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Abstract 

Introduction 

Dominant trees in many forest ecosystems are associated with ectomycorrhizal 

(ECM) fungi and depend on them for growth and survival. In fact, the availability of ECM 

fungi and their species composition could be the most significant determinant of host 

seedling establishment in disturbed areas, within boreal, temperate, and subtropical 

regions. However, there is no previous study documenting ECM fungal communities in 

heavily disturbed tropical areas. Available data of ECM fungi in Southeast Asia are 

mostly from undisturbed Dipterocarpaceae forests, largely because this dominant ECM 

host is often replaced by fast growing arbuscular mycorrhizal host trees after disturbance. 

However, in some parts of Southeast Asia, potentially ECM trees belonging to Myrtaceae 

become dominant in disturbed sites, although the information about their ECM 

colonization and ECM fungal communities is scarce. 

Myrtaceae includes both arbuscular mycorrhizal and ECM host lineages. The latter 

includes Eucalyptus, on which many ECM fungi have been documented. Tristaniopsis is 

another ECM host lineage in Myrtaceae, as a recent study showed that some Tristaniopsis 

species endemic to New Caledonia are associated with diverse ECM fungi. In Indonesia, 

other Tristaniopsis species are found in very different settings, such as heavily disturbed 

areas, but their ECM associations were unknown. ECM fungi on such pioneer trees are 

important because they may help the regeneration of late-successional ECM hosts like 

Dipterocarpaceae. The objectives of this study are (1) to confirm the ECM colonization 

of Tristaniopsis under secondary tropical forest settings, (2) to characterize ECM fungal 

diversity and species composition, (3) to clarify how many ECM fungal species are shared 

with other tree species, especially with Dipterocarpaceae, (4) to quantify the effects of 
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environmental and biogeographical factors on ECM fungal communities, (5) to infer 

evolutional origin of individual ECM fungi found in secondary Tristaniopsis forests, and 

(6) to clarify how the observed ECM fungal communities are related to those of the 

surrounding areas, including Southeast Asia, Oceania, and New Caledonia. 

Materials and Methods 

Soil samples were collected from nine secondary Tristaniopsis forests located in 

Bangka (four sites) and Palangka Raya (five sites). We randomly collected 25 soil 

samples (5cm x 5cm to 10cm depth) per site in Bangka and 30 soil samples per site in 

Palangka Raya. Each sampling point was selected within a few meters from a 

Tristaniopsis tree to have a better chance of collecting its ECM roots. The interval 

between samples was at least 5 m apart to avoid collecting the same ECM fungal clones. 

ECM roots contained in each soil sample were carefully separated from soil aggregate, 

cleaned in tap water, and classified into morphotypes under a stereomicroscope.  

Three ECM tips per morphotype were subjected to DNA extraction separately. PCR 

and sequencing were performed targeting ITS regions in ribosomal DNA. Obtained 

sequences were grouped into molecular operational taxonomic units (MOTUs) based on 

≥97% similarity threshold. The identify of each MOTU (species hereafter) was assigned 

based on BLAST results in INSD (International Nucleotide Sequence Database). Host 

species of each ECM tip was identified by chloroplast DNA. The relative importance of 

soil parameters, successional stage, hosts and geographical distance in structuring ECM 

fungal communities were analyzed by NMDS, perMANOVA and db-RDA. The 

distribution of ECM fungi detected in this study and their evolutional origin were 

explored beyond the research areas using INSD. Phylogenetic similarities of ECM fungal 
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communities were compared with those of other forests in Southeast Asia, Oceania, and 

New Caledonia, by UniFrac. 

Results and Discussion 

Of 250 soil samples collected from the nine sites, 186 (74.4%) contained ECM tips 

from which 1465 ECM root tips were used for molecular identification. Sequences were 

successfully obtained from 853 root tips (58.2%). In total, 127 ECM fungal species (18 

families) were identified with the ITS similarity threshold of 97%: 56 and 79 ECM fungal 

species from Bangka and Palangka Raya, respectively. Only 18 ECM fungal species were 

represented by five or more soil samples, while 81 species were singletons (i.e., found in 

a single soil) and 12 species were doubletons. The most species-rich ECM fungal families 

were Thelephoraceae (26 species), Russulaceae (25 species), and Boletaceae (13 species). 

The most frequently observed species was Thelephoraceae sp.1, which was found in 39 

of 250 soil samples, followed by Russula sp.1 (29 soils) and Thelephoraceae sp.12 (19 

soils). The jackknife2 richness estimator indicated that there would be at least 145 species 

within the research sites.  

In total, 11 host families were identified from ECM tips examined. Myrtaceae 

(57.3%) represented by Tristaniopsis was the most dominant host group, followed by 

Dipterocarpaceae (19.4%), Fagaceae (7.3%), Fabaceae (7.3%) and Gnetaceae (2.4%). 

The existence and dominance of Dipterocarpaceae indicate that this late-successional host 

group can regenerate after disturbance under the presence of Tristaniopsis and its ECM 

fungi.  

ECM fungal communities of co-exiting host families (Myrtaceae and 

Dipterocarpaceae) were not significantly different (pseudo-F=1.09, R2=0.07, P=0.32). In 
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fact, all the ECM fungal species that appeared five or more soil samples were shared 

between Myrtaceae and Dipterocarpaceae, suggesting no host specificity in these tropical 

ECM fungi. Disturbance type (pseudo-F=1.08, R2=0.22, P=0.35) also did not 

significantly affect ECM fungal communities. However, ECM fungal communities were 

affected by sampling locations (pseudo-F =2.51, R2=0.17, P=0.03). 

Most of ECM fungal species detected in this study had no previous records in INSD. 

Only 10 of 127 ECM fungi matched with previous records at >97% ITS similarities. Eight 

of them were from Lambir Hill National Park, Sarawak (Peay et al., 2010). The other two 

species were recorded from Seychelles (Tedersoo et al., 2007) and Heimioporus 

sporocarps in Bangka. None of ECM fungal species in this study matched with those 

associated with Tristaniopsis in New Caledonia (Waseem et al., 2017), Eucalyptus, and 

numerous ECM host trees in temperate regions. 

Due to the lack of host diversity in Bangka, relative importance of host, succession 

stage and soil factors in structuring ECM fungal communities were analyzed only in 

Palangka Raya. Although all soil properties (total C, total N, C/N ratio, and pH) were 

significantly different among sampling locations, only pH (pseudo-F=3.74, P=0.001), 

total nitrogen (pseudo-F=6.74, P=0.0001) and total carbon (pseudo-F=5.25, P=0.0001) 

had significant effects on the ECM fungal communities. Successional stage (inferred from 

DBH) was also a significant determinant of ECM fungal communities (pseudo-F=2.69, 

P=0.014). 

Palangka Raya shared eight ECM fungal species with Bangka Island, five species 

each with Lambir Hill or Bukit Bangkirai, both of which are mixed dipterocarp forests. 

Bangka shared four ECM fungal species with Lambir Hill and three species with 
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Bangkirai. All these regions belonged to Sunda land, which formed a continuous land 

mass in the last ice age. No species sharing was confirmed with New Caledonia, where 

four of the Tristaniopsis ECM fungi were shared with Australian Eucalyptus. These 

results indicate that Wallace line could function as a biogeographical boundary for ECM 

fungi as for plants and animals, although further research across the line is necessary. 

In phylogenetic analyses, many ECM fungi confirmed in this study formed 

monophyletic clades with species from Africa, South America, Australia (including New 

Zealand), all of which belonged to Gondwana, the southern super continent existed until 

the Jurassic. Some other ECM fungi formed endemic clades that were composed of 

Indomalaya sequences including ours, suggesting long history of local diversification. 

These results suggest that ECM fungi in Indonesian Tristaniopsis forests are of 

Gondwana origin, corresponding well with host Myrtaceae biogeography. 

Conclusion 

Secondary tropical forests dominated by Tristaniopsis trees in Bangka and 

Palangka Raya were found to harbor diverse ECM fungi, many of which were highly 

likely to be new species that had no records in previous studies. All dominant ECM fungi 

were shared between Tristaniopsis and Dipterocarpaceae, which was confirmed to be 

regenerating naturally at the research sites. In addition, some ECM fungi confirmed in 

this study were also shared with primary dipterocarp forests. While primary dipterocarp 

rainforests often become arbuscular mycorrhizal ecosystems after disturbance, our results 

suggest that secondary forests dominated by Tristaniopsis trees remain ECM ecosystems 

and could function as ECM fungal refugia during the era of escalating human induced 

disturbance. We may be able to apply pioneer tropical ECM trees like Tristaniopsis to the 
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recovery of dipterocarp forests in Southeast Asia, providing compatible ECM fungi to 

late-successional dipterocarps.
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Chapter 1 General introduction 

1.1 Biodiversity loss and restoration attempts in tropical rainforests areas 

The tropical rainforest is a hot and moist biome, typically occurring in a band within 

15–20° on both sites of the equator. Tropical rainforests receive a monthly average 

precipitation of at least 60 mm, with no prolonged dry season. The combination of 

constant warmth and abundant moisture makes the tropical rainforest a suitable 

environment for many plants and animals. The latitudinal diversity gradient, in which 

biodiversity increases from the poles to the equator, is well documented for various plant 

and animal groups (Sechrest et al., 2002) are endemic to 25 global biodiversity hotspots 

(Myers et al., 2000), more than half of which are located in tropical forests. 

Southeast Asia harbors four biodiversity hotspots (Sundaland, Indo-Burma, the 

Philippines, and Wallacea). More than 5,000 species of vascular plants, including many 

endemic species, are distributed within a 10,000 km2 area (Dirzo & Raven, 2003).  

However, forest degradation and deforestation have impacted the region over the last few 

decades. The main drive of this destruction is industrial agriculture (i.e., oil palm 

plantations) (FAO, 2016). Unmanaged slash-and-burn for the opening of new agriculture 

areas is also responsible for the loss of tropical rainforests. These practices have released 

large amounts of carbon dioxide into the atmosphere, approximately 1.5 PgC per year 

from 2000 through 2006 alone (Canadell et al., 2007). Within the past two decades, 

Southeast Asia has lost more than 33 million ha of forest, with an annual deforestation 

rate of 0.72% (Figure 1.1). Such tremendous forest loss is becoming a severe threat to 

biodiversity  (Fitzherbert et al., 2008). 
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Forest restoration has become a global issue (Chazdon, 2008; Normile, 2010). 

However, attempts at reforestation are affected by many factors. Adequate stocks of 

seedlings of native tree species and proper understanding of their ecological traits are the 

most critical factors (Koh et al., 2013). In Southeast Asia, the Dipterocarpaceae family is 

the focal tree group for reforestation because of its economic and ecological importance. 

Dipterocarpaceae make up 10% of all tree species and 80% of canopy species in primary 

forests on Borneo Island (Ashton, 1988), supporting the forestry-based economy and 

numerous wildlife in the area. Dipterocarp species produce seeds at irregular intervals, 

often once in several years, in regional synchrony with other plants of the same species, 

a phenomenon known as mast seeding or masting (Curran & Webb, 2000). Their seeds 

start to germinate immediately after landing, and do not survive drying or freezing 

(Bonner, 1990) which makes their preservation difficult. These biological traits present a 

significant challenge to providing enough seeds and seedlings for the restoration of 

dipterocarp forests (Kettle et al., 2011). Seedling production from cuttings is applicable 

to some dipterocarp species (Kenzo et al., 2019), yet genetically uniform seedlings could 

be a concern. 
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Figure 1.1 Forest coverage loss in Borneo and projection toward 2020 (GRID-Arendal, 

2008). 

1.2 Mycorrhiza symbiosis 

Most land plants develop mutually beneficial relationships with soil fungi on their 

fine roots. In this symbiosis, called mycorrhiza, soil fungi effectively absorb and transfer 

soil nutrients to the host in exchange for photosynthesis products (Smith & Read, 2008). 

There are two major types of mycorrhizal symbiosis: arbuscular mycorrhizal (AM) and 

ectomycorrhizal (ECM) (Figure 1.2). AM is the most primitive and widespread type, 

observed in more than 85% of terrestrial plant families. ECM associations are found in 

about 10% of terrestrial plant families, which are mostly woody plants 
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Figure 1.2 Two major types of mycorrhizal symbiosis (Bonfante & Genre, 2010). 

Dominant trees in many forest ecosystems form ECM symbioses (Figure 1.3). The 

dominance of ECM trees is generally lower in the tropics than in temperate regions, yet 

the most dominant tree group in tropical primary forests, namely, Dipterocarpaceae in 

Southeast Asia, forms ECM associations (Figure 1.4). 

Most ECM fungi belong to the highly evolved fungal group Basidiomycota, which 

often produce mushrooms on the soil. ECM fungi are very species-rich, and hundreds of 

species inhabit a single 1 ha forest (Miyamoto et al., 2018). By associating with various 

ECM fungi, host trees can utilize various organic nutrient forms and adapt to broader 

habitat conditions (Baxter & Dighton, 2001), as well as increase their tolerance to drought  

(Parke et al., 1983) and disease (Sylvia, 1983). The availability and composition of ECM 

fungi might be the most significant determinant of seedling establishment in heavily 

disturbed areas (Nara, 2006a). ECM fungi also have essential roles in nutrient cycling in 
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forest ecosystems (Courty et al., 2010; Dickie et al., 2013; Finlay, 2004). Therefore, they 

are considered critical components of forest ecosystems, although they have been long 

overlooked, simply due to the difficulty observing them.  

 

Figure 1.3 Percent biomass of trees associated with ectomycorrhizal fungi (Steidinger et 

al., 2019). 

Available data of ECM symbioses in Southeast Asia are mostly from undisturbed 

Dipterocarpaceae forests (Henkel et al., 2002; Peay et al., 2010; Phosri et al., 2012; 

Sirikantaramas et al., 2003). These dominant ECM host trees are often replaced by fast-

growing AM trees (e.g., Macaranga and Mallotus) after disturbance (Brearley et al., 

2004; Slik et al., 2003). However, in some parts of Southeast Asia, potential ECM trees 

belonging to the Myrtaceae become dominant in disturbed forests (Sancayaningsih & Bait, 

2015). Although their ECM colonization and ECM fungal communities are unknown, 

they may have critical roles in maintaining ECM ecosystems and facilitating the 

establishment of late-successional ECM trees. 
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Figure 1.4 Total numbers of confirmed ECM plant species in tropical regions: Neotropic, 

Afrotropic, Indomalaya, and Australasia. Colors correspond to the number of species 

from individual plant families (Corrales et al., 2018). 

 

1.3 Tristaniopsis in Indonesian secondary forests 

The Myrtaceae family are evergreen dicotyledonous plants. All species in this 

group are woody plants (tall trees and shrubs), usually with numerous showy stamens, 

often with peeling bark, and always containing essential oils. Recent estimations suggest 

that the Myrtaceae family includes more than 5000 species in more than 130 genera. This 

family has a wide distribution in tropical and temperate regions and is commonly found 

in the world’s biodiversity hotspots (Christenhusz & Byng, 2016; Govaerts et al., 2019). 

Myrtaceae includes both arbuscular and ECM lineages. The latter includes 

Eucalyptus, on which ECM fungi have been documented in native areas such as Australia 

(Adams et al., 2006) and some introduced areas such as Seychelles (Tedersoo et al., 2007) 

and Africa (Ducousso et al., 2012). Tristaniopsis is another ECM host lineage in the 

Myrtaceae (Figure 1.5), distributed widely in Southeast Asia (Cambodia, Myanmar, 
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Malaysia, Indonesia), New Guinea, New Caledonia, and Australia (Wilson & Waterhouse, 

1982). 

Tristaniopsis is one of 8 members of the tribe Kanieae, in the subfamily Myrtoide 

(Wilson & Waterhouse, 1982). Tristaniopsis can be canopy trees with heights reaching 

30 m and diameters of up to 40 cm. Many Tristaniopsis species have red to brown bark, 

which is irregularly cracked and coarsely flaky in scroll-like pieces. Flowers are yellow-

brown, hairy, inflorescence rachis, calyx lobes 1 × 1 mm, petal 1.5 mm long, filament 

stamen 1–2 mm long, 3–10 per cluster, anther 0.1 mm. Elliptic seeds are up to 1 × 0.8 cm. 

Leaves are elliptic to obovate, 6–17 × 2–7 cm; auriculate leaves are found in the juvenile 

stage, and are less distinct at maturity (Ashton, 2005). Tristaniopsis is common at higher 

elevations of 1000–2000 m, but seldom at lower altitudes. Many species can re-sprout 

from the trunk and branches (Benson & McDougall, 1998), having high fire resistance 

(Burrows, 2008).  

 Waseem et al. (2017) recently described ECM fungi associated with Tristaniopsis 

endemic to New Caledonia. In their study, Tristaniopsis forests were located in ultramafic 

and volcano-sedimentary soils. In Indonesia, other Tristaniopsis species are found in 

secondary forests, usually in podzol and latosol soils, and rarely in peat soil. The types of 

ECM fungal communities present on such pioneer Tristaniopsis trees in Indonesia remain 

unknown. Because ECM fungi that colonize pioneer trees play important roles in 

facilitating late-successional ECM tree species (Nara, 2006b), Tristaniopsis ECM fungi 

may be key to the regeneration of dipterocarp trees. 
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Figure 1.5 Leaves and trunk of a Tristaniopsis sp. (a) and its flowers and immature 

fruits (b). 

1.4 Objectives and the outline of the thesis 

The main objective of this study was to obtain scientific knowledge about pioneer 

ECM trees and ECM fungal communities that can be potentially applicable to the 

regeneration of dipterocarp forests. To achieve this goal, we investigated ECM fungal 

communities of secondary tropical forests in Indonesia, specifically in Bangka and 

Central Kalimantan (Figure 1.6). In Chapter 2, we describe how we confirmed ECM 

colonization of Tristaniopsis under secondary tropical forest settings and give 

descriptions of ECM fungal communities. The relative importance of host, environmental, 

and geographical factors in structuring ECM fungal communities is also quantified. As 

described in Chapter 3, to infer the evolutional origin of ECM fungi in secondary 

Tristaniopsis forests, we performed phylogenetic analyses of individual ECM fungal 

components with closely related sequences in the International Nucleotide Sequence 
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Database Collaboration (INSDC) databases. We also compared the ECM fungal 

communities with those of surrounding regions (Southeast Asia, Oceania, and New 

Caledonia) based on the number of shared species and phylogenetic distance. Chapter 4 

summarizes the key findings of this study and provides overall discussions including the 

potential application to forestry and conservation in the tropics. The knowledge obtained 

from this study will broaden our understanding of tropical ECM fungal ecology and 

biogeography. 

 

Figure 1.6 Location of the study sites: Bangka Island (black) and Central Kalimantan 

(red).  

 



 

Chapter 2 (pp. 20 to 42) and Chapter 3 (pp. 43 to 55) of my doctoral thesis cannot be made public 

on the Internet for 5 years from the date of doctoral degree conferral because that part is scheduled to 

be published as part of journal. 
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Chapter 4. General discussion 

4.1 Key findings 

Late-successional host trees such as Dipterocarpaceae cannot grow well in 

disturbed sites because of the intense sunlight that induces photoinhibition (Kenzo et al., 

2011; Turner, 1990) and the lack ECM fungi. Therefore, pioneer ECM trees that can 

survive the disturbance might be the key to the recovery of dipterocarp forests. The key 

findings of this study are as follows: 

1) Tristaniopsis species in secondary forests in Indonesia were associated with diverse 

ECM fungi, many of which did not have previous records and are potentially new species. 

2) Dipterocarp tree regeneration was confirmed in secondary Tristaniopsis forests in 

Palangka Raya, where all dominant ECM fungi were shared between Tristaniopsis and 

Dipterocarpaceae. 

3) ECM fungal communities in Indonesian Tristaniopsis forests were structured by 

environmental factors, particularly pH, soil nutrients, and successional stage, but not by 

host identity.  

4) Bangka and Kalimantan Islands shared many common ECM fungal species, 

irrespective of forest type, namely, secondary Tristaniopsis forests and primary 

dipterocarp forests. Nevertheless, no species were shared between Indonesian and New 

Caledonian Tristaniopsis forests. 

5) Many ECM fungi inhabiting Indonesian Tristaniopsis forests were phylogenetically 

close to species from Gondwana components. Some other ECM fungi were included in 

endemic clades. 
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4.2 Barriers to ECM fungal migration 

Potential barriers to ECM fungal migration include host specificity, different 

environmental conditions, and geographical isolation. As we found no sign of host 

specificity in tropical ECM fungi, host differences could not be the limiting factor for 

tropical ECM fungal migrations. In fact, Tristaniopsis forests and primary dipterocarp 

forests shared substantial numbers of common ECM fungi even across different islands. 

As for the environmental factors, succession stage, pH, and soil nutrients (N and C) were 

the most significant in shaping ECM fungal communities. Environmental factors would 

affect ECM fungal establishment. Moreover, the absence of shared ECM fungal species 

between Indonesia and Thailand (Phosri et al., 2012), which were connected in the last 

ice age, may be the result of these environmental factors and not from the limitation of 

spore dispersal.  

The absence of shared ECM fungal species between Indonesian and New 

Caledonian Tristaniopsis forests could be explained by distance decay effect and 

geographic isolation. Moreover, Indonesian Tristaniopsis forests shared no common 

ECM fungi with tropical Africa, South America, or Australia. This is in sharp contrast to 

temperate ECM fungi, most of which are shared among Asia, Europe, and North America 

(Miyamoto et al., 2018), probably due to the land bridges in recent ice ages. Because 

biogeographical boundaries in the tropics (e.g., the Wallace Line) have remained 

disconnected even during ice ages (Bird et al., 2005; Cannon & Manos, 2003), the period 

of isolation would be much longer in the tropics. Interestingly, these patterns correspond 

well with the floristic regions, where Africa, Southeast Asia, and South American tropics 

are separated into different realms while temperate Asia, North America, and Europe are 

all grouped into the Holarctic realm (Gentry, 1982; Olson et al., 2001). Therefore, 
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geographic isolation mechanisms for land plants (e.g., the sea) may have equally affected 

ECM fungal migration. We may be able to distinguish relevant biogeographic realms for 

ECM fungi by further studies in the tropics. 

 

4.3 Potential applications of Tristaniopsis trees 

The absence of compatible ECM fungi could be the most critical factor preventing 

the establishment of ECM host trees (Nara, 2006a). After the clearcutting of primary 

dipterocarp forests, pioneer species Macaranga or Mallotus become dominant (Slik et al., 

2003), changing ECM ecosystems into AM environments. This can inhibit the re-

establishment of dipterocarp trees, which depend on ECM fungi.  

In this study, we found that pioneer Tristaniopsis trees can harbor ECM fungi that 

are compatible with Dipterocarpaceae. Moreover, in belowground roots, we detected 

many dipterocarp ECM tips in secondary Tristaniopsis forests after clearcutting, 

indicating the natural regeneration of Dipterocarpaceae at the sites. Thus, it is very likely 

that Tristaniopsis trees and their ECM fungi are promoting the establishment of 

Dipterocarpaceae. We may be able to develop effective application methods from these 

findings. Direct planting of dipterocarp trees in disturbed sites often results in failure 

because of intense sunlight. Instead, pioneer trees such as Acacia mangium, Acacia 

auriculiformis, and Falcataria moluccana are often used for initial planting (Nibbering, 

1999; Otsamo et al., 1997). However, all of these trees are AM species, and thus would 

not help dipterocarp re-establishment in terms of mycorrhizal associations. If we use 

Tristaniopsis trees for initial planting after clearcutting or forest fires, they can provide 

adequate shade and compatible ECM fungi, and thus may be able to facilitate the 

establishment of Dipterocarpaceae. 
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We may also be able to apply Tristaniopsis trees for the conservation of regional 

ECM fungal resources. As shown in Chapter 3, most ECM fungi in the studied region are 

endemic. Thus, escalating deforestation in this region would increase the risk of 

extinction of these endemic ECM fungi, as well as local plants and animals. When we 

consider the essential roles of ECM fungi in forest ecosystems, we should develop 

effective conservation methods to conserve such endemic ECM fungi. Unfortunately, 

many ECM fungi are difficult to cultivate on nutrient media, and require substantial costs 

and efforts when possible. Instead, ECM fungal strains can be maintained in association 

with host seedlings in greenhouses or nurseries. Natural Tristaniopsis forests could also 

function as conservation areas for ECM fungi, but we do not know where or to what 

extent Tristaniopsis forests are distributed in Indonesia. Apparently, further research is 

needed before considering the applications. 
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Table S1 ECM fungal species and their frequencies in secondary Tristaniopsis forests in Indonesia. 

Lineage* 
Frequency  

B1 B2 B3 B4 P1 P2 P3 P4 P5 Host 

/amanita     
      

Amanita sp. 1 1 0 0 0 1 0 1 1 0 M, D 

Amanita sp. 2 0 1 0 0 0 0 0 0 0 M 

Amanita sp. 3 0 1 0 0 0 0 0 0 0 - 

Amanita sp. 4 0 0 1 0 0 0 0 0 0 - 

/atheliales2     
      

Atheliaceae sp. 1 4 0 1 0 0 0 1 0 2 M 

Atheliaceae sp. 2 0 0 1 0 0 0 0 0 0 M 

Atheliaceae sp. 3 0 0 1 0 0 0 0 0 0 - 

Atheliaceae sp. 4 0 0 0 0 0 0 2 0 1 M, D 

Atheliaceae sp. 5 0 0 0 0 0 0 0 0 1 - 

/boletus     
      

Austroboletus sp. 1 1 0 0 0 0 0 0 0 0 - 

Austroboletus sp. 2 0 1 0 0 0 0 0 0 0 M 

Austroboletus sp. 3 0 0 0 0 0 0 0 0 1 M 

Boletaceae sp. 1 0 1 0 0 0 0 0 0 0 - 

Boletaceae sp. 2 0 0 0 0 3 0 0 0 0 D, Fb, Gn 

Boletales sp. 1 2 0 0 0 2 1 0 2 1 M, D 

Boletellus sp. 1 0 0 0 1 0 0 0 0 0 M 

Boletellus sp. 2 0 0 0 0 1 0 0 0 0 - 

Boletus sp. 3 0 0 0 0 0 0 1 0 0 M 

Borofutus sp.  0 0 0 0 0 3 0 0 0 M 

Heimioporus sp. 0 1 0 0 0 0 0 0 0 M 
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/cenococcum     
      

Cenococcum 

geophilum 1 
5 1 8 0 

0 0 0 0 0 M 

Cenococcum 

geophilum 2 
0 1 0 0 

0 0 0 0 0 M 

Cenococcum 

geophilum 3 
0 0 0 0 

1 15 0 0 0 M, D 

Cenococcum 

geophilum 4 
0 0 0 0 

0 0 0 0 4 M, D 

/clavulina     
      

Clavulina sp. 1 0 1 0 0 0 0 0 0 0  

Clavulina sp. 2 0 0 0 0 3 3 0 0 0 M, Fb 

Clavulina sp. 3 0 0 0 0 2 0 0 0 0 D 

Clavulina sp. 4 0 0 0 0 1 0 0 0 0 - 

Clavulina sp. 5 0 0 0 0 1 0 0 0 0 - 

Sistotrema sp. 1 0 0 0 0 2 0 0 0 0 D 

Sistotrema sp. 2 0 0 0 0 0 0 0 0 1 - 

Sistotrema sp. 3 0 0 0 0 1 0 0 0 0 - 

/coltricia     
      

Coltricia sp. 1 0 1 0 0 0 0 0 0 0 - 

Coltricia sp. 2 0 0 0 0 0 0 0 1 0 - 

Coltricia sp. 3 0 0 0 0 0 0 0 1 0 D 

Coltriciella sp. 1 0 1 0 0 0 0 0 0 0 M 

Coltriciella sp. 2 0 1 0 1 0 0 0 0 0 - 

Coltriciella sp. 3 0 1 0 0 0 0 0 0 0 M 

Coltriciella sp. 4 0 0 0 1 0 0 0 0 0 M 

Coltriciella sp. 5 0 0 0 0 1 0 0 0 0 Fb 
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/cortinarius     
      

Cortinarius sp. 1 0 0 0 1 0 0 0 0 0 - 

Cortinarius sp. 2 0 1 0 0 0 0 0 0 0 - 

Cortinarius sp. 3 1 0 0 0 0 0 0 0 0 M 

Cortinarius sp. 4 0 0 0 0 0 0 1 0 0 M 

Cortinarius sp. 5 0 0 0 0 0 0 0 0 1 - 

Cortinarius sp. 6 0 0 0 0 0 0 1 0 0 - 

Cortinarius sp. 7 0 0 0 0 0 0 0 0 1 Fg 

Cortinarius sp. 8 0 0 0 0 0 0 0 0 1 - 

/elaphomyces     
      

Elaphomyces sp. 1 1 1 0 0 1 0 0 1 0 M 

Elaphomyces sp. 2 0 0 0 0 0 0 2 0 0 - 

Elaphomyces sp. 3 0 0 0 0 0 0 0 0 1 D 

Elaphomyces sp. 4 0 0 0 0 1 0 0 0 0 M 

/inocybe     
      

Inocybe sp. 1 0 0 0 0 4 0 0 0 0 M, D 

Inocybe sp. 2 0 0 0 0 0 0 0 2 0 D 

Inocybe sp. 3 0 0 0 0 0 1 0 0 0 - 

Inocybe sp. 4 0 0 0 0 0 0 1 0 0 M 

/laccaria     
      

Laccaria sp. 1 1 0 0 0 0 0 0 0 0 M 

Laccaria sp. 2 0 0 0 0 0 0 0 0 1 M, Fg 

/pisolithus-scleroderma     
      

Scleroderma sp. 1 0 0 0 0 0 0 4 0 3 M, D, Fg 

Scleroderma sp. 2 0 0 0 0 0 1 0 0 0 Gn 

/russula-lactarius     
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Lactarius sp. 1 0 1 0 0 0 0 0 0 0 - 

Lactarius sp. 2 0 0 0 0 0 0 3 0 7 M, D, Fb, Fg 

Lactarius sp. 3 0 0 0 0 0 0 0 0 3 D, Fg 

Russula sp. 1 4 0 1 0 9 3 7 4 1 M, D, Fb, Fg 

Russula sp. 2 4 0 0 0 5 0 2 4 1 M, D, Fb, Fg 

Russula sp. 3 1 1 1 0 0 0 0 0 0 M 

Russula sp. 4 0 1 0 0 0 0 0 0 0 - 

Russula sp. 5 0 1 0 0 0 0 0 0 0 - 

Russula sp. 6 0 0 0 1 0 0 0 0 0 - 

Russula sp. 7 0 0 0 0 4 0 3 1 2 M, D, Fb 

Russula sp. 8 0 0 0 0 0 2 0 0 0 D 

Russula sp. 9 0 0 0 0 4 0 0 0 2 D 

Russula sp. 10 0 0 0 0 0 0 4 0 0 M, D, Fg 

Russula sp. 11 0 0 0 0 0 3 0 0 0 M, D, Fb 

Russula sp. 12 0 0 0 0 0 0 0 0 2 M, Fg 

Russula sp. 13 0 0 0 0 0 0 0 1 0 - 

Russula sp. 14 0 0 0 0 0 0 0 0 1 M 

Russula sp. 15 0 0 0 0 0 1 0 0 0 D 

Russula sp. 16 0 0 0 0 1 0 1 0 1 - 

Russula sp. 17 0 0 0 0 1 0 0 0 0 D 

Russula sp. 18 0 0 0 0 0 0 1 0 0 - 

Russula sp. 19 0 0 0 0 0 0 0 1 0 M 

Russula sp. 20 0 0 0 0 0 0 0 0 1 - 

Russula sp. 21 0 0 0 0 0 0 0 0 1 Fg 

Russula sp. 22 0 0 0 0 0 0 0 0 1 M 

/tomentella-thelephora     
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Thelephoraceae sp. 1 6 0 1 0 1 0 7 13 11 M, D, Fb, Fg, Gn 

Thelephoraceae sp. 2 4 0 2 0 3 2 6 1 0 M, D, Gn 

Thelephoraceae sp. 3 1 0 0 0 0 0 0 0 0 - 

Thelephoraceae sp. 4 1 0 0 0 0 0 0 0 0 M 

Thelephoraceae sp. 5 1 0 0 0 0 0 0 0 0 M 

Thelephoraceae sp. 6 1 0 0 0 0 0 0 0 0 - 

Thelephoraceae sp. 7 1 0 0 0 0 0 0 0 0 - 

Thelephoraceae sp. 8 0 0 1 0 0 0 0 0 0 - 

Thelephoraceae sp. 9 0 0 1 0 0 0 0 0 0 - 

Thelephoraceae sp. 10 0 0 1 0 0 0 0 0 0 - 

Thelephoraceae sp. 11 0 0 1 0 0 0 0 0 0 - 

Thelephoraceae sp. 12 0 0 0 0 0 0 4 7 8 M, D, Fg 

Thelephoraceae sp. 13 0 0 0 0 0 2 2 1 0 Fg 

Thelephoraceae sp. 14 0 0 0 0 0 1 1 1 1 M 

Thelephoraceae sp. 15 0 0 0 0 0 0 0 1 3 M, D 

Thelephoraceae sp. 16 0 0 0 0 0 0 0 1 0 M, D 

Thelephoraceae sp. 17 0 0 0 0 0 0 1 0 0 M 

Thelephoraceae sp. 18 0 0 0 0 0 0 0 0 2 M 

Thelephoraceae sp. 19 0 0 0 0 1 0 0 1 0 M 

Thelephoraceae sp. 20 0 0 0 0 0 0 0 0 3 Fg 

Thelephoraceae sp. 21 0 0 0 0 2 0 0 2 1 D 

Thelephoraceae sp. 22 0 0 0 0 0 0 0 0 1 - 

Thelephoraceae sp. 23 0 0 0 0 1 0 0 0 0 - 

Thelephoraceae sp. 24 0 0 0 0 0 0 2 1 1 M, D 

Thelephoraceae sp. 25 0 0 0 0 0 0 1 0 0 M 

Thelephoraceae sp. 26 0 0 0 0 0 0 0 1 0 D 

Not assigned to lineages           
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Agaricomycetes 0 1 0 0 0 0 0 0 0  

Clavariaceae sp. 1 1 0 1 0 0 0 0 0 0  

Clavariacae sp. 2 0 0 0 0 0 1 0 0 0  

Clavulinaceae sp. 1 0 2 0 3 0 0 0 0 0  

Clavulinaceae sp. 2 0 0 0 1 0 0 0 0 0  

Clavulinaceae sp. 3 0 0 0 1 0 0 0 0 0  

Clavulinaceae sp. 4 0 0 0 1 0 0 0 0 0  

Corticiales 0 0 0 0 0 0 0 1 0  

Cortinariaceae sp. 1 0 2 0 0 0 0 0 0 0  

Craterellus sp. 1 0 1 0 0 0 0 0 0 0  

Craterellus sp. 2 0 1 0 0 0 0 0 0 0  

Craterellus sp. 3 0 1 0 0 0 0 0 0 0  

Sebacina sp. 1 0 0 2 0 0 0 0 0 0  

Xenasmatella sp.1 0 0 0 0 0 0 2 2 1  

Xenasmatella sp.2 0 0 0 0 0 0 1 0 0  

Xerocomus sp. 1 0 1 0 0 0 0 0 0 0  

*Based on UNITE information 

Abbreviations for hosts are as follows, M (Myrtaceae), D (Dipterocarpaceae), Fg (Fagaceae), Fb (Fabaceae), Gn (Gnetaceae).
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Table S2 ECM fungal host species identified in this study. 

Host 

Frequency 

Total 
ECM 

associated 

Closest BLAST match 

Query Cover %Ident 
Bangka 

Palangka 

Raya 
Acc. No. Organism 

Myrtaceae sp.1 - 108 108 36 KU564752.1 Actephila sessilifolia 99 99.28 

Dipterocarpaceae sp.1 1 52 53 29 NC_040966.1 Shorea pachyphylla 100 98.22 

Myrtaceae sp.2 45 3 48 27 KM895945.1 Tristaniopsis laurina 99 99.42 

Fagaceae sp.1 1 20 21 14 KX163021.1 Quercus robur 99 99.46 

Fabaceae sp.1 - 18 18 9 KM510309.1 Dalbergia velutina 99 99.63 

Dipterocarpaceae sp.2 - 9 9 4 KY973108.1 Cotylelobium burkii 100 99.64 

Gnetaceae - 7 7 2 AP014923.1 Gnetum ula 99 99.46 

Chyrsobalanaceae - 6 6 1 JQ898702.1 Magnistipula glaberrima 99 99.46 

Moraceae - 4 4 - MH332390.1 Ficus deltoidea 99 99.81 

Santalaceae - 3 3 2 EF464520.1 Dendrotrophe varians 100 99.82 

Dipterocarpaceae sp.3 - 3 3 2 MH791329.1 Hopea dryobalanoides 100 99.81 

Calophyllaceae - 2 2 1 MF435428.1 Calophyllum sp. 99 100 

Anacardiaceae - 2 2 1 MN126106.1 Magnifera indica 100 99.79 

Fabaceae sp.2 - 1 1 - MH549715.1 Acacia auriculiformis 100 100 

Fabaceae sp.3 - 1 1 - MN591110.1 Dialium guineense 99 99.62 

Nepenthaceae - 1 1 2 NC_041271.1 Nepenthes mirabilis 100 99.44 
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Figure S1 Photographs of ECM fungi found in the study sites. (a) Thelephoraceae sp. 1; (b) Thelephoraceae sp. 12; (c) Russula sp. 1; (d) 

Cenococcum geophilum; (e) Heimioporus sp.; and (f) Borofutus sp. 
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Figure S2 Phylogenetic tree topography of Myrtaceae including Tristaniopsis in Bangka 

and Palangka Raya (bullets) based on ML using rbcL gene sequences. Bootstrap values 

are indicated along the branches; support values > 50% are shown.  
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Figure S3 Phylogenetic tree topography of Dipterocarpaceae including ECM tips from 

Bangka and Palangka Raya (bullets) based on ML using rbcL gene sequences. Bootstrap 

values are indicated along the branches; support values > 50% are shown.  
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Figure S4 Species compositions and frequencies of ECM fungi found on Myrtaceae (blue) and Dipterocarpaceae (orange) in Palangka 

Raya, Indonesia
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Figure S5 Phylogenetic tree of the ECM fungal lineage /amanita based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S6 Phylogenetic tree of the ECM fungal lineage /atheliacea based on ML using 

ITS region sequences. Bootstrap values are indicated along the branches; support values 

> 50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S7 Phylogenetic tree topography of ECM fungal lineage /boletus based on ML 

using ITS region sequences. Bootstrap values are indicated along the branches; support 

values > 50% are shown. Sequences obtained from Bangka and Palangka Raya are 

marked with bullet points. Species from Gondwana components (Africa, South America, 

and Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S8 Phylogenetic tree of ECM fungal lineage /cenococcum based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S9 Phylogenetic tree of ECM fungal lineage /clavulina based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S10 Phylogenetic tree of ECM fungal lineage /coltricia based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S11 Phylogenetic tree topography of ECM fungal lineage /cortinarius based on 

ML using ITS region sequences. Bootstrap values are indicated along the branches; 

support values > 50% are shown. Sequences obtained from Bangka and Palangka Raya 

are marked with bullet points. Species from Gondwana components (Africa, South 

America, and Australia) are shown in red; species from Southeast Asia are in orange.  
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Figure S12 Phylogenetic tree of ECM fungal lineage /elaphomyces based on ML using 

ITS region sequences. Bootstrap values are indicated along the branches; support values 

> 50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S13 Phylogenetic tree of ECM fungal lineage /Inocybe based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange.  
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Figure S14 Phylogenetic tree of ECM fungal lineage /laccaria based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange. 
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Figure S15 Phylogenetic tree of ECM fungal lineage /scleroderma based on ML using 

ITS region sequences. Bootstrap values are indicated along the branches; support values 

> 50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange.  
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Figure S16 Phylogenetic tree of ECM fungal lineage /russula-lactarius based on ML using ITS 

region sequences. Bootstrap values are indicated along the branches; support values > 

50% are shown. Sequences obtained from Bangka and Palangka Raya are marked with 

bullet points. Species from Gondwana components (Africa, South America, and 

Australia) are shown in red; species from Southeast Asia are in orange.  
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Figure S17 Phylogenetic tree topography of ECM fungal lineage /tomentella-thelephora 

based on ML using ITS region sequences. Bootstrap values are indicated along the 

branches; support values > 50% are shown. Sequences obtained from Bangka and 

Palangka Raya are marked with bullet points. Species from Gondwana components 

(Africa, South America, and Australia) are shown in red; species from Southeast Asia are 

in orange. 


