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Abstract

The growing importance of data utilization has resulted in its promotion; thus, acquiring
potential knowledge from data based on mathematical models is gaining attention. In
this study, we focus on non-stationary data for data utilization and aim to develop a tech-
nology to detect changes in the structure of a dataset based on a uniform standard. We
adopt the minimum description length (MDL) principle for the concept of uniform stan-
dard and propose algorithms based on the normalized maximum likelihood (NML) code
length. This code length achieves the minimum Shtarkov’s minimax risk and minimax
estimation optimality. First, we propose new indices for measuring the complexity of a
dataset using parametric and nonparametric models. In the parametric model, we pro-
pose structural entropy (SE), which indexes the uncertainty of the results when selecting
a model. In the nonparametric model, we propose kernel complexity (KC), which indexes
the concentration of data chunks. Next, we propose new methods for detecting change
points and their early warning signals using these indices. In the parametric model, we
propose an algorithm using SE as an index and another algorithm using sequential MDL
change statistics (SMCS) to express the degree of change. In the nonparametric model,
we propose an algorithm using KC as an index. Last, we analyze the efficiency of the
proposed indices (SE, SMCS, and KC) in detecting changes using synthetic and practical
datasets.
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Chapter 1

Introduction

1.1 Background
In recent years, data generated from human activities and data that can be acquired from
devices connected to the Internet have increased exponentially. Moreover, it has become
crucial for private and public sectors to effectively use collected data to acquire knowl-
edge, especially for the purposes of marketing, effect measurements, operational effi-
ciency, and so on. The widespread use of data can be attributed to the fact that many
types of data can be collected in real time from the web as well as from devices using
the Internet of Things (IoT) in various fields. Thus, the scope of data utilization has
broadened and various parties have analyzed data from different perspectives. However,
no unified methodology exists for acquiring knowledge hidden within data; in fact, data
analysis largely depends on the knowledge and experience of each party. Therefore, it is
very important to promote the utilization of all collected data based on appropriate mathe-
matical methodologies. Here, we focus on changes over time; the situation for which data
is generated changes day by day. Thus, it is crucial to automatically identify changes in a
situation and perceive early warning signals from the data for appropriate data utilization.

1.2 Motivation
In this thesis, we aim to detect structural changes of data and their early warning signals
in a time series. We assume that multidimensional data points exist at each point in time.
Thus, we assume that various types of information on the data points can be acquired at
each point in time. These situations are highly relevant in the case of actual data (for
actual applications such as marketing and sensor analyses). Fig. 1.1 shows an image of
data points at each time.

For example, consider the case where each data item indicates multidimensional con-
sumption data for a customer; each dimension of the data shows the consumption volume
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1. Introduction

Figure 1.1: Image of distribution change in time-series.

for a specific commodity. Data from several customers are generated every time. We
employ a mixture model to allow clustering of customers so that customers with similar
consumption patterns are grouped together. It is important to detect changes in the clus-
tering structures to understand customer behavior patterns in the market. Furthermore, it
is important detect early warning signals of structural changes (i.e., before the changes
actually appear). Accordingly, we will be able to predict changes in future market trends.

Assuming each data point is a sensor data point that can be acquired from a device,
each dimension can be regarded as a specific sensor result of the corresponding device. By
observing sensor data of these devices as a whole, it is possible to understand the overall
operation tendency of the device by grouping devices with similar operation patterns. By
detecting changes using early warning signals, information can be applied to business
data utilization such as performing maintenance before a device breaks down.

1.3 Research Concepts

In this paper, we consider a situation in which dataset Xt is observed at each time t, and
the distribution of the dataset gradually changes over time. Dataset Xt can be expressed
as Xt = xn = (x1, · · · ,xn)

⊤ ∈ Rn×m, which consists of n data points of dimension m.
We consider a situation where the distribution of this dataset gradually changes over time
and aim to detect the changes. We propose three methods for detecting changes and their
early warning signals.

We consider data chunks formed by the dataset at each time as a feature in this re-
search. By observing the way in which data chunks change, we can detect changes from
a macro viewpoint. In particular, the number of clusters can be considered to indicate
the characteristics of the clustering structure (structure of data chunks). In this thesis, we
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1. Introduction

track changes in data chunks through the changes in the number of clusters (number of
data chunks).

The problem of determining the number of clusters (model selection problem in clus-
tering) is difficult. Generally, the number of clusters is estimated using criteria such as
Akaike’s information criterion (AIC) [1] and Bayesian information criterion (BIC) [35].
In this research, the minimum description length (MDL) principle is introduced as a model
selection criterion. This is a criterion that optimizes the fit of the model to the data and
the complexity of the model in a unified framework based on information theory. To
deal with non-stationary states of irregular models such as mixture models, we intro-
duce the MDL principle, which can handle them uniformly in the form of code length,
as a model selection criterion. Furthermore, by using the MDL principle with a strong
theoretical background in model selection, we believe that it can be possible to extract
difficult model selection tasks (data). We use normalized maximum likelihood (NML)
code length, which is known as a valid index in terms of properties for statistics and
information theory. These properties are described in detail in Chapter 2.

The positioning of each chapter in this thesis can be summarized as the figure 1.2.
We propose two algorithms: for measuring complexity of static data and for detecting
changes in dynamic data. A model selection criterion for the mixture model was proposed
by Hirai and Yamanishi for the static dataset [10, 12]. [9] has been proposed as a method
that applies this criterion to change detection. However, these methods are intended for
discrete model selection and change detection; there are issues that cannot be handled
when model selection is difficult and those that are not targeted when changes are gradual.
Therefore, in this thesis, the main purpose is deriving indices that can obtain continuous
results by indicating the state of data. To obtain continuous results, the aim is to propose
an index that shows the model selection uncertainty.

As a first index, we propose structural entropy (SE), which is an index of the ambigu-
ity in model selection, as a value that represents the model selection difficulty. This index
quantitatively expresses the ambiguity (uncertainty) of model selection when it is unclear
which model should be selected. The concept of this proposed method is described later
in 1.3.1. Next, we propose sequential MDL change statistics (SMCS) based on the se-
quential dynamic model selection (SDMS) change detection algorithm. Although SDMS
targets abrupt model changes, SMCS is an extension of MDL change statistics [43] based
on the concept of SDMS; it is an index that continuously defines the degree of model
change. The concept of this proposed method is described later in 1.3.2. Last, we propose
kernel complexity (KC), which defines non-parametric static dataset information without
assuming a parametric mixture model. This makes it possible to define complexity in the
sense of data chunks even for data that is difficult to represent as a parametric model.
Using this index, we propose a change point detection algorithm. The concept of this
proposed method is described later in 1.3.3.
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1. Introduction

Figure 1.2: Positioning of each method in this thesis.

1.3.1 Structural Entropy (SE)
Here, we aim to measure the uncertainty of a latent structure. The term “latent” refers to
the underlying model structure of the data, such as the number of components in a finite
mixture model or the order of an autoregression model. When the data distribution is
not clearly separated, the latent structure of the data cannot be clearly determined; thus,
focusing on the uncertainty of latent structure becomes an important subject. For tracking
changes, high uncertainty can be considered as change points or early warning signals
of change. Thus, it is important to track the uncertainty to detect changes as early as
possible. We have a hypothesis that latent structure uncertainty will increase before a
clear change. In this situation, it is very important to measure the uncertainty of the latent
structure and determine the changing period.

The main purpose of this study is to propose a new index that can measure the un-
certainty of a latent structure and an algorithm that can detect the change points in a
sequential setting. For this, we specifically deal with the structural changes that occur
when the number of clusters change. We employ a Gaussian mixture model (GMM) and
a Poisson mixture model (PMM) as examples of clustering models, and an autoregression
(AR) model as an example of a time-series model. In the experimental results, we show
the usefulness of the proposed method using two types of data: artificial datasets and real
marketing datasets.
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1. Introduction

This proposed method is based on [11] and discussed in Chapter 3.

1.3.2 Sequential MDL Change Statistics (SMCS)
We consider the issue of detecting changes of structure in Gaussian mixture models
(GMM). The structure here represents the number of clusters, and consider the situa-
tion where it changes over time. A number of technologies have been proposed to solve
this problem, such as dynamic model selection (e.g., [45, 44, 38]). Although these studies
consider discrete changes, the nature of data may change gradually, and it is also im-
portant to capture continuous changes. It is natural to assume that there are continuous
changes behind the discrete changes. If we can quantify continuous changes, we can
detect early warning signals of changes by evaluating this index.

From this standpoint, this study proposes sequential MDL change statistics (SMCS)
to develop an index that can handle both discrete and continuous changes simultaneously.
We define SMCS as a continuous index that measures the degree of changes from an
information-theoretic viewpoint. Also, to perform stable change detection, we propose a
suitable parameter setting method by evaluating error probabilities. In the experiment, we
evaluate the usefulness of the proposed index using artificial and practical datasets.

To the best of our knowledge, no studies have been conducted on a unifying method-
ology for detecting structural changes and their early warning signals in a time-varying
cluster setting.

This proposed method is based on [13] and discussed in Chapter 4.

1.3.3 Kernel Complexity (KC)
We define new structural information related to a nonparametric distribution and propose
a method to detect the changes in this distribution over time. The number of clusters in a
clustering model expresses structural information as a group of aggregated data points. In
contrast, because it is not possible to define a cluster in a nonparametric model, statistics
have previously been used to capture structures using the method of moments. However,
even in nonparametric distributions, it is important to aggregate structural information
in the form of data-like clusters to allow a global understanding of data. In this study,
we propose a new index for structural information, i.e., kernel complexity (KC), which
defines the structural information for a nonparametric model. The index is defined by
using the Gini index to measure the density of data in terms of information bias [18].
We measure the amount of information provided by the data using the MDL principle.
Furthermore, we propose an algorithm to detect changes in the KC when data are in the
form of a time series. This algorithm provides a framework for the detection of changes
based on the KC.

This study detects changes that the aforementioned data undergo without assuming a
specific distribution. Because we do not assume a specific parametric model, we consider
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1. Introduction

an approach that captures the changes in the distribution rather than observing changes
with respect to the number of clusters. For this purpose, we use kernel density estimation
to represent data distribution. This approach enables us to even handle complex data
chunks that cannot be represented by parametric models. We calculate the index, KC, by
making some assumptions (such as restricting the parameter on the NML calculation and
restricting the data structure). When capturing the changes in the distribution itself, we
apply the concept of clustering to a parametric model and propose a method to express
the complexity of the structure of the dataset in terms of the density of the dataset. In this
case, the amount of information used as a reference when capturing the overall image of
the distribution would be expected to differ between the high- and low-density sections
of the dataset. Indexing the degree of deviation of this information would then be useful
to determine whether it is a complex distribution (a state in which the dataset is sparsely
distributed) or a plain distribution (a state in which the dataset is densely distributed). It
is possible to detect changes in the density distribution of data by observing an index in
a time series. For the purposes of this work, we formulate the following hypotheses for
considering changes in the data distributions.

• At a time when there is no change, the distribution maintains a certain form and the
index does not change.

• When the distribution changes, the change is considered to occur as a gradual trans-
formation from the original shape until it finally stabilizes into a changed shape.
The period during which the change is occurring, the index will also gradually
change.

From these hypotheses, we propose an index that quantifies the structural information. In
addition, we propose a method that uses this index to detect the change from the perspec-
tive of the distribution density.

This study has three aims. The first aim is to propose an index, KC, which defines the
structural information of a dataset. This index is defined as an indicator of the distribution
of peaks in the dataset similar to a cluster in clustering. The second aim is to develop
an algorithm for detecting changes in a structure in a sequential setting. The third is
to demonstrate usefulness of the proposed method by using two types of datasets, i.e.,
artificial and real practical datasets.

This proposed method is based on [14] and discussed in Chapter 5.

1.4 Related Work

We consider related works from two viewpoints: structural information and change de-
tection.
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1. Introduction

1.4.1 Structural Information
From this viewpoint, we consider related works on parametric and nonparametric models.

First, for parametric models, the issue of selecting the best structure belongs to a wider
topic on model selection. Conventionally, AIC [1], BIC [35], and MDL [29] have been
employed as model selection criteria to address this issue. Specifically, the modern MDL
theory uses the NML criterion [31]. Note that the above criteria cannot be applied in a
straightforward manner to select latent variable models, including finite mixture models,
due to the non-identifiability problem (see [47]). To solve this problem, a combination
of the MDL criterion and latent variable completion techniques has been applied to the
Naive Bayes model [21], GMM [10, 12], and a wide class of latent variable models [47].
Rissanen et al. proposed the sequentially the NML (SNML) code length for the AR model
[32], Takahashi et al. proposed the sequentially discounting the NML (SDNML) code
length which is an indicator considering forgetting in SNML [39]. Ito et al. proposed
NML for nonnegative matrix factorization [16]. These models are methods aimed at
clearly selecting models. In Chapter 3, we aim to express ambiguity as static structural
information by quantifying the uncertainty of model selection.

Second, clustering methods (aggregating data points for subgroups) are well-known
approaches used in parametric models (e.g., [25],[26]) to define structural information in
terms of density. The number of clusters is optimally determined in these clustering meth-
ods [21, 10]. The moment method is typically used to define the structure and stochastic
features in a nonparametric distribution [6]. Kolmogorov complexity [20] has conven-
tionally been used as an index of the complexity of data sequences. As for nonparametric
approaches for model selection, Zhang and Ksecká proposed a method to determine the
number of regression lines [48]. Kyrgyzov et al. [22] devised an approach to determine
the number of clusters using kernel k-means. This approach uses information related to
a latent variable called the cluster index. In Chapter 5, we aim to quantify the global
features of a distribution without explicitly using the concept of clustering.

1.4.2 Detection of Changes and Early Warning Signals
First, we introduce methods using parametric models. For model change detection in a
dynamic setting, Yamanishi and Maruyama extended the MDL criterion to the dynamic
setting to propose dynamic model selection (DMS). They designed the DMS algorithm
for detecting changes in statistical models [45, 44]. In the sequential setting, Hirai and
Yamanishi proposed the SDMS algorithm, which is an increment variant of DMS and
can be applied to latent variable models [9]. Herbster and Warmuth devised a method for
tracking the best experts, which sequentially update the weights of the model candidates
[8]. Erven et al. suggested the concept of switching distribution [41]. Song and Wang
proposed a statistical test-based method for dynamic clustering [38]. Xuan and Murphy
created an extension of Bayesian change point detection for a multivariate setting [42].
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Davis et al. proposed a method to find the best combination of the number of segments for
an AR model [3]. Yamanishi and Fukushima proposed the MDL model change statistics
to detect changes in a model [43].

Next, we introduce methods that use nonparametric models. In the supervised sce-
nario, various methods have been developed in the context of concept drift [5]. Liu et al.
devised a method based on estimation of the direct density ratio [24]; Jeske proposed an
approach referred to as the CUSUM algorithm, which detects changes using a cumula-
tive sum [17]. Tan et al. proposed Bayesian change point detection [40], in which they
detected parameter changes in terms of the joint likelihood of data sequence. Harchaoui
et al. proposed a kernel Fisher discriminant ratio algorithm [7]; Saatçi et al. devised a
technique with a Gaussian process [34]. Kawahara and Sugiyama introduced an algo-
rithm using direct density ratio estimation [19], These methods detect changes based on
the differences between data distributions from one time point to another. In Chapter 5,
we aim to detect changes in terms of data aggregation by proposing changes in values that
quantify structural information in terms of density.

Last, several methods have focused on detection of early warning signals. Ohsawa
proposed an approach for detecting explanatory signs of changes and derived a criterion
called graph-based entropy [27]. Yamanishi and Miyaguchi introduced a technique for
detecting gradual changes by focusing on the code length and derived the MDL change
statistics [46]. These criteria enable early detection of signs of changes. As for the rate
of detected changes, Huang et al. suggested a method called volatility shift to detect
the changes in the distance intervals between the detected changes and privious detected
changes [15]. In Chapter 3 and Chapter 4, we deal with the structure of the latent variable
and aim to capture changes in the model sequentially and continuously.

1.5 Contributions of Our Research

The contribution of this thesis can be divided into three major categories. First, we define
new indices of structural information. Here, the information expresses the difficulty in
determining the number of clusters for a parametric model; it expresses the degree of
congestion as a chunk in the case of a nonparametric model. As a result, the information of
the data structure can be expressed with a unified index. Next, change detection methods
using indices that indicate the information of the structure are proposed. Using an index
expressed as a continuous value, not only points of abrupt changes but also their early
warning signals can be observed. Finally, by experimenting on these behaviors using
artificial and real datasets, we show that the techniques are practically effective. Each of
the contributions are described in detail in the following sub-sections.
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1.5.1 Indices for Structural Information
For parametric and nonparametric structures, we define indices that indicate the informa-
tion of the structure.

For a parametric model, we consider the problem of determining the number of clus-
ters; for this, we propose an index, called SE, for clustering structure estimation uncer-
tainty. We can continuously grasp the uncertainty of model selection, which cannot be
understood by simply determining the number of clusters. We aim to calculate the uncer-
tainty of the MDL-based model selection using SE and determine the uncertainty point for
a dataset. In addition to MDL, it is possible to measure the uncertainty of general model
selection. To define the criterion, we introduce the concept of entropy. Physically, it is
known that fluctuations occur in phase transitions [23, 28]. Analogically, it is assumed
that fluctuations occur when model changes occur. Therefore, we quantify fluctuations in
terms of SE. We use entropy as an index of the collapse of the structural model selection.
The method used for stable uncertainty measurement is important. Thus, we propose a
method for selecting a suitable parameter for SE. First, when we measure the uncertainty
of model selection using the obtained criterion, we focus on the value itself and establish
that uncertainty increases when SE exceeds a certain threshold. We then derive the lower
bound for this probability. This enables us to detect the uncertainty of model selection
with a certain minimum probability using the SE criterion. Second, this lower bound can
be used to determine the SE parameter. To use SE in a stable manner, a suitable parameter
should be proposed so that the lower bound for the probability is minimized.

For a nonparametric model, we propose an index to ascertain the structural informa-
tion of aggregated data. We call this index KC, which is defined by measuring the density
of a dataset in terms of information bias with the Gini index; a larger KC indicates that
the distribution of the dataset is wider and the structure is more complex. Unlike the num-
ber of clusters in a parametric model, KC is not a discrete value, but an index that takes
continuous values. We can use KC as a new quantitative index to ascertain nonparamet-
ric global information. When calculating KC, we especially use the NML code length
based on the MDL principle as a criterion to express information. Even though we adopt
kernel density estimation as a nonparametric density estimation method, its NML code
length cannot be directly calculated because the maximum likelihood estimator is diffi-
cult to calculate. We consider two main points when calculating the NML code length.
First, we introduce a subprobability distribution with kernel density estimation. Second,
we propose a method of calculating the NML for the subprobability distribution of kernel
density estimation by introducing the concept proposed in [31].

1.5.2 Change Detection Methods Using Indices Indicating Structural
Information

We propose three methods for detecting change points and their early warning signals.
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The first method is the algorithm using SE in a parametric model. The existing change
detection methods (e.g., [8]) can detect changes in models, but the detected points are
change points that clearly occurred. We propose a method for detecting early warning
signals in terms of the uncertainty of model selection using SE.

The second method is the algorithm using SMCS in a parametric model. Most exist-
ing algorithms for model change detection listed in Section 1.4 were designed to detect
discrete changes only. They could not be applied to detect early warning signals of model
changes. The existing algorithms for early warning signals detection listed in Section 1.4
were designed to detect the uncertainty of the models only. They could not be applied to
model change detection. We propose a unifying framework for detecting model changes
and their early warning signals. The key idea is to employ SMCS. SMCS is a real-valued
index that measures the degree of a model change. It is defined as the difference between
the code lengths associated with the unchanged and changed models. Hence, its design
is based on the MDL principle [29]. By testing the hypothesis based on SMCS, we can
detect model changes. Furthermore, we can also detect early warning signals of model
changes by tracking the changes of SMCS because it is a real-valued index. The original
idea of MDL change statistics was proposed in [46, 43]. However, it was not applied to
the detection of early warning signals of model changes. SMCS can be considered as a
variant of the original MDL change statistics for the sequential setting, where model se-
lection should be performed every time, and for settings in which latent variable models
may be used. We focus on GMMs but the methodology can be extended in a straightfor-
ward manner to general latent variable model classes.

Last, we explain the algorithm using KC in a nonparametric model. We propose
an algorithm to detect changes in KC when the data are in the form of a time series.
This makes it possible to detect changes in the global structure of nonparametric data.
Many change-point detection algorithms exist for nonparametric distributions (e.g., [7,
34]). Unlike previous research, our proposed algorithm only detects changes in the global
information measured by KC and provides a new view of nonparametric change detection.
In addition, KC does not always detect abrupt changes but also gradual ones. Because KC
is a continuous value, it is effective in detecting gradual changes.

1.5.3 Empirical Validation of the Effectiveness of our Methods
We employ synthetic datasets to empirically demonstrate that we can raise reliable alarms
for model changes and their early warning signals using SE, SMCS, and KC. Specifically,
early warning signals can be detected significantly earlier than the alarms provided by
existing methods. We also employ two real datasets to validate SE, SMCS, and KC:
marketing dataset and household electric consumption dataset. For both datasets, we can
detect meaningful change points corresponding to clear behavior changes. Regarding
early warning signals, although these signals are not explicitly captured, it is possible to
perceive them by changing the SE, SMCS, and KC values.
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Chapter 2

Preliminaries

In this thesis, to deal with non-stationary states of irregular models such as mixture mod-
els, we derive the MDL principle, which can handle them uniformly in the form of code
length, as a model selection criterion. Furthermore, by using the MDL principle with a
strong theoretical background in model selection, it is possible to extract difficult model
selection tasks (data). If there is an uncertainty in the model selection itself, it will be dif-
ficult to determine whether the continuous index is a result of the nature of the data or an
error in model selection. Thus, we propose a reliable index based on the MDL principle.
We derive the NML code length for model selection and choose a model that achieves the
minimum value of the NML code length as the optimal model. The reason we employ
NML code length is its following useful properties:

1. it achieves the minimum of Shtarkov’s minimax risk [37].

2. it achieves the minimax estimation optimality [31].

In this chapter, we discuss existing methods required as prior knowledge, focusing
on NML. Section 2.1 shows the NML code length and its features. Next, we derive
sequential dynamic model selection (SDMS) through an existing method for detecting
changes of models in Section 2.2.

2.1 Normalized Maximum Likelihood (NML)
Here, based on the MDL, we focus on the NML code length. The NML code length is the
optimal code length in terms of Shtarkov’s minimax regret [37]. We define the optimal
model that satisfies the minimum of this NML code length.

Let an observed data sequence be xn = (x1, · · · ,xn) ∈ X n, where xi =
(xi1, · · · , xim)

⊤ (i = 1, · · · , n). We use a model class PM(K) = {p(Xn; θ,K) : θ ∈
ΘK}. Here, p is a probability distribution, which has parameter θ, and ΘK is the param-
eter space. n is the data size and K is the parameter representing the model (e.g., the
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number of clusters in clustering). The NML code length is the optimal code length in
terms of Shtarkov’s minimax regret [37], which is as follows:

min
q

max
xn∈Xn

{
− log q(xn)−min

θ
(− log p(xn|θ,K))

}
. (2.1)

Distribution q, which achieves the minimum regret, is the NML distribution p
NML

(xn;K).
The NML code length L

NML
(xn;K) is defined as the description length of probability

distribution p
NML

(xn;K) as − log p
NML

(xn;K). In addition, recently, Rissanen showed
the minimax estimation optimality [31] and derived the following theorem:

Theorem 1. As shown below, the maximum likelihood estimator θ̂ and the optimal model
K̂ derived using the NML code length represent the estimated values that minimize the
worst value of Kullback-Leibler divergence from the true distribution pθ,K:

θ̂, K̂ = argmin
θ̄,K̄

max
θ,M

D(pθ,K ||p̄(xn)),

p̄(xn) = argmin
q

max
xn∈Xn

{
− log q(xn)− (− log p(xn|θ̄, K̄))

}
, (2.2)

where D(p1||p2) denotes the Kullback-Leibler divergence Ep1 [log(p1(x)/p2(x))], and
θ̄, K̄ are arbitrary estimators for parameter θ and model K, respectively.

This theorem shows that the maximum likelihood estimator θ̂ and the optimal model
K̂ derived using the NML code length have estimation optimality in this criterion. There-
fore, we derive the NML code length as a criterion for model selection.

The NML code length is defined as follows:

L
NML

(xn;K)
def
= − log p

NML
(xn;K)

= − log p(xn; θ̂(xn), K) + log C(M(K)), (2.3)

where M(K) is a model defined by K (e.g., M(K) is a mixture model and K is the num-
ber of mixture components). C(M(K)) is a normalization term and θ̂(xn) is a maximum
likelihood estimator calculated as follows:

C(M(K))
def
=

∫
p(yn; θ̂(yn), K) dyn,

θ̂(xn)
def
= argmax

θ
p(xn; θ,K).

Here, model K can be determined by minimizing this criterion.
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2.1.1 Calculating the Normalization Term for the NML Code Length
We describe the method for calculating the normalization term of the NML code length.
Rissanen proposed a method for calculating the normalization term because it is difficult
to calculate it directly [30]. In this method, when the maximum likelihood estimator of
the distribution parameter θ is a sufficient statistic, it can be calculated analytically by the
following method.

The distribution p can be decomposed as follows:

p(yn; θ) dyn = f(z|θ̂) · g(θ̂; θ) dz dθ̂

where we define the model class PM = {p(Xn; θ) : θ ∈ Θ}. We assume that mapping
a exists and we can write (θ̂, z) = a(yn); f is a conditional probability density function
and g is a probability density function of θ̂, where θ is a parameter. This equality can be
used to calculate the normalization term as follows:

C(M)
def
=

∫
p(yn; θ̂(yn)) dyn

=

∫ ∫
f(z|θ̂) · g(θ̂; θ̂) dz dθ̂

=

∫
g(θ̂; θ̂) dθ̂.

We use this method to calculate the NML code length associated with kernel density
estimation. For a detailed discussion, refer to the book published by Rissanen [30].

2.1.2 NML Code Lengths for Several Models
In this section, we show the NML code lengths for various models: Gaussian mixture
model (GMM), Poisson mixture model (PMM), and autoregression (AR) model.

NML with GMM

Let xn = (x1, · · · ,xn) be the dataset. We denote the probability density function of the
Gaussian mixture distribution with latent variable zn as follows:

p(xn, zn;µ,Σ) =
K∏
k=1

πhk
k ×

∏
xi∈zk

1

(2π)
mhk
2 · |Σk|

hk
2

× exp

{
−1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

}
,

where πk is a mixture weight of cluster k, hk is the number of data points belonging to
cluster k, µk is the center of cluster k, and Σk is a variance-covariance matrix.
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An upper bound on the NML code length of the GMM was derived in [10, 12] as
follows:

LNML(x
n, zn;M(K)) ≤ − log p(xn, zn;M(K), θ̂(xn, zn))

+ log Cu(M(K), n)

=: LuNML(x
n, zn;Y,M(K))

Cu(M(K), n) =
∑

h1,··· ,hK

N !

h1! · · · · · hK !

K∏
k=1

(
hk
N

)hk

×B(m,R, ϵ) ·
(
hk
2e

)mhk
2 1

Γm(hk−1
2 )

,

B(m,R, ϵ)
def
=

2m+1R
m
2
∏m

j=1 ϵ1j
−m

2

mm+1 · Γ
(
m
2

) ,

where R and ϵ are parameters.

NML with PMM

Let an observed data sequence be xn = (x1, · · · ,xn), where xi = (xi1, · · · , xiW )⊤ (t =
1, · · · , n). We assume the case in which each data point xiw (w = 1, · · · ,W ) is gen-
erated from Poisson distribution Poi(zi), where zi is a cluster index to which data point
xiw (w = 1, · · · ,W ) belongs. We denote the probability density function of Poisson
mixture distribution with latent variable zn as follows:

p(xn, zn; π, λ) =
K∏
k=1

n∏
i=1

π
δ(zi=k)
k

W∏
w=1

{
(λk)

xiw

xiw!
e−λk

}δ(zi=k)

, (2.4)

where λ = (λ1, · · · , λK) are the parameters of the Poisson distribution, πk represents the
probability that data x belongs to the cluster k, and K represents the number of clusters.
For this distribution, we provide the following theorem:

Theorem 2. The NML code length for PMM is approximated as follows:

L
NML

(xn, zn;M(K)) ≈ − log p(xn, zn; π̂(zn), λ̂(xn, zn)) + log C(M(K)),

C(M(K)) =
∑

h1,··· ,hK≥0,
∑

k hk=n

N !

h1! · · · · · hK !

K∏
k=1

(
hk

N

)hk
√

2hkWα

π
.

This theorem can be derived as follows:

Proof. The probability density distribution for PMM is defined as Equation (2.4).
For this distribution, we can calculate the maximum likelihood estimator as λ̂k =

1
hkW

∑n
i=1

∑W
w=1 δ(zi = k)xi,w, π̂k =

hk

n
, and hk =

∑n
i=1 δ(zi = k).
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First, we define the NML code length for a Poisson model. Generally, we can ob-
tain the NML code length as shown in Equation (2.3); here, we calculate the NML for
a Poisson model using Rissanen’s approximation formula [33]. According to [33], the
approximation of the NML code length can be calculated as follows:

L
NML

(xn) = − log p(xn; θ̂(xn)) +
k

2
log

n

2π
+ log

∫ √
|I(θ)|dθ + o(1),

where θ is a parameter.
Using this formula, we can calculate the NML code length for the Poisson model as

follows:

L
NML

(xn) = − log p(xn|λ̂(xn)) +
1

2
log

NW

2π
+ log 2

√
α + o(1)

≈ − log p(xn; λ̂(xn)) +
1

2
log

NW

2π
+ log 2

√
α (2.5)

Next, we calculate the NML code length for PMM. Generally, the NML code length
for mixture models is calculated as follows:

L
NML

(xn, zn;M(K)) = − log p(xn, zn; θ̂(xn, zn)) + log C(M(K)),

where M(K) represents a mixture model where K is the number of mixture components,
zn are cluster indices, and θ is a parameter set. Then, using Equation (2.5), we can
calculate the NML code length as follows:

L
NML

(xn, zn;M(K)) ≈ − log p(xn, zn; π̂(zn), λ̂(xn, zn)) + log C(M(K)),

C(M(K)) =
∑

h1,··· ,hK≥0,
∑

k hk=n

n!

h1! · · · · · hK !

K∏
k=1

(
hk

N

)hk
√

2hkWα

π
.

(2.6)

When we calculate the normalization term in Equation (2.6), we use the recurrence
formula proposed by [10] as follows:

C(n,M(K + 1)) =
∑

r1,r2≥0,r1+r2=n

n!

r1!r2!

(r1
N

)r1 (r2
N

)r2
× C(r1,M(K))I(r1, α),

I(n, α)
def
=

√
2NWα

π
.

This recurrence formula can be used to calculate the normalization term in O(n2 ·K).
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NML with AR Model

We consider the calculation of the NML code length for the AR model. The AR model
is used for time-series datasets in the case when data point xt depends on past data points
xt−1
t−K ; the AR model can be formulated as follows:

xt = β⊤x̄t + ϵt,

where β = (β1, · · · , βK)
⊤ is a coefficient parameter, ϵt = (ϵt1, · · · , ϵtK) is generated by

a normal distribution N (0, σ2I), and x̄t = (xt−1, · · · , xt−K)
⊤ represent past data points.

We consider a simple case where variance σ2 is fixed. The probability density function
is

p(xt|xt−1;σ2, β) =
1√
2πσ2

exp

(
−(xt − β⊤x̄t)

2

2σ2

)
.

Let us consider the case for finding a model K at time t from data xt
t−w+1. Parameter

w is the window size used to calculate the optimal model K. Here, we denote the dataset
as yw = (xt−w+1, · · · , xt), and the discounting NML code length is defined as follows:

L
NML

(yw)
def
=

w∑
l=m+1

− log p
SDNML

(yl|yl−1),

p
SDNML

(yl|yl−1) =
p(yl; θ̂(yl))

Kl(yl)
,

Kl(y
l) =

∫
P (y · yl−1; θ̂(y · yl−1))dy, (2.7)

where p
SDNML

is the sequential discounting NML (SDNML) [39], which is a discounting
variant of sequential NML (SNML) [32]. In this work, we use L

NML
as the code length at

each time t.

2.2 Sequential Dynamic Model Selection (SDMS)
In this thesis, to detect the change points of a latent structure, we use the sequential dy-
namic model selection (SDMS) code length proposed by Hirai and Yamanishi [9]. DMS
is a method for identifying model sequence in a batch as proposed by Yamanishi and
Maruyama [45, 44]. SDMS is a technique that applies it to changes in the number of
clusters of a latent variable model and selects the optimal model sequentially. Using this
criterion, we can detect the change points for abrupt changes. Here, we denote SDMS in
a simple form as below.

Let an observed data sequence be XT = (X1, · · · , XT ), Xt = xn = (xt1, · · · ,xtn)
where xti = (xti1, · · · , xtim)

⊤ (i = 1, · · · , n), and a latent variable be ZT =
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(Z1, · · · , ZT ), which represents the cluster index to which each data point belongs at
each time. The SDMS code length is calculated at each time t as follows:

L
SDMS

(Xt, Zt;M(K̂t−1),M(Kt)) = L
NML

(Xt, Zt;M(Kt))− log p(Kt|K̂t−1;α),

p(Kt|K̂t−1;α) =


1− α if Kt = K̂t−1 and K̂t−1 ̸= 1, Kmax,

1− α/2 if Kt = K̂t−1 and K̂t−1 = 1, Kmax,

α/2 if Kt = K̂t−1 ± 1,

(2.8)

where L
NML

is the code length of clustering with Xt and Zt, M(K) is the mixture model
with K clusters, and p(Kt|K̂t−1;α) represents the probability that the model changes.
We use the maximum a posteriori (MAP) estimator with a beta distribution as the prior
distribution to estimate parameter α (0 ≤ α ≤ 1). Kmax represents the maximum possible
value of K, Kt is the number of clusters at each time t, and K̂t−1 is the estimated model
Kt−1 at a previous time. The SDMS algorithm outputs Kt, which minimizes the L

SDMS

criterion at each time t. Here, we can detect the change points where Kt changes from
K̂t−1.
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Chapter 3

Structural Entropy

We consider the case that a dataset can be defined by parametric model. Under this
condition, we aim to measure uncertainty of model selection and propose a novel index
called structural entropy (SE). In addition, we propose a novel algorithm for detecting
early warning signals using SE. In this chapter, Section 3.1 introduces SE. Section 3.2
discusses how to calculate optimal parameter in SE. Section 3.4 gives an algorithm for
detecting early warning signals using SE. In Section 3.3, we examine how much error
rate can be reduced in MDL model selection by using SE. Lastly, we show experimental
results in Section 3.5. We present works of Section 3.1, Section 3.2, Section 3.4, and
Section 3.5 in BigData 2018 [11]. Section 3.3 is an extended work of [11].

3.1 Structural Entropy (SE)
We propose SE as an index for measuring the uncertainty of model selection. SE is
defined from the viewpoint of model selection, and we aim to use the SE to measure the
uncertainty.

Let we consider uncertainty of model selection in terms of the code length. As dis-
cussed in Chapter 2, we employ the code length to select the optimal model at each time
instant. However, it is anticipated that a model will not always be clearly determined.
Thus we suppose that model selection will be performed in the presence of uncertainty.
We propose the SE index using the code length as follows:

SE
def
= −

∑
k∈K

p(K) log p(K),

p(K)
def
=

exp(−β · L(K))∑
K∈K exp(−β · L(K))

, (3.1)

where β is a parameter, and K is defined as the domain of the model parameter K and
L(K) is the code length of data X with model M(K). SE is an index that expresses how
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3. Structural Entropy

much uncertainty occurs in model selection in the form of entropy. To create a simple
definition for the SE, we define the domain as K = {K̂, K̂ ′}, where K̂, K̂ ′ are the first
and second best models, respectively. They are as follows:

K̂
def
= argmin

K∈Kall

L(K), (3.2)

K̂ ′ def
= argmin

K∈Kall\{K̂}
L(K), (3.3)

where Kall = {1, · · · , Kmax} describes the domain of K, and Kmax is the largest possible
K.

3.2 Calculation of Suitable Parameter
In this section, we consider the nature of the SE and derive a method for calculating
the suitable parameter using the theoretical property of SE. We expect the probability of
raising an alarm to be in the range of values from 0 to 1. We discuss a suitable parameter
setting in the following steps:

1. The probability that SE exceeds threshold ϵ:
We discuss the nature of this probability. Here, we derive a lower bound for this
probability (which we call PLow).

2. The principle for calculating the suitable parameter:
We consider the case where the PLow is upper bounded by a small value. Using this
property, we can choose the suitable parameter ϵ.

3.2.1 Probability that the SE Exceeds Threshold ϵ

Consider the case where SE exceeds threshold ϵ, we define an alarm condition as below:

a(t)
def
=

{
1 if SE > ϵ,

0 otherwise.

We introduce the function g, which is the inverse function of the entropy function h as
follows:

h(p)
def
= −p log p− (1− p) log(1− p),

g(p)
def
= h−1(p), (3.4)

where the domain of g(p) is defined so that 0 < g(p) ≤ 1/2.
To discuss the nature of SE , we make following assumptions hold:
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Assumption 1. Let

r
def
=

p(X; θ̂(X,M(K̂)))

p(X; θ̂(X,M(K̂ ′)))
,

where θ̂(X,M(K)) is a maximum likelihood estimator. The value of r satisfies the fol-
lowing inequality:

R−n < r < Rn,

where the value R(> 1) is constant.

For example, we briefly show that Assumption 1 can be natural for the GMM. Let the
dataset be xn = (x1, · · · ,xn) ∈ Rm×n. We denote the probability density function of
Gaussian mixture distribution with the latent variable zn as follows:

p(xn, zn;µ,Σ) =
K∏
k=1

πhk
k ×

∏
xi∈zk

1

(2π)
mhk
2 · |Σk|

hk
2

× exp

{
−1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

}
,

where πk is a mixture weight of cluster k, hk is the number of data points belonging to
cluster k, µk is a center of cluster k, and Σk is a variance-covariance matrix. Then, the
maximum likelihood is calculated as follows:

p(xn, zn; θ̂(xn, zn)) =
K∏
k=1

(
hk

n

)hk

(2πe)−
mhk
2

m∏
j=1

λ̂
−hk

2
jk . (3.5)

Using this formula, we can calculate upper and lower bounds on the likelihood for (xn, zn)
as follows: (

1

K

)n

(2πe)−
mn
2 λ̂

−mn
2

max ≤ Equation (3.5) ≤ (2πe)−
mn
2 λ̂

−mn
2

min ,

where λ̂max
def
= argmax

j,k
λ̂jk and λ̂min

def
= argmin

j,k
λ̂jk, and λ̂jk is the j-th eigenvalue of the

maximum likelihood estimator Σ̂k. We use this formula to calculate the upper and lower
bounds on r as follows:

1

K̂n

(
λ̂′
min

λ̂max

)mn
2

≤ r ≤ K̂ ′n

(
λ̂′
max

λ̂min

)mn
2

. (3.6)
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Assumption 2. We consider the case where the expected value of log r satisfies the fol-
lowing inequality:

∃γ, 0 < γ <

(
1− g(ϵ)

g(ϵ)

)1/β

− 1,

log
exp(ℓ(K̂))

exp(ℓ(K̂ ′))
< EX [log r] < log

{
(1 + γ)

exp(ℓ(K̂))

exp(ℓ(K̂ ′))

}
, (3.7)

where ℓ(K̂) is the code length other than likelihood in total code length.

Using the definitions of Equation (3.2) and Equation (3.3), the first inequality of Equa-
tion (3.7) can be derived as follows:

K̂ = argmin
K∈Kall

L(K)

⇔ p(X; θ̂(X),M(K̂))

exp(ℓ(K̂))
>

p(X; θ̂(X),M(K̂ ′))

exp(ℓ(K̂ ′))

⇔ log
exp(ℓ(K̂))

exp(ℓ(K̂ ′))
< EX [log r].

In addition, in measuring the uncertainty of model selection, we want to consider the
situation where the structure selection is uncertain to some extent. For this reason, we
consider making an assumption like the second inequality of Equation (3.7) with respect
to the optimal parameters K̂ and K̂ ′.

Then, we get the following theorem:

Theorem 3. Under the condition of K = {K̂, K̂ ′}, the probability that SE > ϵ (ϵ(> 0)
is a constant value) is lower bounded as follows:

Prob [SE > ϵ] ≥ 1− exp

[
− η2

2(σ2 +Mη/3)

]
, (3.8)

where

η
def
= ℓ(K̂)− ℓ(K̂ ′) +

1

β
log

1− g(ϵ)

g(ϵ)
− EX [log r], (3.9)

σ2 def
= V arX [log r], (3.10)

M
def
= n logR + |EX [log r]|. (3.11)

From Equation (3.8), SE enables us to find the uncertainty of model selection with a
certain probability or greater, Then, this probability ranges from the lower bound value to
1.
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Proof. When the SE exceeds threshold ϵ, the probability p(K̂) (≥ 1/2) satisfies the fol-
lowing condition:

p(K̂) =
1

1 + exp
{
−β · (L(K̂ ′)− L(K̂))

} < 1− g(ϵ)

⇔ r <
exp(ℓ(K̂))

exp(ℓ(K̂ ′))
·
(
1− g(ϵ)

g(ϵ)

)1/β

,

where g(ϵ) is defined as Equation (3.4). Here, we can transform this probability as fol-
lows:

Prob [SE > ϵ]

= Prob

[
r <

exp(ℓ(K̂))

exp(ℓ(K̂ ′))
·
(
1− g(ϵ)

g(ϵ)

)1/β
]

= 1− Prob

[
exp(ℓ(K̂))

exp(ℓ(K̂ ′))
·
(
1− g(ϵ)

g(ϵ)

)1/β

≤ r

]
. (3.12)

Under Assumptions 1, 2, we employ the Bernstein’s inequality to obtain a lower bound
on the probability of Equation (3.12). The Bernstein’s inequality is formulated as follows:

Lemma 1. For variable Xi, the following inequality holds:

Prob

[
n∑

i=1

Xi ≥ η

]
≤ exp

(
− η2

2(nσ2 +Mη/3)

)
, (3.13)

where E[Xi] = 0, |Xi| < M (with probability 1 for all i), σ2 =
∑

V ar[Xi]/n, and
η ≥ 0.

Using Lemma 1, we obtain a lower bound on the probability of Equation (3.12) as
follows:

Prob [SE > ϵ]

= 1− Prob

[
log

{
exp(ℓ(K̂))

exp(ℓ(K̂ ′))
·
(
1− g(ϵ)

g(ϵ)

)1/β
}

− EX [log r] ≤ log r − EX [log r]

]

≥ 1− exp

[
− η2

2(σ2 +Mη/3)

]
,

where η, σ2, and M is defined in Equation (3.9), Equation (3.10), and Equation (3.11),
respectively.
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3.2.2 Method for Choosing Suitable Parameter β

Here, we consider selecting the suitable parameter β. As previously discussed, we expect
the probability of raising an alarm to assume a wide range of values. In order to increase
the precision range of this probability, we expect that a lower bound on the probability
Prob [SE > ϵ] will satisfy the property as follows:

∃δ > 0, PLow ≤ δ ( δ is a small constant), (3.14)

where PLow is a lower bound as described in Theorem 3. If PLow does not satisfy this
property, the probability Prob [SE > ϵ] is sufficiently high to raise an alert when the la-
tent structure is not very uncertain. This leads to an increase in the false alarm rate, which
is a disadvantage to the stability of the SE. Thus, the mentioned property is required.

In order to satisfy the property of Equation (3.14), we have the following theorem that
β satisfies:

Theorem 4. β should be upper and lower bounded as follows:

Γ

G
≤ 1

β
≤ Γ

G
− 2M

3G
log(1− δ), (3.15)

where

G
def
= log

1− g(ϵ)

g(ϵ)
, (3.16)

Γ
def
= log(1 + γ′), (3.17)

M
def
= n logR +

∣∣∣∣∣log
{
(1 + γ′)

exp(ℓ(K̂))

exp(ℓ(K̂ ′))

}∣∣∣∣∣ , (3.18)

0 < γ′ < γ. (3.19)

Here, if the parameter β is less than βLow = 1/
(
Γ
G
− 2M

3G
log(1− δ)

)
, we can predict

the situation where the alerts for the uncertainty of the latent structure tend to be too
frequent, and the false alarm rate increases. In the particular case of β → 0, p(K̂) is
always equal to 1/2, as shown in Equation (3.1), and it is observed that any estimation
result has uncertainty. This is the reason why we derive the boundary of β as shown in
Theorem 4. By using Theorem 4, we obtain the stability of SE by setting parameters ϵ,
R, etc. that are easier to set instead of setting parameter β. For example, in GMM, we set
R naturally, as shown in Equation (3.6).

Proof. We can derive a boundary of β from Equation (3.14) as follows:

PLow ≤ δ
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⇔ −η2 ≥ 2 log(1− δ) ·
(
σ2 +Mη/3

)
⇔ −D1 −

√
D2

G
≤ 1

β
≤ −D1 +

√
D2

G

where

D1 =
1

3
M log(1− δ)− Γ,

D2 = log(1− δ) ·
(
1

9
M2 log(1− δ)− 2σ2

)
,

where G, Γ, M are defined as Equation (3.16), Equation (3.17), and Equation (3.18),
respectively. Because we expect that the criterion SE can be used stably regardless of σ2,
we consider the case where the smallest range of β can be calculated. Here, if we assume
that σ2 → 0, the range of β is the smallest as follows:

Γ

G
≤ 1

β
≤ Γ

G
− 2M

3G
log(1− δ),

where G, Γ, and M are defined as Equation (3.16), Equation (3.17), and Equation (3.18),
respectively.

3.3 Error Rate of Model Selection using SE
We examine how much error rate can be evaluated in MDL based model selection with
SE. In evaluating the property of MDL based model selection with SE, we use two models
K,K ′.

At first, we consider the null hypothesis H0 and the alternative hypothesis H1 below:

H0: The true model is K ′.

H1: The true model is K.

We decide to reject the null hypothesis H0 when the condition of L(K) < L(K ′) is
satisfied. L(K), L(K ′) are NML code lengths for models K,K ′, respectively. This is
simple MDL based model selection, but by using SE, it is possible to determine that
we do not use the result of model selection when there is uncertainty in model selection
(SE > ϵ). As a result, when it is difficult to make a decision, it becomes possible to select
not to judge the result, and the probability of mistakes can be reduced.

Here, the Type-I error probability for simple MDL based model selection is calculated
as follows:

PI =

∫
X∈

{
X

∣∣∣L(K)<L(K′)

} p(X;K ′, θ)dX.
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Here, by introducing SE, it is possible to increase the reliability of the model selection
result by selecting not to judge the result when uncertainty measured by SE in the model
selection is high. Although the error in this case is not a strict Type-I error, the probability
of selecting an incorrect model can be suppressed by model selection with reliability
added. Here, we call this error probability as error probability with reliability (EPR). By
introducing SE, when SE > ϵ (when uncertainty is high), we can avoid using the result
of model selection. Then, EPR can be calculated as follows:

PEPR =

∫
X∈

{
X

∣∣∣L(K)+log( 1−g(ϵ)
g(ϵ) )

1/β
<L(K′)

} p(X;K ′, θ)dX.

By using the nature of NML code length, we can derive following theorem:

Theorem 5. EPR is upper bounded as follows:

PEPR ≤ exp

{
ℓ(K ′)− log

(
1− g(ϵ)

g(ϵ)

)1/β
}
, (3.20)

where ℓ(K ′) is the code length other than likelihood in total code length.

The content of the right side of Equation 3.20 has the following properties:

ℓ(K ′) = O(log n),

log

(
1− g(ϵ)

g(ϵ)

)1/β

= O(n).

By these properties, EPR converges to zero when n goes to infinity. Since the term of
O(n) is generated by introducing the uncertainty determination by SE, we can say that
SE significantly reduces EPR. The proof of this theorem 5 is given as follows:

Proof. By introducing SE, when SE > ϵ (when uncertainty is large), we can avoid using
the result of model selection. Then, EPR can be calculated as follows:

PEPR =

∫
X∈

{
X

∣∣∣L(K)+log( 1−g(ϵ)
g(ϵ) )

1/β
<L(K′)

} p(X; θ,M(K ′))dX.

We then derive an upper bound on EPR with SE as follows:

PEPR =

∫
X∈

{
X

∣∣∣L(K)+log( 1−g(ϵ)
g(ϵ) )

1/β
<L(K′)

} p(X;K ′, θ)dX

≤
∫
X∈

{
X

∣∣∣L(K)+log( 1−g(ϵ)
g(ϵ) )

1/β
<L(K′)

} p(X;K ′, θ̂(X))dX. (3.21)
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Here, the inequality in the range of integration can be deformed as follows:

L(K) + log

(
1− g(ϵ)

g(ϵ)

)1/β

< L(K ′)

⇔ L(K) + log

(
1− g(ϵ)

g(ϵ)

)1/β

< − log p(X;K ′, θ̂(X)) + ℓ(K ′)

⇔ p(X;K ′, θ̂(X)) < exp

{
−L(K) + ℓ(K ′)− log

(
1− g(ϵ)

g(ϵ)

)1/β
}
.

By using this inequality, we can calculate an upper bound on Equation (3.21) as follows:

Equation(3.21)

<

∫
X∈

{
X

∣∣∣L(K)+log( 1−g(ϵ)
g(ϵ) )

1/β
<L(K′)

} exp

{
−L(K) + ℓ(K ′)− log

(
1− g(ϵ)

g(ϵ)

)1/β
}
dX

< exp

{
ℓ(K ′)− log

(
1− g(ϵ)

g(ϵ)

)1/β
}

·
∫
X∈Rn

exp {−L(K)} dX. (3.22)

Here, using the Kraft’s inequality, the integration in Equation (3.22) is not more than 1.
Using this fact, the Equation (3.22) can be upper bounded as follows:

Equation(3.22) ≤ exp

{
ℓ(K ′)− log

(
1− g(ϵ)

g(ϵ)

)1/β
}
.

3.4 Algorithm for Detecting Early Warning Signals of
Changes using SE

We apply SE to detect early warning signals of changes. When a structure of a model of
data changes, it can be considered that there is first a small movement in the dataset; then,
a large change in structure is visible. Since SE is an index for measuring the uncertainty of
structure of a model of data, it can be considered as an index that increases the uncertainty
when the movement becomes large to change the structure. Using this SE index, an
algorithm for detecting changes is presented in Algorithm 1. For simplicity, we express
the dataset at each time as Xt ∈ Rn×m. Lt(Kt) is the code length with model Kt at time t,
for which we use the NML code length in Section 2.1 or the SDMS code length in Section
2.2. Thus, we denote the code length as follows:

Lt(Kt) = − log p(Xt; θ̂(Xt),M(Kt)) + ℓ(Kt),
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ℓ(Kt) =

{
log C(M(Kt)), (Lt(Kt) = L

NML
),

log C(M(Kt))− log p(Kt|K̂t−1;α), (Lt(Kt) = L
SDMS

),

where M(K) is a model with model parameter K (e.g. a Gaussian mixture model with
K components), and p(Kt|K̂t−1;α) is defined by Equation (2.8).

Algorithm 1 Algorithm for detecting changes.
Calculate SE:
Calculate SE score defined by Equation (3.1) as follows:

SEt
def
= −

∑
K∈K

p(Kt = K) log p(Kt = K),

p(Kt = K)
def
=

exp(−β · Lt(K))∑
K∈Kt

exp(−β · Lt(K))
,

Detection of early warning signals of changes:
Detect early warning signals of changes with following conditions:

a(t) =

{
1 if SEt > ϵ,

0 otherwise.

We can detect early warning signals of changes in the case where a(t) = 1.

3.5 Experimental Results

3.5.1 Defining Suitable Parameters
We first consider the properties of suitable parameter β derived from Theorem 4. We use
a lower bound on β (in Theorem 4, an upper bound on 1/β), in order to make it easier
to raise alarms within the constraints of β. For example, in the case where the data size
is equal to 1000 in GMM, we calculate a lower bound for β related to threshold ϵ and δ
using Equation (3.15)). The result of the suitable parameters are shown in Figure 3.1 and
Figure 3.2.

We define optimal parameter β for GMM, PMM, and AR as βGMM = 0.05, βPMM =
0.05, and βAR = 1.33, respectively. Here, we set the threshold ϵ as a fixed value 0.1.

3.5.2 GMM for Artificial Dataset
Here, we consider the case where the model is a GMM. We created an artificial dataset
and empirically demonstrated the usefulness of SE. In GMM, we consider the number
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Figure 3.1: Optimal parameter β related
to threshold ϵ.
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Figure 3.2: Optimal parameter β related
to δ.

of clusters as a model and evaluate its changes. Because SDMS [9] and tracking the
best expert (TBE) [8] methods can also be used to define model selection as the problem
for determining the number of clusters of GMM, we introduce these two methods as
comparison targets.

Single change

We consider the case where the number of change periods is equal to 1. The center of the
generated cluster is generally changed over time as follows:

K∗ = 2, µ = (µ1, µ2) if 1 ≤ t ≤ τ1,

K∗ = 3, µ = (µ1, µ2, u(t)) if τ1 + 1 ≤ t ≤ τ2,

K∗ = 3, µ = (µ1, µ2, µ3) if τ2 + 1 ≤ t ≤ T,

(3.23)

where u(t) =
(τ2 − t)µ2 + (t− τ1)µ3

τ2 − τ1
.

We generated a dataset as in Equation (3.23) and detected the uncertainty of model
selection using the proposed algorithm (SE). The values of SEt at each time t and first
uncertainty points detected were calculated as shown in Figure 3.3(a). In this figure, the
SDMS algorithm was also plotted to compare clear and uncertainty changes. As seen in
this figure, SE detected uncertainty points, and the uncertainty points is earlier than the
clear change point.

In addition to this, we calculated the benefit and delay scores to evaluate how well
the algorithm detected uncertainty of model selection. The benefit and delay scores are
defined in Equation (3.24) and Equation (3.25), respectively:

benefit
def
=

{
1− (t̂− t∗)/U if t∗ ≤ t̂ ≤ t∗ + U,

0 otherwise.
, (3.24)
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delay
def
=

{
t̂− t∗ if t̂ ∈ Transition period,
T otherwise.

, (3.25)

where t̂ is the first point where the algorithm detects uncertainties, and T is the length of
transition period.

We evaluated how well the proposed method worked in comparison with other change
point detection algorithms such as SDMS and TBE. The results are listed in TABLE
3.1(a). We generated 10 different datasets for the same model and detected uncertainty
points for each. The table values are the average ones of benefit and delay. These results
show that the proposed algorithm detected uncertainty points faster than other methods in
terms of both of benefit and delay scores.
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(a) Single change
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(b) Multiple changes

Figure 3.3: Experiments for the data sequence with single and multiple change periods
with GMM model. The transition periods are 10 ≤ t ≤ 29 for the single pattern and
10 ≤ t ≤ 29, 50 ≤ t ≤ 69 for the multiple pattern. In the change periods, the centers of
the clusters gradually changed over time as given by Equation (3.23). This graph shows
the values of SEt, the number of clusters estimated by SDMS at each time t and detected
uncertainty points with ϵ = 0.1. We detected the uncertainty point at time t = 16 and
found that the number of clusters changed at time t = 19 in the single change pattern; we
detected similar points in the case of the multiple pattern.

Table 3.1: Benefit and delay scores for algorithms: SE, SDMS, and TBE (GMM)

(a) Single change

Methods benefit delay
SE 0.68 6.5

SDMS 0.55 9.0
TBE 0.45 11.0

(b) Multiple changes

Methods benefit delay
SE 0.76 4.8

SDMS 0.61 7.9
TBE 0.55 9.1
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Multiple changes

We consider the case where the number of change periods is equal to 2. There exists two
transition periods, in each of which the type of the change follows the single change case.

The values of SEt at each time t and detected first uncertainty points were calculated
as shown in Figure 3.3(b). In the evaluation, we used the benefit and delay scores defined
in Equation (3.24) and Equation (3.25). The results are listed in TABLE 3.1(b).

As in the single change case, the proposed method detects uncertainty well even in
the multiple changes case.

3.5.3 PMM for Artificial Dataset
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(a) Result 1
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(b) Result 2
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(c) Result 3
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(d) Result 4

Figure 3.4: Graphs showing the values of SEt and estimated number of clusters by SDMS
at each time t and detected uncertainty points with PMM model.

We consider the case where the structure is defined as a PMM. We created an artificial
dataset and empirically demonstrated the usefulness of SE.

Considering the case where the mixture structure gradually changed over time, we
generated the dataset such that the probability of the model class gradually changed over
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time from t = τ1 + 1 to t = τ2 as follows:
Prob(K = 2) = 1 if 1 ≤ t ≤ τ1,

P rob(K = 2) = 1− t−τ1
τ2−τ1

, P rob(K = 3) = t−τ1
τ2−τ1

if τ1 + 1 ≤ t ≤ τ2,

P rob(K = 3) = 1 if τ2 ≤ t ≤ T.

.

In this case, the dataset has the following parameters for each cluster:

λ =

{
λ1, λ2 if 0 ≤ t ≤ τ1,

λ1, λ2, λ3 if τ1 + 1 ≤ t ≤ T.
.

We obtained the results shown in Figure 3.4. As can be seen from the figures, it
is difficult to define a true model with the PMM. However, we can see that there are
data pattern where the uncertainty can be detected during the transition period. This
is probably because the difficulty of selecting the true model increases the SE due to
uncertainty.

3.5.4 AR Model

We next consider the case where the time-series dataset followed the AR model AR(K)
which denotes the autoregression model of order K. The order parameter K changed
over time as follows:

Prob(K = 1) = 1 if 1 ≤ t ≤ τ1,

P rob(K = 1) = 1− t−τ1
τ2−τ1

, P rob(K = 3) = t−τ1
τ2−τ1

if τ1 + 1 ≤ t ≤ τ2,

P rob(K = 3) = 1 if τ2 ≤ t ≤ T.

.(3.26)

The dataset was generated as shown in Figure 3.5, for example.
We generated a dataset as in Equation (3.26) and detected the uncertainty of order

selection using the proposed algorithm. We calculated SE for the case of w = 50 and
w = ∞. In the case of w = ∞, we used all past data sequences for NML defined by
Equation (2.7). The values of SEt at each time t and detected first uncertainty points were
calculated as shown in Figure 3.6. As seen in these figures, the SE detected the uncertainty
points, and the uncertainty points appeared earlier than the clear change points.

As for evaluation metrics, we used the benefit and delay scores respectively defined in
Equation (3.24) and Equation (3.25). The results are listed in TABLE 3.2. These results
show that the SE method detected the uncertainty points earlier than the other methods in
terms of both of benefit and delay scores.
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Figure 3.5: Example data sequence generated by Equation (3.26); this figure shows the
value of xt relative to t.

Table 3.2: Benefit and delay scores for algorithms: SE, SDMS, and TBE (AR model)

(a) Window size = 50

Methods Benefit Delay
SE 0.53 46.9

SDMS 0.19 80.9
TBE 0.00 99.0

(b) Window size = ∞

Methods Benefit Delay
SE 0.20 79.1

SDMS 0.00 99.0
TBE 0.00 99.0

3.5.5 Real Data Using Gaussian Mixture Model
We evaluated our method using a real marketing dataset provided by Hakuhodo, Inc.
This dataset consists of customers’ beer purchasing behaviors, and covers beer from six
manufacturers (called A to F here). At each time instant t (t = τ, · · · , T ), the data point
is defined as xi,t ∈ R6 (i = 1, · · · , N), and each data point describes beer consumption
from time t − τ + 1 to t. In this experiment, the data size is N = 1509, window size is
τ = 14, and parameter value is β = 0.03.

Using SE, we detected the uncertainty before model change as shown in Figure 3.7.
For example, SDMS detected the change point at t = 24. In comparison, the SE method
captured the uncertainty at the time instant before the clear change occurred.
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(a) Window size = 50
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(b) Window size = ∞

Figure 3.6: Transition periods are 100 ≤ t ≤ 199. In the change periods, the order of
AR model varies over time as given by Equation (3.26). This graph shows the values
of SEt and estimated numbers of clusters by SDMS at each time t and detected un-
certainty points. We detected uncertainty points at time instants t = 163, 245, 270 for
window size = 50.

Looking at the clustering structure itself at time t = 22 to 24, we detected the uncer-
tainty point at time t = 23 and clear change at time t = 24. As shown in TABLE 3.3, it
can be qualitatively evaluated that the brand B consumption of cluster 2 was subtly lower
at time t = 23, and a collapse of the cluster structure was indicated before the dormant
user cluster (cluster 8) was created at time t = 24.

3.6 Conclusion
We proposed a new index called SE for measuring the uncertainty of model selection.
We derived the features of SE using the probability that it exceeded threshold ϵ and se-
lected the optimal parameter β using this feature. The experimental results showed the
usefulness of the proposed method for two types of data; an artificial dataset and a real
marketing dataset. For the artificial dataset, we showed that SE detected the uncertainty
of a latent structure earlier than other change point detection algorithms such as SDMS
and TBE. The real marketing dataset indicated customers’ beer purchasing behaviors for
a time-series clustering problem. We detected the uncertainty points in terms of the cus-
tomers’ purchase behaviors using SE. A few aspects of this method will be considered in
a future study. In terms of evaluation, we can define data types for which SE is effective
by increasing the variation of the experiments. In addition, the SE method is potentially
applied to other models and real datasets, and the method may be extended for dynamic
selection of algorithms to estimate the optimal parameter.
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Figure 3.7: Values of SEt at each time t and detected uncertainty points for real data.
For example, SDMS detected the change point at t = 24. In comparison, the SE method
captured the change in the uncertainty at a time instant before the clear change occurred.
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Table 3.3: Estimated clusters for time t = 22 to 24.

Time 22

brand clu-1 clu-2 clu-3 clu-4 clu-5 clu-6 clu-7
A 3397 0 16 14 22 6 21
B 12 126 19 7 49 13 36
C 0 0 2328 0 15 10 1815
D 0 0 0 3079 5 7 1551
E 0 0 0 0 559 0 0
F 0 0 0 0 0 2371 0

num 307 368 259 269 15 159 132

Time 23

brand clu-1 clu-2 clu-3 clu-4 clu-5 clu-6 clu-7
A 3336 0 16 12 18 6 25
B 12 119 16 7 41 11 35
C 0 0 2398 0 18 9 1701
D 0 0 0 3171 3 6 1538
E 0 0 0 0 580 0 0
F 0 0 0 0 0 2495 0

num 305 373 257 270 14 158 132

Time 24

brand clu-1 clu-2 clu-3 clu-4 clu-5 clu-6 clu-7 clu-8
A 3782 10 18 9 30 5 23 0
B 0 3118 14 0 26 10 136 0
C 0 0 2492 0 18 6 111 0
D 0 0 0 3296 0 5 1818 0
E 0 0 0 0 638 0 0 0
F 0 0 0 0 0 2466 0 0

num 206 319 248 197 12 156 202 169
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Chapter 4

Sequential MDL Change Statistics

We consider the case where a dataset can be generated by a parametric model. Under this
condition, we propose sequential MDL change statistics (SMCS) for measuring degree of
change of the model and propose a novel algorithm for detecting changes and their early
warning signals. In this chapter, Section 4.1 proposes SMCS. Section 4.2 discusses how
to calculate suitable parameters in SMCS. For calculating suitable parameters, we use the
evaluation of error probability rate which is derived in the same way as with [43]. Lastly,
we give experimental results in Section 4.3. We present works of Section 4.1 to Section
4.3 to BigData 2019 [13].

4.1 Sequential MDL Change Statistics (SMCS)
We consider the index that represents the degree of change in the model. This index is an
extension of the index proposed in [43] to the sequential setting. This index is based on the
concept of SDMS that captures discrete changes, and the degree of change is converted
into a continuous value as statistics. We first propose an index that only detects whether
the model has changed.

Definition 1. We define SMCS Φt as follows:

Φt
def
= min

M
{L

NML
(Xt−1 ·Xt, Zt−1 · Zt;M) + L(M,M)}

− min
M′,M′′

{
L

NML
(Xt−1, Zt−1;M′)

+L
NML

(Xt, Zt;M′′) + L(M′′,M′)
}
− nϵ,

(4.1)

where L
NML

is an NML code length as in Equation (2.3), and ϵ(> 0) is a parameter. M
represents a model defined by the number of clusters K. L(M2,M1) means the code
length required for encoding the model transition from M1 to M2. Zt = (zt1, · · · , ztn)
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is the latent variable, and each zti is the cluster index which the data point xti belongs
to. In calculation of NML code length, Zt is calculated by Xt using clustering algorithm
(e.g. expectationmaximization (EM) algorithm).

SMCS can be regarded as a criterion for judging whether different models should be
defined at times t and t − 1. This enables the quantification of the degree of change in
the model at each time t. However, when it is desired to observe changes in the model in
a time series, it is also conceivable to introduce an index of whether the model from the
previous time has changed. By setting the restriction of M′ = M, the criteria of Equation
(4.1) can be modified as follows:

Φt = {L
NML

(Xt−1 ·Xt, Zt−1 · Zt;M) + L(M,M)}
−min

M′

{
L

NML
(Xt−1, Zt−1;M)

+L
NML

(Xt, Zt;M′) + L(M′,M)
}
− nϵ,

(4.2)

where we can calculate L(M,M) and L(M′,M) using Equation (2.8).
Using the SMCS criterion, we can detect both discrete change points and their early

warning signals. The algorithm is summarized as Algorithm 2. At the discrete change
points, we expect the value of SMCS to be greater than zero (Φt ≥ 0). In addition to
this, as SMCS criterion is a continuous value, we can detect the early warning signals by
observing changes in the value of SMCS itself. As in Equation (4.3) in Algorithm 2, when
the SMCS value is larger than previous times, we can detect the early warning signals of
changes because we can determine that the degree of change is large.

4.2 Calculation of a Suitable Parameter

4.2.1 Error Probability Rate with Definition (4.1)
We evaluate error probabilities when we use SMCS for detecting changes. In this evalu-
ation, we consider the case wherein we use SMCS as in Equation (4.1), and consider the
Type-I/II error probabilities on the hypothesis test below:

H0 : Dt−1 ∼ M∗
0, Dt ∼ M∗

0 (4.3)
H1 : Dt−1 ∼ M∗

1, Dt ∼ M∗
2. (4.4)

Here, Xt, Zt is written as Dt for simplicity. M∗
0,M∗

1, andM∗
2 are unknown models. This

represents the hypothesis test whether the time t is a change point.
First, we consider the Type-I error probability. On the hypothesis (4.3), by defining

the sequential model statistics as Equation (4.1), we can calculate Type-I error probability
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Algorithm 2 Algorithm for detecting discrete change points and their early warning sig-
nals.

Calculate SMCS at each time:
Calculate SMCS score Φt defined by Equation (4.1) or Equation (4.2).
Detect the discrete change points and their early warning signals:

1. Detect the discrete change points with the following conditions:

a1(t) =

{
1 if Φt ≥ 0,

0 otherwise.

Here, we can detect the discrete change points in the case where a1(t) = 1.

2. Detect the early warning signals with the following conditions:

a2(t) =

{
1 if Φt − E[Φt−1

τ+1] ≥ η ∗ Std[Φt−1
τ+1],

0 otherwise,

where Φt−1
τ+1 = Φτ , · · · ,Φt−1, and τ is the time when the most recent change

was detected. E[·] and Std[·] represent an expectation and a standard deviation,
respectively. Here, we can detect the early warning signals in the case where
a2(t) = 1.

as follows:

Type-I error prob. = ProbH0 [Φt ≥ 0]

=

∫
Dt−1,t∈{D:Φt≥0}

p(Dt−1; θ
∗
0,M∗

0)p(Dt; θ
∗
0,M∗

0) dDt−1,t,

where θ∗0 is the true parameter of model M∗
0.

Here, the following theorem is straightforwardly derived for [43]:

Theorem 6. An upper bound on the Type-I error probability is calculated as follows:

Type-I error prob. ≤ exp

{
− n

(
ϵ− log C2n(M∗

0) + L(M∗
0,M∗

0)

n

)}

where C2n(M∗
0) is a normalization term for a model M∗

0 with data size 2n.

Here, the proofs for the bounds can be derived in the same way as in [43]. We describe
the detail proofs in Appendix A.1. As seen in this theorem, we can reduce the Type-I error
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probability by deriving the adjustment parameter ϵ(> 0) under the condition below:

ϵ >
log C2n(M∗

0) + L(M∗
0,M∗

0)

n
.

Next, we consider Type-II error probability. On the hypothesis (4.4), by defining the
sequential model statistics as Equation (4.1), we can calculate the Type-II error probability
as follows:

Type-II error prob.
= ProbH1 [Φt < 0]

=

∫
Dt−1,t∈{D:Φt<0}

p(Dt−1; θ
∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2) dDt−1,t,

where θ∗1, θ
∗
2 are the true parameters of model M∗

1,M∗
2, respectively.

Here, the following theorem is straightforwardly derived for [43]:

Theorem 7. An upper bound on the Type-II error probability is calculated as follows:

Type-II error prob.

< exp

{
− n

(
2α(1− α)dαn(M∗

1,M∗
2)−

αℓn(M∗
1,M∗

2, ϵ)

n

)}
,

where α is the parameter, and dαn(M∗
1,M∗

2) and ℓn(M∗
1,M∗

2, ϵ) is defined as follows:

dαn(M∗
1,M∗

2)
def
=

1

2α(1− α)
(1− δαn(M∗

1,M∗
2)), (4.5)

δαn(M∗
1,M∗

2)
def
=

(∫
(p(Dt−1; θ

∗
1 ,M∗

1)p(Dt; θ
∗
2 ,M∗

2))
1−α × p̃

NML
(Dt−1,t)

α dDt−1,t

) 1
n

,(4.6)

ℓn(M∗
1,M∗

2, ϵ)
def
= log Cn(M∗

1) + log Cn(M∗
2) + L(M∗

2,M∗
1) + log C̃2n + nϵ. (4.7)

Here, dαn(M∗
1,M∗

2) is the α-divergence between distribution p(Dt−1; θ
∗
1,M∗

1) ·
p(Dt; θ

∗
2,M∗

2) and p̃
NML

(Dt−1,t), and p̃
NML

(Dt−1,t), C̃2n are defined as follows:

p̃
NML

(Dt−1,t)
def
=

maxM e−L
NML

(Dt−1,t;M)−L(M,M)

C̃2n
(4.8)

C̃2n
def
=

∫
Dt−1,t

max
M

e−L
NML

(Dt−1,t;M)−L(M,M). (4.9)

Here, the proofs for the bounds can be derived in the same way as in [43]. We describe
the detail proofs in Appendix A.2. As seen in this theorem, we can reduce the Type-II
error probability under the condition below:

2α(1− α)dαn(M∗
1,M∗

2) >
αℓn(M∗

1,M∗
2, ϵ)

n
. (4.10)

As can be seen from Theorems 6 and 7, the sensitivity of the change point detection
using SMCS can be controlled by setting the value of the adjustment parameter ϵ.

44



4. Sequential MDL Change Statistics

4.2.2 Calculation of a Suitable Parameter ϵ

We consider how to set the parameter ϵ. In practical applications, it is important to define a
criterion so as to suppress the error described above to a certain extent, in order to prevent
false detection. In this regard, we make conditions that the error probability is less than a
value δ. We will discuss Type-I error probability in consideration of lowering false alarms
so that there are not too many change detection points.

To make Type-I error probability less than a value δ, we aim to make an upper bound
on Type-I error probability less than the value δ as follows:

exp

{
− n

(
ϵ− log C2n(M∗

0) + L(M∗
0,M∗

0)

n

)}
≤ δ. (4.11)

This condition (4.11) can be expressed again as follows:

exp

{
− n

(
ϵ− log C2n(M∗

0) + L(M∗
0,M∗

0)

n

)}
≤ δ

⇔ ϵ ≥ log C2n(M∗
0) + L(M∗

0,M∗
0)− log δ

n
. (4.12)

By setting δ in the range of 0 < δ < 1, the range of the adjustment parameter ϵ can be
lower bounded by Equation (4.12), and the sensitivity of change detection can be thereby
controlled.

4.3 Experimental Results

In this section, we present the experimental results of SMCS for detecting change points
and their early warning signals. In the experiments, we use SMCS defined by Equation
(4.2).

4.3.1 Deciding the Suitable Parameter ϵ

We simulates the suitable value of the adjustment parameter ϵ as in Equation
(4.12). We simulate using the following conditions: the total number of dataset =
1000, the number of clusters (Model class M∗

0) = 2. We set δ in the range of 10−10 ≤
δ ≤ 10−1 and investigate the change in ϵ. Here, we calculate adjustment parameter ϵ
only from the viewpoint of the Type-I error probability. The result of this simulation is
depicted in Figure 4.1. In the experiments, we calculate the suitable parameter ϵ at each
time t assuming that M∗

0 = M̂t−1, where M̂t−1 is the estimated model at time t− 1.
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Figure 4.1: Suitable parameter ϵ related to
threshold δ (in terms of the Type-I error
probability).
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(a) Dataset 0.
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(b) Dataset 3.

Figure 4.3: Experiment for the data sequence using the GMM model. The true discrete
change point is t = 20, and the centers of the clusters abruptly change as with Equation
(4.13). This graph depicts the values of Φt and the estimated number of clusters at each
time t.

4.3.2 GMM for Artificial Dataset

Here, we conducted an experiment using a synthetic dataset of the GMM. We created a
synthetic data sequence and evaluated the usefulness of the proposed algorithm. In GMM,
we consider the number of clusters as a model and evaluate its changes. As our algorithm
can detect discrete change points and their early warning signals, we demonstrated the
algorithm with two change patterns: abrupt change and gradual change.

Because the SDMS [9] and tracking the best expert (TBE) [8] methods can also be
used to define model selection as the problem for deciding the number of clusters of
GMM, we introduce these two methods as comparison targets for detecting a discrete
change. In addition to these methods, we introduce structural entropy (SE) [11] as com-
parison targets for detecting the early warning signals.
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Table 4.1: TPR and FAR scores for algorithms: SMCS, SDMS, and TBE (GMM).

Methods TPR FAR
SMCS (a1) 0.3±0.5 0.02±0.01

SMCS (a1 ∪ a2) 1.0±0.0 0.02±0.02
SDMS 1.0±0.0 0.00±0.00

TBE 1.0±0.0 0.03±0.00

Abrupt Change Pattern

Here, we created a dataset that changes abruptly in a time series. We define a “change”
as a change in the number of clusters, where the center of the generated cluster abruptly
changes as follows: {

K∗ = 2, µ = (µ1, µ2) if 1 ≤ t ≤ τ1,

K∗ = 3, µ = (µ1, µ2, µ3) if τ1 + 1 ≤ t ≤ T.
(4.13)

We aimed to detect the discrete change points using our proposed algorithm.
We generated a dataset that satisfied Equation (4.13) and detected discrete changes

with the a1(t) in Algorithm 2. The values of Φt at each time t and the discrete change
points detected were calculated as depicted in Figure 4.3.

In addition, we calculated the “true positive rate (TPR)” and “false alarm rate (FAR)”
scores to evaluate whether the algorithm could detect the discrete changes. These scores
are defined in Equation (4.14) and Equation (4.15), respectively:

TPR
def
=

{
1 if t̂ = t∗,

0 otherwise.
, (4.14)

FAR
def
=

|{t̂|t̂ = t∗}|
|not change point|

, (4.15)

where t̂ is the detected change point.
The result is depicted in Figure 4.3. We found that the number of clusters changed at

time t = 20 as in Figure 4.3(a). In Figure 4.3(b), the change point is not clearly detected,
but the change statistic exhibits a high value. It can be understood that the change degree
is large. Thus, by continuously grasping the degree of change, it is possible to recognize
the degree of changes even when a discrete change cannot be detected.

In the evaluation, we calculated how well the proposed method worked in comparison
with change point detection algorithms, such as SDMS and TBE. The results are listed in
Table 4.1. We generated 10 different datasets for the same model and detected the early

47



4. Sequential MDL Change Statistics

warning signals for each. The values in the table are the average and standard deviation
values of TPR and FAR. These results demonstrate that the proposed algorithm detected
discrete changes. However, by introducing the adjustment parameter ϵ, false positives
were suppressed, but as seen in Figure 4.3(b), changes were judged more severely. For
this reason, for some cases it was judged that there was no change (see SMCS (a1)). Even
in cases where there was no change (7 out of 10 cases), the value of Φt changes abruptly
as depicted in Figure 4.3(b), which can be detected as an early warning signal of the
change. Therefore, it can be considered that the feature of the change was captured even
in a discrete change by using both a1(t) and a2(t) of Algorithm 2 as shown in Table 4.1
with SMCS (a1 ∪ a2).

Gradual Change Pattern

Here, we created a dataset that changes gradually in a time series.
K∗ = 2, µ = (µ1, µ2) if 1 ≤ t ≤ τ1,

K∗ = 3, µ = (µ1, µ2, u(t)) if τ1 + 1 ≤ t ≤ τ2,

K∗ = 3, µ = (µ1, µ2, µ3) if τ2 + 1 ≤ t ≤ T,

(4.16)

where the function u(t) is defined as follows:

u(t)
def
= (1−∆tα) · µ2 +∆tα · µ3,

∆t
def
=

t− τ1
τ2 − τ1

,

where α is a parameter that determines the characteristics of the change as shown in
Figure 4.2. An example of the time series data with gradual change is shown in Figure
4.4.

We generated a dataset as in Equation (4.16) and detected discrete changes with a1(t),
and detected their early warning signals with a2(t) in Algorithm 2 (SMCS). The values of
Φt at each time t and the early warning signals detected were shown in Figure 4.5. In this
figure, the discrete change points detected by SMCS algorithm also plotted. A discrete
change point was defined as the point for which Φt ≥ 0. As seen in this figure, SMCS
detected the discrete change points and their early warning signals.

In addition, we calculated the benefit, delay, and false alarm rate (FAR) scores to eval-
uate whether the algorithm detected the early warning signals. As it is difficult to define
true discrete change points, we only evaluate how early we detected for the early warn-
ing signals. These scores are defined in Equation (4.17), Equation (4.18), and Equation
(4.19), respectively:

benefit
def
=

{
1− (t̂− t∗)/U if t∗ ≤ t̂ ≤ t∗ + U,

0 otherwise.
, (4.17)
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Table 4.2: Benefit, delay, and FAR scores for algorithms: SMCS, SE, SDMS, and TBE
(GMM). In this experiment, we set the parameter α = 1.0.

Methods benefit delay FAR
SMCS 0.840±0.062 3.200±1.249 0.005±0.014

SE 0.675±0.025 6.500±0.500 0.000±0.000
SDMS 0.550±0.039 9.000±0.775 0.000±0.000

TBE 0.445±0.042 11.100±0.831 0.000±0.000

delay
def
=

{
t̂− t∗ if t̂ ∈ Transition period,
T otherwise.

, (4.18)

FAR
def
=

|{t̂|t̂ ∈ not transition period}|
|not transition period|

, (4.19)

where t̂ is the first point where the algorithm detects the early warning signals in the
transition period, or t̂ is the detected change point at a time other than the transition
period. T is the length of transition period.

We evaluated how well the proposed method worked in comparison with change point
detection algorithms, such as SE, SDMS, and TBE. The results are listed in Table 4.2. We
generated 10 different datasets for the same model and made alarms for the early warning
signals for each. The values in the table are the average and standard deviation values of
benefit, delay, and FAR. These results demonstrate that Algorithm 2 (SMCS) can detect
the early warning signals faster than the other methods in terms of both of benefit and
delay scores.

Next, we evaluated the benefit score with various parameters α. We changed α as
[0.2, 0.5, 1.0, 2.0], generated the dataset using these parameters, and made alarms for the
early warning signals. The result is presented in Table 4.3. As shown in this result, the
early warning signal points shift backward as α increases, and the early warning signals
can be detected stably regardless of the value of α by using SMCS.

4.3.3 Real Marketing Dataset
Here, we used a real marketing dataset, which has a time series data of consumers’ beer
purchasing behaviors, and evaluated the usefulness of our algorithm qualitatively. This
dataset has features of 540(= n) consumers and 4(= m) type of beer (we denote these
types as A to D), and tracks all purchasing behaviors of the consumers for approximately
three months. At each time t(t = 0, · · · , T − τ), the data points are defined as xi,t ∈
Rm (i = 1, · · · , n), and each data point describes the beer consumption from time t to
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Figure 4.4: An example of time series data with gradual change.

t + τ − 1. We applied our method to the dataset with the parameter τ = 14, T = 92 and
a range of time from Nov. 14th to Jan. 31st.

Using SMCS, we detected the discrete change points in time t = 2 (Nov. 16th), t = 6
(Nov. 20th), and t = 69 (Jan. 22nd). By observing changes in SMCS as a whole, it
can be seen that demand changed relatively frequently in the early days (November), and
settled toward the end of the year. On January 22nd, the demand changed significantly
and the number of clusters was increasing. At this time, as presented in Table 4.4, it can
be considered that the number of users who purchased beer of types C and D at the same
time was increasing to form a new cluster. The gradual change did not occur clearly;
however, when observing time t = 17 (Dec. 1st), it seems that SMCS value increased
slightly. It can be considered that the demand at this time needs to be carefully observed
in addition to the change at the beginning of December, because the degree of change was
a little greater due to the demand since the beginning of December. Qualitatively, the time
point where SMCS value increased slightly may be considered as a change in the market
accompanying year-end demand.
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(a) Change pattern with α = 0.2.
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(b) Change pattern with α = 0.5.

0 5 10 15 20 25 30 35 40
Time

2.0

2.2

2.4

2.6

2.8

3.0

Es
tim
at
ed
 #
 o
f c
lu
st
er
s

True # of clusters
Estimated # of clusters

 500

 400

 300

 200

 100

0

100

200

SM
CS

SMCS
Detected signals

(c) Change pattern with α = 1.0.
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(d) Change pattern with α = 2.0.

Figure 4.5: Experiment for the data sequence with multiple parameters α using the GMM
model. The transition period is 10 ≤ t ≤ 29. The centers of the clusters gradually change
over time as in Equation (4.16). This graph depicts the values of Φt and estimated number
of clusters at each time t. For example, in Figure 4.5(c), we detected the early warning
signals at time t = 13 and find that the number of clusters changes at time t = 24. As
seen in these figures, the smaller the α, the faster the change, and the algorithm can detect
the early warning signals and the discrete change points.

4.3.4 Household Consumption Dataset

HWe employed the household consumption dataset, which has a time series data of power
usage for a house, and evaluated the usefulness of our algorithm qualitatively. This dataset
is available at [4]. There is one week’s worth of power usage per hour. There are three
types of power usage; kitchen, laundry room, and air-conditioner (see in detail at [4]).
The dataset has all consumption behaviors for approximately three years. At each time
t(t = 0, · · · , T − τ), the data points are defined as xi,t ∈ R3 (i = 1, · · · , n). Each data
point expresses the electric consumption from time t to t + τ − 1 (Here, the unit time is
one week.). We applied our method to the dataset with the parameter τ = 3 (there are
504(= n) data points at each time) and a range of time from Jan. 1st, 2007 to Dec. 31st,
2009.
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Table 4.3: Benefit score for algorithms: SMCS, SE, SDMS, and TBE (GMM). In this
experiment, we generated the dataset with various α.

Methods α =0.2 α =0.5 α =1.0 α =2.0
SMCS 1.000±0.000 1.000±0.000 0.840±0.062 0.640±0.183

SE 0.900±0.300 0.905±0.035 0.675±0.025 0.430±0.024
SDMS 1.000±0.000 0.800±0.032 0.550±0.039 0.315±0.032

TBE 0.920±0.024 0.700±0.039 0.445±0.042 0.205±0.052
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Figure 4.6: SMCS result for the real mar-
keting dataset.
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Figure 4.7: SMCS result for the house-
hold consumption dataset.

Using SMCS, we detected the discrete change points in time t = 2 (Feb. 4th, 2007),
t = 26 (July 22nd, 2007), t = 79 (July 27th, 2008), and t = 136 (Aug. 30th, 2009).
However, as SMCS values were not stably low, model selection at each time was difficult.
Table 4.5 shows the cluster at time t = 136 when the model change was detected. It was
thought that a new cluster was formed because there were many times when power was
hardly used in the house. Looking at the detected warning signals, at the time t = 90
(Oct. 12th, 2008) for example, the times in which only air conditioning was used slightly
increased in comparison with the previous time. From this result, in addition to detecting
discrete changes, we were able to discover qualitatively meaningful times by observing
early warning signals made by SMCS.

4.4 Conclusion

We have proposed SMCS, a unifying framework for detecting model changes and their
early warning signals. In detecting the discrete change points, we have intended to pro-
duce reliable and stable alarms. For this purpose, we have evaluated the error probability
rates and proposed a method to determine a suitable parameter. In our experiment, we
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Table 4.4: Estimated clusters for time t = 68 to 69 (Real marketing dataset).

Time 68 (Jan. 21st)
type clu-1 clu-2 clu-3 clu-4

A 2230 0 0 0
B 2 2308 0 0
C 13 20 3215 0
D 12 1 5 84

num 105 84 198 153

Time 69 (Jan. 22nd)
type clu-1 clu-2 clu-3 clu-4 clu-5

A 2370 1 0 0 0
B 0 2187 0 0 0
C 6 26 346 0 2500
D 11 2 0 2848 1228

num 91 97 214 90 48

have simulated the suitable value of the adjustment parameter to produce a reliable detec-
tion alarm. The results of our evaluation have demonstrated the usefulness of the proposed
method using an artificial dataset, real marketing dataset, and household consumption
dataset. For the artificial dataset, we have demonstrated that the proposed SCMS method
is able to simultaneously detect both discrete change points and their early warning sig-
nals. For the real marketing dataset and the household consumption dataset, we were able
to detect meaningful change points, and some early warning signals. There are a num-
ber of issues regarding this SMCS method that will be considered in a future study. In
terms of evaluation, we can define data types for which SMCS is effective by increasing
the variation of the experiments. In addition, this method is potentially applied to other
probability models (e.g., other mixture models), we consider an index that considers not
only the previous time but also multiple times, and so on.
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Table 4.5: Estimated clusters for time t = 135 to 136 (Household consumption dataset).

Time 135 (Aug. 23rd, 2009)
type clu-1 clu-2 clu-3

Type-1 223 0 0
Type-2 23 37 0
Type-3 318 183 86

num 82 313 109

Time 136 (Aug. 30th, 2009)
type clu-1 clu-2 clu-3 clu-4

Type-1 217 0 0 0
Type-2 17 33 0 4
Type-3 336 193 203 0

num 78 293 98 35
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Chapter 5

Kernel Complexity

We consider the case where a dataset cannot be defined by a parametric model. Under this
condition, we define a new index characterizing a structure of a nonparametric distribution
and propose a method to detect its changes over time. This chapter, Section 5.1 expresses
kernel complexity (KC) which is a new index for structural information and its nature;
Section 5.2 discusses an algorithm for detecting changes and their early warning signals
using KC. Lastly, we discuss experimental results in Section 5.3. We publish works of
Section 5.1, Section 5.2, and Section 5.3 in preprint [14].

5.1 Kernel Complexity (KC)

5.1.1 Problem Setting

We consider a situation in which the distribution of the dataset Xt, which is observed at
each time t, gradually changes over time. Each dataset Xt can be expressed as Xt = xn =
(x1, · · · ,xn)

⊤ ∈ Rn×m, which consists of n data points of dimension m. We consider
a situation where the distribution eof this dataset gradually changes over time. We aim
to detect these changes. For this purpose, we think of the variation of the distribution
as a sort of complexity and detect its changes. we measure the density variation as a
complexity and detect change by detecting the change in density.

In this study, Xt is considered to follow a complex distribution. Thus, we aim to
define the structure of the dataset without using a specific parametric distribution. In this
section, for brevity, we express Xt as X = xn = (x1, · · · ,xn)

⊤ ∈ Rn×m. We do not use
a specific parametric distribution, but rather we use the following kernel density:

p(x;h) =
1

n

n∑
j=1

K (x− xj;h) ,

55



5. Kernel Complexity

where K(·) is the kernel function. Specially we use the following Gaussian kernel:

K(x;h) =
1

(2πh2)m/2
exp

{
−||x||2

2h2

}
.

5.1.2 Concept of the Proposed Method
Here we describe the concept of the proposed method. In order to measure the degree
of concentration of a dataset at each time, we consider the amount of information con-
tained in each data point included in the dataset. For example, we consider the density
distribution in Figure 5.1(a). The density distribution indicated by the solid blue line is
expected to be characterized by two peaks of density. Conversely, the structure of the
density distribution indicated by the dotted orange lines can be characterized by extensive
data points. To understand the structure of the density distribution in the figure, an index
which defines spread of data would be useful to define a distribution. Then, we derive an
index of the structural information termed KC.

We measure the amount of information of the data in terms of MDL princilple as
described in Chapter 2. In our setting, we employ Gaussian kernel density as a nonpara-
metric model of the dataset. We then calculate the amount of information in terms of the
NML code length of data associated with the class of Gaussian kernel densities.

The main process for defining KC can be summarized as follows:

1. We consider a subset of the dataset which defined by parameter D.

2. We calculate the amount of information for the subset with NML code length.

3. We measure the complexity of the distribution in terms of how the amount of infor-
mation changes with respect to D.

5.1.3 Kernel Complexity
We propose an index that defines the complexity of a distribution in terms of its density.
The index is illustrated in Figure 5.1b. We hypothesize that KC is relatively small when
data points are densely distributed (solid blue line). In contrast, KC is relatively large
when data points are sparsely distributed (solid orange line). In Figure 5.1b, the amount
of information (denoted by I) increases with D. When the amount of information is
biased for the data points in a specific dense area, I is initially considered to increase
significantly as D increases, after which the change becomes gradual (see the blue line
in Figure 5.1b). In comparison, when the amount of information varies throughout the
dataset, I is considered to gradually increase as D increases (see the orange line in Figure
5.1b). In this way, this index can be understood as expressing the bias of the amount of
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(a) Diagrammatic illustration of distribution
complexity.

(b) Plot of the amount of information (I(D))
versus the parameter D.

Figure 5.1: Visualization of the concept of KC.

information possessed by each data point. By using the Gini coefficient [18], which is
used to express the extent to which data is biased in economics etc., this index can be
formulated as follows:

KC
def
= 1−

∫
D I(D) dD − 1

2
∆L ·∆D − L0 ·∆D

1
2
∆L ·∆D

, (5.1)

where I(D) is a function that defines the amount of information with D.
As the integral in Equation (5.1) is difficult to calculate using actual data, we approx-

imate it as follows: ∫
D
I(D) dD ≈

∑
ℓp≤Dmax

(ℓp − ℓp−1)I(ℓp),

where ℓp is the p-th numerical value with D at equal intervals.

5.1.4 NML Code Length associated with Kernel Density
In this section, we describe the NML code length for kernel density.
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NML Code Length associated with Kernel Density

Let an observed data sequence be xn = (x1, · · · ,xn), xi ∈ Rm. We use kernel density
for a given dataset as follows:

f(x;h) =
1

n

n∑
j=1

K (x− xj;h) ,

where the function K(·) is a kernel function. In the following discussion, we use the
Gaussian kernel K(x;h) = 1/(2πh2)m/2 exp{−||x||2/2h2}. Aiming to capture the struc-
tural changes, we consider calculating the NML code length of the subset defined below:

Ai =
{
j
∣∣∣ ||xi − xj||2 ≤ (1 + γ)D

}
(i = 1, · · · , n), (5.2)

B =

{
i
∣∣∣ 1

N(Ai)

∑
j∈Ai

||xi − xj||2 ≤ D

}
, (5.3)

where γ(> 0) is a parameter. For this subset, we can derive the following theorem.

Theorem 8. The NML codelength for the subprobability disribution associated with ker-
nel density is caluclated as follows:

nm

2
log

{∑
i∈B

1

N(Ai)

∑
j∈Ai

||xi − xj||2
}

−
∑
i∈B

(
m

m+ 4
log n−m log ϵ

)

+nm log

(
n

1
m+4

ϵ

)
+ log log

(
2πD · n

2
m+4

mϵ2

)
+

nm

2
log(π)− log Γ

(nm
2

)
.

(5.4)

Hereinafter, this NML code length is expressed as L
K−NML

(xn; γ,D).

There are two aspects of the proof. The first is that we introduce a subprobability
distribution with kernel density. The second is that we propose a method for calculating
the NML for the subprobability distribution of kernel density.

Proof. First, we consider a bandwidth estimator with the kernel density function. We
derive the log-likelihood as follows:

log f(xn;h) = −
∑
i∈B

log
(
N(Ai)(2πh

2)
m
2

)
+
∑
i∈B

log
∑
j∈Ai

exp

{
− 1

2h2
||xi − xj||2

}
,
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where N(Ai) and N(B) are the number of Ai and B sets, respectively. Then, using the
inequality log

(
1
n

∑n
i=1 xi

)
≥ 1

n

∑n
i=1 log xi, the lower bound of this log-likelihood can

be calculated as follows:

log f(xn;h) = −
∑
i∈B

log
(
(2πh2)

m
2

)
+
∑
i∈B

log

(
1

N(Ai)

∑
j∈Ai

exp

{
− 1

2h2
||xi − xj||2

})

≥ −
∑
i∈B

log
(
(2πh2)

m
2

)
−
∑
i∈B

1

N(Ai)

∑
j∈Ai

1

2h2
||xi − xj||2. (5.5)

The bandwidth h of a kernel density was optimized to be h = O(n−1/(m+4)) in the past
work (e.g., refer to [36]) so that the generalization error for the maximum likelihood
estimator for h is minimal. When considering the NML code length associated with the
kernel, we set a constraint of h ≥ ϵ · n−1/(m+4)/

√
2π using a positive constant ϵ. Under

this condition, Equation (5.5) can be lower-bounded as follows:

Equation(5.5)

= −N(B) log
(
(2πh2)

m
2

)
−
∑
i∈B

1

N(Ai)

∑
j∈Ai

1

2h2
||xi − xj||2

= −N(B) log

((
2πh2 · n

2
m+4 · 1

ϵ2

)m
2

)

−
∑
i∈B

{
1

N(Ai)

∑
j∈Ai

1

2h2
||xi − xj||2 −

m

m+ 4
log n+m log ϵ

}

≥ −n log

((
2πh2 · n

2
m+4 · 1

ϵ2

)m
2

)

−
∑
i∈B

{
1

N(Ai)

∑
j∈Ai

1

2h2
||xi − xj||2 −

m

m+ 4
log n+m log ϵ

}
=: L̃(xn;h). (5.6)

Then, we calculate the estimator h̃ such that L̃(xn;h) is maximized as follows:

h̃(xn) =

√
1

nm

∑
i∈B

1

N(Ai)

∑
j∈Ai

||xi − xj||2.

We define the distribution f̃ as follows:

f̃(xn;h)
def
= exp

{
L̃(xn;h)

}
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=
1(

2πh2 · n
2

m+4 · 1
ϵ2

)nm
2

exp

{
− 1

2h2

∑
i∈B

1

N(Ai)

∑
j∈Ai

||xi − xj||2
}

× exp

{∑
i∈B

(
m

m+ 4
log n−m log ϵ

)}
.

Using this equation and Equation (5.6), we find that the distribution f̃ is a subprobability
distribution by the following formula:∫

f̃(xn;h)dxn ≤
∫

f(xn;h)dxn = 1.

Then, the NML distribution of f̃ can be calculated as follows:

f̃
NML

(xn)
def
=

f̃(xn; h̃(xn))

C
,

C def
=

∫
f̃(yn; h̃(yn))dyn,

where C is the normalization term of the NML distribution. In general, the normalization
term cannot be calculated in a straightforward manner; instead, we calculate this term
using the method described in Section 2.1.2. We can decompose f̃(xn;h) as follows:

f̃(xn;h) dxn = f̄(z|h̃) · g(h̃;h) dz dh̃,

where the function g is the gamma distribution with the shape parameter k = nm/2 and
scale parameter θ = 2h2/nm:

g(h̃;h) =
2h̃

Γ
(
nm
2

) (
2h2

nm

)nm
2

(
h̃2
)nm

2
−1

exp

{
− h̃2

2h2/nm

}
.

Then, we can define

g(h̃)
def
= g(h̃; h̃) =

2 exp
(
−nm

2

)
Γ
(
nm
2

) (
2

nm

)nm
2

· 1
h̃
.

Then, we can calculate the normalization term C for integrating with respect to h̃ as fol-
lows:

C =

∫
Y

f̃(yn; h̃(yn))dyn

=

∫ √
D/m

ϵ·n−1/(m+4)/
√
2π

g(h̃)dh̃
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=
2 exp

(
−nm

2

)
Γ
(
nm
2

) (
2

nm

)nm
2

· log

√2πD · n
2

m+4

mϵ2

 ,

where we define the range of h̃ as Y = [1/
√
2π,
√

D/m]. The upper bound on h̃ is
calculated as follows:

h̃(xn) =

√
1

nm

∑
i∈B

1

N(Ai)

∑
j∈Ai

||xi − xj||2

≤
√

1

nm

∑
i∈B

D

≤
√

D

m
.

Finally, we can calculate the the NML code length using the subprobability distribu-
tion f̃ as follows:

− log f̃
NML

(xn)

= − log

exp(−nm
2
) · exp

{∑
i∈B
(

m
m+4

log n−m log ϵ
)}(

2πh̃2 · n
2

m+4 · 1
ϵ2

)nm
2


+ log

 2 exp
(
−nm

2

)
Γ
(
nm
2

) (
2

nm

)nm
2

· log

√2πD · n
2

m+4

mϵ2


=

nm

2
log

{∑
i∈B

1

N(Ai)

∑
j∈Ai

||xi − xj||2
}

−
∑
i∈B

(
m

m+ 4
log n−m log ϵ

)

+nm log

(
n

1
m+4

ϵ

)
+ log log

(
2πD · n

2
m+4

mϵ2

)
+

nm

2
log(π)− log Γ

(nm
2

)
.

5.1.5 Kernel Complexity with the NML Code Length associated with
the Kernel Density

We define KC by using the NML code length associated with the kernel density, which
is calculated in Section 5.1.4. The definition of KC based on the NML code length is as
follows:

KC
K−NML

def
= 1−

∫
D L

K−NML
(xn; γ,D) dD − 1

2
∆L ·∆D − L0 ·∆D

1
2
∆L ·∆D

. (5.7)
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Let us discuss the theoretical nature of the NML code length L
K−NML

(xn; γ,D). This
NML code length contains the hyperparameters γ and D, and we evaluate the theoretical
properties by tracking the change in the NML by D for fixed γ. First, we consider the
case in which D changes by ∆D The amount of change in the NML code length can be
approximated as follows:

∆L = L
K−NML

(xn; γ,D +∆D)− L
K−NML

(xn; γ,D)

≈ nm

2
· 1

1− δ
· N(∆B(D))

N(B(D))
, (5.8)

where N(B(D)) is the number of B sets in Equation (5.3), ∆B(D) is the increment of
set B when D changes by ∆D. Additionally, we define a parameter δ, 0 < δ < 1. The
calculation details are presented as follows:

Proof. We describe the approximation of ∆L discussed in Section 5.1.3. First, we can
approximate ∆L as follows:

∆L = L
K−NML

(xn; γ,D +∆D)− L
K−NML

(xn; γ,D)

≈ nm

2
log

{ ∑
i∈B(D)

1

N(Ai(D))

∑
j∈Ai(D)

||xi − xj||2 +
∑

i∈∆B(D)

D

}

−nm

2
log

{ ∑
i∈B(D)

1

N(Ai(D))

∑
j∈Ai(D)

||xi − xj||2
}
, (5.9)

where N(Ai(D)) and N(B(D)) are the number of Ai and B sets in Equation (5.3), re-
spectively, and ∆B(D) is the increment of B when changing D by ∆D. As we assume
that ∆D is sufficiently small, we can naturally assume that∑

i∈∆B(D)

D ≪
∑

i∈B(D)

1

N(Ai(D))

∑
j∈Ai(D)

||xi − xj||2.

Using this assumption, we approximate Equation (5.9) as follows:

Equation(5.9) ≈ nm

2

∑
i∈∆B(D) D∑

i∈B(D)
1

N(Ai(D))

∑
j∈Ai(D) ||xi − xj||2

. (5.10)

Using a parameter δ, 0 < δ < 1, we can rewrite this equation as follows:∑
i∈B(D)

1

N(Ai(D))

∑
j∈Ai(D)

||xi − xj||2 = N(B(D)) · (1− δ)D. (5.11)
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Using this formula, we can calculate Equation (5.10) as follows:

Equation (5.10) =
nm

2

∑
i∈∆B(D) D

N(B(D)) · (1− δ)D

=
nm

2
· 1

1− δ
· N(∆B(D))

N(B(D))
. (5.12)

Equation (5.8) is proportional to the rate of increase in B subject to the likelihood
calculation. As the value of ∆L indicates the extent to which the data points subject
to the code length increase as D increases, the width of the increase in the amount of
information can be regarded as the amount of information of the newly added data points.

5.1.6 Property of KC
We calculated the value of KC for several generated datasets to evaluate the nature of KC.
Specifically, we evaluated the behavior of the values of KC with respect to the number of
sets (clusters in a parametric model) in the dataset and the behavior of the values of KC
with respect to the extent of the dataset.

Aggregated Dataset

As a representative of a mixed dataset, we generated an artificial dataset, which we aggre-
gated into several chunks we refer to as clusters. We used the same artificial dataset and
performed the aggregation a few times to obtain a different number of clusters, and ex-
perimented with the characteristics of the KC values for each of the datasets we produced
in this way. The different aggregations we generated are shown in Figure 5.2. Using this
dataset, we calculated the value of KC, which is plotted in Figure 5.3 as a function of
the number of clusters. This result indicates that KC increases as the number of clusters
increases. Thus, from the viewpoint of data aggregation, KC is considered to capture the
characteristics of the structure of the distribution. In addition to these results, we also
experimented with the behavior of KC by changing the dimensions of the dataset. The
results were shown in Figure 5.4(a) and Figure 5.4(b). These results showed that KC in-
creases as the number of clusters increases, and demonstrated the ability of KC to grasp
the structural information of data aggregation.

Circular Dataset

As nonparametric data cannot be expressed as a simple block, we investigated the charac-
teristics of KC of a dataset of which the data are aggregated into circular chunks (clusters).
As before, we varied the number of clusters, and investigated the extent to which the KC
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Figure 5.2: Dataset aggregated into sev-
eral chunks, which we refer to as clusters.

Figure 5.3: Value of KC as a function of
the number of data chunks (clusters) in the
dataset.

(a) Results for the dataset with a dimension of
3.

(b) Results for the dataset with a dimension of
4.

Figure 5.4: Value of KC for the dataset aggregated into several chunks (clusters) with a
different number of dimensions.

value depends on the number of clusters. The dataset we generated is visualized in Figure
5.5. Using this dataset, the calculated values of KC are plotted in Figure 5.6 as a func-
tion of the number of circles (i.e., clusters). These results show that KC increases as the
number of clusters increases; hence, KC is considered to capture the characteristics of the
structure of the distribution in terms of the number of clusters.

5.2 Algorithm for Detecting Early Warning Signals of
Changes using KC

Based on the above-mentioned findings, we proceeded to apply KC to further investigate
its ability to detect structural changes in a dataset. A dataset that undergoes structural
change first exhibits minor movement, after which a large change in the structure be-
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Figure 5.5: Circular dataset with various
numbers of clusters.

Figure 5.6: Value of KC for the circular
dataset with aggregations into a different
number of clusters.

comes visible. Because KC is an index for evaluating the complexity of the distribution
of a dataset, it can be considered as an index of increasing complexity during substantial
structural change. The algorithm we developed to compute the KC index for structural
change detection is presented in Algorithm 3. For simplicity, we express the dataset as
Xt ∈ Rn×m and express KC

K−NML
(Xt) as KCt.

Algorithm 3 Algorithm for structural change detection.
Calculate KC:
Calculate KC score defined by Equation (5.7) as follows:

KC
K−NML

(Xt) = 1−
∫
D L

K−NML
(Xt; γ,D) dD − 1

2
∆L ·∆D − L0 ·∆D

1
2
∆L ·∆D

.

Detection of changes:
Detect changes with following conditions:

a(t) =

{
1 if |KCt − E[KCt−1]| > η ∗ Std[KCt−1],

0 otherwise.

We can detect changes in the case where a(t) = 1.

5.3 Experimental Results

We empirically demonstrated the usefulness of the algorithm using both artificial and
practical datasets.

65



5. Kernel Complexity

5.3.1 Artificial Dataset for Change Detection

Circular Dataset

We generated an artificial dataset distributed on the circumferences of several circles and
considered the case in which the number of circles gradually changes over time. The
parameters of this dataset are defined as follows:

# of circles = K, r = (r1, r2) if 1 ≤ t ≤ τ1,

# of circles = K ′, r = (r1, r2, u(t)) if τ1 + 1 ≤ t ≤ τ2,

# of circles = K ′, r = (r1, r2, r3) if τ2 + 1 ≤ t ≤ T,

(5.13)

where u(t) =
(τ2 − t)r2 + (t− τ1)r3

τ2 − τ1
,

where the parameter r denotes the radius of each circle. An example of the generated
dataset was shown in Figure 5.7.

Figure 5.7: Dataset aggregated into circu-
lar data chunks over a period of time.

Figure 5.8: Calculated value of KC of the
dataset aggregated into different circular
chunks over time.

We found the points of change by using the index in Algorithm 3. The results were
shown in Figure 5.8, which shows that KC is able to detect a transition in the structure of
the data over time and this was interpreted as an increase in the complexity of the dataset.

In addition to the above qualitative interpretation, we calculated the benefit, delay,
FAR, and AUC scores to evaluate the extent to which the algorithm detected changes.
The benefit, delay, FAR, and (area under the curve) AUC scores, respectively, are defined
as follows:

benefit
def
=

{
1− (t̂− t∗)/U if t∗ ≤ t̂ ≤ t∗ + U,

0 otherwise;
(5.14)

delay
def
=

{
t̂− t∗ if t̂ ∈ Transition period,
None otherwise;

(5.15)

66



5. Kernel Complexity

FAR
def
=

#{t̂ /∈ Transition period}
#{t /∈ Transition period}

, (5.16)

AUC
def
= Area under the curve created by plotting the benefit against the FPR.(5.17)

where t̂ is the first point at which the algorithm detects a change in the transition period
or the point at which the algorithm detects a change in any other period. In this study,
the AUC was calculated in relation to the benefit. Using these evaluation scores, we
evaluated the proposed algorithm in comparison with the density ratio estimation (DRE)
algorithm [24], SDMS algorithm [9], SE algorithm [11], tracking the best expert (TBE)
algorithm [8], and the entropy-based method (abbreviated as entropy), which is described
in Algorithm 4. When using the DRE algorithm, we processed the two-dimensional data
Xt ∈ Rn×m at each time as one-dimensional data X ′

t ∈ Rnm and used them as the input
for the DRE algorithm. Even though this is not a perfect fit for the model of the DRE
algorithm, it was added to the comparison as a model capable of detecting nonparametric
change. The point at which the data complexity begins to rise is defined as the starting
point of change in the model, and the proposed method was used to conduct a quantitative
comparison experiment using the value of KC.

Algorithm 4 Entropy algorithm for detecting changes.
Calculate the density:
Calculate the density distribution as follows:

f(x; h̄) =
1

n

n∑
i=1

K
(
x− xi; h̄

)
,

where we calculate the estimator h̄ on the basis of the method proposed by Scott [36],
which is the default setting in the scipy.stats.gaussian kde class (see [2]).
Calculate the entropy:
Calculate the entropy as follows:

Entropy = −
∫

f(y; h̄(xn)) log f(y; h̄(xn))dy.

Detection of changes:
Detect the change points with following conditions:

a(t) =

{
1 if |Entropyt − E[Entropyt−1]| > η ∗ Std[Entropyt−1],

0 if otherwise.

The results were listed in Table 5.1. We generated 10 different datasets with the same
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model and detected the points of change for each dataset. The values provided in the table
are the average values of the benefit, delay, and FAR scores. These results showed that
the proposed algorithm (KC) detected the points of change to a certain extent in terms
of the benefit and delay scores. Although the FAR score of the proposed algorithm was
slightly larger than that of the entropy method, this difference was insignificant. Because
the SDMS, SE, and TBE algorithms are based on a parametric Gaussian mixture model
(GMM), it was not possible to capture the changes in a circular distribution of data. The
DRE algorithm assumes that the data at each time consist of only a single scalar value;
thus, it was difficult to detect changes in this problem setting.

The main parameters of the generated data and algorithm are as follows.

• Dataset parameters:
We generated a circular dataset with K = 2, K ′ = 3 clusters by using Equation
(5.13). The radii of the circles were r = (10, 6, 3). A chunk of data starts its
transformation at time t = 50(= τ1 + 1) and finishes forming a new chunk of data
(a circle with radius r = 3) at time t = 100(= τ2 + 1). Each data point contains
noise that follows a normal distribution with the standard deviation σ = 0.3.

• Algorithm parameters:
We used Algorithm 3 to calculate the index to determine the points of change. The
detection parameter is η = 3, and the maximum value of D is 100. In the evaluation,
we defined the parameter U = 50 to calculate the evaluation scores and the length
of the transition period as 50.

Table 5.1: Benefit, delay, and FAR scores for the algorithms (Circular dataset).

Method Benefit Delay FAR
KC 0.632 18.4 0.028

DRE 0.000 50.0 0.010
SDMS 0.000 50.0 0.000

SE 0.000 50.0 0.000
TBE 0.000 50.0 0.000

entropy 0.344 32.8 0.007

In addition to these results, we evaluated the experimental results by changing the
noise level (from σ = 0.1 to σ = 0.5), focusing on the AUC scores. We calculated
the AUC scores by changing the detection parameter η (from η = 0.5 to η = 3.0) in
Algorithm 3. We generated aggregations with different patterns of the circular dataset
with the following parameters:
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1. The radii of the circles were r = (10, 6, 3). The new data chunk is a circle with the
radius r3 = 3. The results are summarized in Table 5.2.

2. The radii of the circles were r = (10, 3, 6). The new data chunk is a circle with the
radius r3 = 6. The results are summarized in Table 5.3.

3. The radii of the circles were r = (3, 6, 10). The new data chunk is a circle with the
radius r3 = 10. The results are summarized in Table 5.4.

These results are similar to those in Table 5.1. On the basis of all the results, it is con-
cluded that KC is able to detect changes stably, regardless of the difference in the genera-
tion model and the value of σ. The entropy method detected changes with the next highest
score. However, as described in Section ??, the entropy method requires computational
time of an exponential order for the given dimensions, thus it may be difficult to apply in
practice.

Table 5.2: AUC scores for the algorithms (circular dataset with r = (10, 6, 3)).

Method σ =0.1 σ =0.2 σ =0.3 σ =0.4 σ =0.5
KC 0.946±0.022 0.934±0.027 0.918±0.030 0.921±0.035 0.934±0.023

DRE 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000
SDMS 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

SE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.930±0.041 0.928±0.050 0.923±0.056 0.911±0.057 0.920±0.050

Table 5.3: AUC scores for the algorithms (circular dataset with r = (10, 3, 6)).

Method σ =0.1 σ =0.2 σ =0.3 σ =0.4 σ =0.5
KC 0.964±0.018 0.965±0.015 0.968±0.017 0.966±0.018 0.969±0.015

DRE 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000
SDMS 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

SE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.946±0.032 0.947±0.032 0.946±0.031 0.941±0.032 0.939±0.028
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Table 5.4: AUC scores for the algorithms (circular dataset with r = (3, 6, 10)).

Method σ =0.1 σ =0.2 σ =0.3 σ =0.4 σ =0.5
KC 0.980±0.007 0.978±0.008 0.976±0.009 0.968±0.008 0.968±0.009

DRE 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000
SDMS 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

SE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.973±0.011 0.965±0.017 0.961±0.016 0.962±0.017 0.952±0.016

Gamma-Distributed Dataset

We generated an artificial dataset that follows the gamma mixture model and considered
the case in which the number of mixtures gradually changed over time. The parameters
of this dataset are defined as follows:

# of Gamma dist. = K, k = (k1, k2) if 1 ≤ t ≤ τ1,

# of Gamma dist. = K ′, k = (k1, k2, u(t)) if τ1 + 1 ≤ t ≤ τ2,

# of Gamma dist. = K ′, k = (k1, k2, k3) if τ2 + 1 ≤ t ≤ T,

(5.18)

where u(t) =
(τ2 − t)k2 + (t− τ1)k3

τ2 − τ1
,

where the parameter k denotes the shape of the gamma distribution. An example of the
generated dataset is shown in Figure 5.9, which shows that data points that follow the
gamma distribution with k = 1 are gradually generated over time.

We used Algorithm 3 to calculate the index to determine the points of change. The
results are shown in Figure 5.10, which shows that KC gradually changes during the
transition period and that it detected the changes at the beginning of the transition period.

In addition, we evaluated the experimental results by changing the scale parameter
(from θ = 0.4 to θ = 2.0), by focusing on the AUC defined in Equation 5.17. We
generated the dataset with the gamma distribution with different data patterns, using the
following parameters:

1. The shape parameters of the gamma distribution were k = (10, 5, 1). The new data
chunk is a cluster with the shape parameter k3 = 1. The results are summarized in
Table 5.5.

2. The shape parameters of the gamma distribution were k = (10, 1, 5). The new data
chunk is a cluster with the shape parameter k3 = 5. The results are summarized in
Table 5.6.
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Figure 5.9: Dataset with the gamma-
distributed data pattern evolving over
time.

Figure 5.10: Value of KC over time for the
gamma-distributed data pattern.

3. The shape parameters of the gamma distribution are k = (1, 5, 10). The new data
chunk is a cluster with the shape parameter k3 = 10. The results are summarized in
Table 5.7.

These results indicate that the value of KC and the entropy can be used to detect changes
stably and effectively. The DRE and SE produced relatively good results, confirming that
the gamma-distributed dataset is a model that easily enables both nonparametric and para-
metric changes to be detected. It should be noted that the value of KC and the AUC scores
for KC vary depending on the scale parameter. This is probably because a constant value
is used in this experiment. This suggests that the integration range of D should be appro-
priately selected according to the data spread; this is left for future study. In addition, the
time required to calculate the entropy is of the exponential order with respect to the data
dimension; hence, in practice, the calculation is limited to two dimensions. Therefore,
this experiment was conducted using only two-dimensional data, and the behavior of KC
when processing high-dimensional data is left for future study.

Table 5.5: AUC scores for the algorithms (gamma dataset with shape parameters k =
(10, 5, 1)).

Method θ =0.4 θ =0.8 θ =1.2 θ =1.6 θ =2.0
KC 0.873±0.021 0.876±0.020 0.961±0.006 0.959±0.006 0.948±0.018

DRE 0.900±0.105 0.900±0.105 0.900±0.105 0.900±0.105 0.900±0.105
SDMS 0.510±0.046 0.510±0.046 0.510±0.046 0.510±0.046 0.510±0.046

SE 0.903±0.002 0.903±0.002 0.903±0.002 0.903±0.002 0.903±0.002
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.952±0.009 0.949±0.011 0.950±0.008 0.950±0.008 0.949±0.007
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Table 5.6: AUC scores for the algorithms (gamma dataset with shape parameters k =
(10, 1, 5)).

Method θ =0.4 θ =0.8 θ =1.2 θ =1.6 θ =2.0
KC 0.965±0.018 0.900±0.005 0.940±0.030 0.977±0.006 0.879±0.037

DRE 0.858±0.133 0.858±0.133 0.858±0.133 0.858±0.133 0.858±0.133
SDMS 0.543±0.136 0.543±0.136 0.543±0.136 0.543±0.136 0.543±0.136

SE 0.934±0.005 0.934±0.005 0.934±0.005 0.934±0.005 0.934±0.005
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.928±0.020 0.921±0.027 0.917±0.023 0.914±0.023 0.914±0.023

Table 5.7: AUC scores for the algorithms (gamma dataset with shape parameters k =
(1, 5, 10)).

Method θ =0.4 θ =0.8 θ =1.2 θ =1.6 θ =2.0
KC 0.838±0.020 0.893±0.005 0.945±0.009 0.974±0.007 0.975±0.007

DRE 0.805±0.228 0.805±0.228 0.805±0.228 0.805±0.228 0.805±0.228
SDMS 0.510±0.046 0.510±0.046 0.510±0.046 0.510±0.046 0.510±0.046

SE 0.910±0.005 0.910±0.005 0.910±0.005 0.910±0.005 0.910±0.005
TBE 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.968±0.016 0.970±0.015 0.972±0.013 0.973±0.012 0.973±0.012

Cross Dataset

We generated an artificial dataset distributed along straight lines for several chunks of
data points and considered the case in which the number of chunks gradually changed
over time. The parameters of this dataset are defined as follows:

# of lines = K (1 ≤ t ≤ T ),

a = (a1, u(t)) (1 ≤ t ≤ T ),

u(t) =
(T − t+ 1) · a1 + (t− 1) · a2

T
.

We generated an artificial dataset with K = 2, a1 = −0.95, and a2 = 0.95, where the
parameter a denotes the slope of a straight line. An example of the generated dataset is
shown in Figure 5.11, which shows that one of the straight lines is gradually rotating over
time.
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We used the index in Algorithm 3 to detect the points of change. The results are
shown in Figure 5.12, which indicates that KC is gradually decreasing. This is because the
density of the distribution at the center of the distribution becomes relatively larger owing
to the gradual movement of one of the straight lines, with an accompanying decrease in
the complexity.

Figure 5.11: Dataset with data chunks in
the form of a cross.

Figure 5.12: Value of KC over time for
the dataset with datachunks in the form of
a cross pattern.

In addition, we evaluated the experimental results by changing the noise level (from
σ = 0.5 to σ = 2.5), by focusing on AUC defined in Equation 5.17.

Table 5.8: AUC scores for the algorithms (cross dataset).

Method σ =0.5 σ =1.0 σ =1.5 σ =2.0 σ =2.5
KC 0.908±0.007 0.912±0.005 0.846±0.026 0.915±0.012 0.914±0.013

DRE 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000 0.495±0.000
SDMS 0.613±0.018 0.495±0.005 0.500±0.000 0.500±0.000 0.500±0.000

SE 0.620±0.031 0.505±0.022 0.500±0.000 0.500±0.000 0.500±0.000
TBE 0.582±0.019 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

entropy 0.836±0.000 0.500±0.000 0.916±0.006 0.874±0.001 0.818±0.016

Considering the overall results, KC is able to detect changes stably, regardless of the
difference in the value of σ. For small values of σ, the methods based on parametric
models (the SDMS, SE, and TBE algorithms) were sometimes able to detect the points of
change, probably because the dataset is relatively closely approximates a GMM.

73



5. Kernel Complexity

Gaussian Mixture Model

We generated an artificial dataset distributed using a GMM, of which the parameters are
defined as follows: 

K∗ = 2, µ = (µ1, µ2) if 1 ≤ t ≤ τ1,

K∗ = 3, µ = (µ1, µ2, u(t)) if τ1 + 1 ≤ t ≤ τ2,

K∗ = 3, µ = (µ1, µ2, µ3) if τ2 + 1 ≤ t ≤ T,

(5.19)

where u(t) =
(τ2 − t)µ2 + (t− τ1)µ3

τ2 − τ1
.

A chunk of data starts undergoing transformation at time t = 50 and finishes forming a
new chunk of data at time t = 100. An example of the generated dataset is shown in
Figure 5.13.

Figure 5.13: Dataset aggregated into data
chunks using the Gaussian mixture model.

Figure 5.14: Value of KC over time for
the dataset aggregated using the Gaussian
mixture model.

We used the index in Algorithm 3 to detect the change points. The detection parameter
is η = 3 in Figure 5.14. During the transition period, KC gradually increases at first, then
gradually decreases after reaching its peak, before stabilizing in a certain range. Points of
change are indicated by a gradual increase in the value of KC.

We also generated datasets by changing the variance of the Gaussian model from
σ2 = 2.0 to σ2 = 10.0. The resultant AUC scores (see Equation (5.17)) are listed in Table
5.9. KC was able to indicate points of change earlier than the other methods assuming
a GMM (SDMS, SE, and TBE algorithm) because it captures changes in the density
distribution. In models that assume a GMM (SDMS, SE, and TBE algorithm), the number
of clusters changes to a certain degree at a time when a chunk of the dataset undergoes
transformation. In contrast, KC can be considered to indicate change in the complexity
from the point at which a chunk of the dataset starts to gradually transform. Because of
these characteristics, the nonparametric KC detected change at the earliest time.
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Next, we observed the behavior of the benefit and FAR scores when calculating the
AUC for different values of the sensitivity parameter. The results are shown in Figure
5.15, which indicates that KC yields high benefit values, but the corresponding FAR val-
ues are also relatively high. This is attributed to KC being more sensitive to change than
the other methods. The results in the figure show that each algorithm becomes less sen-
sitive to change as the change sensitivity parameter becomes larger (the change is judged
more severely). For SDMS and TBE, which contain no sensitivity parameters, the scores
of benefit and FAR were constant. The SE algorithm would be expected to enable change
to be detected outside the transition period by reducing the change sensitivity parame-
ter. The values of benefit was considered to be low because the subsequent time is not
detected as a change.

Observing the curve plotting benefit against FAR as shown in Figure 5.16, the AUC
score of KC was higher because the advantages of benefit exceed the disadvantages of
FAR.

Table 5.9: AUC scores for the algorithms (GMM dataset).

Method σ2 =2.0 σ2 =4.0 σ2 =6.0 σ2 =8.0 σ2 =10.0
KC 0.956±0.031 0.971±0.015 0.951±0.018 0.924±0.047 0.932±0.038

DRE 0.664±0.130 0.671±0.133 0.674±0.134 0.679±0.137 0.684±0.141
SDMS 0.775±0.102 0.686±0.118 0.731±0.184 0.656±0.120 0.567±0.121

SE 0.817±0.094 0.844±0.119 0.872±0.050 0.890±0.064 0.857±0.107
TBE 0.721±0.115 0.604±0.139 0.682±0.138 0.562±0.054 0.495±0.025

entropy 0.584±0.178 0.922±0.031 0.921±0.034 0.913±0.030 0.914±0.037

Figure 5.15: Evaluation of KC vs. the
other algorithms by plotting benefit and
FAR against the change sensitivity param-
eter.

Figure 5.16: Evaluation of KC vs. the
other algorithms by plotting the benefit
against FAR.

75



5. Kernel Complexity

5.3.2 Calculation Time
We evaluated the calculation time of KC and the entropy used above with a number of
different dimensions. We used the dataset with the same settings as in Section ??. To
complete the calculation of the entropy in realistic time, the mesh in the calculation was
set to rough. The results are shown in Figure 5.17, which shows that the time required to
compute KC is independent of the dimension. However, the time required to calculate the
entropy increases exponentially as the dimension increases.

Figure 5.17: Time required by the two methods to perform the calculation for different
dimensions.

5.3.3 Real Datasets

Sensor Dataset (Household Electricity Consumption)

We tested our method by using a dataset comprising household electricity consumption
measurements provided by Dua and Graff [4]. This dataset contains three categories of
electricity consumption data: 1. by the kitchen and laundry room, 2. by an electric
water heater, 3. by the air conditioner. The data were acquired every other minute from
December 17, 2006 to December 10, 2010. Using this dataset, we defined the features
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Figure 5.18: KC at each time (household).
Figure 5.19: Average consumption of the
first feature (in the kitchen and laundry
room) for each week.

Xt = (x1, · · · ,xn) and xi = (xi1, xi2, xi3). Each xi is the value of the total consumption
in an hour for each of the three categories, and each Xt represents the consumption for
one week (the number of datasets at each time was n = 168 or less).

The results obtained with the proposed method enabled us to observe changes in the
data sequence at a specific time. The value of KC is shown in Figure 5.18 as a function of
time. We detected large changes at t = 87, 88 (August 17–23, 2008 and August 24–30,
2008). As seen in Figure 5.19, the use of electricity in the kitchen and laundry room on
a normal day is always greater than zero; however, the consumption is zero for the week
in which the change is detected. This is because we were able to observe some lifestyle
anomalies (or changes) by calculating the value of KC.

Marketing Dataset (Beer Purchasing Behavior)

We tested our method using a dataset containing data of beer purchases that was provided
by Hakuhodo, Inc. and M-CUBE, Inc. QPR. The dataset is a record of customers’ beer
purchasing behavior and includes brands from six manufacturers (denoted A–F here). We
captured the changes in the requirements of high-value customers by using simulation
and analyzed the data using the top 50% of customers in terms of purchasing volume.
The dataset at each instant represents the amount purchased for the four categories of
beer in the last two weeks, where the target period was from November 1 to January 31
of the following year.

The results obtained with the proposed algorithm to calculate the value of KC to detect
the points of change are shown in Figure 5.20. The proposed algorithm detected points
of significantly large change on December 1, 3, and 31 and on January 1, 13, 14, and
15 (time=17, 19, 47, 48, 60, 61, 62). The detection of change in customers ’purchasing
behavior in the last two weeks of November and December reflects the year-end demand,
and the complexity of the structure decreases because the beer consumption stabilizes
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Figure 5.20: KC at each time (beer).

after the end of the year. These results confirm the ability of the proposed algorithm to
effectively capture real market changes.

5.4 Conclusion

We proposed a method to calculate the value of KC to define new structural information
for data with a nonparametric distribution and proposed a method to detect its change
over time. This index is defined by measuring the density of data in terms of information
bias and is based on the Gini index. We use the NML code length based on the MDL
principle as a criterion to express information. We showed that this index, KC, is a value
that characterizes the number of data chunks. Furthermore, we proposed an algorithm to
detect the change in KC when the data are given as time series. By using this algorithm,
we provide a framework for the detection of changes based on KC. However, KC has
some limitations. First, since the parameters that define KC are not determined with the-
ory, it is a future research issue to improve the reliability of KC by establishing parameter
determination theory. Second, the assumed data structure is a structure with data chunks,
and the usefulness of KC has only been shown in experiments focusing on the number
of data chunks. For this reason, we consider that application to other data structures
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or proposal of new methods is a future research issue. The usefulness of the proposed
method was experimentally demonstrated using both artificial and real datasets. For the
artificial datasets, the proposed algorithm could detect the change points in terms of the
benefit, delay, FAR, and AUC scores for specific kinds of datasets. Further, we showed
the effectiveness of our method for analyzing a dataset containing household electricity
consumption data. Specifically, our algorithm automatically detected changes at times
when the electricity consumption in the kitchen and laundry room was likely to change.
In addition, we also analyzed a dataset containing data relating to customers’ beer pur-
chasing behavior over time. The purchasing behavior significantly changed over the last
part of the year and after the year ended, and the proposed algorithm effectively captured
these changes. The ability of the proposed method to capture the complexity in a data
structure that can be defined by the density has expanded the possibility of searching for
new hidden value. In future, we aim to extend our work to other kernel functions, and to
calculate exact values rather than the upper bound in the form of the NML. With respect to
the KC index itself, analysis of the theoretical nature of this index (e.g., its properties by
using the Gini coefficient) remains as an extension of current research. This may enable
us to obtain appropriate values for the parameters (the features of the KC index depend on
the parameters to some extent). In terms of evaluation, we can define data types for which
KC is effective by increasing the variation of the experiments. In terms of applications,
we consider adding more qualitative interpretations of actual data in combination with
other methods. In addition, considering the application of our method, real data are rarely
neatly arranged; thus, extending KC to an index that can handle missing data is a very
important issue.
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Conclusion

In this thesis, we proposed new indices for measuring the structural information of a
dataset. Using these indices, we proposed new methods for detecting change points and
their early warning signals.

First, we proposed novel indices of structural information for parametric and nonpara-
metric structures. For parametric models, we considered the problem of determining the
number of clusters; we proposed an index called SE as the uncertainty of model selection.
As a result, we were able to continuously grasp the uncertainty of model selection, which
cannot be understood by simply determining the number of clusters. When using SE, to
raise stable alarms of early warning signals, we proposed a method for selecting a suitable
parameter for SE. For nonparametric models, we proposed an index, i.e., KC, to ascertain
the structural information of aggregated data. It is defined by measuring the density of
a dataset in terms of information bias with the Gini index; a larger KC indicates that the
distribution of the dataset is wider and that the structure is more complex. Even though we
adopted kernel density estimation as a nonparametric density estimation method, its NML
code length cannot be directly calculated. For this, we proposed a method for calculating
NML code length associated with kernel density.

Next, we proposed three methods for detecting change points and their early warning
signals. The first method was an algorithm using SE in a parametric model. We pro-
posed a method for detecting early warning signals in terms of the uncertainty of model
selection using SE. The second method was an algorithm using SMCS in a parametric
model. We proposed a unifying framework for detecting model changes and their early
warning signals simultaneously. SMCS is a real-valued index that measures the degree
of a model change. It is defined as the difference between the code lengths associated
with the unchanged and changed models. Last, we explained the algorithm using KC in
a nonparametric model. We proposed an algorithm to detect changes in KC when data
are given as a time series. Our proposed algorithm only detects changes in global infor-
mation measured by KC and provides a new view of nonparametric change detection. In
addition, KC does not only detect abrupt changes but also gradual ones. Because KC is a
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continuous value, it is effective in detecting such gradual changes.
Last, we empirically evaluated the effectiveness of our methods. We employed syn-

thetic datasets to empirically demonstrate that reliable alarms of model changes and their
early warning signals using SE, SMCS, and KC could be achieved. Specifically, early
warning signals can be detected significantly earlier than the alarms provided by the ex-
isting methods. We also employed two real datasets to validate SE, SMCS, and KC:
a marketing dataset and household electric consumption dataset. For both datasets, we
could detect meaningful change points corresponding to clear behavior changes. Re-
garding early warning signals, although these signals were not explicitly captured, it is
possible to perceive them by changing the SE, SMCS, and KC values.

In this study, we focused only on the change in the number of clusters; however, we
believe it will be useful to develop a change detection algorithm that uses not only the
number of clusters but also the properties in the clusters. Moreover, for the detection of
early warning signals, we believe that it is also valuable to derive an index that shows
why early warning signals were detected. Last, we believe that it is also valuable to detect
changes and give meaning by developing a method that mixes multiple indices. These
will be a part of future work.
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Appendices

A.1 Proof of Theorem 6

In this section, we show the detail proof of the theorem 6. This proof is calculated with
reference to paper [43]. Here, Xt, Zt is written as Dt for simplicity. We can calculate the
type-I error probability as follows:

Type-I error prob. = ProbH0 [Φt < 0]

=

∫
Dt−1,t∈{D:Φt≥0}

p(Dt−1; θ
∗
0,M∗

0)p(Dt; θ
∗
0,M∗

0) dDt−1,t, (A.1)

where θ∗0 is the true parameter of model M∗
0. Here, using the condition of Φt ≥ 0, we

get the following inequality:

− log p(Dt−1,t; θ
∗
0,M∗

0) + log C2n(M∗
0) + L(M∗

0,M∗
0)

≥ − log p(Dt−1,t; θ̂,M∗
0) + log C2n(M∗

0) + L(M∗
0,M∗

0)

≥ min
M

{L
NML

(Dt−1,t;M) + L(M,M)}

≥ min
M′,M′′

{
L

NML
(Dt−1;M′) + L

NML
(Dt;M′′) + L(M′′,M′)

}
+ nϵ

=: L̃(Dt−1,t) + nϵ (A.2)

Using this inequality, we can derive an upper bound on the type-I error probability (A.1)
as follows:

Type-I error prob.
= ProbH0 [Φt ≥ 0]

=

∫
Dt−1,t∈{D:Φt≥0}

p(Dt−1,t; θ
∗
0 ,M∗

0) dDt−1,t

≤
∫
Dt−1,t∈{D:Φt≥0}

exp
{
− L̃(Dt−1,t) + log C2n(M∗

0) + L(M∗
0,M∗

0)− nϵ
}
dDt−1,t (A.3)

≤ exp

{
− n

(
ϵ− log C2n(M∗

0) + L(M∗
0,M∗

0)

n

)}
(A.4)
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Here, the calculation from Equation (A.3) to Equation (A.4) can be derived by Kraft’s
inequality as follows: ∫

exp
{
− L̃(D)

}
dD ≤ 1.

This is the end of the proof.

A.2 Proof of Theorem 7
In this section, we show the detail proof of the theorem 7. This proof is calculated with
reference to paper [43]. Here, Xt, Zt is written as Dt for simplicity. We can calculate the
type-II error probability as follows:

Type-II error prob. = ProbH1 [Φt ≤ 0]

=

∫
Dt−1,t∈{D:Φt<0}

p(Dt−1; θ
∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2) dDt−1,t, (A.5)

where θ∗1, θ
∗
2 are the true parameters of model M∗

1,M∗
2, respectively. Here, using the

condition of Φt < 0, we get the following inequality:

− log p̃(Dt−1,t)− log C̃2n
= min

M
{L

NML
(Dt−1,t;M) + L(M,M)}

< min
M′,M′′

{
L

NML
(Dt−1;M′) + L

NML
(Dt;M′′) + L(M′′,M′)

}
+ nϵ

≤ L
NML

(Dt−1;M∗
1) + L

NML
(Dt;M∗

2) + L(M∗
2,M∗

1) + nϵ

≤ − log
(
p(Dt−1; θ

∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2)
)

+ log Cn(M∗
1) + log Cn(M∗

2) + L(M∗
2,M∗

1) + nϵ, (A.6)

where we define p̃ and C̃2n as Equation (4.8) and Equation (4.9), respectively. Here, by
Equation (A.6), we can derive the following inequality:

1 <

(
p̃(Dt−1,t)

p(Dt−1; θ∗1,M∗
1)p(Dt; θ∗2,M∗

2)

)α

· exp (αℓn(M∗
1,M∗

2, ϵ)) (A.7)

where α satisfies 0 < α < 1 and ℓn(M∗
1,M∗

2, ϵ) is defined by Equation (4.7). Using
Equation (A.7) with Equation (A.5), we have the following upper bound on type-II error
probability:

Type-II error prob.

=

∫
Dt−1,t∈{D:Φt<0}

p(Dt−1; θ
∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2) dDt−1,t
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<

∫
Dt−1,t∈{D:Φt<0}

p(Dt−1; θ
∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2) dDt−1,t

×
(

p̃(Dt−1,t)

p(Dt−1; θ∗1,M∗
1)p(Dt; θ∗2,M∗

2)

)α

· exp (αℓn(M∗
1,M∗

2, ϵ))

<

∫
Dt−1,t∈{D:Φt<0}

(p(Dt−1; θ
∗
1,M∗

1)p(Dt; θ
∗
2,M∗

2))
1−α · p̃(Dt−1,t)

α dDt−1,t

× exp (αℓn(M∗
1,M∗

2, ϵ))

Then we derive an upper bound on type-II error probability as follows:

Type-II error prob.
< exp(n log δαn(M∗

1,M∗
2))× exp (αℓn(M∗

1,M∗
2, ϵ))

= exp(n log(1− 2α(1− α)dαn(M∗
1,M∗

2)))× exp (αℓn(M∗
1,M∗

2, ϵ))

< exp(−2nα(1− α)dαn(M∗
1,M∗

2))× exp (αℓn(M∗
1,M∗

2, ϵ))

= exp

{
− n

(
2α(1− α)dαn(M∗

1,M∗
2)−

αℓn(M∗
1,M∗

2, ϵ)

n

)}
,

where we define dαn(M∗
1,M∗

2) and δαn(M∗
1,M∗

2) as Equation (4.5) and Equation (4.6),
respectively. This is the end of the proof.
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