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General Introduction 
Cancer is the second leading cause of death worldwide. It is responsible for 1 in 6 

documented deaths with an estimated 9.6 million deaths worldwide in 2018 (Bray et al., 

2018; Ferlay et al., 2019). Though diverse in tissues of origin and presentations, the 

processes of cancer development, or carcinogenesis, follow a common multistep 

transformation from normal cells into cancer cells. These transformations are caused by 

genetic and epigenetic changes in the cells (Weinberg, 2013). To better understand the 

biology behind them, many large-scale international studies have been conducted to 

elucidate these genetic (International Cancer Genome Consortium et al., 2010; The Cancer 

Genome Atlas Research et al., 2013) and epigenetic changes (Bradley E. Bernstein et al., 

2010; Davis et al., 2018) with great success. Highly successful projects, such as lung 

adenocarcinoma in The Cancer Genome Atlas project (TCGA), have identified genomic 

driver mutations in genes such as EGFR and ALK (The Cancer Genome Atlas Research 

Network, 2014). Discoveries of these mutations have subsequently led to the development 

of many successful anticancer drugs currently employed in treatment regimens (The 

American Cancer Society, 2019). 

Given the complexities observed in essential and fundamental processes such as 

DNA replication and the cell cycle (Cooper, 2000) or glycolysis (Berg, Tymoczko, & 

Stryer, 2002), it is natural to suppose that genes work together in concert to give rise to 

complex functions and diverse phenotypes. Supporting this notion, pivotal cancer driver 

genes, such as EGFR, have been shown to exert various functions (Sigismund, Avanzato, & 

Lanzetti, 2018) and act as key regulators in various pathways (Wee & Wang, 2017) in a 

wide variety of cancers. Additionally, the regulation of genes, both at the genetic level such 

as by transcription factors or at the epigenetic level by DNA or histone methylations 

(Klemm, Shipony, & Greenleaf, 2019; Vihervaara, Duarte, & Lis, 2018), and even by 

noncoding RNAs (Olive, Jiang, & He, 2010; Peng & Croce, 2016), has been shown to also 

play an important role in influencing gene functions. Indeed, epigenetics projects, such as 

ENCODE and Roadmap, have highlighted important epigenetic regions and have described 
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the regulatory landscapes of human genes both in normal and malignant settings, which has 

opened up the frontier of epigenetic research and has attracted great attention. Despite great 

efforts, our understanding of a comprehensive picture of genetic-epigenetic interactions and 

regulations remains far from perfect. 

Coding sequences only account for a small number of mutations in cancer genomes 

(The Cancer Genome Atlas Research et al., 2013). Mutations in cis-regulatory elements, 

promoters and enhancer regions have also been shown to be as important, if not more, than 

their coding counterparts (Khurana et al., 2016). This is especially evident in melanoma, 

where mutations in the TERT promoter region have been identified as some of the 

important driver mutations (Huang et al., 2013; Vinagre et al., 2013). Moreover, the roles 

of promoter and enhancer regions in cell fate determination and development are becoming 

clearer (Cantone & Fisher, 2013), especially in hematopoietic cell linages (Cullen, Mayle, 

Rossi, & Goodell, 2014). These findings solidified the notion that the interactions between 

genetic and epigenetic elements give rise to specific phenotypes. To fully study these 

interactions, an integrative network study from both sides proves to be an interesting 

approach to answer how genetics and epigenetics interact with each other to translate 

genotypic information to phenotypes. 

In this thesis, I intend to elucidate the interaction between genomes and their 

regulatory epigenomes by multi-omics and integrative network analysis and propose how 

these insights could help bridge genotypes and phenotypes. This thesis consists of two 

chapters, where I attempt to I) Elucidate how noncoding regions might regulate their 

downstream coding counterparts by combining short and long read sequencing and multi-

omics analysis in a cancer cell line setting and II) Explore TCGA for large-scale and 

systemic network detection of both single and multi-omics interactions. 
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Chapter I: Identification of Potential 

Regulatory Elements by Multi-Omics Analysis 

and Haplotype Phasing in Lung 

Adenocarcinoma Cell Lines 
Introduction 
 Lung cancer is one of the most widely studied cancers. The adenocarcinoma 

subtype comprises half of all lung cancer cases in both smokers and nonsmokers (Collisson 

et al., 2014; Dela Cruz, Tanoue, & Matthay, 2011). Many environmental and lifestyle risk 

factors, mainly air pollution and smoking, have been identified. Despite the reduction in 

risk factor exposure and lifestyle changes, the lung cancer incidence rates are increasing, 

especially in nonsmokers. This invariably suggests unknown carcinogenic causes (Dela 

Cruz et al., 2011). This observation is in contrast to the squamous cell subtype, which has 

been declining along with the reduction in smoking and other risk factors. This unique 

feature has placed lung adenocarcinoma as the focus of many research groups. 

Recurrent genomic driver mutations in EGFR and KRAS and ALK-RET fusions have 

been documented. Several successful anticancer drugs targeting these genes have been 

developed (Chan & Hughes, 2014; TheAmericanCancerSociety, 2019). Nevertheless, the 

driver genes in more than a third (38%) of the cases are yet unknown (Collisson et al., 

2014), posing a challenge in curative treatments. The known driver mutations were 

identified and interpreted only from the coding region of the genome, which accounts for 

less than 5% of the entire genome. Noncoding regions have not yet been fully investigated, 

and recent studies have elucidated that these regions have no less importance than coding 

regions (Vinagre et al., 2013) (Huang et al., 2013) (Chan & Hughes, 2014) and could also 

harbor biologically relevant mutations. Many novel therapeutic options might be 

discovered from mutations in noncoding regions. 
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 The benefits of focusing on noncoding regions are not limited to cases with 

unknown driver mutations (38%). Resistant cancer clones rapidly develop in almost all of 

the target therapy cases, resulting in remission and relapse. The drug-resistance mutation 

T790M in EGFR (Ma, Wei, & Song, 2011; Yun et al., 2008) or point mutations in KRAS or 

PIK3CA in EGFR-resistant clones are well-known examples (Del Re et al., 2017; S. Li et 

al., 2014). Despite substantial efforts, the causative mutations of a large number of relapse 

cases are still unknown; thus, countering drug resistances has not been widely successful. 

These difficulties indicate the diversity in tumor responses to each treatment, which could 

arise from both coding and noncoding mutation backgrounds (Holohan, Van Schaeybroeck, 

Longley, & Johnston, 2013). A more comprehensive understanding of the interaction 

between coding and noncoding regions might hold the key in combating drug resistance. 

In this chapter, using sequencing data from lung adenocarcinoma cell lines, I will 

focus on identifying the functional regulatory mutations that are shown to have 

transcriptional effects that are detectable in their downstream transcripts by multi-omics 

analysis and haplotype phasing. 

 

Multi-omics Analysis 
Next-generation sequencing (NGS) has enabled detailed studies of genomic 

mutations by short read high-throughput data generation (Behjati & Tarpey, 2013; 

Chmielecki & Meyerson, 2014). Whole genome sequencing (WGS) and whole exome 

sequencing (WES) are the main strategies in outlining the mutation landscapes of cancers. 

WES focuses exclusively on the coding regions, enabling a detailed and cost-effective 

approach in studying coding region mutations. WGS provides a more complete landscapes 

of both coding and noncoding regions, albeit at lower resolution at the same sequencing 

cost. Both approaches are being utilized extensively according to the expertise and interests 

of the researchers. 

 Following the central dogma of DNA-RNA-protein information transfer (Crick, 

1970), RNAs and their regulation are indispensable in determining cell functions and 
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phenotypes. After the postgenomic era, cell type-specific marker genes have been identified 

and utilized (Redwine & Evans, 2002). More recently, tissue-specific proteins, such as 

surfactants in the lung epithelium or keratin in the epidermal epithelium, and their RNA 

expression were found to be correlated in the Genotype-Tissue Expression (GTEx) project 

(Lonsdale et al., 2013; Melé et al., 2015; Sonawane et al., 2017). Quantitative dynamic 

responses of mRNA levels to external stress have been shown to dominate the 

housekeeping functions of the cell as well (Jovanovic et al., 2015). Therefore, an RNA 

expression level could be used as a quantitative surrogate for cell functions and phenotypes. 

These quantitative assessments are obtained by NGS-based whole transcriptome 

sequencing (RNA-seq). 

An equally important aspect of understanding mRNA expression is analyzing their 

regulatory regions. These regions are termed promoters and enhancers. Their presence and 

functions are represented by histone modifications and DNA methylation. The epigenetic 

status of histone modifications can be identified by chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) and targeting the histone modifications of interest 

(Table 1). This technique has been highly successful at capturing promoter and enhancer 

regions and has been widely adopted in the ENCODE and Roadmap databases (B. E. 

Bernstein et al., 2012; Davis et al., 2018).  

Table 1 ChIP-seq markers and their functions 

 

MARKER EFFECTS REGION 

POLYMERASE-II Transcriptional Activation RNA-Polymerase 

H3K4ME1 Transcriptional Activation Enhancer 

H3K4ME3 Transcriptional Activation Promoter 

H3K9ME3 Repression Heterochromatin and repetitive elements 

H3K9/14AC Transcriptional Activation Promoter Preference 

H3K27AC Transcriptional Activation Enhancer 

H3K27ME3 Repression Repressive Domain and Silencing 

H3K36ME3 Transcriptional Elongation Transcribed Regions 
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Bridging Regulatory and Coding Regions with Haplotype Phasing 
 One of the limitations of the current NGS technologies is the lack of allele 

haplotype information due to the reliance on short-read sequencing. This limitation hinders 

the integration between the regulatory mutations and their transcripts. Without prior 

information of the allele configurations, it is not known whether the pairs are in cis- or 

trans- (or mixed in regions with copy number aberrations (CNA). The effects of the 

mutations could not be confidently evaluated. The effects of heterozygous somatic 

mutations are limited to only one of the alleles. Disregarding allele configurations would 

lead to incorrect conclusions of the effects of regulatory mutations. 

 To overcome this limitation, “Long Read Sequencing” (Pollard, Gurdasani, 

Mentzer, Porter, & Sandhu, 2018) technologies were developed. One of the approaches is 

called “Synthetic Long Read Sequencing”. The GemCode system, developed by 10x 

Genomics (Zheng et al., 2016), is based on the reconstruction of haplotype alleles from 

uniquely barcoded short read sequences by a conventional NGS short read sequencer. The 

reconstructions are achieved by capturing high molecular weight DNA (HMW-DNA) 

inside confined oil droplets with unique gel-embedded barcodes (GEMs). After 

hybridization and extension, each unique barcode, collectively called a “molecular 

identifier” or MI, is attached to the DNA molecule in the same droplets. The barcoded 

reads from HMW-DNA are sequenced by a conventional Illumina short-read sequencer. 

The origin of the individual HMW-DNA is identified by computational re-assembly of the 

reads with the same MIs. These connecting reads are termed “Linked Reads” and play a 

key role in this “Synthetic Long Read” technology. 

 Another approach in long read sequencing is nanopore sequencing, which was 

developed by Oxford Nanopore Technologies (ONT). Instead of relying on NGS for 

sequencing, the Nanopore-based MinION sequencer conducts direct sequencing of the long 

DNA strand (Jain, Olsen, Paten, & Akeson, 2016), called “Physical Long Read 

Sequencing”. Read lengths often reach tens of kilobases, although the sequencing accuracy 

is still far less than that of NGS sequencing. 
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 With the advent of long read sequencing technologies, haplotype phasing between 

two or more variants, often more than tens of kilobases apart, has now become a reality, 

enabling the association of regulatory mutations in promoter and enhancer regions with 

their transcript counterparts. 

 In this chapter, by combining multi-omics and haplotype phasing analysis, I aimed 

to document allele-based transcriptional effects of regulatory mutations, elucidate how the 

interactions between regulatory mutations and their transcriptional counterparts could be 

investigated and demonstrate their potential roles in cancer biology. 



10 
 

Material and Methods 

Cell lines 
 Twenty-three human lung adenocarcinoma cell lines were cultured in RPMI 

medium (RPMI 1640, Nissui), Dulbecco’s modified Eagle’s medium (Nissui) or Eagle’s 

minimal essential medium (Nissui) with 10% FBS, MEM nonessential amino acid solution 

(SIGMA) and antibiotics (antibiotic-antimycotic, Gibco). The cells were cultured at 37°C 

and 5% CO2. Cell line information and COSMIC reported mutations are shown in Table 2. 

Table 2 Characteristics of the Cell Lines Used in This Study 

Cell 

Line 

Sex Ethnicity Distributor Catalog 

Number 

Average 

Ploidy  

Mutation Reported by 

COSMIC 

A427 Male Caucasian ATCC HTB-53 3.13 KRAS, MSI 

A549 Male Caucasian ATCC CCL-185 2.76 KRAS, SMARCA4 

ABC-1 Male Japanese JCRB JCRB0815 2.39 TP53, ALK 

H322 Unspecified Caucasian ATCC CRL-5806 2.35 ALK, ERBB2, TP53, BRCA1 

H1299 Male Caucasian ATCC CRL-5803 4.75 NRAS, SMARCA4, TP53, 

KMT2D 

H1648 Male African ATCC CRL-5882 2.44 TP53, ARID1A, BRCA2 

H1650 Male Caucasian ATCC CRL-5883 1.99 EGFR, TP53, SMARCA4 

H1703 Male Caucasian ATCC CRL-5889 2.32 CDKN2A, TP53, ROS1, 

BRCA1 

H1819 Female Caucasian ATCC CRL-5897 - - 

H1975 Female Unspecified ATCC CRL-5908 2.83 EGFR, TP53, PIK3CA 

H2126 Male Caucasian ATCC CCL-256 3.24 TP53, SMARCA4 

H2228 Female Unspecified ATCC CRL-5935 3.74 RET, ALK, KMT2C, TP53 

H2347 Female Caucasian ATCC CRL-5942 3.76 KRAS, ALK, TP53, NRAS 

II-18 Unspecified Japanese RIKEN 

BRC 

RCB2093 - - 

LC2ad Female Japanese RIKEN 

BRC 

RCB0440 3.37 RET, TP53, TET2 

PC-9 Unspecified Japanese RIKEN 

BRC 

RCB4455 - - 
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PC-14 Unspecified Japanese IBL - 3.14 CDKN2A, CCND2, TP53, 

EGFR, KMT2S 

RERF-

LC-Ad1 

Male Japanese JCRB JCRB1020 - - 

RERF-

LC-Ad2 

Male Japanese JCRB JCRB1021 - - 

RERF-

LC-KJ 

Male Japanese RIKEN 

BRC 

RCB1313 2.72 EGFR, TP53. BRCA2 

RERF-

LC-MS 

Unspecified Japanese JCRB JCRB0081 4.33 FGFR2, TP53 

VMRC-

LCD 

Male Japanese JCRB JCRB0814 2.4 ARID1A, TP53, KDM5A, 

MAP2K4 

RERF-

LC-OK 

Unspecified Japanese JCRB JCRB0811 - - 

 

Multi-omics datasets for each cell line 
The FASTQ files from whole-genome sequencing; chromatin immunoprecipitation 

sequencing (ChIP-Seq) for H3K9me, H3K9/14ac, H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, H3K27ac, RNA polymerase II and input DNA; whole transcriptome 

sequencing (RNA-seq) and transcriptional start site sequencing (TSS-Seq) for each cell line 

were retrieved (Suzuki et al., 2014). Annotations of the coding regions were obtained from 

the KERO database using the UCSC hg38 human genome reference (http://kero.hgc.jp/) 

(Suzuki et al., 2015). The sequencing and mapping statistics for whole genome sequencing, 

RNA-seq and input ChIP-seq are shown in Table 3, and each ChIP-seq antibody is shown 

in Table 4. 

SNPs/SNVs from whole genome sequencing data 
 The FASTQ files from whole genome sequencing of each cell line were mapped to 

the UCSC hg38 human genome reference (Speir et al., 2016) using BWA (H. Li & Durbin, 

2009) (version 7.15) and the aln algorithm with default setting. PCR duplicates were then 

removed by SAMtools (H. Li et al., 2009) (version 1.18). SNPs/SNVs were called by 

http://kero.hgc.jp/
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GATK (McKenna et al., 2010) (version 3.3) with default parameters. The SNPs/SNVs 

called by GATK and those with more than 5 supporting tags and greater than 5% variant 

frequency were selected. The variant frequencies were calculated by the SAMtools (v1.18) 

mpileup command with the default setting. (see Table 3 for details) 

Regulatory regions defined by ChIP-seq 
 ChIP-seq data for 7 histone modifications (H3K9me, H3K9/14Ac, H3K4me3, 

H3K4me1, H3K36me3, H3K27me3 and H3K27Ac) and polymerase-II were processed. 

The FASTQ files were remapped to the UCSC hg38 human genome reference using BWA 

(version 7.15) and the aln algorithm with default settings. PCR duplicates were then 

removed by SAMtools (version 1.18). Peaks were called by MACS2 (Zhang et al., 2008) 

broad-peak with default parameters with input DNA as a control. Peaks that were within 

150 kb of the transcriptional start site according to TSS-seq data were treated as regulatory 

regions. If there were multiple transcriptional start sites, the closest transcriptional start site 

was selected. SNVs that fell within the peaks were then defined as regulatory SNVs. The 

number of regulatory SNVs was counted collectively. SNVs with multiple markers were 

counted multiple times and treated separately. 

Whole Transcriptome Sequencing 
FASTQ files for RNA-seq were remapped to the UCSC hg38 human genome 

reference by GSNAP using default parameters. Splice sites and introns were provided by 

the KERO database. (see Table 3 for details) 

Transcriptional Start Site Sequencing 
 For transcriptional start site studies, data from 26 lung adenocarcinoma cell lines 

and 1 small airway epithelium cell line were compared and merged. The TSSs used were 

generated from the merged dataset. The promoter region for each gene was defined as the 

region 500 bp upstream to 500 bp downstream of the transcriptional start site clusters. The 

promoters were treated as regulatory regions. 
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Background Germline Variant Filtering 
SNPs/SNVs called by GATK in the whole genome sequencing that were located 

within the regulatory regions were filtered by NCBI’s dbSNP v142 for benign germline 

variants. 

Synthetic long read library preparation by 10x GemCode 
 From 23 cell lines, high molecular weight DNA was extracted and quantified by the 

Qiagen MagAttract HMW kit according to the manufacturer’s recommendations (10x 

Genomics, Qiagen #67653). 

For each cell line, 1x106 cells were suspended in 200 μl of PBS buffer, 20 μl of 

proteinase K mixture, 4 μl of RNase A and 150 μl of buffer AL. The samples were then 

incubated at 25°C for 30 minutes. Fifteen microliters of Qiagen MagAtrract suspension G 

was added to each sample along with 280 μl of buffer MB. The samples were mixed and 

incubated at 1400 rpm at 15–25°C for 3 minutes. To wash the beads, samples were placed 

on a magnetic rack for 1 minute, and the clear supernatant was discarded. The beads were 

removed from the magnetic rack, suspended in 700 μl of Buffer MW1, mixed and 

incubated at 1400 rpm at 15–25 °C for 1 minute. The samples were put on to the magnetic 

rack, and the procedure was repeated once. After Buffer MW1, samples were then washed 

twice with 700 μl of Buffer PE. Beads with Buffer PE were placed on the magnetic rack for 

1 minute. The supernatant was removed on the magnetic rack, 700 μl of nuclease-free water 

was added and incubated for 60 seconds, the supernatant was discarded, and the processes 

were repeated once. After the beads were washed with Buffer MW1, PE and nuclease-free 

water twice, the beads were removed from the magnetic rack, and 150 μl of buffer AE was 

added to the bead pellets. The samples were mixed and incubated at 1400 rpm at 15–25 °C 

for 3 minutes. The samples were placed on the magnetic rack and incubated for 1 minute. 

The supernatant was transferred and stored at 4 °C for DNA quantification by a Qubit 

dsDNA HS Assay kit (Thermo Fisher Scientific) at a target concentration of 10-20 ng/μl. 

 For GemCode library preparation, partitioning was performed by GemCode Gel-

Beads and Chip (10x Genomics). Indexing and library preparation were performed by the 
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GemCode library preparation kit (10x Genomics) according to the manufacturer’s 

instructions. In brief, quantified high molecular weight DNA was further diluted by 

nuclease-free water to a concentration of 1 ng/μl, and 1.2 μl was used. The sample mix was 

prepared by adding 1.2 μl of diluted genomic DNA to the Master Mix, consisting of 

nuclease-free water, GemCode Reagent Mix, Primer Release Mix and GemCode 

Polymerase supplied in the GemCode Reagents Kt. The sample mix, gel beads and 

Partitioning Oil were applied onto the GemCode Chip. The GemCode Chip was loaded into 

the GemCode instrument. 

Gel beads in emulsions (GEMs) were retrieved from the instrument according to the 

manufacturer’s recommendation and transferred to a 96-well plate for a designated thermal 

cycling amplification. For post-cycling recovery, 1 μl of Additive 1 and 125 μl of Recovery 

Agent were added and mixed with each GEM according to the manufacturer’s instructions. 

The aqueous solutions were transferred, and the Recovery Agent and Partitioning Oil were 

removed. The mixture of Recovery Agent and Partitioning Oil at the bottom was first 

removed by 135 μl of pipetting. The leftover was removed with DynaBeads MyOne 

SILANE beads and 0.6X SPRI solution on the GemCode magnetic rack. Beads were 

washed with Elution Buffer I (Elution Buffer, 10% Tween-20, Additive 2) with SPRI 

reagent twice and washed with Elution Buffer II (Elution Buffer, Additive 2) once. 

The barcoded samples were subjected to library construction by shearing using the 

Covaris system. Fragmentation was performed with a target peak of 250 bp for whole 

exome and regulome sequencing and 800 bp for whole genome sequencing. End repair and 

A-tailing were performed by thermal cycling of the fragmented DNA with the End Repair 

and A-Tailing Buffer and Enzyme Mix supplied by the GemCode library preparation kit 

(10x Genomics). Products from end repair and A-tailing were ligated by thermal cycling 

with Adaptor Mix and DNA Ligase. Post ligation cleanup was performed by 0.8X SPRI 

solution on the GemCode magnetic rack. Sample indexing PCR with the P5 primer was 

conducted. The post-PCR cleanup was performed by 1.0X SPRI cleanup on the GemCode 

magnetic rack. 
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Target enrichment was performed using the Agilent SureSelectXT protocol with 

SureSelect V5 plus regulome baits according to the manufacturer’s instructions (Agilent, 

10x Genomics). See Figure 1 for a summarized workflow. 

 The FASTQ files were processed using the 10x Genomics LongRanger (version 

1.3) pipeline with default setting together with the pre-called SNPs. (see Table 5 for details) 

Non-diploid phasing using 10x Genomics GemCode 
 The phasing of nondiploid genomes was not supported by the 10x Genomics 

GemCode LongRanger (version 1.3) pipeline; however, I deemed adaptation of the 

molecular index (MI), also called unique molecular identifiers (UMIs), in nondiploid 

genomes phasing a possibility. The approach was based on the exhaustive process of 

merging UMIs that overlapped at the same nucleotide variant together to reconstruct the 

extended haplotypes. 

 First, indexes of WGS-detected SNPs and 10x GemCode UMIs covering each of 

those SNPs were generated by cross referencing the VCF file of WGS SNPs called by 

GATK to the bam file of 10x GemCode LongRanger (version 1.3). 

 From those indexes, I exhaustively merged and extended the overlapping and 

compatible UMIs into a longer “Pre-Haplotype”; UMIs were deemed compatible if #1 at 

least one SNP position overlapped and the nucleotide variant matched and #2 there were no 

different nucleotide variants in any of the overlapped SNP positions. Incompatible UMIs 

that overlapped were not merged but were designated into their own distinct “Pre-

Haplotypes” in the same phase blocks, and a UMI could be a member of more than one 

“Pre-Haplotype” if the combination allowed it. Only reads with mapping scores >20 and 

SNPs with scores >20 (in base substitution only, 10x GemCode bam file) were considered. 

These processes were repeated exhaustively until every UMI was considered. 

 Due to the random nature of the barcoding and shearing of 10x GemCode library 

preparations, these “Pre-Haplotypes” did not contain the entire lengths of the alleles. It was 

often found that in many SNPs, only one variant was covered by a UMI, and the other was 
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left isolated, thus prematurely stopping the extensions. This resulted in a phase block with 

multiple short and isolated haplotypes, which were not useful in the SNP-to-SNP linkage 

analysis. To address this, a second round of merging was performed inside each phase 

block with the goal of filling the gaps and connecting the “Pre-Haplotypes” so that each 

final haplotype now spanned the entire phase block. 

 The second merging was performed in a greedy manner. First, in each phase block, 

every “Pre-Haplotype” missing a position was determined by checking its SNPs against the 

full-length allele, and “Pre-Haplotypes” with no missing positions were considered 

complete and final. For those with missing positions, I searched for the most similar 

haplotype that could fill in the gaps from the other Pre-Haplotypes. Similarity was 

determined by the number of compatible SNPs subtracted by the number of incompatible 

SNPs, and 0 was set for nonoverlapping pairs. This process was repeated until the 

haplotype was complete with no missing position and no pre-haplotypes remaining. Only 

the final haplotypes were used in further analysis; see Figure 3 for graphic representation. 

Physical long-read sequencing by MinION 
For MinION sequencing, H1975, LC2/ad, and RERF-LC-KJ cells were used. 

High molecular weight DNAs were extracted in the same manner as described 

above. Library preparations were performed according to the manufacturer’s instructions 

(Oxford Nanopore Technologies). In brief, extracted high molecular weight DNA was 

subjected to end repair and dA-tailing by the NEBNext End repair/dA-tailing module 

(E7546S, NEB). Purifications were performed using Agencourt AMPure XP beads 

(Beckman Coulter). Ligation and tethering were performed with NEBNext Blunt/TA 

Ligase Master Mix (M0367S, NEB) and Ligation Sequencing Kit SQK-LSK208 for 2D, 

SQK-LSK108 for 1D and SQK-LSK308 for 1D2 (Oxford Nanopore Technologies). The 

obtained libraries were purified by MyOne C1 beads (65001, Thermo Fisher Scientific). 

Sequencing was performed in 48-hour run mode by MinION Mk 1B with the SpotION 

Flow Cell (FLO-MIN106, R9.4 version for 2D; FLO-MIN107, R9.5 version for 1D and 

1D2, Oxford Nanopore Technologies). 
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Base calling was performed by Metrichor. The FAST5 files were converted into 

FASTQ format with poretools (Loman and Quinlan 2014). FASTQ files were mapped to 

the UCSC hg38 human genome reference using BWA-MEM with ont2d settings for 2D 

reads (H1975, RERF-LC-KJ) and default settings for 1D and 1D2 reads (LC2/ad). 

Conversion to the bam format and sorting were performed by SAMtools (version 1.18). See 

also Figure 2 for the workflow. 

Validation of 10x GemCode Phase Block by MinION Physical Long 

Reads 
Phased SNPs were checked for coverage with MinION reads with mapping quality 

scores > 10 and spanned more than one SNP position. Combinations of covered SNP 

configurations were then referenced with those reads. Because of the lack of single 

nucleotide resolutions of the MinION reads (90% sequence identity in 2D and 80% in 1D 

and 1D2 combined), phase blocks that had more than twice the number of supporting reads 

compared with the number of nonsupporting reads were considered evidenced by MinION 

sequencing. 

Functional Analysis of Regulatory Mutations 
 Involvements of the mutations in regulatory RNA binding sites were investigated by 

referencing the location of the regulatory mutations to FANTOM CAT lv3 robust lncRNA 

region (FANTOM_CAT.lv3_robust.all_lncRNA.bed.gz) (Hon et al., 2017) and FANTOM5 

phase 1 and 2 permissive enhancer (human permissive enhancers phase 1 and 2.bed.gz) 

(Andersson et al., 2014). The regions were downloaded from the RIKEN database and then 

mapped to the USCS hg38 human genome by liftover (Kent et al., 2002). 

Transcriptional factor (TF) binding sites in A549 cells were analyzed using 50 

ChIP-seq targeting TFs, chromatin remodeling factors and RNA binding proteins in the 

A549 cell line deposited in the ENCODE database (Davis et al., 2018). Optical idr 

threshold peaks in the narraowPeak bed file of GRCh38 were used in the analysis. TF motif 

analysis was performed by searching reference and alternative sequences ±10 bp around the 

inquired motifs in the TRANSFAC database (2015.1) (Matys et al., 2006) using MATCH 
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(Kel et al., 2003). Hits with matrix similarity scores >0.95 were selected, and the results 

from alternative sequences were compared with the reference sequences. Graphical 

representation of the positional weight matrix of the biding consensus sites was created 

from TRANSFAC matrices using seqLogo R Library (Bembom, 2017). 

Luciferase Assay 
 pNL3.1 (#N1031, Promega) was selected as the vector, and pGL4.53 (#E5011, 

Promega) was selected as the control. Mutant and wild-type DNA fragments were inserted 

into the pNL3.1 vector by the Quick Ligation Protocol (M2200, New England Biolabs) 

using NheI-HF (R3131S, New England Biolabs) and HindII-HF (R3104S, New England 

Biolabs) according to the manufacturer’s instructions (Table 6A). Transformation was 

performed using the 5 Minute Transformation Protocol (C2987H/C2987I) (New England 

Biolabs), and plasmids were purified by PureLink™ HiPure Plasmid Kits (K2100, Thermo 

Fisher Scientific) according to the instructions. Transfection was performed using the 

ViaFect Transfection Reagent (E4981, Promega) according to the manufacturer’s 

instructions with a medium to final volume ratio of 4:1. Cells were assayed after 24 hours 

using the Nano-Glo Dual-Luciferase Reporter Assay System (N1610, Promega) according 

to the manufacturer’s instructions with CentroXS3 LB960 (Berthold Technology) and a 

measurement time of 1 second for both ONE-Glo and NanoDLR. 

ChIP-qPCR 
Chromatin immunoprecipitation was performed using 20 μl of ETS-1 (D8O8A) 

rabbit mAb (#14069, Cell Signaling Technology). After precipitation, quantitative real-time 

PCR was performed using Power SYBR Green PCR Master Mix (4367659, Applied 

Biosystems, Thermo Fisher Scientific) with previously reported control primers (RPS26) 

(Plotnik, Budka, Ferris, & Hollenhorst, 2014) and primers targeting ±100 bp of the motif 

region (Table 6B) on the 7900HT Fast Real-Time PCR System (Applied Biosystems). The 

qPCR products of Primer_F_2_123bp and Primer_R_shared were then subjected to Sanger 

sequencing on a 3730xl DNA Analyzer (Applied Biosystems) with their respective primer 

sets. 
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Survival Analysis 
RNA-seq v2 and clinical data of TCGA lung adenocarcinoma (TCGA-LUAD) 

donors were downloaded from the NCI Genomic Data Commons using TCGA-Assembler 

v2.0.1 (Zhu, Qiu, & Ji, 2014) (data accessed 2017/03/09). Normalized gene expression 

counts were log2 transformed and used in the analysis. Overall survival and disease-free 

survival duration were retrieved from follow-up data in clinical data files. High expression 

donors were defined as donors with expression z scores > 0.5; likewise, low expression 

donors were defined as donors with expression z scores < -0.5. Statistical significance was 

determined using the Kaplan-Meyer estimator with the log-rank test using the survival 

package in R with each group of donors as cases and others as controls. 
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Figure 1 Simplified workflow for the 10x GemCode Library preparation System (10x Genomics). 

Figure 2 Simplified workflow for MinION physical long read sequencing (Oxford Nanopore Technologies). 
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Table 3 Basic sequencing characteristics for whole genome sequencing, RNA-seq and Chip-seq background control 

Cell line Whole Genome Sequencing Whole Transcriptome Sequencing Chip-seq Input Control 

Mapped Read % Mapped Read Depth Mapped Read % Mapped Read Mapped Read % Mapped Read 

A427 1,084,672,075 94.0% 34.62 95,046,694 97.0% 58,870,145 97.0% 

A549 577,537,022 71.0% 15.92 51,009,049 98.0% 23,063,615 80.0% 

ABC-1 1,198,942,503 94.0% 38.36 89,577,661 98.0% 4,959,932 52.0% 

H322 921,462,662 95.0% 29.13 128,407,549 97.0% 5,186,262 46.0% 

H1299 930,092,532 95.0% 29.93 121,767,233 96.0% 11,053,640 93.0% 

H1648 1,303,832,736 90.0% 40.78 86,409,901 98.0% 18,636,861 96.0% 

H1650 1,093,147,187 96.0% 34.98 66,205,127 98.0% 107,477,951 96.0% 

H1703 1,035,232,011 87.0% 31.94 190,122,574 97.0% 25,836,885 82.0% 

H1819 1,197,312,856 92.0% 38.13 180,743,242 98.0% 47,573,722 95.0% 

H1975 1,056,952,131 94.0% 33.37 76,888,082 98.0% 36,642,876 97.0% 

H2126 668,355,912 88.0% 21.31 106,874,132 98.0% 11,285,585 72.0% 

H2228 855,605,013 90.0% 27.36 129,887,384 96.0% 41,236,999 92.0% 

H2347 983,271,902 85.0% 31.62 119,783,099 95.0% 55,967,654 97.0% 

II-18 890,312,525 84.0% 26.75 153,260,052 96.0% 10,210,751 58.0% 

LC2ad 1,400,218,662 93.0% 44.78 103,957,725 97.0% 2,909,093 24.0% 

PC-9 1,326,079,008 94.0% 42.40 121,730,782 96.0% 3,845,359 29.0% 

PC-14 979,278,917 97.0% 31.33 82,194,427 98.0% 12,005,835 51.0% 

RERF-LC-Ad1 1,265,604,463 95.0% 40.60 128,209,153 97.0% 22,741,126 75.0% 

RERF-LC-Ad2 1,284,008,781 95.0% 41.10 103,865,898 97.0% 32,887,224 77.0% 

RERF-LC-KJ 1,113,739,330 95.0% 35.59 138,119,858 97.0% 8,693,898 59.0% 

RERF-LC-MS 1,319,743,295 93.0% 42.30 119,134,144 97.0% 12,701,625 66.0% 

VMRC-LCD 1,394,724,167 93.0% 44.64 109,941,326 98.0% 10,201,434 50.0% 

RERF-LC-OK 684,830,042 86.0% 21.02 78,730,703 97.0% 19,353,474 97.0% 

Average 1,068,041,554 91.1% 33.82 112,255,035 97.1% 25,362,693 73.1% 
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Table 4 Sequencing statistics for individual Chip-seq antibodies for each cell line. 

Cell 

line 

Polymerase-II H3K4me1 H3K4me3 H3K9me3 H3K9_14Ac H3K27Ac H3K27me3 H3K36me3 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

A427 19,919,326 95% 35,907,915 96% 40,834,430 96% 16,099,060 98% 16,267,399 98% 45,852,658 98% 13,751,977 98% 14,511,308 98% 

A549 42,205,011 98% 24,557,168 98% 28,481,237 98% 16,398,873 93% 25,914,697 98% 13,996,665 98% 24,826,664 97% 33,981,484 98% 

ABC-

1 

30,106,498 97% 23,448,072 96% 32,348,875 97% 24,035,880 95% 15,643,097 98% 28,957,286 96% 25,120,033 96% 42,806,924 97% 

H322 20,592,481 95% 19,565,669 98% 29,291,795 97% 48,815,268 95% 22,819,233 97% 39,589,006 97% 28,757,036 97% 23,973,241 98% 

H129

9 

15,517,082 92% 15,500,143 91% 6,845,054 89% 23,174,212 94% 26,347,198 98% 25,902,379 98% 11,715,556 92% 7,919,777 93% 

H164

8 

42,151,483 96% 29,424,483 97% 26,008,969 96% 31,893,831 96% 20,124,185 97% 32,995,085 95% 16,764,970 96% 34,563,616 97% 

H165

0 

34,512,016 95% 25,494,598 96% 38,951,570 95% 49,297,255 82% 21,953,905 98% 42,526,121 97% 21,855,198 82% 21,719,937 98% 

H170

3 

33,931,810 91% 34,798,266 98% 17,985,220 91% 33,066,974 97% 27,913,705 98% 31,111,917 98% 18,727,226 98% 21,500,912 98% 

H181

9 

14,617,601 97% 35,015,007 97% 17,947,000 96% 38,744,549 93% 22,921,204 95% 23,747,865 97% 19,250,082 91% 27,777,531 94% 

H197

5 

34,211,588 98% 33,758,149 98% 18,206,422 95% 29,297,788 96% 25,467,485 98% 22,661,866 97% 16,865,773 97% 29,859,308 97% 

H212

6 

27,096,982 96% 13,390,733 98% 16,108,148 96% 18,365,403 95% 34,921,354 98% 14,662,278 97% 27,126,917 97% 37,864,976 97% 

H222

8 

34,065,433 97% 40,528,026 98% 18,474,115 96% 45,956,295 97% 26,180,133 96% 33,453,676 97% 26,892,026 97% 24,160,581 98% 

H234

7 

36,045,314 97% 30,548,297 83% 24,573,340 96% 44,156,118 97% 32,312,697 97% 36,153,407 83% 20,204,256 96% 39,717,531 97% 

II-18 33,022,666 96% 23,130,969 95% 22,114,574 97% 20,440,344 93% 13,650,439 98% 41,775,051 97% 38,796,482 98% 33,065,234 96% 

LC2a

d 

32,914,384 95% 54,113,092 98% 29,315,441 96% 11,690,048 86% 14,170,753 92% 35,788,989 98% 40,973,180 97% 24,914,911 95% 

PC-9 36,269,970 97% 24,034,872 98% 32,779,453 95% 25,383,329 89% 13,592,966 98% 20,925,733 97% 61,498,760 97% 15,533,061 96% 

PC-

14 

43,079,306 91% 36,150,087 98% 29,881,364 92% 42,868,733 97% 14,871,279 96% 37,398,511 97% 36,399,198 96% 35,516,283 98% 

RERF

-LC-

Ad1 

31,866,960 96% 42,742,931 97% 29,130,354 92% 29,272,804 92% 25,338,362 97% 26,551,483 97% 13,240,117 96% 25,750,673 97% 

RERF

-LC-

Ad2 

32,740,273 94% 44,180,544 98% 32,501,541 93% 22,862,593 87% 13,817,685 98% 33,367,124 96% 13,408,679 95% 28,652,285 96% 

RERF

-LC-

KJ 

29,962,594 94% 26,907,433 97% 43,186,043 95% 27,254,351 93% 20,979,344 97% 29,811,965 98% 23,546,066 93% 38,833,258 95% 

RERF

-LC-

MS 

21,367,869 97% 20,275,585 96% 33,129,718 86% 23,077,592 94% 12,496,785 98% 17,481,918 92% 20,814,990 94% 16,599,485 91% 

VMR

C-

LCD 

35,513,867 97% 22,012,353 97% 32,101,470 94% 29,637,264 96% 14,310,001 97% 23,498,455 97% 40,330,632 97% 42,317,596 98% 

RERF

-LC-

OK 

23,185,350 97% 38,441,077 97% 64,308,969 96% 19,515,810 92% 25,671,164 97% 27,821,894 97% 19,185,968 97% 65,905,050 97% 

Avera

ge 
31,376,285 96% 29,950,476 96% 29,389,005 94% 28,752,719 93% 21,125,630 97% 30,103,794 96% 25,490,987 96% 29,984,883 97% 
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Table 5 Sequencing and phasing characteristics for 10x GemCode synthetic long read whole exome with regulome sequencing 

WES+R Sequencing Statistics 
 

Phasing Statistics 

Cell Line Number of 

Reads 

Mapped 

Read% 

PCR 

Duplication 

Bait 

Coverage 

Dept

h 

Longest Phase 

Block 

N50 Phase 

Block 

SNPs 

Phased 

A427 99,593,100 99.5% 3.01% 99.4% 59.65 835,114 116,420 11.50% 

A549 95,848,264 99.5% 3.21% 99.3% 56.27 729,146 76,070 11.80% 

ABC-1 94,462,990 99.4% 17.60% 99.0% 52.33 1,049,789 106,062 11.80% 

H322 88,136,374 99.5% 3.56% 99.1% 51.35 1,249,705 112,172 11.50% 

H1299 103,133,700 99.4% 5.63% 99.4% 61.15 1,087,437 88,677 11.50% 

H1648 85,929,520 99.5% 3.46% 99.4% 51.49 1,073,574 94,214 10.70% 

H1650 85,269,994 99.5% 5.59% 99.0% 50.05 769,042 89,937 10.00% 

H1703 97,084,096 99.4% 5.52% 99.3% 54.65 781,297 104,174 11.80% 

H1819 93,562,794 99.3% 6.80% 99.2% 52.51 709,032 95,635 11.50% 

H1975 83,093,898 99.2% 2.63% 99.1% 48.99 652,676 84,566 9.51% 

H2126 95,109,618 99.4% 7.52% 99.3% 53.93 918,379 125,972 11.40% 

H2228 91,567,448 99.2% 3.15% 99.4% 54.40 896,157 123,272 10.20% 

H2347 93,224,434 99.4% 8.65% 99.3% 53.37 811,704 100,329 10.60% 

II-18 85,938,160 99.5% 1.75% 99.1% 50.97 468,750 78,308 10.60% 

LC2ad 87,391,948 99.1% 3.19% 99.3% 51.01 1,085,664 130,385 10.20% 

PC-9 93,671,674 99.1% 8.50% 98.9% 55.43 909,689 98,398 10.80% 

PC-14 85,912,630 99.5% 2.15% 99.3% 51.62 559,312 88,049 9.15% 

RERF-LC-Ad1 95,459,772 99.5% 3.49% 99.3% 55.92 773,885 98,237 11.00% 

RERF-LC-Ad2 85,929,050 99.5% 3.56% 99.4% 51.22 781,428 97,919 10.10% 

RERF-LC-KJ 102,867,672 99.4% 5.20% 99.5% 60.16 793,178 87,920 11.90% 

RERF-LC-MS 73,659,054 99.4% 4.91% 99.1% 41.65 748,538 103,805 9.16% 

VMRC-LCD 83,375,866 99.4% 5.12% 99.1% 47.48 876,641 89,340 10.30% 

RERF-LC-OK 101,048,218 99.5% 3.86% 99.4% 60.36 622,497 90,476 10.50% 

Average 91,269,545 99.4% 5.0% 99.2% 53 826,778 98,131 10.7% 



24 
 

 

Figure 3 Graphic Representation of Haplotype Phasing. (Left) Overlapping MIs are retrieved; (Center) Compatible MIs are 
merged into single “Pre-haplotypes”; (Right) Missing positions are filled to produce final Haplotypes 

Table 6 DNA fragments and Primers Used for Experimental Validation 

(A) DNA Fragments Used in the Luciferase Assay 

DNA Fragment Sequence 

NFATC1 Mutant 

GCTAGCTCGATTTATGGTTTCTACACACCAGACACTTTAACCTCCAACCCCCCCCATCCAAA
GCCAACAAGAAAATGCGGTGCCGTGTTGGCAGCTGAGCTGCGCCGGAAGAGACGCAGGG
AGACGTGAGAGAGGAAAGTGTGAGTGGCCGGGGGGCCTCCCCCCGTCAGAAGTCGCGCA
GTCGCGCCCATAAAACGCCCCCTCCGGAAGCTT 

NFATC1 Wild type 

GCTAGCTCGATTTATGGTTTCTACACACCAGACACTTTAACCTCCAACCCCCCCCATCCAAA
GCCAACAAGAAAATGCGGTGCCGTGTTGGCAGCTGAGCTGCGCCCGAAGAGACGCAGGG
AGACGTGAGAGAGGAAAGTGTGAGTGGCCGGGGGGCCTCCCCCCGTCAGAAGTCGCGCA
GTCGCGCCCATAAAACGCCCCCTCCGGAAGCTT 

(B) Primers Used for qPCR 

Primer Name Sequence 

Target region 
Primer_F_1_97bp CCATCCAAAGCCAACAAGAA 
Primer_F_2_123bp CCAGACACTTTAACCTCCAACC 
Primer_F_3_164bp CACATAAGGGTGTCGTGCAA 
Primer_R_shared GGCCACTCACACTTTCCTCT 
Positive control 
RPS26_F CAGCAGAAATGCTGAATGTAAAGG 
RPS26_R CATGAGATCCCTACGCGGAC 
Negative control 
Negative_control_1_F CTGCCACTTGAGGGTGAGG 
Negative_control_1_R CCATCTTGCATGCAGTTAGCC 
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Results 

Mutations Detected in Lung Adenocarcinoma Cell Lines 
 Whole genome sequencing data of all 23 lung adenocarcinoma cell lines were 

retrieved and reanalyzed. On average, 4,017,667 SNVs per cell line were detected. An 

average of 1,375,802 coding region SNVs were annotated, with 19,086 SNVs in exon 

regions per cell line. For the regulatory regions, promoters and enhancers plus repressive 

marks were defined for the individual cell lines by considering ChIP-seq peaks and 

consensus TSS-seq. The SNVs in those regulatory regions were filtered for benign 

germline variants by overlapping with dbSNP. As a result, 46,149 potential regulatory 

SNVs were identified per cell line (Table 7). The functions of these potential regulatory 

SNVs were interpreted and categorized based on promoter- or enhancer-specific ChIP-seq 

markers. A summary of the detected variants is shown in Table 7. 

Table 7 Summary of the SNPs/SNVs detected by GATK 

Cell line All 

SNPs/SNVs 

Coding SNPs/SNVs Exon SNPs/SNVs Regulatory SNVs 

A427 4,024,063 1,397,615 18,775 70,336 

A549 3,762,488 1,007,875 16,143 37,976 

ABC-1 3,918,935 1,359,715 18,666 16,068 

H322 3,710,129 1,273,472 17,904 20,721 

H1299 3,910,954 1,343,074 18,287 49,799 

H1648 4,834,699 1,701,139 24,819 55,458 

H1650 3,738,924 1,272,227 17,280 68,525 

H1703 3,908,849 1,340,392 18,276 48,520 

H1819 4,169,230 1,441,883 19,326 61,870 

H1975 4,026,746 1,333,864 19,389 36,275 

H2126 4,233,027 1,457,113 19,789 76,104 

H2228 4,407,002 1,512,216 19,312 80,690 

H2347 3,265,345 1,316,041 18,102 37,756 

II-18 4,122,525 1,428,765 20,231 37,923 

LC2ad 3,955,271 1,372,090 18,855 9,568 

PC-9 3,949,215 1,368,717 18,717 43,016 

PC-14 3,712,268 1,259,609 17,977 10,717 

RERF-LC-Ad1 4,368,425 1,514,733 20,936 68,911 

RERF-LC-Ad2 4,213,008 1,449,905 19,887 70,040 

RERF-LC-KJ 4,135,667 1,426,828 19,961 33,263 

RERF-LC-MS 3,949,142 1,348,821 17,980 48,424 

VMRC-LCD 4,078,677 1,383,592 19,613 36,918 

RERF-LC-OK 4,011,742 1,333,768 18,749 42,540 
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Average 4,017,667 1,375,802 19,086 46,149 

Multi-omics Approach in Mutation Analysis 
 To distinguish between functional regulatory mutations and functionally silent 

“passenger” mutations (The Cancer Genome Atlas Research et al., 2013; The Cancer 

Genome Atlas Research Network, 2014), I examined whether the detected SNVs activated 

or repressed their downstream transcript targets. The activated or repressed status of an 

allele could be determined from frequencies of the SNVs or SNPs of that particular allele in 

the transcriptome. Activating regulatory mutations should increase the frequency of the 

variant sequences in the RNA-seq “tags”, while repressive regulatory mutations would 

decrease it. This followed the so-called “allelic imbalance” detection approach (Figure 4) 

(Baran et al., 2015; Melé et al., 2015; Sonawane et al., 2017). To implement this, I 

considered the ratio between variant frequencies of alternative/reference nucleotides of 

SNPs/SNVs in mRNA transcripts as surrogates for allele expression patterns and the ratio 

between variant frequencies of alternative/reference nucleotides of regulatory mutations in 

each individual ChIP-seq as representative of functionality of each mutation. 

To address potential problems associated with copy number aberrations (CNAs) 

common to cancer cell lines (Table 2), I normalized both alternative and reference 

frequencies of the variants in RNA and ChIP-seq by the corresponding genomic variant 

frequencies in WGS. Because sequencing depths in WGS could represent ploidy in the 

genome (Abyzov, Urban, Snyder, & Gerstein, 2011; Roller, Ivakhno, Lee, Royce, & 

Tanner, 2016), the normalized frequencies should only represent the functional bias of the 

regulatory modifications and transcripts. 



27 
 

 

RNA-seq Reveals Transcript Allelic Imbalance Expression 
  I examined which RefSeq transcripts exhibited allelic imbalance expression and 

thus were potentially under mono-allelic transcriptional regulation. Using the ratio of 

WGS-normalized alternative/reference variants in RNA-seq, I considered variants with the 

following 2 criteria: #1) the ratio in WGS and RNA-seq was significantly different in 2 by 

2 contingency tables at p<0.01, Fisher’s exact test and #2) the ratio in RNA-seq was at least 

5-fold, favoring either alternative or reference variants. From the coding regions of 29,251 

transcript counts (averaging 1,271 per cell line), 107,155 coding variants (18,330 per cell 

Figure 4 Approach in detecting allelic imbalance expression. (Top) WGS Variants are classified into regulatory variants or 
coding variants; (Bottom) Variant frequencies in ChIP-seq (regulatory variants) and RNA-seq (coding variants) are 
investigated for biases. 
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line) were detected. Allelic imbalance expression was detected in 7,915 transcripts (596 per 

cell line) or 14,233 coding variants (619 per cell line, Figure 5A, Table 8).  

 

Figure 5 Allelic imbalance expression plots; X-axis represents reference reads’ frequencies; Y-axis represents alternative 
read’s frequencies; Non-X chromosome variants with more than 5 fold bias are in dark blue; X chromosome imbalances 
are in red. (A) RNA-seq imbalances; (B) ChIP-seq imbalance. 
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Table 8 The number of heterozygous SNVs with imbalanced and balanced transcriptions 

 

To validate the allelic imbalance of RefSeq transcripts, I first inspected whether the 

imprinting from X inactivation was presented. From 5 cell lines of known female origin 

and 12 cell lines of known male origin, I observed much larger amounts of heterozygous 

coding variants in the female cell lines (72 vs 16 on average, Table 8). For the female cell 

Sex Cell line 

Autosome + Y X 

Heterozygous 

SNPs 

Expression 
Heterozygous 

SNPs 

Expression 

Balanced Imbalanced %imbalance Balanced Imbalanced %imbalance 

Female LC2/ad 1833572 5071 422 7.68 74265 13 78 85.7 

 H1819 1760876 4402 679 13.4 6276 28 39 58.2 

 H1975 2190422 5288 591 10.1 4192 0 4 100.0 

 H2228 2331330 5904 671 10.2 14467 7 38 84.4 

 H2347 2370936 5462 585 9.7 92483 15 140 90.3 

Male A427 1856941 4147 490 10.6 4796 6 1 14.3 

 A549 2084037 3422 479 12.3 33667 0 18 100.0 

 ABC-1 1423400 2981 381 11.3 4283 3 8 72.7 

 H1299 1566125 3346 378 10.2 7107 0 10 100.0 

 H1648 2441256 5377 706 11.6 3363 2 21 91.3 

 H1650 1136166 2372 343 12.6 2677 1 21 95.5 

 H1703 1634715 3645 433 10.6 4480 2 8 80.0 

 H2126 1573235 3680 423 10.3 5148 0 6 100.0 

 RERF-

LC-Ad1 
2275585 5607 776 12.2 3557 0 4 100.0 

 RERF-

LC-Ad2 
1975614 4826 541 10.1 4601 2 9 81.8 

 RERF-

LC-KJ 
1892689 4741 546 10.3 3997 0 10 100.0 

 VMRC-

LCD 
1873618 4595 544 10.6 5253 5 8 61.5 

Unknown PC-14 1120101 303 2304 88.4 2177 1 17 94.4 

 PC-9 1538099 3825 432 10.2 5973 13 13 50.0 

 H322 1222734 3358 433 11.4 3316 2 11 84.6 

 II-18 1345778 3039 354 10.4 3733 1 1 50.0 

 RERF-

LC-MS 
1491318 3191 633 16.6 4590 1 4 80.0 

 RERF-

LC-OK 
1855675 4147 513 11.0 74904 31 107 77.5 
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lines, out of 362 total variants, 299 (83%) were considered to be under mono-allelic 

regulatory effects. Based on the number of detected variants, the unknown sex origin cell 

line RERF-LC-OK should be of female origin. These variant imbalances were also 

observed at the transcript level (Figure 6). Cross-referencing to previously reported X-

inactivation imprinted transcripts found 67 transcripts from 17 genes (Morison, Paton, & 

Cleverley, 2001). 

 

Figure 6 RefSeq transcripts with mRNA allele imbalance in each cell line. Transcripts on X-chromosome are shown in red, 
others in blue. Sex of origin is shown on bottom panel. RERF-LC-OK is likely to have a female origin. 

 Imprinting is not limited to the X-chromosome. Genes on autosomes also exhibit 

parental-specific expression via epigenetic controls (Barlow & Bartolomei, 2014). Such 

imprinting results from linage-specific, sex-specific or developmental-specific processes, 

which are not the goal of this study. I discarded RefSeq transcripts that were found to be 

imbalanced in more than 1/3 (7) of the cell lines regardless of the presence of regulatory 

mutations. A total of 124 transcripts in 76 genes (Table 9) were removed. Two examples of 

MAP2K3 and BCLAF1 imprinting are shown in Figure 7. 
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Figure 7 Two examples of transcripts considered imprinted by RNA-seq imbalance in every cell line. Presences of variants 
are indicated by blue boxes. Frequencies in H1975 cell line are shown in table and IGV’s graphics. (A) MAP2K3 (B) BCLAF1 
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Table 9 List of RefSeq transcripts considered to be imprinted 

RefSeq Gene # Cell 
Lines 

RefSeq Gene # Cell 
Lines 

RefSeq Gene # Cell 
Lines 

RefSeq Gene # Cell 
Lines 

RefSeq Gene # Cell 
Lines 

RefSeq Gene # Cell 
Lines 

NM_00275
6 

MAP2
K3 

23 NM_00101
2636 

IL32 16 NM_01961
0 

RBMXL1 13 NM_00129
0208 

ZNF717 11 NM_13337
8 

TTN 9 NM_02095
7 

PCDHB
16 

8 

NM_01473
9 

BCLAF
1 

23 NM_00101
2635 

IL32 16 NM_00103
7501 

NBPF8 13 NM_00112
8223 

ZNF717 11 NM_00331
9 

TTN 9 NM_02044
5 

ACTR3B 8 

NM_14510
9 

MAP2
K3 

23 NM_00101
2634 

IL32 16 NM_00256
8 

PABPC1 13 NM_01427
2 

ADAMT
S7 

11 NM_18261
9 

CLEC18
A 

9 NM_00104
0135 

ACTR3B 8 

NM_00107
7441 

BCLAF
1 

23 NM_00101
2633 

IL32 16 NM_00116
2536 

RBMXL1 13 NM_00119
8832 

PDE4DI
P 

11 NM_00119
3318 

RNF212 9 NM_00129
1420 

GOLGA
6L9 

8 

NM_00107
7440 

BCLAF
1 

23 NM_00101
2632 

IL32 16 NM_02469
0 

MUC16 13 NM_14468
2 

SLFN13 10 NM_00127
7444 

NBPF9 9 
   

NM_17060
6 

KMT2C 22 NM_00101
2631 

IL32 16 NM_00127
1223 

OBSCN 13 NM_00137
3 

DNAH1
4 

10 NM_00066
1 

RPL9 9 
   

NM_00116
4315 

ANKRD
36 

22 NM_00101
2718 

IL32 16 NM_05284
3 

OBSCN 12 NM_00228
1 

KRT81 10 NM_14506
1 

SKA3 9 
   

NM_00104
2414 

PSPC1 21 NM_00128
6555 

DUSP2
2 

15 NM_01775
0 

RETSAT 12 NM_00129
0210 

ZNF717 10 NM_00113
6214 

CLEC18
A 

9 
   

NM_02266
2 

ANAPC
1 

20 NM_00439
9 

DDX11 15 NM_03292
6 

TCEAL3 12 NM_03097
9 

PABPC3 10 NM_00127
1197 

CLEC18
A 

9 
   

NM_00643
7 

PARP4 19 NM_03365
5 

CNTNA
P3 

15 NM_00109
8623 

OBSCN 12 NM_00136
9 

DNAH5 10 NM_00201
6 

FLG 8 
   

NM_01826
4 

TYW1 19 NM_00100
5751 

FAM21
A 

15 NM_00100
6933 

TCEAL3 12 NM_00100
9931 

HRNR 10 NM_00120
1380 

CNTNA
P3B 

8 
   

NM_00127
1733 

MST1L 19 NM_00389
0 

FCGBP 15 NM_00127
8141 

NBPF12 12 NM_00129
0209 

ZNF717 10 NM_00125
6417 

NBPF3 8 
   

NM_18262
3 

FAM13
1C 

19 NM_00108
0400 

PLIN4 15 NM_00498
7 

LIMS1 12 NM_00109
9771 

POTEF 10 NM_00125
6416 

NBPF3 8 
   

NM_17360
1 

GXYLT
1 

18 NM_00129
1398 

FAM21
A 

15 NM_00119
3488 

LIMS1 12 NM_00116
6017 

SKA3 10 NM_01912
0 

PCDHB8 8 
   

NM_01794
0 

NBPF1 18 NM_00108
5457 

CBWD
6 

15 NM_00119
3484 

LIMS1 12 NM_01893
7 

PCDHB
3 

10 NM_00321
1 

TDG 8 
   

NM_00128
4 

AP3S1 18 NM_00125
7145 

DDX11 15 NM_00119
3485 

LIMS1 12 NM_13842
0 

AHNAK
2 

9 NM_18258
8 

RGPD4 8 
   

NM_00109
9650 

GXYLT
1 

18 NM_15243
8 

DDX11 15 NM_00119
3482 

LIMS1 12 NM_00103
7675 

NBPF9 9 NM_00101
8115 

FANCD2 8 
   

NM_01960
1 

SUSD2 17 NM_01467
5 

CROCC 15 NM_00119
3483 

LIMS1 12 NM_19818
1 

GOLGA
6L9 

9 NM_00124
3776 

CEP57 8 
   

NM_00317
4 

SVIL 16 NM_00125
7144 

DDX11 15 NM_00172
0 

BMP8B 11 NM_00693
1 

SLC2A3 9 NM_03226
4 

NBPF3 8 
   

NM_00422
1 

IL32 16 NM_00213
9 

RBMX 15 NM_00107
9809 

TMEM1
83B 

11 NM_00102
4921 

RPL9 9 NM_01538
3 

NBPF14 8 
   

NM_02392
4 

BRD9 16 NM_03065
3 

DDX11 15 NM_02101
2 

KCNJ12 11 NM_00125
6850 

TTN 9 NM_02018
5 

DUSP22 8 
   

NM_01469
6 

GPRIN
2 

16 NM_02478
6 

ZDHHC
11 

14 NM_00480
7 

HS6ST1 11 NM_13343
2 

TTN 9 NM_03214
4 

RAB6C 8 
   

NM_00100
9877 

BRD9 16 NM_18290
5 

WASH
1 

14 NM_00127
7115 

DNAH11 11 NM_13343
7 

TTN 9 NM_00018
6 

CFH 8 
   

NM_02173
8 

SVIL 16 NM_03093
0 

UNC93
B1 

14 NM_00116
4586 

IGFN1 11 NM_00126
7550 

TTN 9 NM_03308
4 

FANCD2 8 
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ChIP-seq Reveals Allelic Preference Modifications in Regulatory 

Mutations 
 Similar to allele expression, the imbalance in histone modifications was determined 

by the ratio of variant frequencies in ChIP-seq. Instead of relying on a public database, 

regulatory regions were defined individually for cell lines by histone marks. By processing 

each ChIP-seq assay in each cell line individually, I detected a total of 100,573 variants in 

all of the regulatory regions modulating 17,929 transcripts (Figure 5B). A total of 1,794 

regulatory SNVs (81 per cell line) were paired with 1,655 coding variants in 730 RefSeq 

transcripts (38 per cell line, Figure 8).

 

Figure 8 Breakdown of RefSeq transcripts, coding variants and regulatory SNVs. Number of imbalance transcripts are 
shown gray/black bars; imbalance regulatory SNVs in blue/red bars; Coding variants in light blue/orange bars. 

Phasing of Variants Detected in WGS with 10x Genomics GemCode 
 To further validate the 1,794 regulatory SNVs, their direct associations with the 

downstream 1,655 coding variants were analyzed. Interactions between regulatory elements 

and their downstream transcripts could be either cis- on the same allele or trans- on a 

different allele. Both of these possibilities represent different regulatory mechanisms. The 
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phasing of regulatory SNVs and their downstream SNVs/SNPs is indispensable for the 

identification and interpretation of these interactions. 

 The 10x Genomics GemCode platform was employed for allele phasing. To 

expedite the analysis, sequencing was performed using whole exome plus regulome bait 

(113.7 Mb), which included coding regions and promoters, enhancers and DNA methylated 

regions deposited in the ENCODE project. An average of 45,679,789 paired-end reads per 

cell line were sequenced, which averaged 53x coverage in targeted regions. Out of the 

4,038,252 variants on average per cell line, 10.8% of the variants were covered and were 

phased by the default 10x Genomics Long Ranger pipeline. It should be noted that the 

default pipeline assumes a diploid human genome; thus, the default results were found to be 

unsuitable for cancer cell line genomes. 

 To adapt the 10x Genomics GemCode to this study, I modified the analytical 

pipeline. In brief (see details in the Methods section), for each variant having adequate 

coverage, UMIs corresponding to the alternative and reference nucleotides were recovered. 

Allele haplotypes were constructed from each unique combination of the variants supported 

by the UMIs. I linked the variants in different positions into phased regions called “Phased 

Blocks”. I obtained 7,004 phased blocks per cell line on average with an average length of 

55 kb per block (1.7 Mb maximum, Figure 9A). Anchoring these blocks were WGS 

variants with an average of 13 variants per block (702 max, Figure 9B). From the 

combinations of the variants, 3 haplotypes were made on average (Figure 9C). Collectively, 

in all cell lines, 40,073 blocks (1,742 average) contained 89,333 regulatory SNVs (3,884 

average). On average, 2 regulatory SNVs were linked in 33 variant chains (Figure 9D). 

Statistics for each cell line are shown in Table 10. 
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Figure 9 Phase Block Statistics histograms. (A) Block length distributions. (B) WGS SNV count distributions. (C) Haplotypes 
from (B) distributions. (D) Stats of blocks containing regulatory SNVs; inset shows length of blocks containing regulatory 
SNVs. 
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Table 10 Statistics of the Phase Blocks in Each Cell Line 

Cell line Phase Block Length # of SNPs/SNVs in a Phase 

Block 

# of Haplotypes in a Phase 

Block 

Max Average Median Max Average Median Max Average Median 

A427 1,194,537 65,754 23,338 472 16 4 64 3.56 2 

A549 829,372 35,012 11,694 311 10 3 44 2.94 2 

ABC-1 1,198,524 53,875 20,988 608 13 3 103 3.47 2 

H322 1,138,518 53,459 18,296 387 14 3 43 3.41 2 

H1299 848,580 43,843 18,352 690 12 4 98 3.18 2 

H1648 1,052,406 53,067 17,726 638 15 4 100 3.40 2 

H1650 1,227,114 38,179 13,549 396 11 3 56 2.97 2 

H1703 755,716 53,745 21,890 695 14 4 112 3.49 2 

H1819 745,916 46,591 17,492 441 14 4 44 3.38 2 

H1975 1,025,195 38,330 12,983 573 12 4 94 3.03 2 

H2126 950,576 64,867 25,444 595 15 4 134 3.46 2 

H2228 1,427,558 67,865 24,282 518 16 4 55 3.46 2 

H2347 1,300,851 55,205 20,739 481 15 4 64 3.52 2 

II-18 608,739 35,312 12,450 449 11 4 78 3.17 2 

LC2ad 1,304,146 72,936 27,677 620 17 4 106 3.53 2 

PC-9 945,733 50,160 22,921 372 13 4 32 3.05 2 

PC-14 383,302 22,036 8,343 294 5 2 40 2.77 2 

RERF-

LC-Ad1 

948,045 53,509 19,925 472 15 4 69 3.47 2 

RERF-

LC-Ad2 

997,249 55,219 20,673 335 14 4 39 3.35 2 

RERF-

LC-KJ 

798,407 45,667 19,387 692 13 4 154 3.35 2 

RERF-

LC-MS 

1,208,661 54,802 21,687 506 12 4 61 3.19 2 

VMRC-

LCD 

987,944 47,138 18,998 499 13 4 95 3.39 2 

RERF-

LC-OK 

876,013 46,425 19,036 368 13 4 55 3.26 2 

Average 989,265 50,130 19,038 496 13 4 76 3.29 2 
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A phase block example in the A549 cell line is shown in Figure 10. Seven WGS 

variants were linked to the region spanning chr2:38038277-38071060 (32 kb), which 

overlapped with CYP1B1. A variant at chr2:38070511 C>CA fell in a regulatory region, 

and three variants at chr2:38070996 T>C, chr2:38071007 A>G and chr2: 38071060 C>G 

fell inside the CYP1B1 coding region. Seven SNVs, including the above four SNVs, were 

linked together by UMI (blue lines) of the 10x Genomic GemCode platform, clearly 

separating the two C-T-A-C (upper) and +A-C-G-G (lower) haplotypes apart. 

 

Figure 10 Example of a Phase Block of CYP1B1 in A549 Cells. Blue lines represents 10x Gemcode MIs connections; 
regulatory SNV at chr2:38070611 (dark green) is phased to 3 coding variants (light green). 

A practical utilization of phased blocks was illustrated in the phasing of EGFR 

L858R and T790M mutations (Figure 11). These two mutations are known to coexist in the 

same allele in drug-resistant clones (Liang et al., 2018). The phasing correctly assigned the 

two mutants (green arrows) together on the same allele in H1975 cells, a cell line known to 

harbor these two mutations. 
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Figure 11 Phasing of EGFR T790M to L858R. Phase block spanning EGFR in H1975 cell line is shown. T790M and L858R 
mutations configuration is correctly identified. 

 While the majority of the phase block contained two haplotypes, a significant 

number of the blocks contained more than two haplotypes. To further examine these 

findings, the reported ploidy of the cell lines in the COSMIC database was referenced 

(Forbes et al., 2015). Seventeen of the 23 cell lines were reported at an average ploidy of 

3.04 (Figure 12). While some cell lines showed large discrepancies with a 1-1.5 ploidy 

difference, the majority held up comparably well. The most likely reason for the 

discrepancies was that the haplotype counts in the phase block did not represent the actual 

copy numbers in those regions but represented the number of unique alleles. One of the 

most frequently reported regions to undergo amplification is the ERBB2 gene region, which 

encodes HER2, a crucial genetic marker in breast cancer. This amplification is the first and 

most frequently reported one in breast cancer (Kallioniemi et al., 1992) but is also 

commonly be found in other cancers (Dahlberg et al., 2004; Grob et al., 2012). In the 

phasing analysis in this study, this region harbored 9 unique haplotype combinations 

(Figure 13). 
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Figure 12 Phase Block Average Haplotype Compared with the COSMIC Database. Seventeen of 23 cell lines’ haplotypes 
are reported in COSMIC (orange bar).  

 

Figure 13 Phasing of ERBB2 Amplification. Nine unique haplotypes are built from combinations of 10x Gemcode MIs. 
Several positions overlap with ERBB2 coding region. 
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To more directly validate the phasing, whole genome MinION sequencing was 

conducted for H1975, LC2/ad and RERF-LC-KJ cells. Due to the limitation of this 

technique in sequencing yield, 674,333 and 511,982 reads from 2D sequencing runs of 

H1975 and RERF-LC-KJ cells (Table 11) and 5,620,315 reads from 1D and 1D2 

sequencing runs of LC2/ad cells (Table 12) were generated and mapped to the UCSC hg38 

human reference genome. 

Table 11 Statistics of H1975 and RERF-LC-KJ cell MinION 2D2 sequencing runs 

 

Table 12 Statistics of LC2/ad cell MinION 1D and 1D2 sequencing runs 

 

 The physical long reads from MinION covered or partially covered 5,763 (61%) 

phase blocks in H1975 cells, 4,046 (47%) in RERF-LC-KJ cells and 5,282 (79%) in 

LC2/ad cells (Table 13). These insufficient coverages were due to the low genome 

coverage of the MinION sequencing. By examining the combinations of the SNVs in the 

covered haplotype block, I found that 4,962 (86%), 3,473 (86%) and 4,422 (78%) of 

H1975, RERF-LC-KJ and LC2/ad cells, respectively, were represented by MinION reads. 

One of the examples of the validation process is shown in Figure 14, where the phase block 

covering SEMA6A in the H1975 cell line is shown. Taking all the obtained results together, 

I concluded that the SNV-to-SNV associations inside the phase block were sufficiently 

accurate for the following analysis. 

Cell line Run 

1D read 2D read 

Total
*
 Unmapped 

Mapped 

to 

human 

genome 

Avg. 

depth 

Coverage 

(≥1×) 

Read length 

pass fail pass fail Mean Max 

H1975 10 42,629 291 640,277 61,363 682,209 7,876 
674,333 

(98.8%) 
0.7 0.46 4,815 179,616 

RERF-LC-

KJ 
3 - - 477,280 42,680 519,960 7,978 

511,982 

(98.5%) 
0.58 0.36 3,627 118,237 

Cell line Run 
Total

*
 

(1D + 1D 

square) 

Unmapped 

Mapped to 

human 

genome 

Avg. 

depth 

Coverage 

(≥1×) 

Read length 

Mean Max 

LC2/ad 13 6,704,709 1,084,394 
5,620,315 

(83.8%) 
6.6 0.93 6,572 2,495,160 
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Table 13 Statistics of Phase Block Validation by MinION 

 

Figure 14 MinION Validation of 10x GemCode Phase Block Results in SEMA6A in the H1975 Cell Line. 10x Gemcode 
phasing is shown in center thin black lines; MinION read coverages are shown in blue/light blue for haplotype1 and 
red/yellow for haplotype2. IGV graphics for each position are shown at the top. 

Cell line H1975 RERF-LC-KJ LC2/ad 

Flow cell version R9 + R9.4 R9.4 R9.5 

Run 9 (2D passed) + 1 

(1D) 3 (2D) 3 (1D) + 10 (1D 

square) 
Phase block 9382 8623 6697 

Block covered 5763 4046 5282 

% block covered 61.4 46.9 78.9 

SNPs in block 199,987 193,853 218,892 
SNPs covered 74,916 44,018 164,656 

% SNPs covered 37.5 22.7 75.2 
Supported block 4963 3473 4422 

Not supported block 800 573 1260 
% supported block 86.1 85.8 77.8 
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Phasing of Regulatory SNVs into Functional Regulatory Mutations 
 Of the 1,794 phased regulatory SNVs, 137 regulatory SNVs in 146 RefSeq transcripts 

exhibited ChIP-seq allele imbalances. These SNVs were phased to 166 downstream transcript 

variants that also exhibited compatible allele imbalance expression patterns (Figure 15, Table 14). 

 

Figure 15 Imbalanced and Phased RefSeq Transcript Counts in each Cell Line. Numbers of transcripts are shown in grey. 
Number of regulatory SNVs are shown in red for X-chromosome, blue for others. 
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Table 14 Summary of Imbalanced and Phased Regulatory Mutations and Their Annotations 

Cell line Regulatory mutation Imbalanced ChIP Gene RefSeq TF ChIP-seq  
(A549; ENCODE) 

Transfac (2015.1) 

Chr Position Ref Alt Loss of TFBS Gain of TFBS 

A427 chr12 54016223 C CCCCTAG H3K4me1 HOXC4,HOX
C6, 

NM_014620,NM_153693, - - - 

A427 chr15 40282532 C T H3K4me3,H3K9/14ac
,H3K27ac 

ANKRD63, NM_001190479, CTCF - - 

A427 chr16 1959861 G GC H3K4me3,H3K9/14ac RPS2, NM_002952, TAF1,TCF12,PHF8, AP2ALPHA,SP1SP3 BCL6B,EGR1,OSX,WT1,ZN451 

A427 chr17 5191978 C G H3K4me3,H3K27ac ZNF594, NM_032530, SIN3A,ETS1,SP1,CTCF,POLR2A,GABP
A,SMC3,ELF1,NR3C1,SIX5,TCF12,MY
C,TAF1,RAD21,ZBTB33 

- TBX5 

A427 chr17 42702516 G GT H3K36me3 CNTNAP1, NM_003632, - CPBP,KID3,TCFAP2C GABPA,VMYB 

A427 chr2 85418648 A ACG PolII,H3K27ac CAPG, NM_001256139, SIN3A,ETS1,SP1,POLR2A,PHF8,GABP
A,SMC3,ELF1,CEBPB,SIX5,TCF12,MY
C,TAF1 

- AHRHIF,AHR,EGR1,HES1 

A427 chr20 43658427 G GT H3K9/14ac MYBL2, NM_002466, - - - 

A427 chr20 51803238 A AT H3K9/14ac SALL4, NM_020436, - - - 

A427 chr3 149375499 T C H3K4me3,H3K9/14ac
,H3K27ac 

TM4SF1, NM_014220, SIN3A,ETS1,SP1,ELF1,POLR2A,YY1,T
CF12,ZBTB33 

- - 

A427 chr6 3260207 C CTT H3K4me3 PSMG4, NM_001128592,NM_0011
28591,NM_001135750, 

- - - 

A549 chr15 23440915 T C H3K27me3 MKRN3, NM_005664, - GATA1,ZFP64 GCMA,GCMB 

A549 chr15 23566678 T A H3K4me3 MKRN3, NM_005664, - IRF5 - 

A549 chr16 25257835 C CG H3K4me3 ZKSCAN2, NM_001012981, SIN3A,POLR2A,PHF8,REST,GABPA,S
REBF1 

AP2ALPHA WT1,ZN451 

A549 chr17 80355364 G T H3K36me3 ENDOV, NM_173627,NM_0011646
38,NM_001164637, 

- GAF,TEF1 - 

A549 chr17 80355526 G A H3K36me3 ENDOV, NM_173627,NM_0011646
38,NM_001164637, 

- CPBP,ZAC ELF1,SPI1 

A549 chr2 38070511 C CA H3K9/14ac CYP1B1, NM_000104, - - - 

A549 chr2 85418650 A ACGCG H3K27ac CAPG, NM_001256139, SIN3A,ETS1,SP1,POLR2A,PHF8,GABP
A,SMC3,ELF1,CEBPB,SIX5,TCF12,MY
C,TAF1 

- - 

A549 chr4 188109160 A ACG H3K4me3 TRIML2, NM_173553, CEBPB, - AHR 

ABC-1 chr1 226679940 C CG H3K27ac ITPKB, NM_002221, - - E2F1,GKLF 

ABC-1 chr10 27100911 C CA H3K9/14ac ANKRD26, NM_014915,NM_0012560
53, 

ETS1,TAF1 - - 

ABC-1 chr19 57476910 C T H3K4me3 ZNF772, NM_001144068,NM_0010
24596, 

- - IRF4,IRF6 

H1299 chr1 66301190 A AT H3K27ac PDE4B, NM_001037339, - - - 

H1299 chr1 113811755 CGT
TTT
CCT
GCT
T 

C H3K4me3,H3K9/14ac
,H3K27ac 

RSBN1, NM_018364, - EHF,NFAT1,SOX17 - 

H1299 chr10 68334075 A AAAC H3K4me3 PBLD, NM_001033083,NM_0221
29, 

- - CMYB,FOXA2,FOXD2,FOXD3,F
OXG1,FOXI1,FOXJ2,FOXJ3,FOX
K1,FOXL1,FOXO1A,FOXO1,FO
XO3A,FOXO3,FOXO4,FOXO6,F
OXP3,FREAC2,MYB,SOX5,SRY 

H1299 chr14 21069184 G A H3K9/14ac ARHGEF40, NM_018071, - - - 

H1299 chr14 23953737 A ACT H3K27ac DHRS4, NM_021004, POLR2A,TAF1 - - 

H1299 chr19 36548272 T A H3K36me3 ZNF529, NM_020951, - GATA3,ZNF333 BCL6,MEF2C,TEF3,TEF5 

H1648 chr12 114684071 G GGAGA H3K27ac TBX3, NM_005996,NM_016569, SIN3A,POLR2A,REST,PHF8,SIN3A,YY
1,SIX5,NR3C1,CHD1,TAF1,ZBTB33 

- - 

H1648 chr2 131528390 G A H3K4me3 CCDC74A, NM_138770, - - - 
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H1648 chr5 149002770 C CA H3K27ac SH3TC2, NM_024577, - FOXC1 BRN1 

H1648 chr5 149004604 G A H3K27ac,H3K4me1 SH3TC2, NM_024577, - CPBP - 

H1648,H1819 chr5 178941464 C CCAAA H3K4me3,H3K9/14ac ZNF454, NM_001178089,NM_0011
78090,NM_182594, 

- - - 

H1650 chr1 110389770 G GGA H3K4me3 SLC16A4, NM_001201548,NM_0012
01547,NM_004696,NM_00
1201549,NM_001201546, 

- - AP4 

H1650 chr18 12955468 T C H3K36me3 SEH1L, NM_031216,NM_0010134
37, 

- - - 

H1703 chr11 78040678 T TA H3K27ac KCTD14, NM_023930, - - CDX1,HOXA13,SATB1 

H1703 chr4 54240616 C G H3K36me3 PDGFRA, NM_006206, - - HSF4 

H1703 chr4 54277854 G T H3K4me1 PDGFRA, NM_006206, - ERG,FLI1,GABPBETA,OSR1 - 

H1703 chr4 54285836 T G H3K36me3 PDGFRA, NM_006206, - - STAT3 

H1703 chr6 73394947 C G H3K4me3,H3K9/14ac
,H3K27ac 

DDX43, NM_018665, - - GLI2,GLI3,GLI,ZBTB7C 

H1703 chr7 100627013 C CTG H3K4me1 TFR2, NM_001206855, RNF2 - HSF4,KAISO,NF1B 

H1819 chr1 20612675 G A H3K4me1 CDA, NM_001785, - ING4,KID3 - 

H1819 chr6 27867700 G C PolII,H3K9/14ac,H3K
27ac 

HIST1H2AL, NM_003511, - - - 

H1975 chr1 8374283 A C H3K4me1 SLC45A1, NM_001080397, - MEF2D,ZFP800 HMBOX1,RFX4 

H1975 chr16 56638440 C CG H3K27ac MT1A, NM_005946, POLR2A ZAC - 

H1975 chr17 64082851 T TTA H3K27ac ERN1, NM_001433, SREBF1 GFI1 FOXD3,HNF3B,MEF2C,PMX1,Z
NF333 

H1975 chr19 9471504 A AT H3K36me3 ZNF560, NM_152476, - - PRX2 

H1975 chr5 96877423 C CA H3K9/14ac ERAP2, NM_022350,NM_0011301
40, 

- EGR1,RREB1,WT1 PUR1,SMAD5 

H1975 chr5 96896546 G GAAA H3K36me3 ERAP2, NM_022350,NM_0011301
40, 

- - PARP,SPIB 

H1975 chr7 24830481 A G H3K36me3 DFNA5, NM_001127453, - - - 

H2126 chr1 66265697 T TGTGAA H3K4me1 PDE4B, NM_001037339, TCF12 - SOX10 

H2126 chr17 39056981 C CT H3K27ac PLXDC1, NM_020405, ETS1,SP1,POLR2A,ZBTB33 - - 

H2126 chr19 48696618 G C H3K9/14ac,H3K27ac FUT2, NM_001097638,NM_0005
11, 

- - - 

H2126 chr19 53881131 C CAG H3K27me3 PRKCG, NM_002739, POLR2A - - 

H2126 chr2 29114657 G C H3K4me1 CLIP4, NM_024692, REST,ATF3 - BEN 

H2126 chr2 206274726 C T H3K9/14ac,PolII ZDBF2, NM_020923, SIN3A,POLR2A,PHF8,GABPA,TAF1 - - 

H2228 chr1 27935147 T TG PolII SMPDL3B, NM_014474,NM_0010095
68, 

- - CREL,SPIB 

H2228 chr12 4518175 G A H3K4me1 C12orf4, NM_020374, - - NKX25,NKX28,NKX2B 

H2228 chr16 3443336 C T PolII ZNF597, NM_152457, SIN3A,ETS1,YY1,TAF1 - - 

H2228 chr16 73070710 G GTC PolII ZFHX3, NM_001164766, SIN3A,SP1,MAZ,POLR2A,NR3C1,ATF
3,JUN,GABPA,ELF1,SIN3A,TCF12,MY
C,FOSL2,TAF1,JUND,RAD21 

- - 

H2228 chr17 50533812 C CT H3K4me1 EPN3, NM_017957, - CREB - 

H2228 chr20 31948814 C A H3K36me3 PDRG1, NM_030815, - PBX1 - 

H2228 chr4 48173432 C CAGGTTG
TTTGGT 

H3K27ac TXK, NM_003328, - - FOXO1A,SRY 

H2228 chr4 87975555 T TG PolII,H3K27ac SPP1, NM_001251830,NM_0005
82,NM_001040058,NM_00
1040060,NM_001251829, 

SIN3A,SP1,TAF1 FOXC1,FOXO1A,FOXO1,SOX4,
SRY 

- 

H2347 chr11 62557963 T TG H3K36me3 ROM1, NM_000327, - ZNF302 HES1,ING4,KID3,USF 

H2347 chr12 47758954 G T H3K9/14ac RAPGEF3, NM_001098531, SIN3A,NR3C1 BCL6B,CPBP,EGR1,OSX,SP1SP
3,SP1,SP2,SP4,WT1 

EGR2,KLF17,LKLF 

H2347 chr2 26299918 G GA H3K9/14ac GPR113, NM_153835, - CIZ - 

H2347 chr22 37187692 G GC H3K4me3,H3K9/14ac
,H3K27ac 

C1QTNF6, NM_031910,NM_182486, - BEN ZFP516 

H2347 chr5 157552395 T TA H3K36me3 ADAM19, NM_033274, - GTF2IRD1 - 
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H2347 chr5 179023703 C CCA H3K4me3,H3K27ac ZNF454, NM_001178089,NM_0011
78090,NM_182594, 

ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1
,SIX5,ZBTB33 

- ARNT,KID3 

H2347 chr5 179023705 G C H3K4me3,H3K27ac ZNF454, NM_001178089,NM_0011
78090,NM_182594, 

ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1
,SIX5,ZBTB33 

- ISL2,NKX31,NKX32 

H2347 chr5 179023789 C T H3K27ac ZNF454, NM_001178089,NM_0011
78090,NM_182594, 

ETS1,SP1,POLR2A,PHF8,ELF1,NR3C1
,SIX5,ZBTB33 

- ELK1,ER81,ETV7,ZSCAN2 

H2347 chr6 28399927 C CT H3K4me3 ZSCAN12, NM_001163391, SIN3A,ETS1,SP1,POLR2A,ATF3,PHF8,
GABPA,YY1,SIX5,TAF1,ZBTB33 

- - 

H2347 chrX 11115164 G T H3K36me3 HCCS, NM_005333,NM_0011226
08,NM_001171991, 

- - P50,SALL3,STAT6 

H2347 chrX 40049931 A G H3K36me3 BCOR, NM_017745,NM_0011233
85, 

- - - 

H2347 chrX 46574956 C T H3K4me3,H3K27ac CHST7, NM_019886, - - - 

H2347 chrX 47483521 C CA H3K4me3,H3K9/14ac
,H3K27ac 

ZNF41, NM_153380,NM_007130, REST,TAF1 BCL6B,GKLF,WT1,ZFP740 - 

H2347 chrX 48528539 G T H3K36me3 EBP, NM_006579, - - - 

H2347 chrX 48539949 G A H3K4me3,H3K27ac TBC1D25, NM_002536, SIN3A,CTCF,PHF8, - KID3 

H2347 chrX 48559236 C A H3K36me3 TBC1D25, NM_002536, - BCL6B,PAX2 - 

H2347 chrX 49002196 G T H3K4me3,H3K9/14ac
,H3K27ac 

GRIPAP1, NM_207672,NM_020137, SIN3A,ETS1,SP1,POLR2A,REST,GABP
A,CEBPB,YY1,SIX5,TCF12,CHD1,TAF1 

BEN - 

H2347 chrX 65534259 A T H3K4me3,H3K27ac LAS1L, NM_001170649,NM_0312
06,NM_001170650, 

- GATA3,GATA5,HOXA10,ZBTB4
4 

- 

H2347 chrX 65534494 C A H3K4me3,H3K27ac LAS1L, NM_001170649,NM_0312
06,NM_001170650, 

REST,KDM5A, - - 

H2347 chrX 71256219 C T H3K27ac ZMYM3, NM_201599, - - PMX1 

H2347 chrX 100665623 C A H3K36me3 SRPX2, NM_014467, - - - 

H2347 chrX 100665625 G T H3K36me3 SRPX2, NM_014467, - - - 

H2347 chrX 100822341 C A H3K36me3 CSTF2, NM_001325, - - - 

H2347 chrX 103586064 G T H3K4me3,H3K9/14ac
,H3K27ac 

TCEAL4, NM_001006937,NM_0010
06935,NM_024863, 

PHF8,YY1,TAF1 - SOX4 

H2347 chrX 119399107 C CT H3K4me3,H3K9/14ac SLC25A43, NM_145305, REST - - 

H2347 chrX 119399109 A T H3K4me3,H3K9/14ac
,H3K27ac 

SLC25A43, NM_145305, REST - HSF4 

H2347 chrX 120603552 C T H3K27ac C1GALT1C1, NM_001011551,NM_1526
92, 

- - - 

H2347 chrX 132957182 C A H3K4me3 HS6ST2, NM_147175,NM_0010771
88, 

- - NR1B2 

H2347 chrX 132957183 G GA H3K4me3 HS6ST2, NM_147175,NM_0010771
88, 

- - - 

H2347 chrX 136504229 G A H3K36me3 HTATSF1, NM_001163280, - PLZFB - 

H2347 chrX 155216488 G C H3K4me3,H3K27ac VBP1, NM_003372, SP1,POLR2A,REST,PHF8,YY1,TAF1 REX1,YY1,YY2 NFMUE1 

II-18 chr1 220733283 C A H3K27ac MARC2, NM_017898, SP1,CTCF,MAZ,GABPA,SMC3,ELF1,T
CF12,RAD21 

RELA HSF4,P50RELAP65 

II-18 chr11 64203784 C CTTTG H3K36me3 FERMT3, NM_178443,NM_031471, - - FOXM1,FOXO1A,HFH2,HNF3G
,SRY 

II-18 chr12 105084230 T TTTTG H3K4me3,H3K9/14ac
,H3K27ac 

ALDH1L2, NM_001034173, SIN3A,YY1 - FOXD3,HFH3,HNF3 

LC2ad chr7 94655777 G GAAA H3K4me3 PEG10, NM_001172437,NM_0011
72438, 

SIN3A,PHF8 - - 

LC2ad chr7 122303951 G C H3K27ac FEZF1, NM_001024613,NM_0011
60264, 

- OSR1,OSR2 ARNT 

RERF-LC-Ad1 chr1 8422756 T G H3K9/14ac,H3K27ac SLC45A1, NM_001080397, - PRRX2 - 

RERF-LC-Ad1 chr10 69222380 T TCA H3K4me1 HKDC1, NM_025130, CTCF,CEBPB - ZBTB44 

RERF-LC-Ad1 chr11 75403270 A T H3K36me3 KLHL35, NM_001039548, - - - 

RERF-LC-Ad1 chr18 79395018 C G H3K4me3 NFATC1, NM_172390,NM_006162,
NM_172388, 

RNF2 - CETS1P54,CETS1,EHF,ELK1,ER
71,ER81,ERM,ETV7,FLI1,GABP
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AGABPB,GABPA,GADP,PEA3,P
EA3 

RERF-LC-Ad1 chr19 20545301 G GT H3K9me3 ZNF737, NM_001159293, - - - 

RERF-LC-Ad1 chr19 20565417 G GCA H3K27ac ZNF737, NM_001159293, - - - 

RERF-LC-Ad1 chr19 35003143 C CGT H3K4me1 ZNF792, NM_175872, SIN3A,ETS1,SP1,ATF3,SIX5 - - 

RERF-LC-Ad1 chr2 225582441 G C H3K36me3 NYAP2, NM_020864, - BTEB2,E2F3,EGR1,MOVOB,SP
1,SP2,WT1 

GKLF,MAZR,MAZ,SP1SP3,WT1
,ZFP281,ZFP740,ZN451 

RERF-LC-Ad1 chr20 22582148 G A H3K36me3 FOXA2, NM_021784, POLR2A - TFAP2A 

RERF-LC-Ad1 chr3 179244703 G GA H3K36me3 KCNMB3, NM_171829, - - - 

RERF-LC-Ad1 chr6 26197055 G A H3K4me3,PolII,H3K9/
14ac,H3K27ac 

HIST1H3D, NM_003530, - MYB - 

RERF-LC-Ad1 chr6 26199147 G C H3K9/14ac HIST1H3D, NM_003530, - - - 

RERF-LC-Ad1 chr6 158031620 G GTC H3K4me1 SYNJ2, NM_001178088, SIN3A,SP1,NR3C1,TCF12,FOSL2 - - 

RERF-LC-Ad2 chr1 17303761 C CTCCTCT
GAG 

H3K4me1 PADI4, NM_012387, - - - 

RERF-LC-Ad2 chr11 308885 G GC H3K4me1 IFITM2, NM_006435, - - LFA1 

RERF-LC-Ad2 chr15 89785543 A AAC H3K27ac ANPEP, NM_001150, NR3C1 - - 

RERF-LC-Ad2 chr16 81096914 G C H3K4me1 GCSH, NM_004483, EHMT2 KID3 - 

RERF-LC-Ad2 chr16 81097354 G C H3K4me1 GCSH, NM_004483, EHMT2 - - 

RERF-LC-Ad2 chr19 57709211 G GC H3K4me3 ZNF154, NM_001085384, - - - 

RERF-LC-Ad2 chr5 150139698 A AC H3K4me1 PDGFRB, NM_002609, - - AML1,PEBP2B 

RERF-LC-KJ chr1 155932383 G GA H3K36me3 RXFP4, NM_181885, - SIX1 - 

RERF-LC-KJ chr10 46130177 G T H3K36me3 AGAP7, NM_001077685, - NKX25,RBPJK,ZNF860 BCL6 

RERF-LC-KJ chr19 52602057 G GAA H3K9/14ac ZNF701, NM_018260, - - BARBIE 

RERF-LC-KJ chr19 53408011 C T H3K36me3 ZNF765, NM_001040185, - - - 

RERF-LC-MS chr1 182586389 C A H3K4me3 RNASEL, NM_021133, - LEF1,TCF3 HELIOSA 

RERF-LC-OK chr11 68772512 T TG H3K36me3 MTL5, NM_001039656,NM_0049
23, 

- RFX - 

RERF-LC-OK chr15 89781340 C G H3K27ac MESP1, NM_018670, - - CETS1,ELF1,ELF5,ELK1,ESE1,ET
S1,ETS,PEA3,PU1,SPI1,SPIB,SPI
C 

RERF-LC-OK chr5 96884962 T TG H3K36me3 ERAP2, NM_022350,NM_0011301
40, 

- - - 

RERF-LC-OK chr5 96895154 T TA H3K36me3 ERAP2, NM_022350,NM_0011301
40, 

- - - 

RERF-LC-OK chr5 149446233 G GT PolII PCYOX1L, NM_024028, SP1,POLR2A,NR3C1,FOXA1 - - 

RERF-LC-OK chr7 151345978 G T H3K4me1 NUB1, NM_001243351,NM_0161
18, 

- - - 

RERF-LC-OK chr9 131396736 T C H3K4me1 PRRC2B, NM_013318, - - EGR3,KID3 

RERF-LC-OK chr9 131528708 G A H3K36me3 UCK1, NM_001135954,NM_0314
32, 

- - - 

RERF-LC-OK chrX 51743749 C T H3K4me3 GSPT2, NM_018094, PHF8,GABPA ZBED6 - 

VMRC-LCD chr11 94768533 C T H3K4me3 AMOTL1, NM_130847, - - RELA 

VMRC-LCD chr12 94149889 G A H3K27ac PLXNC1, NM_005761, - KLF17,LKLF - 

VMRC-LCD chr15 74853540 C G H3K36me3 ULK3, NM_001099436, - BEN GKLF 

VMRC-LCD chr7 73827962 T TTAGTCA
CTTCTG 

PolII,H3K27ac WBSCR27, NM_152559, POLR2A,NR3C1,MYC,FOSL2 - AP1FJ,AP1 
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 To illustrate functional interpretations, a putative regulatory mutation in the ZDBF2 

region in the H2126 cell line is shown in Figure 16. The regulatory mutation C>T at 

chr2:206274726 exhibited a ChIP-seq imbalance in RNA-polymerase II and H3K9/14ac 

assays. This SNV was phased to the coding variant A>G at chr2:206305007 for which 

RNA-seq imbalance expression was also found. 

 

Figure 16 Effects of Regulatory Mutations on ZDBF2 in H2126 Cells. (Top) Two haplotypes are made from phasing. 
(Bottom) Allele imbalances reveal that only haplotype1 (T-T-G) is active. 

 I next examined whether the dysregulation caused by these putative regulatory 

mutations directly affect oncogenes. PDGFRA is a known mutation and amplification target 

in lung cancer. In H1703 cells, both gene amplification and regulatory mutations in 

PDGFRA were found (Figure 17). Phasing analysis suggested that the variants found were 

organized into two haplotypes: (1) G-T-T-T-G-G-G-C and (2) C-C-G-C-A-C-C-T. WGS 

variant frequencies also suggested gene amplification of the (2) allele. In agreement with 

copy number changes, allelic imbalance analysis revealed a heavy bias towards (2) in both 

ChIP and RNA-seq, suggesting regulatory effects of the mutations acting on the (2) allele. 

These two observations suggested regulatory mutations with gain of function in this gene. 
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Figure 17 Gene Amplifications and Regulatory Mutation in PDGFRA in the H1703 Cell Line. (Top) Two haplotypes are 
made from phasing with both regulatory and coding variants identified. (Bottom, arrows) WGS biases reveal copy 
number gain in haplotype 2; ChIP-seq and RNA-seq biases also reveal mono-allele activation of haplotype 2. 

 To further investigate the 137 regulatory mutations for potential biological 

functions, I cross-referenced them with the FANTOM CAT database (v3 robust release). 

Thirty-one of the mutations overlapped with lncRNA-associated regions, and 5 overlapped 

with FANTOM5 permissive enhancer regions (Table 15). 

Table 15 Regulatory Mutations in the FANTOM CAT database 

CELL LINE CHROMOSOME POSITION 
(UCSC HG38) 

REFERENCE ALTERNATIVE HISTONE MARKS 

A427 chr6 3260207 C CTT H3K4me3 

A427 chr3 149375499 T C H3K27Ac, H3K4me3, H3K914Ac 

A427 chr12 54016223 C CCCCTAG H3K4me1 

A549 chr16 25257835 C CG H3K4me3 

A549 chr17 80355364 G T H3K36me3 

A549 chr17 80355526 G A H3K36me3 

ABC-1 chr10 27100911 C CA H3K914Ac 

ABC-1 chr1 226679940 C CG H3K27Ac 

H1299 chr1 66301190 A AT H3K27Ac 

H1299 chr14 23953737 A ACT H3K27Ac 

H1648 chr12 114684071 G GGAGA H3K27Ac 

H1648 chr2 131528390 G A H3K4me3 

H1703 chr7 100627013 C CTG H3K4me1 

H1703 chr11 78040678 T TA H3K27Ac 

H2126 chr1 66265697 T TGTGAA H3K4me1 
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H2126 chr19 53881131 C CAG H3K27me3 

H2126 chr2 206274726 C T H3K914Ac, Pol II 

H2228 chr1 27935147 T TG Pol II 

H2228 chr17 50533812 C CT H3K4me1 

H2347 chr11 62557963 T TG H3K36me3 

H2347 chr6 28399927 C CT H3K4me3 

H2347 chr2 26299918 G GA H3K914Ac 

II-18 chr12 105084230 T TTTTG H3K27Ac, H3K4me3, H3K914Ac 

LC2AD chr7 122303951 G C H3K27Ac 

RERF-LC-
AD1 

chr19 20565417 G GCA H3K27Ac 

RERF-LC-
AD1 

chr6 26197055 G A H3K27Ac, H3K4me3, H3K914Ac, 
Pol II 

RERF-LC-
AD1 

chr6 26199147 G C H3K914Ac 

RERF-LC-
AD1 

chr18 79395018 C G H3K4me3 

RERF-LC-
AD1 

chr10 69222380 T TCA H3K4me1 

RERF-LC-
AD2 

chr5 150139698 A AC H3K4me1 

RERF-LC-KJ chr19 53408011 C T H3K36me3 

CELL LINE Chromosome Position 
(UCSC hg38) 

Refer
ence 

Alternativ
e 

Histone 
Marks 

FANTOM5 enhancer regions 

ABC-1 chr1 226679940 C CG H3K27Ac chr1:226867580-226868182; 

H2228 chr16 73070710 G GTC Pol II chr16:73104505-73104770; 

H2347 chr2 26299918 G GA H3K914Ac chr2:26522632-26522929; 

RERF-LC-
AD1 

chr6 158031620 G GTC H3K4me1 chr6:158452388-158452885; 

RERF-LC-
OK 

chr15 89781340 C G H3K27Ac chr15:90324413-90324614; 

Cis-regulatory mutations causing transcriptional dysregulations 
 Another indication for functionally relevant regulatory mutations is alterations of 

sequence motifs, creating and removing transcriptional factor (TF) binding sites or CpG 

methylation sites. 

 To characterize the involvement of CpG sites, the locations of the 137 regulatory 

mutations were referenced with CpG site regions. For transcriptional factor binding sites, 

data on the anti-TF ChIP-seq in ENCODE for the A549 cell line were referenced. Twenty-

nine of the mutations were found within CpG sites, possibly disrupting DNA methylation 

modifications (Figure 18A). Forty-nine of the regulatory mutations (Figure 18B) were 
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found to be located within the supposed TF binding sites. For example, the A427 cell line 

had a mutation in the promoter region of ZNF594 (C>G; chr17:5191978). According to the 

TF binding site data in ENCODE, this mutation occurred in the binding site of three 

functionally important TFs, POLR2A, TAF1 and MYC. The binding consensus sequence of 

these TFs may be disrupted by this mutation. 

 To systematically analyze the effect on TF binding sites, disruptions or generations 

of TF binding motifs within ±10 bp of the regulatory mutations were investigated by using 

the TRANSFAC database. Eighty-four of the 137 regulatory mutations were predicted, 

with 24 causing loss of TF binding sites, 40 generating novel TF binding sites and 20 

resulting in replacements (Figure 18C, Table 14). Such alterations in TF binding influence 

downstream transcripts. For example, repressor activity was found in the promoter 

mutation of the SLC16A4 gene in the H1650 cell line. This mutation (G>GAA; 

chr1:110389770) was predicted to generate a novel TF binding site for AP-4. Allele 

expression analysis suggested that the mutant allele is silenced; thus, it was likely that this 

novel TF binding site acted as a repressor (Figure 19A). As an example of an activator 

effect, a regulatory mutation in the NFATC1 gene in the RERF-LC-Ad1 cell line (C>G; 

chr18:79395018) was predicted to create a novel TF binding site for ETS family 

transcriptional factors. Allele expression analysis showed that the mutant allele was fully 

expressed (Figure 19B). A total of 104 such regulatory mutations were identified. 

 

Figure 18 Functional Analysis of Regulatory Mutations. (A) twenty-nine of the mutations overlap with CpG sites. (B) Forty-
nine fall within TF binding sites. (C) Eighty-four are predicted to disrupt or create TF motifs. 
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Figure 19 Effects of TFBS Creation. (A) Repressor in SLC16A4 in H1650 cells; (B) Activator in NFATC1 in RERF-LC-Ad1 cells. 

 To biologically confirm the novel TF binding sites predicted by TRANSFAC, I 

focused on the NFATC1 promoter mutation (C>G; chr18:79395018) in RERF-LC-Ad1 

cells. The SNV was predicted to create a novel ETS family TF binding site. Using a 

luciferase assay, I experimentally validated the change in promoter activity of the motifs. I 

compared the abilities of the mutant motif (GCCGGAA) and the wild-type motif 

(GCCCGAA) to drive reporter gene expression. The mutant allele exhibited a 3-fold 

increase in reporter activities compared to the wild-type allele (Figure 20 A, B). To further 

verify this result, I performed Sanger sequencing of ETS1 ChIP-enriched DNA fragments 

to compare the affinities of the alleles to ETS1, a major TF in the ETS family. Using 3 

primers to target ±100 bp regions from the mutation (Figure 20A), 4- to 6-fold enrichments 

in ETS1 binding compared to the input DNA control were observed. This value was 

comparable to that obtained for the RPS26 gene, a positive control (Figure 20C, D). 

 NFATC1 is a known transcription factor that plays a major role in the immune 

response and T-cell activation against cancer cells (Heim et al., 2018). In addition, 
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NFATC1 has been reported to function as both an oncogene and a tumor suppressor gene in 

cancer (Mancini & Toker, 2009; Robbs, Cruz, Werneck, Mognol, & Viola, 2008; S. Xu et 

al., 2018; W. Xu et al., 2016). The important roles of NFATC1 may be reflected in survival 

analysis in TCGA-LUAD projects. From a dataset of 506 patients with overall survival data 

and 401 patients with disease-free survival data, high expression of NFATC1 was 

associated with better overall survival (Figure 21A, Kaplan-Meier; p=0.0049) but worse 

disease-free survival (Figure 21B, Kaplan-Meier; p=0.0003). Further analysis of these 

observations will be discussed in Chapter II. 

  From 146 RefSeq transcripts under the influence of regulatory mutations, 31 were 

found to be significantly associated with survival outcomes in the TCGA-LUAD project 

(Figure 22). These findings reinforced the importance of genes under aberrant regulation 

and the notion that mutations in regulatory regions of the genome could play biologically 

and clinically significant roles in cancer cells. 
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Figure 20 Biological validation of the NFATC1 regulatory mutation. (A) DNA primer and fragments used for validation. (B) 
Luciferase assay reveal 3 times higher activities for mutant fragment. (C) qPCR of ETS1-ChIP products show comparable 
enrichments from NFATC1 primers to RPS26 (positive control). (D) Sanger sequencing of ETS1 ChIP-seq products reveal 3 
fold enrichments of mutant motifs compare to control  

 

Figure 21 Kaplan-Meier Plot of NFATC1 expression and Patients Survival in TCGA-LUAD. (A) Overall survival. (B) Disease-
Free Survival.
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Figure 22 Associations of Patient Survival Outcomes with 31 Genes with Regulatory Mutations in TCGA-LUAD. (A) Overall survival with higher expression (12 genes). (B) Overall survival with 
lower expression (10 genes). (C) Disease free survival with higher expression (15 genes). (D) Disease free survival with lower expression (10 genes). 
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Discussion 
 In this chapter, I identified a total of 137 regulatory mutations that potentially have 

functional consequences in 146 downstream RefSeq transcripts. Various functional aspects 

of these mutations were explored. In addition, 31 potential involvement sites in lncRNA-

associated regions, disruption of 29 CpG sites and 49 TF binding sites were identified. The 

motif analysis revealed 24 losses of motifs, 40 gains of motifs and 20 replacements. Thirty-

one genes were also associated with patient prognosis. Biological and clinical significance 

sets these regulatory mutations apart from the numerous but not functional “Passenger 

Mutations” (Vineis, Schatzkin, & Potter, 2010). However, because it is possible that 

germline variants in the cell lines are not registered in dbSNP database, functional germline 

variants might be remaining in the final results. Further filtering could be done by cross-

referencing with mutation hotspot regions reported in TCGA, however the power of this 

approach is still limited due to small sample size and focuses on the coding regions. Further 

analysis with more complete hotspot regions would prove to be interesting in the future. 

These results were based on the systemic interrogations of multi-omics datasets and long 

read sequencing results. This approach could be adapted easily with the advent of new 

technologies and could serve as a stepping stone in further larger and more comprehensive 

studies in the same direction. 

 This study has some limitations. The first obvious drawback is the discrepancy 

between the number of allelic imbalance variants and phased variants. Here, only 137 out 

of 1,794 SNVs (7.6%) were phased. This was most likely due to lack of coverage by WES 

plus the regulome bait used in 10x GemCode synthetic long read sequencing. While the 

bait was designed to widely capture regulatory regions from various cell linages and 

phenotypes, it was becoming clearer that regulatory elements were organized in a highly 

tissue specific or sometimes even in a cell type specific manner (Heinz, Romanoski, 

Benner, & Glass, 2015). This produces a major challenge in designing a single universal 

bait to capture the entire regulatory landscape. 
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Moreover, due to the novelty of long read technologies, difficulties in applications 

were encountered. The 10x GemCode system was originally designed to handle diploid 

genomes. It was observed that allele phasing regions with CNA lesions were problematic. 

CNA lesions are prominent in cancer and usually hold important onco- and tumor 

suppressor genes. Analyzing phasing from 10x GemCode is less useful in cancer settings. 

Phasing of the whole genome with further developments in overcoming focal and large 

copy number aberrations should be considered. CNA could be interrogated by MinION 

sequencers, but their lower accuracy, precision and throughput limit their use in large-scale 

mutation studies. Further developments in physical long read technologies and usage in 

tandem with conventional sequencing methods are promising combinations. 

During interpretations, annotations had to be done with some prior knowledge of 

the mutations or the region around the mutations themselves. This included information 

such as the landscape of TF binding sites and sequence motifs. In this work, only 50 

ENCODE ChIP-seq datasets, which account for only 41 types of TFs in one cell line, were 

utilized. With over 1,600 TFs in human cells (Lambert et al., 2018), these numbers 

represented only a meager fraction of the TF library. Sequence motif analysis could provide 

extra clues, but 3D structure, DNA conformation or the expression of TFs could not be 

considered. The lack of accurate predictions and the need for experimental validations limit 

analyses on a larger scale. Although 33 out of 137 mutations (24%) were left 

uncharacterized, these results were considered satisfactory. 

 I consider the first chapter as a proof of concept study, answering how regulatory 

mutations could be identified in a systemic manner with multi-omics allele imbalance 

analysis and haplotype phasing. 

Beyond cell lines, the next challenge is to identify and analyze the regulatory 

actions in the clinical setting. As the cell lines were heavily transformed during repeated 

rounds of culturing, their current phenotypes were difficult to pinpoint (Y. Liu et al., 2019), 

which increased the difficulty in interpretation and hindered network-wide level interaction 

analyses. 
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 To address this lack of a systematic in vivo analysis, which is beyond the scope of 

model cell culture systems, I aimed to conduct a follow-up study on the concept outlined in 

this chapter. In Chapter II, I shift the focus from a small set of specialized datasets to the 

more general and large-scale TCGA database. 
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Chapter II: Pan-cancer Multi-omics Network Analysis in The 

Cancer Genome Atlas 

Introduction 
In the previous chapter, I demonstrated that the interactions between regulatory 

elements and their downstream counterparts could be investigated and elucidated by 

integrative analysis of multi-omics studies. However, such detailed studies require multiple 

sample matching specialized assays. To detect interactions at the network scale, large and 

diverse genotypic information is crucial. TCGA projects publish genotypic information for 

thousands of donors and include matching RNA-seq and DNA methylation arrays, thus 

enabling investigations of these 2 omics interactions. Each TCGA project also focuses on 

distinct cancer origins and morphologies, and this phenotypic information could also 

directly contribute to network construction and annotation, providing one extra layer in the 

identification and interpretation of the interactions. In this chapter, I will explore the 2-

omics network interactions in the TCGA datasets. 

Gene network analysis is a powerful tool that is frequently used in the interpretation 

and comprehension of vast and sophisticated biological systems. Many tools have been 

developed to fulfill this crucial role (Delgado & Gómez-Vela, 2019) with many approaches 

proposed. The most traditional and less computationally demanding is the coexpression 

network analysis. This approach is relatively cheap and simple, but it has drawbacks in 

generalizing and imputing the results into different settings. To address these shortcomings, 

many methods have been developed based on modeling, such as the ordinary differential 

model, Bayesian probabilistic model and neural network model. However, no single model 

has demonstrated robustness in large-scale network analysis with potentially multiple 

modes of regulation mixed in. Without depending on general prior knowledge of the 

biological system, designing any one model to encompass the entire gene network is 

unlikely to be successful; thus, I chose the simpler and more flexible coexpression network 

approach as the starting point. 
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 Many software programs have been developed based on coexpression networks, 

with Weight Gene Co-expression Network Analysis (WGCNA) (Langfelder & Horvath, 

2008) being the most widely used. For multi-omics inputs, iCluster (Shen, Olshen, & 

Ladanyi, 2009) is frequently used. However, there were a number of reasons for each that 

rendered them unsuitable. 

WGCNA is one of the most commonly used software suites for gene module 

network analysis. It is based on fitting the data into a scale-free network model and using 

hierarchical clustering based on Pearson correlation to cluster similar genes. Then, the 

clustering data are classified into modules by its unique tree-cutting algorithm. The 

modules are then optimized by remerging and re-cutting. While WGCNA could be 

modified to cluster 2-omics networks, the scale-free network nature of the genes and the 

methylation sites were not necessarily presented. Moreover, while tree cutting provides a 

flexible framework, the exact nature of the cut is still set globally. It is not always possible 

to achieve optimal parameters, especially with 2-omics as inputs. For this reason, 

integration of 2-omics would be hindered. 

iCluster focuses on classifying samples by multi-omics assay. It is based on the 

joint latent variable model, which aims to classify and cluster the samples using multi-

omics data. For iCluster, each omics is modeled separately and treated as a single enclose 

aspect in sample classification. Finally, the samples are clustered in a joint variance-based 

model not focusing on the genotypic interactions within. With none of these approaches 

suitable for my analysis, I decided to devise an approach to uniformly integrate and 

construct the 2-omics networks. 

 To start off, I decided to adapt my multi-omics analysis approach to use with the 

TCGA dataset. This is not straightforward, as accurate allele resolution information is not 

available due to the lack of “Long Read Sequencing” or phasing information. However, 

collections of multiple individual genotypes also enable another analysis approach. In the 

same manner as the allele imbalance expression of a single sample, when viewed across 

multiple samples, genotypic features that interact with each other should exhibit 
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synchronized expressions across the samples. These interactions could then be linked into 

networks based on their phenotypic activities. To capture these synchronizations and 

activities, I based my approach on rank analysis of the expression level in RNA-seq and 

beta-value in methylation array. 
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Material and Methods 

TCGA projects used in this study 
 Eight TCGA projects with a total of 4,116 matching RNA-seq (Exp-S) and 

Methylation Array (Meth-A) donors were retrieved from the ICGC data portal site 

(https://dcc.icgc.org/releases). The projects were picked based on 2-omics data availability, 

project sizes and varieties of tumor histology (squamous carcinoma, adenocarcinoma and 

melanoma, Table 16). Methylation arrays were obtained from reported beta-values of 

Infinium HumanMethylation450K files. 

Table 16 TCGA projects used to construct 2-omics networks 

Project Aberrations Total 
Donors 

Donors 
with EXP-S 

Donors with 
Meth-A 

Donors with 
Both 

Specimens 
with Both 

Breast Cancer - Ductal & 
lobular USA 

BRCA-US 1,093 1,041 1,013 1,012 1,130 

Cervical Cancer - Cervical 
squamous cell carcinoma 
USA 

CESC-US 307 259 243 242 246 

Gastric Cancer – 
Adenocarcinoma USA 

STAD-US 443 418 443 415 415 

Head And Neck Cancer - 
Squamous cell carcinoma 
USA 

HNSC-US 528 481 494 480 502 

Lung Cancer - Squamous 
cell carcinoma USA 

LUSC-US 502 428 427 424 432 

Lung Cancer – 
Adenocarcinoma USA 

LUAD-US 518 478 481 473 496 

Colon Cancer – 
Adenocarcinoma USA 

COAD-US 459 428 424 420 464 

Skin Cancer - Cutaneous 
melanoma USA 

SKCM-US 470 430 430 427 431 

Total   4,320 3,963 3,955 3,893 4,116 

RNA expression data 
mRNA expression levels were calculated from the reported RSEM value of each 

gene in TCGA level 3 data. Missing genes across the different projects were treated as 

genes with 0 expression. Genes with an average RSEM of less than 10-6 were removed with 

the intention of removing missing data. 

Methylation Level 
 A total of 12,835 CpG methylation sites in Infinium HumanMethylation450K chips 

were selected based on site locations within ±10 kb of the TSS of any of the transcripts 

https://dcc.icgc.org/releases
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annotated by Illumina. TSS positions were retrieved from the KERO database using the 

UCSC hg38 human genome reference (http://kero.hgc.jp/). Beta values were viewed as 

continuous values representing the fraction of methylated alleles or chances of finding 

methylated alleles without considering actual allele configurations. 

Rank covariance-based distance 
 The RSEM and beta-values for 15,666 genes and 12,835 CpG sites were combined 

to create a 2-omics matrix with 28,501 features with 4,116 sample elements. For each 

feature row, the measurement of each sample was then ranked from lowest (rank 1) to 

highest (rank 4,116), and this matrix was then treated as a 2-omics uniform measurement 

system. 

 For each feature pair, distances between the pairs were based on treating variances 

as the best possible achievable covariance (variance of x is the covariance of x against 

itself). Covariance represent how well the rank permutation between the pairs aligned. The 

distance between the two measures represents how far away the pair alignment is from the 

perfect permutation (and also represents a portion of unexplained variances between the 

pair). To normalize for ties, the distances between each pairing are then the difference of 

variance and covariance normalized by the variance. 

Distance(x, y) =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦) − 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥, 𝑦)2

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥) ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)
                      … … … (1) 

Distance(x, y) = 1 − 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑅2(=  Unexplained Variances of Ranks)                               

Clustering of synchronized features into units 
 Features with either similar or opposite rank permutations were clustered together 

into a tree structure based on a rank correlation-based distance matrix using hierarchical 

clustering with the unweighted pair group method with arithmetic mean (UPGMA) 

algorithm (Figure 23A, B). 

 Functional units, defined as groups of features with synchronized changes in their 

measurements, were picked up by cutting the UPGMA tree into groups of features that 

http://kero.hgc.jp/
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every pairwise distance determined to come from the same distributions using the k-

samples Anderson-Darling test. At each linkage, distances between groups of features that 

were in the left and right leaves were checked for heterogeneities in 3 groups of distances, 

represented by areas under the curve (AUC) between cumulative distribution function 

(CDF) in 3-sample Anderson-Darling (AD) test. The 3 groups of distances were #1, the 

internal distances between features in a group in the left leaf; #2, the internal distances 

between features of a group in the right leaf; and #3, every pairwise distance between 

features in the left and right leaves. Pairing with a smaller AUC, which resulted in a p-value 

greater than 0.01, was treated as a homogenized unit (Figure 23C). Pairing with a 

sufficiently large AUC between the CDFs that resulted in a p-value less than 0.01 was 

considered heterogeneous in origin and treated as a separated unit (Figure 23D), and both 

were carried over to the next level of linkage in the same arm. 

If the left and/or right leaves contained more than 1 cluster, every pairing between 

the left and right would be checked and prioritized based on a smaller AUC (larger p-value) 

pairing, and if one of the left or right leaves contained only 1 feature, then the Anderson-

Darling test would only be done with 2 applicable groups, but if both the left and right 

leaves contained only 1 feature, both would be considered homogeneous by default. 

Functional Unit Phenotype Activity Analysis 
 Phenotype activities of each functional unit were determined from the contribution 

of each donor (phenotype) rank to that unit. Because functional units were constructed from 

homogenizations of the coefficient of determination (R2) and R2 itself could be expressed 

by a portion of covariances over variances, each donor’s term during covariance calculation 

could be viewed as that donor’s contribution to the correlation. By averaging the 

contributions in every pair of correlations in the unit, each donor contribution to the unit 

could be determined (Figure 24). Consistently high or low ranking donors in the unit would 

produce high donor contributions, and thus donor contributions would align with extreme 

donors, representing phenotype activities. To account for the overall correlation (R2), the 
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donor contributions were viewed as vectors for each unit, with the vector size representing 

the overall correlation in that unit. 

Linking units with similar phenotypes activities into networks 
 Units with similar phenotype activities were linked into networks based on an 

angular distance matrix derived from donor contribution vectors by hierarchical clustering 

with the UPGMA algorithm and Anderson-Darling test (p<0.01) as tree cutting methods as 

described earlier. The final results were the networks of units with similar donor 

contributions and thus similar extremes and phenotype activities. 

 An angular distance matrix was constructed by calculating every pairwise unit 

angular distance between the sample contribution vectors as follows: 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(x, y) =
𝐷𝑜𝑛𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑥 ∗ 𝐷𝑜𝑛𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑦

‖𝐷𝑜𝑛𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑥‖ ∗ ‖𝐷𝑜𝑛𝑜𝑟 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑦‖
 

angular distance(x, y) =
cos−1(𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦))

𝜋
 

 By using angular distance, the influences of the unit overall correlation (R2, vector 

magnitude) in each vector were normalized, enabling comparisons of donor contributions in 

different units (vector direction). 

Database cross referencing 
 Networks were cross referenced with MSigDB gene sets (Liberzon et al., 2011) for 

characterizations (Accessed October 2019, 

http://software.broadinstitute.org/gsea/msigdb/index.jsp). Collections of hallmark gene sets 

(H), curated gene sets (C2), computational gene sets (C4), GO gene sets (C5) and 

oncogenic gene sets (C6) were used. For each network, gene sets in each collection were 

checked for overrepresentation in a 2×2 contingency table with Fisher’s exact test and FDR 

< 0.05 by the Benjamini-Hochberg procedure. Individual manual curation of each network 

was then performed by using gene sets and correlation strength as guides. 

 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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Figure 23 2-omics Clustering Methods. (A) Pre-cluster Example R2 matrix. (B) R2 matrix after clustering with UPGMA. (C) Linkages with left, right and between distances 
from the same distribution (k-sample Anderson-Darling test; p>0.01) are merged. (D) Linkages with left, right and between distances from different distribution (k-sample 
Anderson-Darling test; p<0.01) are not merged with both arms carry-over to the next level. (E) Final grouping is retrieved at the last linkage. 
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Figure 24 Single donor contribution in the unit group calculation. (Leftmost) Average R2 is used as surrogate for each unit correlation strength. (Bottom left) Spearman R 
could be viewed as fraction between covariance and variances of ranks. (Middles) Substitutions of covariance calculation yield connection between each feature ranks and 
the average R2. (Rightmost) Each feature fractions are combined to make donor contribution vector for each unit. 
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Results 

Genes, methylation sites and phenotypes selected for networking 
 The RNA-seq (EXP-S) and methylation array (Meth-A) data files of 8 TCGA 

projects were retrieved from ICGC data portal sites. A total of 4,116 donors with both 

matching RNA-seq and methylation array data were selected. The cancer phenotypes 

included squamous cell carcinomas, adenocarcinomas from various origins and skin 

melanoma. 

Gene expression and DNA methylation information from all 4,116 donors were 

then integrated into a single dataset. Missing values were treated as zero. Features with 

average expression lower than 10-6 were removed. A total of 15,666 genes were used. For 

the methylation data in the Infinium HumanMethylation450K chip, 12,835 CpG sites were 

selected based on their proximities within ±10 kb of annotated transcript TSSs.  

Clustering of 2-omics feature units 
I aimed to group the genes and CpG sites into functional units of synchronized 

features (Figure 25A) both with the same and opposite expression. The lack of modeling or 

assumptions of in rank analysis enabled the uniformity of genes and CpG sites in a single 

step (Figure 25B). Moreover, phenotype activities of each unit could be easily retrieved by 

looking at the phenotypes with extreme ranks (Figure 25C). Ranking also limited artifacts, 

such as technical noise or batch effects in the input, but no further attempt at removing 

noises or batch effects was made. This approach could be viewed as uniform coexpression 

rank analysis of a multi-omics dataset. 

For each feature in both omics, measurements for each donor were ranked from the 

lowest (1) to the highest values (4,116). This resulted in the uniformly ranked 28,501 

features in the 4,116 donor matrix. I designed and conducted the nonparametric analysis in 

every step from the input integration, clustering and unit identifications by distribution-

based tree cutting (see Material and Methods for details). 
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Figure 25 Approach to Construct a 2-Omics Network in TCGA; (A) an example unit of 3 genes. A,B and C’s changes in 
expression synchronize across the donors, thus presumed to be working together; (B) genes and CpG sites are unified by 
rank analysis; (C) an example unit of 2 genes and 1 CpG site and the usage of extreme phenotypes as annotators 
(Donor1, Donor5). 

 To look for the units, UPGMA hierarchical clustering of the 2-omics ranked matrix 

was conducted based on the rank variance-covariance as distance metrics (see Material and 

Methods for details). A Spearman correlation (R2) matrix was used to visualize the 

clustering (Figure 26A pre-cluster; Figure 26B post-cluster). In total, 28,501 features were 

clustered into 4,358 units; 2,315 units were purely genes, 2,010 units were purely CpG 
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sites, and 33 units were mixes. Each cluster had an average of 6.5 features. The correlations 

in these units were determined to be homogenized (Figure 26C-E, areas are outlined by red 

lines). These units were viewed as building blocks of biological interactions. 

For instance, glycolysis is a ubiquitous and crucial energy production pathway. A 

unit group containing GAPDH (Figure 26E, arrow) also contained 6 genes important in 

glycolysis (Figure 27A). High degrees of positive rank correlations were observed in every 

gene (Figure 27B). All of these genes encode enzymes involved in glycolysis, which 

glucose-6-phosphate (glucose) or dihydroxyacetone-P (triglyceride) is converted to both 

pyruvate (aerobic terminal) and lactate (anaerobic glycolysis terminal). These observations 

may indicate that cancer cells make use of anaerobic glycolysis, producing lactate from 

pyruvate by lactate dehydrogenase enzyme (encoded by LDHA) even in abundance of 

oxygen, termed the “Warburg effect” (Liberti & Locasale, 2016). 

To further demonstrate the presence of regulatory actions, I focused on a unit group 

containing the NKX2-1 gene (Figure 26C, arrow; Figure 28A), which is a transcriptional 

factor. NKX2-1 is known to play a central role in various tissues, including lung alveolar 

type II development and is necessary for surfactant production (Minoo, 2000). This unit 

was found to contain several genes encoding surfactant-related proteins. Their expression 

ranks were strongly correlated and significantly higher in lung tissues than in other tissues 

(average rank 3592 vs 1612; p-value ≃ 0, t test of ranks; Figure 28 B-E).
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Figure 26 Correlation (R2) Matrix of Unit Clusters; (A) Pre-cluster R2 matrix. Both row and column represent both genes and CpG sites. Dots represent R2 of each 
row/column pair. (B) Post-unit clustering R2 matrix. Clustering are done with UPGMA and Tree Cutting are done with Anderson-Darling test (p<0.01). (C-E) Close up of 
R2 inside example units (areas under red lines). (C, arrow) NKX2-1 lung surfactant unit. (E, arrow) GAPDH glycolysis unit.
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Figure 27 Glycolysis pathway captured by the GAPDH unit. (A) Every genes encode enzymes related to glycolysis pathway. (B) Rank synchronization of the genes. 
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Figure 28 Regulation of surfactant genes by NKX2-1. (A) Genes in surfactant production are captured. (B,C) Higher expression of this unit genes in lung tissue (LUAD-
LUSC) by (B) rank and (C) expression in log scale. (D,E) Genes’ (D) rank and (E) RSEM synchronization.
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 Average pairwise R2 values were used as surrogates for the degree of 

synchronization in each unit. Strongly synchronized units with a high average R2 

represented units with uniform biological interactions. On the other hand, weakly 

synchronized units with low average R2 represented units of less biological significance. 

Some artifacts or network noise may be included among the latter units. 

 To address the concern with the less correlated units, I examined the degree of 

inherently existing correlations to estimate the expected average R2. I employed Monte 

Carlo simulation analysis with 100,000,000 combinations using the same unit size 

distribution (Figure 29A) as the original clustering. The random combinations produced an 

average strength of the correlations with the average R2 value of 0.06 (Max: 0.56, Min: 3.6 

× 10-6) (Figure 29D). This suggests that random combinations with high correlations should 

be rare and occur only at a limited frequency in smaller units (Figure 29E). This random 

noise was compared with the obtained units, which produced an average R2 of 0.44 (Max: 

1, Min: 0.015) (Figure 29B) and with different distributions (p value ≃ 0, KS test). 

Nevertheless, stronger correlations were found in smaller units (Figure 29C), albeit with 

different distributions and intensities (Figure 29B). The weaker average R2 in nonrandom 

larger units (Figure 29C) might be because highly specialized gene complexes tended to 

form smaller units compared to the more generalized genes. For the latter, the 1-to-1 

correlations were weaker, lowering the average R2. Although I am fully aware of this 

drawback, I had to leave it to be resolved in future research, since no single solution has 

been shown to handle a large-scale system and it did not hinder the interpretation of the 

detected units.  
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Figure 29 Cluster strength compared to Monte Carlo simulations. (A) Histogram of unit sizes’ distribution; (B) Histogram 
of unit average R2 distribution; (C) Scatter plot of relation between unit size and average R2; (D) Simulated average R2 
distribution with (A) distribution; (E) Relation between simulated size and average R2.  

 Individual units, though they could precisely identify basic functional units, could 

not represent the whole picture of biological systems. As seen in the previous examples, 

even the simplest systems could not be entirely captured by any single unit. In the GAPDH 

unit, while some part of the metabolic reaction chain could be identified, a wider view 

related to general energy production or glycolysis was not captured. It was likely that each 

phenotype regulated and utilized each functional unit separately to serve their various 

metabolic needs. Each unit may also be under different controls, thereby having varied 

expressions. A similar narrowed view was also observed for NKX2-1. In this case, only the 

most upstream regulator, the transcriptional factor NKX2-1, and the most downstream 

effectors, the surfactant-related proteins, were represented, omitting everything else in-

between. 

Linking Units into Networks with Phenotype Activities 
 In the covariance and correlation analysis (see Material and Methods for details), 

the consistently high- and low-ranking donors made big contributions in each unit. High 

contributions represented high activities (Figure 30B; black dots). Utilizing this view, the 

units with similar phenotypic identities were networked together (see Material and Methods 
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for details) by angular distance between their donor contribution vectors. Networks of 

similar donor identities were determined using UPGMA and Anderson-Darling test-based 

tree cutting in the same manner as previously described (Figures 30C and D; blue lines 

covering red lines). As a result, the 4,358 units were constructed into 654 networks with an 

average of 6.66 units per network (Figure 31A) or 43.58 features per cluster (Figure 31B). 

Twenty-nine networks were found to be mixed networks of both genes and CpG sites. 

These networks, however, did not appear as rigid as the more basic unit groups. 

This was due to the difference in interpretation regarding synchronization and 

homogeneities of the rank in the expression and phenotype activities. Synchronization of 

the expression ranks was examined as crucial and direct evidence for grouping features 

with homogeneous functions and interactions. However, the goal of the networks was to 

capture interactions between each unit group. This part proved to be difficult since each 

phenotype could regulate the activities of each unit to suit its needs, independent of the 

unit-unit interactions. Phenotype activities of each unit, in turn, did not need to be 

homogenized for the units to have biologically meaningful interactions; in other words, 

biologically significant interactions could present across networks as well.
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Figure 30 Phenotype-based Network Construction. (A) Close up views of unit correlations; (B) Every units’ donor contribution vectors line up in a matrix’ (C) Angular distance matrix 
between each unit vector; (D) Networks of units (under blue lines) construct from UPGMA and Tree Cutting of (C). 
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 In the same manner as functional unit construction, networks with homogeneously 

high angular distances (poor similarities) were constructed (Figure 31C). An inverse 

correlation was observed between the mean angular distance and the mean pairwise R2 of 

the networks (Pearson R=-0.90; Figure 31D), showing that they originated from units with 

poor average R2. These networks were less likely to hold biologically meaningful 

interactions. 

 

Figure 31 Overview of Networking Statistics. (A) Histogram of network size distribution by units; (B) Histogram of 
network size distribution by genes or CpG sites; (C) Histogram of networks’ internal mean angular distance; (D) Scatter 
plot between networks’ internal mean angular distance and mean average R2. 

 To interpret the networks, I first focused on the known and curated gene sets 

deposited in MSigDB for similarities. I utilized 5 gene sets, cancer hallmark gene sets (H), 

curated gene sets (C2), computational gene sets (C4), GO gene sets (C5) and oncogenic 

gene sets (C6). Due to differences in the designs and methods in each gene set, the sets 

themselves were not always consistent with each other, including with mine. However, 

with a significant number of network hits in each gene set (Table 17), these results indicate 
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the biological significance of the networks. I manually inspected the networks of 

substantial biological interest feature-by-feature. While this would not be scalable to a 

comprehensive analysis, I considered it necessary to biologically uncover the meaningful 

interactions in the networks. 

Table 17 Cross-referencing Networks to MSigDB 

Gene Set Aberration Network Hits Gene Set Hits Average Hits 

per Network Counts % of Total Counts % of Total 

Cancer Hallmark H 68 10.40% 41 82.00% 2.07 

Curated Gene Sets C2 234 35.93% 1754 31.89% 17.03 

Computational Gene Sets C4 95 14.53% 404 47.09% 11.77 

GO Gene Sets C5 117 17.89% 1497 14.98% 23.26 

Oncogenic Gene Sets C6 540 82.60% 83 43.92% 2.85 

 

To demonstrate the networks’ abilities in capturing known interactions, a network 

containing genes involved in mitosis were investigated. This network was arbitrary selected 

from a group of networks which overlapped with mitotic related GO terms. The selected 

network contains 7 units with 50 genes, all of which are known to be involved in mitosis 

and DNA replications, including AURKA and AURKB which are conserved mitotic and cell 

cycle regulators with many known interactions. One unit contains AURKA and AURKB 

(Figure 32) and 3 units strongly connected to them by literal evidence (Figure 32, Black 

arrows). AURKA and AURKB are known to interact with each other. AURKA are also 

reported to interact with UBE2C and phosphorylate PLK1 with the effects of driving the 

cell cycle. AURKB regulate the alignment and segregation of chromosomes by targeting 

many centromeres-related substrates including HASPIN, CENPA, HJURP and CENPN. It is 

also reported to interact with NCAPD2 in condensin complex. These results show that the 

networks were able to capture proven biological significant interactions. 
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Figure 32 Network containing known interactions of AURKA and AURKB (Orange). AURKA is known to interact with 
UBE2C and PLK1, driving mitosis forward. AURKB is known to interact with centromeres=related genes to regulate 
chromosomes alignment and segregation during mitosis 

 To exemplify the networks, units that were linked to GAPDH/glycolysis are shown 

in Figure 33. In this network, 8 units with a total of 49 genes were grouped. Gene Ontology 

analysis revealed that the member genes of this network were highly enriched with the GO 

terms (MSigDB C5) related to glycolysis and carbohydrate metabolism, as expected (Table 

18). The networking linked ALDOA, PGAM1, PGAM4 and PC (Figure 33A) to the 

GAPDH unit, completing the reaction for glyceraldehyde 3P for entry into the TCA cycle 

or production of lactic acid. 
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This network revealed that the genes in other pathways also interact with the 

glycolysis pathway. For example, the ALODA/PGAM1 unit (Figure 33A, blue) and cell 

membrane-ER related unit (Figure 33A, yellow) hinted at a novel interaction between 

membrane transport proteins, the receptor system and the glycolysis pathway. Moreover, 

the PC unit included ALDH4A1, which encodes aldehyde dehydrogenase and is localized in 

mitochondria. This enzyme produces glutamate, providing an alternative substrate for the 

TCA cycle. Interestingly, high ALDH activities are associated with malignancies in some 

cancer species. This network also included BLCAP and CTNNB1, which directly influenced 

cell proliferation. 

Table 18 GO Terms for the GAPDH Network 

MSigDB C5 GO term Odds 
Ratio 

Raw P 
Value 

B-H 
correction 

Gene 
Hits 

GO_GLYCOLYTIC_PROCESS_THROUGH_FRUCTOSE_6_PHOS
PHATE 

113.4 3.53E-12 3.53E-08 7 

GO_GLYCOLYTIC_PROCESS 39.8 1.49E-11 3.53E-08 9 

GO_MONOSACCHARIDE_BIOSYNTHETIC_PROCESS 39.5 1.97E-10 7.46E-08 8 

GO_CARBOHYDRATE_CATABOLIC_PROCESS 23.0 1.44E-09 6.57E-07 9 

GO_GENERATION_OF_PRECURSOR_METABOLITES_AND_EN
ERGY 

11.0 4.40E-08 3.59E-06 11 

GO_CARBOHYDRATE_BIOSYNTHETIC_PROCESS 17.3 8.70E-08 8.79E-05 8 

GO_CARBOHYDRATE_METABOLIC_PROCESS 8.6 1.39E-06 1.45E-04 10 

 

The rank synchronizations in every unit in the networks were not expected to be 

perfect. The whole network was deactivated (Figure 33B; blue arrows) or activated in 

similar phenotypes (Figure 33B; red arrows), representing interactions between the 

members. However, each unit in the network did not exhibit exact patterns of 

synchronization in ranking, as in the unit level (Figure 33B Lower). Many functionally 

unknown genes (Figure 33C) were also assigned to this network. These interactions may be 

worth subjecting to in-depth analysis to uncover the links between cancer cell metabolism, 

the Warburg effects and cell proliferation. 
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Figure 33 Network of units surrounding the GAPDH/Glycolysis Pathway. (A) Genes in network relate or potentially relate to glycolysis pathway; (B) Rank matrix of the 
network (Lower). Rows represent genes, column represent samples. (Green) Rows of green unit in (A). (Yellow) Rows of yellow unit in (A). (Black) Rows of black unit 
(GAPDH) in (A). (Blue) Rows of blue unit in (A). (Unlabeled) Rows of units of ambiguous functions (C). Donor contribution vectors of each unit (Upper). (Blue arrow) 
samples of low activities. (Red arrow) samples of high activities; (C) 4 units of ambiguous functions. 

 



85 
 

Network analysis captures the regulators and effects of NFATC1 
 In the previous chapter, aberrant regulation of NFATC1 was detected and validated 

in lung adenocarcinoma cell lines. Its expression level was shown to be significantly 

associated with the prognosis of clinical cases in the TCGA LUAD dataset. To further 

investigate the roles of NFATC1 that might be involved in carcinogenesis, I explored the 

networks of genes and CpG sites surrounding NFATC1. 

 Similar to GAPDH (glycolysis) and NKX2-1 (lung surfactant production), the unit 

group containing NFATC1 was relatively small. Limited information regarding its function 

was available. However, after expanding the analysis to the phenotypic network level, the 

presumed interactions were revealed. 

One of the most well-known aspects of NFATC1 function is in T cells, where it is 

primarily activated by calcineurin under the regulation of RCAN1. After activation, 

NFATC1 is localized to the nucleus, where it functions as a T cell activator mainly by 

activating EGR2 transcriptional factors. T cells are then differentiated to their effector 

variants and provide cell-mediated immune responses. This activation process was reflected 

in units containing RCAN1 (Figure 34A; 4). 

More intriguingly, further analysis of this network revealed potentially novel 

downstream effects of NFATC1 in 3 separate functions that were potentially not related to 

the immune system. The first was a signaling pathway centered around GHR (Growth 

Hormone Receptor) and NTRK2 (Neurotrophic Tyrosine Receptor Kinase 2) (Figure 34A; 

2). Their downstream signaling could consequently influence cell differentiation and 

proliferation. The second was also a signaling pathway based on NGFR (Nerve Growth 

Factor Receptor) (Figure 34A; 3). Like the first, this pathway similarly played a role in cell 

differentiation and proliferation but possibly in different contexts. The last pathway 

consisted of MAPK10, NAP1L2, PTN, HLF, and IGSF10 with 1 CpG site (cg22980079). 

The first two genes MAPK10 and NAP1L2 are known to have proliferative capacity. PTN 

and HLF have been reported to be dysregulated in various cancers. These interactions 

indicated the possible direct involvement of NFATC1 in cancer cells, most likely promoting 
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cancer cell proliferation. The included CpG site (cg22980079) was annotated to FAM193A, 

but its roles are still unknown.  

Considering the entire network, in active disease, the expression of NFATC1 could 

indicate both cancer cell proliferation and tumor infiltrating T cell responses. Indeed, higher 

disease activities from higher tumor proliferation could lead to stronger responses. In this 

view, both oncogenic and antitumor effects of NFATC1 could coexist and cooperate in 

representing disease activities. This partially explained the conflicting survival analysis 

results, in which higher NFATC1 was associated with worse disease-free outcome and 

better overall survival. Worse disease-free outcomes could be attributed to higher relapses 

from higher pretreatment disease activities. Because most of the cancer relapsed, better 

overall survival could be attributed to stronger immune responses after relapse. 
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Figure 34 Network Surrounding NFATC1. (A) 5 units in the network. (1-3) consist of genes relate to cell proliferations. (4) 
consists of a known NFACT1 regulation and activation in T Cells. (5) contains NFATC1; (B) Donor contribution vectors 
(Upper) and rank matrix (Lower) of 5 units. 

.
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Networks of Interactions Involving DNA Replication, Repair and 

Methylation 
 During DNA replication, the newly synthesized DNA strand is unmethylated. The 

hemi-methylated DNA strands are methylated mainly by DNMT1 in the process term 

“Methylation Maintenance” (Greenberg & Bourc’his, 2019; Law & Jacobsen, 2010). This 

process is crucial in DNA replication and is required for normal regulation of the cell 

transcriptomes. DNA damage is not only limited to genetic elements but also to losses of 

epigenetic information (Dabin, Fortuny, & Polo, 2016), including DNA methylation. Every 

cell needs to actively maintain its methylation status via DNMT1. Knockdown of or 

mutations in the DNMT family of genes has also been shown to cause major disruption in 

genome integrity and cell survival (Liao et al., 2015). 

 The roles of DNA methyltransferases are not limited to maintaining methylation 

patterns. “De novo” methylations of unmethylated sites were also described in both normal 

and pathological circumstances. De novo methylation is thought to be mainly carried out by 

DNMT3A and DNMT3B. Under normal circumstances, this process occurs in stem cells or 

during embryogenic development. However, this event is also frequently observed in 

cancer cells (Kulis & Esteller, 2010). Dysregulation of methylation patterns is believed to 

be one of the major driving events of carcinogenesis. Clinical trials studying the usage of 

DNMT inhibitors as a strategy in the treatment of various cancers, mainly leukemia, are 

currently underway (Gnyszka, JastrzĘBski, & Flis, 2013; Wong, Lawrie, & Green, 2019). 

Moreover, oncogenic driver genes, such as BRCA1 or TERT, were shown to host aberrant 

DNA methylation at their promoter regions. Unlike methylation maintenance, de novo 

methyltransferases were less studied in their activation conditions and controls, hindering 

associations between the detected methylation patterns and carcinogenesis. 

 Interactions representing DNA methylation were identified from 6 networks (Figure 

35). GO term analysis showed enrichments related to the mitotic cell cycle and DNA 

replication control (Table 19). Closer inspections of genes in each network revealed that 5 

networks were mainly associated with DNA repair, which included 4 networks headed by 
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BRCA1, BRCA2-FANCB, FANCA and FANCL and one network that was characterized by 

cell cycle regulatory units, including CDK1 and CHEK1, known for their functions in DNA 

double strand break repairs (Figure 35A). These 5 networks were related to the network 

associated with the DNA replication complexes, including DNA polymerase family B 

complex genes (POLA2, POLD1, POLE, POLE2) (Figure 35B). Additional cell cycle 

controllers (FANCD2, CHEK2), replication-related catalysts (LIG1, PRIM1, PRIM2), and 

chromatin structure control complexes (Kinetochore, Spindle fibers) were also presented. 

Most interestingly, the DNA methyltransferases DNMT1 and DNMT3B and genes encoding 

members of the histone methyltransferase complexes CBX2 and EZH2 were also included 

in the DNA replication complex network. 

Unlike the NFATC1 network, these processes were separated into 6 networks. 

However, their phenotypic activities remained largely similar between them. Minor 

differences were observed between each network, and the majority of the phenotypes 

showed strong correlations. Despite the strong correlations, the minor differences were 

considered heterogeneous, thus splitting the networks into 5 smaller networks (Figure 35C). 

 I further searched for literal evidence on the interactions between complexes in the 

6 networks. In DNA replication and the methylation networks (Figure 35B), the interaction 

between the DNA polymerase complex and DNMT1 was bridged by UHRF1. UHRF1 has 

been shown to recruit DNMT1 to the site of DNA methylation during DNA replication (X. 

Liu et al., 2013). For the internetwork interactions, DNA repair complexes such as BRCA1-

BRCA2-HMMR and BRCA1-FANCA were identified. Regulations of DNA replication 

complexes via E2F-family transcriptional factors and cell division cycle-associated genes 

(CDCA family) in the 4 DNA repair networks (Figure 35A) were also detected. 
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Table 19 Top 5 GO terms for Cell Cycle and DNA Replication Networks 

NETWORK #614; 45 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_CELL_CYCLE 7.5 1.40E-09 1.40E-05 20 
GO_CELL_CYCLE_PROCESS 8.1 4.29E-09 1.40E-05 17 
GO_MITOTIC_CELL_CYCLE 8.6 9.33E-09 2.14E-05 15 
GO_CELL_CYCLE_G1_S_PHASE_TRANSITION 17.4 1.54E-08 3.11E-05 9 
GO_REGULATION_OF_DNA_DEPENDENT_DNA_REPLICATION 42.4 3.26E-07 3.84E-05 5 

NETWORK #615; 25 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_DNA_REPLICATION 31.7 2.09E-09 2.09E-05 8 
GO_CELL_CYCLE_PROCESS 14.4 2.45E-09 1.22E-05 13 
GO_REGULATION_OF_MITOTIC_CELL_CYCLE 17.9 7.90E-09 1.22E-05 10 
GO_CELL_CYCLE 12.0 9.40E-09 2.35E-05 14 
GO_REGULATION_OF_CELL_CYCLE_PROCESS 15.4 2.99E-08 2.35E-05 10 

NETWORK #616; 79 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_CELL_CYCLE 13.8 1.43E-27 1.43E-23 47 
GO_CHROMOSOME 15.0 2.72E-25 1.43E-23 37 
GO_DNA_REPLICATION 26.0 9.91E-22 1.36E-21 22 
GO_DNA_METABOLIC_PROCESS 14.2 1.28E-21 3.20E-18 31 
GO_DNA_DEPENDENT_DNA_REPLICATION 38.6 4.56E-21 3.20E-18 18 

NETWORK #617; 38 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_CELL_CYCLE_PROCESS 20.3 1.90E-17 1.90E-13 23 
GO_MITOTIC_CELL_CYCLE 21.3 4.59E-17 1.90E-13 21 
GO_CELL_CYCLE 18.1 6.51E-17 2.17E-13 25 
GO_CELL_DIVISION 22.2 1.58E-14 2.17E-13 16 
GO_DNA_REPLICATION 31.1 2.47E-13 3.94E-11 12 

NETWORK #618; 52 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_MITOTIC_CELL_CYCLE 42.6 8.29E-35 8.28E-31 37 
GO_CELL_CYCLE_PROCESS 29.9 1.57E-29 8.28E-31 36 
GO_CELL_CYCLE 28.3 5.43E-29 7.82E-26 39 
GO_ORGANELLE_FISSION 39.8 4.92E-27 1.81E-25 25 
GO_MITOTIC_NUCLEAR_DIVISION 46.0 9.02E-26 1.23E-23 22 

NETWORK #619; 50 GENES 

GO TERMS Odds Ratio Raw P Value BH correction # Hits 
GO_CELL_CYCLE 26.8 3.16E-27 3.16E-23 37 
GO_MITOTIC_CELL_CYCLE 22.0 1.86E-22 3.16E-23 28 
GO_CELL_CYCLE_PROCESS 18.3 7.16E-21 9.31E-19 29 
GO_CELL_DIVISION 23.9 6.56E-20 2.38E-17 22 
GO_CHROMOSOMAL_REGION 30.5 7.98E-19 1.64E-16 18 



91 
 

 

Figure 35 6 Networks describing DNA Replication, Repair and Methylation. (A) 4 DNA repair and 1 cell cycle regulators Networks headed by BRCA1, BRCA2-FANCB, 
FANCL, FANCA and CDK1. Known interactions between the networks are shown in black arrows. Relation between histone methylation complex (EZH2) and DNA 
repairs are suggested. (B) Network containing DNA replication and methylation genes. Both maintenance (DNMT1) and De novo (DNMT3B) methyltransferases are 
included. Known interactions within (B) and from (A) are shown in black arrows. Interactions between DNMT3B and DNA repairs are suggested. (C) Donor contribution 
vectors (Upper) and rank matrix (lower) of the networks. 
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 Taken together, these 6 networks suggested that the DNA polymerase complex was 

closely monitored by various cell cycle regulatory elements. The inputs of these regulatory 

factors included a cell cycle rhythm controller such as the TIMELESS, RFC or MCM 

complexes under normal conditions. In the presence of DNA damage, the cells may employ 

DNA repair mechanisms, including BRCA1, BRCA2, FANCA, and FANCB, in 

coordination, and these mechanisms influence the replication complex by various 

transcription factors. The exact roles of each gene in the E2F family of transcription factors 

are not yet clear. However, by analyzing the DNA repair networks, further annotations 

were possible. E2F1 shared a network with BRCA1 and might interact with BRCA1 more 

closely than other genes. Additionally, E2F2 and E2F7 might be more closely related to 

FANCA than previously known. To restore epigenetic status, UHRF1 recruited DNMT1 to 

maintain DNA methylation patterns. SUV39H1 and the Polycomb group restored histone 

methylation and appropriated chromatin structures. Both in coordination with DNA 

replications and repairs complexes. Interestingly, activation of DNMT3B and de novo 

methylation in tandem with DNA damage repair might provide a clue as to how de novo 

methylations are activated in cancer cells and explain the roles of dysregulation and 

aberrant methylations found in various cancer types. 

2-Omics Melanoma Specific Network 
 The above networks were mostly concerned with gene-gene interactions. Networks 

having both omics were investigated to demonstrate the integration between genes and the 

CpG sites. From the 29 “mixed” networks, one network was found to represent interactions 

in melanoma. This network contained 4 CpG sites and 34 genes (Figure 36A). Their 

activities were highly pronounced in melanoma samples (TCGA-SKCM, Figure 36B; red 

arrows, pink phenotypes). Closer inspections of this network revealed the genes associated 

with melanoma or melanocyte functions in all units (Figure 36A). These included units 

containing genes in melanosomes and melanin production, melanoma-specific antigen 

(MLANA) and melanoma-specific transcriptional factor (PRAME). Three CpG sites were 
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located in the tubulin unit. cg00231644 was annotated to TUBB4 and cg11821702 and 

cg22598744 were annotated to MLANA. Capturing melanoma-specific epigenetic 

interactions. Last, a microenvironment unit of EDN1 (endothelin 1) and MMP7 (degrading 

specific ECM) had prominently lower expression in melanoma (Figure 36B). These results 

collectively suggest specific genetic and methylation changes in melanoma or skin samples. 

Interestingly, this network was not enriched in any GO term but overlapped with 

gene sets involving downregulation of P53 (MSigDB; c6: P53 DN. V1 DN), melanin 

production (MSigDB; c2: REACTOME MELANIN BIOSYNTHESIS) and breast cancers 

(MSigDB; c2: SMID BREAST CANCER RELAPSE IN BONE DN, SMID BREAST 

CANCER BASAL UP). These overlaps indicated oncogenic potential in the network, 

coupled with normal melanocyte functions. It is possible that melanoma might hijack 

normal melanocyte genetic and epigenetic machinery to turn malignant.
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Figure 36 2-omics Networks in Melanoma. (A) 6 units containing genes and CpG sites in melanoma (SKCM) network. 
Interactions between MLANA, a melanoma specific antigen, and 2 CpG sites annotated to MLANA are captured. (B) 
Donor contribution vectors (Upper) and rank matrix (Lower) of the network. (Red arrows). Columns of Melanoma 
samples.
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Ineffective Wnt Pathway Negative Feedback in COAD 
The Wnt signaling pathway is an important pathway that governs cell fate and 

development and is frequently perturbed in cancer cells, especially in colorectal cancer. 

This pathway is also a target of drug interventions (Zhan, Rindtorff, & Boutros, 2017) 

(Schatoff, Leach, & Dow, 2017) (Novellasdemunt, Antas, & Li, 2015). The pathway 

consists of two routes after the binding of Wnt protein to the Fizzled family of membrane 

receptors, canonical and noncanonical pathways. These signals are then relayed and 

amplified and are under the regulation of many factors, forming complicated positive and 

negative feedback loops. 

Reported Wnt pathway negative feedback loop regulators include AXIN2, NKD1, 

NKD2, NOTUM and DKK family genes. AXIN2 is shown to be directly upregulated by Wnt 

activation. AXIN2 stops Wnt signaling by destabilizing β-catenin (Jho et al., 2002). Another 

characterized gene is NKD1. NKD1 interacts with DVL2 to negatively regulate Wnt 

signaling (Larraguibel et al., 2015). 

In colon cancer (TCGA COAD), the Wnt pathway is very frequently activated. One 

might expect the negative feedback loop to be inactivated, either by repressed expressions 

or mutations. This turned out not to be the case; in the TCGA COAD project no recurrent 

mutations in the above genes were reported. More intriguingly, the expression of these 

genes was significantly upregulated in COAD specimens (Figure 37; right side; box plot). 

These negative feedback loops were mainly represented in 3 units (Figure 37; center 

circles). DVL2 was located on its own (Figure 37; Left Circle; DVL2). AXIN2 was 

associated with FGF18, a known downstream target of the Wnt pathway, and BMP4-

SAMD6, genes involved in TGF-β signaling pathways. Interactions between the Wnt and 

TGF-β pathways have been reported in normal (Attisano & Labbé, 2004; Attisano & 

Wrana, 2013) and cancer cells (Vallée, Lecarpentier, Guillevin, & Vallée, 2017; Warner, 

Greene, & Pisano, 2005). NKD1, NKD2 and NOTUM were associated with KIAA1199, a 

proliferative signal molecule located downstream of Wnt, and SLC6A6, a transporter 

associated with increased survival of colorectal cancer cells. DKK4 was associated with 
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functionally unclear genes that could mediate transcriptional regulation (POU5F1B), signal 

transduction (LY6G6D) and metabolic effects (CEL, CELP, TG). Collectively, these 

observations suggested that the previously identified negative feedback loops in the Wnt 

pathway work together. However, they were not effective at shutting down the Wnt 

pathway in COAD donors. In the NKD1, COAD donor ranks of the DVL2 unit were 

significantly lower than the other cases (Figure 37; Left; Boxplot p value=1.2*10-117, t test 

on ranks), rendering NKD1 ineffective. However, the other regulators need further studies. 

These findings highlight the strength of the network analysis in providing a comprehensive 

view and revealing biologically significant phenomena. 
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Figure 37 Collection of Wnt Negative Feedback Loop Units. (Upper blue circle) AXIN2 and other Wnt downstream targets. 
(Middle blue circle) NKD1, NKD2 and NOTUM unit. (Lower blue circle) DKK4 unit. (Grey circle) DVL2 unit. All negative 
feedback genes (Blue circles) have higher expression in COAD (Right boxplots). NKD1 might be rendered ineffective in 
COAD by lower expression of DVL2 (Left boxplot). 

Discussion 
 In this chapter, I expanded the one-to-one regulatory interaction conducted in 

Chapter I into networks of 2-omics interacting features by rank-based multi-omics network 

analysis in 8 pan-cancer TCGA projects. From the total of 15,666 genes and 12,835 CpG 

sites of 4,116 donors, I constructed 4,358 functional units of strongly synchronized 

features. These were linked to form 654 networks by phenotype activities. Twenty-nine of 
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these networks contained mixed interactions between genes and CpG sites. Not all of the 

units and networks were found to be biologically meaningful due to inherent complexities 

in the biological system and the simplicities in rank analysis. Cross-referencing with known 

gene sets, Gene Ontologies and literal searches revealed that a significant number of the 

networks and units were biologically significant and suggestive of novel biological 

interactions. A network containing the known interactions of AURKA and AURKB in cell 

cycle regulations was illustrated. Due to the interpretation approach, not every potentially 

meaningful network could be analyzed, and it is possible that the networks not reported 

here could still hold significant interactions. 

 While I concluded that a nonparametric rank analysis approach would yield the 

most appropriate methods in this work, it still had a number of drawbacks. Due to its root in 

coexpression networks, complex, multifactor interactions would not be apparent. The lack 

of overall detection power of the rank analysis also hindered the detection of such 

interactions. This was circumvented by increasing the detection power with a larger input 

size. Another disadvantage was its oversimplification, and any detected interactions would 

need to be interpreted based on their known biological function alone. Rank analysis also 

helped suppress artifacts from noise and batch effects. Overall, I believe that the benefits of 

rank analysis outweigh the drawbacks. 

Many improvements could be made on the rank analysis methods. Effects of zeros 

and outliners, in particular, could be removed by trimming off rankings from zeros and 

extreme measurements and focusing on rankings of more continuous measurements in the 

middle. Tie correction is also another area that could be improved to make the rankings 

better represent the data. Lastly, parameters from already proven gene networks could be 

incorporated to increase the detection power and the accuracy of the results.  

 I consider these results not as a complete multi-omics networks atlas on any scale 

but as a collection of biologically relevant and potentially functionally important pan-

cancer networks of detected genetic and epigenetic interactions. These networks and the 
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analysis employed might serve to improve our understanding of the cancer genomes and 

transcription regulations. 
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Conclusion 
  In this thesis, I explored and identified interactions of genetic and epigenetic 

elements, both from the same and different omics, by a combination of multi-omics and 

network analysis. By first integrating genomics mutations, mRNA expression, histone 

modifications and long read allele configurations of 23 lung adenocarcinoma cell line 

datasets, I identified and validated the regulatory elements, their importance in cancer 

genomes and their long-range cis-interactions with their transcriptome counterparts, 

providing a solid platform and proof-of-concept evidence of the role of the regulatory 

elements in cancer and established integrative analysis of multi-omics dataset as an 

approach to studying the interaction between omics. 

To follow up on those results, I moved on to the pan-cancer multi-omics network 

level by an integrative expression and methylations analysis of 8 TCGA projects. I was able 

to identify and characterize both known and novel interactions of genes-to-genes and 

genes-to-CpG sites. These interactions range from single gene or CpG site resolution to 

functional and biological process level resolution. Establishing rank analysis as an approach 

to integrate features from different omics uniformly and its synergistic effects with network 

analysis to produce comprehensive views of biological systems. 

Overall, this work described regulatory mutations genetic and epigenetic 

interactions and their potential roles in the development of cancer phenotypes. While not 

intended to be an complete atlas of interactions, the results could be applied directly and 

conceptually to advance our insights on how genotypes interact and translate into 

phenotypes. 
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