
Design of Bayesian Hierarchical Models

for Accurate Detection of Somatic Mutations

（高精度な体細胞変異検出のための

階層ベイズモデルの設計）

by

Takuya Moriyama

森山 卓也

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 6, 2019

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Satoru Miyano 宮野 悟

Professor of Computer Science



ABSTRACT

Cancer is driven by genomic alterations. Cells suffer from stimulations, e.g., tobacco,
alcohol, ultraviolet, oxidative stress and infections, and genomes in cells iterate the pro-
cess of genomic alteration and repairment every day. Accumulated genomic alterations
that avoided DNA repair cause abnormal functions in cells and eventually leads to cancer.
Information on genomic alterations is essential for cancer research and cancer therapy
because of the causality from genomic alterations to cancer. For cancer research, re-
searchers infer the evolutionary process of cancer from genomic alterations and search
for a novel therapy based on the inferred evolutionary process. For cancer therapy, can-
cer genome medicine, i.e., cancer therapy for each patient based on individual genomic
alteration profile, is now becoming reality due to the lowering cost of next-generation se-
quence (NGS) technology. Therefore, the development of accurate detection methods of
genomic alteration from next-generation sequence data sets is one of the most important
problems in the field of cancer genomics.

Postnatal genomic alterations are called somatic mutations. In general, at least one
tumor and matched normal sequence data sets are utilized to detect somatic mutations
from NGS data sets. Mainly two types of approaches exist for the detection method of so-
matic mutations: single-tumor-based approach and multiple-tumor-based approach. The
single-tumor-based approach detects somatic mutations by using a single-regional tumor
and a matched normal sequence data sets, and the multiple-tumor-based approach uses
multi-regional tumors and a matched normal sequence data sets. Although NGS data
specific properties or biological prior knowledge are reported to be important for perfor-
mance improvement, these properties or prior knowledge are not sufficiently leveraged in
both types of approaches.

For the single-tumor-based approach, Bayesian-hierarchical-model-based methods have
been developed to leverage NGS data specific properties. However, these existing Bayesian-
hierarchical-model-based methods have focused on the modeling of single NGS data spe-
cific property, and they are not designed to incorporate multiple properties simultane-
ously.

For the multiple-tumor-based approach, existing methods have focused on the sta-
tistical modeling of biological prior knowledge, e.g., the mutation sharing assumption or
the property of the tumor phylogenetic tree. The design of the existing statistical models
for mutation sharing assumption are based on the prior knowledge that accuracy can be
improved by applying a lower threshold for mutation call if at least one tumor sample has
the somatic mutation. For applying the mutation sharing assumption, it is important to
infer whether at least one tumor sample has the somatic mutation with high confidence
and it is expected that the number of detected candidates and the specificity of the can-
didate detection are beneficial for that purpose. However, the existing statistical models
leverage the number of detected candidates but not leverage the specificity of candidate
detection. Furthermore, existing methods cannot use NGS data specific properties be-
cause of the restriction of the statistical modelings. As for existing methods that use
the tumor phylogeny, the results of the performance evaluation experiment are contra-
dictory; they are evaluated as poorly performed methods in some reports, but evaluated
as excellent methods in other reports. Therefore, it is not well examined whether or not
the property of tumor phylogeny is effective for the detection of somatic mutation.

Hence, existing methods cannot sufficiently use NGS data specific properties or bio-
logical prior knowledge and we can expect a further improvement of detection accuracy
for both types of approaches. In this thesis, we consider manners of leveraging these
properties or prior knowledge and propose methods for accurate detection of somatic
mutations.

First, for the single-tumor-based approach, we propose a novel somatic mutation
calling method named as OHVarfinDer. There have been no enough researches about
the construction of the Bayesian hierarchical model to incorporate multiple NGS data
specific properties. In this point, our method explicitly integrates multiple Bayesian
hierarchical models into one model by partitioning-based model integration. In this model
integration approach, we introduce an observed indicator variable for each observed data
point, which indicates the corresponding model to generate the data point, and these
indicator variables enable the integration of multiple Bayesian hierarchical models. This



approach of model integration is different from the Bayesian model averaging because this
approach does not require any weight parameter settings in Bayes factor computation
if the weight parameters are equal between numerator and denominator. We evaluated
our proposed method based on both simulation data sets and real data sets. For the
simulation data sets, our method performs comparably with other existing methods when
a single property is available and outperforms existing methods when multiple properties
are available. For the real data sets, we utilized TCGA benchmark data sets and our
method outperforms existing methods in most cases.

Second, we propose a novel multiple-tumor-based mutation calling method named as
MultiMuC. For leveraging the mutation sharing assumption, the existing methods have
focused on the number of detected candidates but not incorporated the specificity of
detection or NGS data specific properties. For leveraging the specificity of detection, our
method introduces two types of latent variables. The first type of variable represents the
existence of at least one detected mutation candidate and the second type of variable
represents the sufficient number of detected candidates with high confidence. Through
introducing these latent variables, our method uses the number of candidates and detec-
tion specificity. For leveraging NGS data specific properties, we focus on leveraging the
data generation probabilities of the stochastic models in existing mutation calling meth-
ods that incorporate such NGS data specific properties. In general, existing mutation
calling methods only output Bayes factors or posterior mutation event probabilities and
we cannot directly obtain data generation probabilities. We guaranteed that we can ob-
tain the consistent posterior distribution or maximum a posteriori state even when only
Bayes factors are available. Based on this idea, we constructed a Bayesian hierarchical
model by using the Bayes factors obtained from mutation calling results. Therefore, our
proposed method can use NGS data specific properties through leveraging data genera-
tion probabilities within existing mutation calling methods. We evaluated the proposed
method by a simulation based on real data sets. In this simulation, we set multiple
tumor phylogenetic trees and multiple clonal composition rates and generated multiple
tumor sequence data sets based on them. The performance evaluation demonstrates that
our proposed method can improve the accuracy of existing single-tumor-based mutation
calling methods by incorporating the mutation sharing assumption.

Finally, we examine whether or not tumor phylogeny is effective for the detection
of somatic mutations. For this purpose, we assume a stochastic model for generating
the results of mutation calling. Under this assumption, we evaluate the expected speci-
ficity and sensitivity of the tumor-phylogeny-based detection method and the non-tumor-
phylogeny-based detection method. We also derived a sufficient condition from which
the tumor-phylogeny-based detection method has superior specificity of detection. From
these evaluations, we revealed when the tumor phylogeny is effective for the detection
of mutations and showed that we may improve the detection accuracy in a particular
situation.



論文要旨

癌はゲノムの変異により起きる病気である。細胞は、タバコ、アルコール、紫外線、酸

化ストレス、感染症などの刺激を受け、日々ゲノムに変異を蓄積させては、DNA修復系

による修復を繰り返している。DNA修復を免れ、後天的に蓄積したゲノムの変異はやが

ては細胞の機能に異常をもたらし、癌を引き起こす。癌はゲノムの変異を原因とする病気

であることから、ゲノム変異の情報は、癌の研究や治療において、不可欠な情報である。

癌研究においては、体細胞変異の情報を用いて癌の進化の過程を推定し、これをもとに新

たな治療方針の模索が進められている。また、癌治療においては、次世代シークエンサー

（NGS）技術の発展に伴い、低コストでゲノム情報を取得できるようになったため、NGS

データから検出したゲノム変異の情報から患者ごとに治療方針を提案する癌ゲノム医療が

現実に推し進められている。そのため、NGSデータから高精度にゲノム変異を検出する手

法の開発は癌ゲノム分野における重要課題の一つである。

後天的に起きたゲノムの変異は体細胞変異と呼ばれる。通常、体細胞変異を NGSデー

タから検出する際は、腫瘍由来のシークエンスデータと正常組織由来のシークエンスデー

タがそれぞれ少なくとも一つ以上利用される。体細胞変異を検出する方法としては大きく

二つの方法があり、一つ目は腫瘍一検体のシークエンスデータに基づく方法で、二つ目は

多検体の腫瘍に基づく方法である。一検体のシークエンスデータに基づく方法では、腫瘍

一検体と一つの対応する正常細胞のシークエンスデータが用いられ、多検体の腫瘍に基づ

く方法では、多検体の腫瘍と一つの対応する正常組織のシークエンスデータが用いられる。

体細胞変異検出手法の性能改善には、NGSデータ特異的な性質や生物学的な事前知識の適

用が重要と報告されているが、単一検体に基づく方法、多検体に基づく方法の両方で十分

に活用されていない。

単一検体に基づく方法に関しては、NGSデータ特異的な性質を利用するために、階層ベ

イズモデルを基に検出手法が開発されてきた。しかし、これらの既存手法における階層ベ

イズモデルにおいては、単一の性質のモデル化に焦点を当てており、複数の性質を同時に

考慮する設計は為されていない。

多検体に基づく方法に関しては、体細胞変異が共有される性質や癌の進化系統樹のもつ

性質などの、生物学的な事前知識の利用に注目が置かれている。まず、体細胞変異が共有

される性質を利用する手法に関しては、少なくとも一つの検体が変異をもつ場合、検出の

閾値を下げると精度が改善できるという知見をもとに統計モデルが設計されている。ここ

で、変異が共有される性質を利用するには、少なくとも一つの検体が変異をもつことを高

い確度で判定することが重要であり、検出される候補変異数と、検出の特異度が重要であ

ると考えられる。しかしながら、既存の統計モデルでは変異数のみを利用し、検出の特異

度までは考慮されていない。さらには、既存の統計モデルの設計の問題により、NGSデー

タ特異的な性質は利用できない。次に、系統樹の性質を利用する手法に関しては、相反す

る性能評価の報告が上がっており、一部の論文では性能が悪いとして報告する一方で、他

方では性能が高いと報告されている。そのため、系統樹の性質が体細胞変異検出にとって

有用な性質かどうかはそもそも十分に考察されていない。

以上のことから、既存手法においては、NGSデータ特異的な性質や生物学的な事前知識

の適用は十分になされておらず、体細胞変異の検出精度には依然として改善余地があると

期待される。本学位論文においては、NGSデータ特異的な性質や生物学的な事前知識の適



用方法を考案し、高精度な体細胞変異検出手法を提案する。

まず、一検体腫瘍に基づく方法に関して、体細胞変異の検出を行う手法 OHVarfinDer を

提案する。既存研究において、NGSデータ特異的な性質を複数同時に統計モデルに加味す

る階層ベイズモデルの方法に関しては十分な研究がなされていなかった。この点に関し、

我々の提案手法では分割に基づくモデル統合方法により、明示的に複数の階層ベイズモデ

ルを一つの階層ベイズモデルとして統合する。この方法では、各観測変数に対し、観測を

生成した統計モデルを示す新たな観測変数を導入することで、複数の階層ベイズモデルの

統合が可能になる。この統合方法はベイズモデル平均化と異なり、ベイズファクターの計

算において、分子と分母で重みパラメータが等しい場合では、事前に重みパラメータなど

の設定が不要である。我々は、シミュレーションデータと実データに基づき、提案手法の

評価を行った。シミュレーションデータによる評価では、単一の性質が利用できる場合で

は他の既存手法と同程度の性能を示し、複数の性質が利用可能な場合においては既存手法

を上回る性能を示した。実データに関しては、TCGAのベンチマークデータに基づく評価

を行い、ほとんどの場合で既存手法を上回る性能を示した。

次に、多検体腫瘍に基づく体細胞変異検出手法 MultiMuC を提案する。変異共有の性

質の利用においては、既存手法では検出される変異候補の数に着目しているが、変異検出

の特異度や NGSデータ特異的な性質は考慮していない。変異検出の特異度を利用するた

めに、提案手法では二種類の潜在変数を導入する。一つ目の潜在変数は少なくとも一つの

変異候補が検出されているかを表し、二つ目の潜在変数は変異候補が高い特異度で検出さ

れていて、変異候補数も十分多くある状態を表す。提案手法では、これらの潜在変数の導

入によって、検出された変異候補の数と検出特異度の両方を利用する。また、NGS データ

特異的な性質を利用するために、そのような性質を加味した変異検出手法の確率モデル内

のデータ生成確率の利用に着目した。通常、それらの変異検出手法からは、ベイズファク

ター、ないしベイズファクターに変換可能な事後確率のみが得られ、データの生成確率は

直接利用することはできない。我々は、このようなベイズファクターしか得られない状況

においても、事後分布の推定や最大事後確率推定には影響が無いことを示した。このアイ

デアから、変異検出手法の出力として得られるベイズファクターをもとに階層ベイズモデ

ルを構築した。そのため、提案手法では、既存の変異検出手法内のデータ生成確率を通じ

て、NGS データ特異的な性質を利用することができる。我々は、実データに基づくシミュ

レーションにより、提案手法の性能評価を行った。このシミュレーションでは、複数の癌

の系統樹構造とクローンの混合比率を用意することで、癌のシークエンスデータを複数生

成した。この性能評価によって、我々の手法は、多数の検体において変異が共有されてい

ることを利用し、既存手法の精度をさらに改善可能であることを示した。

最後に、がんの進化系統樹の性質が体細胞変異検出に対して有用かどうかを考察する。

この考察では、変異検出の結果を生成する確率モデルに仮定をおいた元で、系統樹を用い

て変異検出を行う手法と、系統樹を用いずに変異検出を行う手法の感度と特異度の期待値

を評価した。また、系統樹を用いた検出手法の方が高い特異度を示すための十分条件を導

出した。これらの評価から、どのような状況下でがんの進化系統樹が変異検出に有用かを

明らかにし、特定条件下において変異検出の精度向上に有用たり得ることを示した。
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Chapter 1

Introduction

1.1 Overview

More than 10% of people suffer from cancer and dies [6]. This malignant dis-
ease is driven by genomic alterations [80]. Genomic alterations are propelled by
stimulations, e.g., tobacco, alcohol, ultraviolet, oxidative stress, and infections,
and suppressed by the DNA repair process and human cells eventually accumu-
late genetic alterations with age. In general, the causal genomic alterations for
cancer is different between cancer patients [11]. Therefore, genome sequencing
and obtaining profiles of genomic alterations are important to recommend the
optimal therapy for each patient. The lowering cost of the Next-generation se-
quence (NGS) thechnology [52] and the development of decision support systems
enable clinical sequencing for individual optimal cancer therapy.

Postnatal genomic alterations are termed somatic mutations. Before 2004, we
can detect somatic mutations in only limited regions through southern blotting
or sanger sequencing [38, 69, 73]. After 2004, NGS technology appeared and
enables comprehensive detection of somatic mutations [49]. For example, Illumina
sequencer enabled the massive amount of DNA sequencing through the sequence
by synthesis (Fig. 1.1). Based on the NGS technology, each somatic mutation
is detected by comparing sequence data sets from tumor and matched normal
tissues.
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Figure 1.1: Sequence by synthesis conducted in Illumina sequencer.

Due to the causality from somatic mutations to cancer, profiles of somatic
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mutations provide essential and beneficial information for cancer research and
therapy. The following examples demonstrate the importance of somatic muta-
tions. The first example is intratumor heterogeneity [74, 47, 22]. Tumor cells
evolve and diverge by accumulating somatic mutations, and this tumor evolu-
tionary process leads to the intratumor heterogeneity: tumor tissue within a
patient is composed of heterogeneous tumor cells with a different set of somatic
mutations. Intratumor heterogeneity affects the drug resistance; the existence of
small tumor cell population (sub-clonal population) with drug resistance leads
to a cancer recurrence after the treatment of molecular target drugs. There-
fore, researchers in cancer genomics examine the intratumor heterogeneity and
the relations between drug resistance and intratumor heterogeneity. The second
example is mutation signatures [2, 60, 63]. Mutation signatures represent pat-
terns of somatic mutations and sequence around them and they are introduced to
understand the relationship between stimulation and DNA damage. In order to
infer mutation signatures for a better understanding of the relationship between
stimulation and DNA damage, profiles of somatic mutations are required. The
third example is clinical sequencing. Based on the obtained profile of genomic
alterations from sequence data sets, doctor and decision support systems propose
medical care for individual patients. A lot of medical organizations examine the
optimal decision support system [30] and the protocol of genome sequencing [50].

As supported by these examples, the detection of somatic mutations is a
basis for the field of cancer genomics and continuous improvement of detection
accuracy is important. Especially, to detect somatic mutations in the sub-clonal
tumor cell population for a better proposal of treatment, we require accurate
detection methods because fractions of sub-clonal tumor cells can be less than
5%. Therefore, a great deal of effort has been made to improve the performance
of mutation call.

For single-tumor-based mutation call, i.e., mutation call from a tumor and a
matched normal sequence data set, incorporating sequence-data-specific proper-
ties is reported to be important for performance improvement. Nakamura et al.
reported sequence-specific error profiles of Illumina sequencers and examined se-
quencing error-prone sites that are susceptible to sequence errors [57]. In order to
exclude sequencing error-prone sites, Shiraishi et al. evaluated the susceptibility
to sequence errors from multiple normal sequence data sets and improved per-
formance [72]. Albers et al. focused on the fact that the homopolymer sequence
is susceptible to sequence errors. They designed a read generation probability
that generates homopolymer sequences in smaller probability and they proposed
a Bayesian method to call indels [1]. Usuyama et al. found that each somatic
mutation tends to occur on one side of the haplotypes unlike sequence errors and
designed a Bayesian statistical model for mutation call to incorporate the haplo-
typic bias [77]. In our previous work, we focused on the fact that the overlapping
part of paired-end reads gives effective information to reduce sequence errors and
constructed a Bayesian method to incorporate these overlapping regions [55].
Cibulskis et al. used strand bias of candidate mutation in the pre-filtering step
to remove false positives [10].

For multiple-tumor-based mutation call, i.e., mutation call from multiple tu-
mors and a matched normal sequence data sets within a patient, incorporating
properties for multi-regional tumor sequence data sets are reported to improve
detection performance. Josephidou et al. focused on the assumption of mutation
sharing: if we can predict at least one tumor region has the mutation, then we
can be more confident to detect a mutation in more tumor regions by lowering
the original threshold of detection. Based on this assumption, they developed a
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Bayesian method to improve sensitivity when at least one tumor sequence data
set has a mutation [32]. Salari et al. focused on the property of tumor phylo-
genetic tree that patterns of mutated samples are limited, and they retrieve a
maximum set of compatible mutations to improve detection performance [68].

In spite of these previous efforts, existing methods have several problems
and there is room for further performance improvement. For single-tumor-based
approaches, the majority of the existing methods focused on one sequence-data-
specific property and constructed a Bayesian hierarchical model based on the
property. However, existing Bayesian methods have not proposed the design of
Bayesian hierarchical models to incorporate multiple sequence-data-specific prop-
erties explicitly. For multiple-tumor-based approaches, existing methods have fo-
cused on the multi-regional-specific assumptions, i.e., mutation sharing and the
existence of tumor phylogenetic tree, which are applicable only to multi-regional
tumor sequence data sets. However, existing methods have not proposed the de-
sign of Bayesian hierarchical models to incorporate sequence-data-specific prop-
erties that are available even in single-tumor-based approaches. Furthermore,
the existing studies do not show clear answers to the following basic questions:
whether the property of tumor phylogeny is valuable for the detection of somatic
mutations.
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Figure 1.2: Summary of the contributions to the design of Bayesian hierarchical
models for detection of somatic mutations.

1.2 Contribution of This Thesis

This thesis contributes to the design of Bayesian hierarchical models to incor-
porate multiple properties that are available in both settings of single-regional
and multi-regional tumor sequence data sets for accurate detection of somatic
mutations. The summary of this thesis is represented at Fig. 1.2.
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1.2.1 Incorporation of Multiple Sequence-Data-Specific Properties in
Single-Regional Tumor Sequence Data Set

In Chapter 3, we propose a design of a Bayesian model to incorporate multi-
ple sequence-data-specific properties in single-regional tumor data set. In this
design of a Bayesian model, we integrate multiple generative models into one
model by introducing observed parameters for partitioning. Unlike the Bayesian
model averaging, this manner of integration has an advantage: our design does
not require additional hyperparameter settings for integration when the proba-
bilities of observed parameters for partitioning are the same among numerator
and denominator in the Bayes factor. Based on this design, we constructed a
mutation calling method termed OHVarfinDer. We evaluated the performance of
the proposed method based on pure simulation data sets and TCGA 4 mutation
calling benchmark data sets.

1.2.2 Incorporation of the Mutation Sharing Assumption in Multi-
Regional Tumor Sequence Data Sets

In Chapter 4, we proposed a Bayesian mutation calling method of MultiMuC
for multi-regional tumor sequence data sets. We constructed a Bayesian model
of MultiMuC based on the idea of the mutation sharing assumption and Bayes-
factor-based model construction.

For using the mutation sharing assumption, we especially focused on the “No-
TP(True Positive)” case: even if we could detect mutation candidates in multiple
regions, no true mutations exist, unfortunately. The reason for focusing on the
No-TP case is that the application of the mutation sharing assumption under
the No-TP case can lead to performance degradation. We found that we can
decrease the probability of the No-TP case by increasing the specificity of detec-
tion or the number of detected candidates. Based on this investigation, we used
the specificity of detection and the number of detected candidates to avoid the
No-TP case. For Bayes-factor-based model construction, this manner of model
construction is helpful for incorporating data generation probabilities from the
results of single-tumor-based mutation calling methods. In the practical setting,
data generation probabilities are not directly available from the results of other
mutation calling methods and we can only use Bayes factors at best. We showed
that Bayes factor is sufficient for maximum a posteriori (MAP) estimate; we can
obtain consistent MAP state even when all the data generation probabilities are
not available but Bayes factors are available. We evaluated that the proposed
method can improve the detection performance of the existing single-tumor-based
mutation calling methods and outperforms existing multiple-tumor-based muta-
tion calling methods based on a real-data-based simulation study.

1.2.3 Evaluating the Effectiveness of Tumor Phylogenetic Tree

In Chapter 5, we considered the effectiveness of tumor phylogeny for multiple-
tumor-based mutation calling. Under setting several assumptions, we evaluate
the performance of a tumor-phylogeny-based mutation calling method and a non-
tumor-phylogeny-based mutation calling method.

For the problem setting, we assume two mutation profiles for the same mul-
tiple tumor samples within a patient are given from distinct genomic regions:
reliable profile and unreliable profile. The purpose is to predict each mutation in
a patient (and not to predict each mutation in each tumor region) from the unreli-
able profile. From the evaluation of the performance of a tumor-phylogeny-based

4



mutation calling method, we can suggest that the tumor-phylogeny-based muta-
tion calling method can predict each mutation in a patient with high specificity
and moderate sensitivity even when the original unreliable profile has lower speci-
ficity of prediction. This evaluation suggests that tumor phylogeny is effective
for predicting each mutation in a patient in particular situations.
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Chapter 2

Preliminaries

2.1 Next-Generation Sequence Data Sets and Mutation Call

For the detection of somatic mutations, a next-generation sequencer (NGS) is
used in general. In this section, we will briefly explain a workflow of retrieving a
sequence data set and mutation calling, and we use the Illumina’s sequencer [52]
as an example of a next-generation sequencer.

2.1.1 Workflow of Obtaining a Sequence Data Set by NGS Technology

!"#$%&&'(

)*+,-.

/00-.)100-.+

!"#+23456(78
9(2(3(7:(+&(;'(7:(

<(;'(7:%75+.4%3(=>(7=+3(4=&

3(4=

???

???
9(4=+4@%576(78

AB /B

*B

CB

Figure 2.1: General workflow of retrieving sequence data set through NGS.

The workflow of obtaining a sequence data set from human tissue by NGS is
summarized in Fig. 2.1.

1) Extracting DNA molecules from a tissue. The total size of the human
genome is about 3Gbp.

2) Split DNA molecules randomly into fragments. In general, the length of
each fragment is from 200bp to 500bp.

3) Retrieving paired-end reads from each edge of the original fragment. The
length of each read is from 100bp to 150bp.

4) Alignment of paired-end reads to the reference sequence.

The above workflow is conducted to a tumor and a matched normal tissue for for
mutation calling. For the read alignments of DNA and RNA, a lot of alignment
tools are available [46, 34, 14, 35, 79, 42, 25, 82, 43, 45, 44, 56]. Examples of
obtained pair of sequence data sets are shown in Figs. 2.2 and 2.3.
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Figure 2.2: Examples of a tumor and a matched normal sequence data sets in a
non-erroneous position.
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Figure 2.3: Examples of a tumor and a matched normal sequence data sets in an
erroneous position.

2.1.2 Mutation Calling from Sequence Data Sets

In single-tumor-based mutation calling approaches, mutation calling is conducted
from a pair of sequence data set, i.e., a tumor and matched normal sequence
data set. Mutation calling is a two-step process of pre-filtering and classification
steps. In the pre-filtering step, mutation candidates are collected by setting
thresholds on values, e.g., variant allele frequency, read coverage, the number of
variant supporting reads. An example of pre-filtering is shown in Fig. 2.4. After
the pre-filtering step, mutation calling methods evaluate and classifies whether
each candidate is a true somatic mutation or not. Most of the mutation calling
methods output the evaluated scores, e.g., P-values, Bayes factors, posterior event
probabilities of mutation.

In multiple-tumor-based approaches, mutation calling is conducted from mul-
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tiple tumors and a matched normal sequence data sets. In the general case,
mutation calling is also a two-step process of pre-filtering and classification steps.
Unlike single-tumor-based approaches, multiple tumor sequence data sets are
used in both pre-filtering and classification steps.
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Figure 2.4: An example of criteria for collecting mutation candidates.

2.2 Computational Techniques for Stochastic Models

Through this thesis, we solve the problem of mutation calling based on the con-
structed stochastic models. By ignoring a strict type definition of each set of
variables for simplicity, we express a joint distribution in a constructed stochas-
tic model as Pr(D,Θ|M), where D is a set of observed variables representing
data set, Θ is a set of unobserved random variables representing parameters, and
M represents the model and defines the form of the joint distribution for (D,Θ).

After this section, we introduce a set of computational techniques: variational
Bayes and Markov chain Monte Carlo method (MCMC). We apply variational
Bayes for evaluating marginal likelihoods in Chapter 3 and apply MCMC for
inferring the MAP (maximum a posteriori) state in Chapter 4.

Pr(D|M) =

∫
Pr(D,Θ|M)dΘ, (2.1)

ΘMAP = arg max
Θ

Pr(Θ|D,M). (2.2)
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2.3 Variational Bayes

We review variational Bayes which is a method for lower bounding the marginal
likelihood and optimizing the lower bound in an iterative manner by assuming a
stochastic model [4, 3].

2.3.1 Assumed Stochastic Model

For the stochastic model, we assume that y := {yi}i=1,··· ,n represents a set of
observed variables and x := {xi}i=1,··· ,n represents a set of hidden variables,
where n is the total number of observations. θ represents a set of parameters on
which each data set (xi, yi) is dependent. We represent the graphical model for
the assumed stochastic model shown in Fig. 2.5.

yi

θ xi

i = 1, · · · , n

!"#$%&'(&)*

'+")#,*(+'-+$.&/%0

1$%&'(&)*

'+")#,*(+'-+$.&/%0

Figure 2.5: The graphical model for the assumed stochastic model.

2.3.2 Lower Bound for the Marginal Likelihood

The marginal likelihood of the assumed model, Pr(y) can be lower bounded by
introducing a free distribution of q(x,θ) and applying Jensen’s inequality.

lnPr(y) = ln

∫
dθdx Pr(y,x,θ)

= ln

∫
dθdx q(x,θ)

Pr(y,x,θ)

q(x,θ)

≥
∫

dθdx q(x,θ) ln
Pr(y,x,θ)

q(x,θ)
:= L(q(x), q(θ)). (2.3)

From the equality condition of the Jensen’s inequality, we can maximize the
lower bound of Eq. (2.3) when q(x,θ) = Pr(x,θ|y) and we can obtain the exact
value of marginal likelihood. However, obtaining the posterior distributions of
Pr(x,θ|y) requires the value of the marginal likelihood of Pr(y) and hence we do
not simplify the original problem. Instead, we simplify the problem by setting
a constraint of q(x,θ) = qx(x)qθ(θ) and maximize the lower bound of Eq. (2.3)
for each distribution of qx(x) and qθ(θ).
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We can also see that maximization of the lower bound is equal to the minimiza-
tion of the Kullback-Leibler (KL) divergence between qx(x)qθ(θ) and Pr(x,θ|y).

lnPr(y)− L(qx(x), qθ(θ)) =
∫

dθdx qx(x)qθ(θ) ln
qx(x)qθ(θ)

Pr(x,θ|y)
= KL[qx(x)qθ(θ)||Pr(x,θ|y)] ≥ 0. (2.4)

Variational Bayes is summarized by the iterative procedures that consist of two

steps: VBE step and VBM step. We describe q
(t)
x (x) as the distribution for x

obtained by the t-th VBE step and q
(t)
θ (θ) as the distribution for θ obtained by

the t-th VBM step.

2.3.3 VBE Step: Minimize the KL Divergence w.r.t. qx(x)

In the VBE step, we minimize the KL divergence w.r.t. qx(x). By ignoring the
constant values with respect to qx(x), we can see the optimal qx(x) is F

(t)(x)/Zx.

KL[qx(x)q
(t)
θ (θ)||Pr(x,θ|y)]

=

∫
dθdx qx(x)q

(t)
θ (θ) ln

qx(x)q
(t)
θ (θ)

Pr(x,θ|y)

=

∫
dxqx(x)

{∫
dθ q

(t)
θ (θ)(ln qx(x) + ln q

(t)
θ (θ)− ln Pr(x,θ|y))

}
=

∫
dxqx(x)

{
ln qx(x)−

∫
dθ q

(t)
θ (θ) lnPr(x,θ|y)

}
+ const

=

∫
dxqx(x)

{
ln qx(x)− ln

(
exp

(∫
dθ q

(t)
θ (θ) lnPr(x,θ|y)

))}
+ const

=

∫
dxqx(x)

{
ln qx(x)− ln

(
F (t)(x)

)}
+ const

=

∫
dxqx(x)

{
ln qx(x)− ln

(
F (t)(x)

Zx

)
− lnZx

}
+ const

= KL

[
q(x)

∣∣∣∣∣
∣∣∣∣∣F (t)(x)

Zx

]
+ const,

where

F (t)(x) := exp

(∫
dθ q

(t)
θ (θ) lnPr(x,θ|y)

)
,

Zx :=

∫
dxF (t)(x),

For the form of the distribution F (t)(x)/Zx, each xi is independent with the
other latent variables.

F (t)(x) = exp

(∫
dθ q

(t)
θ (θ) lnPr(x,θ|y)

)
= exp

(∫
dθ q

(t)
θ (θ) ln

Pr(x,θ,y)

Pr(y)

)
∝ exp

(∫
dθ q

(t)
θ (θ) lnPr(x,θ,y)

)
= exp

(∫
dθ q

(t)
θ (θ)

(
ln Pr(θ) +

∑
i

ln Pr(xi, yi|θ)

))
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∝ exp

(∫
dθ q

(t)
θ (θ)

∑
i

ln Pr(xi, yi|θ)

)

=
∏
i

exp

(∫
dθ q

(t)
θ (θ) lnPr(xi, yi|θ)

)
.

Therefore, the optimal q(x) for the (t+1)-th procedure can be obtained as follows.

q
(t+1)
x (x) =

∏
i

q(t+1)
xi

(xi),

q(t+1)
xi

(xi) :=
exp

(∫
dθ q

(t)
θ (θ) lnPr(xi, yi|θ)

)
Zxi

,

Zxi :=

∫
dxi exp

(∫
dθ q

(t)
θ (θ) lnPr(xi, yi|θ)

)
.

2.3.4 VBM Step: Minimize the KL Divergence w.r.t. qθ(θ)

In the VBM step, we minimize the KL divergence w.r.t. qθ(θ). By ignor-
ing the constant values with respect to qθ(θ), we can see the optimal qθ(θ) is
G(t+1)(θ)/Zθ.

KL[q
(t+1)
x (x)qθ(θ)||Pr(x,θ|y)]

=

∫
dθdx q

(t+1)
x (x)qθ(θ) ln

q
(t+1)
x (x)qθ(θ)

Pr(x,θ|y)

=

∫
qθ(θ)dθ

(∫
dxq

(t+1)
x (x) ln

q
(t+1)
x (x)qθ(θ)

Pr(x,θ|y)

)

=

∫
qθ(θ)dθ

(
ln qθ(θ)−

∫
dxq

(t+1)
x (x) lnPr(x,θ|y)

)
+ const

=

∫
qθ(θ)dθ

(
ln qθ(θ)−

∫
dxq

(t+1)
x (x)(lnPr(x,θ,y)− ln Pr(y))

)
+ const

=

∫
qθ(θ)dθ

(
ln qθ(θ)−

∫
dxq

(t+1)
x (x)(lnPr(x,θ,y))

)
+ const

=

∫
qθ(θ)dθ

(
ln qθ(θ)− ln Pr(θ)−

∫
dxq

(t+1)
x (x) lnPr(x,y|θ)

)
+ const

=

∫
qθ(θ)dθ

(
ln qθ(θ)− ln Pr(θ) exp

(∫
dxq

(t+1)
x (x) lnPr(x,y|θ)

))
+ const

= KL

[
qθ(θ)

∣∣∣∣∣
∣∣∣∣∣G(t+1)(θ)

Zθ

]
+ const,

where

G(t+1)(θ) := Pr(θ) exp

(∫
dxq

(t+1)
x (x) lnPr(x,y|θ)

)
,

Zθ :=

∫
dθG(t+1)(θ).

From this, the optimal qθ(θ) for the (t+ 1)-th procedure can be obtained as
follows.

q
(t+1)
θ (θ) =

G(t+1)(θ)

Zθ
.
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2.3.5 A Conjugate Exponential Model

Here, we introduce the case of conjugate exponential (CE) model in which we
can obtain simple solutions in the VBE and VBM steps. We call the assumed
stochastic model is CE model if the model satisfies the following conditions. For
the case that we assume the different CE models, see [24, 23].

Condition (1).

The complete-data likelihood is in the exponential family:

Pr(xi, yi|θ) = g(θ)f(xi, yi) exp(ϕ(θ)
Tu(xi, yi)), (2.5)

where ϕ(θ) is the vector of natural parameters, u and f are the functions

that define the exponential family, and g(θ) is a normalizing constant:

g(θ)−1 =

∫
dxidyif(xi, yi) exp(ϕ(θ)

Tu(xi, yi)). (2.6)

Condition (2).

The prior distribution of parameters is conjugate to the complete-data likelihood:

Pr(θ|η,ν) = h(η,ν)g(θ)η exp(ϕ(θ)Tν), (2.7)

where η and ν are hyperparameters of the prior, and h is a normalizing constant:

h(η,ν)−1 =

∫
dθg(θ)η exp(ϕ(θ)Tν). (2.8)

If the assumed stochastic model is a CE model, the solution at each VBE and
VBM step can be obtained as follows.

VBE step:

q
(t+1)
x (x) =

n∏
i=1

q(t+1)
xi

(xi), (2.9)

q(t+1)
xi

(xi) ∝ f(xi, yi) exp(ϕ
T
u(xi, yi)) = Pr(xi, yi|ϕ), (2.10)

VBM step:

q
(t+1)
θ (θ) = h(η,ν)g(θ)η exp(ϕ(θ)Tν), (2.11)

where

ϕ =

∫
dθqθ(θ)ϕ(θ), (2.12)

η = η + n, (2.13)

ν = ν +
n∑

i=1

u(yi), (2.14)

u(yi) =

∫
dxiqxi(xi)u(xi, yi). (2.15)

12



2.4 Markov Chain Monte Carlo Methods

We introduce Markov chain Monte Carlo methods (MCMC). The methods en-
able sampling of random variables from complicated distributions, e.g., posterior
distributions in Bayesian statistics.

Let π(·) be a probability distribution on a state space X and πu(·) is a corre-
sponding unnormalized probability density function on X and 0 <

∫
x∈X πu(x)dx <

∞. (We assume X is a continuous state space, e.g., Rd, but the other settings
that X is a discrete state space is also possible [59].) In MCMC, we generate
a Markov chain, a series of random variables on X , X(0), X(1), · · · following the
transition probability T (x, ·).

X(n+1)|X(0), · · · , X(n) ∼ T (X(n), ·). (2.16)

A theory of MCMC [76, 66] guarantees if a Markov chain has π(·) as a stationary
distribution and the chain is Harris recurrent, aperiodic, then the distribution of
X(n) converges to π(·) for any X(0) ∈ X . A Markov chain has π(·) as a stationary
distribution if ∫

s∈X
π(ds)T (s, dt) = π(dt). (2.17)

For Eq. (2.17), reversibility of a Markov chain is a sufficient condition.

Definition 2.4.1. A Markov chain on a state space X is reversible with respect
to a probability distribution π(·) on X , if

π(ds)T (s, dt) = π(dt)T (t, ds), s, t ∈ X . (2.18)

Property 2.4.1. If a Markov chain is reversible with respect to π(·), then the
chain has π(·) as a stationary distribution.

Proof.∫
s∈X

π(ds)T (s, dt) =

∫
s∈X

π(dt)T (t, ds) = π(dt)

∫
s∈X

T (t, ds) = π(dt).

2.4.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [51, 28] generates a markov chain in two
steps. In the first step, we generate X(n+1) ∈ X from the proposal distribution
of Q(X(n), ·) of which probability density function is q(X(n), ·). In the second
step, we accept the proposal with probability of α(X(n), X(n+1)) and otherwise
X(n+1) = X(n), where

α(s, t) = min [1, r∗] ,

r =
πu(t)q(t, s)

πu(s)q(s, t)
, s, t ∈ X .

A Markov chain generated by the above Metropolis-Hastings algorithm has
π(·) as a stationary distribution by reversibility.

Property 2.4.2. The Metropolis-Hastings algorithm produces a Markov chain
{X(n)} which is reversible with respect to π(·).
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Proof. We need to show

π(ds)T (s, dt) = π(dt)T (t, ds). (2.19)

Letting c :=
∫
x∈X πu(x), the left side of Eq. (2.19) can be written as

π(ds)T (s, dt) =
[
c−1πu(s)ds

]
[q(s, t)α(s, t)dt]

= c−1πu(s)q(s, t)min

[
1,

πu(t)q(t, s)

πu(s)q(s, t)

]
dsdt

= c−1min [πu(s)q(s, t), πu(t)q(t, s)] dsdt,

which is symmetric in s and t. Therefore, the left side is equal to the right
side.

2.4.2 The Gibbs Sampler

We assume that the state space X is d-dimensional, i.e., X = Rd, and we write
X = (X1, · · · , Xd).

In the Gibbs sampler [21] for i-th component, we sample the i-th component
from the conditional distribution in which all the other components are observed.

X
(n+1)
i ∼ Pr(·|X(n)

1 , · · · , X(n)
i−1, X

(n)
i+1, · · · , X

(n)
d ),

where

Pr(A|X(n)
1 , · · · , X(n)

i−1, X
(n)
i+1, · · · , X

(n)
d ) =

∫
x∈A

πu(X
(n)
1 , · · · , X(n)

i−1, x,X
(n)
i+1, · · · , X

(n)
d )dx∫

x∈R πu(X
(n)
1 , · · · , X(n)

i−1, x,X
(n)
i+1, · · · , X

(n)
d )dx

, A ⊆ R.

(2.20)

Then, we conduct the above sampling for i = 1, · · · , d repeatedly.
Each Gibbs sampler for i-th component can be seen as a special case of the

Metropolis-Hastings algorithm; we set Eq. (2.20) as the proposal distribution and
the acceptance probability is always 1.

r∗ =
πu(X

(n)
1 , · · · , X(n)

i−1, X
(n+1)
i , X

(n)
i+1, · · · , X

(n)
d )

πu(X
(n)
1 , · · · , X(n)

i−1, X
(n)
i , X

(n)
i+1, · · · , X

(n)
d )

·
πu(X

(n)
1 , · · · , X(n)

i−1, X
(n)
i , X

(n)
i+1, · · · , X

(n)
d )

πu(X
(n)
1 , · · · , X(n)

i−1, X
(n+1)
i , X

(n)
i+1, · · · , X

(n)
d )

= 1.
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2.5 Bayes Factor

Jeffreys developed a methodology for quantifying the evidence in favor of a sci-
entific theory in his paper [31] of which centerpiece was a number, now called the
Bayes factor.

The Bayes factor is given by the following equations.

Bayes factor =
Pr(D|H1)

Pr(D|H0)
,

where D denote data set that is generated under one of two hypotheses H0 and
H1. By considering the posterior odds ratio as follows, the Bayes factor is equal
to the posterior odds ratio when both prior hypothesis probabilities are equal.

posterior odds =
Pr(D|H1)

Pr(D|H0)
· Pr(H1)

Pr(H0)

= Bayes factor · prior odds.

In the simplest case that there is no free parameter in the probability density
Pr(D|H0) and Pr(D|H1), the Bayes factor is simply given by its likelihoods. In
the other case in which there are unknown free parameters in both hypotheses,
the Bayes factor is given by evaluating the marginal likelihood of each hypothesis.

Bayes factor =

∫
Pr(D|θ1,H1)Pr(θ1|H1)dθ1∫
Pr(D|θ0,H0)Pr(θ0|H0)dθ0

,

where θi represents the parameters in the hypothesis of Hi.
Kass [33] gave an interpretation of the Bayes factor as listed in the following

table.

Table 2.1: Interpretation of the Bayes factor

Bayes factor Strength of evidence

1 to 3 Not worth more than a bare mention
3 to 20 Positive

20 to 150 Strong
≥ 150 Very strong
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2.6 Bayesian Model Averaging

Conducting an inference based on a single best model without considering model
uncertainty can result in underestimating the uncertainty about quantities of
interest. To this problem, averaging over all of the candidate models, called
Bayesian model averaging [64, 29], provides a coherent approach for accounting
for model uncertainty. Let M1, · · · ,MK be all the models considered, θk be the
the model parameters for k-th model, and ∆ be a quantity of interest, e.g., a
future observation or a model parameter. Then the posterior distribution of ∆
given data D is

Pr(∆|D) =
K∑
k=1

Pr(∆|Mk, D)Pr(Mk|D),

where

Pr(Mk|D) =
Pr(D|Mk)Pr(Mk)∑K
i=1 Pr(D|Mi)Pr(Mi)

,

Pr(D|Mk) =

∫
Pr(D,θk|Mi)Pr(θk|Mi)dθk.
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2.7 Phylogenetic Tree

We review the definition of phylogenetic trees and related topics [26] under infinite
sites assumption [37]. For different assumptions, e.g., finite sites assumption
and Dollo parsimony, see [86, 85, 16]. Let T ∈ {0, 1}c×k be a binary matrix
for a mutation profile, where c ∈ Z>0 represents the number of cell types and
k ∈ Z>0 represents the number of mutations. A phylogenetic tree is defined for
the mutation profile T as follows.

2.7.1 Definition of a Phylogenetic Tree

Definition 2.7.1. A phylogenetic tree T = (V,E) for T ∈ {0, 1}c×k is a rooted
tree that satisfies the following condition.

∃f : S → FT , ∃g : M → E, ∀v ∈ FT , ∀s ∈ f−1({v}),
g−1(PT (v)) = {m ∈ M|s has mutation m},

where

V : A set of vertices of T ,

E : A set of edges of T ,

FT : A set of leaves of T ,

S : A set of indices for samples in T,

M : A set of indices for mutations in T,

PT (v) := {e ∈ E|e is included in the path from the root of T to v}.

The above definition of the phylogenetic tree requires the consistency between
the mutation profile T and the interpreted rooted tree T . Fig. 2.6 shows a muta-
tion profile and the corresponding phylogenetic tree as an example. By tracking
from a leaf to the root of the phylogenetic tree, we can check the mutations that
samples on the leaf have.

!" !# !$ !%
&" " ' " "

&# " ' ' '

&$ ' " ' '

&% ' " ' '

M

S

&" &#

&$()&%

!" !#

!$()!% φ

*+ ,+

-./&0&12/1)3014
142)5.3)6271.58

Figure 2.6: (A) shows a mutation profile as an example. (B) shows the phyloge-
netic tree for the mutation profile of (A).

Partially, we will review the phylogeny problem: given a mutation profile
T ∈ {0, 1}c×k, determine whether there is a phylogeny tree for T , and if so, build
one. In this thesis, we will only review the decision problem about the existence
of a corresponding phylogenetic tree. For the existence of the corresponding
phylogenetic tree, there exists an equivalent condition. We would like to introduce
the following notation, for simplification.
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Definition 2.7.2.

Ok := {s ∈ S|s has mutation k}

!"
#" "$ $
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φ
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S1 S2

Figure 2.7: A mutation profile and a corresponding phylogenetic tree when k = 1.
(A) shows a mutation profile T and (B) shows a corresponding phylogenetic tree
T .
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Figure 2.8: A mutation profile and a corresponding phylogenetic tree when k > 1
and no common mutations exist. (A) shows a mutation profile T and (B) shows
a corresponding phylogenetic tree T .
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Figure 2.9: A mutation profile and a corresponding phylogenetic tree when k > 1
and a set of common mutations exists. (A) shows a mutation profile T and (B)
shows a corresponding phylogenetic tree T .
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2.7.2 Equivalent Conditions of Having a Phylogenetic Tree

The equivalent conditions for having a phylogenetic tree can be given as follows.

Lemma 2.7.1.

T ∈ {0, 1}c×k has a phylogenetic tree

⇔ ∀i, j ∈ {1, · · · , k} s.t. the condition of (i) or (ii) or (iii) is satisfied,

(i)Oi ∩Oj = ϕ, (ii)Oi ⊆ Oj , (iii)Oi ⊇ Oj .

Proof.

⇒ ∵)
Because k ∈ Z>0, M ̸= ϕ. Let m1,m2 ∈ M. (m1,m2 can be the same index.)

From the hypothesis, there exists a phylogenetic tree T and function g : M → E.

Let e1 := g(m1), e2 := g(m2). There can be three cases as follows.

· (a) e1 = e2.

· (b) e1 is descended from e2, or e2 is descended from e1.

· (c) e1 is not descended from e2, and e2 is not descended from e1.

In case of (a), the condition (ii) and (iii) are satisfied.

In case of (b), the condition (ii) or (iii) is satisfied.

In case of (c), there exists no common corresponding samples and (i) is satisfied.

⇐ ∵)
Let T ∈ {0, 1}c×k be the mutation profile.

We prove the following statement by induction with recpect to k.

T satisfies at least one condition in (i), (ii), and (iii) ⇒ T has a phylogenetic tree.

In case of k = 1, c ∈ N.
In this case, there is only one column vector.

Therefore, we can split all the samples into two set, like Fig. 2.7.

Then, the tree shown in Fig. 2.7 gives a phylogenetic tree for T.

In case of k > 1, c ∈ N.
Let, Md := {m ∈ M|Om = S}.
First, we prove the statement in case of Md = ϕ.

Let, µ := arg max
i∈M

|Oi|.

Because Md = ϕ, 1 ≤ |Oµ| < k.

From the maximality of µ, ∀k ∈ M s.t. Ok ∩Oµ = ϕ orOk ⊆ Oµ.

We split mutations and samples into two sets as follows.

· M1 := {k ∈ M|Ok ∩Oµ = ϕ},
· M2 := {k ∈ M|Ok ⊆ Oµ},

· S1 :=
∪

i∈M1

Oi,

· S2 :=
∪

i∈M2

Oi.

The above sets give partitions as follows.
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· M1 ∪M2 = M,

· M1 ∩M2 = ϕ,

· S1 ∪ S2 = S,
· S1 ∩ S2 = ϕ.

∵) We check S1 ∩ S2 = ϕ.

S1 ∩ S2 =
∪

i∈M1

Oi ∩
∪

j∈M2

Oi =
∪

i∈M1,j∈M2

(Oi ∩Oj).

From the definitions, Oi ∩Oµ = ϕ, Oj ⊆ Oµ.

Therefore, ∀i ∈ M1, j ∈ M2 s.t. Oi ∩Oj = ϕ, and S1 ∩ S2 = ϕ.

We can see the mutation profile can be represented like Fig. 2.8.

From 1 ≤ |M1| < k and 1 ≤ |M2| < k,

we can construct phylogenetic trees of T1, T2 for M1,M2.

By jointing T1, T2 by edges of e1, e2, we obtain a novel rooted tree T .

We show this rooted tree satisfies the following condition.

∃f : S → FT , ∃g : M → E, ∀v ∈ FT , ∀s ∈ f−1({v}),
g−1(PT (v)) = {m ∈ M|s has mutation m}.
∵)

Because T1, T2 are phylogenetic trees,

· ∃f1 : S1 → FT1 ,∃g1 : M1 → E1,∀v1 ∈ FT1 ,∀s1 ∈ f−1
1 ({v1}),

g−1
1 (PT1(v1)) = {m ∈ M1|s1 has mutation m},

· ∃f2 : S2 → FT2 ,∃g2 : M2 → E2, ∀v2 ∈ FT2 ,∀s2 ∈ f−1
2 ({v2}),

g−1
2 (PT2(v2)) = {m ∈ M2|s2 has mutation m}.

We show T is a phylogenetic tree for T.

We set f, g as follows.

f(s) :=

{
f1(s) (s ∈ S1)

f2(s) (s ∈ S2)
, g(m) :=

{
g1(m) (m ∈ M1)

g2(m) (m ∈ M2)
.

If v ∈ FT1 ,

by the definition of T1,∀s ∈ f−1({v}) = f−1
1 ({v}),

g−1(PT (v))

= g−1(PT1(v) ∪ e1)

= g−1
1 (PT1(v)) ∪ ϕ

= {m ∈ M1|s has mutation m}
= {m ∈ M|s has mutation m}.
(∵ S1 ∩ S2 = ϕ, s does not have mutations in M2.)

If v ∈ FT2 ,

we can prove in the same manner.

Next, we prove the statement in case of Md ̸= ϕ.

If Md = M, the proof is trivial.

Otherwise, Md ⊊ M,we make a phylogenetic tree T ′ for M\Md.

Then, we build a rooted tree T (Fig. 2.9), and check the definition.
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2.7.3 Modeling Variant Allele Frequencies in Bulk Tumor Sequence
Data Sets
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Figure 2.10: A modeling of the variant allele frequencies in multiple bulk sequence
data sets.

To infer the hidden tumor phylogeny from the multiple tumor bulk sequence
data sets, several modeling of the variant allele frequencies are assumed. Here, we
introduce one of the simplest (and most often used) modeling. Let T ∈ {0, 1}c×k

be a matrix which has a phylogeny, and U ∈ Rn×c
≥0 be a mixture matrix of which

each row vector is a non-negative simplex. Each binary row vector in T repre-
sents the set of mutations held by each tumor cell type, and the corresponding
phylogenetic tree satisfies the infinite sites assumption. Each non-negative valued
row vector in U represents the mixture rate of the tumor cell types for each bulk
sequence data.

We describe the matrix of the variant allele frequencies as Y ∈ Rn×k
≥0 , where

Yi,j represents the variant allele frequency of the j-th mutation at the i-th se-
quence data set. By assuming that every mutation occurs only on one haplotype,
the variant allele frequencies can be expressed as follows (Fig. 2.10).

Y =
1

2
UT.

For the actual inference of the tumor phylogenetic tree from bulk sequencing
data sets, see [75, 17, 18, 27, 48, 12, 84, 70].
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Chapter 3

A Bayesian Model Integration for Mutation

Calling through Data Partitioning

3.1 Overview

Detection of somatic mutations is a basis for the field of cancer genomics and
continuous performance improvement of the detection accuracy is desired and
conducted. A lot of researches have focused on the sequence-data-specific prop-
erties; they modeled single property in Bayesian statistical models explicitly and
successfully improved the detection accuracy. However, no design of Bayesian sta-
tistical models has been proposed for using the multiple sequence-data-specific
properties in such an explicit manner, and hence there is room for further per-
formance improvement.

In this chapter, we introduce a design of a Bayesian statistical model termed
partitioning-based model integration. Under this design, we set a partitioning
rule to each sequenced read, label the type of data, and allocate a generation
probability for each type. One advantageous point of this design is that there
exists a case in which we do not require additional hyperparameters in combining
multiple models unlike the Bayesian model averaging. Based on this design,
we propose a novel mutation calling method of OHVarfinDer that leverages the
multiple sequence-data-specific properties for better detection performance.

The organization of this chapter is as follows. First, we explain the existing
methods. Second, we introduce the design of partitioning-based model integra-
tion. Third, we show the details of the Bayesian model in OHVarfinDer. Finally,
we show some experimental results.

Contents of this chapter are mainly related to the published work of [55, 53].

3.2 Related Work

Here we would like to introduce existing mutation callers. Previous mutation
callers can be mainly categorized into two types. The first type of mutation
caller [83, 40] does not assume any specific probability distribution, and the score
is based on Fisher’s exact test. In this type of mutation caller, the number
of reference-supporting reads and variant-supporting reads is counted on tumor
and normal sample, and the P-value is computed based on these 2 by 2 con-
tingency table. The second type of mutation caller assumes specific probability
distributions and constructs stochastic models that can explicitly incorporate
the sequence-data specific property, e.g., base quality, read mapping states [1],
haplotype-specific somatic mutations [77], and overlapping part of paired-end
reads [55].
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3.2.1 VarScan2

VarScan2 [40] is based on the Fisher’s exact test [19] method. In this approach,
using tumor data and normal data, 2 by 2 contingency table is prepared. The
contingency table is as follows.

# reference-supporting reads # variant-supporting reads

Tumor sample a b
Normal sample c d

Sum a+c b+d

Table 3.1: 2 by 2 contingency table used for Fisher’s exact test.

Under the null hypothesis where there is no difference between the tumor and
normal samples, the P-value is calculated using the hypergeometric distribution.

P-value =
a+bCa · c+dCc

nCa+c
,

where n = a + b + c + d. If the P-value is small enough to reject the null
hypothesis, the candidate position is judged to have a somatic mutation. This
method performs reasonably under any experimental settings by ignoring any
other background information of the observed sequence data.

3.2.2 MuTect

The variant detection of MuTect [10] is done by comparing the likelihoods of
an error data generation model and a mutated data generation model. For each
site, we denote reference allele by g ∈ {A,C,G, T}. Error probability at candidate

position of i-th read ei is defined by the phred-like quality score qi (ei := 10(
−qi
10

)).
Variant detection is done by computing likelihoods under two models. M0 is the
model in which there is no variant and all the non-reference bases are generated
by sequence errors, and Mm

f represents the model in which a variant allele m ∈
{A,C,G, T} exists with variant allele frequency of f , and sequence error also
occur on each read. The likelihood of Mm

f is as follows:

L
[
Mm

f

]
= Pr({bi}|{ei}, g,m, f) =

d∏
i=1

Pr(bi|ei, g,m, f).

By assuming the independence among sequence errors, the base bi is generated
as follows:

Pr(bi|ei, g,m, f) =


f ei

3 + (1− f)(1− ei) (bi = g)

f(1− ei) + (1− f) ei3 (bi = m) .
ei
3 (otherwise)

By incorporating the prior odds
(

Pr(m,f)
(1−Pr(m,f))

)
and a decision threshold log10 δT ,

MuTect detect somatic mutations.

LODT (m, f) = log10

(
L[Mm

f ]Pr(m, f)

L[M0](1− Pr(m, f))

)
≥ log10 δT

⇔ log10

(
L[Mm

f ]

L[M0]

)
≥ log10 δ − log10

(
Pr(m, f)

1− Pr(m, f)

)
=: θT ,
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where θT = 6.3 is used for somatic mutation detection in practice. This method
is also used for the detection of germline variants, by setting a different decision
threshold.

3.2.3 Strelka

The variant detection in Strelka [71] is based on the evaluation of a probability
in which somatic mutation occurred in the tumor sample and diploid genotype is
observed in the normal sample. The joint probability of somatic event occurrence
and diploid genotype observation is denoted by Pr(ES , Gn|D), where ES denotes
the somatic event, Gn denotes the genotype in the normal sample, and D denotes
the data set. By applying Bayes’ theorem, the joint probability is factorized as
Pr(ES , Gn|D) = Pr(ES |D)Pr(Gn|D). For Pr(ES |D), let ft, fn be the variant
allele frequencies in tumor and normal sample, the somatic event can be seen as
the event that different variant allele frequencies are observed. Then the somatic
event probability is computed as follows:

Pr(ES |D) =

∫
ft,fn

I{ft ̸=fs}Pr(ft, fn|D)dftdfn.

The author approximately computes the integral by splitting the [0, 1]2 region into
10 by 10 cells. For Pr(Gn|D), the author computes this probability by a conven-
tional single-sample Bayesian approach. Strelka uses Pr(ES , Gn = ref/ref|D) as
a score for variant detections.

3.2.4 HapMuC

Each true somatic mutation is reported to occur only on one haplotype, but se-
quence errors can occur on reads generated from both haplotypes. This bias of
haplotype is reported to be a beneficial property for improving detection perfor-
mance and HapMuC [77] uses this property by constructing different distributions
of the original haplotype for each observed paired-end read and improved the de-
tection performance in whole-genome sequence (WGS) data set.

3.2.5 OVarCall

If the original DNA template is shorter than twice the length of the read, there
exist overlapping regions from which genome sequences are obtained twice. From
the previous studies [61, 9], consistent non-reference bases are more probably a
true mutation and inconsistent bases are more likely a sequence error and this
property helps to decrease error rates. OVarCall [55] uses this property by setting
distributions in which each pair of reads are generated from a common latent
state, and improved the detection performance at whole exome sequence (WES)
data set.

3.3 Proposed Design of Bayesian Model

3.3.1 Bayes Factor for Finding Mutations

We denote a data set as R := {rn}dn=1, where rn is the n-th string consisting of
{A, T,G,C} and d is the depth on the mutation candidate position. We denote
mutated and error data generation models as MM ,ME , and corresponding set
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of parameters as ΘM ,ΘE . Next, the Bayes factor [33] is written as follows.

BF =
Pr(R|MM )

Pr(R|ME)
,

where

Pr(R|MS) =

∫
Pr(R,ΘS |MS)Pr(ΘS)dΘS , S ∈ {M,E}.

3.3.2 Model Integration by Bayesian Model Averaging

Before showing the proposed design, we would like to show how Bayesian model
averaging can integrate models to compute Bayes factor. We assume K ∈ N
models for each mutated and error data generation model, and denote these
models as MM,k,ME,k, where k ∈ {1, ...,K}. We denote a corresponding set

of parameters as ΘM,k,ΘE,k, where k ∈ {1, ...,K}, and ΘM,all :=
∪K

k=1ΘM,k,

and ΘE,all :=
∪K

k=1ΘE,k. We assume disjointness between ΘM,all and ΘE,all, i.e.,
ΘM,all ∩ΘE,all = ϕ, and we do not assume disjointness within ΘS,1, · · · ,ΘS,K .

By following the idea of the Bayesian model averaging, we can construct an
integrated generative model Fig. 3.1 and set the probability of the observed data
as follows:

Pr(rn|H = MS,k,ΘM,all,ΘE,all) = Pr(rn|ΘS,k,MS,k), S ∈ {M,E}, (3.1)

where H is an unobserved random variable representing the model that generates
the observed data set.

Under this stochastic model, we can calculate the Bayes factor as follows:

BF =
Pr(R|H ∈ {MM,1, · · · ,MM,K})
Pr(R|H ∈ {ME,1, · · · ,ME,K})

=
Pr(H ∈ {MM,1, · · · ,MM,K} |R)

Pr(H ∈ {ME,1, · · · ,ME,K} |R)
·
Pr(H ∈ {ME,1, · · · ,ME,K})
Pr(H ∈ {MM,1, · · · ,MM,K})

=

∑K
k=1 Pr(R|MM,k)Pr(MM,k)∑K
k=1 Pr(R|ME,k)Pr(ME,k)

·
Pr(H ∈ {ME,1, · · · ,ME,K})
Pr(H ∈ {MM,1, · · · ,MM,K})

=

∑K
k=1 Pr(R|MM,k)hT,k∑K
k=1 Pr(R|ME,k)hE,k

,

where

hS,k :=
Pr(H = MS,k)

Pr(H ∈ {MS,1, · · · ,MS,K})
,

Pr(R|MS,k) =

∫
Pr(R|ΘS,k,MS,k)Pr(ΘS,k|MS)dΘS,k.

Therefore, this manner of model integration requires additional 2K − 2 hyperpa-
rameters of hS,k.

3.3.3 Partitioning-Based Model Integration

We assume that we can observe indicator variable tn ∈ {1, 2, ...,K} with each
data rn and assume that the original data set is partitioned into K subsets and
tn indicates the subset of data to which rn belongs. We also assume that the
k-th subset of data is generated through the k-th model of MM,k or ME,k. We
denote this augmented data set as Raug := {(rn, tn)}dn=1.
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Figure 3.1: Graphical model for Bayesian model averaging. S ∈ {M,E} repre-
sents the hypothesis.

k

tn

n

ΘS,k

rn

Figure 3.2: Graphical model for partitioning-based model integration. S ∈
{M,E} represents the hypothesis.

We assume the graphical model of Fig. 3.2, and we set the probability of the
observed data as follows:

Pr(rn|tn,ΘS,all,MS) = Pr(rn|ΘS,tn ,MS,tn). (3.2)

Our purpose here is to compute the following Bayes factor.

BF =
Pr(Raug|MM )

Pr(Raug|ME)
.

From the graphical model in Fig. 3.2 and above assumptions of Eq. (3.2), the
joint probability can be computed as follows.

Pr(Raug,ΘS,all|MS)

= Pr(ΘS,all|MS)Pr(Raug|ΘS,all,MS)

= Pr(ΘS,all|MS)
∏
n

Pr(rn, tn|ΘS,all,MS)

= Pr(ΘS,all|MS)
∏
n

Pr(rn|tn,ΘS,all,MS)Pr(tn|MS)

= Pr(ΘS,all|MS)
∏
n

Pr(rn|ΘS,tn ,MS,tn)Pr(tn|MS),

where

S ∈ {M,E},Pr(tn|MS) > 0.
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From this joint probability, the marginal likelihood can be computed as follows.

Pr(Raug|MS) = AS ·

{∏
n

Pr(tn|MS)

}
,

where

AS :=

∫
Pr(ΘS,all|MS,k)


K∏
k=1

∏
{n|tn=k}

Pr(rn|ΘS,k,MS,k)

 dΘS,all.

If we can assume Pr(t|MM ) = Pr(t|ME) for any t ∈ {1, ...,K}, we do not need
to set Pr(t|MM ),Pr(t|ME) for computation of Bayes factor. This is because

BF =
Pr(Raug|MM )

Pr(Raug|ME)
=

AM ·
∏

n Pr(tn|MM )

AE ·
∏

n Pr(tn|ME)
=

AM

AE
.

This manner of model integration requires two conditions. The first condi-
tion is a partitioning rule on the data set and we can construct a correspond-
ing generative model for each partitioned data set. The second condition is
that partition probabilities should be the same among the tumor and error
model (Pr(t|MM ) = Pr(t|ME)). The merit of this manner is that partition
probabilities Pr(t|MM ),Pr(t|ME) do not affect the Bayes factor and thus care-
ful and explicit settings of these probabilities are not necessary.

3.4 Bayesian Hierarchical Modeling for Mutation Calling

3.4.1 Characteristic Information Sources for Mutation Calling
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Figure 3.3: (a) The typical pattern of reads when heterozygous SNPs near the
mutation candidate appear. (b) The typical pattern of paired-end reads when
overlapping paired-end reads cover the mutation candidate. (c) The typical pat-
tern of reads when the strand bias appears in variant supporting reads.

Heterozygous SNPs Covered by Paired-End Reads

The first additional information source in somatic mutation calling is heterozy-
gous SNPs near somatic mutation candidates. The human genome is a diploid
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set of haplotypes, i. e., the maternal haplotype and paternal haplotype. Each
somatic mutation is known to occur typically only on one side of the haplotypes,
i. e., heterozygous mutation. Therefore, variant supporting reads that cover het-
erozygous SNPs are generated from only one side of the haplotypes as shown
in the left side of Fig. 3.3(a). However, when sequence errors occur on the mu-
tation candidate position, variant supporting reads covering heterozygous SNPs
probably have both heterozygous SNPs as in the right side of Fig. 3.3(a). This
information source was used in HapMuC [77].

Overlaps of Paired-End Reads

The second additional information source is overlaps of paired-end reads. Through
Illumina’s sequencing, a pair of paired-end reads, i. e., forward and reverse reads,
is sequenced from both sides of the same DNA fragment. If the DNA fragment
is shorter than 2-fold the read length, the pair of reads has an overlapping re-
gion where the sequencing process is conducted twice from different directions
independently.

If the both forward and reverse reads show the same alteration in the over-
lapping region as in the left side of Fig. 3.3(b), it is likely that the change is
because of a mutation and not because of errors, as the occurrence probability
of two errors at the same site in the overlapping region is expected to be very
low, except for PCR errors in the sample preparation phase [9]. In contrast, an
error case is probable when only one of the reads contains an alteration in the
overlapping region as in the right side of Fig. 3.3(b). This information source has
been used in OVarCall [55].

Strand Biases of Paired-End Reads

The third additional information source we considered is strand biases in variant
supporting reads that cover a mutation candidate. If only forward (or reverse)
reads contain a mutation candidate despite sufficient numbers of both forward
and reverse reads, this phenomenon is known as strand bias as in the right side of
Fig. 3.3(c). If a true somatic mutation exists, strand bias rarely occurs, and the
proportion of variant supporting forward/reverse reads should be ideally similar
as in the left side of Fig. 3.3(c). This information source is used for filtering in
MuTect [10].

Representative Examples in Real Data Sets

We show examples from real data sets, in which we can find that given mutation
candidates are only errors. Fig. 3.4 shows screenshots of IGV (http://software.
broadinstitute.org/software/igv/).

The first erroneous case shown in Fig. 3.4(a) represents the variant support-
ing reads with both heterozygous SNPs. In this case, variant supporting reads
have both heterozygous SNPs, as indicated by red and blue circles. This case
corresponds with the erroneous case in Fig. 3.3(a).

The second erroneous case shown in Fig. 3.4(b) represents a paired-end reads
with inconsistent bases at a mutation candidate position. In this case, a pair of
paired-end reads that are highlighted in the red line have different bases at the
mutation candidate position. This case corresponds with the erroneous case in
Fig. 3.3(b).

Simpler methods, e. g., a Fisher’s exact test-based method of VarScan2, eval-
uate these two types of errors as somatic mutations. In the case of Fig. 3.4(a),
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VarScan2 showed a low p-value of 0.043, and in Fig. 3.4(a), VarScan2 also showed
a low p-value of 0.0050. The main purpose of this paper is to construct a Bayesian
method that discriminates these errors from somatic mutations.
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Figure 3.4: Typical cases of errors shown in the IGV screenshot. (a) In this
case, both heterozygous SNPs near the mutation candidate appear in the variant
supporting reads. See the erroneous case in Fig. 3.3(a). (b) One corresponding
paired-end read is highlighted in the red line. In this case, inconsistent bases in a
paired-end read occur at a mutation candidate position. See the erroneous case
in Fig. 3.3(b). Our method successfully evaluates these errors with low Bayes
factor scores, i. e., 0.000059 in (a) and 0.0000011 in (b).
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3.4.2 Graphical Model of OHVarfinDer

We show the graphical model of OHVarfinDer in Fig. 3.5. We distinguish tumor
and normal data and describe the n-th paired-end read from tumor sample as
rT,n := (rT,n,+, rT,n,−), where rT,n,+ and rT,n,− are string sequence of A, T,G,C.
For reads from normal sample, we denote rN,n := (rN,n,+, rN,n,−). We also
represent the n-th partition category as tT,n, tN,n in tumor and normal sample.
For the latent variables, we express the n-th latent variable in the tumor sample
as zT,n, and describe the n-th latent variable in the normal sample as zN,n. zT,n
and zN,n are one-hot encoding vectors indicating the original DNA sequence pair.
Hk represents an array of DNA sequence pairs for k-th partition category from
which each observed read pair is supposed to be generated. ΘS,k represents a set
of parameters that regulates the frequency of DNA sequences in Hk.

n

Hk

tD,n D ∈ {T,N}

k

ΘS,k

!"#$%#&%&'$($%)*+
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rD,nzD,n

Figure 3.5: Graphical model of OHVarfinDer. S ∈ {M,E} represents the hy-
pothesis.

We can see that the probability of Pr(tT,n|MM ), Pr(tN,n|ME), Pr(tT,n|MM )
and Pr(tN,n|ME) is not required to compute Bayes factor in a similar manner
with Section 3.3.3.

To simplify the notation, we define:

RNT := {rN,n|n = 1, · · · , dN} ∪ {rT,n|n = 1, · · · , dT },
TNT := {tN,n|n = 1, · · · , dN} ∪ {tT,n|n = 1, · · · , dT },
ZNT := {zN,n|n = 1, · · · , dN} ∪ {zT,n|n = 1, · · · , dT },

ΘS,all :=
K∪
k=1

ΘS,k, S ∈ {M,E},

where dN and dT represent the depth coverage in normal or tumor sequence data.
The marginal likelihood for model MS can be represented as follows:

Pr(RNT, TNT|MS)

=

∫
Pr(ΘS,all|MS)

· Pr(TNT|MS)Pr(ZNT|TNT,ΘS,all,MS)Pr(RNT|ZNT, TNT,MS)dZdΘS,all

=

∫
Pr(ΘS,all|MS)

·
∏

D∈{N,T}

dD∏
n

Pr(tD,n|MS)Pr(zD,n|ΘS,tD,n
,MS,tD,n

)Pr(rD,n|zD,n,HtD,n)dZdΘS,all
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=

{∏
D

dD∏
n

Pr(tD,n|MS)

}
· FS ,

where

FS(RNT) :=

∫
Pr(ΘS,all|MS)

·
∏

D∈{N,T}

dD∏
n=1

Pr(zD,n|ΘS,tD,n
,MS,tD,n

)Pr(rD,n|zD,n,HtD,n)dZdΘS,all.

From this, if Pr(tD,n|MM ) = Pr(tD,n|ME) for any D ∈ {T,N} and n, it is
not required to set partitioning probabilities, like Section 3.3.3.

3.4.3 Partitioning Rules for Each Paired-End Read in OHVarfinDer

In our method, we split paired-end reads into 5 types. tD,n ∈ {0, 1, 2, 3, 4} is
determined for each paired-end read by the following partitioning rule.

O(+)H(-) Category

A paired-end read in this category (tD,n = 0) is overlapping between the for-
ward read and reverse read at the mutation candidate position and covers no
heterozygous SNPs nearby the candidate position.

O(-)H(+) Category

A paired-end read in this category (tD,n = 1) is not overlapping between the
forward read and reverse read at the mutation candidate position and covers
heterozygous SNPs nearby the candidate position. Note that global haplotype
phasing is not necessary and we only conduct haplotype phasing locally around
the mutation candidate positions as previously conducted in [77].

O(+)H(+) Category

A paired-end read in this category (tD,n = 2) is overlapping between the forward
read and reverse read at the mutation candidate position and covers heterozygous
SNPs nearby the candidate position.

O(-)H(-)S(+) Category

A paired-end read in this category (tD,n = 3) is not overlapping between the
forward read and reverse read at the mutation candidate position and covers no
heterozygous SNPs nearby the candidate position. The mutation candidate po-
sition is covered by the forward read. (Forward/reverse is determined by the
mapping direction compared to the reference sequence.)

O(-)H(-)S(-) Category

A paired-end read in this category (tD,n = 4) is not overlapping between the
forward read and reverse read at the mutation candidate position and covers no
heterozygous SNPs nearby the candidate position. The mutation candidate po-
sition is covered by the reverse read.
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Suitability of Partitioning-Based Model Integration

We should note that partitioning-based model integration is suited for this prob-
lem for two reasons. The first reason is that we can set partitioning rules on
paired-end reads and construct generative models for each data set by refer-
ring to existing methods. The second reason is that partitioning probabilities
Pr(t|MM ),Pr(t|ME) are thought to be the same, e. g., the existence of a muta-
tion does not affect whether a paired-end read will cover a heterozygous SNP.

3.4.4 All the Parameters and Hyperparameters in Mutated Data
Generation Model

Table 3.2: Notation summary of mutated data generation model

Notation Type Meaning

∆k k dimensional non negative simplex Definition of type
πH ∆3 Haplotype frequency with variant
πF Real number ∈ [0, 1] Reference allele frequency
ϵl Real number ∈ [0, 1] Error rate in overlapping paired-end reads
ϵh Real number ∈ [0, 1] Error rate in hetero SNP covering reads
ϵb Real number ∈ [0, 1] Strand bias rate
πHE Real number ∈ [0, 1] The haplotype frequency without variant
ϵs Real number ∈ [0, 1] An error rate for unpaired read

γH (R+,R+,R+) A hyperparameter for πH

γF (R+,R+) A hyperparameter for πF

αl (R+,R+) A hyperparameter for ϵl
αh (R+,R+) A hyperparameter for ϵh
αb (R+,R+) A hyperparameter for ϵb
γHE (R+,R+) A hyperparameter for πHE

αs (R+,R+) A hyperparameter for ϵs

3.4.5 All the Parameters and Hyperparameters in Error Data Gen-
eration Model

Table 3.3: Notation summary of error data generation model

Notation Type Meaning

∆k k dimensional non negative simplex Definition of type
πHE, πT,HE, πN,HE Real number ∈ [0, 1] Haplotype frequencies with variant
ϵl, ϵT,l, ϵN,l Real number ∈ [0, 1] Error rates in overlapping paired-end reads
ϵh, ϵT,h, ϵN,h Real number ∈ [0, 1] Error rates in hetero SNP covering reads
ϵb, ϵT,b, ϵN,b Real number ∈ [0, 1] Strand bias rate
ϵs, ϵT,s, ϵN,s Real number ∈ [0, 1] Error rates for unpaired read

γHE,γT,HE,γN,HE (R+,R+) Hyperparameters for πHE

αl,αT,l,αN,l (R+,R+) Hyperparameters for ϵl
αh,αT,h,αN,h (R+,R+) Hyperparameters for ϵh
αb,αT,b,αN,b (R+,R+) Hyperparameters for ϵb
αs,αT,s,αN,s (R+,R+) Hyperparameters for ϵs

3.4.6 Distribution of Reads

Pr(rD,n|zD,n,HtD,n)

= Palign(rD,n,+|HtD,n,idx(zD,n),+)Palign(rD,n,−|HtD,n,idx(zD,n),−),

where Palign(·) is the alignment probability which is formulated by profile HMM [1,
77] and idx(·) is a function that returns the index where the value is 1 from a
given one-hot encoding vector.
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3.4.7 Distributions of Reads and Latent Variables for Each Partition

O(+)H(-) Category

We prepared H0 and its frequency as Fig. 3.6. Based on this, we define functions
reprepenting the log probability of rD,n and zD,n when tD,n = 0 given parameter
sets of ΘM,0 and ΘE,0 as follows.

LM,O(rD,n, zD,n, πF , ϵl, ϵb)

:= zD,n,0

{
lnπF (1− ϵl) + lnPr(rD,n|H0,idx(zD,n,0))

}
+ zD,n,1

{
ln(1− πF ) + lnPr(rD,n|H0,idx(zD,n,1))

}
+ zD,n,2

{
lnπF ϵlϵb + lnPr(rD,n|H0,idx(zD,n,2))

}
+ zD,n,3

{
lnπF ϵl(1− ϵb) + lnPr(rD,n|H0,idx(zD,n,3))

}
,

LE,O(rD,n, zD,n, ϵle, ϵbe)

:= zD,n,0

{
2 ln(1− ϵle) + lnPr(rD,n|H0,idx(zD,n,0))

}
+ zD,n,1

{
2 ln ϵle + lnPr(rD,n|H0,idx(zD,n,1))

}
+ zD,n,2

{
ln 2ϵle(1− ϵle)ϵbe + lnPr(rD,n|H0,idx(zD,n,2))

}
+ zD,n,3

{
ln 2ϵle(1− ϵle)(1− ϵbe) + lnPr(rD,n|H0,idx(zD,n,3))

}
, D ∈ {T,N}.
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Figure 3.6: A set of paired-end reads in H0 and corresponding frequencies of
zD,n at tD,n = 0 for the mutated and error data generation model. Frequencies
of zD,n represented by ΘM,0 and ΘE,0 are shown in black (red) letters are for
mutated (error) model.
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O(-)H(+) Category

We prepared H1 and its frequency as Fig. 3.7. Based on this, we define functions
reprepenting the log probability of rD,n and zD,n when tD,n = 1 given parameter
sets of ΘM,1 and ΘE,1 as follows.

LM,H(rD,n, zD,n,πH , ϵh)

:= zD,n,0

{
lnπH,0 + lnPr(rD,n|H1,idx(zD,n,0))

}
+ zD,n,1

{
lnπH,1(1− ϵh) + lnPr(rD,n|H1,idx(zD,n,1))

}
+ zD,n,2

{
lnπH,2 + lnPr(rD,n|H1,idx(zD,n,2))

}
+ zD,n,3

{
lnπH,1ϵh + lnPr(rD,n|H1,idx(zD,n,3))

}
,

LE,H(rD,n, zD,n, πHE, ϵhe)

:= zD,n,0

{
lnπHE,0(1− ϵhe) + lnPr(rD,n|H1,idx(zD,n,0))

}
+ zD,n,1

{
lnπHE,1(1− ϵhe) + lnPr(rD,n|H1,idx(zD,n,1))

}
+ zD,n,2

{
lnπHE,0ϵhe + lnPr(rD,n|H1,idx(zD,n,2))

}
+ zD,n,3

{
lnπHE,1ϵhe + lnPr(rD,n|H1,idx(zD,n,3))

}
, D ∈ {T,N}.
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Figure 3.7: A set of paired-end reads in H1 and corresponding frequencies of
zD,n at tD,n = 1 for the mutated and error data generation model. Frequencies
of zD,n represented by ΘM,1 and ΘE,1 are shown in black (red) letters are for
mutated (error) model.
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O(+)H(+) Category

We prepared H2 and its frequency as Fig. 3.8. Based on this, we define functions
reprepenting the log probability of rD,n and zD,n when tD,n = 2 given parameter
sets of ΘM,2 and ΘE,2 as follows.

LM,OH(rD,n,zD,n, πH , ϵl, ϵb)

:= zD,n,0

{
lnπH,0(1− ϵl) + lnPr(rD,n|H2,idx(zD,n,0))

}
+ zD,n,1

{
lnπH,1(1− ϵl)

2 + lnPr(rD,n|H2,idx(zD,n,1))
}

+ zD,n,2

{
lnπH,2 + lnPr(rD,n|H2,idx(zD,n,2))

}
+ zD,n,3

{
lnπH,1ϵ

2
l + lnPr(rD,n|H2,idx(zD,n,3))

}
+ zD,n,4

{
lnπH,0ϵlϵb + lnPr(rD,n|H2,idx(zD,n,4))

}
+ zD,n,5

{
ln 2πH,1(1− ϵl)ϵlϵb + lnPr(rD,n|H2,idx(zD,n,5))

}
+ zD,n,6

{
lnπH,0ϵl(1− ϵb) + lnPr(rD,n|H2,idx(zD,n,6))

}
+ zD,n,7

{
ln 2πH,1ϵl(1− ϵl)(1− ϵb) + lnPr(rD,n|H2,idx(zD,n,7))

}
,

LE,OH(rD,n,zD,n, πHE, ϵle, ϵbe)

:= zD,n,0

{
lnπHE,0(1− ϵle)

2 + lnPr(rD,n|H2,idx(zD,n,0))
}

+ zD,n,1

{
lnπHE,1(1− ϵle)

2 + lnPr(rD,n|H2,idx(zD,n,1))
}

+ zD,n,2

{
lnπHE,0ϵ

2
le + lnPr(rD,n|H2,idx(zD,n,2))

}
+ zD,n,3

{
lnπHE,1ϵ

2
le + lnPr(rD,n|H2,idx(zD,n,3))

}
+ zD,n,4

{
ln 2πHE,0(1− ϵle)ϵleϵbe + lnPr(rD,n|H2,idx(zD,n,4))

}
+ zD,n,5

{
ln 2πHE,1(1− ϵle)ϵleϵbe + lnPr(rD,n|H2,idx(zD,n,5))

}
+ zD,n,6

{
ln 2πHE,0ϵle(1− ϵle)(1− ϵbe) + lnPr(rD,n|H2,idx(zD,n,6))

}
+ zD,n,7

{
ln 2πHE,1ϵle(1− ϵle)(1− ϵbe) + lnPr(rD,n|H2,idx(zD,n,7))

}
, D ∈ {T,N}.
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Figure 3.8: A set of paired-end reads in H2 and corresponding frequencies of
zD,n at tD,n = 2 for the mutated and error data generation model. Frequencies
of zD,n represented by ΘM,2 and ΘE,2 are shown in black (red) letters are for
mutated (error) model.

35



O(-)H(-)S(+) Category

We prepared H3 and its frequency as Fig. 3.9. Based on this, we define functions
reprepenting the log probability of rD,n and zD,n when tD,n = 3 given parameter
sets of ΘM,3 and ΘE,3 as follows.

LM,P (rD,n, zD,n, πF , ϵb)

:= zD,n,0

{
lnπF + lnPr(rD,n|H3,idx(zD,n,0))

}
+ zD,n,1

{
ln(1− πF )(1− ϵb) + lnPr(rD,n|H3,idx(zD,n,1))

}
+ zD,n,2

{
ln(1− πF )ϵb + lnPr(rD,n|H3,idx(zD,n,2))

}
,

LE,P (rD,n, zD,n, ϵS , ϵbe)

:= zD,n,0

{
ln(1− ϵS) + lnPr(rD,n|H3,idx(zD,n,0))

}
+ zD,n,1

{
ln ϵS(1− ϵbe) + lnPr(rD,n|H3,idx(zD,n,1))

}
+ zD,n,2

{
ln ϵSϵbe + lnPr(rD,n|H3,idx(zD,n,2))

}
, D ∈ {T,N}.
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Figure 3.9: A set of paired-end reads in H3 and corresponding frequencies of
zD,n at tD,n = 3 for the mutated and error data generation model. Frequencies
of zD,n represented by ΘM,3 and ΘE,3 are shown in black (red) letters are for
mutated (error) model.
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O(-)H(-)S(-) Category

We prepared H4 and its frequency as Fig. 3.10. Based on this, we define functions
reprepenting the log probability of rD,n and zD,n when tD,n = 4 given parameter
sets of ΘM,4 and ΘE,4 as follows.

LM,M (rD,n, zD,n, πF , ϵb)

:= zD,n,0

{
lnπF + lnPr(rD,n|H4,idx(zD,n,0))

}
+ zD,n,1

{
ln(1− πF )ϵb + lnPr(rD,n|H4,idx(zD,n,1))

}
+ zD,n,2

{
ln(1− πF )(1− ϵb) + lnPr(rD,n|H4,idx(zD,n,2))

}
,

LE,M (rD,n, zD,n, ϵS , ϵbe)

:= zD,n,0

{
ln(1− ϵS) + lnPr(rD,n|H4,idx(zD,n,0))

}
+ zD,n,1

{
ln ϵSϵbe + lnPr(rD,n|H4,idx(zD,n,1))

}
+ zD,n,2

{
ln ϵS(1− ϵbe) + lnPr(rD,n|H4,idx(zD,n,2))

}
, D ∈ {T,N}.
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Figure 3.10: A set of paired-end reads in H4 and corresponding frequencies of
zD,n at tD,n = 4 for the mutated and error data generation model. Frequencies
of zD,n represented by ΘM,4 and ΘE,4 are shown in black (red) letters are for
mutated (error) model.
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3.4.8 Joint Probability for Mutated Data Generation Model

We set the joint probability for the mutated data generation model as follows.

lnPr(RNT, TNT,ZNT,ΘM,all|MM )

= lnPr(TNT|MM ) + lnPr(RNT,ZNT,ΘM,all|TNT,MM )

= lnPr(TNT|MM )

+ lnPbeta(πHE|γHE) + lnPdir(πH |γH) + lnPbeta(πF |γF )

+ lnPbeta(ϵs|αs) + lnPbeta(ϵl|αl) + lnPbeta(ϵh|αh) + lnPbeta(ϵb|αb)

+
∑

n|tT,n=0

LM,O(rT,n, zT,n, πF , ϵl, ϵb)

+
∑

n|tT,n=1

LM,H(rT,n, zT,n,πH , ϵh)

+
∑

n|tT,n=2

LM,OH(rT,n, zT,n, πH , ϵl, ϵb)

+
∑

n|tT,n=3

LM,P (rT,n, zT,n, πF , ϵb)

+
∑

n|tT,n=4

LM,M (rT,n, zT,n, πF , ϵb)

+
∑

n|tN,n=0

LE,O(rN,n, zN,n, ϵl, ϵb)

+
∑

n|tN,n=1

LE,H(rN,n, zN,n, πHE, ϵh)

+
∑

n|tN,n=2

LE,OH(rN,n, zN,n, πHE, ϵl, ϵb)

+
∑

n|tN,n=3

LE,P (rN,n, zN,n, ϵs, ϵb)

+
∑

n|tN,n=4

LE,M (rN,n, zN,n, ϵs, ϵb).

3.4.9 Lower Bound for Marginal Likelihood in Mutated Data Gener-
ation Model

The marginal likelihood required for computing the Bayes factor is Pr(RNT|MM , TNT)
because we set Pr(TNT|MM ) = Pr(TNT|ME). This marginal likelihood can be
lower bounded by Jensens’ inequality in the same manner as variational Bayes.

lnPr(RNT|MM , TNT)

≥ Eq

[
ln

Pr(RNT,ZNT,ΘM,all|MS , TNT)

q(ZNT,ΘM,all)

]
=: LM (q),

where q(ΘM,all,ZNT) is a free distribution for ΘM,all,ZNT.
We approximately evaluate the marginal likelihood by LM (q), which is max-

imized through the following procedures of variational Bayes.
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3.4.10 Assumptions on Free Distributions

We assume the following form of free distributions as follows.

q(ZNT,ΘM,all) := q(ZNT)q(ΘM,all),

q(ZNT) :=
∏

D∈{T,N}

dD∏
n=1

q(zD,n),

q(ΘM,all) := q(πH)q(πF )q(ϵl)q(ϵh)q(ϵb)q(πHE)q(ϵs).

3.4.11 Maximize LM (q) w.r.t. q(πH)

We would like to get optimal q∗(πH) which maximize LT (q) with respect to

q(πH). For simplicity, we define z
(k)
D,n,i for D ∈ {T,N} as follows:

z
(k)
D,n,i :=

{
zD,n,i (tD,n = k)

0 (otherwise)
.

Then, the lower bound can be written as follows.

LM (q)

= Eq

[{
(γH,0 − 1) +

∑
n

{
z
(1)
T,n,0 + z

(2)
T,n,0 + z

(2)
T,n,4 + z

(2)
T,n,6

}}
lnπH,0

]

+ Eq

[{
(γH,1 − 1) +

∑
n

{
z
(1)
T,n,5 + z

(1)
T,n,4 + z

(2)
T,n,1 + z

(2)
T,n,3 + z

(2)
T,n,5 + z

(2)
T,n,7

}}
lnπH,1

]

+ Eq

[{
(γH,2 − 1) +

∑
n

{
z
(1)
T,n,2 + z

(2)
T,n,2

}}
lnπH,2

]
− Eq [ln q(πH)] + const

= −KL[q(πH)||Pdir(πH |γ∗
H)] + const,

where

γ∗H,0 = Eq

[
(γH,0 − 1) +

∑
n

{
z
(1)
T,n,0 + z

(2)
T,n,0 + z

(2)
T,n,4 + z

(2)
T,n,6

}]
,

γ∗H,1 = Eq

[
(γH,1 − 1) +

∑
n

{
z
(1)
T,n,5 + z

(1)
T,n,4 + z

(2)
T,n,1 + z

(2)
T,n,3 + z

(2)
T,n,5 + z

(2)
T,n,7

}]
,

γ∗H,2 = Eq

[
(γH,2 − 1) +

∑
n

{
z
(1)
T,n,2 + z

(2)
T,n,2

}]
.

Therefore, we can maximize the lower bound by minimization of KL divergence
of KL[q(πH)||Pdir(πH |γ∗

H)] ≥ 0. The optimal form distribution is

q(πH) = Pdir(πH |γ∗
H).

3.4.12 Maximize LM (q) w.r.t. q(πF )

We would like to get optimal q∗(πF ) which maximize LT (q) with respect to q(πF ).
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LM (q)

= Eq

[{
(γF,0 − 1) +

∑
n

{
z
(0)
T,n,0 + z

(0)
T,n,2 + z

(0)
T,n,3 + z

(3)
T,n,0 + z

(4)
T,n,0

}}
lnπF

]

+ Eq

[{
(γF,1 − 1) +

∑
n

{
z
(0)
T,n,1 + z

(3)
T,n,1 + z

(3)
T,n,2 + z

(4)
T,n,1 + z

(4)
T,n,2

}}
ln(1− πF )

]
− Eq [ln q(πF )] + const

= −KL[q(πF )||Pbeta(πF |γ∗
F )] + const,

where

γ∗F,0 = Eq

[
(γF,0 − 1) +

∑
n

{
z
(0)
T,n,0 + z

(0)
T,n,2 + z

(0)
T,n,3 + z

(3)
T,n,0 + z

(4)
T,n,0

}]
,

γ∗F,1 = Eq

[
(γF,1 − 1) +

∑
n

{
z
(0)
T,n,1 + z

(3)
T,n,1 + z

(3)
T,n,2 + z

(4)
T,n,1 + z

(4)
T,n,2

}]
.

Therefore, we can maximize the lower bound by minimization of KL divergence
of KL[q(πH)||Pbeta(πF |γ∗

F )] ≥ 0. The optimal form distribution is

q∗(πF ) = Pbeta(πF |γ∗
F ).

3.4.13 Maximize LM (q) w.r.t. q(ϵl)

We would like to get optimal q∗(ϵl) which maximize LT (q) with respect to q(ϵl).

LM (q)

= Eq [{(αl,0 − 1)} ln ϵl]

+ Eq

[{∑
n

{
z
(0)
T,n,2 + z

(0)
T,n,3 + 2z

(2)
T,n,3 + z

(2)
T,n,4 + z

(2)
T,n,5 + z

(2)
T,n,6 + z

(2)
T,n,7

}}
ln ϵl

]

+ Eq

[∑
n

{
2z

(0)
N,n,1 + z

(0)
N,n,2 + z

(0)
N,n,3

+2z
(2)
N,n,2 + 2z

(2)
N,n,3 + z

(2)
N,n,4 + z

(2)
N,n,5 + z

(2)
N,n,6 + z

(2)
N,n,7

}
ln ϵl

]
+ Eq [{(αl,1 − 1)} ln(1− ϵl)]

+ Eq

[∑
n

{
z
(0)
T,n,0 + z

(2)
T,n,0 + 2z

(2)
T,n,1 + z

(2)
T,n,5 + z

(2)
T,n,7

}
ln(1− ϵl)

]

+ Eq

[∑
n

{
2z

(0)
N,n,0 + z

(0)
N,n,2 + z

(0)
N,n,3

+2z
(2)
N,n,0 + 2z

(2)
N,n,1 + z

(2)
N,n,4 + z

(2)
N,n,5 + z

(2)
N,n,6 + z

(2)
N,n,7

}
ln(1− ϵl)

]
− Eq [ln q(ϵl)] + const

= −KL[q(ϵl)||Pbeta(ϵl|α∗
l )] + const,
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where

α∗
l,0 = (αh,0 − 1) +

∑
n

Eq

[
z
(0)
T,n,2 + z

(0)
T,n,3 + 2z

(2)
T,n,3

]
+
∑
n

Eq

[
z
(2)
T,n,4 + z

(2)
T,n,5 + z

(2)
T,n,6 + z

(2)
T,n,7

]
+
∑
n

Eq

[
2z

(0)
N,n,1 + z

(0)
N,n,2 + z

(0)
N,n,3

]
+
∑
n

Eq

[
2z

(2)
N,n,2 + 2z

(2)
N,n,3 + z

(2)
N,n,4 + z

(2)
N,n,5 + z

(2)
N,n,6

]
,

α∗
l,1 = (αh,1 − 1) +

∑
n

Eq

[
z
(0)
T,n,0 + z

(2)
T,n,0 + 2z

(2)
T,n,1 + z

(2)
T,n,5 + z

(2)
T,n,7

]
+
∑
n

Eq

[
z
(2)
T,n,4 + z

(2)
T,n,5 + z

(2)
T,n,6 + z

(2)
T,n,7

]
+
∑
n

Eq

[
2z

(0)
N,n,0 + z

(0)
N,n,2 + z

(0)
N,n,3

]
+
∑
n

Eq

[
2z

(2)
N,n,0 + 2z

(2)
N,n,1 + z

(2)
N,n,4 + z

(2)
N,n,5 + z

(2)
N,n,6 + z

(2)
N,n,7

]
.

Therefore, we can maximize the lower bound by minimization of KL diver-
gence of KL[q(ϵl)||Pbeta(ϵl|α∗

l )] ≥ 0. The optimal form distribution is

q∗(ϵl) = Pbeta(ϵl|α∗
l ).

3.4.14 Maximize LM (q) w.r.t. q(ϵh)

We would like to get optimal q∗(ϵh) which maximize LM (q) with respect to q(ϵh).

LM (q) = Eq

[{
(αl,0 − 1) +

∑
n

{
z
(1)
T,n,3

}}
ln ϵh

]

+ Eq

[∑
n

{
z
(1)
N,n,2 + z

(1)
N,n,3

}
ln ϵh

]

+ Eq

[{
(αl,1 − 1) +

∑
n

z
(1)
T,n,1

}
ln(1− ϵh)

]

+ Eq

[∑
n

{
z
(1)
N,n,0 + z

(1)
N,n,1

}
ln(1− ϵh)

]
− Eq [ln q(ϵh)] + const

= −KL[q(ϵh)||Pbeta(ϵh|α∗
h)] + const,

where

α∗
h,0 = Eq

[
(αh,0 − 1) +

∑
n

z
(1)
T,n,3 +

∑
n

{
z
(1)
N,n,2 + z

(1)
N,n,3

}]
,

α∗
h,1 = Eq

[
(αh,1 − 1) +

∑
n

z
(1)
T,n,1 +

∑
n

{
z
(1)
N,n,0 + z

(1)
N,n,1

}]
.

Therefore, we can maximize the lower bound by minimization of KL divergence
of KL[q(ϵh)||Pbeta(ϵh|α∗

h)]. The optimal form distribution is

q∗(ϵh) = Pbeta(ϵh|α∗
h).
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3.4.15 Maximize LM (q) w.r.t. q(ϵb)

We would like to get optimal q∗(ϵb) which maximize LM (q) with respect to q(ϵb).

LM (q) = Eq

[{
(αb,0 − 1) +

∑
D

∑
n

{
z
(0)
D,n,2 + z

(2)
D,n,4 + z

(2)
D,n,5 + z

(3)
D,n,2 + z

(4)
D,n,1

}}
ln ϵb

]

+ Eq

[{
(αb,1 − 1) +

∑
D

∑
n

{
z
(0)
D,n,3 + z

(2)
D,n,6 + z

(2)
D,n,7 + z

(3)
D,n,1 + z

(4)
D,n,2

}}
ln(1− ϵb)

]
− Eq [ln q(ϵb)] + const

= −KL[q(ϵb)||Pbeta(ϵb|α∗
b)] + const,

where

α∗
b,0 = Eq

[
(αb,0 − 1) +

∑
D

∑
n

{
z
(0)
D,n,2 + z

(2)
D,n,4 + z

(2)
D,n,5 + z

(3)
D,n,2 + z

(4)
D,n,1

}]
,

α∗
b,1 = Eq

[
(αb,1 − 1) +

∑
D

∑
n

{
z
(0)
D,n,3 + z

(2)
D,n,6 + z

(2)
D,n,7 + z

(3)
D,n,1 + z

(4)
D,n,2

}]
.

Therefore, we can maximize the lower bound by minimization of KL divergence
of KL[q(ϵb)||Pbeta(ϵb|α∗

b)] ≥ 0. The optimal form distribution is

q∗(ϵb) = Pbeta(ϵb|α∗
b).

3.4.16 Maximize LM (q) w.r.t. q(zD,n)

Updating procedure for q(zD,n) is dependent on the value of tD,n andD ∈ {T,N}.
We only show the updating procedure for tD,n = 0 and D = T .

LM (q) = Eq [zT,n,0]Eq

[
lnπF (1− ϵl) + lnPr(rT,n|H0,idx(zT,n,0))

]
+ Eq [zT,n,1]Eq

[
ln(1− πF ) + lnPr(rT,n|H0,idx(zT,n,1))

]
+ Eq [zT,n,2]Eq

[
lnπF ϵlϵb + lnPr(rT,n|H0,idx(zT,n,2))

]
+ Eq [zT,n,3]Eq

[
lnπF ϵl(1− ϵb) + lnPr(rT,n|H0,idx(zT,n,3))

]
− Eq [ln q(zT,n)] + const

= Eq [zT,n,0]Eq

[
ln ρ∗T,n,0

]
+ Eq [zT,n,1]Eq

[
ln ρ∗T,n,1

]
+ Eq [zT,n,2]Eq

[
ln ρ∗T,n,2

]
+ Eq [zT,n,3]Eq

[
ln ρ∗T,n,3

]
− Eq [ln q(zT,n)] + const

= −KL[q(zT,n)||Pmulti(zT,n|ζ∗T,n)] + const,
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where

ρ∗T,n,0 = Eq

[
lnπF (1− ϵl) + lnPr(rT,n|H0,idx(zT,n,0))

]
,

ρ∗T,n,1 = Eq

[
ln(1− πF ) + lnPr(rT,n|H0,idx(zT,n,1))

]
,

ρ∗T,n,2 = Eq

[
lnπF ϵlϵb + lnPr(rT,n|H0,idx(zT,n,2))

]
,

ρ∗T,n,3 = Eq

[
lnπF ϵl(1− ϵb) + lnPr(rT,n|H0,idx(zT,n,3))

]
,

ζ∗T,n,j ∝ ρ∗T,n,j ,

3∑
j=0

ζ∗T,n,j = 1.

Therefore, we can maximize the lower bound by minimization of KL divergence of
KL[q(zT,n)||Pmulti(zT,n|ζ∗T,n)] ≥ 0. When tT,n = 0, the optimal form distribution
is

q(zT,n) = Pmulti(zT,n|ζ∗T,n).

3.4.17 Joint Probability for Error Data Generation Model

We set the joint probability for the error data generation model as follows.

lnPr(RNT,ZNT,ΘE,all, TNT|ME)

= lnPr(TNT|ME) + lnPr(RNT,ZNT|TNT,ME)

= lnPr(TNT|ME)

+ lnPbeta(πHE|γHE) + lnPbeta(ϵs|αs)

+ lnPbeta(ϵl|αl) + lnPbeta(ϵh|αh) + lnPbeta(ϵb|αb)

+
∑

n|tT,n=0

LE,O(rT,n, zT,n, ϵl, ϵb) +
∑

n|tT,n=1

LE,H(rT,n, zT,n, πHE, ϵh)

+
∑

n|tT,n=2

LE,OH(rT,n, zT,n, πHE, ϵl, ϵb) +
∑

n|tT,n=3

LE,P (rT,n, zT,n, ϵs, ϵb)

+
∑

n|tT,n=4

LE,M (rT,n, zT,n, ϵs, ϵb)

+
∑

n|tN,n=0

LE,O(rN,n, zN,n, ϵl, ϵb) +
∑

n|tN,n=1

LE,H(rN,n, zN,n, πHE, ϵh)

+
∑

n|tN,n=2

LE,OH(rN,n, zN,n, πHE, ϵl, ϵb) +
∑

n|tN,n=3

LE,P (rN,n, zN,n, ϵs, ϵb)

+
∑

n|tN,n=4

LE,M (rN,n, zN,n, ϵs, ϵb).

High Depth Coverage Case

Here we would like to explain the joint probability for error data generation model
in the higher depth case. If depth coverage is high, i.e., depth ≥ 100, we rarely
collect erroneous candidates at which reads in both normal and tumor samples
have reads with lower base qualities. The reason is the filter condition. In general
case, we filter out a candidate if the candidate has variant supporting reads in
normal samples. Therefore, if the majority of reads have lower base qualities in
the normal sample, the position is more likely to be filtered out as the number

43



of depth coverage increases. Therefore, if depth coverage is high, then reads
with lower base qualities do not appear in both the tumor and normal sample
after filtering. To incorporate this phenomenon in high depth case, we prepare
distinct parameters for tumor and normal samples and set the joint probability
in an independent form.

For simplicity, we set the following notations.

Θ
(N)
E,all := {πN,HE, ϵN,s, ϵN,l, ϵN,h, ϵN,b} ,

Θ
(T )
E,all := {πT,HE, ϵT,s, ϵT,l, ϵT,h, ϵT,b} ,
RN := {rN,n|n = 1, · · · , dN},RT := {rT,n|n = 1, · · · , dT },
TN := {tN,n|n = 1, · · · , dN}, TT := {tT,n|n = 1, · · · , dT },
ZN := {zN,n|n = 1, · · · , dN}, ZT := {zT,n|n = 1, · · · , dT }.

By using the above notations, the joint probability of error data generation
model in this higher coverage case can be represented as follows.

lnPr(RNT,ZNT,Θ
(N)
E,all,Θ

(T )
E,all, TNT|ME)

= lnPr(RN ,ZN ,Θ
(N)
E,all, TN |ME) + lnPr(RT ,ZT ,Θ

(T )
E,all, TT |ME),

where

lnPr(RD,ZD,Θ
(D)
E,all, TD|ME)

= lnPr(TD|ME)

+ lnPbeta(πD,HE|γD,HE) + lnPbeta(ϵD,s|αD,s)

+ lnPbeta(ϵD,l|αD,l) + lnPbeta(ϵD,h|αD,h) + lnPbeta(ϵD,b|αD,b)

+
∑

n|tD,n=0

LE,O(rD,n, zD,n, ϵD,l, ϵD,b) +
∑

n|tD,n=1

LE,H(rD,n, zD,n, πD,HE, ϵD,h)

+
∑

n|tD,n=2

LE,OH(rD,n, zD,n, πD,HE, ϵD,l, ϵD,b) +
∑

n|tD,n=3

LE,P (rD,n, zD,n, ϵD,s, ϵD,b)

+
∑

n|tD,n=4

LE,M (rD,n, zD,n, ϵD,s, ϵD,b),

D ∈ {T,N}.

Obtaining the lower bound of the marginal likelihoods can be conducted in
the variational Bayes procedures which are similar to that for the mutated data
generation model. For the efficacy of setting different joint probabilities for error
data generation model, see Section C.
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3.5 Results

3.5.1 Performance Evaluation of OHVarfinDer Using Simulation Data
Sets

Simulation Data Generation Procedures

We tested OHVarfinDer using simulation data sets. The simulation procedure
is described as follows. In the following procedure, we prepared two types of
errors. The first type of errors are position-specific ones, and known as error
prone sites [72, 55]. The second type of errors are non position-specific ones.

1) Generate a random reference DNA sequence.

2) Generate a heterozygous germ line variant in a random location, as well
as two haplotypes (h1 and h2)

3) Generate a somatic mutation randomly around a heterozygous germ line
variant, according to an empirical distribution of whole genome data, as
well as two haplotypes (h3 and h4)

4) Randomly generate paired-end reads around 900 somatic mutations and
2100 error prone sites randomly.

2-a) Determine the number of paired-end reads covering the position, by
generating a random value d from a norm distribution of N(·|50, 2),
and round d to the nearest integer value.

2-b) Randomly determine the haplotype of the original DNA fragment.
We set the frequency of haplotypes as h1: 50-v%, h2: 50%, h3: v%,
h4: 0% if a somatic mutation truly exists. We set the frequency of
haplotypes as h1: 50%, h2: 50%, h3: 0%, h4: 0% otherwise.

2-c) For each paired-end read, determine the DNA fragment size by
generating a random value l from N(·|µl, σl), and round l to the
nearest integer value.

2-d) Generate the 100-bp length read sequence on forward strand. Each
observed base flips with the sequence error probability of perror. If
the position of each observed base is the error prone site, perror is
generated from a beta distribution of Beta(·|2, 30). If the position
of each observed base is not the error prone site, perror is generated
from Beta(·|10, 1000).

2-e) Generate the read sequence on the reverse strand like 2-d).

Performance Evaluation of OHVarfinDer Using Simulation Data

As a counterpart method, we prepared OVarCall, HapMuC, and a simple Fisher’s
exact test [19] method, which uses a 2 × 2 contingency table of read counts,
tumor and normal samples/variant and reference alleles. We calculated the area
under the curve (AUC) values from the plotted ROC curve [5] for each simulation
condition as shown in Table 3.4.

In the simulation data set under the condition of B, only overlapping paired-
end read information was available. In this case, our method performs comparable
with OVarCall. In the simulation data set under the condition of C, only het-
erozygous SNP information was available. In this case, our method performed
comparably well with HapMuC that can utilize this information source. In the

45



simulation data set under the condition of A, neither of the above types of infor-
mation was available. In this case, our method performed comparably well with
Fisher’s exact test. In the simulation data set under the condition of D, both
overlapping paired-end read information and heterozygous SNP information were
available. In this case, our method outperformed both OVarCall and HapMuC.
We also show the additional experiments based on this simulation data sets at
Sections A.2 and B at which we compared our method with Bayesian model
averaging-based method and several supervised learning-based methods.

3.5.2 Performance Evaluation of OHVarfinDer Using Real Data

SNVs in Exome Sequence Data Set

We confirmed whether the performance of our method could be improved by using
overlapping information using real exome data sets, as shown in Table 3.5. For
the real data sets, we used exome sequence data from renal clear-cell carcinoma,
which has already been used for performance evaluation of OVarCall [55]. In
these data sets, approximately 40% of paired-end reads overlapped, and thus
the use of overlapping paired-end reads is expected to affect the performance.
In this data set, true somatic SNVs were validated by deep sequencing [72].
Both in the case of lower variant allele frequency of 2%-7% and the case of
moderate variant allele frequency above 7%, OHVarfinDer performed comparably
well with OVarCall and outperformed HapMuC. Furthermore, we observed that
our method returned a low Bayes factor of 0.0000011 in the false-positive case in
Fig. 3.4(b). Therefore, we confirmed that our method can incorporate overlapping
information and improve its performance.

SNVs and InDels in Whole Genome Data Set at TCGA Mutation
Calling Benchmark 4 Datasets

We examined whether we could improve the performance of our method by
using heterozygous SNP and strand bias information using whole genome se-
quence data. The results are summarized in Table 3.6. For the data set, we
used whole genome sequence data sets from breast cancer cell lines, which are
publicly available as a part of The Cancer Genome Atlas (TCGA) Mutation Call-
ing Benchmark 4 datasets (https://gdc.cancer.gov/resources-tcga-users/
tcga-mutation-calling-benchmark-4-files) and have been used for perfor-
mance evaluation of HapMuC.

In these data sets, pure cell line sequence data sets of normal and tumor cell
line and computational mixtures of these sequence data sets are prepared, e. g.,
HCC1143 n40t60 represents that 40% of pure normal and 60% of pure tumor se-
quence data are mixed. In this experiment, we obtained answers of true mutations
from these pure cell line data sets, and we conducted performance evaluations
for tumor sequence data sets with several mixture rates, i. e., n20t80, n40t60,
n60t40, n80t20. For these data sets, the use of heterozygous SNPs information
and strand bias information is important for improving performance because the
average proportion of overlapping paired-end reads was approximately 3% within
these data sets.

For the performance of OHVarfinDer, OHVarfinDer performed better than
any other mutation caller, except for HCC1954 n80t20. We also observed that
our method returned low Bayes factor of 0.000059 in the false-positive case in
Fig. 3.4(a). Therefore, we confirmed that our method can incorporate heterozy-
gous SNP and strand bias information and improve its performance.
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3.6 Discussion

Some mutation calling methods, e. g., HapMuC and OVarCall, can incorporate
a characteristic information source, e. g., heterozygous SNPs and overlapped
paired-end reads, in their mutation calling process. However, no existing Bayesian
methods utilize multiple types of such characteristic information sources simul-
taneously in an explicit manner.

In this chapter, we first introduced a framework for Bayesian model inte-
gration named as partitioning-based model integration, which differs from the
Bayesian model averaging [29, 64]. In this framework, we first set a partitioning
rule for data and augmented the data with indicator variables that show the cate-
gory of partitioning. Second, we constructed a generative model for each category
of the partitioned data set. This framework requires two assumptions. The first
assumption is that we can set a partitioning rule and construct corresponding
generative models. The second assumption is that partitioning probabilities are
common among the mutated data generation model and error data generation
model. If the above assumptions hold true, we can compute the Bayes factor
without a careful setting of prior partitioning probabilities. In our problem set-
ting of mutation calling, the above two assumptions seem natural, and thus we
constructed a Bayesian mutation calling method, OHVarfinDer, based on this
framework.

We conducted performance evaluations with simulation and real data sets.
In the simulation data sets, we showed that our method could utilize multiple
information sources, particularly overlapping paired-end read information and
heterozygous SNP information. If only one information source was given, our
method performed comparably well with other existing methods. If both in-
formation sources were given, our method performed better than other existing
methods. In the real data sets, e. g., The Cancer Genome Atlas (TCGA) Muta-
tion Calling Benchmark 4 datasets, we also demonstrated the better performance
of our method compared to other existing methods.

We have demonstrated how to integrate known multiple information sources
for mutation calling by our framework. We note that mapping quality and base
quality of reads are also used in our method by incorporating the profile HMM
modeling [1, 77]. Although our framework is practically useful for mutation
calling, there is at least one limitation for this framework, i. e., our framework does
not assume inference over the parameter distributions, e. g., prior distributions for
the error parameters. Such inference is important if we consider using multiple
sequence data sets simultaneously. For example, if we can use pooled normal
sequence data sets, we can infer the error distributions depending on the genomic
positions. For the future work, we plan to extend our framework to infer the form
of the parameter distributions, e. g., incorporating predictive distributions for the
error parameters.
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Chapter 4

Flexible Bayesian Modeling for Accurate

Mutation Calling from Multi-Regional

Tumor Samples

4.1 Overview

The process of genomic alteration is one of the most important factors for car-
cinogenesis. Acquired somatic mutations, together with individual germline vari-
ations, have a large effect on cancer evolution. By obtaining accurate genomic
alteration profiles, we can estimate the cause of cancer for individual patients
and search for optimal therapies. Thus, mutation calling from sequence data sets
has become a fundamental analysis in cancer therapy and research. An enor-
mous number of studies [40, 71, 10, 72, 77, 36, 53, 67] have been conducted to
improve the performance of single-tumor-based mutation call, i.e., mutation call
from a tumor and a matched normal sequence data set, and the performance of
mutation call is updated annually by modeling properties of raw sequence data
sets in more sophisticated manners. OHVarfinDer constructs Bayesian models
to utilize sequence data specific properties. DeepVariant [62] is a convolutional
neural network (CNN) based method for detecting germline mutations and able
to learn the properties in any sequence data platform. NeuSomatic is also a CNN
based method for somatic mutation call, which is motivated by DeepVariant.

Mutation profiles from multi-regional tumor sequencing data sets give helpful
information to understand the tumor evolutionary process and the intratumoral
heterogeneity. In order to detect subclonal mutations with lower variant allele fre-
quencies, researchers have developed mutation calling methods that are suitable
for multi-regional tumor data sets. There are mainly two types of approaches for
multi-regional mutation call. The first type of the methods [65, 15, 78, 68] con-
sider the property of tumor phylogenetic tree and clonal populations. The second
type [32] focused on the sharing assumption of a mutation across multiple sam-
ples, defined in Section 4.3.1. For these multi-regional mutation calling methods,
comprehensive performance evaluations were conducted in recent reports [13].

Although one of the existing methods of multiSNV is based on the sharing
assumption of mutation and improved the performance of mutation call, there are
still two drawbacks. First, multiSNV does not consider the “No-TP case”: even if
we could detect mutation candidates in multiple regions, no true mutations exist,
unfortunately. We will define No-TP case in Section 4.3.3. Second, detection of a
mutation for each tumor region in multiSNV is based on scores from a set of pre-
defined generative models and cannot leverage scores from other state-of-the-art
mutation calling methods for a single-regional tumor.

Here, we propose a Bayesian method of MultiMuC for multi-regional muta-
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tion call. Our method has two defining characteristics. First, our method avoids
the No-TP case by leveraging the specificity of detection and the number of de-
tected candidates. We evaluate the probability of the No-TP case and investigate
that the probability decreases as the specificity of detection or the number of de-
tected candidates increases. Second, our method can incorporate scores from
state-of-the-art mutation calling methods as long as these scores are based on
probabilities, i.e, Bayes factors [33] or posterior probabilities. We investigate
that Bayes factors provide sufficient information for obtaining the consistent pos-
terior distribution and maximum a posteriori (MAP) state even if data generation
probabilities for each data set are not available. We demonstrate that our method
improves the original detection performance in state-of-the-art mutation calling
methods for a single-regional tumor through real-data-based (TCGA 4 mutation
calling benchmark datasets) sequence data simulation and outperforms existing
multi-regional mutation calling methods.

The organization of this chapter is as follows. First, we explain the related
works. Second, we explain the mutation sharing assumption used in multi-
SNV [32]. Third, we define the probability of the No-TP case and evaluate the
probability. Forth, we elucidate the manner to use scores from existing single-
tumor-based mutation call for multiple-tumor-based mutation call by introducing
a simple Bayesian hierarchical model as a toy-example. Fifth, we describe the
Bayesian statistical model of MultiMuC and MCMC procedures for MAP infer-
ence. Finally, we show experimental results to evaluate the performance of our
method.

Contents of this chapter are mainly related to the published work of [54].

4.2 Related Work

4.2.1 multiSNV

multiSNV is the first multiple-tumor-based mutation calling method. multiSNV
constructs a stochastic model in which the frequency of mutation genotype is
shared among multiple samples. multiSNV uses the mutation sharing property;
if at least one tumor sequence data has a mutation at the candidate position, then
the method can expect the other tumor samples to have the mutation with higher
confidence. We introduce a simplified stochastic model of multiSNV (Fig. 4.1) and
explain how to model the mutation sharing property by setting common mutation
frequency. This simplified model is not completely the same as multiSNV but
enough to explain the key concept of the method.

We assume the distribution of mutation frequency of g and the genotype in
the i-th tumor sample GT,i are set as follows.

g ∼ Beta(·|α, β),
GT,i ∼ Ber(·|g).

By using the allele frequency f and sequence error rate perr, we set the probability
of the i-th tumor data DT,i as follows.

Pr(DT,i|GT,i = 0) = (perr)
di−ri (1− perr)

ri ,

Pr(DT,i|GT,i = 1) = fai(1− f)di−ai ,

where di is the depth coverage, ri is the number of reference-supporting reads,
and ai is the number of variant-supporting reads in the i-th tumor sample.
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i = 1, · · · , N

GT,i

α β

GT,i ∈ {0, 1}DT,i

DT,i : Sequence data

α,β ∈ R>0f

g

perr

g, f, perr ∈ [0, 1]

Figure 4.1: Simplified model of multiSNV. In this model, we ignore several set-
tings of multiSNV; we ignore the genotype for the normal sample and assume
only two genotypes of reference (GT,i = 0) and tumor (GT,i = 1).

We focus on the distribution of GT,i. If no sequence data is given, the prior
of GT,i depends on g.

Pr(GT,i) = gGT,i(1− g)1−GT,i .

If no sequence data is given but the genotype of GT,1 is observed, then the
posterior distribution of GT,i (̸= 1) is as follows.

Pr(GT,i|GT,1) ∝ Pr(GT,i, GT,1)

=

∫
Pr(GT,i, GT,1|g)Pr(g)dg

∝
∫

gGT,i(1− g)1−GT,igGT,1(1− g)1−GT,1gα−1(1− g)β−1dg

∝ {B(α+GT,1 + 1, β + (1−GT,1))}GT,i

· {B(α+GT,1, β + (1−GT,1) + 1)}1−GT,i

∝ (α+GT,1)
GT,i(β + (1−GT,1))

1−GT,i ,

∴ Pr(GT,i|GT,1) =

(
α+GT,1

α+ β + 1

)GT,i

·
(
β + 1−GT,1

α+ β + 1

)1−GT,i

.

From this, if the observed genotype is mutation (GT,1 = 1), then GT,i is also
mutation (= 1) with higher probability. By setting α ≪ 1, we can change the
posterior probability drastically; if GT,1 = 1 is observed, then GT,i = 1 occurs
with much higher probability than the prior probability.

4.2.2 NeuSomatic

NeuSomatic [67] is a somatic mutation calling method for single-regional tumor
data set, which is motivated by a germline variant detection method of DeepVari-
ant [62]. The network architecture of NeuSomatic is based on the convolutional
neural network [41]. This method outputs the posterior somatic event probability
as a mutation calling score.
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4.2.3 Strelka2

Strelka2 [36] is a succeeding version of Strelka [71]. Strelka2 can use training
data set to estimate the error probabilities and incorporate read generation prob-
abilities for computing the posterior probabilities. Strelka2 returns the posterior
error event probabilities in the form of a Phred quality score.

4.2.4 MuTect2

MuTect2 is a succeeding version of MuTect [10]. The biggest difference between
MuTect and MuTect2 is that MuTect2 can detect somatic insertions and dele-
tions. MuTect2 outputs the likelihood ratio in a similar manner to MuTect.

4.3 Methods

4.3.1 The Mutation Sharing Assumption

Here, we explain the mutation sharing assumption that is leveraged to improve
the performance of multi-regional mutation call. We assume that there are N
sequence data sets {Di}i=1,··· ,N and latent variables {Xi}i=1,··· ,N (Xi ∈ {0, 1})
express the existence of a mutation at i-th data set and C ∈ {0, 1} represents
the existence of the mutation at least one data set and {Vi}i=1,··· ,N (Vi ∈ R)
are the scores from single-tumor-based mutation call. The concept of the mu-
tation sharing assumption for mutation call can be summarized in the following
assumption.

Assumption 4.3.1 (The mutation sharing assumption).

∀v ∈ R,∃w < v s.t. e(w|C = 1) = e(v), r(w) > r(v),

where

e(v) :=
1

N

N∑
i=1

Pr(Xi = 1|Vi > v) (Precision on average),

e(v|C = c) :=
1

N

N∑
i=1

Pr(Xi = 1|Vi > v,C = c) (Precision given C),

r(v) :=
1

N

N∑
i=1

Pr(Vi > v|Xi = 1) (Recall on average).

According to this assumption, if we know (or predict with high confidence)
the existence of a mutation in at least one tumor data set (C = 1), then we can
improve recall from r(v) up to r(w) by lowering the threshold from v down to w
with constant precision e(w|C = 1) = e(v). Based on this idea, multiSNV [32]
has succeeded in performance improvement.

4.3.2 Increasing Posterior Odds Score of Mutation Call Given C = 1.

Here, we show that the assumption is based on an increase of posterior odds
for mutation call. We assume that each score is represented by posterior odds
form Vi := Pr(Xi = 1|Di)/Pr(Xi = 0|Di). If we observe C = 1 in addition to the
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· · ·

· · ·

f1 f2 f3 fN

X1 X2 X3 XN

V1 V2 V3 VN

Pr(X1, · · · , XN )

fi := Pr(Vi|Xi)
Figure 4.2: Graphical representation of the assumed stochastic dependence be-
tween {Xi}i=1,··· ,N and {Vi}i=1,··· ,N . In this assumed stochastic dependence, we
do not set any independence of prior distribution in Pr({Xi}i=1,··· ,N ) and only
assume that each Vi is dependent on the corresponding Xi.

observed sequence data set, the true posterior odds can be represented as follows.

V ′
i :=

Pr(Xi = 1|C = 1, Di)

Pr(Xi = 0|C = 1, Di)
=

Pr(Xi = 1, C = 1, Di)

Pr(Xi = 0, C = 1, Di)

=
Pr(Xi = 1|C = 1)

Pr(Xi = 0|C = 1)

Pr(Di|Xi = 1, C = 1)

Pr(Di|Xi = 0, C = 1)
.

The true posterior odds are greater than the original posterior odds as shown
in the following theorem.

Theorem 4.3.1 (Increasing posterior odds).

If Pr(Di|Xi, C) = Pr(Di|Xi), 0 < Pr(C = 0) < 1, and Vi, V
′
i ∈ R, then V ′

i > Vi .

Proof.

It is sufficient to show that the following condition holds true.

· Pr(Xi = 1|C = 1)

Pr(Xi = 0|C = 1)
>

Pr(Xi = 1)

Pr(Xi = 0)
.

The condition can be proved by evaluating Pr(Xi = 1) and Pr(Xi = 0) as follows.

Pr(Xi = 1)

= Pr(Xi = 1|C = 1)Pr(C = 1) + Pr(Xi = 1|C = 0)Pr(C = 0)

= Pr(Xi = 1|C = 1)Pr(C = 1) (∵ Pr(Xi = 1|C = 0) = 0),

Pr(Xi = 0)

= Pr(Xi = 0|C = 1)Pr(C = 1) + Pr(Xi = 0|C = 0)Pr(C = 0)

= Pr(Xi = 0|C = 1)Pr(C = 1) + Pr(C = 0) (∵ Pr(Xi = 0|C = 0) = 1)

> Pr(Xi = 0|C = 1)Pr(C = 1) (∵ 0 < Pr(C = 0) < 1).

By using the above evaluations, we can show
Pr(Xi = 1|C = 1)

Pr(Xi = 0|C = 1)
>

Pr(Xi = 1)

Pr(Xi = 0)
.

From this condition and the given hypothesis,

V ′
i =

Pr(Xi = 1|C = 1)

Pr(Xi = 0|C = 1)

Pr(Di|Xi = 1, C = 1)

Pr(Di|Xi = 0, C = 1)
>

Pr(Xi = 1)

Pr(Xi = 0)

Pr(Di|Xi = 1)

Pr(Di|Xi = 0)
= Vi.
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4.3.3 The Probability of No-TP (True Positive) Case

We focus on the No-TP cases that cause performance degradation. We define
the No-TP case for v detection threshold and M candidate number as the case
that the mutation does not truly exist in any region at all even if M candidate
mutations are found by the threshold value of v. Under the No-TP case, we
cannot obtain any true mutations by lowering the threshold but only obtain false
positives, and then we only degrade the performance of detection. We assume
for simplicity that V1 ≥ V2 · · · ≥ VN and we define the probability of the No-TP
case as follows.

Pr(X1 = 0, · · · , XN = 0|V1 > v, · · · , VM > v, VM+1 ≤ v, · · · , VN ≤ v). (4.1)

To evaluate the probability, we assume the stochastic dependence as shown
in the graphical model of Fig. 4.2. In this setting, we do not set any restriction
for stochastic dependence between X1, · · · , XN and only assumes the following
conditional independence between V1, · · · , VN .

Pr(V1, · · · , VN |X1, · · · , XN ) =

N∏
i=1

Pr(Vi|Xi). (4.2)

The Probability of No-TP Case when M = N

We evaluate the probability of No-TP case when M = N .

Pr(X1 = 0, · · · , XN = 0|V1 > v, · · · , VN > v)

∝ Pr(X1 = 0, · · · , XN = 0, V1 > v, · · · , VN > v)

= Pr(X1 = 0, · · · , XN = 0)Pr(V1 > v, · · · , VN > v|X1 = 0, · · · , XN = 0)

= Pr(X1 = 0, · · · , XN = 0)
N∏
i=1

Pr(Vi > v|Xi = 0) ∵) Eq. (4.2)

= Pr(X1 = 0, · · · , XN = 0)

N∏
i=1

(1− si(v)), (4.3)

where si(v) := Pr(Vi ≤ v|Xi = 0) corresponds to the specificity. Therefore from
Eq. (4.3), we will decrease the probability of the No-TP case by increasing the
number of candidate M(= N) or improving the specificity si(v).

The Probability of No-TP Case when M < N

Here, we also evaluate the probability of the No-TP case when M < N . For
simplicity, we define variables and relational operators between vector and scalar.
For Eq. (4.4), we also define similar relational operators for ≥, <,≤,= between
vector and scalar.

V := (V1, · · · , VM ), Ṽ := (VM+1, · · · , VN ),X := (X1, · · · , XM ), X̃ := (XM+1, · · · , XN ),

u > v ⇐⇒ ui > v (∀i), (4.4)

u ̸= v ⇐⇒ ui ̸= v (∃i).

The probability of the No-TP case can be represented as follows.

Pr(X = 0, X̃ = 0|V > v, Ṽ ≤ v). (4.5)
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For Pr(V > v, Ṽ ≤ v), we can obtain a lower bound as follows.

Pr(V > v, Ṽ ≤ v)

=
∑
X,X̃

Pr(X, X̃)Pr(V > v, Ṽ ≤ v|X, X̃)

=
∑
X,X̃

Pr(X, X̃)

M∏
i=1

Pr(Vi > v|Xi)

N∏
k=M+1

Pr(Vk ≤ v|Xk) (∵ Eq. (4.2))

=
∑
X,X̃

Pr(X, X̃)

M∏
i=1

(1− si(v))
1−XiRi(v)

Xi

N∏
k=M+1

sk(v)
1−Xk(1−Rk(v))

Xk

≥ Pr(X = 1, X̃ = 0)

M∏
i=1

Ri(v)

N∏
k=M+1

sk(v) =: A, (4.6)

where Ri(v) := Pr(Vi > v|Xi = 1) corresponds to recall.
From Eq. (4.6), if A > 0, we can derive an upper bound for Eq. (4.5) as follows.

Pr(X = 0, X̃ = 0|V > v, Ṽ ≤ v) =
Pr(X = 0, X̃ = 0,V > v, Ṽ ≤ v)

Pr(V > v, Ṽ ≤ v)

≤ min

(
1,

Pr(X = 0, X̃ = 0)
∏M

i=1(1− si(v))
∏N

k=M+1 sk(v)

Pr(X = 1, X̃ = 0)
∏M

i=1Ri(v)
∏N

k=M+1 sk(v)

)

= min

(
1,

Pr(X = 0, X̃ = 0)

Pr(X = 1, X̃ = 0)

M∏
i=1

1− si(v)

Ri(v)

)
. (4.7)

From Eq. (4.7), as the specificity si(v) increases, the upper bound will de-
crease when M < N . Furthermore, if recall (Ri(v)) is larger than false positive
rate (1− si(v)), we will also decrease the upper bound by increasing the number
of mutation candidates M .
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Xi ∈ {Tumor,Error}

Pr(Data|Tumor)
Pr(Data|Normal)

BF :=
Pr(Data|Tumor)

Pr(Data|Normal)

Pr(Tumor|Data)

Pr(Normal|Data)

Pr(X1, · · · , XN )

fi := Pr(Vi|Xi)

Figure 4.3: Summary of the Bayes factor based model construction.

4.3.4 Leveraging Scores from Other Methods for Bayesian Models

We propose an idea to leverage probabilistic scores from other state-of-the-art
mutation calling methods for a single-regional tumor to construct a Bayesian

56



hierarchical model for multi-regional tumors.
We can see that data generation probabilities given dependent latent variables

can be used as building blocks to construct a Bayesian hierarchical model. For
example of Fig. 4.3, if we can borrow Pr(Di|Xi = Tumor) and Pr(Di|Xi =
Error) as building blocks, then we only need to additionally build the stochastic
dependence of latent variables {Xi}i=1,··· ,N to construct the Bayesian models.

Although we would like to use the data generation probabilities given depen-
dent latent variables from this idea, e.g., Pr(Data|Error) and Pr(Data|Tumor)
defined in mutation calling methods for each region of tumor, such probabili-
ties are not available in most cases. On the other hand, alternative values, e.g.,
Bayes factors or posterior probabilities are available as mutation calling scores
from state-of-the-art methods, e.g., Strelka2 and NeuSomatic. In the following
sections, we will demonstrate how Bayes factors and posterior probabilities can
be used as building blocks to construct a Bayesian model (Fig. 4.3). First, we will
show how to extract equivalent information to the data generation probabilities
from Bayes factors by considering the posterior distributions and maximum a pos-
teriori (MAP) state (Fig. 4.3-A) through introducing a toy example model. Next,
we will show how to convert posterior probabilities to Bayes factors (Fig. 4.3-B).

Data Generation Probabilities from Bayes Factors

We show that Bayes factors are sufficient for MAP estimate for a toy example
stochastic model even when full data generation probabilities of Pr(Data|Tumor)
and Pr(Data|Error) are not given.

For this example, we assume the stochastic model as shown in Fig. 4.4.
S ∈ {0, 1} represents the existence of tumor cells and Yi ∈ {0, 1} represents
the existence of mutation at the i-th data set Di. The Bayes factor for the i-th

Di

Yi

S

i = 1, · · · , N

Figure 4.4: A toy example model for multiple tumor samples. S ∈ {0, 1} rep-
resents the existence of tumor cells and Yi ∈ {0, 1} represents the existence of
mutation at i-th data set Di.

data set is defined as the ratio of the marginal likelihood and Pcall is defined in a
single-tumor-based mutation calling method.

BFi :=
Pcall(Di|Yi = 1)

Pcall(Di|Yi = 0)
. (4.8)

We assume that each data generation probability is a positive value for any
observed data point Di.

Pcall(Di|Yi = 1) > 0, Pcall(Di|Yi = 0) > 0. (4.9)
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We consider two settings of probability distributions for this toy example model
and denote the first setting as Pr(1)(·) and the second setting as Pr(2)(·). For
both settings, we assume common distributions for S and Yi.

Pr(1)(S) = Pr(2)(S) = Pber(S|f1),
Pr(1)(Yi|S) = Pr(2)(Yi|S) = Pber(Yi|f2)S · Pber(Yi|f3)(1−S),

where Pber(·|f) means the probability mass function of Bernoulli distribution with
a frequency of f and we set 0 ≤ f1, f2, f3 ≤ 1. In the first setting at Eq. (4.10),
we use both the numerator and denominator in each Bayes factor to define the
distributions. In the second setting at Eq. (4.11), we only use Bayes factors and
supplement the distributions with a pre-defined positive constant p for all the
data index i.

Pr(1)(Di|Yi = 0) = Pcall(Di|Yi = 0),Pr(1)(Di|Yi = 1) = Pcall(Di|Yi = 1), (4.10)

Pr(2)(Di|Yi = 0) = p, Pr(2)(Di|Yi = 1) = p · BFi, (0 < p). (4.11)

As shown in the following lemma and corollary, this difference in setting the
probability distribution does not affect the posterior distribution and MAP state
of the latent variable S and Yi. Therefore, Bayes factors give sufficient information
on data generation probabilities for MAP inference of the latent state for some
set of stochastic models.

Lemma 4.3.1 (Unchanged posterior).

∀S,Y s.t. Pr(1)(S,Y |D) = Pr(2)(S,Y |D),

where

Y := (Y1, · · · , YN ), D := (D1, · · · , DN ) .

Proof. It is sufficient if we can show that the following conditions hold true.

· Pr(1)(S, {Di, Yi}i) > 0 ⇐⇒ Pr(2)(S, {Di, Yi}i) > 0 (Same support region),

· Pr(1)(S′, {Di, Y
′
i }i) > 0,Pr(1)(S, {Di, Yi}i) > 0

⇒ Pr(1)(S′, {Di, Y
′
i }i)

Pr(1)(S, {Di, Yi}i)
=

Pr(2)(S′, {Di, Y
′
i }i)

Pr(2)(S, {Di, Yi}i)
(Same probability ratio).

The first condition is satisfied from Eq. (4.9) and 0 < p. For the second condition,
we can show the condition by substitution. From these two conditions, we can
prove the consistency of the posterior as follows.

(i) ∀S,Y s.t. Pr(1)(S,Y ,D) = Pr(2)(S,Y ,D) = 0

The posterior probabilities are consistent due to the same joint probabilities.

(ii) ∃S′,Y ′ s.t. Pr(1)(S′,Y ′,D) > 0,Pr(2)(S′,Y ′,D) > 0

From the second condition,

∀S,Y (in the support regions) s.t.
Pr(1)(S,Y ,D)

Pr(1)(S′,Y ′,D)
=

Pr(2)(S,Y ,D)

Pr(2)(S′,Y ′,D)

⇒ Pr(2)(S,Y ,D) =
Pr(2)(S′,Y ′,D)

Pr(1)(S′,Y ′,D)
Pr(1)(S,Y ,D)

⇒ Pr(2)(S,Y ,D) ∝ Pr(1)(S,Y ,D) (w.r.t. S,Y ).

From this, the posterior probabilities are also consistent.

58



From Lemma 4.3.1, we obtain the following corollary.

Corollary 4.3.1 (Unchanged MAP state).

arg max
S,Y

Pr(1)(S,Y |D) = arg max
S,Y

Pr(2)(S,Y |D),

where

Y := (Y1, · · · , YN ), D := (D1, · · · , DN ) .

Bayes Factors from Posterior Probabilities

Some methods, e.g., Strelka2 and NeuSomatic return the output of posterior
event probabilities. We can convert the posterior event probabilities to Bayes
factors by setting the prior event ratio, e.g., Pr(tumor)/Pr(error) = 1 used in
this paper.

BF =
Pcall(tumor|D)

Pcall(error|D)

Pr(error)

Pr(tumor)
=

Pcall(tumor|D)

1− Pcall(tumor|D)

Pr(error)

Pr(tumor)
. (4.12)

4.3.5 Bayesian Statistical Model in MultiMuC

Based on the ideas shown above, we constructed the Bayesian statistical method
termed MultiMuC and the graphical summary of MultiMuC is shown in Fig. 4.5.

Tj

Zi,j

Ei,j

Yi,j

Di,j

Sj

i i
i = 1, · · · , N : Tumor data index.

j = 1, · · · , G : Mutation candidate index.

Figure 4.5: Graphical summary of MultiMuC. i represents the location index of
tumor sequence data and j represents the index of mutation candidate. The left
side of the figure shows the evidence generation model and the right side of the
figure shows the data generation model.

Our method is composed of an evidence generation model and a data gener-
ation model as shown in the left part and the right part in Fig. 4.5 respectively.
For the evidence generation model, Ei,j represents the i-th evidence around the
j-th somatic mutation, Zi,j ∈ {0, 1} represents the existence of the j-th somatic
mutation at the i-th evidence, and Tj ∈ {0, 1} represents the existence of the j-th
somatic mutation for at least one evidence. The distributions of these random
variables are set as follows.
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Pr(Tj) = Pber(·|0.5),
Pr(Zi,j |Tj) = Pber(·|ϵ)1−Tj · Pber(·|0.5)Tj ,

Pr(Ei,j |Zi,j) = 11−Zi,j ·HZi,j

i,j .

Hi,j is the Bayes factor and we can detect a mutation with high specificity if
Hi,j > 1. ϵ(≈ 0) corresponds to the false-positive rate (equal to 1−specificity)
for this Bayes factor of Hi,j . We note that we can regulate the distribution so
that Tj = 1 only if we observe enough number of candidates by increasing ϵ.

For the data generation model, Di,j represents the i-th data set around the
j-th mutation candidate, Yi,j ∈ {0, 1} represents the existence of the j-th somatic
mutation at the i-th data set and Sj ∈ {0, 1} represents the existence of the j-th
somatic mutation for at least one data set. The distributions of these random
variables are set as follows depending on Tj .

Pr(Sj |Tj) = Pber(·|0.5)1−TjPber(·|pcon)Tj ,

Pr(Yi,j |Sj) = Pber(·|δ)1−Sj · Pber(·|0.5)Sj ,

Pr(Di,j |Yi,j , Sj , Tj) = 11−Yi,j

(
Li,j · 10θTj · 10ρSj

)Yi,j

.

Li,j is the Bayes factor that is generally used and δ corresponds to its false
positive rate. 10θ(> 1) lowers the threshold of Bayes factors when the presence
of a mutation can be predicted with high specificity (Tj = 1). 10ρ(> 1) also
lowers the threshold of Bayes factors when the presence of a mutation can be
predicted from the usual result (Sj = 1). pcon(≈ 1) is the consistency rate from
Tj = 1 to Sj = 1. In this paper, we used the following setting of hyperparameters:
ϵ = 0.2, δ = 0.02, θ = 0.5, ρ = 0.1 and pcon = 0.999.

In this method we estimate the MAP state by MCMC [59] for each position
j and use Ŷi,j for mutation call.

Ŷj , Ẑj , Ŝj , T̂j = arg max
Yj ,Zj ,Sj ,Tj

Pr(Yj ,Zj , Sj , Tj |D·,j , E·,j),

(Ŷj := (Ŷ1,j , · · · , ŶN,j), Ẑj := (Ẑ1,j , · · · , ẐN,j)).

Preparation of Inputs

This method requires Bayes factors with high specificity in addition to the usual
Bayes factor results. For preparation of these Bayes factors, we set threshold
values and multiplied the original Bayes factor by the inverse number of the
threshold as follows.

Hi,j = BFi,j · 10−1.5, Li,j = BFi,j · 10a, (4.13)

where BFi,j is the original Bayes factor outputs of the single-tumor-based method
and 10−a corresponds to the threshold value for the Bayes factor in general usage.
For mutation calling with high specificity, we set 101.5 as the threshold value. For
MuTect2, we conducted a = a − 6.3 because of the default threshold setting in
MuTect2.

4.3.6 MAP Inference in MultiMuC by MCMC

To estimate the MAP state, we sample random variables from the posterior distri-
bution by Gibbs sampling. We obtain a set of random variables from the sampled
sequence with the maximum posterior probability after the burn-in period. We
show the conditional probabilities used for Gibbs sampling.
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Gibbs Sampling for Tj

Pr(Tj |S,Z, Y,E,D) ∝ Pr(Tj , S, Z, Y,E,D)

= Pr(Tj)Pr(Sj |Tj)
∏
j

Pr(Zi,j |Tj)Pr(Di,j |Yi,j , Sj , Tj)

=

(
1

2

)1−Tj

·
(
1

2

)Tj

· Pber

(
Sj

∣∣∣∣12
)1−Tj

· Pber (Sj |pcon )Tj

·
∏
i

Pber

(
Zi,j

∣∣∣∣12
)Tj

· Pber (Zi,j |ϵ)1−Tj

·
∏
i

11−Yi,j

(
Li,j10

θ·Tj+ρ·Sj

)Yi,j

∝

[
1

2

∏
i

{
ϵZi,j (1− ϵ)1−Zi,j

}]1−Tj

·

[
p
Sj
con(1− pcon)

Sj
∏
i

{
1

2
· 10θ·yi,j

}]Tj

.

Gibbs Sampling for Zi,j

Pr(Zi,j |T,E) ∝ Pr(Zi,j , T, E)

= Pr(Zi,j |Tj)Pr(Ei,j |Zi,j)

=
[
ϵZi,j (1− ϵ)1−Zi,j

](1−Tj)

·

[(
1

2

)Zi,j

·
(
1

2

)1−Zi,j
]Tj

· 11−Zi,jH
Zi,j

i,j

∝
[
(1− ϵ)1−Tj

]1−Zi,j
[
ϵ1−TjHi,j

]Zi,j
.

Gibbs Sampling for Sj

Pr(Sj |T, Y,D) ∝ Pr(Sj |Tj)
∏
i

Pr(Yi,j |Sj)Pr(Di,j |Sj , Tj , Yi,j)

= Pber

(
Sj

∣∣∣∣12
)1−Tj

· Pber (Sj |pcon )Tj

·
∏
i

[
δYi,j (1− δ)1−Yi,j

]1−Sj

[(
1

2

)Yi,j
(
1

2

)1−Yi,j
]1−Sj

·
∏
i

11−Yi,j

(
Li,j10

θTj+ρSj

)Yi,j

∝

[
(1− pcon)

Tj ·
∏
i

δYi,j (1− δ)1−Yi,j

]1−Sj
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·

[
p
Tj
con ·

∏
i

1

2
·
(
Li,j10

θTj+ρ
)Yi,j

]Si,j

.

Gibbs Sampling for Yi,j

Pr(Yi,j |Sj , D·,j) ∝ Pr(Yi,j |Sj)Pr(Di,j |Sj , Tj , Yi,j)

=
[
δYi,j · (1− δ)1−Yi,j

]1−Sj ·

[(
1

2

)Yi,j

·
(
1

2

)1−Yi,j
]Sj

· 11−Yi,j ·
[
10θTj+ρSj

]Yi,j

∝
[
(1− δ)1−Sj

]1−Yi,j
[
δ1−Sj · Li,j · 10θTj+ρSj

]Yi,j

.

!"#######################################$"########################################%"

Figure 4.6: Examples of simulated clonal mixture rates. A) illustrates the case
of α = 0.01 and B) illustrates the case of α = 0.1, and C) illustrates the case of
α = 0.2.
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Figure 4.7: Simulated trees used for evaluations. Each numbered node corre-
sponds to a clone and each edge corresponds to a non-empty set of somatic
mutations. For each simulated data, we sampled a mixture rate of clones and
simulated bulk sample data sets.
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4.4 Results

4.4.1 Simulation Experiments Based on Real Data Sets

We evaluated MultiMuC performance by simulating multiple tumor sequence
datasets. To do this, we used multiple settings for both the tumor phylogenetic
tree and the mixture rate of clones, where a clone means a type of tumor cell
population. These datasets were prepared in 24 different configurations. Fig. 4.6
and Fig. 4.7 show the examples of the mixture composition rates and tumor
phylogenetic trees that were used. The simulation procedures were as follows.

1) Collect true somatic mutations and sequence errors from a single pure
tumor (= toriginal) and a matched pure normal (= noriginal) data set.

2) Filter out true mutations with allele frequencies of <30% or >70% for
allele frequencies to decrease from ∼ 50% following the phylogenetic tree.

3) Generate a random phylogenetic tree T .

4) Randomly relate each somatic mutation with an edge of the tree T .

5) For each tumor simulation data set, we generated reads as follows for 10
tumor data sets.

5-a) Sample a mixture rate of clones pmix ∼ Dirichlet(·|(α, · · · , α)).
5-b) For each true somatic mutation s, calculate the total population of

clone ptumor =
∑

i∈A pmix,i, A := {i|i-th clone has mutation s}.
5-c) Collect reads around the true somatic mutation of s from toriginal

at the down sampling rate of ptumor and from noriginal at the rate
of 1− ptumor.

5-d) For each error position e, sample an error rate perror ∼ Beta(·|0.1, 0.1).
5-e) Collect reads around the error position of e from toriginal at the rate

of perror and from noriginal at the rate of 1− perror.

For toriginal and noriginal, we used real data sets from TCGA 4 mutation
calling benchmark datasets. For the datasets, see https://gdc.cancer.gov/

resources-tcga-users/tcga-mutation-calling-benchmark-4-files.

Performance Comparison

We conducted a performance comparison based on F-measure. We used Strelka2,
MuTect2, NeuSomatic and OHVarfinDer as Bayes factor inputs. For the coun-
terpart method, we prepared multiSNV and Treeomics. We summarized the
F-measures of these methods at a = 0.0 in Fig. 4.8. In this figure, +M indicates
that our method was used. Our method steadily contributes to performance im-
provement for Strelka2, NeuSomatic and OHVarfinDer and does not cause perfor-
mance degradation for MuTect2 (Fig. 4.8-B). Furthermore, the combined output
of our method and single-tumor-based methods outperformed both multiSNV
and Treeomics (Fig. 4.8-A). To see the performance of original mutation calling
methods, we summarized original recalls, precisions and F-measures in Figs. 4.9
to 4.11. From this, the reason for no statistically significant performance gain in
MuTect2 may be due to the increase of recalls at MuTect2 being smaller than
that of the other methods used, as shown in Fig. 4.9.
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Figure 4.8: The summary of F-measure at a = 0.0. 10−a is the Bayes factor
threshold for mutation call as shown in Eq. (4.13). +M represents the use of
MultiMuC, and an orange-colored circle represents a positive difference of F-
measure on average with a P-value less than 0.01 (two-sided paired t-test). A)
represents the summary of F-measure with the threshold at a = 0.0. B) represents
the difference of F-measure by applying MultiMuC with the threshold at a = 0.0.

Effects of MultiMuC at Different Thresholding of 10−a

To confirm that our method does not degrade the performance of detection for
different thresholding values of 10−a, we evaluated the difference in F-measure,
recall, and precision by applying MultiMuC as shown in Figs. 4.12 to 4.14. Mul-
tiMuC can achieve statistically significant improvement on F-measures in most
of the cases, except for MuTect2. The reason for no statistically significant per-
formance improvement in MuTect2 may also be because we cannot achive higher
recall in MuTect2 by only increasing the detection threshold at any a (Fig. 4.9).

Effects of Evidence Generation Model in MultiMuC at Different Thresh-
olding of 10−a

MultiMuC leverages the specificity of detection and the number of detected can-
didates through the evidence generation model. Here, we investigate the effects of
evidence generation model in MultiMuC at different threshold value of 10−a. In
(+E), we sets ϵ = 0.2, δ = 0.02, θ = 0.5, ρ = 0.1 and pcon = 0.999. In (-E), we sets
ϵ = 0.2, δ = 0.02, θ = 0.6, ρ = 0.0 and pcon = 0.5. In (-E), evidence generation
model does not affect the inference of Yj due to ρ = 0.0 and pcon = 0.5. Under
these settings, we evaluated the difference in F-measure, recall, and precision by
applying MultiMuC as shown in Figs. 4.15 to 4.17.

The most striking difference between (+E) and (-E) is the effect on precisions.
As we can see from the Fig. 4.16, evidence generation model can suppress the
degradation of precisions. In spite of the suppressed degradation of precision,
MultiMuC with (+E) setting still improves the recall (Fig. 4.15) in most cases.
For the difference of F-measures, (+E) model can improve F-measures while
suppressing the drastic performance degradation which appears in the case of
Strelka2 (Fig. 4.17). From this, we can see that the evidence generation model
can avoid performance degradations by suppressing the degradation of precisions.
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Figure 4.9: Summary of recalls in the original mutation calling methods at dif-
ferent default threshold values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. A)
at Strelka2. B) at MuTect2. C) at NeuSomatic. D) at OHVarfinDer.

4.5 Discussion

In this chapter, we propose a Bayesian method for multi-regional mutation call
based on the mutation sharing assumption with two characteristics. First, our
method avoids the No-TP case by considering both the specificity of detection and
the number of detected candidates to avoid performance degradation. Second,
our method can incorporate scores from state-of-the-art mutation calling methods
for a single-regional tumor if scores are based on probabilities except for P-values.
This performance improvement of mutation call will contribute to an improved
inference of tumor phylogeny.

For future work, we would like extend our method to handle the mutation
calling results which are based on P-values. With this method, we can use the
outputs of single-tumor-based methods if the posterior event probability or Bayes
factor is available. However, our method cannot handle P-value-based outputs of
some single-tumor-based methods [39, 40, 72, 81, 58] although P-value is a useful
measure for decision making.
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Figure 4.10: Summary of precisions in the original mutation calling methods at
different default threshold values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}.
A) at Strelka2. B) at MuTect2. C) at NeuSomatic. D) at OHVarfinDer.
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Figure 4.11: Summary of F-measures in the original mutation calling methods
at different default threshold values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}.
A) at Strelka2. B) at MuTect2. C) at NeuSomatic. D) at OHVarfinDer.
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Figure 4.12: Summary of the difference in recall by applying MultiMuC in the
different thresholding values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. An
orange-colored circle shows that the average recall difference is positive and the
P-value of the two-sided paired t-test is less than 0.01. A) at Strelka2. B) at
MuTect2. C) at NeuSomatic. D) at OHVarfinDer.
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Figure 4.13: Summary of the difference in precision by applying MultiMuC in
the different thresholding values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. An
orange-colored circle shows that the average precision difference is positive and
the P-value of the two-sided paired t-test is less than 0.01. A) at Strelka2. B) at
MuTect2. C) at NeuSomatic. D) at OHVarfinDer.
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Figure 4.14: Summary of the difference in F-measure by applying MultiMuC in
the different thresholding values of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. An
orange-colored circle shows that the average F-measure difference is positive and
the P-value of the two-sided paired t-test is less than 0.01. A) at Strelka2. B) at
MuTect2. C) at NeuSomatic. D) at OHVarfinDer.
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Figure 4.15: Summary of the difference in recall by applying MultiMuC in two
different settings of (+E) and (-E) at the different thresholding values of 10−a,
where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. (-E) express that the evidence generation
model is removed from the MultiMuC model and (+E) represents that the ev-
idence generation model is incorporated in the MultiMuC model. The asterisk
represents a positive difference ((+E) minus (-E)) of recalls on average with P-
value less than 0.01 (two-sided paired t-test).
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Figure 4.16: Summary of the difference in precision by applying MultiMuC in
two different settings of (+E) and (-E) at the different thresholding values of
10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. (-E) express that the evidence gener-
ation model is removed from the MultiMuC model and (+E) represents that the
evidence generation model is incorporated in the MultiMuC model. The asterisk
represents a positive difference ((+E) minus (-E)) of precisions on average with
P-value less than 0.01 (two-sided paired t-test).
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Figure 4.17: Summary of the difference in F-measure by applying MultiMuC
in two different settings of (+E) and (-E) at the different thresholding values
of 10−a, where a ∈ {−1.0,−0.5, 0.0, 0.5, 1.0}. (-E) express that the evidence
generation model is removed from the MultiMuC model and (+E) represents
that the evidence generation model is incorporated in the MultiMuC model.
The asterisk represents a positive difference ((+E) minus (-E)) of F-measures on
average with P-value less than 0.01 (two-sided paired t-test).
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Chapter 5

Properties of Tumor Phylogeny for Accurate

Mutation Call

5.1 Overview

Cancer is known as genomic disease, and tumor tissue is a heterogeneous popu-
lation of cancer cells in general cases. Because this heterogeneity leads to drug
resistance, assessment of the heterogeneity is important in cancer therapies. To
understand the heterogeneity, multi-regional mutation call is conducted in gen-
eral.

There exist mainly two types of methods that are designed particularly for
multi-regional mutation call. The first type of method uses the assumption of
mutation sharing [32], which is mentioned in Chapter 4. The second type of
method is based on the property of tumor phylogeny [65, 15, 78, 68].

Comprehensive performance comparison to these multi-regional mutation call-
ing methods was recently conducted [13]. Within this study, a comparison against
single-tumor-based mutation calling methods is also conducted. In several experi-
mental settings, phylogeny-based methods show poor performance even to single-
tumor-based mutation calling methods. However, these results are inconsistent
with the previous reports [65, 15, 78, 68].

From these studies, we can expect two cases in which tumor phylogeny works
and does not work for performance improvement. However, existing studies do
not reveal when and how much tumor phylogeny works for detection performance,
and it remains ambiguous whether or not we can improve detection performance
by leveraging tumor phylogeny.

In this chapter, we assume that we can predict a somatic mutation at each
tumor region with 100% sensitivity, and under this assumption, we evaluate the
performance of predicting a mutation in a patient (not in each tumor region).
This chapter is organized as follows. First, we show problem settings, including
the assumption, and then, we evaluate the specificity and sensitivity in two cases:
tumor phylogeny is used and not used. Finally, we consider other assumptions
about insufficient depth coverage and also evaluate the specificity and sensitivity.
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5.2 Related Works

Here, we introduce existing methods of Treeomics, SNV-PPILP, and MuClone
for multi-regional mutation call. These methods consider the existence of tumor
phylogeny and hence use the property that the total pattern of column vectors in
the mutation profiles is limited. This is because that the total pattern of column
vectors in the mutation profiles is limited if the observed mutation profile has a
corresponding phylogenetic tree.

To demonstrate this point, we show the property that the patterns of column
vectors are limited. We should note that this property was not shown clearly in
the original reports.

5.2.1 Basic Ideas of Leveraging Phylogeny

Lemma 5.2.1 (Existence of a full binary phylogenetic tree).

If T ∈ {0, 1}c×k has a phylogenetic tree, then

∃T = (V,E) s.t. T satisfies the following conditions,

a) T is a phylogenetic tree for T,

b) |FT | ≤ c,

c) The root node has only one outgoing edge,

d)Any node except for the root has zero or two outgoing edges,

where V is a set of vertices, E is a set of edges, and

FT is a set of leaves in T .

Proof. T has a phylogenetic tree, hence we can choose a phylogenetic tree T . We
can assume |FT | ≤ c by removing leaves in T if no cell corresponds to the leaf in
f : R → FT . We can also assume that the root node has only one outgoing edge
by adding new root node and connect the novel root and the previous root node.

For the last condition, we remove the following two types of internal nodes: i)
the internal node having only one outgoing edge, and ii) the internal node having
more than 2 outgoing edges. It is sufficient to show the operation to remove
nodes that satisfy i) or ii) from T while keeping conditions of a)-c).

For i), just remove the nodes as in Fig. 5.1. We can easily check a)-c) still
holds true after this operation. For ii) just remove the node as in Fig. 5.2. If the
number of outgoing edges is more than three, apply this operation recursively.
We can also check that a)-c) still hold true after these operations.

Theorem 5.2.1 (Patterns of column vectors in phylogenetic matrix).

If T ∈ {0, 1}c×k has a phylogenetic tree, then

|{ti|i = 1, · · · k}| ≤ 2c− 1, where ti is the i-th column vector of T.

Proof. Because of the definition of the phylogenetic tree under the infinite sites
assumption, any mutation in T corresponds to an edge in T . If one mutation
corresponds to an edge in T , we find one pattern from column vectors in T. If no
mutation corresponds, we find no patterns from the column vectors. Therefore,
|{ti|i = 1, · · · k}| ≤ |E|. Because of Lemma 5.2.1, we can assume that the root of
T is connected to the root of a full binary tree at which the number of leaves is
≤ c. From this, |E| ≤ 2c− 1.
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Figure 5.1: A procedure of removing a node having only one outgoing edge.
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Figure 5.2: A procedure of removing a node having more than two outgoing
edges.

Corollary 5.2.1 (Observable cell types and column vectors). Let T ∈ {0, 1}c×k

have a phylogenetic tree, and U ∈ Rn×c
≥0 , U1 ∈ Rn×c1

≥0 have a non-negative simplex

for every row vector, where U =
[
U1 O

]
. Then, the pattern of column vectors

of (y1, · · ·yk) in Y := 1
2UT is limited as follows.

|{yi|i = 1, · · · k}| ≤ 2c1 − 1.

Proof. We split T by row as follows.

T =

[
T1

T2

]
,

where T1 ∈ {0, 1}c1×k,T2 ∈ {0, 1}(c−c1)×k. Then, Y is as follows.

Y =
1

2
UT =

1

2
U1T1 =

1

2
(U1t̃1 · · ·U1t̃k),

where t̃1, · · · , t̃k is the column vectors in T1. Because the equivalent conditions
listed in Lemma 2.7.1 hold true for the subset of rows, both T1 and T2 have a
phylogenetic tree. From Theorem 5.2.1, total patterns of column vectors in T1 is
limited by 2c1 − 1. Then,

|{yi|i = 1, · · · k}| ≤ 2c1 − 1.

From Corollary 5.2.1, the total pattern of column vectors in the matrix of
variant allele frequencies are limited by the number of observable cell types.
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5.2.2 MuClone

MuClone [15] relies on the limited observation of tumor cell types. MuClone
constructs a Bayesian clustering model for somatic mutations. Their Bayesian
modeling restricts the pattern of column vectors in the mutation profile for true
mutations by setting mutation clusters and candidates that do not correspond
to the mutation clusters are assigned to a unique error cluster. Within each
mutation cluster, a specific set of samples can have the mutation more likely. On
the other hand, within the error cluster, any sample can have the error uniformly
at random.

5.2.3 Treeomics and SNV-PPILP

Treeomics [65] and SNV-PPILP [78] rely on the idea of [68] that considers the
existence of tumor phylogeny within a set of true mutations. They retrieve a
maximum evolutionary compatible set of mutations from a given mutation profile
and guarantee that all the retrieved mutations truly correspond to the edge of
the tumor phylogenetic tree under the infinite sites assumption. Based on the
retrieved evolutionary compatible set, they also detect mutations with low allele
frequency.

Let X ∈ {0, 1}n×k be a mutation profile, M be a set of indices for mutations
in X, S be a set of indices for samples in X. We prepare the notation for an
array slicing-like matrix of X as X[S1,M1] ∈ {0, 1}|S1|×|M1|, where S1 ⊆ S,
M1 ⊆ M, and X[S1,M1] is a matrix made by removing rows at S \ S1 and
colums at M\M1. The problem formulation can be represented as follows.

max
M1⊆M

| M1|

subject to:

X[S,M1] has a phylogenetic tree.

To solve this problem, existing methods retrieve a maximum evolutionary
compatible set by mixed-integer linear programming because this problem is
known to be NP-hard.

5.3 Problem Settings and Assumptions

5.3.1 Given Mutation Profiles

We assume that two types of mutation profiles are given as shown in Fig. 5.3.
The first mutation profile is a reliable profile, e.g., a mutation profile estimated
by a short-read sequencer in multi-regional tumors, and express the first profile
as A ∈ {0, 1}n×k, where n is the number of sequenced samples and k is the
number of mutations. An′,k′ = 1 means that the mutation candidate exists at the
k′-th genomic position in the n′-th data set. For simplicity, we assume that each
column vector of A is sorted in descending order, and represent the i-th column
vector as ai.

A = (a1 · · ·ak).

The second profile is an unreliable profile, e.g., a mutation profile estimated
by a long-read sequencer, and this profile contains erroneous positions at which
no tumor regions have the true mutation. We describe the second profile as
B ∈ {0, 1}n×(k1+k2), where k1 is the number of non-erroneous positions and k2 is
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the number of erroneous positions. We make a mutation profile C ∈ {0, 1}n×k1

by collecting only non-erroneous positions from B and make error profile Z ∈
{0, 1}n×k2 by collecting erroneous positions. For simplicity, we assume that each
column vector of B,C,Z is sorted in descending order, and represent the j-th
column vector as bj , cj , zj .

B = (b1 · · · bk1+k2),

C = (c1 · · · ck1),
Z = (z1 · · · zk2).

The purpose here is to label the mutations of B by using A. That is, we judge
whether each j-th column vector bj belongs to C or Z.
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k (K = 6)

C := (c1 · · · ck1
) ∈ {0, 1}n×k1

Z := (z1 · · · zk2
) ∈ {0, 1}n×k2

ZC

B := (b1 · · · bk1+k2
)

Figure 5.3: A graphical summary of the problem settings. In this problem set-
ting, we have a reliable mutation profile A and an unreliable mutation profile
B. Within column vectors in B, two types of column vectors exist: column
vectors with at least one true mutations (those in C) and those without any mu-
tations (those in Z). The purpose in this problem setting is to label each column
vectors of B: from C or from Z.

5.3.2 Assumptions for Given Profiles

We assume a binary matrix T ∈ {0, 1}c×k and clonal mixture matrix U ∈ Rn×c
≥0 ,

where c is the number of leaves in the phylogenetic tree. For T , we assume that the
tumor phylogeny satisfies the infinite sites assumption and T has a corresponding
phylogenetic tree with c leaves (Section 2.7). We also assume that row vectors
are disjoint. For U , every row vector of U is a simplex vector. From T and U ,
we assume that A is generated. That is,

Ai,j = h

((
1

2
UT

)
i,j

)
,

where

h(x) =

{
0 (x ≤ 0)

1 (x > 0)
.
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For C ∈ {0, 1}n×k1 and Z ∈ {0, 1}n×k2 , we assume that each column vector is
independently generated by the stochastic models below.

Ij ∼ Unif(·|1, k),
ξj,i ∼ Ber(·|f1),
cj,i = max(aIj ,i + ξj,i, 1),

zl,i ∼ Ber(·|f2),

where Unif(·|a, b) represents the discrete uniform distribution with the range
from a ∈ Z up to b ∈ Z, Ber(·|f) is the Bernoulli distribution with frequency of
f , 0 < f1 < 1, 0 < f2 < 1, j ∈ {1, · · · , k1}, l ∈ {1, · · · , k2}, and i ∈ {1, · · · , n}.
From the above stochastic models, we can see that each column vector cj has
an original template vector aIj with additive noise ξj as shown in Fig. 5.4, and
that each column vector zj does not have an original template vector as shown
in Fig. 5.5.
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C

aIj
cj ξj

Figure 5.4: The assumed generative model of each column vector in C. Letting
cj be the j-th column vector in C, cj has the original column vector aIj in A.
By adding a noise ξj to aIj , cj is obtained.
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Figure 5.5: The assumed generative model of each column vector in Z. Each
column vector in Z is simply obtained by adding noise.
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5.3.3 Labeling Methods

We set two labeling functions of L,Rr : {0, 1}n × {0, 1}n×k → {0, 1} as follows,

L(b, A) =

{
1 (∃j ∈ {1, · · · , k} s.t. b = aj)

0 (Otherwise)
, (5.1)

Rr(b, A) =

{
1 (

∑n
i=1 bi ≥ r)

0 (Otherwise)
. (5.2)

As we can see from the definition, L sets the label by using A, while Rr sets the
label by ignoring A and only use b. In other words, L leverages the limited pat-
terns of column vectors of A and Rr leverages the number of detected candidates.
Fig. 5.6 shows a graphical summary of labeling methods of L and Rr.

!"#$#%$#&
%'(&)&'$#

*'+,-#

./$'$)0(

n

k

111

2#-)'3-#4+/$'$)0(4,506)-# A

111

764%0(8)8$#($49)$:4%0-/+(4;#%$0584)(4<=4
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L

bj

Figure 5.6: A graphical summary for L and Rr. L checks the existence of a
consistent column vector in A. Rr only checks the number of detected candidate
in a given column vector from B.

5.3.4 Sensitivity and Specificity

We introduce several notations for evaluating the performance of classification as
follows.

TP(F,A,B) := | {j|j ∈ {1, · · · , k1 + k2}, F (bj , A) = 1, bj belongs to C} |,
FP(F,A,B) := | {j|j ∈ {1, · · · , k1 + k2}, F (bj , A) = 1, bj belongs to Z} |,
TN(F,A,B) := | {j|j ∈ {1, · · · , k1 + k2}, F (bj , A) = 0, bj belongs to Z} |,
FN(F,A,B) := | {j|j ∈ {1, · · · , k1 + k2}, F (bj , A) = 0, bj belongs to C} |,

where A ∈ {0, 1}n×k, B ∈ {0, 1}n×(k1+k2), and F : {0, 1}n × {0, 1}n×k → {0, 1}.
We will evaluate the expectation of sensitivity and specificity of L and Rr in
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the following sections.

EB

[
TP(F,A,B)

TP(F,A,B) + FN(F,A,B)

]
=

EB[TP(F,A,B)]

k1
(Sensitivity),

EB

[
TN(F,A,B)

FP(F,A,B) + TN(F,A,B)

]
=

EB[TN(F,A,B)]

k2
(Specificity),

where expectation EB is taken with respect to all the generated unreliable mu-
tation profile B.

5.4 Performance Evaluation

5.4.1 Performance Evaluation of L

Evaluation of EB [TN(L,A,B)]
k2

We evaluate the upper bound and lower bound for EB[FP(L,A,B)]. Letting K
be the number of unique columns in A, the lower bound can be derived as follows.

EB[FP(L,A,B)] = k2

K∑
j=1

(
n∏

i=1

f
aIj ,i
2 (1− f2)

1−aIj ,i

)

≥ k2K min
j∈{1,··· ,K}

(
n∏

i=1

f
aIj ,i
2 (1− f2)

1−aIj ,i

)
≥ k2Kmin(f2, 1− f2)

n

= k2Kf2
n,

where f2 := min(f2, 1− f2). The upper bound can also be derived as follows.

EB[FP(L,A,B)] = k2

K∑
j=1

(
n∏

i=1

f
aIj ,i
2 (1− f2)

1−aIj ,i

)

≤ k2K max
j∈{1,··· ,K}

(
n∏

i=1

f
aIj ,i
2 (1− f2)

1−aIj ,i

)
≤ k2Kmax(f2, 1− f2)

n

= k2Kf2
n
,

where f2 := max(f2, 1 − f2). From this, we can evaluate EB[TN(L,A,B)] as
follows.

(1−Kf2
n
) ≤ EB[TN(L,A,B)]

k2
≤ (1−Kf2

n). (5.3)

Evaluation of EB [TP(L,A,B)]
k1

From the linearity of the expectation, the expected number of true positives can
be written as follows.

EB[TP(L,A,B)] = EB

 k1∑
j=1

L(cj , A)

 =

k1∑
j=1

Pr(L(cj , A) = 1).
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The lower bound for Pr(L(cj , A) = 1) is as follows.

Pr(L(cj , A) = 1)

=

n∑
i=1

Pr

(
L(cj , A) = 1, cj s.t.

n∑
n′=1

aIj ,n′ = i

)

=
n∑

i=1

Pr

(
L(cj , A) = 1

∣∣∣∣∣cj s.t.
n∑

n′=1

aIj ,n′ = i

)
Pr

(
cj s.t.

n∑
n′=1

aIj ,n′ = i

)

=

n∑
i=1

wiPr

(
L(cj , A) = 1

∣∣∣∣∣cj s.t.

n∑
n′=1

aIj ,n′ = i

)

≥
n∑

i=1

wiPr

(
aIj = cj

∣∣∣∣∣cj s.t.
n∑

n′=1

aIj ,n′ = i

)
=

n∑
i=1

wi(1− f1)
(n−i),

∵) aIj = cj ⇒ L(cj , A) = 1,

where wi := Pr
(
cj s.t.

∑n
n′=1 aIj ,n′ = i

)
. From this,

EB[TP(L,A,B)] ≥ k1

n∑
i=1

wi(1− f1)
(n−i).

For obtaining the upper bound of EB[TP(L,A,B)], we focus on two things as
shown in Fig. 5.7. First, the number of column vectors in A that each cj can
correspond is at mostK. Second, the probability for each cj corresponding to one

column vector is at most f1
n−i

, where f1 := max(f1, 1−f1), and i =
∑n

n′=1 aIj ,n′ .
From this, we can obtain the upper bound for the conditional probability as
follows.

Pr

(
L(bj , A) = 1

∣∣∣∣∣cj s.t.
n∑

n′=1

aIj ,n′ = i

)
≤ Kf1

(n−i)
.

Then, the upper bound of EB[TP(L,A,B)] is as follows.

EB[TP(L,A,B)] ≤ k1

n∑
i=1

wiKf1
(n−i)

= k1K

n∑
i=1

wif1
(n−i)

.

Therefore,

Gn(w, (1− f1)) ≤
EB[TP(L,A,B)]

k1
≤ KGn(w, f1), (5.4)

where

w := (w1, · · · , wn),

Gn(x, f) :=
n∑

i=1

xif
(n−i).
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Figure 5.7: The key idea for obtaining the upper bound of EB[TP(L,A,B)].

5.4.2 Performance Evaluation of Rr

We can evaluate the specificity and sensitivity for Rr.

EB[TP(Rr, A,B)]

k1
= (k1)

−1EB

 k1∑
j=1

n∑
q=r

I{∑n
n′=1 cj,n′=q}


= (k1)

−1
k1∑
j=1

n∑
q=r

Pr

(
n∑

n′=1

cj,n′ = q

)

= (k1)
−1

k1∑
j=1

n∑
q=r

q∑
x=1

Pr

(
n∑

n′=1

bj,n′ = q, cj s.t.
n∑

n′′=1

aIj ,n′′ = x

)

= (k1)
−1

k1∑
j=1

n∑
q=r

q∑
x=1

wx n−xCq−x f
q−x
1 (1− f1)

n−q

=
n∑

q=r

q∑
x=1

wx n−xCq−x f
q−x
1 (1− f1)

n−q, (5.5)

EB[TN(Rr, A,B)]

k2
=

r−1∑
x=0

nCx (1− f2)
n−x fx

2

= 1−
n∑

x=r

nCx (1− f2)
n−x fx

2 . (5.6)
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5.4.3 Performance Evaluation Summary of L,Rr

Under the assumption described in Section 5.3.2, the expected value of specificity
and sensitivity for L,Rr can be summarized as follows.

EB[TN(Rr, A,B)]

k2
= 1−

n∑
x=r

nCx (1− f2)
n−x fx

2 , (5.7)

EB[TP(Rr, A,B)]

k1
=

n∑
q=r

q∑
x=1

wx n−xCq−x f
q−x
1 (1− f1)

n−q, (5.8)

(1−Kf2
n
) ≤ EB[TN(L,A,B)]

k2
≤ (1−Kf2

n), (5.9)

Gn(w, (1− f1)) ≤
EB[TP(L,A,B)]

k1
≤ KGn(w, f1), (5.10)

where

K : The number of disjoint columns in A,

w := (w1, · · · , wn),

wi := Pr

(
cj s.t.

n∑
n′=1

aIj ,n′ = i

)
,

Gn(x, f) :=
n∑

i=1

xif
(n−i),

f1 := max(f1, 1− f1),

f2 := max(f2, 1− f2),

f2 := min(f2, 1− f2).

From the evaluated values of specificity and sensitivity for L, we can expect
that we can expect a higher detection specificity because the number of K is
expected to be limited from Corollary 5.2.1. This does not hold true for Rr

because
∑n

x=r nCx will increase drastically as we decrease r.

5.5 Examples for Gn(x, f)

From the previous sections, we evaluate the expected values of specificity and
sensitivity for L. Instead of considering the mixture matrix U and phylogeny
matrix T , we evaluated them by considering wi = Pr

(
cj s.t.

∑n
n′=1 aIj ,n′ = i

)
.

In this section, we will give several settings for wi, and calculate its corresponding
specificity and sensitivity.

5.5.1 Several Examples of wi

Uniform case

Here we consider the uniform case as follows.

wi =
1

n
(∀i).
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In this case, Gn(w, f) for 0 < f < 1 can be evaluated as follows.

Gn(w, f) =
1

n

n∑
i=1

f (n−i)

=
1

n
fn

n∑
i=1

f−i

=
1

n
fn f

−1(1− f−n)

1− f−1

=
1

n
fn (1− f−n)

f − 1

=
1

n

(fn − 1)

f − 1
=

1

n

(1− fn)

1− f
.

Therefore, when we can evaluate the expected values of specificity and sensitivity
as follows.

EB[TP(L,A,B)]

k1
≥ Gn(w, (1− f1)) =

1

n

(1− (1− f1)
n)

f1
>

1

n
,

EB[TN(L,A,B)]

k2
≥ (1−Kf2

n
).

Exponential Case

Here we consider the exponential case as follows.

wi =
pi∑n
j=1 p

j
=

pi

p(1−pn)
1−p

,

where we assume p > 0, p ̸= 1. In this case, Gn(w, f) for 0 < f < 1, p ̸= f can
be evaluated as follows.

Gn(w, f) =
1

n

n∑
i=1

wif
(n−i)

=
(1− p)

p(1− pn)
fn

p
f (1−

(
p
f

)n
)

1− p
f

=
(1− p)

p(1− pn)

p(fn − pn)

f − p

=
(1− p)

(1− pn)

(fn − pn)

f − p
.

Gn(w, f) for 0 < f < 1, p = f can be evaluated as follows.

Gn(w, f) =
n∑

i=1

wif
(n−i) = n

fn(1− p)

p(1− pn)
.

From this, we can evaluate the specificity and sensitivity when p = 1 − f1 as
follows.

EB[TP(L,A,B)]

k1
≥ n

(1− f1)
n(1− p)

p(1− pn)
, (5.11)

EB[TN(L,A,B)]

k2
≥ (1−Kf2

n
). (5.12)
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When p ̸= 1− f1,

EB[TP(L,A,B)]

k1
≥ (1− p)

(1− pn)

((1− f1)
n − pn)

(1− f1)− p
, (5.13)

EB[TN(L,A,B)]

k2
≥ (1−Kf2

n
). (5.14)

5.6 Comparison of Specificity between L and Rr

Here we compare the specificity of L and Rr and consider when the phylogeny-
based labeling method L has a higher detection specificity than Rr. Because we
cannot exactly evaluate the expected specificity of L, we discuss the sufficient
condition as follows.

EB[TN(Rr, A,B)]

k2
≤ EB[TN(L,A,B)]

k2

⇐ EB[TN(Rr, A,B)]

k2
≤ 1−Kf2

n ∵) Eq. (5.32)

⇔ 1−
n∑

x=r

nCx (1− f2)
n−x fx

2 ≤ 1−Kf2
n
. (5.15)

As a result, we can obtain the following theorems of Theorem 5.6.1 and Theo-
rem 5.6.2. From these theorems, if n is a large number and r is a smaller number,
we can expect that L has a higher detection specificity than Rr.

Theorem 5.6.1. If 1
2 ≤ f2 < 1 and K ≤ 2 · 2min(⌊n

2
· 1−f2

f2
⌋,n−r) − 1, then

EB[TN(Rr, A,B)]

k2
≤ EB[TN(L,A,B)]

k2
.

Proof. If 1
2 ≤ f2 < 1, then f2 = f2. Therefore,

Eq. (5.15)

⇔ 1−
n∑

x=r

nCx (1− f2)
n−x fx

2 ≤ 1−Kf2
n

⇔ Kf2
n ≤

n∑
x=r

nCx (1− f2)
n−x fx

2

⇔ K ≤
n∑

x=r

nCx

(
1− f2
f2

)n−x

=

n−r∑
y=0

nCn−y

(
1− f2
f2

)y

=

n−r∑
y=0

nCy

(
1− f2
f2

)y

⇔ K ≤ 1 +

n−r∑
y=1

nCy

(
1− f2
f2

)y

.

The right-hand side can be lower bounded as follows.

1 +
n−r∑
y=1

nCy

(
1− f2
f2

)y

≥ 1 +
n−r∑
y=1

(
n

y
· 1− f2

f2

)y

.

Therefore,

Eq. (5.15) ⇐ K ≤ 1 +
n−r∑
y=1

(
n

y
· 1− f2

f2

)y

.
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Furthermore, we can obtain a lower bound for
∑n−r

y=1

(
n
y · 1−f2

f2

)y
as follows.

n−r∑
y=1

(
n

y
· 1− f2

f2

)y

≥
min(⌊n

2
· 1−f2

f2
⌋,n−r)∑

y=1

2y = 2 · 2min(⌊n
2
· 1−f2

f2
⌋,n−r) − 2

∵) n

y
· 1− f2

f2
≥ 2 ⇔ y ≤ n

2
· 1− f2

f2
.

From this,

Eq. (5.15) ⇐ K ≤ 2 · 2min(⌊n
2
· 1−f2

f2
⌋,n−r) − 1.

Theorem 5.6.2. If 0 < f2 <
1
2 and K ≤ 2

⌊n
2
· f2
1−f2

⌋+1 − 2r, then

EB[TN(Rr, A,B)]

k2
≤ EB[TN(L,A,B)]

k2
.

Proof. If 0 < f2 <
1
2 , then f2 = 1− f2. Therefore,

Eq. (5.15) ⇔ K ≤
n∑

x=r

nCx

(
f2

1− f2

)x

⇐ K ≤
n∑

x=r

(
n

x
· f2
1− f2

)x

.

The sufficient condition is obtained by evaluating the lower bound for
∑n

x=r nCx

(
f2

1−f2

)x
.

Furthermore, we can obtain a lower bound for
∑n

x=r

(
n
x · f2

1−f2

)x
as follows.

n∑
x=r

(
n

x
· f2
1− f2

)x

≥
⌊n
2
· f2
1−f2

⌋∑
x=r

2x,

∵) n

x
· f2
1− f2

≥ 2 ⇔ x ≤ n

2
· f2
1− f2

.

From this,

Eq. (5.15) ⇐ K ≤
⌊n
2
· f2
1−f2

⌋∑
x=r

2x = 2
⌊n
2
· f2
1−f2

⌋+1 − 2r.

5.6.1 Examples of Performance

Here, we would like to evaluate the performance in several settings of f1, f2, w, n,
K, r. For w, we sample w from Dirichlet(·|(α, · · · , α)), where α = 1.0, and take
the average of the performance. The following procedure is used for evaluation.

1) Conduct the following procedures 100 times and take the average of ex-
pected specificity and sensitivity for each f1, f2, n, K, r (If we cannot
evaluate the exact value, we take the average of the upper or lower bound).
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1-a) Sample w ∼ Dirichlet(·|(α, · · · , α)), where α = 1.0.

1-b) Evaluate the lower (upper) bound of EB [TP(L,A,B)]
k1

and EB [TN(L,A,B)]
k2

.

1-c) If the lower (upper) bound > 1.0, substitute 1.0 for the bound.

1-d) If the lower (upper) bound < 0.0, substitute 0.0 for the bound.

1-e) Evaluate EB [TP(Rr,A,B)]
k1

and EB [TN(Rr,A,B)]
k2

.

For the case of n = 20 and r ∈ {1, 3, 5}, we summarized the results in the
following figures of Figs. 5.8 to 5.16. For the case of n = 10 and r ∈ {1, 3, 5}, see
Figs. D.5 to D.13.

We show the performance evaluation results of Rr in Figs. 5.8 to 5.10. For
the performance evaluation of Rr, K does not affect the performance and we
only examined the case of K = 30. For the specificity of R1, R3, R5, only when
f2 is close to 0.0, detection specificity is high. However the detection specificity
drastically decreases as f2 increases. For the sensitivity of R1, R3, R5, they have
enough high detection sensitivity for almost all the cases. From this, when f2 is
close to 0.0, Rr is a useful detection method but Rr can be a meaningless method
when f2 is relatively high due to the drastic decrease of specificity.

The performance evaluation results of L are shown in Figs. 5.11 to 5.16. For
the specificity of L, when f2 is around 0.5, detection specificity is high and the
evaluated bounds are meaningless when f2 is close to 0 or 1. For the sensitivity
of L, detection sensitivity is from 5% to 40%. From this, we can detect a somatic
mutation in a patient with high specificity and moderate (but not ignorable)
sensitivity.

Performance of R1 at n = 20, K = 30

Figure 5.8: Specificity and sensitivity of R1 at n = 20, K = 30.
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Performance of R3 at n = 20, K = 30

Figure 5.9: Specificity and sensitivity of R3 at n = 20, K = 30.

Performance of R5 at n = 20, K = 30

Figure 5.10: Specificity and sensitivity of R5 at n = 20, K = 30.
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Performance of L at n = 20, K = 30

Figure 5.11: Lower and upper bounds for the sensitivity of L at n = 20, K = 30.

Figure 5.12: Lower and upper bounds for the specificity of L at n = 20, K = 30.

89



Performance of L at n = 20, K = 50

Figure 5.13: Lower and upper bounds for the sensitivity of L at n = 20, K = 50.

Figure 5.14: Lower and upper bounds for the specificity of L at n = 20, K = 50.
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Performance of L at n = 20, K = 100

Figure 5.15: Lower and upper bounds for the sensitivity of L at n = 20, K = 100.

Figure 5.16: Lower and upper bounds for the specificity of L at n = 20, K = 100.

5.7 Performance Evaluation with Dropout Events

In the actual sequencing data sets, depth coverage is not enough for all the
genomic positions and tumor regions. For example, the dropout event is well
known in single-cell RNA sequencing data sets, and zero coverage is observed in
many samples. We consider such dropout events, in which we could not obtain
enough sequencing depth and we cannot expect enough detection sensitivity.
In this section, we show the problem settings for dropout events and labeling
methods in this case, and then we will evaluate the expected specificity and
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sensitivity with observed dropout events.

5.7.1 Given Dropout Profile
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) ∈ {0, 1}n×k2
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B := (b1 · · · bk1+k2
)

Figure 5.17: A graphical summary for the problem setting with dropout events.

We additionally defined the dropout events profile as follows (Fig. 5.17).

D := (d1, · · · ,dk) ∈ {0, 1}n×(k1+k2),

dj ∈ {0, 1}n,

sj :=

n∑
n′=1

dj,n′ ,

k1(s) = |{cj |sj = s}|,
k2(s) = |{zj |sj = s}|,

where dj ∈ {0, 1}n represents the j-th column vector of D and Dn′,k′ = 1 means
that sequence depth is sufficient and Dn′,k′ = 0 means that dropout event occurs
in the n′-th data set at k′-th genomic position. sj is the number of dropout events
in the j-th genomic position. k1(s) is the number of column vectors in C such
that sj = s. k2(s) is the number of column vectors in Z such that sj = s.

We assume that the profile of dropout events D are independent of B, i.e.,
Ij ,cj ,ξj , and zj . Therefore, even after we observed D, we can evaluate the ex-
pected specificity and sensitivity similarly to the previous section.

5.7.2 Labeling Functions Given Dropout Events

Given the observation of dropout events, we set two labeling functions of L∗, R∗
r :

{0, 1}n × {0, 1}n×k × {0, 1}n → {0, 1} as follows,

L∗(b, A,d) =

{
1 (∃j ∈ {1, · · · , k} s.t. d⊙ b = d⊙ aj)

0 (Otherwise)
, (5.16)

R∗
r(b, A,d) =

{
1 (

∑n
i=1 bidi ≥ r)

0 (Otherwise)
, (5.17)
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where ⊙ represents the Hadamard product as follows.
x1
x2
...
xn

⊙


y1
y2
...
yn

 =


x1y1
x2y2
...

xnyn

 .

As we can see from the definitions of L∗, R∗
r , these labeling function is a version

of L,Rr to consider the dropout events.

5.7.3 Performance Given Dropout Profile

We define the following values for evaluating the performance as follows.

TP(F,A,B, s|D) := |{j|j ∈ {1, · · · , k1 + k2}, F (bj , A,dj) = 1, bj belongs to C, sj = s}|,
TN(F,A,B, s|D) := |{j|j ∈ {1, · · · , k1 + k2}, F (bj , A,dj) = 0, bj belongs to Z, sj = s}|,
FP(F,A,B, s|D) := |{j|j ∈ {1, · · · , k1 + k2}, F (bj , A,dj) = 1, bj belongs to Z, sj = s}|,
FN(F,A,B, s|D) := |{j|j ∈ {1, · · · , k1 + k2}, F (bj , A,dj) = 0, bj belongs to C, sj = s}|.

The total evaluation for the expected number of specificity and sensitivity can
be obtained as follows.

EB|D [
∑n

s=0TP(F,A,B, s|D)]

k1
=

n∑
s=0

k1(s)

k1
EB|D [TPR(F,A,B, s|D)] (Sensitivity),

EB|D [
∑n

s=0TN(F,A,B, s|D)]

k2
=

n∑
s=0

k2(s)

k2
EB|D [TNR(F,A,B, s|D)] (Specificity),

where

TPR(F,A,B, s|D) :=

{
TP(F,A,B,s|D)

k1(s)
(k1(s) > 0)

0 (k1(s) = 0)
,

TNR(F,A,B, s|D) :=

{
TN(F,A,B,s|D)

k2(s)
(k2(s) > 0)

0 (k2(s) = 0)
,

and EB|D is taken with respect to all the B after the dropout profile is observed.

5.7.4 Performance for Each s

The performance for each s = 0, 1, · · · , n can be evaluated similarly. For s = 0,
the performance is as follows when k(0) > 0.

EB|D [TN(R∗
r , A,B, 0|D)]

k2(0)
= 1, (5.18)

EB|D [TP(R∗
r , A,B, 0|D)]

k1(0)
= 0, (∵ we set r ≥ 1) (5.19)

EB|D [TN(L∗, A,B, 0|D)]

k2(0)
= 1, (5.20)

EB|D [TP(L∗, A,B, 0|D)]

k1(0)
= 0. (5.21)
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For s > 0, the performance is as follows when k(s) > 0.

EB|D[TN(R
∗
r , A,B, s|D)]

k2(s)
= 1−

s∑
x=r

sCx(1− f2)
s−xfx

2 , (5.22)

EB|D[TP(R
∗
r , A,B, s|D)]

k1(s)
=

s∑
q=r

q∑
x=1

wx s−xCq−xf
q−x
1 (1− f1)

s−q, (5.23)

(1−K(s)f2
s
) ≤

EB|D [TN(L∗, A,B, s|D)]

k2(s)
≤ (1−K(s)f2

s), (5.24)

Gs(ws, (1− f1)) ≤
EB|D [TP(L∗, A,B, s|D)]

k1(s)
≤ K(s)Gs(ws, f1),

(5.25)

where

ws,i := Pr(cj s.t.

n∑
n′=1

aIj ,n′dj,n′ = i|sj = s),

ws := (ws,1, · · ·ws,s),

K(d) : # of disjoint vectors in {aj |dj = d},
K(s) := max

dj s.t.
∑n

n′=1 dj,n′=s
K(dj),

K(s) := max
dj s.t.

∑n
n′=1 dj,n′=s

K(dj).

5.8 Evaluation with Insufficient Coverage

Here, we also evaluate the performance of detection in insufficient coverage. In
this case, we assume that original detection sensitivity is less than 100% due
to the insufficient depth coverage. For example, Oxford nanopore long-read
sequencer can generate around 30Gb˜50Gb per one flow cell of MinION se-
quencer (500$˜1000$). Therefore, if we want to guarantee 100 depth coverage
for 10 sequenced tumor samples, we require about 50,000$˜100,000$. Due to
the limitation of the budget, we would like to assume that depth coverage is
not enough for all the positions and the original detection sensitivity is less than
100%.

5.9 Insufficient Coverage Assumptions for Given Profiles

We assume the following stochastic models for each column.

Ij ∼ Unif(·|1, k),
ξj,i ∼ Ber(·|ftp),
ϵj,i ∼ Ber(·|ffp),
cj,i = aIj ,iξj,i + (1− aIj ,i)ϵj,i,

zl,i ∼ Ber(·|ferr),

where 0 < ftp < 1, 0 < ffp < 1, 0 < ferr < 1, j ∈ {1, · · · , k1}, l ∈ {1, · · · , k2}, and
i ∈ {1, · · · , n}. From the above stochastic models, we can see that each column
vector cj has an original template vector aIj with noises of ξj and ϵj , and that
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each column vector zj has no original template vectors. Under this assumption,
we assume false negative events and cj,i = 0 can happen even if the corresponding
template have the muattion and aIj ,i = 1.

5.10 Performance Evaluation

5.10.1 Performance Evaluation of L

Evaluation of EB [TN(L,A,B)]
k2

We evaluate the upper bound and lower bound for EB[FP(L,A,B)]. The lower
bound can be derived as follows.

EB[FP(L,A,B)] = k2

K∑
j=1

(
n∏

i=1

f
aIj ,i
err (1− ferr)

1−aIj ,i

)

≥ k2K min
j∈{1,··· ,K}

(
n∏

i=1

f
aIj ,i
err (1− ferr)

1−aIj ,i

)
≥ k2Kmin(ferr, 1− ferr)

n

= k2Kferr
n,

where ferr := min(ferr, 1− ferr). The upper bound can also be derived as follows.

EB[FP(L,A,B)] = k2

K∑
j=1

(
n∏

i=1

f
aIj ,i
err (1− ferr)

1−aIj ,i

)

≤ k2K max
j∈{1,··· ,K}

(
n∏

i=1

f
aIj ,i
err (1− ferr)

1−aIj ,i

)
≤ k2Kmax(ferr, 1− ferr)

n

= k2Kferr
n
,

where ferr := max(ferr, 1− ferr). From this, we can estimate EB[TN(L,A,B)] as
follows.

(1−Kferr
n
) ≤ EB[TN(L,A,B)]

k2
≤ (1−Kferr

n). (5.26)

Evaluation of EB [TP(L,A,B)]
k1

From the linearity of the expectation, the expected number of true positives can
also be written as follows.

EB[TP(L,A,B)] = EB

 k1∑
j=1

L(cj , A)

 =

k1∑
j=1

Pr(L(cj , A) = 1).
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The lower bound of Pr(L(cj , A) = 1) is as follows.

Pr(L(cj , A) = 1)

=
n∑

i=1

Pr

(
L(cj , A) = 1, cj s.t.

n∑
n′=1

aIj ,n′ = i

)

=

n∑
i=1

Pr

(
L(cj , A) = 1

∣∣∣∣∣cj s.t.

n∑
n′=1

aIj ,n′ = i

)
Pr

(
cj s.t.

n∑
n′=1

aIj ,n′ = i

)

=

n∑
i=1

wiPr

(
L(cj , A) = 1

∣∣∣∣∣cj s.t.

n∑
n′=1

aIj ,n′ = i

)

≥
n∑

i=1

wiPr

(
aIj = cj

∣∣∣∣∣cj s.t.

n∑
n′=1

aIj ,n′ = i

)
=

n∑
i=1

wif
i
tp(1− ffp)

(n−i).

From this,

EB[TP(L,A,B)] ≥ k1(1− ffp)
n

n∑
i=1

wi

(
ftp

1− ffp

)i

.

For obtaining the upper bound of EB[TP(L,A,B)], we also focus on two things.
First, the number of column vectors in A that each cj can correspond is at most
K. Second, the probability for each cj corresponding to one column vector is

at most ftp
i
ffp

n−i
, where ftp := max(ftp, 1 − ftp), ffp := max(ffp, 1 − ffp), and

i =
∑n

n′=1 aIj ,n′ . From this, we can obtain the upper bound for the conditional
probability as follows.

Pr

(
L(bj , A) = 1

∣∣∣∣∣cj s.t.

n∑
n′=1

aIj ,n′ = i

)
≤ Kftp

i · ffp
(n−i)

.

Then, the upper bound of EB[TP(L,A,B)] is as follows.

EB[TP(L,A,B)] ≤ k1

n∑
i=1

wiKftp
i · ffp

(n−i)
= k1Kffp

n
n∑

i=1

wj

(
ftp/ffp

)i
.

Therefore,

fn
tp ·Gn

(
w,

1− ffp
ftp

)
≤ EB[TP(L,A,B)]

k1
≤ Kftp

n ·Gn

(
w, ffp/ftp

)
. (5.27)

5.10.2 Performance Evaluation of Rr

Here, we evaluate the specificity and sensitivity for Rr.

EB[TP(Rr, A,B)]

k1

= (k1)
−1EB

 k1∑
j=1

n∑
q=r

I{∑n
n′=1 cj,n′=q}


= (k1)

−1
k1∑
j=1

n∑
q=r

Pr

(
n∑

n′=1

cj,n′ = q

)

= (k1)
−1

k1∑
j=1

n∑
q=r

q∑
x=1

Pr

(
n∑

n′=1

bj,n′ = q, cj s.t.
n∑

n′′=1

aIj ,n′′ = x

)

96



= (k1)
−1

k1∑
j=1

n∑
q=r

q∑
x=1

Pr

(
n∑

n′=1

bj,n′ = q, cj s.t.
n∑

n′′=1

aIj ,n′′ = x

)

= (k1)
−1

k1∑
j=1

n∑
q=r

q∑
x=1

wxPr

(
n∑

n′=1

bj,n′ = q

∣∣∣∣∣cj s.t.
n∑

n′′=1

aIj ,n′′ = x

)

=

n∑
q=r

q∑
x=1

wx

min(x,q)∑
y=max(0,q−n+x)

xCy f
y
tpf

(x−y)
fn · n−xCq−yf

(q−y)
fp (1− ffp)

(n−x−q+y),

(5.28)

EB[TN(Rr, A,B)]

k2
= 1−

n∑
x=r

nCx (1− ferr)
n−x fx

err. (5.29)

5.10.3 Performance Evaluation Summary of L,Rr

Under the insufficient coverage assumption described in Section 5.9, the expected
value of specificity and sensitivity for L,Rr can be summarized as follows.

EB[TN(Rr, A,B)]

k2
= 1−

n∑
x=r

nCx (1− ferr)
n−x fx

err, (5.30)

EB[TP(Rr, A,B)]

k1

=
n∑

q=r

q∑
x=1

min(x,q)∑
y=max(0,q−n+x)

wx · xCy f
y
tpf

(x−y)
fn · n−xCq−yf

(q−y)
fp (1− ffp)

(n−x−q+y),

(5.31)

(1−Kferr
n
) ≤ EB[TN(L,A,B)]

k2
≤ (1−Kferr

n), (5.32)

fn
tp ·Gn

(
w,

1− ffp
ftp

)
≤ EB[TP(L,A,B)]

k1
≤ Kftp

n ·Gn

(
w, ffp/ftp

)
, (5.33)

where

K : The number of disjoint columns in A,

w := (w1, · · · , wn),

wi := Pr

(
cj s.t.

n∑
n′=1

aIj ,n′ = i

)
,

Gn(x, f) :=

n∑
i=1

xif
(n−i),

ftp := max(ftp, 1− ftp),

ffp := max(ffp, 1− ffp),

ferr := max(ferr, 1− ferr),

ferr := min(ferr, 1− ferr).

5.11 Discussion

In this chapter, we consider whether or not tumor phylogeny is useful for pre-
dicting the somatic mutations in at least one tumor region under two different
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assumptions.
First, we assume that sensitivity is 100% for predicting each somatic mutation

in each tumor region. Under this setting, we evaluate the expected specificity and
sensitivity of two prediction methods: L which leverages the property of tumor
phylogeny and Rr which does not use the tumor phylogeny. By comparing the
lower bound of the expected specificity of L and the expected specificity of Rr, we
derive a sufficient condition for L to have a higher detection specificity than Rr.
From the sufficient condition, L is expected to have a higher detection specificity
than Rr when the number of samples is large and r is small. Second, we addi-
tionally assume insufficient depth coverage. This additional assumption considers
the practical settings of sequencing technologies: dropout events in single-cell se-
quencing and insufficient depth coverage in Oxford nanopore sequencing. Under
this additional assumption, we also evaluated the expected specificity and sensi-
tivity of L and Rr.
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Chapter 6

Conclusion

6.1 Summary

Cancer is driven by genomic alterations. Profiles of genomic alterations provide
the most important information in cancer genomics, and almost all of the analysis
in this field is based on the profiles of genomic alterations. For example, from
these profiles, researchers infer the origin of the tumor evolution and medical
doctors search the optimal therapy for the individual cancer patient. Therefore,
the detection method of somatic mutations is one of the most important anal-
ysis methods in this field, and the improvement of the accuracy is expected to
affect all the other analyses. To achieve better detection accuracy, incorporat-
ing NGS data specific properties or biological prior knowledge is expected to be
important. However, due to the deficiency in incorporating these properties or
prior knowledge in existing methods, there remains room for performance im-
provement in such fundamental and important analysis methods. In this thesis,
we found a design of the Bayesian hierarchical model to incorporate these in-
formation sources, evaluate the effectiveness of biological prior knowledge, and
constructed an accurate detection method of somatic mutations.

In chapter 3, we proposed a somatic mutation calling method named as
OHVarfinDer for the single-tumor-based approach. Our method incorporates the
multiple NGS data specific properties and improves detection performance by in-
tegrating multiple Bayesian hierarchical models into one model by partitioning-
based model integration. Unlike the Bayesian model averaging, our design of
the Bayesian model does not require additional hyperparameter settings, which
simplifies the construction of the Bayesian models. This is an advantage of
partitioning-based model integration because we can ignore the additional hy-
perparameters.

In chapter 4, we presented a multiple-tumor-based mutation calling method
termed MultiMuC. Within MultiMuC, we reflected two ideas for performance
improvement in multiple-tumor-based mutation call in which the mutation shar-
ing assumption is applied. First, we focused on the No-TP case: we could expect
mutation candidates in multiple regions, but actually, no true mutations exist.
In the No-TP case, reflecting the mutation sharing assumption only degrade
the detection performance. Hence, we evaluated the probability of No-TP case
and found that high detection specificity and the existence of enough number
of detected candidates can decrease the probability of the No-TP case. From
this, MultiMuC incorporates the specificity of detection and the number of de-
tected candidate to avoid the No-TP case. Second, we considered the manner of
integrating the NGS data specific properties in multiple-tumor-based mutation
call. To incorporate NGS data specific properties, we try to use data genera-
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tion probabilities within existing single-tumor-based mutation calling methods.
For using these data generation probabilities, we proposed Bayes-factor-based
model construction. Through Bayes-factor-based model construction, we guar-
anteed that Bayes factors are sufficient for obtaining the consistent maximum
a posteriori (MAP) state even when the data generation probabilities are not
directly available and Bayes factors are available instead. Based on this idea,
the Bayesian model of MultiMuC is constructed based on the Bayes factors from
another existing single-tumor-based mutation calling method.

In chapter 5, we examined the effectiveness of tumor phylogeny for patient-
wise mutation call (detecting each mutation for a patient not for each tumor
region) from multi-regional tumor sequence data sets. To consider this, we set
several assumptions for generating the results of mutation calling. Under the
assumptions, we evaluated the expected specificity and sensitivity of the tumor-
phylogeny-based detection method and the non-tumor-phylogeny-based detection
method. From these evaluations, we found that tumor phylogeny is effective for
predicting each mutation in a patient in particular situations.

6.2 Future Work

6.2.1 Application of Mutation Sharing Assumption for Copy Number
Alterations or Structural Variations

In this thesis, we proposed two ideas for improving multiple-tumor-based muta-
tion call: avoiding the No-TP case and Bayes-factor-based model construction.
Based on these two ideas, we showed that the improvement of the detection per-
formance is possible. In this thesis, we only focused on the single nucleotide
variations (SNVs) and short insertions and deletions (InDels), but did not con-
sider the copy number alterations (CNAs) or structural variations (SVs). For
the future direction, it is valuable to check the effectiveness of mutation sharing
assumption for detection of CNAs or SVs and it is also valuable to implement an
extension of MultiMuC to detect CNAs or SVs.

6.2.2 Application of Tumor Phylogeny for Mutation Call in Multi-
Regional Tumor Sequence Data Sets

In this thesis, we considered the effectiveness of tumor phylogeny in patient-wise
mutation call (detecting each somatic mutation in a patient) from multi-regional
tumor sequence data sets under several assumptions. For the future direction,
there remain two types of research work.

First, by applying this idea to the real data sets, it is possible to detect somatic
mutations in repeat regions or pseudogenes, which cannot be detected by Illumina
sequencer previously. For example, we prepare two types of mutation profiles from
multi-regional tumors. For the first mutation profile, we use Illumina sequencer
with enough depth. For the second mutation profile, we use Oxford nanopore
sequencer with enough depth. From these two profiles, we can use the property
of tumor phylogeny and may predict a mutation (which cannot be detected by
Illumina sequencer previously) in a patient. Therefore, the application of our idea
may break through the current limitations of Illumina-sequencer-based mutation
call and high error rates of the Oxford nanopore sequencers. Although it may
require a lot of budgets to apply our idea in current technologies, the application
of our idea may lead to treasure-like discovery in the field of cancer genomics,
and the application of our idea can be valuable research work.
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Second, it is still ambiguous whether or not tumor phylogeny is effective
for region-wise mutation call (detecting each somatic mutation in each tumor
region). For this problem, we privately developed and tested about 15 Bayesian
models, but none of them cannot successfully improve the detection performance,
unfortunately. It may also be a helpful research work to consider the effectiveness
of tumor phylogeny for the region-wise mutation call.
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Appendix

A Comparison of Partitioning-based Model Integration and Bayesian
Model Averaging

A.1 Generative Model in Bayesian Model Averaging

Here, we explain the details of the generative model that extends the existing
methods of HapMuC and OVarCall based on Bayesian model averaging. To
avoid confusion, we express the probability to which we apply Bayesian model
averaging as Pr(BMA)(·) and express the probability defined in OHVarfinDer (to
which we apply partitioning-based model integration) as Pr(PBMI)(·).

n

Hk

D ∈ {T,N}

k

ΘS,k

!"#$%#&%&'$($%)*+

,-*$%.$/0.&%1&-2$*)*+

345-*$%.$/0.&%1&-2$)*+

rD,nzD,n

H

Figure A.1: Graphical model for the generative models to which we apply
Bayesian model averaging. S ∈ {M,E} represents the hypothesis.

We show the graphical summary of the generative model to which we apply
Bayesian model averaging in Fig. A.1. By using Pr(PBMI)(·), Pr(BMA)(·) can be
expressed as follows.

Pr(BMA)(RNT|MS)

=

4∑
k=0

Pr(BMA)(H = k)

∫
Pr(PBMI)(ΘS,k|MS)Pr

(BMA)(RNT,ZNT|ΘS,k, H = k)dZNTdΘS,k,

where

Pr(BMA)(RNT,ZNT|ΘS,k,H = k)

=
∏

D∈{N,T}

dD∏
n=1

Pr(PBMI)(zD,n|ΘS,k,MS,k)Pr
(PBMI)(rD,n|zD,n,Hk),

Pr(BMA)(H = k) =
1

5
.
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A.2 Experimental Results

Based on the simulation data sets prepared in Section 3.5.1, we compared the
performance of OHVarfinDer and the Bayesian model averaging-based methods
in Section A.1 as summarized by the following table of Table A.1. When no
properties are available, the Bayesian model averaging-based method performs
comparably with OHVarfinDer. However, when at least one property is available,
OHVarfinDer performs better than the Bayesian model averaging-based method.
From this, partitioning-based model integration is more suited to the incorpora-
tion of multiple sequence data specific properties than Bayesian model averaging.

Table A.1: Comparison of AUC in simulation data sets

v(%) HeteroSNPs Overlap
Distance
to SNP

µl σl OHVarfinDer BMA

A 5 - - 500-5000 300 30 0.828 0.826
10 - - 0.891 0.889
20 - - 0.967 0.965

B 5 - + 500-5000 180 30 0.938 0.911
10 - + 0.958 0.945
20 - + 0.989 0.989

C 5 + - 1-100 300 30 0.880 0.852
10 + - 0.916 0.885
20 + - 0.986 0.973

D 5 + + 1-100 180 30 0.943 0.908
10 + + 0.975 0.951
20 + + 0.994 0.989

B Comparison of Partitioning-based Model Integration and Su-
pervised Learning Methods

In the main text at Chapter 3, we only considered an extension of existing mu-
tation calling methods of OVarCall and HapMuC which are based on Bayesian
statistics, and proposed the partitioning-based model integration. However, we
did not consider a method based on supervised learning methods. Here, we would
like to compare our methods of OHVarfinDer and other supervised learning meth-
ods based on the simulation data sets prepared in Section 3.5.1.

As a counterpart method, we prepared random forest [7], AdaBoost [20], and
XGBoost [8], and all of these methods use the P-value of Fisher’s exact test and
the Bayes factors of OVarCall and HapMuC. In this experiment, we collected the
training data sets from all the 12 settings of simulation data sets and trained
the model, and measured the AUC of the ROC curve for each setting. Figs. B.2
to B.4 summarized the difference of AUC values (the supervised method minus
OHVarfinDer) in 12 simulation settings at the different proportion of training
data sets, and orange-colored box shows the P-value of the paired t-test is less
than 0.01.

From these results, partitioning-based model integration performs better than
the supervised learning methods when the proportion of the training data set is
extremely small around 0.1% and 0.5%. When the proportion of the training
data set is around 1% and 10%, partitioning-based model integration performs
comparably with the supervised learning methods. When the proportion of the
training data set is ≥ 30%, XGBoost performs better than partitioning-based
model integration. Therefore, partitioning-based model integration is suited for
incorporating multiple sequence data specific properties when we cannot use the
sufficient number of training data sets.
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Figure B.2: Comparison of partitioning-based model integration and AdaBoost
in different size of training data sets based on 12 settings of simulation data sets
in Section 3.5.1.

Figure B.3: Comparison of partitioning-based model integration and random
forest in different size of training data sets based on 12 settings of simulation
data sets in Section 3.5.1.

Figure B.4: Comparison of partitioning-based model integration and XGBoost
in different size of training data sets based on 12 settings of simulation data sets
in Section 3.5.1.
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C Effects of Error Data Generation Model in Higher Depth

In our method of OHVarfinDer, we set the different joint probability in higher
depth condition in which depth coverage ≥ 100. Here, we would like to show
that this setting of joint probability is effective for detecting somatic mutations
in exome sequence data sets with higher depth coverage. For the data set, we used
the exome sequence data sets of renal clear-cell carcinoma which are introduced
in Section 3.5.2. We summarized the results in Table C.2. Within this table,
OHVarfinDer(LD) does not change the joint probability of error data generation
model and OHVarfinDer(HD) changes the joint probability when depth coverage
≥ 100. As we can see from this table, changing the joint probability in the error
data generation model improves the detection performance.

Table C.2: Comparison of AUC in exome sequence data sets

SNV/InDel VAF OHVarfinDer(LD) OHVarfinDer(HD) #SNV #Error

SNV 2-7% 0.935 0.990 52 2422
SNV 7%- 0.979 0.988 184 1982

D Performance Evaluation Summary of L and Rr at n = 10

In this section, we show the performance evaluation summaries of L and Rr when
the detection sensitivity of region-wise mutation call is 100% and n = 10.

Performance of R1 at n = 10, K = 30

Figure D.5: Specificity and sensitivity of R1 at n = 10, K = 30.
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Performance of R3 at n = 10, K = 30

Figure D.6: Specificity and sensitivity of R3 at n = 10, K = 30.

Performance of R5 at n = 10, K = 30

Figure D.7: Specificity and sensitivity of R5 at n = 10, K = 30.
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Performance of L at n = 10, K = 30

Figure D.8: Lower and upper bounds for the sensitivity of L at n = 10, K = 30.

Figure D.9: Lower and upper bounds for the specificity of L at n = 10, K = 30.
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Performance of L at n = 10, K = 50

Figure D.10: Lower and upper bounds for the sensitivity of L at n = 10, K = 50.

Figure D.11: Lower and upper bounds for the specificity of L at n = 10, K = 50.
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Performance of L at n = 10, K = 100

Figure D.12: Lower and upper bounds for the sensitivity of L at n = 10, K = 100.

Figure D.13: Lower and upper bounds for the specificity of L at n = 10, K = 100.
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S. Knappskog, M. Kool, S. R. Lakhani, C. López-Ot́ın, S. Martin, N. C. Mun-
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