
ത࢜จ

Approximate Submodularity
in Machine Learning

ʢػցֶशʹ͓͚ΔۙࣅతྼϞδϡϥੑʣ

48-177208 ౻Ҫ ւే

һڭಋࢦ ాؠ ֮ तڭ

2020 3݄

౦ژେֶେֶӃใཧڀݚܥֶՊཧใֶઐ߈

Copyright c⃝ 2020, Kaito Fujii.

Abstract

Submodularity is a property that represents diminishing returns and appears ubiquitously in machine
learning problems. By utilizing submodularity, many e�cient algorithms with theoretical guarantees
have been developed. However, there are still many problems that cannot be dealt with under the
framework of submodularity. One promising approach to these problems is to extract properties
close to submodularity, which we call approximate submodularity, and devise algorithms by extending
existing results on submodularity. In this dissertation, we propose two new notions of approximate
submodularity: adaptive submodularity ratio and approximate submodularity for local search. By utilizing
these two notions, we develop e�cient algorithms for various machine learning problems.
The �rst notion we propose is the adaptive submodularity ratio, which represents approximate

submodularity in adaptive optimization. We are often confronted with a decision-making problem
where the objective function is uncertain. In adaptive optimization, a decision-maker aims at gradually
constructing a solution by repeating small decisions while gathering information on the objective
function. To make a better solution, it is vital to perform adaptively, that is, to change the next
decision according to the information obtained so far. It is known that if the objective function satis�es
adaptive submodularity, which is an adaptive analog of submodularity, an adaptive greedy algorithm is
guaranteed to work well. However, there are still many adaptive optimization problems that do not have
adaptive submodularity. To analyze these problems, we propose the notion of adaptive submodularity
ratio, which measures how close the objective function is to adaptive submodularity and provide a
theoretical guarantee for the adaptive greedy algorithm in terms of this notion. We also apply a similar
approach to the batch-mode setting of adaptive optimization, in which the decision-maker obtains
information all at once after making multiple decisions. By extending the framework of adaptive
submodularity ratio to the batch-mode setting, we provide theoretical guarantees for greedy-based
algorithms.

The second notion we propose is approximate submodularity for local search. Local search is a well-
known algorithm design technique for combinatorial optimization problems. Local search algorithms
start with an initial solution and gradually increase the objective value by repeatedly moving the
solution to a nearby point. First, we analyze local search algorithms for feature selection. Feature
selection is the problem of selecting a signi�cant subset out of a large number of features and a vital
component of sparse regression, compressed sensing, and structure learning of graphical models. By
utilizing approximate submodularity for local search, we analyze and accelerate local search algorithms
for feature selection. Next, we tackle dictionary selection, which can be regarded as a two-stage version
of feature selection. A dictionary is a collection of patterns that make up signals in the real world.
Dictionary selection is the problem of learning a dictionary suitable for the given dataset by selecting a
subset of the union of ready-made dictionaries. Based on approximate submodularity for local search,
we develop an e�cient greedy algorithm Replacement OMP with theoretical guarantees.

1

Acknowledgments

First and foremost, I want to dedicate my greatest gratitude to my supervisor, Satoru Iwata. He always
inspired me through his deep knowledge and constantly supported me in the past three years. I would
like to thank him for giving me the freedom to choose my own research topics, providing wonderful
ideas, and guiding me to complete this dissertation with encouragement.

I am deeply thankful to my collaborators. I would like to thank Tasuku Soma for his vast knowledge
and friendship. It was my great pleasure to have a desk next to him during my PhD years. I am deeply
grateful to Shinsaku Sakaue for his e�ort. Without his constant encouragement, we would not be able
to complete our collaboration. I would like to thank Yuichi Yoshida for his kind instructions. I learned
the right mind-set toward research from his overwhelming productivity and vigorous passion.

I am sincerely grateful to all themembers ofMathematical Informatics 7th Laboratory in the University
of Tokyo. In particular, I would like to thank Shin-ichi Tanigawa for always providing constructive
advices to my research. Also, I thank past and current PhD students and postdocs in the lab, Katie
Clinch, Ayumi Igarashi, Kota Ishihara, Naoki Ito, Shinji Ito, Tatsuya Matsuoka, Taihei Oki, Nobutaka
Shimizu, Yutaro Yamaguchi, and Yu Yokoi. I was happy to have technical discussions and comfortable
chats with them. I am also grateful to Shuichi Hirahara, Yuni Iwamasa, Shuichi Katsumata, Takeru
Matsuda, Yuji Nakatasukasa, and Shun Sato for inspiring discussions. My special thanks go to Erika
Hiruma for her immense administrative support.
My research stay at ETH Zürich for three months was so fruitful. I appreciate Andreas Krause for

welcoming me kindly and sparing much time for making discussions with me. I thank all the members
of the Learning and Adaptive Systems Group in ETH Zürich. Their warm welcome made my research
stay extremely enjoyable.
I also thank the dissertation committee members, Hiroshi Hirai, Ken’ichiro Tanaka, and Kenji

Yamanishi for providing me valuable feedback.
I would like to appreciate the �nancial support by JSPS Research Fellowship for Young Scientists, JST

ERATO, and JST CREST. Finally I would like to express my sincere gratitude to my family and friends
for their unstinting support and encouragement.

3

Contents

1 Introduction 1
1.1 Submodularity in Machine Learning . 1
1.2 From Submodularity to Approximate Submodularity 2
1.3 Approximate Submodularity in Adaptive Optimization 3
1.4 Approximate Submodularity for Local Search . 4
1.5 Relevant Applications . 5
1.6 Thesis Organization . 6
1.7 Bibliographic Notes . 7
1.8 Basic Notation . 8

2 Background and Related Work 9
2.1 Submodular Maximization . 9

2.1.1 Greedy Algorithms for Submodular Maximization 10
2.1.2 Local Search for Submodular Maximization . 12

2.2 Approximate Submodularity . 14
2.2.1 Submodularity Ratio . 14
2.2.2 Feature Selection for Sparse Linear Regression 15
2.2.3 Restricted Strong Concavity and Restricted Smoothness 17
2.2.4 Other Concepts for Approximate Submodularity 18

2.3 Adaptive Submodularity . 19
2.3.1 Adaptive Stochastic Optimization . 19
2.3.2 Adaptive Submodularity and Adaptive Monotonicity 21

3 Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio 25
3.1 Background and Overview . 25
3.2 Adaptive Submodularity Ratio . 26
3.3 Adaptive Greedy Algorithm . 27
3.4 Non-adaptive Policies and Adaptivity Gaps . 28
3.5 Adaptive In�uence Maximization . 30

3.5.1 Bound of Adaptive Submodularity Ratio . 30
3.5.2 Bound of Adaptivity Gap . 32
3.5.3 Full Proofs for Adaptive In�uence Maximization 32
3.5.4 Example for the Case of General Graphs . 36

3.6 Adaptive Feature Selection . 38
3.6.1 Bound of Adaptive Submodularity Ratio . 38
3.6.2 Bound of Adaptivity Gap . 40

3.7 Experiments . 41
3.7.1 Adaptive In�uence Maximization . 41
3.7.2 Adaptive Feature Selection . 43

3.8 Related Work . 43
3.8.1 Counterexample to the Statement of Kusner [2014] 45

5

3.8.2 About Comparison with Yong et al. [2017] . 45
3.9 Summary and Future Work . 48

4 Batch-mode Adaptive Optimization with Structured�eries 49
4.1 Background and Overview . 49
4.2 Batch-mode Adaptive Optimization . 50
4.3 Applications . 51

4.3.1 Batch-mode Active Learning . 51
4.3.2 Batch-mode In�uence Maximization . 52
4.3.3 Batch-mode Adaptive Feature Selection . 52

4.4 Set-Adaptive Submodularity . 52
4.5 Batch-mode Adaptive Greedy Algorithm . 56

4.5.1 Greedy Selection . 57
4.5.2 Reduction from Batch-mode Setting to Fully Adaptive Setting 58

4.6 Beyond Set-Adaptive Submodularity . 60
4.7 Other Extensions . 62

4.7.1 Outer Matroid Constraints . 63
4.7.2 Online Setting . 64
4.7.3 Query-Varying Setting . 66

4.8 Experiments . 68
4.8.1 Experiments on Active Learning . 68
4.8.2 Experiments on Adaptive In�uence Maximization in the IC model 69
4.8.3 Experiments on Bipartite In�uence Maximization in the Triggering Model . . . 70
4.8.4 Experiments on Adaptive Feature Selection . 71

4.9 Related Work . 72
4.10 Summary and Future Work . 73

5 Local Search for Feature Selection with Structured Constraints 75
5.1 Background and Overview . 75

5.1.1 Related Work . 76
5.2 Problem Setting . 77
5.3 Preliminaries . 78

5.3.1 Modular Approximation . 79
5.4 Approximate Submodularity for Local Search . 79
5.5 Applications . 81

5.5.1 Sparse Regression . 81
5.5.2 Structure Learning of Graphical Models . 82

5.6 Algorithms for a Matroid Constraint . 82
5.6.1 Variants of Geometric Improvement . 86

5.7 Algorithms for p-Matroid Intersection and p-Exchange Systems 88
5.7.1 Variants of Geometric Improvement . 92

5.8 Experiments . 94
5.8.1 Experiments on Sparse Regression . 94
5.8.2 Experiments on Structure Learning of Graphical Models 95

5.9 Summary and Future Work . 96

6

6 Fast Greedy Algorithms for Dictionary Selection 97
6.1 Background and Overview . 97

6.1.1 Related Work . 98
6.2 Preliminaries . 99
6.3 Problem Setting . 100

6.3.1 Multi-task Feature Selection . 100
6.4 p-Replacement Sparsity Families . 101

6.4.1 Individual Matroids . 101
6.4.2 Block Sparsity . 102
6.4.3 Average Sparsity . 102

6.5 Algorithms . 104
6.5.1 Replacement Greedy . 104
6.5.2 Replacement OMP . 106
6.5.3 Replacement Deletion-OMP . 107
6.5.4 Fast Implementation for Average Sparsity Constraints 109

6.6 Extensions to the Online Setting . 112
6.6.1 Online SDSMA . 112
6.6.2 Online Replacement Greedy . 114
6.6.3 Online Replacement OMP . 115

6.7 Experiments . 117
6.7.1 Experiments on the O�ine Setting . 119
6.7.2 Experiments on the Online Setting . 119
6.7.3 Experiments on Dimensionality Reduced Data 119

6.8 Summary and Future Work . 120

Conclusion 125

7

1 Introduction

Data are produced at tremendous speed in every �eld and machine learning techniques become increas-
ingly popular for decision-making based on data. When trying to apply machine learning techniques to
massive datasets, we are often faced with computational issues.
For example, suppose we want to apply regression analysis to a high-dimensional dataset. To

obtain an interpretable model, we often try to reduce the dimension by selecting a subset of relevant
features. However, there are exponentially many possible subsets of features and it takes considerable
computational time to check all these subsets. To �nd a fairly good subset of features in realistic
computational time, we need to devise an e�cient algorithm.

Another example is active learning. Though a dataset of labeled data points is necessary for supervised
classi�cation, it often takes much cost to obtain labels for unlabeled data points. In such a scenario, we
should select a small subset of unlabeled data points to be labeled and apply a supervised classi�cation
algorithm by using this labeled subset as the training dataset. This subset selection problem also has
exponentially many possible solutions and requires a careful search method.

Due to their intrinsic combinatorial nature, these problems are �t into the framework of combinatorial
optimization. In the rich history of combinatorial optimization research, numerous techniques have
been developed for �nding a good solution out of exponentially many feasible ones in reasonable
computational time. Based on these techniques, many researchers have devised e�cient algorithms for
combinatorial optimization problems in machine learning. In this dissertation, we develop algorithmic
frameworks for combinatorial optimization problems in machine learning based on concepts called
approximate submodularity. In the following, we provide a background of approximate submodularity
and summarize our key contributions.

1.1 Submodularity in Machine Learning

The starting point of this dissertation is submodularity [Fujishige, 2005]. Submodularity is a property of
functions that is central to combinatorial optimization and has been studied extensively for developing
e�cient algorithms and modeling real phenomena. There are various interpretations of the formal
de�nition of submodularity, but here, we often view submodularity as a property of diminishing returns.
Intuitively speaking, this property means that the value of an item decreases as the already obtained
items increase. This property appears ubiquitously in the real world and has been used for modeling
practical problems such as combinatorial auctions with substitutable goods [Lehmann et al., 2006] and
facility location [Cornuejols et al., 1977].

For the last 15 years, submodularity has attracted much attention as a strong tool to design algorithms
for machine learning. An approach based on submodularity has advantages both in its �exibility for
modeling real problems and its amenability for designing e�cient algorithms.

Due to the versatility of submodularity, many machine learning problems have been formulated as a
submodular optimization problem. For example, submodularity has been utilized for formalizing prob-
lems of extracting a small subset that has information as much as possible given a set of a large number
of elements. This kind of problem appears in observation selection for Gaussian processes [Krause et al.,
2008], document summarization [Lin and Bilmes, 2011], and making an interpretable summary of a
dataset [Ribeiro et al., 2016]. In such a scenario, it is often the case that a part of information presented by

1

an element is also presented by another element. This implies that the value of adding a single element
to the solution decreases as the elements already added to the solution become larger, which is exactly
submodularity. Therefore, problems of selecting an informative set can be naturally formulated as a
submodular optimization problem. Besides, submodularity has been utilized for viral marketing [Kempe
et al., 2003] and analyzing the performance of algorithms for Bayesian optimization [Srinivas et al.,
2010]. In this way, the application range of submodularity has been expanding.
On the other hand, rich theoretical techniques developed for submodularity enable us to design

e�cient algorithms. One of the most celebrated results is an approximation guarantee for the greedy
algorithm. The greedy algorithm is a simple procedure that starts with the empty set and repeatedly
adds the element that increases the objective value the most. It is widely used as a heuristic for
obtaining a solution that is acceptable but not necessarily optimal in many real applications. Intuitively,
if the objective function satis�es submodularity, the greedy algorithm returns a solution competitive
with an optimal solution [Nemhauser et al., 1978]. Algorithms with such kinds of guarantees are
called approximation algorithms and have been studied as a powerful approach to NP-hard problems.
Starting with the result for the greedy algorithm for the simplest setting, a line of work on submodular
maximization has provided approximation algorithms for various settings [Călinescu et al., 2011,
Buchbinder et al., 2015]. Motivated by the growing size of datasets, the framework of submodular
maximization has been extended to more practical computational settings such as the streaming
setting [Badanidiyuru et al., 2014] and the distributed setting [Mirzasoleiman et al., 2016].

1.2 From Submodularity to Approximate Submodularity

As described in the last section, various combinatorial optimization problems in machine learning
can be regarded as a submodular maximization problem. However, there are still many problems
that deviate from the formulation of submodular maximization. Even if the problems do not have
submodularity, they may have a property close to submodularity. In this dissertation, we call such a
property approximate submodularity. Since submodularity appears in various �elds of machine learning,
we can expect approximate submodularity to appear frequently as well. Also, to design algorithms for
problems with approximate submodularity, we can inherit a part of rich theoretical insights developed
for submodular maximization.

The most prominent existing result on approximate submodularity is the work on feature selection for
sparse linear regression by Das and Kempe [2011]. The problem of selecting a subset of a large number
of features and applying linear regression by using the selected features is a combinatorial optimization
problem fundamental in machine learning, but its mean squared error does not satisfy submodularity.
To view this problem through the lens of approximate submodularity, Das and Kempe [2011] de�ned
the submodularity ratio, which measures how close the objective function is to submodular functions
and related the submodularity ratio to a spectral parameter of the design matrix. By utilizing the
submodularity ratio, they provided theoretical guarantees for greedy algorithms.

The submodularity ratio is cleverly de�ned so that the greedy algorithm can be analyzed well. In the
analysis of the greedy algorithm for submodular maximization, a certain property that is equivalent to
submodularity is utilized. The submodularity ratio represents how much this property must be relaxed
to be satis�ed by the objective function. Hence the submodularity ratio is suitable for analyzing the
greedy algorithm, but its scope is limited. To apply a similar approach to broader applications, we need
other notions of approximate submodularity. For each application, by relaxing a property of submodular
functions that is important in the analysis, we can de�ne a notion of approximate submodularity suitable
for the application.
The goal of this dissertation is to propose new concepts of approximate submodularity and apply

2

them to various applications in machine learning. In particular, we focus on two aspects of approximate
submodularity. One is approximate submodularity in adaptive optimization. Adaptive optimization
can model several essential problems in machine learning such as active learning. However, adaptive
submodularity, which is a counterpart of submodularity in adaptive optimization, holds only in speci�c
applications. To deal with broader applications, we need a notion of approximate submodularity for
adaptive optimization. The other is approximate submodularity for local search. Local search is a well-
known algorithm design technique for combinatorial optimization problems as well as greedy methods
and also amenable to analyses based on submodularity. A new concept of approximate submodularity
is expected to make it possible to analyze local search for wider applications.

1.3 Approximate Submodularity in Adaptive Optimization

Adaptive optimization is a framework for optimization problems where we must gather information
and make decisions in parallel. Adaptive optimization was �rst proposed in theoretical computer
science [Dean et al., 2008] and has been applied to problems in algorithmic game theory [Chen et al.,
2009, Gupta and Nagarajan, 2013], but it also has signi�cant applications in machine learning.

Due to its intrinsic suitability to adaptive optimization, active learning is one of the most important
applications of adaptive optimization. As mentioned above, active learning is a problem of selecting a
subset of unlabeled data points to be labeled. In the basic setting of active learning, we alternately repeat
selecting the next unlabeled data point to be labeled and obtaining its label. For achieving high accuracy
with a small number of labels, it is vital to select data points adaptively, that is, select the next unlabeled
data point depending on the labels of the already selected data points. The framework of adaptive
optimization is useful to formulate such an adaptive decision-making problem as an optimization
problem.
Golovin and Krause [2011a] developed the most in�uential framework of adaptive optimization for

machine learning problems based on adaptive submodularity. Adaptive submodularity is a generalization
of submodularity to the setting of adaptive optimization, and represents the property of diminishing
returns in a stochastic sense. Golovin and Krause [2011a] proved that the adaptive greedy algorithm,
which is a natural extension of the greedy algorithm to the adaptive setting, is competitive with
an optimal adaptive policy. This result implies that the simple greedy policy performs well if the
objective function satis�es adaptive submodularity. Golovin and Krause [2011a] also showed that
adaptive submodularity is satis�ed by several problems, including active learning, adaptive in�uence
maximization in the independent cascade model, and adaptive sensor placement. Since then, the
framework of adaptive submodularity has been utilized for devising greedy algorithms with theoretical
guarantees for various machine learning problems, including adaptive experimental design [Golovin
et al., 2010], recommendation [Gabillon et al., 2013], touch-based localization in robotics [Javdani et al.,
2014], and active object detection [Chen et al., 2014].

However, the applicability of the framework of adaptive submodularity has limitations. There are still
many adaptive optimization problems that do not satisfy adaptive submodularity, including adaptive
in�uence maximization in the triggering model. To handle more various problems from the perspective
of adaptive submodularity, we de�ne an approximate version of adaptive submodularity and apply it to
several applications.

In Chapter 3, we propose a notion of adaptive submodularity ratio, which is an analog of the submod-
ularity ratio in the adaptive setting. The adaptive submodularity ratio measures how close the objective
function is to adaptive submodular functions. We provide a theoretical guarantee on the performance
of the adaptive greedy algorithm in terms of the adaptive submodularity ratio. Intuitively, this result
implies that if the objective function is close to adaptive submodular functions, the adaptive greedy

3

algorithm performs well.
We also provide another usage of the adaptive submodularity ratio about the di�erence between the

adaptive and non-adaptive settings. One of the most important questions in adaptive optimization is
how di�erent adaptive and non-adaptive policies are. In the adaptive setting, we can perform better
than in the non-adaptive setting, but their gap is generally di�cult to evaluate. The adaptivity gap [Dean
et al., 2008] is the ratio of the objective value achieved by an optimal adaptive policy and an optimal
non-adaptive policy. We show the adaptive submodularity ratio can be used for obtaining a lower
bound of the adaptivity gap.

We provide lower bounds of the adaptive submodularity ratio in two applications: adaptive in�uence
maximization and adaptive feature selection. We show the adaptive submodularity ratio in the triggering
model can be bounded if the underlying graph is bipartite, but it can be very small even if the underlying
graph is a simple arborescence.

In Chapter 4, we extend the framework of the adaptive submodularity ratio to the batch-mode setting
of adaptive optimization, which is more realistic than the ordinary setting in various applications.
In the ordinary setting of adaptive optimization, the decision-maker gathers information in a fully
sequential manner, but it is not practical due to a constraint on time or cost. The batch-mode setting is
a more e�cient setting, in which the decision-maker gathers information in a parallel manner. Chen
and Krause [2013] �rst formulated the batch-mode setting of adaptive optimization and proposed a
greedy-like algorithm. We apply the framework of the adaptive submodularity ratio to the batch-mode
setting and analyze the algorithm for problems that lack adaptive submodularity.

1.4 Approximate Submodularity for Local Search

Local search is a common algorithm design technique for combinatorial optimization problems. It starts
with an initial solution and repeatedly improves the solution by changing it locally. Though local search
practically works well in various �elds, it does not have theoretical guarantees on its performance in
many cases. To judge whether or not local search is suitable for each problem, we need to investigate
theoretical properties that guarantee local search to work well.
Submodularity has been utilized not only for analyzing greedy algorithms but also for analyzing

local search algorithms. Based on local search approaches, several important results for submodular
maximization have been obtained. In particular, for structured constraints, Lee et al. [2010] and Feldman
et al. [2011] provided approximation guarantees better than best-known guarantees achieved by greedy
algorithms.

In this study, we analyze local search algorithms for problems without submodularity. As mentioned
before, the submodularity ratio is de�ned by relaxing the property equivalent to submodularity that
is essential to the analysis of the greedy algorithm. For the analysis of local search algorithms for
submodular maximization, another property derived from submodularity is utilized. We de�ne approxi-
mate submodularity for local search as a relaxed version of this property. By utilizing this concept, we
develop algorithms for feature selection in Chapter 5 and dictionary selection in Chapter 6, respectively.
In Chapter 5, we consider a sparse optimization problem, in which we aim at �nding a sparse

solution that maximizes a continuous function. Feature selection is the combinatorial optimization
problem of �nding the best sparse support for this sparse optimization problem. First, we show that
restricted strong concavity and restricted smoothness of the continuous function imply approximate
submodularity for local search. These conditions naturally arise in various applications, including sparse
regression and structure learning of graphical models. We bound the approximation ratio of a simple
local search algorithm, and then develop its accelerated versions while keeping the approximation ratio
guarantees. Based on Lee et al. [2010] and Feldman et al. [2011], we can extend our proposed local

4

search algorithms to several classes of structured constraints such as matroid constraints, p-matroid
intersection constraints, or p-exchange system constraints.
Further developing the techniques for approximate submodularity for local search, we tackle dic-

tionary selection in Chapter 6. Dictionaries are a collection of patterns that appear in real signals
and have many applications in compressed sensing and machine learning. In dictionary selection,
we make a dictionary suitable to given signals by selecting several patterns out of �nite candidates.
Dictionary selection is formulated as an optimization problem that can be viewed as a two-stage version
of the feature selection, therefore we can apply the techniques developed for feature selection. By
incorporating the local search procedure into the greedy algorithm, we propose Replacement OMP,
which runs in practical time and returns a reasonable solution in practice. Also, we de�ne a class of
structured constraints called p-replacement sparsity families, for which Replacement OMP achieves a
good approximation.

1.5 Relevant Applications

In this section, we introduce applications of our proposed frameworks.

Feature Selection for Sparse Regression Given data points in the high-dimensional space, we
often want to reduce the dimensions to obtain a robust and interpretable model. Feature selection for
sparse regression is the problem of selecting a subset of features. The �rst study from the perspective
of approximate submodularity is Das and Kempe [2011], which analyzed greedy algorithms for sparse
linear regression. Their results were extended to restricted strongly convex and smooth objectives
by Elenberg et al. [2018]. We apply local search algorithms to this problem in Chapter 5. Also, we
consider the adaptive version, in which we observe features one by one, and analyze the adaptive greedy
algorithm by bounding its adaptive submodularity ratio in Chapter 3.

Adaptive Influence Maximization To advertise a product e�ciently, we should consider the in-
formation spread on social networks. By providing a free sample to a small number of people, we can
expect that the information about the product spreads by word-of-mouth communication from them.
In�uence maximization is a problem of selecting a small subset of nodes of the given social network to
spread the information to as many people as possible. In this dissertation, we particularly work on the
setting where we can observe the spread from each node just after selecting it. This setting is called
adaptive in�uence maximization. We analyze the adaptive greedy algorithm for adaptive in�uence
maximization in the triggering model on bipartite graphs by bounding its adaptive submodularity ratio
in Chapter 3. We analyze greedy-based algorithms for the batch-mode setting of adaptive in�uence
maximization in Chapter 4.

Active Learning In real-world scenarios for supervised classi�cation, it is often the case that unla-
beled data points are cheap but it takes much cost to label these data points. Suppose we can use a
labeling oracle, that is, we can obtain a label of each data point by paying a price. Then active learning
can be used to achieve high accuracy with small labeling cost. In active learning, we select a small
subset of unlabeled data points, and have the labeling oracle label them. By selecting this subset cleverly,
we can achieve high accuracy by learning with this labeled subset. We can usually alternately repeat
selecting an unlabeled data point and obtain its label. In this dissertation, we treat the batch-mode
setting of active learning, in which we alternately repeat selecting multiple data points and obtain their
labels. Batch-mode active learning with structured queries is dealt with in Chapter 4.

5

Structure Learning of Graphical Models Graphical models are a graph whose nodes correspond
to random variables and edges represent the relationships between them. The problem of inferring
edges of the graphical model from data that are generated from the random variables is important in
a variety of applications. This problem is called structure learning of graphical models, and has been
studied in machine learning and statistics. We deal with this problem in the case when the graphical
model is sparse, i.e., the number of edges is small. By regarding the sparsity constraint as a b-matching
constraint, we propose a local search algorithm with theoretical guarantees and conduct experiments
in Chapter 5.

Dictionary Selection A dictionary is a collection of patterns that often appear in real signals. Dic-
tionary selection is an approach to learning a dictionary suitable for the given data points. In dictionary
selection, we select a subset of atoms as a dictionary out of the union of existing ready-made dictio-
naries. Dictionary selection can be regarded as a two-stage combinatorial optimization problem. In
Chapter 6, we propose greedy algorithms, Replacement Greedy, Replacement OMP, and Replacement
Deletion-OMP, and a class of generalized sparsity constraints, p-replacement sparsity families.

Multi-task Feature Selection Suppose we are given multiple tasks similar but di�erent and solve
them simultaneously. For example, let us consider the problem of making spam �lters personalized
for each of multiple users. It is natural to assume that the set of words relevant for judging whether
or not an email is spam is di�erent depending on users but similar. For such a scenario, we tackle the
problem of selecting a subset of features for each task while considering relationships between tasks.
Here, we consider a constraint that imposes the number of features used for at least one task. We apply
the algorithms for dictionary selection to this formulation of multi-task feature selection in Chapter 6.

1.6 Thesis Organization

Chapter 2: Background and Related Work

We introduce basic fasts and existing studies about the topics that this dissertation deals with. First, we
provide important existing results on submodular maximization, mostly focusing on greedy algorithms
and local search algorithms. Next, we move to the introduction of approximate submodularity with its
applications. Then we introduce basic de�nitions for adaptive submodular maximization. We also give
notations used throughout this dissertation.

Chapter 3: Approximation Guarantees of Greedy Policy with Adaptive
Submodularity Ratio

In this chapter, we propose a concept of adaptive submodularity ratio and provide its applications.
First, we give the formal de�nition of the adaptive submodularity ratio. Then we provide a theoretical
guarantee of the adaptive greedy algorithm in terms of the adaptive submodularity ratio. We also show
that the adaptivity gap can be bounded by the product of the adaptive submodularity ratio and another
parameter called the supermodularity ratio. We introduce two applications of our framework: One
is bipartite adaptive in�uence maximization in the triggering model and the other is adaptive feature
selection. Finally, we conduct experiments on these two applications and show the adaptive greedy
algorithm works well in practice.

6

Chapter 4: Batch-mode Adaptive Optimization with Structured�eries

This chapter deals with the batch-mode setting of adaptive stochastic optimization. We show that
adaptive submodularity is not su�cient for guaranteeing the performance of the adaptive greedy
algorithm in the batch-mode setting, and propose a stronger concept than adaptive submodularity,
which we call set-adaptive submodularity. Under the assumption of set-adaptive submodularity, we
provide a theoretical guarantee for the batch-mode adaptive greedy algorithm. We consider the setting
where set-adaptive submodularity does not hold, and provide a theoretical guarantee by using the
adaptive submodularity ratio and the supermodularity ratio. We show that the batch-mode adaptive
greedy algorithm also works for other extensions including a matroid constraint on the union of the
selected batches, an online setting, a setting where the feasible batches change at each round. By
conducting experiments on the batch-mode setting of adaptive in�uence maximization, active learning,
and adaptive feature selection, we empirically illustrate that the batch-mode adaptive greedy algorithm
is competitive with the adaptive greedy algorithm in the ordinary adaptive setting.

Chapter 5: Local Search for Feature Selection with Structured Constraints

In this chapter, we analyze local search algorithms for feature selection by proposing a property of
approximate submodularity for local search. First, we formally de�ne this property and show that this
property of feature selection is derived from the restricted strong concavity and restricted smoothness
of the underlying continuous function. We describe two applications: sparse regression and structure
learning of graphical models. For a matroid constraint, we propose local search algorithms and their
accelerated versions obtained by the idea of a quadratic approximation. Similarly, for p-matroid
intersection constraints and p-exchange system constraints, we proposed local search algorithms. We
empirically compare the proposed algorithms with existing methods to show the e�ciency of the
proposed algorithms.

Chapter 6: Fast Greedy Algorithms for Dictionary Selection

In this chapter, we propose fast greedy algorithms for a generalized version of dictionary selection.
We formulate a problem setting of dictionary selection that generalizes existing problem settings. We
propose a new class of sparsity constraints, which we call p-replacement sparsity families, and show
existing sparsity constraints are included in this class. First, we apply Replacement Greedy to dictionary
selection and provide a bound on the approximation ratio. Then we propose our main proposed
algorithm Replacement OMP by accelerating Replacement Greedy and its fast implementation for
a general sparsity constraint. We also propose an intermediate variant of Replacement Greedy and
Replacement OMP, which we call Replacement Deletion-OMP. For the setting where data points arrive
in an online fashion, we propose the online versions of Replacement Greedy and Replacement OMP. By
conducting extensive experiments on synthetic and real datasets, we show Replacement OMP performs
well compared not only to existing dictionary selection algorithms but also for basic dictionary learning
algorithms.

1.7 Bibliographic Notes

Some contents of this dissertation were already published in refereed conference proceedings. Chapter 3
is based on the joint work with Shinsaku Sakaue presented in ICML 2019 [Fujii and Sakaue, 2019].
Chapter 6 is based on the joint work with Tasuku Soma presented in NeurIPS 2018 [Fujii and Soma,
2018]. Chapter 4 and Chapter 5 are based on unpublished single-authored work.

7

1.8 Basic Notation

In this section, we de�ne notation used throughout this dissertation.
Sets and set families are denoted by upper case letters of roman and calligraphic fonts, respectively.

We use V to denotes the �nite ground set, from which we select a set of elements. For X ✓ V and
v 2 V , we de�ne X + v := X [{v}. Similarly, for X ✓ V and v 2 V , we de�ne X � v := X \ {v}.
The sets of reals and non-negative reals are denoted by R and R�0, respectively. Similarly, the sets

of integers and non-negative integers are denoted by Z and Z�0. For any positive integer n 2 Z�0, we
de�ne [n] = {1, 2, . . . , n}, the set of all positive integers no more than n.
Vectors and matrices are denoted by lower and upper case letters in boldface, respectively: a,x,y

for vectors and A,X,Y for matrices. The ith standard unit vector is denoted by ei; that is, ei is the
vector such that its ith entry is equal to one and all other entries are zero. Throughout the dissertation,
k · k represents the `2 norm. For any vector a 2 Rn, let supp(a) = {i 2 [n] | ai 6= 0} be the set
of indices with non-zero values and kak0 = |supp(a)| the number of non-zero elements. Note that
k · k0 is conventionally called “ell-zero norm”, but does not satisfy the properties of the norm. For
a matrix A 2 Rd⇥n and X ✓ [n], AX denotes the column submatrix of A with respect to X . The
maximum and minimum eigenvalues of a square matrix M are denoted by �max(M) and �max(M),
respectively. For a positive integer k, we de�ne �max(M, k) := maxX✓[n] : |X|k �max(M[X,X]),
where M[X,X] is the submatrix with both of row and column indices X . We de�ne �min(M, k)

similarly as �min(M, k) := minX✓[n] : |X|k �min(M[X,X]).

8

2 Background and Related Work

In this chapter, we review the existing studies related to this dissertation. In Section 2.1, we introduce the
de�nition of submodularity and standard problem settings of submodular maximization. In particular,
we focus on two types of algorithms: greedy algorithms and local search algorithms. In Section 2.2, we
illustrate existing studies on approximate submodularity, with a strong focus on the submodularity
ratio. Here, we also introduce feature selection for sparse linear regression and more general problems
as its important applications. In Section 2.3, we provide the de�nition and applications of adaptive
submodularity, an analog of submodularity in the adaptive setting.

2.1 Submodular Maximization

In this section, we introduce basic facts of submodular maximization. We illustrate the general problem
statement, and describe major greedy and local search algorithms for constrained monotone submodular
maximization.
In machine learning, we are often faced with the problem of �nding a good subset given a large

number of elements such as features or data points. Such a problem can be formulated as an optimization
problem of a set function. Let V denote the set that contains all the elements, which is called the ground
set. A set function f : 2

V
! R is a function that assigns a real value to each subset of the ground set V .

An optimization problem of a set function under some constraint can be written as

Maximize f(X)

subject to X 2 I,

where I ✓ 2
V is the set family of all feasible subsets. We assume (V, I) is an independence system, i.e.,

? 2 I and if A ✓ B 2 I then A 2 I for any A,B ✓ V .
Submodularity is a property of set functions that is important both in modeling and optimization,

which is de�ned as follows.

De�nition 1 (Submodularity). Let V be an arbitrary �nite set. A set function f : 2V ! R is submodular
if for any subset S, T ✓ V , it holds that

f(S) + f(T) � f(S \ T) + f(S [T).

It is widely known that submodularity is equivalent to the property of diminishing returns . To provide
the formal de�nition of the property of diminishing returns, we need to de�ne the marginal gain of a
set function, which represents how the value of the function increases when an element is added to a
subset. The marginal gain of element v 2 V with subset S ✓ V is de�ned as

f(v|S) := f(S [{v})� f(S).

By using this notation, we can state the equivalence of submodularity to the property of diminishing
returns.

9

Proposition 2. Let V be an arbitrary �nite set. A set function f : 2
V
! R is submodular if and only if

for any subset S, T ✓ V such that S ✓ T and any element v 2 V \ T , it holds that

f(v|S) � f(v|T).

Similarly, we de�ne the marginal gain of subset T ✓ V with subset S ✓ V as f(T |S) := f(S [T)�

f(S). Another important property of set functions is monotonicity de�ned as follows.

De�nition 3 (Monotonicity). Let V be an arbitrary �nite set and f : 2
V
! R a set function. f is

monotone if for any subset S ✓ V and any element v 2 V \ S, it holds that

f(v|S) � 0.

In general, a set function may require a representation whose size is exponential in |V |. Hence, it
is often assumed that we have access to a value oracle, which answers the function value in response
to our queries. Formally, the value oracle of a set function f : 2

V
! R receives an input X ✓ V

and returns the function value f(X). Similarly, an independence system does not have a polynomial
size representation in general. Therefore, we assume that we have access to an independence oracle,
which answers the independence in response to our queries. Formally, the independence oracle of an
independence system (V, I) receives the input X ✓ V and returns the boolean value that represents
X 2 I or not.
In general, maximizing a monotone submodular function needs exponentially many oracle calls

even in the case of cardinality constraints, i.e., I = {X : |X| k} [Nemhauser and Wolsey, 1978].
Therefore, we consider approximation algorithms that run in polynomial time.

De�nition 4 (Approximation ratio formaximization problems). Assume the objective function f : 2V !
R�0 is non-negative. An algorithm is ↵-approximation if it returns a solution whose objective value is
at least ↵ times the optimal value for any problem instance, i.e., ifX is the output of the algorithm, then

f(X) � ↵ max
X⇤2I

f(X
⇤
).

In this dissertation, we consider maximization problems, therefore approximation ratio ↵ is always
between 0 and 1.

Submodular minimization. As an opposite of maximization,minimization of submodular functions
is also a profound research topic through its intense relationship with convex optimization [Fujishige,
2005] and has been applied to machine learning problems [Bach, 2013], but we focus on only submodular
maximization in this dissertation.

2.1.1 Greedy Algorithms for Submodular Maximization

Here, we review several variants of greedy algorithms for submodular maximization. Existing studies
have shown that submodularity is a key property that enables us to provide a theoretical guarantee for
greedy algorithms.
Among many variants of greedy algorithms, the simplest one was proposed by Nemhauser et al.

[1978], which we call the greedy algorithm in this dissertation. The greedy algorithm starts with the
empty set and repeatedly adds the element with the largest marginal gain at each step. It stops when
any element cannot be added due to the constraint. The detailed description of the greedy algorithm is
given in Algorithm 1.
In the case of cardinality constraints, i.e., I = {X : |X| k}, Nemhauser et al. [1978] proved that

the greedy algorithm returns the solution whose objective value is at least (1� 1/e) times the optimal
value.

10

Algorithm 1 The greedy algorithm [Nemhauser et al., 1978]
Input The objective function f : 2

V
! R given by a value oracle, the independence system (V, I)

given by an independence oracle.
Output X 2 I .
1: X ?.
2: F V .
3: while F 6= ? do
4: v argmaxv2F f(v|X).
5: X X [{v}.
6: F {v 2 V | X [{v} 2 I}.
7: return X .

Theorem 5 ([Nemhauser et al., 1978]). Suppose the objective function is monotone and submodular, and
I = {X : |X| k}. If X is the output of Algorithm 1 and X

⇤
2 argmaxX : |X|k f(X) is an optimal

solution, then it holds that

f(X) �

✓
1�

1

e

◆
f(X

⇤
).

This approximation ratio is proved to be best possible under the assumption of P 6= NP in the special
case of max k-cover [Feige, 1998] or polynomially many oracle calls [Nemhauser and Wolsey, 1978].

Matroid constraints. The greedy algorithm can be applied to more general settings, including a
matroid constraint. A matroid has been used for modeling discrete structures in the real world.

De�nition 6 (Matroids). Let V be a �nite set and I ✓ 2
V be a set family. An independence system

M = (V, I) is called a matroid if for any S, T 2 I with |S| < |T |, there exists v 2 T \ S such that
S [{v} 2 I .

The greedy algorithm is guaranteed to achieve 1/2-approximation for a matroid constraint [Fisher
et al., 1978].

Theorem 7 ([Fisher et al., 1978]). Suppose the objective function is monotone and submodular, and (V, I)
is a matroid. IfX is the output of Algorithm 1 andX⇤

2 argmaxX2I f(X) is an optimal solution, then it
holds that

f(X) �
1

2
f(X

⇤
).

They also showed that this bound is tight by providing an example where the greedy algorithm
returns a 1/2-approximate solution. Călinescu et al. [2011] proposed the continuous greedy algorithm,
which utilizes a continuous relaxation of the objective function and rounding techniques, and proved it
to be (1� 1/e)-approximation.

p-System constraints. A p-system is a general class of independence systems that include important
classes such as p-matroid intersection constraints and p-exchange system constraints. Formally, p-
systems are de�ned as follows.

De�nition 8 (p-Systems [Jenkyns, 1976, Călinescu et al., 2011]). Let M = (V, I) be an independence
system with a �nite set V and set family I ✓ 2

V . We de�ne a base of X ✓ V to be a maximal
independent subset ofX , that is, Y ✓ X such that Y 2 I and for any v 2 X \Y , we have Y [{v} 62 I .
An independence systemM = (V, I) is called a p-system if for anyX ✓ V , the cardinality of a largest
size base of X is at most p times the cardinality of a smallest size base of X .

11

The greedy algorithm is guaranteed to achieve 1/(p+ 1)-approximation for a p-system constraint,
which was formally proved by [Călinescu et al., 2011].

Theorem 9 ([Călinescu et al., 2011]). Suppose the objective function is monotone and submodular, and
(V, I) is a p-system. IfX is the output of Algorithm 1 andX⇤

2 argmaxX2I f(X) is an optimal solution,
then it holds that

f(X) �
1

p+ 1
f(X

⇤
).

2.1.2 Local Search for Submodular Maximization

While submodularity has provided theoretical bounds for the approximation ratios of greedy algorithms,
it is also useful for analyzing local search. Several existing studies have designed algorithms based on
the idea of local search and provided lower bounds on their approximation ratios under the assumption
of submodularity. The �rst result of this approach is given by Nemhauser et al. [1978]. They showed
that any local optimal solution is guaranteed to be 1/2-approximation for monotone submodular
maximization under a cardinality constraint. Formally, Nemhauser et al. [1978] de�ned that X 2 I is a
q-interchange solution if there is no Y 2 I such that |Y \X| q, |X \ Y | q, and f(Y) > f(X).

Theorem 10 ([Nemhauser et al., 1978]). Suppose f : 2V ! R�0 is monotone and submodular and
the constraint is a cardinality constraint, i.e., I = {X ✓ V : |X| k}. If k = qs � r such that s
is a positive integer and r is an integer such that 0 r q � 1, then any q-interchange solution is
k�q+r
2k�q+r -approximation.

This bound is worse than that for the greedy algorithm in general. In other words, the local search
procedure does not improve the approximation ratios of the greedy algorithm for cardinality constraints.
It has been shown that local search algorithms derive the approximation bound better than the greedy
algorithm for more complicated constraints. Lee et al. [2010] and Feldman et al. [2011] proposed local
search algorithms whose approximation ratio bounds are better than those of the greedy algorithm for
p-matroid intersection constraints and p-exchange system constraints, respectively. Here, we provide an
overview of their results.

First, we introduce a local search algorithm proposed by Lee et al. [2010] for a p-matroid intersection
constraint, which is a special case of p-system constraints. This is a constraint that can be expressed by
the intersection of p matroids, which is formally de�ned as follows.

De�nition 11 (p-Matroid intersection). Let V be a �nite set and I ✓ 2
V be a non-empty set family.

An independence system (V, I) is a p-matroid intersection if there exist p matroids (V, I1), · · · , (V, Ip)
such that I =

Tp
i=1 Ii.

To de�ne a local search algorithm, we need to specify what is a local improvement from each feasible
solution. Lee et al. [2010] de�ned the q-reachability among feasible solutions of a p-matroid intersection
constraint, which represents the neighborhood of each solution in some sense, as follows.

De�nition 12 (q-Reachability for p-matroid intersection [Lee et al., 2010]). Let I ✓ 2
V be a p-matroid

intersection. A feasible solution T 2 I is q-reachable from S 2 I if |T \ S| 2q and |S \ T | 2pq.

A naive local search procedure repeatedly updates the solution to a better q-reachable solution and
stops when there does not exist any better q-reachable solution. Since this naive algorithm does not
guarantee the polynomial time complexity, they modify the algorithm so that it updates the solution
to a solution with at least (1 + �) times the current objective value for some constant � > 0. The
detailed algorithmic description is provided in Algorithm 2. Lee et al. [2010] proved the polynomial
time complexity and provided a bound on its approximation ratio.

12

Algorithm 2 Local search for a p-matroid intersection or p-exchange system constraint (p � 2)
1: Let ✏ = �

n(k+1) .
2: Let q = d

1
��✏e.

3: Let X argmax{f(v) | v 2 V }.
4: loop
5: Search for X 0 that is q-reachable from X such that f(X 0

) > (1 + ✏)f(X)

6: if 9 X 0 satisfying the above condition then
7: Let X X

0.
8: else
9: return X .

Theorem 13 ([Lee et al., 2010]). Suppose the objective function is monotone and submodular. If I is
a p-matroid intersection for p � 2, Algorithm 2 runs in time polynomial in n and achieves 1/(p + �)-
approximation.

A similar result was published by Feldman et al. [2011] for a p-exchange system constraint, which is
also a special case of p-system constraints.

De�nition 14 (p-Exchange systems [Feldman et al., 2011]). Let V be a �nite set and I ✓ 2
V be a

non-empty set family. An independence system (V, I) is a p-exchange system if for any S, T 2 I , there
exist a map ' : (T \ S)! 2

S\T such that .

1. For any v 2 T \ S, it holds that |'(v)| p.

2. Each v 2 S \ T appears in at most p sets of ('(v))v2T\S .

3. For any X ✓ T \ S, it holds that (S \
S

v2X '(v)) [X 2 I .

This class includes many important independence systems as special cases. For example, the family of
all b-matchings in a general graph is a 2-exchange system. Feldman et al. [2011] de�ned the q-reachability
for p-exchange systems, which is similar to the one for p-matroid intersection but di�erent.

De�nition 15 (q-Reachability for p-exchange systems [Feldman et al., 2011]). Let I ✓ 2
V be a p-

matroid intersection or p-exchange system. A feasible solution T 2 I is q-reachable from S 2 I if
|T \ S| q and |S \ T | pq � q + 1.

By using the di�erent de�nition of q-reachability, we can reuse the same algorithmic description as
that for p-matroid intersection given in Algorithm 2. The resulting approximation ratio is the same as
that for p-matroid intersection.

Theorem 16 ([Feldman et al., 2011]). Suppose the objective function is monotone and submodular. If I
is a p-exchange system for p � 2, Algorithm 2 returns an output in time polynomial in n and achieves
1/(p+ �)-approximation.

Other results on local search for submodular maximization. For unconstrained maximization
of non-monotone non-negative submodular functions, Feige et al. [2011] developed deterministic 1/3-
approximation and randomized 2/5-approximation algorithms based on local search. Feige et al. [2011]
also showed that a deterministic local search algorithm achieves 1/2-approximation if the objective
function is symmetric. In the case of p � 3, an improved 2

p+3 -approximation local search algorithm for

13

monotone submodular maximization under a p-exchange system constraint was proposed by Ward
[2012]. Another optimal approximation algorithm for monotone submodular maximization under
a matroid constraint was devised based on the idea of local search [Filmus and Ward, 2014]. This
algorithm repeatedly improves the surrogate function constructed from the original objective function
and it achieves (1� 1/e)-approximation in polynomial time.

2.2 Approximate Submodularity

In this section, we review existing studies on approximate submodularity. First, we introduce the sub-
modularity ratio, which was de�ned for analyzing the approximation ratio of greedy algorithms. Then
we summarize its applications to feature selection for sparse linear regression and sparse optimization
for restricted strong concave and restricted smooth objective functions. Finally, we provide a brief
explanation of other existing notions of approximate submodularity.

2.2.1 Submodularity Ratio

One of the most prevalent concepts of approximate submodularity is the submodularity ratio. The
starting point of this concept is the following property equivalent to submodularity.

Proposition 17. f : 2
V
! R is submodular if and only if for all S ✓ V and L ✓ V , we haveP

v2S f(v|L) � f(S|L).

Intuitively, this property represents the marginal gain of a set is no more than the sum of the marginal
gains of single elements. This property plays an important role in the proof of the approximation ratio
of the greedy algorithm. The submodularity ratio is de�ned as a parameter that represents how much
we must relax this property as follows.

De�nition 18 (Submodularity ratio [Das and Kempe, 2011]). Let f : 2V ! R�0 be a non-negative set
function. The submodularity ratio of a monotone non-negative set function f : 2

V
! R�0 with respect

to set U ✓ V and parameter k � 1 is de�ned to be

�U,k(f) := min
L✓U, S : |S|k

P
v2S f(v|L)

f(S|L)
, (2.1)

where f(v|L) := f(L[{v})�f(L) and f(S|L) := f(L[S)�f(L). If the numerator and denominator
are both 0, the submodularity ratio is considered to be 1.

If the submodularity ratio is large, we can say the set function is close to submodular functions. In
fact, as shown in the following proposition, the submodularity ratio is always between 0 and 1, and the
submodularity ratio is equal to 1 if and only if the set function is submodular.

Proposition 19 ([Das and Kempe, 2011]). We have �U,k 2 [0, 1], and a monotone set function f is
submodular if and only if �U,k = 1 for every U ✓ V and k � 1.

If the submodularity ratio is bounded away from 0, we can guarantee the approximation ratio of the
classical greedy algorithm.

Theorem20 ([Das andKempe, 2011]). IfX is the output of the greedy algorithm andX⇤
2 argmaxX : |X|k f(X)

is an optimal solution, then
f(X) � (1� exp(��X,k(f)))f(X

⇤
).

We can see that this theorem is a generalization of Theorem 5. This bound is illustrated in Section 2.2.1.

14

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

�

1
�
e
x
p
(
�
�
)

Figure 2.1: The approximation ratio bound of the greedy algorithm provided by Das and Kempe [2011].
We can see the bound is equal to 0 if the submodularity ratio is 0 and equal to 1� 1/e if the
submodularity ratio is 1.

Supermodularity ratio. Supermodularity is an opposite concept of submodularity. A set function is
called supermodular if its negative is submodular. As an opposite concept of the submodularity ratio,
the supermodularity ratio, was considered in Bogunovic et al. [2018], which is de�ned as follows.

�U,k(f) := min
L✓U, S : |S|k

f(S|L)P
v2S f(v|L)

, (2.2)

where we regard 0/0 = 1. We have �U,k 2 [1/k, 1], and f is supermodular if and only if �U,k = 1 for
every U ✓ V and k � 1. We omit f from �U,k(f) and �U,k(f) if it is clear from the context.

2.2.2 Feature Selection for Sparse Linear Regression

The �rst application of the concept of submodularity ratio was sparse linear regression, which is a
fundamental problem in machine learning and compressed sensing. Das and Kempe [2011] proposed
the concept of submodularity ratio and applied it to sparse linear regression. They focused on the
optimization problem of maximizing the coe�cient of determination, denoted by R

2, which represents
the fraction of variance that is predicted by the trained predictor. In this problem, given a matrix
A 2 Rd⇥n and a response vector y 2 Rd, we aim at learning a sparse parameter w 2 Rd that �ts the
training datasetA and y. A vector is called sparse when the number of non-zero elements is small. The
optimization problem that we are interested in is

Maximize R
2
:= 1� ky �Awk22/kyk

2
2

subject to kwk0 s,

where k · k0 represents the number of non-zero elements of a vector and s is the upper bound on the
number of non-zero elements ofw. This problem can be formulated as a combinatorial optimization
problem of selecting the set of non-zero elements of w, that is,

Maximize fR2(X) := 1� min
supp(w)✓X

ky �Awk22/kyk
2
2

subject to |X| s.

(2.3)

15

If we can obtain the solution X to (2.3), we can obtain the solution to the original problem by solving
the ordinary linear regression problem, i.e.,

wi =

(
((A>

XAX)
+
(A>

Xy))i if i 2 X

0 if i 62 X ,

where AX represents the column submatrix of A with column indices X . Unfortunately, the opti-
mization problem (2.3) was proved to be NP-hard by Natarajan [1995]. Hence a natural next research
direction would be to consider approximation algorithms. Das and Kempe [2011] showed that, though
the objective function fR2 does not satisfy submodularity, the submodularity ratio of fR2 can be bounded
by a spectral parameter ofA as follows.

Theorem 21 ([Das and Kempe, 2011, Lemma 2.4]). Assume each column ofA is normalized. Then

�U,s � min
S✓V : |S|s+|U |

�min(A
>

SAS).

The lower bound of the submodularity ratio is related to the restricted isometry constants de�ned as
follows.

De�nition 22 (Restricted isometry constants [Candes and Tao, 2005]). The sth restricted isometry
constant �s = �s(A) of a matrixA 2 Cd⇥n is the smallest � � 0 such that

(1� �)kwk22 kAwk22 (1 + �)kwk22

for all w 2 Cn such that kwk0 s.

Since the minimum eigenvalue is equal to the minimum Rayleigh quotient, the submodularity ratio
is no less than 1 � �. It is known that the restricted isometry constants can be bounded in various
situations such as the case where each element of A is generated from some independent Gaussian
distribution [Candes and Tao, 2005].

Forward regression. The greedy algorithm applied to feature selection for linear regression is called
forward regression and has been widely used. At each step, this algorithm adds a new column of A that
reduces the loss function value the most. This algorithm needs to solve the ordinary linear regression
for calculating each reduction.

Theorem 23 ([Das and Kempe, 2011]). If X is the output returned by forward regression and X⇤ is an
optimal solution, then it holds that

fR2(X) �

✓
1� exp

✓
� min

S : |S|2s
�min(A

>

SAS)

◆◆
fR2(X

⇤
).

The detailed description is provided in Algorithm 3.

Orthogonal matching pursuit. Orthogonal matching pursuit (OMP) is another greedy method for
feature selection. At each step, it solves the ordinary linear regression with the current support X
and computes the residual ŷ = y �Aw(X), where w(X) is an optimal parameter vector for support
X . Orthogonal matching pursuit selects a column with the largest absolute value of correlation with
the residual, i.e., argmaxx2V \X |hŷ,Axi|. First, Das and Kempe [2011] proved that OMP achieves
(1� (minS : |S|2s �min(A>

SAS))
2
)-approximation. Elenberg et al. [2018] provided an improved result.

16

Algorithm 3 Forward regression for sparse linear regression
1: Let X ?.
2: for i = 1, · · · , s do
3: x argmin

x2V \X
min

w : supp(w)✓X+x
ky �Awk22.

4: X X + x.
5: return X .

Algorithm 4 Orthogonal matching pursuit for sparse linear regression
1: Let X ?.
2: for i = 1, · · · , s do
3: Update parameter vector w(X)

= argmin

w : supp(w)✓X
ky �Awk22.

4: Update residual ŷ = y �Aw(X).
5: x argmax

x2V \X
|hŷ,Axi|.

6: X X + x.
7: return X .

Theorem 24 ([Elenberg et al., 2018]). If X is the output returned by orthogonal matching pursuit and
X

⇤ is an optimal solution, then it holds that

fR2(X) �

✓
1� exp

✓
� min

S : |S|2s
�min(A

>

SAS)

◆◆
fR2(X

⇤
).

Actually, Elenberg et al. [2018] dealt with a more general setting than sparse linear regression, which
is described in the next subsection. The algorithmic description of OMP for sparse linear regression is
given in Algorithm 4.

Other approaches to sparse regression. In machine learning and compressed sensing, many
studies have been devoted to sparse regression. Various algorithms have been developed for sparse
regression such as lasso [Tibshirani, 1996] and forward-backward greedy methods [Zhang, 2011,
Jalali et al., 2011] as well as forward regression and orthogonal matching pursuit. A popular goal of
theoretical analyses of sparse regression is sparse recovery guarantees [Foucart and Rauhut, 2013], which
theoretically ensure that the output of an algorithm coincides with the true sparse parameter under
some reasonable conditions. In this dissertation, we focus on bounds on approximation ratios, which
cannot be directly compared with sparse recovery guarantees.

2.2.3 Restricted Strong Concavity and Restricted Smoothness

Elenberg et al. [2018] extended the framework on linear regression by Das and Kempe [2011] to
more general sparse optimization problems including maximum likelihood estimation for generalized
linear models, the problem of learning the structure of a graphical model [Jalali et al., 2011], and
M-estimators [Negahban et al., 2012]. They considered the following optimization problem.

Maximize u(w)

subject to kwk0 s,

where u : Rn
! R�0. Linear regression is a special case of this optimization problem where u(w) =

1� ky �Awk22/kyk
2
2. In the same way as feature selection for linear regression, this problem can be

17

formulated as a combinatorial optimization problem of selecting the set of non-zero elements ofw, that
is,

Maximize fu(X) := max
w : supp(w)✓X

u(w)

subject to |X| s.

(2.4)

Elenberg et al. [2018] argued that the restricted strong concavity and restricted smoothness are a su�cient
condition for bounding the submodularity ratio of fu. These conditions are de�ned as follows.

De�nition 25 (Restricted strong concavity and restricted smoothness [Negahban et al., 2012, Elenberg
et al., 2018]). Let ⌦ be a subset of Rd

⇥ Rd and u : Rd
! R be a continuously di�erentiable function.

We say that u is restricted strongly concave with parameterm⌦ and restricted smooth with parameter
M⌦ on domain ⌦ if,

�
m⌦

2
ky � xk22 � u(y)� u(x)� hru(x),y � xi � �

M⌦

2
ky � xk22

for all (x,y) 2 ⌦.

We de�ne ⌦s,p := {(x,y) 2 Rd
⇥ Rd

: kxk0, kyk0 s, kx� yk0 p} and ⌦s := ⌦s,s for positive
integers s and p. We often abbreviateM⌦s ,M⌦s,p , andm⌦s asMs,Ms,p, andms, respectively. Elenberg
et al. [2018] provided a lower bound on the submodularity ratio by using these constants as follows.

Theorem 26 ([Elenberg et al., 2018]). Suppose u : 2V ! R is a continuous function and f : 2V ! R is a
set function de�ned as f(X) = maxw : supp(w)✓X u(w). We have

�U,s(fu) �
m|U |+s

M|U |+1,1
.

The greedy algorithm, which is called forward regression in this context, can be applied to this
problem. In the same way as that for feature selection for sparse linear regression, this algorithm adds
an element that increases the objective function the most at each step. Orthogonal matching pursuit
is also generalized to this setting. At each step, it adds the element with the largest absolute value of
derivative of u. Their algorithmic descriptions are given in Algorithm 5. The approximation ratios of
these algorithms are bounded as follows.

Theorem 27 ([Elenberg et al., 2018]). If X is the output returned by forward regression or orthogonal
matching pursuit and X⇤ is an optimal solution for (2.4), then it holds that

fu(X) �

✓
1� exp

✓
�

m2s

Ms,1

◆◆
fu(X

⇤
).

This approach based on restricted strong concavity and restricted smoothness was extended to low
rank optimization of matrices [Khanna et al., 2017].

2.2.4 Other Concepts for Approximate Submodularity

In this subsection, we review concepts of approximate submodularity other than the submodularity
ratio.

18

Algorithm 5 Forward regression and orthogonal matching pursuit for general feature selection
1: Let X ?.
2: for i = 1, · · · , s do
3: Search for x 2 X and x

0
2 V \X such that X � x+ x

0
2 I and

x

8
><

>:

argmax

x2V \X
max

supp(w)✓X+x
u(w) (FR)

argmax

x2V \X

���
⇣
ru(w(X)

)

⌘

x

��� where w(X)
2 argmax

w : supp(w)✓X
u(w) (OMP)

4: return X .

Supermodular degree. Supermodular degree was �rst introduced by Feige and Izsak [2013] for
measuring the degree of deviation from submodularity. In contrast to the submodularity ratio, the
supermodular degree measures the deviation from the property of diminishing returns.

De�nition 28 (Supermodular degree [Feige and Izsak, 2013]). The supermodular degree of an element
u 2 V by f is de�ned as the cardinality of the set D+

f (u) = {v 2 V |9S ✓ V, f(u|S + v) > f(u|S)},
containing all elements whose existence in a set might increase the marginal contribution of u. The
supermodular degree of a function f , denoted by D

+
f , is the maximum supermodular degree of any

element u 2 V . Formally, D+
f = maxu2V |D

+
f (u)|.

It is readily seen that 0 D
+
f n � 1 for any set function f , and D

+
f = 0 if and only if f is

submodular. Feldman and Izsak [2014] proposed an algorithm that runs in time exponential in D
+
f and

achieves a constant factor approximation.

Theorem 29 ([Feldman and Izsak, 2014, Theorem 2.4]). There exists a (1� e
�1/(D+

f +1)
)-approximation

algorithm of poly(|V |, 2
D

+
f)-time complexity for the problem of maximizing a non-negative monotone set

function f subject to a uniform matroid constraint.

Approximate submodularity with a multiplicative error. Horel and Singer [2016] considered a
problem of maximizing a set function f that satis�es approximate submodularity with a multiplicative
error, that is, there exists an unknown submodular function g such that

(1� ✏)g(S) � f(S) � (1 + ✏)g(S).

They also assumed g is not only submodular, but also monotone. They proved that if ✏ = O(�/k), the
greedy algorithm achieves (1� 1/e�O(�))-approximation. On the other hand, they also proved that
if ✏ � n

�
1
2+� for some 0 < � <

1
2 , there is no algorithm with query complexity smaller than 2

⌦(��/2)

that achieves approximation ratio better than 2/n
�/2 with probability at least 1� 1

2⌦(n�/2)
.

2.3 Adaptive Submodularity

In this section, we introduce adaptive submodularity, which is an analog of submodularity in the
adaptive setting.

2.3.1 Adaptive Stochastic Optimization

Adaptive stochastic optimization is a general framework for handling problems of sequentially selecting
elements, where we can observe the states of only the selected elements. Let V be the ground set

19

a

b c

d c e

�(a) = + �(a) = �

�(b) = + �(b) = � �(b) = �

⇡(?) = a

⇡({(a,+)}) = b

⇡({(a,�)}) = c

⇡({(a,+), (b,+)}) = d

⇡({(a,+), (b,�)}) = c

⇡({(a,+), (c,�)}) = e

Figure 2.2: An example of a policy and its corresponding policy tree. The ground set is V = {a, b, c, d, e}

and the set of possible states is Y = {+,�}.

consisting of a �nite number of elements. Suppose every element v 2 V is assigned to some state in Y ,
which is the set of all possible states. We let � : V ! Y be a map that associates each element, v 2 V ,
with a state, �(v) 2 Y . We consider the Bayesian setting where � is generated from a known prior
distribution p(�). Let � be a random variable representing the randomness of the realization �.
A decision-maker can select one element v 2 V at each step. After selecting v, she can observe the

state �(v) of v. She repeatedly selects an element and then observes its state. The important point is
that she can utilize the information about the states observed so far for selecting the next element. We
denote by = {(v1,�(v1)), . . . , (v`,�(v`))} the partial realization observed so far, where {v1, . . . , v`}
is the set of selected elements.

Policies. The decision-maker’s strategy for selecting elements can be encoded as a policy. Formally,
a policy ⇡ is a partial map that returns an element v 2 V to be selected next given partial realization
observed so far. A policy can be described as a decision tree that determines the element to be selected
next as illustrated in Figure 2.2.

Optimization formulation. The goal of the decision-maker is to maximize the expected value of
the objective function f : 2

V
⇥ Y

V
! R. The objective function value f(S,�) depends on the set S

of selected elements and the states � of all elements. At the beginning, she does not know �, but she
can get partial information about � by observing state �(v) of selected v. In parallel, she must select
elements to construct S that has high utility under the realization �.

Let E(⇡,�) ✓ V be the set selected by policy ⇡ under realization �. The expected value achieved by
policy ⇡ is

favg(⇡) = E�[f(E(⇡,�),�)], (2.5)

where the expectation is takenwith regard to the random variable� generated from p. Themaximization
version can be written as

Maximize favg(⇡)

subject to ⇡ 2 ⇧k,

where ⇧k := {⇡ | 8�, |E(⇡,�)| k} is the set of all policies whose heights do not exceed k. Similarly,
we can de�ne the expected cost of policy ⇡ as

cavg(⇡) = E�[c(E(⇡,�))],

20

where c : 2V ! R�0 be the cost function. The coverage version can be written as

Minimize cavg(⇡)

subject to f(E(⇡,�),�) � Q (8�),

where Q 2 R�0 is a threshold. Here we assume c(S) = |S| is the number of the elements in S.

Expected marginal gain. In contrast to the non-adaptive setting, the marginal gain of an element
depends on realization � in the adaptive setting. Therefore, we consider the expected value of the
marginal gain with respect to the randomness of �. The expected marginal gain of element v 2 V

when partial realization has been observed so far is de�ned as

�f,p(v|) := E[f(dom() [{v},�)� f(dom(),�)|� ⇠],

where dom() := {v 2 V | 9y 2 Y, (v, y) 2 }. We omit the subscripts if they are clear from
the context. We write � ⇠ if � is generated from the posterior distribution p(�|). Given current
realization , the expected marginal gain �(v|) represents the expected increase in the objective
value yielded by selecting v.

We can extend this notation to a set, not a single element. Here we consider adding the elements in a
set S ✓ V without observing the states of each element in S when having observed partial realization
 so far. The expected marginal gain of set S ✓ V with partial realization is de�ned as

�f,p(S|) := E[f(dom() [S,�)� f(dom(),�)|� ⇠].

We can further extend the notation to the expected marginal gain of policies. Here we consider
executing a policy ⇡ when having observed so far. The expected marginal gain of policy ⇡ with
partial realization is de�ned as

�f,p(⇡|) := E[f(dom() [E(⇡,�),�)� f(dom(),�)|� ⇠].

2.3.2 Adaptive Submodularity and Adaptive Monotonicity

Adaptive submodularity, which is an adaptive extension of submodularity, is the property of diminishing
returns of the expected marginal gain. Formally, adaptive submodularity is de�ned as follows.

De�nition 30 (Adaptive submodularity [Golovin and Krause, 2011a]). Let f : 2V ⇥ Y
V
! R be a set

function and p a distribution of �. We say f is adaptive submodular with respect to p if for any partial
realization ✓ 0 such that p(0

) > 0 and any element v 2 V \ dom(
0
), it holds that

�(v|) � �(v|
0
).

Note that adaptive submodularity is de�ned relative to the distribution p(�) over realizations, that is,
f can be adaptive submodular with respect to one distribution, but not with respect to another. The
monotonicity can also be extended to the adaptive setting as follows.

De�nition 31 (Adaptive monotonicity [Golovin and Krause, 2011a]). Let f : 2V ⇥ Y
V
! R be a set

function and p a distribution of �. We say f is adaptive monotone with respect to p if for any partial
realization such that p(0

) > 0 and any element v 2 V \ dom(), it holds that

�(v|) � 0.

21

Algorithm 6 Adaptive greedy algorithm with ↵-approximate greedy selection [Golovin and Krause,
2011a]
Input The objective function f : 2

V
⇥ Y

V and the probability distribution p 2 4
Y

V given by a
value oracle for the expected marginal gain �(·|·), the independence system (V, I) given by an
independence oracle.

1: 0 ?.
2: F V .
3: i 0.
4: while F 6= ? do
5: i i+ 1.
6: Find v 2 V such that �(v| i�1) � ↵maxv2V �(v| i�1).
7: Observe �(v) and let i i�1 [{(v,�(v))}.
8: Let F {v 2 V | dom(i) [{v} 2 I}.

Let ⇡0@⇡ be a concatenated policy, i.e., a policy that executes ⇡0 as if from scratch after executing ⇡.
Adaptive monotonicity is known to be equivalent to the following condition:

Lemma 32 ([Golovin and Krause, 2011a, Lemma A.8]). Fix f : 2
V
⇥ Y

V
! R�0. Then we have

�(v|) � 0 for all with p() > 0 and all v 2 V if and only if for all policies ⇡ and ⇡0, we have
favg(⇡) favg(⇡

0
@⇡).

The adaptive greedy algorithm [Golovin and Krause, 2011a] starts with the empty set and selects an
element with the largest expected marginal gain at each step. Here we consider an approximate version
that selects an element whose expected marginal gain is at least↵ times the maximum expected marginal
gain. This algorithm can be regarded a counterpart of the greedy algorithm in the adaptive setting.
The algorithmic description is given in Algorithm 6. Under the assumption of adaptive submodularity
and adaptive monotonicity, the adaptive greedy algorithm is guaranteed to approximate the expected
objective value achieved by an optimal policy.

Theorem 33 ([Golovin and Krause, 2011a]). Suppose f : 2V ⇥ Y
V
! R�0 is adaptive submodular and

adaptive monotone with respect to p and I is a cardinality constraint. Let ⇡ be the policy obtained by
executing the adaptive greedy with an ↵-approximate greedy selection k steps and ⇡⇤ be any policy of
height k. The objective value achieved by ⇡ is at least (1 � e

�↵
)-approximation to the objective value

achieved by ⇡⇤, i.e.,
favg(⇡) � (1� e

�↵
)favg(⇡

⇤
).

Adaptive submodular coverage. The coverage version of adaptive submodular maximization is
called adaptive submodular coverage [Golovin and Krause, 2011a]. Since the coverage version is more
suitable for several applications including active learning, it has drawn much attention. The main
question on this problem is what is the approximation ratio of the adaptive greedy algorithm that
continues to select elements until the objective value achieves the threshold. To analyze this problem,
Golovin and Krause [2011a] de�ned a stronger version of adaptive monotonicity called strong adaptive
monotonicity as follows.

De�nition 34 ([Golovin and Krause, 2011a]). Let f : 2V ⇥YV
! R be a set function and p a distribution

of �. We say f is adaptive monotone with respect to p if for any partial realization , any element
v 2 V \ dom(), and any state y 2 Y such that such that Pr(� ⇠ , �(v) = y) > 0, it holds that

E[f(dom(),�)|� ⇠] E[f(dom() [{v},�)|� ⇠ , �(v) = y].

22

First, Golovin and Krause [2011a] argued that under the assumption of adaptive submodularity
and strong adaptive monotonicity, the adaptive greedy algorithm is (ln Q

⌘� + 1)-approximation in
comparison to an optimal policy, where ⌘ is any value such that f(S,�) > Q� ⌘ implies f(S,�) = Q

and � = min� p(�). However, an error was found in the proof of this result by Nan and Saligrama
[2017]. In response to this, the authors of Golovin and Krause [2011a] provided a slightly weaker result
with a slightly stronger assumption in the updated arxiv version [Golovin and Krause, 2010]. The
assumption newly added is strong adaptive submodularity, which is a stronger condition than adaptive
submodularity de�ned as follows.

De�nition 35 (Strong adaptive submodularity [Golovin and Krause, 2010]). We say f is strongly
adaptive submodular with respect to p if f is adaptive submodular with respect to p and for any partial
realization ✓ 0 and any policy v 2 V \ dom(

0
), it holds that

�(v| ;
0
) � �(v|

0
),

where �(v| ;
0
) is the extended expected marginal gain de�ned as

�(v| ;
0
) = E�[f(dom() [{v},�)� f(dom(),�)|� ⇠

0
].

With the assumption of strong adaptive submodularity, the corrected result states (ln Q
⌘� + 1)

2-
approximation of the adaptive greedy algorithm. Here we consider the case where f(V,�) = Q for
all �. If it does not hold, by truncating the function f̃(S,�) = min{f(S,�), Q} instead of f , we can
reduce to such an instance.

Theorem 36 ([Golovin and Krause, 2010]). Suppose f : 2V ⇥YV
! R�0 is strongly adaptive submodular

and strongly adaptive monotone with respect to p and there exists Q such that f(V,�) = Q. Let ⌘ be
any value such that f(S,�) > Q � ⌘ implies f(S,�) = Q for all S and �. Let � = min� p(�) be the
minimum probability of any realization. Let ⇡⇤ be an optimal policy minimizing the expected cost to
guarantee f(E(⇡

⇤
,�),�) = Q for every realization �. Let ⇡ be a policy that encodes ↵-approximate

greedy algorithm. Then in general

cavg(⇡) ↵cavg(⇡
⇤
)

✓
ln

✓
Q

�⌘

◆
+ 1

◆2

.

Remark 37. In the proof in Golovin and Krause [2010], the assumption that f(S,�) = f(S,�
0
) if

�(v) = �
0
(v) for any v 2 S seems to be implicitly used. This assumption holds in most applications,

therefore it is not problematic.

p-System constraints. The adaptive greedy algorithm works for p-system constraints as well.
Golovin andKrause [2011b] showed that the adaptive greedy algorithm achieves 1/(p+1)-approximation
for a p-system constraint.

Theorem 38 ([Golovin and Krause, 2011b]). Suppose f : 2V ⇥ Y
V
! R�0 is adaptive submodular and

adaptive monotone with respect to p and I is the independence set family of a matroid. Let ⇡ be the policy
obtained by executing the adaptive greedy with an ↵-approximate greedy selection k steps and ⇡⇤ be any
policy of height k. The objective value achieved by ⇡ is at least (1� e

�↵
)-approximation to the objective

value achieved by ⇡⇤, i.e.,

favg(⇡) �
↵

p+ ↵
favg(⇡

⇤
).

23

Pointwise submodularity and pointwisemonotonicity. Golovin and Krause [2011a] also de�ned
submodularity for each realization �. If each set function f(·,�) for � satis�es submodularity, f is
called pointwise submodular.

De�nition 39 (Pointwise submodularity [Golovin and Krause, 2011a]). A set function f : 2V ⇥YV
! R

is pointwise submodular if for any realization �, f(·,�) is submodular.

An interesting point is that pointwise submodularity does not imply adaptive submodularity, and
vice versa. It is known that if adaptive submodularity and pointwise submodularity hold, then strong
adaptive submodularity also holds [Golovin and Krause, 2010]. Similarly, pointwise monotonicity can be
de�ned as follows.

De�nition 40 (Pointwise monotonicity). A set function f : 2
V
⇥ Y

V
! R is pointwise monotone if for

any realization �, f(·,�) is monotone.

Though pointwise submodularity does not imply adaptive submodularity, pointwise monotonicity
implies adaptive monotonicity. Moreover, pointwise monotonicity implies strong adaptive monotonicity.

24

3 Approximation Guarantees of Greedy Policy
with Adaptive Submodularity Ratio

This chapter is organized as follows. Section 3.1 illustrates the background and overview of this chapter.
In Section 3.2, we formally de�ne the adaptive submodularity ratio, which is the key concept of this
study. In Sections 3.3 and 3.4, we provide bounds on the approximation ratio of the adaptive greedy
algorithm and adaptivity gaps, respectively, by using the adaptive submodularity ratio. In Sections 3.5
and 3.6, we apply the frameworks developed in Sections 3.3 and 3.4 to two applications: adaptive
in�uence maximization and adaptive feature selection. In Section 3.7, we experimentally check the
performance of the adaptive greedy algorithm in several applications. In Section 3.8 we review related
work. Section 3.9 provides a summary and future work of this chapter.

3.1 Background and Overview

As illustrated in Section 2.3, the approach based on adaptive submodularity [Golovin and Krause, 2011a]
is a well-established framework for analyzing greedy algorithms for adaptive optimization problems in
machine learning. However, adaptive submodularity is not omnipotent. While the greedy policy works
well for various sequential decision-making problems, many of these problems do not have adaptive
submodularity. In fact, even if an objective function is submodular in the non-adaptive setting, its
adaptive version does not always have adaptive submodularity.
Adaptive in�uence maximization is one such example. In this problem, a decision-maker aims at

spreading information about a product by selecting several advertisements. She repeatedly alternates
between selecting an advertisement and observing its e�ect. The objective function of this problem is
known to have adaptive submodularity in the independent cascade model [Golovin and Krause, 2011a],
but not in a more general di�usion model called the triggering model [Kempe et al., 2015], which is
extensively studied as an important class of di�usion models [Leskovec et al., 2007b, Tang et al., 2014].
Note that this objective function satis�es submodularity in the non-adaptive setting, while it does not
satisfy adaptive submodularity in the adaptive setting. Examples of other problems lacking adaptive
submodularity appear in many applications such as feature selection and active learning. Therefore, we
are waiting for an analysis framework that goes beyond adaptive submodularity.

To develop such a framework for the adaptive setting, we build on the the submodularity ratio [Das
and Kempe, 2011] in the non-adaptive setting. As described in Section 2.2, the submodularity ratio is a
prevalent tool for handling non-submodular functions. An adaptive variant of the submodularity ratio
would be a promising approach to handling functions that lack adaptive submodularity, but how to
de�ne it is quite non-trivial since there is a large discrepancy between the non-adaptive and adaptive
settings as exempli�ed above. In particular, success in de�ning an adaptive version of the submodularity
ratio involves meeting the following two requirements: it must yield an approximation guarantee of the
greedy policy, and it must be bounded in various important applications such as the adaptive in�uence
maximization and adaptive feature selection. Previous studies [Kusner, 2014, Yong et al., 2017] tried to
de�ne similar notions, but none of them meet the requirements.

In this chapter, we invent a new notion of approximate submodularity for adaptive optimization, which
we name adaptive submodularity ratio. We propose an analysis framework, adaptive submodularity ratio,

25

Table 3.1: Summary of our theoretical results about adaptive bipartite in�uence maximization
and adaptive feature selection. We show lower bounds for the adaptive submodular-
ity ratios, the approximation ratios of the adaptive greedy algorithm, and the adap-
tivity gaps. Let �min,` = min�minS✓V : |S|` �min(A(�)

>

SA(�)S) and �max,` =

max�maxS✓V : |S|` �max(A(�)
>

SA(�)S). Parameters q and d are determined by the di�u-
sion model and the underlying graph structure. The results of Golovin and Krause [2011a]
are indicated by †.

Problem Adaptive submodularity ratio Adaptive greedy Adaptivity gaps

Linear threshold (k + 1)/2k 1� exp(�(k + 1)/2k) (k + 1)/2k

Independent cascade 1
†

1� 1/e
†

(1� q)
min{d,k}�1

Triggering (k + 1)/2k 1� exp(�(k + 1)/2k)

Feature selection �min,k+` 1� exp(��min,k+`) �min,k/�max,k

that meets the aforementioned requirements. An advantage of our proposal is that it has the potential
to yield various theoretical results as in Table 3.1. Below we summarize our main contributions.

• We propose the de�nition of the adaptive submodularity ratio and, by using it, we prove an
approximation guarantee of the adaptive greedy algorithm.

• We give a bound on the adaptivity gap, which represents the superiority of adaptive policies over
non-adaptive policies, through the lens of the adaptive submodularity ratio.

• We provide lower bounds on the adaptive submodularity ratio for two important applications:
adaptive in�uence maximization on bipartite graphs in the triggering model and adaptive feature
selection. Regarding the former one, we show that our result is tight.

• Experiments con�rm that the greedy policy performs well for the considered applications.

3.2 Adaptive Submodularity Ratio

In this section, we provide a precise de�nition of the adaptive submodularity ratio, which extends the
submodularity ratio from the non-adaptive setting to the adaptive setting. We need to de�ne it carefully
so that it can yield an approximation guarantee of the greedy policy. An important point is to generalize
subset S of size at most k, used to de�ne the submodularity ratio, to policy ⇡ of height at most k.

De�nition 41 (Adaptive submodularity ratio). Suppose that f : 2V ⇥ Y
V
! R is adaptive monotone

with respect to a distribution p. The adaptive submodularity ratio � ,k 2 [0, 1] of f and p with respect
to partial realization and parameter k 2 Z�0 is de�ned to be

� ,k(f, p) := min
 0✓ , ⇡2⇧k

P
v2V Pr(v 2 E(⇡,�)|� ⇠

0
)�(v|

0
)

�(⇡| 0)
.

We omit f and p if they are clear from the context. We also de�ne �`,k := min :| |` � ,k.

Intuitively, the adaptive submodularity ratio indicates the distance between (f, p) and the class of
adaptive submodular functions. As with the non-adaptive setting, � ,k(f, p) = 1 implies the adaptive
submodularity of f , which can formally be written as follows.

26

Proposition 42. It holds that � ,k(f, p) = 1 for any partial realization and k 2 Z�0 if and only if f
is adaptive submodular with respect to p.

Proof. First, we deal with the “if” part. Let v be the partial realization just before v is selected in ⇡. If
there are multiple partial realizations such that ⇡() = v, we can duplicate v and take them to be
di�erent elements. From adaptive submodularity, for any partial realization and policy ⇡, we have

�(⇡|) =

X

v2V

Pr(v 2 E(⇡,�)|� ⇠)�(v| [v)

X

v2V

Pr(v 2 E(⇡,�)|� ⇠)�(v|).

Thus we can see � ,k � 1. Moreover, if ⇡ is a policy that selects a single element, the above inequality
holds with equality. These two facts imply � ,k = 1.

Next, we deal with the “only if” part. Let ✓ 0 be any partial realization such that | |+1 = |
0
| and

v 2 V \ dom(
0
) be any element. We de�ne u 2 dom(

0
) \ dom() to be the additional element and

y its state in 0, i.e., 0
= [{(u, y)}. Let us consider a policy ⇡ that �rst selects u and, if �(u) = y,

proceeds to select v. From the assumption, we have � ,2 = 1, and thus �(⇡|)
P

v2V Pr(v 2

E(⇡,�))�(v|). We can calculate the left and right hand sides as follows.

(LHS) = �(u|) + Pr(�(u) = y|� ⇠)�(v|
0
),

(RHS) = �(u|) + Pr(�(u) = y|� ⇠)�(v|).

Therefore, we obtain �(v|
0
) �(v|). By sequentially concatenating inequalities of this type, we

can show that the statement holds for any ✓ 0.

3.3 Adaptive Greedy Algorithm

In this section, we present a new approximation guarantee for the adaptive greedy algorithm based on
the adaptive submodularity ratio. Thanks to this result, once the adaptive submodularity ratio is bounded,
we can obtain approximation guarantees of the adaptive greedy algorithm for various applications. The
adaptive greedy algorithm is an algorithm that starts with an empty set and repeatedly selects the element
with the largest expected marginal gain. The detailed description is given in Algorithm 6. Golovin
and Krause [2011a] have shown that this algorithm achieves (1� 1/e)-approximation to the expected
objective value of an optimal policy if f is adaptive submodular with respect to p. Here we extend their
result and show that the adaptive greedy algorithm achieves (1� exp(��`,`))-approximation, where `
is the number of selected elements. More precisely, we can bound the approximation ratio relative to
any policy ⇡⇤ of height k as follows.

Theorem 43. Suppose f : 2V ⇥ Y
V
! R�0 is adaptive monotone with respect to p. Let ⇡ be a policy

representing the adaptive greedy algorithm until ` step. Then, for any policy ⇡⇤ 2 ⇧k, it holds that

favg(⇡) �

✓
1� exp

✓
�
�`,k`

k

◆◆
favg(⇡

⇤
),

where �`,k is the adaptive submodularity ratio of f with respect to p.

Proof. Let be any possible partial realization that can appear while executing the adaptive greedy
policy ⇡. Since ⇡ stops after ` steps, we have | | `. According to the de�nition of the adaptive
submodularity ratio, we have

�`,k�(⇡
⇤
|)

X

v2V

Pr(v 2 E(⇡
⇤
,�)|� ⇠)�(v|) kmax

v2V
�(v|)

27

since
P

v2V Pr(v 2 E(⇡
⇤
,�)|� ⇠) = E[|E(⇡

⇤
,�)|] k. Let be a random partial realization

observed by executing ⇡[i], where ⇡[i] is a policy obtained by running ⇡ until it terminates or it selects i
elements. Formally, conforms to the distribution p () := Pr(= | 9�, = {(v,�(v)) | v 2

E(⇡[i],�)}). Then we can obtain a lower bound on the expected single step gain as follows.

favg(⇡[i+1])� favg(⇡[i]) = E

max
v2V

�(v|)

�

(due to the property of the adaptive greedy algorithm)

� E
h
�`,k

k
�(⇡

⇤
|)

i
(due to (3.3))

=
�`,k

k

�
favg(⇡[i]@⇡

⇤
)� favg(⇡[i])

�

�
�`,k

k

�
favg(⇡

⇤
)� favg(⇡[i])

�
.

(due to adaptive monotonicity and Lemma 32)

Let �i := favg(⇡
⇤
)� favg(⇡[i]). The above inequality can be rewritten as �i ��i+1 � �`,k�i/k,

which implies �i+1 (1 � �`,k/k)�i. By repeatedly using this inequality, we obtain �` (1 �

�`,k/k)
`
�0 exp(��`,k`/k)favg(⇡

⇤
). Consequently, we have favg(⇡) � (1�exp(��`,k`/k))favg(⇡

⇤
).

3.4 Non-adaptive Policies and Adaptivity Gaps

We show that the adaptive submodularity ratio is also useful for theoretically comparing the per-
formances of adaptive and non-adaptive policies. More precisely, we present a lower bound on the
adaptivity gap, which represents the performance gap between adaptive and non-adaptive polices, by
using the adaptive submodularity ratio. The adaptivity gap is de�ned as follows.

De�nition 44 (Adaptivity gaps). The adaptivity gapGAPk(f, p) of an objective function f : 2V ⇥YV
!

R�0 and a probability distribution p of � : V ! Y is de�ned as the ratio between an optimal adaptive
policy and an optimal non-adaptive policy, i.e.,

GAPk(f, p) =
maxM : |M |k E�[f(M,�)]

max⇡⇤2⇧k favg(⇡
⇤)

,

where k is the height of adaptive and non-adaptive policies.

Theorem 45. Let f : 2V ⇥ Y
V
! R�0 be an objective function and p a probability distribution of

� : V ! Y . Let �?,k be the adaptive submodularity ratio of f with respect to p. Let �?,k be the
supermodularity ratio of the set function E�[f(·,�)] of non-adaptive policies. We have

GAPk(f, p) � �?,k�?,k.

Proof of Theorem 45. Let ⇡⇤non be an optimal non-adaptive policy and ⇡⇤ be an optimal adaptive policy.
Since ⇡⇤non is a non-adaptive policy, it selects the same subset for all �, i.e., E(⇡

⇤
non,�) = E(⇡

⇤
non,�

0
)

for all � and �0. Let M 2 argmax
P

v2M : |M |k�(v|?) and ⇡Mnon the non-adaptive policy that selects
M . From the optimality of ⇡⇤non, we have

favg(⇡
⇤

non) � favg(⇡
M
non).

28

By the de�nition of the supermodularity ratio, we have

�(⇡
M
non|?) � �?,k

X

v2M

�(v|?).

Note that
P

v2V Pr(v 2 E(⇡
⇤
,�)) k and Pr(v 2 E(⇡

⇤
,�)) 1 for each v 2 V . Due to the

de�nition ofM , we have
X

v2M

�(v|?) �

X

v2V

Pr(v 2 E(⇡
⇤
,�))�(v|?).

From the de�nition of the adaptive submodularity ratio, we have
X

v2V

Pr(v 2 E(⇡
⇤
,�))�(v|?) � �?,k�(⇡

⇤
|?).

Combining these inequalities, we have

favg(⇡
⇤

non) � E�[f(?,�)] +�(⇡
M
non|?)

� �?,k�?,k(E�[f(?,�)] +�(⇡
⇤
|?))

= �?,k�?,kfavg(⇡
⇤
).

Therefore, given any non-adaptive ↵-approximation algorithm, we can evaluate its performance
relative to an optimal adaptive policy as follows.

Corollary 46. Let ⇡non 2 ⇧k be a non-adaptive policy that achieves ↵-approximation to an optimal
non-adaptive policy ⇡⇤non. Let �?,k be the adaptive submodularity ratio of f with respect to p. Let �?,k

be the supermodularity ratio of the non-adaptive objective function E�[f(·,�)]. Let ⇡⇤ be an optimal
adaptive policy. We have

favg(⇡non) � ↵�?,k�?,kfavg(⇡
⇤
).

Proof of Corollary 46. From the approximation ratio, we have

favg(⇡non) � ↵favg(⇡
⇤

non).

From Theorem 45, we have
favg(⇡

⇤

non) � �?,k�?,kfavg(⇡
⇤
).

The above two inequalities imply the statement.

From the following example, we can see that Theorem 45 is tight, i.e., for any rationals � and � in
(0, 1], there exist f and p such that the equality holds.

Example 47. Let V = {u} [
SM

i=1 Vi be the ground set, where Vi = {v
1
i , · · · , v

k
i }. Let V0 = ?. Let

Y = {0, 1, · · · ,M}. We de�ne the probability distribution p such that �(u) = y 2 Y with probability
p 2 [0, 1/M] for each y 6= 0 and �(u) = 0 with probability 1� pM . Other elements always in state 0,
i.e., �(v) = 0 with probability 1 for all v 2 V \ {u}. We de�ne the objective function f as

f(S,�) =

8
><

>:

1 + a|S \ V�(u)| (u 2 S)

1 + ap(|S|� 1) (u 62 S and |S| � 1)

0 (S = ?),

29

where a 2 R�0 is the parameter speci�ed later. We have�(v|?) = 1 for all v 2 V . The supermodularity
ratio �?,k of E[f(·,�)] is

�?,k =
1 + (k � 1)ap

k
.

The adaptive submodularity ratio �?,k is

�?,k =
k

1 + (k � 1)apM
.

The adaptivity gap is

GAPk(f, p) =
1 + (k � 1)ap

1 + (k � 1)apM
.

For any rationals � 2 (0, 1] and � 2 (0, 1], there exist some k, a,M such that �?,k = � and �?,k = �.

3.5 Adaptive Influence Maximization

In this section, we consider adaptive in�uence maximization on bipartite graphs. We provide a bound
on the adaptive submodularity ratio in the case of the triggering model, and we show that this result is
tight. We also present bounds on the adaptivity gaps in the case of the independent cascade and linear
threshold models by using the adaptive submodularity ratio.

LetG = (V [U,A) be a directed bipartite graph with source vertices V , sink vertices U , and directed
edges A ✓ V ⇥ U . In the case of bipartite in�uence model [Alon et al., 2012], this graph represents
the relationship between advertisements V and customers U . We consider the problem of selecting
several advertisements S ✓ V to make as much in�uence as possible on the customers. Here, each
edge is determined to be alive or dead according to a certain distribution, and in�uence can be spread
only through live edges. Given vertex weights w : U ! R�0, the objective function to be maximized is
f(X) =

P
u2

S
v2X R(v)w(u), where, for each v 2 V , R(v) ✓ U represents a set of vertices that are

reachable from v by going through only live edges. In the adaptive version of in�uence maximization,
at each step, we select a vertex v 2 V and observe the states of all outgoing edges (v, u) 2 A, while, in
the non-adaptive setting, we select S ✓ V before observing the states of any edges.

We consider a general di�usion model called the triggering model [Kempe et al., 2015], which includes
various important models such as the independent cascade model and the linear threshold model as
special cases. In the triggering model, each vertex v 2 V is associated with some known probability
distribution over the power set of incoming edges. According to this distribution, a subset of incoming
live edges is determined. A vertex gets activated if and only if it is reachable from some selected
vertex (or seed vertex) through only live edges. We aim to maximize the total weight of activated
vertices by appropriately selecting seed vertices. Note that this objective function is submodular in the
non-adaptive setting.
For later use, we explain the linear threshold model, a special case of the triggering model. In this

model, the probability distribution on the incoming edges of each vertex is restricted so that each vertex
has at most one live edge in any realization. In other words, there exists b : A ! R�0 such that, for
each v 2 V , we have

P
a2��(v) b(a) 1, where ��(v) is the full set of edges pointing to v, and a 2 A

is alive with probability b(a) exclusively over ��(v). In contrast to the linear threshold model, the
triggering model accepts any distribution over the power set of ��(v).

3.5.1 Bound of Adaptive Submodularity Ratio

We �rst present the bound of the adaptive submodularity ratio. Here we provide a proof sketch, and
the full proof is given in Section 3.5.3.

30

v1

v2

vk�1

vk

u

v1

v2

vk�1

vk

(v1, u)

is alive

(v2, u)

is alive

(vk�1, u)

is alive

(v1, u) is dead

(v2, u) is dead

(vk�1, u) is dead

graph G policy ⇡

Figure 3.1: An example that implies the tightness of our bound.

Theorem 48. Let G be an arbitrary directed bipartite graph and w be any weight function. For any
k 2 Z�0 and partial realization , the adaptive submodularity ratio � ,k of the objective function and the
distribution of the adaptive in�uence maximization in the triggering model is bounded as follows.

� ,k �
k + 1

2k
.

Proof sketch of Theorem 48. Since the objective function and the probability distribution of edge states
can be decomposed into those de�ned for each vertex u 2 U , it is su�cient to consider the case where
|U | = 1.
Our goal is to prove

�(⇡|
0
)

2k

k + 1

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�(v|

0
)

for any observation 0 and policy ⇡ 2 ⇧k. By duplicating v 2 V that appears multiple times in policy
tree ⇡, we can write the above inequality as

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)

✓
2k

k + 1
�(v|

0
)��(v|

0
[v)

◆
� 0,

where v is the observation just before v is selected. We decompose the policy tree into the path
wherein u remains inactive and the rest, and prove the inequality for each part separately.

We can see that the above bound is tight even for the linear threshold model by considering the
following example.

Example 49. Let G be a bipartite directed graph with V = {v1, . . . , vk}, U = {u}, and A = {(vi, u) |

i 2 [k]}. Let w be the vertex weight such that w(u) = 1. We consider the linear threshold model

31

in which an edge selected out of A uniformly at random is alive and the other edges are dead. We
consider a simple policy ⇡ that selects all vertices one by one until u is activated. These graph and
policy are illustrated in Figure 3.1. Since ⇡ �nally activates u, the expected gain of ⇡ is �(⇡|?) = 1.
The probability that ⇡ selects each vertex is Pr(vi 2 E(⇡,�)) = (k� i+ 1)/k. The expected marginal
gain of vi is �(vi|?) = 1/k. The adaptive submodularity ratio can be bounded as

�?,k

P
v2V Pr(v 2 E(⇡,�))�(v|?)

�(⇡|?)

kX

i=1

k � i+ 1

k
·
1

k

k + 1

2k
.

Hence the lower bound in Theorem 48 is tight.

The assumption that G is bipartite, considered in Theorem 48, may seem excessively strong, but it is
actually a vital assumption. We show that, if G is not a bipartite graph, the adaptive submodularity
ratio can be arbitrarily small; in fact, such an example can be constructed with the linear threshold
model on a very simple graph G. We describe the details in Section 3.5.4.

3.5.2 Bound of Adaptivity Gap

Next, we provide a bound on the adaptivity gaps of bipartite in�uence maximization problems by using
the adaptive submodularity ratio. First, we consider the independent cascade model. Since the adaptive
submodularity holds for the independent cascade model [Golovin and Krause, 2011a], the adaptive
submodularity ratio of its objective function is 1 by Proposition 42. In addition, by using a bound
of the curvature [Maehara et al., 2017] and an inequality between the supermodularity ratio and the
curvature [Bogunovic et al., 2018], we obtain �?,k � (1� q)

min{k,d}�1, where q is an upper bound of
the probability that each edge is alive and d is the largest degree of the vertex in V . From Theorem 45,
we obtain the following result.

Proposition 50. Let f be the objective function and p the probability distribution of bipartite in�uence
maximization in the independent cascade model. We have

GAPk(f, p) � (1� q)
min{k,d}�1

.

We can derive a similar bound for the linear threshold model. Since the expected objective function is
a linear function, its supermodularity ratio is 1. As a special case of Theorem 48, we have �?,k �

k+1
2k .

Combining these bounds with Theorem 45, we obtain the following result.

Proposition 51. Let f be the objective function and p the probability distribution of bipartite in�uence
maximization in the linear threshold model. We have

GAPk(f, p) �
k + 1

2k
.

3.5.3 Full Proofs for Adaptive Influence Maximization

In this subsection, we provide the full proof for Theorem 48. For the readability, we �rst give a proof
for the case of the linear threshold model, which is a special case of the triggering model. After that, we
give a proof for the case of the triggering model.

32

Proof for the Linear Threshold Model

Proof of Theorem 48 in the case of the linear threshold model. Let V be the source vertices, U the sink
vertices, and A ✓ V ⇥ U the directed edges. For notational simplicity, assume that G = (V [U,A) is
a complete bipartite graph, i.e., A = V ⇥ U . By setting b(a) = 0 for all edges a 2 A that originally do
not exist, we can assume this without loss of generality. Fix any 0

✓ and ⇡ 2 ⇧k . It su�ces to prove

�(⇡|
0
)

2k

k + 1

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�(v|

0
).

Let�u(·|
0
) be the expected marginal gain obtained by activating u 2 U . Below we explain that the

above inequality can be separated for each u 2 U ; i.e., it is enough to prove the above inequality for
the case where w(u) > 0 for just one vertex u 2 U and 0 for the others. The objective function is the
linear sum of the one for each u 2 U : �(·|

0
) =

P
u2U �u(·|

0
). Therefore, the above inequality is

decomposed into the sum of

�u(⇡|
0
)

2k

k + 1

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�u(v|

0
)

for each u 2 U . Note that the states of any (v, u) 2 A and (v
0
, u

0
) 2 A are independent of each other

if u 6= u
0. Since the feedback about any u

0
2 U such that u0 6= u is never correlated with the states

of edges pointing to u, we can regard the feedback about u0 as an independent random factor when
considering (3.5.3). Thus we can see that it is su�cient to consider the case of one sink vertex. Note
that a randomized policy can be expressed as a linear sum of deterministic policies. Therefore, it is
enough to consider the case where ⇡ is a deterministic policy. Below we �x u 2 U and use � instead
of �u for notational ease. We can assume w(u) = 1 without loss of generality. If u has been already
activated in 0, both sides of (3.5.3) are equal to zero; thus it holds trivially. We then consider the case
where u is not activated in 0.

Let v be the partial realization just before v is selected in ⇡. If there are multiple partial realizations
such that ⇡() = v, we can duplicate v and consider them to be di�erent elements. We can decompose
�(⇡|

0
) as

�(⇡|
0
) =

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�(v|

0
[v).

The inequality that we aim to prove can be written as

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)

⇢
2k

k + 1
�(v|

0
)��(v|

0
[v)

�
� 0.

Since ⇡ is a deterministic policy that observes only states of edges pointing to u, there exists a path
in policy tree ⇡ wherein u remains inactive; in Figure 3.2 such a path is colored in thin gray. Let
P = {v1, · · · , vm} ✓ V be the path, where m k and policy ⇡ selects the vertices v1, · · · , vm in this
order. We consider proving the above inequality for P and V \P separately. We can easily see that
�(v|

0
[v) = 0 holds for all v 2 V \ P since u is already activated there. Therefore, it is enough to

prove
X

v2P

Pr(v 2 E(⇡,�)|� ⇠
0
)

⇢
2k

k + 1
�(v|

0
)��(v|

0
[v)

�
� 0.

Now we calculate the left hand side of this inequality, which we denote by C . Since u has not been
activated yet in 0, all edges (s, u) are dead for all s 2 dom(

0
). In the linear threshold model, we can

33

v1

v2

v3

u is activated

u is activated

u is activated

u is not
activated

u is not
activated

u is not
activated

2k
k+1�(v|

0
)��(v|

0
[v) � 0 holds

since �(v|
0
[v) = 0.

Figure 3.2: A description of our proof method. We can decompose the policy tree into the path wherein
u is not activated and the rest.

de�ne pi := b(viu)/(1�
P

t2V \dom(0) b(tu)) to be the posterior probability that edge (v, u) is alive
under observations 0 for each i = 1, . . . ,m. Now we have Pr(vi 2 E(⇡,�)|� ⇠

0
) = Pr(� ⇠

0
[

 vi |� ⇠
0
) = 1�

Pi�1
j=1 pj . In addition, we have�(vi|

0
) = pi and�(vi|

0
[vi) = pi/(1�

Pi�1
j=1 pj),

and hence

C =

mX

i=1

0

@1�

i�1X

j=1

pj

1

A
(

2k

k + 1
pi �

pi

1�
Pi�1

j=1 pj

)
.

In the case ofm = 1, we have C = (k � 1)/(k + 1)pi � 0. Form � 2, we obtain

C =

mX

i=1

2k

k + 1
pi

0

@1�

i�1X

j=1

pj

1

A�
mX

i=1

pi

=
k � 1

k + 1

mX

i=1

pi �
2k

k + 1

mX

i=1

0

@pi

i�1X

j=1

pj

1

A

=
k � 1

k + 1

8
<

:

mX

i=1

pi �
2k

k � 1

mX

i=1

0

@pi

i�1X

j=1

pj

1

A

9
=

; .

The right hand side can be bounded from below as

k � 1

k + 1

8
<

:

mX

i=1

pi �
2k

k � 1

mX

i=1

0

@pi

i�1X

j=1

pj

1

A

9
=

;

=
k � 1

k + 1

⇢
1>p�

k

k � 1
p>

(11> � I)p

�

�
k � 1

k + 1

⇢
1>p�

m

m� 1
p>

(11> � I)p

�
,

where p = (p1, . . . , pm)
> and I 2 Rm⇥m is the identity matrix. The inequality comes from 2 m k

and p>
(11> � I)p � 0. Since each entry of p represents a probability, we have 0 p 1 and

0 1>p 1. From Lemma 52 proved below, we can see that this is non-negative. Therefore, we
conclude that (3.5.3) holds.

34

In the above proof, we used the following lemma.

Lemma 52. Let m � 2 and p 2 Rm be an arbitrary vector such that 0 p 1 and 0 1>p 1,
then we have

1>p�
m

m� 1
p>

(11> � I)p � 0.

Proof. Let U = (u1 · · ·um) 2 Rm⇥m be an orthonormal matrix whose �rst column is de�ned as
u1 = 1/

p
m; we can write p = Uqwith some vector q = (q1, . . . , qm)

>. Since u>

1 ui = 0 for all i 6= 1,
we obtain U>1 = (

p
m, 0, . . . , 0)

>. Hence the left hand side of the target inequality can be rewritten
as

1>p�
m

m� 1
p>

(11> � I)p = 1>Uq�
m

m� 1
q>U>

(11> � I)Uq

=
m

m� 1
(kqk22 �mq

2
1) +

p
mq1

=
p
mq1(1�

p
mq1) +

m

m� 1
(q

2
2 + · · ·+ q

2
m).

Since we have 0 1>p =
p
mq1 1, this value is non-negative.

Proof for the Triggering Model

Proof of Theorem 48. The outline of the proof for the triggering model is the same as the one for the
linear threshold model. In the case of the triggering model, we can write C as follows.

C =

mX

i=1

Pr

0

@
i�1̂

j=1

Xj = 0

������
� ⇠

0

1

A

8
<

:
2k

k + 1
Pr
�
Xi = 1|� ⇠

0
�
� Pr

0

@Xi = 1

������
� ⇠

0
,

i�1̂

j=1

Xj = 0

1

A

9
=

; ,

whereXi is an event in which edge (vi, u) is alive. Di�erent from the linear threshold model, we cannot
express C explicitly with parameters. Hence we de�ne

pi := Pr(Xi = 1|� ⇠
0
) for i = 1, · · · ,m,

ai := Pr

⇣
Xi = 1 ^

nVi�1
j=1Xi = 0

o���� ⇠ 0

⌘
for i = 1, · · · ,m,

and hi := Pr

⇣nVi
j=1Xi = 0

o���� ⇠ 0

⌘
for i = 0, · · · ,m.

With these de�nitions, we can calculate C as

C =

mX

i=1

hi�1

✓
2k

k + 1
pi �

ai

hi�1

◆

=
2k

k + 1

mX

i=1

pihi�1 �

mX

i=1

ai.

Our goal is to prove that
2k

k + 1

mX

i=1

pihi�1 �

mX

i=1

ai � 0.

Note that we have

0 ai pi 1 and 0 hi 1 for i = 1, . . . ,m,

35

where a1 = p1 and h0 = 1. Therefore, ifm = 1, we have

2k

k + 1

mX

i=1

pihi�1 �

mX

i=1

ai =
2k

k + 1
p1h0 � a1

=
k � 1

k + 1
p1

� 0.

Furthermore, it holds that

hi +
Pi

j=1 aj = Pr

⇣nVi
j=1Xi = 0

o⌘
+
Pi

j=1 Pr

⇣
Xi = 1 ^

nVi�1
j=1Xi = 0

o⌘
= 1

for i = 0, . . . ,m, where
P0

j=1 aj = 0. By combining this equality with 0 hi 1, we obtain

0

iX

j=1

aj 1

for i = 0, . . . ,m. With these inequalities, the light hand side of the target inequality can be bounded as

2k

k + 1

mX

i=1

pihi�1 �

mX

i=1

ai =
2k

k + 1

mX

i=1

pi

0

@1�

i�1X

j=1

aj

1

A�
mX

i=1

ai

�
2k

k + 1

mX

i=1

ai

0

@1�

i�1X

j=1

aj

1

A�
mX

i=1

ai

=
k � 1

k + 1

mX

i=1

ai �
2k

k + 1

X

i>j

aiaj

=
k � 1

k + 1

✓
1>a�

k

k � 1
a>(11> � I)a

◆

�
k � 1

k + 1

✓
1>a�

m

m� 1
a>(11> � I)a

◆
,

which is non-negative from Lemma 52; this completes the proof as with the case of the linear threshold
model.

3.5.4 Example for the Case of General Graphs

In this subsection, we provide a problem instance of a general graph in which the adaptive submodularity
ratio can be very small.
Before that, we brie�y describe the problem setting of adaptive in�uence maximization in general

graphs. LetG = (V
0
, A) be a general directed graph and V ✓ V

0 be a set of vertices that can be selected.
At each step, the algorithm selects one vertex v 2 V , then the in�uence spreads from v according to
some stochastic di�usion process such as the independent cascade model or the linear threshold model.
After that, the algorithm observes the di�usion from this vertex v under some feedback model. This
problem includes the bipartite in�uence maximization as a special case where G = (V [U,A) is a
directed bipartite graph with A ✓ V ⇥ U and w(v) = 0 for all v 2 V .

There are two standard feedback models, both of which are proposed by Golovin and Krause [2011a].
Note that these two feedback models are equivalent in bipartite graphs. In the �rst feedback model

36

called themyopic feedback model, the algorithm observes the states of all edges outgoing from v. Golovin
and Krause [2011a] proved that the adaptive submodularity does not hold in this case by giving a simple
example. This analysis can be applied to both the independent cascade and linear threshold models.
With this example instance, we can readily see that the adaptive submodularity ratio can be very small
under the myopic feedback model. These facts imply that the myopic feedback model is typically too
harsh to deal with.
In the second feedback model called the full-adoption feedback model, the algorithm observes the

states of all edges outgoing from any vertex u 2 R(v) when selecting v, where R(v) is the set of all
vertices reachable from v only through live edges. Golovin and Krause [2011a] showed that, even if
graphs are general (non-bipartite), the objective function satis�es adaptive submodularity under the
independent cascade model with the full-adaption feedback.
Below we show that, even under the linear threshold model with the full-adoption feedback, the

adaptive submodularity ratio can be arbitrarily small if the graph is non-bipartite. This fact implies that
the assumption of bipartiteness, which we imposed to obtain the bound on the adaptive submodularity
ratio, is almost inevitable.

Example 53. LetG be a directed graph with vertices V = {v1, . . . , v`}[{u0, u1, . . . , u`} and directed
edges A = {(ui�1, ui) | i = 1, . . . , `} [{(vi, ui) | i = 1, . . . , `}. Let w be the vertex weight such that
w(v) = 1 for all v 2 V . We consider the following linear threshold model: for each i 2 [`], only one of
the two edges, (vi, ui) and (ui�1, ui), entering ui is alive with probability ✏ and 1� ✏, respectively.
Let ⇡ be a policy de�ned as follows. ⇡ �rst selects u0. Then the realized states of some edges are

revealed under the full-adoption feedback model and we can observe which vertices are activated. If u`
is activated, ⇡ stops. Otherwise, there exists some i 2 [`] such that ui�1 is activated but ui is not. Then
⇡ proceeds to select vi. Repeat this procedure until u` is activated. The graph and policy are illustrated
in Figure 3.3.
First, we consider the probability Pr(vi 2 E(⇡,�)) for each i 2 [`]. We can see that ⇡ selects vi

if and only if the edge (ui�1, ui) is dead, which yields Pr(vi 2 E(⇡,�)) = ✏. We can easily con�rm
that ⇡ �nally activates all u0, . . . , u` for every realization and each vi is selected with probability ✏,
therefore �(⇡|?) = ` + 1 + ✏`. On the other hand, the numerator of the de�nition of the adaptive
submodularity ratio can be calculated as follows. The expected marginal gain of vi is

�(vi|?) = 1 +

X̀

j=i

✏(1� ✏)
j�i

= 2� (1� ✏)
`�i+1

.

Similarly, we have�(u0|?) =
1
✏{1� (1� ✏)

`+1
}. Finally, we can compute the adaptive submodularity

ratio as

�?,`

P
v2V Pr(v 2 E(⇡,�))�(v|?)

�(⇡|?)

=

1
✏{1� (1� ✏)

`+1
}+ ✏

P`
i=1(2� (1� ✏)

`�i+1
)

`+ ✏`+ 1

1
✏ + 2✏`

`+ ✏`+ 1

By setting ✏ = 1/
p
` and taking `!1, we can see �?,` ! 0. To conclude, the adaptive submodularity

ratio can become arbitrarily small if the graph is non-bipartite.

37

u0 u1 u2 u`�1 u`

v1 v2 v`�1 v`

(a) graph G = (V,A)

u0 v1 v2 v`�1 v`
(u0, u1)

is dead
(u1, u2)

is dead
(u`�1, u`)

is dead

(u0, u1)

is alive

(u1, u2)

is alive
(u`�1, u`)

is alive

(u1, u2)

is dead
(u`�1, u`)

is dead

(u1, u2)

is alive
(u`�1, u`)

is alive

(b) policy ⇡

Figure 3.3: An instance with a non-bipartite graph such that the adaptive submodularity ratio can
be arbitrarily small. Since the space is limited, nodes of ⇡ that have the same subtree are
indicated by a single node.

3.6 Adaptive Feature Selection

In this section, we consider an adaptive variant of feature selection for sparse regression.
Let us consider the following scenario. A learner has all feature vectors in advance, but they are not

accurate due to sensing noise. Here each sensor corresponds to a single feature vector. The learner
can obtain accurate feature vectors by replacing inaccurate sensors with high-quality sensors, but
the number of high-quality sensors is limited to k. The learner selects k features for observing their
accurate feature vectors.

We formulate this scenario as the following problem. At the beginning, a learner knows a response
vector b 2 Rm and a prior distribution over the features, but does not know the features themselves.
Namely, we regard the inaccurate feature vectors obtained with noisy sensors as prior distributions
on accurate feature vectors. A random variable � indicates the uncertainty over the observed feature
vectors. From the noisy sensors, we can know only a prior distribution of � but not the true �. Let
V = [n] be the set of features. At each step, the learner can query a feature v 2 V and observe its
feature vector �(v) 2 Rm. We assume the noise of sensors are independent of each other; i.e., there
exists a distribution pv(�(v)) for each v 2 V and we can factorize p as p(�) =

Q
v2V pv(�(v)).

LetA(�) = (�(1) · · ·�(n)) be the realized feature matrix under realization �. The objective function
to be maximized is de�ned as

f(S,�) = kbk22 � min
w2RS

kb�A(�)Swk
2
2.

3.6.1 Bound of Adaptive Submodularity Ratio

To bound the adaptive submodularity ratio of adaptive feature selection, we give a general lower bound
of the adaptive submodularity ratio by using (non-adaptive) submodularity ratios of all realizations.

Theorem 54. Let f : 2V ⇥ Y
V
! R be adaptive monotone with respect to distribution p(�). Assume the

value of f(S,�) depends only on (�(v))v2S not on (�(v))v2V \S , i.e., f(S,�) = f(S,�
0
) for all � and �0

such that �(v) = �(v) for all v 2 S. We also assume p(�) can be factorized to distributions pv(�(v)) of
states of each v 2 V , i.e., p(�) =

Q
v2V pv(�(v)). Let �

�
X,k be the submodularity ratio of f(·,�) for each

realization �. For any distribution pv of �(v), the adaptive submodularity ratio � ,k can be bounded as

� ,k � min
�⇠

�
�
dom(),k.

Proof. Let be any partial realization and ⇡ 2 ⇧k be any policy of height at most k. Fix an arbitrary
subset 0

✓ . Note that we have f(dom(),�) = f(dom(),�
0
) for any �,�0 ◆ due to the

38

assumption that f(S,�) depends only on (�(v))v2S ; considering this, we abuse the notation and de�ne
f() := f(dom(),�) for any � ◆ . Let v be the partial realization just before v is selected in ⇡. If
there are multiple partial realizations such that ⇡() = v, we can duplicate v and consider them to
be di�erent elements. Now we can transform the numerator of the adaptive submodularity ratio as

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�(v|

0
)

=

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)E
⇥
f(

0
[{(v,�(v))})� f(

0
)
��� ⇠ 0

⇤

=

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)

X

y2Y

Pr(�(v) = y|� ⇠
0
)

n
f(

0
[{(v, y)})� f(

0
)

o

=

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)

X

y2Y

Pr(�(v) = y|� ⇠
0
[v)

n
f(

0
[{(v, y)})� f(

0
)

o

(due to the independence of �(v) from (�(u))u2dom(v))

=

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)E
⇥
f(

0
[{(v,�(v))})� f(

0
)
��� ⇠ 0

[v
⇤

=

X

v2V

Pr(� ⇠
0
[v|� ⇠

0
)E
⇥
f(dom(

0
) [{v},�})� f(dom(

0
),�)

��� ⇠ 0
[v

⇤

= E

2

4
X

v2E(⇡,�)

n
f(dom(

0
) [{v},�)� f(dom(

0
),�)

o
������
� ⇠

0

3

5 .

From the above equality, we get

min
�⇠

�
�
dom(),k�(⇡|

0
)

= min
�⇠

�
�
dom(),kE

⇥
f(dom(

0
) [E(⇡,�),�)� f(dom(

0
),�)

��� ⇠ 0
⇤

 E
h
�
�
dom(),k

n
f(dom(

0
) [E(⇡,�),�)� f(dom(

0
),�)

o���� ⇠ 0

i

 E

2

4
X

v2E(⇡,�)

n
f(dom(

0
) [{v},�)� f(dom(

0
),�)

o
������
� ⇠

0

3

5

(From the de�nition of the submodularity ratio)

=

X

v2V

Pr(v 2 E(⇡,�)|� ⇠
0
)�(v|

0
).

This inequality holds for any and ⇡ 2 ⇧k. To conclude, we obtain � ,k � min�⇠ �
�
dom(),k.

By using Theorem 54 and Theorem 21 by Das and Kempe [2011], we obtain the following lower
bound of the adaptive submodularity ratio.

Corollary 55. Assume each column ofA(�) is normalized. For any b 2 Rn and any distribution pv of
each �(v), the adaptive submodularity ratio �`,k can be bounded as

�`,k � min
�

min
S✓V :|S|k+`

�min(A(�)
>

SA(�)S),

where �min(·) represents the smallest eigenvalue.

39

Proof. From the de�nition, we can see f(S,�) depends only on selected columns (�(v))v2S and not on
the other columns (�(v))v2V \S .
We can show

f(S,�) = kb� 0k2 � min
supp(w)✓S

kb�A(�)wk2

 kb� 0k2 � min
supp(w)✓T

kb�A(�)wk2 = f(T,�)

for all S ✓ T . From this property, called pointwise monotonicity, for any partial realization and
v 2 V \ dom(), we obtain

�(v|) = E[f(dom() [{v},�)� f(dom(),�)|� ⇠]

� 0,

from which the adaptive monotonicity of f with respect to p follows.
By applying Theorem 54, we obtain

� ,k � min
�⇠

�
�
dom(),k,

where ��X,k is the submodularity ratio of f(·,�) for realization �. From Theorem 21, we obtain the
following lower bound:

�
�
dom(),k � min

S✓V : |S|k+| |
�min(A(�)

>

SA(�)S).

Finally, we have

�`,k = min
 : | |`

� ,k

� min
 : | |`

min
�
�
�
dom(),k

� min
 : | |`

min
�

min
S✓V : |S|k+| |

�min(A(�)
>

SA(�)S)

= min
�

min
S✓V : |S|k+`

�min(A(�)
>

SA(�)S).

3.6.2 Bound of Adaptivity Gap

We can also obtain a bound on the adaptivity gap of adaptive feature selection as follows.

Proposition 56. Let f(S,�) = kbk22 � minw2RS kb � A(�)Swk22 and suppose that p(�) can be
factorized as p(�) =

Q
v2V pv(�(v)). We have

GAPk �
min�minS✓V : |S|k �min(A(�)

>

SA(�)S)

max�maxS✓V : |S|k �max(A(�)>SA(�)S)
.

Proof. We can readily con�rm that the objective function can be rewritten as follows.

f(S,�) = (A(�)
>

Sb)
>
(A(�)

>

SA(�)S)
+
(A(�)

>

Sb).

40

For any S ✓ V such that |S| k, we have

E[f(S,�)] = E
h
(A(�)

>

Sb)
>
(A(�)

>

SA(�)S)
+
(A(�)

>

Sb)
i

� E
h
�min((A(�)

>

SA(�)S)
+
)kA(�)

>

Sbk
2
2

i

� E
"

kA(�)
>

Sbk
2
2

max�maxT✓V : |T |k �max(A(�)>TA(�)T)

#

=
E
⇥
kA(�)

>

Sbk
2
2

⇤

max�maxT✓V : |T |k �max(A(�)>TA(�)T)

=

P
v2S E

⇥
(A(�)

>
v b)

2
⇤

max�maxT✓V : |T |k �max(A(�)>TA(�)T)

=

P
v2S E[f({v},�)]

max�maxT✓V : |T |k �max(A(�)>TA(�)T)
.

From this inequality, we can bound the supermodularity ratio �?,k of E�[f(·,�)] as

�?,k �
1

max�maxS✓V : |S|k �max(A(�)>SA(�)S)
.

Plugging it and the inequality of Corollary 55 into Theorem 45, we obtain

GAPk �
min�minS✓V : |S|k �min(A(�)

>

SA(�)S)

max�maxS✓V : |S|k �max(A(�)>SA(�)S)
.

Remark 57. These results on the adaptive submodularity ratio and adaptivity gap can be extended to
more general loss functions with restricted strong concavity and restricted smoothness as in Elenberg
et al. [2018].

3.7 Experiments

We conduct experiments on two applications: adaptive in�uence maximization and adaptive feature
selection. For each setting, we conduct 20 trials and plot their mean values.

3.7.1 Adaptive Influence Maximization

Datasets. We conduct experiments on two datasets of adaptive in�uence maximization. The �rst
dataset is a synthetic bipartite graph generated randomly according to Erdös–Renyi rule. We set the
number of source and sink vertices to 10000, i.e., |V | = |U | = 10000. For each pair (v, u) 2 V ⇥U , we
add an edge between v and u with probability 0.001. The second dataset is Yahoo! Search Marketing
Advertiser–Phrase Bipartite Graph [Yah], which is a bipartite graph representing relationships between
advertisers and search phrases; we have |V | = 459678, |U | = 193582, and |A| = 2278448. For both
datasets, the weight of each vertex in U is drawn from the uniform distribution on [0, 1].

41

0 2000 4000 6000 8000 10000

Number of selected vertices

0

1000

2000

3000

4000

5000

In
�u

en
ce

sp
re

ad

adaptive
non-adaptive
degree
random

(a) infmax, synth., linear threshold

0 2000 4000 6000 8000 10000

Number of selected vertices

0

1000

2000

3000

4000

5000

In
�u

en
ce

sp
re

ad

adaptive
non-adaptive
degree
random

(b) infmax, synth., extended linear
thre.

0 20000 40000 60000 80000 100000

Number of selected vertices

0

10000

20000

30000

40000

50000

60000

70000

In
�u

en
ce

sp
re

ad

adaptive
non-adaptive
degree
random

(c) infmax, yahoo, linear threshold

0 20000 40000 60000 80000 100000

Number of selected vertices

0

20000

40000

60000

80000

In
�u

en
ce

sp
re

ad

adaptive
non-adaptive
degree
random

(d) infmax, yahoo, extended linear
thre.

0 5 10 15 20 25 30

Number of selected features
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

er
ro

r

adaptive greedy
non-adaptive greedy
noise oblivious greedy

(e) feature, � = 0.1

0 5 10 15 20 25 30

Number of selected features
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

er
ro

r

adaptive greedy
non-adaptive greedy
noise oblivious greedy

(f) feature, � = 0.2

Figure 3.4: Experimental results on adaptive in�uence maximization (a)–(d) and adaptive feature se-
lection (e)–(f). (a) and (b) are the results on synthetic datasets with the linear threshold
model and extended linear threshold model, respectively. (c) and (d) are the results on
Yahoo! dataset [Yah] with the linear threshold model and extended linear threshold model,
respectively. (e) and (f) are the results on synthetic datasets with uniform noise distribution
on [��,�] with � = 0.1, 0.2, respectively.

42

Di�usion Model. We consider two di�usion models. The �rst one is the linear threshold model. The
probability that each edge (v, u) 2 A is alive is set to the reciprocal of the degree of the sink vertex, that
is, 1/|��(v)|. As the second di�usion model, we consider an extended version of the linear threshold
model, which is also a special case of the triggering model. In this model, for each sink vertex v, the
subset of incoming live edges is determined as follows. We sample t edges with replacement from
��(v) uniformly at random, and an edge turns alive if it is sampled at least once. In our experiments,
parameter t is set to 3.

Benchmarks. We compare the adaptive greedy algorithm with three non-adaptive benchmarks.
The �rst benchmark is the non-adaptive greedy algorithm, called non-adaptive, which is a standard
greedy algorithm [Nemhauser et al., 1978] for maximizing the expected value of the objective function
E�[f(·,�)]. The second benchmark is Degree, which selects the set of vertices with the top-k largest
degree. The third benchmark is Random, which selects a random subset of size k.

Results. Objective values achieved by the algorithms are shown in Figures 3.4(a) to 3.4(d). In all
settings, the adaptive greedy algorithm outperforms all the benchmarks.

3.7.2 Adaptive Feature Selection

Datasets. We use synthetic datasets generated randomly as follows. First, we determine the mean
E�[A(�)] 2 Rm⇥n according to the uniform distribution on [0, 1]. After that, each column is normalized
so that its mean is 0 and its standard deviation is 1. We obtainA(�) by adding ✏ 2 Rm⇥n to E�[A(�)],
where each element of ✏ is drawn from the uniform distribution on [��,�]. We consider two settings:
� = 0.1 and 0.2. We select a random sparse subset S⇤ of features such that |S⇤

| = 30, and we let
y = A(�)S⇤w be the response vector, where each element of w 2 RS is drawn from the standard
normal distribution. In all settings, we set n = 1000 and m = 100.

Benchmarks. We compare the adaptive greedy algorithm with two benchmarks. The �rst benchmark
is the non-adaptive greedy algorithm. Regarding the adaptive and non-adaptive greedy algorithms,
it is hard to evaluate the exact values of the objective functions, and so we approximately evaluate
them by sampling A(�) randomly according to posterior distributions. The second benchmark is the
noise-oblivious greedy algorithm, a non-adaptive algorithm that greedily selects a subset based on the
mean, E�[A(�)].

Results. The results are shown in Figures 3.4(e) and 3.4(f). In both settings, the adaptive greedy
algorithm outperforms the two benchmarks.

3.8 Related Work

Comparison with Kusner [2014]. To our knowledge, the �rst attempt to generalize the submodu-
larity ratio to the adaptive setting is Kusner [2014]. They de�ned approximate adaptive submodularity,
a notion that is similar to ours, as follows.

� = min
S✓V,

P
v2S �(v|)

�(S|)
.

The key di�erence is that they did not replace subset S with policy ⇡. In Section 3.8.1, we show that
the approximate adaptive submodularity is not su�cient for providing an approximation guarantee of
the adaptive greedy algorithm.

43

Comparisonwith Yong et al. [2017]. Another attempt to relax adaptive submodularity is presented
in Yong et al. [2017]. They introduced ⇣-weakly adaptive submodular functions as follows.

De�nition 58 (⇣-weak adaptive submodularity). Let f : 2V ⇥ Y
V
! R be a set function and p be a

distribution of �. For any ⇣ � 1, we say f is adaptive submodular with respect to p if for any partial
realization ✓ 0 and any element v 2 V \ dom(

0
), it holds

⇣�(v|) � �(v|
0
).

Let ⇣⇤ be the in�mum of ⇣ satisfying the above inequality.

Analogous to our adaptive submodularity ratio, one can readily see that 1-weak adaptive submodu-
larity is equivalent to the adaptive submodularity. In general, however, there is a di�erence between
the two notions; the adaptive submodularity ratio can be bounded from below by 1/⇣⇤, implying that it
is more demanding to bound the value of ⇣⇤ than that of the adaptive submodularity ratio.

Proposition 59. For any set function f : 2
V
⇥ Y

V
! R and distribution p, we have

1

⇣⇤
 min

k2Z�0,
� ,k.

We provide a proof in Section 3.8.2. Yong et al. [2017] studied a problem called group-based active
diagnosis and gave a bound of ⇣ , but some vital assumptions seem to have been missed. In Section 3.8.2,
we provide a problem instance in which their bound does not hold. We also present instances of adaptive
in�uence maximization and adaptive feature selection for which our framework provides strictly better
approximation ratios than those obtained with the weak adaptive submodularity in Section 3.8.2.

Adaptive Submodularity. Adaptive submodularity was proposed by Golovin and Krause [2011a].
There are several attempts to adaptively maximize set functions that do not satisfy adaptive submodu-
larity (e.g., Kusner [2014], Yong et al. [2017]). Chen et al. [2015] analyzed the greedy policy focusing on
the maximization of mutual information, which does not have adaptive submodularity.

Submodularity Ratio. Submodularity ratio was proposed by Das and Kempe [2011] for sparse
regression with square loss. Recently, Elenberg et al. [2018] extended this result to more general loss
functions with restricted strong convexity and restricted smoothness. Bogunovic et al. [2018] proposed
the notion of supermodularity ratio. Bian et al. [2017] provided a guarantee of the non-adaptive greedy
algorithm for the case where the total curvature and the submodularity ratio of objective functions are
bounded.

InfluenceMaximization. In�uence maximization was proposed by Kempe et al. [2003]. An adaptive
version of in�uence maximization was �rst considered by Golovin and Krause [2011a]. They showed
that this objective function satis�es adaptive submodularity under the independent cascade model
in general graphs. In�uence maximization on a bipartite graph has been studied for applications to
advertisement selection [Alon et al., 2012, Soma et al., 2014]. This problem setting was extended to the
adaptive setting by Hatano et al. [2016], but only the independent cascade model was considered. The
curvature of its objective function was studied by Maehara et al. [2017].

Feature Selection. Kale et al. [2017] considered the problem called adaptive feature selection, but
their problem setting is di�erent from ours. In their setting, the learner solves feature selection problems
multiple times. They studied the adaptivity among the multiple rounds, while we studied the adaptivity
inside of a single round.

44

3.8.1 Counterexample to the Statement of Kusner [2014]

Kusner [2014] has de�ned approximate adaptive submodularity as follows.

De�nition 60 ([Kusner, 2014, De�nition 2]). A set function f : 2
V
⇥ Y

V
! R and a distribution p

on Y
V is approximately adaptive submodular if for any subrealization such that p() > 0 and any

S ✓ V \ range(), we have X

v2S

�(v|) � ��(S|),

where � 2 [0, 1] represents the submodularity ratio of the non-adaptive function.

Below we present a counterexample to the statement of Kusner [2014], which says that a bounded �
yields a bounded approximation ratio of the adaptive greedy algorithm.

Let Y = {0, 1, . . . ,M � 1} be the set of all possible states and V = {u} [{zi | i 2 [k]} [{v
y
i | i 2

[k � 1], y 2 Y} be the ground set. We de�ne f : 2V ⇥ Y
V
! R as follows.

f(S,�) = |S \ {u}|+ (1 + ✏)|S \ {z1, . . . , zk}|+M

X

y2Y,i2[k�1]

1
{�(vyi)=1 and vyi 2S}

,

where ✏ > 0 is any small constant. Note that this function is normalized and adaptive monotone. For
each y 2 Y , we de�ne �y as �y(u) = y, �y(zi) = 0 for each i 2 [k], �y(vyi) = 1 for each i 2 [k � 1],
and �y(vy

0

i) = 0 for each y
0
2 Y \ {y} and i 2 [k � 1]. Let p be a distribution de�ned as

p(�) =

(
1
|Y|

if � = �y for some y 2 Y

0 otherwise.

It is easy to see that f is approximately adaptive submodular with � = 1 with respect to p because
�(·|) is a linear function for any subrealization . Note that f is not adaptive submodular with respect
to p because �(v

1
1|?) = 1 < M = �(v

1
1|{(u, 1)}).

Kusner [2014] stated that the adaptive greedy algorithm achieves (1 � e
��

)-approximation for
any normalized, adaptive monotone, and approximately adaptive submodular function. However, the
adaptive greedy algorithm achieves only (1+ ✏)/M -approximation for the above f and p as is explained
below. The adaptive greedy algorithm selects z1, . . . , zk since their expected marginal gain is 1 + ✏

and the expected marginal gain of other elements is 1. On the other hand, the optimal policy �rst
selects u and proceeds to select {v�(u)1 , . . . , v

�(u)
k�1 } according to the observed �(u). The adaptive greedy

policy achieves k(1 + ✏) and the optimal policy achieves 1 + (k � 1)M . Thus the approximation ratio
gets close to (1 + ✏)/M as k increases, and it can be arbitrarily small since the number of possible
states, M , is not bounded. Namely, even if � is bounded by a constant, the approximation guarantee of
the adaptive greedy algorithm can become arbitrarily bad in general, which contradicts the statement
of [Kusner, 2014].

3.8.2 About Comparison with Yong et al. [2017]

Proof for Comparison with Yong et al. [2017]

Proof of Proposition 59. From the de�nition of ⇣⇤, we have ⇣⇤�(v|) � �(v|
0
) for any ✓

0 and
v 2 V \ dom(

0
). It is enough to show 1

⇣⇤�(⇡|)
P

v2V Pr(v 2 E(⇡,�))�(v|) for arbitrary
 ✓

0 and ⇡. Let v be the partial realization just before v is selected in ⇡. If there are multiple partial
realizations such that ⇡() = v, we can duplicate v and take them to be di�erent elements. Then

45

we can write �(⇡|) =
P

v2V Pr(v 2 E(⇡,�))�(v| v). By applying the bound of weak adaptive
submodularity, we have

�(⇡|) =

X

v2V

Pr(v 2 E(⇡,�))�(v| [v)

 ⇣
⇤
X

v2V

Pr(v 2 E(⇡,�))�(v|),

which implies the statement.

From this proposition, we can see that Theorem 43 is stronger than the result of Yong et al. [2017] as
follows. They showed that the adaptive greedy algorithm is guaranteed to achieve (1�exp(�`/(⇣

⇤
k)))-

approximation in Yong et al. [2017, Theorem 1]. FromProposition 59, we always have (1�exp(�`/(⇣⇤k)))
(1� exp(�� ,k`/k)).

Counterexample to the Proposition of Yong et al. [2017]

In this subsection we provide an instance of group-based active diagnosis in which the weak adaptive
submodularity cannot give a bound of the approximation ratio of the adaptive greedy algorithm.

The formal problem statement of group-based active diagnosis can be described as follows. We have
set V of tests and set Y of their possible outcomes. There are two random variables that uniquely
specify the outcome of each test: the state x and the mode q. Let X be the set of all possible states and
Q the set of all possible modes. We know the prior joint distribution p(x, q) of x and q, but does not
know their true values. Let µ(v, x, q) 2 Y be the unique outcome of test v when the true state is x and
the true mode is q. We aim to determine x by sequentially conducting several tests out of V .
Yong et al. [2017] formulated this problem as the problem of maximizing the following objective

function:
f(S, (x, q)) = 1�

X

x02X : 9q02Q, 8v2S, µ(v,x0,q0)=µ(v,x,q0)

X

q002Q

p(x
0
, q

00
),

where the �rst summation is about all possible x
0
2 X under the outcomes of tests S made so far.

Proposition 2 of Yong et al. [2017] claims that this objective function is ⇣-weakly adaptive submodular
for

⇣
|Q|

minx2X ,q2Q p(x, q)
.

However, it does not hold in the following example.

Example 61. Let X = {x1, x2} be the set of states and Q = {q1, q2, q3} the set of modes. For each
x 2 X and q 2 Q, we assume p(x, q) = 1

6 . We consider two actions v1 and v2, which yield the unique
outcome out of Y = {+1,�1} indicated in Table 3.2 for each state x 2 X and mode q 2 Q.

We �rst consider the expected marginal gain obtained by performing action v2 at the beginning. In
this situation, performing v2 yields outcome +1 or �1 with probability 1/2. If the outcome is +1, we
can reject neither x1 nor x2. This is the case for outcome �1. Thus we have�(v2|?) = 0.
Next, we assume the algorithm performs v1 at the beginning and obtains the outcome of �1, i.e.,

 = {(v1,�1)}. Now the possible pairs of the state and the mode are only (x1, q3) and (x2, q3).
By performing action v2, we obtain the outcome +1 or �1 with probability 1

2 and reject x2 or x1,
respectively. Thus the expected marginal gain is�(v2|) =

1
2

P
q2Q p(x2, q) +

1
2

P
q2Q p(x1, q) =

1
2 .

From the de�nition of ⇣ , we must have �(v2|) ⇣�(v2|?), but no �nite ⇣ satis�es this inequality.
This contradicts Proposition 2 of Yong et al. [2017], which claims ⇣ is �nite.

46

Table 3.2: Outcome

(x, q) µ(v1, x, q) µ(v2, x, q)

(x1, q1) +1 +1

(x1, q2) +1 �1

(x1, q3) �1 +1

(x2, q1) +1 +1

(x2, q2) +1 �1

(x2, q3) �1 �1

Comparison in Adaptive Influence Maximization

We provide an instance of adaptive in�uence maximization such that the adaptive submodularity
ratio yields an approximation ratio signi�cantly better than that obtained with the weak adaptive
submodularity [Yong et al., 2017].

Example 62. We use the same problem instance as Example 49. At the beginning, the expected
marginal gain of vk is �(vk|?) = 1/k. Let be the observations obtained when v1, . . . , vk�1 are
selected and all edges are turned out to be dead. In this case, since the edge (vk, u) must be alive,
the expected marginal gain is �(vk|) = 1. The weak adaptive submodularity constant is bounded
as ⇣ � �(vk|)/�(vk|?) = k. This implies that the weak adaptive submodularity constant cannot
yield a lower bound of the approximation ratio better than 1� exp(�

1
k) = O(

1
k), while the adaptive

submodularity ratio provides a lower bound 1� exp(�(k + 1)/2k) = ⌦(1).

Comparison in Adaptive Feature Selection

Regarding adaptive feature selection, we describe an advantage of the adaptive submodularity ratio
in comparison with the weak adaptive submodularity [Yong et al., 2017]. As detailed below, there
exists an instance with the following condition: the approximation ratio obtained with the adaptive
submodularity ratio is bounded, while that obtained with the weak adaptive submodularity is 0.

Example 63. We can make such an instance even if � is deterministic. Let A(�) = (�(1) · · ·�(n)) be
the realized feature matrix under realization �. The objective function is de�ned as

f(S,�) = kbk22 � min
w2RS

kb�A(�)Swk
2
2.

We here let

A(�) =

2

666664

1 1/
p
2 0 · · · 0

0 1/
p
2 0 · · · 0

0 0 1

...
... . . .

0 0 1

3

777775
and b =

2

666664

0

a

a

...
a

3

777775
,

where a > 0 is an any positive real value. Let S = {3, . . . , n} and T = {2, . . . , n}, which satisfy
S ✓ T . Then, we have

min
w2RS

kb�A(�)Swk
2
2 = min

w2RS[{1}
kb�A(�)S[{1}wk

2
2 = a

2

47

and

min
w2RT

kb�A(�)Swk
2
2 =

a
2

2
> min

w2RT[{1}
kb�A(�)T[{1}wk

2
2 = 0.

Therefore, we obtain

f(S [{1},�)� f(S,�) = a
2
� a

2
= 0 and f(T [{1},�)� f(T,�) =

a
2

2
� 0 =

a
2

2
,

which implies that ⇣ cannot be bounded from above in general. On the other hand, the largest and
smallest eigenvalues of the Hessian,A(�)

>A(�), are 1 + 1/
p
2 and 1� 1/

p
2, respectively. Therefore,

the condition number is bounded from above by 3 + 2
p
2, which means the adaptive submodularity

ratio is bounded from below by 1/(3 + 2
p
2).

3.9 Summary and Future Work

In this chapter, we have proposed the framework of the adaptive submodularity ratio. First we formally
de�ned the adaptive submodularity ratio by extending the submodularity ratio to the adaptive setting.
We showed that if the adaptive submodularity ratio is bounded, the approximation ratio of the adaptive
greedy algorithm is bounded. We also showed that the adaptivity gap can be bounded by the product of
the adaptive submodularity ratio and the supermodularity ratio. We provided two applications where
the adaptive submodularity ratio is bounded. One is adaptive in�uence maximization on bipartite
graphs in the triggering model and the other is adaptive feature selection. We experimentally illustrated
that the adaptive greedy algorithm works well compared to non-adaptive algorithms.

An interesting direction for future work is to apply the proposed framework to active learning with
unknown noise. The framework of adaptive submodularity has been applied to several settings of active
learning, but its applications are limited to the cases where noise does not exist or the noise distribution
is known in advance, such as a noiseless Bayesian active learning problem [Golovin and Krause, 2011a]
or the equivalence class determination problem [Golovin et al., 2010]. It would be possible to apply the
framework of the adaptive submodularity ratio to active learning with unknown noise.

48

4 Batch-mode Adaptive Optimization with
Structured�eries

In this section, we handle the batch-mode setting of adaptive optimization. This chapter is organized as
follows. Section 4.1 introduces the background and overview of this chapter. Section 4.2 formulates the
problem setting of batch-mode adaptive optimization, which we tackle in this chapter. In Section 4.3,
we introduce applications that can be dealt with under our framework. In Section 4.4, we de�ne an
important property called set-adaptive submodularity. Section 4.5 proposes greedy algorithms for the
batch-mode setting. In Section 4.6, we consider the case where the set-adaptive submodularity does not
hold. In Section 4.7, we describe extensions of the proposed framework for outer matroid constraints,
the online setting, and the query-varying setting. In Section 4.8, we conduct experiments on batch-mode
adaptive optimization. Section 4.9 reviews related work of this chapter. Section 4.10 provides a summary
and future work of this chapter.

4.1 Background and Overview

As described in Section 2.3 and Chapter 3, various sequential decision-making problems can be handled
as an adaptive optimization problem. However, the ordinary setting of adaptive optimization, in which
a decision-maker alternately repeats the selection of the next element and the observation of its state,
takes much time or cost due to its sequential manner. In such a situation, the batch-mode setting, in
which the decision-maker selects multiple elements simultaneously, is more realistic.

For example, active learning [Settles, 2012] is a problem setting where we must choose the data
points to be labeled while gathering labels of the data points that are unlabeled in the beginning. In the
ordinary setting of active learning, we must alternately select the next element to be labeled and observe
its label. To achieve high accuracy with a small number of labels, it is important to select the element
adaptively according to the already obtained labels. In realistic scenarios of active learning, we are often
required to parallelize the label gathering process. For example, it is common to delegate the labeling
process to workers in a crowdsourcing platform. In such a scenario, it is not natural to ask each worker
to label just one data point, therefore we are required to ask each worker to label multiple data points
at the same time. Consequently, the process of active learning becomes the repetition of selecting a set
of unlabeled data points given to a single worker and obtaining their labels simultaneously. In contrast
to the original setting, we cannot observe the label of selected unlabeled data point immediately and
must wait until selecting the set for a single worker. The set of unlabeled data points for each single
worker is called batch or query. This setting of active learning is called batch-mode active learning and
has been studied from both perspectives of theory and practice [Hoi et al., 2006].

Parallelizing the information gathering process is vital not only for active learning, but also for other
sequential decision-making problems in machine learning. Chen and Krause [2013] developed a general
framework of adaptive optimization for dealing with parallel information gathering problems including
batch-mode active learning. Chen and Krause [2013] argued that if adaptive submodularity holds, then
an algorithm that selects a batch at each round greedily, which we call batch-mode greedy algorithm,
is guaranteed to be competitive with an optimal batch-mode policy. In this chapter, we extend their
framework to more general settings including the setting where adaptive submodularity does not hold.

49

First, we show that the main result by Chen and Krause [2013] actually requires a stronger condition
than adaptive submodularity, which we name set-adaptive submodularity, and this condition holds
in many important applications. We generalize the framework by Chen and Krause [2013] to the
setting with structured queries, in which the set of feasible queries is determined by a combinatorial
constraint beyond cardinality constraints. We extend the framework to the setting where adaptive
submodularity does not hold by using the adaptive submodularity ratio and the supermodularity ratio.
In addition, we consider the online setting, in which the di�erent ground set is given at each round,
and the query-varying setting, in which the set of feasible queries change at each round. Finally, we
conduct numerical experiments, and show our proposed methods outperform benchmarks.
In summary, our contributions in this chapter are as follows.

• We de�ne set-adaptive submodularity, which is a stronger condition than adaptive submodularity,
and this condition is satis�ed by several applications.

• For providing a guarantee for the batch-mode greedy algorithm, we show that adaptive submod-
ularity is not su�cient and set-adaptive submodularity is su�cient.

• We extend this result to the batch-mode adaptive optimization with structured queries.
• We provide guarantees on greedy-like algorithms for the online setting and query-varying setting.
• We provide guarantees on the batch-mode greedy algorithm in the setting where set-adaptive
submodularity does not hold in terms of the adaptive submodularity ratio.

• We empirically con�rm that the proposed algorithms outperform benchmarks.

4.2 Batch-mode Adaptive Optimization

In this section, we provide a formal statement of batch-mode adaptive optimization, which we tackle in
this chapter. This problem setting is an extension of the ordinary adaptive optimization, and we follow
the basic notations of adaptive optimization given in Section 2.3. For clarity, we call the setting of the
ordinary adaptive optimization the fully adaptive setting.
Let V be the ground set and � : V ! Y the map that associates each element to its state, where Y

is the set of all possible states. As explained in Section 2.3, in the fully adaptive setting, the decision-
maker selects an element v 2 V at each round. In contrast, in batch-mode adaptive optimization, the
decision-maker is given the set family J ✓ 2

V that represents the set of feasible batches, and must
select a batch S 2 J at each round. While the decision-maker in the fully adaptive setting can observe
the state of the selected element just after selecting it, the decision-maker in the batch-mode setting
can observe the states of elements in S all at once. We consider a scenario in which the decision-maker
repeats selecting a batch S 2 J and observing their states (�(v))v2S for k rounds.
For handling the batch-mode setting, we need to extend the de�nition of policies. In the original

de�nition, a policy ⇡ is de�ned as a map from observations so far to an element to be selected next. A
policy for the batch-mode setting can be de�ned as a map from observations so far to a batch S 2 J to
be selected next, not a single element. In the same way as the fully adaptive setting, we can denote by
E(⇡

b
,�) the subset of V selected by batch-mode policy ⇡b under realization �. The goal of this problem

is to �nd a batch-mode policy ⇡b 2 ⇧b
k that maximizes the objective value E�[f(E(⇡

b
,�),�)]. We

consider the approximation ratio of batch-mode algorithms in comparison to an optimal batch-mode
policy, not an optimal policy in the fully adaptive setting.
Chen and Krause [2013] considered a special case of our setting where the set of feasible batches

consists of all subsets of V with size k, i.e., J = {S ✓ V | |S| k} for some k 2 Z>0. We extend their
problem setting to more general constraints on batches, such as the case where J is an independent set
family of some matroid or J is the set of batches that satisfy a knapsack constraint.

50

As stated by Chen and Krause [2013], the batch-mode setting can be viewed as an intermediate
setting between the fully adaptive setting and the non-adaptive setting. We can regard the fully adaptive
setting as a special case of the batch-mode setting by considering the case where the set of feasible
batches consists of all singletons, i.e., J = {{v} | v 2 V }. On the other hand, the non-adaptive setting
can be identi�ed with the batch-mode setting with only one round.

4.3 Applications

In this section, we describe applications of batch-mode adaptive optimization. The batch-mode ver-
sions of existing applications of adaptive optimization can be formulated as a batch-mode adaptive
optimization problem.

4.3.1 Batch-mode Active Learning

Active learning is the problem of selecting a set of unlabeled data points to be labeled among the given
set V of unlabeled data points. In active learning, the decision-maker is a learner who wants to construct
a good training set that consists of a small number of labeled data points. The learner can utilize the
labeling oracle who gives the labels of the selected unlabeled data points. The goal of active learning is
to achieve high accuracy for predicting the labels of unknown data points with as few queries to the
labeling oracle as possible.
Formally, active learning can be formulated as the problem of �nding the true hypothesis h⇤ out

of possible hypothesesH. Each hypothesis h 2 H represents some realization �. Here we adopt the
Bayesian setting where h⇤ is generated from a prior distribution ph. By abuse of notation, we de�ne
ph(H

0
) =

P
h2H0 ph(h) for any H

0
✓ H. The version space under partial realization is de�ned to be

H() = {h 2 H | 8(v, y) 2 , h(v) = y}.
There are several objective functions known to satisfy adaptive submodularity. The simplest one

is generalized binary search in the Bayesian setting [Dasgupta, 2004], which is the adaptive greedy
algorithm for the objective function fGBS(S,�) = 1� ph(H(�|S)), where �|S = {(v,�(v)) | v 2 S}

is the partial realization obtained by selecting S under realization �.
IfH is partitioned intoH1, · · · ,Hm and the goal is to determine which partition contains the true

hypothesis, EC2 algorithm [Golovin et al., 2010] is the adaptive greedy algorithm for the objective
function

fEC2(S,�) = 1�

X

i<j

⇣
ph(Hi(�|S))ph(Hj(�|S))

⌘
.

Gonen et al. [2013] considered the binary classi�cation of a linearly separable dataset. By supposing
the parameter w 2 Rd is uniformly distributed in the d-dimensional unit ball, ALuMA algorithm is
de�ned to be the adaptive greedy algorithm for the objective function

fALuMA(S,�) = 1� Pr

hn
w 2 Bd

1

���8x 2 S, �(x) = sgn(hw,xi)
oi

.

In the fully adaptive setting of active learning, the learner selects an unlabeled data point v 2 V and
obtains its label �(v) 2 Y at each round. In batch-mode active learning, the learner alternately repeats
selecting a set S 2 J of unlabeled data points and obtaining their labels (�(v))v2S from the labeling
oracle.
For real applications such as the case where we delegate the labeling oracle to workers in a crowd-

sourcing platform, the batch-mode setting is more e�cient. If the expected working time cv 2 R�0

for labeling is assigned to each data point v 2 V , it is natural to construct each batch under a con-
straint on the total expected working time. This constraint boils down to a knapsack constraint, i.e.,

51

J = {S ✓ V |
P

v2S cv C}, where C is an upper bound on the total expected working time for
each batch.

4.3.2 Batch-mode Influence Maximization

In�uence maximization [Kempe et al., 2003] is the problem of selecting the set of nodes, called seed
nodes, and spreading information through a social network from these nodes. This problem models a
viral marketing scenario where a company wants to spread the information about a product through
the social network by presenting free promotional samples to in�uential people. Each person who have
obtained information about the product might tell the information about the product to their friends.
The goal of in�uence maximization is to spread information to as many people as possible by utilizing
this di�usion process. Here we focus on adaptive in�uence maximization, in which we can observe
who are in�uenced by the selected seed node after selecting it.

Let G = (V,E) be the graph representing the social network. We de�ne X 2 {+1,�1}
E to be a

vector that represents the state of each edge, +1 for alive and �1 for dead. We assume that this vector
X is determined according to a probability distribution speci�ed by the di�usion model such as the
independent cascade model, the linear threshold model, or the triggering model [Kempe et al., 2003].
Here we consider the full-adaption feedback model [Golovin and Krause, 2011a], in which the realization
� : V ! E ⇥ {+1,�1} is de�ned as

�(v) = {((s, t),Xst) | (s, t) 2 E such that s 2 R(v)},

where R(v) is the set of all nodes reachable from v only through live edges. The objective function to
maximize is the number of in�uenced nodes, that is, f(X,�) = | [v2X R(v)|.
In the fully adaptive setting of adaptive in�uence maximization, the decision-maker alternately

repeats selecting a node v 2 V and observing the spread �(v). On the other hand, in batch-mode
adaptive in�uence maximization, the decision-maker alternately repeats selecting a batch S 2 J and
observing the spread

S
v2S �(v) all at once. In viral marketing scenarios, distributing free promotional

samples to multiple people in parallel is more realistic than distributing them one by one. If we need to
pay money for asking each in�uential people to spread information, we should make a advertising plan
under a budget constraint at each round. This setting is naturally reduced to a knapsack constraint.

4.3.3 Batch-mode Adaptive Feature Selection

Adaptive feature selection for sparse regression is the problem of adaptively selecting a set of features
that leads to a robust and interpretable model. As described in Section 3.6, we consider a scenario
where each feature corresponds to a site for placing a sensor. A learner knows only a prior distribution
of all sites and wants to place a limited number of high-quality sensors to important sites adaptively.
Formally, the learner knows a response vector b 2 Rm and a prior distribution of the design matrix
A(�) 2 Rm⇥n in advance, where V = [n]. As shown in Section 3.6, the adaptive submodularity ratio
of the objective function f(S,�) = kbk22 �minw2RS kb�A(�)Swk22 can be bounded by a spectral
parameter of the distribution ofA. In the fully adaptive setting of adaptive feature selection, the learner
alternately selects a feature v 2 V and observes the accurate value �(v) = A(�)v of the selected
feature. In the batch-mode setting, at each round, the learner selects a batch S 2 J and observes the
accurate feature vectors (�(v))v2S = A(�)S after selecting the batch.

4.4 Set-Adaptive Submodularity

For dealing with the batch-mode setting, Chen and Krause [2013] assumed adaptive submodularity,
pointwise submodularity, and pointwise monotonicity of the objective function. Here we show that

52

these conditions are not su�cient to apply their analyses and there exists a counterexample to their
key theorem. To address this issue, we propose a new concept called set-adaptive submodularity, which
is a stronger condition than adaptive submodularity, but satis�ed by objective functions of many
applications.

De�nition 64 (Set-adaptive submodularity). We say f is set-adaptive submodular with respect to p if
for any partial realization ✓ 0 and any subset S ✓ V \ dom(

0
), it holds that

�(S|) � �(S|
0
).

Since S can be regarded as a non-adaptive policy that selects subset S regardless of the observations,
it can be easily seen that the following policy-adaptive submodularity is a stronger condition than
set-adaptive submodularity.

De�nition 65 (Policy-adaptive submodularity [Fujii and Kashima, 2016]). We say f is policy-adaptive
submodular with respect to p if for any partial realization ✓ 0 and any policy ⇡ such that range(⇡) ✓
V \ dom(

0
), it holds that

�(⇡|) � �(⇡|
0
).

Set-adaptive submodularity is strictly stronger than adaptive submodularity. In addition, the com-
bination of strongly adaptive submodularity, pointwise submodularity, and pointwise monotonicity
does not imply set-adaptive submodularity. Here we provide an example that satis�es strong adaptive
submodularity, pointwise submodularity, and pointwise monotonicity, but does not satisfy set-adaptive
submodularity.

Example 66. Let V = {a, b, c} be the ground set and Y = {+,�} be the set of possible states. We
de�ne the distribution of realization � as p(�) = 0.5 if �(a) = �(b) = �(c) and p(�) = 0 otherwise.
The objective function f : 2

V
⇥ Y

V
! R�0 is de�ned as

f(S,�) =

8
><

>:

2 if �(a) = �(b) = �(c) = + and {b, c} ✓ S

0 if {b, c} \ S = ?
1 otherwise.

First, we show that this function is adaptive submodular. Since adding a does not a�ect the objective
value, the expected marginal gain of a is always 0 for any observations obtained so far. Hence it is
su�cient to consider the expected marginal gain of b due to the symmetry of b and c. We can calculate
the expected marginal gain of b as follows.

�(b|?) = 1

�(b|{(a,+)}) = 1

�(b|{(a,�)}) = 1

�(b|{(c,+)}) = 1

�(b|{(c,�)}) = 0

�(b|{(a,+), (c,+)}) = 1

�(b|{(a,�), (c,�)}) = 0,

then we can see adaptive submodularity holds.
Similarly, we can show its strong adaptive submodularity. The extended expected marginal gain of a is

0 for any observations obtained so far, then it holds that�(a| ;
0
) � �(a|

0
) for all ✓ 0. In the case

53

where | | = 0, since the marginal gain of adding b to ? is always 1, it holds that�(b| ;
0
) = �(b|).

In the case where | | = 1, since the posterior distributions after observing and 0 are the same,
�(b| ;

0
) = �(b|) holds. Therefore, we have �(b| ;

0
) = �(b|) � �(b|

0
) from adaptive

submodularity in these cases. In the other cases,�(b| ;
0
) � �(b|

0
) holds trivially.

We can see that the objective function for each � can be written as

f(S,�) =

(
|{b, c} \ S| if �(a) = �(b) = �(c) = +

min{1, |{b, c} \ S|} if �(a) = �(b) = �(c) = �.

For each �, the pointwise function f(·,�) is submodular, thus pointwise submodularity holds. Also,
f(·,�) is monotone for each �, thus pointwise monotonicity holds.
However, f is not set-adaptive submodular with respect to p. The expected marginal gain of

{b, c} is �({b, c}|?) = 1.5 at the beginning, but it increases after observing �(a) = +, that is,
�({b, c}|{(a,+)}) = 2.

Based on Example 66, we can make an instance in which Lemma 3 of Chen and Krause [2013] does
not hold.

Example 67. We consider adding dummy element d that does not a�ect the objective value to Ex-
ample 66. Let V = {a, b, c, d} be the ground set and Y = {+,�} the set of possible states. We
de�ne the objective function f : 2

V
⇥ Y

V
! R�0 in the same way as Example 66. We de�ne the

probability distribution of � such that �(d) is always + and the same as Example 66 for the other ele-
ments. Let be the partial realization obtained after selecting {a, d} and observing �J ({a, d})(a) = +

and �J ({a, d})(d) = +. Then (f, p) satis�es adaptive submodularity, pointwise submodularity and
pointwise monotonicity, but (g, q) does not satisfy adaptive submodularity as

�({b, c}|) � �({b, c}|?),

which disproves Lemma 3 of Chen and Krause [2013].

Proposition 68. The objective functions of generalized binary search, EC2, and ALuMA are set-adaptive
submodular. Also, if �(v) is independent for each v 2 V , it is set-adaptive submodular.

Proof. These objective functions satisfy policy-adaptive submodularity as proved in Fujii and Kashima
[2016]. Since policy-adaptive submodularity implies set-adaptive submodularity, all of them are set-
adaptive submodular with respect to p.

Proposition 69. The objective function of adaptive in�uence maximization with the independent cascade
model and the full-adoption feedback model is set-adaptive submodular.

Proof. Our proof is similar to the one for adaptive submodularity of the same function in Golovin and
Krause [2011a]. Fix partial realizations ✓ 0 and a set of vertices S ✓ V \ dom(

0
). Our goal is to

prove�(v|) � �(v|
0
). We consider two random variables � and �0, each of which conforms to the

posterior distributions after and 0 are observed, respectively. Now we de�ne X = (Xuv)(u,v)2E

to be the random variable that represents the states of all edges, that is, Xuv = 1 if (u, v) is alive and
Xuv = 0 if (u, v) is dead. Note that if X is determined, � is also determined based on X. Similarly, we
de�ne X0 that corresponds to �0.
We make a coupling distribution µ̂(X,X0

) of X and X0 as follows. For each edge (u, v) 2 E that
has already been observed in , the corresponding random variablesXuv andX0

uv are always equal
to the observed state. For each edge (u, v) 2 E that is not observed in 0, the corresponding random
variable Xuv is determined according to the original distribution, i.e., Pr(Xuv = 1) = puv , and the

54

other one X0
uv is always equal to Xuv , i.e., Xuv = X0

uv always holds. For each edge (u, v) 2 E

that has already been observed in 0 but not in , the corresponding random variableX0
uv is always

equal to the observed state in 0, and the other one Xuv conforms to the original distribution, i.e.,
Pr(Xuv = 1) = puv . As � and �0 are determined byX andX0, respectively, we can de�ne the coupling
distribution µ(�,�

0
) corresponding to µ̂. The marginal distribution of µ coincides with each posterior

distribution, i.e.,
P

� µ(�,�
0
) = p(�|) and

P
�0 µ(�,�

0
) = p(�|

0
).

Here we show

f(dom(
0
) [S,�

0
)� f(dom(

0
),�

0
) � f(dom() [S,�)� f(dom(),�) (4.1)

for each (�,�
0
) 2 supp(µ). Let B = �(dom(),�) and C = �(dom() [S,�) be the set of nodes

in�uenced by dom() and dom() [S under realization �. The left hand side of (4.1) is equal to
f̂(B [D)� f̂(B), whereD = C \B. Similarly, by de�ning B0, C 0 andD0 for 0 and �0, we can write
the right hand side of (4.1) is equal to f̂(B

0
[D

0
)� f̂(B

0
).

We show B ✓ B
0 and D

0
✓ D. Let v 2 B be any vertex in�uenced in . There exists a path

consisting of only live edges from some vertex in dom() to v. Since all observed live edges in are
also observed and live in 0, v is also activated in 0 with the same path. Therefore we have v 2 B

0,
which implies B ✓ B

0.
Let v 2 D

0 be any vertex such that there exists a path of live edges from some vertex u 2 S to v, but
there does not exist a path of live edges from any vertex in dom(

0
) to v under realization �0. Note

that the state of each edge in this path from u to v is not observed in 0, otherwise v also has already
been observed in 0 due to the full-adoption feedback model. Since the states of the edges unobserved
in 0 are the same under realizations � and �0, we can see that there exists a path of live edges from
u to v under realization � as well. As is a subset of 0 and v is not activated in 0, vertex v is not
activated in . Hence, we have v 2 D.
Finally, since

P
�0 µ(�,�

0
) = p(�|) and

P
� µ(�,�

0
) = p(�|

0
), we have

�(v|) =

X

�

X

�0

µ(�,�
0
) {f(dom() [S,�)� f(dom(),�)}

�

X

�0

X

�

µ(�,�
0
)
�
f(dom(

0
) [S,�

0
)� f(dom(

0
),�

0
)

(due to (4.1))

= �(v|
0
),

which implies set-adaptive submodularity of the objective function.

In the following, we provide an example where the objective function of an instance of adaptive
in�uence maximization does not satisfy policy-adaptive submodularity. This example implies that
policy-adaptive submodularity is a strictly stronger property than set-adaptive submodularity.

Example 70. Let V = {s, t, u, v, w0, · · · , w`} and E = {(s, t), (t, u)} [{(wi�1, wi) | i = 1, · · · , `}

be the set of vertices and edges (See Figure 4.1). Assume the probabilities that each edge is alive are
de�ned as p(s,t) = 1, p(t,u) = ✏, and p(w0,w1) = · · · = p(w`�1,w`) = 1. Proposition 69 implies this
instance is set-adaptive submodular.

However, this is not policy-adaptive submodular as shown in the following. For simplicity, we write
�(v) as the set of all nodes reachable from v. Let us consider a policy ⇡ that �rst selects s, and if
�(s) = {s, t}, proceeds to select v and if �(s) = {s, t, u}, proceeds to select w0. The expected marginal
gain of ⇡ when nothing is observed is �(⇡|?) = (1 � ✏)3 + ✏(4 + `) = 3 + ✏(` + 1), but after t
is selected and �(t) = {t, u} is observed, the expected marginal gain �(⇡|{(t, {t, u})}) = 2 + ` is
larger than �(⇡|?) for large `. Therefore the objective function does not satisfy the policy-adaptive
submodularity.

55

s t u

v

w0 w1 w`�1 w`

1 ✏

1 1 1 1

(a) Graph (V,E)

s

v

w0

�(s) = {s, t}

�(s) = {s, t, u}

(b) policy ⇡

Figure 4.1: An example that does not satisfy policy-adaptive submodularity under the independent
cascade model and the full-adoption feedback model. The numbers below edges represent the
probability that each edge is alive. The expected marginal gain of ⇡ is�(⇡|?) = 3+ ✏(`+1)

in the beginning, but after t is selected and the nodes in�uenced by t turned out to be
�(t) = {t, u}, the expected marginal gain of ⇡ decreases �(⇡|(t, {t, u})) = 2 + `.

Algorithm 7 Batch-mode adaptive greedy algorithm with ↵-approximate greedy selection

Input The objective function f : 2
V
⇥ Y

V and the probability distribution p 2 4
Y

V given by a
value oracle for the expected marginal gain �(·|·), the number of rounds k 2 Z�0, the family of
feasible batches J given by an independence oracle, an ↵-approximation algorithm for monotone
submodular maximization under constraint S 2 J given by an oracle.

1: 0 ?.
2: for i = 1, · · · , k do
3: Apply an ↵-approximation algorithm to maximize �(S| i�1) subject to S 2 J and obtain an

↵-approximate solution Si.
4: Query Si and observe �(v) for all v 2 Si.
5: i i�1 [{(v,�(v)) | v 2 Si}.

These relationships among the properties are summarized in Figure 4.2.

4.5 Batch-mode Adaptive Greedy Algorithm

In this section, we describe a greedy algorithm for batch-mode adaptive optimization, which we call the
batch-mode adaptive greedy algorithm. Starting with the empty set, this algorithm myopically selects a
batch Si 2 J that approximately maximizes the marginal gain�(Si| i�1) at each round, where i�1 is
the partial observation obtained until the ith round. As shown later, the batch selection problem at each
round can be reduced to constrained monotone submodular maximization, therefore we can use existing
approximation algorithms. The detailed description of this algorithm is provided in Algorithm 7.
To bound the approximation ratio of the batch-mode adaptive greedy algorithm, our analysis takes

the following two steps. The �rst step is to show that selecting a batch Si 2 J that approximately
maximizes �(Si| i�1) is a constrained submodular maximization problem. The second step is to show
that selecting batches that are approximately maximum at each round leads to an approximately optimal
policy for the whole optimization problem.

56

Stro
ngl

y ad
apti

ve

sub
mod

ular
fun

ctio
ns

Adaptive submodular functions

Set-adaptive submodular functions

Policy-adaptive submodular functions

Pointwise submodular functions

Example 66

Example 70

fGBS, fEC2 , and fALuMA

Figure 4.2: A diagram that indicates relationships between adaptive submodularity, set-adaptive sub-
modularity, policy-adaptive submodularity, strong adaptive submodularity, and pointwise
submodularity.

4.5.1 Greedy Selection

Here we show the submodularity and monotonicity of the expected marginal gain�(S|) when we
see it as a set function of S. Almost the same result is given in Chen and Krause [2013], but their
assumptions on the objective function are di�erent from ours. Here we provide the full proofs for
completeness.

Proposition 71. Suppose f : 2V ⇥ Y
V
! R�0 is adaptive submodular with respect to p. Then a set

function g : 2
V
! R�0 de�ned as g(X) := �(X|) for every X ✓ V is submodular for any partial

realization .

Proof. It su�ces to prove for any A ✓ B ✓ V and v 2 V \ B, it holds that g(v|B) g(v|A). Let
D = dom(). From the de�nition, we have

g(v|B) = E[f(D [B [{v},�)� f(D,�) | � ⇠]� E[f(D [B,�)� f(D,�) | � ⇠]

= E[f(D [B [{v},�)� f(D [B,�) | � ⇠].

Let PA = { | dom() = A} and PB = { | dom() = B}. Then we have

g(v|B) =

X

 B2PB

p(B|)E[f(D [B [{v},�)� f(D [B,�) | � ⇠ [B]

=

X

 B2PB

p(B|)�(v| [B).

57

In the same way, we have
g(v|A) =

X

 A2PA

p(A|)�(v| [A).

Finally, by using the above equations, we obtain

g(v|B) =

X

 B2PB

p(B|)�(v| [B)

=

X

 A2PA

p(A|)
X

 B2PB : B⇠ A

p(B| A [)�(v| [B)

X

 A2PA

p(A|)
X

 B2PB : B⇠ A

p(B| A [)�(v| [A)

=

X

 A2PA

p(A|)�(v| [A)

= g(v|A),

where the inequality is due to adaptive submodularity of f with respect to p.

Proposition 72. Suppose f : 2V ⇥Y
V
! R�0 is adaptive monotone with respect to p. Then a set function

g : 2
V
! R�0 de�ned as g(X) := �(X|) for every X ✓ V is monotone for any partial realization .

Proof. It su�ces to prove for any A ✓ V and v 2 V \ A, it holds that g(v|A) � 0. Let D = dom().
Let R(A) be all possible partial realizations of the states of A. Then we have

g(v|A) = E[f(D [A [{v},�)� f(D [A,�) | � ⇠]

=

X

 A2R(A)

p(A|)E[f(D [A [{v},�)� f(D [A,�) | � ⇠ [A]

=

X

 A2R(A)

p(A|)�(v| [A)

� 0,

where the inequality is due to adaptive monotonicity of f with respect to p.

From these two propositions, we can claim that the batch selection problem at each round can be
reduced to constrained monotone submodular maximization. If there exists an approximation algorithm
for maximizing a monotone submodular function subject to the batch constraint S 2 J , we can solve
this problem approximately by using this algorithm.

4.5.2 Reduction from Batch-mode Se�ing to Fully Adaptive Se�ing

To bound the approximation ratio of the batch-mode adaptive greedy algorithm, we reduce the batch-
mode setting to the fully adaptive setting and apply the existing result on the adaptive greedy algorithm.
This idea was �rst used by Chen and Krause [2013] for the case of J = {S ✓ V | |S| k}.

De�nition 73 (Reduction from the batch-mode setting to the fully adaptive setting). Given an instance
of batch-mode adaptive optimization (f, p,J), we can make an instance of fully adaptive optimization
(g, q) as follows. Let Z =

S
S2J Y

S be the set of all possible outcomes for each batch S 2 J . We can
de�ne a map ⌧ : YV

! Z
J that returns realization ⌧(�) for instance (g, p) when given realization �

for instance (f, p) by setting ⌧(�)(S)(v) = �(v) for each S 2 J and v 2 S. Let �J = ⌧(�) and �J be

58

a random variable associated with it. We de�ne �J to be valid if there exists � : V ! Y such that for
all S 2 J and v 2 S, it holds that �J (S)(v) = �(v). For any valid �J , we can de�ne the inverse map
⌧
�1 such that ⌧�1

(⌧(�)) = �. By using this notation, we can de�ne a set function g : 2
J
⇥ Z

J
! R

and a probability distribution q : Z
J
! R�0. For each subset S ✓ J and realization �J , we de�ne set

function g : 2
J
⇥ Z

J
! R as

g(S,�J) = f

⇣[
S, ⌧

�1
(�J)

⌘

if �J is valid and g(S,�J) = 0 if �J is invalid. Similarly, we de�ne probability distribution q as

q(�J) = p(⌧
�1

(�J))

if �J is valid and q(�J) = 0 if �J is invalid.

By using this reduction, we can bound the approximation ratio of the batch-mode adaptive greedy
algorithm as follows.

Theorem 74. Assume f is set-adaptive submodular and adaptive monotone with respect to p. Suppose
an ↵-approximation algorithm for monotone submodular maximization subject to X 2 J is used for the
batch selection at each round. If ⇡ is a policy that encodes the batch-mode adaptive greedy algorithm with
k rounds and ⇡⇤ is an optimal batch-mode policy with k rounds, then we have

favg(⇡) � (1� e
�↵

)favg(⇡
⇤
).

Proof. Given function f and probability distribution p, we obtain g and q by applying the reduction
described in De�nition 73. Here we prove g is adaptive submodular and adaptive monotone with respect
to q by using the set adaptive submodularity and adaptive monotonicity of f and p. Let S 2 J be any
batch and J be any partial realization of �J . Let be the corresponding partial realization for J .
The expected marginal gain can be written as

�g,q(S| J) = E� [f (dom() [S,�)� f (dom(),�)|� ⇠] .

For any partial realizations J ✓
0

J
, we have

�g,q(S| J) = �f,p(S|)

� �f,p(S|
0
) (due to set-adaptive submodularity of (f, p))

= �g,q(S|
0

J),

which implies adaptive submodularity of (g, q). Next, we show adaptive monotonicity of (g, q). Let
S \ dom() = {s1, · · · , s`} by ordering elements in S arbitrarily and Si = {s1, · · · , si}. If Pi = { |

dom() = Si} is the set of all partial realizations with domain Si, we have

�g,q(S| J)

= �f,p(S|)

=

X̀

i=1

E�[f(dom() [Si�1 [{si},�)� f(dom() [Si�1,�)|� ⇠]

=

X̀

i=1

X

 i�12Pi�1

p(i�1|)E�[f(dom([i�1) [{si},�)� f(dom([i�1),�)|� ⇠ [i�1]

59

=

X̀

i=1

X

 i�12Pi�1

p(i�1|)�f,p(si| [i�1)

� 0, (due to adaptive monotonicity of (f, p))

which implies adaptive monotonicity of (g, q).
The batch-mode adaptive greedy algorithm for (f, p) can be regarded as an ↵-approximate adaptive

greedy algorithm for (g, q). Therefore, from Theorem 33, it achieves at least (1� exp(�↵)) times the
objective value achieved by an optimal fully adaptive policy for (g, q). Since any batch-mode policy for
(f, p) is identi�ed with a fully adaptive policy for (g, q), we conclude the statement.

As direct consequences of this theorem and results on constrained monotone submodular maximiza-
tion, we obtain bounds on the approximation ratios as follows.

Corollary 75. If X 2 J is a matroid constraint, the batch-mode adaptive greedy with the continuous
greedy algorithm [Călinescu et al., 2011] achieves (1 � exp(�(1 � 1/e)))-approximation. If X 2 J

is a knapsack constraint, the batch-mode adaptive greedy with the greedy algorithm with partial enu-
meration [Sviridenko, 2004] achieves (1 � exp(�(1 � 1/e)))-approximation. If X 2 J is a p-system
constraint, the batch-mode adaptive greedy with the greedy algorithm [Călinescu et al., 2011] achieves
(1� exp(�1/(p+ 1))-approximation.

4.6 Beyond Set-Adaptive Submodularity

In the last section, we have assumed set-adaptive submodularity of the objective function. However,
as illustrated in Chapter 3, there are still many problems that cannot be dealt with under adaptive
submodularity, such as adaptive in�uence maximization in the triggering model or adaptive feature
selection. Since set-adaptive submodularity is a stronger condition than adaptive submodularity, these
problems cannot be dealt with under set-adaptive submodularity as well. In this section, we tackle these
problems by utilizing the notion of adaptive submodularity ratio developed in Chapter 3. We provide a
lower bound on the approximation ratio of the batch-mode adaptive greedy algorithm in terms of the
adaptive submodularity ratio and the supermodularity ratio of the objective function.

The starting point is the bound on the approximation ratio of the adaptive greedy algorithm, which
is shown in Chapter 3. First, we need to extend Theorem 43 to the adaptive greedy algorithm with
↵-approximate greedy selection, which at each step selects element v 2 V such that �(v|) �

↵maxv2V �(v|), where is the partial realization observed so far.

Theorem 76. Suppose f : 2V ⇥ Y
V
! R�0 is adaptive monotone with respect to p. Let ⇡ be a policy

representing the adaptive greedy algorithm with ↵-approximate greedy selection until ` step. Then, for any
policy ⇡⇤ 2 ⇧k, it holds that

favg(⇡) � (1� exp (�↵�`,k`/k)) favg(⇡
⇤
),

where �`,k is the adaptive submodularity ratio of f with respect to p.

Proof. The outline of the proof is the same as the proof of Theorem 43. The only di�erence is that we
use

favg(⇡[i+1])� favg(⇡[i]) � E

↵max

v2V
�(v|)

�

instead of favg(⇡[i+1])� favg(⇡[i]) = E [maxv2V �(v|)]. Then we obtain the bound in the statement.

60

By using the reduction from the batch-mode setting to the fully adaptive setting, we obtain the
following result.

Theorem 77. Suppose the original objective function f is adaptive monotone with respect to p and the
supermodularity ratio of its expected value E�[f(·,�)] is �k, .

1. The batch selection at each round can be reduced to �nding X 2 J that maximizes a monotone
function whose submodularity ratio is bounded as �U,k � min U � [U ,k(f, p).

2. The batch-mode adaptive greedy algorithm with↵-approximate greedy selection that is executed for k
rounds achieves the objective value at least 1�exp

�
�↵min : | |(k�1)` �?,`(�f,p(·|))�k`,k`(f, p)

�

times the objective value achieved by an optimal batch-mode policy with k rounds, where ` =

max{|S| : S 2 J }.

Proof. First, we show the batch selection can be reduced to maximizing a monotone function with a
bounded submodularity ratio. Suppose is a partial realization obtained so far for the original ground
set V . The batch selection is the problem of �nding X 2 J that approximately maximizes�f,p(X|).
From Proposition 72, �f,p(·|) is monotone. From the de�nition, the submodularity ratio of �f,p(·|)

is

�U,k(�f,p(·|)) = min
L✓U, S : |S|k

P
v2S {�f,p(L [{v}|)��f,p(L|)}

�f,p(L [S|)��f,p(L|)
.

Let L ✓ U and S ✓ V such that |S| k. Let L be a partial realization such that dom(L) = L and
 L the random variable associated with L. We can transform the numerator of the submodularity
ratio as follows.

X

v2S

{�f,p(L [{v}|)��f,p(L|)}

=

X

v2S

E�[f(dom() [L [{v})� f(dom() [L)|� ⇠]

=

X

v2S

E L [E�[f(dom() [dom(L) [{v})� f(dom() [dom(L))|� ⇠ [L]]

=

X

v2S

E L [�f,p(v| [L)]

= E L

"
X

v2S

�f,p(v| [L)

#

By considering a non-adaptive policy that always selects S, from the de�nition of the adaptive submod-
ularity ratio, we have

X

v2S

�f,p(v| [L) � � [L,k(f, p)�f,p(S| [L)

for all L. Therefore, we obtain
X

v2S

{�f,p(L [{v}|)��f,p(L|)}

� E L [� [L,k(f, p) �f,p(S| [L)]

� min
 L

� [L,k(f, p) E L [�f,p(S| [L)]

61

= min
 L

� [L,k(f, p) E L [E�[f(dom() [dom(L) [S)� f(dom() [dom(L))|� ⇠ [L]]

= min
 L

� [L,k(f, p) E�[f(dom() [L [S)� f(dom() [L)|� ⇠]

= min
 L

� [L,k(f, p) {�f,p(L [S|)��f,p(L|)} .

Now we can bound the submodularity ratio as follows.

�U,k(�f,p(·|)) � min
L✓U

min
 L

� [L,k(f, p)

= min
 U

� [U ,k(f, p),

where we use the fact that the adaptive submodularity ratio is monotonically non-increasing with
respect to the �rst subsript [U .
Next, we bound the approximation ratio of the batch-mode adaptive greedy algorithm. By using

the reduction from the batch-mode setting to the fully adaptive setting described in De�nition 73, we
obtain the problem instance (g, q) induced by batches J . To distinguish the realizations for the original
instance and the modi�ed instance, we use �V and �J for each of them. Similarly, V and ⇡V are
for the original instance (f, p) and J and ⇡J are for the modi�ed instance (g, q). Now we can write
�k,k(g, q) as

�k,k(g, q) = min
 J : | J |k, ⇡J2⇧J ,k

P
S2J Pr(S 2 E(⇡J ,�J)|�J ⇠ J)�g,q(S| J)

�g,q(⇡J | J)

Let ⇤

J
and ⇡⇤

J
be a minimizer of the above de�nition. Note that a batch-mode policy ⇡⇤

J
of height k

can be regarded as a policy ⇡⇤ of height at most k` for instance (f, p). Similarly, partial realization ⇤

J

for (g, q) can be regarded as a partial realization ⌧(⇤

J
) for instance (f, p). Then we can rewrite the

above de�nition as follows.

�k,k(g, q) =

P
S2J Pr(S 2 E(⇡

⇤

J
,�J)|�J ⇠

⇤

J
)�g,q(S|

⇤

J
)

�g,q(⇡
⇤

J
| ⇤

J
)

�

P
S2J Pr(S 2 E(⇡

⇤

J
,�J)|�J ⇠

⇤

J
)�?,`(�(·|

⇤

J
))
P

v2S �g,q(v|
⇤

J
)

�g,q(⇡
⇤

J
| ⇤

J
)

� min
 : | |(k�1)`

�?,`(�(·|))

P
v2V Pr(v 2 E(⇡

⇤
,�)|� ⇠

⇤
)�g,q(v|

⇤
)

�g,q(⇡
⇤| ⇤)

� min
 : | |(k�1)`

�?,`(�(·|)) min
 : | |k`, ⇡2⇧k`

P
v2V Pr(v 2 E(⇡,�)|� ⇠)�f,p(v|)

�f,p(⇡|)

= min
 : | |(k�1)`

�?,`(�f,p(·|))�k`,k`(f, p).

Finally, we substitute this bound into Theorem 76 and obtain

favg(⇡) �

✓
1� exp

✓
�↵ min

 : | |(k�1)`
�?,`(�f,p(·|))�k`,k`(f, p)

◆◆
favg(⇡

⇤
),

where ⇡ is a batch-mode adaptive greedy with ↵-approximate greedy selection and ⇡⇤ is an optimal
batch-mode policy for instance (f, p).

4.7 Other Extensions

In this section, we consider extensions and variants of batch-mode adaptive optimization under the
assumption of set-adaptive submodularity.

62

4.7.1 Outer Matroid Constraints

Until now, we have considered batch-mode adaptive optimization with a constant number of rounds. In
other words, the decision-maker can select k batches regardless of which batches are selected at each
round. Here we consider a problem setting where a constraint is imposed not on the number of rounds,
but the union of the selected batches.
In particular, we consider a matroid constraint on the union of the selected batches, which we call

an outer matroid constraint. Let M = (V, I) be a matroid on the ground set V . An outer matroid
constraint requires the selected batches S ✓ J to satisfy

S
S 2 I .

Besides an outer matroid constraint, we impose a constraint that requires the selected batches to
be disjoint. The reason why we need the disjointness is that if the batches may intersect, the problem
would be virtually reduced to the fully adaptive setting. For example, we consider the case the batch
constraint is the simplest one that allows all batches of size `, i.e., J = {S ✓ V : |S| = `}. Suppose the
decision-maker has selected any batch S1 at the �rst round. Let S0

1 be an arbitrary subset of S1 of size
`� 1. From the second round to the last round, the decision-maker can act as if in the fully adaptive
setting by selecting a batch S 2 J with S = S

0

1 [{v} 2 J instead of selecting the element v 2 V that
she actually wants in the fully adaptive setting. To avoid such a situation, we need the disjointness
among the selected batches.
For this problem, the batch-mode adaptive greedy algorithm can be described as follows. At the

ith round, the algorithm selects a batch Si 2 J that approximately maximizes �(Si| i�1) without
violating either the outer matroid constraint or the disjointness constraint. In other words, the batch at
the ith round must satisfy Si 2 J , (

Si�1
j=1 Sj) [Si 2 I , and Si \

⇣Si�1
j=1 Sj

⌘
= ?. In the case where

J consists of all batches of size `, we can solve the bach selection by an approximation algorithm for
monotone submodular maximization under a matroid constraint. Since�(Si| i�1) is monotone and
submodular as a set function of Si from Propositions 71 and 72, it is su�cient to prove the constraint is
a matroid constraint.

Proposition 78. If the set of feasible batches consists of all batches of size `, i.e., J = {S ✓ V : |S| = `},
the intersection of the outer matroid constraint, the batch constraint, and the disjointness constraint at each
round is the base family of some matroid.

Proof. The outer matroid constraint that must be satis�ed by the batch at the ith round is

Ii =

8
<

:S ✓ V \

0

@
i�1[

j=1

Sj

1

A

������

0

@
i�1[

j=1

Sj

1

A [S 2 I

9
=

; ,

which is the independence set family of the independence system by contracting
Si�1

j=1 Sj of matroid
(V, I). Since matroids are closed under the contraction operation, Ii is the independence set family
of a matroid. By taking the intersection with the batch constraint J and the disjointness constraint,
the decision-maker can select any independent set in Ii of size `. Since matroids are closed under the
truncation operation, {X 2 Ii | |X| `} is still the independence set family of a matroid. The set of
feasible batches is the base family of this matroid.

Next, we bound the approximation ratio of the batch-mode adaptive greedy algorithm. Similarly to the
proof of Theorem 74, we use the reduction from the batch-mode setting to the fully adaptive setting. But
now, it is reduced to the fully adaptive settingwith a k-uniformmatroidmatching constraint. A k-uniform
matroid matching constraint is known to be a special case of k-system constraints, which was proved
by Lee et al. [2013]. This analysis can be applied not only to the setting with J = {S ✓ V : |S| = `},
but also for any setting where the batch selection can be approximated at each round.

63

Algorithm 8 Batch-mode adaptive greedy for an outer matroid constraint

Input The objective function f : 2
V
⇥ Y

V and the probability distribution p 2 4
Y

V given by a
value oracle for the expected marginal gain �(·|·), the outer matroid constraint I given by an
independence oracle, the size of each batch `.

1: 0 ?.
2: Let r be the rank of matroid (V, I).
3: while i = 1, · · · , br/`c do
4: Let Ii =

n
S ✓ V \

⇣Si�1
j=1 Sj

⌘ ���
⇣Si�1

j=1 Sj

⌘
[S 2 I

o
be the contraction of I to V \

Si�1
j=1 Sj .

5: Apply an ↵-approximation algorithm to maximize �(S| i�1) subject to S 2 Ii \ J and obtain
an ↵-approximate solution Si.

6: Query Si and observe �(v) for all v 2 Si.
7: i i�1 [{(v,�(v)) | v 2 Si}.

Theorem 79. Assume f is set-adaptive submodular and adaptive monotone with respect to p. Suppose the
outer constraint is a matroid constraint and the selected batches must be disjoint, and the batch selection at
each round is ↵-approximation. If ⇡ be the policy that encodes the batch-mode adaptive greedy algorithm
and ⇡⇤ an optimal policy, then we have

favg(⇡) �
↵

kmax + ↵
favg(⇡

⇤
),

where kmax = maxX2J |X|.

Proof. Similarly to the proof of Theorem 74, we obtain the instance (g, q) in the fully adaptive setting
by using the reduction described in De�nition 73. From set-adaptive submodularity and adaptive
monotonicity, we can show adaptive submodularity and adaptive monotonicity of (g, q) in the same
way as the proof of Theorem 74. By considering the constraint of the reduced instance, the set family
of all feasible sets of batches is

I = {S ✓ J | 8S, T 2 S, S \ T = ? and
[

S 2 I}. (4.2)

This is already the independence set of a matroid matching, but not kmax-uniform. To reduce it to a
kmax-uniform matroid matching constraint, we add dummy elements that do not give any e�ect to the
value of f . We obtain V by adding kmax� |S| dummy elements to V for each batch S 2 J and obtain S
by augmenting S with these dummy elements so that the size of S is kmax. Then we have |S0

| = kmax

for all S0
2 J

0, where J 0 is the set of S0 obtained by adding dummy elements to S for all S 2 J . We
also de�ne I 0

✓ 2
V 0 as the direct sum of I and the free matroid on the set of all dummy items. Now

we can de�ne I0 ✓ 2
J

0 by replacing S with S
0, J with J

0, and I with I
0 of Equation (4.2). Since I0

is the independence set family of a kmax-uniform matroid matching, so is I. From Theorem 38, the
adaptive greedy algorithm with ↵-approximate greedy selection for a kmax-system constraint achieves
↵/(kmax + ↵)-approximation, which implies the statement.

4.7.2 Online Se�ing

Here we consider the setting where the ground set is di�erent at each round, which we call the online
setting. In the online setting, the decision-maker is given a ground set Vi and a batch constraint Ji ✓ 2

Vi

at the ith round, and must select a batch Si 2 Ji. Just after selecting batch Si, the decision-maker
observes the states (�(v))v2Si of the elements in Si. A di�cult point of the online setting is that the

64

Algorithm 9 Batch-mode adaptive greedy algorithm for the online setting
1: 0 ?.
2: for i = 1, · · · , k do
3: The ground set Vi for the ith round appears.
4: Apply an ↵-approximation algorithm to maximize �(S| i�1) subject to S 2 Ji and obtain an

↵-approximate solution Si.
5: Query Si and observe �(v) for all v 2 Si.
6: i i�1 [{(v,�(v)) | v 2 Si}.

decision-maker must select Si without knowing the information about the rounds in the future. Let
V = V1 [· · · [Vk be the total ground set. The objective function f : 2

V
! R�0 and the probability

distribution of � : V ! Y de�ned on the total ground set are assumed to be set-adaptive submodular and
adaptive monotone. We assume that at the ith round, the access to an oracle for the expected marginal
gain is limited to the part for the elements that have already appeared, that is, V = V1 [· · · [VT .

For the online setting, we devise the batch-mode adaptive greedy algorithm as well. At the ith round,
given Vi and Ji, this algorithm selects a batch Si 2 Ji that satis�es

�(Si| i�1) � ↵max
S2Ji

�(S| i�1),

where i�1 is the partial observation obtained just before the ith round. The algorithmic description
is given in Algorithm 9. From Proposition 71 and Proposition 72, the batch selection problem can be
reduced to constrained monotone submodular maximization problem.
Here we analyze the batch-mode adaptive greedy algorithm in the online setting by comparing it

with an optimal batch-mode policy in the o�ine setting, not in the online setting. We can consider
the corresponding o�ine setting where the decision-maker can select a batch from each Ji in any
order. Note that in the online setting, the decision-maker must select a batch from Ji in the �xed
order, that is, �rst from J1, and second from J2, and so on. In the corresponding o�ine setting, the
decision-maker can select one batch from Ji for each i, but the order of Jis is arbitrary. We can prove
that the batch-mode adaptive greedy algorithm in the online setting is competitive with an optimal
batch-mode policy in the corresponding o�ine setting as follows.

Theorem 80. Assume f is set-adaptive submodular and adaptive monotone with respect to p. Suppose
an ↵-approximation algorithm for monotone submodular maximization subject to X 2 J is used for the
batch selection at each round. If ⇡ is a policy that encodes the batch-mode adaptive greedy algorithm in
the online setting and ⇡⇤ is an optimal batch-mode policy in the o�ine setting, then we have

favg(⇡g) �
↵

1 + ↵
favg(⇡

⇤
).

Proof. The expected objective value achieved by the adaptive greedy algorithm can be bounded as

favg(⇡) =E[f(E(⇡,�),�)]

=

kX

i=1

E[f(E(⇡[i],�),�)� f(E(⇡[i�1],�),�)]

=

kX

i=1

X

 i�12L(⇡[i�1])

p(i�1)�(⇡(i�1)| i�1),

65

where ⇡[i] is the policy obtained by executing ⇡ just before the i+1th rounds and L(⇡) be the set of all
possible partial realizations of policy ⇡.
We consider the concatenated policy ⇡@⇡⇤ of ⇡ and ⇡⇤, that is, a policy obtained by executing ⇡⇤

as if from scratch after executing ⇡. Since ⇡ selects a batch from Ji once and ⇡⇤ also selects a batch
from Ji once, the concatenated policy ⇡@⇡⇤ selects a batch from Ji twice for any i, �rst during ⇡ and
second during ⇡⇤. We de�ne M(i) to be the set of all partial realizations observed by ⇡@⇡⇤ since
having i during executing ⇡ until just before selecting a batch from Ji during executing ⇡⇤. SinceP

 2M(i�1)
p(i�1 [) = p(i�1), we have

p(i�1)�(⇡(i�1)| i�1) � ↵p(i�1)max
S2Ji

�(S| i�1) (From the property of the algorithm)

= ↵

X

 2M(i�1)

p(i�1 [)max
S2Ji

�(S| i�1)

� ↵

X

 2M(i�1)

p(i�1 [)�((⇡@⇡
⇤
)(i�1 [)| i�1)

(since (⇡@⇡⇤)(i�1 [) 2 Ji)

� ↵

X

 2M(i�1)

p(i�1 [)�((⇡@⇡
⇤
)(i�1 [)| i�1 [).

(due to the adaptive submodularity)

Therefore, �nally, we have

favg(⇡) =

kX

i=1

X

 i�12L(⇡[i�1])

p(i�1)�(⇡(i�1)| i�1)

� ↵

kX

i=1

X

 i�12L(⇡[i�1])

X

 2M(i�1)

p(i�1 [)�((⇡@⇡
⇤
)(i�1 [)| i�1 [)

= ↵(favg(⇡@⇡
⇤
)� favg(⇡)),

which concludes
favg(⇡) �

↵

1 + ↵
favg(⇡@⇡

⇤
) �

↵

1 + ↵
favg(⇡

⇤
),

where the second inequality is due to Lemma 32.

By using existing approximation algorithms for constrained monotone submodular maximization,
we obtain the following results.

Corollary 81. If X 2 J is a matroid constraint, the batch-mode adaptive greedy with the continuous
greedy algorithm [Călinescu et al., 2011] achieves (e�1)/(2e�1)-approximation. IfX 2 J is a knapsack
constraint, the batch-mode adaptive greedy with the greedy algorithm with partial enumeration [Sviridenko,
2004] achieves (e�1)/(2e�1)-approximation. IfX 2 J is a p-system constraint, the batch-mode adaptive
greedy with the greedy algorithm [Călinescu et al., 2011] achieves (p+ 1)/(p+ 2)-approximation.

4.7.3 �ery-Varying Se�ing

Here we consider the batch-mode adaptive optimization problem where the batch constraint changes at
each round, which we call the query-varying setting. In this setting, the ground set V is the same through
all rounds but the batch constraints are di�erent at each round. Let Ji be the constraints at the ith round

66

Algorithm 10 Batch-mode adaptive greedy algorithm for the query-varying setting

Input The objective function f : 2
V
⇥ Y

V and the probability distribution p 2 4
Y

V given by a value
oracle for the expected marginal gain �(·|·), the number of rounds k 2 Z�0.

1: 0 ?.
2: for i = 1, · · · , k do
3: Given an independence oracle for Ji,
4: Apply an ↵-approximation algorithm to maximize �(S| i�1) subject to S 2 Ji and obtain an

↵-approximate solution Si.
5: Query Si and observe �(v) for all v 2 Si.
6: i i�1 [{(v,�(v)) | v 2 Si}.

for each i. At the ith round, given Ji, the decision-maker must select a batch Si 2 Ji without knowing
the batch constraints for the future rounds Ji+1, · · · ,Jk . While Fern et al. [2017] dealt with the query-
varying setting under the assumption that J1, · · · ,Jk are generated from an identical distribution
independently, we does not assume any probabilistic assumption on J1, · · · ,Jk. We assume that
J1, · · · ,Jk are determined in advance and do not change adaptively to the decision-maker’s selection
of batches.
We apply the batch-mode adaptive greedy algorithm to the query-varying setting. At each round,

this algorithm selects a batch that approximately maximizes the expected marginal gain, that is,
�(Si| i�1) � ↵maxS2Ji �(S| i�1). The algorithmic description is given in Algorithm 10.

In comparison to an optimal batch-mode policy for the query constraints J1, · · · ,Jk , the batch-mode
adaptive greedy algorithm always gives a competitive performance. We can prove it by reducing the
query-varying setting to the online setting.

Theorem 82. Assume f is set-adaptive submodular and adaptive monotone with respect to p. Suppose
an ↵-approximation algorithm for monotone submodular maximization subject to X 2 J is used for the
batch selection at each round. If ⇡ is a policy that encodes the batch-mode adaptive greedy algorithm and
⇡
⇤ is an optimal batch-mode policy in the query-varying setting, then we have

favg(⇡g) �
↵

1 + ↵
favg(⇡

⇤
).

Proof. We reduce the query-varying setting to the online setting by making k copies of each element
v 2 V . Let Ṽ = {(v, i) | v 2 V, i 2 [k]} be the new ground set obtained by regarding a pair (v, i) of
element v 2 V and index of the round i 2 [k] as an element. For any realization �, the corresponding
realization is de�ned to be �̃ : Ṽ ! Y such that �̃((v, i)) = �(v). We say �̃ is valid if there exists the
corresponding realization �. We de�ne the new objective function f̃ : 2

Ṽ
⇥ Y

Ṽ
! R�0 such that

f̃(S̃, �̃) :=

(
f(S,�) if � is valid
0 if � is not valid

for any S̃ ✓ Ṽ and any �̃, where S = {v 2 V | 9i 2 [k], (v, i) 2 S̃} is the corresponding to S̃

and � is the realization corresponding to �̃. We de�ne the probability distribution p̃ over �̃ such that
p̃(�̃) = p(�) if �̃ is valid and p̃(�̃) = 0 if �̃ is not valid.
First, we show the set-adaptive submodularity of f̃ with respect to p̃. Let �̃ denote the expected

marginal gain about f̃ and p̃. Fix any S̃ ✓ Ṽ and partial realization ̃ and ̃0 such that ̃ ✓ ̃0. We
can de�ne the corresponding partial realization := {(v, y) | 9((v, i), y) 2 ̃} and 0 := {(v, y) |

9((v, i), y) 2 ̃0}. We can show the set-adaptive submodularity of f̃ with respect to p̃ as

�̃(S̃| ̃) = �(S|) � �(S|
0
) = �̃(S̃| ̃0)

67

where the inequality is due to the set-adaptive submodularity of f with respect to p. Similarly, we show
the adaptive monotonicity of f̃ with respect to p̃ as

�̃((v, i)| ̃) = �(v|) � 0,

which is derived from the adaptive monotonicity of f with respect to p.
Finally, by considering J̃i = {S̃ ✓ V | 9S 2 Ji, S̃ = {(v, i) | v 2 S}} as the batch constraint at

the ith round, the query-varying setting can be reduced to the online setting. From Theorem 80, we
obtain the statement of the theorem.

Similarly to the online setting, we obtain the following results.

Corollary 83. If X 2 J is a matroid constraint, the batch-mode adaptive greedy with the continuous
greedy algorithm [Călinescu et al., 2011] achieves (e�1)/(2e�1)-approximation. IfX 2 J is a knapsack
constraint, the batch-mode adaptive greedy with the greedy algorithm with partial enumeration [Sviridenko,
2004] achieves (e�1)/(2e�1)-approximation. IfX 2 J is a p-system constraint, the batch-mode adaptive
greedy with the greedy algorithm [Călinescu et al., 2011] achieves (p+ 1)/(p+ 2)-approximation.

4.8 Experiments

In this section, we show the experimental results on adaptive submodular maximization with structured
queries on several applications. First, we show results on two applications that satisfy set-adaptive
submodularity: active learning and adaptive in�uence maximization in the independent cascade model.
Next, we move to two applications where the adaptive submodularity ratio is bounded: bipartite
in�uence maximization in the triggering model and adaptive feature selection.

4.8.1 Experiments on Active Learning

We conduct experiments in the o�ine, online, and query-varying settings of active learning. In all
settings, as batch constraints, we impose knapsack constraints. The weight of each item is generated
from the uniform distribution on [0, 1] and the capacity of the knapsack is set to 1.

Datasets. We use benchmark datasets, WDBC1 and MNIST2. WDBC is a dataset of 569 cells with
32-dimensional feature and their diagnosis results. From MNIST, a dataset of handwritten digits, we
extract images corresponding to digit 0 and 1. We apply PCA to reduce the dimensions 784 to 10,
and consider the binary classi�cation problem. Each dataset is normalized so that their mean is 0 and
variance is 1. For fair comparison, the performance is measured only with the combination of the
selected examples, that is, we train linear SVM with the obtained labels and calculating the test accuracy
with this linear separator with the whole dataset.

Methods. Our implementation is based on ALuMA algorithm [Gonen et al., 2013] that we select
among many active learning algorithms based on adaptive submodularity. ALuMA algorithm samples
hypotheses consistent with observed labels and select the next example to be labeled that minimizes the
number of consistent hypotheses in expectation. The original ALuMA algorithm is designed for linear
separable datasets, then we adopt the modi�cation proposed by Chen and Krause [2013], which makes
it possible to deal with noisy datasets. We set the noise tolerance parameter ✏ to 0.1 and the number of
hypotheses sampled at each step to 1000. As a benchmark, we implement the non-adaptive algorithm
1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
2http://yann.lecun.com/exdb/mnist/

68

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://yann.lecun.com/exdb/mnist/

0 5 10 15 20 25 30
stage

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

er
ro

r
adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(a) WDBC, o�ine

0 5 10 15 20 25 30
stage

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

er
ro

r

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(b) WDBC, online

0 5 10 15 20 25 30
stage

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

er
ro

r

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(c) WDBC, varying

5 10 15 20 25 30
stage

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

er
ro

r

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(d) MNIST, o�ine

5 10 15 20 25 30
stage

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

er
ro

r

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(e) MNIST, online

5 10 15 20 25 30
stage

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

er
ro

r

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(f) MNIST, varying

Figure 4.3: The experimental results for batch-mode active learning with knapsack batch constraints. In
all �gures, the horizontal axis indicates the number of rounds and the vertical axis indicates
the test error obtained by linear SVM trained with the observed labels. (a), (b), and (c) are
the results for WDBC dataset. (d), (e), and (f) are the results for MNIST dataset. (a) and (d)
are the results for the o�ine setting, (b) and (e) are the results for the online setting, and (c)
and (f) are the results for the query-varying setting.

that selects a batch Si at each round by maximizing �(dom(i�1) [Si|?)��(dom(i�1)|?), not
�(Si| i�1).

As a subroutine for the batch selection problem, we adopt the cost-e�ective forward selection
algorithm though the best approximation ratio is (1 � 1/e) by the greedy algorithm with partial
enumeration. The known bound on the approximation ratio of the cost-e�ective forward selection
algorithm is 1

2(1� 1/e), but it runs in O(n
2
) time [Leskovec et al., 2007a], which is much faster than

O(n
5
) time of the greedy algorithm with partial enumeration. In addition, we compare it with a di�erent

subroutine, the cost-oblivious greedy algorithm, which greedily selects an item that provides the largest
improvement of the objective function and stops when adding any remaining item violates the knapsack
constraint. We implement the batch-mode adaptive greedy algorithm and the non-adaptive algorithm
both with these two subroutines.

Results. For each setting and dataset, we repeat experiments 20 times in the same setting and plot
the average of the test accuracy. In all settings and datasets, the batch-mode adaptive greedy algorithm
with the cost-e�ective forward selection outperforms the other methods.

4.8.2 Experiments on Adaptive Influence Maximization in the IC model

Datasets. We use datasets soc-Epinions1 and soc-Slashdot0801 from Stanford Large Network Dataset
Collection (SNAP)3. The original network of soc-Epinions1 has 75879 nodes and 508377 edges, and
3https://snap.stanford.edu/

69

https://snap.stanford.edu/

2 4 6 8 10
stage

460

480

500

520

540

560

580

600

620
in

flu
en

ce
 s

pr
ea

d
adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(a) Epinions, o�ine

2 4 6 8 10
stage

460

480

500

520

540

560

580

600

in
flu

en
ce

 s
pr

ea
d

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(b) Epinions, online

2 4 6 8 10
stage

440

460

480

500

520

540

560

580

in
flu

en
ce

 s
pr

ea
d

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(c) Epinions, varying

2 4 6 8 10
stage

620

640

660

680

700

720

in
flu

en
ce

 s
pr

ea
d

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(d) Slashdot, o�ine

2 4 6 8 10
stage

620

640

660

680

700

in
flu

en
ce

 s
pr

ea
d

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(e) Slashdot, online

2 4 6 8 10
stage

620

640

660

680

700

in
flu

en
ce

 s
pr

ea
d

adaptive
non-adaptive
adaptive (cost oblivious)
non-adaptive (cost oblivious)

(f) Slashdot, varying

Figure 4.4: The experimental results for batch-mode in�uence maximization with knapsack batch
constraints. In all �gures, the horizontal axis indicates the number of rounds and the vertical
axis indicates the number of nodes in�uenced by the selected seed nodes. (a), (b), and (c) are
the results for Epinions dataset. (d), (e), and (f) are the results for Slashdot dataset. (a) and
(d) are the results for the o�ine setting, (b) and (e) are the results for the online setting, and
(c) and (f) are the results for the query-varying setting.

The one of soc-Slashdot0801 has 77360 nodes and 905468 edges. To scale down the problem size, we
consider the subgraph induced by the top 1000 nodes that have the largest outdegree. We use the
independent cascade model [Kempe et al., 2003] as the di�usion model and the full-adoption feedback
model [Golovin and Krause, 2011a] as the feedback model. We set the probability that each edge is
activated is set to 0.03.

Methods. We compare two adaptive methods and two non-adaptive methods similarly to the exper-
iments on active learning. We implement batch-mode adaptive greedy algorithm with two di�erent
subroutines: the one is cost-e�ective greedy algorithm and the other is cost-oblivious greedy algorithm.
In the same way, we implement the non-adaptive algorithm that selects a batch at every step by cost-
e�ective greedy algorithm or cost-oblivious greedy algorithm. In all implemented methods, we use
Monte Carlo sampling for estimating the objective value.

Results. For each setting and dataset, we conduct 20 trials and plot the average of the in�uence
spread. In all settings and datasets, the adaptive greedy algorithm with the cost-e�ective forward
selection performs much better than the other methods.

4.8.3 Experiments on Bipartite Influence Maximization in the Triggering Model

Datasets. We use bipartite graphs generated randomly and Yahoo! dataset [Yah]. The detailed
description of these datasets can be found in Section 3.7.1.

70

(a) linear threshold, synthetic (b) linear threshold, Yahoo!

Figure 4.5: The experimental results on bipartite in�uence maximization with the triggering model. (a)
is the result on the synthetic datasets under the linear threshold model. (b) is the result on
Yahoo! dataset under the linear threshold model.

(a) regression, � = 0.1 (b) regression, � = 0.2 (c) regression, � = 0.3

Figure 4.6: The experimental results on adaptive feature selection. (a), (b), and (c) are the results for
noise parameter � = 0.1, � = 0.2, and � = 0.3, respectively.

Benchmarks. We compare the adaptive greedy algorithm to batch-mode adaptive greedy algorithm
with di�erent batch sizes 10, 100, 1000. Each of them selects a batch of the speci�ed size by the
non-adaptive greedy algorithm.

Results. We conduct experiments on the linear threshold model with the synthetic dataset and Yahoo!
dataset, and experiments on the extended linear threshold model with the synthetic dataset. The results
are shown in Figure 4.5. We can see that even if the batch size is 1000, its performance is competitive
with the adaptive greedy algorithm and much better than the non-adaptive greedy algorithm.

4.8.4 Experiments on Adaptive Feature Selection

Datasets. We use synthetic datasets generated in the same way as Section 3.7.2. The noise parameter
� is set to 0.1, 0.2, and 0.3.

Benchmarks. We implement the adaptive greedy and non-adaptive greedy algorithms as well as the
batch-mode adaptive greedy algorithm with batch size 5 and 10. Each algorithm selects a batch of the
speci�ed size by the non-adaptive greedy algorithm.

Results. The results are shown in Figure 4.6. In all settings, we can see the batch-mode adaptive
greedy algorithms are competitive with the adaptive greedy algorithm.

71

4.9 Related Work

Batch-mode adaptive optimization. To our knowledge, the �rst study on batch-mode adaptive
optimization is Chen and Krause [2013]. They analyzed the batch-mode adaptive greedy algorithm
for the coverage version, but their assumptions are adaptive submodularity, pointwise submodularity,
and pointwise monotonicity, which are not su�cient for their analysis as described in Section 4.4.
Fern et al. [2017] �rst considered the query-varying setting with the same assumptions as Chen and
Krause [2013]. Their problem setting assumes that the set of feasible batches is generated at each
round independently from an identical distribution, which is di�erent from our query-varying setting.
Sakaue [2019] considered the multi-stage setting of monotone set function maximization, which is a
non-adaptive counterpart of batch-mode adaptive optimization. They used the submodularity ratio
and the supermodularity ratio in a similar way to ours, but their goal is to approximate an optimal
fully-adaptive policy, not an optimal batch-mode policy.

Online submodularmaximization. The problem setting of online submodularmaximization [Streeter
and Golovin, 2008, Streeter et al., 2009] is similar to our online setting in some sense. In online submod-
ular maximization, the decision-maker selects a set under a cardinality constraint [Streeter and Golovin,
2008] or a matroid constraint [Streeter et al., 2009] to maximize a monotone submodular function. The
largest di�erence from our online setting is that in their setting, the decision-maker must decide a set
without knowing anything about the objective function. Since it is obviously impossible to devise an
approximation algorithm in their setting, their goal is to minimize a criterion called ↵-approximate
regret. Intuitively, the ↵-approximate regret represents an additive error in comparison to applying an
↵-approximation algorithm to the total objective functions for all rounds in hindsight. Streeter and
Golovin [2008], Streeter et al. [2009] developed algorithms whose (1� 1/e)-approximate regret can be
bounded byO(

p
T)where T is the number of rounds for a cardinality constraint or a matroid constraint,

respectively. In contrast, the decision-maker knows the probability distribution that generates the
objective function in our online setting. Hence, our online setting is an easier problem than online
submodular maximization, and we can devise an approximation algorithm.

Adaptive submodularmaximization in the bandit se�ing. Gabillon et al. [2013, 2014] considered
the problem of maximizing an adaptive submodular maximization in the bandit setting. In this setting,
the decision-maker repeatedly solves an adaptive submodularmaximization problem, but the distribution
of the states is unknown in the beginning. The decision-maker can gradually learn the distribution by
selecting elements and observing their states. This setting is more di�cult than our online setting, in
which the distribution is known in advance, therefore their goal is to minimize the (1�1/e)-approximate
regret similarly to online submodular maximization.

Adaptive submodular maximization in the stream-based se�ing. Fujii and Kashima [2016]
considered the adaptive submodular maximization in the stream-based setting. In their setting, the
decision-maker must select a subset out of the elements that arrive sequentially. While in our online
setting, the elements are partitioned into small ground sets for each round, they considered the setting
where the elements in the ground set arrive one by one. We can see the di�erence more clearly by
removing the adaptive factor from the problem settings. Our online setting coincides with online
submodular welfare maximization [Lehmann et al., 2006], while their setting coincides with submodular
secretary problem [Bateni et al., 2013].

72

4.10 Summary and Future Work

In this chapter, we considered several settings of batch-mode adaptive optimization with structured
queries. First we de�ned the notion of set-adaptive submodularity to re�ne the analysis by Chen and
Krause [2013] and showed that this property holds in important applications. By assuming set-adaptive
submodularity, we bounded the approximation ratio of the batch-mode adaptive greedy algorithm.
Furthermore, by utilizing the framework of the adaptive submodularity ratio, we dealt with the case
where set-adaptive submodularity does not hold. We also devised greedy algorithms for outer matroid
constraints, the online setting, and the query-varying setting. Our experimental results demonstrated
the e�ciency of the batch-mode adaptive greedy algorithms.

A possible direction for future research is to analyze the gap between the batch-mode adaptive setting
and the fully adaptive setting. In the fully adaptive setting, we can achieve a better objective value
than in the batch-mode adaptive setting, but their di�erence is not well understood. We can de�ne
this gap in a similar way to the adaptivity gap. If we obtain a general bound on the gap, we can better
understand the trade-o� between e�ciency and e�ectiveness of the batch-mode adaptive setting.

73

5 Local Search for Feature Selection with
Structured Constraints

This chapter is organized as follows. In Section 5.1, we explain the background and overview of this
chapter. Section 5.2 formulates the problem setting of feature selection with combinatorial constraints.
Section 5.3 describes preliminary notations and lemmas. Section 5.4 introduces the notion of approximate
submodularity for local search. In Section 5.5, we describe applications of our problem settings: sparse
regression and structure learning of graphical models. In Sections 5.6 and 5.7, we propose local search
algorithms for a matroid constraint and a p-matroid intersection or p-exchange system constraint,
respectively. In Section 5.8, we empirically compare our proposed algorithms with existing methods.
Section 5.9 provides a summary and future work of this chapter.

5.1 Background and Overview

In compressed sensing and machine learning, we are often faced with high-dimensional learning
problems. A reasonable way to obtain a better solution for high-dimensional problems is to reduce the
number of features by selecting an appropriate subset of the original numerous features. This problem
is called feature selection. By appropriately reducing the number of features, we obtain a model that
is more robust and more interpretable than the original high-dimensional model. Feature selection is
thought to be an important combinatorial optimization problem in machine learning.

As described in Section 2.2, feature selection can be formulated as an optimization problem of �nding
a sparse support that maximizes a continuous function u : Rn

! R�0, that is,

Maximize u(w)

subject to kwk0 s,

where s 2 Z�0 is the sparsity parameter. Since Natarajan [1995] proved that this problem is NP-hard
even in the case of sparse linear regression, several studies have developed approximation algorithms
for this problem [Das and Kempe, 2011, Elenberg et al., 2018].
Here, we focus on feature selection problems with structured constraints. In a realistic setting, we

can improve the quality of the estimation by using prior knowledge of structures of the sparse support.
Structured sparsity regularization [Huang et al., 2009, Bach et al., 2012] is a prevalent framework for
learning a sparse support with various structures by incorporating such prior knowledge into the
regularization term. However, there are still many structures that are not handled by the existing
framework of structured sparsity regularization. For example, to the best of our knowledge, the case
where feasible supports are expressed as a b-matching constraint, which allows us to select any subset
of edges such that the degree of each vertex is at most a predetermined number, has not been studied in
the existing framework.

To deal with such a structured constraint, we develop a novel framework for feature selection based
on local search. Local search is a well-known algorithm design technique for combinatorial optimization
problems, and widely used for feature selection in practice. The idea of local search is to start with some
initial solution and to repeatedly update the solution until it reaches su�cient quality. Local search

75

performs well in many real-world situations, but in most cases, any theoretical guarantee is not known.
The goal of this study is to provide a general framework for designing local search algorithms with
theoretical guarantees for feature selection with structured constraints.

As we illustrated in Chapter 2, submodularity provides approximation ratio bounds for local search
algorithms, but the objective function of feature selection does not always satisfy submodularity.
Therefore, we propose a novel property called approximate submodularity for local search. We then
show two applications of this property: sparse regression and structure estimation of graphical models.
We devise local search algorithms for a matroid constraint and show approximation ratio guarantees
based on this property. We also develop accelerated variants of the proposed local search algorithm,
namely, semi-oblivious and non-oblivious variants. By using the theoretical techniques developed
by Lee et al. [2010] and Feldman et al. [2011], our proposed framework can be extended to two
classes of more complicated structured constraints: p-matroid intersection constraints and p-exchange
system constraints. These classes contain several important constraints that cannot be handled by the
framework of structured sparsity regularization such as b-matching constraints.
Our contributions are summarized as follows.

• We show that feature selection problems with a strongly concave and smooth objective function
can be regarded as a problem of maximizing an approximately submodular function.

• We develop local search algorithms with approximation guarantees for this problem.

• We show how to accelerate this algorithm by borrowing an idea from orthogonal matching
pursuit while keeping the approximation guarantee.

• We extend the proposed algorithm formore complicated constraints such as p-matroid intersection
and p-exchange systems.

5.1.1 Related Work

Feature selection as approximate submodular maximization. As described in Section 2.2.2,
Das and Kempe [2011] tackled feature selection for sparse linear regression from the viewpoint of
submodularity. They proposed the notion of submodularity ratio and showed the approximation ratio
of forward regression and orthogonal matching pursuit. Elenberg et al. [2018] extended their results to
more general feature selection problems, and showed that the submodularity ratio can be bounded by
the restricted strong concavity parameter and the restricted smoothness parameter. To our knowledge,
Chen et al. [2018a] is the only result that deals with feature selection beyond cardinality constraints.
They showed the random residual greedy algorithm achieves (�/(1+ �))

2-approximation for a matroid
constraint (They did not specify the subscripts of �, but it is no larger than mini=1,··· ,s �i�1,s�i). Note
that the results of Das and Kempe [2011] and Chen et al. [2018a] hold for any monotone set function
whose submodularity ratio is bounded, while we utilize a stronger property derived from restricted
strong concavity and restricted smoothness. These results are summarized in Table 5.1.

Sparse recovery analyses of local search. Despite our interest lies in bounds on approximation
ratios, most existing studies on feature selection focus on sparse recovery guarantees. In the context of
sparse recovery, several algorithms similar to local search have been developed. CoSaMP [Needell and
Tropp, 2010] and its generalization GraSP [Bahmani et al., 2013] are algorithms similar to our proposed
non-oblivious local search, but their analysis aims to prove sparse recovery guarantees.

Learning the structure of graphical models. Learning the structure of graphical models from
random samples is a fundamental problem in machine learning. For a special case where the underlying

76

Table 5.1: Comparison of existing bounds on approximation ratios of local search algorithms, greedy
algorithms, and modular approximation. The result of Das and Kempe [2011] is indicated by
†. The result of Chen et al. [2018a] is indicated by ‡.

Constraint Local search Greedy-based Modular Approx.

Cardinality
m

2
2s

M2
s,2

� ✏ 1� exp

✓
�

m2s

Ms,1

◆
†

m1ms

M1Ms

Matroid
m

2
2s

M2
s,2

� ✏
1

(1 +
Ms,1

ms
)2

‡
m1ms

M1Ms

p-Exchange system
1

p� 1 + 1/q

m
2
2s

M2
s,2

� ✏ N/A
1

p� 1 + 1/q

m1ms

M1Ms
� ✏

graph is a tree, Chow and Liu [1968] devised an e�cient algorithm. Jalali et al. [2011] provided sparse
recovery guarantees for the forward-backward greedy method by assuming the strong concavity of
the scoring function. For the setting without the incoherence assumption, Bresler [2015] and Klivans
and Meka [2017] devised algorithms with theoretical guarantees for Ising models and Markov random
�elds, respectively.

5.2 Problem Se�ing

In this section, we introduce the problem setting of feature selection with structured constraints. This
problem is an extension of the sparse optimization problem introduced in Section 2.2.3.

We consider the problem of �nding a sparse solution that maximizes a continuous function u : Rn
!

R�0. To incorporate prior knowledge of the sparsity, we consider generalized constraints on the support.
Let V = [n] be the set of all features and I ✓ 2

V a family of feasible supports. We can write the feature
selection problem as

Maximize u(w)

subject to supp(w) 2 I.

The optimization problem introduced in Section 2.2.3 is a special case for I = {X ✓ V : |X| s}.
By introducing a set function f : 2

V
! R�0 de�ned as

f(X) = max
supp(w)✓X

u(w),

we can formulate this problem as a set function optimization problem

Maximize f(X)

subject to X 2 I.

Thus, we can regard the problem of �nding a sparse solution as a set function optimization problem.
We consider three classes of constraints: matroid constraints, p-matroid intersection, and p-exchange
systems, which are introduced in Section 2.1.

77

5.3 Preliminaries

Notation. Let ⌦s = {(x,y) 2 Rn
⇥ Rn

| kx� yk0 s} and ⌦s,t = {(x,y) 2 Rn
⇥ Rn

| kxk0
s, kyk0 s, kx � yk0 t}. Let ms be strongly concavity parameter on ⌦s and Ms,t-smooth on
⌦s,t for any positive integer s, t 2 Z>0. Due to the strong concavity of u, argmaxsupp(w)✓X u(w) is
uniquely determined. We denote this maximizer by w(X).

Here we provide the basic facts that are used in the proofs. First, we show the exchange property of
matroids.

Lemma 84 (Corollary 39.12a in Schrijver [2003]). Let M = (V, I) be a matroid and I, J 2 I with
|I| = |J |. There exists a bijection ' : I \ J ! J \ I such that I � v + '(v) 2 I for all v 2 I \ J .

The following lemma is on the exchange property of p-matroid intersection, which was �rst used for
analyzing local search algorithms for submodular maximization.

Lemma 85 ([Lee et al., 2010]). Suppose I is a p-matroid intersection. Let q 2 Z be any positive integer.
For any S, T 2 I , there exists a multiset P ✓ 2

V and an integer ` (depending on p and q) that satis�es the
following conditions.

1. For all P 2 P , the symmetric di�erence is feasible, i.e., S4P 2 I , and S4P is q-reachable from S.

2. Each element v 2 T \ S appears in exactly q` sets in P .

3. Each element v 2 S \ T appears in at most (pq � q + 1)` sets in P .

A property similar to that for p-matroid intersection was known for p-exchange systems as follows.

Lemma 86 ([Feldman et al., 2011]; The full proof can be found in Feldman [2013]). Suppose I is a
p-exchange system. Let q 2 Z be any positive integer. For any S, T 2 I , there exists a multiset P ✓ 2

V

and an integer ` (depending on p and q) that satis�es the following conditions.

1. For all P 2 P , the symmetric di�erence is feasible, i.e., S4P 2 I , and S4P is q-reachable from S.

2. Each element v 2 T \ S appears in exactly q` sets in P .

3. Each element v 2 S \ T appears in at most (pq � q + 1)` sets in P .

To analyze the singleton with the largest objective, which is used as an initial solution for our
proposed algorithms, we use the following fact.

Lemma 87. Let v⇤ 2 argmax{f(v) | v 2 V }. We have f({v⇤}) � ms
sM1

f(X) for any X 2 I , where
s = max{|X| | X 2 I}.

Proof. From the submodularity ratio of f , we have

sf({v
⇤
}) �

X

v2X

f({v}) �
ms

M1
f(X).

78

5.3.1 Modular Approximation

Modular approximation is a generic method for feature selection. This method maximizes a modular
function that approximates the original objective function. An algorithm for maximizing a modular
function over several constraints can be utilized as a subroutine. We can regard this method as a trivial
benchmark for feature selection.

Proposition 88. Suppose we have an ↵-approximation algorithm for maximizing a modular function
under constraint I . Then there is an ↵m1ms/(M1Ms)-approximation algorithm for maximizing the
objective function of feature selection, where s = max{|X| : X 2 I}.

Proof. We consider a set function

f̃(X) = f(?) +

X

x2X

f({x}|?)

to be a modular approximation of f . By using the restricted strong concavity and restricted smoothness
of u, we have

ms

M1
f(X) f̃(X)

Ms

m1
f(X) (5.1)

for any X ✓ V with |X| s. Let X be the output of the ↵-approximation algorithm applied to
maximizing f̃(X) subject to X 2 I . Then we have

f̃(X) � ↵f̃(X
⇤
)

where X⇤
2 argmaxX2I f(X). From (5.1), we have

f(X) �
m1

Ms
f̃(X) � ↵

m1

Ms
f̃(X

⇤
) � ↵

m1ms

M1Ms
f(X

⇤
).

Since there exists an exact algorithm for maximizing a linear function over a matroid constraint and
(1/(p� 1 + 1/q)� ✏)-approximation algorithms for a p-matroid intersection or p-exchange system
constraint, we obtain the following approximation ratio bound for modular approximation.

Corollary 89. Modular approximation is m1ms
M1Ms

-approximation for amatroid constraint and (1
p�1+1/q

m1ms
M1Ms

�

✏)-approximation for a p-matroid intersection or p-exchange system constraint.

5.4 Approximate Submodularity for Local Search

In this section, we provide a property of the objective function of feature selection, which we call
approximate submodularity for local search. The starting point is the following property of submodular
functions, which is shown in the process of analyzing local search algorithms by Lee et al. [2010].

Proposition 90 (Implicitly proved in the proof of Lee et al. [2010, Lemma 3.1]). Suppose f : 2V ! R is
non-negative, monotone, and submodular, and X,X

⇤
✓ V are arbitrary subsets. If P is a collection of

subsets of V such that each element in X
⇤
\X appears at least k times in P and each element in X

⇤
\X

appears at most ` times in P , then we have
X

P2P

{f(X4P)� f(X)} � kf(X
⇤
)� (k + `)f(X).

79

Intuitively, this property represents that an exchange of a small number of elements increases the
objective function signi�cantly. This property plays an important role in the analyses of local search
algorithms in Lee et al. [2010] and Feldman et al. [2011].
The objective function of feature selection does not satisfy this property in general, but satis�es an

approximate version of this property. In this dissertation, we call this approximate version approximate
submodularity for local search. It can be expressed by using restricted strong concavity and restricted
smoothness constants as follows.

Proposition 91. Suppose f : 2V ! R is a set function de�ned as f(X) = maxsupp(w)✓X u(w), and
X,X

⇤
✓ V are arbitrary subsets. If P is a collection of subsets of V such that each element in X

⇤
\X

appears at least k times in P and each element in X
⇤
\X appears at most ` times in P , then we have

X

P2P

{f(X4P)� f(X)} �
ms+s⇤

Ms,t
kf(X

⇤
)�

Ms,t

ms+s⇤
`f(X),

where s = |X|, s⇤ = |X
⇤
|, and t = maxP2P |P |.

This proposition can be proved by using the following two lemmas.

Lemma 92. For any X,X
0
✓ V with s = max{|X|, |X

0
|} and t = |X4X

0
|, we have

f(X
0
)� f(X) �

1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2

.

Proof. From the restricted smoothness of u, for any z 2 Rn with supp(z) ✓ X
0
\X , we have

f(X
0
)� f(X) = u(w(X0)

)� u(w(X)
)

� u((w(X)
)X\X0 + z)� u(w(X)

)

�

D
ru(w(X)

), z� (w(X)
)X\X0

E
�

Ms,t

2

���z� (w(X)
)X\X0

���
2
.

Since this inequality holds for every z with supp(z) ✓ X
0
\X , by optimizing it for z, we obtain

f(X
0
)� f(X) �

1

2Ms,t

���ru(w(X)
)X0\X

���
2
�

Ms,t

2

���(w(X)
)X\X0

���
2
.

Lemma 93. For any X,X
0
✓ V with s = |X| and s⇤ = |X

⇤
|, we have

f(X
⇤
)� f(X)

1

2ms+s⇤

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
ms+s⇤

2

����
⇣
w(X)

⌘

X\X⇤

����
2

.

Proof. From the restricted strong concavity of u, we obtain

f(X
⇤
)� f(X) = u(w(X⇤)

)� u(w(X)
)

D
ru(w(X)

),w(X⇤)
�w(X)

E
�

ms+s⇤

2

���w(X⇤)
�w(X)

���
2

 max
z : supp(z)✓X⇤

⇢D
ru(w(X)

), z�w(X)
E
�

ms+s⇤

2

���z�w(X)
���
2
�

=
1

2ms+s⇤

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
ms+s⇤

2

����
⇣
w(X)

⌘

X\X⇤

����
2

.

80

From these two lemmas, we can show the proof of Proposition 91.

Proof of Proposition 91. From Lemma 92, we have

f(X4P)� f(X) �
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2

for all P 2 P . By adding this inequality for each P 2 P , we obtain
X

P2P

{f(X4P)� f(X)} � k
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

� `
Ms,t

2

����
⇣
w(X)

⌘

X\X⇤

����
2

,

where we used the fact that each element in v 2 X
⇤
\X appears in at least k sets in P and each element

in X \X
⇤ appears in at most ` sets in P . From the strong concavity of u, by applying Lemma 93, we

obtain

f(X
⇤
)� f(X)

1

2ms+s⇤

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
ms+s⇤

2

����
⇣
w(X)

⌘

X\X⇤

����
2

and

�f(X) f(?)� f(X)

 �
ms+s⇤

2

���
⇣
w(X)

⌘

X

���
2

 �
ms+s⇤

2

����
⇣
w(X)

⌘

X\X⇤

����
2

.

By combining these inequalities, we have
X

P2P

f(X4P)� f(X) �
ms+s⇤

Ms,t
kf(X

⇤
)�

Ms,t

ms+s⇤
`f(X).

In the following sections, we analyze the approximation ratio of local search algorithms by utilizing
this property.

Remark 94. Though we focus on the objective function of feature selection for simplicity, we can
provide similar approximation guarantees for other objective functions that satisfy the inequality in
Proposition 91 with di�erent constants.

5.5 Applications

5.5.1 Sparse Regression

Our framework can be applied to sparse regression with constraints that are more general than cardinal-
ity constraints. As described in Sections 2.2.2 and 2.2.3, sparse regression with cardinality constraints
were studied by Das and Kempe [2011] and Elenberg et al. [2018]. Here, we want to consider more
involved settings of sparse regression. Suppose the features are partitioned into several categories, and
we should select almost the equal number of features from each category. This constraint is a special
case of matroid constraints, thus our framework can be applied. As mentioned in Chen et al. [2018a],
the problem of detecting splice sites in precursor messenger RNAs can be formulated as a matroid
constraint as well. If there are multiple matroid constraints, we can formulate them as a p-matroid
intersection constraint. To our knowledge, our proposed algorithms are the �rst to deal with multiple
matroid constraints.

81

5.5.2 Structure Learning of Graphical Models

We consider the problem of estimating the graph structure of undirected graphical models, or Markov
random �elds, given independent and identically distributed samples from this MRF. A graphical
model is an undirected graph G = (V, E) that represents the independence among random variables
X = {Xj | j 2 V} indexed by V . More precisely, the graphical model implies the local Markov property,
that is, for each i 2 V , Xi and {Xj | j 2 V \ (N(i) [{i})} are conditionally independent given N(i),
where N(i) is the set of all adjacent vertices of i. In particular, we focus on Ising models, in which the
joint probability distribution of the random variables can be expressed as the product of distributions
for each edge

p(x|w) =
1

Z(w)

Y

(i,j)2E

exp (wijxixj)
Y

i2V

exp(wixi)

=
1

Z(w)
exp

0

@
X

(i,j)2E

wijxixj +
X

i2V

wixi

1

A ,

where Z(w) =
P

x2{0,1}V exp

⇣P
(i,j)2E wijxixj

⌘
is the normalization constant and w is the param-

eter vector for edges and vertices. We want to consider the problem of inferring the true parameter w
from samples {x1

, · · · ,xN
} generated by the distribution p(x|w). In general, maximizing the likeli-

hood requires the computation of the value of Z(w), and it is intractable. Besag [1975] proposed an
approximate version of the likelihood function, called pseudo likelihood, which is de�ned as

uPL(w) =
1

N

NX

t=1

X

j2V

log p(x
t
j |(x

t
i)i2V\{j},w)

= �
1

N

NX

t=1

X

j2V

log

0

@1 + exp

0

@�2xtj
X

i2V\{j}

wijx
t
i � 2wjx

t
j

1

A

1

A .

In contrast to the original likelihood, the pseudo likelihood is easily computable. Since the pseudo
likelihood is concave, we can apply convex optimization method to obtain the optimal parameter.
To obtain a more interpretable and robust solution, we often assume the sparsity of the edges of

the true graphical model. Here, we focus on the setting where we have a rough estimate of an upper
bound on the degree of each vertex. This sparsity constraint can be formulated as the degree constraints
on each vertex, i.e., a b-matching constraint. By applying our proposed methods to maximizing the
normalized objective function uPL(w)� uPL(0) under a b-matching constraint on the support ofw, we
can estimate the set of edges in the whole graph simultaneously, while the existing method by Jalali
et al. [2011] estimates the set of edges incident to each vertex separately.

5.6 Algorithms for a Matroid Constraint

In this section, we describe the proposed algorithms for a matroid constraint. The algorithm starts with
an initial solution, which is any base of the given matroid. The main procedure of the algorithm is to
improve the solution again and again by replacing an element in the solution with a new element. At
each iteration, the algorithm seeks a pair of an element x 2 X and another element x0 2 V \X that
maximize f(X � x+ x

0
).

We consider two other variants of the above algorithm with di�erent criteria. Since the original
one described above uses the objective value itself for judging quality of pair (x, x0), it can be called

82

Algorithm 11 Local search algorithms for a matroid constraint
1: Let X ?.
2: Add arbitrary elements to X until X is maximal in I .
3: for i = 1, · · · , T do
4: Determine the pair of x 2 X and x

0
2 V \X by the following rules:8

>>>>>>>><

>>>>>>>>:

(x, x
0
) 2 argmax{f(X � x+ x

0
) | X � x+ x

0
2 I} (oblivious)

Let x0 2 argmax{f(X � �X(x
0
) + x

0
)� f(X)} and x = �X(x

0
),

where �X : V \X ! X is a map that satis�es
�X(x

0
) 2 argminx2X : X�x+x02I(w

(X)
)
2
x (semi-oblivious)

(x, x
0
) 2 argmax

(x,x0) : X�x+x0

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

�
(non-oblivious)

5: if

(
f(X � x+ x

0
)� f(X) > 0 (oblivious or semi-oblivious)

1
2Ms,2

�
ru(w(X)

)
�2
x0 �

Ms,2

2

�
w(X)

�2
x
> 0 (non-oblivious)

then

6: Update the solution X X � x+ x
0.

7: else
8: return X .
9: return X .

oblivious. The oblivious version computes the value of f(X � x+ x
0
) for O(sn) pairs of (x, x0) at each

step. We can reduce the computational cost by utilizing the structure of set function f . The �rst variant
can be called semi-oblivious. For each element x0 2 V \ X to be added, the semi-oblivious version
computes the value of f(X �x+x

0
) only for x 2 X with the smallest (w(X)

)
2
x among those satisfying

X �x+x
0
2 I . Thus, we can reduce the number of computing the value of f(X �x+x

0
) fromO(sn)

to O(n).
The second variant can be called non-oblivious. The non-oblivious version uses the value of

1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

in place of the increase of the objective function f(X�x+x
0
)�f(X). We need to evaluateru(w(X)

)

and w(X) at the beginning of each iteration, but need not compute the value of f(X � x+ x
0
). The

detailed description of these algorithms are given in Algorithm 11.
We can provide the same approximation ratio bound for all these algorithms as follows.

Theorem 95. Suppose I is the independence set family of a matroid. If X is the solution obtained by
executing T iterations of Algorithm 11 and X⇤ is an optimal solution, then we have

f(X) �
m

2
2s

M2
s,2

✓
1� exp

✓
�
Ms,2T

sm2s

◆◆
f(X

⇤
),

where s = max{|X| : X 2 I} is the rank of the matroid. If X is the output returned by Algorithm 11
when it stops by �nding no pair to improve the solution, then we have

f(X) �
m

2
2s

M2
s,2

f(X
⇤
).

Proof. LetX be the output of the algorithm andX⇤ an optimal solution. Suppose at some iteration, the
solution is updated fromX toX � x+ x

0. From Lemma 84, we have a bijection � : X⇤
\X ! X \X

⇤

83

such that X � �(x⇤) + x
⇤
2 I for all x⇤ 2 X

⇤
\X . Here we show that

f(X � x+ x
0
)� f(X) �

1

n

Ms,2

m2s

(
m

2
2s

M2
s,2

f(X
⇤
)� f(X)

)

holds at each iteration of all three variants.
When using the oblivious variant, we have

f(X � x+ x
0
)� f(X)

= max
(x,x0) : X�x+x02I

f(X � x+ x
0
)� f(X)

�
1

s

X

x⇤2X⇤\X

{f(X � �(x
⇤
) + x

⇤
)� f(X)} .

By setting P = {x
⇤
,�(x

⇤
)}, each element inX

⇤
\X andX \X

⇤ appears exactly once in P . Thus, we
can apply Proposition 91, and obtain

X

x⇤2X⇤\X

{f(X � �(x
⇤
) + x

⇤
)� f(X)} �

m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X).

By combining these inequalities, we have

f(X � x+ x
0
)� f(X) �

1

s

⇢
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

�
.

When using the semi-oblivious variant, due to the property of the algorithm, we have

(w(X)
)
2
x̃ � (w(X)

)
2
x

for any x̃ 2 X such that X � x̃ + x
0
2 I . If �X : V \ X ! X is a map de�ned as �X(x

0
) 2

argminx2X{(w(X)
)
2
x | X � x+ x

0
2 I}, then

f(X � x+ x
0
)� f(X)

= max
x02V \X

f(X � �X(x
0
) + x

0
)� f(X)

�
1

s

X

x⇤2X⇤\X

{f(X � �X(x
⇤
) + x

⇤
)� f(X)}

�
1

s

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�X(x⇤)

�
(From Lemma 92)

�
1

s

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

�

(since
�
w(X)

�2
�(x⇤)

�
�
w(X)

�2
�X(x⇤)

)

=
1

s

(
1

2Ms,2

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
Ms,2

2

����
⇣
w(X)

⌘

X\X⇤

����
2
)

�
1

s

⇢
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

�
, (From Lemma 93)

84

where we used Lemma 92 and Lemma 93 as in the oblivious case.
When using the non-oblivious variant, we have

f(X � x+ x
0
)� f(X)

�
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

(From Lemma 92)

= max
(x,x0) : X�x+x02I

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

�

�
1

s

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

�

=
1

s

(
1

2Ms,2

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
Ms,2

2

����
⇣
w(X)

⌘

X\X⇤

����
2
)

�
1

s

⇢
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

�
. (From Lemma 93)

Therefore, in all three variants, we have

f(X � x+ x
0
)� f(X) �

1

s

⇢
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

�

=
1

s

Ms,2

m2s

(
m

2
2s

M2
s,2

f(X
⇤
)� f(X)

)
,

which implies that the distance from the current solution to m
2
2s/M

2
s,2 times the optimal value is

decreased by rate 1�Ms,2/(sm2s) at each iteration. Hence, the approximation ratio after T iterations
can be bounded as

f(X) �
m

2
2s

M2
s,2

1�

✓
1�

Ms,2

sm2s

◆T
!
f(X

⇤
)

�
m

2
2s

M2
s,2

✓
1� exp

✓
�
Ms,2T

sm2s

◆◆
f(X

⇤
),

which proves the �rst statement of the theorem.
Next, we consider the case where the algorithm stops by �nding no pair to improve the objective

value. For all three variants, we show that

0 �
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

holds when the algorithm stops, from which the second statement of the theorem follows. When the
oblivious variant stops, we have f(X) � f(X � x + x

0
) for all x 2 X and x

0
2 V \ X such that

X � x+ x
0
2 I . In the same way as the above analysis, we obtain

0 �

X

x⇤2X⇤\X

{f(X � �(x
⇤
) + x

⇤
)� f(X)}

�
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X).

85

Similarly, when the semi-oblivious variant stops, we have f(X) � f(X��X(x
0
)+x

0
) for all x0 2 V \X ,

where �X(x
0
) is de�ned in the algorithm. Hence, in the same way as the above analysis, we obtain

0 �

X

x⇤2X⇤\X

{f(X � �X(x
⇤
) + x

⇤
)� f(X)}

�
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X).

When the non-oblivious variant stops, we have

0 �
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

for all x 2 X and x
0
2 V \X such that X � x+ x

0
2 I . Therefore, we have

0 �

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x

�

�
m2s

Ms,2
f(X

⇤
)�

Ms,2

m2s
f(X)

by using the above analysis for the �rst statement.

The time complexity of each iteration depends on the time complexity of evaluating the value of
f , that is, maximizing u with a �xed support. In the case of the square loss and a uniform matroid
constraint, it is easy to evaluate the time complexity as follows.

Proposition 96. If u is the square loss and I = {X : |X| s}, time complexity of each iteration of
the oblivious, semi-oblivious, non-oblivious local search algorithms is O(s

2
dn), O(sdn), and O(sd+ n),

respectively.

Proof. By using a technique of rank-one updates, we can obtain SVD of AX�x+x0 based on SVD of
AX in O(sd) time. The oblivious and semi-oblivious variants need to compute the objective value
O(sn) and O(s) times at each iteration. The non-oblivious variant computes ru(w(X)

) and w(X)

at the beginning of each iteration by using the rank-one update technique in O(sd) time, and �nds
argmaxx02V \X

�
ru(w(X)

)
�2
x0 and argminx2X

�
w(X)

�2
x
in O(n) time. Therefore, time complexity of

each iteration of three variants is O(s
2
dn), O(sdn), and O(sd+ n), respectively.

5.6.1 Variants of Geometric Improvement

Here we introduce other variants of local search algorithms that use di�erent type of criteria for �nding
a pair (x, x0) to improve the solution. These new variants use any pair that increase some function by
rate (1 + �), while the previously introduced variants �nd the pair that yields the largest improvement
of some function. We consider three variants, the oblivious, semi-oblivious, and non-oblivious, similarly
to the previous ones. The oblivious variant searches for any pair (x, x0) that increases the objective
function by rate (1 + �), that is, f(X � x+ x

0
) � (1 + �)f(X). The semi-oblivious variant constructs

a map �X : V \ X ! X that satis�es �X(x
0
) 2 argminx2X : X�x+x02I(w

(X)
)
2
x and searches for

x
0
2 V \ X with f(x � �X(x

0
) + x

0
) � (1 + �)f(X). The non-oblivious variant searches for any

(x, x
0
) that satis�es

1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x
� �f(X).

86

Algorithm 12 Local search algorithms for a matroid constraint with geometric improvement
1: Let � ✏/n.
2: Let X argmax{f(v) | v 2 V }.
3: Add arbitrary elements to X until X is maximal in I .
4: loop
5: Search for a pair of x 2 X and x

0
2 V \X such that X � x+ x

0
2 I and8

>>>>>>>><

>>>>>>>>:

f(X � x+ x
0
) � (1 + �)f(X) (oblivious)

f(X � �X(x
0
) + x

0
) � (1 + �)f(X) and x = �X(x

0
),

where �X : V \X ! X is a map that satis�es
�X(x

0
) 2 argminx2X : X�x+x02I(w

(X)
)
2
x (semi-oblivious)

1

2Ms,2

⇣
ru(w(X)

)

⌘2
x0
�

Ms,2

2

⇣
w(X)

⌘2
x
� �f(X) (non-oblivious)

6: if 9(x, x0) satisfying the above condition then
7: Let X X � x+ x

0.
8: else
9: return X .

All variants stop when they do not �nd any solution that satis�es the criteria.
The detailed description of these algorithms are given in Algorithm 12.
We can provide bounds on the approximation ratio of these variants as follows.

Theorem 97. Suppose I is the independence set family of a matroid. Algorithm 12 stops after at most
O(

n
✏ ln(

sM1
ms

)) iterations, and returns an output X that satis�es

f(X) �

m

2
2s

M2
s,2

� ✏

!
f(X

⇤
),

where X⇤ is an optimal solution and s = max{|X| : X 2 I} is the rank of the matroid.

Proof. LetX be the output of the algorithm. LetX⇤ be an optimal solution. From Lemma 84, we have a
bijection � : X⇤

\X ! X \X
⇤ such that X � �(x⇤) + x

⇤
2 I for all x⇤ 2 X

⇤
\X . For each of three

variants, we prove

0 �

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

� �f(X)

�
,

which implies

0 �
1

2Ms,2

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

�
Ms,2

2

����
⇣
w(X)

⌘

X\X⇤

����
2

� �nf(X)

�
m2s

Ms,2
f(X

⇤
)�

✓
Ms,2

m2s
+ �n

◆
f(X),

where the second inequality is due to Lemma 93. Since we set � = ✏/n, we obtain

f(X) �

m

2
2s

M2
s,2

� ✏

!
f(X).

87

In the case of the oblivious variant, since f(X�x+x
0
) (1+�)f(X) for all x 2 X and x0 2 V \X ,

we have

0 �

X

x⇤2X⇤\X

{f(X � �(x
⇤
) + x

⇤
)� (1 + �)f(X)}

�

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

� �f(X)

�

in a similar way to the proof of Theorem 95. In the case of the semi-oblivious variant, since f(X �
�X(x

0
) + x

0
) for any x

0
2 V \X , we have

0 �

X

x⇤2X⇤\X

{f(X � �X(x
⇤
) + x

⇤
)� (1 + �)f(X)}

�

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�X(x⇤)

� �f(X)

�

�

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

� �f(X)

�
.

When we use the non-oblivious variant, since

0 �
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

� �f(X)

for all x⇤ 2 X
⇤
\X , we obtain

0 �

X

x⇤2X⇤\X

⇢
1

2Ms,2

⇣
ru(w(X)

)

⌘2
x⇤
�

Ms,2

2

⇣
w(X)

⌘2
�(x⇤)

� �f(X)

�
.

Finally, we bound the number of iterations. At each step, the objective value is improved at least at a
rate of (1 + �). From Lemma 87, the initial solution is ms

sM1
-approximation. Therefore, the number of

iterations is at most log1+�(sM1
ms

) = O(
n
✏ ln(

sM1
ms

)).

To obtain the same bound by Algorithm 11, the number of iterations need to be larger than

T =
sMs,2

m2s
log

m

2
2s

✏M2
s,2

!
,

which can be larger than Algorithm 12 in some cases and smaller in other cases.

5.7 Algorithms for p-Matroid Intersection and p-Exchange Systems

In this section, we consider two more general constraints, p-matroid intersection and p-exchange system
constraints with p � 2. The proposed algorithms for these two constraints can be described as almost
the same procedure by using the di�erent de�nitions of q-reachability as in De�nitions 12 and 15.
We denote by Fq(X) the set of all q-reachable sets from X with each de�nition of q-reachability for
p-matroid intersection or p-exchange systems.
First, we must decide q 2 Z�1 that determines the neighborhood to be searched for each solution.

When we select larger q, we search larger solution space for improvement at each step, thus we can

88

Algorithm 13 Local search algorithms for a p-matroid intersection or p-exchange system (p � 2)

1: Let t =

(
2p(q + 1) in the case of p-matroid intersection constraints
pq + 1 in the case of p-exchange system constraints.

2: Let X ?.
3: Add arbitrary elements to X until X is maximal in I .
4: for i = 1, · · · , T do
5: Determine X 0 that is q-reachable from X such that:8

>>>>>>>>>>><

>>>>>>>>>>>:

X
0
2 argmax

X02Fq(X)
f(X

0
) (oblivious)

Let X 0
2 argmax

X02Fq(X) : 9S, X0=(X[S)\�X(S)
f(X

0
),

where �X : 2
V
! 2

V is a map that satis�es
�X(S) 2 argminT : (X[S)\T2Fq(X) k(w

(X)
)T k

2
(semi-oblivious)

X
0
2 argmax

X02Fq(X)

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2
)

(non-oblivious)

6: if

8
<

:
f(X

0
)� f(X) > 0 (oblivious or semi-oblivious)

1
2Ms,t

���
�
ru(w(X)

)
�
X0\X

���
2
�

Ms,t

2

���
�
w(X)

�
X\X0

���
2
> 0 (non-oblivious)

then
7: Update the solution X X � x+ x

0.
8: else
9: return X .
10: return X .

achieve a better bound on approximation ratio, while the running time becomes larger as well. The initial
solution of the proposed algorithms is any feasible solution. Then the algorithms repeatedly replace the
solution with a q-reachable solution that is best under a certain criterion. Similarly to the case of matroid
constraints, we can develop the oblivious, semi-oblivious and non-oblivious variants. The oblivious
variant selects the next solutionX 0 that improves the objective value f(X 0

) themost. The semi-oblivious

variant computes �X(S) that minimizes
���
�
w(X)

�
�X(S)

���
2
subject to (X [S) \ �X(S) 2 Fq(X) for

each S ✓ V \X such that |S| q, and selects X 0
= (X [S) \ �X(S) that maximizes f(X 0

). The
non-oblivious version selects the solution X

0
2 Fq(X) that maximizes

1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2

.

The detailed description of these algorithms is given in Algorithm 13.

Theorem 98. Suppose I is the independence set family of a p-matroid intersection or p-exchange system.
Let t = 2p(q + 1) for the p-matroid intersection case and t = pq + 1 for the p-exchange system case. IfX
is the output obtained by executing T iterations of Algorithm 13 and X⇤ is an optimal solution, then we
have

f(X) �
1

p� 1 + 1/q

m
2
2s

M2
s,t

✓
1� exp

✓
�
(p� 1 + 1/q)Ms,tT

sm2s

◆◆
f(X

⇤
),

where s = max{|X| : X 2 I}. If X is the output returned by Algorithm 13 when it stops by �nding no

89

better q-reachable solution, then we have

f(X) �
1

p� 1 + 1/q

m
2
2s

M2
s,t

f(X
⇤
).

Proof. LetX be the output of the algorithm andX⇤ an optimal solution. Suppose at some iteration, the
solution is updated from X to X

0. From Lemma 85 and Lemma 86 for each case, respectively, we can
see that there exists a multiset P ✓ 2

V and an integer ` that satis�es the following conditions.

1. For all P 2 P , the symmetric di�erence is q-reachable from X , i.e., X4P 2 Fq(X).

2. Each element v 2 X
⇤
\X appears in exactly q` sets in P .

3. Each element v 2 X \X
⇤ appears in at most (pq � q + 1)` sets in P .

Here we show that

f(X
0
)� f(X) �

1

s

⇢
m2s

Ms,t
f(X

⇤
)� (p� 1 + 1/q)

Ms,t

m2s
f(X)

�
.

holds at each iteration of all three variants.
When using the oblivious variant, we have

f(X
0
)� f(X)

= max
X02Fq(X)

f(X
0
)� f(X)

�
1

|P|

X

P2P

{f(X4P)� f(X)} .

From Proposition 91, we have

X

P2P

{f(X4P)� f(X)} � q`
m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X).

By combining these inequalities, we have

f(X
0
)� f(X) �

1

|P|

⇢
q`

m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X)

�
.

Since each element in T \ S appears in q` sets in P and |T \ S| s, it holds that |P| sq`. Hence, we
obtain

f(X
0
)� f(X) �

1

s

⇢
m2s

Ms,t
f(X

⇤
)� (p� 1 + 1/q)

Ms,t

m2s
f(X)

�
.

When using the semi-oblivious variant, due to the property of the algorithm, we have

k(w(X)
)T k

2
� k(w(X)

)X\X0k
2

for any T ✓ X such that (X [X
0
) \ T 2 Fq(X). If �X : 2

V
! 2

V is a map de�ned as �X(S) 2

argminT : (X[S)\T2Fq(X) k(w
(X)

)T k
2, then

f(X
0
)� f(X)

= max
X02Fq(X) : 9S, X0=(X[S)\�X(S)

f(X
0
)� f(X)

90

�
1

|P|

X

P2P

{f((X [P) \ �X(P \X))� f(X)}

�
1

|P|

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

�X(P\X)

����
2
)

(From Lemma 92)

�
1

|P|

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
)

(since
���w(X)

�
P\X

��2 �
���
�
w(X)

�
�X(P\X)

���
2
)

�
1

|P|

(
q`

1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

� (pq � q + 1)`
Ms,t

2

����
⇣
w(X)

⌘

X\X⇤

����
2
)

�
1

|P|

⇢
q`

m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X)

�
(From Lemma 93)

�
1

s

⇢
m2s

Ms,t
f(X

⇤
)� (p� 1 + 1/q)

Ms,t

m2s
f(X)

�
,

where we used Lemma 92 and Lemma 93 as in the oblivious case.
When using the non-oblivious variant, we have

f(X
0
)� f(X)

�
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2

= max
X02Fq(X)

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2
)

�
1

|P|

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
)

�
1

|P|

(
q`

1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

� (pq � q + 1)`
Ms,t

2

����
⇣
w(X)

⌘

X\X⇤

����
2
)

�
1

|P|

⇢
q`

m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X)

�

�
1

s

⇢
m2s

Ms,t
f(X

⇤
)� (p� 1 + 1/q)

Ms,t

m2s
f(X)

�
,

where we used |P| sq` in the last inequality. Therefore, in all three variants, we have

f(X
0
)� f(X) � (p� 1 + 1/q)

Ms,t

sm2s

(
1

p� 1 + 1/q

m
2
2s

M2
s,t

f(X
⇤
)� f(X)

)
.

which implies that the distance from the current solution to 1
p�1+1/q

m2
2s

M2
s,2

times the optimal value is
decreased by rate 1 � (p � 1 + 1/q)m2s/(sMs,2) at each iteration. Hence, the approximation ratio
after T iterations can be bounded as

f(X) �
1

p� 1 + 1/q

m
2
2s

M2
s,2

1�

✓
1�

(p� 1 + 1/q)Ms,t

sm2s

◆T
!
f(X

⇤
)

91

�
1

p� 1 + 1/q

m
2
2s

M2
s,2

✓
1� exp

✓
�
(p� 1 + 1/q)Ms,2T

sm2s

◆◆
f(X

⇤
),

which proves the �rst statement of the theorem.
Next, we consider the case where the algorithm stops by �nding no pair to improve the objective

value. For all three variants, we show that

0 � q`
m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X)

holds when the algorithm stops, from which the second statement of the theorem follows. When the
oblivious variant stops, we have f(X) � f(X

0
) for all X 0

2 Fq(X). In the same way as the above
analysis, we obtain

0 �

X

P2P

{f(X4P)� f(X)}

� q`
m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X).

Similarly, when the semi-oblivious variant stops, we have f(X) � f(X��X(x
0
)+x

0
) for all x0 2 V \X ,

where �X(x
0
) is de�ned in the algorithm. Hence, in the same way as the above analysis, we obtain

0 �

X

P2P

{f((X [P) \ �X(P \X))� f(X)}

� q`
m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X).

When the non-oblivious variant stops, we have

0 �
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

X0\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

X\X0

����
2

for all X 0
2 Fq(X). Therefore, we have

0 �

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
)

� q`
m2s

Ms,t
f(X

⇤
)� (pq � q + 1)`

Ms,t

m2s
f(X).

by using the above analysis for the �rst statement.

5.7.1 Variants of Geometric Improvement

Here we provide local search algorithms with geometric improvement for p-matroid intersection and
p-exchange system constraints. The algorithms start with an singleton with the largest objective value.

Theorem 99. Suppose I is the independence set family of a p-matroid intersection or p-exchange system.
Let t = 2p(q + 1) for the p-matroid intersection case and t = pq + 1 for the p-exchange system case.
Algorithm 14 stops after at most O(

s
✏ ln(

sM1
ms

)) iterations, and returns an output X that satis�es

f(X) �

1

p� 1 + 1/q

m
2
2s

M2
s,t

� ✏

!
f(X

⇤
),

where X⇤ is an optimal solution and s = max{|X| : X 2 I}.

92

Algorithm 14 Local search algorithms for p-matroid intersection or p-exchange system (p � 2)
1: Let � ✏/s.

2: Let t =

(
2p(q + 1) in the case of p-matroid intersection constraints
pq + 1 in the case of p-exchange system constraints.

3: Let X argmax{f(v) | v 2 V }.
4: loop
5: Search for X 0 that is q-reachable from X such that8

>>>>>>>><

>>>>>>>>:

f(X
0
) � (1 + �)f(X) (oblivious)

9S, X
0
= (X [S) \ �X(S) and f(X

0
) � (1 + �)f(X)

where �X : 2
V
! 2

V is a map that satis�es
�X(S) 2 argminT : (X[S)\T2Fq(X) k(w

(X)
)T k

2
(semi-oblivious)

1

2Ms,t

⇣
ru(w(X)

)

⌘2
X0\X

�
Ms,t

2

⇣
w(X)

⌘2
X\X0

> �f(X) (non-oblivious)

6: if 9 X 0 satisfying the above condition then
7: Let X X

0.
8: else
9: return X .

Proof. LetX be the output of the algorithm andX⇤ an optimal solution. From Lemma 85 and Lemma 86
for each case, respectively, we can see that there exists a multiset P ✓ 2

V and an integer ` that satis�es
the following conditions.

1. For all P 2 P , the symmetric di�erence is q-reachable from X , i.e., X4P 2 Fq(X).

2. Each element v 2 X
⇤
\X appears in exactly q` sets in P .

3. Each element v 2 X \X
⇤ appears in at most (pq � q + 1)` sets in P .

For each of three variants, we prove

0 �

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
� �f(X)

)
,

which implies

0 � q`
1

2Ms,2

����
⇣
ru(w(X)

)

⌘

X⇤\X

����
2

� (pq � q + 1)`
Ms,2

2

����
⇣
w(X)

⌘

X\X⇤

����
2

� �|P|f(X)

� q`

⇢
m2s

Ms,2
f(X

⇤
)�

✓
(p� 1 + 1/q)

Ms,2

m2s
+ �s

◆
f(X)

�
,

where the second inequality is due to Lemma 93. Since we set � = ✏/s, we obtain

f(X) �

1

p� 1 + 1/q

m
2
2s

M2
s,2

� ✏

!
f(X).

In the case of the oblivious variant, since f(X 0
) (1 + �)f(X) for all X 0

2 Fq(X), we have

0 �

X

P2P

{f(X4P)� (1 + �)f(X)}

93

�

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
� �f(X)

)
,

where the second inequality is due to Lemma 92. In the case of the semi-oblivious variant, since
f((X [P) \ �X(P \X)) (1 + �)f(X) for any P 2 P , we have

0 �

X

P2P

{f((X [P) \ �X(P \X))� (1 + �)f(X)}

�

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

����
⇣
w(X)

⌘

�X(P\X)

����
2

� �f(X)

)

�

X

P2P

(
1

2Ms,t

����
⇣
ru(w(X)

)

⌘

P\X

����
2

�
Ms,t

2

���
⇣
w(X)

⌘

P\X

���
2
� �f(X)

)
.

When we use the non-oblivious variant, since

0 �
1

2Ms,t

⇣
ru(w(X)

)

⌘2
X0\X

�
Ms,t

2

⇣
w(X)

⌘2
X\X0

� �f(X)

for all X 0
2 Fq(X), we obtain

0 �

X

P2P

⇢
1

2Ms,t

⇣
ru(w(X)

)

⌘2
P\X
�

Ms,t

2

⇣
w(X)

⌘2
P\X

� �f(X)

�
.

Finally, we bound the number of iterations. At each step, the objective value is improved at least at a
rate of (1 + �). From Lemma 87, the initial solution is ms

sM1
-approximation. Therefore, the number of

iterations is at most log1+�(sM1
ms

) = O(
s
✏ ln(

sM1
ms

)).

5.8 Experiments

In this section, we conduct experiments on two applications: sparse regression and structure learning
of graphical models.

5.8.1 Experiments on Sparse Regression

Datasets. We generate synthetic datasets with a partition matroid constraint. First, we determine the
design matrixA 2 Rn⇥d by generating its each entry according to the uniform distribution on [0, 1].
Then we normalize its each column so that the mean is 0 and the standard deviation is 1. Suppose the
set of all features are partitioned into k small categories. We randomly select a sparse subset S⇤ by
selecting just one parameter from each category. The response vector is determined by y = AS⇤w,
wherew is a random vector generated from the standard normal distribution. We consider two settings
with di�erent dataset sizes. We set n = 100 and k = 10 in one setting, and we set n = 1000 and k = 50

in the other setting. For each parameter, we conduct 10 trials and plot the average.

Methods. We implement the non-oblivious local search and semi-oblivious local search algorithms
with q = 1 out of our proposed methods. For larger datasets with N = 1000, the semi-oblivious local
search cannot be applied due to its slow running time. As a benchmark, we select the random residual
greedy algorithm proposed by Chen et al. [2018a], which randomly selects the element to be added
based on the marginal gain at each step. We also implement the modular approximation as a trivial
benchmark.

94

0 100 200 300 400 500
sample size

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

non-oblivious local search
semi-oblivious local search
random residual greedy
modular approximation

(a) regression, n = 100

0 100 200 300 400 500
sample size

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

non-oblivious local search
random residual greedy
modular approximation

(b) regression, n = 1000

Figure 5.1: The experimental results for sparse regression. 5.1(a) is the result on the case where n = 100

and 5.1(b) is the result on the case where n = 1000.

Results. The results are shown in Figure 5.1. First, we compare the proposed methods with n = 100.
The non-oblivious local search algorithm is competitive with the semi-oblivious local search algorithm.
These methods perform better than the benchmark methods the random residual greedy algorithm and
the modular approximation in all sample sizes N . Next, we conduct experiments on larger datasets
with n = 1000. In this setting, we can see the non-oblivious local search algorithms recover the true
support for N � 200, while the other methods do not recover the true support even for N = 500.

5.8.2 Experiments on Structure Learning of Graphical Models

Datasets. We synthetically generate samples by Gibbs sampling from two types of Ising models. The
one is a path graph and the other is a grid graph. The number of nodes is set to 36 in both settings.
For each edge (u, v) 2 E, we set the parameter wuv = +0.5 or wuv = �0.5 uniformly at random.
At each trial, we determine the parameter randomly and generate a sample of size N by using Gibbs
sampling. The sample size N is set to 20i for every i 2 {1, · · · , 25}. We measure the performance of
each algorithm by Jaccard index between the true edge set and the edge set returned by the algorithm.
For each N , we conduct 10 trials and plot the average.

Methods. Since the oblivious and semi-oblivious methods are too slow to apply to this size of datasets,
we select the non-oblivious local search algorithm with q = 1 as our proposed method. We use an
upper bound 4

PN
i=1 kx

i
k
3
2 instead of Ms,3 in the non-oblivious local search. As a benchmark, we

select an algorithm proposed by Jalali et al. [2011], which solves the edge selection problem for each
node separately by the forward-backward greedy algorithm. This algorithm has two parameters: ✏ for
forward steps and ⌫ for backward steps. As suggested by Jalali et al. [2011], we set ✏ = c log(Nn)/N

depending on the number of features and sample size, where c is a tuning constant. We show results
for di�erent c. Since we observe that the value of ⌫ does not give an e�ect on results so much, we show
only results where ⌫ = 0.1.

Results. The results are indicated in Figure 5.2. The proposed non-oblivious local search algorithm
performs better than the forward-backward greedy algorithm for almost all sample sizes N . The
forward-backward greedy algorithm with c = 0.4 is competitive with the non-oblivious local search
algorithm for the case where the sample size is small, while degrade the performance in the case where
the sample size is large. On the other hand, the forward-backward greedy algorithm with c = 0.8

95

0 100 200 300 400 500
sample size

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

non-oblivious
forward-backward c=0.40
forward-backward c=0.80
forward-backward c=1.60

(a) graphical, path

0 100 200 300 400 500
sample size

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d

in
de

x

non-oblivious
forward-backward c=0.40
forward-backward c=0.80
forward-backward c=1.60

(b) graphical, grid

Figure 5.2: The experimental results for structure estimation of graphical models. 5.2(a) is the result on
path graphs and 5.2(b) is the result on grid graphs.

performs well for large sample sizes, but performs worse than the non-oblivious local search for small
sample sizes.

5.9 Summary and Future Work

In this chapter, we proposed the notion of approximate submodularity for local search and showed
that the objective function of feature selection satis�es this property. By utilizing this property, we
developed local search algorithms for each ofmatroid constraints, p-matroid intersection constraints, and
p-exchange system constraints. We also devised variants that increase the objective value geometrically.
By accelerating each of the proposed local search algorithms, we obtained two faster variants. One is the
semi-oblivious local search that quickly decides elements to be removed. The other is the non-oblivious
local search that quickly decides elements to be removed and elements to be added. Empirical results
on sparse regression and structure estimation of graphical models illustrated the e�ectiveness of our
approach.

A promising direction for future research is to �nd another application of approximate submodularity
for local search. Approximate submodularity for local search is a general property of set functions
that guarantees any local optimal to be an approximation to a global optimal. There are many real
problems where a local search approach works well in practice but no theoretical guarantee is known.
If an objective function of these problems satis�es approximate submodularity for local search, we can
devise an e�cient approximation algorithms similarly to feature selection.

96

6 Fast Greedy Algorithms for Dictionary
Selection

In this chapter, we propose fast greedy algorithms for dictionary selection with generalized sparsity
constraints. This chapter is organized as follows. Section 6.1 states the background and overview of this
chapter. Section 6.2 provides the basic concepts and de�nitions. Section 6.3 formally de�nes the problem
setting. Section 6.4 provides the de�nition of p-replacement sparsity families and shows existing
sparsity constraints are handled under this class. Section 6.5 presents our algorithm, Replacement OMP.
Section 6.6 describes the extension to the online setting. The experimental results are presented in
Section 6.7. Section 6.8 provides a summary and future work of this chapter.

6.1 Background and Overview

Learning sparse representations of data and signals has been extensively studied for the past decades in
machine learning and signal processing [Foucart and Rauhut, 2013]. In these methods, a speci�c set of
basis signals (atoms), called a dictionary, is required and used to approximate a given signal in a sparse
representation. The design of a dictionary is highly non-trivial, and many studies have been devoted
to the construction of a good dictionary for each signal domain, such as natural images and sounds.
Recently, approaches to construct a dictionary from data have shown the state-of-the-art results in
various domains. The standard approach is called dictionary learning [Arora et al., 2014, Zhou et al.,
2009, Agarwal et al., 2016]. Although many studies have been devoted to dictionary learning, it is
usually di�cult to solve, requiring a non-convex optimization problem that often su�ers from local
minima. Also, standard dictionary learning methods (e.g., MOD [Engan et al., 1999] or k-SVD [Aharon
et al., 2006]) require a heavy time complexity.

Krause and Cevher [2010] proposed a combinatorial analog of dictionary learning, called dictionary
selection. In dictionary selection, given a �nite set of candidate atoms, a dictionary is constructed by
selecting a few atoms from the set. Dictionary selection could be faster than dictionary learning due to
its discrete nature. Another advantage of dictionary selection is that the approximation guarantees hold
even in agnostic settings, i.e., we do not need stochastic generating models of the data. Furthermore,
dictionary selection algorithms can be used for media summarization, in which the atoms must be
selected from given data points [Cong et al., 2012, 2017].
The basic setting of dictionary selection is formulated as follows. Let V = [n] be a �nite set of

candidate atoms. We represent the candidate atoms as a matrix A 2 Rd⇥n whose columns are the
atoms in V . For each t 2 [T], let yt 2 Rd be a data point, for which we want to provide a sparse
representation by learning a dictionary, where T is the number of data points. In the basic setting,
Krause and Cevher [2010] de�ned a utility function ut : Rn

! R�0 based on the variance reduction
metric as ut(wt) = kytk

2
2 � kyt �Awtk

2
2. We de�ne Zt ✓ V to be the set of atoms used in a sparse

representation of data point yt. Let ft(Zt) = maxw : supp(w)✓Zt
ut(w) be a set function that represents

the quality of the sparse representation of data point yt obtained by using atoms Zt for each t 2 [T].
The dictionary selection can be written as the problem of �nding a dictionary X ✓ V of size k that

97

maximizes

h(X) =

TX

t=1

max
Zt✓X : |Zt|s

ft(Zt).

For each data point yt, the best set of atoms Zt ✓ X of size s is used for a sparse representation. We
can regard this as a two-stage procedure that selects a dictionary X ✓ V in the �rst stage and selects
Zt ✓ X for the sparse representation of each data point. Since the problem of maximizing ft(Zt) is
NP-hard even in the case of variance reduction metric [Natarajan, 1995], not only the maximization but
also the evaluation of the objective function h are NP-hard.
Our main contribution is a novel and e�cient algorithm called Replacement OMP for dictionary

selection. This algorithm is based on Replacement Greedy [Stan et al., 2017] for two-stage submodular
maximization, which is a similar problem to dictionary selection. We extend their approach to dictionary
selection with an additional improvement that exploits techniques in orthogonal matching pursuit, and
obtain Replacement OMP. Replacement Greedy and Replacement OMP can be viewed as algorithms
that unify the local search algorithm developed in Chapter 5 and the greedy algorithm. We compare
our method with the previous methods in Table 6.1. Replacement OMP has a smaller running time
than SDSOMP [Das and Kempe, 2011] and Replacement Greedy. The only exception is SDSMA [Das
and Kempe, 2011], which intuitively ignores any correlation of the atoms. In our experiment, we
demonstrate that Replacement OMP outperforms SDSMA in terms of test residual variance. We note
that the constant approximation ratios of SDSMA, Replacement Greedy, and Replacement OMP are
incomparable in general. In addition, we demonstrate that Replacement OMP achieves a competitive
performance with dictionary learning algorithms in a smaller running time, in numerical experiments.
Incorporating further prior knowledge on the data domain often improves the quality of dictionar-

ies [Rubinstein et al., 2010, Rusu et al., 2014, Dumitrescu and Irofti, 2018]. For example, if the data points
are patches of a natural image, most patches are a simple background, and therefore the number of
the total size of the supports must be small. Cevher and Krause [2011] proposed a sparsity constraint
called the average sparsity, in which they add a global constraint

PT
t=1|Zt| s

0. Intuitively, the average
sparsity constraint requires that the most data points can be represented by a small number of atoms.
The average sparsity has been also intensively studied in dictionary learning [Dumitrescu and Irofti,
2018]. To deal with these generalized sparsities in a uni�ed manner, we propose a novel class of sparsity
constraints, namely p-replacement sparsity families. We prove that Replacement OMP can be applied for
the generalized sparsity constraint with a slightly worse approximation ratio. In contrast, Replacement
Greedy cannot be extended to the average sparsity setting because it can only handle local constraints
on Zt.
We also consider the online setting, in which data points arrive sequentially and we cannot store

all of them. We show that Replacement OMP can be extended to the online setting, with a sublinear
approximate regret.

6.1.1 Related Work

Related work on dictionary selection. Krause and Cevher [2010] �rst introduced dictionary se-
lection as a combinatorial analog of dictionary learning. They proposed SDSMA and SDSOMP, and
analyzed the approximation ratio using the coherence of the matrixA. Balkanski et al. [2016] studied
two-stage submodular maximization, which is a problem obtained by replacing ft in the basic setting of
dictionary selection with a monotone submodular function for every t 2 [T]. Stan et al. [2017] proposed
Replacement Greedy for two-stage submodular maximization. Yaghoobi et al. [2014] applied dictionary
learning algorithms to dictionary selection.

98

Table 6.1: Comparison of known methods with Replacement OMP. The constantsms,Ms, andMs,2

are the restricted concavity and smoothness constants of ut for each t 2 [T]. The running
time is for the case of the variance reduction metric and the individual sparsity constraint.
The methods proposed by Krause and Cevher [2010] are indicted by †. The results by Das and
Kempe [2011] are indicted by ‡. The method proposed by Stan et al. [2017] is indicted by §.

Method Approximation ratio Running time Generalized
sparsity

SDSMA
† m1ms

M1Ms
(1� 1/e)

‡
O((k + d)nT) No

SDSOMP
†

O(1/k)
‡

O((s+ k)sdknT) No

Replacement Greedy§
⇣

m2s
Ms,2

⌘2 ⇣
1� exp

⇣
�

Ms,2

m2s

⌘⌘
O(s

2
dknT) No

Replacement OMP
⇣

m2s
Ms,2

⌘2 ⇣
1� exp

⇣
�

Ms,2

m2s

⌘⌘
O((n+ ds)kT) Yes

Related work on online dictionary selection. To the best of our knowledge, there is no existing
research in the literature that addresses online dictionary selection. For a related problem in sparse
optimization, namely online linear regression, Kale et al. [2017] proposed an algorithm based on super-
modular minimization [Liberty and Sviridenko, 2017] with a sublinear approximate regret guarantee.
Chen et al. [2018b] dealt with online maximization of weakly DR-submodular functions. All these
studies dealt with single-stage versions, which are di�erent from our two-stage setting.

Related work on multi-task feature selection. Many approaches for multi-task feature selection
have been proposed from various perspectives. Kolar and Xing [2010] is the �rst study that considered
multi-task feature selection to be a two-stage procedure similar to ours. Their proposed method �rst
screens out irrelevant features by simultaneous orthogonal matching pursuit [Tropp et al., 2006], which
does not utilize the two-stage structure of the problem, then selects a set of features for each task out of
the remaining features by Adaptive Lasso. Kolar and Xing [2010] also provided a recovery guarantee
of their proposed method under the assumption that the maximum and minimum eigenvalues of the
covariance matrix are bounded. Also, there are many studies that elaborated Lasso-based regularization
terms for multi-task feature selection [Obozinski et al., 2006, Argyriou et al., 2008, Lozano and Swirszcz,
2012].

6.2 Preliminaries

The following lemma is often useful for proving an approximate ratio.

Lemma 100. Suppose that �i, ri � 0 (i = 1, 2, . . .) satis�es

�i � C

0

@v
⇤
�

i�1X

j=1

�j

1

A� ri, (6.1)

for i = 1, 2, . . . , for some constants C 2 [0, 1] and v⇤ � 0. Then

lX

i=1

�i �

h
1� (1� C)

l
i
v
⇤
�

lX

i=1

ri � (1� exp(�Cl))v
⇤
�

lX

i=1

ri (6.2)

for any non-negative integer l.

99

Proof. We show

v
⇤
�

lX

i=1

�i (1� C)
l
v
⇤
+

lX

i=1

ri (6.3)

for l = 0, 1, 2, . . . by the induction on l. For l = 0, (6.3) is trivial. For l � 1, we have

v
⇤
�

lX

i=1

�i = v
⇤
�

l�1X

i=1

�i ��l

 v
⇤
�

l�1X

i=1

�i � C

0

@v
⇤
�

l�1X

j=1

�j

1

A+ rl

= (1� C)

v
⇤
�

l�1X

i=1

�i

!
+ rl.

Now (6.3) follows from the induction and 1� C 2 [0, 1].

6.3 Problem Se�ing

In this section, we formulate the generalized version of the problem setting of dictionary selection, which
we deal with in this chapter. This problem can be viewed as a two-stage combinatorial optimization
problem. The �rst stage is to select X ✓ V as a dictionary and the second stage is to select Zt ✓ X

as the atoms for the tth data point for each t 2 [T]. In this generalized setting, we impose a global
constraint on the supports (Zt)t2[T], that is, the supports cannot be selected independently for each
t 2 [T]. We formally write such constraints as a down-closed 1 family I ✓

QT
t=1 2

V . Therefore, we
aim to �nd X ✓ V with |X| k maximizing

h(X) = max
Z1,...,Zt✓X : (Z1,...,Zt)2I

TX

t=1

ft(Zt). (6.4)

We can see that the original setting of dictionary selection is a special case where I = {(Z1, · · · , ZT) 2QT
t=1 2

V
| 8t 2 [T], |Zt| s}.

We assume that the atoms are unit vectors in Rd without loss of generality. Let w(Zt)
t denote the

maximizer of ut(w) subject to supp(w) ✓ Zt.

6.3.1 Multi-task Feature Selection

Here we introduce another application of our proposed framework, multi-task feature selection problem,
which boils down to the same optimization problem as dictionary selection. Multi-task feature selection
is the problem of selecting features for di�erent tasks simultaneously. Here a task represents a single
machine learning problem instance such as learning a linear classi�er that judges whether each patient
has a disease or not from health checkup data. Suppose we are given multiple tasks that have similar
properties each other, such as disease prediction of similar diseases from the same health checkup data.
Multi-task feature selection is the problem of selecting a set of features for each task by utilizing the
similarity among the tasks.
1A set family I is said to be down-closed if X 2 I and Y ✓ X then Y 2 I .

100

We formulate multi-task feature selection as follows. Let At 2 Rd⇥n and yt 2 Rd be the feature
matrix and the response vector for the tth task for each t 2 [T]. Assume that the indices V = [n] ofAts
correspond to each other, that is, the ith columns of allAts represent the same feature for all i 2 [n].
We aim at selecting a set Zt ✓ V of features for the tth task for each t 2 [T] that leads to a small
objective value ft(Zt) = kytk

2
2 �minwt : supp(wt)✓Zt

kyt �Atwtk
2
2 while taking the similarity among

the tasks into account. One natural assumption that represents the similarity is that only a few features
appear in

S
t2[T] Zt. Speci�cally, we assume that there exists a small set X ✓ V that contains all Zt,

i.e., Zt ✓ X . By setting a sparsity constraint I 2
QT

t=1 2
V on Z1, · · · , ZT , this problem coincides with

optimization problem (6.4).

6.4 p-Replacement Sparsity Families

In this section, we de�ne a novel class of sparsity families, we call p-replacement sparsity families, and
show that existing sparsity families are a special case of this class. First, we de�ne the set of feasible
replacements for the current support Z1, · · · , ZT and an atom a as

Fa(Z1, · · · , ZT) =
�
(Z

0

1, · · · , Z
0

T) 2 I : Z
0

t ✓ Zt + a, |Zt \ Z
0

t| 1 (8t 2 [T])

. (6.5)

That is, the set of members in I obtained by adding a and removing at most one element from each
Zt. Let F(Z1, · · · , ZT) =

S
a2V Fa(Z1, · · · , ZT). If Z1, . . . , ZT are clear from the context, we simply

write it as Fa. The p-replacement sparsity families can be de�ned as a class where any pair of feasible
supports can be characterized by a set of feasible replacements as follows.
De�nition 101 (p-replacement sparsity). A sparsity constraint I ✓

QT
t=1 2

V is p-replacement sparse if
for any (Z1, . . . , ZT), (Z

⇤

1 , . . . , Z
⇤

T) 2 I , there is a sequence of p feasible replacements (Zp0

1 , . . . , Z
p0

T) 2

F(Z1, . . . , ZT) (p0 2 [p]) such that each element in Z
⇤
t \ Zt appears at least once in the sequence

(Z
p0

t \ Zt)
p
p0=1 and each element in Zt \ Z

⇤
t appears at most once in the sequence (Zt \ Z

p0

t)
p
p0=1.

In the following, We provide examples of p-replacement sparsity families and bound their replacement
sparsity parameter.

6.4.1 Individual Matroids

First, we introduce the standard sparsity constraints, which we call individual sparsity.
Example 102 (individual sparsity). The sparsity constraint for the standard dictionary selection can
be written as I = {(Z1, · · · , ZT) | |Zt| s (8t 2 [T])}. We call it the individual sparsity constraint.
This individual sparsity constraint is a special case of an individual matroid constraint, described

below.
Example 103 (individual matroids). This was proposed by Stan et al. [2017] as a sparsity constraint
for two-stage submodular maximization. An individual matroid constraint can be written as I =

{(Z1, · · · , ZT) | Zt 2 It (8t 2 [T])} where (V, It) is a matroid2 for each t 2 [T]. An individual
sparsity constraint is a special case of an individual matroid constraint where (V, It) is the uniform
matroid for all t.
Proposition 104. An individual matroid constraint is k-replacement sparse.

Proof. Let (Z1, · · · , ZT), (Z
⇤

1 , · · · , Z
⇤

T) 2 I be arbitrary sparse subsets. First, we consider the case
where Zt and Z

⇤
t are both bases3 of the matroid for all t 2 [T]. For such Zt and Z

⇤
t , we can make

2A matroid is a pair of a �nite ground set V and a non-empty down-closed family I ✓ 2V that satisfy that for all Z,Z0 2 I
with |Z| < |Z0|, there is an element a 2 Z0 \ Z such that Z [{a} 2 I

3For any matroid (V, I), a setX 2 I is called a base if it is maximal in I .

101

k replacements as follows. For each t 2 [T], there exists a bijection ⇡t : Z⇤
t ! Zt by the exchange

property of matroids. For each atom a
⇤
2
ST

t=1 Z
⇤
t , we make a replacement that adds a⇤ to and removes

⇡t(a
⇤
) from Zt for all t 2 [T] such that a⇤ 2 Z

⇤
t .

If Zt or Z⇤
t is not a base of the matroid, we can add arbitrary atoms to Zt and Z

⇤
t until they are both

bases, and make k replacements for them in the same way as described above. Removing the atoms
that do not exist in Zt and Z

⇤
t from these k replacements, we obtain replacements for the original Zt

and Z
⇤
t .

6.4.2 Block Sparsity

Example 105 (block sparsity). Block sparsity was proposed by Krause and Cevher [2010]. This sparsity
requires that the support must be sparse within each prespeci�ed block. That is, disjoint blocks
B1, · · · , Bb ✓ [T] of data points are given in advance, and an only small subset of atoms can be used in
each block. Formally, I = {(Z1, · · · , ZT) | |

S
t2Bb0

Zt| sb0 (8b
0
2 [b])} where sb0 2 Z�0 for each

b
0
2 [b] are sparsity parameters.

Proposition 106. A block sparsity constraint is k-replacement sparse.

Proof. Let (Z1, · · · , ZT), (Z
⇤

1 , · · · , Z
⇤

T) 2 I be arbitrary sparse subsets. We can make k replacements
as follows. Let Zb0 =

S
t2Bb0

Zt and Z⇤

b0 =
S

t2Bb0
Z

⇤
t . If |Zb0 | < sb0 or |Zb0 | < sb0 , we can add arbitrary

atoms until these inequalities are tight. For each block b
0
2 [b], we can make a bijection ⇡t : Z⇤

b ! Zb.
For each atom a

⇤
2
ST

t=1 Z
⇤
t , we make one replacement that adds a⇤ for all t 2 [T] such that a⇤ 2 Z

⇤
t

and removes ⇡t(a⇤) from all blocks such that a⇤ 2
S

t2Bb0
Z

⇤
t .

We can show the common generalization of an individual matroid sparsity and block sparsity is also
k-replacement sparse by combining the proofs.

6.4.3 Average Sparsity

Example 107 (Average sparsity [Cevher and Krause, 2011]). This sparsity imposes a constraint on the
average number of used atoms among all data points. The number of atoms used for each data point
is also restricted. Formally, I = {(Z1, · · · , ZT) | |Zt| st,

PT
t=1 |Zt| s

0
} where st 2 Z�0 for each

t 2 [T] and s
0
2 Z�0 are sparsity parameters.

First, we consider an easier case with only a total number constraint, that is, I = {(Z1, · · · , ZT) |PT
t=1 |Zt| s

0
}. We call it an average sparsity constraint without individual sparsity.

Proposition 108. An average sparsity constraint without individual sparsity is (2k � 1)-replacement
sparse.

Proof. Let (Z1, · · · , ZT), (Z
⇤

1 , · · · , Z
⇤

T) 2 I be arbitrary feasible sparse subsets. We assume (Z1, · · · , ZT)

and (Z
⇤

1 , · · · , Z
⇤

T) are maximal in I , but we can deal with non-maximal ones by �lling them with
dummy elements in the same way as the proof of Proposition 104. Here we show it is possible to
greedily make a sequence of 2k � 1 feasible replacements (Zr0

1 , · · · , Z
r0
T)

2k�1
r0=1 such that each atom in

Z
⇤
t \ Zt appears at least once in the sequence (Zr0

t \ Zt)
2k�1
r0=1 and each atom in Zt \ Z

⇤
t appears at most

once in the sequence (Zt \ Z
r0
t)

2k�1
r0=1 .

Let X and X
⇤ be the sets of atoms appearing in (Z1, · · · , ZT) and (Z

⇤

1 , · · · , Z
⇤

T), respectively. We
arrange the atoms in each of X and X

⇤ in an arbitrary order and consider them one by one in parallel.
Let us suppose we currently consider a 2 X and a

⇤
2 X

⇤. We make a replacement that adds a⇤ for
several t 2 [T] and removes a for the other several t 2 [T] in the following way. Let ⌧ be the number of

102

Zt \ Z
⇤
t that contains a, i.e., ⌧ = |{t 2 [T] | a 2 Zt \ Z

⇤
t }| and ⌧⇤ the number of Z⇤

t \ Zt that contains
a
⇤, i.e., ⌧ = |{t 2 [T] | a

⇤
2 Z

⇤
t \ Zt}|. If ⌧ > ⌧

⇤, we can let this replacement add a
⇤ for all t 2 [T]

such that a⇤ 2 Z
⇤
t \Zt and remove a for any subset of {t 2 [T] | a 2 Zt \Z

⇤
t } with size ⌧⇤. Conversely,

if ⌧ ⌧⇤, we can let this replacement add a⇤ for an arbitrary subset of {t 2 [T] | a
⇤
2 Z

⇤
t \ Zt} of size

⌧ and remove a for all t 2 [T] such that a 2 Zt \ Z
⇤
t . We proceed to a next replacement after removing

a
⇤ from Z

⇤
t for all t 2 [T] such that a⇤ is added in this replacement, and a from Zt for all t 2 [T] such

that a is removed in this replacement. If a 62 Zt \ Z
⇤
t for all t 2 [T], we move the focus from a to the

next atom. Similarly, if a⇤ 62 Z
⇤
t \ Zt for all t 2 [T], we move the focus from a

⇤ to the next atom.
This procedure ends after at most 2k � 1 iterations. This is because at each iteration we move the

focus from a to the next atom in X or from a
⇤ to the next atom in X

⇤, and we have |X| k and
|X

⇤
| k.

Here we show this bound is tight for an average sparsity constraint without individual sparsity by
giving an example.

Example 109. Assume T � k
2. For simplicity, we further assume T is a multiple of k. Let us consider

the case of s0 = T , i.e., I = {(Z1, · · · , ZT) |
PT

t=1 |Zt| T}. Let V = {v1, · · · , v2k} be the ground
set. Here we show the replacement sparsity parameter of this sparsity constraint is at least 2k � 1 by
giving (Z1, · · · , ZT) and (Z

⇤

1 , · · · , Z
⇤

T) that require 2k � 1 replacements. Suppose Zt = {v1, · · · , vk}

for 1 t T/k andZt = ? for other t. LetZ⇤
t = {vk+1} for 1 t T �k+1 andZ⇤

T�k+i = {vk+i}

for each i = 2, · · · , k. .
It can be seen that wemust use k�1 di�erent replacements forZ⇤

T�k+2, · · · , Z
⇤

T . In each replacement,
an added element is restricted to a single atom, but Z⇤

T�k+2, · · · , Z
⇤

T are all singleton sets of di�erent
atoms. Then elements in Z

⇤

T�k+2, · · · , Z
⇤

T must be dealt with by di�erent replacements, and k � 1

replacements are needed.
In addition, we must use k other replacements for Z⇤

1 , · · · , Z
⇤

T�k+1. Since (Z1, · · · , ZT) is maximal
in I , the total number of added atoms of each replacement must be at most the total number of removed
atoms of this replacement. However, in each replacement, the number of atoms removed from each Zt

is at most one, and only Z1, · · · , ZT/k are non-empty, hence at most T/k elements can be removed in
each replacement. Therefore, we must use k di�erent replacements for Z⇤

1 , · · · , Z
⇤

T�k+1 because there
are T � k + 1 singleton sets Z⇤

1 , · · · , Z
⇤

T�k+1 and T � k
2.

In conclusion, the replacement sparsity parameter of this sparsity constraint is at least 2k � 1.

We bound the replacement sparsity parameter of an average sparsity constraint based on the analysis
on average sparsity without individual sparsity.

Proposition 110. An average sparsity constraint is (3k � 1)-replacement sparse.

Proof. Here we give a sequence of 3k � 1 replacements that satis�es the conditions for replacement
sparsity.

First, we use k replacements for dealing with the individual sparsity constraints. Let S ✓ [T] be the
set of indices such that |Zt| = st. For each a

⇤
2 X

⇤, we make a replacement that adds a⇤ for all t 2 S

such that a⇤ 2 Z
⇤
t \Zt and possibly removes an atom in Zt \Z

⇤
t for all t 2 S. By selecting the removed

atoms so that they do not overlap, we can de�ne these k replacements such that, for all t 2 S, each
atom in Z

⇤
t \ Zt is added once and each atom in Zt \ Z

⇤
t is removed once.

For the rest of the elements, we need not consider the individual sparsity constraints, therefore the
rest elements can be dealt with 2k�1 replacements in the same way as the proof of Proposition 108.

103

6.5 Algorithms

In this section, we present Replacement Greedy [Stan et al., 2017] and Replacement OMP for dictionary
selection with generalized sparsity constraints.

6.5.1 Replacement Greedy

Replacement Greedy was �rst proposed as an algorithm for a di�erent problem, two-stage submodular
maximization [Balkanski et al., 2016]. In two-stage submodular maximization, the goal is to maximize

h(X) =

TX

t=1

max
Zt✓X : Zt2It

ft(Zt), (6.6)

where ft is a non-negative monotone submodular function (t 2 [T]) and It is a matroid. Despite the
similarity of the formulation, in dictionary selection, the functions ft are not necessarily submodular,
but come from the continuous function ut. Furthermore, in two-stage submodular maximization, the
constraints on Zt are individual for each t 2 [T], while we pose a global constraint I . In the following,
we present an adaptation of Replacement Greedy to dictionary selection with generalized sparsity
constraints.

Replacement Greedy stores the current dictionaryX and supports Zt ✓ X such that (Z1, . . . , ZT) 2

I , which are initialized as X = ? and Zt = ? (t 2 [T]). At each step, the algorithm considers the gain
of adding an element a 2 V to X with respect to each function ft, i.e., the algorithm selects a that
maximizes max(Z0

1,...,Z
0
T)2Fa

PT
t=1{ft(Z

0
t)� f(Zt)}. See Algorithm 15 for a pseudocode description.

Note that for the individual matroid constraint I , the algorithm coincides with the original Replacement
Greedy [Stan et al., 2017].

Algorithm 15 Replacement Greedy & Replacement OMP
1: Initialize X ? and Zt ? for t = 1, . . . , T .
2: for i = 1, . . . , k do
3: Pick a

⇤
2 V that maximizes8

>>>><

>>>>:

max
(Z0

1,··· ,Z
0
T)2Fa⇤

TX

t=1

�
ft(Z

0

t)� ft(Zt)

(Replacement Greedy)

max
(Z0

1,··· ,Z
0
T)2Fa⇤

(
1

Ms,2

TX

t=1

���rut(w(Zt)
t)Z0

t\Zt

���
2
�Ms,2

TX

t=1

���(w(Zt)
t)Zt\Z0

t

���
2
)

(Replacement OMP)
and let (Z 0

1, · · · , Z
0

T) be a replacement achieving a maximum.
4: Set X X + a

⇤ and Zt Z
0
t for each t 2 [T].

5: return X .

Stan et al. [2017] showed that Replacement Greedy achieves an ((1�1/
p
e)/2)-approximation when

ft are monotone submodular. We extend their analysis to our non-submodular setting. First, we show
the following key lemma.
Lemma 111. Assume I is p-replacement sparse. Suppose that at some step, the solution is updated from
(Z1, · · · , ZT) to (Z 0

1, · · · , Z
0

T) byReplacement Greedy. Let (Z⇤

1 , · · · , Z
⇤

T) 2 argmax(Z1,··· ,ZT)2I : Zt✓X⇤ ft(Z)

where X⇤ is an optimal solution for dictionary selection. Then, the marginal gain of Replacement Greedy
is bounded from below as follows.

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt) �
1

p

(
m2s

Ms,2

TX

t=1

ft(Z
⇤

t)�
Ms,2

m2s

TX

t=1

ft(Zt)

)

104

where s = max(Zt)Tt=12I
maxt2[T] |Zt|.

Proof. Note that from the condition on feasible replacements, we have |Zt4Z
0
t| 2. Since ut is

Ms,2-smooth on ⌦s,2, it holds that for any z 2 Rn with supp(z) ✓ Z
0
t \ Zt,

ft(Z
0

t)� ft(Zt) = ut(w
(Z0

t))� ut(w
(Zt))

� ut((w
(Zt))Zt\Z0

t
+ z)� ut(w

(Zt))

�

D
rut(w

(Zt)), z� (w(Zt))Zt\Z0
t

E
�

Ms,2

2
kz� (w(Zt))Zt\Z0

t
k
2

Since this inequality holds for every z with supp(z) ✓ Z
0
t \ Zt, by optimizing it for z, we obtain

ft(Z
0

t)� ft(Zt) �
1

2Ms,2
krut(w

(Zt)
t)Z0

t\Zt
k
2
�

Ms,2

2
k(w(Zt)

t)Zt\Z0
t
k
2
. (6.7)

In addition, due to the strong concavity of ut, we have

ft(Z
⇤

t)� ft(Zt) = ut(w
(Z⇤

t))� ut(w
(Zt))

D
rut(w

(Zt)
t),w

(Z⇤
t)

t �w(Zt)
t

E
�

m2s

2

���w(Z⇤
t)

t �w(Zt)
t

���
2

 max
z : supp(z)✓Z⇤

t

⇢D
rut(w

(Zt)
t), z�w(Zt)

t

E
�

m2s

2

���z�w(Zt)
t

���
2
�

=
1

2m2s

���(rut(w(Zt)))Z⇤
t \Zt

���
2
�

m2s

2

���(w(Zt))Zt\Z⇤
t

���
2
. (6.8)

Similarly, due to the strong concavity of ut, we have

�ft(Zt) = ut(0)� ut(w
(Zt)
t)

D
rut(w

(Zt)
t),�w(Zt)

t

E
�

m2s

2

���w(Zt)
t

���
2

= �
m2s

2

���w(Zt)
t

���
2

 �
m2s

2

���(w(Zt)
t)Zt\Z⇤

t

���
2

(6.9)

Since I is p-replacement sparse, we can take a sequence of p replacements (Zp0

1 , · · · , Z
p0

T)
p
p0=1 such that

• (Z
p0

1 , · · · , Z
p0

T) 2 F(Z1, · · · , ZT),

• each element in Z
⇤
t \ Zt appears at least once in sequence (Zp0

t \ Zt)
p
p0=1 for each t 2 [T],

• each element in Zt \ Z
⇤
t appears at most once in sequence (Zt \ Z

p0

t)
p
p0=1 for each t 2 [T].

Now we prove the lemma by utilizing these properties.

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt)

�
1

p

pX

p0=1

(
TX

t=1

ft(Z
p0

t)�

TX

t=1

ft(Zt)

)

(by the choice of (Z 0

1, . . . , Z
0

T) and the feasibility of (Zp0

1 , · · · , Z
p0

T))

105

�
1

p

pX

p0=1

TX

t=1

(
1

2Ms,2

���rut(w(Zt)
t)

Zp0
t \Zt

���
2
�

Ms,2

2

����
⇣
w(Zt)

t

⌘

Zt\Z
p0
t

����
2
)

(by (6.7))

�
1

p

TX

t=1

(
1

2Ms,2

���rut(w(Zt)
t)Z⇤

t \Zt

���
2
�

Ms,2

2

����
⇣
w(Zt)

t

⌘

Zt\Z⇤
t

����
2
)

(by the property of (Zp0

t)
p
p0=1)

�
1

p

TX

t=1

⇢
m2s

Ms,2
(ft(Z

⇤

t)� ft(Zt))�

✓
Ms,2

m2s
�

m2s

Ms,2

◆
ft(Zt)

�
(by (6.8) and (6.9))

=
1

p

TX

t=1

⇢
m2s

Ms,2
ft(Z

⇤

t)�
Ms,2

m2s
ft(Zt)

�
.

Finally, we obtain the following theorem.

Theorem 112. Assume that ut ism2s-strongly concave on ⌦2s andMs,2-smooth on ⌦s,2 for t 2 [T] and
that the sparsity constraint I is p-replacement sparse. Let (Z⇤

1 , · · · , Z
⇤

T) 2 I be optimal supports of an
optimal dictionaryX⇤. Then the solution (Z1, · · · , ZT) 2 I of Replacement Greedy after k0 steps satis�es

TX

t=1

ft(Zt) �
m

2
2s

M2
s,2

✓
1� exp

✓
�
k
0

p

Ms,2

m2s

◆◆ TX

t=1

ft(Z
⇤

t).

Proof. By combining Lemma 111 with Lemma 100, we obtain the statement.

6.5.2 Replacement OMP

Now we propose our algorithm, Replacement OMP. A down-side of Replacement Greedy is its
heavy computation: in each greedy step, we need to evaluate

PT
t=1 ft(Z

0
t) for each (Z

0

1, . . . , Z
0
t) 2

Fa(Z1, . . . , Zt), which amounts to solving linear regression problems snT times if u is the variance
reduction metric. To avoid heavy computation, we propose a proxy of this quantity by borrowing an
idea from orthogonal matching pursuit. Replacement OMP selects an atom a 2 V that maximizes

max
(Z0

1,··· ,Z
0
T)2Fa(Z1,··· ,ZT)

(
1

Ms,2

TX

t=1

krut(w
(Zt)
t)Z0

t\Zt
k
2
�Ms,2

TX

t=1

k(w(Zt)
t)Zt\Z0

t
k
2

)
. (6.10)

This algorithm requires the smoothness parameter Ms,2 before the execution. Computing Ms,2 is
generally di�cult, but this parameter for the variance reduction metric can be bounded by �max(A, 2).
This value can be computed in O(n

2
d) time.

Lemma 113. Assume I is p-replacement sparse. Suppose at some step, the solution is updated from
(Z1, · · · , ZT) to (Z 0

1, · · · , Z
0

T) byReplacement OMP. Let (Z⇤

1 , · · · , Z
⇤

T) 2 argmax(Z1,··· ,ZT)2I : Zt✓X⇤ ft(Z)

where X⇤ is an optimal solution for dictionary selection. Then, the marginal gain of Replacement OMP is
bounded from below as follows.

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt) �
1

p

(
m2s

Ms,2

TX

t=1

ft(Z
⇤

t)�
Ms,2

m2s

TX

t=1

ft(Zt)

)
,

where s = max(Zt)Tt=12I
maxt2[T] |Zt|.

106

Proof. We can obtain the following inequalities from the restricted strong concavity and smoothness of
ut in the same way as the above proof of Lemma 111.

ft(Z
0

t)� ft(Zt) �
1

2Ms,2

���rut(w(Zt)
t)Z0

t\Zt

���
2
�

Ms,2

2

���(w(Zt)
t)Zt\Z0

t

���
2
. (6.11)

ft(Z
⇤

t)� ft(Zt)
1

2m2s

���(rut(w(Zt)))Z⇤
t \Zt

���
2
�

m2s

2

���(w(Zt))Zt\Z⇤
t

���
2
. (6.12)

�ft(Zt) �
m2s

2

���(w(Zt)
t)Zt\Z⇤

t

���
2
. (6.13)

Since I is p-replacement sparse, we can take a sequence of p replacements (Zp0

1 , · · · , Z
p0

T)
p
p0=1 that

satis�es the properties mentioned in the proof of Lemma 111. With these properties, we obtain

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt)

�

TX

t=1

⇢
1

2Ms,2

���rut(w(Zt)
t)Z0

t\Zt

���
2
�

Ms,2

2

���(w(Zt)
t)Zt\Z0

t

���
2
�

(by (6.11))

�
1

p

pX

p0=1

TX

t=1

(
1

2Ms,2

���rut(w(Zt)
t)

Zp0
t \Zt

���
2
�

Ms,2

2

����
⇣
w(Zt)

t

⌘

Zt\Z
p0
t

����
2
)

(by the choice of (Z 0

1, . . . , Z
0

T) and the feasibility of (Zp0

1 , · · · , Z
p0

T))

�
1

p

TX

t=1

(
1

2Ms,2

���rut(w(Zt)
t)Z⇤

t \Zt

���
2
�

Ms,2

2

����
⇣
w(Zt)

t

⌘

Zt\Z⇤
t

����
2
)

(by the property of (Zp0

t)
p
p0=1)

�
1

p

TX

t=1

⇢
m2s

Ms,2
(ft(Z

⇤

t)� ft(Zt))�

✓
Ms,2

m2s
�

m2s

Ms,2

◆
ft(Zt)

�
(by (6.12) and (6.13))

=
1

p

TX

t=1

⇢
m2s

Ms,2
ft(Z

⇤

t)�
Ms,2

m2s
ft(Zt)

�
.

Finally, we obtain the following bound on the approximation ratio of Replacement OMP.

Theorem 114. Assume that ut ism2s-strongly concave on ⌦2s andMs,2-smooth on ⌦s,2 for t 2 [T] and
that the sparsity constraint I is p-replacement sparse. Let (Z⇤

1 , · · · , Z
⇤

T) 2 I be optimal supports of an
optimal dictionary X

⇤. Then the solution (Z1, · · · , ZT) 2 I of Replacement OMP after k0 steps satis�es

TX

t=1

ft(Zt) �
m

2
2s

M2
s,2

✓
1� exp

✓
�
k
0

p

Ms,2

m2s

◆◆ TX

t=1

ft(Z
⇤

t).

Proof. By combining Lemma 113 with Lemma 100, we obtain the statement.

6.5.3 Replacement Deletion-OMP

In this section, we propose an intermediate algorithm between Replacement Greedy and Replacement
OMP, which we call Replacement Deletion-OMP. Though we can apply Replacement Deletion-OMP to
generalized sparsity constraints, we describe its simplest version for the individual sparsity constraints,
i.e., I = {(Z1, · · · , ZT) | |Zt| s (8t 2 [T])} for some s 2 Z�0, for simplicity.

107

Replacement Deletion-OMP adds atoms one by one similarly to Replacement Greedy and Replace-
ment Deletion-OMP, but selects the atom to be added in a di�erent way. At each step, Replacement
Deletion-OMP �nds an element at 2 Zt that minimizes

���(w(Zt)
t)at

��� for each t 2 [T]. Then Replacement

Deletion-OMP selects an element a⇤ 2 V to be added by maximizing
PT

t=1max{0, ft(Zt + a
⇤
� at)}.

We can say that Replacement Deletion-OMP is an intermediate algorithm in the sense that it selects an
element to be removed in a similar way to Replacement OMP and an element to be added in a similar
way to Replacement Greedy.

Since Replacement Deletion-OMP selects an element to be removed without evaluating the objective
value, it runs faster than Replacement Greedy. Also, in comparison to Replacement OMP, Replacement
Deletion-OMP has an advantage since it does not use the value of Ms,2 for evaluating the approximate
marginal gain. The time required by computation of Ms,2 varies from case to case, but its dependence
on n is quadratic in most cases.
As illustrated above, Replacement Deletion-OMP is suitable for the cases where n is large. Since

the ground set of dictionary selection is the set of atoms taken from existing dictionaries, its size n is
not expected to be so large in realistic situations. In cases where n is large such as multi-task feature
selection, Replacement Deletion-OMP can be a reasonable choice.

Lemma 115. Assume I is p-replacement sparse. Suppose at some step, the solution is updated from
(Z1, · · · , ZT) to (Z 0

1, · · · , Z
0

T) byReplacement Deletion-OMP. Let (Z⇤

1 , · · · , Z
⇤

T) 2 argmax(Z1,··· ,ZT)2I : Zt✓X⇤ ft(Z)

whereX⇤ is an optimal solution for dictionary selection. Then, the marginal gain of Replacement Deletion-
OMP is bounded from below as follows.

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt) �
1

p

(
m2s

Ms,2

TX

t=1

ft(Z
⇤

t)�
Ms,2

m2s

TX

t=1

ft(Zt)

)
,

where s = max(Zt)Tt=12I
maxt2[T] |Zt|.

Proof. In the same way as the proofs for Replacement Greedy, we obtain the following inequalities
from the restricted strong concavity and smoothness of ut.

ft(Z
0

t)� ft(Zt) �
1

2Ms,2

���rut(w(Zt)
t)Z0

t\Zt

���
2
�

Ms,2

2

���(w(Zt)
t)Zt\Z0

t

���
2
. (6.14)

ft(Z
⇤

t)� ft(Zt)
1

2m2s

���(rut(w(Zt)))Z⇤
t \Zt

���
2
�

m2s

2

���(w(Zt))Zt\Z⇤
t

���
2
. (6.15)

�ft(Zt) �
m2s

2

���(w(Zt)
t)Zt\Z⇤

t

���
2
. (6.16)

Since an element to be removed a
⇤

TX

t=1

ft(Z
0

t)�

TX

t=1

ft(Zt) =

TX

t=1

max{0, ft(Zt + a
⇤
� at)� ft(Zt)}

�
1

k

X

x2X⇤

TX

t=1

max{0, ft(Zt + x� at)� ft(Zt)} (by the choice of a⇤)

�
1

k

TX

t=1

X

x2Z⇤
t

{ft(Zt + x� at)� ft(Zt)}

�
1

k

TX

t=1

X

x2Z⇤
t

⇢
1

2Ms,2

⇣
rut

⇣
w(Zt)

t

⌘⌘2
x
�

Ms,2

2

⇣
w(Zt)

t

⌘2
at

�
(by (6.14))

108

Algorithm 16 Replacement Deletion-OMP
1: Initialize X ? and Zt ? for t = 1, . . . , T .
2: for i = 1, . . . , k do
3: Let at 2 argmina2Zt

���(w(Zt)
t)a

��� for each t 2 [T].

4: Pick a
⇤
2 V that maximizes

PT
t=1max{0, ft(Zt + a

⇤
� at)}.

5: Set X X + a
⇤ and if ft(Zt + a

⇤
� at) > ft(Zt), then Zt Zt + a

⇤
� at for each t 2 [T].

6: return X .

�
1

k

TX

t=1

(
1

2Ms,2

����
⇣
rut

⇣
w(Zt)

t

⌘⌘

Z⇤
t

����
2

�
Ms,2

2

����
⇣
w(Zt)

t

⌘

Zt

����
2
)

(by the choice of at)

�
1

k

TX

t=1

⇢
ms+s⇤

Ms,2
ft(Z

⇤

t)�
Ms,2

ms+s⇤
ft(Zt)

�
(by (6.15) and (6.16))

Here we show the same approximation ratio bound for Replacement Deletion-OMP.

Theorem 116. Assume that ut is m2s-strongly concave on ⌦2s and Ms,2-smooth on ⌦s,2 for t 2 [T]

and that the sparsity constraint I is an individual sparsity constraint. Let (Z⇤

1 , · · · , Z
⇤

T) 2 I be optimal
supports of an optimal dictionaryX⇤. Then the solution (Z1, · · · , ZT) 2 I of Replacement Deletion-OMP
after k0 steps satis�es

TX

t=1

ft(Zt) �
m

2
2s

M2
s,2

✓
1� exp

✓
�
k
0

k

Ms,2

m2s

◆◆ TX

t=1

ft(Z
⇤

t).

Proof. The theorem follows from Lemmas 100 and 115.

6.5.4 Fast Implementation for Average Sparsity Constraints

In general, Fa has O(n
T
) members, and therefore it is di�cult to compute Fa. Nevertheless, we show

that Replacement OMP can run much faster for the examples presented in Section 6.4.
In Replacement Greedy, it is di�cult to �nd an atom with the largest gain at each step. This is

because we need to maximize a nonlinear function
PT

t=1 ft(Z
0
t). Conversely, in Replacement OMP, if

we can calculate w(Zt)
t andrut(w

(Zt)
t) for all t 2 [T], the problem of calculating gain of each atom is

reduced to maximizing a linear function.
In the following, we consider the variance reduction metric and average sparsity constraint because it

is the most complex constraint. A similar result holds for the other examples. In fact, we show that this
task reduces to maximum weighted bipartite matching. The Hungarian method returns the maximum
weight bipartite matching in O(T

3
) time. We can further improve the running time to O(T log T) time

by utilizing the structure of this problem.
Next, we consider how to �nd the atom with the largest gain at each step of Replacement OMP for

the average sparsity constraints.
First, we show that this task reduces to weighted bipartite matching. Let us �x an atom a

⇤ because
we can simply check all the atoms in V . Let gt = (rut(w(Zt)))2a⇤ and ct = mina2Zt(w

(Zt))2a for each
t 2 [T]. Let S = {t 2 [T] | |Zt| = st} be the set of t 2 [T] such that the constraint on |Zt| is tight.

109

For each a
⇤
2 V , the problem of �nding the best replacement can be formulated as follows. The goal

is to maximize
P

t2A gt �
P

t2B ct by selecting A ✓ [T] (the set of indices t such that a⇤ is added to
Zt) and B ✓ [T] (the set of indices t such that an atom is removed from Zt). We have two constraints
on A and B. The �rst constraint is |A| � |B| ✓ where ✓ = s

0
�
PT

t=1 |Zt|, derived from the total
number constraint

PT
t=1 |Zt| s

0. The second constraint is A \ S ✓ B, derived from the individual
constraint |Zt| st. In summary, the formulation as an optimization problem is:

max
A,B✓[T]

X

t2A

gt �
X

t2B

ct

subject to |A|� |B| ✓

A \ S ✓ B.

This problem can be regarded as a special case of maximum weight bipartite matching problem. Let
U = [T] and V = [T] [{d1, · · · , d✓} be the set of vertices where d1, · · · , d✓ are dummy elements
with zero cost, i.e., cdi = 0 for all i 2 [✓]. Let E = {(t, t) | t 2 S} [(U \ S)⇥ V be the set of edges.
The weight of each edge (↵,�) 2 E is de�ned as w((↵,�)) = g↵ � c� . Then any matching M ✓ E

in this graph corresponds to a solution A = @M \ U and B = @M \ V \ {d1, · · · , d✓} in the above
optimization problem.

Algorithm 17 Calculation of the gain for average sparsity constraints
Input S = {t 2 [T] | |Zt| = st} the set of indices t such that Zt is tight, gt = (rut(w(Zt)))2a⇤ ,

ct = mina2Zt(w
(Zt))2a for each t 2 [T], and ✓ = s

0
�
PT

t=1 |Zt|.
Output A,B ✓ [T] maximizing

P
t2A gt �

P
t2B ct subject to A \ S ✓ B and |A| |B|+ ✓.

1: Initialize A0 ? and B0 ?.
2: Let S = {t 2 [T] | |Zt| = st}.
3: Sort t 2 [T] \ S according to gt into the priority queue Q1 in descending order.
4: Sort t 2 [T] according to ct into the priority queue Q2 in ascending order.
5: Sort t 2 S according to gt � ct into the priority queue Q3 in descending order.
6: for i = 1, · · · , T do
7: Let ↵, � and � be the top elements in Q1, Q2, and Q3, respectively.
8: if g↵ � c�1{|Ai�1| = |Bi�1|+ ✓} 0 and g� � c� 0 then
9: return Ai�1 and Bi�1

10: else
11: if g↵ � c�1{|Ai�1| = |Bi�1|+ ✓} � g� � c� then
12: Ai Ai�1 + ↵ and remove ↵ from Q1.
13: if |Ai�1| = |Bi�1|+ ✓ then
14: Bi Bi�1 + � and remove � from Q2.
15: if � 2 S then
16: Remove � from Q3 and add � to Q1.
17: else
18: Ai Ai�1 + � and Bi Bi�1 + �.
19: Remove � from Q3.
20: return AT and BT

Here we give a fast greedy method for calculating the gain of each atom. This algorithm can be
executed in O(T log T) time. The detailed description of this algorithm is given in Algorithm 17.

Proposition 117. Algorithm 17 returns an optimal solution in O(T log T) time.

110

Proof. First, we show the validity of the algorithm.
Before proving the optimality of the output, we note that the marginal gain of each step of the

algorithm is largest among all the feasible updates. Let us consider the addition of ↵ to Ai�1. There are
three cases of updates. If ↵ 2 S \Bi�1 is added to Ai�1, we must also add ↵ to Bi�1. If ↵ 62 S \Bi�1

and |Ai�1| = |Bi�1| + ✓, adding � 62 Bi�1 with smallest cost ct is the best choice. If ↵ 62 S \ Bi�1

and |Ai�1| < |Bi�1|+ ✓, not changing Bi�1 is the best choice. Algorithm 17 selects the best one from
these cases.

We show (Ai, Bi) be optimal among feasible solutions such that |A| = i by induction on i. It is clear
that (A0, B0) is optimal among feasible solutions such that |A| = 0.

Now we assume (Ai�1, Bi�1) is optimal among feasible solutions such that |A| = i� 1. Let (A0

i, B
0

i)

be an optimal solution among feasible solutions such that |A| = i. If there exist ↵ 2 A
0

i \ Ai�1 and
� 2 B

0

i \Bi�1 such that (Ai�1 + ↵, Bi�1 + �) and (A
0

i � ↵, B
0

i � �) are both feasible, we obtain

X

t2Ai

gt �
X

t2Bi

ct �

0

@
X

t2Ai�1

gt �
X

t2Bi�1

ct

1

A+ (g↵i � c�i)

�

0

@
X

t2A0
i�1

gt �
X

t2B0
i�1

ct

1

A+
�
g↵0 � c�0

�

�

0

@
X

t2A0
i

gt �
X

t2B0
i

ct

1

A ,

which proves the optimality of (Ai, Bi). The second inequality is because the marginal gain of ↵i (or
possibly ↵i and �i) is largest among feasible additions. In the same way, if there exists ↵ 2 A

0

i \Ai�1

such that (Ai�1 + ↵, Bi�1) and (A
0

i � ↵, B
0

i) are both feasible, then (Ai, Bi) is optimal.
We show the existence of such an ↵ or pair (↵,�). Since |A0

i| > |Ai�1|, we have A0

i \ Ai�1 6= ?.
Let ↵ 2 A

0

i \ Ai�1 be an arbitrary element. If ↵ 2 B
0

i \ Bi�1, the pair (↵,↵) satis�es the condition.
If ↵ 62 B

0

i \ Bi�1 and |Ai�1| < |Bi�1| + ✓, then ↵ satis�es the condition. If ↵ 62 B
0

i \ Bi�1 and
|Ai�1| = |Bi�1| + ✓, we have |B0

i| � |A
0

i| � ✓ > |Bi�1|, then B
0

i \ Bi�1 6= ?. Therefore a pair of ↵
and an arbitrary � 2 B

0

i \Bi�1 satis�es the condition.
Finally we consider the running time of this algorithm. Sorting requires O(T log T) time. Each

iteration requires O(log T) time. Thus, the total running time is O(T log T).

In summary, we obtain the following:

Theorem 118. Assume that the assumption of Theorem 114 holds. Further assume that u is the variance
reduction metric and I is the average sparsity constraint. Then Replacement OMP �nds a solution
(Z1, · · · , ZT) 2 I that satis�es

TX

t=1

ft(Zt) �

✓
�max(A, 2s)

�min(A, 2)

◆2✓
1� exp

✓
�
1

3

�min(A, 2)

�max(A, 2s)

◆◆ TX

t=1

ft(Z
⇤

t)

in O(Tk(n log T + ds)) time.

Proof. In each iteration, we need to �nd an atom with the largest gain and the corresponding new
supports (Z 0

1, . . . , Z
0
t). This can be done in O(nT log T) time. Furthermore, we need to compute a new

coe�cient w(Z0
t)

t = A+
Z0
t
yt for the new support Z 0

t (t 2 [T]), where A+ is the pseudo inverse. This can
be done e�ciently via maintaining the QR-decomposition ofAZt under rank-two update [Golub and

111

Van Loan, 2012] with a cost of O(s
2
+ ds) = O(ds) time for each matrix. Thus each iteration requires

O(T (n log T + ds)) time, which proves the theorem.

Remark 119. If �nding an atom with the largest gain is computationally intractable, we can add an
atom whose gain is no less than ⌧ times the largest gain. In this case, we can bound the approximation
ratio with replacing k0 with ⌧k0 in Theorems 112, 114 and 116.

6.6 Extensions to the Online Se�ing

Our algorithms can be extended to the following online setting. The problem is formulated as a two-
player game between a player and an adversary. At each round t = 1, . . . , T , the player must select
(possibly in a randomized manner) a dictionary Xt ✓ V with |Xt| k. Then, the adversary reveals a
data point yt 2 Rd and the player gains with respect to the best s-sparse approximation to yt with the
selected dictionary Xt:

ft(Xt) = max
Zt✓Xt : |Zt|s

max
wt : supp(wt)✓Zt

ut(wt),

where ut(wt) represents the quality of wt for the approximation of yt. The performance measure of a
player’s strategy is the expected ↵-regret:

regret↵(T) = ↵ max
X⇤:|X⇤|k

TX

t=1

ft(X
⇤
)�E

"
TX

t=1

ft(Xt)

#
,

where ↵ > 0 is a constant independent from T corresponding to the o�ine approximation ratio, and
the expectation is taken over the randomness in the player. Let gt(X) = maxZ✓X : |Z|s ft(Z) be the
objective function at the tth round. In the following, we provide the online versions of algorithms
for o�ine dictionary selection: Online SDSMA, Online Replacement Greedy, and Online Replacement
OMP.

6.6.1 Online SDSMA

The �rst algorithm is based on SDSMA for o�ine dictionary selection, which was proposed by Krause
and Cevher [2010] and given an improved analysis by Das and Kempe [2011]. At each round t, we
consider a function f̃t(Z) =

P
a2Z ft(a|?), which is a modular approximation of ft. Intuitively, the

modular approximation f̃t ignores the interactions among the atoms. We de�ne the surrogate objective
g̃t as

g̃t(X) = max
Z✓X : |Z|s

f̃t(Z). (6.17)

It is easy to show that g̃t is monotone submodular. Hence, we can apply the online greedy algo-
rithm [Streeter and Golovin, 2008] to these surrogate functions.
Assuming the strong concavity and smoothness of ut, the original objective function gt can be

bounded from lower and upper with the surrogate function g̃t. A similar result is given in Elenberg
et al. [2018] for o�ine sparse regression.

Lemma 120. Suppose ut ism1-strongly concave andM1-smooth on ⌦1, andms-strongly concave and
Ms-smooth on ⌦s. Then,

m1

Ms
g̃t(X) gt(X)

M1

ms
g̃t(X).

112

Proof. Let Z ✓ V be an arbitrary subset such that |Z| s. Since the submodularity ratio �?,s of f is
no less than ms/M1 [Elenberg et al., 2018],

ms

M1
ft(Z)

X

a2Z

f̃t(a) = f̃t(Z).

As this bound holds for any Z ✓ V of size no more than s, we have

gt(X) = max
Z✓X : |Z|s

ft(Z)
M1

ms
max

Z✓X : |Z|s
f̃t(Z) =

M1

ms
g̃t(X).

Next, we prove the lower bound of gt(X). From the optimality ofw(Z), for any z such that supp(z) ✓
Z ,

ft(Z) = ut(w
(Z)

)� ut(0)

� ut(z)� ut(0)

� hrut(0), zi �
Ms

2
kzk2

where the last inequality is due to the strong concavity of ut. Using z =
1
Ms

(rut(0))Z , we obtain

ft(Z) �
1

2Ms
k(rut(0))Zk

2
. (6.18)

On the other hand, from the smoothness of ut, we have for all a 2 Z ,

ft(a) = ut(w
(a)

)� ut(0)

 hrut(0),w
(a)
i �

m1

2
kw(a)

k
2

 max
c2R
hrut(0), ceai �

m1

2
kceak

2

=
1

2m1
(rut(0))

2
a.

Summing up for all a 2 Z , we obtain

f̃t(Z) =

X

a2Z

ft(a)
1

2m1
k(rut(0))Zk

2
. (6.19)

Combining (6.18) and (6.19), we obtain the lower bound

ft(Z) �
m1

Ms
f̃t(Z),

which proves the lower bound of gt(X) in the same way as the upper bound.

The expected regret of this algorithm can be bounded as follows.

Theorem 121. Let ↵ = (1�
1
e)

m1ms
M1Ms

. The expected ↵-regret of the modular approximation algorithm
after T rounds is bounded as follows.

regret↵(T)
k�maxm1

Ms

p

2T lnn

where n = |V | and �max = maxa2V maxt2[T] ft(a|?).

113

Proof. Applying the regret bound for online submodular maximization [Streeter and Golovin, 2008],
we obtain

✓
1�

1

e

◆ TX

t=1

g̃t(X
⇤
)�

TX

t=1

g̃t(Xt) k�max

p

2T lnn. (6.20)

since the gains for each subroutine are bounded by �max. From Lemma 120, we obtain the bound in
the statement.

In the case of ut(w) =
1
2kyk

2
2 �

1
2ky � xk22, ↵ is equal to an approximation ratio shown in Das and

Kempe [2011].

Corollary 122. For the variance reduction metric, the expected regret of the modular approximation
algorithm is

regret↵(T)
k�max

�max(A, s)

p

2T lnn,

where ↵ = (1�
1
e)

�min(A,s)
�max(A,s) .

6.6.2 Online Replacement Greedy

In the following, we provide online adaptation of Replacement Greedy. Similarly to Streeter and
Golovin [2008], we use k expert algorithms A1

, · · · ,A
k as subroutines. At each round, online Replace-

ment Greedy selects a set of k elements a1t , · · · , akt according to the expert algorithms A1
, · · · ,A

k,
respectively. After the target point yt is revealed, the algorithm decides the feedback to the subroutines
by considering how Zt changes if a1t , · · · , akt are added to X sequentially. As in the o�ine version
of Replacement Greedy, we start with Z

0
t = ? and consider adding a

i
t to Zt or not with keeping

|Zt| s for each i = 1, · · · , k. Denoting Zt at the ith step by Z
i
t , we can write the feedback given to

the subroutine Ai as �t(·, Z
i�1
t) where

�t(a, Z
i
t) =

8
><

>:

ft(Z
i
t + a)� ft(Z

i
t) (i < s)

max

(
0, max

a02Zi
t

�
ft(Z

i
t � a

0
+ a)� ft(Z

i
t)

)

(i � s)

is the gain obtained by adding a to Z
i
t . If �t(a

i
t, Z

i�1
t) > 0, the algorithm updates Zt by adding a

i
t

and, if i > s, removing a
0 that maximizing ft(Z

i�1
t � a

0
+ a

i
t). For each a 2 V , the value of gain

�t(a, Z
i�1
t) is given toAi as the feedback about a. A pseudocode description of our algorithm is shown

in Algorithm 18.

Theorem 123. Assume that ut is m2s-strongly concave on ⌦2s and Ms,2-smooth on ⌦s,2 for t 2 [T].
Then the online replacement greedy algorithm achieves the regret bound regret↵(T)

Pk
i=1 ri, where ri

is the regret of the online greedy selection subroutine Ai for i 2 [k] and

↵ =

✓
m2s

Ms,2

◆2✓
1� exp

✓
�
Ms,2

m2s

◆◆
.

In particular, if we use the hedge algorithm as the online greedy selection subroutines, we obtain regret↵(T)
k
p
2T lnn.

Corollary 124. For the variance reduction metric,

↵ �

✓
�min(A, 2s)

�max(A, 2)

◆2✓
1� exp

✓
�
�max(A, 2)

�min(A, 2s)

◆◆
.

114

Proof of Theorem 123. We provide a lower bound on the sum of the ith step marginal gains of the
algorithm. Let Z⇤

t be an optimal sparse subset of X⇤ for ft, i.e., Z⇤
t 2 argmaxZ✓X⇤ : |Z|s ft(Z). Then

we have
TX

t=1

�t(a
i
t, Z

i�1
t) � max

x2V

TX

t=1

�t(x, Z
i�1
t)� ri

�
1

k

X

a2X⇤

TX

t=1

�t(a, Z
i�1
t)� ri

�
1

k

TX

t=1

X

a2Z⇤
t

�t(a, Z
i�1
t)� ri

�
1

k

TX

t=1

�
C1ft(Z

⇤

i)� C2ft(Z
i�1
t)

�
� ri (6.21)

where C1 =
m2s
Ms,2

and C2 =
Ms,2

m2s
. The �rst inequality is due to the regret bound for the subroutine Ai.

The last inequality is due to Lemma 111. Now the theorem directly follows from Lemma 100.

6.6.3 Online Replacement OMP

In this section, we consider an online version of Replacement OMP. This algorithm is the same as
Online Replacement Greedy except the gain at each step. The gain obtained when a is added to Z

i
t is

1

2Ms,2

⇣
rut(w

(Zi
t)

t)

⌘2
a

when i < s, and

max

(
0,

1

2Ms,2

⇣
rut(w

(Zi
t)

t)

⌘2
a
� min

a02Zi
t

Ms,2

2

⇣
w

(Zi
t)

t

⌘2
a0

)

when i � s, where w(Zi
t)

t 2 argmaxw:supp(w)✓Zi
t
ut(w).

Theorem 125. Assume that ut is m2s-strongly concave on ⌦2s and Ms,2-smooth on ⌦s,2 for t 2 [T].
Then Online Replacement OMP algorithm achieves the regret bound regret↵(T)

Pk
i=1 ri, where ri is

the regret of the online greedy selection subroutine Ai for i 2 [k] and

↵ =

✓
m2s

Ms,2

◆2✓
1� exp

✓
�
Ms,2

m2s

◆◆
.

In particular, if we use the hedge algorithm as the online greedy selection subroutines, we obtain regret↵(T)
k
p
2T lnn.

Proof. Since ft isMs,2-smooth on ⌦s,2, it holds that for any a, a
0
2 V and Zt ✓ V of size at most s,

ft(Zt � a
0
+ a)� ft(Zt) �

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
a
�

Ms,2

2

⇣
w(Zt)

t

⌘2
a0
.

In addition, we have

1

2Ms,2
k(rut(w

(Z)
))X\Zk

2
�

Ms,2

2
k(w(Z)

)Z\Xk
2

m2s

Ms,2
f(X)�

Ms,2

ms2
f(Z)

115

from the proof of Lemma 111.
We provide a lower bound on the ith step marginal gain of the algorithm. Let Z⇤

t be an optimal
sparse subset of X⇤ for ft, i.e., Z⇤

t 2 argmaxZ✓X⇤ : |Z|s ft(Z). If i s, then |Z
i�1
t | < s holds for all

t. Then we have
TX

t=1

�t(a
i
t, Z

i�1
t) =

TX

t=1

�
ft(Z

i�1
t + a

i
t)� ft(Z

i�1
t)

�

TX

t=1

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
ait

� max
ai2V

TX

t=1

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
ai
� ri

�
1

k

X

a2X⇤

TX

t=1

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
a
� ri

�
1

k

TX

t=1

X

a2Z⇤
t \Zt

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
a
� ri

�
1

k

TX

t=1

1

2Ms,2

���rut(w(Zt)
t)

���
2

Z⇤
t \Zt

� ri

�
1

k

TX

t=1

✓
ms,2

Ms,2
ft(Z

⇤

i)�
Ms,2

m2s
ft(Z

i�1
t)

◆
� ri.

Otherwise, |Zi�1
t | = s holds for all t, therefore

TX

t=1

�t(a
i
t, Z

i�1
t) �

TX

t=1

max

⇢
0, max

a0t2Zt

�
ft(Zt � a

0

t + a
i
t)� ft(Zt)

 �

�

TX

t=1

max

⇢
0,

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
ait
� min

a0t2Zt

Ms,2

2

⇣
w(Zt)

t

⌘2
a0t

�

� max
ai2V

TX

t=1

max

⇢
0,

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
ai
� min

a0t2Zt

Ms,2

2

⇣
w(Zt)

t

⌘2
a0t

�
� ri

�
1

k

X

a2X⇤

TX

t=1

max

⇢
0,

1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
a
� min

a0t2Zt

Ms,2

2

⇣
w(Zt)

t

⌘2
a0t

�
� ri

�
1

k

TX

t=1

X

a2Z⇤
t \Zt

⇢
1

2Ms,2

⇣
rut(w

(Zt)
t)

⌘2
a
�

Ms,2

2

⇣
w(Zt)

t

⌘2
⇡t(a)

�
� ri

�
1

k

TX

t=1

⇢
1

2Ms,2

���(rut(w(Zt)
t))Z⇤

t \Zt

���
2
�

Ms,2

2

���(w(Zt)
t)Zt\Z⇤

t

���
2
�
� ri

�
1

k

TX

t=1

✓
m2s

Ms,2
ft(Z

⇤

i)�
Ms,2

m2s
ft(Z

i�1
t)

◆
� ri. (6.22)

where a map ⇡t : Z⇤
t \ Zt ! Zt \ Z

⇤
t is an arbitrary bijection for each t.

Combining with Lemma 100, we obtain the theorem.

116

Algorithm 18 Online Replacement Greedy & Online Replacement OMP
1: Initialize online greedy selection subroutines Ai for i = 1, . . . , k.
2: for t = 1, . . . , T do
3: Initialize X0

t ? and Z
0
t ? for all t 2 [T].

4: for i = 1, . . . , k do
5: Pick a

i
t 2 V according to A

i.
6: Set Xi

t X
i�1
t + a

i
t.

7: Play X
k
t and observe yt.

8: for i = 1, . . . , k do
9: To the subroutine Ai, feed the gain of a de�ned as

• �t(a, Z
i�1
t) (Online Replacement Greedy)

•

8
>>><

>>>:

1

Ms,2

⇣
rut

⇣
w(Zt)

t

⌘⌘2
a

if i s,

max

(
0,

1

Ms,2

✓
rut(w

(Zi�1
t)

t)

◆2

a

�Ms,2 min
a0t2Z

i�1
t

✓
w

(Zi�1
t)

t

◆2

a0t

)
otherwise

(Online Replacement OMP)

10: Do the optimal replacement of Zi�1
t with respect to a

i
t that achieves the above gain for

Replacement Greedy or Replacement OMP, and obtain Z
i
t .

6.7 Experiments

In this section, we empirically evaluate our proposed algorithms on several dictionary selection problems
with synthetic and real-world datasets. We use the variance reduction metric for all of the experiments.
Since evaluating the value of the objective function is NP-hard, we plot the approximated residual
variance obtained by orthogonal matching pursuit.

Ground set We use the ground set consisting of several orthonormal bases that are standard choices
in signal and image processing, such as 2D discrete cosine transform and several 2D discrete wavelet
transforms (Haar, Daubechies 4, and coi�et). In all of the experiments, the dimension is set to d = 64,
which corresponds to images of size 8⇥ 8 pixels. The size of the ground set is n = 256.

Machine All the algorithms are implemented in Python 3.6. We conduct the experiments in a machine
with Intel Xeon E3-1225 V2 (3.20 GHz and 4 cores) and 16 GB RAM.

Datasets We conduct experiments on two types of datasets. The �rst one is a synthetic dataset. In
each trial, we randomly pick a dictionary with size k out of the ground set, and generate sparse linear
combinations of the columns of this dictionary. The weights of the linear combinations are generated
from the standard normal distribution. The second one is a dataset of real-world images extracted from
PASCAL VOC2006 image datasets [Everingham et al., 2006]. In each trial, we randomly select an image
out of 2618 images and divide it into patches of 8⇥ 8 pixels, then select T patches uniformly at random.
All the patches are normalized to zero mean and unit variance. We make datasets for training and
test in the same way, and use the training dataset for obtaining a dictionary and the test dataset for
measuring the quality of the output dictionary.

117

(a) synthetic, T = 100, time (b) synthetic, T = 100, residual (c) voc, T = 100, residual

(d) synthetic, T = 1000, time (e) synthetic, T = 1000, residual (f) voc, T = 1000, residual

(g) synthetic, T = 1000, time (h) synthetic, T = 1000, residual (i) voc, T = 1000, residual

Figure 6.1: The experimental results for the o�ine setting. In all �gures, the horizontal axis indicates
the size of the output dictionary. (a), (b), and (c) are the results for T = 100. (d), (e), and
(f) are the results for T = 1000. (g), (h), and (i) are the results for T = 1000 with an
average sparsity constraint. For each setting, we provide the plot of the running time for the
synthetic dataset, test residual variance for the synthetic dataset, and test residual variance
for VOC2006 image dataset.

118

6.7.1 Experiments on the O�line Se�ing

We implement our proposed methods, Replacement Greedy (RG) and Replacement OMP (RepOMP),
as well as the existing methods for dictionary selection, SDSMA and SDSOMP. We also implement a
heuristically modi�ed version of RepOMP, which we call RepOMPd. In RepOMPd, we replaceMs,2

with some parameter that decreases as the size of the current dictionary grows, which prevents the
gains of all the atoms from being zero. Here we useMs,2/

p
i as the decreasing parameter where i is

the number of iterations so far. In addition, we compare these methods with standard methods for
dictionary learning,MOD [Engan et al., 1999] and KSVD [Aharon et al., 2006], which is set to stop when
the change of the objective value becomes no more than 10

�6 or 200 iterations are �nished. Orthogonal
matching pursuit is used as a subroutine in both methods.

First, we compare the methods for dictionary selection with small datasets of T = 100. The parameter
of sparsity constraints is set to s = 5. The results averaged over 20 trials are shown in Figure 6.1(a),
(b), and (c). The plot of the running time for VOC2006 datasets is omitted as it is much similar to that
for synthetic datasets. In terms of running time, SDSMA is the fastest, but the quality of the output
dictionary is unsatisfactory. RepOMP is several magnitudes faster than SDSOMP and RG, but its quality
is almost the same with SDSOMP and RG. In Figure 6.1(b), test residual variance of SDSOMP, RG, and
RepOMP are overlapped, and in Figure 6.1(c), test residual variance of RepOMP is slightly worse than
that of SDSOMP and RG. From these results, we can conclude that RepOMP is by far the most practical
method for dictionary selection.

Next, we compare the dictionary selection methods with the dictionary learning methods with larger
datasets of T = 1000. SDSOMP and RG are omitted because they are too slow to be applied to datasets
of this size. The results averaged over 20 trials are shown in Figure 6.1(d), (e), and (f). In terms of
running time, RepOMP and RepOMPd are much faster than MOD and KSVD, but their performances
are competitive withMOD and KSVD.
Finally, we conduct experiments with the average sparsity constraints. We compare RepOMP and

RepOMPd with Algorithm 17 with a variant of SDSMA proposed for average sparsity in Cevher and
Krause [2011]. The parameters of constraints are set to st = 8 for all t 2 [T] and s

0
= 5T . The results

averaged over 20 trials are shown in Figure 6.1(g), (h), and (i). RepOMP and RepOMPd outperform
SDSMA both in running time and quality of the output.
In Section 6.7.3, We provide further experimental results. There we provide examples of image

restoration, in which the average sparsity works better than the standard dictionary selection.

6.7.2 Experiments on the Online Se�ing

Here we give the experimental results on the online setting. We implement the online version of SDSMA,
RG and RepOMP, as well as an online dictionary learning algorithm proposed by Mairal et al. [2010].
For all the online dictionary selection methods, the hedge algorithm is used as the subroutines. The
parameters are set to k = 20 and s = 5. The results averaged over 50 trials are shown in Figure 6.2(a),
(b). For both datasets, Online RepOMP shows a better performance than Online SDSMA, Online RG,
and the online dictionary learning algorithm.

6.7.3 Experiments on Dimensionality Reduced Data

In this section, we conduct experiments on the task called image restoration. In this task, we are given an
incomplete image, that is, a portion of its pixels are missing. First, we divide this incomplete image into
small patches of 8⇥ 8 pixels. Then we regard each of these patches as a data point yt, and aim to select
a dictionary that yields a sparse representation of these patches. In the procedure of the algorithms, the
loss is evaluated only on the given pixels. Finally, we restore the original image by replacing each patch

119

(a) synthetic (b) voc

Figure 6.2: The experimental results for the online setting. In both �gures, the horizontal axis indicates
the number of rounds. (a) is the result with synthetic datasets, and (b) is the result with
VOC2006 image datasets.

with a sparse approximation using the selected dictionaries, and the loss is evaluated on the whole
pixels.

First, we conduct experiments with synthetic datasets to investigate the behavior of the algorithms.
For each of the training and test datasets, we generate a bit mask such that each value takes 0 or 1 with
equal probability. We give the masked training dataset to the algorithms and let them learn a dictionary.
With this dictionary, we create the sparse representation of each data point in the test dataset with only
unmasked elements and evaluate its residual variance with the whole elements. Figure 6.3(a) and 6.3(b)
are the results for smaller datasets of T = 100, and Figure 6.3(c) and 6.3(d) are the results for larger
datasets of T = 1000. In both experiments, we can see the relationship of the algorithms’ performance
is similar to the one in the non-masked settings, Figure 6.1(a), 6.1(b), 6.1(d), and 6.1(e).
In order to illustrate the advantage of the average sparsity to ordinary dictionary learning (the

individual sparsity), we give image restoration examples with real-world images. We use Replacement
OMP for both the individual sparsity and the average sparsity. With setting st = s for all t 2 [T],
the parameters k, s, and s

0 are determined with the grid search. We apply Replacement OMP to
incomplete images and obtain a dictionary. Then with this dictionary, we repeatedly compute the sparse
representation of patches in the input image while shifting a single pixel. OMP is used for obtaining the
sparse representation. When calculating the coe�cients of the sparse representation of each patch, we
use only the observed pixels and restore the whole pixels with these coe�cients. We take the median
value of all the restored patches for each pixel. In Figure 6.4, the input image, the image restored with
the individual sparsity, and the image restored with the average sparsity are shown with PSNR ratios.
The method with the average sparsity obtains higher PSNR ratios than one with the individual sparsity
for all the images.

6.8 Summary and Future Work

In this chapter, we developed greedy algorithms for dictionary selection. We generalized the problem
setting of dictionary selection by introducing p-replacement sparsity families and showed that existing
sparsity constraints can be regarded as special cases of these families. Next we developed Replacement
Greedy, Replacement OMP, and Replacement Deletion-OMP and gave lower bounds on their approxi-
mation ratios. We provided fast implementation of Replacement OMP for average sparsity constraints.
We formulated the problem setting of online dictionary selection and proposed Online Replacement
Greedy, Online Replacement OMP, and Online SDSMA. Finally, we conducted experiments for synthetic
and real datasets to show the practical e�ciency of Replacement OMP.

120

(a) T = 100, time (b) T = 100, residual

(c) T = 1000, time (d) T = 1000, residual

Figure 6.3: The experimental results for dimensionality reduced synthetic datasets. In all �gures, the
horizontal axis indicates the size of the output dictionary. (a) and (b) are the results for
T = 100. (c) and (d) are the results for T = 1000. For each setting, we give the plot of the
running time and the test residual variance.

121

An interesting direction for future work is to consider how to decide the ground set for dictionary
selection. The ground set for dictionary selection is usually made from existing domain-speci�c
dictionaries such as DCT or wavelets. The quality of dictionaries returned by algorithms heavily
depends on how well the ground set �ts into the given dataset. Hence it is vital to consider how we can
decide a better ground set for the given dataset.

122

(a) Input (b) individual, 34.42dB (c) average, 34.62dB

(d) Input (e) individual, 32.18dB (f) average, 32.25dB

(g) Input (h) individual, 33.94dB (i) average, 34.14dB

(j) Input (k) individual, 33.16dB (l) average, 33.40dB

Figure 6.4: The results of the image restoration experiment from images with 80% of pixels missing.

123

Conclusion

In this dissertation, we have proposed two new notions of approximate submodularity and developed
e�cient algorithms for various machine learning problems based on them.

The �rst notion is approximate submodularity for adaptive optimization. In Chapter 3, we de�ned the
adaptive submodularity ratio, which represents the closeness of an objective function to the adaptive
submodular functions. We showed that the adaptive submodularity ratio is bounded for adaptive
in�uence maximization in bipartite graphs and adaptive feature selection. As we showed, if the
adaptive submodularity ratio is bounded, we can provide a theoretical guarantee for the adaptive
greedy algorithm and a lower bound of the adaptivity gap. In Chapter 4, we extended the result on
the adaptive submodularity ratio to the batch-mode setting, through which we required to re�ne the
existing framework for the batch-mode setting. We de�ned set-adaptive submodularity, which is a
strictly stronger property than adaptive submodularity, and showed that this property is satis�ed in
many important applications. We also dealt with the batch-mode setting where the set of feasible
batches at each step is determined under a combinatorial constraint.
The second notion is approximate submodularity for local search. In Chapter 5, we showed that

the objective function of feature selection satis�es an approximate submodularity that can be utilized
for analyzing local search algorithms. We proposed several variants of local search algorithms for a
matroid constraint, p-matroid intersection constraint, or p-exchange system constraint. We conduct
experiments on sparse linear regression and structure learning of graphical models to validate the
practical e�ectiveness of the proposed algorithms. In Chapter 6, we studied the two-stage version
of feature selection with strong motivation for applying it to dictionary selection. We proposed
Replacement OMP, which is obtained by accelerating Replacement Greedy. We also proposed the class
of p-replacement sparsity constraints, which enables us to utilize prior knowledge about relationships
among variables.
Through this dissertation, we have seen that the approach based on approximate submodularity is

e�ective for analyzing and devising practical algorithms for machine learning problems. Applications
of the proposed frameworks range broadly from viral marketing to dictionary selection, but we believe
there are still many possible applications of this approach.

A possible direction of future research is to develop a framework for minimization of approximately
submodular functions. Submodular minimization has been applied to various machine learning problems
such as regularization [Bach, 2013], clustering [Nagano et al., 2010], and image segmentation [Jegelka and
Bilmes, 2011]. While maximization of approximately submodular functions has been studied extensively
as described in this dissertation, there are only a few studies on the minimization side. Minimizing
approximately submodular functions might yield novel e�cient algorithms for regularization that does
not satisfy submodularity.

Another direction is to apply the approach of approximate submodularity to problems in algorithmic
game theory. It is known that utility functions about substitutable goods, such as tomatoes from
di�erent farms, are naturally expressed as submodular functions [Lehmann et al., 2006]. If there exist
complementary goods, such as left and right shoes, submodularity does not hold. The frameworks
of approximate submodularity developed for machine learning problems might be applied to such a
game-theoretic scenario where both substitutability and complementarity exist.

125

Bibliography

Yahoo! webscope dataset: G1 - Yahoo! Search Marketing Advertiser-Phrase Bipartite Graph, Version
1.0. URL https://webscope.sandbox.yahoo.com/.

Alekh Agarwal, Animashree Anandkumar, Prateek Jain, and Praneeth Netrapalli. Learning sparsely
used overcomplete dictionaries via alternating minimization. SIAM Journal on Optimization, 26(4):
2775–2799, 2016.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

Noga Alon, Iftah Gamzu, and Moshe Tennenholtz. Optimizing budget allocation among channels and
in�uencers. In Proceedings of the 21st World Wide Web Conference (WWW), pages 381–388, 2012.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature learning.
Machine Learning, 73(3):243–272, 2008.

Sanjeev Arora, Rong Ge, and Ankur Moitra. New algorithms for learning incoherent and overcomplete
dictionaries. In Proceedings of the Conference on Learning Theory (COLT), pages 779–806, 2014.

Francis R. Bach. Learning with submodular functions: A convex optimization perspective. Foundations
and Trends in Machine Learning, 6(2-3):145–373, 2013.

Francis R. Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106, 2012.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming
submodular maximization: massive data summarization on the �y. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 671–680,
2014.

Sohail Bahmani, Bhiksha Raj, and Petros T. Boufounos. Greedy sparsity-constrained optimization.
Journal of Machine Learning Research, 14(1):807–841, 2013.

Eric Balkanski, Baharan Mirzasoleiman, Andreas Krause, and Yaron Singer. Learning sparse combinato-
rial representations via two-stage submodular maximization. In Proceedings of The 33rd International
Conference on Machine Learning (ICML), pages 2207–2216, 2016.

MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam. Submodular
secretary problem and extensions. ACM Transactions on Algorithms, 9(4):32:1–32:23, 2013.

Julian Besag. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society: Series D, 24
(3):179–195, 1975.

Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guarantees
for greedy maximization of non-submodular functions with applications. In Proceedings of the 34th
International Conference on Machine Learning (ICML), pages 498–507, 2017.

127

https://webscope.sandbox.yahoo.com/

Ilija Bogunovic, Junyao Zhao, and Volkan Cevher. Robust maximization of non-submodular objectives.
In Proceedings of the 21st International Conference on Arti�cial Intelligence and Statistics (AISTATS),
pages 890–899, 2018.

Guy Bresler. E�ciently learning ising models on arbitrary graphs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing (STOC), pages 771–782, 2015.

Niv Buchbinder, Moran Feldman, JosephNaor, and Roy Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):1384–1402, 2015.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal Computing, 40(6):1740–1766, 2011.

Emmanuel J. Candes and Terence Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203–4215, 2005.

Volkan Cevher and Andreas Krause. Greedy dictionary selection for sparse representation. IEEE Journal
of Selected Topics in Signal Processing, 5(5):979–988, 2011.

Lin Chen, Moran Feldman, and Amin Karbasi. Weakly submodular maximization beyond cardinality
constraints: Does randomization help greedy? In Proceedings of the 35th International Conference on
Machine Learning (ICML), pages 803–812, 2018a.

Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular maximization. In
Proceedings of the 21st International Conference on Arti�cial Intelligence and Statistics (AISTATS), pages
1896–1905, 2018b.

Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra. Approximating
matches made in heaven. In Proceedings of the 36th International Colloquium of Automata, Languages
and Programming (ICALP), pages 266–278, 2009.

Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive submodular
optimization. In Proceedings of the Thirtieth International Conference on Machine Learning (ICML),
pages 160–168, 2013.

Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos, Lian Pin Koh, Serge Wich, and Andreas Krause.
Active detection via adaptive submodularity. In Proceedings of the 31th International Conference on
Machine Learning, (ICML), pages 55–63, 2014.

Yuxin Chen, S. Hamed Hassani, Amin Karbasi, and Andreas Krause. Sequential information maximiza-
tion: When is greedy near-optimal? In Proceedings of the 28th Conference on Learning Theory (COLT),
pages 338–363, 2015.

C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467, 1968.

Yang Cong, Junsong Yuan, and Jiebo Luo. Towards scalable summarization of consumer videos via
sparse dictionary selection. IEEE Transactions on Multimedia, 14(1):66–75, 2012.

Yang Cong, Ji Liu, Gan Sun, Quanzeng You, Yuncheng Li, and Jiebo Luo. Adaptive greedy dictionary
selection for web media summarization. IEEE Transactions on Image Processing, 26(1):185–195, 2017.

128

Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhauser. Location of bank accounts to optimize
�oat: An analytic study of exact and approximate algorithms. Management Science, 23(8):789–810,
1977.

Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. In Proceedings of the 28th International Conference on
Machine Learning (ICML), pages 1057–1064, 2011.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information
Processing Systems (NIPS) 17, pages 337–344, 2004.

Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic knapsack problem:
The bene�t of adaptivity. Mathematics of Operations Research, 33(4):945–964, 2008.

Bogdan Dumitrescu and Paul Irofti. Dictionary Learning Algorithms and Applications. Springer, 2018.

Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand Negahban. Restricted strong
convexity implies weak submodularity. Annals of Statistics, 46(6B):3539–3568, 2018.

Kjersti Engan, Sven O. Aase, and John Hakon Husoy. Method of optimal directions for frame design.
In Proceedings of the IEEE International Conference on the Acoustics, Speech, and Signal Processing
(ICASSP), pages 2443–2446, 1999.

Mark Everingham, Andrew Zisserman, Chris K. I. Williams, and Luc Van Gool. The
PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-
network.org/challenges/VOC/voc2006/results.pdf, 2006.

Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.

Uriel Feige and Rani Izsak. Welfare maximization and the supermodular degree. In Innovations in
Theoretical Computer Science (ITCS), pages 247–256, 2013.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.

Moran Feldman. Maximization Problems with Submodular Objective Functions. PhD thesis, Computer
Science Department, Technion - Israel Institute of Technology, 2013.

Moran Feldman and Rani Izsak. Constrained monotone function maximization and the supermodular
degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 160–175, 2014.

Moran Feldman, Joseph Naor, Roy Schwartz, and Justin Ward. Improved approximations for k-exchange
systems (extended abstract). In Proceedings of the 19th Annual European Symposium on Algorithms
(ESA), pages 784–798, 2011.

Alan Fern, Robby Goetschalckx, MandanaHamidi-Haines, and Prasad Tadepalli. Adaptive submodularity
with varying query sets: An application to active multi-label learning. In Proceedings of the 28th
International Conference on Algorithmic Learning Theory (ALT), pages 577–592, 2017.

Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-oblivious
local search. SIAM Journal on Computing, 43(2):514–542, 2014.

129

Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approximations for
maximizing submodular set functions—II, pages 73–87. Springer Berlin Heidelberg, Berlin, Heidelberg,
1978.

Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Springer, 2013.

Kaito Fujii and Hisashi Kashima. Budgeted stream-based active learning via adaptive submodular
maximization. In Advances in Neural Information Processing Systems (NIPS) 29, pages 514–522, 2016.

Kaito Fujii and Shinsaku Sakaue. Beyond adaptive submodularity: Approximation guarantees of greedy
policy with adaptive submodularity ratio. In Proceedings of the 36th International Conference on
Machine Learning (ICML), pages 2042–2051, 2019.

Kaito Fujii and Tasuku Soma. Fast greedy algorithms for dictionary selection with generalized sparsity
constraints. In Advances in Neural Information Processing Systems (NeurIPS) 31, pages 4749–4758,
2018.

Satoru Fujishige. Submodular Functions and Optimization. Elsevier, 2nd edition, 2005.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S. Muthukrishnan. Adaptive
submodular maximization in bandit setting. In Advances in Neural Information Processing Systems
(NIPS) 26, pages 2697–2705, 2013.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S. Muthukrishnan. Large-scale
optimistic adaptive submodularity. In Proceedings of the 28th AAAI Conference on Arti�cial Intelligence
(AAAI), pages 1816–1823, 2014.

Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active learning and
stochastic optimization. CoRR, abs/1003.3967, 2010.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Arti�cial Intelligence Research, 42:427–486, 2011a.

Daniel Golovin and Andreas Krause. Adaptive submodular optimization under matroid constraints.
CoRR, abs/1101.4450, 2011b.

Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning with noisy
observations. In Advances in Neural Information Processing Systems (NIPS) 23, pages 766–774, 2010.

Gene H. Golub and Charles F. Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

Alon Gonen, Sivan Sabato, and Shai Shalev-Shwartz. E�cient active learning of halfspaces: An
aggressive approach. Journal of Machine Learning Research, 14:2583–2615, 2013.

Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications. In Pro-
ceedings of the 16th International Conference of Integer Programming and Combinatorial Optimization
(IPCO), pages 205–216, 2013.

Daisuke Hatano, Takuro Fukunaga, and Ken-ichi Kawarabayashi. Adaptive budget allocation for
maximizing in�uence of advertisements. In Proceedings of the 25th International Joint Conference on
Arti�cial Intelligence (IJCAI), pages 3600–3608, 2016.

130

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch mode active learning and its
application to medical image classi�cation. In Proceedings of the 23rd International Conference of
Machine Learning (ICML), pages 417–424, 2006.

Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In Advances in
Neural Information Processing Systems (NIPS) 29, pages 3045–3053, 2016.

Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. Journal of
Machine Learning Research, 12:3371–3412, 2009.

Ali Jalali, Christopher C. Johnson, and Pradeep Ravikumar. On learning discrete graphical models using
greedy methods. In Advances in Neural Information Processing Systems (NIPS) 24, pages 1935–1943,
2011.

Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, Drew Bagnell, and Siddhartha S. Srinivasa.
Near optimal bayesian active learning for decision making. In Proceedings of the 17th International
Conference on Arti�cial Intelligence and Statistics (AISTATS), pages 430–438, 2014.

Stefanie Jegelka and Je� A. Bilmes. Submodularity beyond submodular energies: Coupling edges in
graph cuts. In The 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1897–1904, 2011.

T. A. Jenkyns. The e�cacy of the “greedy” algorithm. In Proceedings of the 7th Southeastern Conference
on Combinatorics, Graph Theory, and Computing, pages 341–350, 1976.

Satyen Kale, Zohar Karnin, Tengyuan Liang, and Dávid Pál. Adaptive feature selection: Computationally
e�cient online sparse linear regression under RIP. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 1780–1788, 2017.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of in�uence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 137–146, 2003.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of in�uence through a social
network. Theory of Computing, 11:105–147, 2015.

Rajiv Khanna, Ethan Elenberg, Alexandros Dimakis, Joydeep Ghosh, and Sahand Negahban. On
approximation guarantees for greedy low rank optimization. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 1837–1846, 2017.

Adam R. Klivans and Raghu Meka. Learning graphical models using multiplicative weights. In
Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
343–354, 2017.

Mladen Kolar and Eric Xing. Ultra-high dimensional multiple output learning with simultaneous
orthogonal matching pursuit: Screening approach. In Proceedings of the 13th International Conference
on Arti�cial Intelligence and Statistics (AISTATS), pages 413–420, 2010.

Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse representation. In
Proceedings of the 27th International Conference on Machine Learning (ICML), pages 567–574, 2010.

Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, e�cient algorithms and empirical studies. Journal of Machine Learning Research,
9:235–284, 2008.

131

Matt J Kusner. Approximately adaptive submodular maximization. In NIPS Workshop on Discrete and
Combinatorial Problems in Machine Learning, 2014.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple matroids via
generalized exchange properties. Mathematics of Operations Research, 35(4):795–806, 2010.

Jon Lee, Maxim Sviridenko, and Jan Vondrák. Matroid matching: The power of local search. SIAM
Journal on Computing, 42(1):357–379, 2013.

Benny Lehmann, Daniel J. Lehmann, and NoamNisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 55(2):270–296, 2006.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-e�ective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pages 420–429, 2007a.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, JeanneM. VanBriesen, and Natalie S.
Glance. Cost-e�ective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pages 420–429, 2007b.

Edo Liberty and Maxim Sviridenko. Greedy minimization of weakly supermodular set functions. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM), pages 19:1–19:11, 2017.

Hui Lin and Je� A. Bilmes. A class of submodular functions for document summarization. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies (ACL), pages 510–520, 2011.

Aurélie C. Lozano and Grzegorz Swirszcz. Multi-level lasso for sparse multi-task regression. In
Proceedings of the 29th International Coference on International Conference on Machine Learning
(ICML), pages 595–602, 2012.

Takanori Maehara, Yasushi Kawase, Hanna Sumita, Katsuya Tono, and Ken-ichi Kawarabayashi. Optimal
pricing for submodular valuations with bounded curvature. In Proceedings of the 31st AAAI Conference
on Arti�cial Intelligence (AAAI), pages 622–628, 2017.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. Journal of Machine Learning Research, 17:238:1–238:44, 2016.

Kiyohito Nagano, Yoshinobu Kawahara, and Satoru Iwata. Minimum average cost clustering. In
Advances in Neural Information Processing Systems (NIPS) 23, pages 1759–1767, 2010.

Feng Nan and Venkatesh Saligrama. Comments on the proof of adaptive stochastic set cover based on
adaptive submodularity and its implications for the group identi�cation problem in "group-based
active query selection for rapid diagnosis in time-critical situations". IEEE Transactions on Information
Theory, 63(11):7612–7614, 2017.

Balas K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):
227–234, 1995.

132

Deanna Needell and Joel A. Tropp. Cosamp: iterative signal recovery from incomplete and inaccurate
samples. Communications of the ACM, 53(12):93–100, 2010.

Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A uni�ed framework for
high-dimensional analysis of M -estimators with decomposable regularizers. Statistical Science, 27(4):
538–557, 2012.

George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for
maximizing submodular set functions - I. Mathematical Programming, 14(1):265–294, 1978.

Guillaume Obozinski, Ben Taskar, and Michael Jordan. Multi-task feature selection. In In the workshop
of structural Knowledge Transfer for Machine Learning in the 23rd International Conference on Machine
Learning (ICML), 2006.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining the
predictions of any classi�er. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 1135–1144, 2016.

Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Double sparsity: learning sparse dictionaries
for sparse signal approximation. IEEE Transactions on Signal Processing, 58(3):1553–1564, 2010.

Cristian Rusu, Bogdan Dumitrescu, and Sotirios A. Tsaftaris. Explicit shift-invariant dictionary learning.
IEEE Signal Processing Letters, 21(1):6–9, 2014.

Shinsaku Sakaue. On maximization of weakly modular functions: Guarantees of multi-stage algorithms,
tractability, and hardness. CoRR, abs/1805.11251, 2019.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and E�ciency. Springer, Berlin, 2003.

Burr Settles. Active Learning. Synthesis Lectures on Arti�cial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.

Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, and Ken-ichi Kawarabayashi. Optimal budget
allocation: Theoretical guarantee and e�cient algorithm. In Proceedings of the 31th International
Conference on Machine Learning (ICML), pages 351–359, 2014.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of the 27th
International Conference on Machine Learning (ICML), pages 1015–1022, 2010.

Serban Stan, Morteza Zadimoghaddam, Andreas Krause, and Amin Karbasi. Probabilistic submodular
maximization in sub-linear time. Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 3241–3250, 2017.

Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. In
Advances in Neural Information Processing Systems (NIPS) 21, pages 1577–1584, 2008.

Matthew J. Streeter, Daniel Golovin, and Andreas Krause. Online learning of assignments. In Advances
in Neural Information Processing Systems (NIPS) 22, pages 1794–1802, 2009.

133

Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint.
Operations Research Letters, 32(1):41–43, 2004.

Youze Tang, Xiaokui Xiao, and Yanchen Shi. In�uence maximization: near-optimal time complexity
meets practical e�ciency. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 75–86, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B, 58(1):267–288, 1996.

Joel A. Tropp, Anna C. Gilbert, and Martin J. Strauss. Algorithms for simultaneous sparse approximation.
part I: Greedy pursuit. Signal Processing, 86(3):572–588, 2006.

Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing and general
k-exchange systems. In Proceedings of the 29th International Symposium on Theoretical Aspects of
Computer Science (STACS), pages 42–53, 2012.

Mehrdad Yaghoobi, Laurent Daudet, and Michael E. Davies. Dictionary subselection using an overcom-
plete joint sparsity model. IEEE Transactions on Signal Processing, 62(17):4547–4556, 2014.

Sze Zheng Yong, Lingyun Gao, and N. Ozay. Weak adaptive submodularity and group-based active
diagnosis with applications to state estimation with persistent sensor faults. In 2017 American Control
Conference (ACC), pages 2574–2581, 2017.

Tong Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE
Transactions on Information Theory, 57(7):4689–4708, 2011.

Mingyuan Zhou, Haojun Chen, Lu Ren, Guillermo Sapiro, Lawrence Carin, and John W Paisley. Non-
parametric bayesian dictionary learning for sparse image representations. In Advances in Neural
Information Processing Systems (NIPS) 22, pages 2295–2303. 2009.

134

	Introduction
	Submodularity in Machine Learning
	From Submodularity to Approximate Submodularity
	Approximate Submodularity in Adaptive Optimization
	Approximate Submodularity for Local Search
	Relevant Applications
	Thesis Organization
	Bibliographic Notes
	Basic Notation

	Background and Related Work
	Submodular Maximization
	Greedy Algorithms for Submodular Maximization
	Local Search for Submodular Maximization

	Approximate Submodularity
	Submodularity Ratio
	Feature Selection for Sparse Linear Regression
	Restricted Strong Concavity and Restricted Smoothness
	Other Concepts for Approximate Submodularity

	Adaptive Submodularity
	Adaptive Stochastic Optimization
	Adaptive Submodularity and Adaptive Monotonicity

	Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio
	Background and Overview
	Adaptive Submodularity Ratio
	Adaptive Greedy Algorithm
	Non-adaptive Policies and Adaptivity Gaps
	Adaptive Influence Maximization
	Bound of Adaptive Submodularity Ratio
	Bound of Adaptivity Gap
	Full Proofs for Adaptive Influence Maximization
	Example for the Case of General Graphs

	Adaptive Feature Selection
	Bound of Adaptive Submodularity Ratio
	Bound of Adaptivity Gap

	Experiments
	Adaptive Influence Maximization
	Adaptive Feature Selection

	Related Work
	Counterexample to the Statement of Kusner14
	About Comparison with YGO17

	Summary and Future Work

	Batch-mode Adaptive Optimization with Structured Queries
	Background and Overview
	Batch-mode Adaptive Optimization
	Applications
	Batch-mode Active Learning
	Batch-mode Influence Maximization
	Batch-mode Adaptive Feature Selection

	Set-Adaptive Submodularity
	Batch-mode Adaptive Greedy Algorithm
	Greedy Selection
	Reduction from Batch-mode Setting to Fully Adaptive Setting

	Beyond Set-Adaptive Submodularity
	Other Extensions
	Outer Matroid Constraints
	Online Setting
	Query-Varying Setting

	Experiments
	Experiments on Active Learning
	Experiments on Adaptive Influence Maximization in the IC model
	Experiments on Bipartite Influence Maximization in the Triggering Model
	Experiments on Adaptive Feature Selection

	Related Work
	Summary and Future Work

	Local Search for Feature Selection with Structured Constraints
	Background and Overview
	Related Work

	Problem Setting
	Preliminaries
	Modular Approximation

	Approximate Submodularity for Local Search
	Applications
	Sparse Regression
	Structure Learning of Graphical Models

	Algorithms for a Matroid Constraint
	Variants of Geometric Improvement

	Algorithms for p-Matroid Intersection and p-Exchange Systems
	Variants of Geometric Improvement

	Experiments
	Experiments on Sparse Regression
	Experiments on Structure Learning of Graphical Models

	Summary and Future Work

	Fast Greedy Algorithms for Dictionary Selection
	Background and Overview
	Related Work

	Preliminaries
	Problem Setting
	Multi-task Feature Selection

	p-Replacement Sparsity Families
	Individual Matroids
	Block Sparsity
	Average Sparsity

	Algorithms
	Replacement Greedy
	Replacement OMP
	Replacement Deletion-OMP
	Fast Implementation for Average Sparsity Constraints

	Extensions to the Online Setting
	Online SDSMA
	Online Replacement Greedy
	Online Replacement OMP

	Experiments
	Experiments on the Offline Setting
	Experiments on the Online Setting
	Experiments on Dimensionality Reduced Data

	Summary and Future Work

	Conclusion

