTN	9	4	CFH	8			
NM_00100 9877	SVIL	16	NM_18290 5	1	14	NM_00127 7115	IGFN1	11	NM_13343 7	TTN	9	NM_00018 6	FANCD2	8			
NM_02173 8	SVIL	16	NM_03093 0	UNC93 B1	14	NM_00116 4586	IGFN1	11	NM_00126 7550	I I IN	9	NM_03308 4	FANCD2	8			

Table 9 List of RefSeq transcripts considered to be imprinted

ChIP-seq Reveals Allelic Preference Modifications in Regulatory Mutations

Similar to allele expression, the imbalance in histone modifications was determined by the ratio of variant frequencies in ChIP-seq. Instead of relying on a public database, regulatory regions were defined individually for cell lines by histone marks. By processing each ChIP-seq assay in each cell line individually, I detected a total of 100,573 variants in all of the regulatory regions modulating 17,929 transcripts (Figure 5B). A total of 1,794 regulatory SNVs (81 per cell line) were paired with 1,655 coding variants in 730 RefSeq transcripts (38 per cell line, Figure 8).

Figure 8 Breakdown of RefSeq transcripts, coding variants and regulatory SNVs. Number of imbalance transcripts are shown gray/black bars; imbalance regulatory SNVs in blue/red bars; Coding variants in light blue/orange bars.


Phasing of Variants Detected in WGS with 10x Genomics GemCode

To further validate the 1,794 regulatory SNVs, their direct associations with the downstream 1,655 coding variants were analyzed. Interactions between regulatory elements and their downstream transcripts could be either *cis*- on the same allele or *trans*- on a different allele. Both of these possibilities represent different regulatory mechanisms. The

phasing of regulatory SNVs and their downstream SNVs/SNPs is indispensable for the identification and interpretation of these interactions.

The 10x Genomics GemCode platform was employed for allele phasing. To expedite the analysis, sequencing was performed using whole exome plus regulome bait (113.7 Mb), which included coding regions and promoters, enhancers and DNA methylated regions deposited in the ENCODE project. An average of 45,679,789 paired-end reads per cell line were sequenced, which averaged 53x coverage in targeted regions. Out of the 4,038,252 variants on average per cell line, 10.8% of the variants were covered and were phased by the default 10x Genomics Long Ranger pipeline. It should be noted that the default pipeline assumes a diploid human genome; thus, the default results were found to be unsuitable for cancer cell line genomes.

To adapt the 10x Genomics GemCode to this study, I modified the analytical pipeline. In brief (see details in the Methods section), for each variant having adequate coverage, UMIs corresponding to the alternative and reference nucleotides were recovered. Allele haplotypes were constructed from each unique combination of the variants supported by the UMIs. I linked the variants in different positions into phased regions called "Phased Blocks". I obtained 7,004 phased blocks per cell line on average with an average length of 55 kb per block (1.7 Mb maximum, Figure 9A). Anchoring these blocks were WGS variants with an average of 13 variants per block (702 max, Figure 9B). From the combinations of the variants, 3 haplotypes were made on average (Figure 9C). Collectively, in all cell lines, 40,073 blocks (1,742 average) contained 89,333 regulatory SNVs (3,884 average). On average, 2 regulatory SNVs were linked in 33 variant chains (Figure 9D). Statistics for each cell line are shown in Table 10.

Figure 9 Phase Block Statistics histograms. (A) Block length distributions. (B) WGS SNV count distributions. (C) Haplotypes from (B) distributions. (D) Stats of blocks containing regulatory SNVs; inset shows length of blocks containing regulatory SNVs.

Table 10 Statistics of the Phase Blocks in Each Cell Line

Cell line	Phase	e Block Lei	ngth	# of SNI	Ps/SNVs in Block	a Phase	# of Haplotypes in a Phase Block			
	Max	Average	Median	Max	Average	Median	Max	Average	Median	
A427	1,194,537	65,754	23,338	472	16	4	64	3.56	2	
A549	829,372	35,012	11,694	311	10	3	44	2.94	2	
ABC-1	1,198,524	53,875	20,988	608	13	3	103	3.47	2	
H322	1,138,518	53,459	18,296	387	14	3	43	3.41	2	
H1299	848,580	43,843	18,352	690	12	4	98	3.18	2	
H1648	1,052,406	53,067	17,726	638	15	4	100	3.40	2	
H1650	1,227,114	38,179	13,549	396	11	3	56	2.97	2	
H1703	755,716	53,745	21,890	695	14	4	112	3.49	2	
H1819	745,916	46,591	17,492	441	14	4	44	3.38	2	
H1975	1,025,195	38,330	12,983	573	12	4	94	3.03	2	
H2126	950,576	64,867	25,444	595	15	4	134	3.46	2	
H2228	1,427,558	67,865	24,282	518	16	4	55	3.46	2	
H2347	1,300,851	55,205	20,739	481	15	4	64	3.52	2	
II-18	608,739	35,312	12,450	449	11	4	78	3.17	2	
LC2ad	1,304,146	72,936	27,677	620	17	4	106	3.53	2	
PC-9	945,733	50,160	22,921	372	13	4	32	3.05	2	
PC-14	383,302	22,036	8,343	294	5	2	40	2.77	2	
RERF- LC-Ad1	948,045	53,509	19,925	472	15	4	69	3.47	2	
RERF- LC-Ad2	997,249	55,219	20,673	335	14	4	39	3.35	2	
RERF- LC-KJ	798,407	45,667	19,387	692	13	4	154	3.35	2	
RERF- LC-MS	1,208,661	54,802	21,687	506	12	4	61	3.19	2	
VMRC- LCD	987,944	47,138	18,998	499	13	4	95	3.39	2	
RERF- LC-OK	876,013	46,425	19,036	368	13	4	55	3.26	2	
Average	989,265	50,130	19,038	496	13	4	76	3.29	2	

A phase block example in the A549 cell line is shown in Figure 10. Seven WGS variants were linked to the region spanning chr2:38038277-38071060 (32 kb), which overlapped with *CYP1B1*. A variant at chr2:38070511 C>CA fell in a regulatory region, and three variants at chr2:38070996 T>C, chr2:38071007 A>G and chr2: 38071060 C>G fell inside the *CYP1B1* coding region. Seven SNVs, including the above four SNVs, were linked together by UMI (blue lines) of the 10x Genomic GemCode platform, clearly separating the two C-T-A-C (upper) and +A-C-G-G (lower) haplotypes apart.

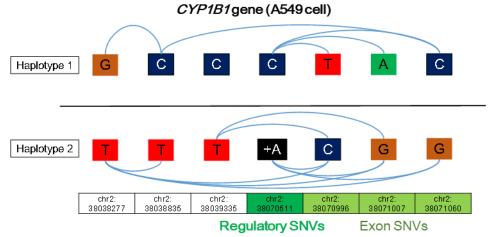


Figure 10 Example of a Phase Block of CYP1B1 in A549 Cells. Blue lines represents 10x Gemcode MIs connections;

regulatory SNV at chr2:38070611 (dark green) is phased to 3 coding variants (light green).

A practical utilization of phased blocks was illustrated in the phasing of *EGFR* L858R and T790M mutations (Figure 11). These two mutations are known to coexist in the same allele in drug-resistant clones (Liang et al., 2018). The phasing correctly assigned the two mutants (green arrows) together on the same allele in H1975 cells, a cell line known to harbor these two mutations.

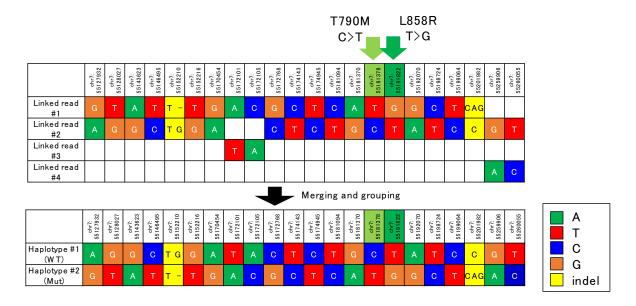


Figure 11 Phasing of EGFR T790M to L858R. Phase block spanning EGFR in H1975 cell line is shown. T790M and L858R mutations configuration is correctly identified.

While the majority of the phase block contained two haplotypes, a significant number of the blocks contained more than two haplotypes. To further examine these findings, the reported ploidy of the cell lines in the COSMIC database was referenced (Forbes et al., 2015). Seventeen of the 23 cell lines were reported at an average ploidy of 3.04 (Figure 12). While some cell lines showed large discrepancies with a 1-1.5 ploidy difference, the majority held up comparably well. The most likely reason for the discrepancies was that the haplotype counts in the phase block did not represent the actual copy numbers in those regions but represented the number of unique alleles. One of the most frequently reported regions to undergo amplification is the *ERBB2* gene region, which encodes HER2, a crucial genetic marker in breast cancer. This amplification is the first and most frequently reported one in breast cancer (Kallioniemi et al., 1992) but is also commonly be found in other cancers (Dahlberg et al., 2004; Grob et al., 2012). In the phasing analysis in this study, this region harbored 9 unique haplotype combinations (Figure 13).

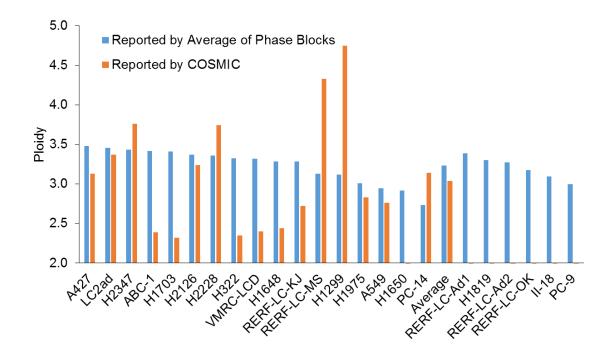
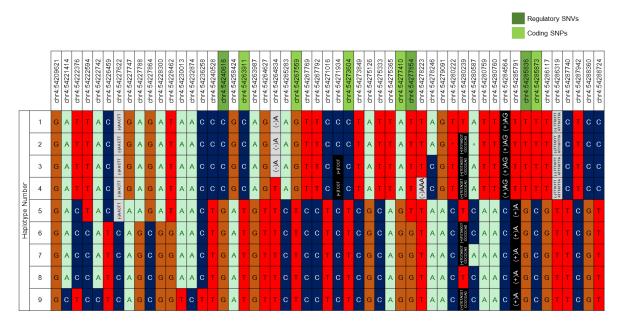



Figure 12 Phase Block Average Haplotype Compared with the COSMIC Database. Seventeen of 23 cell lines' haplotypes are reported in COSMIC (orange bar).

Figure 13 Phasing of ERBB2 Amplification. Nine unique haplotypes are built from combinations of 10x Gemcode MIs. Several positions overlap with ERBB2 coding region.

To more directly validate the phasing, whole genome MinION sequencing was conducted for H1975, LC2/ad and RERF-LC-KJ cells. Due to the limitation of this technique in sequencing yield, 674,333 and 511,982 reads from 2D sequencing runs of H1975 and RERF-LC-KJ cells (Table 11) and 5,620,315 reads from 1D and 1D² sequencing runs of LC2/ad cells (Table 12) were generated and mapped to the UCSC hg38 human reference genome.

		1D r	ead	2D r	read			Mapped			Read	length
Cell line	Run	pass	fail	pass	fail	Total^{*}	Unmapped	to human genome		Coverage (≥1×)	Mean	Max
H1975	10	42,629	291	640,277	61,363	682,209	7,876	674,333 (98.8%)	0.7	0.46	4,815	179,616
RERF-LC- KJ	3	-	-	477,280	42,680	519,960	7,978	511,982 (98.5%)	0.58	0.36	3,627	118,237

Table 11 Statistics of H1975 and RERF-LC-KJ cell MinION 2D² sequencing runs

Table 12 Statistics of LC2/ad cell MinION 1D and 1D² sequencing runs

		Total [*]		Mapped to	Avg.	Coverage-	Read	l length
Cell line	Run	(1D + 1D square)	Unmapped	human genome	depth	(≥1×)	Mean	Max
LC2/ad	13	6,704,709	1,084,394	5,620,315 (83.8%)	6.6	0.93	6,572	2,495,160

The physical long reads from MinION covered or partially covered 5,763 (61%) phase blocks in H1975 cells, 4,046 (47%) in RERF-LC-KJ cells and 5,282 (79%) in LC2/ad cells (Table 13). These insufficient coverages were due to the low genome coverage of the MinION sequencing. By examining the combinations of the SNVs in the covered haplotype block, I found that 4,962 (86%), 3,473 (86%) and 4,422 (78%) of H1975, RERF-LC-KJ and LC2/ad cells, respectively, were represented by MinION reads. One of the examples of the validation process is shown in Figure 14, where the phase block covering *SEMA6A* in the H1975 cell line is shown. Taking all the obtained results together, I concluded that the SNV-to-SNV associations inside the phase block were sufficiently accurate for the following analysis.

Cell line	H1975	RERF-LC-KJ	LC2/ad
Flow cell version	R9 + R9.4	R9.4	R9.5
Run	9 (2D passed) + 1 (1D)	3 (2D)	3 (1D) + 10 (1D square)
Phase block	9382	8623	6697
Block covered	5763	4046	5282
% block covered	61.4	46.9	78.9
SNPs in block	199,987	193,853	218,892
SNPs covered	74,916	44,018	164,656
% SNPs covered	37.5	22.7	75.2
Supported block	4963	3473	4422
Not supported block	800	573	1260
% supported block	86.1	85.8	77.8

Table 13 Statistics of Phase Block Validation by MinION

SEMA6Agene (H1975 cells)

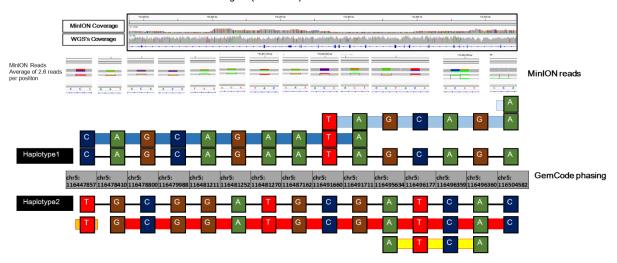


Figure 14 MinION Validation of 10x GemCode Phase Block Results in SEMA6A in the H1975 Cell Line. 10x Gemcode phasing is shown in center thin black lines; MinION read coverages are shown in blue/light blue for haplotype1 and red/yellow for haplotype2. IGV graphics for each position are shown at the top.

Phasing of Regulatory SNVs into Functional Regulatory Mutations

Of the 1,794 phased regulatory SNVs, 137 regulatory SNVs in 146 RefSeq transcripts exhibited ChIP-seq allele imbalances. These SNVs were phased to 166 downstream transcript variants that also exhibited compatible allele imbalance expression patterns (Figure 15, Table 14).

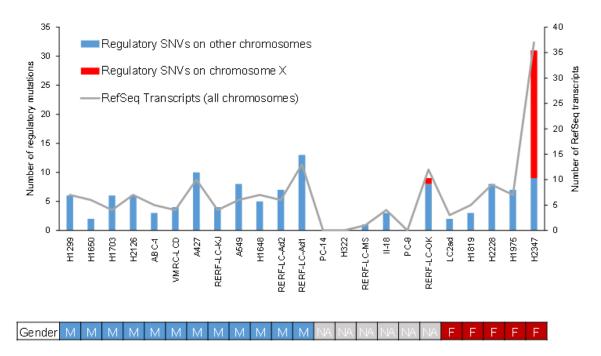


Figure 15 Imbalanced and Phased RefSeq Transcript Counts in each Cell Line. Numbers of transcripts are shown in grey. Number of regulatory SNVs are shown in red for X-chromosome, blue for others.

Cell line		Regulatory m	nutation		Imbalanced ChIP	Gene	RefSeq	TF ChIP-seq	Trai	nsfac (2015.1)
	Chr	Position	Ref	Alt	1			(A549; ENCODE)	Loss of TFBS	Gain of TFBS
A427	chr12	54016223	С	CCCCTAG	H3K4me1	HOXC4,HOX C6,	NM_014620,NM_153693,	-	-	-
A427	chr15	40282532	С	т	H3K4me3,H3K9/14ac ,H3K27ac	ANKRD63,	NM_001190479,	CTCF	-	-
A427	chr16	1959861	G	GC	H3K4me3,H3K9/14ac	RPS2,	NM 002952,	TAF1,TCF12,PHF8,	AP2ALPHA,SP1SP3	BCL6B,EGR1,OSX,WT1,ZN451
A427	chr17	5191978	С	G	H3K4me3,H3K27ac	ZNF594,	NM_032530,	SIN3A, ETS1, SP1, CTCF, POLR2A, GABP A, SMC3, ELF1, NR3C1, SIX5, TCF12, MY C, TAF1, RAD21, ZBTB33	-	TBX5
A427	chr17	42702516	G	GT	H3K36me3	CNTNAP1,	NM_003632,	-	CPBP,KID3,TCFAP2C	GABPA, VMYB
A427	chr2	85418648	A	ACG	Polli,H3K27ac	CAPG,	NM_001256139,	SIN3A, ETS1, SP1, POLR2A, PHF8, GABP A, SMC3, ELF1, CEBPB, SIX5, TCF12, MY C, TAF1	-	AHRHIF,AHR,EGR1,HES1
A427	chr20	43658427	G	GT	H3K9/14ac	MYBL2,	NM_002466,	-	-	-
A427	chr20	51803238	A	AT	H3K9/14ac	SALL4,	NM_020436,	-	-	-
A427	chr3	149375499	Т	С	H3K4me3,H3K9/14ac ,H3K27ac	TM4SF1,	NM_014220,	SIN3A, ETS1, SP1, ELF1, POLR2A, YY1, T CF12, ZBTB33	-	-
A427	chr6	3260207	с	СТТ	H3K4me3	PSMG4,	NM_001128592,NM_0011 28591,NM_001135750,	-	-	-
A549	chr15	23440915	Т	С	H3K27me3	MKRN3,	NM_005664,	-	GATA1,ZFP64	GCMA,GCMB
A549	chr15	23566678	Т	A	H3K4me3	MKRN3,	NM_005664,	-	IRF5	-
A549	chr16	25257835	С	CG	H3K4me3	ZKSCAN2,	NM_001012981,	SIN3A, POLR2A, PHF8, REST, GABPA, S REBF1	AP2ALPHA	WT1,ZN451
A549	chr17	80355364	G	Т	H3K36me3	ENDOV,	NM_173627,NM_0011646 38,NM_001164637,	-	GAF,TEF1	-
A549	chr17	80355526	G	A	H3K36me3	ENDOV,	NM_173627,NM_0011646 38,NM_001164637,	-	CPBP,ZAC	ELF1,SPI1
A549	chr2	38070511	С	CA	H3K9/14ac	CYP1B1,	NM_000104,	-	-	-
A549	chr2	85418650	A	ACGCG	H3K27ac	CAPG,	NM_001256139,	SIN3A, ETS1, SP1, POLR2A, PHF8, GABP A, SMC3, ELF1, CEBPB, SIX5, TCF12, MY C, TAF1	-	-
A549	chr4	188109160	A	ACG	H3K4me3	TRIML2,	NM_173553,	СЕВРВ,	-	AHR
ABC-1	chr1	226679940	С	CG	H3K27ac	ІТРКВ,	NM_002221,	-	-	E2F1,GKLF
ABC-1	chr10	27100911	С	CA	H3K9/14ac	ANKRD26,	NM_014915,NM_0012560 53,	ETS1, TAF1	-	-
ABC-1	chr19	57476910	С	т	H3K4me3	ZNF772,	NM_001144068,NM_0010 24596,	-	-	IRF4,IRF6
H1299	chr1	66301190	A	AT	H3K27ac	PDE4B,	NM_001037339,	-	-	-
H1299	chr1	113811755	CGT TTT CCT GCT T	С	H3K4me3,H3K9/14ac ,H3K27ac	RSBN1,	NM_018364,	-	EHF,NFAT1,SOX17	-
H1299	chr10	68334075	A	AAAC	H3K4me3	PBLD,	NM_001033083,NM_0221 29,	-	-	CMYB,FOXA2,FOXD2,FOXD3,F OXG1,FOX11,FOX12,FOXJ3,FOX K1,FOXL1,FOXO1A,FOXO1,FO XO3A,FOXO3,FOXO4,FOXO6,F OXP3,FREAC2,MYB,SOX5,SRY
H1299	chr14	21069184	G	A	H3K9/14ac	ARHGEF40,	NM_018071,	-	-	-
H1299	chr14	23953737	A	ACT	НЗК27ас	DHRS4,	NM_021004,	POLR2A,TAF1	-	-
H1299	chr19	36548272	Т	A	H3K36me3	ZNF529,	NM_020951,	-	GATA3,ZNF333	BCL6, MEF2C, TEF3, TEF5
H1648	chr12	114684071	G	GGAGA	H3K27ac	ТВХЗ,	NM_005996,NM_016569,	SIN3A, POLR2A, REST, PHF8, SIN3A, YY 1, SIX5, NR3C1, CHD1, TAF1, ZBTB33	-	-
H1648	chr2	131528390	G	A	H3K4me3	CCDC74A,	NM 138770,	-	-	-

Table 14 Summary of Imbalanced and Phased Regulatory Mutations and Their Annotations

H1648	chr5	149002770	C	CA	H3K27ac	SH3TC2,	NM_024577,	-	FOXC1	BRN1
H1648	chr5	149004604	G	A	H3K27ac,H3K4me1	SH3TC2,	NM_024577,	-	СРВР	-
H1648,H1819	chr5	178941464	С	CCAAA	H3K4me3,H3K9/14ac	ZNF454,	NM_001178089,NM_0011 78090,NM 182594,	-	-	-
H1650	chr1	110389770	G	GGA	H3K4me3	SLC16A4,	NM_001201548,NM_0012 01547,NM_004696,NM_00 1201549,NM_001201546,	-	-	AP4
H1650	chr18	12955468	Т	С	H3K36me3	SEH1L,	NM_031216,NM_0010134 37,	-	-	-
H1703	chr11	78040678	Т	TA	H3K27ac	KCTD14,	NM_023930,	-	-	CDX1,HOXA13,SATB1
H1703	chr4	54240616	С	G	H3K36me3	PDGFRA,	NM_006206,	-	-	HSF4
H1703	chr4	54277854	G	Т	H3K4me1	PDGFRA,	NM_006206,	-	ERG,FLI1,GABPBETA,OSR1	-
H1703	chr4	54285836	Т	G	H3K36me3	PDGFRA,	NM_006206,	-	-	STAT3
H1703	chr6	73394947	С	G	H3K4me3,H3K9/14ac ,H3K27ac	DDX43,	NM_018665,	-	-	GLI2,GLI3,GLI,ZBTB7C
H1703	chr7	100627013	C	CTG	H3K4me1	TFR2,	NM_001206855,	RNF2	-	HSF4,KAISO,NF1B
H1819	chr1	20612675	G	A	H3K4me1	CDA,	NM_001785,	-	ING4,KID3	-
H1819	chr6	27867700	G	С	Polll,H3K9/14ac,H3K 27ac	HIST1H2AL,	NM_003511,	-	-	-
H1975	chr1	8374283	A	С	H3K4me1	SLC45A1,	NM_001080397,	-	MEF2D,ZFP800	HMBOX1,RFX4
H1975	chr16	56638440	С	CG	H3K27ac	MT1A,	NM_005946,	POLR2A	ZAC	-
H1975	chr17	64082851	Т	TTA	H3K27ac	ERN1,	NM_001433,	SREBF1	GFI1	FOXD3,HNF3B,MEF2C,PMX1,Z NF333
H1975	chr19	9471504	A	AT	H3K36me3	ZNF560,	NM_152476,	-	-	PRX2
H1975	chr5	96877423	С	CA	H3K9/14ac	ERAP2,	NM_022350,NM_0011301 40.	-	EGR1,RREB1,WT1	PUR1,SMAD5
H1975	chr5	96896546	G	GAAA	H3K36me3	ERAP2,	NM_022350,NM_0011301 40,	-	-	PARP,SPIB
H1975	chr7	24830481	A	G	H3K36me3	DFNA5,	NM_001127453,	-	-	-
H2126	chr1	66265697	Т	TGTGAA	H3K4me1	PDE4B,	NM_001037339,	TCF12	-	SOX10
H2126	chr17	39056981	C	СТ	H3K27ac	PLXDC1,	NM_020405,	ETS1,SP1,POLR2A,ZBTB33	-	-
H2126	chr19	48696618	G	С	H3K9/14ac,H3K27ac	FUT2,	NM_001097638,NM_0005 11,	-	-	-
H2126	chr19	53881131	С	CAG	H3K27me3	PRKCG,	NM_002739,	POLR2A	-	-
H2126	chr2	29114657	G	С	H3K4me1	CLIP4,	NM_024692,	REST,ATF3	-	BEN
H2126	chr2	206274726	C	Т	H3K9/14ac,PollI	ZDBF2,	NM_020923,	SIN3A, POLR2A, PHF8, GABPA, TAF1	-	-
H2228	chr1	27935147	т	TG	Polli	SMPDL3B,	NM_014474,NM_0010095 68,	-	-	CREL,SPIB
H2228	chr12	4518175	G	A	H3K4me1	C12orf4,	NM_020374,	-	-	NKX25,NKX28,NKX2B
H2228	chr16	3443336	С	Т	Polli	ZNF597,	NM_152457,	SIN3A, ETS1, YY1, TAF1	-	-
H2228	chr16	73070710	G	GTC	Polli	ZFHX3,	NM_001164766,	SIN3A, SP1, MAZ, POLR2A, NR3C1, ATF 3, JUN, GABPA, ELF1, SIN3A, TCF12, MY C, FOSL2, TAF1, JUND, RAD21	-	
H2228	chr17	50533812	С	СТ	H3K4me1	EPN3,	NM_017957,	-	CREB	-
H2228	chr20	31948814	С	A	H3K36me3	PDRG1,	NM_030815,	-	PBX1	-
H2228	chr4	48173432	С	CAGGTTG TTTGGT	H3K27ac	ΤΧΚ,	NM_003328,	-	-	FOXO1A,SRY
H2228	chr4	87975555	т	TG	PolII,H3K27ac	SPP1,	NM_001251830,NM_0005 82,NM_001040058,NM_00 1040060,NM_001251829,	SIN3A,SP1,TAF1	FOXC1,FOXO1A,FOXO1,SOX4, SRY	-
H2347	chr11	62557963	Т	TG	H3K36me3	ROM1,	NM_000327,	-	ZNF302	HES1,ING4,KID3,USF
H2347	chr12	47758954	G	Т	H3K9/14ac	RAPGEF3,	NM_001098531,	SIN3A, NR3C1	BCL6B,CPBP,EGR1,OSX,SP1SP 3,SP1,SP2,SP4,WT1	EGR2,KLF17,LKLF
H2347	chr2	26299918	G	GA	H3K9/14ac	GPR113,	NM_153835,	-	CIZ	-
H2347	chr22	37187692	G	GC	H3K4me3,H3K9/14ac ,H3K27ac	C1QTNF6,	NM_031910,NM_182486,	-	BEN	ZFP516
H2347	chr5	157552395	Т	TA	H3K36me3	ADAM19,	NM 033274,	-	GTF2IRD1	-

H2347	chr5	179023703	C	CCA	H3K4me3,H3K27ac	ZNF454,	NM_001178089,NM_0011 78090,NM 182594,	ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1 ,SIX5,ZBTB33	-	ARNT, KID3
H2347	chr5	179023705	G	С	H3K4me3,H3K27ac	ZNF454,	NM_001178089,NM_0011 78090,NM_182594,	ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1 ,SIX5,ZBTB33	-	ISL2,NKX31,NKX32
H2347	chr5	179023789	С	T	НЗК27ас	ZNF454,	NM_001178089,NM_0011 78090,NM_182594,	ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1 ,SIX5,ZBTB33	-	ELK1,ER81,ETV7,ZSCAN2
H2347	chr6	28399927	С	СТ	H3K4me3	ZSCAN12,	NM_001163391,	SIN3A, ETS1, SP1, POLR2A, ATF3, PHF8, GABPA, YY1, SIX5, TAF1, ZBTB33	-	-
H2347	chrX	11115164	G	T	H3K36me3	HCCS,	NM_005333,NM_0011226 08,NM 001171991,	-	-	P50,SALL3,STAT6
H2347	chrX	40049931	A	G	H3K36me3	BCOR,	NM_017745,NM_0011233 85,	-	-	-
H2347	chrX	46574956	С	Т	H3K4me3,H3K27ac	CHST7,	NM 019886,	-	-	-
H2347	chrX	47483521	С	CA	H3K4me3,H3K9/14ac ,H3K27ac	ZNF41,	NM_153380,NM_007130,	REST, TAF1	BCL6B,GKLF,WT1,ZFP740	-
H2347	chrX	48528539	G	Т	H3K36me3	EBP,	NM 006579,	-	-	-
H2347	chrX	48539949	G	A	H3K4me3,H3K27ac	TBC1D25,	NM 002536,	SIN3A,CTCF,PHF8,	-	KID3
H2347	chrX	48559236	С	A	H3K36me3	TBC1D25,	NM 002536,	-	BCL6B,PAX2	-
H2347	chrX	49002196	G	T	H3K4me3,H3K9/14ac ,H3K27ac	GRIPAP1,	NM_207672,NM_020137,	SIN3A, ETS1, SP1, POLR2A, REST, GABP A, CEBPB, YY1, SIX5, TCF12, CHD1, TAF1	BEN	-
H2347	chrX	65534259	A	T	H3K4me3,H3K27ac	LAS1L,	NM_001170649,NM_0312 06,NM_001170650,	-	GATA3,GATA5,HOXA10,ZBTB4 4	-
H2347	chrX	65534494	С	A	H3K4me3,H3K27ac	LAS1L,	NM_001170649,NM_0312 06,NM_001170650,	REST,KDM5A,	-	-
H2347	chrX	71256219	С	Т	H3K27ac	ZMYM3,	NM_201599,	-	-	PMX1
H2347	chrX	100665623	С	A	H3K36me3	SRPX2,	NM_014467,	-	-	-
H2347	chrX	100665625	G	Т	H3K36me3	SRPX2,	NM_014467,	-	-	-
H2347	chrX	100822341	С	A	H3K36me3	CSTF2,	NM_001325,	-	-	-
H2347	chrX	103586064	G	т	H3K4me3,H3K9/14ac ,H3K27ac	TCEAL4,	NM_001006937,NM_0010 06935,NM 024863,	PHF8,YY1,TAF1	-	SOX4
H2347	chrX	119399107	С	СТ	H3K4me3,H3K9/14ac	SLC25A43,	NM_145305,	REST	-	-
H2347	chrX	119399109	A	Т	H3K4me3,H3K9/14ac ,H3K27ac	SLC25A43,	NM_145305,	REST	-	HSF4
H2347	chrX	120603552	С	T	H3K27ac	C1GALT1C1,	NM_001011551,NM_1526 92,	-	-	-
H2347	chrX	132957182	С	A	H3K4me3	HS6ST2,	NM_147175,NM_0010771 88,	-	-	NR1B2
H2347	chrX	132957183	G	GA	H3K4me3	HS6ST2,	NM_147175,NM_0010771 88,	-	-	-
H2347	chrX	136504229	G	A	H3K36me3	HTATSF1,	NM_001163280,	-	PLZFB	-
H2347	chrX	155216488	G	С	H3K4me3,H3K27ac	VBP1,	NM_003372,	SP1, POLR2A, REST, PHF8, YY1, TAF1	REX1,YY1,YY2	NFMUE1
II-18	chr1	220733283	С	A	H3K27ac	MARC2,	NM_017898,	SP1,CTCF,MAZ,GABPA,SMC3,ELF1,T CF12,RAD21	RELA	HSF4,P50RELAP65
II-18	chr11	64203784	С	CTTTG	H3K36me3	FERMT3,	NM_178443,NM_031471,	-	-	FOXM1,FOXO1A,HFH2,HNF3G ,SRY
II-18	chr12	105084230	Т	TTTTG	H3K4me3,H3K9/14ac ,H3K27ac	ALDH1L2,	NM_001034173,	SIN3A, YY1	-	FOXD3,HFH3,HNF3
LC2ad	chr7	94655777	G	GAAA	H3K4me3	PEG10,	NM_001172437,NM_0011 72438,	SIN3A,PHF8	-	-
LC2ad	chr7	122303951	G	С	H3K27ac	FEZF1,	NM_001024613,NM_0011 60264,	-	OSR1,OSR2	ARNT
RERF-LC-Ad1	chr1	8422756	Т	G	H3K9/14ac,H3K27ac	SLC45A1,	NM_001080397,	-	PRRX2	-
RERF-LC-Ad1	chr10	69222380	Т	TCA	H3K4me1	HKDC1,	NM_025130,	СТСҒ,СЕВРВ	-	ZBTB44
RERF-LC-Ad1	chr11	75403270	A	Т	H3K36me3	KLHL35,	NM_001039548,	-	-	-
RERF-LC-Ad1	chr18	79395018	С	G	H3K4me3	NFATC1,	NM_172390,NM_006162, NM_172388,	RNF2	-	CETS1P54,CETS1,EHF,ELK1,ER 71,ER81,ERM,ETV7,FLI1,GABP

										AGABPB, GABPA, GADP, PEA3, F EA3
RERF-LC-Ad1	chr19	20545301	G	GT	H3K9me3	ZNF737,	NM_001159293,	-	-	-
RERF-LC-Ad1	chr19	20565417	G	GCA	H3K27ac	ZNF737,	NM_001159293,	-	-	-
RERF-LC-Ad1	chr19	35003143	С	CGT	H3K4me1	ZNF792,	NM_175872,	SIN3A, ETS1, SP1, ATF3, SIX5	-	-
RERF-LC-Ad1	chr2	225582441	G	С	H3K36me3	NYAP2,	NM_020864,	-	BTEB2,E2F3,EGR1,MOVOB,SP 1,SP2,WT1	GKLF,MAZR,MAZ,SP1SP3,WT1 ,ZFP281,ZFP740,ZN451
RERF-LC-Ad1	chr20	22582148	G	A	H3K36me3	FOXA2,	NM_021784,	POLR2A	-	TFAP2A
RERF-LC-Ad1	chr3	179244703	G	GA	H3K36me3	КСММВЗ,	NM_171829,	-	-	-
RERF-LC-Ad1	chr6	26197055	G	A	H3K4me3,PolII,H3K9/ 14ac,H3K27ac	HIST1H3D,	NM_003530,	-	МҮВ	-
RERF-LC-Ad1	chr6	26199147	G	C	H3K9/14ac	HIST1H3D,	NM_003530,	-	-	-
RERF-LC-Ad1	chr6	158031620	G	GTC	H3K4me1	SYNJ2,	NM_001178088,	SIN3A, SP1, NR3C1, TCF12, FOSL2	-	-
RERF-LC-Ad2	chr1	17303761	С	CTCCTCT GAG	H3K4me1	PADI4,	NM_012387,	-	-	-
RERF-LC-Ad2	chr11	308885	G	GC	H3K4me1	IFITM2,	NM_006435,	-	-	LFA1
RERF-LC-Ad2	chr15	89785543	A	AAC	H3K27ac	ANPEP,	NM 001150,	NR3C1	-	-
RERF-LC-Ad2	chr16	81096914	G	С	H3K4me1	GCSH,	NM 004483,	EHMT2	KID3	-
RERF-LC-Ad2	chr16	81097354	G	С	H3K4me1	GCSH,	NM 004483,	EHMT2	-	-
RERF-LC-Ad2	chr19	57709211	G	GC	H3K4me3	ZNF154,	NM 001085384,	-	-	-
RERF-LC-Ad2	chr5	150139698	A	AC	H3K4me1	PDGFRB,	NM 002609,	-	-	AML1,PEBP2B
RERF-LC-KJ	chr1	155932383	G	GA	H3K36me3	RXFP4,	NM 181885,	-	SIX1	-
RERF-LC-KJ	chr10	46130177	G	Т	H3K36me3	AGAP7,	NM 001077685,	-	NKX25,RBPJK,ZNF860	BCL6
RERF-LC-KJ	chr19	52602057	G	GAA	H3K9/14ac	ZNF701,	NM 018260,	-	-	BARBIE
RERF-LC-KJ	chr19	53408011	С	Т	H3K36me3	ZNF765,	NM 001040185,	-	-	-
RERF-LC-MS	chr1	182586389	С	A	H3K4me3	RNASEL,	NM 021133,	-	LEF1,TCF3	HELIOSA
RERF-LC-OK	chr11	68772512	Т	TG	H3K36me3	MTL5,	NM_001039656,NM_0049 23,	-	RFX	-
RERF-LC-OK	chr15	89781340	С	G	H3K27ac	MESP1,	NM_018670,	-	-	CETS1,ELF1,ELF5,ELK1,ESE1,E S1,ETS,PEA3,PU1,SPI1,SPIB,SF C
RERF-LC-OK	chr5	96884962	Т	TG	H3K36me3	ERAP2,	NM_022350,NM_0011301 40,	-	-	-
RERF-LC-OK	chr5	96895154	Т	TA	H3K36me3	ERAP2,	NM_022350,NM_0011301 40,	-	-	-
RERF-LC-OK	chr5	149446233	G	GT	Polli	PCYOX1L,	NM_024028,	SP1, POLR2A, NR3C1, FOXA1	-	-
RERF-LC-OK	chr7	151345978	G	Т	H3K4me1	NUB1,	NM_001243351,NM_0161 18,	-	-	-
RERF-LC-OK	chr9	131396736	Т	С	H3K4me1	PRRC2B,	NM_013318,	-	-	EGR3,KID3
RERF-LC-OK	chr9	131528708	G	A	H3K36me3	UCK1,	NM_001135954,NM_0314 32,	-	-	-
RERF-LC-OK	chrX	51743749	С	Т	H3K4me3	GSPT2,	NM_018094,	PHF8,GABPA	ZBED6	-
VMRC-LCD	chr11	94768533	С	Т	H3K4me3	AMOTL1,	NM_130847,	-	-	RELA
VMRC-LCD	chr12	94149889	G	A	H3K27ac	PLXNC1,	NM_005761,	-	KLF17,LKLF	-
VMRC-LCD	chr15	74853540	С	G	H3K36me3	ULK3,	NM_001099436,	-	BEN	GKLF
VMRC-LCD	chr7	73827962	Т	TTAGTCA CTTCTG	Polli,H3K27ac	WBSCR27,	NM_152559,	POLR2A,NR3C1,MYC,FOSL2	-	AP1FJ,AP1

To illustrate functional interpretations, a putative regulatory mutation in the *ZDBF2* region in the H2126 cell line is shown in Figure 16. The regulatory mutation C>T at chr2:206274726 exhibited a ChIP-seq imbalance in RNA-polymerase II and H3K9/14ac assays. This SNV was phased to the coding variant A>G at chr2:206305007 for which RNA-seq imbalance expression was also found.

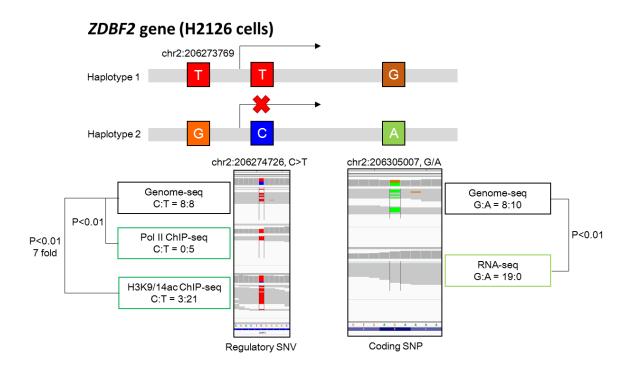
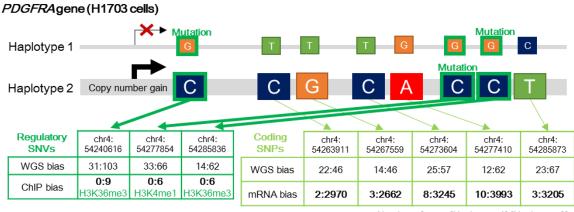



Figure 16 Effects of Regulatory Mutations on ZDBF2 in H2126 Cells. (Top) Two haplotypes are made from phasing. (Bottom) Allele imbalances reveal that only haplotype1 (T-T-G) is active.

I next examined whether the dysregulation caused by these putative regulatory mutations directly affect oncogenes. *PDGFRA* is a known mutation and amplification target in lung cancer. In H1703 cells, both gene amplification and regulatory mutations in *PDGFRA* were found (Figure 17). Phasing analysis suggested that the variants found were organized into two haplotypes: (1) G-T-T-T-G-G-G-C and (2) C-C-G-C-A-C-C-T. WGS variant frequencies also suggested gene amplification of the (2) allele. In agreement with copy number changes, allelic imbalance analysis revealed a heavy bias towards (2) in both ChIP and RNA-seq, suggesting regulatory effects of the mutations acting on the (2) allele. These two observations suggested regulatory mutations with gain of function in this gene.

Number of tags; [Haplotype 1]:[Haplotype 2]

Figure 17 Gene Amplifications and Regulatory Mutation in PDGFRA in the H1703 Cell Line. (Top) Two haplotypes are made from phasing with both regulatory and coding variants identified. (Bottom, arrows) WGS biases reveal copy number gain in haplotype 2; ChIP-seq and RNA-seq biases also reveal mono-allele activation of haplotype 2.

To further investigate the 137 regulatory mutations for potential biological functions, I cross-referenced them with the FANTOM CAT database (v3 robust release). Thirty-one of the mutations overlapped with lncRNA-associated regions, and 5 overlapped with FANTOM5 permissive enhancer regions (Table 15).

CELL LINE	CHROMOSOME	POSITION (UCSC HG38)	REFERENCE	ALTERNATIVE	HISTONE MARKS
A427	chr6	3260207	С	СТТ	H3K4me3
A427	chr3	149375499	Т	С	H3K27Ac, H3K4me3, H3K914Ac
A427	chr12	54016223	С	CCCCTAG	H3K4me1
A549	chr16	25257835	С	CG	H3K4me3
A549	chr17	80355364	G	Т	H3K36me3
A549	chr17	80355526	G	А	H3K36me3
ABC-1	chr10	27100911	С	CA	H3K914Ac
ABC-1	chr1	226679940	С	CG	H3K27Ac
H1299	chr1	66301190	А	AT	H3K27Ac
H1299	chr14	23953737	А	ACT	H3K27Ac
H1648	chr12	114684071	G	GGAGA	H3K27Ac
H1648	chr2	131528390	G	А	H3K4me3
H1703	chr7	100627013	С	CTG	H3K4me1
H1703	chr11	78040678	Т	ТА	H3K27Ac
H2126	chr1	66265697	Т	TGTGAA	H3K4me1

Table 15 Regulatory Mutations in the FANTOM CAT database

H2126chr1953881131CCAGH3K27me3H2126chr2206274726CTH3K914Ac, Pol IIH228chr127935147TTGPol IIH228chr1750533812CGTH3K4me1H2347chr1162557963TTGH3K36me3H2347chr228399927CCTH3K4me3H2347chr22629918GGAH3K27Ac, H3K4me3, H3K914AcH2347chr22629918GCH3K27Ac, H3K4me3, H3K914AcH2347chr220565417GCH3K27Ac, H3K4me3, H3K914AcLC2ADchr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626199147GCH3K314AcRERF-LC- AD1chr1879395018CGH3K4me3RERF-LC- AD1chr1953408017CTH3K36me3RERF-LC- AD2chr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017CTH3K36me3RERF-LC-KDchr1953408017C </th <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>					-		
H228ch127935147TTGPol IIH228ch1750533812CCTH3K4me1H2347ch1162557963TTGH3K36me3H2347chr628399927CCTH3K4me3H2347chr626299918GGAH3K14me3H2347chr226299918GGAH3K27Ac, H3K4me3, H3K914AcI-18chr12105084230TTTTTGH3K27Ac, H3K4me3, H3K914AcIC2ADchr1920565417GCH3K27Ac, H3K4me3, H3K914AcRERF-I-C AD1chr626197055GAH3K27Ac, H3K4me3, H3K914AcRERF-I-C AD1chr626197055GAH3K27Ac, H3K4me3, H3K914AcRERF-I-C AD1chr626199147GCH3K4me3RERF-I-C AD1chr1879395018GGH3K4me3RERF-I-C AD1chr195940801TTCAH3K4me1RERF-I-C AD1chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3RERF-I-C-K AD2chr195340801CTH3K36me3 <th>H2126</th> <th>chr19</th> <th>53881131</th> <th></th> <th>-</th> <th></th> <th>H3K27me3</th>	H2126	chr19	53881131		-		H3K27me3
H228ch1750533812CCTH3K4me1H2347ch1162557963TTGH3K36me3H2347chr62839997CCTH3K4me3H2347chr226299918GGAH3K914AcH2347chr12105084230TTTTTGH3K27Ac, H3K4me3, H3K914AcI-18chr12105084230GCH3K27Ac, H3K4me3, H3K914AcIC2ADchr7122303951GCH3K27Ac, H3K4me3, H3K914AcRERF-IC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626197055GAH3K914AcRERF-IC- AD1chr1879395018GCH3K4me3RERF-IC- AD1chr1953408011TTCAH3K4me1RERF-IC- AD2chr1953408011CTH3K36me3RERF-IC- AD1chr1953408011CTH3K36me3RERF-IC- AD1chr1953408011CTH3K36me3RERF-IC- AD2chr1953408011CTH3K36me3RERF-IC- AD2chr19S3408011CTH3K36me3RERF-IC- AD1chr19S3408011CTH3K36me3RERF-IC- AD1chr19S3408011CTH3K36me3RERF-IC- AD2chr19S3408011CTH3K36me3RERF-IC- AD2chr19S3408011CTH3K36me3 </th <th>H2126</th> <th>chr2</th> <th>206274726</th> <th></th> <th>С</th> <th>Т</th> <th>H3K914Ac, Pol II</th>	H2126	chr2	206274726		С	Т	H3K914Ac, Pol II
H2347chr1162557963TTGH3K36me3H2347chr628399927CCTH3K4me3H2347chr22629918GGAH3K914AcII-18chr12105084230TTTTGH3K27Ac, H3K4me3, H3K914AcIC2ADchr7122303951GCH3K27Ac, H3K4me3, H3K914AcRERF-IC- AD1chr62619705GGCAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626199147GAH3K91AcRERF-IC- AD1chr626199147GCH3K91AcRERF-IC- AD1chr626199147GGH3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626199147GGH3K4me3RERF-IC- AD1chr626199147GGH3K4me3RERF-IC- AD1chr1879395018CGH3K4me3RERF-IC- AD1chr195340801CGH3K4me1RERF-IC- AD1chr195340801CTH3K36me3RERF-IC- AD2chr195340801CTH3K36me3RERF-IC- AD1chr195340801CTH3K36me3RERF-IC- AD1chr195340801CTH3K36me3RERF-IC- AD2chr195340801CTH3K36me3RERF-IC- AD2chr195340801CTH3K36me3RERF-IC- AD2chr195340801CT	H2228	chr1	27935147		Т	TG	Pol II
H2347chr628399927CCTH3K4me3H2347chr226299918GGAH3K914AcII-18chr12105084230TTTTGH3K27Ac, H3K4me3, H3K914AcIC2ADchr7122303951GCH3K27AcRERF-IC- AD1chr1920565417GGCAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626199147GCH3K914AcRERF-IC- AD1chr1879395018CGH3K4me3RERF-IC- AD1chr1069222380TTCAH3K4me1RERF-IC- AD1chr1953408011CTH3K36me3RERF-IC- AD1chr1953408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD1chr19S3408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD2chr19S3408011CTH3t36me3RERF-IC- AD2Chr19S3408011CTH3t36me3RERF-IC- AD2Chr19S3408011	H2228	chr17	50533812		С	СТ	H3K4me1
H2347chr226299918GGAH3K914AcII-18chr12105084230TTTTTGH3K27Ac, H3K4me3, H3K914AcLC2ADchr7122303951GCH3K27Ac, H3K4me3, H3K914AcRERF-LC- AD1chr1920565417GGCAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626199147GCH3K914AcRERF-LC- AD1chr1879395018CGH3K4me3RERF-LC- AD1chr1069222380TTCAH3K4me1RERF-LC- AD2chr5150139698AACH3K4me1RERF-LC- AD2chr5150139698Refer enceACTH3K36me3RERF-LC- AD2chr5905ition (UCS chg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182; H3L228H2228chr1673070710GGTCPol IIchr1:226867580-226868182;	H2347	chr11	62557963		Т	TG	H3K36me3
II-18chr12105084230TTTTTGH3K27Ac, H3K4me3, H3K914AcIC2ADchr7122303951GCH3K27AcRERF-IC- AD1chr1920565417GGCAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626199147GCH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-IC- AD1chr626199147GCH3K3914Ac, Pol IIRERF-IC- AD1chr1879395018CGH3K4me3RERF-IC- AD1chr1069222380TTCAH3K4me1RERF-IC- AD2chr105340801CTH3K36me3RERF-IC- AD2chr195340801CTH3K30me3RERF-IC- AD2chr195340801CTH3K30me3RERF-IC- AD2chr195340801CTFANTOM5 enhancer regions MarksRERF-IC- AD2chr1226679940CCGH3K27AcABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182; H3U23H2228chr1673070710GGCIPol IIchr1:73104505-73104770;	H2347	chr6	28399927		С	СТ	H3K4me3
LC2ADchr7122303951GCH3K27AcRERF-LC- AD1chr1920565417GGCAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626199147GCH3K914AcRERF-LC- AD1chr1879395018CGH3K4me3RERF-LC- AD1chr1069222380TTCAH3K4me1RERF-LC- AD1chr1953408011CTH3K36me3RERF-LC- AD1chr1953408011CTH3K36me3RERF-LC- AD2chr19S03tion (UCSCh38)Refer eAlternativ eHistone MarksFANTOM5 enhancer regionsRERF-LC- AD2chr1226679940CCGH3K27AcChr1:226867580-226868182;RERF-LC- AD2chr1673070710GCGPol IIchr1:226867580-226868182;	H2347	chr2	26299918		G	GA	H3K914Ac
RERF-LC- AD1chr1920565417GGCAH3K27AcRERF-LC- AD1chr626197055GAH3K27Ac, H3K4me3, H3K914Ac, Pol IIRERF-LC- AD1chr626199147GCH3K914AcRERF-LC- AD1chr1879395018CGH3K4me3RERF-LC- AD1chr1069222380TTCAH3K4me1RERF-LC- AD1chr5150139698AACH3K4me1RERF-LC-KJchr1953408011CTH3K36me3RERF-LC-KJchr10592100Refer enerAlternativ eHistone MarksFANTOM5 enhancer regions for 1226867580-226868182;ABC-1chr10226679940CCGH3K27Acchr1:226867580-226868182;H2228chr1673070710GGTCPol IIchr1:226867580-226868182;	II-18	chr12	105084230		Т	TTTTG	H3K27Ac, H3K4me3, H3K914Ac
AD1Image: constraint of the second secon	LC2AD	chr7	122303951		G	С	H3K27Ac
AD1Pol IIRERF-LC- AD1Chr626199147GCH3K914AcRERF-LC- AD1Chr1879395018CGH3K4me3RERF-LC- AD1Chr1069222380TTCAH3K4me1RERF-LC- AD1Chr50150139698AACH3K4me1RERF-LC- AD2Chr1953408011CTH3K36me3RERF-LC-KIChr1953408011CTH3K36me3RERF-LC-KIChromosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1Chr1226679940CCGH3K27AcChr1:226867580-226868182; FOI IIGTIH2228Chr1673070710GGTCPol IIChr16:73104505-73104770;	-	chr19	20565417		G	GCA	НЗК27Ас
AD1AD1RERF-LC- AD1Chr1879395018CGH3K4me3RERF-LC- AD1Chr10G9222380TTCAH3K4me1RERF-LC- AD2Chr5150139698AACH3K4me1RERF-LC- AD2Chr1953408011CTH3K36me3RERF-LC-KJChr1953408011CTH3K36me3RERF-LC-KJChr0mosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1Chr1226679940CCGH3K27AcChr1:226867580-22686182; H3124505-73104770;H2228Chr1673070710GGTCPol IIChr16:73104505-73104770;	-	chr6	26197055		G	A	
AD1 RERF-LC- AD1Chr1069222380TTCAH3K4me1RERF-LC- AD2chr5150139698AACH3K4me1RERF-LC-KJchr1953408011CTH3K36me3CELL LINEChromosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182; chr16:73104505-73104770;	-	chr6	26199147		G	С	НЗК914Ас
AD1AD1RERF-LC- AD2chr5150139698AACH3K4me1RERF-LC-KJchr1953408011CTH3K36me3CELL LINEChromosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182; chr16:73104505-73104770;H2228chr1673070710GGTCPol IIchr16:73104505-73104770;	-	chr18	79395018		С	G	H3K4me3
AD2RERF-LC-KJchr1953408011CTH3K36me3CELL LINEChromosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182; chr16:73104505-73104770;H2228chr1673070710GGTCPol IIchr16:73104505-73104770;	-	chr10	69222380		Т	TCA	H3K4me1
CELL LINEChromosomePosition (UCSC hg38)Refer enceAlternativ eHistone MarksFANTOM5 enhancer regions MarksABC-1chr1226679940CCGH3K27Acchr1:226867580-226868182;H2228chr1673070710GGTCPol IIchr16:73104505-73104770;		chr5	150139698		А	AC	H3K4me1
(UCSC hg38) ence e Marks ABC-1 chr1 226679940 C CG H3K27Ac chr1:226867580-226868182; H2228 chr16 73070710 G GTC Pol II chr16:73104505-73104770;	RERF-LC-KJ	chr19	53408011		С	Т	H3K36me3
H2228 chr16 73070710 G GTC Pol II chr16:73104505-73104770;	CELL LINE	Chromosome					FANTOM5 enhancer regions
	ABC-1	chr1	226679940	С	CG	H3K27Ac	chr1:226867580-226868182;
	H2228	chr16	73070710	G	GTC	Pol II	chr16:73104505-73104770;
H2347 chr2 26299918 G GA H3K914Ac chr2:26522632-26522929;	H2347	chr2	26299918	G	GA	H3K914Ac	chr2:26522632-26522929;
RERF-LC- chr6 158031620 G GTC H3K4me1 chr6:158452388-158452885; AD1	-	chr6	158031620	G	GTC	H3K4me1	chr6:158452388-158452885;
RERF-LC- chr15 89781340 C G H3K27Ac chr15:90324413-90324614; OK OK </th <th>-</th> <th>chr15</th> <th>89781340</th> <th>С</th> <th>G</th> <th>H3K27Ac</th> <th>chr15:90324413-90324614;</th>	-	chr15	89781340	С	G	H3K27Ac	chr15:90324413-90324614;

Cis-regulatory mutations causing transcriptional dysregulations

Another indication for functionally relevant regulatory mutations is alterations of sequence motifs, creating and removing transcriptional factor (TF) binding sites or CpG methylation sites.

To characterize the involvement of CpG sites, the locations of the 137 regulatory mutations were referenced with CpG site regions. For transcriptional factor binding sites, data on the anti-TF ChIP-seq in ENCODE for the A549 cell line were referenced. Twenty-nine of the mutations were found within CpG sites, possibly disrupting DNA methylation modifications (Figure 18A). Forty-nine of the regulatory mutations (Figure 18B) were

found to be located within the supposed TF binding sites. For example, the A427 cell line had a mutation in the promoter region of *ZNF594* (C>G; chr17:5191978). According to the TF binding site data in ENCODE, this mutation occurred in the binding site of three functionally important TFs, *POLR2A, TAF1* and *MYC*. The binding consensus sequence of these TFs may be disrupted by this mutation.

To systematically analyze the effect on TF binding sites, disruptions or generations of TF binding motifs within ±10 bp of the regulatory mutations were investigated by using the TRANSFAC database. Eighty-four of the 137 regulatory mutations were predicted, with 24 causing loss of TF binding sites, 40 generating novel TF binding sites and 20 resulting in replacements (Figure 18C, Table 14). Such alterations in TF binding influence downstream transcripts. For example, repressor activity was found in the promoter mutation of the *SLC16A4* gene in the H1650 cell line. This mutation (G>GAA; chr1:110389770) was predicted to generate a novel TF binding site for AP-4. Allele expression analysis suggested that the mutant allele is silenced; thus, it was likely that this novel TF binding site acted as a repressor (Figure 19A). As an example of an activator effect, a regulatory mutation in the *NFATC1* gene in the RERF-LC-Ad1 cell line (C>G; chr18:79395018) was predicted to create a novel TF binding site for ETS family transcriptional factors. Allele expression analysis showed that the mutant allele was fully expressed (Figure 19B). A total of 104 such regulatory mutations were identified.

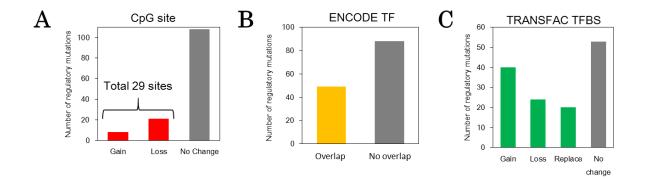


Figure 18 Functional Analysis of Regulatory Mutations. (A) twenty-nine of the mutations overlap with CpG sites. (B) Fortynine fall within TF binding sites. (C) Eighty-four are predicted to disrupt or create TF motifs.

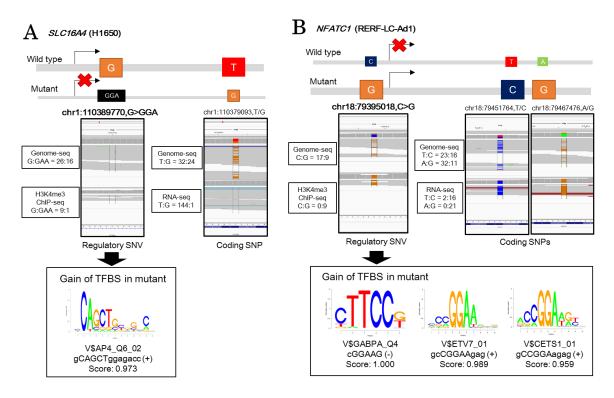


Figure 19 Effects of TFBS Creation. (A) Repressor in SLC16A4 in H1650 cells; (B) Activator in NFATC1 in RERF-LC-Ad1 cells.

To biologically confirm the novel TF binding sites predicted by TRANSFAC, I focused on the *NFATC1* promoter mutation (C>G; chr18:79395018) in RERF-LC-Ad1 cells. The SNV was predicted to create a novel ETS family TF binding site. Using a luciferase assay, I experimentally validated the change in promoter activity of the motifs. I compared the abilities of the mutant motif (GCC<u>G</u>GAA) and the wild-type motif (GCC<u>C</u>GAA) to drive reporter gene expression. The mutant allele exhibited a 3-fold increase in reporter activities compared to the wild-type allele (Figure 20 A, B). To further verify this result, I performed Sanger sequencing of ETS1 ChIP-enriched DNA fragments to compare the affinities of the alleles to ETS1, a major TF in the ETS family. Using 3 primers to target ± 100 bp regions from the mutation (Figure 20A), 4- to 6-fold enrichments in ETS1 binding compared to the *RPS26* gene, a positive control (Figure 20C, D).

NFATC1 is a known transcription factor that plays a major role in the immune response and T-cell activation against cancer cells (Heim et al., 2018). In addition,

NFATC1 has been reported to function as both an oncogene and a tumor suppressor gene in cancer (Mancini & Toker, 2009; Robbs, Cruz, Werneck, Mognol, & Viola, 2008; S. Xu et al., 2018; W. Xu et al., 2016). The important roles of *NFATC1* may be reflected in survival analysis in TCGA-LUAD projects. From a dataset of 506 patients with overall survival data and 401 patients with disease-free survival data, high expression of *NFATC1* was associated with better overall survival (Figure 21A, Kaplan-Meier; p=0.0049) but worse disease-free survival (Figure 21B, Kaplan-Meier; p=0.0003). Further analysis of these observations will be discussed in Chapter II.

From 146 RefSeq transcripts under the influence of regulatory mutations, 31 were found to be significantly associated with survival outcomes in the TCGA-LUAD project (Figure 22). These findings reinforced the importance of genes under aberrant regulation and the notion that mutations in regulatory regions of the genome could play biologically and clinically significant roles in cancer cells.

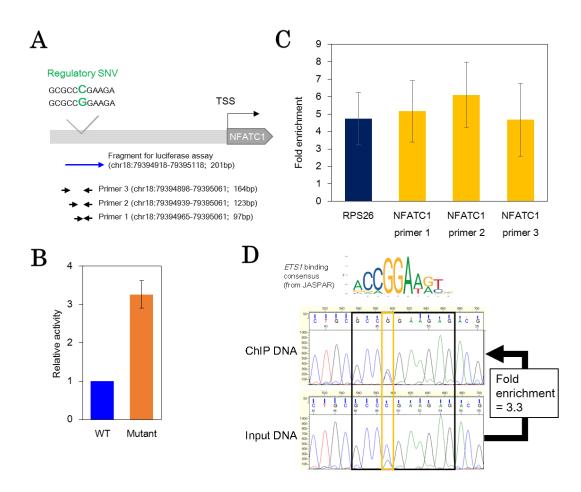
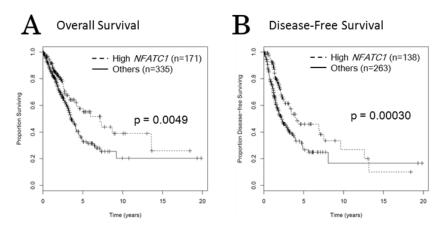
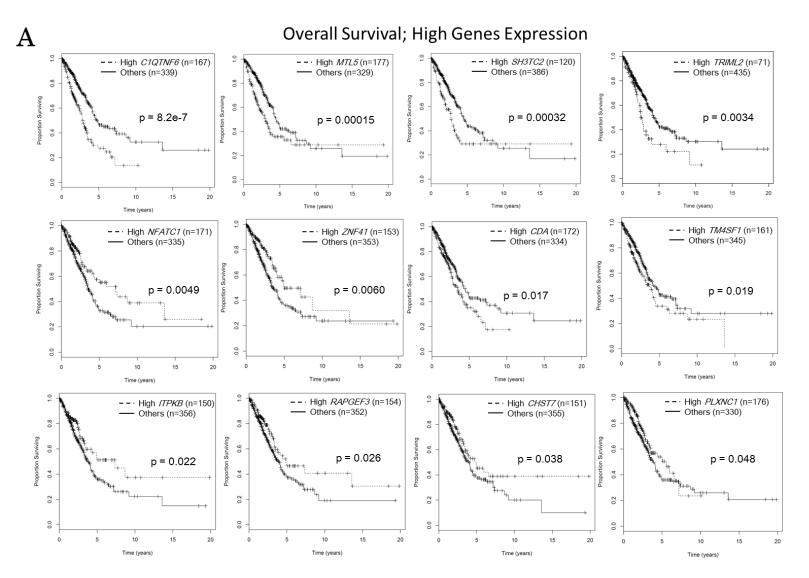
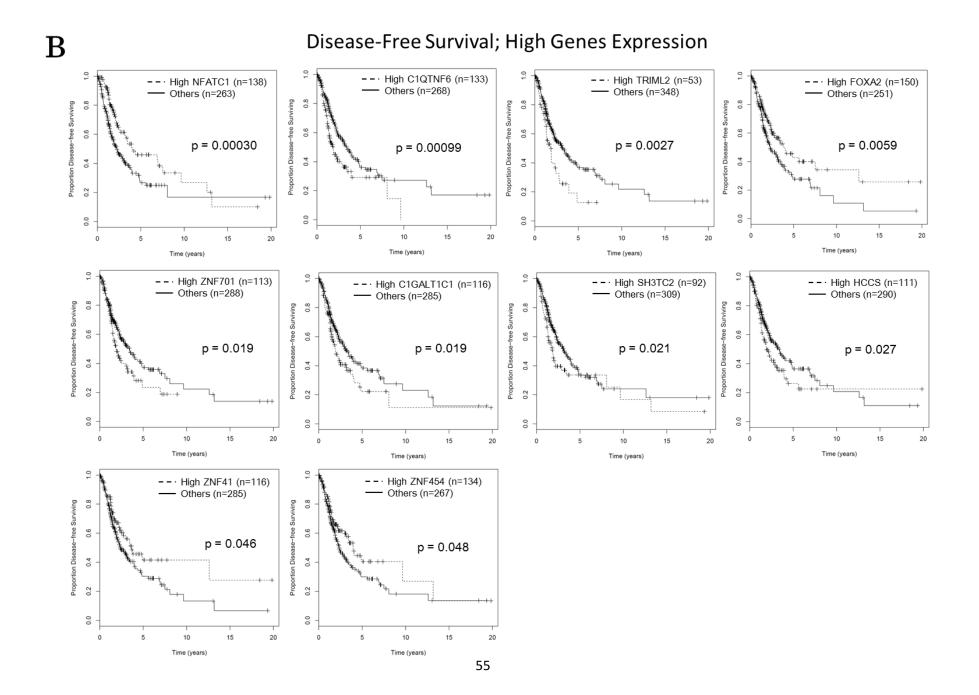
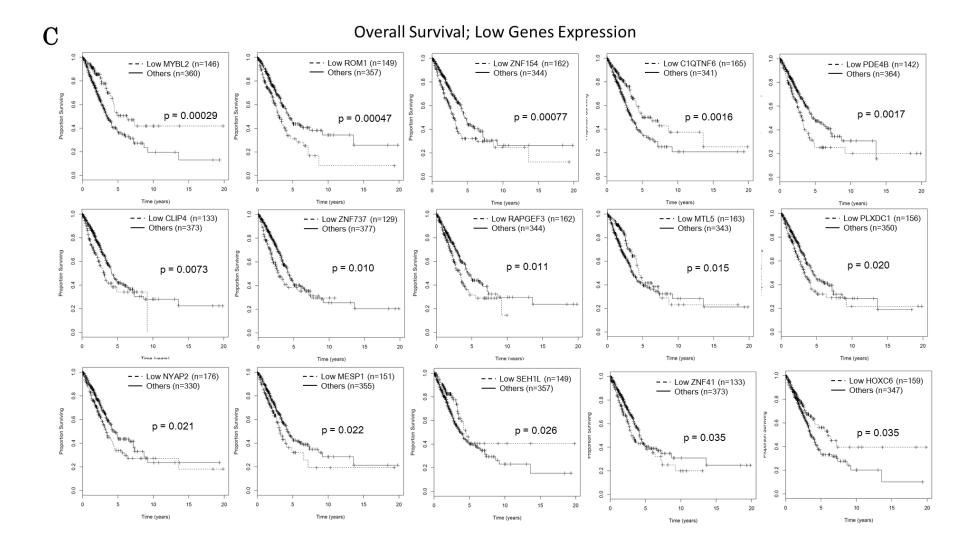


Figure 20 Biological validation of the NFATC1 regulatory mutation. (A) DNA primer and fragments used for validation. (B) Luciferase assay reveal 3 times higher activities for mutant fragment. (C) qPCR of ETS1-ChIP products show comparable enrichments from NFATC1 primers to RPS26 (positive control). (D) Sanger sequencing of ETS1 ChIP-seq products reveal 3 fold enrichments of mutant motifs compare to control

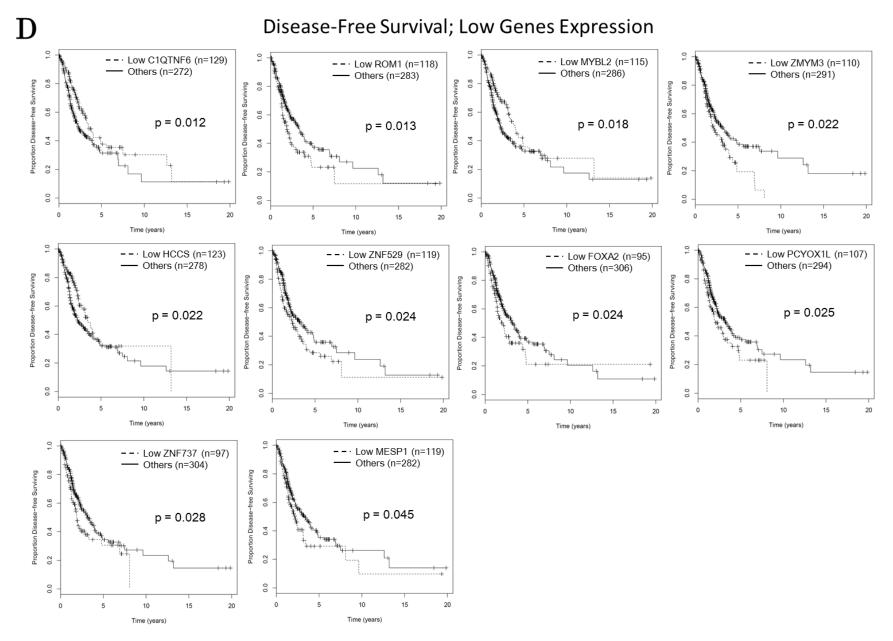

Figure 21 Kaplan-Meier Plot of NFATC1 expression and Patients Survival in TCGA-LUAD. (A) Overall survival. (B) Disease-Free Survival.

Figure 22 Associations of Patient Survival Outcomes with 31 Genes with Regulatory Mutations in TCGA-LUAD. (A) Overall survival with higher expression (12 genes). (B) Overall survival with lower expression (10 genes). (C) Disease free survival with higher expression (15 genes). (D) Disease free survival with lower expression (10 genes).

Discussion

In this chapter, I identified a total of 137 regulatory mutations that potentially have functional consequences in 146 downstream RefSeq transcripts. Various functional aspects of these mutations were explored. In addition, 31 potential involvement sites in lncRNAassociated regions, disruption of 29 CpG sites and 49 TF binding sites were identified. The motif analysis revealed 24 losses of motifs, 40 gains of motifs and 20 replacements. Thirtyone genes were also associated with patient prognosis. Biological and clinical significance sets these regulatory mutations apart from the numerous but not functional "Passenger Mutations" (Vineis, Schatzkin, & Potter, 2010). However, because it is possible that germline variants in the cell lines are not registered in dbSNP database, functional germline variants might be remaining in the final results. Further filtering could be done by crossreferencing with mutation hotspot regions reported in TCGA, however the power of this approach is still limited due to small sample size and focuses on the coding regions. Further analysis with more complete hotspot regions would prove to be interesting in the future. These results were based on the systemic interrogations of multi-omics datasets and long read sequencing results. This approach could be adapted easily with the advent of new technologies and could serve as a stepping stone in further larger and more comprehensive studies in the same direction.

This study has some limitations. The first obvious drawback is the discrepancy between the number of allelic imbalance variants and phased variants. Here, only 137 out of 1,794 SNVs (7.6%) were phased. This was most likely due to lack of coverage by WES plus the regulome bait used in 10x GemCode synthetic long read sequencing. While the bait was designed to widely capture regulatory regions from various cell linages and phenotypes, it was becoming clearer that regulatory elements were organized in a highly tissue specific or sometimes even in a cell type specific manner (Heinz, Romanoski, Benner, & Glass, 2015). This produces a major challenge in designing a single universal bait to capture the entire regulatory landscape.

Moreover, due to the novelty of long read technologies, difficulties in applications were encountered. The 10x GemCode system was originally designed to handle diploid genomes. It was observed that allele phasing regions with CNA lesions were problematic. CNA lesions are prominent in cancer and usually hold important onco- and tumor suppressor genes. Analyzing phasing from 10x GemCode is less useful in cancer settings. Phasing of the whole genome with further developments in overcoming focal and large copy number aberrations should be considered. CNA could be interrogated by MinION sequencers, but their lower accuracy, precision and throughput limit their use in large-scale mutation studies. Further developments in physical long read technologies and usage in tandem with conventional sequencing methods are promising combinations.

During interpretations, annotations had to be done with some prior knowledge of the mutations or the region around the mutations themselves. This included information such as the landscape of TF binding sites and sequence motifs. In this work, only 50 ENCODE ChIP-seq datasets, which account for only 41 types of TFs in one cell line, were utilized. With over 1,600 TFs in human cells (Lambert et al., 2018), these numbers represented only a meager fraction of the TF library. Sequence motif analysis could provide extra clues, but 3D structure, DNA conformation or the expression of TFs could not be considered. The lack of accurate predictions and the need for experimental validations limit analyses on a larger scale. Although 33 out of 137 mutations (24%) were left uncharacterized, these results were considered satisfactory.

I consider the first chapter as a proof of concept study, answering how regulatory mutations could be identified in a systemic manner with multi-omics allele imbalance analysis and haplotype phasing.

Beyond cell lines, the next challenge is to identify and analyze the regulatory actions in the clinical setting. As the cell lines were heavily transformed during repeated rounds of culturing, their current phenotypes were difficult to pinpoint (Y. Liu et al., 2019), which increased the difficulty in interpretation and hindered network-wide level interaction analyses.

59

To address this lack of a systematic in vivo analysis, which is beyond the scope of model cell culture systems, I aimed to conduct a follow-up study on the concept outlined in this chapter. In Chapter II, I shift the focus from a small set of specialized datasets to the more general and large-scale TCGA database.

Chapter II: Pan-cancer Multi-omics Network Analysis in The Cancer Genome Atlas

Introduction

In the previous chapter, I demonstrated that the interactions between regulatory elements and their downstream counterparts could be investigated and elucidated by integrative analysis of multi-omics studies. However, such detailed studies require multiple sample matching specialized assays. To detect interactions at the network scale, large and diverse genotypic information is crucial. TCGA projects publish genotypic information for thousands of donors and include matching RNA-seq and DNA methylation arrays, thus enabling investigations of these 2 omics interactions. Each TCGA project also focuses on distinct cancer origins and morphologies, and this phenotypic information could also directly contribute to network construction and annotation, providing one extra layer in the identification and interpretation of the interactions. In this chapter, I will explore the 2-omics network interactions in the TCGA datasets.

Gene network analysis is a powerful tool that is frequently used in the interpretation and comprehension of vast and sophisticated biological systems. Many tools have been developed to fulfill this crucial role (Delgado & Gómez-Vela, 2019) with many approaches proposed. The most traditional and less computationally demanding is the coexpression network analysis. This approach is relatively cheap and simple, but it has drawbacks in generalizing and imputing the results into different settings. To address these shortcomings, many methods have been developed based on modeling, such as the ordinary differential model, Bayesian probabilistic model and neural network model. However, no single model has demonstrated robustness in large-scale network analysis with potentially multiple modes of regulation mixed in. Without depending on general prior knowledge of the biological system, designing any one model to encompass the entire gene network is unlikely to be successful; thus, I chose the simpler and more flexible coexpression network approach as the starting point.

61

Many software programs have been developed based on coexpression networks, with Weight Gene Co-expression Network Analysis (WGCNA) (Langfelder & Horvath, 2008) being the most widely used. For multi-omics inputs, iCluster (Shen, Olshen, & Ladanyi, 2009) is frequently used. However, there were a number of reasons for each that rendered them unsuitable.

WGCNA is one of the most commonly used software suites for gene module network analysis. It is based on fitting the data into a scale-free network model and using hierarchical clustering based on Pearson correlation to cluster similar genes. Then, the clustering data are classified into modules by its unique tree-cutting algorithm. The modules are then optimized by remerging and re-cutting. While WGCNA could be modified to cluster 2-omics networks, the scale-free network nature of the genes and the methylation sites were not necessarily presented. Moreover, while tree cutting provides a flexible framework, the exact nature of the cut is still set globally. It is not always possible to achieve optimal parameters, especially with 2-omics as inputs. For this reason, integration of 2-omics would be hindered.

iCluster focuses on classifying samples by multi-omics assay. It is based on the joint latent variable model, which aims to classify and cluster the samples using multi-omics data. For iCluster, each omics is modeled separately and treated as a single enclose aspect in sample classification. Finally, the samples are clustered in a joint variance-based model not focusing on the genotypic interactions within. With none of these approaches suitable for my analysis, I decided to devise an approach to uniformly integrate and construct the 2-omics networks.

To start off, I decided to adapt my multi-omics analysis approach to use with the TCGA dataset. This is not straightforward, as accurate allele resolution information is not available due to the lack of "Long Read Sequencing" or phasing information. However, collections of multiple individual genotypes also enable another analysis approach. In the same manner as the allele imbalance expression of a single sample, when viewed across multiple samples, genotypic features that interact with each other should exhibit

62

synchronized expressions across the samples. These interactions could then be linked into networks based on their phenotypic activities. To capture these synchronizations and activities, I based my approach on rank analysis of the expression level in RNA-seq and beta-value in methylation array.

Material and Methods

TCGA projects used in this study

Eight TCGA projects with a total of 4,116 matching RNA-seq (Exp-S) and Methylation Array (Meth-A) donors were retrieved from the ICGC data portal site (<u>https://dcc.icgc.org/releases</u>). The projects were picked based on 2-omics data availability, project sizes and varieties of tumor histology (squamous carcinoma, adenocarcinoma and melanoma, Table 16). Methylation arrays were obtained from reported beta-values of Infinium HumanMethylation450K files.

Project	Aberrations	Total	Donors	Donors with	Donors with	Specimens
		Donors	with EXP-S	Meth-A	Both	with Both
Breast Cancer - Ductal & Iobular USA	BRCA-US	1,093	1,041	1,013	1,012	1,130
Cervical Cancer - Cervical squamous cell carcinoma USA	CESC-US	307	259	243	242	246
Gastric Cancer – Adenocarcinoma USA	STAD-US	443	418	443	415	415
Head And Neck Cancer - Squamous cell carcinoma USA	HNSC-US	528	481	494	480	502
Lung Cancer - Squamous cell carcinoma USA	LUSC-US	502	428	427	424	432
Lung Cancer – Adenocarcinoma USA	LUAD-US	518	478	481	473	496
Colon Cancer – Adenocarcinoma USA	COAD-US	459	428	424	420	464
Skin Cancer - Cutaneous melanoma USA	SKCM-US	470	430	430	427	431
Total		4,320	3,963	3,955	3,893	4,116

Table 16 TCGA projects used to construct 2-omics networks

RNA expression data

mRNA expression levels were calculated from the reported RSEM value of each gene in TCGA level 3 data. Missing genes across the different projects were treated as genes with 0 expression. Genes with an average RSEM of less than 10⁻⁶ were removed with the intention of removing missing data.

Methylation Level

A total of 12,835 CpG methylation sites in Infinium HumanMethylation450K chips were selected based on site locations within ± 10 kb of the TSS of any of the transcripts

annotated by Illumina. TSS positions were retrieved from the KERO database using the UCSC hg38 human genome reference (<u>http://kero.hgc.jp/</u>). Beta values were viewed as continuous values representing the fraction of methylated alleles or chances of finding methylated alleles without considering actual allele configurations.

Rank covariance-based distance

The RSEM and beta-values for 15,666 genes and 12,835 CpG sites were combined to create a 2-omics matrix with 28,501 features with 4,116 sample elements. For each feature row, the measurement of each sample was then ranked from lowest (rank 1) to highest (rank 4,116), and this matrix was then treated as a 2-omics uniform measurement system.

For each feature pair, distances between the pairs were based on treating variances as the best possible achievable covariance (variance of x is the covariance of x against itself). Covariance represent how well the rank permutation between the pairs aligned. The distance between the two measures represents how far away the pair alignment is from the perfect permutation (and also represents a portion of unexplained variances between the pair). To normalize for ties, the distances between each pairing are then the difference of variance and covariance normalized by the variance.

$$Distance(x, y) = \frac{Variance(x) * Variance(y) - Covariance(x, y)^{2}}{Variance(x) * Variance(y)} \qquad \dots \dots \dots (1)$$

Distance(x, y) = $1 - Spearman R^2$ (= Unexplained Variances of Ranks)

Clustering of synchronized features into units

Features with either similar or opposite rank permutations were clustered together into a tree structure based on a rank correlation-based distance matrix using hierarchical clustering with the unweighted pair group method with arithmetic mean (UPGMA) algorithm (Figure 23A, B).

Functional units, defined as groups of features with synchronized changes in their measurements, were picked up by cutting the UPGMA tree into groups of features that

every pairwise distance determined to come from the same distributions using the ksamples Anderson-Darling test. At each linkage, distances between groups of features that were in the left and right leaves were checked for heterogeneities in 3 groups of distances, represented by areas under the curve (AUC) between cumulative distribution function (CDF) in 3-sample Anderson-Darling (AD) test. The 3 groups of distances were #1, the internal distances between features in a group in the left leaf; #2, the internal distances between features of a group in the right leaf; and #3, every pairwise distance between features in the left and right leaves. Pairing with a smaller AUC, which resulted in a p-value greater than 0.01, was treated as a homogenized unit (Figure 23C). Pairing with a sufficiently large AUC between the CDFs that resulted in a p-value less than 0.01 was considered heterogeneous in origin and treated as a separated unit (Figure 23D), and both were carried over to the next level of linkage in the same arm.

If the left and/or right leaves contained more than 1 cluster, every pairing between the left and right would be checked and prioritized based on a smaller AUC (larger p-value) pairing, and if one of the left or right leaves contained only 1 feature, then the Anderson-Darling test would only be done with 2 applicable groups, but if both the left and right leaves contained only 1 feature, both would be considered homogeneous by default.

Functional Unit Phenotype Activity Analysis

Phenotype activities of each functional unit were determined from the contribution of each donor (phenotype) rank to that unit. Because functional units were constructed from homogenizations of the coefficient of determination (R^2) and R^2 itself could be expressed by a portion of covariances over variances, each donor's term during covariance calculation could be viewed as that donor's contribution to the correlation. By averaging the contributions in every pair of correlations in the unit, each donor contribution to the unit could be determined (Figure 24). Consistently high or low ranking donors in the unit would produce high donor contributions, and thus donor contributions would align with extreme donors, representing phenotype activities. To account for the overall correlation (R^2), the

66

donor contributions were viewed as vectors for each unit, with the vector size representing the overall correlation in that unit.

Linking units with similar phenotypes activities into networks

Units with similar phenotype activities were linked into networks based on an angular distance matrix derived from donor contribution vectors by hierarchical clustering with the UPGMA algorithm and Anderson-Darling test (p<0.01) as tree cutting methods as described earlier. The final results were the networks of units with similar donor contributions and thus similar extremes and phenotype activities.

An angular distance matrix was constructed by calculating every pairwise unit angular distance between the sample contribution vectors as follows:

$$cosine \ similarity(x, y) = \frac{Donor \ Contribution_x * Donor \ Contribution_y}{\|Donor \ Contribution_x\| * \|Donor \ Contribution_y\|}$$

angular distance(x, y) =
$$\frac{\cos^{-1}(cosine \ similarity(x, y))}{\pi}$$

By using angular distance, the influences of the unit overall correlation (R^2 , vector magnitude) in each vector were normalized, enabling comparisons of donor contributions in different units (vector direction).

Database cross referencing

Networks were cross referenced with MSigDB gene sets (Liberzon et al., 2011) for characterizations (Accessed October 2019,

<u>http://software.broadinstitute.org/gsea/msigdb/index.jsp</u>). Collections of hallmark gene sets (H), curated gene sets (C2), computational gene sets (C4), GO gene sets (C5) and oncogenic gene sets (C6) were used. For each network, gene sets in each collection were checked for overrepresentation in a 2×2 contingency table with Fisher's exact test and FDR < 0.05 by the Benjamini-Hochberg procedure. Individual manual curation of each network was then performed by using gene sets and correlation strength as guides.

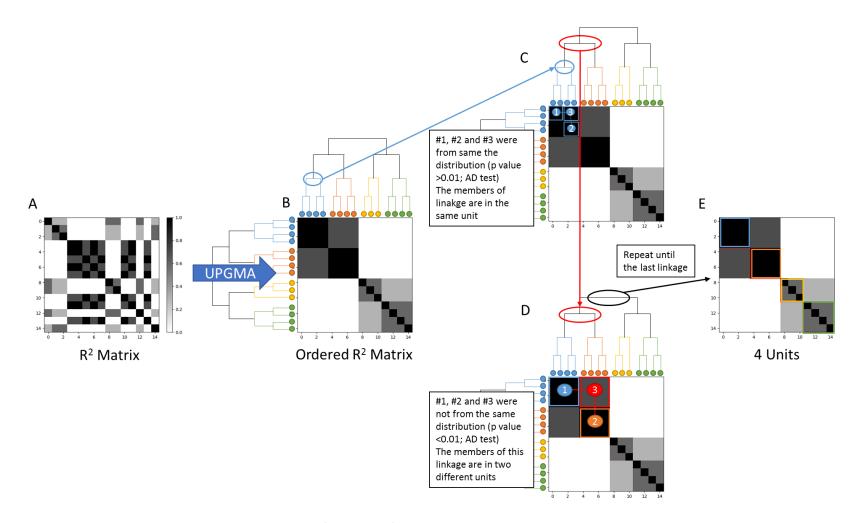


Figure 23 2-omics Clustering Methods. (A) Pre-cluster Example R² matrix. (B) R² matrix after clustering with UPGMA. (C) Linkages with left, right and between distances from the same distribution (k-sample Anderson-Darling test; p>0.01) are merged. (D) Linkages with left, right and between distances from different distribution (k-sample Anderson-Darling test; p>0.01) are merged. (E) Final grouping is retrieved at the last linkage.

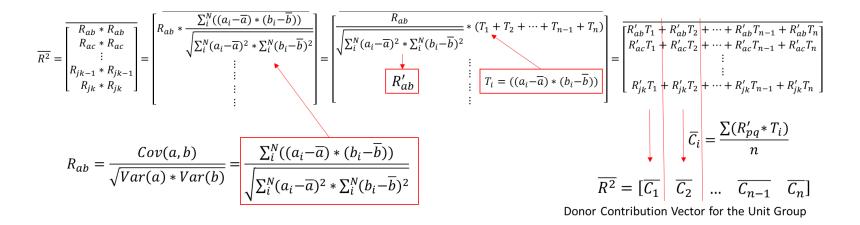


Figure 24 Single donor contribution in the unit group calculation. (Leftmost) Average R² is used as surrogate for each unit correlation strength. (Bottom left) Spearman R could be viewed as fraction between covariance and variances of ranks. (Middles) Substitutions of covariance calculation yield connection between each feature ranks and the average R². (Rightmost) Each feature fractions are combined to make donor contribution vector for each unit.

Results

Genes, methylation sites and phenotypes selected for networking

The RNA-seq (EXP-S) and methylation array (Meth-A) data files of 8 TCGA projects were retrieved from ICGC data portal sites. A total of 4,116 donors with both matching RNA-seq and methylation array data were selected. The cancer phenotypes included squamous cell carcinomas, adenocarcinomas from various origins and skin melanoma.

Gene expression and DNA methylation information from all 4,116 donors were then integrated into a single dataset. Missing values were treated as zero. Features with average expression lower than 10^{-6} were removed. A total of 15,666 genes were used. For the methylation data in the Infinium HumanMethylation450K chip, 12,835 CpG sites were selected based on their proximities within ±10 kb of annotated transcript TSSs.

Clustering of 2-omics feature units

I aimed to group the genes and CpG sites into functional units of synchronized features (Figure 25A) both with the same and opposite expression. The lack of modeling or assumptions of in rank analysis enabled the uniformity of genes and CpG sites in a single step (Figure 25B). Moreover, phenotype activities of each unit could be easily retrieved by looking at the phenotypes with extreme ranks (Figure 25C). Ranking also limited artifacts, such as technical noise or batch effects in the input, but no further attempt at removing noises or batch effects was made. This approach could be viewed as uniform coexpression rank analysis of a multi-omics dataset.

For each feature in both omics, measurements for each donor were ranked from the lowest (1) to the highest values (4,116). This resulted in the uniformly ranked 28,501 features in the 4,116 donor matrix. I designed and conducted the nonparametric analysis in every step from the input integration, clustering and unit identifications by distribution-based tree cutting (see Material and Methods for details).

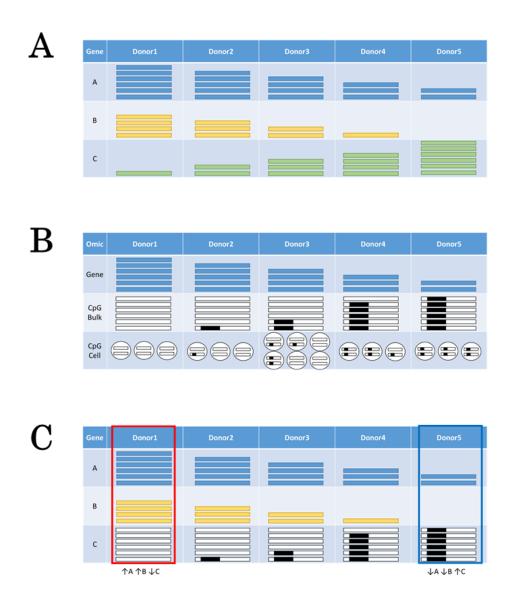


Figure 25 Approach to Construct a 2-Omics Network in TCGA; (A) an example unit of 3 genes. A,B and C's changes in expression synchronize across the donors, thus presumed to be working together; (B) genes and CpG sites are unified by rank analysis; (C) an example unit of 2 genes and 1 CpG site and the usage of extreme phenotypes as annotators (Donor1, Donor5).

To look for the units, UPGMA hierarchical clustering of the 2-omics ranked matrix was conducted based on the rank variance-covariance as distance metrics (see Material and Methods for details). A Spearman correlation (R²) matrix was used to visualize the clustering (Figure 26A pre-cluster; Figure 26B post-cluster). In total, 28,501 features were clustered into 4,358 units; 2,315 units were purely genes, 2,010 units were purely CpG

sites, and 33 units were mixes. Each cluster had an average of 6.5 features. The correlations in these units were determined to be homogenized (Figure 26C-E, areas are outlined by red lines). These units were viewed as building blocks of biological interactions.

For instance, glycolysis is a ubiquitous and crucial energy production pathway. A unit group containing *GAPDH* (Figure 26E, arrow) also contained 6 genes important in glycolysis (Figure 27A). High degrees of positive rank correlations were observed in every gene (Figure 27B). All of these genes encode enzymes involved in glycolysis, which glucose-6-phosphate (glucose) or dihydroxyacetone-P (triglyceride) is converted to both pyruvate (aerobic terminal) and lactate (anaerobic glycolysis terminal). These observations may indicate that cancer cells make use of anaerobic glycolysis, producing lactate from pyruvate by lactate dehydrogenase enzyme (encoded by *LDHA*) even in abundance of oxygen, termed the "Warburg effect" (Liberti & Locasale, 2016).

To further demonstrate the presence of regulatory actions, I focused on a unit group containing the *NKX2-1* gene (Figure 26C, arrow; Figure 28A), which is a transcriptional factor. *NKX2-1* is known to play a central role in various tissues, including lung alveolar type II development and is necessary for surfactant production (Minoo, 2000). This unit was found to contain several genes encoding surfactant-related proteins. Their expression ranks were strongly correlated and significantly higher in lung tissues than in other tissues (average rank 3592 vs 1612; p-value \approx 0, t test of ranks; Figure 28 B-E).

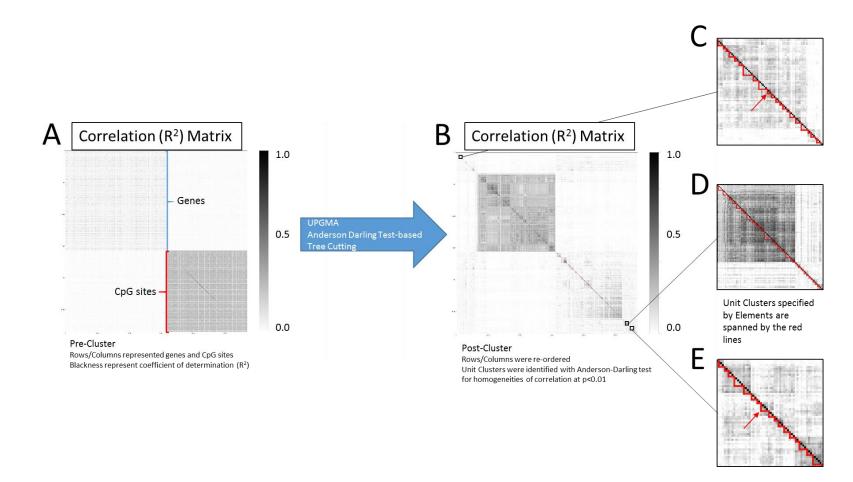


Figure 26 Correlation (R^2) Matrix of Unit Clusters; (A) Pre-cluster R^2 matrix. Both row and column represent both genes and CpG sites. Dots represent R^2 of each row/column pair. (B) Post-unit clustering R^2 matrix. Clustering are done with UPGMA and Tree Cutting are done with Anderson-Darling test (p<0.01). (C-E) Close up of R^2 inside example units (areas under red lines). (C, arrow) NKX2-1 lung surfactant unit. (E, arrow) GAPDH glycolysis unit.

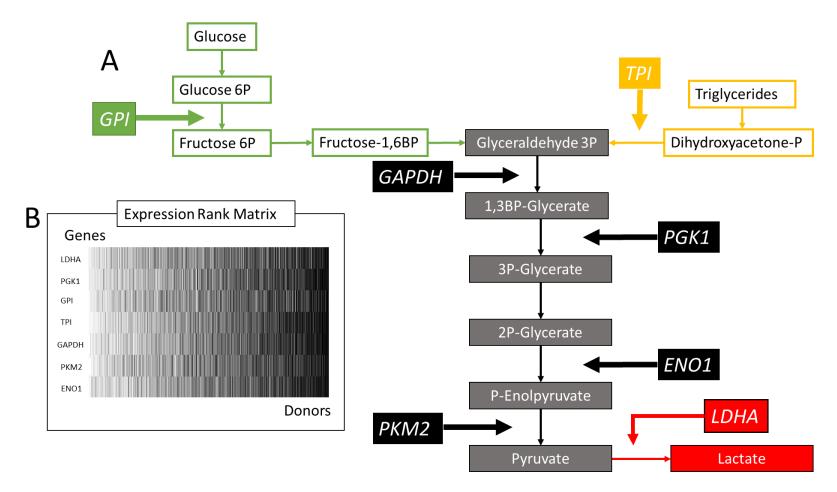


Figure 27 Glycolysis pathway captured by the GAPDH unit. (A) Every genes encode enzymes related to glycolysis pathway. (B) Rank synchronization of the genes.

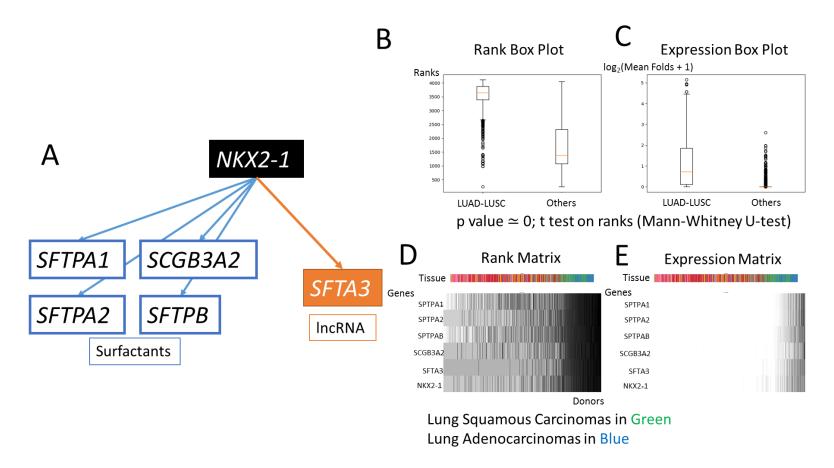


Figure 28 Regulation of surfactant genes by NKX2-1. (A) Genes in surfactant production are captured. (B,C) Higher expression of this unit genes in lung tissue (LUAD-LUSC) by (B) rank and (C) expression in log scale. (D,E) Genes' (D) rank and (E) RSEM synchronization.

Average pairwise R^2 values were used as surrogates for the degree of synchronization in each unit. Strongly synchronized units with a high average R^2 represented units with uniform biological interactions. On the other hand, weakly synchronized units with low average R^2 represented units of less biological significance. Some artifacts or network noise may be included among the latter units.

To address the concern with the less correlated units, I examined the degree of inherently existing correlations to estimate the expected average R^2 . I employed Monte Carlo simulation analysis with 100,000,000 combinations using the same unit size distribution (Figure 29A) as the original clustering. The random combinations produced an average strength of the correlations with the average R^2 value of 0.06 (Max: 0.56, Min: 3.6) $\times 10^{-6}$) (Figure 29D). This suggests that random combinations with high correlations should be rare and occur only at a limited frequency in smaller units (Figure 29E). This random noise was compared with the obtained units, which produced an average R^2 of 0.44 (Max: 1, Min: 0.015) (Figure 29B) and with different distributions (p value $\simeq 0$, KS test). Nevertheless, stronger correlations were found in smaller units (Figure 29C), albeit with different distributions and intensities (Figure 29B). The weaker average R^2 in nonrandom larger units (Figure 29C) might be because highly specialized gene complexes tended to form smaller units compared to the more generalized genes. For the latter, the 1-to-1 correlations were weaker, lowering the average R^2 . Although I am fully aware of this drawback, I had to leave it to be resolved in future research, since no single solution has been shown to handle a large-scale system and it did not hinder the interpretation of the detected units.

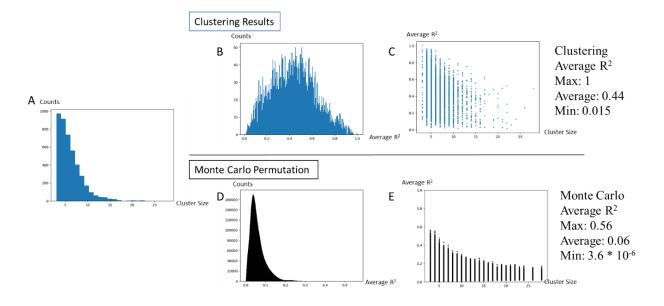


Figure 29 Cluster strength compared to Monte Carlo simulations. (A) Histogram of unit sizes' distribution; (B) Histogram of unit average R^2 distribution; (C) Scatter plot of relation between unit size and average R^2 ; (D) Simulated average R^2 distribution with (A) distribution; (E) Relation between simulated size and average R^2 .

Individual units, though they could precisely identify basic functional units, could not represent the whole picture of biological systems. As seen in the previous examples, even the simplest systems could not be entirely captured by any single unit. In the *GAPDH* unit, while some part of the metabolic reaction chain could be identified, a wider view related to general energy production or glycolysis was not captured. It was likely that each phenotype regulated and utilized each functional unit separately to serve their various metabolic needs. Each unit may also be under different controls, thereby having varied expressions. A similar narrowed view was also observed for *NKX2-1*. In this case, only the most upstream regulator, the transcriptional factor *NKX2-1*, and the most downstream effectors, the surfactant-related proteins, were represented, omitting everything else inbetween.

Linking Units into Networks with Phenotype Activities

In the covariance and correlation analysis (see Material and Methods for details), the consistently high- and low-ranking donors made big contributions in each unit. High contributions represented high activities (Figure 30B; black dots). Utilizing this view, the units with similar phenotypic identities were networked together (see Material and Methods for details) by angular distance between their donor contribution vectors. Networks of similar donor identities were determined using UPGMA and Anderson-Darling test-based tree cutting in the same manner as previously described (Figures 30C and D; blue lines covering red lines). As a result, the 4,358 units were constructed into 654 networks with an average of 6.66 units per network (Figure 31A) or 43.58 features per cluster (Figure 31B). Twenty-nine networks were found to be mixed networks of both genes and CpG sites.

These networks, however, did not appear as rigid as the more basic unit groups. This was due to the difference in interpretation regarding synchronization and homogeneities of the rank in the expression and phenotype activities. Synchronization of the expression ranks was examined as crucial and direct evidence for grouping features with homogeneous functions and interactions. However, the goal of the networks was to capture interactions between each unit group. This part proved to be difficult since each phenotype could regulate the activities of each unit to suit its needs, independent of the unit-unit interactions. Phenotype activities of each unit, in turn, did not need to be homogenized for the units to have biologically meaningful interactions; in other words, biologically significant interactions could present across networks as well.

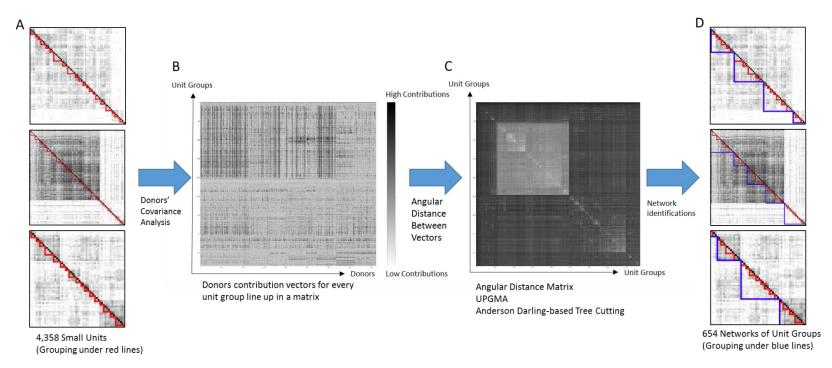


Figure 30 Phenotype-based Network Construction. (A) Close up views of unit correlations; (B) Every units' donor contribution vectors line up in a matrix' (C) Angular distance matrix between each unit vector; (D) Networks of units (under blue lines) construct from UPGMA and Tree Cutting of (C).

In the same manner as functional unit construction, networks with homogeneously high angular distances (poor similarities) were constructed (Figure 31C). An inverse correlation was observed between the mean angular distance and the mean pairwise R^2 of the networks (Pearson R=-0.90; Figure 31D), showing that they originated from units with poor average R^2 . These networks were less likely to hold biologically meaningful

Figure 31 Overview of Networking Statistics. (A) Histogram of network size distribution by units; (B) Histogram of network size distribution by genes or CpG sites; (C) Histogram of networks' internal mean angular distance; (D) Scatter plot between networks' internal mean angular distance and mean average R².

To interpret the networks, I first focused on the known and curated gene sets deposited in MSigDB for similarities. I utilized 5 gene sets, cancer hallmark gene sets (H), curated gene sets (C2), computational gene sets (C4), GO gene sets (C5) and oncogenic gene sets (C6). Due to differences in the designs and methods in each gene set, the sets themselves were not always consistent with each other, including with mine. However, with a significant number of network hits in each gene set (Table 17), these results indicate the biological significance of the networks. I manually inspected the networks of substantial biological interest feature-by-feature. While this would not be scalable to a comprehensive analysis, I considered it necessary to biologically uncover the meaningful interactions in the networks.

Gene Set	Aberration	Network Hits		Gene Set Hits		Average Hits	
		Counts	% of Total	Counts	% of Total	per Network	
Cancer Hallmark	Н	68	10.40%	41	82.00%	2.07	
Curated Gene Sets	C2	234	35.93%	1754	31.89%	17.03	
Computational Gene Sets	C4	95	14.53%	404	47.09%	11.77	
GO Gene Sets	C5	117	17.89%	1497	14.98%	23.26	
Oncogenic Gene Sets	C6	540	82.60%	83	43.92%	2.85	

Table 17 Cross-referencing Networks to MSigDB

To demonstrate the networks' abilities in capturing known interactions, a network containing genes involved in mitosis were investigated. This network was arbitrary selected from a group of networks which overlapped with mitotic related GO terms. The selected network contains 7 units with 50 genes, all of which are known to be involved in mitosis and DNA replications, including *AURKA* and *AURKB* which are conserved mitotic and cell cycle regulators with many known interactions. One unit contains *AURKA* and *AURKB* (Figure 32) and 3 units strongly connected to them by literal evidence (Figure 32, Black arrows). *AURKA* and *AURKB* are known to interact with each other. *AURKA* are also reported to interact with *UBE2C* and phosphorylate *PLK1* with the effects of driving the cell cycle. *AURKB* regulate the alignment and segregation of chromosomes by targeting many centromeres-related substrates including *HASPIN*, *CENPA*, *HJURP* and *CENPN*. It is also reported to interact with *NCAPD2* in condensin complex. These results show that the networks were able to capture proven biological significant interactions.

81

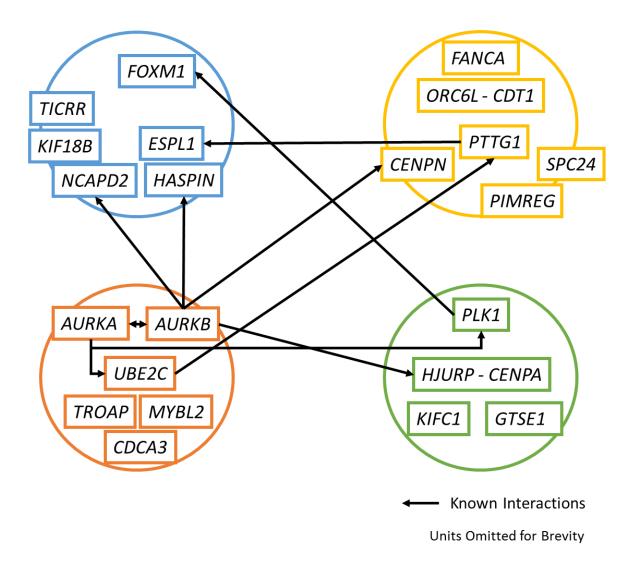


Figure 32 Network containing known interactions of AURKA and AURKB (Orange). AURKA is known to interact with UBE2C and PLK1, driving mitosis forward. AURKB is known to interact with centromeres=related genes to regulate chromosomes alignment and segregation during mitosis

To exemplify the networks, units that were linked to GAPDH/glycolysis are shown in Figure 33. In this network, 8 units with a total of 49 genes were grouped. Gene Ontology analysis revealed that the member genes of this network were highly enriched with the GO terms (MSigDB C5) related to glycolysis and carbohydrate metabolism, as expected (Table 18). The networking linked *ALDOA*, *PGAM1*, *PGAM4* and *PC* (Figure 33A) to the *GAPDH* unit, completing the reaction for glyceraldehyde 3P for entry into the TCA cycle or production of lactic acid. This network revealed that the genes in other pathways also interact with the glycolysis pathway. For example, the *ALODA/PGAM1* unit (Figure 33A, blue) and cell membrane-ER related unit (Figure 33A, yellow) hinted at a novel interaction between membrane transport proteins, the receptor system and the glycolysis pathway. Moreover, the *PC* unit included *ALDH4A1*, which encodes aldehyde dehydrogenase and is localized in mitochondria. This enzyme produces glutamate, providing an alternative substrate for the TCA cycle. Interestingly, high *ALDH* activities are associated with malignancies in some cancer species. This network also included *BLCAP* and *CTNNB1*, which directly influenced cell proliferation.

MSigDB C5 GO term	Odds Ratio	Raw P Value	B-H correction	Gene Hits
GO_GLYCOLYTIC_PROCESS_THROUGH_FRUCTOSE_6_PHOS PHATE	113.4	3.53E-12	3.53E-08	7
GO_GLYCOLYTIC_PROCESS	39.8	1.49E-11	3.53E-08	9
GO_MONOSACCHARIDE_BIOSYNTHETIC_PROCESS	39.5	1.97E-10	7.46E-08	8
GO_CARBOHYDRATE_CATABOLIC_PROCESS	23.0	1.44E-09	6.57E-07	9
GO_GENERATION_OF_PRECURSOR_METABOLITES_AND_EN ERGY	11.0	4.40E-08	3.59E-06	11
GO_CARBOHYDRATE_BIOSYNTHETIC_PROCESS	17.3	8.70E-08	8.79E-05	8
GO_CARBOHYDRATE_METABOLIC_PROCESS	8.6	1.39E-06	1.45E-04	10

Table 18 GO Terms for the GAPDH Network

The rank synchronizations in every unit in the networks were not expected to be perfect. The whole network was deactivated (Figure 33B; blue arrows) or activated in similar phenotypes (Figure 33B; red arrows), representing interactions between the members. However, each unit in the network did not exhibit exact patterns of synchronization in ranking, as in the unit level (Figure 33B Lower). Many functionally unknown genes (Figure 33C) were also assigned to this network. These interactions may be worth subjecting to in-depth analysis to uncover the links between cancer cell metabolism, the Warburg effects and cell proliferation.

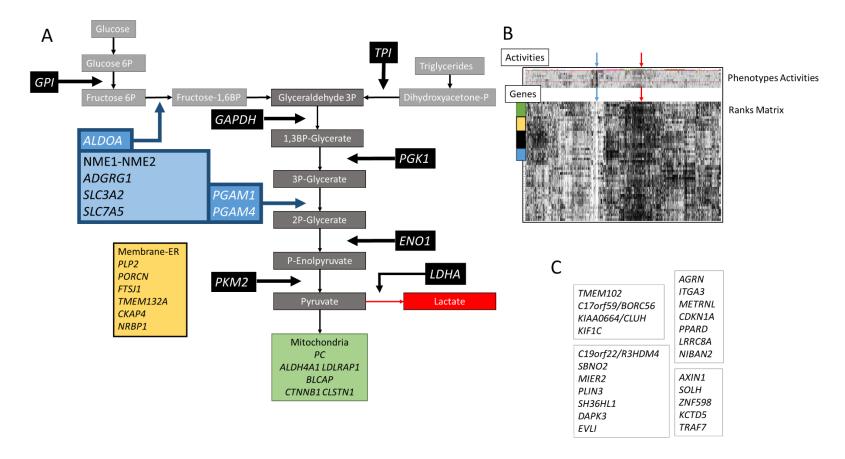


Figure 33 Network of units surrounding the GAPDH/Glycolysis Pathway. (A) Genes in network relate or potentially relate to glycolysis pathway; (B) Rank matrix of the network (Lower). Rows represent genes, column represent samples. (Green) Rows of green unit in (A). (Yellow) Rows of yellow unit in (A). (Black) Rows of black unit (GAPDH) in (A). (Blue) Rows of blue unit in (A). (Unlabeled) Rows of units of ambiguous functions (C). Donor contribution vectors of each unit (Upper). (Blue arrow) samples of low activities; (C) 4 units of ambiguous functions.

Network analysis captures the regulators and effects of NFATC1

In the previous chapter, aberrant regulation of *NFATC1* was detected and validated in lung adenocarcinoma cell lines. Its expression level was shown to be significantly associated with the prognosis of clinical cases in the TCGA LUAD dataset. To further investigate the roles of *NFATC1* that might be involved in carcinogenesis, I explored the networks of genes and CpG sites surrounding *NFATC1*.

Similar to *GAPDH* (glycolysis) and *NKX2-1* (lung surfactant production), the unit group containing *NFATC1* was relatively small. Limited information regarding its function was available. However, after expanding the analysis to the phenotypic network level, the presumed interactions were revealed.

One of the most well-known aspects of *NFATC1* function is in T cells, where it is primarily activated by calcineurin under the regulation of *RCAN1*. After activation, *NFATC1* is localized to the nucleus, where it functions as a T cell activator mainly by activating *EGR2* transcriptional factors. T cells are then differentiated to their effector variants and provide cell-mediated immune responses. This activation process was reflected in units containing *RCAN1* (Figure 34A; 4).

More intriguingly, further analysis of this network revealed potentially novel downstream effects of *NFATC1* in 3 separate functions that were potentially not related to the immune system. The first was a signaling pathway centered around *GHR* (Growth Hormone Receptor) and *NTRK2* (Neurotrophic Tyrosine Receptor Kinase 2) (Figure 34A; 2). Their downstream signaling could consequently influence cell differentiation and proliferation. The second was also a signaling pathway based on *NGFR* (Nerve Growth Factor Receptor) (Figure 34A; 3). Like the first, this pathway similarly played a role in cell differentiation and proliferation but possibly in different contexts. The last pathway consisted of *MAPK10*, *NAP1L2*, *PTN*, *HLF*, and *IGSF10* with 1 CpG site (cg22980079). The first two genes *MAPK10* and *NAP1L2* are known to have proliferative capacity. *PTN* and *HLF* have been reported to be dysregulated in various cancers. These interactions indicated the possible direct involvement of *NFATC1* in cancer cells, most likely promoting

cancer cell proliferation. The included CpG site (cg22980079) was annotated to *FAM193A*, but its roles are still unknown.

Considering the entire network, in active disease, the expression of *NFATC1* could indicate both cancer cell proliferation and tumor infiltrating T cell responses. Indeed, higher disease activities from higher tumor proliferation could lead to stronger responses. In this view, both oncogenic and antitumor effects of *NFATC1* could coexist and cooperate in representing disease activities. This partially explained the conflicting survival analysis results, in which higher NFATC1 was associated with worse disease-free outcome and better overall survival. Worse disease-free outcomes could be attributed to higher relapses from higher pretreatment disease activities. Because most of the cancer relapsed, better overall survival could be attributed to stronger immune responses after relapse.

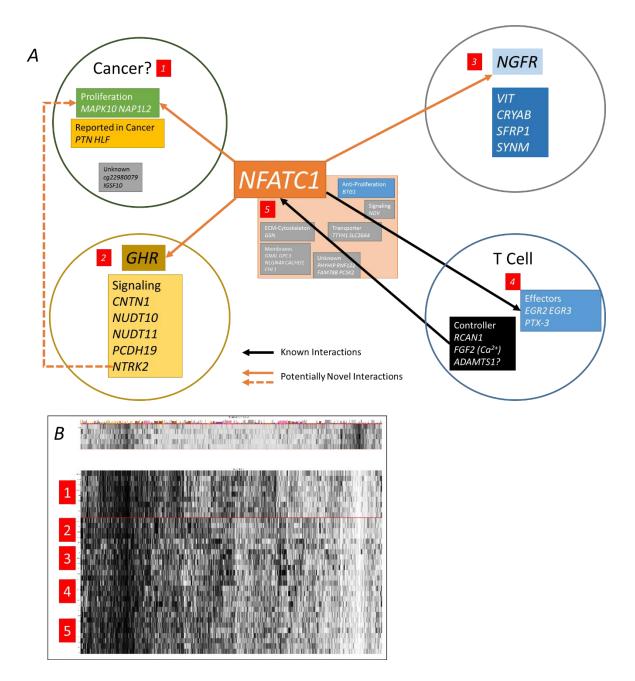


Figure 34 Network Surrounding NFATC1. (A) 5 units in the network. (1-3) consist of genes relate to cell proliferations. (4) consists of a known NFACT1 regulation and activation in T Cells. (5) contains NFATC1; (B) Donor contribution vectors (Upper) and rank matrix (Lower) of 5 units.

•

Networks of Interactions Involving DNA Replication, Repair and Methylation

During DNA replication, the newly synthesized DNA strand is unmethylated. The hemi-methylated DNA strands are methylated mainly by *DNMT1* in the process term "Methylation Maintenance" (Greenberg & Bourc'his, 2019; Law & Jacobsen, 2010). This process is crucial in DNA replication and is required for normal regulation of the cell transcriptomes. DNA damage is not only limited to genetic elements but also to losses of epigenetic information (Dabin, Fortuny, & Polo, 2016), including DNA methylation. Every cell needs to actively maintain its methylation status via *DNMT1*. Knockdown of or mutations in the *DNMT* family of genes has also been shown to cause major disruption in genome integrity and cell survival (Liao et al., 2015).

The roles of DNA methyltransferases are not limited to maintaining methylation patterns. "De novo" methylations of unmethylated sites were also described in both normal and pathological circumstances. De novo methylation is thought to be mainly carried out by *DNMT3A* and *DNMT3B*. Under normal circumstances, this process occurs in stem cells or during embryogenic development. However, this event is also frequently observed in cancer cells (Kulis & Esteller, 2010). Dysregulation of methylation patterns is believed to be one of the major driving events of carcinogenesis. Clinical trials studying the usage of DNMT inhibitors as a strategy in the treatment of various cancers, mainly leukemia, are currently underway (Gnyszka, JastrzĘBski, & Flis, 2013; Wong, Lawrie, & Green, 2019). Moreover, oncogenic driver genes, such as *BRCA1* or *TERT*, were shown to host aberrant DNA methylation at their promoter regions. Unlike methylation maintenance, de novo methyltransferases were less studied in their activation conditions and controls, hindering associations between the detected methylation patterns and carcinogenesis.

Interactions representing DNA methylation were identified from 6 networks (Figure 35). GO term analysis showed enrichments related to the mitotic cell cycle and DNA replication control (Table 19). Closer inspections of genes in each network revealed that 5 networks were mainly associated with DNA repair, which included 4 networks headed by

88

BRCA1, BRCA2-FANCB, FANCA and *FANCL* and one network that was characterized by cell cycle regulatory units, including *CDK1* and *CHEK1*, known for their functions in DNA double strand break repairs (Figure 35A). These 5 networks were related to the network associated with the DNA replication complexes, including DNA polymerase family B complex genes (*POLA2, POLD1, POLE, POLE2*) (Figure 35B). Additional cell cycle controllers (*FANCD2, CHEK2*), replication-related catalysts (*LIG1, PRIM1, PRIM2*), and chromatin structure control complexes (Kinetochore, Spindle fibers) were also presented. Most interestingly, the DNA methyltransferases *DNMT1* and *DNMT3B* and genes encoding members of the histone methyltransferase complexes *CBX2* and *EZH2* were also included in the DNA replication complex network.

Unlike the *NFATC1* network, these processes were separated into 6 networks. However, their phenotypic activities remained largely similar between them. Minor differences were observed between each network, and the majority of the phenotypes showed strong correlations. Despite the strong correlations, the minor differences were considered heterogeneous, thus splitting the networks into 5 smaller networks (Figure 35C).

I further searched for literal evidence on the interactions between complexes in the 6 networks. In DNA replication and the methylation networks (Figure 35B), the interaction between the DNA polymerase complex and *DNMT1* was bridged by *UHRF1*. *UHRF1* has been shown to recruit *DNMT1* to the site of DNA methylation during DNA replication (X. Liu et al., 2013). For the internetwork interactions, DNA repair complexes such as *BRCA1-BRCA2-HMMR* and *BRCA1-FANCA* were identified. Regulations of DNA replication complexes via E2F-family transcriptional factors and cell division cycle-associated genes (CDCA family) in the 4 DNA repair networks (Figure 35A) were also detected.

Table	19 Top	5 GO tern	ns for Cel	ll Cycle and	d DNA Repl	lication Networks
-------	--------	-----------	------------	--------------	------------	-------------------

NETWORK #614; 4	5 GENES							
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_CELL_CYCLE	7.5	1.40E-09	1.40E-05	20				
GO_CELL_CYCLE_PROCESS	8.1	4.29E-09	1.40E-05	17				
GO_MITOTIC_CELL_CYCLE	8.6	9.33E-09	2.14E-05	15				
GO_CELL_CYCLE_G1_S_PHASE_TRANSITION	17.4	1.54E-08	3.11E-05	9				
GO_REGULATION_OF_DNA_DEPENDENT_DNA_REPLICATION	42.4	3.26E-07	3.84E-05	5				
NETWORK #615; 25 GENES								
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_DNA_REPLICATION	31.7	2.09E-09	2.09E-05	8				
GO_CELL_CYCLE_PROCESS	14.4	2.45E-09	1.22E-05	13				
GO_REGULATION_OF_MITOTIC_CELL_CYCLE	17.9	7.90E-09	1.22E-05	10				
GO_CELL_CYCLE	12.0	9.40E-09	2.35E-05	14				
GO_REGULATION_OF_CELL_CYCLE_PROCESS	15.4	2.99E-08	2.35E-05	10				
NETWORK #616; 79 GENES								
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_CELL_CYCLE	13.8	1.43E-27	1.43E-23	47				
GO_CHROMOSOME	15.0	2.72E-25	1.43E-23	37				
GO_DNA_REPLICATION	26.0	9.91E-22	1.36E-21	22				
GO_DNA_METABOLIC_PROCESS	14.2	1.28E-21	3.20E-18	31				
GO_DNA_DEPENDENT_DNA_REPLICATION	38.6	4.56E-21	3.20E-18	18				
NETWORK #617; 38 GENES								
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_CELL_CYCLE_PROCESS	20.3	1.90E-17	1.90E-13	23				
GO_MITOTIC_CELL_CYCLE	21.3	4.59E-17	1.90E-13	21				
GO_CELL_CYCLE	18.1	6.51E-17	2.17E-13	25				
GO_CELL_DIVISION	22.2	1.58E-14	2.17E-13	16				
GO_DNA_REPLICATION	31.1	2.47E-13	3.94E-11	12				
NETWORK #618; 52 GENES								
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_MITOTIC_CELL_CYCLE	42.6	8.29E-35	8.28E-31	37				
GO_CELL_CYCLE_PROCESS	29.9	1.57E-29	8.28E-31	36				
GO_CELL_CYCLE	28.3	5.43E-29	7.82E-26	39				
GO_ORGANELLE_FISSION	39.8	4.92E-27	1.81E-25	25				
GO_MITOTIC_NUCLEAR_DIVISION	46.0	9.02E-26	1.23E-23	22				
NETWORK #619; 50 GENES								
				411:1-0				
GO TERMS	Odds Ratio	Raw P Value	BH correction	# Hits				
GO_CELL_CYCLE	26.8	3.16E-27	3.16E-23	37				
GO_CELL_CYCLE GO_MITOTIC_CELL_CYCLE	26.8 22.0	3.16E-27 1.86E-22	3.16E-23 3.16E-23	37 28				
GO_CELL_CYCLE GO_MITOTIC_CELL_CYCLE GO_CELL_CYCLE_PROCESS	26.8 22.0 18.3	3.16E-27 1.86E-22 7.16E-21	3.16E-23 3.16E-23 9.31E-19	37 28 29				
GO_CELL_CYCLE GO_MITOTIC_CELL_CYCLE	26.8 22.0	3.16E-27 1.86E-22	3.16E-23 3.16E-23	37 28				

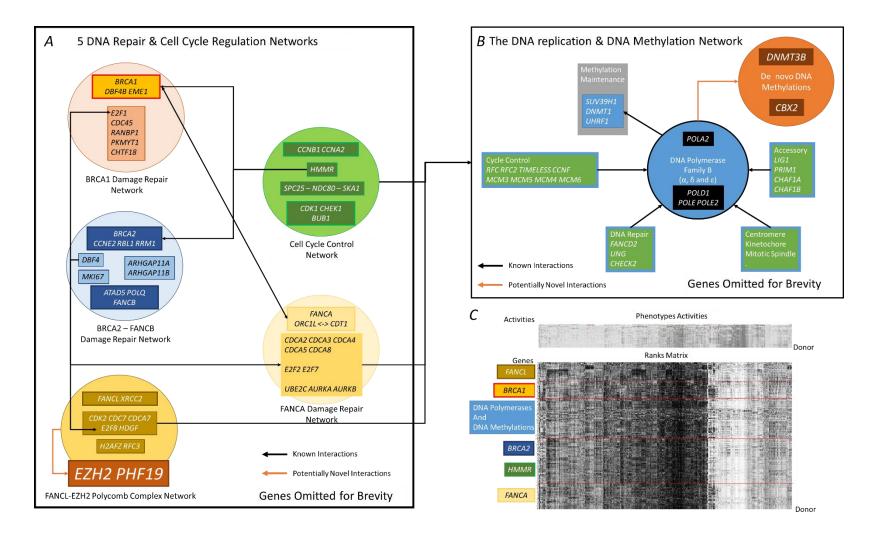


Figure 35 6 Networks describing DNA Replication, Repair and Methylation. (A) 4 DNA repair and 1 cell cycle regulators Networks headed by BRCA1, BRCA2-FANCB, FANCL, FANCA and CDK1. Known interactions between the networks are shown in black arrows. Relation between histone methylation complex (EZH2) and DNA repairs are suggested. (B) Network containing DNA replication and methylation genes. Both maintenance (DNMT1) and De novo (DNMT3B) methyltransferases are included. Known interactions within (B) and from (A) are shown in black arrows. Interactions between DNMT3B and DNA repairs are suggested. (C) Donor contribution vectors (Upper) and rank matrix (lower) of the networks.

Taken together, these 6 networks suggested that the DNA polymerase complex was closely monitored by various cell cycle regulatory elements. The inputs of these regulatory factors included a cell cycle rhythm controller such as the *TIMELESS*, RFC or MCM complexes under normal conditions. In the presence of DNA damage, the cells may employ DNA repair mechanisms, including BRCA1, BRCA2, FANCA, and FANCB, in coordination, and these mechanisms influence the replication complex by various transcription factors. The exact roles of each gene in the E2F family of transcription factors are not yet clear. However, by analyzing the DNA repair networks, further annotations were possible. E2F1 shared a network with BRCA1 and might interact with BRCA1 more closely than other genes. Additionally, E2F2 and E2F7 might be more closely related to FANCA than previously known. To restore epigenetic status, UHRF1 recruited DNMT1 to maintain DNA methylation patterns. SUV39H1 and the Polycomb group restored histone methylation and appropriated chromatin structures. Both in coordination with DNA replications and repairs complexes. Interestingly, activation of DNMT3B and de novo methylation in tandem with DNA damage repair might provide a clue as to how de novo methylations are activated in cancer cells and explain the roles of dysregulation and aberrant methylations found in various cancer types.

2-Omics Melanoma Specific Network

The above networks were mostly concerned with gene-gene interactions. Networks having both omics were investigated to demonstrate the integration between genes and the CpG sites. From the 29 "mixed" networks, one network was found to represent interactions in melanoma. This network contained 4 CpG sites and 34 genes (Figure 36A). Their activities were highly pronounced in melanoma samples (TCGA-SKCM, Figure 36B; red arrows, pink phenotypes). Closer inspections of this network revealed the genes associated with melanoma or melanocyte functions in all units (Figure 36A). These included units containing genes in melanosomes and melanin production, melanoma-specific antigen (*MLANA*) and melanoma-specific transcriptional factor (*PRAME*). Three CpG sites were

located in the tubulin unit. cg00231644 was annotated to *TUBB4* and cg11821702 and cg22598744 were annotated to *MLANA*. Capturing melanoma-specific epigenetic interactions. Last, a microenvironment unit of *EDN1* (endothelin 1) and *MMP7* (degrading specific ECM) had prominently lower expression in melanoma (Figure 36B). These results collectively suggest specific genetic and methylation changes in melanoma or skin samples.

Interestingly, this network was not enriched in any GO term but overlapped with gene sets involving downregulation of P53 (MSigDB; c6: P53 DN. V1 DN), melanin production (MSigDB; c2: REACTOME MELANIN BIOSYNTHESIS) and breast cancers (MSigDB; c2: SMID BREAST CANCER RELAPSE IN BONE DN, SMID BREAST CANCER BASAL UP). These overlaps indicated oncogenic potential in the network, coupled with normal melanocyte functions. It is possible that melanoma might hijack normal melanocyte genetic and epigenetic machinery to turn malignant.

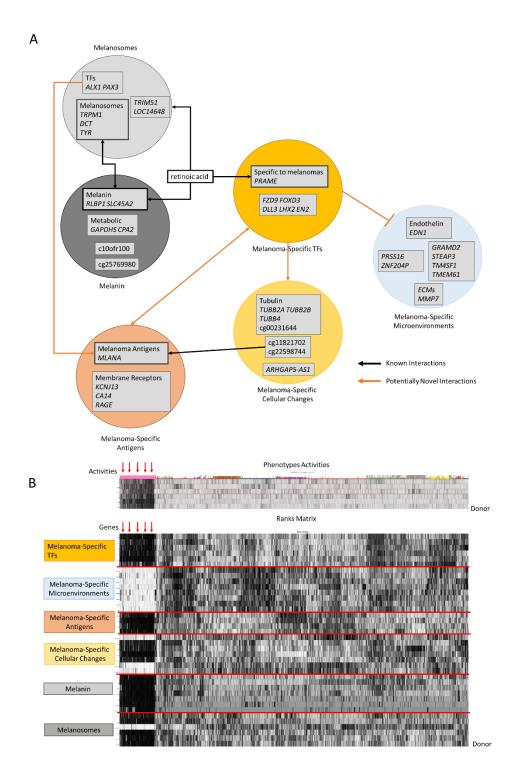


Figure 36 2-omics Networks in Melanoma. (A) 6 units containing genes and CpG sites in melanoma (SKCM) network. Interactions between MLANA, a melanoma specific antigen, and 2 CpG sites annotated to MLANA are captured. (B) Donor contribution vectors (Upper) and rank matrix (Lower) of the network. (Red arrows). Columns of Melanoma samples.

Ineffective Wnt Pathway Negative Feedback in COAD

The Wnt signaling pathway is an important pathway that governs cell fate and development and is frequently perturbed in cancer cells, especially in colorectal cancer. This pathway is also a target of drug interventions (Zhan, Rindtorff, & Boutros, 2017) (Schatoff, Leach, & Dow, 2017) (Novellasdemunt, Antas, & Li, 2015). The pathway consists of two routes after the binding of Wnt protein to the Fizzled family of membrane receptors, canonical and noncanonical pathways. These signals are then relayed and amplified and are under the regulation of many factors, forming complicated positive and negative feedback loops.

Reported Wnt pathway negative feedback loop regulators include *AXIN2*, *NKD1*, *NKD2*, *NOTUM* and DKK family genes. *AXIN2* is shown to be directly upregulated by Wnt activation. *AXIN2* stops Wnt signaling by destabilizing β -catenin (Jho et al., 2002). Another characterized gene is *NKD1*. *NKD1* interacts with *DVL2* to negatively regulate Wnt signaling (Larraguibel et al., 2015).

In colon cancer (TCGA COAD), the Wnt pathway is very frequently activated. One might expect the negative feedback loop to be inactivated, either by repressed expressions or mutations. This turned out not to be the case; in the TCGA COAD project no recurrent mutations in the above genes were reported. More intriguingly, the expression of these genes was significantly upregulated in COAD specimens (Figure 37; right side; box plot). These negative feedback loops were mainly represented in 3 units (Figure 37; center circles). *DVL2* was located on its own (Figure 37; Left Circle; *DVL2*). *AXIN2* was associated with *FGF18*, a known downstream target of the Wnt pathway, and *BMP4-SAMD6*, genes involved in TGF- β signaling pathways. Interactions between the Wnt and TGF- β pathways have been reported in normal (Attisano & Labbé, 2004; Attisano & Wrana, 2013) and cancer cells (Vallée, Lecarpentier, Guillevin, & Vallée, 2017; Warner, Greene, & Pisano, 2005). *NKD1*, *NKD2* and *NOTUM* were associated with *KIAA1199*, a proliferative signal molecule located downstream of Wnt, and *SLC6A6*, a transporter associated with increased survival of colorectal cancer cells. *DKK4* was associated with

functionally unclear genes that could mediate transcriptional regulation (*POU5F1B*), signal transduction (*LY6G6D*) and metabolic effects (*CEL*, *CELP*, *TG*). Collectively, these observations suggested that the previously identified negative feedback loops in the Wnt pathway work together. However, they were not effective at shutting down the Wnt pathway in COAD donors. In the *NKD1*, COAD donor ranks of the *DVL2* unit were significantly lower than the other cases (Figure 37; Left; Boxplot p value= $1.2*10^{-117}$, t test on ranks), rendering *NKD1* ineffective. However, the other regulators need further studies. These findings highlight the strength of the network analysis in providing a comprehensive view and revealing biologically significant phenomena.

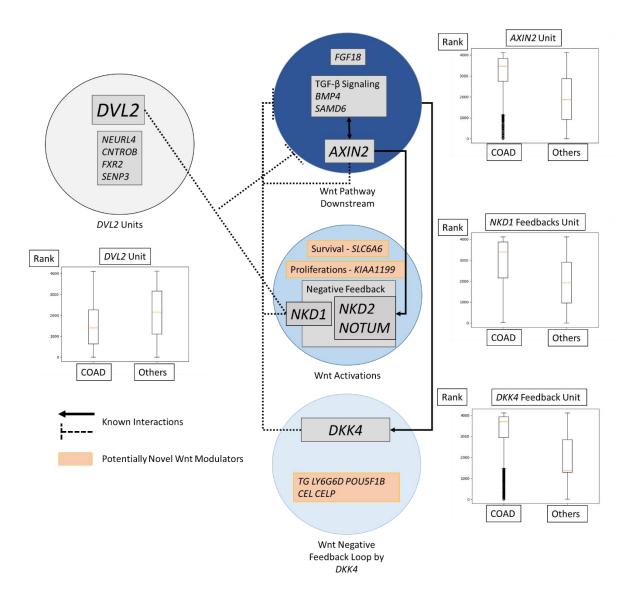


Figure 37 Collection of Wnt Negative Feedback Loop Units. (Upper blue circle) AXIN2 and other Wnt downstream targets. (Middle blue circle) NKD1, NKD2 and NOTUM unit. (Lower blue circle) DKK4 unit. (Grey circle) DVL2 unit. All negative feedback genes (Blue circles) have higher expression in COAD (Right boxplots). NKD1 might be rendered ineffective in COAD by lower expression of DVL2 (Left boxplot).

Discussion

In this chapter, I expanded the one-to-one regulatory interaction conducted in Chapter I into networks of 2-omics interacting features by rank-based multi-omics network analysis in 8 pan-cancer TCGA projects. From the total of 15,666 genes and 12,835 CpG sites of 4,116 donors, I constructed 4,358 functional units of strongly synchronized features. These were linked to form 654 networks by phenotype activities. Twenty-nine of these networks contained mixed interactions between genes and CpG sites. Not all of the units and networks were found to be biologically meaningful due to inherent complexities in the biological system and the simplicities in rank analysis. Cross-referencing with known gene sets, Gene Ontologies and literal searches revealed that a significant number of the networks and units were biologically significant and suggestive of novel biological interactions. A network containing the known interactions of *AURKA* and *AURKB* in cell cycle regulations was illustrated. Due to the interpretation approach, not every potentially meaningful network could be analyzed, and it is possible that the networks not reported here could still hold significant interactions.

While I concluded that a nonparametric rank analysis approach would yield the most appropriate methods in this work, it still had a number of drawbacks. Due to its root in coexpression networks, complex, multifactor interactions would not be apparent. The lack of overall detection power of the rank analysis also hindered the detection of such interactions. This was circumvented by increasing the detection power with a larger input size. Another disadvantage was its oversimplification, and any detected interactions would need to be interpreted based on their known biological function alone. Rank analysis also helped suppress artifacts from noise and batch effects. Overall, I believe that the benefits of rank analysis outweigh the drawbacks.

Many improvements could be made on the rank analysis methods. Effects of zeros and outliners, in particular, could be removed by trimming off rankings from zeros and extreme measurements and focusing on rankings of more continuous measurements in the middle. Tie correction is also another area that could be improved to make the rankings better represent the data. Lastly, parameters from already proven gene networks could be incorporated to increase the detection power and the accuracy of the results.

I consider these results not as a complete multi-omics networks atlas on any scale but as a collection of biologically relevant and potentially functionally important pancancer networks of detected genetic and epigenetic interactions. These networks and the analysis employed might serve to improve our understanding of the cancer genomes and transcription regulations.

Conclusion

In this thesis, I explored and identified interactions of genetic and epigenetic elements, both from the same and different omics, by a combination of multi-omics and network analysis. By first integrating genomics mutations, mRNA expression, histone modifications and long read allele configurations of 23 lung adenocarcinoma cell line datasets, I identified and validated the regulatory elements, their importance in cancer genomes and their long-range *cis*-interactions with their transcriptome counterparts, providing a solid platform and proof-of-concept evidence of the role of the regulatory elements in cancer and established integrative analysis of multi-omics dataset as an approach to studying the interaction between omics.

To follow up on those results, I moved on to the pan-cancer multi-omics network level by an integrative expression and methylations analysis of 8 TCGA projects. I was able to identify and characterize both known and novel interactions of genes-to-genes and genes-to-CpG sites. These interactions range from single gene or CpG site resolution to functional and biological process level resolution. Establishing rank analysis as an approach to integrate features from different omics uniformly and its synergistic effects with network analysis to produce comprehensive views of biological systems.

Overall, this work described regulatory mutations genetic and epigenetic interactions and their potential roles in the development of cancer phenotypes. While not intended to be an complete atlas of interactions, the results could be applied directly and conceptually to advance our insights on how genotypes interact and translate into phenotypes.

Reference

- Abyzov, A., Urban, A. E., Snyder, M., & Gerstein, M. (2011). CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. *Genome Research*, *21*(6), 974-984.
- Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., . . . Sandelin, A. (2014). An atlas of active enhancers across human cell types and tissues. *Nature, 507*, 455.
- Attisano, L., & Labbé, E. (2004). TGFβ and Wnt pathway cross-talk. *Cancer and Metastasis Reviews*, 23(1), 53-61. doi:10.1023/A:1025811012690
- Attisano, L., & Wrana, J. L. (2013). Signal integration in TGF-β, WNT, and Hippo pathways. *F1000prime reports*, *5*, 17-17. doi:10.12703/P5-17
- Baran, Y., Subramaniam, M., Biton, A., Tukiainen, T., Tsang, E. K., Rivas, M. A., . . . Lappalainen, T. (2015). The landscape of genomic imprinting across diverse adult human tissues. *Genome Research*, 25(7), 927-936.
- Barlow, D. P., & Bartolomei, M. S. (2014). Genomic Imprinting in Mammals. *Cold Spring Harbor Perspectives in Biology*, 6(2).
- Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of disease in childhood. Education and practice edition, 98(6), 236-238. doi:10.1136/archdischild-2013-304340
- Bembom, O. (2017). seqLogo: Sequence logos for DNA sequence alignments.
- Berg, J., Tymoczko, J., & Stryer, L. (2002). Biochemistry. 5th edition. In. New York: W H Freeman.
- Bernstein, B. E., Birney, E., Dunham, I., Green, E. D., Gunter, C., Snyder, M., & Consortium, E. P. (2012). An integrated encyclopedia of DNA elements in the human genome. *Nature*, 489(7414), 57-74. doi:10.1038/nature11247
- Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner,
 A., . . Thomson, J. A. (2010). The NIH Roadmap Epigenomics Mapping Consortium. *Nature* biotechnology, 28(10), 1045-1048. doi:10.1038/nbt1010-1045
- Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians, 68*(6), 394-424. doi:10.3322/caac.21492
- Cantone, I., & Fisher, A. G. (2013). Epigenetic programming and reprogramming during development. *Nature Structural &Amp; Molecular Biology, 20,* 282. doi:10.1038/nsmb.2489
- Chan, B. A., & Hughes, B. G. M. (2014). Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. *Translational Lung Cancer Research*, 4(1), 36-54.
- Chmielecki, J., & Meyerson, M. (2014). DNA Sequencing of Cancer: What Have We Learned? Annual Review of Medicine, 65(1), 63-79. doi:10.1146/annurev-med-060712-200152
- Collisson, E. A., Campbell, J. D., Brooks, A. N., Berger, A. H., Lee, W., Chmielecki, J., . . . John Flynn, H. (2014). Comprehensive molecular profiling of lung adenocarcinoma. *Nature*, *511*(7511), 543-550. doi:10.1038/nature13385
- Cooper, G. (2000). *The Cell: A Molecular Approach. 2nd Edition.* Sunderland (MA): Sinauer Associates.

- Crick, F. (1970). Central Dogma of Molecular Biology. *Nature, 227*(5258), 561-563. doi:10.1038/227561a0
- Cullen, S. M., Mayle, A., Rossi, L., & Goodell, M. A. (2014). Chapter Two Hematopoietic Stem Cell Development: An Epigenetic Journey. In M. Rendl (Ed.), *Current Topics in Developmental Biology* (Vol. 107, pp. 39-75): Academic Press.
- Dabin, J., Fortuny, A., & Polo, S. E. (2016). Epigenome Maintenance in Response to DNA Damage. *Molecular cell, 62*(5), 712-727. doi:10.1016/j.molcel.2016.04.006
- Dahlberg, P. S., Jacobson, B. A., Dahal, G., Fink, J. M., Kratzke, R. A., Maddaus, M. A., & Ferrin, L. J. (2004). ERBB2 Amplifications in Esophageal Adenocarcinoma. *The Annals of Thoracic Surgery*, *78*(5), 1790-1800. doi:<u>https://doi.org/10.1016/j.athoracsur.2004.05.037</u>
- Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., . . . Cherry, J. M. (2018). The Encyclopedia of DNA elements (ENCODE): data portal update. *Nucleic acids research, 46*(D1), D794-D801. doi:10.1093/nar/gkx1081
- Del Re, M., Tiseo, M., Bordi, P., D'Incecco, A., Camerini, A., Petrini, I., . . . Danesi, R. (2017). Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. *Oncotarget, 8*(8), 13611-13619. doi:10.18632/oncotarget.6957
- Dela Cruz, C. S., Tanoue, L. T., & Matthay, R. A. (2011). Lung cancer: epidemiology, etiology, and prevention. *Clinics in chest medicine*, *32*(4), 605-644. doi:10.1016/j.ccm.2011.09.001
- Delgado, F. M., & Gómez-Vela, F. (2019). Computational methods for Gene Regulatory Networks reconstruction and analysis: A review. *Artificial Intelligence in Medicine*, *95*, 133-145. doi:<u>https://doi.org/10.1016/j.artmed.2018.10.006</u>
- Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., . . . Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. *International Journal of Cancer*, 144(8), 1941-1953. doi:10.1002/ijc.31937
- Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., . . . Campbell, P. J. (2015). COSMIC: exploring the world's knowledge of somatic mutations in human cancer. *Nucleic Acids Res, 43* (Database issue), D805-811. doi:10.1093/nar/gku1075
- Gnyszka, A., JastrzĘBski, Z., & Flis, S. (2013). DNA Methyltransferase Inhibitors and Their Emerging Role in Epigenetic Therapy of Cancer. *Anticancer Research*, *33*(8), 2989-2996.
- Greenberg, M. V. C., & Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. *Nature Reviews Molecular Cell Biology, 20*(10), 590-607. doi:10.1038/s41580-019-0159-6
- Grob, T. J., Kannengiesser, I., Tsourlakis, M. C., Atanackovic, D., Koenig, A. M., Vashist, Y. K., . . .
 Wilczak, W. (2012). Heterogeneity of ERBB2 amplification in adenocarcinoma, squamous cell carcinoma and large cell undifferentiated carcinoma of the lung. *Modern Pathology*, 25(12), 1566-1573. doi:10.1038/modpathol.2012.125
- Heim, L., Friedrich, J., Engelhardt, M., Trufa, D. I., Geppert, C. I., Rieker, R. J., . . . Finotto, S. (2018). NFATc1 Promotes Antitumoral Effector Functions and Memory CD8⁺ T-cell Differentiation during Non–Small Cell Lung Cancer Development. *Cancer Research*, 78(13), 3619. doi:10.1158/0008-5472.CAN-17-3297
- Heinz, S., Romanoski, C. E., Benner, C., & Glass, C. K. (2015). The selection and function of cell type-specific enhancers. *Nat Rev Mol Cell Biol, 16*(3), 144-154. doi:10.1038/nrm3949
- Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: an evolving paradigm. *Nature Reviews Cancer, 13*(10), 714-726. doi:10.1038/nrc3599

- Hon, C.-C., Ramilowski, J. A., Harshbarger, J., Bertin, N., Rackham, O. J. L., Gough, J., . . . Forrest, A. R. R. (2017). An atlas of human long non-coding RNAs with accurate 5['] ends. *Nature*, 543, 199.
- Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. V., Chin, L., & Garraway, L. A. (2013). Highly recurrent TERT promoter mutations in human melanoma. *Science*, *339*(6122), 957-959. doi:10.1126/science.1229259
- International Cancer Genome Consortium, Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., . . . Yang, H. (2010). International network of cancer genome projects. *Nature*, 464(7291), 993-998. doi:10.1038/nature08987
- Jain, M., Olsen, H. E., Paten, B., & Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biology*, *17*(1), 239. doi:10.1186/s13059-016-1103-0
- Jho, E.-h., Zhang, T., Domon, C., Joo, C.-K., Freund, J.-N., & Costantini, F. (2002). Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. *Molecular and Cellular Biology*, *22*(4), 1172. doi:10.1128/MCB.22.4.1172-1183.2002
- Jovanovic, M., Rooney, M. S., Mertins, P., Przybylski, D., Chevrier, N., Satija, R., . . . Regev, A. (2015). Dynamic profiling of the protein life cycle in response to pathogens. *Science*, *347*(6226), 1259038. doi:10.1126/science.1259038
- Kallioniemi, O. P., Kallioniemi, A., Kurisu, W., Thor, A., Chen, L. C., Smith, H. S., . . . Gray, J. W. (1992). ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. *Proceedings of the National Academy of Sciences of the United States of America*, 89(12), 5321-5325. doi:10.1073/pnas.89.12.5321
- Kel, A. E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O. V., & Wingender, E. (2003). MATCH: A tool for searching transcription factor binding sites in DNA sequences. *Nucleic Acids Res*, 31(13), 3576-3579.
- Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, D. (2002). The human genome browser at UCSC. *Genome Res, 12*(6), 996-1006. doi:10.1101/gr.229102. Article published online before print in May 2002
- Khurana, E., Fu, Y., Chakravarty, D., Demichelis, F., Rubin, M. A., & Gerstein, M. (2016). Role of non-coding sequence variants in cancer. *Nature Reviews Genetics*, 17, 93. doi:10.1038/nrg.2015.17
- Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. *Nature Reviews Genetics, 20*(4), 207-220. doi:10.1038/s41576-018-0089-8
- Kulis, M., & Esteller, M. (2010). 2 DNA Methylation and Cancer. In Z. Herceg & T. Ushijima (Eds.), Advances in Genetics (Vol. 70, pp. 27-56): Academic Press.
- Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., . . . Weirauch, M. T. (2018). The Human Transcription Factors. *Cell*, *172*(4), 650-665. doi:<u>https://doi.org/10.1016/j.cell.2018.01.029</u>
- Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics*, *9*(1), 559. doi:10.1186/1471-2105-9-559
- Larraguibel, J., Weiss, A. R. E., Pasula, D. J., Dhaliwal, R. S., Kondra, R., & Van Raay, T. J. (2015). Wnt ligand-dependent activation of the negative feedback regulator Nkd1. *Molecular biology of the cell, 26*(12), 2375-2384. doi:10.1091/mbc.E14-12-1648

- Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nature reviews. Genetics*, 11(3), 204-220. doi:10.1038/nrg2719
- Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. *Bioinformatics*, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352
- Li, S., Li, L., Zhu, Y., Huang, C., Qin, Y., Liu, H., . . . Liang, N. (2014). Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. *British Journal of Cancer, 110*(11), 2812-2820. doi:10.1038/bjc.2014.210
- Liang, H., Pan, Z., Wang, W., Guo, C., Chen, D., Zhang, J., . . . written on behalf of, A. M. E. L. C. C. G. (2018). The alteration of T790M between 19 del and L858R in NSCLC in the course of EGFR-TKIs therapy: a literature-based pooled analysis. *Journal of thoracic disease, 10*(4), 2311-2320. doi:10.21037/jtd.2018.03.150
- Liao, J., Karnik, R., Gu, H., Ziller, M. J., Clement, K., Tsankov, A. M., . . . Meissner, A. (2015). Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. *Nature genetics*, *47*(5), 469-478. doi:10.1038/ng.3258
- Liberti, M. V., & Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit Cancer Cells? *Trends in biochemical sciences*, *41*(3), 211-218. doi:10.1016/j.tibs.2015.12.001
- Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. *Bioinformatics (Oxford, England),* 27(12), 1739-1740. doi:10.1093/bioinformatics/btr260
- Liu, X., Gao, Q., Li, P., Zhao, Q., Zhang, J., Li, J., . . . Wong, J. (2013). UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. *Nature Communications, 4*(1), 1563. doi:10.1038/ncomms2562
- Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E. G., Van Drogen, A., . . . Aebersold, R. (2019). Multi-omic measurements of heterogeneity in HeLa cells across laboratories. *Nature Biotechnology*, *37*(3), 314-322. doi:10.1038/s41587-019-0037-y
- Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., . . . Moore, H. F. (2013). The Genotype-Tissue Expression (GTEx) project. *Nature Genetics*, *45*(6), 580-585. doi:10.1038/ng.2653
- Ma, C., Wei, S., & Song, Y. (2011). T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. *Journal of thoracic disease*, *3*(1), 10-18. doi:10.3978/j.issn.2072-1439.2010.12.02
- Mancini, M., & Toker, A. (2009). NFAT proteins: emerging roles in cancer progression. *Nat Rev Cancer, 9*(11), 810-820. doi:10.1038/nrc2735
- Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., . . . Wingender, E. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. *Nucleic Acids Res, 34* (Database issue), D108-110. doi:10.1093/nar/gkj143
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., . . . DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome research*, *20*(9), 1297-1303. doi:10.1101/gr.107524.110

- Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., . . . Guigó, R.
 (2015). The human transcriptome across tissues and individuals. *Science*, *348*(6235), 660. doi:10.1126/science.aaa0355
- Minoo, P. (2000). Transcriptional regulation of lung development: emergence of specificity. *Respiratory research*, 1(2), 109-115. doi:10.1186/rr20
- Morison, I. M., Paton, C. J., & Cleverley, S. D. (2001). The imprinted gene and parent-of-origin effect database. *Nucleic Acids Res, 29*(1), 275-276.
- Novellasdemunt, L., Antas, P., & Li, V. S. W. (2015). Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. *American Journal of Physiology-Cell Physiology, 309*(8), C511-C521. doi:10.1152/ajpcell.00117.2015
- Olive, V., Jiang, I., & He, L. (2010). mir-17-92, a cluster of miRNAs in the midst of the cancer network. *The international journal of biochemistry & cell biology, 42*(8), 1348-1354. doi:10.1016/j.biocel.2010.03.004
- Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. *Signal Transduction and Targeted Therapy*, 1(1), 15004. doi:10.1038/sigtrans.2015.4
- Plotnik, J. P., Budka, J. A., Ferris, M. W., & Hollenhorst, P. C. (2014). ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells. *Nucleic Acids Research*, 42(19), 11928-11940.
- Pollard, M. O., Gurdasani, D., Mentzer, A. J., Porter, T., & Sandhu, M. S. (2018). Long reads: their purpose and place. *Human Molecular Genetics*, 27(R2), R234-R241. doi:10.1093/hmg/ddy177
- Redwine, J. M., & Evans, C. F. (2002). Markers of Central Nervous System Glia and Neurons In Vivo During Normal and Pathological Conditions. In B. Dietzschold & J. A. Richt (Eds.), *Protective* and Pathological Immune Responses in the CNS (pp. 119-140). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Robbs, B. K., Cruz, A. L. S., Werneck, M. B. F., Mognol, G. P., & Viola, J. P. B. (2008). Dual Roles for NFAT Transcription Factor Genes as Oncogenes and Tumor Suppressors. *Molecular and Cellular Biology, 28*(23), 7168. doi:10.1128/MCB.00256-08
- Roller, E., Ivakhno, S., Lee, S., Royce, T., & Tanner, S. (2016). Canvas: versatile and scalable detection of copy number variants. *Bioinformatics*, 32(15), 2375-2377. doi:10.1093/bioinformatics/btw163
- Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt Signaling and Colorectal Cancer. *Current colorectal cancer reports*, *13*(2), 101-110. doi:10.1007/s11888-017-0354-9
- Shen, R., Olshen, A. B., & Ladanyi, M. (2009). Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. *Bioinformatics (Oxford, England), 25*(22), 2906-2912. doi:10.1093/bioinformatics/btp543
- Sigismund, S., Avanzato, D., & Lanzetti, L. (2018). Emerging functions of the EGFR in cancer. *Molecular oncology*, 12(1), 3-20. doi:10.1002/1878-0261.12155
- Sonawane, A. R., Platig, J., Fagny, M., Chen, C.-Y., Paulson, J. N., Lopes-Ramos, C. M., . . . Kuijjer, M.
 L. (2017). Understanding Tissue-Specific Gene Regulation. *Cell reports*, 21(4), 1077-1088.
 doi:10.1016/j.celrep.2017.10.001
- Speir, M. L., Zweig, A. S., Rosenbloom, K. R., Raney, B. J., Paten, B., Nejad, P., . . . Kent, W. J. (2016). The UCSC Genome Browser database: 2016 update. *Nucleic Acids Res, 44*(D1), D717-725. doi:10.1093/nar/gkv1275

- Suzuki, A., Makinoshima, H., Wakaguri, H., Esumi, H., Sugano, S., Kohno, T., . . . Suzuki, Y. (2014). Aberrant transcriptional regulations in cancers: genome, transcriptome and epigenome analysis of lung adenocarcinoma cell lines. *Nucleic Acids Res, 42*(22), 13557-13572. doi:10.1093/nar/gku885
- Suzuki, A., Wakaguri, H., Yamashita, R., Kawano, S., Tsuchihara, K., Sugano, S., . . . Nakai, K. (2015). DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data. *Nucleic Acids Res, 43* (Database issue), D87-91. doi:10.1093/nar/gku1080
- The Cancer Genome Atlas Research, N., Chang, K., Creighton, C. J., Davis, C., Donehower, L., Drummond, J., . . . Shaw, K. R. M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. *Nature Genetics*, *45*, 1113. doi:10.1038/ng.2764
- The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular profiling of lung adenocarcinoma. *Nature*, *511*(7511), 543-550. doi:10.1038/nature13385
- TheAmericanCancerSociety. (2019). Targeted Therapy for Non-Small Cell Lung Cancer.
- Vallée, A., Lecarpentier, Y., Guillevin, R., & Vallée, J.-N. (2017). Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. *Oncotarget*, *8*(52), 90579-90604. doi:10.18632/oncotarget.21234
- Vihervaara, A., Duarte, F. M., & Lis, J. T. (2018). Molecular mechanisms driving transcriptional stress responses. *Nature Reviews Genetics*, *19*(6), 385-397. doi:10.1038/s41576-018-0001-6
- Vinagre, J., Almeida, A., Pópulo, H., Batista, R., Lyra, J., Pinto, V., . . . Soares, P. (2013). Frequency of TERT promoter mutations in human cancers. *Nature Communications*, 4(1), 2185. doi:10.1038/ncomms3185
- Vineis, P., Schatzkin, A., & Potter, J. D. (2010). Models of carcinogenesis: an overview. *Carcinogenesis*, *31*(10), 1703-1709. doi:10.1093/carcin/bgq087
- Warner, D. R., Greene, R. M., & Pisano, M. M. (2005). Cross-talk between the TGFβ and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. *FEBS Letters*, 579(17), 3539-3546. doi:10.1016/j.febslet.2005.05.024
- Wee, P., & Wang, Z. (2017). Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. *Cancers*, 9(5), 52. doi:10.3390/cancers9050052
- Weinberg, R. A. (2013). The Biology of Cancer, Second Edition: Garland Science.
- Wong, K. K., Lawrie, C. H., & Green, T. M. (2019). Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. *Biomarker insights, 14*, 1177271919846454-1177271919846454. doi:10.1177/1177271919846454
- Xu, S., Shu, P., Zou, S., Shen, X., Qu, Y., Zhang, Y., . . . Zhang, J. (2018). NFATc1 is a tumor suppressor in hepatocellular carcinoma and induces tumor cell apoptosis by activating the FasL-mediated extrinsic signaling pathway. *Cancer Medicine*, 7(9), 4701-4717. doi:10.1002/cam4.1716
- Xu, W., Gu, J., Ren, Q., Shi, Y., Xia, Q., Wang, J., . . . Wang, J. (2016). NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. *Tumor Biology*, *37*(4), 4493-4500. doi:10.1007/s13277-015-4245-x
- Yun, C.-H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K.-K., . . . Eck, M. J. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. *Proceedings of the National Academy of Sciences*, 105(6), 2070. doi:10.1073/pnas.0709662105

- Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. *Oncogene, 36*(11), 1461-1473. doi:10.1038/onc.2016.304
- Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., . . . Liu, X. S. (2008). Model-based Analysis of ChIP-Seq (MACS). *Genome Biology*, 9(9), R137. doi:10.1186/gb-2008-9-9-r137
- Zheng, G. X., Lau, B. T., Schnall-Levin, M., Jarosz, M., Bell, J. M., Hindson, C. M., . . . Ji, H. P. (2016).
 Haplotyping germline and cancer genomes with high-throughput linked-read sequencing.
 Nat Biotechnol, 34(3), 303-311. doi:10.1038/nbt.3432
- Zhu, Y., Qiu, P., & Ji, Y. (2014). TCGA-assembler: open-source software for retrieving and processing TCGA data. *Nat Methods*, *11*(6), 599-600. doi:10.1038/nmeth.2956

Acknowledgements

I would like to express my gratitude to my advisor, Professor Suzuki Yutaka, for all his kind and thoughtful guidance and teaching which made this thesis possible and to him I own all the experiences and opportunities I had during my 5 years' time.

I would like to express my gratitude to Professor Suzuki Ayako for her always kind and helpful teaching and advice and her central role in formulating the researches in this thesis and though those teaching and example, making this thesis possible.

I would like to express my gratitude to Professor Seki Masahide for his compassionate and kind teaching and advices and without his experimental expertise and guidance this thesis would not be possible.

I would like to express my gratitude to Professor Katsuya Tsuchihara and Professor Sugano Sumio, for their advices and supports had a strong impact on this thesis and empowered me to many valuable opportunities.

I would like to express my thanks and gratitude to everyone at Suzuki laboratory both currently and alumni, to whom I owned my laugh and joy during my 5 years stay, especially to Mr. Kunigo Keisuke and Dr. Maekawa Sho during my Masters years, Mr. Sakamoto Yoshitaka for his both his friendship and expertise in sequencing technologies and Dr. Runtuwene Ronald Lucky for his support and friendship.

I would like to express my thanks to my family, who were always supportive of my decisions and providing encouragements to always go forward.

I also would like to express my sincere thanks to The Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) for the financial support of MEXT scholarship from the very beginning of my Masters year and Embassy of Japan in Bangkok for the recommendation opportunity and I would also like to extend my thanks to Japanese tax-payers for funding this admirable scholarship program.