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Abstract

Automatic mapping from aerial or satellite imagery is an essential and challenging task because
of the variety of backgrounds, building textures, and imaging conditions. To achieve automatic
mapping, three challenging tasks, including polygon feature extraction, line feature extraction,
and model transfer, should be addressed.

To achieve polygon feature extraction, deep-learning methods, especially fully convolu-
tional networks (FCNs), has become a popular option. Compared with traditional solutions,
these approaches have shown promising generalization capabilities and precision levels in var-
ious datasets of different scales, resolutions, and imaging conditions. To achieve superior per-
formance, many pieces of research have focused on constructing more complex or deeper net-
works. However, using an ensemble of different fully convolutional models to achieve better
generalization and to prevent overfitting has long been ignored. In this research, we design
four stacked fully convolutional networks (SFCNs), and a feature alignment framework for
multi-label land-cover segmentation. The proposed feature alignment framework introduces an
alignment loss of features extracted from basic models to balance their similarity and variety.
Experiments on a very high resolution(VHR) image dataset with six categories of land-covers
indicates that the proposed SFCNs can gain better performance when compared to existing deep
learning methods. In the 2nd variant of SFCN, the optimal feature alignment gains increments
of 4.2% (0.772 vs 0.741), 6.8% (0.629 vs 0.589), and 5.5% (0.727 vs 0.689) for its f1-score,
jaccard index, and kappa coefficient, respectively.

For efficient line feature extraction, many indirect or direct approaches have been proposed.
In recent years, due to the rapid development of deep convolutional networks, line feature ex-
traction can also treat as a particular polygon feature extraction task that deals with the ex-
tremely biased distribution of negative and positive pixels. The existing methods are mainly
focused on the network design that misalignments and rotations presented in manually created
annotations are long ignored. Due to the limited positive samples, the misalignments and ro-
tations significantly reduce the correctness of pixel-to-pixel loss that might lead to the gradient
explosion. To overcome this, we propose a nearest feature selector(NFS) to dynamically re-
align the prediction and slightly misaligned annotations. The NFS can seamlessly integrate into
existing loss functions and prevent misleading by errors or misalignment of annotations. Ex-
periments on a large scale image dataset with centered buildings and corresponding building
outlines indicate that the additional NFS brings higher performance when compared to existing
naive loss functions. In the classic L1 loss, the addition of NFS gains increments of 8.8% of
f1-score, 8.9% of kappa coefficient, and 9.8% of the jaccard index.

Generalization is an essential criterion of the algorithm. A well-generalized model should
work appropriately on various areas and data sources. Due to the limited training data, cur-
rent data-driven algorithms, including deep convolutional networks(DCNs), are susceptible to
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training data that can not be applied to new data directly. Different from existing methods
that are trying to improve model generation capability using limited data, we propose an inte-
grated pipeline to generated testing data that share a similar characteristic of training data. Our
model transfer pipeline is consists of a super-resolution and a colorization model that can con-
vert low-resolution panchromatic images from the satellite into high-resolution color images.
Experiments on an image dataset with satellite and corresponding aerial imagery show that the
pre-trained model achieves significantly higher performance on images processed by the inte-
grated pipeline. Compared to the performance on original satellite images, even with a slight
decline of precision(4.4%), the addition of SR and colorization leads to 63.6%, 29.6%, 76.6%,
and 51.8% increments of recall, f1-score, jaccard index, and kappa coefficient, respectively.
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The distributions and changes of natural and artificial surfaces, such as grasslands, forests,
buildings, and roads, are essential for many applications such as urban planning, navigation
[1], land-used management [2], and forest monitoring [3]. Traditionally, this information was
obtained by labor-intensive and time-consuming field surveys [4]. The ability to achieve precise
and cost-efficient updating of land cover is a long-existing demand for remote sensing. Over the
last few years, with the emerging of innovative technologies, the cost, as well as the difficulty
of capturing very high resolution(VHR) aerial imagery, has significantly declined [5, 6]. Thus,
robust and precise methods for automatic generation of digital maps from captured aerial or
satellite imagery are the core of the whole solution.

As shown in Figure 1.1, compared to satellite images, the digital maps simplified and sum-
marized the RGB values satellite images into two main categories: polygon features(e.g., build-
ings, green lands, and lakes) as well as line features(e.g., roads, and building outline). Besides,
even with a significantly different appearance of satellite images from different locations, the
digital maps should maintain a similar style. Thus, to achieve automatic mapping, there are
mainly three tasks: (1) Polygon Feature Extraction, (2) Line Feature Extraction, and (3) Model
Transfer. The (1) and (2) make sure that the methods should be able to extract both polygon
and line features efficiently. With (3), the algorithm built for one location should also work for
another location or the same location with a different appearance.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Example of Satellite images and corresponding digital images from Google Maps.
(a) Satellite image of kashiwa campus, The University of Tokyo, (b) Digital map of kashiwa
campus, The University of Tokyo, (c) Satellite image of The Hong Kong University of Science
and Technology, and (d) Digital map of The Hong Kong University of Science and Technology.
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1.1. POLYGON FEATURE EXTRACTION

1.1 Polygon Feature Extraction
Polygon feature extraction can be viewed as a semantic segmentation of different polygon fea-
tures from input aerial or satellite images. Over the past decades, a significant amount of poly-
gon feature extraction algorithms have been proposed. According to the conditions of image
datasets such as scale, color space, and resolution, various automatic segmentation methods
have been introduced. Depending on whether it is necessary to have ground truth, these meth-
ods can be mainly divided into two categories : (1) unsupervised methods and (2) supervised
methods.

1.1.1 Unsupervised Methods
1.1.1.1 Threshold-based Methods

Image thresholding is a simple and commonly used segmentation method. Pixels with different
values are allocated to different parts according to manually or automatically selected thresholds
[7]. Usually, image thresholding is not capable of differentiating among various regions with
similar grayscale values.

1.1.1.2 Edge-based Methods

Edge-based methods adopt edge-detection filters, such as Laplacian of Gaussian [8], Sobel [9]
and Prewitt [10], to detect the abrupt changes among neighboring pixels and generate bound-
aries.

1.1.1.3 Region-based Methods

Region-based methods segment different parts of an image through clustering [11–14], region-
growing [15] or shape analysis [16,17]. Due to the variety of illuminance and texture conditions
of an image, edge-based or region-based methods cannot provide stable and generalized results.

1.1.2 Supervised Methods
Because of manually adjustable parameters and the lack of need for ground truth, unsupervised
methods are more comfortable to implement and are widely adopted for small scale datasets.
However, for larger datasets, as the variety and complexity increase, the performance of unsu-
pervised segmentation methods usually lacks generalization capability [18]. In direct contrast,
supervised methods utilize the ground truth to learn segmentation patterns and then apply it
to new data. For supervised methods, the segmentation problem is converted into a pixel-to-
pixel image classification where pixels of different parts are classified into their corresponding
categories [19]. Because the segmentation is made by classifying each pixel, these methods
generally produce more precise segmentation.

1.1.2.1 Hand-crafted Features

Conventional supervised methods usually undergo a two-step procedure of feature extraction
and classification. The spatial and textural features of an image are extracted through mathe-
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matical feature descriptors, such as haar-like [20], scale-invariant feature transform [21], local
binary pattern [22], and histogram of oriented gradients (HOG) [23]. After that, the prediction
for every pixel is made on the basis of the extracted features through classifiers such as support
vector machines [24], adaptive boosting (AdaBoost) [25], random forests [26] and conditional
random fields (CRF) [27]. However, because of the complexity of building structures and also
because of strong similarities with other classes (e.g., pieces of roads), the prediction results
rely heavily on manual feature design and adaptation, which easily leads to bias and poor gen-
eralization.

1.1.2.2 Patch-based Convolutional Neural Network(CNN)

With the development of algorithms, computational capability, and the availability of big data,
convolutional neural networks (CNNs) [28] have attracted more and more attention in this field.
Unlike two-step methods requiring artificial feature extraction, CNNs can automatically extract
features and make classifications through sequential convolutional and fully connected layers.
The CNN method can be considered as a one-step method that combines feature extraction and
classification within a single model. Since the feature extraction is learned from the data itself,
CNN usually possesses better generalization capability.

In the early stages, patch-based CNN approaches label a pixel by classifying the patch that
centers around that pixel [29, 30]. Even for a small patch of 32 × 32 pixels, to cover the
whole area, the memory cost of these patch-based methods increases by 32 × 32 times. For
larger areas or patch sizes, these approaches encounter dramatically increased memory cost and
significantly reduced processing efficiency [31].

1.1.2.3 Fully Convolutional Networks (FCNs)

To avoid patches, the fully convolutional networks (FCNs) utilizes a fully convolutional network
architecture [32]. The architecture enables direct pixel-to-pixel translation of the input images
to the ground truth. In this manner, the FCN method significantly improves computational
efficiency and model performance [31].

As shown in Figure 1.2, in classic FCNs (FCN32s, FCN16s, and FCN-8s) [32], the methods
adopt multiple-scale bilinear upsampling operations to generate segmentation output with the
same height and width of input. These operations lead to information loss that affects the
precision of prediction.

Recently, more advanced and accurate FCN-based methods have been developed [33]. These
methods improve model performance through different strategies.

• U-Net. The U-Net architecture was proposed by Ronneberger et al. [34] for medical im-
age segmentation. This method adopts bottom-up/top-down architecture with skip con-
nections that combine both the lower and higher layers to generate the final output, re-
sulting in better performance.

• DeconvNet. The DeconvNet architecture was published at IEEE International Confer-
ence on Computer Vision(ICCV) 2015 [35]. Instead of upsampling layers, the model
introduced a learnable deconvolution(i.e., convolution transpose) operations to increase
the height and width of the intermediate features gradually.
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Input Prediction

Figure 1.2: Network architecture of the FCN.

Skip connections

Input

Down-block Up-block

Figure 1.3: Network architecture of the U-Net.
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Conv Block 
Max-pooling 
Deconvolution

Figure 1.4: Network architecture of the DeconvNet.

• SegNet. The SegNet architecture was proposed by Badrinarayanan et al. [36] in 2017.
This method proposed a deep convolutional encoder-decoder architecture with unpool-
ing layers to consequentially upsampled height and width of intermediate featured maps.
With unpooling operation, the SegNet model can avoid information loss during max-
pooling and thus brings a better result.

• MC-FCN. In our previous study, we proposed a multi-constraint fully convolutional net-
work (MC–FCN) [37]. The MC–FCN model adopts the basic structure of a U–Net and
adds multi-scale constraints for variant layers. Here, an optimization target between the
prediction and the corresponding ground truth for a specific layer is defined as a con-
straint. During every iteration, parameters are updated through the multi-constraints,
which prevents the parameters from biasing to a single constraint. Also, the constraints
are applied to different layers, which helps to optimize the hidden representation of vari-
ant layers better.

These advanced methods further develop the potential of fully convolutional networks.
However, with more complex architectures and stronger representation capabilities, overfitting
becomes inevitable [38].

Overfitting is a long-existing problem in deep learning. This problem is more critical for
smaller datasets. Several approaches, including early stopping, data augmentation, regulariza-
tion, and ensemble learning, are proposed for this problem. The early stopping approach stops
the training model before convergence to prevent overfitting [39,40]. For the data augmentation
approach, the original images are rotated, resized, random cropped, or re-colorized to gener-
ate more training samples and increase the variety of data [41]. As for regularization, extra
penalty (e.g., L1/L2 ) [42, 43] or dropout [44] is implemented to reduce and regulate the rep-
resentation capability of the model. By contrast, ensemble learning combines several models
to generate a final prediction [45]. Owing to its capability of utilizing a variety of different
models, biased predictions from one model can be compensated for by other models, and better
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Conv Block 
Max-pooling 
Unsampling

Figure 1.5: Network architecture of the SegNet.

results can be produced. Currently, ensemble learning is mainly applied to patch-based CNN for
pixel-level classification [46]. Ensemble learning has not received any attention in FCN-based
architectures. Besides, research on ensemble learning is mainly focused on various numbers or
combinations of basic models. The studies on the combination approaches of different basic
models are not sufficient.

To explore the capability of ensemble learning using fully convolutional networks, we de-
sign four stacked fully convolutional networks(SFCNs) using FCN-8s, U-Net, and FPN. Fur-
thermore, we propose a feature alignment framework for efficient ensemble learning, which
enhances the relations between basic models. Compared with traditional ensemble learning
approaches, the proposed method implements basic segmentation loss between prediction and
corresponding ground truth as well as extra alignment loss between features that are extracted
separately from different basic models. The value of the alignment loss is determined by the
consistency of features extracted by different models. If these features are similar, the align-
ment loss is zero. During iterations, the optimizer is required to update parameters to reduce
the value of the weighted sum of segmentation loss and alignment loss. Thus, the optimized
network is capable of generating predictions using features extracted from basic models that
contain a balance of similarity and variety.

A VHR image dataset demonstrates the effectiveness of the proposed feature alignment
framework (refer to Figure 3.1). In comparative experiments, the performances of achieved by
the proposed method (SFCNv3, +FA) are 0.785(±0.004) of F1-score, 0.646(±0.005) of jaccard
index [47], and 0.742(±0.005) of kappa coefficient [48], respectively. Furthermore, sensitivity
analysis indicates that the proposed feature alignment can control the balance between simi-
larity and variety of features extracted from different basic models. By optimizing the feature
alignment level, ensemble fully convolutional networks gain better model performance.
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Figure 1.6: Network architecture of the MC–FCN.
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              Image                                 Polygon                              Line                                           

                    a                                    b

Figure 1.7: Example of polygon feature and line feature from aerial image.

1.2 Line Feature Extraction

Different from polygon features, line features occupy very few pixels(e.g., building outline
shown in Figure 1.7). Thus, the automatic extraction of the line feature is more complicated.
To extract line features, there are mainly two approaches: (1) indirect approach, and (2) direct
approach.

1.2.1 Indirect Approach

For the indirect approach, instead of extracting target line features directly from input aerial or
satellite image, it first performance semantic segmentation. With accurately segmented feature
maps, outlines, or boundaries among different semantic parts can be easily achieved. In these
methods, since the line feature is derived from segmentation maps, their performances highly
rely on the robustness of polygon extractions.

In principle, all polygon extraction methods mentioned above can also be used for indirect
line extraction. However, due to the sensitivity of outline/boundary, training with only semantic
information usually leads to inconsistent outline or boundary. To prevent this, we proposed a
boundary regulated network(BR-Net) [49] to achieve building segmentation as well as outline
extraction.
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Figure 1.8: Network architecture of the BR-Net.

1.2.1.1 Boundary Regulated Network

As shown in Figure 1.8, the boundary regulated network (BR-Net) method consists of a shared
backend utilizing a modified U-Net and a multi-task framework to generate predictions for
segmentation maps and building outlines based on a consistent feature representation from the
shared backend. In the proposed BR-Net, the optimizer has two main tasks. It must ensure that
both the segmentation and outlines of the prediction results are as close as possible to those of
the ground truth. In this manner, in every iteration, parameters are updated by considering both
segmentation and outlines, which prevents parameters from focusing on surrounding pixels and
utilizes a more comprehensive range of global information.

As shown in Figure 1.9, compared to existing methods, the proposed BR-Net can achieve
superior performance on both building polygon segmentation and outline extraction. However,
even in BR-Net, the outlines are extracted indirectly.

1.2.2 Direct Approach
Different from the indirect approach, direct approach extracts line features directly from input
aerial or satellite images. Traditionally, line feature extraction is done by edge operators that
estimate the gradient of the image intensity function.

1.2.2.1 Edge Operators

With the operators, different finite-difference approximations of the gradient are computed to
generate boundaries among different zones [50]. Due to their simplicity, these methods are fast
and unsupervised. However, when faced with a slightly complicated task, such as extracting
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a                   b                    c               d                    e                  f                    g                  h

Image

FCN8s

U-Net

BR-Net

Figure 1.9: Representative results of single-building-level outline extraction by FCN8s, U-Net
and, BR-Net. The green, red, blue, and white channels in the results represent true positive,
false positive, false negative, and true negative predictions, respectively.

building outlines from an aerial image, extracted outlines from these methods are filled with
noises(e.g., building outline extracted by canny operator [51] in Figure 1.10).

1.2.2.2 Deep Convolutional Networks

Even with much fewer positive examples, line feature extraction can also be considered as a
semantic segmentation or pixel-level classification problem [52]. With the rapid development
of deep learning algorithms, many efficient deep learning networks, such as RSRCNN [53],
ResUNet [54], and D-LinkNet [55], are proposed for automatic extraction of line features(e.g.,
roads).

However, these models are focusing on deeper network architectures to achieve better uti-
lization of the feature representation capability of hidden layers. Another critical issue in line
feature extraction still exists. Regardless of how these models generate predictions, their loss
functions are computed directly from the pixel-to-pixel similarity of the ground truth. Due to the
extremely biased distribution of positive and negative pixels, gradient exploding during train-
ing becomes a severe problem. Additionally, because of the occasional human errors, there are
inevitable several or tens of pixels misalignment between annotation and corresponding aerial
image. Due to the much fewer pixels of line features, the pixel-to-pixel losses are very sensitive
to these misalignments.

In light of this issue, we propose a nearest feature selector(NFS) module, which enables dy-
namic re-alignment between ground truth and prediction. At every iteration, a dynamic match-
ing between ground truth and prediction is performed to determine the matched position. Then,
the overlapped areas of both ground truth and prediction are used for further loss computation.
Since the NFS is used for the upper stream, it can be seamlessly integrated into all existing loss
functions. The effectiveness of the proposed NFS module is demonstrated by a VHR image
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      Im
age              C

anny       

Figure 1.10: Example of building outlines extracted by Canny operator(σ = 1).

dataset located in New Zealand(refer to Figure 3.2 and Figure 3.3). In comparative experi-
ments, under different network architecture as well as loss functions, addition of NFS shows
significantly higher values of F1-score, jaccard index [47], and kappa coefficient [48].
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                                  (a)                                                                        (b)

Figure 1.11: Sample patch of RGB aerial and panchromatic satellite images from some location.
(a) High resolution (0.16 m) RGB aerial image, and (b) Low resolution (0.5 m) panchromatic
satellite image.

1.3 Model Transfer
Ideally, if there is sufficient training data, we can train a perfect model that can work for all
conditions. However, in practice, only limited annotations are provided. Thus, to achieve large-
scale automatic mapping, the model built for one location should also work at another location
or the same location but from different data sources. In remote sensing, transferring an aerial
model to satellite images is a frequent demand of model transfer.

Typically, the aerial images have higher spatial resolution and more abundant chrominance
information. Due to the difference in resolution and color space, the model trained on aerial
images undergoes performance degradation significantly on satellite images. To avoid this,
we propose a model transfer pipeline that integrated both resolution and color transferring to
synthesized high resolution, colorized satellite images.

1.3.1 Resolution transfer
To achieve high resolution(HR) images, a simple solution is to upscale low resolution(LR)
image through bilinear or bicubic interpolations. However, interpolation would generate in-
sufficient large gradients along edges and high-frequency regions by only weighted averaging
neighboring LR pixel values. For example, small buildings would not be the same as larger
ones, even if up-scaled.

Rather than interpolation, super-resolution (SR) has offered a promising alternative solution
[56]. Aimed at increasing the image resolution while providing finer spatial details than those
captured by the original acquisition sensors, SR could balance the size and detail of land features
between the training and testing datasets to a certain degree [57].
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1.3.2 Color transfer
Transferring chrominance information from an aerial image to a panchromatic image can be
viewed as a particular form of image colorization. The goal of transferring is to reconstruct
RGB color from panchromatic input. According to whether the usage of reference images or
not, existing methods can mainly be categorized into two groups: (i) scribble-based methods,
and (ii) example-based methods.

As for scribble-based methods, user-specific scribbles and corresponding optimization frame-
works are integrated to correctly propagated color information the whole input image [58–60].
The performances of these methods are affected by scribbles provided by users.

Different from scribble-based methods, example-based methods learn a colorization pattern
from existing examples. Liu et al. [61] proposed an example-based colorization which trans-
fers color in an illumination-independent domain using online color references. Other than
color statistics, Wu et al. [62] introduced a content‐ based method that establishes semantic
correspondences of the regions between source and target images. In recent years, deep con-
volutional networks, which learn the colorization pattern directly from large-scale image pairs,
provide a more convenient yet effective option [63, 64]. Zhang et al. [65] turned image col-
orization as a classification task which estimates chrominance values in CIE LAB colorspace.
Later, Iizuka et al. [66] proposed a multi-task network which combines both color prediction
and scene classification to achieve more natural result.
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2.1 Polygon Feature Extraction

2.1.1 Scheme

Figure 2.1 presents the workflow for polygon extraction. The orthophoto, as well as their cor-
responding ground truth, are divided into two sets for training and testing. A sliding window
with a stride of 224 pixels is applied to each tile of the training set to generate image patches
with a size of 224 × 224 pixels. After data preprocessing, the image patches are shuffled and
split into two groups that include training (70%), and cross-validating (30%). The number of
samples in training and cross-and validation are 744 and 312, respectively. Through several
cycles of training and cross-validation, the hyper-parameters are determined and optimized.
Then, the predictions generated by the optimized model are further evaluated by the tiles in
the test set. For performance evaluations, we choose three commonly used evaluation metrics,
namely, jaccard index, f1-score, and kappa coefficient. These metrics are computed without
post-processing operations [27, 67] for better estimation of experimental methods.

Model

Evaluate

sl icing
224x224 patches

70 % Text
Text

Text
Text

Ti les

12 tr aining ti les

4 testing ti les

Vaihingen dataset

30 %

Training

Cross-val idate

Figure 2.1: Experimental workflow of this research. The existing methods, as well as the
proposed model, are trained and evaluated by 224 x 224 image patches extracted from origi-
nal dataset.

2.1.2 Stacked Fully Convolutional Networks(SFCN)

After the invention of FCN in 2015, FCN and FCN-based methods have become a gold stan-
dard for many image segmentation tasks [68, 69]. Compared to conventional patch-based CNN
methods, FCN-based models significantly improve computational efficiency and performance.
Advanced FCN-based models further enhance feature representation capabilities and improve
model performance through various approaches. These approaches include various combina-
tions of skip-connections (U-Net & FPN), replacing bilinear upsample with unpooling (SegNet)
or convolution transpose (DenconvNet), multi-constraints (MC-FCN), and additional boundary
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information (BR-Net). However, the increased representation capability and the complexity of
the models usually lead to the overfitting of training data, especially for small or biased datasets.

To avoid overfitting, approaches including early stopping, data augmentation, regularization,
and ensemble learning, are widely adopted. Of them, owing to its ability to utilize the represen-
tation capability of different models, the ensemble learning approach shows better performance
and generalization capability. However, ensemble learning is currently used for patch-based
CNN architectures, but not for FCN-based architectures. Additionally, research on ensemble
learning mainly focuses on adding numbers or trying different combinations of basic models.
To our best knowledge, research on methods to discern better combinations of various FCNs in
ensemble learning does not exist.

Thus, we design stacked fully convolutional networks (SFCNs), and propose a feature align-
ment method, which enhances the relations between basic models. For ensemble learning, if the
predictions from two models are completely different (in extreme cases, one of them is all ze-
ros, and the other is all ones), the ensemble result is just an average of both biased predictions
that cannot yield better performances. Therefore, to have better results, the predictions of dif-
ferent models should contain a certain level of variety as well as similarity. Compared with
traditional ensemble learning approaches, the proposed method introduces an extra alignment
loss to control similarity as well as consistency between features that are extracted separately
from different basic models. In contrast to common segmentation loss, which is computed as
the difference between a ground truth and its corresponding prediction, proposed alignment loss
is computed among extracted features from stacked basic models. To make sure the alignment
loss can be applied to a various number of basic models (e.g., two models of FCN and U-Net,
three models of FCN, U-Net, and FPN), the alignment loss is computed as the mean square
error(MSE) between the maximum and minimum values of the extracted features (see details in
Equation (2.1)). The value of alignment loss becomes zero when all the extracted features are
similar. The value of the alignment loss reflects the consistency of extracted features. During it-
erations, the optimizer is required to update parameters to reduce the value of the weighted sum
of segmentation loss and alignment loss. Thus, the optimized network is capable of generat-
ing a normalized prediction from various basic models. Through feature alignment framework,
the SFCNs can achieve a balance of similarity and variety using different basic models, and im-
prove performance.

Figure 2.2 presents the design of the proposed stacked fully convolutional networks(SFCN).
The SFCN consists of two parts: (1) a framework for feature extraction using various fully
convolutional networks and (2) a framework for feature alignment and output generation.

In the feature extraction framework, different numbers or combinations of FCN-based mod-
els are implemented to extract features from the same input image separately. For each FCN-
based model, there are several universal operations and model specific layers. For universal op-
erations, there are convolution, nonlinear activation, and subsampling operations. For backend
models, various model specific layers, such as skip-connection (U-Net & FPN) and unpooling
(SegNet), are included.

For universal operations, element-wise multiplication within the kernel is computed through
the convolutional operation. The size of the kernel determines the receptive field and the com-
putational efficiency of the convolution operation. Later, the output of convolution is handled by
the rectified linear unit (ReLU) [70], which returns the original value if the value is larger than
zero and sets values less than zero to zero. To accelerate network training, most models adopt
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Figure 2.2: Proposed stacked fully convolutional networks(SFCN). The SFCN contains a frame-
work for feature extraction using n number of fully convolutional networks(1st, 2nd, ..., nth

model), and a framework for feature alignment and final output generation.

batch normalization (BN) [71] layers before (e.g., SegNet) or after non-linear activations (e.g.,
FPN). To reduce the width and height of features, max-pooling [72] is chosen for subsampling
in this study.

As for model specific layers, sequential bilinear upsampling [73] is commonly used for
upsampling the width and height of the features. By contrast, SegNet backend uses unpooling
which applies corresponding pooling indices of max-pooling to achieve upsampling. In FPN
and U-Net backends, skip-connection, which concatenates two layers with consistent height
and width across the channel axis, is applied between downward and upward layers.

In the framework for feature alignment and output generation, alignment loss that restricts
the consistency of extracted features from various models and multi-class segmentation loss is
computed sequentially.

• Alignment loss (Lossalign)

Through the nth FCN-based model, extracted features (denoted as Xn) with size of
W ×H ×D are generated. W and H are consistent with the height and width of the
input. The value of D is the same as the number of classes of land covers. The maxi-
mum and minimum value for each position from the 1st to the nth feature are computed.
The final alignment loss (Lossalign) is calculated by the mean square error between the
corresponding maximum and minimum values of all positions.

Xmaxi,j,k = max(X1i,j,k, X2i,j,k, ..., Xni,j,k)

Xmini,j,k = min(X1i,j,k, X2i,j,k, ..., Xni,j,k)

Lossalign =
1

W ×H ×D

W,H,D∑
i=1,j=1,k=1

(Xmaxi,j,k −Xmini,j,k)
2

(2.1)

• Segmentation loss (Lossseg)
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From all extracted features (X1, X2, ..., Xn), the final output/prediction(Y ) of the net-
work is computed by taking the average value of all features. Then, the binary cross en-
tropy [74], which calculates the difference between ground truth(G) and its corresponding
prediction, is used as segmentation loss(Lossseg). The calculation can be formulated as

Y =
1

N

∑
(X1, X2, ..., Xn)

Lossseg = − 1

W ×H ×D

W,H,D∑
i=1,j=1,k=1

gi,j,k × log(yi,j,k) + (1− gi,j,k)× log(1− yi,j,k)

(2.2)

Where yi,j,k and gi,j,k represent the (i,j,k) element of model output(Y ) and ground truth
(G). The value of yi,j,k is the predicted probability of the pixel category.

Therefore, the total loss of the network can be formulated as

Lossfinal = Lossseg + λ× Lossalign (2.3)

Where λ is the weight of the alignment loss (Lossalign). By controlling the value of λ, we
are able to adjust the balance between Lossalign and Lossseg.

During iterations, Adam optimizer [75] will minimize Lossfinal to driven proposed network
to generate pixel-to-pixel predictions for multi-label land-cover segmentation.

2.1.2.1 Network Specification

Three classic FCN-based architectures, including FCN-8s, U-Net, and FPN, are chosen as the
basic models. All these models are implemented by Geoseg [2] using PyTorch (https://
pytorch.org/, version=0.4.1) as backend.

The number and the size of convolutional kernels have a significant impact on model per-
formance. To minimize their effect, basic models used in this research are implemented with
the consistent number of kernel size at corresponding layers(see details in Figure 2.3).

2.1.2.2 Model Setup

To analyze the importance or significance of the proposed alignment loss, four versions of
stacked fully conventional networks (SFCNs) are setup. Three variants are utilizing different
combinations of two basic models, and a variant utilizing all three basic models. The variants
using two basic models, SFCNf&p, SFCNf&u and SFCNu&p consist of FCN-8s&FPN, FCN-
8s&U-Net, and U-Net&FPN, respectively (as shown in Table 2.1). All combinations are sepa-
rately trained with different values of λ ( λ ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]). In all experiments,
the models are trained, cross-validated, and tested though the same dataset. To prevent random
bias, each set of experiments is repeated five times. After removing the best and worst perfor-
mances of each method, their average performance with the testing dataset is carefully evalu-
ated.
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Table 2.1: Network setting of stacked fully convolutional networks from FCN-8s, U-Net,
and FPN.

Version No. of basic models FCN-8s U-Net FPN

SFCNf&p 2 + − +
SFCNf&u 2 + + −
SFCNu&p 2 − + +

SFCNf&u&p 3 + + +
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Figure 2.3: Specification of three basic models: (a) FCN-8s, (b) U-Net, and (c) FPN.
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2.2 Line Feature Extraction

2.2.1 Scheme
Figure 2.4 presents the workflow for line feature extraction. The orthophotos, as well as their
corresponding ground truth, are divided into two sets for training and testing. According to
the building locations, a sliding window with a stride of 224 pixels is applied to the whole
area to extract image patches with a size of 224 × 224 pixels. After data preprocessing, there
are 16,635 and 14,834 image patches extracted from training and testing areas. Later, the im-
age patches within the training area are shuffled and split into two groups that include training
(70%), and cross-validating (30%). Through several cycles of training and cross-validation,
the hyper-parameters are determined and optimized. Then, the predictions generated by the
optimized model are further evaluated by the patches within the test set. For performance eval-
uations, we choose six commonly used evaluation metrics, namely, overall accuracy, precision,
recall, jaccard index, f1-score, and kappa coefficient. These metrics are computed without post-
processing operations [27, 67] for better estimation of experimental methods.

Model

Per formance      
evaluation

sl ice

sl ice

cross val idate

test

p
red

iction

t r ain

Data pr e-pr ocessing

Study       
area

Tr ain ing and evaluat i on

Text
Text

Text
Text

Figure 2.4: Experimental workflow for line feature extraction. The existing loss functions,
as well as the proposed nearest feature selector, are trained and evaluated by 224 x 224 image
patches extracted from original dataset.

2.2.2 Proposed Model
For efficient line feature extraction, we used the SegNet [36] for feature extraction and the
nearest feature selector(NFS) for dynamic alignment between ground truth and prediction.

2.2.2.1 Nearest Feature Selector(NFS)

Figure 2.6 shows the mechanisms of the nearest feature selector(NFS). The ground truth is slid-
ing over corresponding prediction along both X- and Y-axis to generated overlaps that used for
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Conv Block 
Max-pooling 
Unsampling

Nearest Feature Selector 
(NFS)

Prediction
Ground truth

Figure 2.5: Proposed method for line feature extraction. The pipeline is consist of a SegNet for
feature extraction and a nearest feature selector(NFS) for re-alignment.

similarity estimation. The overlap with the closest distance between ground truth and predic-
tion are cropped for further loss computation. Since the NFS is computed dynamically, it can
be seamlessly integrated into existing loss without further modification.

To evaluate the similarity of the overlaps, different measurements are adopted. For pre-
diction and ground truth that contains a single channel, classic L1 distance is used. Thus, the
distance of overlaps can be formulated as

DL1DL1DL1 =
1

W ×H

W∑
i=1

H∑
j=1

||XXX i,j − YYY i,j|| (2.4)

where, XXX is the prediction and YYY is the corresponding ground truth. The W and H are the
width and height, respectively.

For prediction and ground truth that contains multiple channels, average cosine similarity
along channels will be calculated. In such cases, the distance of overlaps can be formulated as

DcsDcsDcs =
1

W ×H

W∑
i=1

H∑
j=1

XXX i,j • YYY i,j

||XXX i,j|| × ||YYY i,j||
(2.5)
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Conv Block 
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(NFS)
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X Y
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Figure 2.6: Overview of the nearest feature selector(NFS). The ground truth is sliding over
prediction along X- and Y-axis to generated overlaps that used for similarity estimation.

24



2.3. MODEL TRANSFER

2.3 Model Transfer

2.3.1 Scheme
Figure 2.7 presents the pipeline for model transfer. The super-resolution model, colorization
network as well as the extraction model are trained on aerial images that with higher resolution
and RGB color. The trained models, including the super-resolution model and colorization net-
work, are applied to panchromatic low-resolution satellite images to generated high resolution,
colorized satellite images. Finally, the quality of the generated images is evaluated by the ex-
traction model trained on aerial images. The models are both trained in the training area of the
Tokyo dataset(see Figure 3.4).

Similar to the polygon feature extraction scheme, a sliding window with a stride of 224
pixels is applied to the training area to extract image patches with a size of 224 × 224 pix-
els. Later, the image patches within the training area are shuffled and split into two groups
that include training (70%) and cross-validating (30%). The number of samples in training
and cross-and validation are 1,578 and 677, respectively. Through several cycles of training
and cross-validation, the hyper-parameters are determined and optimized. Then, the extraction
accuracy of the model is evaluated by the testing area.

Colorization

Colorization 
Network

Su
pe

r- 
re

so
lu

tio
n

Extraction 
Network

Super- 
resolution Extraction

A
erial Im

agery
Satellite Im
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Transfer Transfer Evaluation

Figure 2.7: Experimental workflow of model transfer. The super-resolution model, colorization
network and extraction model, are firstly trained by image patches extracted from training area
of aerial images. Later, these models are applied to panchromatic satellite image to generated
high-resolution, color image for further extraction evaluation.
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2.3.2 Super-resolution Model
To achieve an HR image, a high-performance super-resolution model termed efficient sub-pixel
convolutional neural network (ESPCN) [76] is selected. The ESPCN model is trained and
optimized by image patches extracted from the training area of aerial imagery(see Figure 3.4).

2.3.3 Colorization Network
As shown in Figure 2.8, the proposed colorization network(ColorNet) is consist of one encoder
and one decoder. The encoder follows the design of classic ResNet-18 [77] using sequential
basic residual blocks and max-pooling layers. The parallel decoders share the identical archi-
tecture except for the final prediction layer. Similar to the encoder, the decoder applies sequen-
tial deconvolutional layers [35], residual blocks, and skip connections [34] to refine to original
height and width gradually. To avoid interference within batch samples, batch normalization
layers [71] are replaced by instance normalization [78].

Residual Block 
Max-pooling 
Deconvolution 
Skip connection

Texture(L)

Chrominance(ab)

Color(Lab)

Figure 2.8: Network architecture of the Colorization Network(ColorNet).

2.3.4 Extraction Networks
As in Section 2.1, we trained stacked fully conventional network (SFCN) on testing datasets
from an aerial image and then tested with generated high-resolution, colorized satellite images.
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3.1 Datasets

3.1.1 Vaihingen Dataset

For estimating the effectiveness of the designed SFCNs and proposed feature alignment frame-
work, we conduct our polygon feature extraction experiments on ISPRS 2D semantic labeling
dataset–Vaihingen dataset.The dataset is an open benchmark, which is available online (http:
//www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html).

Within the Vaihingen dataset, there are 33 tiles, including 16 tiles for training and 17 tiles
for testing. Only the tiles used for training are provided with images of annotated ground truth.
The size of each tile ranges from 1388 x 2555 to 2006 x 3007 pixels. The ground sampling
distance (GSD) of orthophoto is about 9 cm.

As shown in Figure 3.1, each tile of the dataset contains an orthophoto and its corresponding
annotated ground truth. The orthophoto is an 8-bit image with three bands, which correspond to
the near-infrared, red, and green bands delivered by the camera. The image of annotated ground
truth utilizes six different colors to represent land-covers of impervious surfaces, buildings, low
vegetation, trees, cars, and clutter/background (see color map in Table 3.1).

Figure 3.1: Example of Vaihingen 2D semantic labeling dataset. (a) true orthophoto, (b) anno-
tated ground truth, and (c) legend. The ground truth contains six types of land-covers.

3.1.2 New Zealand Dataset

To evaluate the performance of different methods, a study area that covers 32 km2 in Christchurch,
New Zealand, is chosen for this study. The aerial image dataset and corresponding building
outlines (polygons in .shp format) are downloaded from Land Information of New Zealand
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Table 3.1: Reference of color map of the Vaihingen dataset.

Land-covers RGB Values

Impervious surfaces [255, 255, 255]
Building [0 , 0, 255]
Low vegetation [0 , 255, 255]
Tree [0 , 255, 0]
Car [255, 255, 0]
Clutter/Background [255, 0, 0]

(https://data.linz.govt.nz/layer/53413-nz-building-outlines-pilot/).
The spatial resolution of the aerial images is 0.075 m. The original images are captured during
the flying seasons of 2015 and 2016. Later, they are converted into orthophotos and divided
into tiles by the provider. The size of each tile is 3200 × 4800 pixels (240 × 360 m2). Prior to
conducting our experiments, we merge the 370 tiles within the study area into a single mosaic.
Additionally, for accurate roof segmentation, we manually adjust vectorized building outlines
to ensure that all building polygons are strictly aligned with their corresponding roofs.

As shown in Figure 3.2, the study area is primarily covered by residential or manufacturing
buildings with sparsely distributed patches of grassland. Before conducting our experiments, the
study area is evenly divided into two areas for training (Figure 3.2, left) and testing (Figure 3.2,
right).

Figure 3.2: Aerial imagery of the study area ranging from 172◦33′E to 172◦40′E and 43◦30′S
to 43◦32′S.

From training and testing areas, 17,228 and 14,952 patches were extracted for experiments.
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The size of the patch is 224x224 pixels. As shown in Figure 3.3, within each patch, there are
buildings located in the central area.

                 a                               b                                   c                                  d                                  e                             Im
age                       O

utline

Figure 3.3: Sample patches of RGB input and corresponding edge.

3.1.3 Tokyo Dataset
For transfer learning experiments, a study area that covers 6 km2 in Tokyo, Japan, is chosen
for this study. The RGB aerial images and corresponding panchromatic satellite are provided
by NTT GEOSPACE(https://www.ntt-geospace.co.jp/). The spatial resolutions
of the aerial and satellite images are 0.16 m and 0.5 m, respectively. Both images are captured
during the flying seasons of 2016. Even they are captured from the same location and similar
period, they are misalignments with tens of pixels or even hundreds of pixels. Note that a typical
building occupies about (50-200)2 pixels, annotations for the aerial and satellite images should
be prepared separately. The annotations for aerial images are come from NTT GEOSPACE. In
contrast, the annotations for satellite images are created by ourselves.

As shown in Figure 3.4 and Figure 3.5, the study area is covered mainly by residential or
manufacturing buildings with sparsely distributed patches of grassland. Before conducting our
experiments, the study area is evenly divided into two areas for training (left) and testing (right).
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Figure 3.4: Aerial imagery of the study area ranging from 139◦47′E to 139◦50′E and 35◦40′S
to 35◦39′S.

Figure 3.5: Satellite imagery of the study area ranging from 139◦47′E to 139◦50′E and 35◦40′S
to 35◦39′S.
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3.2 Source Codes

3.2.1 Geoseg
Recently, deep learning algorithms, especially fully convolutional network based methods, have
become very popular in the field of remote sensing. Generally, these methods achieve state-of-
the-art accuracy or computational efficiency for their corresponding datasets. However, since
these methods are trained and evaluated through different datasets, creating an in-depth com-
parison of the performance of various models is difficult. Additionally, although the datasets
are open-access, the implemented models or algorithms are usually not revealed in detail by the
authors.

Facing this problem, we introduce Geoseg, a computer vision package that is focused on im-
plementing the state-of-the-art methods for automatic binary or multi-labels segmentation. The
Geoseg package implements more than 9 FCN-based models including FCNs [32], U-Net [34],
SegNet [36], FPN [79], ResUNet [80], MC-FCN [37], and BR-Net [49]. For in-depth compar-
isons, balanced and unbalanced evaluation metrics, such as precision, recall, overall accuracy,
f1-score, jaccard index or intersection over union and kappa coefficients are implemented.

3.2.1.1 Code arrangement

Geoseg is built on top of PyTorch version 0.4.1. The whole package is organized as in Fig-
ure 3.6. There are six sub-directories : data/, dataset/, checkpoint/, logs/, result/, andsrc/.
The dataset/ directory contains all samples for training, validating, and testing. The logs/ direc-
tory records learning curves and training and validation performance during model iterations.
The src/ directory contains scripts implemented with various network architectures of the mod-
els. The quantitative and qualitative results are saved in the result/ directory.

In Geoseg, we implemented 9 FCN-based models according to the reports from their orig-
inal papers. Since the original methods were implemented for various platforms and used for
various sizes of input, Geoseg introduces a few modifications on several models for unification.

3.2.2 GeoSR
Similar to Geoseg, we present GeoSR, a PyTorch based computer vision package for deep
learning based single-frame remote sensing imagery super-resolution. The GeoSR provides
integrated modules, including data preprocessing, training, evaluation, and visualization.

3.2.2.1 Code arrangement

GeoSR is built on top of PyTorch version 0.4.1. The whole package is organized as in Figure
3.7. There are seven sub-directories: src/, dataset/, logs/,model zoo/, archs/, utils/, andresult/.
The src/ and dataset/ directory contains all samples for training, validating, and testing. The
logs/ directory records learning curves and training and validation performance during model
iterations. The model zoo/ directory contains trained models at every experiment. The archs/
directory implements different network architectures. The utils/ directory implements scripts
for handling datasets, running instructions, evaluation metrics, and visualization tools. The
visualization results are saved in the result/ directory.
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Geoseg
  ├── data/
  │   └── original image tiles
  ├── dataset/
  │   └── image&mask slices from data
  ├── checkpoint/
  │   └── pre-trained models
  ├── logs/
  │   ├── curve
  │   └── raw
  │   └── snapshot
  │   speed.csv
  ├── result/
  │   └── quantitative & qualitative result
  ├── src/
    ├── __init__.py
    ├── models
    │   └── network archs. FCNs, UNet, etc.
    ├── estrain.py
    ├── losses.py
    ├── metrics.py
    ├── runner.py
    ├── test.py
    ├── train.py
    └── vision.py
...

Figure 3.6: The code organization of the Geoseg package. The package implements model
constructing, training, logging, evaluating, and result visualization modules.
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GeoSR
├── src
│   └── data_dir
├── dataset
│   ├── train
│   ├── test
│   └── val
├── logs
│   ├── curve
│   ├── raw
│   └── statistic
├── model_zoo
│   └── trained_model
├── archs
│   ├── blockunits.py
│   ├── drcn.py
│   ├── espcn.py
│   ├── fsrnn.py
│   ├── rednet.py
│   ├── srcnn.py
│   ├── srdensenet.py
│   └── vdsr.py
├── utils
│   ├── combiner.py
│   ├── extractor.py
│   ├── loader.py
│   ├── metrics.py
│   ├── preprocessor.py
│   ├── trainer.py
│   ├── tester.py
│   └── vision.py
├── result
│   ├── raw
│   └── generate
│       ├── combined
│       ├── figures
│       └── tables
├── main.py
│
...

Figure 3.7: The code organization of the GeoSR package. The package implements model
constructing, training, logging, evaluating, and result visualization modules.
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3.3 Devices
• Local PC.The 64-bit Ubuntu 16.04 LTS system equipped with an NVIDIA GeForce GTX

1070 GPU (https://www.nvidia.com/en-us/geforce/products/10series/
geforce-gtx-1070-ti/) with 8 GB of memory.

• Cloud Server.The Sakura Internet Server(https://www.sakura.ad.jp/) equipped
with one NVIDIA Tesla V100 GPU (https://www.nvidia.com/en-us/data-
center/tesla-v100/) and installed with 64-bit Ubuntu 16.04 LTS.

Table 3.2: Specifications of local PC and cloud server used for experiment.

Device Model CPU GPU RAM

Local PC ASUS ROG G20CB Core i5 6400 GTX 1070, 8 GB 16 GB
Cloud Server Sakura Koukaryoku Xeon CPU E5-2623 4x Tesla V100, 16 GB 128 GB
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4.1 Polygon Feature Extraction
Three well-known FCN-based methods, namely, FCN-8s, U–Net, and FPN, are chosen for basic
models in this study. Four SFCN models composed from three basic models (refer to Table 2.1)
are trained separately with various weight (λ) of alignment loss (Lossalign). All experiments
are performed on the same dataset and processing platform.

Three commonly used balanced metrics, including f1-score, jaccard index, and kappa coef-
ficient, are selected for quantitative evaluation.

4.1.1 Quantitative Results

Three basic models (FCN-8s, U-Net, and FPN) and four combinations of ensemble models
(i.e., SFCNs) with/without optimal feature alignment(FA) are implemented and validated by
the testing dataset. To prevent random bias, each set of experiments is repeated five times.
After removing the best and worst performances of each method, their mean value and standard
deviation (SD) of evaluation metrics are calculated.

Figure 4.1a shows the relative performances of these models. Among three basic meth-
ods, the FPN shows the highest values for all evaluation metrics. For each combination of
ensemble learning, methods with optimal feature alignment(+FA) are generally better than the
corresponding methods without optimal feature alignment(−FA).

Figure 4.1b displays the corresponding mean and standard deviation(SD) values of evalu-
ation metrics from different methods. Among four ensemble models without optimal feature
alignment (SFCNs, −FA), SFCNf&u&p(−FA) shows the higher mean values than SFCNu&p(−FA),
SFCNf&u(−FA), and SFCNf&p(−FA) for all metrics. This observation indicates that an ensem-
ble with more models can lead to better performance. For ensemble models using the same
number of basic models (SFCNf&p, SFCNf&u, and SFCNu&p), a combination of U-Net and
FPN (SFCNu&p) is better than a combination of FCN-8s and U-Net(SFCNf&u) or FCN-8s and
FPN (SFCNf&p). Surprisingly, the best basic model (FPN) is better than the best ensemble
model without feature alignment (SFCNf&u&p, −FA). This result suggests that a simple en-
semble of different basic models does not assure higher performance. As for the four ensemble
models with optimal feature alignment (SFCNs, +FA), SFCNu&p(+FA) shows the highest mean
values for f1-score (0.785), jaccard index(0.646), and kappa coefficient(0.742). Ensemble meth-
ods with feature alignment showed higher values for all three evaluation metrics compared to
their counterparts without feature alignment. Among all methods, the SFCNu&p(+FA) methods
achieved the highest performance.

The values for the standard deviation (SD) of three metrics from different models range
from 0.001 to 0.008. When compared to the mean values, even the maximum value of SD
(0.008) is not significant. Through independent t-test, except for SFCNf&u&p, methods with
optimal feature alignment showed significantly different values for all three evaluation metrics
compared to their counterparts without feature alignment(see details in Table 4.1.

4.1.2 Qualitative Results

Figure 4.2 shows the prediction results on testing areas Tile-1, Tile-2, Tile-3, and Tile-4 of
three basic models(FCN-8s, U-Net, and FPN), and optimized SFCNs. Generally, these models
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Method
F1-score Jaccard index Kappa coe�cient

Mean SD Mean SD Mean SD

FCN-8s 0.724 0.003 0.568 0.004 0.669 0.004
U-Net 0.766 0.004 0.621 0.006 0.719 0.005
FPN 0.776 0.006 0.635 0.008 0.732 0.007

SFCNf&p (�FA) 0.738 0.003 0.584 0.004 0.685 0.004
SFCNf&u (�FA) 0.741 0.003 0.589 0.004 0.689 0.004
SFCNu&p (�FA) 0.765 0.006 0.619 0.007 0.718 0.006

SFCNf&u&p (�FA) 0.773 0.006 0.630 0.007 0.727 0.006

SFCNf&p (+FA) 0.767 0.002 0.623 0.002 0.721 0.002
SFCNf&u (+FA) 0.772 0.003 0.629 0.004 0.727 0.004
SFCNu&p (+FA) 0.785 0.004 0.646 0.005 0.742 0.005

SFCNf&u&p (+FA) 0.780 0.001 0.640 0.001 0.736 0.001

Figure 4.1: Comparison of performances of the basic models of FCN-8s, U-Net, and FPN as
well as four SFCNs with/without feature alignment. (a) Bar chart for comparison of relative
performances. (b) Table of mean value and standard deviation (SD) of the performance com-
parison of these methods. For each evaluation metric, the highest mean values and lowest SD
are highlighted in bold.
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Table 4.1: Result of independent t-test of four SFCNs under with/without feature alignment.
The p-value is the probability that SFCN has the same performances at both with and without
feature alignment.

Group F1-score Jaccard index Kappa coefficient

t-value p-value t-value p-value t-value p-value

SFCNf&p (+FA vs.−FA ) 14.438 0.0001 16.546 0.0001 15.123 0.0001
SFCNf&u (+FA vs.−FA ) 11.750 0.0003 11.558 0.0003 11.144 0.0004
SFCNu&p (+FA vs.−FA ) 5.350 0.0059 5.329 0.0060 5.210 0.0065

SFCNf&u&p (+FA vs.−FA ) 2.234 0.0892 2.271 0.0856 2.415 0.0732

could correctly segment the major parts of different land-covers from the original aerial images.
The FCN-8s model tends to misclassify low vegetation as trees (e.g., red rectangle in column
2, Tile 1), and the border area of buildings is usually broken (e.g., the red rectangle in column
2, Tile 3). The result generated by U-Net is unable to discriminate between roads and buildings
(e.g., red rectangle in column 3, Tile 1 or row 3, Tile 2). The FPN model is generally better
than FCN-8S and U-Net. However, trees and roads are misclassified as buildings (e.g., the red
rectangle in column 4, Tile 3). Among SFCN models, results generated from SFCNf&p and
SFCNf&u tend to miss the buildings in the corner area (e.g., the red rectangles in column 5,
Tile 4 and column 5, Tile 4). The SFCNf&u&p model outperforms SFCNf&p and SFCNf&u.
However, there are misclassified holes within large buildings (e.g., the red rectangle in column
8, Tile 3). When compared to other methods, even with some misclassification (e.g., the red
rectangle in column 7, Tile 3), SFCNu&p shows better performance in major areas.

4.1.3 Sensitivity Analysis
To investigate the significance of feature alignment, four stacked fully convolutional networks
(i.e., SFCNs) using sequential values of lambda (λ ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) are imple-
mented and validated on the testing dataset. To prevent random bias, each set of experiments
is repeated five times. After removing the best and worst performances of each method, their
mean value and standard deviation (SD) of the evaluation metrics are calculated. Figure 4.3 and
Table 4.2 present the trends and values of f1-score, jaccard index, and kappa coefficient over
various λ of Lossalign.

Figure 4.3a shows the trend of performances over λ values of Lossalign on SFCNf&p. As the
value of λ increases, the values of three metrics improve. Even there is small difference in stan-
dard deviation, the mean values of f1-score, jaccard index, and kappa coefficient of both cases
under λ = 1.0 and λ = 0.8 are identical. The corresponding f1-score, jaccard index, and kappa
coefficient are 0.767, 0.623, and 0.721, respectively. The best performance is achieved under
value of λ = 1.0 and λ = 0.8. This result indicates that the introduction of feature alignment
leads to better performance of the ensemble model. Figure 4.3b and c show the trend of perfor-
mances on SFCNf&u and SFCNu&p, respectively. When λ ≤ 0.8, higher λ generally has higher
value metrics. By contrast, while λ ≥ 0.8, higher λ leads to weaker performances. In contract
to Figure 4.3a–c, there is no significant change in the values of the metrics under various λ in
Figure 4.3d, which implies that feature alignment has no significant effect on SFCNf&u&p.
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4.1. POLYGON FEATURE EXTRACTION

Figure 4.2: Segmentation results of FCN-8s, U-Net, and FPN and optimized SFCNs for testing
areas including Tile-1, -2, -3, and -4. Predicted land-covers are represented with six colors.

Table 4.2 reveals the values of evaluations metrics f1-score, jaccard index, and kappa co-
efficient of four ensemble methods using λ in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]. For SFCNf&p,
the best performances are achieved at λ values 0.8 and 1.0. When compared with no feature
alignment(i.e.,λ = 0.0), the values of f1-score, jaccard index, and kappa coefficient increase
about 3.9% (0.767 vs 0.738), 6.7% (0.623 vs 0.584), and 5.3% (0.721 vs 0.685), respectively.
For SFCNf&u, the best performance is achieved at λ value 0.8. When compared to no feature
alignment, the highest values of f1-score, jaccard index, and kappa coefficient increase about
4.2% (0.772 vs 0.741), 6.8% (0.629 vs 0.589), and 5.5% (0.727 vs 0.689), respectively. Like
SFCNf&u, the best performance of SFCNu&p is at λ value 0.8. With comparison to the baseline
λ = 0.0, the maximum increments of f1-score, jaccard index, and kappa coefficient reach 2.6%
(0.785 vs 0.765), 4.4% (0.646 vs 0.619), and 3.3% (0.742 vs 0.718), respectively. By contrast
to the above methods, the values of f1-score for SFCNf&u&p are almost identical (within [0.773,
0.780]). Under optimal feature alignment condition (e.g., λ = 1.0), the values of jaccard index
and kappa coefficient increase about 1.6% (0.640 vs 0.630) and 1.2% (0.736 vs 0.727), respec-
tively. When compared to other methods (e.g., SFCNf&u), the improvement caused by feature
alignment of SFCNf&u&p is not so significant. The values for the standard deviation (SD) of the
three metrics from different models range from 0.001 to 0.006. When compared to the mean
values, even the maximum value of SD (0.006) is not significant.

4.1.4 Computational Efficiency

All experiments are implemented and tested on a Sakura Internet Server(https://www.
sakura.ad.jp/) equipped with one NVIDIA Tesla V100 GPU (https://www.nvidia.
com/en-us/data-center/tesla-v100/) and installed with 64-bit Ubuntu 16.04 LTS.
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Figure 4.3: Trends of model performances of four SFCNs using lambda values in [0.0, 0.2, 0.4,
0.6, 0.8, 1.0]: (a) performances of SFCNf&p over lambda values; (b) performances of SFCNf&u

over lambda values; (c) performances of SFCNu&p over lambda values; and (d) performances
of SFCNf&u&p over lambda values.
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4.1. POLYGON FEATURE EXTRACTION

Table 4.2: Table of model performances of four SFCNs under lambda values in [0.0, 0.2, 0.4,
0.6, 0.8, 1.0].For each evaluation metric, the highest mean values and lowest SD are highlighted
in bold.

Method F1-score Jaccard index Kappa coefficient

Version λ-value Mean SD Mean SD Mean SD

SFCNf&p

0.0 0.738 0.003 0.584 0.004 0.685 0.004
0.2 0.748 0.002 0.598 0.003 0.698 0.003
0.4 0.761 0.004 0.615 0.004 0.714 0.004
0.6 0.764 0.004 0.619 0.004 0.717 0.004
0.8 0.767 0.002 0.623 0.002 0.721 0.002
1.0 0.767 0.003 0.623 0.003 0.721 0.003

SFCNf&u

0.0 0.741 0.003 0.589 0.004 0.689 0.004
0.2 0.764 0.002 0.619 0.002 0.717 0.002
0.4 0.762 0.003 0.616 0.004 0.715 0.004
0.6 0.762 0.004 0.615 0.005 0.714 0.004
0.8 0.772 0.003 0.629 0.004 0.727 0.004
1.0 0.770 0.001 0.626 0.002 0.723 0.002

SFCNu&p

0.0 0.765 0.006 0.619 0.007 0.718 0.006
0.2 0.772 0.004 0.629 0.006 0.727 0.005
0.4 0.772 0.006 0.629 0.008 0.726 0.007
0.6 0.780 0.001 0.639 0.002 0.736 0.001
0.8 0.785 0.004 0.646 0.005 0.742 0.005
1.0 0.784 0.001 0.645 0.002 0.741 0.002

SFCNf&u&p

0.0 0.773 0.006 0.630 0.007 0.727 0.006
0.2 0.780 0.002 0.638 0.002 0.735 0.002
0.4 0.780 0.001 0.640 0.001 0.736 0.001
0.6 0.778 0.002 0.637 0.002 0.734 0.002
0.8 0.778 0.001 0.637 0.002 0.733 0.001
1.0 0.780 0.001 0.640 0.002 0.736 0.002
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Table 4.3: Comparison of the computational efficiencies of FCN-8s, U-Net, FPN and four
ensemble fully conventional networks. For each column, the highest mean values and lowest
SD are highlighted in bold.

Methods Training FPS Testing FPS

Mean SD Mean SD

FCN-8s 41.4 0.2 67.1 0.3
U-Net 59.4 0.4 75.4 1.3
FPN 54.6 2.0 74.7 4.4

SFCNf&p 31.2 0.2 61.7 0.7
SFCNf&u 33.4 0.8 63.2 0.9
SFCNu&p 41.8 0.9 67.7 3.0

SFCNf&u&p 27.2 0.2 57.6 0.1

To eliminate the effect of some hyperparameters, for all models, the size of batch and number
of the iteration are fixed to 24 and 1000, respectively. The Adam stochastic optimizer, which is
running at default setting (lr=2−4, betas = [0.9, 0.999]), is used for training different models.

Table 4.3 shows the computing speeds in frames per second (FPS) of these methods. In train-
ing period, three basic models are processed at 41.4 FPS(FCN-8s), 59.4 FPS(U-Net), and 54.6
FPS(FPN), respectively. When compared to basic models, the ensemble methods are much
slower. As the number of basic models increases (e.g., 3 in SFCNf&u&pvs 2 in SFCNf&p,SFCNf&u,
and SFCNu&p), the training speed decreases. Even with the same number of basic models,
because of the difference in model combination, the training speeds are different. Gener-
ally, a combination of fast basic models can form a faster ensemble model (e.g., 41.8 FPS
of SFCNu&p vs. 31.2 FPS of SFCNf&p). In the testing period, these methods achieved 1.3–2.1
times the processing speed. Interestingly, SFCNf&u&p has the most significant performance
difference (57.6 vs. 27.2, 2.1x) between the training and testing stages.
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4.2. LINE FEATURE EXTRACTION

4.2 Line Feature Extraction
Four well-known loss functions, namely, L1, mean square error (MSE), binary cross-entropy
(BCE) [74], and focal loss [81], are chosen in this study. These loss functions are trained neither
with or without the nearest feature selector(NFS), separately. All experiments are performed on
the same dataset and processing platform.

Three commonly used balanced metrics, including f1-score, jaccard index, and kappa coef-
ficient, are selected for quantitative evaluation.

4.2.1 Quantitative Results

Figure 4.4 (a) shows the relative performances of different loss functions. Among all loss
functions(i.e., L1, MSE, BCE, and Focal), loss with the nearest feature selector(NFS) shows
the higher values for all evaluation metrics.

Figure 4.4 (b) displays the corresponding values of evaluation metrics over various loss
functions. Among four loss functions, no matter with or without NFS, Focal loss is generally
better than BCE, MSE, and L1 loss. Over all conditions, L1 loss without NFS(L1 − NFS) shows
the lowest values for all metrics. The best performance is achieved by Focal loss with NFS,
showing 0.651 of f1-score, 0.490 of jaccard index, and 0.626 of the kappa coefficient. With all
loss functions, the addition of NFS leads to significantly higher values of all evaluation metrics.
The result indicates that the proposed NFS can effectively handle the slight misalignments from
the annotation and gain more performance. Interestingly, on the weakest L1 loss, addition of
NFS results in the most significant increments of three evaluation metrics. The increments of
f1-score, kappa coefficient, and jaccard index reach 8.8%, 8.9%, and 9.8%, respectively.

4.2.2 Qualitative Results

Figure 4.5 presents five representative groups of outline extracted by the L1 loss that either
combine the nearest feature selector(NFS) or not. In general, addition of NFS shows better line
extraction. With NFS, extracted lines are more intact(e.g., a, b, and e) and accurate(e.g., d).
When training a model using L1 only(− NFS), the boundary areas are sometimes ignored(e.g.,
c).

Figure 4.6 reveals five representative groups of outline extracted by mean square error(MSE)
loss that with/without the nearest feature selector(NFS). Generally, additional NFS brings slightly
better performance in the line extraction task. With the NFS, extracted lines contain fewer false
positives(e.g., a, and d) as well as breakpoints(e.g., b, and e).

Figure 4.7 shows five representative groups of outline extracted by binary cross-entropy(BCE)
loss that integrated with or without the nearest feature selector(NFS). Even without NFS, a
model trained with BCE can successfully extract the significant part of building outlines. The
addition of NFS shows slightly better line extraction around corners of the building (e.g., d, and
e) as well as areas shadowed by surrounding trees(e.g., a, b, and c).

Figure 4.8 presents five representative groups of outline extracted by the focal loss that com-
bines with or without NFS. Usually, focal loss along can recognize and extract the significant
outline from aerial input(e.g., b, c, and e). With additional NFS, generated lines have fewer
false positives(e.g., a, and d).
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a. 

b.
Loss Condition F1-score Jaccard Index Kappa coefficient
L1 � NFS 0.524 0.503 0.382
L1 + NFS 0.571 0.548 0.419

MSE � NFS 0.596 0.573 0.445
MSE + NFS 0.611 0.587 0.458
BCE � NFS 0.596 0.573 0.444
BCE + NFS 0.613 0.589 0.459
Focal � NFS 0.618 0.588 0.459
Focal + NFS 0.624 0.597 0.468

1
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Figure 4.4: Performances of different losses which neither with or without of the nearest fea-
ture selector (NFS). (a) Bar chart for comparison of relative performances. (b) Table of perfor-
mances under different loss functions. For each loss function, the highest values are highlighted
in bold.
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       G
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               a                                  b                                  c                                   d                                   e                     

Figure 4.5: Representative results of outline extracted by L1 loss that with/without nearest fea-
ture selector(NFS). The background and red line represent aerial input and outline, respectively.

4.2.3 Computational Efficiency
All experiments are implemented and tested on a Sakura Internet Server(https://www.
sakura.ad.jp/) equipped with 4x NVIDIA Tesla V100 GPU (https://www.nvidia.
com/en-us/data-center/tesla-v100/) and installed with 64-bit Ubuntu 16.04 LTS.
To eliminate the effect of some hyperparameters, for all models, the size of batch and number
of the iteration are fixed to 24 and 10000, respectively. The Adam stochastic optimizer, which
is running at default setting (lr=2−4, betas = [0.9, 0.999]), is used for training different models.

Table 4.4 shows the computing speeds in frames per second (FPS) of these methods. Among
all loss functions, the additional NFS leads to slightly longer precessing time during both train-
ing and testing period. However, the declines of the PFS are not significant.
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Figure 4.6: Representative results of outline extracted by MSE loss that with/without nearest
feature selector(NFS). The background and red line represent aerial input and outline, respec-
tively.

Table 4.4: Comparison of the computational efficiencies of different loss functions under con-
ditions that with or without NFS.

Loss Condition Training FPS Testing FPS

L1 − NFS 102.3 264.4
L1 + NFS 98.5 236.1

MSE − NFS 101.9 265.9
MSE + NFS 98.4 236.2

BCE − NFS 102.1 266.8
BCE + NFS 98.7 236.6

Focal − NFS 101.6 268.5
Focal + NFS 97.9 236.3
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Figure 4.7: Representative results of outline extracted by BCE loss that with/without nearest
feature selector(NFS). The background and red line represent aerial input and outline, respec-
tively.
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Figure 4.8: Representative results of outline extracted by focal loss that with/without nearest
feature selector(NFS). The background and red line represent aerial input and outline, respec-
tively.
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Table 4.5: Performances on satellite images by SFCN model trained with aerial images.

Model Data SR/Colorized Precision Recall F1-score Kappa Jaccard

SFCN

Aerial - 0.888 0.907 0.897 0.625 0.814

Satellite −/− 0.909 0.366 0.521 0.178 0.353
Satellite +/− 0.900 0.525 0.663 0.278 0.496
Satellite −/+ 0.867 0.837 0.852 0.479 0.742
Satellite +/+ 0.860 0.859 0.859 0.491 0.753

4.3 Model transfer
The stacked fully conventional network(SFCN), which is consists of FCN-8s and FPN, is cho-
sen as the extraction model in this study. The model is trained on the training area of the
high-resolution, color aerial imagery. Besides, the pre-trained super-resolution(SR) model and
colorization network(ColorNet), are applied to panchromatic satellite to generate SR, colorized
or both SR and colorized satellite imagery for extraction evaluation. All experiments are per-
formed on the same dataset and processing platform.

Five commonly used evaluation metrics, including precision, recall, f1-score, kappa coeffi-
cient, and jaccard index, are selected for quantitative evaluation.

4.3.1 Quantitative Results
Table 4.5 shows the performance of a pre-trained SFCN model on aerial images as well as
satellite images with different image enhancement techniques. On the testing area of aerial
imagery, the pre-trained SFCN model achieves the highest values of all evaluation metrics ex-
cept precision. In the contrast, on low-resolution(LR), panchromatic satellite, the pre-trained
model presents the lowest values of all evaluation metrics except precision. The pre-trained
undergoes significant performance degradation when it is directly applied to new data with dif-
ferent resolution and color space. Compared with original LR image(i.e., 3rd Row), SFCN
presents significantly higher values in all evaluation metrics except precision on SR satellite
images(i.e., 4th Row). The SR model helps the pre-trained model to better recognize and ex-
tract information from satellite images. From 3rd and 5th Rows, evaluation on colorized satellite
image shows significantly higher values in evaluations metrics, especially balanced metrics of
f1-score, kappa coefficient, and jaccard index. With both SR and colorization(i.e., 6th Row), the
pre-trained SFCN shows the highest values in all evaluation metrics except precision among all
satellite images. The result indicates that the proposed SR and colorization pipeline can help
the pre-trained extraction model to perform properly on new data with different resolutions and
colorspace.

4.3.2 Qualitative Results
4.3.2.1 Result Comparisons at Region Level

Figure 4.9 reveals that the pre-trained stacked fully conventional network(SFCN) performances
better on aerial image than on satellite images. On grayscale satellite images(i.e., 2nd and 3rd
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Rows), there are more false negatives(Blue). From 2nd and 4th Rows, the result on colorization
satellite shows significantly fewer false negatives(Blue) but slightly more false positives(Red).
With both SR and colorization(i.e., 5th Rows), performance on satellite image becomes much
closer to the one aerial image.

4.3.2.2 Result Comparisons at Patch Level

To further explore the effectiveness of the proposed SR and colorization methods, several rep-
resentative samples are selected for additional comparison.

Figure 4.10 presents nine representative groups of segmentation results generated by pre-
trained SFCN. Even with some false positives (Red) as well as false negatives (Blue), the
pre-trained achieve the best performance on patches from aerial image (i.e., 1st Row). For
patches from satellite images without color(2nd and 3rd Rows), there are lots of false negatives
(Blue). Compared to original satellite patches, results from colorized patches show signifi-
cantly fewer false negatives but slightly more false positives(2nd vs. 4th Rows). With both SR
and colorization(5th Rows), the patches present fewer false positives as well as false negatives
that becomes closer to the result from aerial patches.
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Figure 4.9: Results region-level segmentation of aerial image as well as satellite images. The
green, red, blue, and white channels in the confusion results represent true positive, false posi-
tive, false negative, and true negative predictions, respectively.
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Figure 4.10: Representative results of patch segmentation of aerial image as well as satellite im-
ages. The patch size is 256 x 256 pixels. The green, red, blue, and white channels in the results
represent true positive, false positive, false negative, and true negative predictions, respectively.
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Figure 5.1 shows the overall tasks required for the complete automatic mapping that enables
the automatic generation of a digital map from input aerial or satellite image. In this study,
we have conducted (1) polygon feature extraction, (2) line feature extraction, and (3) model
transfer. Because of the insufficient computational resource as well as datasets, there are some
limitations:

• Data sources. The current researches are based on aerial or satellite images. Other types
of data, such as SAR, multi-spectral imagery, or polarization imagery, are necessary.

• Time-series analysis. The data used in these researches are taken within a limited period.
For real applications, such as building change detection, disaster mapping, or informal
settlement monitoring, time-series analysis have to be further study.

• Merge&Vectorization. Rather than pixel-level semantic segmentation/extraction, vector-
ized maps are more prefer in daily usage. Thus, in future studies, we will try to merge and
vectorize the polygon and line features extracted by our models to achieve a daily used
map.
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Figure 5.1: Scheme of the complete automatic mapping. Input aerial or satellite image can be
converted as digital map through sequential polygon feature extraction, line feature extraction,
model transfer and vectorization.
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5.1 About Polygon Feature Extraction

5.1.1 Regarding the Stacked Fully Convolutional Network
Deep-learning methods, especially FCN-based models, are widely adopted for automatic poly-
gon feature extraction from large-scale aerial images [82,83]. Compared to conventional meth-
ods, the FCN-based models significantly improve segmentation performance when tested on
various benchmark datasets [7,84]. Recently, more advanced FCN-based models have enhanced
feature representation capabilities to achieve better model performance (e.g., FPN, MC-FCN,
and BR-Net). However, the increased representation capability and as the complexity of the
models usually lead to overfitting. Ensemble learning, which utilizes several different networks
to generate a weighted prediction, is a promising option to avoid overfitting.

In this study, we designed four SFCNs and proposed a novel feature alignment framework
to enhance the performance of the ensemble framework. In contrast to existing ensemble ap-
proaches which mainly focus on adding numbers or trying different combinations of basic mod-
els, the proposed framework introduces alignment loss to control the similarity and consistency
of features extracted from different basic models. Through feature alignment, the proposed en-
semble method can achieve a balance between variety and similarity so that better predictions
can be achieved from weaker basic models. Qualitative and quantitative results on the testing
tiles demonstrated the effectiveness of our proposed stacked fully convolution networks as well
as feature alignment framework. Additionally, because of its flexibility, this framework can
easily extend to ensemble learning architectures using different numbers of basic models.

5.1.2 Accuracies, Uncertainties, and Limitations
From the sensitivity analysis, different ensemble models show a similar trend that as the weight
of alignment loss increases, the performance of the model will increase first and, after a certain
level, decline (see details in Figure 4.3). The interpolation of this trend is: (1) When there is no
feature alignment(λ=0), features extracted from different basic models are so diverse that they
might have different predictions for specific locations. An ensemble of these features doesn’t
bring better results. (2) When feature alignment is added, at early stages, a higher value of λ
forces features extracted from different basic models to be closer to each other so that they can
compromise on specific locations and generate better overall predictions. However, if λ rises
beyond the optimal value, the extracted features might be too similar to each other, and there
will not be enough variety. Thus, the performance of the ensemble method will regress to that
of a single basic model. This observation indicates that the feature alignment framework can
help achieve a balance in similarity and variety of features in ensemble learning.

Among the methods, the proposed SFCNs with feature alignment (SFCNu&p, +FA) show the
highest values for all evaluation metrics. The values of the f1-score, jaccard index, and kappa
coefficient are 0.785, 0.646, and 0.742, respectively. SFCN models using two basic models
(SFCNf&p, SFCNf&u, and SFCNu&p), with or without feature alignment (i.e., +/− FA), show
significantly different performances. Ensemble models with proper weights for alignment loss
are generally better than their counterparts without alignment loss. Especially for SFCNf&u,
optimal feature alignment gains increments of 4.2% (0.772 vs 0.741) for f1-score, 6.8% (0.629
vs 0.589) for jaccard index, and 5.5% (0.727 vs 0.689) for kappa coefficient. These results
indicate that introducing feature alignment leads to better performance of the ensemble model.
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However, for ensemble models using three basic models (SFCNf&u&p), the values of the jaccard
index and kappa coefficient only increase about 1.6% (0.640 vs. 0.630) and 1.2%(0.736 vs.
0.727), respectively. Additionally, when compared to the best basic model (FPN), the optimized
ensemble model does not show big improvements. (see details in Figure 4.1 b)

Through analysis of computing speed, we observed a significant decrease in computational
efficiency at the training stage when applying ensemble learning. Of four SFCN models, the
model with three basic models (SFCNf&u&p) is much slower than the models with two basic
models (SFCNf&p, SFCNf&u, and SFCNu&p). Because of the decrease in computational effi-
ciency, even though feature alignment can be easily extended to the ensemble model with all
basic models, the proposed ensemble model might not be suitable for the analysis of vast areas
(e.g., automatic mapping of the entire country).
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5.2. ABOUT LINE FEATURE EXTRACTION

5.2 About Line Feature Extraction

5.2.1 Regarding the Nearest Feature Selector
In recent years, fully convolutional networks have shown their power in automatic extraction
of the line features, including roads and building outlines [49, 54, 85]. However, these methods
are mainly focused on designing deeper or more complex network architectures to enhance the
representation capability for better prediction. Their loss functions are not capable of handling
misalignments or rotations between inputs and manually created annotations. Since the line
feature occupies a typically tiny portion of pixels, the misalignment and rotation will severely
interfere with the line extraction accuracy.

In our study, we proposed a nearest feature selector(NFS) module to dynamically re-alignment
the prediction and corresponding annotation. The proposed framework be easily integrated into
existing loss functions, such as L1, mean square error(MSE), and focal loss. Through dynamic
re-alignment, the addition of NFS can locate the correct position of annotation for proper loss
calculation. Qualitative and quantitative results on the testing data demonstrated the effective-
ness of our proposed NFS.

5.2.2 Accuracies, Uncertainties, and Limitations
Among all methods, the focal loss with NFS shows the highest values for all evaluation metrics.
The values of the f1-score, jaccard index, and kappa coefficient are 0.624, 0.597, and 0.468,
respectively. Compared with naive L1 loss, the addition of NFS leads to significant increments
of all evaluation metrics. The increments of f1-score, kappa coefficient, and jaccard index reach
8.8%, 8.9%, and 9.8%, respectively. For robust loss functions(e.g., focal, and binary cross-
entropy loss), the improvement caused by NFS is not significant (see details in Figure 4.4 b).
Besides, due to the sliding-and-matching mechanism, the proposed NFS can not be applied to
annotations that require rotation correction.

Through the analysis of computational efficiency, we observed a very slight decrease in pro-
cessing speed when applying NFS. Considering the performance gain by NFS, computational
efficiency degradation is ignorable.
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CHAPTER 5. DISCUSSION

5.3 About Model Transfer

5.3.1 Regarding the Super-resolution and Colorization Pipeline
To achieve large-scale automatic mapping, the model built for one location should also be work-
ing at another location or the same location but from different data sources. In practice, due to
the lack of variety in training data, the pre-trained model undergoes severe performance degra-
dation when applying to new areas or different data sources from the same location.

To avoid overcome this, we propose a model transfer pipeline that integrated both resolu-
tion and color transferring to synthesized high resolution, colorized satellite images. Through
trained SR and colorization model, the low-resolution, panchromatic image can be converted
to high-resolution, color image. Furthermore, the generated image can be appropriately recog-
nized and segmented by the pre-trained SFCN model. Qualitative and quantitative results on
the testing area of the satellite imagery demonstrated the effectiveness of our proposed pipeline.

5.3.2 Accuracies, Uncertainties, and Limitations
Among satellite images, the SFCN trained on aerial imagery shows the best performance on
images with SR and colorization. The values of precision, recall, f1-score, jaccard index, and
kappa coefficient are 0.860, 0.859, 0.859, 0.491, and 0.753, respectively. Compared to the
performance on original satellite images, the addition of SR and colorization leads to -4.4%,
63.6%, 29.6%, 76.6%, and 51.8% increments of precision, recall, f1-score, jaccard index, and
kappa coefficient, respectively. The improvement caused by SR is less significant than the one
caused by colorization(see details in Table 4.5).
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Chapter 6

Potential Applications

Figure 6.1 shows the potential applications using the automatic mapping pipeline. Semantic
or quantitative information extracted from aerial or satellite images can be used for large-scale
spatial/economic analysis such as solar panels availability, flood damage estimation, informal
settlement mapping.

• Solar panels availability. To achieve zero-emission city, green energies, especially solar
energy, are very critical. To estimate the potential capability of solar panels installed on
roofs, practical coverage estimation of the building roof is required. With our integrated
automatic mapping pipeline, automatic semantic segmentation of the building roof can
be applied to the city or country scale. Instead of the time-consuming and labor-intensive
field survey, our methods can produce automatic extraction result in several days when
there is enough computational resources as well as data.

• Flood damage estimation. As an inevitable natural phenomenon, floods bring severe
damage to not only local but also global society. In developing countries, because of the
insufficient information, rescuing and rebuilding after the damage is slow and ineffective.
Using our automatic mapping pipeline, coverage of the buildings from before and after
the flood can be automatically extracted using images captured by satellite or unmanned
aerial vehicle(UAV). Then, by comparison of the information of before and after, we can
focus on the damaged area and estimate the damage-level for a better policy decision.

• Informal settlement mapping. Understanding the formation, development, and vanishing
of informal settlements are important topics in urban planning and social-economic anal-
ysis. Like many social studies, informal settlement mapping mainly relies on field sur-
vey, which only covers limited areas or cities. Through our automatic mapping pipeline,
large-scale semantic information of land-covers such as buildings, roads, and trees can be
extracted. Later, image processing algorithms, including cluttering and vectorization, can
be used for further informality estimation.
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CHAPTER 6. POTENTIAL APPLICATIONS

Figure 6.1: Potential applications through automatic mapping. Information extracted from
aerial or satellite images can be used for large-scale spatial/economic analysis such as solar
panels availability, flood damage estimation, and informal settlement mapping.
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Chapter 7

Conclusion

In this study, we provide an integrated automatic mapping solution consisting of polygon feature
extraction, line feature extraction, and model transfer.

For robust polygon feature extraction, we propose a novel feature alignment framework for
efficient ensemble learning of fully convolutional networks. The proposed framework can be
seamlessly integrated with ensemble learning models with a various number of basic models
to regulate a balance in similarity and variety of the features extracted from different branches.
Their performances are verified by the VHR image dataset with multi-label semantic infor-
mation. The ensemble models with proposed feature alignment show significantly better per-
formance than existing methods. In SFCNf&u, optimal feature alignment gains increments of
4.2% (0.772 vs 0.741), 6.8% (0.629 vs 0.589), and 5.5% (0.727 vs 0.689) for f1-score, jaccard
index, and kappa coefficient, respectively. Sensitivity analysis demonstrated that feature align-
ment plays an important role in controlling the balance between similarity and variety of the
ensemble model. In future studies, we will further optimize our feature alignment framework
to achieve better performance in more complex ensemble learning architectures.

For accurate line feature extraction, we design a nearest feature selector(NFS) module to
dynamically re-align the prediction and slightly misaligned annotation. The proposed module
can be easily combined with existing loss functions to better handle sub-pixel or pixels level
misalignments of the manually created annotations. For all loss functions, the addition of pro-
posed NFS show significantly better performance in all evaluation metrics. For classic L1 loss,
increments gained by additional NFS are 8.8% of f1-score, 8.9% of kappa coefficient, and 9.8%
of jaccard index.

In model transfer, we introduce an integrated super-resolution(SR) and colorization pipeline
to facilitate SFCN trained on high-resolution(HR), color aerial image to work appropriately on
low-resolution(LR), panchromatic satellite image. With SR and colorization module, the orig-
inal satellite will be converted to HR and color image that can be successfully recognized and
segmented by a pre-trained model. The performance of the pipeline is verified by Tokyo dataset
with both aerial and satellite from the same location. The segmentation result on satellite image
with additional SR and colorization is significantly better than those on original satellite images.
Compared to SR, colorization shows a more significant impact on segmentation results.
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