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Abstract

Machine learning can be interpreted as dissimilarity learning using a program. The class
of dissimilarity measures given by space forms is considered an appropriate class because
it describes an adequate range of dissimilarity measures and provides simple optimization
and implementation. Limited research has been conducted on the applications of space
forms in terms of fundamental elements of machine learning that include modelling, opti-
mization, and evaluation. Specifically, (i) the models for learning dissimilarity measures in
the data domain using ordinal data or multi-relational graph data have not been studied;
(ii) the two major optimization methods (i.e., the natural gradient and the Riemannian
gradient methods) have not been compared; (iii) evaluation methods for machine learning
over space forms have not been discussed. This study is aimed at solving these issues by
(a) proposing methods for dissimilarity learning over (non-Euclidean) space forms appli-
cable for ordinal data or multi-relational graph data, utilizing the distance function and
the exponential map, (b) drawing theoretical comparisons among first-order stochastic op-
timization methods using the traditional Euclidean metric, the natural gradient method,
and the Riemannian gradient method in the machine-learning setting, and (c) proposing
a model evaluation method based on the minimax regret principle that is a primitive
evaluation principle that does not require any statistical data-distribution assumptions.
These three solutions provide the foundations for machine learning over space forms.
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Chapter 1

Introduction

This chapter formulates the issues that we have considered in this thesis. First, the
interpretation of machine learning as dissimilarity learning is discussed, which is followed
by an introduction to space forms and their advantages in machine-learning applications.
Finally, the issues in machine learning over space forms are discussed, which is followed by
an introduction to the fundamental elements of machine learning; based on the discussion,
we list the research questions and propose their solutions.

1.1 Machine Learning and Dissimilarity
Learning can be defined as a procedure implemented using a program to improve the
measures of performance P of tasks T through experience E. (Mitchell, 1997). In reality,
a T can be a prediction, clustering, generation, or description. Correspondingly, P can be
the accuracy of a prediction, effectiveness of clustering, reality of generation, or conciseness
of a description. E can be data in the past. This definition of learning does not require
an explicit description of what is being learnt through machine learning. However, to
discuss the validity or improvement of machine learning tasks, no explicit description
of what is learnt by machine learning is inconvenient. Although there can be different
ways of describing how a model learns through machine learning, the interpretation of
machine learning as dissimilarity learning over a data space is preferred. Based on this
interpretation, we reformulate machine-learning tasks in terms of dissimilarity learning.
Examples of such a reformulation are presented below.

Example 1.1.1 (Machine learning tasks as dissimilarity learning).
Classification and Regression Classification and regression are tasks aimed at finding an

appropriate map f from feature domain X to domain Y. Domain Y is a discrete set
in the case of the classification task, called label domain, and a continuous space
in the case of the regression task, called the objective domain. Here, f is called a
classifier or regressor, and f(x) indicates the class label or estimator of feature x.
Classification and regression are considered tasks aimed at finding an appropriate
set (c, d), where c : Y → X indicates the “center” of the class or value y ∈ Y by
c(y) for each class or value y, and d : X × X → R is a dissimilarity measure that
indicates the dissimilarity between x1 ∈ X and x2 ∈ X by d(x1, x2). Here, the
classifier or regressor map f is given by

f(x) := argmin
y∈Y

{d(c(y), x)}. (1.1)

Clustering Clustering is a task aimed at finding an appropriate map i : X × X → {0, 1}
over data domain X that is called a cluster identifier, where i(x1, x2) = 0 indicates
that data x1 and x2 belong to the same cluster, and i(x1, x2) = 1 indicates that data
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x1 and x2 belong to different clusters. Clustering is a task aimed at finding an appro-
priate set (K, c, d), where K ∈ Z≥0 is the number of clusters, c : {1, 2, · · · ,K} → X
indicates the center of cluster k by c(k), and d : X × X → R is a dissimilarity
measure that indicates the dissimilarity between x1 ∈ X and x2 ∈ X by d(x1, x2).
Here, cluster identifier i is given by

i(x0, x1) :=

{
1 if c(x0) = c(x1)

0 if c(x0) ̸= c(x1)
(1.2)

Generation Generation is a task aimed at finding an appropriate distribution in data
domain X . p : X → R denotes the probability density function p on some base
measure λX of the appropriate distribution. Generation is considered a task aimed
at finding an appropriate set (c0, d), where c0 ∈ X indicates the center of the data
domain, and d : X×X → R is a dissimilarity measure that indicates the dissimilarity
between x1 ∈ X and x2 ∈ X by d(x1, x2). Here, the probability density function
p : X → R is given by

p(x) :=
exp(−d(c0, x))∫

X exp(−d(c0, x))dλX (x)
. (1.3)

Description Description is a task aimed at finding an appropriate coding scheme on data
domain X . According to the Kraft-McMillan inequality (Kraft, 1949; McMillan,
1956) for code length function, a necessary and sufficient condition for the existence
of prefix code with the code length, and the existence of coding schemes such as the
Huffman code (Huffman, 1952) that yields a sufficient condition for coding scheme
determining code length function is essential to the coding scheme because if we
have a code length function that satisfies the Kraft-McMillan inequality given by∫

X
exp(−l(x))dλ(x) ≤ 1, (1.4)

we can immediately obtain a coding scheme such as the Huffman code based on
the code length function. Here, l : X → R denotes the code length function p on
some base measure λX of the appropriate distribution. Generation is considered a
task aimed at finding an appropriate set (c0, d), where c0 ∈ X indicates the center
of the data domain, and d : X × X → R is a dissimilarity measure that indicates
the dissimilarity between x1 ∈ X and x2 ∈ X by d(x1, x2). Here the code length
function l : X → R is given by

l(x) = ln
1

p(x)
, (1.5)

where

p(x) :=
exp(−d(c0, x))∫

X exp(−d(c0, x))dλX (x)
. (1.6)

It can be inferred from the aforementioned examples that learning is aimed at finding
a dissimilarity measure, and machine learning can be interpreted as a procedure imple-
mented using a program to find a dissimilarity measure over the data domain in some class
of tasks T with respect to some class of performance measures P through experience E.
The following section discusses methods of finding an appropriate dissimilarity measure.
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1.2 Space forms in Machine Learning

1.2.1 Requirements for dissimilarity measure

As discussed in the previous section, machine learning can be considered a procedure
implemented using a program to find an appropriate dissimilarity measure. Because this
procedure is automatic, the fundamental problem encountered when using machine learn-
ing is the determination of an appropriate class of dissimilarity measures. This problem
can be directly reduced to the problem of defining the appropriateness of a dissimilarity
measure class. In machine learning, a dissimilarity measure class must contain a sufficient
number of dissimilarity measures such that there exists a dissimilarity measure in the class
that performs well for the objective task. Although a large dissimilarity measure class
can be considered, it may include an unnecessary hypothesis and cause over fitting. In
addition, if we use a dissimilarity measure class wherein we cannot consider the differen-
tial of a function, optimization shall be very difficult. Therefore, it is necessary to find a
good dissimilarity measure class that is (i) machine-friendly in terms of model implemen-
tation, optimization, and evaluation, and (ii) able to express a wide range of dissimilarity
measures for modelling; these measures must appear in reality but the range must not be
so wide that it leads to over fitting. The most implementation-friendly method involves
mapping the points in the data domain to points in the Euclidean space and using the
distance function as a dissimilarity measure. Using the distance function as a dissimilar-
ity measure offers simple implementation and an intuitive interpretation. This is because
it satisfies the axioms of a metric: non-negativity, identity of indiscernibles, symmetry,
and triangle inequality. However, the dissimilarity measure class of the Euclidean space
is limited, which may cause a problem in reality. For example, even if the dissimilarity
measure given by the graph distance of a tree is required for good performance, it is not
included in the dissimilarity measure class of Euclidean space because the surface area of
the Euclidean space grows polynomially with respect to its radius, whereas the number of
nodes grows exponentially with respect to the distance from the root of the tree. Hence,
the dissimilarity measure classes based on a metric space, together with those given by
the Euclidean space, are required to retain the intuitive nature.

1.2.2 Riemannian manifolds and space forms

Hence, this study focuses on Riemannian manifolds that have appropriate properties that
satisfy the above requirements. A Riemannian manifold is a space locally isomorphic to
a metric vector space. Riemannian manifolds satisfy the above requirements for machine
learning owing to the following reasons:

• They can describe a variety of dissimilarity measures depending on local metrics.
Particularly through local metrics, the distance between two points and the angle
between two lines can be described. These notions of distance and angle can be used
to describe a dissimilarity measure. Despite its capability of describing a variety
of dissimilarity measures, it is simple to limit its class to avoid the over fitting
problem. The class of constant curvature manifolds is a possible solution which is
discussed later.
• They can be easily implemented as they are locally isomorphic to a vector space
that is naturally auto-implemented. In addition, many Riemannian manifolds can
be described as a subspace of a vector space, and upon differentiation, an objective
function defined on a Riemannian manifold can be efficiently optimized.
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In addition, if we obtain a dissimilarity measure as a map to Riemannian manifolds,
the Riemannian manifolds must have some homogeneity in their metric structure such
that all the relations among points are reduced to distances between two points. The
metric structure of a Riemannian manifold is determined by the sectional curvature that
indicates the growing speed of space in an infinitesimal plane on a point. Hence, to ensure
homogeneity, the sectional curvature must be constant in every infinitesimal plane at
every point. Thus, we focus on machine learning over space forms, which are Riemannian
manifolds with a constant sectional curvature. Determining the kinds of study required for
realizing machine learning over space forms is the next concern. To clarify this problem,
we divided the machine-learning procedure into fundamental elements and discussed the
lack of studies on the use of space forms.

1.3 Fundamental Elements of Machine Learning
The machine-learning procedure can be divided into three elements that are described
below on the basis of interpretation of machine learning as dissimilarity learning.

1.3.1 Modelling

Interpreting machine learning as dissimilarity learning, modelling refers to establishing
subjective reliabilities among dissimilarity measures using a criterion to quantify how
dissimilarity measures reflect past experiences. However, to avoid the over fitting problem,
putting no reliability on some dissimilarity measure set is inevitable; thus, the model must
be limited to some dissimilarity measure set. Moreover, depending on situations, we put
different levels of reliability among the limited dissimilarity measures even though we put
the same amount of reliability among the set. The dissimilarity measure set with a specific
reliability is often formulated as a parameter domain, and the criterion to quantify how
a dissimilarity measure reflects a past experience is often formulated as a loss function.
The reliability among dissimilarity measures is often formulated as a prior distribution or
a regularization term.

1.3.2 Optimization

Optimization is a procedure to select the best dissimilarity measure in the model. If a loss
function is given as a formulation of the model, this procedure involves the optimization
of the loss function and the reliability term such as a regularization term. Depending
on the difficulty of optimization, the original objective function can be replaced with an
alternative relaxed objective function.

1.3.3 Evaluation

At the end of the machine-learning procedure, the performance must be evaluated. How-
ever, it is not possible to evaluate the performance directly from past experiences. Many
principles have been proposed to solve this problem. In most cases, the original loss
function is not directly used as a function that yields the model performance evaluation
based on the principles. We can categorize these principles into two types according
to (Miyaguchi, 2018). The first category of principles is based on some statistical as-
sumptions such as independent identical distribution property, and the second category
of principles does not make any assumptions. Examples of the first category include
validation, the Akaike information criterion (AIC) (Akaike, 1974), the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978), probably approximately correct (PAC) risk bounds
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(Valiant, 1984), minimax risk principle (Wald, 1949; Lehmann and Casella, 2006), and
Bayes principle (Gelman et al., 2013). Examples of the second category include the pre-
quential principle (Dawid, 1984), minimax regret principle (Savage, 1951), and minimum
description length principle (Rissanen, 1978) that can be considered an integration of the
two (Miyaguchi, 2018). The first category tends to be suitable for evaluation of some tasks
such as prediction in an independent identical distribution setting. Principles belonging
to the second category can be considered more primitive and provide applications as they
can be applied even when there are no details of the data source (Miyaguchi, 2018). Hence,
this study focuses on the latter category, i.e., the no assumption category. Specifically,
the normalized maximum likelihood code length is discussed as it can be justified by both
the prequential principle and minimax regret principle.

1.4 Research Question
In the following section, these three elements for machine learning over space forms are
analyzed.

1.4.1 Model over space forms

A simple and strong method for a Riemannian space to yield a dissimilarity measure
involves identifying the data domain with the Riemannian space. Specifically, embedding
objects into a Riemannian space, identifying a discrete space with a Riemannian space, has
many applications and has been studied extensively (Sarkar, 2011; Nickel and Kiela, 2017;
Ganea et al., 2018a). For object embeddings, some additional relational data are required
because objects in a mere discrete space do not contain any information for embedding.
The simplest example is a graph, which contains objects connected by edges. In a graph,
two objects are connected by an edge if and only if they are similar to each other and are
identified as two points close to each other. However, limiting the class of relational data
to edge sets may be too conservative in reality, and we have to consider other types of
relational data. Relational data can be categorized into the following two types: “weaker”
and “stronger” than edge sets. Weaker data only contains partial information of the edge
set, whereas stronger data contains more information than that of a single edge set. A
typical example of the former are human ratings, wherein the absolute value of a rating
is not reliable, but relative ranking among one rater’s ratings. Here, we have ordinal
information of dissimilarity measures instead of an edge set. A typical example of the
latter is a knowledge base, wherein many types of relations exist among different entities.
Here, multiple edge sets must be considered in the embedding of objects. The former
data set is considered an object set with ordinal information among dissimilarity, called
ordinal data. The latter data set is considered an object set with multiple edge sets, called
a multi-relational graph. Although existing methods using a non-Euclidean Riemannian
manifold have focused on a graph, no study has focused on other kinds of relational data
such as ordinal data or a multi-relational graph. The above discussion gives rise to the
following research questions.

Q1 How can we establish a machine-learning model over Riemannian manifolds that is
applicable for ordinal data or multi-relational graph embedding?
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1.4.2 Optimization over space forms

Optimization methods for a function on Riemannian spaces have been extensively studied
in this decade. In the machine-learning setting, the stochastic first-order methods are the
most important because of full-batch optimization. For example, the Newton methods
or conjugate gradient methods are intractable in many machine-learning cases owing to
the large number of data and parameters. To meet this demand for optimization over
space forms, Zhang and Sra (Zhang and Sra, 2016) have proved the significant inequality
that derives a relation between the gradient and curvature; this has led many researches
to represent the theoretical behavior of many first-order methods on Riemannian spaces
(Becigneul and Ganea, 2019). The Riemannian gradient methods update the parameters
using the exponential map with some gradient vector. On the contrary, in the context of
the information geometric, the natural gradient method (Amari, 1998) has been proposed
as a method based on the metric structure of a manifold. Unlike the Riemannian gradient
method, the update in the natural gradient method adds the coefficients of a Riemannian
gradient vector to the coordinate of the current parameter without using the exponential
map. Although the original study (Amari, 1998) has proposed the natural gradient method
for optimization over statistic manifolds, the natural gradient method and its stochastic
variants have been used in general manifolds for machine learning (Nickel and Kiela,
2017)and Riemannian gradient methods owing to the computational simplicity. However,
the performance of the natural gradient method over general manifolds has not been
studied, and the natural gradient methods and Riemannian gradient methods have not
been compared. The above discussion gives rise to the following research questions:

Q2 Is the Riemannian gradient method better than the natural gradient method in
the setting of machine learning over space forms? Under what situation does a
difference arise and what is the magnitude of this difference?

1.4.3 Evaluation over space forms

Evaluation methods for space forms have not been developed well. Some evaluation
principles based on the asymptotic theory, such as validation, AIC, or BIC, can be di-
rectly applied to space forms because their computation is not model-specific owing to
the asymptotic theory. However, the principles that provide non-asymptotic theoretical
guarantee require model-specific calculations, and their applications in machine learning
over space forms have not been studied. Specifically, the normalized maximum likelihood
code length, which is a loss function based on minimum description length principle, has
not been studied for machine learning over space forms.

Q3 How can we non-asymptotically calculate the normalized maximum likelihood code
length for machine learning over space forms?

The following section describes the solutions for these research questions.

1.5 Our contributions
Our solutions to these research questions are listed below:

A1 We proposed methods for dissimilarity learning over (non-Euclidean) space forms
that are applicable for ordinal data or multi-relational graphs. The framework of
the general Riemannian manifold was constructed before proposing a model of a
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specific manifold. By exploiting the metric structure of space forms, our model can
extract dissimilarity structures from the data that cannot be extracted by a model
over Euclidean space.

A2 We provided the theoretical comparisons among first-order stochastic optimization
methods based on the traditional Euclidean metric, natural gradient method, and
Riemannian gradient method, in the machine-learning setting. In particular, the re-
sults indicate that the Euclidean-metric-based and natural-gradient-method-based
methods can fail even in the case of a simple problem for which the Riemannian-
gradient-based method guarantees convergence.

A3 We proposed a model-evaluation method based on the minimum description prin-
ciple. First, we proposed a general calculation method for normalized maximum
likelihood code length, which is a basic evaluation method based on the minimum
description principle.

Each of the above statements systematically contributes to the fundamental elements
of machine learning over space forms. Combining them together, this thesis presents
theoretical foundations and specific methods for realizing machine learning over space
forms. The rest of the thesis is organized as follows. In Chapter 2, we present basic notions
of Riemannian manifolds and space forms as a preliminary. In Chapter 3 and Chapter 4,
we explain our contribution to models for machine learning over space forms. In Chapter 3,
we propose a dissimilarity learning method for ordinal data. In Chapter 4, we propose
a dissimilarity learning method for multi-relational graphs. In Chapter 5, we discuss our
contributions in the optimization area for machine learning over space forms, theoretically
comparing first-order stochastic optimization methods based on the traditional Euclidean
metric, natural gradient method, and Riemannian gradient method. In Chapter 6, we
discuss our contributions in the model evaluation area for machine learning over space
forms, providing a general calculation method for normalized maximum likelihood code
length. These results are closely related to each other. The results of Chapter 3 and 4 share
a similar motivation̶mapping data spaces to space forms̶but they deal with different
kinds of data sets, whereas both of them often appear in reality. The theoretical analysis
in Chapter 5 motivated us to adopt the Riemannian-gradient-method-based optimization
in the setting of Chapter 3 and 4. The methodology in Chapter 6 aims at evaluating the
probabilistic model for data points on space forms such as the ones given by the models
in Chapter 3 and 4. A visual summary of the overview is depicted in Figure 1.1.
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Fig. 1.1. An overview of the thesis. This thesis contributes to the fundamental elements of
machine learning over space forms: the modelling, optimization, and evaluation
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Chapter 2

Preliminaries: Differential Geometry for

Machine Learning

In this chapter, we introduce the Riemannian manifold along with its space form and
discuss about their properties, which motivate us to focus on the use of the space forms
in machine learning applications.

2.1 C∞ Manifolds
In this section, we introduce the topological manifold. Topological manifolds are locally
Euclidean; therefore, we can implement them in computer algorithms. Because of this
property, we are motivated us to use a topological manifold in machine learning. In this
thesis, we only consider the C∞ case. For further details and proofs, see e.g., Loring
(2011); John (2018).

Definition 2.1.1. A topological space M is locally Euclidean of dimension D if every
point p in the M has a neighborhood U such that there is a homeomorphism*1 ϕ from
U onto an open subset of RD. We call the pair (U, ϕ : U → RD) a chart, U a coordinate
neighborhood, or a coordinate open set, and ϕ a coordinate map or a coordinate system
on U . We say that a chart (U, ϕ) is centered at p ∈M if ϕ(p) = 0.

Definition 2.1.2. A topological manifold is a Hausdorff*2,second countable*3,and locally
Euclidean space. It is said to be of dimension D if it is locally Euclidean.

Note that the dimension of a manifoldM is well defined because if D ̸= D′, RD, and
RD′

are not homeomorphic to each other and if points p, p′ ∈ M have neighborhoods
U,U ′ that are homeomorphic to open subsets RD,RD′

, it holds that D = D′.

Definition 2.1.3. Two charts: (U, ϕ : U → RD)and (U ′, ϕ′ : U ′ → RD) of a topological
manifold are C∞-compatible if the two maps

ϕ′ ◦

[
(ϕ)

−1

∣∣∣∣
ϕ(U∩U ′)

]
: ϕ(U ∩ U ′)→ ϕ′(U ∩ U ′),

ϕ ◦

[
(ϕ′)

−1

∣∣∣∣
ϕ′(U∩U ′)

]
: ϕ′(U ∩ U ′)→ ϕ(U ∩ U ′),

(2.1)

*1 For topological spaces M and M′, a map ϕ : M → M′ is called a homeomorphism if ϕ is a bijection
and continuous, and its inverse function ϕ−1 is also continuous.

*2 A topological space M is called a Hausdorff space if for all point pairs p, p′ ∈ M, there exist
neighborhoods U and U ′ of p and p′, respectively, which are disjoint to each other.

*3 A topological space M is called second countable if it has a countable open basis.
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are C∞.

Definition 2.1.4. A C∞ atlas on a manifoldM is a collection U = {(Ui)}i∈I of pairwise
C∞-compatible charts that coverM, i.e., , such thatM =

∪
i∈I Ui.

Definition 2.1.5. A topological spaceM is a C∞ manifold if

1. M is Haussdorff and second countable,
2. M has a C∞ atlas.

We can say that a C∞ manifold is a space such that we can implement a neighbor-
hood of any point in the space in a computer, including the operations defined by the
differentiation.

Definition 2.1.6. LetM andM′ be manifolds of dimension D and D′, respectively. A
continuous map F :M →M′ is C∞ at a point p in M if there are charts (U, ϕ) about

p and (U ′, ϕ′) about F (p) such that the composition ϕ ◦ F ◦
[
(ϕ′)

−1
∣∣∣
ϕ′(U∩U ′)

]
, the map

from the open subset ϕ
(
F−1(U) ∩ U ′) of RD to RD′

, is C∞ at ϕ(p). The continuous map
F :M→M′ is said to be C∞ if it is C∞ at every point atM.

A map F :M→ R is called a function on the manifoldM and called a C∞ function
onM if it is C∞ as a map. We denote the set of all C∞ function onM by C∞(M).

2.2 Curves and tangent spaces
In machine learning applications, which can be regarded as a dissimilarity measure learn-
ing, the relation among points in the manifold is important. In this section, we introduce
curves in a manifold; curves are an important concept used to describe the relation among
points. In addition, we introduce tangent vectors, which can be regarded as an infinitesi-
mal part of a curve. The tangent vector is an important tool that can be used to reduce
the calculation of curve properties, such as the length of and the angles between curves,
to notions in the metric vector space.

Definition 2.2.1. A C∞ curve in a manifold M is a C∞ map c :]a, b[→ M, where
a, b ∈ R satisfy a < b, and ]a, b[ is an open interval from a to b. The parameter of a curve
in a manifold is called time. We say that c is a curve starting at p if 0 ∈]a, b[ and c(0) = p.

Definition 2.2.2. The velocity vector d
dt

∣∣
t0
c of a curve c :]a, b[→M at time t0 ∈]a, b[ is

a function of C∞(M) given by the following:(
d

dt

∣∣∣∣
t0

)
c(f) :=

d

dt
(f ◦ c)(t0), (2.2)

for f ∈ C∞(M).

Definition 2.2.3. The tangent space TpM at p on M is the set of velocity vectors at
time 0 of all the C∞ curves starting at p, i.e., , the ones that satisfy c(0) = p. An element
in the tangent space TpM is called a tangent vector at p.

As implied by the definition, a tangent vector can be regarded as an infinitesimal curve.
The following proposition claims that tangent vectors are elements of a linear space.

Proposition 2.2.4. Let p be a point onM. The tangent space TpM is closed under the
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scalar multiplication and addition defined as follows:(
a

d

dt

∣∣∣∣
0

c

)
(f) := a

d

dt

∣∣∣∣
0

c(f),(
d

dt

∣∣∣∣
0

c+
d

dt

∣∣∣∣
0

c′
)
(f) :=

d

dt

∣∣∣∣
0

c(f) +
d

dt

∣∣∣∣
0

c′(f),

(2.3)

for f ∈ C∞(M) and a ∈ R. Thus, the tangent space TpM is a linear space equipped with
the above scalar multiplication and addition. The tangent space TpM is the D-dimensional

linear space. Let (U, ϕ) be a chart centered at p, i.e., , ϕ(p) = 0, and c(d) denote the curve
given by

c(d)(t) := ϕ−1(ted), (2.4)

where ed is the D-dimensional one-hot vector such that d-th element is one and the other
elements are zero. Then the set{

d

dt

∣∣∣∣
0

c(1),
d

dt

∣∣∣∣
0

c(2), . . . ,
d

dt

∣∣∣∣
0

c(D)

}
(2.5)

of tangent vectors is a basis set of TpM.

Let
(
x1, x2, . . . , xD

)
be a coordinate system of RD. The velocity vector of the curve

c(d) is given by the partial derivative operator ∂
∂xd as follows:(

d

dt

∣∣∣∣
0

c(d)
)
(f) =

∂

∂xd

(
f ◦ ϕ−1

)
(ϕ(p)). (2.6)

Therefore, in the following, we denote the tangent vector d
dt

∣∣
0
c(d) by ∂

∂xd p
. Thus, a basis

of TpM is given by the set {
∂

∂x1 p
,

∂

∂x2 p
, . . . ,

∂

∂xd p

}
. (2.7)

Whereas a tangent vector is a function on C∞(M), an element in C∞(M), which is a
function onM, is also regarded as a function on TpM. The function on TpM induced by
f ∈ C∞(M) is called the differential of f .

Definition 2.2.5. The differential of f is the function dfp : TpM → R given by the
following

dfpv := v(f). (2.8)

By definition, the differential of f is a linear function on TpM; in other words, dfp is
an element of T ∗

pM := (TpM)
∗
, the dual space of TpM as a linear space.

Definition 2.2.6. The dual space of the tangent space TpM at p in M is called the
cotangent space and is denoted by T ∗

pM. An element of a cotangent space is called a
cotangent vector.

The differential dfp of f ∈ C∞(M) is a cotangent vector. We consider a basis of the
cotangent space. Let U, ϕ be a chart centered at p ∈ U , that is ϕ(p) = 0. We denote a
C∞ function on (M) by xd such that in an open ball centered at p,

xd(p) = (ed)
⊤
ϕ(p), (2.9)

that is, a function that is equal to the coordinate function along d-th axis around the
point p.
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Remark 2.2.7. The differential dx1,dx2, . . . , dxD of x1, x2, . . . , xD are well defined; it only
depends on the behavior of x1, x2, . . . , xD in a neighborhood of p.

Proposition 2.2.8. The set of cotangent vectors{
dx1

p,dx
2
p, . . . , dx

d
p

}
. (2.10)

is the basis of T ∗
pM. In addition, it is the dual basis of{

∂

∂x1 p
,

∂

∂x2 p
, . . . ,

∂

∂xd p

}
, (2.11)

that is

dxd′

p

(
∂

∂xd p

)
= δdd′ , (2.12)

where δdd′ is Kronecker’s delta.

2.3 Metrics and Riemannian manifolds
To consider the length of and angles between curves, we first introduce tangent vectors
for the infinitesimal parts of curves. This motivates us to introduce a metric in the
tangent space. A manifold with tangent spaces containing a metric is called a Riemannian
manifold.

As a preliminary, we introduce a tensor space.

Definition 2.3.1. A (r, s) tensor relative to a vector space TpM is a multilinear function

T : T ∗
pM× · · · × T ∗

pM︸ ︷︷ ︸
r copies

×TpM× · · · × TpM︸ ︷︷ ︸
s copies

→ R. (2.13)

The set of the (r, s) tensors are denoted by (
⊗r

TpM) ⊗
(⊗s

T ∗
pM

)
. We consider

a basis of (
⊗r

TpM) ⊗
(⊗s

T ∗
pM

)
. A basis of (

⊗r
TpM) ⊗

(⊗s
T ∗
pM

)
is constructed

by the tensor product on the basis of TpM and T ∗
pM. We define the tensor product of

tensors.

Definition 2.3.2. The tensor product of a (r, s) tensor T and (r′, s′) tensor T ′ is the
(r + r′, s+ s′) tensor T ⊗ T ′ given by

(T ⊗ T ′)
(
v(1), v(2), . . . , v(r), v′

(1)
, v′

(2)
, . . . , v′

(r′)
, v(1), v(2), . . . , v(s), v

′
(1), v

′
(2), . . . , v

′
(s′)

)
:= T

(
v(1), v(2), . . . , v(r), v(1), v(2), . . . , v(s)

)
T ′
(
v′

(1)
, v′

(2)
, . . . , v′

(r′)
, v′(1), v

′
(2), . . . , v

′
(s′)

)
.

(2.14)

Proposition 2.3.3. The following tensor set is a basis of (
⊗r

TpM)⊗
(⊗s

T ∗
pM

)
.{

∂

∂xd(1)
⊗ · · · ⊗ ∂

∂xd(r)
⊗ dxd(1) ⊗ · · · ⊗ dxd(s)

∣∣∣∣ d(1), . . . , d(r), d(1), . . . , d(s) = 1, . . . , D

}
,

(2.15)
In particular, (

⊗r
TpM)⊗

(⊗s
T ∗
pM

)
is a Dr+s-dimensional linear space. The coordinate

of tensor T with respect to the vector
∂

∂xd(1)
⊗ · · · ⊗ ∂

∂xd(r)︸ ︷︷ ︸
r copies

⊗dxd(1) ⊗ · · · ⊗ dxd(s)︸ ︷︷ ︸
s copies

in the
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basis is given by

T

(
dxd(1)

, . . . , dxd(r)

,
∂

∂xd(1)
, . . . ,

∂

∂xd(s)

)
. (2.16)

Definition 2.3.4. A (r, s) tensor field is a map T :M→
∪

p∈M (
⊗r

TpM)⊗
(⊗s

T ∗
pM

)
that satisfies T (p) ∈ (

⊗r
TpM)⊗

(⊗s
T ∗
pM

)
. A (r, s) tensor field is C∞ at p ∈M if for

a chart (U, ϕ) centered at p; the mapM→ RDr+s

given by(
(T (p))

(
dxd(1)

, . . . , dxd(r)

,
∂

∂xd(1)
, . . . ,

∂

∂xd(s)

))
d(1),...,d(r),d(1),...,d(s)=1,...,D

∈ RDr+s

,

(2.17)
is continuous at p. A (r, s) tensor field is said to be a C∞ tensor field if it is C∞ at every
point atM.

Definition 2.3.5. A metric tensor field is a symmetric positive definite (0, 2) tensor field
g, i.e., , for every point p atM and v, v′ ∈ TpM,

• g(p)(v, v) > 0 for all non-zero vectors v ∈ TpM.
• g(p)(v, v′) = g(p)(v, v′) for all two vectors v, v′ ∈ TpM.

Definition 2.3.6. A Riemannian manifold is a pair (M, g) of a C∞ manifold M and
C∞ metric tensor g.

A Riemannian manifold has a metric for the tangent space at every point. Based ob
the metric tensor, we can define the norm of a tangent vector and inner-product between
tangent vectors, which gives the length of an infinitesimal curve and the angle between
the curves. Thus, a metric tensor makes a manifold applicable in an engineering setting.
In particular, a metric tensor equips a manifold with a structure such as a metric space.

Definition 2.3.7. Let (M, g) be a Riemannian manifold. The distance function d(M,g) :
M×M→ R≥0 of (M, g) is a function given by

d(M,g)(p, p
′) := inf

{∫ t1

t0

√
g

(
d

dt

∣∣∣∣
τ

c,
d

dt

∣∣∣∣
τ

c

)
dτ

∣∣∣∣∣ c : [t0, t1]→M is a C∞ curve.

}
.

(2.18)

Proposition 2.3.8. A Riemannian manifold (M, g) is a metric space equipped with the
distance function d(M,g).

Definition 2.3.9. Let (M, g) be a Riemannian manifold and f be a C∞ function on
M. The gradient vector of f at p is a tangent vector (grad f)p ∈ TpM such that for all
v ∈ TpM,

vf = g(p)
(
v, (grad f)p

)
(2.19)

holds.

2.4 Connection and exponential map
Different from the Euclidean space case, parallelity is not trivially determined in a Rie-
mannian manifold. In this section, we introduce the connection of a Riemannian manifold,
which evaluates how far a vector field is from being parallel. In the following, the space
of all C∞ vector fields is denoted by X(M)
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Definition 2.4.1. An affine connection in TM is a map

∇ : X(M)× X(M)→ X(M) (2.20)

written (X,Y ) 7→ ∇XY , satisfying following properties:

1. For f1, f2 ∈ C∞(M) and X1, X2 ∈ X(M),

∇f1X1+f2X2
Y = f1∇X1

Y + f2∇X2
Y. (2.21)

2. For a1, a2 ∈ R and Y1, Y2 ∈ X(M),

∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2. (2.22)

3. For f ∈ C∞(M),
∇X(fY ) = f∇X(Y ) + (Xf)Y. (2.23)

Definition 2.4.2. Let X,Y ∈ X(M). The Lie bracket [X,Y ] is the C∞ vector field
defined by

[X,Y ]f = X(Y f)− Y (Xf) (2.24)

Definition 2.4.3. Let M be a smooth manifold and ∇ be a connection in TM. For
each smooth curve c : I → M, the covariant derivative along c is defined as the unique
operator Dt : X(c)→ X(c) satisfying

1. For a1, a2 ∈ R and X1, X2 ∈ X(c),

Dt(a1X1 + a2X2) = a1DtX1 + a2DtX2 (2.25)

2. For f ∈ C∞(I),

Dt(fX) =

(
d

dt

∣∣∣∣
t

f

)
Xf + fDt(X). (2.26)

3. For every extension X̃ ∈ X(M) of X ∈ X(c),

DtX = ∇ d
dt |tc

X̃. (2.27)

By a connection, which determines parallelity, we can define a geodesic as a curve whose
velocity is parallel everywhere, as follows:

Definition 2.4.4. A smooth curve, c : I →M, is called a geodesic if

Dt
d

dt

∣∣∣∣
t

c = 0. (2.28)

A geodesic corresponds to a line in a Euclidean space, as the velocity of uniform linear
motion in a Euclidean space is also parallel everywhere.

We can also define parallel transportation along a curve.

Definition 2.4.5. A smooth vector field X is said to be parallel along c with respect to
∇ if DtX = 0.
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Definition 2.4.6. LetM be a C∞ manifold, p is a point on theM and v ∈ TpM. The
unique maximal geodesic cv starting at p with initial velocity v, the maximal geodesic
that satisfies

cv(0) = p

d

dt
cv

∣∣∣∣
0

= v
(2.29)

is called the geodesic with initial point p and initial velocity v.

Definition 2.4.7. LetM be a C∞ manifold and ∇ be a connection on it. Define a subset
E ⊂ TM, the domain of the exponential map, by

E = {v ∈ TM | cv is defined on an interval containing [0, 1].} . (2.30)

The exponential map exp : E→M is defined by

exp (v) := cv(1). (2.31)

A connection on a manifold is not unique. However, if we consider a Riemannian
manifold, a manifold equipped with a metric, we can expect that the parallelity compatible
with the metric gives intuitive results. Thus, we consider the following property.

Definition 2.4.8. Let (M, g) be a Riemannian manifold. A connection ∇ is called a
metric connection or compatible with g if for every curve c on M and parallel vector
fields X1, X2 along c g(X1, X2) is constant along c.

In addition, we consider some symmetry.

Definition 2.4.9. A connection ∇ is called symmetric if

∇XY −∇Y X = [X,Y ]. (2.32)

We can prove that for any metric there is a unique connection that is symmetric and
compatible with the metric. We call it Levi-Civita connection.

Definition 2.4.10. Let (M, g) be a Riemannian manifold. The Levi-Civita connection
of (M, g) is the unique connection ofM that is symmetric and compatible with g.

Proposition 2.4.11 (Koszul’s formula). The Levi-Civita connection ∇ of (M, g) is given
by

g(∇XY, Z) :=
1

2
(Xg(Y, Z) + Y g(Z,X)− Zg(Y, Z)− g(Y, [X,Z])− g(Z, [Y,X]) + g(X, [Z, Y ])).

(2.33)

2.5 Immersion and Embedding

Definition 2.5.1. Let F : M̃ →M be a C∞ map between two manifolds. At each point
p ∈ M̃, the differential of F at p is the map dpF : TpM̃ → TF (p)M given by

dpF

((
d

dt

∣∣∣∣
t0

)
c

)
:=

(
d

dt

∣∣∣∣
t0

)
(F ◦ c). (2.34)
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Definition 2.5.2. A C∞ F : M̃ → M is said to be an immersion at p ∈ M̃ if its
differential dpF is injective. We call F : M̃ → M an immersion if it is a immersion at

every p ∈ M̃. We call an immersion F : M̃ →M an embedding if F is also injective.

Definition 2.5.3. Let M̃ be a C∞ manifold, (M, g) be a Riemannian manifold, and

F : M̃ →M be an immersion between the two manifolds. The metric g̃ on M̃, called the
metric induced by F from g, is defined as follows: for every p ∈M and v, v′ ∈ TpM,

g̃(p)(v, v′) := g(F (p))(dpF (v),dpF (v′)). (2.35)

2.6 Curvature and space form
Definition 2.6.1. Let M be a C∞ manifold. The curvature tensor of M with respect
to a connection ∇ is the map R : X(M)× X(M)× X(M)→ X(M) written (X,Y, Z) 7→
R(X,Y )Z, defined by

R(X,Y )Z := ∇XZ −∇Y Z −∇[X,Y ]Z. (2.36)

Definition 2.6.2. Let M be a C∞ manifold. The sectional curvature of a two-
dimensional linear subspace Π in TpM with respect to a connection ∇ is a scalar K(Π)
defined by

K(Π) := g(R(v1, v2)v2, v1), (2.37)

where {v1, v2} is an orthonormal basis of Π.

The following proposition gives an intuitive interpretation of the sectional curvature.

Proposition 2.6.3. Let p be a point in a Riemannian D-manifold (M, g), and Π be a
two-dimensional linear subspace in TpM. The volume (area) Vol (BR(p)) of the ball (disk)
BR(p)

BR(p) :=
{
exp (v)

∣∣ v ∈ Π, g(p)(v, v) ≥ R2
}
. (2.38)

satisfies that as R→ +0

Vol (Br(p)) = πR2

(
1− K(Π)

24
+O()

)
, (2.39)

where K is the sectional curvature with respect to Levi-Civita connection.

For the definitions of the volume and the proof of the above proposition, see John (2018)
(in particular, Problem 10-6). As the above proposition shows, the sectional curvature of
Π indicates the extension speed of a space along with the tangent plane Π.

Definition 2.6.4. A Riemannian manifold (M, g) is called a space form if there exists a
constant c ∈ R such that for all p ∈M, for all two-dimensional linear subspace Π ∈ TpM,
K(Π) = c holds.

Definition 2.6.5. The D-dimensional Euclidean space RD is a D-dimensional Rieman-
nian manifold

(
RD, g

)
, where RD is the D-dimensional real space, which has the atlas{(

RD, id
)}

that consists of the single chart given by RD as a coordinate open set and the

identity function id : RD → RD as a coordinate map, and g is given by

g

(
∂

∂xd
,

∂

∂xd′

)
=

{
1 if d = d′ ,

0 otherwise ,
(2.40)
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with the coordinate is denoted by the symbol x =
[
x1 x2 . . . xD

]
∈ RD.

The D-dimensional sphere SD(R) with radius R is a D-dimensional Riemannian man-
ifold

(
SD(R), g

)
embedded in RD+1, where SD(R) ⊂ RD is given by

SD(R) :=
{
x ∈ RD+1

∣∣ x⊤x = R2
}
, (2.41)

and g is the metric induced by id
∣∣
SD : SD → RD+1.

Let define I(1,D) ∈ R(D+1)×(D+1) as follows:

[
I(1,D)

]
d,d′ =


−1 if d = d′ = 0 ,

1 if d = d′ ̸= 0 ,

0 otherwise .

d, d′ = 0, 1, . . . , D. (2.42)

TheD+1-dimensional Lorentzian spaceR1,D is aD+1-dimensional pseudo Riemannian
manifold

(
RD+1, g

)
, where g is given by

g

(
∂

∂xd
,

∂

∂xd′

)
=


−1 if d = d′ = 0 ,

1 if d = d′ ̸= 0 ,

0 otherwise ,

(2.43)

with the coordinate is denoted by the symbol x =
[
x0 x1 x2 . . . xD

]
∈ RD+1.

The D-dimensional hyperbolic space HD(R) with radius R is a D-dimensional Rieman-
nian manifold

(
SD(R), g

)
embedded in R1,D, where SD(R) ⊂ RD is given by

HD(R) :=
{
x ∈ RD+1

∣∣ x⊤I(1,D)x = R2
}
, (2.44)

and g is the metric induced by id
∣∣
HD : HD → RD+1.

In this thesis, we primarily focus on machine learning over Euclidean spaces, Spheres,
and Hyperbolic spaces. This is justified based to the following theorem.

Theorem 2.6.6 (Killing-Hopf). Let (M, g) be a complete, simply connected Riemannian
D-manifold with constant sectional curvature, D ≥ 2. Then (M, g) is isometric to one of
the model spaces RD, SD(R), and HD(R).

2.7 Riemannian gradient descent
In a linear space, the gradient method is defined by the vector addition operator. On the
other hand, in a Riemannian gradient descent, in which no vector addition operator is
defined, the definition of a gradient descent method is not trivial.

The näıve Riemannian gradient method is

p(k+1) → exp(k)p

(
−η(grad f)p(k)

)
, (2.45)

where p(k) indicates the point at step k in optimization, and η > 0 is a learning rate.
If we replace (grad f)p(k) by a stochastic gradient ṽ(k), a random variable in TpM that

satisfies E
[
ṽ(k)

]
= (grad f)p(k) , we obtain the näıve Riemannian stochastic gradient (RSG)

method:

p(k+1) → exp(k)p

(
−ηṽ(k)

)
. (2.46)

In Chapter 3 and Chapter 4, we propose models in machine learning over space forms
using the näıve RSG. In Chapter 5, we compare näıve RSG with another kind of gradient
method for Riemannian manifolds: natural gradient method.



18

Chapter 3

Relational Data Embedding in Space

Forms I: Ordinal Embedding

3.1 Motivation
In this chapter, we study the problem of ordinal embedding, a.k.a. non-metric multidi-
mensional scale (Shepard, 1962a,b; Kruskal, 1964a,b; Shepard, 1966). Given a set of ob-
jects 1, 2 . . . N , the weights of dissimilarity ξ(i, j) for all the object pairs i, j ∈ 1, 2, . . . , N
are unknown but some ordinal relations such as ξ(i, j) < ξ(k, l) can be derived. The
aim of ordinal embedding is then to obtain a set of embeddings x1,x2, . . . ,xN in a low-
dimensional space, so that ordinal relations are preserved. To a large extent, existing
ordinal embeddings use the D-dimensional Euclidean space RD to achieve

ξ(i, j) < ξ(k, l)⇒ ∥xi − xj∥ < ∥xk − xl∥. (3.1)

When i = k always holds, it is a special case in ordinal embedding, known as triplet
embedding (Van Der Maaten and Weinberger, 2012; Wang et al., 2018).

Existing ordinal embedding methods could be roughly divided into two categories: the
probabilistic-model-based (Tamuz et al., 2011; Van Der Maaten and Weinberger, 2012)
and the margin-loss-based (Agarwal et al., 2007; Terada and Luxburg, 2014). The former
mainly focuses on constructing a parametric probabilistic model, where the maximum
likelihood estimator is used for embeddings. The latter achieves embeddings by optimizing
a margin loss function. These methods are effective on preserving ordinal structure in
a space of low dimension compared to original data size, but have largely ignored the
optimality of a space for embedding, which is essential for embedding into a much lower-
dimensional space. Ideally, the chosen low-dimensional space should be compatible with
the true data structure, so that embedding can be achieved in a much lower-dimensional
space with low computational cost and overfitting avoided.

However, current ordinal embedding methods use Euclidean space as a primary choice,
mainly due to natural generalization of intuition-friendly and visual three-dimensional
space (Ganea et al., 2018a). These methods may not be able to reflect semantic dis-
similarities between objects or demand a substantial increases in model complexity and
computational cost, especially when data come from hierarchical structure, whereas the
hierarchical structure is exhibited in reality by many types of complex data, such as
datasets with power-law distributions, in natural language area and scale-free networks
(Krioukov et al., 2010; Nickel and Kiela, 2017). Take a hierarchical structure given by a
complete balanced binary tree in Figure 3.1 as an example. The number of objects in each
layer grows exponentially with respect to h, which is given by 2h. However, the expand-
ing speed of Euclidean space is polynomial (slower than exponential) as the circumference
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C(R) of radius R is given by C(R) = 2π sinhR ≈ π expR. This motivates us to seek a
feasible non-Euclidean space that expands exponentially so as to achieve effective ordinal
embeddings by capturing the hierarchical structure.

Inspired by the above, we focus on sectional curvature κ, which characterizes the ex-
panding speed of a space. According to Bertrand-Diguet-Puiseux theorem, which claims
that C(R) = 2π(R − 1

6κR
3) + O(R4) as R → +0, achieving faster expanding speed

than polynomial requires lower curvature, i.e., negative curvature. On the other hand,
in essence there is no constant negative curvature space other than hyperbolic (Killing-
Hopf theorem e.g., in (Lee, 2006)). Fortunately, the hyperbolic space of two dimension
or higher has exponential expanding speed. Specifically, in the two-dimensional hyper-
bolic space the circumference is given by C(R) = 2π sinhR ≈ π expR. Such exponential
expanding speed explicitly matches the hierarchical structure, as shown in Figure 3.1.
Moreover, Sarkar (2011) has theoretically explained that given an arbitrary tree, we have
embeddings of its vertices with arbitrary small distance distortion in the two-dimensional
hyperbolic space. These facts demonstrate the hierarchy-friendly property of hyperbolic
space in low-dimensional setting, which satisfies our motivation. This preferable prop-
erty of hyperbolic space in embedding has been supported by recent success of hyperbolic
space in many embedding settings and applications such as visualization (Lamping and
Rao, 1994), self-organizing map (Ritter, 1999), multi-dimensional scaling Walter (2004);
Sala et al. (2018), graph embedding (Shavitt and Tankel, 2008; Nickel and Kiela, 2017),
embedding from graph Laplacian (Alanis-Lobato et al., 2016), Internet graph embedding
(Shavitt and Tankel, 2008), and visualization of large taxonomies (Nickel and Kiela, 2017).

In this chapter, we propose a novel hyperbolic ordinal embedding (HOE) model to
capture hierarchical structure and preserve ordinal relations simultaneously. Furthermore,
we prove the suitability of hyperbolic space and limitations of Euclidean space for ordinal
relation with hierarchical structure in theory.

We summarize our main contributions as follows:

• A hyperbolic ordinal embedding (HOE) is proposed to embed hierarchical structure
data into an extremely low-dimensional hyperbolic space. We reformulate the or-
dinal embedding problem into a general metric space setting with hyperbolic space
setting as a special case, and then propose two simple yet effective continuous loss
functions for probabilistic-model-based and margin-loss-based models, respectively.
• We give theoretical analyses to clarify advantages of using hyperbolic space against
Euclidean approach (in Section 3.6) in terms of ordinal embedding for hierarchical
structural data: (1) for Euclidean space of any dimension, there exist ordinal rela-
tions that cannot be preserved in embeddings; (2) the use of hyperbolic space can
achieve effective embedding with ordinal relations preserved in a space of extremely
low (e.g.,2) dimensionality.
• Experiments on both artificial and real datasets have demonstrated that the pro-
posed method outperforms existing Euclidean-space-based baselines for embedding
hierarchical structure data in a significantly low-dimensional (e.g., 2, 4, 8, 16) space.

3.2 Related Work
Various ordinal embedding approaches have been proposed. Under probabilistic-model-
based setting, CLK (Tamuz et al., 2011) was proposed to reduce the complexity of obtain-
ing high quality approximations of similarity triplets via an information theoretic adaptive
sampling approach. Considering that using similarity triplets is insufficient for obtaining
a truthful embedding of objects, t-STE (Van Der Maaten and Weinberger, 2012) was then



20 Chapter 3 Relational Data Embedding in Space Forms I: Ordinal Embedding

⋯

⋮

0 𝟏

1 𝟐

2 𝟒

⋮ ⋮

ℎ 𝟐𝒉

𝐎(𝟐𝒉)

0 𝟎 𝟎

1 𝟐. 𝟑𝟓 𝝅 𝟐𝝅

2 𝟕. 𝟐𝟓𝝅 𝟒𝝅

⋮ ⋮ ⋮

𝑅 𝟐𝝅 𝐬𝐢𝐧𝐡 𝑹 𝟐𝝅𝑹

𝐎(𝒆𝑹) 𝐎(𝑹)

𝑅

2

1
0

1

2

⋮

ℎ

𝑅

Fig. 3.1. Exponential growth of objects in a hierarchical data and space expansion speed
of hyperbolic and Euclidean space.

proposed to collapse similar points and repel dissimilar points in the embedding without
resulting in additional constraint violations. Under margin-loss-based setting, G-NMD
(Agarwal et al., 2007) aimed to embed data when ordinal relations can be contradictory
and need not be specified for all pairs of dissimilarities. Regarding that the similarities of
objects may not be mutually consistent according to different tasks, McFee and Lanck-
riet (2011) integrated heterogeneous data so as to optimally conform to measurements of
perceptual similarity. Later, LOE (Terada and Luxburg, 2014) was proposed to achieve
embedding that not only preserves the ordinal constraints, but also the density structure
of dataset. Though the effectiveness of existing ordinal embeddings has been demon-
strated, none of them have paid attention to the compatibility of embedding space and
achieved embedding in hyperbolic space.

Recently, hyperbolic space has been extensively studied in many research areas (Alanis-
Lobato et al., 2016; Nickel and Kiela, 2017; Sala et al., 2018). For example, The rela-
tion between human visual space and hyperbolic geometry has been suggested Luneburg
(1947); Indow (1967). Lamping and Rao (1994) proposed a scheme for visualizing and
manipulating large hierarchies by laying out the hierarchy uniformly on the hyperbolic
plane and map this plane onto a circular display region. Ritter (1999) proposed a self-
organizing map that is based on discretizations of curved, non-Euclidean spaces. Walter
(2004) proposed a projection-based visualization method for high-dimensional data sets
by combining concepts from multidimensional scaling and the geometry of the hyperbolic
spaces. Shavitt and Tankel (2008) embeded Internet data in hyperbolic space, since In-
ternet structure has a highly connected core and long stretched tendrils, where most of
the routing paths between nodes in the tendrils pass through the core. To enhance the ef-
ficiency of embedding of big networks, Alanis-Lobato et al. (2016) then used a Laplacian-
based model for geometric analysis of big networks. Poincaré Embedding (Nickel and
Kiela, 2017) aimed at learning representations of symbolic data so that it simultaneously
learns the similarity and the hierarchy of objects. Later, Ganea et al. (2018b) bridged the
gap between hyperbolic and Euclidean geometry in the context of neural networks and
deep learning by generalizing deep neural models to the Poincaré model of the hyperbolic
geometry. Balancing the trade-off between precision and dimensionality of embedding,
H-MDS (Sala et al., 2018) was proposed as a general approach that can embed trees into
hyperbolic space with arbitrarily low distortion. Although these approaches can achieve
effective embedding by capturing hierarchy structure with hyperbolic space, the ordinal
relations which often naturally exist among data cannot be utilized by them.
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3.3 Hyperbolic Geometry
In this section, we introduce basic notations and then briefly review hyperbolic geometry
with its real coordinate space representation.

Notations Let R, R≥0, Z, and Z>0 denote the real number set, non-negative real number
set, integer set, and positive integer set, respectively. We denote D-dimensional real
coordinate space and D × D′ real matrix space by RD and RD×D′

, respectively. We
let 0D ∈ RD and ID ∈ RD×D denote the D-dimensional zero vector and D-dimensional
identity matrix, respectively. sgn : R→ {−1, 0, 1} denotes the sign function defined by

sgn (x) :=


−1 x < 0 ,

0 x = 0 ,

+1 x > 0 .

(3.2)

For N ∈ Z>0, we denote the set {1, 2, . . . , N} by [N ].

Hyperbolic Geometry in Coordinate Space Since there is unique hyperbolic space up to
similarity if the dimension is fixed, in the following, we fix the sectional curvature of
hyperbolic space to be -1, that is, κ = −1 for simplicity of discussion. For hyperbolic
space, there exist several models, i.e., ways of representation in real coordinate space,
such as the hyperboloid model, Klein disk model, Poincaré disk model and Poincaré upper
plain model. As these models are isometric to one another, the discussion on the distance
structure of hyperbolic space in one model is equivalent to that in another model. In the
following, we explain hyperbolic space using the hyperboloid model. The D-dimensional
hyperbolic space HD is a metric space

(
HD, dHD

)
, where HD and dHD : HD ×HD → R≥0

are defined by

HD :=
{
x ∈ RD+1

∣∣ x⊤GMx = −1, x0 > 0
}

dHD (x,y) := arcosh
(
−x⊤GMy

)
,

(3.3)

where arcosh denotes the area hyperbolic cosine function (the inverse function of the
hyperbolic cosine function), and GM denotes

GM :=

[
−1 0⊤

D

0D ID

]
∈ R(D+1)×(D+1). (3.4)

3.4 Euclidean Ordinal Embedding
We consider embedding problem of N ∈ Z>0 objects. In the following, we identify the

N objects with the integer set [N ]. Let the sequence S = (((is, js), (ks, ls)), ys)
S
s=1 be

an ordinal data set, in which is, js, ks, ls ∈ [N ] and ys ∈ {−1,+1} for s = 1, 2, . . . , S.
Here, if ys = −1, is and js are more similar to each other than ks and ls i.e., the
dissimilarity between is and js are larger than that between ks and ls, and otherwise

if ys = +1. An ordinal data set S = (((is, js), (ks, ls)), ys)
S
s=1 is called an ordinal triplet

set if is = ks is satisfied for all s ∈ [S]. The D-dimensional Euclidean space denoted by
RD is a metric space

(
RD, dRD

)
, where dRD : RD × RD → R≥0 is given by dRD (x,y) :=√

(x− y)⊤(x− y).
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Existing ordinal embedding using the D-dimensional Euclidean space RD is to obtain
embedding xn ∈ RD for n ∈ [N ] such that

sgn (dRD (xis , xjs)− dRD (xks
, xls)) = ys (3.5)

is satisfied for as many s ∈ [S] as possible.
Denote the Probabilistic-model-based Ordinal Embedding and the Margin-loss-based

Ordinal Embedding as POE and MOE, respectively. In both Euclidean POE and MOE,

the loss function of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1 is given by

L
(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈[S]

ℓ
(
((is, js), (ks, ls), ys); (xn)n∈[N ]

)
, (3.6)

with their own specific one point loss function ℓ of (xn)n∈[N ] on one point ordinal datum

(((i, j), (k, l)), y), which quantifies how large the contradiction of the embeddings to the
one point ordinal datum is.

• Euclidean POE (EPOE) For the object quadruple ((i, j), (k, l)), the probability of y =
−1 is high if the distance dX(xi, xj) is shorter than dX(xk, xl) and the probability of y = +1
is high otherwise. The dependency of the distribution of y on the distances is defined by
a decreasing function f : R≥0 → R≥0. Then, we have the following probabilistic model.

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dRD (xi, xj))

f(dRD (xi, xj)) + f(dRD (xk, xl))
y = −1

f(dRD (xk, xl))

f(dRD (xi, xj)) + f(dRD (xk, xl))
y = +1

(3.7)

We call f a kernel function. The loss function ℓprb of (xn)n∈[N ] on one point ordinal

datum (((i, j), (k, l)), y) is given by

ℓprb

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:= − log Pr

(
y|((i, j), (k, l)); (x)n∈[N ]

)
. (3.8)

Then, the loss function in EPOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1

is derived by substituting ℓ = ℓprb to (3.6). Take one of the most representative ap-
proaches, stochastic triplet embedding (Van Der Maaten and Weinberger, 2012), as an
example. The probabilistic model given by (3.7) is reduced to that of the stochastic
triplet embedding and t-distributed stochastic triplet embedding in (Van Der Maaten and
Weinberger, 2012) with the Gaussian kernel f(d) = exp

(
−d2

)
and Student’s t-distribution

kernel f(d) =
(
1 + d2

α

)α
, respectively. Note that in (Van Der Maaten and Weinberger,

2012), only are ordinal triplet data cases considered, while we above generalized it into
general ordinal data cases.

• Euclidean MOE (EMOE) We define a soft margin loss for this approach (Agarwal et al.,
2007; Terada and Luxburg, 2014). The soft margin loss function ℓmgn of (xn)n∈[N ] on one

point ordinal datum (((i, j), (k, l)), y) is given by

ℓmgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{
[δ − (dRD (xis , xjs)− dRD (xks , xls)) · ys]+

}q

,

(3.9)
where δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index which ad-
justs the loss. Then, the loss function in EMOE of (xn)n∈[N ] on ordinal data S =
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(((is, js), (ks, ls)), ys)
S
s=1 is derived by substituting ℓ = ℓmgn to (3.6). The loss func-

tion in (3.9) is reduced to that of the soft margin model in (Terada and Luxburg, 2014)
if q = 2, and is indirectly reduced to the loss function in (Agarwal et al., 2007) if q = 1,
whereas they obtain the distance matrix in RD with D = N in (Agarwal et al., 2007),
instead of directly obtaining embeddings in RD.

3.5 Hyperbolic Ordinal Embedding
Our motivation is ordinal embedding in hyperbolic space. The key idea is to generalize
existing methods into those in general metric spaces and to obtain our hyperbolic ordinal
embedding as a special case.

3.5.1 General Ordinal Embedding

In this section, we obtain ordinal embedding in a general metric space X = (X, dX), where
X is a point set and dX : X× X→ R≥0 is the distance function defined in X.

Problem Settings
Sharing the same motivation as the Euclidean case, the objective of embedding objects
[N ] in metric space X is to realize embedding xn ∈ X for n ∈ [N ] such that

sgn (dX(xis , xjs)− dX(xks , xls)) = ys (3.10)

is satisfied for as many s ∈ [S] as possible. Therefore, the ordinal embedding is formulated
as minimizing the classification loss function, as defined below.

Definition 3.5.1 (Classification Loss Function). Let [N ] be objects and (xn)n∈[N ]

be their embeddings. The classification loss function of (xn)n∈[N ] on ordinal datum

(((i, j), (k, l)), y), in which i, j, k, l ∈ [N ] and y ∈ {±1}, is defined by

ℓcls

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=

{
0 sgn (dX(xis , xjs)− dX(xks

, xls)) = ys ,

1 sgn (dX(xis , xjs)− dX(xks
, xls)) ̸= ys .

(3.11)

The classification loss function of embedding (xn)n∈[N ] on ordinal data S =

(((is, js), (ks, ls)), ys)
S
s=1, in which is, js, ks, ls ∈ [N ] and ys ∈ {±1} for all s ∈ [N ], is

defined by

Lcls

(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈S

ℓcls

(
(((is, js), (ks, ls)), y); (xn)n∈[N ]

)
. (3.12)

The embedding (xn)n∈[N ] is called non-contradictory to S if Lcls

(
S; (xn)n∈[N ]

)
= 0.

Loss Functions
As the loss function in Definition 3.5.1 is a hard classification loss, it is not easy to optimize
due to the discontinuity of the sign function. We first consider relaxation of the original
loss function, and then introduce a probabilistic model and soft margin based loss function
as a specific loss function. The ideal conditions for the loss function are listed as follows:

• The loss function should be continuous with respect to the embeddings (xn)n∈[N ].

• For ordinal data (((i, j), (k, l)),−1) in S, the loss function should be decreasing
with respect to the distance dX(xi, xj) and should be increasing with respect to
dX(xk, xl), and vice versa for (((i, j), (k, l)),+1).
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Therefore, we consider the loss function L of the following form

L
(
S; (xn)n∈[N ]

)
:=

1

S

∑
s∈[S]

ℓ
(
((is, js), (ks, ls), ys); (xn)n∈[N ]

)
, (3.13)

with one datum loss function ℓ given by

ℓ
(
((i, j), (k, l), y); (xn)n∈[N ]

)
:= g(dX(xi, xj), dX(xk, xl); y), (3.14)

where g : R≥0 × R≥0 × {±1}, (d, d′, y) 7→ g(d, d′; y) satisfies the following:

• g(d, d′;−1) is decreasing with respect to d and is increasing with respect to d′.
• g(d, d′; +1) is increasing with respect to d and is decreasing with respect to d′.

This general idea allows us to apply in hyperbolic space analogical ideas to EPOE and
EMOE. As a result, we obtain specific loss functions, GPOE and GMOE, as shown below.

• General POE (GPOE) One way to avoid the discontinuous loss function is to introduce
a probabilistic model, as in EPOE. We design a conditional probability distribution model
of y, as follows:

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dX(xi, xj))

f(dX(xi, xj)) + f(dX(xk, xl))
y = −1 ,

f(dX(xk, xl))

f(dX(xi, xj)) + f(dX(xk, xl))
y = +1 ,

(3.15)

where f : R≥0 → R≥0 is a kernel function. By the above probabilistic model, one point
loss function in GPOE ℓprb of (xn)n∈[N ] on one point ordinal datum (((i, j), (k, l)), y) is

given by

ℓprb

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:= − log Pr

(
y|((i, j), (k, l)); (x)n∈[N ]

)
. (3.16)

Then, the loss function in GPOE of (xn)n∈[N ] on ordinal data S = (((is, js), (ks, ls)), ys)
S
s=1

is derived by substituting ℓ = ℓprb to (3.13). When X is the D-dimensional Euclidean
space RD, GPOE is reduced to EPOE.

• General MOE (GMOE) Another way to avoid the discontinuous loss function is to
replace it by a soft loss function, as in EMOE. We define a soft margin loss as follows.
The one point soft margin loss function ℓmgn of (xn)n∈[N ] on one point ordinal datum

(((i, j), (k, l)), y) is given by

ℓmgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{
[δ − (dX(xis , xjs)− dX(xks , xls)) · ys]+

}q

, (3.17)

where δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index which ad-
justs the loss. Then, the loss function in GMOE of (xn)n∈[N ] on ordinal data S =

(((is, js), (ks, ls)), ys)
S
s=1 is derived by substituting ℓ = ℓmgn to (3.13). When X is the

D-dimensional Euclidean space RD, GMOE is reduced to EMOE.

3.5.2 Hyperbolic Ordinal Embedding

With the generalization in Section 3.5.1, Hyperbolic POE and MOE can be obtained by
substituting X = HD to (3.15) and (3.17), respectively, where x1,x2, . . . ,xN ∈ HD.
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• Hyperbolic POE (HPOE) The probabilistic model of HPOE using the D-dimensional
hyperbolic space HD is derived by substituting X = HD to (3.15) as follows:

Pr
(
y|((i, j), (k, l)); (xn)n∈[N ]

)
:=


f(dHD (xi,xj))

f(dHD (xi,xj)) + f(dHD (xk,xl))
y = −1

f(dHD (xk,xl))

f(dHD (xi,xj)) + f(dHD (xk,xl))
y = +1

.

(3.18)
By substituting (3.18) to (3.14), we have the one point loss function ℓprb of HPOE.

• Hyperbolic MOE (HMOE) The one point loss function of HMOE using the D-
dimensional hyperbolic space HD is derived by substituting X = HD to (3.17) as
follows:

ℓmgn

(
(((i, j), (k, l)), y); (xn)n∈[N ]

)
:=
{
[δ − (dHD (xis ,xjs)− dHD (xks

,xls)) · ys]+
}q

.

(3.19)
Here, as in (3.17), δ ∈ R≥0 is a margin hyperparameter and q ∈ R≥0 is a power index
which adjusts the loss.

3.5.3 Optimization

Similar to (Van Der Maaten and Weinberger, 2012), we apply the stochastic gradient
method to optimize (3.13). Note that the following optimization method can be applied
to the loss function of HPOE and HMOE, because the loss functions of these methods are
special cases of that in (3.13). We uniformly at random choose a subsequence B of [S]
and substitute B for [S], then we have a stochastic loss of the loss in (3.13) as follows:

L̃
(
S; (xn)n∈[N ]

)
:=

1

|B|
∑
s∈B

ℓ
(
(((is, js); (ks, ls)), y), (xn)n∈[N ]

)
, (3.20)

where |B| denotes the number of elements in B. Then, we use the gradient of (3.20) as
a stochastic gradient of the loss function in (3.13) and then optimize the loss function in
(3.13) by stochastic Riemannian sub gradient method (Zhang and Sra, 2016). The update
rule is given by

xn ← expxn

(
πxn

(
G−1

xn

∂

∂xn
L̃
))

, (3.21)

where Gxn
denotes the metric matrix on xn, πx denotes the projection to the tangent

space on xn, and expx denotes the exponential map on xn. In the D-dimensional hyper-
bolic space, the formulae for these operations appear in e.g., (Nickel and Kiela, 2018) as
follows.

Gx = GM (in (3.4)),

πx(v
′) = v′ +

(
x⊤GMx

)
x,

expx (v) = cosh
(√

v⊤GMv
)
x+ sinhc

(√
v⊤GMv

)
v,

(3.22)

where sinhc denotes the hyperbolic sine cardinal function, which is given by

sinhcx =

{
sinh x

x x ̸= 0 ,

1 x = 0 .
(3.23)
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Using these formulae, we can optimize the loss function of HPOE and HMOE. Note
that we can also apply the above optimization method in the Poincaré disk model of
hyperbolic space by the formulae that appears in e.g., (Ganea et al., 2018a), although the
result is isometric to the formulae for the hyperboloid model in this section. In both of the
hyperboloid model and the Poincaré disk model, the time complexity of each operator in
the above optimization is linear to dimension. Therefore, the computational cost of each
step in the optimization is given by O(D|B|). This is not larger than the computational
complexity of the previous work.

3.6 Hyperbolic vs. Euclidean
In this section, we discuss the theoretical advantages of using hyperbolic space against
using Euclidean space. Our interest is the situation in which the ordinal data comes from
ground-truth hierarchical structure. For formal discussion, we define such a situation as
the case where we have graphical ordinal data of a graph that is a tree, which intuitively
gives a hierarchical structure as in Figure 3.1. In this section, after defining graphical
ordinal data as a preliminary, we discuss hyperbolic and Euclidean space cases.

Preliminary: Graphical Ordinal Data

Definition 3.6.1. Let G = ([N ], E) be an undirected graph with a vertex set [N ]
and an edge set E . We denote by dG the graph distance function. A sequence S =

(((is, js), (ks, ls)), ys)
S
s=1 is called graphical ordinal data (GOD) of G when

sgn (dG(is, js)− dG(ks, ls)) = ys (3.24)

is satisfied for all s ∈ [S]. GOD are called graphical ordinal triplet data (GOTD) of G if
is = ks is satisfied for all s ∈ [S], and GOD are called complete if for all pairs ((i, j), (k, l))
of vertex pair such that dG(i, j)− dG(k, l) ̸= 0, there exists s ∈ [S] such that either of the
following is satisfied.

• ((is, js), (ks, ls)) = ((i, j), (k, l)) and ys = sgn (dG(is, js)− dG(ks, ls))
• ((is, js), (ks, ls)) = ((k, l), (i, j)) and ys = sgn (dG(ks, ls)− dG(is, js))

GOTD are called complete if the condition above is satisfied for all pairs ((i, j), (k, l)) of
vertex pair such that i = k and dG(i, j)− dG(k, l) ̸= 0.

We are interested in the case where G is a tree, which corresponds to a typical hier-
archical structure. We consider both the complete GOD case and complete GOTD case.
Note that, as the complete GOTD are a subset of the complete GOD, to find embedding
that is non-contradictory to the complete GOTD are easier than to find embedding that
is non-contradictory to the complete GOD.

Hyperbolic Space Case As shown in the following theorem, there is a non-contradictory
embedding in HD to complete GOD of a tree, even in D = 2.

Theorem 3.6.2. For any tree G and GOD S of G, there exists an embedding (xn)n∈[N ]

in H2 that is non-contradictory to G.

Corollary 3.6.3. For any tree G and GOTD S of G, there exists an embedding (xn)n∈[N ]

in H2 that is non-contradictory to G.

Theorem 3.6.2 is obtained from the result in (Sarkar, 2011), and it also gives a con-
crete construction of the embedding. The complete proof of Theorem 3.6.2 is given in
Appendix A. Corollary 3.6.3 follows Theorem 3.6.2, because the complete GOTD are
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included in the complete GOD.

Remark 3.6.4. As the D-dimensional hyperbolic space HD (D ≥ 2) includes two-
dimensional hyperbolic space H2, the results in Theorem 3.6.2 and Corollary 3.6.3 can
be applied to HD (D ≥ 2).

Euclidean Space Case Contrary to hyperbolic space, there is no non-contradictory embed-
ding in RD to complete GOTD of some trees. Before we show the results, we introduce
some definitions.

Definition 3.6.5. Let G = ([N ], E) be an undirected graph with vertex set [N ] and edge
set E . The degree deg (v) of v ∈ [N ] is defined by deg (v) := |{u ∈ [N ] | (u, v) ∈ E}|. We
denote the maximum degree of any vertex in G by deg (G), which is defined by deg (G) :=
max {deg(v) | v ∈ [N ]}.

Definition 3.6.6. Let the D-dimensional sphere and the distance function on it be de-
noted by SD and dSD , respectively, which are given by

SD :=
{
x ∈ R(D+1)

∣∣∣ x⊤x = 1
}
, dSD (x,y) := arccos

(
x⊤y

)
. (3.25)

The π
3 packing number M

(
SD, dSD ,

π
3

)
of
(
SD, dSD

)
is the maximal number of points that

can be π
3 -separated, which is defined by

M
(
SD, dSD ,

π

3

)
:= max

{
N ∈ Z≥0

∣∣∣ ∃x1,x2, . . . ,xN ∈ SD,∀i, j ∈ [N ], dSD (xi,xj) >
π

3

}
.

(3.26)

Note that the packing number M
(
SD, dSD ,

π
3

)
is finite for all D ∈ Z>0 and monotonous

increasing function with respect to D, because for any D,D′ ∈ Z>0 such that D < D′,
SD is a subspace of SD′

. The following theorem clarifies the limitation of Euclidean space
in ordinal embedding setting.

Theorem 3.6.7. For any dimensionality D, for all graph G that is tree, if deg (G) is
larger than M

(
SD−1, dSD−1 , π

3

)
, then no embedding (xn)n∈[N ] in RD is non-contradictory

to the complete GOTD of G.

Corollary 3.6.8. For any dimensionality D, for all graph G that is tree, if deg (G) is
larger than M

(
SD−1, dSD−1 , π

3

)
, then no embedding (xn)n∈[N ] in RD is non-contradictory

to the complete GOD of G.

The proof of Theorem 3.6.7 is given in Supplementary Materials. Corollary 3.6.8 follows
Theorem 3.6.7, because the complete GOTD are included in the complete GOD.

Remark 3.6.9. Theorem 3.6.7 and Corollary 3.6.8 give a limitation of Euclidean space in
embedding GOD of a tree. According to Theorem 3.6.2, 3.6.7, and Corollary 3.6.3, 3.6.8,
two dimension is high enough in hyperbolic space for embedding of GOD of tree, but not
all tree graphs can be embedded even in higher-dimensional Euclidean space. Hence, we
can conclude that hyperbolic space is more suitable than Euclidean space for embedding
of hierarchical ordinal data.

Remark 3.6.10 (Technical contribution of Theorem 3.6.7). Although the advantage of
hyperbolic space against Euclidean space for embedding trees has been shown in graph
embedding settings (e.g., (Sarkar, 2011)), the limitation of Euclidean space in embedding
from ordinal triplet data given by Theorem 3.6.7 has not been clarified. Theorem 3.6.7
is not trivially derived from the graph embedding setting’s results, because the require-
ments in the triplet ordinal data setting are weaker than those in the graph embedding
setting. Specifically, all that is concerned in the triplet ordinal data setting is the distance
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Table 3.1. Classification errors (mean ± standard error) in artificial datasets.

CBT-4-6 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4441 ± 0.0012 0.4313 ± 0.0012 0.3994 ± 0.0014 0.3890 ± 0.0014
2-EMOE 0.4397 ± 0.0011 0.4189 ± 0.0008 0.3986 ± 0.0008 0.3941 ± 0.0015
G-EPOE 0.4342 ± 0.0010 0.4295 ± 0.0012 0.4045 ± 0.0011 0.3831 ± 0.0010
t-EPOE 0.4424 ± 0.0010 0.4234 ± 0.0007 0.4109 ± 0.0008 0.4024 ± 0.0012

1-HMOE 0.4358 ± 0.0011 0.4138 ± 0.0009 0.4044 ± 0.0010 0.3875 ± 0.0008
2-HMOE 0.4426 ± 0.0009 0.4157 ± 0.0007 0.4085 ± 0.0012 0.3875 ± 0.0010
G-HPOE 0.4368 ± 0.0014 0.4179 ± 0.0015 0.4015 ± 0.0012 0.3899 ± 0.0007
t-HPOE 0.4251 ± 0.0014 0.3848 ± 0.0009 0.3699 ± 0.0014 0.3659 ± 0.0008

CBT-8-4 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4196 ± 0.0010 0.3901 ± 0.0010 0.3593 ± 0.0019 0.3406 ± 0.0017
2-EMOE 0.4219 ± 0.0012 0.3925 ± 0.0014 0.3650 ± 0.0013 0.3419 ± 0.0011
G-EPOE 0.4097 ± 0.0017 0.3928 ± 0.0011 0.3679 ± 0.0014 0.3365 ± 0.0014
t-EPOE 0.4252 ± 0.0014 0.3902 ± 0.0010 0.3753 ± 0.0010 0.3636 ± 0.0010

1-HMOE 0.4117 ± 0.0011 0.3779 ± 0.0008 0.3559 ± 0.0008 0.3375 ± 0.0007
2-HMOE 0.4095 ± 0.0007 0.3751 ± 0.0008 0.3500 ± 0.0013 0.3388 ± 0.0011
G-HPOE 0.4054 ± 0.0007 0.3857 ± 0.0010 0.3642 ± 0.0008 0.3362 ± 0.0012
t-HPOE 0.3855 ± 0.0010 0.3299 ± 0.0012 0.3076 ± 0.0010 0.3101 ± 0.0012

CBT-16-3 D = 2 D = 4 D = 8 D = 16

1-EMOE 0.4034 ± 0.0009 0.3595 ± 0.0014 0.3364 ± 0.0008 0.3075 ± 0.0013
2-EMOE 0.4089 ± 0.0014 0.3655 ± 0.0012 0.3374 ± 0.0008 0.3127 ± 0.0015
G-EPOE 0.3904 ± 0.0010 0.3450 ± 0.0011 0.3228 ± 0.0013 0.2865 ± 0.0009
t-EPOE 0.4023 ± 0.0011 0.3629 ± 0.0011 0.3326 ± 0.0012 0.3099 ± 0.0010

1-HMOE 0.3830 ± 0.0010 0.3427 ± 0.0011 0.3038 ± 0.0012 0.2823 ± 0.0010
2-HMOE 0.3892 ± 0.0013 0.3377 ± 0.0007 0.3100 ± 0.0013 0.2918 ± 0.0011
G-HPOE 0.3792 ± 0.0012 0.3478 ± 0.0011 0.3048 ± 0.0006 0.2863 ± 0.0012
t-HPOE 0.3638 ± 0.0013 0.2869 ± 0.0010 0.2712 ± 0.0011 0.2680 ± 0.0007

comparison in triplets, in which i = k, while the graph embedding setting cares uniform
distortion, which corresponds to distance comparison in quadruplets, where i ̸= k is pos-
sible. Theorem 3.6.7 shows that Euclidean space cannot satisfy even the requirements of
the ordinal triplet data setting, which are easier than the graph embedding setting.

3.7 Experiments

3.7.1 Experimental Settings

Methods To demonstrate the effectiveness of using hyperbolic space, we use the following
Euclidean-space-based methods as baselines.

q-EMOE The loss function is given by ℓmgn in (3.9) with power index q, where
X = RD. In the experiments, we used q = 1, 2.
f-EPOE The loss function is given by ℓprb in (3.8) with kernel function f , where
X = RD. In this experiment, EPOE with the Gaussian kernel f(d) = exp

(
−d2

)
and

Student’s t-distribution kernel f(d) =
(
1 + d2

α

)α
are used, which we call G-EPOE

(Gaussian EPOE) and t-EPOE (t-distributed EPOE).
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Table 3.2. Classification errors (mean ± standard error) in real datasets.

WN-mammal D = 2 D = 4 D = 8 D = 16

1-EMOE 0.1446 ± 0.0005 0.1120 ± 0.0004 0.0909 ± 0.0003 0.0747 ± 0.0004
2-EMOE 0.1396 ± 0.0004 0.1060 ± 0.0004 0.0842 ± 0.0004 0.0695 ± 0.0005
G-EPOE 0.1416 ± 0.0004 0.1281 ± 0.0008 0.1159 ± 0.0007 0.1058 ± 0.0004
t-EPOE 0.1598 ± 0.0007 0.1004 ± 0.0003 0.0738 ± 0.0005 0.0656 ± 0.0003

1-HMOE 0.1484 ± 0.0009 0.1022 ± 0.0009 0.0898 ± 0.0005 0.0798 ± 0.0003
2-HMOE 0.1205 ± 0.0005 0.0751 ± 0.0002 0.0567 ± 0.0002 0.0454 ± 0.0003
G-HPOE 0.1222 ± 0.0006 0.0992 ± 0.0005 0.1041 ± 0.0004 0.0909 ± 0.0005
t-HPOE 0.1438 ± 0.0010 0.1128 ± 0.0007 0.0915 ± 0.0004 0.0773 ± 0.0004

Cora D = 2 D = 4 D = 8 D = 16

1-EMOE 0.3513 ± 0.0002 0.3258 ± 0.0002 0.3131 ± 0.0002 0.2973 ± 0.0003
2-EMOE 0.3584 ± 0.0003 0.3311 ± 0.0004 0.3091 ± 0.0002 0.2947 ± 0.0002
G-EPOE 0.3695 ± 0.0003 0.3525 ± 0.0005 0.3348 ± 0.0004 0.3103 ± 0.0003
t-EPOE 0.3629 ± 0.0003 0.3367 ± 0.0002 0.3156 ± 0.0002 0.3007 ± 0.0002

1-HMOE 0.3481 ± 0.0003 0.3245 ± 0.0002 0.3074 ± 0.0004 0.2923 ± 0.0002
2-HMOE 0.3528 ± 0.0003 0.3276 ± 0.0003 0.3051 ± 0.0002 0.2889 ± 0.0002
G-HPOE 0.3593 ± 0.0004 0.3347 ± 0.0002 0.3124 ± 0.0003 0.2967 ± 0.0002
t-HPOE 0.3247 ± 0.0002 0.2900 ± 0.0003 0.2789 ± 0.0003 0.2743 ± 0.0003

For the proposed hyperbolic methods, we use the following methods:

q-HMOE The loss function is given by ℓmgn with power index q, where X = HD.
In the experiments, q = 1, 2.
f-HPOE The loss function is given by ℓprb in (3.16) with kernel function f , where
X = HD. Similar to G-EPOE and t-EPOE, we use the same Gaussian kernel and
Student’s t-distrubution kernel for HPOE, and name them G-HPOE and t-HPOE,
respectively.

Evaluation Protocol We conducted experiments on ordinal triplet data sets and ran each
method 10 times to report their average classification errors along with standard errors.
We created GOTD of ground-truth graph and randomly split the data set into training
data, validation data, and test data. We trained each method on the training data,
and selected a hyperparameter that gave the lowest classification error in grid-search on
validation data as the best hyperparameter.

Optimization For optimization of all the methods, the stochastic Riemannian sub gradient
method (Zhang and Sra, 2016) was applied. Note that this optimization method is reduced
to the vanilla stochastic gradient descent method for the baselines, in which Euclidean
space is used. The specific algorithm for our hyperbolic methods is given in Section 3.5.3.
For all the methods, the constant learning rate was selected by grid-search.

Parameter Settings The batch size and the number of epoch in stochastic gradient descent
were both fixed to 1000. In margin-loss-based methods, the margin hyperparameter δ was
fixed to 1.0. The learning rate was selected from {0.1, 1.0, 10.0} by grid-search. We report
the results in D = 2, 4, 8, 16.
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3.7.2 Experiments on Artificial Datasets

To validate the effectiveness of embedding in hyperbolic space, we constructed a typical
hierarchical structure dataset, i.e., complete balanced tree (CBT).

Datasets CBT Denoting the m-nary complete balanced tree with the depth h by CBT-
m-h, we use CBT-4-6, CBT-8-4 and CBT-16-3 for the experiments. Note that the
number of the leaves of which are all 4096. We randomly selected 10000, 1000, and 1000
triplets for training, validation, and test, respectively in the experiments.

Results Table 3.1 shows that t-HPOE achieves the best result in all cases, which validate
the effectiveness of using hyperbolic space. Moreover, both q-HMOE and f-HPOE
performs better than the corresponding Euclidean methods in most cases. Taken D = 2 as
an example, t-HPOE achieves the lowest errors with 0.4281 inCBT-4-6, as well as 0.3855
and 0.3638 in CBT-8-4 and CBT-16-3, respectively. However, as the best performer
among Euclidean methods, G-EPOE obtains the 0.4342, 0.4097, and 0.3904 only. This is
because the expanding speed of hyperbolic space matches hierarchical structure of data,
so that better embeddings can be achieved in very low dimensionality. Taking it a step
further, we find that t-HPOE outperforms G-EPOE with a larger margin with lower
dimensionality of space, such as 0.2865 when D = 2 and 0.0185 when D = 16 for CBT-
16-3 dataset. It is also interesting to note that superiority of t-HPOE decreases with
increasing m. For example, t-HPOE achieves low errors than G-EPOE with 0.0061 in
CBT-4-6 and 0.0266 in CBT-16-3 when D = 2. These phenomena are in line with
theoretical analyses in Corollary 3.6.3 and Theorem 3.6.7.

3.7.3 Experiments on Real Datasets

We also compared the proposed methods to Euclidean-space-based methods on two real
datasets that are of hierarchy.

Datasets WN-mammal (Nickel and Kiela, 2017) is a subset in WordNet*1, which con-
sists of more than 900 hyponyms of mammal. This dataset forms hierarchical structure,
because a hypernym is often related to many hyponyms. Cora(Šubelj and Bajec, 2013)
is a author citation dataset (McCallum et al., 2000) that contains more than 20000 com-
puter science papers collected from web as vertices of graph. The references are parsed
automatically and regarded as edges. Since reputable papers always are cited by many
other papers, there should exist an underlying hierarchical structure.

The graph of each dataset is ground-truth and we derived triplets, i.e., GOTD (in
Definition 3.6.1), from these graphs. Following (Liu et al., 2017), to avoid overfitting,
we randomly selected 30000 triplets for training in WM-mammal, as well as 3000 triplets
for validation and test each. Since Cora has a larger number of objects, we used more
triplets, i.e., 100000, 10000, and 10000 for training, validation, and test, respectively.

Results The classification errors of hyperbolic methods against Euclidean baselines are
given in Table 3.2 We can see that when D = 2, 2-HMOE shows the lowest mean error
0.1205 in WN-mammal and t-HPOE shows the lowest error 0.3247 in Cora, whereas
the best results of Euclidean methods are 0.1396 and 0.3513 only. This again demon-
strates the effectiveness of the proposed hyperbolic methods for embedding hierarchical
strurctural data in a low-dimensional space.

*1 https://wordnet.princeton.edu
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3.8 Conclusion
In this chapter, we have proposed a novel hyperbolic ordinal embedding (HOE) method to
embed data that are of hierarchical structure in hyperbolic space. Due to the hierarchy-
friendly property of hyperbolic space, HOE has effectively achieved embedding by captur-
ing the hierarchy and preserving ordinal relations in an extremely low-dimensional space.
By using a stochastic optimization method, HOE is also of high efficiency. Both theoreti-
cal and experimental results have demonstrated the outperformance of hyperbolic ordinal
embedding over the Euclidean methods.
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Chapter 4

Relational Data Embedding in Space

Forms II: Multi-relational Graph

Embedding

This part is omitted from the abridged version.
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Chapter 5

Optimization in Space Forms

This part is omitted from the abridged version.
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Chapter 6

Information Criterion in Space Forms

This part is omitted from the abridged version.
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Chapter 7

Conclusion

7.1 Concluding Remarks
In this thesis, we have addressed the issues of machine learning over Riemannian manifolds.
This thesis has contributed to the three fundamental problems: model, optimization, and
evaluation.

In Chapter 3 and 4, we have proposed models̶ dissimilarity measure classes over
Riemannian manifolds, as well as learning methods for them̶ for ordinal data and multi-
relational graphs. In the case of ordinal data, we have focused on the distance between
two points because ordinal data deals with only one kind of relation; whereas, in the
case of multi-relational graphs, we also use the notion of direction to distinguish multiple
relations between the data, exploiting the advantage of the Riemannian manifold using
which we can define angle and direction. These methods have shown the advantage of
using a Riemannian manifold for data structure and specific problem settings in which the
method of using a non-Euclidean Riemannian manifold outperforms that of a Euclidean
space.

In Chapter 5, we have contributed to optimizing machine learning based on Riemannian
manifolds by theoretically comparing first-order stochastic optimization methods based
on the traditional Euclidean metric, the natural gradient method, and the Riemannian
gradient method. We have shown that even for a function with good conditions in regards
to Riemannian geometry, the first-order stochastic methods based on the Euclidean metric
or the natural gradient method can fail, and we can find the arbitrarily bad case for these
two methods; whereas, the method based on Riemannian gradient method is more efficient.
The result in this chapter motivates us to use Riemannian gradient descent based methods
for optimization of functions, whose definition is derived by Riemannian geometry.

In Chapter 6, we have contributed to modelling the evaluation area for machine learn-
ing over Riemannian manifolds, providing a general calculation method of normalized
maximum likelihood code lengths. Based on our novel Fourier-transform-based idea, we
have obtained an explicit form of normalized maximum likelihood code length as the code
length given by Bayesian predictive distribution with a complex prior. We, thereby, have
given an explicit scheme to calculate the code length based on the form.

These results have systematically contributed to the fundamental elements of machine
learning over Riemannian manifolds. In summary, this thesis has presented theoretical
foundations and specific ways for applying machine learning over Riemannian manifolds.

7.2 Future Perspective
The models used in this thesis primarily focus on the data which do not have prior
topology, such as discrete space, and we have focused on measuring its dissimilarity.
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However, in reality, continuous spaces are used as inputs to many applications, such
as the ones used for image, acoustic, and signal data processing. Therefore, obtaining
appropriate dissimilarity measure on such spaces could be very important for future work.

In the optimization part, although we provide a counter-example for the performance
guarantee of methods based on the Euclidean metric and the natural gradient method,
generalizing this discussion to obtain a weaker condition that is sufficient for the failure
of these methods could be considered as important future work to enable us to select the
appropriate optimization methods.

In the evaluation area, although we have derived a generally applicable form for calcu-
lating the normalized maximum likelihood, the form includes a special function given by
an complex integral. To use the form in machine learning applications, investigating the
properties of these special functions is essential.

In all the cases, our results are one of the key foundations for future work.
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Appendix for Chapter 3

A.1 Proof of Theorem 3.6.2
We first introduce a Sarker’s (1+ϵ) distortion embedding given by Algorithm 5 in (Sarkar,
2011), before we prove that the embedding is a concrete instance of Theorem 3.6.2. In
the following, the geodesic path in H2 from x ∈ H2 to y ∈ H2 is denoted by c(x,y). Let
G = ([N ], E) be a tree. Let deg (v) denotes the degree of v ∈ [N ], defined by

deg (v) := |{u ∈ [N ] | (u, v) ∈ E}|. (A.1)

Let the maximum degree of any vertex in G denoted by deg (G), which is defined by

deg (G) := max {deg(v) | v ∈ [N ]} . (A.2)

We denote the graph distance of graph G = ([N ], E) by dG : [N ] × [N ] → Z≥0. In the
following, we introduce Sarker’s (1 + ϵ) distortion embedding for tree G, with distortion
parameter ϵ ∈ R>0. By regarding object N as the root, we can regard G as a rooted tree.
For v ∈ [N − 1], let the parent of v be denoted by ch (1; v) and let the k − 1-th child of
v be denoted by ch (k; v). For the root, let the k-th child of v be denoted by ch (k; v).
Here k ∈ [deg (v)] if v = N , and k ∈ [deg (v)− 1] otherwise. In particular, k ∈ [deg (G)].
Fix β ∈

(
0, π

deg (G)

)
. Let α = 2π

deg (G) − β, ν = −2 ln
(
tan β

2

)
, and τ = ν 1+ϵ

ϵ . For the

root v = N , first, arbitrarily place xN in H2, then xch (1;v) so that dH2

(
xN ,xch (1;v)

)
= τ .

Then, recursively, for all objects v ∈ [N ] whose embedding has been already placed, we
place the embeddings xch (k;N) (k = 2, 3, . . . , deg (N)) of the children of v so that the
following conditions are satisfied.

• dH2

(
xv,xch (k;v)

)
= τ .

• The angles
{
∠xch (k;v)xvxch (1;v)

∣∣ k = 2, 3, . . . , [deg (v)]
}
are mutually exclusively

located in open intervals
{(

2ℓπ
deg (G) − α, 2ℓπ

deg (G) + α
) ∣∣∣ ℓ ∈ [deg (G)− 1]

}
, where

∠xch (k;v)xvxch (1;v) is the angle that c
(
xv,xch (k;v)

)
makes with c

(
xch (1;v)

)
.

In the following, the embedding given by the above algorithm is called Sarker’s (1 + ϵ)
distortion embedding. For any Sarker’s (1+ ϵ) distortion embedding, the following holds.

Theorem A.1.1 (Theorem 6 in (Sarkar, 2011)). Let G = ([N ], E) be a tree. For all
ϵ ∈ R>0 and all embeddings (xn)n∈[N ] given by Sarker’s (1 + ϵ) distortion embedding,

the following holds: for any object pair (u, v) ∈ [N ] × [N ], 1
1+ϵτdG(u, v) < dH2(xu, xv) <

τdG(u, v), where τ = ν 1+ϵ
ϵ .

The previous theorem directly proves Theorem 3.6.2.
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Proof of Theorem 3.6.2. Let diam (G) denote the diameter of G, defined by

diam (G) := max {dG(u, v) | u, v ∈ [N ]} . (A.3)

According to Theorem A.1.1 in (Sarkar, 2011), for any ϵ > 0, there exists embedding
(xn)n∈[N ] and factor τ > 0 such that for any object pair (u, v) ∈ [N ]×[N ], 1

1+ϵτdG(u, v) <

dH2(xu, xv) < τdG(u, v). By setting ϵ = 1
diam (G) , we have embedding (xn)n∈[N ] such that

for any object pair (u, v) ∈ [N ] × [N ], τ [dG(u, v)− 1] < dH2(xu, xv) < τdG(u, v), which
completes the proof.

A.2 Proof of Theorem 3.6.7
Definition A.2.1. We say that G = ([N ], E) includes a m-star if there exists a set of
vertices v0, v1, . . . , vm ∈ [N ] such that for all i = 1, 2, . . . ,m, (v0, vi) ∈ E and for all
i, j = 1, 2, . . . ,m such that i ̸= j, (vi, vj) /∈ E .

The following trivial proposition states the relation between Definition A.2.1 and tree.

Proposition A.2.2. If a graph G is a tree and deg (G) = m, then G includes a m-star.

Proof of Theorem 3.6.7. Assume that the embedding (xn)n∈[N ] in RD that is non-

contradictory to the complete ordinal triplet data of G. According to Proposition A.2.2,
G includes a m-star. In this proof, the center of the sub m-star is relabeled m+1 and the
vertices that has an edge to m+1 are relabeled 1, 2, . . . ,m. In the following, ∥·∥2 denotes

the 2-norm defined by ∥x∥2 :=
√
x⊤x, and the closed ball with center x ∈ RD and

radius R ∈ R≥0 is denoted by BR[x], defined by BR[x] :=
{
x′ ∈ RD

∣∣ ∥x′ − x∥2 ≤ R
}
.

Without loss of generality, we can set xm+1 = 0. Let R := min {∥xn∥2 | n ∈ [m]}. By
the assumption of non-contradiction of embedding, for all n, n′ ∈ [m] such that n ̸= n′, it
holds that xn′ /∈ B∥xn∥2

[xn]. Define x̃n := 1
∥xn∥2

xn. For fixed n, n′ ∈ [m] such that they

satisfy n ̸= n′ and ∥xn∥2 ≥ ∥xn′∥2, define x′
n :=

∥xn′∥2

∥xn∥2
xn. As xn′ /∈ B∥xn∥2

[xn] and

B∥x′
n∥2

[x′
n] ⊂ B∥xn∥2

[xn], it follows that xn′ /∈ B∥x′
n∥2

[x′
n]. By multiplying factor 1

∥x′
n∥2

,

we have x̃n′ /∈ B1[x̃n]. Hence, it holds that dRD (x̃n, x̃n′) > 1. If we regard x̃1, x̃1, . . . , x̃m

as points in the D − 1 dimensional unit sphere, for all n, n′ ∈ [m] such that n ̸= n′,
it holds that dSD−1(x̃n, x̃n′) > π

3 . Therefore, m cannot be larger than the π
3 -packing

number of SD−1.
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B

Appendix for Chapter 4

This part is omitted from the abridged version.


