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Abstract

Persistent homology is a concept used in the field of topological data analy-
sis. Homology groups represent the topological features of a shape: connected
components, holes, voids, and so on. On computers, a shape is often given
as a point cloud. A growing sequence of a shape, or a filtered simplicial com-
plex is constructed from a point cloud. Persistent homology groups represent
the appearance and the disappearance of the topological features of a filtered
simplicial complex.

The nonlinear time series analysis provides a method to reconstruct an orbit
in the phase space from an observed time series. The method is called attrac-
tor reconstruction. Attractor reconstruction is achieved with delay-coordinates.
Delay-coordinates map observed values into a vector which consists of time de-
layed values.

The combination of persistent homology and attractor reconstruction en-
ables us to compute the shape of an orbit. The topological features of recon-
structed attractors are used to detect such dynamical properties as the period-
icity of the observed signal or to classify the signals.

It is needed to select the time delay of delay-coordinates. The thesis inves-
tigated a criterion to select the delay and observed the behavior of the criterion
applied to periodic signals and chaotic signals. The thesis proposed an index
called the most significant death value (MSDV) and the criterion that the delay
that maximizes an MSDV should be selected. The thesis observed that the cri-
terion was effective for several non-chaotic signals with periodicity. However,
the criterion was not effective for several chaotically periodic signals. The thesis
compared the criterion with the mutual information, which is a method widely
used to select the delay. The criterion produced the results better than the mu-
tual information. Although the results did not give a complete solution, it may
give us an insight to use the combination of persistent homology and attractor
reconstruction.

The computation of the persistent homology of more than thousand points
sometimes takes more than a day. It also takes more than hundred gigabytes
of memory. The thesis proposed a method to make the computational time
faster and the computational space smaller as long as the input is a continuous
curve. The input time series was assumed to be continuous and the curve was
assumed to be given as a set of sampled points. The proposed method obtained
the line segments approximating to the given curve and computed the persistent
homology of the line segments, instead of the points. The computational time
of the proposed method was made ten times or more faster and its computa-
tional space was made ten times or more smaller. The proposed method also
smoothed out the noise of data. It is obvious that these results are useful for the
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practical applications of the combination of persistent homology and attractor
reconstruction.

Keywords: persistent homology, attractor reconstruction, delay-coordinates,
Takens’ theorem, Vietoris-Rips complex.
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Preface

This thesis presents the studies on the combination of persistent homology and
attractor reconstruction. The thesis is the fruits of my efforts to make the
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Chapter 4.
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construction and Takens’ theorem. Section 2.3 provides the definition of Bézier
curves and the method for fitting them to sampled points. Chapter 3 and Chap-
ter 4 gives the methods and the results of my studies. Chapter 3 explains the
study of persistent homology and attractor reconstruction. Chapter 4 explains
the study that speeds up the computation of persistent homology of continuous
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Chapter 1

Introduction

Dynamics occurs everywhere. In physics, the motion of an object is described
by differential equations. In biology, the behavior of cells is also described by
differential equations. In other fields, such as climatology, sociology, economics,
etc., differential equations are used to make a model of a phenomenon. If it is
not easy to describe phenomena as differential equations, it may be governed
by some differential equations.

A set of observed time series data is given but the differential equations that
govern them are unknown. The observed time series data may not be governed
by the same differential equations; different phenomena may be observed as time
series data. How we can distinguish the observed time series data from each
other?

Suppose that observed time series data is an orbit of an ordinary differen-
tial equation. Information at several scales can be acquired from an orbit. At
local scale, the Lyapunov exponent and the fractal dimensions reflect the char-
acteristics of the differential equations. At middle scale, the branched manifold,
which is a projection of an attractor made by identifying two orbits if they be-
come equal as the time approaches infinity, provides the behavior of orbits. At
global scale, the embedding manifold, which encloses an orbit, gives a clue to
the structure of the differential equation.

The aim of this thesis is to provide practical means of extracting the global
information of an orbit. The topology of the embedding manifold of an orbit is
extracted. Researchers have investigated such method. In last five years, per-
sistent homology groups have been used to extract the topology of embedding
manifolds. Persistent homology groups are the homology groups with topologi-
cal persistence. Homology groups are topological invariants of a space and they
represent the connected components, the holes, the voids, and higher dimen-
sional holes of the given space. Topological persistence is a notion how long
each topological entity lives as the space changes.

The computation of the persistent homology groups of observed time se-
ries data relies on the delay-coordinate space. The observed time series data
is mapped into the delay-coordinate space in order to reconstruct the shape
of the orbit in the original phase space. The delay-coordinate space has two
parameters: the delay time and the embedding dimension. It is important to
select the proper delay time and the proper embedding dimension. If improper
parameters are selected, the shape of the orbit is not reconstructed. This thesis
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attempts to find a criterion to select the delay time when periodic or recurrent
time series data is given. Although the embedding dimension is also important
and they relate to each other, I focused on the delay time only.

There is another problem. The computational time and space required to
compute persistent homology groups are quite long and large. This thesis pro-
poses a method to reduce them provided that the input is a smooth curve. It
requires more than ten times shorter time and smaller space.

The works in this thesis realize the practical use of the persistent homology
groups of time series data.

Section 1.1 gives a brief and illustrated introduction on differential equa-
tions, the delay-coordinates, and persistent homology. It is wished that the
section help readers to understand what will be handled in the thesis by in-
tuition. Section 1.2 provides brief reviews on related works. It shows a brief
history of computing the homology of attractors. It also shows applications and
problems of persistent homology and delay-coordinates in recent years. Section
1.3 summarizes the contribution of this thesis.

1.1 Overview to Topics
1.1.1 Differential Equations
Differential equations are equations which contains the derivatives of the vari-
ables. Although there are several forms of differential equations, the simplest
form is shown here:

dx

dt
= f(x), (1.1.1)

where x ∈ Rd and f : Rd → Rd. The differential equations in this form are
called autonomous systems. The set of pairs (x, f(x)) is called the vector field
of the differential equations. By integrating the differential equation with an
initial condition x0 = x(t0), we obtain a curve starting from the point x0, which
is called an orbit.

On computers, numerical methods are used to solve differential equations.
The simplest and most basic method is the explicit Euler method (Strogatz,
2014: p. 32). The idea of the explicit Euler method is to use the difference of
the variable as an approximation to the derivative. Let h be a step size. The
difference of the variable x in Equation (1.1.1) which is an approximation to
dx/dt is written as

dx

dt
(t) ≈ x(t+ h)− x(t)

h
. (1.1.2)

Let t0 be the initial time and let tn = hn+t0. We obtain the following difference
equation from Equation (1.1.1) and Equation (1.1.2):

x(tn+1) = x(tn) + hf(x(tn)). (1.1.3)

By solving Equation (1.1.3), a numerical solution of Equation (1.1.1), which is
an approximation to an orbit, is obtained.

Because the numerical solution of the Euler method has the error on the
order of O(h). It is common to use more accurate methods. The fourth order
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Runge-Kutta method (Strogatz, 2014: p 33) is often employed. It is defined as
follows. Let xn = x(tn). Define the following four numbers:

k1 = hf(xn),

k2 = hf(xn +
k1
2
),

k3 = hf(xn +
k2
2
),

k4 = hf(xn + k3).

(1.1.4)

The difference equation of the Runge-Kutta method is defined as

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4). (1.1.5)

The error of the solution of the Runge-Kutta method is on the order of O(h4).
Several examples of ordinary differential equations are introduced in order

to help the readers to understand this thesis. Some of the systems introduced
below appear in later chapters.

The first example is the harmonic oscillator, which represents the motion of
a mass on a spring. One side of the spring is fixed and another side has a mass
m. Suppose that the spring is an ideal spring. Let x denote the displacement
of the mass from the fixed side of the spring. From the Newton’s equation and
the Fooke’s law, we obtain the following equation:

m
d2x

dt2
= −kx. (1.1.6)

By dividing the both side of the equation above by m and introducing a new
variable y = dx/dt, we obtain the differential equations

dx

dt
= y,

dy

dt
= − k

m
x.

(1.1.7)

The vector field of Equation (1.1.7) is shown in Figure 1.1a.
The solution of this system can be obtained by hand. It is written as

x(t) = A cos
(√

k

m
t

)
+B sin

(√
k

m
t

)
, (1.1.8)

where A and B are constants determined by the initial conditions.
Figure 1.1b shows a numerical solution of Equation (1.1.7), where k/m = 1.

The initial condition is set to (x0, y0) = (1.0, 0.0). The orbit is a circle as the
exact solution in Equation (1.1.8) says.

The damped oscillator is a system modified from the harmonic oscillator.
The frictional force proportional to the velocity is added. A damping term is
added to Equation (1.1.6):

d2x

dt2
+ α

dx

dt
+ ω2x = 0, (1.1.9)
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Figure 1.1: The harmonic oscillator (k/m = 1). (a) The vector field of
Equation (1.1.7) and (b) the solution with initial condition (x0, y0) = (1, 0).
The color scale indicates the time. The solution was numerically developed
with the fourth order Runge-Kutta method. The step size was set to 0.01 and
the number of the steps was 630.

where the parameter α is a positive real value. The equation above is rewritten
as 

dx

dt
= y,

dy

dt
= −ω2x− αy.

(1.1.10)

The vector field of Equation (1.1.10) is shown in Figure 1.2a. The arrows
spiral to the origin, which means orbits go to the origin as the time increases.

Although this system can be solved algebraically, I show only a numerical
solution in Figure 1.2b. The amplitude of oscillation decreases as the time goes.
The shape of an orbit is different from the harmonic oscillator. It spirals to the
origin.

Balthasar van der Pol (Van der Pol, 1926) thought that the case where
the sign of the second term of Equation (1.1.9) is reversed. In this case, the
amplitude of an orbit increases to infinity as the time approaches to infinity.
Such behavior is physically unrealizable. Hence he replaced the parameter α
by the expression α − 3γx2, where γ is a positive real value. This replacement
makes the value of the second term positive at a certain amplitude. The equation
obtained is shown below:

d2x

dt2
− (α− 3γx2)

dx

dt
+ ω2x = 0. (1.1.11)

By changing the units of the variables with the equations
ωt = t′,

x =

√
α

3γ
v,

(1.1.12)
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Figure 1.2: The damped oscillator (ω = 1, α = 0.5). (a) The vector field of
Equation (1.1.10) and (b) the solution with initial condition (x0, y0) = (1, 0).
The color scale indicates the time. The solution was numerically developed
with the fourth order Runge-Kutta method. The step size was set to 0.01 and
the number of the steps was 2000.

and letting µ = x/ω, we obtain the differential equation

d2v

dt2
− µ(1− v2)

dv

dt
+ v = 0. (1.1.13)

This equation is rewritten as
dv

dt
= w,

dw

dt
= µ(1− v2)w − v.

(1.1.14)

The vector field of Equation (1.1.14) with µ = 1.0 is shown in Figure 1.3a.
The van der Pol system has the notable property; it has a certain set called

attractor to which the orbits approach. Figure 1.3b shows the attractor of the
van der Pol system. This type of attractor is called limit cycle because it is a
periodic orbit and is the limit of an orbit as the time approaches to infinity. An
orbit with an other initial condition is also attracted to this limit cycle. For
example, Figure 1.3c shows an orbit starts from the point (v, w) = (−2.0,−2.0).
What does cause such behavior?

First, it is important to know the vector field around the fixed points. The
fixed points are where orbits on them do not move. The value of the vector field
on a fixed point is zero. The van der Pol system has one fixed point: the origin.

Because it is difficult to know the behavior of nonlinear differential equations,
we linearize the vector field around fixed points. From Taylor’s theorem, the
linear approximation at the point x∗ of the right-hand side Equation (1.1.1) is

f(x) = f(x∗) + Jx∗f(x− x∗) + o(|x− x∗|), (1.1.15)

where Jx∗f is the Jacobian of f at x∗ and the little o notation. Since x∗ is a
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fixed point, the linear approximation of Equation (1.1.1) is written as
dx

dt
≈ Jx∗f(x− x∗). (1.1.16)

By some calculation, we obtain the linear approximation of the van der Pol
system at the origin: 

dv

dt
= w,

dw

dt
= −v + µw.

(1.1.17)

In the cases where µ > 0, the values of solution of Equation (1.1.17) increase
as the time increases. The orbits starting from the points inside the limit cycle
approach to the limit cycle.

Although I do not enter the details, in order to prove the existence of the
limit cycle, the nullclines and Poincaré-Bendixson theorem are needed (Strogatz,
2014: p. 150). The nullclines are the sets such that each coordinate of the vector
field is zero. For example, from Equation (1.1.14), the nullclines of the van der
Pol system are the curves w = 0 and w = v/µ(1 − v2). It is easy to know to
the direction of the orbits on the nullclines. Poincaré-Bendixson theorem states
that if a compact subset in a plane has no fixed point then there is a limit cycle.

The harmonic oscillator and the van der Pol system have periodic solutions.
Below I introduce differential equations which have the orbits that are not pe-
riodic but pass near to the points where they have already passed. The most
famous system with such property is the Lorenz system (Lorenz, 1963).

The Lorenz system originates from a problem of fluid mechanics. It is a
simplification of partial differential equations which are derived to study a con-
vection in a layer of fluid of a uniform depth. Prior to Lorenz, Saltzman (1962)
derived ordinary differential equations from that partial differential equations by
expanding the functions in double Fourier series. Then Lorenz truncated them
and obtained the following differential equations, called the Lorenz system.

dx

dt
= −σx+ σy,

dy

dt
= −xz + rx− y,

dz

dt
= xy − bz,

(1.1.18)

where σ, r, and b are parameters. The parameter r is related to the Reyleigh
number.

For all values of the parameters, the Lorenz system has a fixed point at the
origin: (0, 0, 0). If r > 1 holds, it has two more fixed points:

(
√
b(r − 1),

√
b(r − 1), r − 1), (−

√
b(r − 1),−

√
b(r − 1), r − 1).

It is known that when the parameters are σ = 10, r = 28, and b = 8/3 the
orbits exhibit interesting behavior. Figure 1.4 shows an orbit which starts from
the point (x, y, z) = (1, 1, 0). Figure 1.5a, Figure 1.5b, and Figure 1.5c shows
the orbit projected to the xy-plane, the xz-plane, and the yz-plane respectively.

The orbit in Figure 1.4 stays in a certain region. In fact this region is an
attractor, called the Lorenz attractor. It attracts the orbits starting from nearby
points except on the z-axis.
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(b) A solution.
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(c) Another solution

Figure 1.3: The van der Pol equation (µ = 1). (a) The vector field of the van
der Pol equation, (b) the solution of the van der Pol equation with the initial
condition (v0, w0) = (0.1, 0), and (c) the solution with the initial condition
(v0, w0) = (−2,−2). The color scale indicates the time. The solutions were
developed with the fourth order Runge-Kutta method. The step size was set
to 0.01 and the number of the steps was 4000.

The Lorenz attractor has two large holes. The fixed points except the ori-
gin, which is located approximately at (8.46, 8.46, 27) and (−8.46,−8.46, 27) in
this case, is in the holes. It can be considered that the holes of an attractor
correspond to the fixed points.

More precisely, there should be one more hole in the attractor. On the z-
axis, from Equation (1.1.18) the vector field of the Lorenz system is written as
follows: 

dx

dt
= 0,

dy

dt
= 0,

dz

dt
= −bz.

(1.1.19)

The points on the z-axis cannot go out of the z-axis and they sink down to the
origin since dz/dt = −bz if b > 0. Although the origin is outside the attractor,
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Figure 1.4: The Lorenz attractor numerically developed by the fourth order
Runge-Kutta method, where the step size was set to 0.01 and the initial condi-
tion was (x, y, z) = (1, 1, 0). The color scale indicates the time.

it can be considered that the z-axis is a fixed point of the attractor.
It is worth noting that the Lorenz attractor is an example of strange at-

tractors. A strange attractor is an attractor which is sensitive to initial condi-
tions (Strogatz, 2014: p. 333). Figure 1.7 shows two orbits with different initial
conditions developed from t = 0 to t = 300. Two lines are the values of the x-
coordinate of the orbits. The purple line has the initial condition (x0, y0, z0) =
(1, 1, 0) and the green line has the initial condition (x0, y0, z0) = (1, 1.00001, 0).
The slight difference of initial conditions makes different development of the
orbits. The two lines in Figure 1.7 have almost the same value until t = 25.
After that time they take different values but they exhibit the similar behavior.

The two orbits make the similar shapes in the phase space. Figure 1.6 shows
the orbit with the initial condition (x0, y0, z0) = (1, 1.00001, 0). Compared to
Figure 1.4, two orbits are attracted into the same attractor. Thus the shape
of an orbit in the phase space can be used to characterize and to identify time
series data.

This thesis focuses on the topology of orbits. Persistent homology is em-
ployed for computing the topology. It is a variant of homology groups, which
summarizes the information of the holes of a shape. Before giving a brief intro-
duction of persistent homology, the methods of delays is introduced in order to
recover orbits from observed time series data.

1.1.2 Method of Delays
Through the examples introduced in the previous section, the shape of an orbit
in the phase space seems to be useful to distinguish time series data. Suppose the
follwing situation: We observe time series data with certain measuring machine;
and the observed data may be a projection from the phase space. In such a
situation, we have to succeed in reconstructing the shape of an orbit in the
original phase space.

The method of delays or attractor reconstruction enables us to obtain the
shapes of orbits equivalent to the original shapes. The delay-coordinates defined
below are used to lift the observed time series up into a higher dimensional
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(a) The xy-plane. (b) The xz-plane.

(c) The yz-plane.

Figure 1.5: The projections of Lorenz attractor. The Lorenz attractor shown in
Figure 1.4 is projected onto (a) the xy-plane, (b) the xz-plane, and (c) the yz-
plane. The color scale indicates the time. The first 20000 points were omitted
because they were not in the attractor.

Euclidean space:

y(t) = (x(t), x(t− a), x(t− 2a), . . . , x(t− (n− 1)a)), (1.1.20)

or
y(t) = (x(t), x(t+ a), x(t+ 2a), . . . , x(t+ (n− 1)a)), (1.1.21)

where a is the time delay, n is the embedding dimension, and x(t) is the observed
time series. The details of the delay-coordinates are explained in Section 2.2.

Let us see some examples of the delay-coordinates. The time series of the
x-coordinate of the Lorenz attractor shown in Figure 1.4 will be mapped into a
set of delay-coordinates. The delay-coordinates of three dimensions with a time
delay of ten steps is a successful case. Figure 1.8 shows the reconstructed Lorenz
attractor with the delay-coordinates of a = 10 and n = 3. The reconstructed
attractor has two holes and it is same as the attractor in the original phase
space.

9



Figure 1.6: The Lorenz attractor numerically developed by the fourth order
Runge-Kutta method, where the step size was set to 0.01 and the initial con-
dition was the point (x, y, z) = (1, 1.00001, 0). The color scale indicates the
time.

An improper choice of the time delay leads to a poor reconstruction. The
reconstructed Lorenz attractor mapped with the delay-coordinates of one step
time delay and three embedding dimension is shown in Figure 1.9. The shape
of reconstructed attractor is squeezed. Such a phenomenon is called redun-
dancy (Casdagli, Eubank, Farmer, and Gibson, 1991). Redundancy occurs be-
cause the values of each coordinate are close to each other when the time delay
is too small.

Too large time delays cause problems for chaotic attractors. Figure 1.10
shows the reconstructed Lorenz attractor mapped into the delay-coordinates of
100 steps time delay and three embedding dimension. The reconstructed attrac-
tor is highly folded and the original shape is not preserved. Such a phenomenon
is called irrelevance (Casdagli et al., 1991).

These examples tell us the importance of the choice of the delay time. We
are in need of methods to select the proper time delay. Many researchers have
proposed such methods with different approaches. This thesis considers this
problem; in order to acquire a clear recognition of the topology of the recon-
structed attractor, the reconstructed attractor has to be inflated as possible
as it can. Limited to periodic orbits, such as the harmonic oscillator, and re-
current orbits, such as the Lorenz attractor, it is observed in experiments that
the time delay that satisfies the equation an = T/2, where T is a period or
approximation, is effective.

1.1.3 Homology and Topological Persistence
Topology studies the properties of shapes that do not change if the shapes are
deformed continuously. For example, dimension and connectedness are topolog-
ical properties. The equivalence of shapes is determined by homeomorphisms. A
homeomorphism is a continuous mapping which is invertible and whose inverse
is continuous. I give a simple example of shapes which are not homeomorphic.
Let X be a real line: X = R; let Y be a real line from which the origin is
removed: Y = R \ {0}. The space X has one connected component but the
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Figure 1.7: The comparison of two orbits of the Lorenz system with different
initial conditions from t = 0 to t = 300. The purple line is the x-coordinate of
the orbit with the initial condition (x, y, z) = (1, 1, 0) and the green line is the
x-coordinate of the orbit with the initial condition (x, y, z) = (1, 1.00001, 0).
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Figure 1.8: A successful case of a reconstructed Lorenz attractor: The time
delay and the embedding dimension were set to a = 10 and n = 3. The color
scale indicates the time.

Figure 1.9: A reconstructed Lorenz attractor: The time delay and the embed-
ding dimension were set to a = 1 and n = 3. The color scale indicates the
time.

space Y has two connected components. They are not homeomorphic although
we have to know the properties of homeomorphisms in order to give a rigorous
proof.

I give another example. Let X be a real plane: X = R2; let Y be a real
plane from which the origin is removed: Y = R2 \ {0}. In this case both X
and Y have one connected components. However, they are not homeomorphic.
Take a loop which encloses the origin. In the space X the loop can shrink into
a point, but in Y the loop is struck in the origin.

Loops catch the holes in a shape. Holes are obstacles to the deformation of
loops. We can construct a topological invariant using loops, which is called ho-
motopy groups. The shapes with different homotopy groups are not homeomor-
phic, but the shapes which are not homeomorphic can have the same homotopy
groups. Homotopy can be used to distinguish shapes.

Unfortunately it is diffcult to compute homotopy groups in general. Homol-
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Figure 1.10: A reconstructed Lorenz attractor: The time delay and the embed-
ding dimension were set to a = 100 and n = 3. The color scale indicates the
time.

(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 1.11: Examples of simplices.

ogy groups are easier to compute but have less information.
Homology is a topological invariant and is a sequence of algebraic objects

called homology groups. Homology groups are modules, which are vector spaces
whose scalars generalized to rings, associated to a simplicial complex or a topo-
logical space. Although homology groups can be defined for topological spaces,
homology groups for simplicial complices are employed in this thesis because
computers can handle them.

This section gives a brief overview of homology groups. Formal definitions
are given in later sections.

A simplicial complex consists of simplices. A simplex is a convex hull of its
vertices. A simplex which has q+1 vertices is called a q-simplex. The dimension
of a q-simplex is q. Figure 1.11 shows a 0-simplex, a 1-simplex, a 2-simplex, and
a 3-simplex. A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex
is a triangle, and a 3-simplex is a tetrahedron.

Simplices are glued to each other at their faces and the glued simplices are
called a simplicial complex. A face of a simplex is a simplex which consists of a
subset of the vertices. Figure 1.12a shows an example of a simplicial complex.
However, a shape shown in Figure 1.12b is not a simplicial complex. Two
triangles intersect on the region that are not faces and two line segments intersect
in the middle of them.

Simplicial complexes are used to represent the topological structure of spaces
in mathematics. The computation of homology groups is enabled by construct-
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(a) (b)

Figure 1.12: The condition of simplicial complices: (a) A simplicial complex.
(b) A shape which is not a simplicial complex.

ing a simplicial complex homeomorphic to the given space. The simplicial com-
plex homeomorphic to a space is called the trianglation of the space. For in-
stance, the simplicial complex with three vertices and three edges which connect
the vertices is homeomorphic to a circle (Figure 1.13).

In order to compute the homology groups, modules are associated to a sim-
plicial complex. For each dimension q, the module generated by the q-simplices
in the given simplicial complex is constructed. Such module is called the q-th
chain group of the simplicial complex. The q-th chain group of K is denoted
as Cq(K). Elements of the q-th chain group are called q-chains, which are for-
mal linear combinations of q-simplices. The q-th chain group and (q − 1)-th
chain group is connected with a homomorphism called the boundary operator
or the boundary homomorphism. The boundary operator takes the boundary
of simplices or chains.

For instance, consider a 2-simplex with the vertices a, b, and c, say σ = 〈abc〉.
The boundary of σ is ∂σ = 〈bc〉 − 〈ac〉+ 〈ab〉.

Consider the situation that we have two 2-simplices glued at an edge (Figure
1.14). The boundary of the chain c = 〈012〉+ 〈132〉 is calculated as follows:

∂c = 〈12〉 − 〈02〉+ 〈01〉
+ 〈32〉 − 〈12〉+ 〈13〉 (1.1.22)

= 〈01〉+ 〈13〉+ 〈32〉+ 〈20〉. (1.1.23)

The chain ∂c represents the cycle which visits the vertices 0, 1, 3, 2, and 0 in
this order. The set of boundaries of chains forms a module and it is called the
boundary group:

Bq(K) = Im ∂q+1 = {b ∈ Cq(K) | ∃c, ∂q+1c = b}. (1.1.24)

In the case of Figure 1.14, we have obtained a cycle. The boundary of this
cycle (Figure 1.14b) is zero. It is known that the boundaries of cycles are always
zero. Therefore cycle groups are defined as the kernel of the boundary operators:

Zq(K) = Ker ∂q = {z ∈ Cq(K) | ∂qz = 0}. (1.1.25)

The q-th homology group of a simplicial complex K is defined as

Hq(K) = Zq(K)/Bq(K). (1.1.26)

14



(a) A circle. (b) A simplicial complex.

Figure 1.13: An example of triangulation. A circle (a) is homeomorphic to a
simplicial complex (b).

0 1

2 3

(a)

0 1

2 3

(b)

Figure 1.14: The boundary of a simplicial complex: (a) A simplicial complex,
and (b) the boundary of the simplicial complex. The numbers 0, 1, 2, and 3 are
the labels of the vertices.

An element of Hq(K) is a cycle, which is a chain whose boundary is zero, but
is not a boundary of other chains.

For instance, the homology groups of the simplicial complex shown in Figure
1.14b are H0 = Z, H1 = Z, and Hq = 0 for all q ≥ 2.

Although simplicial complices are made by hand in mathematics, we need
methods to construct simplicial complices from data on computers. Suppose
that we have a set of points sampled from a space. Consider that a graph is
constructed by connecting any two points at a distance less than a threshold.
Then put q-simplices into the (q + 1)-vertices cliques of the graph. A clique
of a graph is a subgraph whose all vertices are connected to each other. We
obtain a simplicial complex from sampled points by this construction. However,
it is difficult to choose the threshold. If the threshold is too small, the simplicial
complex will be scattered; it have many connected components. If the threshold
is too large, the simplicial complex will be a large ball; its holes are filled.

In order to avoid such consequences, the growing sequence of a simplicial
complex, which is called filtration, is introduced. The homology groups of a
simplicial complex are extended to the filtration of a simplicial complex. They
are called persistent homology groups. Persistent homology groups encode the
information of when cycles are born and when they vanish in the growing of
a simplicial complex. The notion of how long cycles live is called topological
persistence.

Let us explain topological persistence with an example of a single-valued
function. The following example was made in the spirit of the examples demon-
strated in the articles (Edelsbrunner and Harer, 2008) and (Vejdemo-Johansson,
2012).
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Suppose that a continuous function f : R→ R is given. Consider the sublevel
sets of the function f :

f−1(−∞, y] = {x ∈ R | f(x) ≤ y}, (1.1.27)

where y is a real number. A growing sequence of the sublevel sets of the function
f is obtained because for any two numbers y ≤ y′, the relation f−1(−∞, y] ⊂
f−1(−∞, y′] holds. In this case, the topological entities of the sublevel sets are
connected components only since the function f has only one variable. The set
of the connected components is denoted as π0f

−1(−∞, y]. An example of the
change of the connected components of the sublevel sets of a function is given
below.

The graph of the function f is shown in Figure 1.15. The thresholds on the
y-axis are taken: y0 < y1 < y2 < y3 < y4 < y5. The sublevel sets are calculated
in the order of these thresholds.

First the sublevel set f−1(−∞, y0] is the point that attains the minimum
of the function f . The symbol x0 denotes the point. The point x0 is shown
as the blue point at the level of y0 in Figure 1.15. We introduce the notation
[x0] which denotes the connected component represented by the point x0. The
sublevel set has only one connected component: π0f

−1(−∞, y0] = {[x0]}.
Second the sublevel set f−1(−∞, y1] is a segment. The segment is shown

as the blue line segment at the level of y1 in Figure 1.15. The sublevel set
has only one connected component that is represented by x0. The topological
information is summarized as π0f

−1(−∞, y1] = {[x0]}. It is not changed from
π0f

−1(−∞, y0].
Third the sublevel set f−1(−∞, y2] is made of a segment and a point. The

segment is identified with the connected component [x0]. It is shown as the blue
segment at the level of y2 in Figure 1.15. The point, say x2, has newly appeared.
It is shown as the orange point at the level of y2 in Figure 1.15. The set of the
connected components of the sublevel set is π0f

−1(−∞, y2] = {[x0], [x2]}. It is
changed from π0f

−1(−∞, y1].
Fourth the sublevel set f−1(−∞, y3] is made of two segments. They are

shown as the orange segment and the blue segment at the level of y3 in Fig-
ure 1.15. The connected components of the sublevel set are π0f

−1(−∞, y3] =
{[x0], [x2]}. They are same as π0f

−1(−∞, y2].
Fifth the sublevel set f−1(−∞, y4] is made of only one segment. The con-

nected component represented by x2 is merged to the connected component
represented by x0. The connected component [x0] is shown as the blue segment
at the level of y4 in Figure 1.15. When two connected components are merged,
the younger one is merged into the elder one. This rule is called the elder rule.
In this example, the connected component [x2] is younger than [x0] since [x2]
was born at y2 and [x0] was born at y0.

Lastly, the sublevel set f−1(−∞, y5] is made of a segment. The segment is
shown as the blue segment at the level of y5 in Figure 1.15. The connected
components of the sublevel set are π0f

−1(−∞, y5] = {[x0]}.
In summary, the connected component [x0] was born at y0 and lives eternally

and the connected component [x2] was born at y2 and died at y4.
Now the Vietoris-Rips complex is explained. The Vietoris-Rips complex is

a simplicial complex constructed from a set of points in an Euclidean space.
Suppose that the points are sampled from a subspace of the Euclidean space.
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Figure 1.15: Sublevel sets of a function and topological persistence. A contin-
uous function and the threshold values of sublevel sets (left) and the sublevel
sets of the thresholds (right).

Imagine that the balls centered at the given points. The union of the balls is
another subspace and we consider it as the approximation to the subspace from
which the points are sampled. We have to turn it into a simplicial complex. The
points are treated as the vertices of the simplicial complex. If two balls have the
intersection, we add a 1-simplex whose vertices are the centers of the two balls.
If any two balls of three balls have the intersection, we add a 2-simplex there.
We add simplices of higher dimensions in the similar manner. The resulting
simplicial complex is the Vietoris-Rips complex.

We can build the filtration of the Vietoris-Rips complex. An example is
shown in Figure 1.16. Six points are sampled from a circle of radius 1. Each
point is positioned at (cos kπ/3, sin kπ/3) for k = 0, 1, 2, 3, 4, 5. As the balls
grow, simplices are added to the Vietoris-Rips complex.

The persistent homology gruops of the filtration of the Vietoris-Rips complex
of this example are shown in Table 1.1. The 0-th persistent homology group
consists of one homology class with an infinite lifetime and five classes which
vanish at 0.5. The 1-st persistent homology group consists of one homology
class which is born at 0.5 and dies at 0.866 and nine classes with a zero lifetime.

In order to help people to grasp the persistent homology groups, persistence
diagrams visualize them. Persistence diagrams are scatter plots of persistent
homology classes. The horizontal axis indicates the birth scale and the vertical
axis indicates the death scale. The persistence diagrams of the example are
shown in Figure 1.17.

Some readers may wonder how far the persistent homology groups of the
Vietoris-Rips complex of the sampled points is from those of the underlying
space. The following inequality is known (Chazal, de Silva, and Oudot, 2014):

W∞(Dgmq(R(X)),DgmqR(Y )) ≤ 2dGH(X,Y ), (1.1.28)

where X and Y are metric spaces. The symbol R(X) denotes the filtration of
the Vietoris-Rips complex of X and Dgmq denotes the persistence diagram of
the q-th persistent homology group. The symbol W∞ denotes the bottleneck
distance between persistence diagrams and the symbol dGH denotes the Gromov-
Hausdorff distance between metric spaces.
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(a) The points sampled equidistantly
from a circle of radius 1. They forms
a hexagon.

(b) The Vietoris-Rips complex that cor-
responds to the shape (a).

(c) The balls of radius 0.5 centered at the
sampled points.

(d) The Vietoris-Rips complex that cor-
responds to the shape (c).
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(e) The balls of radius 0.866 centered at
the sampled points.

(f) The Vietoris-Rips complex that cor-
responds to the shape (e).

(g) The balls of radius 1.0 centered at
the sampled points.

(h) The Vietoris-Rips complex that cor-
responds to the shape (g).

Figure 1.16: An example of the growing of the Vietoris-Rips complex. (a,c,e,g)
The points and the balls. (b,d,f,h) The Vietoris-Rips complices.

19



∞
1

0
10

death

birth
(a) 0-th persistence diagram

1

0
10

death
birth

(b) 1-st persistence diagram

Figure 1.17: The persistence diagrams of the Vietoris-Rips complex in Figure
1.16. The horizontal axis indicates the birth scale and it ranges from 0 to 1.
The vertical axis indicates the death scale; it ranges from 0 to 1 and it have an
additional tick which indicates infinity. A grid is added to help people to read
the values.

1.2 Related Work
1.2.1 Information Extracted from Dynamical Systems
This section provides a review of researches that extract information from the
orbits of differential equations. Roughly speaking, the orbits have the informa-
tion at the local, middle, and global scale. For example, the Lyapunov exponents
and the fractal dimensions are the local scale information. The knots of peri-
odic orbits are the middle scale information. The embedding manifolds are the
global scale information.

At the local scale, the Lyapunov exponents can be used as features of time
series data (Kantz, 1994). The Lyapunov exponent is the limit of the logarithm

Table 1.1: The persistence pairs of the Vietoris-Rips complex in Figure 1.16.

Dimension 0 Dimension 1
(0.0, ∞) (0.5, 0.866)
(0.0, 0.5) (0.866, 0.866)
(0.0, 0.5) (0.866, 0.866)
(0.0, 0.5) (0.866, 0.866)
(0.0, 0.5) (0.866, 0.866)
(0.0, 0.5) (0.866, 0.866)

(0.866, 0.866)
(1.0, 1.0)
(1.0, 1.0)
(1.0, 1.0)
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of the distance between an orbit and another orbit whose initial state is fluc-
tuated from the initial state of the former orbit as the fluctuation approaches
zero and the time approaches infinity. The Lyapunov exponent describes the
short-time behavior of orbits. If the Lyapunov exponent is less than zero, the
orbits that start from a small region converge. If the Lyapunov exponent is
equal to zero, the orbits run in parallel. Otherwise the orbits diverge, which is
one of the properties of chaos (Strogatz, 2014).

The fractal dimensions are used to characterize an orbit. The idea to mea-
sure the fractal dimensions is how much dimension, which is a dimension of an
Euclidean space, is needed to cover a subset at a small scale. Fractal sets have
non-integer dimensions. The correlation dimension (Grassberger and Procaccia,
1983) is one of a fractal dimension which is calculated in numerical methods.
The correlation dimension of a set of points is the slope of the logarithm of the
correlation integral. The correlation integral is the average of the numbers of
points whose distance from each point is less than a threshold. It is known that
chaotic attractors have a fractal dimension.

The local information such as the Lyapunov exponents, the correlation in-
tegral, and the correlation dimension is used as a decriptor of observed time
series (Ali, Basharat, and Shah, 2007). The Lyapunov exponents, the corre-
lation integral, and the correlation dimension are called the invariant features
and they are employed for classification with the K-nearest neighbor method.
The motion capture data and the video data of human actions were classified
in the experiment of the paper (Ali et al., 2007). They achieved the accuracy
of around 90%.

The knots of periodic orbits of the Lorenz attractor was investigated (Bir-
man and Williams, 1983). A knot is a continuous oriented curve. Knots are
identified through the homeomorphism preserving orientation. The first homo-
topy group of the complement space of a knot is called a knot group and it is a
topological invariant. The representation of knot groups of the Lorenz attractor
was calculated. However, this approach cannot be automated on computers.

The global information of an orbit is also useful. The topological structure
of an orbit reflects the characteristics of flows, as seen in Section 1.1.1. Strictly
speaking, the topology of an orbit sometimes makes no sense. Some orbits, such
as an orbit of an irrational flow on 2-torus and an orbit of the Lorenz attractor,
are dense in a subset of an Euclidean space. They are one dimensional curve
since they are paths but they are not necessarily cycles or are not necessarily
two dimensional.

For this reason, we think of the closure of the orbit. However, because we
cannot compute the closure on computer, we think of the embedding mani-
fold (Tsankov and Gilmore, 2003, 2004) of an orbit instead of the closure. The
embedding manifold of an orbit is the union of the balls of a radius centered at
each point of the orbit.

Before describing researches which compute the homology of embedding
manifolds, I explain the work of Tsankov and Gilmore (2003, 2004). They ob-
served the relation between the topology of the embedding manifold and the be-
havior of the flow of several chaotic systems like the Lorenz system. The relation
between the bounding torus, which is the boundary of the embedding manifold,
and the vector field of the differential equation is established by Poincaré-Hopf
Index Theorem. The Euler characteristic of the bounding torus is equal to the
summation of the indices of the vector field at the critical points. The Euler

21



characteristic χ is related to the genus g of the bounding torus: χ = 2− 2g.
Tsankov and Gilmore proposed the canonical form of a dynamical system,

which is obtained from the bounding torus. The canonical form is a simpli-
fied representation of the flows and the critical points of the vector field. The
canonical form is a surface with the holes around the critical points. In addition,
the canonical form is cut into chunks according to the direction of flows and a
system of symbolic dynamics is obtained.

Because they supposed that the expression of the Lorenz system is known,
the bounding torus and the canonical form has three holes: two holes at the
critical points and one hole at the z-axis. Although the canonical form is strict,
it requires that the critical points form holes with some width. We cannot
assume such condition in observation.

The topology of embedding manifolds serves as clues to the global structure
of dynamical systems. However, they may lost some critical points and different
dynamical systems have the same topology of embedding manifolds.

1.2.2 Topology of Attractors
The attempts to compute the homology groups of an orbit date back to at least
1993. Muldoon, MacKay, Huke, and Broomhead (1993) computed the homology
groups of a periodic signal and a quasiperiodic signal. The signals were obtained
from a physical experiment. The signals were mapped to a delay-coordinate
space. Some of points were selected to construct a simplicial complex. Similar
researches were conducted after a decade (Sciamarella and Mindlin, 1991, 2001).
In the works of Sciamarella and Mindlin, the homology groups of human speech
data and two toy models were computed.

The researches of the paper (Muldoon et al., 1993) and the paper (Scia-
marella and Mindlin, 1991, 2001) construct simplicial complices with heuristic
methods. There are no guarantees of the recovery of the topology of sampled
shapes. Contrary to those, it is guaranteed that persistent homology recovers
the topology of sampled shapes by the stability inequality.

The framework that combines persistent homology and delay-coordinates
was proposed in 2012. Skraba, de Silva, and Vejdemo-Johansson (2012) demon-
strated the computation of the persistent homology of time series data embedded
into the delay-coordinate space. They did not demonstrate any application of
this framework.

This framework was employed to detect a wheeze of breathing sound sig-
nals (Emrani, Gentimis, and Krim, 2014a; Emrani, Chintakunta, and Krim,
2014b). The wheeze signals were modeled as a continuous piecewise sinusoidal
function whose amplitude varies. The period and phases were different for each
piece. Such signals form an ellipse in the delay-coordinate space. The first per-
sistent homology group was used to detect the wheeze signals. They judged a
signal to be a wheeze signal if the longest persistence was greater than a thresh-
old. The threshold was determined by calculating the distribution of the longest
persistences of traning data set.

The delay time was selected with the autocorrelation-like function (ACL).
The ACL function is defined as

Rxx(ti) =
∑

1≤l≤k

x(ti)x(tl), (1.2.1)
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where the function x(ti) is the sampled signal. The delay time between the
peaks of the ACL function is selected. The size of simplicial complices has
already been a problem. In order to reduce the size, they used the witness
complex (de Silva and Carlsson, 2004). At first they did subsampling the input
points to choose the landmark (Emrani et al., 2014a), but they switched to use
the density function to select for subsampling (Emrani et al., 2014b). They
said that their method had accuracy higher than the methods based on time-
frequency analysis or wavelet transform.

Perea and Harer (2015) made a rigorous analysis on the selection of the
delay time and the embedding dimension for the framework and conducted nu-
merical experiments. The exposition of the results of their analysis is given
later. The aim of their experiment was to check that the persistent homology
was efficient for detecting the periodicity of signals and was better than other
methods. They defined the score of periodicity as the maximum persistence of
the 1-st persistent homology group. It was compared to three methods: the
JTK_CYCLE algorithm, the Lomb-Scargle periodogram, and the total persis-
tent homology. The JTK_CYCLE algorithm (Hughes et al., 2010) is a period
detection method based on the Jonckheere-Terpstra-Kendall test, which is a
kind of statistical test. The Lomb-Scargle periodogram (Lomb, 1976; Scargle,
1982) is a periodogram obtained by fitting sinusoidal waves to non-uniformly
sampled time series. The total persistence (Cohen-Steiner et al., 2010) is the
summation of the persistences of the q-th persistent homology groups. In the
experiment, periodic signals and non-periodic signals were classified with the
methods above. They drew the graphs of the receiver operating characteris-
tic (ROC) and calculated the values of the area under the curve (AUC). In
the noisy cases, the AUC value of the framework of persistent homology and
delay-coordinates were better than other methods except for trended signals.

The framework of persistent homology and delay-coordinates was applied
to real-world data sets (Pereira and de Mello, 2015). The persistent homology
groups were computed on lazy witness complices. In the experiment of the
paper (Pereira and de Mello, 2015), the following features were calculated for
each dimension: the number of holes, the maximum hole lifetime, the number
of relevant holes, the average lifetime, and the sum of all lifetimes. The k-
means clustering on the raw data was compared to the k-means clustering on
the topological features above. The data sets had binary labels. The proposed
method had better accuracy than the k-means on the raw data.

Venkataraman, Ramamurthy, and Turaga (2016b) modified the construc-
tion of the Vietoris-Rips complex for the time series data mapped into delay-
coordinate spaces. They connected the i-th point and (i + 1)-th point in a
delay-coordinate space for all time indices. Then they constructed the Vietoris-
Rips complex. In order to compare the persistence diagrams, they used the
1-Wasserstein distance, which is a L1 version of the bottleneck distance. Their
method was compared with the chaotic invariants (Ali et al., 2007) and the
methods called D2 and DT2 in their previous work (Venkataraman and Turaga,
2016a). The method D2 constructs a histogram of the Euclidean distance be-
tween points randomly choosen from the delay-coordinate space. The method
DT2 is a weighted version of the D2. The weight is exp(−γ∆t) where γ is a
given parameter and ∆t is a difference of the sampled time of the points. The
motion capture data of human actions was used for the experiment. The data
had five labels and the nearest neighbor classifier was used. They reported that
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the average accuracy of the D2, the DT2, and the ordinary Vietoris-Rips com-
plex was higher than 90%, but that of the chaotic invariants was about 50%.
Their proposed method achieved that the average accuracy of 96.48%, which
was the highest accuracy.

Khasawneh and Munch (2016) applied the persistent homology of time series
data for detecting chatter in machining processes. Chatter is a vibration of
machine tools cutting materials. It is modeled as a forced damped oscillation.
The maximum persistence of the 1-st persistent homology of the given time
series mapped into delay-coordinates was used as an index for chatter.

Seversky, Davis, and Berger (2016) compared three features of persistence
diagrams. They used the linear-size approximation of the Vietoris-Rips com-
plex (Sheehy, 2013). The scale space kernel of persistence diagram (Reininghaus,
2015) was used as a feature. Roughly speaking, the scale space kernel is a con-
volution of the heat-kernel and the points in a persistence diagram. The motion
capture data was classified by the kernel support vector machine. They demon-
strated that the accuracy of the method was better than that of the chaotic
invariants.

Umeda (2017) proposed the betti sequence for classifying time series data
with convolutional neural networks. The betti number of a dimension is the
number of homology classes of that dimension. The betti sequence is the betti
number at some scale. It is computed from the persistent homology groups. In
the experiment, a gyro sensor data set, an EEG data set, and an EMG data
set were classified with several methods. The proposed method in the paper
(Umeda, 2017) achieved the outstanding accuracy.

I mention other application of persistent homology to time series data. Mit-
tal and Gupta (2017) observed the relation between the bifurcation of dynamical
systems and the persistent homology of the orbit. The systems such as a logistic
map, a Duffing oscillator, and a Jerk circuit were observed. However, it seems
to be a preliminary result.

1.2.3 Speeding up the Computation of Persistent Homol-
ogy

In fact, it takes long time and large memory to compute persistent homology,
because simplicial complices are large objects and the computational time of
persistent homology is in the order of O(n3) in the worst-case. There are two
approaches to reduce the time and the space of the computation.

In order to speed up the computation, persistent cohomology (de Silva, Mo-
rozov, and Vejdemo-Johansson, 2011a), which is a dual of persistent homol-
ogy, is better than persistent homology. The resulting persistence diagrams are
same. The computation of persistent cohomology is faster than the computation
of persistent homology (de Silva et al., 2011b).

The Ripser (Bauer, 2019) is the fastest implementation of persistent coho-
mology of the Vietoris-Rips complex. It employs several techniques to compute
persistent cohomology efficiently.

The other approach is to reduce the size of simplicial complices. The number
of the simplices in the filtration of the Vietoris-Rips of dimension k is in the
order of O(nk+1), where n is the number of points. Because the computational
time is the function of the number of the simplices, it is shortened by reducing
the number of the simplices.
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The Ripser (Bauer, 2019) sets the maximum threshold of the Vietoris-Rips
filtration. It is set to the minimum enclosing radius of the input points. The
homology group becomes trivial if the threshold is greater than the minimum
enclosing radius.

A linear approximation of the Vietoris-Rips complex has been proposed by
Sheehy (2013). The points that are not significant for the homology groups are
ignored and the Vietoris-Rips complex is constructed from the remained points.

The reason why the size of the Vietoris-Rips complex becomes large is that
points far from each other can form a simplex. In order to restrict how many
points connect to each other, the alpha complex (Edelsbrunner and Harer, 2010)
has been proposed. An alpha complex is constructed in the following procedure.
First the Voronoi diagram of the input points is constructed. Second the union
of each Voronoi cell and a ball centered at the point is taken. Then a simplex
is added to the alpha complex if the vertices are connected with their neighbor-
hood. Unfortunately, it is difficult to construct alpha complices in the dimension
higher than three due to the difficulty of constructing the Voronoi diagrams in
higher dimensions.

The witness complex (de Silva and Carlsson, 2004) is a simplicial complex
constructed from a subsampled points. A subset of the input data is called a
landmark. The vertices of the witness complex are the points of the landmark.
A simplex is added to the witness complex if there is a point to which each
vertex of the simplex is the nearest among the landmark. The witness complex
is an approximation of the Delaunay complex, which is the dual of the Voronoi
diagram.

Garland, Bradley, and Meiss (2016) proposed the fuzzy witness complex and
observed the persistent homology of the fuzzy witness complex of the Lorenz
attractor and reconstructed Lorenz attractors. The fuzzy witness complex is
a variation of the strong witness complex. The condition whether the simplex
is added is relaxed by adding some constant to the distance from a landmark
point to other points. They observed that the fuzzy witness complex recovers
the topology of the Lorenz attractor with proper parameters.

1.2.4 Selection of the Delay Time
We have to select the delay time and the embedding dimension when we use
the delay-coordinate spaces. The selection of the delay time is only considered
in this thesis.

Many researchers have proposed methods to select the delay time. The most
famous method is the mutual information (Fraser and Swinney, 1986). Consider
the set of the values x(t) and the set of the values of x(t+a), where the function
x(t) is a signal and the real value a is the delay time. The mutual information of
the sets above is calculated with varying the delay time. We select the smallest
delay time that attains the local minimum of the mutual information. This
method may expand the two coordinates of the delay-coordinate space. It only
considers two dimensional case.

A geometric approach to propose methods to select the delay time was pop-
ular in 1990s. The wavering product (Liebert, Pawelzik, and Shuster, 1991),
the fill-factor (Buzug, Reimers, and Pfister, 1990), the integral local defor-
mation (Buzug and Pfister, 1992), and the average displacement (Rosenstein,
Collins, and de Luca, 1994) are such methods. The methods based on the min-
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imal description length principle were proposed (Judd and Mees, 1998; Small
and Tse, 2004). I do not expound the details of these methods.

The important research was given in the paper (Perea and Harer, 2015).
Their conclusion was that the best delay time for periodic signals satisfies an =
T/2, where the real value a is the delay time, the positive integer n is the
embedding dimension, and the real value T is the period. In the context of the
persistent homology of periodic signals, we consider the delay time that expands
the hole of the loop in the delay-coordinates to be good.

The equation an = T/2 was obtained by analyzing the sinusoidal wave
mapped into the delay-coordinates. The shape of the sinusoidal wave mapped
into the delay-coordinates is an ellipse. The lengths of its semi-major axis and
semi-minor axis depend on the delay time. The ellpise is roundest, i.e. the two
axis has the same length, when the delay time and the embedding dimension
satisfy the equation an = T/2.

Consider the signals which can be written as the first N terms of a Fourier
series. The analysis was done in the same way. Each harmonic component
requires two dimensional space to form an ellipse. Therefore the embedding
dimension must be equal to or greater than 2N .

A loop has a hole and the width of the hole can be considered. By dilating
the loop, it becomes a solid tube and the topology changes at some scale. We
consider the scale where the dilating tube fills the hole of a loop as the width
of the hole. The hole of a loop is numerically measured with the first persistent
homology of the Vietoris-Rips filtration. The maximum persistence is used as
a surrogate hole width.

1.3 Contribution of the Thesis
This thesis handles two problems. One problem is the selection of the delay time
of the delay-coordinates for periodic and recurrent signals. The other problem
is to make the computation of the persistent homology of time series data by
reducing the size of the filtration.

The relation of the delay time and the width of the hole was analyzed and
experimented (Chapter 3). The analysis was carried out with the assumption
that the signal is periodic and has one zero-crossing in a period. It was shown
that the delay time which satisfies the equation an = T/2 maximizes the lower
bound of the hole width. This equation is same as that of the paper (Perea and
Harer, 2015) but the assumption is different.

In order to check whether such delay time maximizes the hole width, the
relation of the delay time and the hole width was computed with persistent
homology for several time series. It was effective for periodic signals such as
sinusoidal waves and the limit cycle of the van der Pol equation. For a Japanese
vowel signal, which is periodic, it was effective in the delay-coordinate space of
embedding dimension higher than five.

In order to acquire an insight, it was investigated whether the delay time such
that an = T/2 is effective for recurrent signals such as the Rössler attractor and
the Lorenz attractor. It was turned out that such delay time does not maximize
the hole width but the irrelevance occurs if the delay times is larger than T/2n.

The delay times determined by the mutual information were compared with
the delay times such that an = T/2. The mutual information gave us poor
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results in the view of the persistent homology.
The acceleration of the computation of the persistent homology of time se-

ries was achieved by obtaining line segments approximating to a continuous time
series and constructing the Vietoris-Rips complex from line segments (Chapter
4). Cubic Bézier curves are fitted to the given points and then they are di-
vided into line segments. We can construct a Vietoris-Rips complex from line
segments because their neighborhoods are convex and the intersection of the
neighborhoods can be calculated with the distance between line segments. We
can use existing tools of persistent homology, such as the Ripser, to construct
the Vietoris-Rips complex of line segments since its construction only depends
on the distance of line segments.

The experiments have shown that the proposed method reduces the com-
putational time and space ten times smaller or more. The proposed method
reduces the noise added to signals; it brings us more precise persistence dia-
grams under noisy observation. The computational perfomance and the preci-
sion of persistence diagrams were compared between the proposed method and
the witness complex. The proposed method produced the results better than
the witness complex.
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Chapter 2

Mathematical Foundations

In this chapter, I give the expositions of persistent homology (Section 2.1),
attractor reconstruction (Section 2.2), and Bézier curves (Section 2.3).

In Section 2.1, rigorous explanations of simplicial homology and persistent
homology are given. The readers will know the reason why the size of a simplicial
complex is huge through the definitions. They will know how the persistent
homology groups are computed and its complexity.

In Section 2.2 introduces the delay-coordinates and Takens’ theorem. Tak-
ens’ theorem states that the attractors mapped into delay-coordinate spaces are
diffeomorphic to the attractors in the original phase space for almost all delay
times.

2.1 Persistent Homology for Topological Data
Analysis

Topological data analysis is a method to analyze the topology of the shape of
data. Topology is a field which studies the characteristic of a shape invariant
under continuous deformations. Topology has several branches. Topological
data analysis relies on algebraic topology especially among the branches. Al-
gebraic topology exploits algebra to extract the information of the topology of
shapes. There exist two kinds of invariants: homotopy groups and homology
groups. Homotopy groups are the groups of the loops in a space. It is almost
impossible to compute homotopy groups with computers. Homology gruops are
defined with the modules generated by the simplices in a shape. It is possible to
compute homology gruops with computers. Therefore topological data analysis
exploits homology groups.

The homology groups used in this thesis is simplicial homology groups. The
shape is represented as a simplicial complex, which consists of simplices. A
simplicial complex is turned into a chain complex, an algebrization of simplicial
complex. A chain complex has chain groups and boundary operators between
them. A homology group is defined as the quotient of the kernel of a boundary
operator divided by the image of a boundary operator.

Subsection 2.1.1 describes the notion of simplex and Subsection 2.1.2 intro-
duces the notion of simplicial complex. Subsection 2.1.3 introduces the notion
of chain complex and Subsection 2.1.4 defines the homology gruops. In order
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to write the descriptions in Subsection 2.1.1-2.1.4, the textbook (Tamura, 2015)
was referred to.

Persistent homology (Edelsbrunner, Letcher, and Zomorodian, 2002) is one
of main tools of topological data analysis. Persistent homology computes the
appearance and the disappearance of the homology classes in a filtered simpli-
cial complex. A filtered simplicial complex is a growing sequence of simplices.
A persistent homology group is visualized with a persistence diagram. The
bottleneck distance between persistence diagrams is defined to compare them.
Subsection 2.1.5 gives the definition and the algorithm of persistent homology.
Subsection 2.1.6 introduces the persistence diagram and the bottleneck distance.

Čech complex and Vietoris-Rips complex (Edelsbrunner and Harer, 2010:
Chapter III) construct a simplicial complex from a set of points. Subsection 2.1.7
gives the definitions of Čech complex and Vietoris-Rips complex. The witness
complex (de Silva and Carlsson, 2004) is a method to construct a simplicial
complex whose simplices are less than Čech complex or Vietoris-Rips complex.
Subsection 2.1.8 offers an explanation of the witness complex.

It is known that geometric complices such as the Čech complex and the
Vietoris-Rips complex have the stability with respect to the Gromov-Hausdorff
distance (Chazal, de Silva, and Oudot, 2014). Subsection 2.1.9 gives a short
summary of the stability of complices.

2.1.1 Simplex
In order to introduce simplicial complices, simplices are first explained. A sim-
plex is an element that forms a simplicial complex. A simplex has vertices and
it is a convex hull of the vertices. Before the definition of simplex is given, the
property that points are in general position is introduced.
Definition 2.1.1 (points in general position). Let a0, a1, . . . , am be (m + 1)
points in an N -dimensional Euclidean space, and let λ0, λ1, . . . , λm be (m+ 1)
real numbers that satisfy the equation λ0 + λ1 + · · ·+ λm = 0.

If the logical equivalence

λ0a0 + λ1a1 + · · ·+ λmam = 0⇔ λ0 = λ1 = · · · = λm = 0 (2.1.1)

holds, the points a0, a1, · · · , am are called in general position.
When the points a0, a1, · · · , am are in general position, any vectors between

two points among them are linearly independent. Fix the point p0 as the origin,
and take two different points pi and pj . The directional vectors −−→p0pi and −−→p0pj
are written as pi − p0 and pj − p0 respectively. Let µi and µj be real numbers
and assume the equation µi(pi − p0) = µj(pj − p0) hold. This equation can be
written as (µi − µj)p0 − µipi + µjpj = 0. Then 0 · pk for k = 1, 2, . . . ,m but i
and j are added to this equation. We obtain an equation (µi − µj)p0 − µipi +
µjpj +

∑
k 0 · pk = 0. Since the points p0, p1, . . . , pm are in general position, the

real numbers satisfy that µi − µj = µi = µj = 0. Thus the vectors −−→p0pi and
−−→p0pj cannot be linearly dependent.

In order to introduce the concepts related to simplices, a lemma on points
in general position is given.
Lemma 2.1.2. Let a0, a1, . . . , am be points in general position. The (q +
1) points ai0 , ai1 , . . . , aiq are arbitrarily chosen from the points a0, a1, . . . , am.
These (q + 1) points ai0 , ai1 , . . . , aiq are also in general position.
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Proof. Let µ0, µ1, . . . , µq be real numbers that satisfy µ0 + µ1 + · · · + µq = 0.
First, we consider the case that the equation µ0ai0 + µ1ai1 + · · · + µqaiq = 0
holds. Let λij = µj for each index j and λk = 0 for the index k other than j.
The equation above can be written as

q∑
j=0

λijaij +
∑
k ̸=ij

λkak =

m∑
i=0

λiai = 0. (2.1.2)

Since the points a0, a1, . . . , am are in general position, this equation implies that
the equations λ0 = λ1 = · · · = λm = 0 hold. Thus we obtain µ0 = µ1 = · · · =
µq = 0.

Conversely, if the equations µ0 = µ1 = · · · = µq = 0 hold, it is clear
that the equation µ0ai0 + µ1ai1 + · · · + µqaiq = 0 holds. Therefore the points
ai0 , ai1 , · · · , aiq are in general position.

Now we can define a simplex in an Euclidean space.

Definition 2.1.3 (simplex). A q-simplex in an Euclidean space is a set defined
as

|a0a1 · · · aq| = {λ0a0 + λ1a1 + · · ·+ λqaq | λ0 + λ1 + · · ·+ λq = 1, λi ≥ 0} ,
(2.1.3)

where a0, a1, · · · , aq are points in general position.

The notions on simplices are introduced. The symbols like σ or τ denote a
simplex. To express the dimension of a simplex, let σq denote a q-simplex. The
dimension of a q-simplex is denoted as dim |a0a1 · · · aq| or dimσ.

A simplex has its faces. A face of a simplex is a simplex made up of a subset
of the vertices of the simplex. The definition is given below:

Definition 2.1.4 (face of simplex). For a q-simplex σ = |a0a1 · · · aq|, choose r
vertices among the vertices of the simplex: ai0 , ai1 , · · · , air .

The r-simplex
τ = |ai0ai1 · · · air | (2.1.4)

is called an r-face of the simplex σ. A symbol τ ≺ σ or σ � τ denotes the
relation that τ is a face of σ.

The faces of a simplex is well-defined because of Lemma 2.1.2.
The difference of the dimension of a simplex σ and the dimension of a face

τ is called the codimension of τ . The codimension of the face τ is defined as
dimσ − dim τ .

Lemma 2.1.5. The number of the faces of a q-simplex is

2q+1 − 1 (2.1.5)

Proof. The number of the r-faces of the q-simplex is equal to the number of
(r + 1)-combinations from the (q + 1) vertices. The number of the faces of all
dimensions is the summation of that of each dimension. It is calculated as

q∑
r=0

(
q + 1

r + 1

)
= 2q+1 − 1. (2.1.6)
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I show some examples of simplices and faces.

Example 2.1.6 (0, 1, 2, and 3-simplex). A 0-simplex is a point because it has
only one vertex. More precisely, a 0-simplex is the set defined as

|a0| = {λ0a0 | λ0 = 1, λ0 ≥ 0} = {a0}. (2.1.7)

This set consists of only one point a0.
A 1-simplex is a line segment. By definition, a 1-simplex is the set written

as

|a0a1| = {λ0a0 + λ1a1 | λ0 + λ1 = 1, λ0 ≥ 0, λ1 ≥ 0} (2.1.8)
= {(1− λ1)a0 + λ1a1 | 0 ≤ λ1 ≤ 1}. (2.1.9)

This means that it is a line segment that starts from the point a0 and ends at
the point a1.

A 2-simplex is a triangle. It is written as

|a0a1a2| = {λ0a0 + λ1a1 + λ2a2 | λ0 + λ1 + λ2 = 1, λi ≥ 0} (2.1.10)
= {a0 + λ1

−−→a0a1 + λ2
−−→a0a2 | λ1 ≥ 0, λ2 ≥ 0, 0 ≤ λ1 + λ2 ≤ 1}. (2.1.11)

It means that the simplex is a triangle with vertices a0, a1, and a2.
A 3-simplex is a tetrahedron. It is expressed as

|a0a1a2a3| = {λ0a0 + λ1a1 + λ2a2 + λ3a3 | λ0 + λ1 + λ2 + λ3 = 1, λi ≥ 0}
(2.1.12)

= {a0 + λ1
−−→a0a1 + λ2

−−→a0a2 + λ3
−−→a0a3 | λi ≥ 0, 0 ≤ λ1 + λ2 + λ3 ≤ 1}.

(2.1.13)

It means that the simplex is a tetrahedron with vertices a0, a1, a2, and a3.

Example 2.1.7 (faces). What the faces of a simplex are is explained through
examples of 0, 1, 2, and 3-simplex.

For a 0-simplex, there is only one face, the 0-simplex itself. The simplex
itself is its face because it satisfies the condition given in Definition 2.1.4.

A 1-simplex has three faces. Let |a0a1| be a 1-simplex. The 1-simplex itself
is its face. Moreover, the 0-simplices |a0| and |a1| are faces of |a0a1|. Therefore,
the set of the faces of |a0a1| is {|a0|, |a1|, |a0a1|}.

A 2-simplex |a0a1a2| has seven faces. The faces of dimension 0 are |a0|, |a1|,
and |a2|. The faces of dimension 1 are |a1a2|, |a0a2|, and |a0a1|. The face of
dimension 2 is |a0a1a2|, which is the simplex itself.

A 3-simplex |a0a1a2a3| has fifteen faces. The set of the faces is

{|a0|, |a1|, |a2|, |a3|, |a0a1|, |a0a2|, |a0a3|, |a1a2|, |a1a3|, |a2a3|,
|a0a1a2|, |a0a1a3|, |a0a2a3|, |a1a2a3|, |a0a1a2a3|}. (2.1.14)

2.1.2 Simplicial Complex
A simplicial complex is a shape assembled from simplices. The simplices in a
simplicial complex are glued at their faces to each other. A simplicial complex
is turned into a chain complex and the homology groups are computed from the
chain complex.
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Definition 2.1.8 (simplicial complex). Let K be a set of simplices in an Eu-
clidean space. The set K is called a simplicial complex if and only if it satisfies
the following conditions:

1. ∀σ ∈ K, ∀τ ≺ σ, τ ∈ K.

2. ∀σ ∈ K, ∀τ ∈ K,σ ∩ τ 6= ∅ =⇒ σ ∩ τ ≺ σ ∧ σ ∩ τ ≺ τ .

The first condition in Definition 2.1.8 means that all the faces of each simplex
of a simplicial complex K belong to K. The second condition means that if any
two simplices have an non-empty intersection, the intersection must be a face
of both simplices.

The 0-simplies in a simplicial complex are called vertices. The dimension of
simplicial complex is denoted as dimK and it is defined as:

dimK = max
σ∈K

dimσ. (2.1.15)

A subset of a simplicial complex becomes a simplicial complex if it satisfies
the conditions of Definition 2.1.8. Such a subset is called a subcomplex. Sub-
complex is an important notion to compute the persistent homology groups.

Definition 2.1.9 (subcomplex). Let K be a simplicial complex and let L be a
subset of K. The subset L is called a subcomplex of K if and only if it satisfies
the following condition:

1. ∀σ ∈ L,∀τ ≺ σ, τ ∈ L.

Let L ⊂ K denote the relation that L is a subcomplex of K.
If a subset L of a simplicial complex K satisfies the condition of Definition

2.1.9, it also satisfies the conditions of Definition 2.1.8 with respect to L, which
means that the subset L is also a simplicial complex. It is trivial that the first
condition of Definition 2.1.8 is satisfied with respect to L. The second condition
is satisfied because the simplices L also belong to K and the faces belong to L.
Thus a subcomplex of a simplicial complex is a simplicial complex.

The skeletons are the special cases of subcomplices. The definition of the
skeleton is shown below.

Definition 2.1.10 (skeleton). Let K be a simplicial complex. A subcomplex of
K defined as

K(q) = {σ | σ ∈ K, dimσ ≤ q} (2.1.16)

is called the q-skeleton of K.

The q-skeleton of a simplicial complex K is a subcomplex which consists of
the simplices of dimension equal to q or less than q. It is clear that skeletons
are subcomplices by definition.

I show an example of a simplicial complex.

Example 2.1.11 (2-skeleton of 3-simplex). Let K be a simplicial complex whose
simplices are the faces of a simplex |0123|. The numbers 0, 1, 2, and 3 denote
the vertices. The 2-skeleton K(2) is a subcomplex made up of the 0-simplices,
1-simplices, and 2-simplices of K.
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The 0-simplices of K are |0|, |1|, |2|, and |3|. There are six 1-simplices of
K: |01|, |02|, |03|, |12|, |13|, and |23|. The 2-skeleton have four 3-simplices:
|012|, |013|, |023|, and |123|. Therefore the 2-skeleton K(2) is

K(2) = {|0|, |1|, |2|, |3|, |01|, |02|, |03|, |12|, |13|, |23|, |012|, |013|, |023|, |123|}.
(2.1.17)

In order to define persistent homology groups, it is needed to define simplicial
mappings. A simplicial mapping is a mapping between two simplicial complices
which preserves the structure of simplicial complices.

Definition 2.1.12 (simplicial mapping). Let K and K ′ be simplicial complices
and let K̂ and K̂ ′ be the sets of the vertices of K and K ′ respectively. Consider
a mapping ϕ : K̂ → K̂ ′. The mapping ϕ is called a simplicial mapping if and
only if for each simplex σ = |ai0 · · · aiq | in K, the simplicial complex K ′ has
a simplex with the vertices {ϕ(ai0), . . . , ϕ(aiq )}. The notation ϕ : K → K ′

denotes a simplicial mapping.

A simplex mapped with a simplicial mapping may have dimension smaller
than the original simplex because the mapping may map two different vertices
to the same vertex.

For a simplicial complex K, the identity mapping idK̂ : K̂ → K̂, which is
a mapping between sets, induces a simplicial mapping idK : K → K, because
each vertex of K is mapped to itself and each simplex is mapped to the simplex
itself.

Let K, K ′, and K ′′ be simplicial complices and ϕ : K → K ′ and ϕ : K ′ →
K ′′ be simplicial mappings. The composition ϕ′◦ϕ : K → K ′′ is also a simplicial
mapping. Take a simplex σ from the simplicial complex K. There is a simplex
ϕ(σ) in K ′ since the mapping ϕ is a simplicial mapping. Then there is a simplex
ϕ′(ϕ(σ)), which is a simplex mapped from ϕ(σ) with the simplicial mapping ϕ′.
Therefore the composition ϕ′ ◦ ϕ is a simplicial mapping.

Let K be a simplicial complex and let L be a subcomplex of K. The inclusion
mapping from the set of the vertices L to that of K, which ι : L̂→ K̂ denotes,
induces a simplicial mapping ι : L→ K. It is trivial that ι is simplicial because
every simplex in L belongs to the simplicial complex K.

2.1.3 Chain Complex
The orientation on a simplex is introduced to define chain complices. The
simplices defined in Section 2.1.1 are not oriented. The order of the vertices
does not affect the identity of a simplex without an orientation. There are
two orientations of a simplex. These orientations are made correspond to the
signs: the positive and the negative. This correspondence enables us to use the
coefficients of simplices and to introduce the algebra of simplices.

An orientation of a simplex is defined with the substitutions of the vertices.

Definition 2.1.13 (substitution). Let N be a set which consists of the integers
from 1 to n. A bijection σ : N → N is called a substitution of N . A substitution
σ is denoted as (

1 2 · · · n
s1 s2 · · · sn

)
, (2.1.18)

where si = σ(i) for i = 1, 2, . . . , n.
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A substitution which changes only two numbers is called a transposition.

Definition 2.1.14 (transposition). A transposition (p q) is a substitution de-
fined as follows:

(p q)(i) =


q if i = p,

p if i = q,

i otherwise.
(2.1.19)

A substitution can be decomposed to a composition of transpositions. The
sign of a substitution is defined with the number of the transpositions.

Definition 2.1.15 (sign of substitution). A substitution σ is called even when
the number of the transpositions whose composition is σ is even. It is called odd
when that number is odd.

The sign of the substitution σ is defined as follows:

ε(σ) =

{
+1 if σ is even,
−1 if σ is odd.

(2.1.20)

The orientation of a simplex is defined with the sign of the substitution of
the vertices.

Definition 2.1.16 (orientation of a simplex). Let σ be a q-simplex. The vertices
of σ are a0, a1, . . . , aq. Consider the sequences made up of those vertices. Let
(ai0 , ai1 , . . . , aiq ) and (aj0 , aj1 , . . . , ajq ) be sequences of the vertices.

An equivalent relation (ai0 , ai1 , . . . , aiq ) ∼ (aj0 , aj1 , . . . , ajq ) is defined as
follows:

(ai0 , ai1 , . . . , aiq ) ∼ (aj0 , aj1 , . . . , ajq )⇔

ε

((
0 1 · · · q
ai0 ai1 · · · aiq

))
= ε

((
0 1 · · · q
aj0 aj1 · · · ajq

))
, (2.1.21)

where (
0 1 · · · q
ai0 ai1 · · · aiq

)
(2.1.22)

and (
0 1 · · · q
aj0 aj1 · · · ajq

)
(2.1.23)

are substitutions.
There are two equivalent classes, which are called orientations of a simplex.

The symbol 〈a0a1 · · · aq〉 denotes an oriented simplex. The minus sign de-
notes a simplex with the other orientation. For example, −〈a0a1 · · · aq〉 denotes
the simplex with the other orientation of a simlpex 〈a0a1 · · · aq〉.

Example 2.1.17 (orientation of a simplex). Let |01| be a 1-simplex. It has
two orientations: 〈01〉 and 〈10〉 = −〈01〉. The former is interpreted as a line
segment from 0 to 1 and the latter is interpreted as a line segment from 1 to 0.

Let |012| be a 2-simplex. The permutations of the vertices are 012, 021, 102,
120, 201, and 210.
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The permutation 012 is the identity and the substitution is composed of zero
transpositions. Thus 012 has the positive sign.

The permutation 021 is made by transposing 1 and 2 in 012. Thus 021 has
the negative sign.

The permutation 102 is obtained by applying a transposition (0 1) to 012.
Thus 021 has the negative sign.

The permutation 120 is the result of a composition of transpositions (0 1)
and (1 2). Thus 120 has the positive sign.

The permutation 201 is the result of transpositions (0 1) · (0 2). Thus 201
has the positive sign.

The permutation 210 is obtained through the following steps. First 0 and 1
are transposed; we get 102. Second 0 and 2 are transposed; we get 120. Third 1
and 2 are transposed; we get 210. Thus 210 has the negative sign.

Therefore the oriented simplices are written as follows:

〈012〉 = 〈120〉 = 〈201〉,
〈021〉 = 〈102〉 = 〈210〉,
〈012〉 = −〈021〉.

(2.1.24)

A chain complex is an algebraic object made from a simplicial complex.
In fact a chain complex can be made from a complex other than simplicial
complex, but I mention only how to make a chain complex from a simplicial
complex. A chain complex consists of chain groups and boundary operators.
A chain group is a module generated by simplices in a simplicial complex of
some dimension. A boundary operator is a homomorphism which computes the
boundary of simplices. A boundary operator connects a chain group of a certain
dimension to the chain group of the smaller dimension.

Definition 2.1.18 (q-th chain group). Let K be a simplicial complex and let
σq
1, σ

q
2, . . . , σ

q
u be q-simplices in K. We choose orientations of the q-simplices:

〈σq
1〉, 〈σ

q
2〉, . . . , 〈σq

u〉.
An R-free module generated by the oriented q-simplices, which

Cq(K) =

{
c =

u∑
i=1

γi〈σq
i 〉

∣∣∣∣∣ γi ∈ R (i = 1, . . . , u)

}
(2.1.25)

denotes, is called a q-chain group of K, where R is a ring.

An element of Cq(K) is called a q-chain. The addition of two q-chains
c =

∑u
i=1 γi〈σ

q
i 〉 and c′ =

∑u
i=1 γ

′
i〈σ

q
i 〉 is defined as follows:

c+ c′ =

u∑
i=1

(γi + γ′
i)〈σ

q
i 〉. (2.1.26)

For an oriented simplex 〈σq〉, a simplex with the other orientation −〈σq〉 is
identified with (−1)〈σq〉 ∈ Cq(K).

Definition 2.1.19 (chain group). The chain group of a simplicial complex K
is defined as follows:

C(K) = {Cq(K)}q∈Z, (2.1.27)
where Cq(K) is the q-th chain group of K for 0 ≤ q ≤ dimK and Cq(K) = 0
for the other indices.
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To complete the definition of chain complices, the boundary operators have
to be introduced.

Definition 2.1.20 (boundary operator). First the boundary of an oriented q-
simplex σq = 〈a0a1 · · · aq〉 is defined as follows:

∂qσ
q =

q∑
i=0

(−1)i〈a0 · · · âi · · · aq〉. (2.1.28)

The symbol ˆ means that the vertex with ˆ is eliminated. The boundary of a
0-simplex is defined as ∂0〈a〉 = 0.

Then the operator ∂q is linearly extended to a q-chain c =
∑u

i=1 γj〈σ
q
j 〉:

∂qc =

u∑
j=1

γj∂q〈σq
j 〉. (2.1.29)

This homomorphism ∂q : Cq(K)→ Cq−1(K) is called a boundary operator.

Next an important property of boundary operators is shown. This property
is used later to define the homology groups.

Proposition 2.1.21 (boundary operator). For all q, ∂q ◦ ∂q+1 = 0 holds.

Proof.

∂q ◦ ∂q+1〈σq+1〉 =
q+1∑
i=0

(−1)i∂q〈a0 · · · âi · · · aq+1〉 (2.1.30)

=

q+1∑
i=0

(−1)i
i−1∑

j=0

(−1)j〈a0 · · · âj · · · âi · · · aq+1〉

+

q+1∑
j=i+1

(−1)j−1〈a0 · · · âi · · · âj · · · aq+1〉

 (2.1.31)

=
∑
j<i

(−1)i+j〈a0 · · · âj · · · âi · · · aq+1〉

+
∑
j>i

(−1)i+j−1〈a0 · · · âi · · · âj · · · aq+1〉 (2.1.32)

= 0. (2.1.33)

Before introducing chain complices, some examples of boundary operators
are given.

Example 2.1.22 (the boundary of 1-simplex). Let σ be a 1-simplex: σ =
〈a0a1〉. Its boundary is

∂1σ = 〈a1〉 − 〈a0〉. (2.1.34)
The boundary of ∂1σ is

∂0∂1σ = ∂0〈a1〉 − ∂0〈a0〉 = 0− 0 = 0. (2.1.35)
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Example 2.1.23 (the boundary of 2-simplex). Let σ be a 2-simplex: σ =
〈a0a1a2〉. Its boundary is

∂2σ = 〈a1a2〉 − 〈a0a2〉+ 〈a0a1〉. (2.1.36)

The boundary of ∂2σ is

∂1∂2σ = ∂1〈a1a2〉 − ∂1〈a0a2〉+ ∂1〈a0a1〉 (2.1.37)
= (〈a2〉 − 〈a1〉)− (〈a2〉 − 〈a0〉) + (〈a1〉 − 〈a0〉) (2.1.38)
= 0. (2.1.39)

Example 2.1.24 (the boundary of 3-simplex). Let σ be a 3-simplex: σ =
〈a0a1a2a3〉. Its boundary is

∂3σ = 〈a1a2a3〉 − 〈a0a2a3〉+ 〈a0a1a3〉 − 〈a1a2a3〉. (2.1.40)

The boundary of ∂2σ is

∂2∂3σ = ∂2〈a1a2a3〉 − ∂2〈a0a2a3〉+ ∂2〈a0a1a3〉 − ∂2〈a1a2a3〉 (2.1.41)
= (〈a2a3〉 − 〈a1a3〉+ 〈a1a2〉)− (〈a2a3〉 − 〈a0a3〉+ 〈a0a2〉)
+ (〈a1a3〉 − 〈a0a3〉+ 〈a0a1〉)− (〈a1a2〉 − 〈a0a2〉+ 〈a0a1〉) (2.1.42)
= 0. (2.1.43)

Definition 2.1.25 (chain complex). The pair of the chain groups of a simplicial
complex K

C∗(K) = {Cq(K)}q∈Z (2.1.44)
and the boundary operators

∂∗ = {∂q : Cq(K)→ Cq−1(K) | ∂q∂q+1 = 0}q∈Z (2.1.45)

is called the chain complex of K.

The notion that corresponds to simplicial mappings is introduced, which is
called the chain homomorphism.

Definition 2.1.26 (chain homomorphism). Let K and K ′ be simplicial com-
plices and let (C∗(K), ∂∗) and (C∗(K

′), ∂′
∗) be their chain complices respectively.

Consider the homomorphisms hq : Cq(K) → Cq(K
′) for all q. The homomor-

phisms {hq}q∈Z is called a chain homomorphism if and only if they satisfy the
following equations for all q:

hq−1 ◦ ∂q = ∂′
q ◦ hq. (2.1.46)

The identity mapping idCq(K) : Cq(K)→ Cq(K) is a chain homomorphism.
This fact is trivial. The composition of two chain homomorphisms is a chain ho-
momorphism. It is proved later. For a simplicial complex K and its subcomplex
L, a chain homomorphism ι#q : Cq(L) → Cq(K) is induced from the inclusion
mapping ι : L ↪→ K. It is proved by introducing a chain homomorphism induced
from a simplicial mapping.

Proposition 2.1.27 (composition of chain homomorphisms). Let K, K ′ and
K ′′ be simplicial complices. Two chain homomorphisms hq : Cq(K) → Cq(K

′)
and gq : Cq(K

′) → Cq(K
′′) are given. The composition gq ◦ hq : Cq(K) →

Cq(K
′′) is a chain homomorphism.
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Proof. Let ∂q : Cq(K)→ Cq−1(K), ∂′
q : Cq(K

′)→ Cq−1(K
′) and ∂′′

q : Cq(K
′′)→

Cq−1(K
′′) denote the boundary operators. The equation (gq−1 ◦ hq−1) ◦ ∂q =

∂′′
q ◦ (gq ◦ hq) is shown below:

(gq−1 ◦ hq−1) ◦ ∂q = gq−1 ◦ (hq−1 ◦ ∂q) (2.1.47)
= gq−1 ◦ (∂′

q ◦ hq) (2.1.48)
= (gq−1 ◦ ∂′

q) ◦ hq (2.1.49)
= (∂′′

q ◦ gq) ◦ hq (2.1.50)
= ∂′′

q ◦ (gq ◦ hq). (2.1.51)

Proposition 2.1.28 (chain homomorphism induced from simplicial mapping).
Let K and K ′ be simplicial complices and let ϕ : K → K ′ be a simplicial
mapping. For a q-simplex 〈σq〉 = 〈a0a1 · · · aq〉, a mapping ϕ#q〈a0a1 · · · aq〉 is
defined as follows:

ϕ#q(〈a0a1 · · · aq〉) =

〈ϕ(a0)ϕ(a1) · · ·ϕ(aq)〉,
if ϕ(a0), . . . , ϕ(aq) are differ-
ent from each other,

0 otherwise.
(2.1.52)

For a q-chain c =
∑

i γi〈σi〉, the mapping ϕ#q is linearly extended as

ϕ#q(c) =
∑
i

γiϕ#q(〈σi〉), (2.1.53)

then ϕ#q : Cq(K)→ Cq(K
′) becomes a chain homomorphism.

Proof. Consider the case where ϕ(a0), ϕ(a1), . . . , ϕ(aq) are different from each
other. Prove Equation (2.1.46) with respect to ϕ#q:

∂′
q(ϕ#q〈a0a1 · · · aq〉) = ∂′

q〈ϕ(a0)ϕ(a1) · · ·ϕ(aq)〉 (2.1.54)

=

q∑
i=0

(−1)i〈ϕ(a0) · · · ˆϕ(ai) · · ·ϕ(aq)〉 (2.1.55)

= ϕ#q−1(∂q〈a0 · · · aq〉). (2.1.56)

Therefore ϕ#q−1 ◦ ∂q = ∂′
q ◦ ϕ#q holds.

Consider the case where there are the same vertices among ϕ(a0), . . . , ϕ(aq).
Let ϕ(aj) = ϕ(ak) for two indices j < k. The equation

∂′
q(ϕ#q〈a0 · · · aq〉) = ∂′

q(0) = 0 (2.1.57)

holds.
Then we obtain the equation

ϕ#q−1(∂q〈a0a1 · · · aq〉) = ϕ#q−1

(
q∑

i=0

(−1)i〈a0 · · · âi · · · aq〉

)
(2.1.58)

= (−1)jϕ#q−1〈a0 · · · âj · · · aq〉
+ (−1)kϕ#q−1〈a0 · · · âk · · · aq〉 (2.1.59)

= (−1)j〈ϕ(a0) · · ·ϕ(aj−1)ϕ(aj+1) · · ·ϕ(aq)〉
+ (−1)k〈ϕ(a0) · · ·ϕ(ak−1)ϕ(ak+1) · · ·ϕ(aq)〉. (2.1.60)

38



Arrange the vertices of the first term:

〈ϕ(a0) · · ·ϕ(aj−1)ϕ(aj+1) · · ·ϕ(ak−1)ϕ(ak)ϕ(ak+1) · · ·ϕ(aq)〉 (2.1.61)

Move the ϕ(ak) left by k − j + 1:

(−1)k−j+1〈ϕ(a0) · · ·ϕ(aj−1)ϕ(ak)ϕ(aj+1) · · ·ϕ(ak−1)ϕ(ak+1) · · ·ϕ(aq)〉.
(2.1.62)

Because ϕ(ak) = ϕ(aj), the equation

ϕ#q−1〈a0 · · · âj · · · aq〉 = (−1)k−j+1ϕ#q−1〈a0 · · · âk · · · aq〉 (2.1.63)

holds and we obtain

(−1)jϕ#q−1〈a0 · · · âj · · · aq〉+ (−1)kϕ#q−1〈a0 · · · âk · · · aq〉 = 0. (2.1.64)

Therefore we obtain ϕ#q−1 ◦ ∂q = ∂′
q ◦ ϕ#q and ϕ#q is a chain homomorphism.

2.1.4 Homology Group
Homology groups are introduced by using the concepts on chain complices.
The boundary operators give us the boundary groups and the cycle groups. A
boundary group is an ensemble of the boundaries of chains and a cycle groups is
an ensemble of the chains whose boundary is zero. A cycle, which is a member
of a cycle group, represents a hole in a shape. Although we can detect the holes
in a shape by enumerating the cycles at first glance, we must exclude the cycles
that are the boundaries of the higher dimensional chains; thus a cycle group is
divided by the boundary group of the same dimension, and the quotient group
is called the homology group.

Definition 2.1.29 (boundary group). The q-th boundary group of a simplicial
complex K is defined as follows:

Bq(K) = Im ∂q+1 = {b | ∃c′ ∈ Cq+1(K), b = ∂q+1c
′}. (2.1.65)

An element of Bq(K) is called a q-boundary.

Definition 2.1.30 (cycle group). The q-th cycle group of a simplicial complex
K is defined as follows:

Zq(K) = Ker ∂q = {c | c ∈ Cq(K), ∂qc = 0}. (2.1.66)

An element of Zq(K) is called a q-cycle.

A boundary group Bq(K) is a submodule of a cycle group Zq(K). It is
proved with the property of the boundary operators.

Proposition 2.1.31. The relation Bq(K) ⊂ Zq(K) holds for all q.

Proof. Take a q-boundary b ∈ Bq(K). By definition, there is a (q + 1)-chain
c ∈ Cq+1(K) which satisfies b = ∂q+1c. Taking the boundary of b, we obtain
the equation

∂qb = ∂q∂q+1c = 0. (2.1.67)
This equation means that b ∈ Zq(K), and therefore, Bq(K) ⊂ Zq(K) holds.
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This proposition justifies computing the quotient group of a cycle group
divided by a boundary group.

Definition 2.1.32 (homology group). The q-th homology group of a simplicial
complex is defined as follows:

Hq(K) = Zq(K)/Bq(K). (2.1.68)

The direct sum
H∗(K) =

⊕
q∈Z

Hq(K) (2.1.69)

is called the homology group of K.

An element of q-th homology group is denoted as [zq] or zq +Bq(K), where
zq is a q-cycle. An element [zq] is called a homology class.

Similar to chain complices, there are mappings between homology groups
induced from chain homomorphisms.

Definition 2.1.33 (induced homomorphism). Let K and K ′ be simplicial com-
plices and let {hq} : {Cq(K)} → {Cq(K

′)} be a chain homomorphism. Define a
mapping from Hq(K) to Hq(K

′) by making a homology class [z] = z + Bq(K)
correspond to [hq(z)] = hq(z) +Bq(K

′). The mapping is denoted as

(hq)∗[z] = [hq(z)]. (2.1.70)

The mapping (hq)∗ : Hq(K)→ Hq(K
′) is called the induced homomorphism.

Lemma 2.1.34. The induced mapping of homology groups is well-defined.

Proof. First it is proved that the mapped cycle belongs to a cycle group and
the mapped boundary belongs to a boundary group. Second it is proved that
the mapped homology class does not depend on the choice of the representative
cycle.

Take a cycle z ∈ Zq(K) and map it with the chain homomorphism hq. We
obtain hq(z). The boundary of hq(z) satisfies the equation

∂′
qhq(z) = hq−1∂qz = hq−1(0) = 0 (2.1.71)

because of the commutativeness of chain homomorphisms.
Take a boundary b ∈ Bq(K) and there is a chain c ∈ Cq+1(K) which satisfies

b = ∂q+1c. The image of b satisfies the equation

hq(b) = hq∂q+1c = ∂′
q(hq+1(c)) (2.1.72)

and thus hq(b) ∈ Bq(K
′) holds.

Let z and z′ be q-cycles homologous to each other. The relation

z − z′ ∈ Bq(K) (2.1.73)

holds. Apply the mapping hq to the relation above:

hq(z − z′) ∈ hq(Bq(K)). (2.1.74)
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The left-hand side of Equation (2.1.74) is hq(z)−hq(z
′) and the right-hand side

satisfies the relation hq(Bq(K)) ⊂ Bq(K
′). We have the relation

hq(z)− hq(z
′) ∈ Bq(K

′). (2.1.75)

The homology classes satisfy that

(hq)∗[z]− (hq)∗[z
′] = [hq(z)]− [hq(z

′)] (2.1.76)
= (hq(z) +Bq(K

′))− (hq(z
′) +Bq(K

′)) (2.1.77)
= hq(z)− hq(z

′) +Bq(K
′) (2.1.78)

= 0 +Bq(K
′), (2.1.79)

and thus (hq)∗[z] is homologous to (hq)∗[z
′]. Therefore the induced homomor-

phism is well-defined.

The homology group of a simplicial complex is computed with the images
and the kernels of the boundary operators. The images and the kernels are
computed by manipulating the matrices representing the boundary operators.
I give no examples of homology groups because the computation of persistent
homology groups gives homology groups. I give examples of presistent homology
groups later.

2.1.5 Persistent Homology
Persistent homology groups are defined on a filtered simplicial complex. A
filtered simplicial complex is a simplicial complex whose simplices are sorted in
an order, and a filtered simplicial complex becomes an increasing sequence of
subcomplices. A subset which consists of simplices from the start to some index
of a filtered simplicial complex becomes a subcomplex of the filtered simplicial
complex. The filtration, an ordered sequence of subcomplices, gives the notion
of topological persistence. Topological persistence means how long a topological
entity lives through the change of a shape.

Definition 2.1.35 (filter of simplicial complex). Let K = {σi}ni=1 be a simpli-
cial complex. A total order of the simplices is given; for any two simplices σ
and τ in K, there is an inequality σ ≤ τ or σ ≥ τ . For all simplices σ, if the
set

σ− = {τ | τ ∈ K, τ ≤ σ} (2.1.80)

is a subcomplex of K, such a total order is called a filter of simplicial complex.

A filter gives a filtered simplicial complex or a filtration of a simplicial com-
plex.

Definition 2.1.36 (filtration). A filter of a simplicial complex K = {σi}ni=1 is
given:

σ1 ≤ σ2 ≤ · · · ≤ σn. (2.1.81)

Let Ki be the i-th subcomplex σ−
i . The increasing sequence

K1 ⊂ K2 ⊂ · · · ⊂ Kn = K (2.1.82)

is called a filtration of K.
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There are inclusions between the subcomplices in a filtration. The induced
homomorphisms of the inclusions give us the definition of persistent homology.

Definition 2.1.37 (persistent homology group). A filtration of a simplicial
complex is given:

K1 ⊂ K2 ⊂ · · · ⊂ Kn. (2.1.83)

Let ιl,l+p denote the inclusion mapping from Kl to Kl+p. There is the induced
homomorphism ιl,l+p

∗ : H∗(Kl) → H∗(Kl+p). The induced homomorphism of
the q-th homology group is denoted as ιl,l+p

∗q : Hq(Kl) → Hq(Kl+p). The q-th
persistent homology group of Kl with persistence p is defined as follows:

H l,p
q (K) = Im ιl,l+p

∗q = Zq(Kl)/(Bq(Kl+p) ∩ Zq(Kl)). (2.1.84)

It is needed to explain the well-definedness of the definition above. An
element of Im ιl,l+p

∗q is identified with the equivalence relation z− z′ ∈ Bq(Kl+p)
for z, z′ ∈ Zq(Kl). Because the relation z − z′ ∈ Zq(Kl) also holds, the relation
z − z′ ∈ Bq(Kl+p) ∩ Zq(Kl) holds. Thus the intersection Bq(Kl+p) ∩ Zq(Kl) is
a subset of Zq(Kl) and the persistent homology is well-defined.

Now introduced is an algorithm to compute the persistent homology of a
filtered simplicial complex. The algorithm, proposed by Cohen-Steiner, Edels-
brunner, and Morozov (2006), is called the matrix reduction and the persistence
pairing. Below, the coefficient ring of chain complices is fixed to Z/2Z.

The algorithm requires a matrix representing the boundary operator.

Definition 2.1.38 (boundary matrix). Let m be the dimension of a filtered sim-
plicial complex K. The non-zero chain groups are C0(K), C1(K), . . . , Cm(K).
The simplices of K are sorted in the following order:

〈σ1〉, 〈σ2〉, . . . , 〈σn〉. (2.1.85)

Let C denote the linear space whose basis is the simplices in the order above.
The isomorphism

C ' C0(K)⊕ C1(K)⊕ · · · ⊕ Cm(K) (2.1.86)

holds, because the basis C is the rearrenged set of the bases of C0(K), C1(K),
. . . , Cm(K). The direct sum of the boundary operators is defined as

∂ = ∂0 ⊕ ∂1 ⊕ · · · ∂m. (2.1.87)

The representation of ∂ with respect to C is called the boundary matrix of K. It
is denoted as D. The elements of the boundary matrix is

Di,j =

{
1 if σi is a face of σj of codimension 1,

0 otherwise.
(2.1.88)

The matrix reduction algorithm (Cohen-Steiner, Edelsbrunner, and Moro-
zov, 2006; Edelsbrunner and Harer, 2010: pp. 152-153) reveals the image and
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the kernel of a boundary matrix. It is a variation of the gaussian elimination,
but it only uses column-wise addition.

Algorithm 1: Matrix reduction
Data: a boundary matrix D.
Result: a reduced matrix R.

1 begin
2 R← D;
3 for j = 1, . . . , n do
4 while ∃j′ < j s.t. lowR(j

′) = lowR(j) do
5 Add the j′-th column to the j-th column;

The notation lowR(j) means that the index of the lowest 1 element of the
j-th column of the matrix R, in other words, the maximum index of the element
whose value is 1. The term ”lowest” means that the element whose value is 1 is
positioned at the lowest position in the view that the j-th column is written in
the form of a horizontal vector. If the j-th column is a zero vector, the lowR(j)
is none.

Definition 2.1.39. Let A be a matrix whose elements are 0 or 1. The function
lowA is defined as

lowA(j) = max {i | Ai,j = 1} (2.1.89)

if the set {i | Ai,j = 1} is not empty. The function lowA is defined as none
otherwise.

Example 2.1.40. The matrix A is given as follows:

A =


1 0 1 0
1 0 1 1
0 0 0 1
0 0 1 0

 . (2.1.90)

It has four columns. The values of lowA for each column are shown below:

lowA(1) = 2, (2.1.91)
lowA(2) = None, (2.1.92)
lowA(3) = 4, (2.1.93)
lowA(4) = 3. (2.1.94)

If the matrix computed with Algorithm 1 satisfies the equations lowR(j) 6=
lowR(j

′) for any two non-zero columns j 6= j′, the matrix R is called reduced
and the lowR is called a pairing function.

The matrix D is decomposed as D = RU where U is an invertible upper
triangular matrix. The matrix U is invertible because it is a composition of
elementary operations.

The zero columns of the matrix R are paired to the non-zero columns with
the persistence pairing algorithm (Cohen-Steiner, Edelsbrunner, and Morozov,
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2006; Edelsbrunner and Harer, 2010: pp. 153-154).
Algorithm 2: Persistence pairing

Data: a reduced matrix R.
Result: persistence pairs of each dimension.

1 for j = 1, . . . , n do
2 if the j-th column is a zero vector then
3 if ∃k s.t. lowR(k) = j then
4 Add a persistence pair (j, k) of dimension dimσj ;
5 Add a persistence pair (j,∞) of dimension dimσj ;

A persistence pair whose lifetime is finite is called an inessential homology
class and a persistence pair whose lifetime is infinite is called an essential ho-
mology class.

The matrix reduction algorithm only uses the operation of adding the j′-th
column to the j-th column (j′ < j), which is a one of the elementary transfor-
mations of matrix. This operation changes the basis of the linear space C. Let
〈c1, c2, . . . , cn〉 denote the basis of C. The operation updates the j-th chain of
the basis to cj + cj′ . The linear space C is the domain of the boundary operator
∂. The operation changes a chain whose boundary is to be taken. On the other
hand, the basis of the codomain is not touched. Thus a column of the matrix
represents the simplices that makes the boundary of a chain. The lowest 1 index
of a column means the time when the boundary of a chain completes emerging.
If a column is a zero vector, it means that the chain is a cycle.

The matrix reduction algorithm reduces the index when the boundary of
each chain is born. Some columns become zero, which means that they are
cycles. Others become non-zero vectors, which means that they are boundaries.
The persistence pairing algorithm pairs the cycles and the boundaries according
to the birth indices. The j-th column borns at the index j. This column must
be paird to the column whose lowest 1 index is j. The column paired to the
j-th column represents a boundary. This boundary shares the same simplex σj

with the cycle represented by the j-th column. Thus they are same and the
cycle dies at the index of the paired column k. If there is no pairable column,
the cycle does not vanish.

Some properties of the algorithm are introduced. I explain the birth indices
of the chains of the basis, the worst-case time complexity, and the number of
non-zero columns of the reduced matrix. The analysis of the worst-case time
complexity is originally found in (Edelsbrunner and Harer, 2010: pp. 157-158).
Moreover, a proof of the uniqueness of the pairing function that proved by
Cohen-Steiner, Edelsbrunner, and Morozov (2006) is given.

Proposition 2.1.41. The basis 〈c1, c2, . . . , cn〉 of the linear space C is given.
The chain cj is born at the index j.

Proof. Assume that the iterations on the 1-st column to the (j − 1)-th column
have been done and the statement of the proposition holds. When the operations
on the j-th column have been finished, some of the chains c1, . . . , cj−1 are added
to σj . The chains c1, . . . , cj−1 are born before the index j and the chain cj is
born at the index j since it includes σj . Hence the chain cj is born just at the
index j.

44



Proposition 2.1.42. The matrix reduction algorithm stops in finite steps and
its worst-case time complexity is O(n3).

Proof. Consider the case that there is an index j′ which statisfies the equation
lowR(j

′) = lowR(j) for the index j that is greater than j′. The j′-th column
being added to the column j, the lowR(j) decreases or becomes none. If the
j-th column becomes a zero vector, the operation on the column j are finished.
Otherwise the operations are repeated at most n times because the lowR(j)
ranges from 1 to n. The operations are applied to n columns and thus the
algorithm stops in finite steps.

Assume that the addition of columns takes n times additions of integers. For
each column, the number of the column additions is at most n. Since there are
n columns, the number of additions is at most n3.

The following two propositions give an explanation how the matrix reduction
algorithm reveals the rank of a boundary matrix.

Proposition 2.1.43. Suppose that the matrix reduction algorithm has finished
till the (j − 1)-th column. Let σj be a simplex which is newly added to the
basis of C. The operations on the j-th column give us a chain cj. The logical
equivalence

{∂c1, ∂c2, . . . , ∂cj−1, ∂σj} is linearly dependent⇔ ∂cj = 0 (2.1.95)

holds.

Proof. First the implication

{∂c1, ∂c2, . . . , ∂cj−1, ∂σj} is linearly dependent⇒ ∂cj = 0 (2.1.96)

is proved. From the assumption, the equation

∂σj = γ1∂c1 + · · ·+ γj−1∂cj−1 (γk ∈ Z/2Z) (2.1.97)

holds. The letters k1, . . . , kl denote the indices that the coefficient is 1. The
equation is written as

∂σj = ∂ck1 + · · ·+ ∂ckl
. (2.1.98)

Because low(∂ck1
), . . . , low(∂ckl

) are different from each other, the equation

low(∂σj) = max {low(∂ck1
), . . . , low(∂ckl

)} (2.1.99)

holds. The column that has the maximum low(·) among ∂ck1
, . . . , ∂ckl

is se-
lected, which ∂cka

denotes. The chain cka
is added to σj . Thus we obtain

∂(σj + cka
) = ∂ck′

1
+ · · ·+ ∂ck′

l−1
. (2.1.100)

By repeating this operation, all the terms in the right-hand side of Equation
(2.1.98) are moved to the left-hand side and let cj denote the resulting chain,
which satisfies that ∂cj = 0.

Second the implication

{∂c1, ∂c2, . . . , ∂cj−1, ∂σj} is linearly dependent⇐ ∂cj = 0 (2.1.101)
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is proved.
The chain cj is written as

cj = η1σ1 + · · ·+ ηjσj (2.1.102)

with the initial basis of C. The equation ∂cj = 0 gives us the equation

∂cj = η1∂σ1 + · · ·+ ηj∂σj = 0. (2.1.103)

The simplex σj must be included in the chain cj , hence ηj = 1. By adding ∂σj

to the both sides of the equation above, we obtain the equation

∂σj = η1∂σ1 + · · ·+ ηj−1∂σj−1. (2.1.104)

Changing the basis suitably, we obtain the equation

∂σj = γ1∂c1 + · · ·+ γj−1∂cj−1 (2.1.105)

and it means that ∂c1, ∂c2, . . . , ∂cj−1 and ∂σj are linearly dependent.

Proposition 2.1.44. The number of non-zero columns of the reduced matrix
is equal to dim Im ∂.

Proof. The boundary operator ∂ is restricted to the basis 〈c1, . . . , cj〉, which ∂|j
denotes. R(j) denotes the matrix reduced till the j-th column.

When j = 1, the matrix R(1) consists of only one column and ∂σ1 = 0 since
the first simplex σ1 must be a 0-simplex. Thus the number of non-zero columns
of R(1) is zero. On the other hand, the equation dim Im ∂|1 = 0 holds because
σ1 is a cycle.

Consider the case that the operations on the columns are done till the (j−1)-
th column. Let rj = dim Im ∂|j and the rj staisfies that rj = rj−1 or rj =
rj−1 + 1.

When rj = rj−1, for the simplex σj newly added to the basis, the boundary
∂σj is linearly dependent to ∂c1, . . . , ∂cj−1. Because of Proposition 2.1.43, the
chain cj satisfies ∂cj = 0. Thus the number of non-zero columns of R(j) does
not change from that of R(j−1). Conversely, if the chain cj satisfies ∂cj = 0,
the boundary ∂σj is linearly dependent to ∂c1, . . . , ∂cj−1 and thus rj is equal
to rj−1.

When rj = rj−1+1, the boundary σj is linearly independent to ∂c1, . . . , ∂cj−1.
The boundary ∂cj does not become zero. Therefore the number of non-zero
columns of R(j) is incremented by one from that of R(j−1) and vice versa.

By the mathematical induction, the statement holds.

The uniqueness of the pairing function, which has been proved by Cohen-
Steiner et al. (2006), is shown below. The proof is based on their work. Before
giving the proposition, a quantity of a reduced matrix is introduced (Cohen-
Steiner et al., 2006; Edelsbrunner and Harer, 2010: p. 154).

Definition 2.1.45. Let A be an n-by-n matrix. Let Aj
i be the submatrix of A

composed of the i-th row to the n-th row and the 1-st column to the j-th column.
The quantity rA(i, j) is defined as follows:

rA(i, j) = rankAj
i − rankAj

i+1 + rankAj−1
i+1 − rankAj−1

i . (2.1.106)
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For any i and j, rankAj
i does not change when a column of A is added from

left to right. This operation does not add a vector which is not contained in
Aj

i . Thus the quantity rA(i, j) is invariant under this operation. The following
proposition ensures the uniqueness of the pairing function (Cohen-Steiner et al.,
2006; Edelsbrunner and Harer, 2010: p. 154).

Proposition 2.1.46 (pairing uniqueness). A boundary matrix D is decomposed
as D = RU , where R is a reduced matrix and U is an invertible upper triangle
matrix. The logical equivalence

lowR(j) = i⇔ rD(i, j) = 1 (2.1.107)

holds. Especially the pairing function does not depend on the RU decomposition.

Proof. It is sufficient to prove the statement on the matrix R because the equa-
tion rD(i, j) = rR(i, j) holds.

First prove the implication

lowR(j) = i⇒ rD(i, j) = 1. (2.1.108)

Assume that lowR(j) = i. The non-zero columns of the submatrx Rj
i are linearly

independent. The last column of Rj
i is non-zero because of the assumption. Thus

the equation rankRj
i − rankRj−1

i = 1 holds. Removing the first row of Rj
i , we

obtain a submatrix whose j-th column is zero since lowR(j) = i. Thus the
equation rankRj

i+1 − rankRj−1
i+1 = 0 holds. Therefore we obtain the equation

rR(i, j) = (rankRj
i − rankRj−1

i )− (rankRj
i+1 − rankRj−1

i+1 ) = 1− 0 = 1.
(2.1.109)

Second prove the contraposition

lowR(j) 6= i =⇒ rR(i, j) 6= 1. (2.1.110)

in order to prove rR(i, j) = 1 =⇒ lowR(j) = i. It is sufficient to prove the
equation rR(i, j) = 0 because the difference of the ranks of the submatrices that
defines the quantity rR(i, j) is at most one.

If lowR(j) < i, the last columns of Rj
i and Rj

i+1 are zero and we obtain the
equations rankRj

i = rankRj−1
i and rankRj

i+1 = rankRj−1
i+1 . Thus the equation

rR(i, j) = 0 holds.
If lowR(j) > i, the last columns of Rj

i and Rj
i+1 are non-zero and we obtain

the equations rankRj
i = rankRj−1

i + 1 and rankRj
i+1 = rankRj−1

i+1 + 1. Thus
the equation rR(i, j) = 0.

Therefore the first statement was proved.
Suppose that a boundary matrix D is decomposed in two ways: D = R1U1

and D = R2U2. Since the matrix U1 is invertible we obtain R1 = R2U2U
−1
1 .

Because the matrix U2U
−1
1 means the composition of the operations that add

a column from left to right, the equation rR1(i, j) = rR2(i, j) holds. Therefore
the pairing function lowR does not depend on the decomposition of boundary
matrix.

I give an example of the computation of persistent homology groups.
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Example 2.1.47 (2-skeleton of 3-simplex). Make a filtration of the 2-skeleton
of a 3-simplex in the following order:

〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈01〉, 〈12〉, 〈02〉, 〈03〉, 〈23〉, 〈13〉, 〈012〉, 〈023〉, 〈013〉, 〈123〉.
(2.1.111)

The boundary matrix is as follows:

0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



(2.1.112)

Apply the matrix reduction algorithm to this boundary matrix. There are 14
columns.

Column 1-4

The 1-st column to the 4-th column are zero columns. Thus they are cycles and
no reduction is applied.

Column 5

The value of the low(5) is 2. There is no column whose low(·) is 2 before the
5-th column. Thus no reduction is applied.

Column 6

The value of the low(6) is 3. There is no columns whose low(·) is 3 before the
6-th column. Thus no reduction is applied.
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Column 7

The value of the low(7) is 3. The 6-th column has the same value. Thus the
6-th column is added to the 7-th column:

0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.113)

The value of the low(7) has changed into 2. The 5-th column has the same
value. Thus the 5-th column is added to the 7-th column:

0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.114)

The 7-th column has become zero. Therefore it is a cycle and is represented
as 〈01〉+ 〈12〉+ 〈20〉.

Column 8

The value of low(8) is 4. It is unique before the 8-th column. Thus no reduction
is applied.
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Column 9

The value of low(9) is 4. The 8-th column has the same value. Thus the 8-th
column is added to the 9-th column:

0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.115)

The value of low(9) has changed into 3. The 6-th column has the same value.
Thus the 6-th column is added to the 9-th column:

0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.116)

The value of low(9) has changed into 2. The 5-th column has the same value.
Thus the 5-th column is added to the 9-th column.
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0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.117)

The 9-th column has become zero. Therefore it is a cycle and is represented
as 〈01〉+ 〈12〉+ 〈03〉+ 〈32〉.

Column 10

The value of low(10) is 4. The 8-th column has the same value. Thus the 8-th
column is added to the 10-th column:

0 0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.118)

The value of low(10) has changed into 2. The 5-th column has the same
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value. Thus the 5-th column is added to the 10-th column:

0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.119)

The 10-th column has become zero. Therefore it is a cycle and is represented
as 〈01〉+ 〈03〉+ 〈13〉.

Column 11-13

The 11-th column to the 13-th column have their own unique lowest 1 index.
Thus no reduction is applied to these columns.

Column 14

The value of low(14) is 10. The 13-th column has the same value. Thus the
13-th column is added to the 14-th column:

0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.120)

The value of low(14) has changed into 9. The 12-th column has the same
value. Thus the 12-th column is added to the 14-th column:

52





0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.121)

The value of low(14) has changed into 7. The 11-th column has the same
value. Thus the 11-th column is added to the 14-th column:

0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (2.1.122)

The 14-th column has become zero. Therefore it is a cycle and is represented
by 〈012〉+ 〈032〉+ 〈013〉+ 〈123〉.

The matrix reduction has been done. It is the time to execute the persistence
pairing algorithm. The cycles are column 1, 2, 3, 4, 7, 9, 10, and 14.

Column 1

The 1-st column represents an essential cycle because there is no column with
low(k) = 1. We obtain a pair (1,∞) of dimension 0.

Column 2

The 5-th column has the value low(5) = 2. We obtain a 0-dimensional persis-
tence pair (2, 5).

Column 3

The 6-th column has the value low(6) = 3. We obtain a 0-dimensional persis-
tence pair (3, 6).
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Column 4

The 8-th column has the value low(8) = 4. We obtain a 0-dimensional persis-
tence pair (4, 8).

Column 7

The 11-th column has the value low(11) = 7. We obtain a 1-dimensional per-
sistence pair (7, 11).

Column 9

The 12-th column has the value low(12) = 9. We obtain a 1-dimensional per-
sistence pair (9, 12).

Column 10

The 13-th column has the value low(13) = 10. We obtain a 1-dimensional
persistence pair (10, 13).

Column 14

There is no column with low(k) = 14. It is an essential cycle. We obtain a
2-dimensional persistence pair (14,∞).

In summary, the persistence pairs are shown in the table below:

Table 2.1: Persistence pairs in Example 2.1.47

Dimension 0 Dimension 1 Dimension 2
(1,∞) (7, 11) (14,∞)
(2, 5) (9, 12)
(3, 6) (10, 13)
(4, 8)

2.1.6 Persistence Diagram
The persistence diagram visualizes persistence homology groups. It is a plane
with the vertical axis of birth scale and the horizontal axis of death scale. A
generator of a persistent homology group is plotted as a point on a persistence
diagram. The generators plotted near to the diagonal line have short persis-
tences and those plotted far from the diagonal line have long persistences.

Definition 2.1.48 (persistence diagram). Let PHq(K) be the q-th persistence
homology group of a simplicial complex K. Let Dgmq(K) denote the persistence
diagram of PHq(K). For each generator of PHq(K) with the persistence (b, d),
the diagram Dgmq(K) has a point at (b, d). If there are m generators with the
same persistence, the corresponding point of Dgmq(K) has the multiplicity m.
The diagram Dgmq(K) also has the points on the diagonal line with infinite
multiplicity.
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A distance between persistence diagrams can be defined and it enables us to
compare persistence diagrams. Although several distances have been proposed,
only the bottleneck distance is introduced.

Definition 2.1.49 (bottleneck distance). Let X and Y be persistence diagrams.
The bottleneck distance between X and Y is defined as follows:

W∞(X,Y ) = inf
η:X→Y

sup
x∈X
‖x− η(x)‖∞, (2.1.123)

where η is a bijection and ‖(b, d)‖∞ = max{b, d}.

The computation of a bottleneck distance is treated as a matching problem
of bipartite graph (Edelsbrunner and Harer, 2010: p. 191). Let X0 and Y0 be
the set of the off-diagonal points of X and Y respectively. Let u′ denote the
orthogonal projection to the diagonal line of a point u = (b, d). Let X ′

0 = {u′ |
u ∈ X0} and Y ′

0 = {v′ | v ∈ Y0}. Define the sets of vertices U = X0 ∪ Y ′
0 and

V = Y0 ∪X ′
0. We have a weighted bipartite graph

G = (U t V,U × V, c), (2.1.124)

where the weight function c is defined as

c(u, v) =

{
‖u− v‖∞ if u ∈ X0 or v ∈ Y0,

0 otherwise.
(2.1.125)

Efrat, Itai, and Katz (2001) observed the following fact. Let G[r] be a
subgraph of G whose edge has weight at most r. The bottleneck distance is the
least value of r that G[r] has a perfect matching. This problem is solved with
the combination of the Hopcroft-Karp algorithm (Hopcroft and Karp, 1973) and
the binary search.

2.1.7 Čech Complex and Vietoris-Rips Complex
In order to analyze the shape of data, the shape must be constructed from the
given data. The situation that the data to be analyzed is given as a set of points
in an Euclidean space is considered. There are several methods of constructing a
simplicial complex from a point cloud. The Čech complex and the Vietoris-Rips
complex are such methods and they are popular in the field of topological data
analysis. The Čech complex is constructed from the balls centered at the given
points. The Vietoris-Rips complex is an approximation of the Čech complex
and the conditions to construct a complex are relaxed.

First I introduce the nerve of a cover and related notions. Second I introduce
the Čech complex by using the nerve of a cover. Finally the Vietoris-Rips
complex is introduced as a relaxation of the Čech complex.

Definition 2.1.50 (open cover). Let X be a subspace of an Euclidean space. A
set of open sets U = {Uα}α is called a cover of X if and only if it satisfies that

X =
⋃
α

Uα. (2.1.126)
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Definition 2.1.51 (nerve of a cover). Let X be a subspace of an Euclidean
space and let U = {Uα}α be an open cover of X. The nerve of the cover U is a
simplicial complex defined as follows:

N (U) = {|α0α1 · · ·αq| | Uα0
∩ Uα1

∩ · · · ∩ Uαq
6= ∅}. (2.1.127)

Consider the computation of the topology of a space from the nerve of its
cover. A nerve does not necessarily reflect the topology of the given space. The
nerve theorem guarantees the homotopy equivalence between the nerve and the
space.

Definition 2.1.52 (good cover). An open cover U = {Uα} is called a good cover
if and only if any non-empty intersection of open sets Uα0

∩ Uα1
∩ · · · ∩ Uαp

is
contractible.

Theorem 2.1.53 (nerve theorem). Let X be a subspace of an Euclidean space
and let U be an open cover of X. If the cover U is a good cover then the space
X and the nerve N (U) are homotopy equivalent.

The proof of Theorem 2.1.53 for topological space is found in the book of
Hatcher (Hatcher, 2015: Corollary 4G.3). The original proof of Theorem 2.1.53
was given in (Borsuk, 1948) for a subspace of an Euclidean space.

Lemma 2.1.54. Let U = {Uα} be an open cover of a subspace of an Euclidean
space. If all the open sets of U is convex then the open cover U is a good cover.

Proof. The intersection of convex sets is convex and a convex set is contractible.
Hence the cover U is a good cover.

A Čech complex is a nerve of a cover where the space is the union of the
balls centered at the given points and the cover is the set of the balls.

Definition 2.1.55 (Čech complex). Let S = {xi}ni=1 be a set of points in an
Euclidean space. The Čech complex of S with threshold r is defined as follows:

Cr(S) = {|i0i1 · · · iq| | Br(xi0) ∩Br(xi1) ∩ · · · ∩Br(xiq ) 6= ∅}, (2.1.128)

where Br(x) is a ball of radius r centered at x.

Since the balls are convex, the cover U = {Br(xi)}ni=1 is a good cover.
Hence the Čech complex Cr(S) and the space X =

⋃n
i=1 Br(xi) are homotopy

equivalent. The computation of the homology groups of the Čech complex
produces the homology groups of the union of the balls.

It is obvious that the filtration of the Čech complex can be constructed
because the relation Cr1(S) ⊂ Cr2(S) holds for r1 ≤ r2.

The condition of the Čech complex to make a simplex is difficult to compute
since it is required to detect the intersection of more than two balls. The
Vietoris-Rips complex is introduced to avoid this difficulty.

Definition 2.1.56 (Vietoris-Rips complex). Let S = {xi}ni=1 be a set of points
in an Euclidean space. The Vietoris-Rips complex of S with threshold r is defined
as

Rr(S) = {|i0i1 · · · iq| | ∀k, ∀l, k 6= l, Br(xik) ∩Br(xil) 6= ∅}, (2.1.129)

where Br(x) is a ball of radius r centered at x.
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It is easy to test whether two balls have the intersection because it can be
checked by comparing the distance between the centers with the two times of r.

In the same way as the Čech complex, the filtration of the Vietoris-Rips
complex can be constructed because the relation Rr1(S) ⊂ Rr2(S) holds for
r1 ≤ r2.

The threshold r is often set to infinity when the filtration is constructed.
The Vietoris-Rips complex with infinity threshold R∞(S) becomes a simplicial
complex that consists of all the faces of an (n−1)-simplex. The filtered Vietoris-
Rips complex of R∞(S) is obtained by sorting the simplices in the ascending
order of the values defined below:

f(σ) =


0 if dimσ = 0,
d(u, v) if σ = |uv|,
maxτ≺σ f(τ) otherwise,

(2.1.130)

where d(u, v) denotes the Euclidean distance between u and v.
The number of the simplices in R∞(S) is 2n − 1 because of Lemma 2.1.5.

This number is incredibly large. In order to reduce the number of the simplices,
the dimension of the complex is restricted in practice. For example, consider
that the dimension of R∞(S) is restricted to a maximum of two. In other words,
we consider the 2-skeleton of R∞(S). The number of the simplices is

3∑
k=1

(
n

k

)
=

1

6
n3 +

5

6
n, (2.1.131)

where n is the cardinality of S.

2.1.8 Witness Complex
We have seen that a Vietoris-Rips complex may have a tremendously huge
number of simplices. It results in intolerably long computational time of the
persistent homology. It is natural that faster methods to construct a simplicial
complex from a point cloud are desired. The witness complex, proposed by de
Silva and Carlsson (2004), is such a method. A witness complex approximates
a simplicial complex constructed from a point cloud. A subset called landmark
points is used for approximation. The definition of the witness complex is given
below.

Definition 2.1.57 (strict witness complex). Let S = {xi}ni=1 be a set of points
in an Euclidean space and let L = {lj}mj=1 be a subset of S. The strict wit-
ness complex of S, which W∞(S) denotes, is defined as follows: A p-simplex
|a0a1 · · · ap| belongs to W∞(S) if and only if there exists a point x ∈ S such that
the equation d(aq, x) = min1≤i≤n d(aq, xi) holds for all 1 ≤ q ≤ p and aq ∈ L.

It is tedious to test the condition whether a simplex belongs to the strict
witness complex. The lazy version of the witness complex is proposed by de
Silva and Carlsson (2004). It is an analogue of the Vietoris-Rips complex.

Definition 2.1.58 (lazy witness complex). Let S be a point cloud and let L
be landmark points defined in the same manner of Definition 2.1.57. The lazy
witness complex W1(S) is defined as follows: A p-simplex |a0a1 · · · ap| belongs to
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W1(S) if and only if there exists a point x ∈ S such that the equations d(a, x) =
min1≤i≤n d(a, xi) and d(b, x) = min1≤i≤n d(b, xi) for all a, b ∈ {a0, a1, . . . , ap}
such that a 6= b.

The methods to choose the landmarks recommended (de Silva and Carls-
son, 2004) are the random selection and the maximin selection. The maxmin
selection has the following procedure. Choose a point l1 ∈ S at random.
Suppose that (i − 1) points l1, l2, . . . , li−1 have been chosen. Take the point
li ∈ S \ {l1, l2, . . . , li−1} such that maximizes the function

x 7→ min
1≤j≤i−1

d(x, lj). (2.1.132)

The points chosen by the procedure above are landmark points: L = {li}mi=1.

2.1.9 Stability
It is known that the persistent homology groups of the complices introduced
above are stable with respect to the Gromov-Hausdorff distance (Chazal, de
Silva, and Oudot, 2014). In order to introduce the result of (Chazal et al.,
2014), several notions are introduced in this section.

The definition of the Gromov-Hausdorff distance requires the notion of mul-
tivalued mappings. A multivalued mapping from the set X to the set Y , say
C : X ⇒ Y , is a subset of X × Y and the image of C under the canonical
projection πX : X × Y → X is equal to the set X, that is πX(C) = X. A
multivalued mapping C : X ⇒ Y is called a correspondence if the image of C
under the canonical projection πY : X × Y → Y is is equal to the set Y , that is
πY (C) = Y .

For metric spaces (X, dX) and (Y, dY ), the distortion of a correspondence
C : X ⇒ Y is defined as

dis(C) = sup{|dX(x, x′)− dY (y, y
′)| | (x, y), (x′, y′) ∈ C}. (2.1.133)

Definition 2.1.59 (Gromov-Hausdorff distance). The Gromov-Hausdorff dis-
tance between metric spaces (X, dX) and (Y, dY ) is defined as

dGH(X,Y ) =
1

2
inf{dis(C) | C : X ⇒ Y }, (2.1.134)

where C is a correspondence.
The inequalities between the bottleneck distance and the Gromov-Hausdorff

distance are proved in (Chazal et al., 2014). The metric spaces are restricted
to totally bounded metric spaces. The metric space (X, dX) is totally bounded
if it has a finite ε-sample for all ε > 0. For a positive real value ε > 0, a
finite ε-sample of the metric space (X, dX) is a subset F ⊂ X such that for any
x ∈ X there exists an element f ∈ F which satisfies dX(x, f) < ε. For example,
bounded subsets of an Euclidean space are totally bounded.
Theorem 2.1.60 (Chazal, de Silva, and Oudot (2014)). Let X and Y be totally
bounded metric spaces. Then

W∞(Dgmq(R(X)),DgmqR(Y )) ≤ 2dGH(X,Y ), (2.1.135)
W∞(Dgmq(C(X)),DgmqC(Y )) ≤ 2dGH(X,Y ), (2.1.136)

where R(·) is a filtration of the Vietoris-Rips complex and C(·) is a filtration of
the Čech complex; and Dgmq denotes the q-th persistence diagram.
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2.2 Attractor Reconstruction and Takens’ The-
orem

My first study focuses on attractor reconstruction, which reconstructs a trajec-
tory of a dynamical system from observed data. The delay-coordinate map-
ping (Takens, 1981) is used to reconstruct the attractor.
Definition 2.2.1 (delay-coordinate mapping). The observed data x(t), which
is a function of time, is given. Let a be a positive real number and n be a positive
integer. The mapping

φ(x(t)) = (x(t), x(t− a), . . . , x(t− (n− 1)a)) (2.2.1)

is called a backward delay-coordinate mapping. The mapping

φ(x(t)) = (x(t), x(t+ a), . . . , x(t+ (n− 1)a)) (2.2.2)

is called a forward delay-coordinate mapping. For convenience, both delay-
coordinate mappings are called a delay-coordinate mapping. The number a is
called the delay time and the integer n is called the embedding dimension.

Takens’ theorem (Takens, 1981) guarantees that the reconstructed attractor
is diffeomorphic to the original attractor under a certain situation.
Theorem 2.2.2 (Takens). Let ξ : R→M be a trajectory of a dynamical system
on a manifold M of dimension m. Let h : M → R be a continuous function.
The mapping obtained by letting x = h ◦ ξ in Definition 2.2.1, which is

Φ(ξ(t)) = φ(h ◦ ξ(t)) : M → Rn (2.2.3)

is an embedding in generic if n > 2m.
The choice of the delay time is important to obtain the reconstructed at-

tractor. For example, suppose that the trajectory ξ(t) is periodic with a period
T . The mapping Φ is not embedding when the delay time is a multiple of T
because all the points of Φ(ξ(t)) falls on the diagonal set.

Several criteria have been proposed to select the delay time. The brief re-
views of the mutual information and the method of Perea and Harer are given.
The following paragraphs in this section are based on the paper (Tsuji and
Aihara, 2019a).

Fraser and Swinney (1986) proposed the method that uses the mutual in-
formation to determine the optimal delay. The first minimum of the mutual
information between x(t) and x(t+a) is chosen when a increases from 0. Then,
x(t) and x(t + a) are the most independent with respect to a. Such x(t) and
x(t + a) are well distinguishable and expand the shape of the reconstructed
attractor. Choosing a minimum of the mutual information avoids redundancy.
The first minimum is selected to avoid irrelevance.

The mutual information between x(t) and x(t+ a) is defined as follows. Let
S be the set of the values of x(t), and Q be the set of the values of x(t + a).
Then, the product of S and Q is defined as the set of pairs (x(t), x(t+ a)). The
probability distribution of S, Q, and (S,Q) is denoted by PS , PQ, and PSQ,
respectively. Then, the mutual information of S and Q is defined as

I(S;Q) =

∫
PSQ(s, q) log

(
PSQ(s, q)

PS(s)PQ(q)

)
dsdq. (2.2.4)
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Perea and Harer (2015) analyzed the behavior of the circles embedded in the
delay-coordinate space. Their aim was to detect periodic signals from time series
data. They assumed that the periodic signals can be expanded into Fourier
series. Before analyzing such periodic signals they mapped a circle into the
delay-coordinate space for simplicity.

They found that the embedded circle is roundest when the delay satisfies
an = T/2. The embedded circle becomes an ellipse in the delay-coordinate
space. In their study, “roundest” implies that the major axis and the minor
axis of the ellipse have the same length.

It should be noted that when the embedded circle is “roundest”, it has the
maximum width.

The mutual information method does not appear to be suitable for expand-
ing reconstructed attractors. It does not directly imply the expansion of the
reconstructed space although the values of x(t) and x(t+ a) may not be corre-
lated.

The problem is that the delay determined by mutual information does not
depend on the embedding dimension. Essentially, this method is suitable only
for the case where the embedding dimension is two, because it only calculates
the mutual information between x(t) and x(t+ a).

Some readers may wonder if the mutual information is extended to three or
more random variables. The extensions can be defined (McGill, 1954; Baudot et
al., 2019), but they will not be practical. In order to calculate mutual informa-
tion, we need to estimate joint probabilities from samples. Because the number
of the samples is small, it is difficult to estimate joint probabilities. Careful
treatment for the estimation is required to calculate mutual information with a
sufficient precision. Fraser and Swinney (1986) adopted varying the size of bins
for estimating the mutual information of two random variables. The estimation
of mutual information of three or more variables will be more difficult.

The criterion suggested by Perea and Harer can be used only for signals
of a certain class. It is restricted to periodic signals that can be expanded in
Fourier series. The simplest example of such signals is a sine wave. It is not
known whether this criterion can be applied to arbitrary periodic or chaotically
periodic signals.

2.3 Bézier Curve and Its Fitting
In the second work of my research, Bézier curves are used to approximate con-
tinuous curves. A Bézier curve of degree r is a polynomial of degree r. It is
a superposition of the Bernstein polynomials and their coefficients are called
control points. The control points are in an Euclidean space and the Bézier
curve are in the Euclidean space. The shape of a Bézier curve is determined by
the control points.

I adopted Bézier curves to extend the method proposed in Chapter 4. It is
easy to change the model complexity by increasing or decreasing the degree. It
is also easy to design a method to connect Bézeir curves smoothly because the
derivative of a Bézier curve is also a Bézier curve.

The control points of a Bézier curve are often given by hand in several areas
such as computer graphics. In my work, however, a Bézier curve is fitted to
sampled points and the control points have to be calculated with an optimization
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method. The least squares method is adpoted to fit a Bézier curve. Several
researchers have proposed the methods to fit a Bézier curve (Shao and Zhou,
1996; Pastva, 1998), but I derived the normal equation by myself.

First the Bernstein polynomials and Bézier curves are introduced.

Definition 2.3.1 (bernstein polynomials). The Bernstein polynomials of degree
r are defined as

bq,r(t) =

(
r

q

)
tq(1− t)r−q (2.3.1)

for q = 0, . . . , r, where t is a real number and
(
r
q

)
denotes the binomial coefficient.

Definition 2.3.2 (Bézier curve). A Bézier curve of degree r is defined as

β(t) =

r∑
q=0

bq,r(t)pq (2.3.2)

for 0 ≤ t ≤ 1, where p0, . . . ,pr ∈ Rd are the control points and d is the dimension
of an Euclidean space.

It is clear that a Bézier curve starts from β(0) = p0 and ends at β(1) = pr.
Second the loss function is defined for the least squares method.

Definition 2.3.3 (loss function). The loss function of a Bézier curve of degree
r is defined as

L(p0,p1, . . . ,pr) =
1

2

n∑
i=1

‖β(ti)− xi‖2, (2.3.3)

where {(ti,xi) | ti ∈ [0, 1], xi ∈ Rd}ni=1 is a training data.

For simplicity, the loss function is separated into each component of the
coordinates. Let v(k) denote the k-th component of a vector v. In this notation,
the vector pq is written as

pq =


p
(1)
q

...
p
(d)
q


and the vector xi is written as

xi =


x
(1)
i
...

x
(d)
i

 .

Because

β(ti)− xi =


∑r

q=0 bq,r(ti)p
(1)
q − x

(1)
i

...∑r
q=0 bq,r(ti)p

(d)
q − x

(d)
i

 , (2.3.4)
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the loss function is developed as follows:

L(p1, . . . ,pr) =
1

2

n∑
i=1

∥∥∥∥∥
r∑

q=0

bq,r(ti)pq − xi

∥∥∥∥∥
2

(2.3.5)

=
1

2

n∑
i=1

d∑
k=1

(
r∑

q=0

bq,r(ti)p
(k)
q − x

(k)
i

)2

. (2.3.6)

By letting L(k) = 1
2

∑n
i=1

(∑r
q=0 bq,r(ti)p

(k)
q − x

(k)
i

)2
, we obtain the equa-

tion

L =

d∑
k=1

L(k). (2.3.7)

To calculate the derivative of L(k), the component-wise loss function is writ-
ten with vectors and a matrix. Define an (r + 1)-by-n matrix

Br(t) =

 b0,r(t1) · · · br,r(t1)
... . . . ...

b0,r(tn) · · · br,r(tn)

 , (2.3.8)

where t = (t1, . . . , tn)
⊤, and define an (r + 1)-vector and an n-vector

p(k) =


p
(k)
0
...

p
(k)
r

 , x(k) =


x
(k)
1
...

x
(k)
n

 (2.3.9)

respectively.
Hence L(k) can be written as

L(k) =
1

2

∥∥∥Br(t)p
(k) − x(k)

∥∥∥2 . (2.3.10)

Since L(k) is the function of p(k), the derivative is

∂L(k)

∂p(k)
= Br(t)

⊤Br(t)p
(k) −Br(t)

⊤x(k). (2.3.11)

By solving the equation ∂L(k)/∂p(k) = 0 for each k, the control points of
the fitted Bézier curve are obtained.
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Chapter 3

Attractor Reconstruction
and Persistent Homology

It is interesting to compute the homology of an orbit of a dynamical system. A
dynamical system may produce orbits whose shapes are different from each other
depending on the parameters. Different systems also produce orbits of different
shapes. Chaotic systems such as the Lorenz system have an orbit which stays
in a certain set. Such orbit is called an attractor. A chaotic attractor has a
strange shape. Those attractors drived me to compute their homology.

Those attractors are obtained by numerical integration; we are not able
to compute their homology groups by hand, and therefore we have to rely on
a numerical method of the computation of the homology groups. Persistent
homology is a method to compute the homology groups of a shape sampled
in a discrete manner. Persistent homology can compute the homology of the
attractors developed by numerical integration since the data that we obtain is
sampled in discrete time.

It is needed to find an application of the computation of the homology of
attractors; it was fortune that several researchers have already invented the
applications; such applications compute the persistent homology of time series
data mapped into the delay-coordinates and then use the persistent homology
as feature data of machine learning algorithm. Emrani, Gentimis, and Krim
(2014a); Emrani, Chintakunta, and Krim (2014b) proposed a periodicity de-
tection method using delay-coordinates and persistent homology. Perea and
Harer (2015) analyzed the relation between the time delay and the period of
the signal. Pereira and de Mello (2015) proposed a time series clustering method
using persistent homology. Garland, Bradley, and Meiss (2016) observed the
persistent homology of the witness complex of the reconstructed Lorenz attrac-
tor. Venkataraman, Ramamurthy, and Turaga (2016b) compared the method
of delay-coordinates and persistent homology with non-topological methods.
Seversky, Davis, and Berger (2016) experimented on the time series clustering
method using delay-coordinates and persistent homology for several data sets
and they compared three metrics of persistence diagrams: the scale space kernel,
the bottleneck distance, and the Wasserstein distance. Umeda (2017) proposed
the Betti sequence, which is a descriptor of persistence homology, to use the
convolutional neural networks.
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As explained in Section 2.2, the delay-coordinates maps the observed time
series into a higher dimensional Euclidean space. The first component of the
delay-coordinates is a value of the observed data at some time. The second
component is that at the time shifted before. The shift of the time is called the
delay time. The components after the second is put in the same manner.

The choice of the delay time is important to reconstruct the orbit or the tra-
jectory of a dynamical system. An unsuitable choice of the delay time causes re-
dundancy or irrelevance (Casdagli, Eubank, Farmer, and Gibson, 1991). Redun-
dancy is the phenomenon that a trajectory mapped into the delay-coordinates
concentrates around the diagonal set. All the trajectory suffer from redundancy
if the delay time is overly small. An overly small delay time makes the values of
the components of the delay-coordinates near to each other. Irrelevance is the
phenomenon that a reconstructed chaotic attractor has a shape more complicate
than the original shape. It occurs when the delay time is overly large.

Desirable is a delay time which does not cause both redundancy and irrel-
evance. I regard that the minimum delay that maximize the hole width of a
reconstructed trajectory as optimal. The trajectories with periodicity or chaotic
periodicity are considered. The optimal delay avoids redundancy since the hole
of the trajectory is widened and it avoids irrelevance since the smallest of the
such delays is chosen. The proposed index for choosing the delay time is named
the most significant death value, which is abbreviated to MSDV. It is based on
the persistent homology of the trajectory mapped into the delay-coordinates.

Section 3.1 gives the explanation of the proposed criterion and its brief anal-
ysis. Section 3.2 describes the materials and the procedure of the experiments.
Section 3.3 shows the results of the experiments. Section 3.4 discuss the results
of the experiments. Chapter 5 draws a conclusion.

The contents presented in Section 3.1, Section 3.2, Section 3.3, Section 3.4,
and Chapter 5 are excerpted from (Tsuji and Aihara, 2019a), which appeared in
the journal Nonlinear Theory and Its Applications, volume 10, number 1, pages
74-89. The paragraphs and the figures below in this chapter is reused from
(Tsuji and Aihara, 2019a) under the permission of the Institute of Electronics,
Information and Communication Engineers.

3.1 Proposed Criterion
Perea and Harer (2015) combined delay-coordinates and persistent homology in
order to recognize the given time series as periodic as summarized below. They
introduced the maximum persistence as an index of periodicity. It is defined as

mp(A) = max
x∈PH1(A)

pers(x), (3.1.1)

where A is the reconstructed attractor and pers(x) is the persistence of the
homology generator x.

They supposed that the time series data can be written as

x(t) = cos(Lt), (3.1.2)

and embedded this into the delay coordinate space of dimension n with the delay
a. They obtained an ellipse in the delay coordinate space. They investigated
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when the delay makes the ellipse “roundest”. The semi-major axis and the semi-
minor axis of this ellipse can be calculated by hand. The thought was that the
longer the semi-minor axis the rounder the ellipse. They found that the delay
that makes the ellipse “roundest” is given by

a =
1

n

2π

L
. (3.1.3)

Moreover, they investigated the delay coordinate embedding when the time
series data can be written as

x(t) =

N∑
k=0

(ak cos kt+ bk sin kt). (3.1.4)

It means that the time series data are represented by the partial sum of the
Fourier series. They analyzed the condition on the dimension of embedding and
they obtained the following inequality:

n > 2N. (3.1.5)

There are concerns on the analysis of Perea and Harer. How large N should
we choose? Furthurmore, the optimal delay is different for each higher harmon-
ics. This can be an obstacle for choosing the delay.

Let us see the frequency spectrum of some real data. Figure 3.1a shows the
signal of the Japanese vowel /a/ and Figure 3.1b shows the FFT spectrum of
the Japanese vowel /a/. Even if we count the number of prominent harmonics
we should set N = 30.

Figure 3.2b shows that the FFT spectrum of the limit cycle of van der Pol
equations, whose signal is shown in Figure 3.2a, has a lot of higher harmonics.
Such data require large N and it makes us to face the difficulty to choose the
optimal delay because there are many harmonics. If we take the peaks whose
amplitude is higher than −40 dB, that is 1% of the maximum amplitude, N
has to be set to 20. It is much larger than the delay time actually needed to
reconstruct the limit cycle. Another analysis of delay coordinate embedding for
this problem is given later.

In addition, the maximum persistence is slightly smaller than the width of
the hole because the birth time of the homology generator is not zero since the
points in the data are apart from each other. Let us propose another index to
measure the periodicity of a signal from the point of view of the hole width.
The most significant death value MSDV(A) is defined as the death value of a,
where a ∈ PH1(A) and pers(a) = maxc∈PH1(A) pers(c).

We evaluate the width of the hole of the reconstructed attractor under some
assumptions, without Fourier series. Consider a function x : R → R. Let x(t)
denote the value of x at t. We assume that the function x is continuous and has
the period of T . Without loss of generality, we can assume that x(0) = x(T ) = 0.
We also assume that x(T/2) = 0 holds and x(t) > 0 for 0 < t < T/2 and x(t) < 0
for T/2 < t < T hold.

We consider the following set:

A = {x(t) | t ∈ I, I ⊂ R}, (3.1.6)
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where I is an interval. We embed this set into the delay coordinate space of
dimension n with delay a. Let ya(t) be the vectors of the embedded set of A:

ya(t) = (x(t), x(t+ a), . . . , x(t+ (n− 1)a)). (3.1.7)

Let Ã be the set of ya(t): Ã = {ya(t) | t ∈ I}. The set Ã becomes a closed curve
because the function x is periodic if we choose the length of I that is sufficiently
larger than the value of T .

Let wa(Ã) denote the hole width of Ã. Intuitively, as follows the minimum
of the distance between the origin and the point ya(t) is smaller than the hole
width:

min
t
‖ya(t)‖ ≤ wa(Ã). (3.1.8)

Let ξ be a trigonometric function with the period of T :

ξ(t) = C sin
(
2π

T
t

)
, (3.1.9)

where C is the constant that satisfies |ξ(t)| ≤ |x(t)| for all t. We embed ξ(t)
into the delay-coordinate space:

ηa(t) = (ξ(t), ξ(t+ a), . . . , ξ(t+ (n− 1)a)). (3.1.10)

Then we obtain the following inequalities:

min
t
‖ηa(t)‖ ≤ min

t
‖ya(t)‖ ≤ wa(Ã). (3.1.11)

Furthermore, we calculate the first term of the equation above and get the
following inequalities:

C

(
n

2
− 1

2

√
1− cos(4anπ/T )
1− cos(4aπ/T )

)
≤ min

t
‖ya(t)‖ ≤ wa(Ã). (3.1.12)

Although we cannot know whether wa(Ã) attains the maximum when ηa(t)
attains the maximum with varying the value of a, at least the value of wa(Ã)
may be sufficient large and it is larger than maxa mint ‖ηa(t)‖. The first term
of Equation 3.1.12 attains the maximum when a = 1

n
T
2 holds and then we get

the following inequalities:

C
n

2
≤ min

t
‖ya(t)‖ ≤ wa(Ã). (3.1.13)

Further we consider whether we can apply the analysis above to several time
series data. We can apply the analysis to the van der Pol system because we can
see that the data in Figure 3.2a satisfies the assumption. Figure 3.3a shows the
x-coordinate of the Rössler attractor. Though the signal is not strictly periodic,
we are interested in whether our analysis works in this case. Figure 3.4a shows
the x-coordinate of the Lorenz attractor. The Lorenz attractor has two holes
and each hole corresponds to the positive value and negative value of Figure 3.4a
respectively. Although the Lorenz attractor is not strictly periodic but has two
holes, our analysis may be able to roughly applied to each hole. But we cannot
choose the period of the signal from the spectrum the Lorenz attractor shown
in Figure 3.4b. Thus, instead of the spectrum, we use the median intervals
of crossing some positive and negative values. Here we choosed 7.5 and -7.5
respectively.

66



3.2 Methods
Numerical experiments were conducted to test the proposed criterion. Then, the
results were compared with those obtained by the mutual information method
and the criterion of Perea and Harer.

3.2.1 Materials
The harmonic oscillator, the van der Pol system, the Rössler system, and the
speech signal of a Japanese vowel /a/ were used in the experiment. The defini-
tions of these systems as well as the reason for their choice will now be provided.

The harmonic oscillator was chosen for investigating the relation between
the proposed criterion and the criterion of Perea and Harer. The harmonic
oscillator is defined as {

ẋ = y,
ẏ = −x, (3.2.1)

where the period of the solution is 628 steps.
The van der Pol system (Strogatz, 2014: p. 200) was chosen as an example

of a periodic signal with high harmonics that can be expressed by Fourier series.
The van der Pol system is defined as{

ẋ = y,
ẏ = µ(1− x2)y − x,

(3.2.2)

where µ = 10, and the period of the solution is 1908 steps.
The Rössler system (Rössler, 1976) was chosen as an example of a chaotically

periodic signal. The Rössler system is defined as ẋ = −y − z,
ẏ = x+ ay,
ż = b+ z(x− c),

(3.2.3)

where a = 0.2, b = 0.2, and c = 5.7. The solution converges to a strange
attractor. The inverse of the strongest frequency of the FFT spectrum was used
as the characteristic period, as the trajectory of the Rössler attractor has no
strict period; however, it is nearly periodic. The characteristic period is 625
steps.

The Lorenz system (Lorenz, 1963) was chosen as another example of a chaot-
ically periodic signal. The Lorenz system is defined as ẋ = s(y − z),

ẏ = x(r − z)− y,
ż = xy − bz,

(3.2.4)

where r = 28, s = 10, and c = 8/3. The solution converges to a strange
attractor. The median of the interval that the x-coordinate value crosses 7.5
and that that value crosses -7.5 was used as the half of the characteristic period.
The characteristic period is 58 steps.

The speech signal was chosen to test the application of the proposed criterion
to a real world signal. The signal for the Japanese vowel /a/, spoken by a
female speaker, was used. The data were obtained from the Vowel Database:
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Five Japanese Vowels of Males, Females, and Children Along with Relevant
Physical Data (JVPD) (Ohyama, Deguchi, and Kasuya, 2011).This database is
maintained by the Speech Resources Consortium of the National Institute for
Informatics. The signal for Japanese vowel /a/ is shown in Figure 3.1a, and its
FFT spectrum is shown in Figure 3.1b. The period of the signal is 170 steps.

The solution of each dynamical system was calculated by the fourth order
Runge-Kutta method with step size 0.01. It was evolved for sufficiently large
time. The first 1000 samples of the solutions were dropped because the solutions
that are not in the attractor should be discarded.

The first projection map, that is the map taking the first coordinate of the
signal, was used as an observation function. The resulting time series data were
used as input to the experiment.

3.2.2 Procedure
Each input time series data were first embedded into a delay-coordinate space to
obtain a reconstructed attractor. The dimension of the delay-coordinate spaces
ranged from 2 to 10. The delay time varied from one step to the step that
was equal to half the period of the input signal. The first 5000 points of each
attractor were used.

Subsequently, the first persistent homology of each reconstructed attractor
was computed. The Ripser (Bauer, 2019) software application was used for
computation. The computer that was used had four Intel Xeon E5-4640 CPUs
(2.40GHz, 8 cores) and 1TB RAM. The computation time for one attractor
ranged from a few seconds to a day.

Finally, the graph of the most significant death value versus the delay was
plotted for each embedding dimension of each reconstructed attractor. The
most significant death value was extracted from the first persistent homology of
each reconstructed attractor. The delay time was normalized by the period or
the characteristic period.

3.3 Results
This section presents the results of the numerical experiments.

Figure 3.5 shows the most significant death values of the harmonic oscillator.
The first peaks are achieved at a = 1

n
T
2 . This result coincides with the prediction

of Perea and Harer.
Figure 3.6 shows the most significant death values of the limit cycle of the

van der Pol system with parameter µ = 10. It is clear that the first peaks are
achieved at a = 1

n
T
2 except for the case of embedding dimension three, where

the point around a = 1
3
T
2 is flattened; however, this point can be considered the

maximum.
Figure 3.7 shows the most significant death values of the Rössler attractor.

The ravine in the graphs is realized at a point slightly smaller than 1/2. At the
points a = 1

n
T
2 , the graphs exhibit saddle points instead of peaks. The graphs

increase after the point a = 1
n

T
2 .

Figure 3.8 shows the most significant death values of the Lorenz attractor.
There is no ravine such as in the case of the Rössler attractor. At the points
a = 1

n
T
2 , each value of the graphs is near to the first peak.
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Figure 3.1: The signal and its FFT spectrum of the Japanese vowel /a/.

Figure 3.9 shows the most significant death values of the Japanese vowel
/a/. The graphs have several ravines between a/T = 0 and a/T = 0.5. The
points where a = 1

n
T
2 do not correspond to peaks. In fact, they fall near the

minimum in the case n = 3.

3.4 Discussion
The relationship between the proposed criterion and that of Perea and Harer is
herein discussed in light of the experimental results.

3.4.1 Dynamical Systems
The most significant death value yields results that coincide with those of Perea
and Harer for the harmonic oscillator. Figure 3.5 clearly shows that the first
peaks are attained at a = 1

n
T
2 . This fact implies that the word “roundest” in

Perea and Harer’s study is equivalent to the maximum of the width of a circle.
The criterion suggested by Perea and Harer is appropriate for the limit cycle

of the van der Pol system. This system is an example of a nonlinear periodic
signal. As the period of zero-crossing points is half the period of the limit cycle,
the given signal can be made to correspond to a sine wave with the period of
the given signal. The absolute value of this sine wave is bounded by that of the
given signal.

The reconstructed attractor does not always recover its original shape when
the delay time maximizes the most significant death value. Figure 3.10 shows
a reconstructed trajectory of the harmonic oscillator embedded in the delay-
coordinate space with delay equal to 63 and embedding dimension equal to five,
which makes the equation a = 1

n
T
2 hold. This reconstructed trajectory recovers

its original shape. By contrast, Figure 3.11 shows a reconstructed limit cycle
of the van der Pol system embedded in the delay-coordinate space with delay
equal to 191 and embedding dimension equal to five, which makes the equation
a = 1

n
T
2 hold. This reconstructed trajectory does not recover its original shape.

We have to explain why the reconstructed trajectory of the harmonic oscillator
recovers its original shape but that of the limit cycle of the van der Pol system
does not. The harmonic oscillator is a special case. It can recovers its original
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Figure 3.2: The x-coordinate and its FFT spectrum of the limit cycle of the
van der Pol equation (µ = 10).

shape because the reconstructed ellipse that has the widest hole width is the
circle.

For the Rössler attractor, it should be considered whether to use or not
the criterion a = 1

n
T
2 . In the results, the first peak of the graphs turns into

a saddle. The maximum of the most significant death value is attained for
larger delay time. Considering irrelevance, excessively large delay time results
in unsatisfactory reconstruction. The reconstructed attractors are checked for
irrelevance.

Two figures are examined to compare the delay satisfying the criterion with
the delay attaining the maximum. Figure 3.12 shows a plot of the reconstructed
Rössler attractor with embedding dimension equal to five and delay equal to 62.
This delay time satisfies the equation a = 1

n
T
2 . Figure 3.13 shows a plot of

the reconstructed Rössler attractor with embedding dimension equal to five and
delay equal to 198. This delay time attains the maximum of the graph shown
in Figure 3.7. It can be seen that Figure 3.12 shows the reconstructed attractor
whose shape resembles that of the original attractor. The trajectory of the
reconstructed attractor shown in Figure 3.13 is considerably tangled. Thus, it
can be concluded that the delay satisfying the criterion a = 1

n
T
2 is preferable to

the larger delay. This is natural because the aim was to maximize the hole width,
and the original shape cannot be obtained from the observed signals. The reason
why the MSDV of the Rössler attractor became large when the delay was large
may be the irrelevance. The irrelevance deformed the reconstructed attractor
and the hole width may be enlarged.

For the Lorenz attractor, the criterion a = 1
n

T
2 is almostly appropriate. The
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Figure 3.3: The x-coordinate and its FFT spectrum of the Rössler attractor.

most significant values where the criterion holds are slightly smaller than the
peaks in Figure 3.8. This may be because the crossing intervals vary around
the characteristic period. Moreover, the MSDVs get greater where the delay
has greater values, except the n = 2 case. We check what happens in the case
of larger delays. Figure 3.16 shows a plot of the reconstructed Lorenz attractor
with embedding dimension equal to five and delay equal to 6. This delay time
satisfies the equation a = 1

n
T
2 . Figure 3.17 shows the reconstructed attractor

where the delay attains the maximum of the MSDV of the n = 5 case. The graph
of the MSDV is shown in Figure 3.8 and this delay is 22. The shape shown in
Figure 3.16 resembles the original attractor, but the reconstructed attractor
shown in Figure 3.17 is extremely deformed. Thus, it can be concluded that
the delay satisfying the criterion a = 1

n
T
2 is also preferable. In the case of the

Lorenz attractor, the third hole appears when the delay is large. This is seen
in Figure 3.17. This third hole makes the MSDV higher. This may be caused
because the number of the sampled points is small. The third hole will be filled
up with the infinite length of samples.

3.4.2 Japanese Vowel /a/
The graph of the most significant death values of the signal for the Japanese
vowel /a/ has several ravines, as shown in Figure 3.9. This is due to the fact
that the human voice resonates in the mouth and the speech signal has higher
harmonics. The eighth harmonic contributes to the first ravine in the graph.
As the speech signal has several harmonics, it is difficult to determine a single
period T for the criterion of Perea and Harer. By contrast, the most significant
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Figure 3.4: The x-coordinate and its FFT spectrum of the Lorenz attractor.

death value can determine the delay time.
An example of reconstruction is shown in Figure 3.18, and its persistence

diagram is shown in Figure 3.19. The embedding dimension is 10 and the delay
is 12. This delay attains the maximum of the most significant death value in
Figure 3.9. It cannot be determined whether the reconstruction is satisfactory
or not because the original is unknown. The persistence diagram suggests that
the reconstructed attractor has one large hole.

3.4.3 Comparison with Mutual Information
The most significant death value is now compared with mutual information.
Figure 3.20a shows the plot of mutual information versus delay for the harmonic
oscillator. The first local minimum is marked on the graph. If the first local
minimum is chosen as the delay, the reconstructed attractor collapses owing to
redundancy. Similarly, the delay attaining the first local minimum of the mutual
information is small for the limit cycle of the van der Pol system. Figure 3.20b
shows the plot of the mutual information for this system.

However, the global minimum of the mutual information of both systems is
about 0.25T and this delay is suitable for the delay coordinate embedding where
n = 2. Thus, it can be suggested that mutual information is not necessarily
suitable for determining the delay of periodic signals in the cases where the
embedding dimension is large.

As seen in Figure 3.20c, the mutual information suggests that the optimal
delay is approximately 0.2T . Figure 3.7 shows that this delay may be suitable
for attractor reconstruction for embedding dimension equal to two or three.
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Figure 3.6: Most significant death
values of the van der Pol system with
µ = 10. The horizontal axis repre-
sents the delay divided by the period
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(Copyright©2019 IEICE, (Tsuji and
Aihara, 2019a: Figure 10))

However, this delay may cause irrelevance for embedding dimension greater
than three. We show the reconstructed attractors in higher dimension and with
the delay 0.2T . Figure 3.14 shows the reconstructed attractor of embedding
dimension 5 with the delay 125, and Figure 3.15 shows the reconstructed at-
tractor of embedding dimension 10 with the delay 125. This delay equals to
0.2T . Altough in the five dimensional case the reconstructed attractor seems to
be formed well, in the ten dimensional case the reconstructed attractor tangles
and there occurs the irrelevance.

Figure 3.20d shows the mutual information of the Lorenz attractor. The
first local minimum is about 0.34T . This value is too large even if the embed-
ding dimension is two. For these two systems, the mutual information cannot
estimate the appropriate delay for delay coordinate embeddings.

It can be seen in Figure 3.20e that the optimal delay for the Japanese vowel
/a/, as determined by the mutual information, is approximately 0.75T . It is
can be said that this delay is appropriate for attractor reconstruction, because
the most significant death value is sufficiently large in Figure 3.9.

Considering the discussion above, mutual information does not yield con-
sistent results. The delay determined by mutual information is satisfactory for
some systems and unsatisfactory for others. Although the mutual information
is not so good, the maximum of the most significant death value yields too large
delay for chaotic systems as seen in previous sections.
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Figure 3.10: A reconstructed trajectory of the harmonic oscillator with delay
time a = 62 and embedding dimension n = 5 . The axes of this plot represent
principal components and the color scale indicates the time. This delay was
chosen to satisfy the equation an = T/2. (Copyright©2019 IEICE, (Tsuji and
Aihara, 2019a: Figure 14))

Figure 3.11: A reconstructed limit cycle of the van der Pol system with delay
time a = 191 and embedding dimension n = 5. The axes of this plot represent
principal components and the color scale indicates the time. This delay was
chosen to satisfy the equation a = T/2. (Copyright©2019 IEICE, (Tsuji and
Aihara, 2019a: Figure 15))

Figure 3.12: A reconstructed Rössler attractor with delay time a = 62 and em-
bedding dimension n = 5. The axes of this plot represent principal components
and the color scale indicates the time. This delay was chosen to satisfy the
equation an = T/2. (Copyright©2019 IEICE, (Tsuji and Aihara, 2019a: Figure
16))
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Figure 3.13: A reconstructed Rössler attractor with delay time a = 198 and em-
bedding dimension n = 5. The axes of this plot represent principal components
and the color scale indicates the time. This delay attains the first peak of the
graph. (Copyright©2019 IEICE, (Tsuji and Aihara, 2019a: Figure 17))

Figure 3.14: A reconstructed Rössler attractor with delay time a = 125 and
embedding dimension equal n = 5. The axes of this plot represent principal
components and the color scale indicates the time. (Copyright©2019 IEICE,
(Tsuji and Aihara, 2019a: Figure 18))

Figure 3.15: A reconstructed Rössler attractor with delay time a = 125 and
embedding dimension n = 10. The axes of this plot represent principal com-
ponents and the color scale indicates the time. (Copyright©2019 IEICE, (Tsuji
and Aihara, 2019a: Figure 19))
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Figure 3.16: A reconstructed Lorenz attractor with delay time a = 6 and em-
bedding dimension n = 5. The axes of this plot represent principal components
and the color scale indicates the time. This delay was chosen to satisfy the
equation an = T/2. (Copyright©2019 IEICE, (Tsuji and Aihara, 2019a: Figure
20))

Figure 3.17: A reconstructed Lorenz attractor with delay time a = 22 and em-
bedding dimension n = 5. The axes of this plot represent principal components
and the color scale indicates the time. This delay was chosen to the delay at-
tains the maximum of the MSDV. (Copyright©2019 IEICE, (Tsuji and Aihara,
2019a: Figure 21))

Figure 3.18: A reconstructed attractor of Japanese vowel /a/. The delay time
was a = 12 and the embedding dimension was n = 10. The axes of this plot
represent principal components and the color scale indicates the time. This delay
was chosen to maximize the most significant death value. (Copyright©2019
IEICE, (Tsuji and Aihara, 2019a: Figure 22))
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Figure 3.19: First persistence diagram of a reconstructed attractor of the
Japanese vowel /a/. The delay time was a = 12 and the embedding dimen-
sion was n = 10. This delay was chosen to maximize the most significant death
value. The horizontal axis represents the birth filtration value and the verti-
cal axis the death filtration value. (Copyright©2019 IEICE, (Tsuji and Aihara,
2019a: Figure 23))
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Figure 3.20: Plots of mutual information versus delay. The horizontal axis
represents the delay normalized by the period or the characteristic period and
the vertical axis the mutual information between x(t) and x(t+a). A “+” mark
represents the first minimum on the graph.
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Chapter 4

Vietoris-Rips Complex of
Line Segments

While I was working on the study presented in Chapter 3, I suffered from the
long computational time of persistent homology. For example, the input of
five thousand points took one or two days to compute its persistent homology.
Moreover, it required five or six hundred gigabytes of memory. Because the
study presented in Chapter 3 needed computing the persistent homology of
hundreds of data sets with varying the delay of delay-coordinates, it took me
months to compute the persistent homology of all the data sets. It is possible
to avoid this obstacle by subsampling or using the witness complex, but such
methods sacrifice the precision of the persistent homology.

A simple way to make the computational time of persistent homology faster
is to reduce the number of points from which the Vietoris-Rips complex is con-
structed. If the input is limited to continuous curves, it is possible to reduce
the number of points. Line segments which approximate to a curve can rep-
resent the input points. The input points are assumed to be sampled from a
continuous curve.

The proposed method that reduces the computational time of the persistent
homology of a continuous curve has the following procedure. First cubic Bézier
curves are fitted to the given curve. Second the fitted Bézier curves are divided
into line segments. These line segments approximate to the given curve. Third
the Vietoris-Rips complex is constructed from the line segments. It is done
by the manner similar to the Vietoris-Rips complex constructed from points.
Section 4.1 gives the explanation of the proposed method in detail.

Section 4.2 gives the method, the results and the discussion of the experi-
ment. First the expriment measures the performance of the proposed method
and compared it with the ordinary method. The ordinary method means the
Vietoris-Rips complex from points. Second the experiment observed the bot-
tleneck distance between the clean input and the noised input. The proposed
method was compared with the ordinary method. Third the experiment com-
pared the performance and the precision of the proposed method with those of
the witness complex. The conclusion is presented in Chapter 5.

The study presented in Section 4.1, Section 4.2, and Chapter 5 is based on
(Tsuji and Aihara, 2019b), which appeared in the 2019 IEEE International Con-
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ference on Acoustics, Speech and Signal Processing The sentences, the figures,
and the tables were reused from (Tsuji and Aihara, 2019b) under the permission
of Institute of Electrical and Electronics Engineers.

4.1 Proposed Methods
This section describes the proposed method. The first description is of the
method to acquire the line segments approximating to the given curve. The sec-
ond description is of the definition and the construction method of the Vietoris-
Rips complex of line segments.

4.1.1 Getting Appproximating Line Segments
The input curve is given as a set of the sampling times and the sampled points:
{(ti,xi) | ti ∈ R, xi ∈ Rd}Ni=1. Suppose that the samples are contiguous, which
means that the i-th sample (ti,xi) was sampled immediately after the (i − 1)-
th sample (ti−1,xi−1). The samples are separated into groups which contain
around l points, where l is an integer.

A cubic Bézier curve is fitted to a group of the samples. The least squares
method explained in Section 2.3 fits cubic Bézier curves.

The fitted Bézier curves are divided into line segments. A Bézier curve is
divided into r line segments, where r is the number of segments. The parameter
of a Bézier curve, which is a unit interval, is divided into r closed intervals of
the same length. Let [s0, s1], [s1, s2], . . . , [sr−1, sr] be the closed intervals where
si = i/r for i = 0, 1, . . . , r. The boundaries of the intervals are mapped onto the
Bézier curve. The mapped points are β(s0),β(s1), . . . ,β(sr), where β denotes
the Bézier curve. The mapped points are connected to the contiguous points:−−−−−−−−−→
β(si)β(si+1). The line segments

−−−−−−−→
β(s0)β(s1),

−−−−−−−→
β(s1)β(s2), . . . ,

−−−−−−−−−→
β(sr−1)β(sr) are

obtained from the Bézier curve.

4.1.2 Vietoris-Rips Complex of Line Segments
The line segments that approximate to the given curve have been obtained by
the procedure above. The Vietoris-Rips complex of line segments will be built.

The Vietoris-Rips complex of line segments is constructed in a way similar
to the Vietoris-Rips complex of points. The distacnes between line segments
are substituted for the distances between points.

Definition 4.1.1 (distance between line segments). Let −−→p0p1 and −−→q0q1 be line
segments. The distance between line segments is defined as

d(−−→p0p1,
−−→q0q1) = min

p∈−−→p0p1,q∈−−→q0q1
d(p, q). (4.1.1)

The distance between line segments is calculated by minimizing a function
f . Suppose that −−→p0p1 is parametrized as p(s) = (1 − s)p0 + sp1 and −−→q0q1 is
parametrized as q(t) = (1 − t)q0 + tq1. The function f : [0, 1] × [0, 1] → R is
defined as

f(s, t) = ‖p(s)− q(t)‖2, (4.1.2)
where ‖·‖ is the Euclidean norm. The minimum of the function f is the distance
between line segments.
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4.2 Results and Discussion
The proposed method was tested with a trajectory of an irrational flow on
2-torus and the Japanese vowel signal data. In the following experiments,
the Ripser (Bauer, 2019) was used for computing the persistent homology of
Vietoris-Rips complex and the computer used for experiments has 2.40GHz
Xeon E5-4640 and 1TiB of memory. The upper dimension of the persistent
homology was set to 2.

4.2.1 Irrational Flow on 2-torus
The irrational flow on 2-torus (Poincaré, 1885: Ch. XV) is defined as

du

dt
= αt mod 1,

dv

dt
= βt mod 1, (4.2.1)

where (u, v) ∈ [0, 1]× [0, 1] and the ratio α/β is irrational. It is known that the
solution of Equation (4.2.1) covers [0, 1] × [0, 1] densely after sufficiently long
time. In this experiment, the parameters were set to α = 1 and β =

√
2. Then

the trajectory of the irrational flow is mapped into 3-dimensional Euclidean
space. The mapping is defined as

x1 = R cosu+ r cosu cos v,
x2 = R sinu+ r sinu cos v,
x3 = r sin v,

(4.2.2)

where R and r are positive real values and they satisfy R > r. The parameters
were set to R = 2 and r = 1.

The trajectory was developped from t = 0 to t = 50π and it was sampled
in n = 2000, 3000 and 4000 points. Then cubic Bézier curves were fitted to
each series of sampled points; the number of points in each group was about 30.
Finally each fitted Bézier curve was divided into line segments. The number of
line segments was set to r = 3, 6 and 10.

The first experiment was performance comparation. The performance of
computing the persistent homology of the ordinary Vietoris-Rips complex was
compared with the performance of computing the persistent homology of the
Vietoris-Rips complex of line segments. The comparison of the computational
time is shown in Figure 4.1a and that of the computational space is shown in
Figure 4.1b.

Figure 4.1a shows the plot of computational time versus the number of points
of the trajectory. Figure 4.1b shows the plot of computational memory versus
the number of points of the trajectory. The order of time and space complexity
approximates to O(n3.25). Even the case of r = 10 requires about 45 times
shorter and 30 times smaller than the case of the ordinary Vietoris-Rips complex.
Because l ' 30 and r = 10 in this case, the number of points that constuct the
Vietoris-Rips complex was reduced to about 10/30 = 1/3. It is natural that the
computational time and memory were reduced to about (1/3)3.25 ' 35. The
cases of r = 3 and r = 6 require shorter time and smaller memory similarly.

The ordinary Vietoris-Rips complex required about 630 GiB of memory when
the number of points was 4000. This value is too large to use persistent homology
in practical use. However the proposed method with r = 3 and that with r = 6
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required less than 10 GiB of memory and less than 100 seconds of time. The
proposed method enables us to use persistent homology in practice.

Second the proposed method was applied to noisy data. The noisy data
was generated by adding 10% gaussian noise of the root mean squares of the
trajectory of the irrational flow. The number of the points in each group was
set to l ' 30. Each fitted Bézier curve was divided into r = 6 segments.

The bottleneck distance between the persistent homology of the ordinary
Vietoris-Rips complex of the original data and that of the Vietoris-Rips com-
plex of the segments fitted to the noisy data were calculated. The bottleneck
distance between that of the original data and that of the noisy data were also
calculated. To simplify the description, let Tn be the original torus, where n is
the number of sampled points. Let Nn be the noisy torus and Sn be the seg-
ments obtained by fitting. Paraphrasing the first two sentences, calculated were
W∞(Dgmq(Tn),Dgmq(Sn)) and W∞(Dgmq(Tn),Dgmq(Nn)) for q = 0, 1, 2 and
n = 2000, 3000, 4000. Let dsegment(q, n) be the former distance and dpoint(q, n)
the latter. The comparison of dsegment(q, n) with dpoint(q, n) is shown in Figure
4.2.

Figure 4.2 compares the distances dpoint(q, n) with dsegment(q, n). The graphs
in Figure 4.2 show the distances of q = 0, q = 1 and q = 2 from left to right.
The blank bars show the distances dpoint(q, n) and the hatched bars show the
distances dsegment(q, n). For every value of q and n, the distance dsegment(q, n)
is less than dpoint(q, n). It means that the proposed method has smoothing
effect and it can compute more precise persistent homology under the noisy
observation.

4.2.2 Japanese Vowels
The proposed method was also applied to the signals of Japanese vowels. The
data was obtained from the Vowel Database: Five Japanese Vowels of Males, Fe-
males and Children Along With Relevant Physical Data (Ohyama et al., 2011).
The chosen data was the utterance of 27-year-old female speaker. The utter-
ance was recorded in 44.1 kHz, 16 bits PCM format and contains the signals of
five Japanese vowels /a/, /e/, /i/, /o/ and /u/. The signals were rescaled to
range from -1 to 1. The signals of these vowels were embedded into the delay-
coordinate space of 10 dimension with delay of 10 steps. Then the 1100 steps,
almost equal to 125 milliseconds, of each embedded signal were extracted. Each
embedded signal was divided into the groups of l ' 10 points and a cubic Bézier
curve was fitted to each group of points, and then each Bézier curve was divided
into r = 2 segments. Therefore the number of the segments approximates to
220.

The witness complexes of the speech signals were also constructed for com-
parison in the manner explained in (de Silva and Carlsson, 2004: Section 2.4).
and their persistent homology was analyzed with the Ripser. The number of
the landmarks was 220 and they were chosen by the maxmin selection. The
results are shown in Table 4.1 and Table 4.2.

Table 4.1 shows the comparison between the ordinary method and the pro-
posed method applied to compute the persistent homology of the speech signals.
It also shows the comparison with the witness complex. The proposed method
and the witness complex were about 300 times faster than the ordinary method
and took 100 times smaller memory than it. Table 4.2 shows the bottleneck
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Figure 4.1: Comparison of the performance of the ordinary method and the
proposed method.

distance between the persistent homology computed with the ordinary method
and that with the proposed method. It also shows the comparison with the wit-
ness complex. The distances of the proposed method took small values except
the 1st persistent homology of the vowel /a/. The maximum of the filtration
value is

√
10 ' 3.16 because the space is the ten times product of [−1, 1]. These

distances took the value of 0.131 at most. This value is about 4% of the max-
imum filtration value. However, the distance of the 1st persistent homology of
the vowel /a/ was 0.644; this value is about 20% of the maximum filtration
value. The reason of this result may be the original data was noisy and the
noise was smoothed out but it cannot be proven. In contrast the distances of
the 1st persistent homology of the witness complex were much larger than the
proposed method.
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Figure 4.2: Bottleneck distance between the original data of 2-torus and the
noised data of that.The left-side blank bars show the distances between the
original and the ordinary Vietoris-Rips complex of the noised data.The right-
side hatched bars show the distances between the original and the Vietoris-Rips
complex of the segments fitted to the noised data ©2019 IEEE.
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Table 4.1: Performance comparison of computing the persistent homology of
speech signals ©2019 IEEE.

(a) Computational Time

Vowel Ordinary Proposed Witness
/a/ 290 sec < 1 sec < 1 sec
/e/ 312 sec < 1 sec < 1 sec
/i/ 268 sec < 1 sec < 1 sec
/o/ 291 sec < 1 sec < 1 sec
/u/ 277 sec < 1 sec < 1 sec

(b) Computational Memory

Vowel Ordinary Proposed Witness
/a/ 12.5 GiB 0.11 GiB 0.14 GiB
/e/ 11.5 GiB 0.09 GiB 0.09 GiB
/i/ 11.5 GiB 0.09 GiB 0.10 GiB
/o/ 11.5 GiB 0.09 GiB 0.09 GiB
/u/ 11.5 GiB 0.09 GiB 0.09 GiB

Table 4.2: The comparison of the bottleneck distances between the ordinary
method and the proposed method (left) and those between the ordinary method
and the witness complex (right) ©2019 IEEE.

Proposed Method Witness Complex
Vowel 0th 1st 2nd 0th 1st 2nd
/a/ 0.064 0.644 0.131 0.126 0.645 0.177
/e/ 0.029 0.032 0.047 0.026 0.217 0.038
/i/ 0.026 0.027 0.014 0.018 0.292 0.034
/o/ 0.021 0.068 0.011 0.022 0.279 0.069
/u/ 0.016 0.032 0.020 0.015 0.332 0.029
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Chapter 5

Conclusion

This chapter concludes the studies. The second and the third paragraphs present
the conlusion of the study of attractor reconstruction and persistent homology.
They are reused from (Tsuji and Aihara, 2019a). The fourth and the fifth
paragraphs present the conlusion of the study of the Vietoris-Rips complex of
line segments. The former paragraph is reused from (Tsuji and Aihara, 2019b).

The most significant death value can determine the delay that maximizes
the hole width of reconstructed attractors of several examples of periodic signals
shown in this paper. However, for chaotic signals, the maximum of the most
significant death value yields irrelevance. The criterion of Perea and Harer,
that the delay a satisfies a = 1

n
T
2 , is also good for the Rössler attractor and

the Lorenz attractor. The variable T is the period or a characteristic period of
the given signal. Nevertheless, the criterion of Perea and Harer is not suitable
for the signal of Japanese vowel /a/, which is periodic with harmonics. For
this signal, the maximum of the most significant death value yields good delay
for attractor reconstruction. Compared with the most significant death value,
the mutual information was found not good for attractor reconstruction. It
sometimes returns too small delay, and the delay is only suitable for too low-
dimensional embeddings.

Multiple delays may be suitable for practical applications, as the optimal
delay depends on the period of the signals, and the period cannot always be
assumed. The vineyards (Cohen-Steiner, Edelsbrunner, and Morozov, 2006),
which is a continuous set of persistence diagrams, may be useful for applica-
tions. However, there is the problem of the computational cost of the persistent
homology.

A method that makes computing the persistent homology of time series
data faster and smooths the observation noise out was proposed. The proposed
method enables practical use of the combination of persistent homology and
attractor reconstruction. Moreover, the proposed method brings noise robust-
ness to it. There is an issue whether the classification performance will be
improved with the proposed method. More experiments are necessary to show
the advantages.

In addition, the sophistication of the method is required. The fitted Bézier
curves are not continous in the present situation. The degrees of the Bézier
curves are fixed. It is better that the fitted Bézier curves are continuous and
the degrees are chosen automatically.
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