[

Online Optimization with Limited Information

(5 N7 884 = > 5 1 v k)

(LY RGPS

Online Optimization with Limited Information

Shinji Ito

March 2, 2020

Abstract

In this thesis, we study online optimization problems in which we can get only partial feed-
back on objective functions. Our aim is twofold: One is to provide sophisticated methods for
information-limited online optimization problems that are computationally efficient and achieve
small regrets, i.e., perform almost as well as optimal non-adaptive strategies. The other aim
is to assess the “price of information” and the “price of computation” in the context of online
optimization, i.e., how the feedback information and computational resources affect the opti-
mality of decision making, so as to obtain a deeper understanding of the relationship among
the following three concepts: information, computation, and optimality. To attain these goals,
we consider different problem settings, for each of which we provide algorithms and analyze
complexity.

This thesis presents algorithms for certain problem settings of information-limited online
optimization, which include linear (combinatorial) optimization, submodular function mini-
mization, convex optimization, and portfolio selection with combinatorial constraints. Our
algorithms are superior to existing ones either in terms of regret upper bounds (how better
decisions are) or of computational efficiency, or of both. We also offer lower bounds for regret
and computational complexity as well. By comparing lower and upper bounds in each problem
setting, we can assess the optimality of algorithms.

One highlight of the thesis is a computationally efficient algorithm for bandit linear op-
timization. Bandit optimization is an online optimization problem in which we can observe
only the value of the objective function at the chosen solution. For this problem, there have
been algorithms achieving optimal performance in terms of regret bounds. Such algorithms,
however, require exponential-time computation for certain problems, and a computationally
efficient optimal algorithm remains to be provided. We address this need by constructing a
computationally efficient algorithm that achieves an optimal regret bound for general bandit
linear optimization. Our analysis implies that the computational complexity of bandit linear
optimization is equivalent to that for underlying offline optimization, i.e., we do not have to
sacrifice computational efficiency even when feedback information is extremely limited.

We also consider submodular function minimization in which only a noisy evaluation oracle
is available. For this problem, we provide a polynomial-time algorithm with a better error
bound than existing algorithms. We also show that, under some assumptions, there is no room
for improving our algorithm in terms of error bounds, by providing lower bounds of errors for
arbitrary algorithms. In this, we have produced the first algorithm with optimal error (regret)
bounds in the context of bandit submodular minimization.

This thesis covers other problem settings with nonlinear objectives, including bandit convex
optimization and online portfolio selection. For bandit convex optimization, we present a novel
algorithm that enjoys a minimax optimal regret bound under some assumptions, e.g., strong

convexity and smoothness of objectives. Our algorithm is the first to achieve, under mild
assumptions, an optimal regret bound of even for constrained problems. For online portfolio
selection, we introduce a new problem setting in which the available combination of assets is
restricted. We provide algorithms with regret upper bounds, and, by providing tight regret
lower bounds, show that our algorithms are nearly optimal. Our regret analyses imply that the
quantity of feedback information has a large impact on the quality of decision making, in online
portfolio selection problems.

ii

Acknowledgment

I have been supported by many people during my Ph.D. studies.

First and foremost, I am grateful for my advisor Satoru Iwata. He gave me many valuable
comments and advice whenever I needed them. I have learned a lot from his faithful and ardent
attitude toward research and education. In particular, the work in Chapter 5 could not be
completed without his guidance.

I would like to thank my collaborators, Ryohei Fujimaki, Takuro Fukunaga, Daisuke Hatano,
Naonori Kakimura, Ken-ichi Kawarabayashi, Hanna Sumita, Kei Takemura, and Akihiro Yabe.
It was a great pleasure to discuss with them almost every week, from which numerous ideas
and signs of progress have come. Many parts of this thesis, Chapters 3, 4, 6 and 8, result from
joint works with these brilliant researchers. I am looking forward to furthering collaboration
with them.

I thank Hiroshi Hirai, Hiroshi Imai, Kunihiko Sadakane, Taiji Suzuki and Akiko Takeda for
reading this thesis, and for offering many helpful and insightful comments.

Many thanks to the members of Mathematical Informatics Laboratories #7. Discussion
with Kaito Fujii and Tasuku Soma provided many inspirations for my research. Random topics
with Taihei Oki and Nobutaka Shimizu were very interesting, and thanks to them, I could learn
about many topics beyond my specialty.

I want to thank Masaaki Sugihara and Kazuo Murota, who supervised me during the course
of undergraduate and master students. It was a great pleasure to start research under their
supervision. They taught me a lot of things, including a perspective on research and life.

I was fortunate to be in the research environment of NEC Corporation. I would like to
thank Yutaro Yamaguchi for giving me an opportunity to enter the company. I thank Ryohei
Fujimaki and Satoshi Morinaga for inviting me to the company and for offering many topics
to work on. My life in the company was particularly enjoyable thanks to Tatsuya Matsuoka,
Naoto Ohsaka and Tomoya Sakai.

I want to thank the University of Tokyo for allowing me to study and do research. I gratefully
appreciate the financial support of JST ACT-I.

Finally, I would like to thank my family, especially my parents Fumio and Toshie, for their
moral support and warm encouragement.

iii

iv

Contents

1 Introduction

1.1 Review on Online Optimization
1.2 Contribution of This Dissertation
1.2.1 Linear Optimization
1.2.2 Submodular Function Minimization
1.2.3 Convex Optimization,
1.2.4 Portfolio Selection
1.3 Organization of This Dissertation

2 Existing Results on Online Optimization

2.1 Problem Setting of Online Optimization
2.2 Online Optimization and Offline Optimization
2.3 Online Gradient Descent Method
2.4 Multiplicative Weight Update Method
2.5 Non-Stochastic Multi-Armed Bandits

3 Algorithms for Online Linear Optimization with Bandit Feedback

3.1 Introduction L e
3.2 Problem Setting L
3.3 Preliminary L e
3.3.1 Linear Optimization, Separation, and Decomposition
3.3.2 Algorithms for Logconcave Distributions
3.3.3 Barycentric Spanner Lo
3.4 Algorithm for Non-stochastic Bandit Linear Optimization
3.4.1 Algorithm oL
3.4.2 Oracle Complexity Analysis
3.4.3 Regret Analysis L
3.5 Algorithm for Stochastic Bandit Linear Optimization
3.5.1 Algorithm oL
3.5.2 Oracle Complexity Analysis
3.5.3 Regret Analysis L

4 Tight Regret Bounds for Bandit Combinatorial Optimization

4.1 Introduction
4.2 Main Results e
4.3 Related Work e

4.4 Lower Bounds e 46

4.4.1 Proofidea in previous work oo oo 46
4.4.2 Construction of probabilistic distribution 48
4.4.3 Lower Bound for the Multitask Bandit Problem 52
4.4.4 Lower Bound for the Multiple-Play Bandit Problem 52
4.4.5 Lower Bound for the Bandit Ranking Problem 54
4.5 Upper Bounds e 56
4.5.1 Algorithm for Stochastic Linear Bandit 57
4.5.2 Regret Bound for Stochastic Linear Bandit 58
4.5.3 Regret Bound for Stochastic Combinatorial Bandit 60
4.6 Conclusion e 61
Submodular Function Minimization with Noisy Evaluation Oracle 63
5.1 Introduction 63
5.2 Related Work L 65
5.3 Problem Setting 67
5.4 Our Contribution e 67
5.5 Algorithm 68
5.5.1 Preliminary 68
5.5.2 Stochastic Gradient Descent Method 69
5.5.3 Unbiased Estimators of Subgradients 71
5.5.4 Proof of Error Upper Bound 73
5.6 Lower Bound 74
5.6.1 Construction of Hard Instance 74
5.6.2 Proof of Error Lower Boundo oL 75
5.7 Conclusion e 79
Price Optimization via Submodular Function Minimization 81
6.1 Introduction 81
6.2 Literature Review L 82
6.3 Submodularity in Cross Elasticity of Demand 83
6.4 Submodularity-based Algorithm for Revenue Maximization 84
6.4.1 Binary Quadratic Programming Formulation 84
6.4.2 Minimum Cut for Problems with Substitute Goods Property 85
6.4.3 Submodular Relaxation for General Problems 86
6.5 Experiment e 89
6.5.1 Simulations e 89
6.5.2 Real-World Retail Data, 90
6.6 Conclusion 91

Optimal Algorithm for Online Convex Optimization with Bandit Feedback 93

7.1
7.2
7.3
7.4

Introduction Lo 93
Related Work o 0 o 95
Problem Setting and Assumption Lo Lo 96
Algorithm 97
7.4.1 Preliminaryo 97

vi

7.4.2 Continuous Multiplicative Weight Update 98

7.4.3 Computation of Approximate Mean ji; and Covariance S 99
7.4.4 Choice of Exploration Parameter o 100

7.5 Regret Analysis 100
7.5.1 Main Results 101
7.5.2 Auxiliary Lemmas oL 101
7.5.3 Proof of Theorem 7.5.1 102

7.6 Discussion 106
7.7 Conclusion e 107
8 Online Portfolio Selection with Combinatorial Constraints 109
8.1 Introduction L 109
8.2 Related Work L 111
8.3 Upper Bounds e e e 112
8.3.1 Notation and Preliminary Consideration 112
8.3.2 Algorithm for the Full-Feedback Setting 113
8.3.3 Algorithm for the Bandit-Feedback Setting 115

8.4 Lower Bounds 117
8.4.1 Computational Complexity 117
8.4.2 Regret Lower Bound for the Full-Feedback Setting 119
8.4.3 Regret Lower Bound for the Bandit-Feedback Setting 122

8.5 Experimental Evaluation o o 125
9 Conclusion 129

vii

viii

Chapter 1

Introduction

Mathematical optimization plays a central role in a variety of research areas, including oper-
ations research, statistics, finance, signal processing, data analysis, and machine learning. In
these areas, numerous methods have been developed for efficiently finding optimal or approxi-
mately optimal solutions. Most such methods are designed to receive explicit objective functions

and constraints as input.

By way of contrast, in many real-world problems, no explicit objective may have been given
at the moment of decision making, and in such cases, standard optimization methods would not
directly apply. One typical example of this would be the online prediction problem. The goal
of this problem is to predict the label of samples in a sequential manner, which would have a
wide range of applications, such as recommendation systems and classification of spam email
messages. Although many of these learning problems can be regarded as convex optimization
problems, a learner is not able to assess the objective at the moment of prediction, and the
objective often changes because the data, which provide objective functions, come sequentially.
Similarly, in online portfolio selection problems, in which a player sequentially chooses ways
of allocating assets, the price relatives (return on investment) that define objective functions
are observed only after determining the investment, and, consequently, one cannot assess the

objective before outputting solutions.

Such situations can be dealt with in the framework of online optimization, in which a
player sequentially makes decisions before the objectives are revealed and improves strategies
throughout multiple decision-making rounds. More precisely, in each round t € {1,2,...}, a
player chooses a solution z; and then observes the objective function f; repeatedly, aiming
to minimize, or maximize, the sum of fy(xy) for ¢ = 1,2,...,T, where T stands for a given
time horizon. In a standard setting, information about f; is given just after choosing x;.
The performance of players is evaluated in terms of regret, which is defined as the difference
between the achieved cumulative objective values f;(x;) and that for an “optimal” strategy,
which corresponds to a sort of benchmark. From this definition, smaller regrets imply that the
performance of the output sequence is close to that with the optimal strategy. The definitions
of benchmark optimal strategies are different depending on problem settings. A standard choice
for it is the solution that minimizes the cumulative objective among all non-adaptive strategies.

Although online optimization is a promising approach for situations in which available in-
formation is restricted at the moment of decision making, we often face more difficult problems,
ones in which the information is too restricted to apply a framework of standard online opti-

mization. For example, in an application of online prediction problems, if the cost for observing
features of examples is quite high, we need to make predictions with limited feature observa-
tions. Such scenarios may arise in the context of medical diagnoses of diseases [101], where
each feature will correspond to the result of a medical test. This restriction means that we can
observe only a part of the objective function even after choosing actions. A similar issue arises
in online portfolio selection problems as well. In, for example, investment in commercial adver-
tising or research and development, we cannot get feedback about the policies that have not
been undertaken, which implies that we will not be able to assess all the values of the objective
function even after the decision making has been completed. That is to say, in certain real-world
applications, we will not be able to get complete information even after decision making has
been done, and that standard online optimization methods will not directly apply.

This dissertation pursues two goals. One is to construct a sophisticated methodology for
online optimization with limited information, in terms both of regret bounds (how better de-
cisions are) and of computational efficiency, while the other is to properly assess the “price of
information” and the “price of computation” in the context of online optimization, i.e., how
the quantities of feedback information and computational resources affect the optimality of de-
cision making, so as to obtain a deeper understanding of the relationship among the following
three concepts: information, computation, and optimality. In an effort to attain these goals,
we consider different problem settings, for each of which we provide algorithms and analyze
complexity.

The contribution of this dissertation includes online algorithms for linear (combinatorial)
optimization, submodular function minimization, convex optimization, and portfolio selection
with combinatorial constraints. Our algorithms are superior to existing ones either in terms
of regret upper bounds (or error bounds) or of computational efficiency, or of both. We offer
lower bounds for regret and computational complexity as well. By comparing lower and upper
bounds for different problem settings, we are able to assess the optimality of algorithms and
evaluate the price of information and the price of computation. One highlight of the thesis is an
oracle efficient algorithm for bandit linear optimization, which implies that the computational
complexity of bandit linear (combinatorial) optimization is equivalent to that for underlying
offline optimization, i.e., we do not have to sacrifice computational efficiency even when feedback
information is extremely limited.

1.1 Review on Online Optimization

One of the most simple and fundamental examples of online optimization is the prediction from
expert advice problem [11, 60, 23], in which the feasible region is a finite set of size d and
the objective functions correspond to d-dimensional vectors. For this problem, Hannan [74]
provided a framework of regret analyses in the 1950s. In terms of regret bounds, an optimal
algorithm for the problem is the algorithm called multiplicative weight update (MWU) method.
Algorithms similar to MWU can be found in the literature in the early 1950s in the context of
game theory [29, 28, 144]. MWU has been independently rediscovered in other fields including
computational geometry, e.g., Clarkson’s algorithm for linear programming [43]), and machine
learning, e.g., Winnow algorithm [124], Hedge algorithm and AdaBoost [60]). The method
and analysis of MWU has provided basic tools for constructing many algorithms for other
online optimization problems, including online convex optimization [34, 80], online combinatorial

optimization [38, 52|, online principal component analysis [165], and so on. MWU is used in
Chapters 3 and 7 of this dissertation as well. For more details in MWU, refer to, e.g., the review
by Arora et al. [11].

One of the most simple and fundamental examples of online optimization is the prediction
from expert advice problem [11, 60, 23|, in which the feasible region is a finite set of size d
and the objective functions correspond to d-dimensional vectors. For this problem, Hannan
[74] provided a framework of regret analyses in the 1950s. In terms of regret bounds, an
optimal algorithm for the problem is referred to as a multiplicative weight update (MWU).
Algorithms similar to MWU can be found in literature from the early 1950s in the context of
game theory [29, 28, 144]. MWU has been independently rediscovered in other fields, including
computational geometry, e.g., Clarkson’s algorithm for linear programming [43], and machine
learning, e.g., Winnow algorithm [124], Hedge algorithm and AdaBoost [60]. The method and
analysis offered by MWU has provided basic tools for constructing many algorithms for other
online optimization problems, including online convex optimization [34, 80], online combinatorial
optimization [38, 52|, and online principal component analysis The use of MWU is considered
in Chapters 3 and 7 of this dissertation as well. For more details regarding MWU, refer to, e.g.,
the review by Arora et al. [11].

The multi-armed bandit (MAB) problem is a variant of the prediction from expert advice
problem, in which only the reward (or loss) for a chosen action is observable in each round. The
MAB framework was introduced in the 1930s by Thompson [159], and his proposed algorithm
is now called Thompson sampling. Roughly two decades later, MAB was formally restated by
Robbins [143], in which the notion of regret was introduced. In addition to Thompson sampling,
the upper confidence bound (UCB) algorithm proposed by Lai [117] is also a popular algorithm
for MAB. It has been shown that Thompson sampling, UCB algorithms, and their variants
perform optimally in terms of certain some different measures, such as asymptotic optimality
or minimax optimality, for stochastic settings [15, 105]. For non-stochastic settings, Auer et al.
[16] proposed an algorithm called EXP3 with a nearly minimax optimal regret bound, based on
MWU. Though EXP3 retained a logarithmic gap between upper and lower bounds, this gap was
shaved off by Audibert and Bubeck [12], who proposed a modified algorithm INF that achieves
a completely tight regret bound. Besides its improved regret bound, the INF algorithm also
turned out to have a remarkable side effect. Zimmert and Seldin [168] proved that a special
case of INF works optimally not only in non-stochastic settings but also in stochastic settings.
As a more general model in terms of observations, Alon et al. [10] considered MAB with graph-
structured feedback, in which observable values for chosen actions are described by a directed
graph. This work provided a complete characterization for minimax regret bounds depending
on the underlying graph. For other results and recent progress in MAB, see., e.g., the book by
Lattimore and Szepesvari [118].

For general online optimization problems with linear objective functions, Kalai and Vempala
[100] presented a meta-algorithm called follow the perturbed leader (FPL) that achieves O(v/T)-
regret by calling on an algorithm for underling (offline) optimization problems. For example,
FPL achieves O(v/T)-regret for online shortest path problems [157, 17], by solving shortest path
problems for T times. This implies that there exists a polynomial-time algorithm for an online
optimization problem given that for the offline problem, and that the computational complexity
of offline problems and of online problems are equivalent under polynomial-time reduction. Such
reduction of online optimization to offline optimization has been extended to a more general

setting in which only approximate algorithms are available [98, 82, 66]. For settings in which
the observation is restricted, however, some open problems remain, as noted in [66, 78]. Details
regarding open problems and recent progress are discussed in Chapter 3.

Online optimization problems with convex objective functions, or online convexr optimiza-
tion, have garnered much attention with their application to machine learning. For non-
stochastic online convex optimization, Zinkevich [169] showed that the online gradient descent
method enjoys an O(ﬁ) regret bound. This bound turned out to be optimal order for general
convex functions because an arbitrary algorithm suffers regrets of Q(v/T') in the worst case even
for the linear objective functions Cesa-Bianchi and Lugosi [37]. On the other hand, for special
cases or problems with strongly-convex objective functions, one can obtain much better regret
bounds. For example, Cover [47] considered the online portfolio selection problem, which is a
special case of online convex optimization, and proposed an algorithm achieving O(log T')-regret
with an exponentially large computational cost. The computational efficiency was improved by
Kalai and Vempala [100] later. These results were extended by Hazan et al. [81] who proposed
the online Newton step algorithm, which achieves O(logT')-regret for ezp-concave objective
functions with polynomial-time computation. Since the class of exp-concave functions includes
strongly-convex functions and the objectives of online portfolio selection, the online newton step
is useful for a broad class of problems.

Online sparse linear regression is an example of online optimization with limited information,
which is an online learning problem in which a learner can observe only a limited number of
feature values. This problem was posed as an open problem by Kale [101] and then was proved
by Foster et al. [59], to be, in general, computationally hard. By way of contrast, under some
assumptions, such as the restricted isometry property [35], computationally efficient algorithms
have been proposed [102, 89]. Murata and Suzuki [134] have proposed a more sample-efficient
algorithm for this problem.

In the context of more general problem settings of online computation including online
optimization, the competitive ratio [57, 24], besides the regret, is adopted for measuring the
performance of algorithms. The competitive ratio of an online algorithm is defined to be the
ratio between its performance (the value of the objective function) and the offline algorithm’s
performance. In other words, the competitive analysis focuses on a multiplicative error while
the regret analysis focuses on an additive error. When a competitive ratio of tends to 1, regret
analysis provides information regarding its convergence rate, which implies that regret bounds
offer a more detailed analysis in this case. In a study by Agrawal and Devanur [7], a connection
between a class of online computation and online optimization has been established, by which
regret bounds for online optimization lead to a competitive ratio for online packing. Fujii and
Kashima [61] have recently proposed a stream-based online algorithm for adaptive submodular
maximization [62, 68].

1.2 Contribution of This Dissertation

This dissertation considers certain problem settings in online optimization in which available in-
formation is restricted. In particular, we provide online optimization algorithms and complexity
analyses for (i) linear optimization, including combinatorial optimization with bandit feedback,
(ii) submodular function minimization with a stochastic evaluation oracle, (iii) convex opti-
mization with bandit feedback, and (iv) portfolio selection with combinatorial constraints. The

4

efficiency of the algorithms is evaluated in terms of two viewpoints: regret upper bounds, i.e.,
how much better the decisions are, and computational costs. Similarly, the complexity of the
problems is evaluated in terms of information-theoretic regret lower bounds and computational
complexity.

1.2.1 Linear Optimization

Online linear optimization is an online optimization problem with linear objective functions.
Problem setting includes such combinatorial optimization problems as the online shortest path
problem. In this problem, for example, a player is first given a directed graph without weights, as
well as two vertices, s and ¢, corresponding, respectively, to source and destination. Throughout
multiple rounds, the player repeatedly chooses an s-t path and then observes the weights of
edges, which may change every round, and aims to minimize the sum of the weights of all
paths. This shortest path problem is a special case of linear optimization since the weight of
the path can be regarded as a value of a linear function in the indicator vector of the path as a
set of edges. Similarly, online linear optimization includes various combinatorial optimization
problems as minimum spanning trees, maximum weight matching, minimum cut, and knapsack
problems.

We focus on online linear optimization with bandit feedback, which means that the player
can observe only the value of the objective function f;(z;) at the chosen solution. Online
optimization problems with bandit feedback are called bandit optimization problems. In a bandit
shortest path problem, the player can observe the weight of the chosen path alone in each round,
in contrast to a situation in which the weights of all edges are observable, as in standard online
shortest path problems. Bandit optimization problems are more difficult than standard online
optimization problems, as available information is more restricted.

For bandit linear optimization, there have been algorithms with O(v/T) regret upper bounds.
Further, it has been known that any algorithm will suffer regrets of Q(\/T) in the worst case.
Hence, there is no room to improve the regret upper bound of O(\/T), and algorithms with
O(\/T)—regret are optimal algorithms in terms of worst-case regret. However, existing optimal
algorithms require exponential-time computation for certain problems, and a computationally
efficient optimal algorithm remains to be provided.

We address this need by constructing a computationally efficient algorithm that achieves
an optimal regret bound for general bandit linear optimization. More precisely, our algorithm
calls on an oracle that solves an offline optimization problem only polynomial times and runs in
polynomial-time computation, except for the calling on of the oracle. This means that our al-
gorithm runs in polynomial time under the minimum assumption that the corresponding offline
optimization can be solved in polynomial time. Our results imply that the computational com-
plexity of bandit optimization problems is equivalent to that of corresponding offline problems,

as well, w.r.t. polynomial-time reduction.

1.2.2 Submodular Function Minimization

Submodular function minimization is an important problem in the research on combinatorial
optimization, and several algorithms have been developed for it. Existing works are based on a
computational model in which one can access an evaluation oracle that returns the value of the
objective submodular function given a concrete value of the variable. On the other hand, we

cannot always assess the exact value of the objective, and the observable value includes noise.
To cope with such situations, we first consider submodular function minimization problems with
stochastic noisy evaluation oracles.

Our problem setting is new, but it can be regarded as a special case of bandit submodular
minimization in which we can observe values of submodular objective functions that may change
every round and in which performance is evaluated in terms of regret. For this more general
problem setting, Hazan and Kale [78] have proposed algorithms that achieve sublinear regret
bounds, and regret lower bounds are also known. There has been, however, a gap of O(T1/6)
between the upper and lower bounds, which implies that there might remain room for improving
the algorithms. The optimal rate of regret remains an open question.

Our contribution is to develop polynomial-time algorithms for submodular function min-
imization with noisy evaluation oracles. We show that they have better error bounds than
existing algorithms and that, under some assumptions, there is no room for improving our al-
gorithms in terms of accuracy. We provide lower bounds of errors for arbitrary algorithms that
match the upper bounds obtained with our algorithms. In this we have produced the first algo-
rithms with optimal error (regret) bounds in the context of bandit submodular minimization.

We also introduce the price optimization problem, an application of submodular function
minimization. In this problem, we consider selling d types of products, and the goal is to
find the best pricing strategy that maximizes the gross profit. A key observation here is the
connection between supermodularity of the revenue and cross elasticity of demand, which means
that submodular function minimization can be applied to the price optimization problem, under

assumptions regarding cross elasticity of demand.

1.2.3 Convex Optimization

Online conver optimization problems are an important class of online optimization problems
in that they have a wide range of applications, including online learning and online portfolio
selection. For this class of problems, a simple method called the online gradient descent method
[169] works well and achieves optimal regret bounds under certain conditions.

For bandit convex optimization, however, the optimal regret bound remains to be estab-
lished. The current state-of-the-art has been reported by Bubeck et al. [34], which achieves
O(d>+/T)-regret, and they have conjectured that the optimal regret bound would be O(d"*v/T),
where d stands for the dimensionality of the feasible region. There have as yet, however, been
no significant subsequent improvements.

We focus on an important special case of bandit convex optimization in which the objective
functions are strongly convex and smooth. For this problem, there exists an algorithm [58, 5]
that achieves O(d\/T)-regret under the strong assumption that the problem is unconstrained,
i.e., that the feasible region is a linear space. This rate is optimal because a lower bound of
Q(d\/T) is known. For such constrained problems, however, the optimal regret bound has yet
to be established. The best-known algorithm for constrained problems has been proposed by
Hazan and Levy [80]; it has a regret bound of O(d'®v/T) with an O(d'/?)-gap from the lower
bound and does not have computationally efficient implementation for the arbitrary feasible
region.

Our contribution includes a new algorithm for bandit convex optimization with strongly-
convex and smooth objective functions. This algorithm is the first to achieve, under mild

assumptions, an optimal regret bound of O(d\/T) even for constrained problems. Further, it
runs in polynomial time under the minimal assumption that we have access to a membership
oracle for the feasible region, i.e., the assumption that one can efficiently determine whether a
given point is feasible or not.

1.2.4 Portfolio Selection

We also consider online portfolio selection, which in practice is an important special case of
online convex optimization. Work on online portfolio selection was initiated by Cover [47],
much progress has been made [81, 139, 53, 167] and there have been successful applications
[122]. Among these studies, one of the most remarkable studies relates to the online newton
method [81], which is the polynomial-time algorithm that achieves O(dlogT')-regret for online
portfolio selection. Since there is a lower bound of Q(dlogT') [139], the online newton method
achieves an optimal regret bound.

A major restriction in existing algorithms comes from the requirement for the strong as-
sumption that one can choose portfolios of arbitrary combinations of assets and that the price
relatives (returns of investment) for all assets are observable. This assumption does not hold
in many real-world applications, such as investment in commercial advertising, and, hence, in
many cases, the existing algorithm cannot be directly applied.

To overcome this restriction, we introduce new problem settings featuring online portfolio
selection with combinatorial constraints, and we propose relevant algorithms. In our problem
settings, we are given a subset family of the available combination of assets, and managed
portfolios consist of a combination available in an online manner. Our model includes two
different settings: full-feedback and the bandit-feedback. In the former, one can observe price
relatives for all assets, and in the latter, one can observe price relatives only for invested assets
that are included in the chosen portfolio. We provide an algorithm with a regret upper bound for
each problem setting, and, by providing tight regret lower bounds, show that our algorithms are
nearly optimal in terms of regret bounds. Our regret bounds imply that the bandit-feedback
setting is much harder than the full-feedback setting, as there is an exponentially large gap
between optimal regret bounds for these two settings. Furthermore, our results include a lower
bound for computational complexity. Under the assumption of BPP ¢ NP, we cannot reduce
the computational time of our algorithm into a polynomial.

1.3 Organization of This Dissertation

Chapter 1.3 introduce some existing results on online optimization, which are used in or related
to the following chapters. Chapter 3 considers bandit linear optimization with bandit feedback.
In this chapter, we present computationally efficient algorithms that achieve nearly optimal
regret bounds. The contents in this chapter are included in the paper [92]. In Chapter 4, we
study the statistical complexity of bandit combinatorial optimization, to provide tight regret
lower bounds for various problem settings. Contents in Chapter 4 can be found in [91]. Chap-
ter 5 considers submodular function minimization with noisy evaluation oracle. We provide
algorithms and give lower bounds of complexity, and discuss the optimality of algorithms. The
paper [85] includes the contents of this chapter. Chapter 6 introduces the price optimization
problem [87, 88], an application of submodular function minimization. In Chapter 7, we move

7

on to problems with convex objective functions. We propose a novel algorithm for bandit con-
vex optimization with strongly-convex and smooth objectives and analyze regret bounds for the
algorithm. The contents of this chapter are included in the paper [86]. Chapter 8 is devoted
to online portfolio optimization with combinatorial constraints. The contents in this chapter
has been published as the literature [90]. In Chapter 9, we conclude this dissertation and note
remained open questions.

Chapter 2

Existing Results on Online
Optimization

This chapter introduces the framework of online optimization and existing results.

2.1 Problem Setting of Online Optimization

Problems of online optimizations are specified by a feasible region A and a class of objective
functions F C {f : A — R}. In an online optimization problem, a player, or a decision-
maker, follows the protocol given in Algorithm 1: The player is first given the time horizon T’
corresponding to the number of rounds of decision making. In each round t € {1,2,...,T}, the
environment chooses the objective function f; € F, and at the same time, the player chooses
the action a;. The environment then reveals feedback information on the objective f;. The
type of feedback depends on problem settings: in the standard full-feedback setting, complete
information about f; is revealed to the player, i.e., the player can assess f;(x) for all z € A after
deciding a;. In the bandit-feedback setting, on the other hand, only the value of fi(a;) € R is
revealed. Besides these settings of feedback, other settings have been considered to model more
various problems, e.g., semi-bandit feedback or graph-structured feedback. The player then
incurs the loss of fi(a;). The goal of the player is to minimize (or maximize) the cumulative
loss 31—, fi(a;) over all rounds t € {1,2,...,T}.

In terms of environments, we consider mainly two settings of stochastic environments and
non-stochastic (or adversarial) environments. In the setting of stochastic environments, we
assume that there is an unknown distribution D over F, and that f; follows D independently
for t € {1,2,...,T}. In the non-stochastic environment setting, we do not assume distributions
of f;, and f; can changes arbitrarily. More precisely, we can consider two types of non-stochastic
environment: oblivious one chooses {f;}L_, arbitrarily before the game starts, and reactive one
chooses each f; depending on the history fi,a1,..., fi—1,a:—1. The reactive non-stochastic
environment models more general and harder problems than the oblivious one. In this thesis,

we suppose the reactive one when dealing with non-stochastic settings.

The goal of online optimization is to provide a better algorithm for the player, of which

Algorithm 1 A template of online optimization

Require: Time horizon T € N, feasible region A, class of objective functions F C RA.
1: The player is given the time horizon T
2: fort=1,2,...,7 do
3: The environment chooses the next objective function f; € F, which is not revealed to the
player at this moment.
4: The player chooses the action a; € A.
5. The environment reveals information about f;, e.g.,

e the player obtains complete information about f; in the full-feedback setting (stan-
dard online optimization), or

e the player observes only fi(at) in the bandit-feedback setting.

6: The player incurs a loss of fi(at).
7: end for

performance is evaluated in terms of regret Rp(a*) defined by

T T
Rp(a*) =) fila) =) fila®) (2.1)

for arbitrary a* € A. If the environment behaves randomly or if the algorithm is a randomized
one, we consider the expectation E[Ry(a*)] with respect to the randomness of the environment
and the algorithm’s internal randomization. This thesis focuses on the following worst-case
regret:

max max E[Rr(a”)]. (2.2)

environment a*c€A

From the definition of the stochastic/non-stochastic environments, the worst-case regrets for
different assumptions on environments satisfy the following:

max max E [Rr(a")] (stochastic environments)
D: distribution over F a*€A {ft}?NDT

A\

< max E max Rp(a*)| (stochastic environments)
D: distribution over F (3T pT [a*€A

< max max E[Rr(a")] (oblivious non-stochastic environments)
{f tT:1€]:T a*eA

= max E [max RT(a*)] (oblivious non-stochastic environments)
{fiYio eFT laeA
< max max E[Rp(a®)] (reactive non-stochastic environments),

N {ft}thlz reactive non-stochastic a*€.A

where all the expectation is taken w.r.t. the algorithm’s internal randomization and the envi-
ronment’s randomization. We note that, under the assumption that the complexity of F is
small enough, the value E¢zyr pr [max,=c4 Rr(a*)] is close to max,=c 4 Ef 7 pr [Rr(a™)].

10

2.2 Online Optimization and Offline Optimization

To contrast with online optimization problems, in this thesis, we use the term offline optimiza-

tion to stand for the standard optimization problems of finding a* € arg min f(a) given f € F.
acA
In this section, we see the relationship between online optimization and offline optimization.

If we have an algorithm for online optimization, then we have a fully polynomial-time ran-
domized approximation scheme (FPRAS) for offline optimization, in terms of expected additive
erTors.

Proposition 2.2.1. Suppose that there exists an algorithm for the stochastic online optimization
problem specified by A and F, such that E[Rr(a*)] < br for all a* € A. Then we have an
algorithm for offline optimization such that given f € F, find an approximate solution a € A
such that E[f(a)] < minge f(a) + bp/T.

Proof. Suppose an environment for the online optimization defined by f; = f for all ¢t € [T].
Then, from the definition (2.1) of the regret, the output a; of the online optimization algorithms
satisfies

T

> flar)

<Zf) + E[Rr(a) Zf l:f(a*)+b%, (2.3)

for arbitrary a* € A. Accordingly, we have %E[ZTT:l flay)] < mingeq +bp/T. If we set
a € arg min{f(a) | a € {a;}_,}, we have

Z /(@)

E[f(a)] —E <—E

a b
3" Fla) } < min f(a) + —. (2.4)

pt acA T
O

Corollary 2.2.1. Let o, > 0, v > 1 and § € (0,1). Suppose that there exists an online
optimization algorithm that achieves E[Rr] < O(n®T'=%) with O(n’T7)-time computation,
where n is a parameter standing for the size of inputs. Then there exists an FPRAS for offline
optimization such that, given e > 0 and f € F, it outputs a satisfying E[f(a)] < mingeq f(a)+¢
in O(nB+er/0)1/9) time computation.

This corollary implies that, if underlying offline optimization is computationally hard, it is
hopeless to develop a computationally efficient algorithm that achieves a regret bound sublinear
inT.

If the set F of objective functions consists of convex functions, the above result extends
to the stochastic optimization. Given A and F C R#A, a problem instance of a stochastic
optimization problem is specified by a distribution D over F. In stochastic optimization, we
are given T ii.d. samples from D, and search for the minimizer of f*(z) := Efup[f(x)]. If all
members of F are convex functions, then a stochastic online optimization algorithm for F leads
to a stochastic optimization algorithm.

Proposition 2.2.2. Assume that A C R? is a convex set and that F consists of convex func-
tions. Suppose that there exists an algorithm for the stochastic online optimization problem
specified by A and F, such that E[Rr(a*)] < bp for all a* € A. Then we have an algorithm for
stochastic optimization such that given a distribution D over F, find an approzimate solution
a € A such that E[f*(a)] < mingea f*(a) + bp /T, where f*(x) = Erplf(x)].

11

Proof. Suppose a stochastic environment for the online optimization such that f; ~ D, i.i.d. for

t € [T]. Then, by a discussion similar to the proof of Proposition 2.2.1, we have
1 & b
%[% T
72 Elfla)] < f*(a") + o (2.5)
t=1

for arbitrary a* € A. Since f; and a; are independent, we have

1

13 o] 20
t=1

~ . A~ T . . .
Define a to be the average of a1, ...,ar, i.e., let a = % > ¢—q a¢. Since f*, a convex combination

1 & 1 &
72 Elfi(a)] == > Elf (a)]=E
t=1 t=1

of convex functions, is a convex function as well, from Jensen’s inequality, we have

1 < 1 &
fo*(at) > f* <T2at> = [*(a). (2.7)
t=1 t=1
By combining (2.5), (2.6) and (2.7), we obtain

br

T
;Zﬁ@ﬂggﬁm+. (28)
t=1

Bl @) < B .

O

Corollary 2.2.2. Assume that A C R? is a convex set and that F consists of convex func-
tions. Let o, > 0, v > 1 and § € (0,1). Suppose that there exists an online optimization
algorithm that achieves B[R] < O(n*T'=%) with O(n®T")-time computation, where n is a
parameter standing for the size of inputs. Then there exists an FPRAS for stochastic optimiza-
tion such that, given ¢ > 0 and f € F, it oulputs a satisfying E[f*(a)] < mingeq f*(a) + € in
O(nB+ev/9 /%) time computation.

2.3 Online Gradient Descent Method

The online gradient descent method is an algorithm for online optimization, which works under
the assumption that each objective function f; is convex and that a subgradient of each f; is
available. Algorithm 2 shows how the online gradient descent proceeds.

The update rule of Algorithm 2 can be expressed as

apy1 € arg min |a — a3 = arg min|la — (a; — ng;)||5 = arg min{2ng, (a — ar) + [|a — a,]3}.
acA acA ac

(2.9)
Noting this expression, we obtain the following regret bound:

Proposition 2.3.1. Assume that each f; is a convex function. For the output of Algorithm (2),
the regret Ry(a*) is bounded as

Rr(a*) < o—lar —a*|3 +

N3

T
o ool (2.10)

for arbitrary a* € A.

12

Algorithm 2 Online gradient descent method

Require: Time horizon T € N, convex feasible region A C R%, learning rate n > 0.
1: Set initial point a; € A arbitrarily.
2: fort=1,2,...,7T do
3: Play a; and incur loss fi(ay).
4 Observe g; € dfi(a;), a subgradient of f; at a;.
5. Update a; by aj, | = a; — ng;.
6

Project a;,, onto A by Euclidean projection, i.e., by a4 € arg rj‘lin lla — a;HH%.
ac
7: end for

Proof. Since g; is a subgradient of f; at a;, the regret Ry (a*) can be bounded as

T T
Z fi(ar) = fi(a")) < ZQ::T(CH —a’). (2.11)
t=1 t=1
Since it holds that ||a] , — a*||3 = |la; — ngr — a*[|3 = [lar — a*[|3 — 2ng,’ (ar — a*) + nl|g¢||3, we
have
T * 1 *(12 / *(12 n 2
g9¢ (ag —a”) < %(Ilat —a’llz = llagey = a”ll2) + S llgel2- (2.12)

Since a* € A, from the Pythagorean theorem (Theorem 2.1 in [77]), we have ||a; ; — a*|2 >
llat+1 — a*||2. From this and (2.12), we have

T 2
g¢ (ar —a*) < =(llag — a”[|3 — llaer1 — a*[|3) + 5 ||gt||2.

2n

By taking the same of the above for t = 1,...,T, we obtain

T 1 T 0 T
> gl (ar—a*) < ;Z lag — a*[|3 = llary1 — a*||3) *Z lgell3-
n 2
t=1 t=1 t=1
1 7] r
= %(Hal — a3 — laps1 — a*|3) + 52 llgell3

IN

T
1 w2 M
aollar = a3 +5 2 ol
t=1
By combining this and (2.11), we obtain (2.10). O

Corollary 2.3.1. Assume that each f; is a convex function, and that there exists D,G > 0
such that ||a; — a*||2 < D and ||g¢|]l2 < G hold for all a* € A and for all t € [T]. If n is chosen
as = BVT/G, then the regret is bounded as Ry(a*) < BGVT for all a* € A.

Note that the regret upper bounds in Proposition 2.3.1 and Corollary 2.3.1 apply even to
the non-stochastic setting.

13

Algorithm 3 Multiplicative weight update method
Require: Time horizon T' € N, the number d € N of experts, learning rate n > 0.

1: Initialize the weight wy = (wn, w12, . . . ,wld)T e R? by wy; =1 for all 7 € [d]
2: fort=1,2,...,7T do

3: Set the probabilistic strategy p; € A? by py; = wy/||we|1 for i € [d].

4: Play a; = i with probability p;; and incur fi(ay).

5. Observe fi(1), ft(2),..., fi(d).

6: Update w; by wyt1; = wy exp(—nfi(i)) for i € [d].

7: end for

2.4 Multiplicative Weight Update Method

In this section, we consider the prediction from expert advice problem. This problem is a simple
special case of online optimization specified by A = [d], where d is a given integer parameter at
least 2, and F = [0, 1]* = [0,1]%.

The prediction from expert advice problem can be seen as a special case of online linear
optimization, and hence, the online gradient descent method applies. Indeed, when we consider
to manage a probabilistic strategy that is a probabilistic distribution p; over A = [d], and choose
an action a; following p; in each round, then the expected loss E[f¢(at)] is a linear function
in p;. Accordingly, we can apply Algorithm 2, the online gradient descent methods, and a
sublinear regret bound can be achieved. The parameter D and G in Corollary 2.3.1 can be
bounded as follows: The feasible region of p; is congruent to A? := {z = (z1,...,24)" € [0,1]¢ |
r1+ -4+ x4 =1} and f; € [0,1]¢ € A. Since ||p — p'||2 < 1 for all p,p’ € A?, we can assume
D = 1. Similarly, since g; in Algorithm 2 corresponds to the vector (f:(1),..., fi(d))" € [0,1]%, it
holds that || g¢|2 < V/d, and consequently, we can suppose G = v/d. Hence, from Corollary 2.3.1,
Algorithm 2 achieves the regret bound of Ry(a*) < DGVT = VdT.

For this problem, however, there is a better algorithm, the multiplicative weight update
method, which is summarized in Algorithm 3. As shown from the following proposition, Algo-
rithm 3 have a regret bound of O(y/T logd).

Proposition 2.4.1. Suppose that nfi(i) > —1 holds for all t € [T] and i € [d]. The output of
Algorithm 3 satisfies the following regret bound.:

T d

. logd
gl&()i(]E[RT(z I +nZZEpnft : (2.13)
¢ t=1 i=1

Proof. Fix i* € [d] arbitrarily. The expectation of the regret Ry (i*) can be expressed as

T T
E[Rr(i")] =E | Y filar) = Y fuli")
t=1 t=1

T d T

SN pafili) =D RG] (2.14)

t=1 i=1 t=1

Since w1 can be expressed as wry1,; = exp(—n >, f+(i)), the term — S/ f;(i*) in (2.14)
can be bounded as

1
—fo *10ng+1z* < - » log [lwr1l]1- (2.15)

14

From the update rule wi41,; = wy exp(—nfi(4)), ||lwr+1]/1 can be bounded as

d

lwraall =Y wrya; = Z wri exp(—nfr(i) Z wri(1 = nfr(i) + (nfr(i)?)
i=1

i=1

d
= [Jwrll (1 — 0> prifr(i) + 7’ ZPTz’fT(i)2>
=1 =1
T d d
<d]] <1 —n Y pifi(i) +n? Zptiftu)?) ,
t=1

i=1 i=1

where the first inequality follows from exp(xz) < 1+ z + 22 for < 1 and the assumption of
nfi(i) > —1, the third equality follows from py = wy;/||we, and the last inequality can be
shown by applying the same operation recursively for t =T — 1,7 —2,...,1 and by substituting
|we||1 = d. Hence, we have

log |wry1ll <

107g7d+ Zlog<1—772puft)+ Zptzft >

i=1 i=1
slogd Z(mefm —nzphff) (2.16)

where the last inequality follows from log(l + =) < x for all x > —1. By combining (2.14),
(2.15) and (2.16), we obtain

T d T d
. . . log d
BlRs)= 8 |23 s - X)] < 540305 o
t=1 i=1 t=1 77 t=1 i=1
Since this holds for arbitrary ¢* € [d], we have (2.13). O

Corollary 2.4.1. Suppose that f:(i) € [0,1] holds for all t € [T] and for all i € [d]. If we set

n= loé,id, we have

ma[ilc]E[RT(i*)] < 24/Tlogd. (2.17)
e

Proof. From f;(i) < 0 and n > 0, the condition 7f;(i) < —1 follows, and consequently, Propo-
sition 2.4.1 applies. From the condition f;(i) € [0, 1], we have

Zptzft(Z

<E

d d
Z E[pi fi(i) Zpti:| =1
i=1 1=1

From this and Proposition 2.4.1, we have

logd
max E[Rp(i")] < 8c | nT = 2+/T logd,
i*eld] n
where the equality follows from n = lo%d‘ O

15

Algorithm 4 Exp3 method for multi-armed bandit
Require: Time horizon T' € N, the number d € N of experts, learning rate n > 0.

: Initialize the weight wy = (wn, w12, . . . ,wld)T e R by wy; =1 for all 7 € [d]
:fort=1,2,...,7T do
Set the probabilistic strategy p; € A by p; = wy;/||we|1 for i € [d).

Update wy by wit1 ., = wi exp(—nfi(at)/pra,) and wip1,; = we; for i € [d] \ {as}.

1
2
3
4: Play a; = i with probability p;; and incur fi(ay).
5
6: end for

2.5 Non-Stochastic Multi-Armed Bandits

The multi-armed bandit problem is the sequential decision-making problem in which the player
sequentially chooses an arm a; € [d], which corresponds to the arm of slot machines, from d > 2
candidates, and observes the loss fi(a;) for the chosen arm, in each round ¢. This can be seen
as a variant of the prediction from experts problem. A major difference between these two
problems is the feedback information; the prediction from experts problem allows the player
to observe all of f;(1), f¢(2),..., fi(d) while one can observe fi(a¢) in the multi-armed bandit
problem.

The Ezp3 method [16] is an algorithm for non-stochastic multi-armed bandit problems based
on the multiplicative weight update method. In Exp3 method, we construct unbiased estimators
of fi(i) for all i € [d] from the bandit feedback f;(a;), and apply MWU with these unbiased
estimators f;(i) instead of f;(i). The values of f; are given as follows: Suppose that a; is chosen
randomly so that Prob[a; = i] = p;;. We then define ft by

s o fili) (= a)
fe(i) = { 0 Geld)\ fa) (2.18)

The expectation of the function values of ft is equal to f; because we have

~

E[f,(i)] = Probla; = - pltiftu) = i)

for all i € [d]. The algorithm can be summarized as Algorihm 4.
From Proposition 2.4.1 and the definition (2.18) of ft, Algorithm 4 has the following regret
bound:

Proposition 2.5.1. Suppose that fi(i) € [0,1] holds for all t € [T] and for all i € [d]. If we
set n = \/logd/(dT), for the multi-armed bandit problem, Algorithm 4 has the following regret
bound:

maﬁl(]E[RT(i*)] < 24/Tdlogd. (2.19)
RS

Proof. Fix i* € [d] arbitrarily. The expected regret E[Rr(i*)] can be expressed as

>

t=1 1

=E

d

T T T
ERr(i)] =E | filar) = Y _ fii*) pafi(@) =D (i), (2.20)
t=1 t=1 t=1

1

16

where the second equality follows from the definition (2.18) of f;. Since f;(i) > 0 holds, the

analysis in Proposition 2.4.1 applies, and consequently, the right-hand side of (2.20) can be
bounded as

r A L logd I A logd T fi(ay)?
E DD pufi) = ft(i*)} <——+4nY_ Y Epufi(i)’] = ——+n) E|——]
t=1 i=1 t=1 n t=1 i=1 n t=1 Pta,
T d . T d
log d , i)2 log d ,
_ 1084 S g | Probla =il ft(,)} _loed g thu)?}
n =1 i=1 DPti n =1 i=1
<losd i — oy /Tdlogd, (2.21)

where the first inequality follows from the proof of Proposition 2.4.1, the first equality follows
from (2.18), the last inequality follows from the assumption of f;(i) € [0, 1], and the last equality

follows from n = y/logd/(dT"). Combining (2.20) and (2.21), we obtain E[R7(i*)] < 2v/T'dlogd.
Since this holds for all i* € [d], we have (2.19). O

17

18

Chapter 3

Algorithms for Online Linear
Optimization with Bandit Feedback

We propose computationally efficient algorithms for online linear optimization with bandit feed-
back, in which a player chooses an action vector from a given (possibly infinite) set A C R?, and
then suffers a loss that can be expressed as a linear function in action vectors. Though there
exist algorithms that achieve an optimal regret bound of O(\/T) for T rounds (ignoring factors
of poly(d,logT')), computationally efficient ways of implementing them have not yet been made
clear, in particular when |A]| is not bounded by a polynomial size in d. One standard way to
pursue computational efficiency is to assume that we have an efficient algorithm referred to as
oracle that solves (offline) linear optimization problems over A. Under this assumption, the
computational efficiency of a bandit algorithm can then be measured in terms of oracle complex-
ity, i.e., the number of oracle calls. Our contribution is to propose algorithms that offer optimal
regret bounds of O(\/T) as well as low oracle complexity for both non-stochastic settings and
stochastic settings. Our algorithm for non-stochastic settings has an oracle complexity of O(T)
and is the first algorithm that achieves both a regret bound of O(\/T) and an oracle complexity
of O(poly(T)), given only linear optimization oracles. Our algorithm for stochastic settings calls
the oracle only O(poly(d,logT')) times, which is smaller than the current best oracle complexity
of O(T) if T is sufficiently large.

3.1 Introduction

Online linear optimization with bandit feedback, or bandit linear optimization, is an important
problem that has a wide range of applications. In it, a player is given A C R?, referred to as a
set of action vectors, and the number T' of rounds of decision-making. In each round ¢ € [T] :=
{1,2,...,T}, the player chooses an action a; € A, and then observes loss ¢/ a;, where ¢; € R? is
an unknown loss vector that can change over rounds. The bandit linear optimization includes
a variety of important online decision-making problems as special cases. For example, given a
graph G = (V, E) and s,t € V, by setting A C RIZ| to be the set of all characteristic vectors of
s-t paths, we can take into account bandit shortest path or adaptive routing [17]. In this setting,
¢; € RIFI corresponds to (unknown) lengths of the edges, and bandit feedback ¢, a; represents
the length of a chosen s-t path a;. In addition to this application, bandit linear optimization
includes bandit versions of such combinatorial optimization problems as minimum spanning

19

tree, minimum cut, and knapsack problem, as well as continuous optimization problems such
as linear programming and semidefinite programming.

The performance of the player is evaluated in terms of regret Rp(a*), defined as Ry(a*) =
S 6l a =S 0] a* for a* € A, which represents the difference between the cumulative loss
for the decision {a;} of the player and that for an arbitrarily fixed strategy a*. The primary
goal in bandit linear optimization is to achieve small regret for arbitrary a* € A. It is known
that there exist algorithms achieving regret bounds of O(\/T),l as shown in Tables 3.1 and 3.2.
In contrast, papers [12, 16, 44] showed that any algorithm will suffer at least Q(\/T) regret
in the worst case. Thus, algorithms with O(\/T)-regret bounds achieve optimal performance
w.r.t. dependence on T

Algorithms achieving an optimal O(ﬁ)-regret, however, have computational issues, espe-
cially when the action set A is exponentially large or is an infinite set. For example, well-known
LinUCB methods [1, 51, 146] need to solve quadratic programming over .4, which costs time
complexity of Q(|.A|) if there are no additional assumptions. The ComBand algorithm [38] runs
efficiently if there is an efficient sampling algorithm for A (such as k-sets, spanning trees, or
bipartite perfect matchings), but such sampling algorithms are open for many important exam-
ples, including s-t paths. For the special case in which the convex hull of A can be expressed
by ¢ linear inequalities, CombExp [45] runs in O(poly(c,d)T)-time. However, the size ¢ of the
linear inequality expression can be exponentially large for many examples.

This chapter aims to develop computationally efficient algorithms that achieve an O(\/T)
regret bound, under the assumption that we can call a linear optimization oracle. The oracle
solves offline linear optimization problems over A, i.e, given a loss vector £ € R?, the oracle

outputs a* € arg min /' a. This assumption is standard in the context of online optimization [50,
acA
100]. Under it, the computational efficiency of online optimization algorithms is evaluated in

terms of oracle complexity, the number of oracle calls for the linear optimization oracle.

For online linear optimization with full information, in which a player can observe all entries
of £; € R after choosing a;, Kalai and Vempala [100] have proposed algorithms with an O(v/T)-
regret bound and an oracle complexity of O(7). By means of this algorithm, McMahan and
Blum [131] and Dani and Hayes [50] showed that one can achieve O(T%/?)-regret and O(T1/?)-
oracle complexity for bandit linear optimization. However, it has been an open question as to
whether or not we can achieve O(v/T)-regret and O(poly(T'))-oracle complexity for bandit linear
optimization, with only linear optimization oracles. We solve this open problem by proposing
an algorithm that achieves O(v/T)-regret as well as O(T')-oracle complexity.

We separately consider here two different settings for bandit linear optimization; a mon-
stochastic setting and a stochastic setting. In the non-stochastic setting, we do not assume any
generative models, but ¢; may be chosen in an adversarial manner, depending on the previous
actions ay,...,a;_1. The performance of an algorithm is measured in terms of the expectation
of regret Rp(a*) w.r.t. the randomness of the algorithm’s internal randomness and ¢;. In the
stochastic setting, by way of contrast, the loss vectors ¢; are assumed to follow a probability
distribution D over R?, i.i.d. fort=1,...,T.

In this chapter, we present computationally efficient algorithms achieving O(poly(d)v'T)-
regret. Specifically, we present algorithms with a small oracle complexity, i.e., algorithms that
call the oracle as infrequently as possible. Our contribution is summarized in Tables 3.1 and

In O(-) notation, we ignore factors of polynomials in d and log(T).

20

3.2.
For the non-stochastic setting, we propose an algorithm (Algorithm 5) that achieves a regret
upper bound of O(y/d3T logT) in expectation and has O(poly(d,logT)T)-oracle complexity.

Theorem 3.1.1. For the non-stochastic setting, Algorithm 5 satisfies the following:
e The output of the algorithm satisfies E[Rr(a*)] = O(\/d3T log T) for all a* € A.
e The algorithm calls the linear optimization oracle O(poly(d,logT)T) times.
e The computational time, except for that of the oracle, is of O(poly(d,T)).

As shown in Table 3.1, our Algorithm 5 achieves the smallest oracle complexity among
algorithms with O(\/T)—regret. Noting that GeometricHedge assumes A to be a convex body,
we can see that Algorithm 5 is the first algorithm that is applicable to discrete A and that
achieves O(v/T)-regret and O(poly(T))-oracle complexity.

Though the first algorithm in Table 3.1 with O(T?/3)-regret and O(T%/3)-oracle complexity
might look incomparable to our results, algorithms with such bounds can be easily constructed
from our Algorithm 5. In fact, by dividing 7" rounds into 7'/ B blocks of size B > 1 and regarding
each block as an individual round, we obtain the following statement:

Proposition 3.1.1. Suppose there exists an algorithm with O(f(T))-regret and O(g(T))-oracle
complexity. Then for arbitrary positive integer B, there exists an algorithm with O(B- f(T/B))-
regret and O(g(T/B))-oracle complexity.

By setting the block size to be B = ©(T"/3) and applying Algorithm 5, we can achieve
O(B\/T/B) = O(T?/3)-regret and O(T/B) = O(T?%?)-oracle complexity, which is equivalent
to the performance in the uppermost result in Table 5. Note that Proposition 3.1.1 does not
lead to an O(\/T)-regret algorithm given an O(TQ/ 3)-regret algorithm conversely since the block
size B must be at least 1.

For the stochastic setting, we propose an algorithm (Algorithm 6) that achieves a regret
bound of O(y/d3T log(dlogT/§)) with probability 1 — & and has O(poly(d, log T'))-oracle com-
plexity, where 6 € (0,1) is an arbitrary parameter.

Theorem 3.1.2. Suppose ¢; follows a distribution over R%, i.i.d. fort =1,2,...,T. Algorithm 6
then satisfies the following:

e The output of the algorithm satisfies Ry(a*) = O(y/d3Tlog(dlogT/6)) for all a* € A,
with probability 1 — 4.

e The algorithm calls the linear optimization oracle O(poly(d,logT)) times.
e The computational time, except for that of the oracle, is of O(poly(d,T)).

A complete description of Algorithm 6 and a proof of this theorem are given in Section 3.5.
As shown in Table 3.2, all existing algorithms achieving O(v/T)-regret require at least Q(T)
oracle complexity, and our Algorithm 6 is the first with an O(v/T)-regret bound and a sublinear
oracle complexity in 7.

2In this algorithm, A is assumed to be a convex body, and a membership oracle for A is assumed. Since
we can construct a membership oracle from a linear optimization oracle and vice versa by a polynomial time
reduction [150], the assumption regarding the oracle is equivalent to ours, modulo polynomial time reduction.

21

Table 3.1: Regret Bound and Oracle Complexity of for Non-Stochastic Bandit Linear Optimiza-

tion
Algorithm H Regret Bound ‘ Oracle Complexity
MV algorithm [50, 131] with FPL [100] O(T?/3) O(T?/3)
ComBand [38] GeometricHedge [52], Exp2 [13] | O(T'/?) —
GeometricHedge with Volumetric Spanners?[79] || O(T'/?) O(TT)
Algorithm 5 [This work] o(T'/?) o(T)

Table 3.2: Regret Bound and Oracle Complexity for Stochastic Bandit Linear Optimization
Algorithm H Regret Bound ‘ Oracle Complexity

LinRel [14], LinUCB with fo-ball [1, 51, 146] (Tl/2

)
LinUCB with £;-ball [51], o(T'/?) O(T)
Linear Thompson sampling [3, §] O(T'/?) o(T)
Algorithm 6 [This work] O(T'/?) O(poly(d,logT))

In both of Algorithms 5 and 6, we use the well-known techniques [150] of reduction among
linear optimization, separation, and decomposition over a given convex body. Definitions of
these three problems are given in Section 3.3. The reduction algorithms enable us to solve
separation and decomposition problems by calling the linear optimization oracle O(poly(d))
times. By means of these reduction techniques, Algorithms 5 and 6 maintain, respectively,
supersets and subsets of the convex hull of A (=: Conv(A)).

To construct Algorithm 5 for the non-stochastic setting, we extend a cutting-plane approach
to our bandit-feedback setting. The cutting-plane approach, a way of reducing oracle complex-
ity, has been applied only to full-information settings [82], not a bandit-feedback setting. A
major difference between bandit-feedback and full-information settings is that the former needs
exploration, i.e., chosen actions should be randomized with sufficiently large variance, while the
latter does not need it and chooses actions deterministically. In full-information settings, hence,
it suffices to focus on a deterministically chosen action alone. In contrast to this, to deal with
the bandit-feedback setting, the difficulty lies in constructing a distribution of actions with a
sufficiently large variance, for which cutting planes can be efficiently computed and the number
of them can be bounded.

To this end, we design relevant probability distributions so that the cutting-plane approach
works, which successfully reduces oracle complexity. More precisely, the cutting-plane approach
maintains convex bodies K; that include and approximate Conv(A), from which we choose
candidates for actions, employing the support of the probability distribution of actions to choose.
It is only when some candidates are invalid, i.e., when some are outside of Conv(A), that K,
is updated with a cutting plane excluding such an invalid candidate. In order to bound the
number of oracle calls, we design candidates for actions that satisfy two conditions: the set of
candidates has a bounded cardinality, and each candidate is sufficiently close to the weighted
center of K;. Thanks to the first condition, we are able to efficiently decide if there exist invalid
candidates. The second condition is essential for bounding the number of oracle calls in each
update of ;.

Our Algorithm 6 for the stochastic setting is based on the framework of phased elimination

22

of actions, in which T rounds are divided into phases that are segments of consequent rounds,
and, in each phase, actions are eliminated so that only promising ones are left. Existing works
employing this framework [14, 118, 161], are computationally inefficient, mainly due to the
following two reasons: (i) We need to maintain a set of promising actions that may be an
exponentially large combinatorial set, and, (ii) when choosing actions, we need to solve hard
optimization problems, e.g., G-optimal design [118] or quadratic programming [14].

Our idea for resolving the first computational issue is to maintain the set of promising actions
as a convex set instead of a subset of actions. The convex set here can be represented with
only O(poly(d)log T') linear inequalities, which implies that operations over it can be conducted
efficiently. We resolve the second computational issue by combining barycentric spanners [17]
and the decomposition technique over convex bodies [150], both of which are efficiently computed
with O(poly(d)) oracle calls. We show that thanks to these techniques, we can estimate the
loss vector with enough accuracy to achieve an O(\/T)—regret bound. The oracle complexity
is bounded as follows: In our algorithm, all a; chosen in each phase are determined at the
beginning of the phase, which means that the oracle complexity depends not on the number of
rounds, but on the number of phases. The number of phases is of O(poly(d)logT) and that of
oracle calls in each phase is of O(poly(d,logT")), which results in overall O(poly(d,logT'))-oracle
complexity.

3.2 Problem Setting

The bandit linear optimization problem is a repeated game described as follows: Before the
game starts, a player is given the number T of rounds and the dimensionality d of the action set
ACR? Ineachroundt =1,2,...,T, the player chooses a; € A while an environment chooses a
loss vector ¢; € R?, and then the player observes a loss étT a¢. The goal of the player is to achieve
a small regret Rr(a), which is defined for an arbitrary a € A as Rp(a) := Zle 0] ay —Zle (la.

We assume the action set A to be a compact set. Suppose that we have an algorithm for
linear optimization over A for any vector w € R? which we call linear optimization oracle
O4 : R?Y = A that receives an input w € R? and returns a point O4(w) € K satisfying
w' Oy (w) = minge 4 w' a.

Assumption 3.2.1. We assume that there exist positive real numbers L and R such that: (a)
|¢c]l2 < L for all ¢ € [T], and (b) |lal]l2 < R for all a € A. In addition, we assume that (c)
K := Conv(A) has a positive volume, i.e., Vol(K) := [, 1dz > 0.

The first two assumptions (a) and (b) are standard in bandit linear optimization. If we are
given a linear optimization oracle over A, we can assume (c¢) without loss of generality. In fact,
if A is included in a subspace with a smaller dimension than d, we can then detect it by calling
the linear optimization oracle polynomial times (see, e.g., Corollary 14.1g in [150]), and we can
make K full-dimensional by ignoring redundant dimensions.

3.3 Preliminary

3.3.1 Linear Optimization, Separation, and Decomposition

We define a linear optimization problem (LP), separation problem (SP), and decomposition
problem (DP) for a compact convex body P C R as follows:

23

Problem 3.3.1 (linear optimization problem, LP). Given a vector w € R%, find a vector z* € P
such that w'z* = mingep w ' z.

Problem 3.3.2 (separation problem, SP). Given a vector y € R?, decide whether y belong to P
or not, and, in the latter case, find a vector w € R? such that w'y < mingep w' .

Problem 3.3.3 (decomposition problem, DP). Given a vector « € P, find vertices zo, ..., zq of
P and Ag,...,Aq > 0 such that z = A\gzg + - - - + A\gzg.

Ellipsoid methods provide reductions among these problems, which imply that
LP: solvable <= SP: solvable = DP: solvable.

Theorem 3.3.1 (Corollaries 14.1a, 14.1b and 14.1g in [150]). Suppose that P C R? is a
polytope of which each vertex can be expressed by rationals with bit-lengths of at most ¢, and
that each entry of z,y,w € Q% is also a rational, with bit-length of at most ¢. We then have
the following:

(a) If there is an algorithm SEP that solves the separation problem, we can solve the linear
optimization problem for w € Q¢ by calling SEP at most poly(d,) times.

(b) If there is an algorithm OPT that solves the linear optimization problem, we can solve the
separation problem for y € Q¢ by calling OPT at most poly(d,) times.

(c) If there is an algorithm OPT that solves the linear optimization problem, we can solve the
decomposition problem for x € P by calling OPT at most poly(d, ¢) times.

Remark 3.3.1. For any ¢ > 0 and any real number z € [—1,1], we can approximate = by a
rational £ € Q with a bit-length of at most O(log(1/¢)) so that |z — #| < e. Hence, we can
assume that ¢ in Theorem 3.3.1 is bounded as ¢ = O(logT') by ignoring O(1/T") errors. This
implies that the above reductions can be computed in O(poly(d,logT)) time.

3.3.2 Algorithms for Logconcave Distributions

If a probability distribution over convex body P C R? has a probability density function (PDF)
p: P — Ryq such that logp is a concave function, we refer to it as a logconcave distribution.
The following theorem means that, given the value oracle of a convex function f: P — R, we
can approximately sample a vector in P from a logconcave distribution p(z) oc exp(—f(x)).

Theorem 3.3.2 (Theorems 2.1 and 2.2 in [127], Lemma 10 in [79]). Let P C R? be a conver
body with non-zero Lubesgue measure, and let f : P — R be a convex function and let p be a
logconcave distribution proportional to exp(—f(x)). Suppose e > 0 and § € (0,1). Then, given
access to the membership oracle of P and the value oracle of f, there is an algorithm which
samples approzimately from p such that: (i) the total variation distance between the produced
distribution and p is at most , and (ii) after pre-processing for a time of O(d°(log d)°™), each
sample can be produced in a time of O(d*/e* - (log(d/e))°M).

As an implication of this theorem, we can efficiently approximate the mean u(p) € R? and
the covariance matrix Cov(p) € R?*9 of the distribution p. In fact, from Corollary 5.52 in [162]
and standard concentration of logcancave distribution (see, e.g., Lemma 5.17 in [127]), it takes
(nlog(1/8)/e)°M samples to get a matrix 3 such that (1 —&)Cov(p) < 2 =< (1+¢)Cov(p) with

24

probability of at least 1 — §.3 Similarly, we can get 4 € R? such that ||z — 1(P)llcovip)1 < €
from (nlog(1/8)/e)°™M) samples.* Accordingly, we obtain the following corollary:

Corollary 3.3.1. Suppose the same assumption as in Theorem 3.3.2. There is an algorithm that
outputs a vector i € R% and a symmetric matriz & € R4 satisfying %Cov(p) < % < 2Cov(p)
and ||t — p(p)llcovp)—1 < € with a probability of at least 1 — 6. The computational time, the
number of calls for the membership oracle of P, and the value oracle of f are bounded by

1 1
poly(d, Z,log 5).

3.3.3 Barycentric Spanner

Definition 3.3.1. Let S € R?% be a subset whose linear span is R%, and let C > 1. A set
X =A{x1,...,zq} C S is a C-barycentric spanner for S if every x € S may be expressed as a
linear combination of elements of X using coefficients in [-C, C].

Theorem 3.3.3 (Proposition 2.4. in [17]). Suppose P C R? is a compact set not contained
in any proper linear subspace. Given an algorithm OPT for LP, for any C' > 1 we may compute
a C-barycentric spanner for P in polynomial time, using O(d?logq(d)) calls to OPT. Its span
is equal to R?.

3.4 Algorithm for Non-stochastic Bandit Linear Optimization

Our algorithm uses the framework of a continuous multiplicative weight update (CMWU) [11,
47,163]. A straightforward way of applying CMWU is to maintain probability distributions over
K := Conv(.A), which, however, requires a large number of oracle calls. In fact, the algorithm by
Hazan and Karnin [79] for bandit linear optimization over convex bodies calls an oracle O(T7)
times. This inefficiency is due to that we need to sample from IC; the sampling algorithm in
Theorem 3.3.2 requires O(d*/c*)-oracle complexity.

We reduce oracle complexity by means of a cutting-plane approach [82]. In this approach,
we maintain convex bodies }ng) that include and approximate K, and we update a distribution
over /ng) instead of K. The advantage of this approach is that we can sample from IC,gj) without
calling an oracle. On the other hand, updating ICEj) requires oracle calls, and therefore, we need
to bound the number of the updates as well as the number of oracle calls in each update. We
design a strategy achieving these as follows: We set candidates of actions Et(j) C ICEj), from
which we choose action. When some actions among the candidates are invalid, i.e., outside
of K, we then reduce ICEj) by a cutting plane excluding such an invalid candidate. With this
strategy, we need oracle calls to check if there exist invalid candidates. Our algorithm bounds
the oracle complexity here by setting Et(j) to have O(d) elements. Further, we design Et(j) s0
that its elements are sufficiently close to the weighted center of }Cl(fj). This plays an important
role in bounding the number of updates of ngj), Indeed, when a convex body is updated by a
cutting plane that excludes a point close to its center, its volume then decreases by a constant
factor less than 1 (see, e.g., [127]). O(n) the other hand, ICEj) always includes K with a positive

volume, and hence, the volume of ICtj cannot be smaller than that of K, which implies that

the number of updates is bounded.

3 A similar argument can be found in Section 6.3 in [34].
“For a vector x € R? and a positive semidefinite matrix A € R**?, denote ||z|[a := Vz T Az.

25

3.4.1 Algorithm

Our algorithm maintains a convex body ICt(j) C RY such that ICgO) D Icgl) D..-D /Cgsl) —
/C;O) D ICél) D..-D ICgSQ) D..-D Kg,fT) D K = Conv(A), where t corresponds to the round,
j €4{0,1,...} is an index, and s; € {0,1,...,T} is as will be defined later. It also updates a
logconcave function z : R? — R+ in each round ¢ based on the multiplicative weight update
[11, 47, 163]. Before the first round, z; is initialized to be a constant function z;(x) = 1. Let
qﬁj) denote the PDF of a distribution over ICIEj) that is proportional to the function z, i.e.,

2t () ifae]C(J)
{ 7 b (3.1)

Zt(j) = /(_> z¢(x)dex, qt(j)(x) =)

Ky L0 if a € RO\ K.

Let us denote the mean and the covariance matrix for distribution of q(j) by uﬁj)4 € R? and

E(J) € R4 respectively: M(J) anq(j)[a], E,(;J) =E »lla- ,ugj))(a - ,ugj))T]. From
t

anvqy
Corollary 3.3.1, we can compute estimators /lgj) and f),g]) of ,ug 7 and ZEJ), respectively, such
that

1 . . .

55 380 3257, i - w0 < e (3.2)
with probability of at least 1 — (5,9), where ¢ > 0 and 5,5(j) € (0? 1), which will be defined later.
Let B(j) (b(]) . ’bl(u]i)) € R¥? be a matrix such that Bt(])Bt(])T = f)ilj). Define St(J) C RY as

c [d]} U {ﬂi]) b(])

In each round t, our algorithm checks if Et(j) is included in I, and if not, it updates ICt(j), as
described in Step 7 of Algorithm 5, to exclude an element in St(]) \ K. The set St(]) is designed

so that the following four conditions are satisfied:

e} (33)

1. The cardinality of 5t(j) is bounded as |5t(j)| = O(d). Hence, we can decide if Et(j Jck by
O(poly(d)) oracle calls.

(4)

2. Each y € é't(j) is sufficiently close to p;”’, i.e., it satisfies ||y — ,ut < 1/(2e). This

|| (Z(])) 1

is important to bound the number of oracle calls.
3. The mean of E(]) is equal to ,u(]). This implies that if y follows a uniform distribution
(4)

over Et(]), we then have E[¢] y] = ftT,ugj) EtT,uEJ) = E[¢] z] for z ~ ¢”.

4. The covariance matrix ¥ of a uniform distribution over Et(j) satisfies ¥ > O(1/d?) - Egj),
Thanks to this, empirical estimates of ¢; based on St(j) will have a sufficiently small vari-
ance.

The conditions 1 and 2 are used to bound the oracle complexity, and 3 and 4 are necessary
to bound the regret. Once St(j) is included in IC, our algorithm escapes the loop of updating
Ing). An integer s¢ denotes the number of the updates in the round ¢. We denote & = 8,5(8'5),
Y = f)(st) (i = A(St) and B; = B(St). We randomly choose z from & as follows: choose
o€ {-1,1} and it E [d] uniformly at random, and define x = fi; + §tby;,. If we can play this

x, then we can construct a good estimate of ¢; from the above condltlon 4, which leads a small

26

Algorithm 5 An oracle efficient algorithm for non-stochastic bandit linear optimization

Require: Learning rate n > 0, error bound € > 0, time horizon 7" € N, R > 0 satisfying
Assumption 3.2.1.
1: Set IC%O) = B, (0,R) = {z € R? | ||z]|0c < R}, and define z; : R? = R+ by 2 (z) = 1.
2: fort=1,2,...,7T do
3: forj=0,1,2,...do
4: Compute Et(j) on the basis of (3.1) ~ (3.3).
5 Solve SP for P = K and for each y € St(j).
6: if There is a hyperplane w € R% s.t. w'y < mingex w' 2 for some y € 5t(j) then
7 Update ngj) by lCt(jH) = IC,E” N{z eR | w'z >w'y}.
8 else
9 Set s; = j and K; = ICgSt). Break the for loop w.r.t. the index j.
10: end if
11: end for
12: Let fi = ﬂgst) and by = bgft) for i € [n], which are defined in (3.1) ~ (3.3).
13: Choose i; € [d] and o, € {1,—1} uniformly at random.
14: Solve DP for P = K and = = fiy + 7:by, to get a decomposition 0, ..., 24 € A and
At0s - - - Atg such that fiy + Ftby, = Moo + -+ + AaTed-
15: Play a; = x4 with probability A\ss (s = 0,...,d), and receive loss £, a;.
16: Set f; by (3.4) and update z by z.41(z) = z(z) exp(—nl] (z — fir)).
17 Set K\ = K.
18: end for

degree of regret. However, x € & does not always belong to A, particularly when A is discrete.
To cope with this issue, we solve DP for this x and P = K to derive a decomposition of z, i.e.,
compute T, ...,Tq € K and Ay, ..., g = 0 as in Step 14. The algorithm then plays a; = xy;
with probability A, and obtains feedback of 5: a;. Based on this feedback, we compute an
estimator ét of the loss vector ¢; as

ét = 4edat£:at§;1btit. (34)

This is an unbiased estimator of 4, i.c., we have E[{;] = ¢,. The existence of ;! follows from
the definition of 3 and Assumption 3.2.1. In fact, from A C ngj) and Assumption 3.2.1, ICt(j)
has a positive volume and qgj) has a positive density over ng), which implies that the covariance
matrix E,Sj) of qt(j) is positive definite. From this and (3.2), f)gj) is positive definite for all ¢ and
4. The function z is updated by z1(z) = z(2) exp(—né/] (x — fiy)), where 5 > 0 is an input
parameter standing for the learning rate, which will be optimized later. Let

0 = 1/(T(+2+ X0 (s + D) + 3+ X1 (si + 1)), (3.5)

To compute flgj) and ,&Ej) satisfying (3.2) with probability at least 1 — 5t(j), we use the algorithm
in Corollary 3.3.1. ‘

Let Sp = ZtT:1 s¢ denote the number of updates of ICIE]). We show the following regret
bound.

Vol(Boo (0,R))
Vol(K)

- _1_ _ 1 1++log T 1 N
rameters € = op and 1 = 5o min{y/ T, 24d3/2(1+w+logT)}' Then, for all a* € A, we

27

Theorem 3.4.1. Define ¢ = élog . Suppose a; is given by Algorithm &5 with pa-

have

E[R7(a")] < 27eLRd*? max{\/T(1 + % +log T),d(1 + ¢ + log T)?} (1 — S7/2'%) . (3.6)

We note that ¥ in the above theorem satisfies ¥ < log % if K includes an £,,-ball of radius
r > 0. The proof of this theorem is given in Section 3.4.3.

3.4.2 Oracle Complexity Analysis

Here we show that Algorithm 5 calls the linear optimization oracles only O(poly(d)T") times.

To implement Algorithm 5, the linear optimization oracle is required only in Steps 5 and
14. In Step 5, we need to solve SP to decide if there exists x € 525('7) such that = ¢ IC. From
the definition (3.3) of Et(j), the number of elements in Et(j) is equal to 2d for each ¢ and j,
and, accordingly, the total number of solvings of SP is Zthl o |5t(j)| = 2d ZtT:l(st +1) =
2d(T + S7). The number Sy can be bounded as Sp = O(T). Indeed, from Theorem 3.4.1, if
St > 219(14T) then E[Rr(a*)] < —27eLRT, which contradicts to Ry(a*) = 2321 ¢ (az—a*) >
—2LRT. Consequently, the total number of solvings of SP is O(dT). In Step 14, we solve DP
in each round ¢, and hence the total number of solvings of DP is equal to T". Since we can solve
SP and DP by calling the linear optimization oracle poly(d,logT) times from Theorem 3.3.2
and Remark 3.3.1, we can implement Algorithm 5 so that it calls the linear optimization oracle
O(poly(d,logT)T) times.

3.4.3 Regret Analysis

We use the following two lemmas to prove Theorem 3.4.1

Lemma 3.4.1. The conditional expectation of ¢, defined by (3.4), given £, and &, satisfies

Proof. Since Zfzo AtsTrs = fly + %ébtitv the expectation of a; given oy, i; satisfies
N Ot
Elat] = fir + Ebtit'
Hence, we have

d
. ot T 1 1 1 -
E[Utbtit(l;] =E |:0'tbtz't (,Ut + E@z})] ~ 1o E[btitb;t] = Jed ;btib;ﬁ = @Eta

where the second equality comes from E[o;] = 0 and o7 = 1, the third equality holds since
iy follows a uniform distribution over [d], and the last equality follows from the definition of
{bsi}¢,. From the above equation and the definition (3.4) of /;, we have

E[ét] = 4edf);1 E[Utbtita:]ﬁt = ft.
O

Lemma 3.4.2. Suppose that a random variable X follows a logconcave distribution and that
E[X?] < 1/a? holds for given o > 1. Then, we have

exp(3 — «)
Elexp(X)1x>1] < m-

28

Proof. From Lemma 5.7 in [127], we have
Prob[|X| > i] < exp(—ai + 1)

for all i > 1. Hence, we have

Elexp(X)1xs1] = Y Elexp(X)Licx<it1] < Y Probli < X < i+ 1]exp(i + 1)
i—1 i=1

o0 00
< ;Prob[|X| > i exp(i + 1) < iz:;exp((l —Q)i+2) = m.
O
To prove Theorem 3.4.1, we introduce some notations: In the following, we denote
file) = 6 (@ =), fulx) = 0 (@ — fu). (3.7)

Then we can express z; as

2 () —exp< anz > (3.8)

Then, the regret can be bounded by means of Z;OJ)FI defined in (3.1), as follows:

Lemma 3.4.3. For all a* € A and v € (0,1), we have

E[Rr(a*)] < | (Blog), —log Vol(K) + nyLRT — dlog~) . (3.9)

_
n(l =7
Proof. From Ela¢|j] = jix and E[l;|fis] = ¢, we have
T T
E Rr(a EZ€ (ag —a™) Zﬁj(ﬂt—a EZKT(Mt—a Z
t=1 i—1
(3.10)

We consider evaluating the rightmost-hand side, by using Z. © " Define a convex body K by

T+1
K = (1 —7)a* + K. Since K is convex and a* € K, we have K C K. Hence, we have K C ICEJ)
for all ¢ and j. Then, we have

ElogZp}_)H Elog/}C zpy1(z)de > Elog/’CzTH(m)dx
T

= Elog/ Yeri (1 —7)a* + yz)dw
I

T
= dlogy + Elog/ exp (—n (A=) fela™) + vft(:r))> dx

=dlogy —n(1—7

IIM'H

T ~
+Elog/ exp(—n'nyt(az))d;c. (3.11)
t=1

29

The factor v¢ in the second equality comes from the change of variables z < (1 — v)a* + vz.

The last term in (3.11) can be bounded from below by means of z := §’C fgz € K. Indeed, since

ft is an affine function and exp is a convex function, from Jensen’s inequality, we have

T
Elog/ exp(— Z))dz > Elog/ exp(—
K =1

K

+(z))dz

IIMH

= —n’yEZ ft) + log/ 1dx = —n’yEZ fi(z) + log/ ldz > —nyLRT + log Vol(K).
By combining this and (3.11), we obtain

—n(1 —) < Elog Z(Til log Vol(K) + nyLRT — dlog~.

||Mﬂ

From this and (3.10), we have (3.9). O

The value E log Z(Toll can be expressed as

20 2\l g T

Z() Z(O) (St)
Elog 2\, =log 2\” + Z Elog L < log 721”4+ Z (E log —L 4+ B log . (3.12)
Z(O) (St)
We can evaluate Elog oy and Elog 7 as in Lemmas 3.4.4 and 3.4.5, respectively.
t

Lemma 3.4.4. Under the assumption that (3.2) and n < 23eLRd3/%(4+logT) holds for all t € [T},
we have
79 1
Elog —FL < LRen + 2°(edLRn)* + —. (3.13)
Z(St) T

t

Proof. We denote ¢; := qfst), which is defined in (3.1). Let y; € R and 3; € R¥? denote the
mean and the covariance matrix of ¢;, respectively. Define f; : R¢ — R by fy(x) =] (z — 1)

From the definition (3.7) of f;, we have fi(x) = fi(z) + £ (1 — fir). From the definitions (3.8)
(0)

i Z
and (3.1) of 2; and Z, we can express sztl) as follows:
t

(0)
21 / zt+1(7) / 2 () :
= de = [——Fexp(—nfi(z))dzx
Zt(Sf) ,Ct Zt(st) ’Ct Zt(St)

= E exp(—nfi(z)) = exp(—nl] (e — fu)) - B exp(—nfi(z)). (3.14)

T~qt r~qt

Since exp(z) < 1+ x + z2 holds for z <1, E exp(—nfi(z)) can be bounded as

gt

E exp(— nft() < [(1 _ﬁft(ﬂv) +n ft(m))1 _nf”t(x)gl] +qut[eXp(_ﬁﬁ(x))l_nft(x)>1]

T~qt
< B (1= ni(e) + P fi@)] + E [op(-nfila)l 5] (319)

T~qt

30

The first term in (3.15) can be, from the definition of p;, ¥; and f1, expressed as follows:

< . ~ ~ AT
B (1= nfi(o) + 120 = 1= 1 B i (0 =)]+ 0 B (i (o= po)e =)i}
xr~qt xrr~qt xr~qt
=1+ 0] 24, (3.16)
To bound the second term in (3. 15), we use Lemma 3.4.2 with X = —nfi(z): If z follows

¢+, a logconcave dlstrlbutlon and if Et is fixed, i.e., ¥, o¢, i+ and a; are fixed, then ft() =
Et(a: — p¢) = dedol] atbmt 1(33 —) follows a logconcawe distribution because logconcavity is
preserved under linear tranbformatlonb (see, e.g., [142]). Furthermore, we have®
E [(nfe(2))?] = n? E [(& =) (@ =) ") = PO Sl = (dednt] ar)?bf X7 562 by,

~qt t

< 2(4ednLR)?b) 27 by, = 2(4ednLR)*S; " @ (b, b)) < 2°(ednLR)*S; ! o 3 = 2°(enLR)?d?

tlt tig

where the first, second and third equalities come from the definitions of ft, ¢ and ft, re-
spectively, the first inequality follows from the condition ¥; < 23, given in (3.2), and the
second inequality follows from that 3, = Zle btib; . Hence, under the assumption that
25(enLR)?d®(4 +log T)? < 1 holds, it follows from Lemma 3.4.2 that

exp(—1—1logT) 1

—nfi(z)1_ < .
B PR O] S T ST T log Ty S T

Combining this, (3.15) and (3.16), we obtain

~ ~ ~ 1
E exp(—nfi(z)) <1+ 772532% + T

r~qe

From this, (3.14), Lemma 3.4.1 and the fact that log(1 +) < « holds for > 0, we have

IN

) A e 1
—nEﬁtT(ﬂt — i) + Elog (1 + 772@2,5& + T>
) |
< 0B (ue -) + B[00 Sibi| + 7.

From (3.2), we have

60 (e — fi)| < Neellzllpe = fullz < Lllie — full 1| Zell2 < LRe,

where ||X;]|2 stands for the ¢y operator norm, i.e., the largest eigenvalue of ¥;, and the last
inequality holds because X; is the covariance matrix of distribution over a region included in
B (0, R). Furthermore, we have

E [0/ $idi| < (4edLR)*S; " @ Blbii bl) = (4edLR)*S (Z bmbtz>

1
= (4edLR)*2; ' @ (d2t> < 2(4edLR)>.

By combining the above three inequalities, we obtain (3.13). O

5A e B means the Frobenius inner product of matrices A and B, i.e., its value is defined to be the trace of
ATB

31

Lemma 3.4.5. Suppose ¢ < 1/(12e). For allt € [T] and j € {0,1,...,s; — 1}, under the

assumption of (3.2) we have

(G+1)

Z 1

: G < <1 -) : (3.17)
Zt] 2e

Proof. Let (w,'b) denote' the hyperplane that the algorithm chooses for updating ICﬁj), which
means that IC§J+1) = IC,E]) N{z € R |w'z > b}. Then, we have

G+ [e+ ze(a)da
A G\ (G+1) 2t
. t _ K:t \lcf = PI‘Ob ['LUT:C < b]

1 — =
Zt(J) flcgj) zt(a)da g

Since (w,b) satisfies w2 < b for some x € Et(j), there exists i € [d] and o € {1, —1} such that
w' (i + 20) <.
Combining the above equality and inequality, we obtain
Z(j+1) . .
th quij) 4e
= Prob [wT <x — ,u,@) <w' (pﬁj) — ug‘j) + ibg))} .

g de

The value w ' <ﬂ§j) - u,ﬁj) + ﬁbi?) can be bounded as

(i . o . N . 1 .
o7 (" - + 20)] < Iwllg (W — 1 g + 4e||b§§>||29>_1)

1 1 lwllyo
< Jwlgw (e + 46> < \F2||w||2§j) <5 n) < 7

4e 2e
where the first inequality comes from the CauchnyChwa,rz inequality, the second inequality
follows from (3.2) and that 2?) = Z?Zl bg)bg)—r, the third inequality follows from S?) - 229
in (3.2), and the last inequality comes from the assumption of ¢ < 1/(12¢). From the above two

inequations, we have

(G+1) T(n _ @)
AT ey [w@m) § _1] |
Zt] :z:wqt(J) “wHEij) 2e
; T (4)
When z follows qgj), Y = w @i) follows a distribution with mean 0 and variance 1 since

||w||2£j)

w' z has mean wTugj) and variance wTEEj)w. Moreover, the PDF of y is a logconcave function
because logconcavity is preserved under linear transformations [142]. Since we have Proby <
0] > 1/e from Lemma 5.4 in [127] and Prob[—1/(2¢) < y < 0] < 1/(2e) from Lemma 5.5 in

[127], we have Probly < —1/(2¢)] > 1/(2e). O

Combining (3.12) and Lemmas 3.4.4 and 3.4.5, under the assumption that (3.2) holds for
allt € [T] and j € {0,1,...,5s:}, we have

T
(0) (0) 5 o 1 1
ElogZ;, <logZ,’ +T <LR577 + 2°(edLRn)* + T) + t_E 1 s¢ log <1 - 26)

S
<log Z2\” + LRTen + 25T (edLRn)? + 1 — ?T (3.18)

32

where we denote St = Zthl s¢ and the second inequality follows from log (1 — i) < % Define
d := Prob][there exists ¢ € [T] and j < s; such that (3. 2) does not hold]. From the definition
(3.5) of 51‘@, we have § < ZtT=1 2 oit0 < 2k Tk(k+1) = 5. Since (3.18) holds with probability
at least 1 — ¢, and it always holds that Rp(a*) < 2LRT, from Lemma 3.4.3, we have

E[Rr(a")]

1-6 0 St
< —— | 2°T(edLR)*n + — | log — —dlogy — — | + LRT (¢ +v) | + 26LRT
T 1-—x Vol(lC) 5

(0)
St
L logy — — LRT L
Vol(lC) —dlog~ 10>—|— R (€+7)>+ R,

(0)
where the second inequality comes form 0 < § < % Let o := élog %(,C) = élog W%W.

we obtain

By setting e = v = ﬁ,

E[Rr(a")] <2 (25T(edLR) n+ - ., (d(5 + 4 +logT) — i)) + 2LR>

.. . o 1+y+logT 1 :
In addition, setting n = QeLR min {\/ T 24d3/2(1+¢+10gT)} we obtain

E[Rr(a")] < 2Te LRA3/? max {\/T(l + 9 +logT),d(1+ v + 1OgT)2} (1 B 2517(“)> 7

which means that (3.6) holds. O

3.5 Algorithm for Stochastic Bandit Linear Optimization

In this section, we present an algorithm for stochastic bandit linear optimization, where we
assume that ¢; follows a distribution D over R?, ii.d. for t = 1,2,...,7. We denote ¢* =
E [/ € R?and & = ¢, — (*.

~D

3.5.1 Algorithm

Our algorithm is summarized in Algorithm 6. In the algorithm, a parameter § > 0 controls the
probability of achieving a small regret. The rounds are divided into K = O(logT) phases so
that the k-th phase consists of ©(2%) rounds for each k € {1,...,K}.

When the k-th phase begins, the algorithm maintains an action set Pj. This action set
is initialized by P; = Conv(A), and is defined recursively by (3.20) (thus P; 2 Py D --- D
Pk). Py is designed so that the value of ¢*Tz is smaller for all x € Py as k gets larger (see
Lemma 3.5.2). At the beginning of the k-th phase, the algorithm computes a 2-barycentric
spanner X = {xk1,...,Tkq} of Pr. We can construct a good estimate of ¢* if each element
of X can be chosen as an action. However, elements in X; do not always belong to A,
especially when A is discrete. To cope with this issue, our algorithm decomposes each xj; into
the points xp0,...,Trg € A with weight Agio, ..., Agig = 0 so that Ao + -+ + Ag = 1 and
Aki0Trio + -+ + AkidThid = Tgi. It then plays xp;;, Thij o< Agj times, for each j = 0,1,...,d.
We denote the action played at the ¢-th round by a;. The algorithm computes an empirical
estimate £ of £*, based on the feedback obtained in k-th phase, as defined in (3.19).

33

Algorithm 6 An oracle efficient algorithm for stochastic bandit linear optimization

Require: Action set A C R? positive real numbers L and R satisfying Assumption 3.2.1,
d€(0,1).
1: Set P; = Conv(A) and t1,1,0 = 0.
2: for k=1,2,...,K do

3: Let Xy = {xp1,...,7ka} C Pk be a 2-barycentric spanner for Py.

4 Set (p = 22KH942 log (M)

5: fori=1,...,ddo

6 Solve DP for P = Conv(A) and = = zy; to get a decomposition x, ..., ZTkiq € A and

ALiOy - - - s Akid Such that xr; = Agioxrio + + + + AeidTrid-

7 for j=0,...,d do

8: Set Thij = [CeAkijly thig+1 = trig + Thij-
Choose action a; = wy;; exactly Tj;; times, from the (f;; + 1)-th round to the
(ki j4+1)-th round.

10: end for

11: Set tgi+1,0 = thid+1-

12: end for
13: Calculate empirical estimate 0y of ¢* by

d d d d tkij+1
§ : T) -1 T
Vk = Z Tkijxkijxkij7 ék = Vk Z Z Z (ft xkij)xkij- (319)
i=1 j=0 1=1 j=0 t=tg;;+1

14: Solve LP for P =P, and w = Ek to find a vector x; € arg min f;x
TEPy

15: Update Py by
Prs1={z € Py | {] (x — x}) < LR27"}. (3.20)

16: end for

We note that Vol(Py) > 0 holds for all k£, which implies that we can apply the algorithm
in Theorem 3.3.3 to Py and that Vj is invertible. In fact, we have Vol(P;) > 0 from Assump-
tion 3.2.1 and we can show Vol(Px) > 0 by induction in k, from the definition (3.20). The
linear span of a barycentric spanner Xy = {zy1,...,2q} coincides with that of Py (see, e.g.,
[17]), which is equal to R? since Vol(P;) > 0. Hence, we have Vj, = 2?21 Z;‘l:o)\kijxkijm;j -
C Zle :Bkzx; > O, which means that V} is nonsingular.

Algorithm 6 satisfies the following regret bound:

Theorem 3.5.1. Suppose that {; follows an i.i.d. distribution fort=1,...,T with T > 2, and
that {at}z;l is given by Algorithm 6. With probability at least 1 — &, the regret is bounded as
follows:

dlogT
max Rp(a) < 212LR\/d3Tlog ((;g) (3.21)
ac

The proof of this theorem is given in Section 3.5.3.

34

3.5.2 Oracle Complexity Analysis

Step 3 in Algorithm 6 requires constructing a 2-barycentric spanner. From Theorem 3.3.3,
we can construct it by calling an algorithm that solves LP for P = Pi, O(poly(d)) times.
Theorem 3.3.1 (a) and Remark 3.3.1 imply that we can solve LP, by solving SP O(poly(d,logT))
times. SP for P = P} can be solved by the following procedure:

1. Decide if y € P; or not, and, in the latter case, output a vector w € R? such that
w'y < mingep, w'z. From Theorem 3.3.1 (b), this can be done by calling the LP oracle
for A O(poly(d)) times. In the former case, i.e., if y € P1, go to the next step.

2. For j =1,....k—1,if (] (y — x}) > LR279, output ;. If (] (y — x}) < LR27 for all
j=1,...,k—1, it means that y € Pk.

This procedure calls the LP oracle for O(poly(d,logT)) times and runs in O(poly(d, K)) =
O(poly(d,logT)) times. Hence, we have an efficient implementation of Step 3 that calls the LP
oracle for A O(poly(d,logT)) times. Similarly, Steps 6 and 14 in Algorithm 6 can be executed
by calling the LP oracle for A O(poly(d,logT)) times. The other steps are free from access
to the oracle and can be efficiently implemented. Since the number K of iterations w.r.t. k is
bounded as in (3.31), the number of oracle calls for solving LP over A is of O(poly(d,logT)K) =
O(poly(d,logT)).

3.5.3 Regret Analysis

In the proof of Theorem 3.5.1 we may assume that

4
T > 2d¢; = 22d3 log (;) : (3.22)

Indeed, if T' < 2d(;, then we see Ry(a) < 2LRT < 2LR~/2d(;T, which means that (3.21) holds.
To prove the above theorem, we start with analyzing the error of the estimators 0}, defined
by (3.19):

Lemma 3.5.1. With probability at least 1 — 0, for all k € {1,2,...} and x € Py, we have

(b, —) Tz| <27 FLR. (3.23)
Proof. Since Xy = {xk1,...,Tkq} iS a 2-barycentric spanner for Py, for all z € Py, there exists
a vector w = (w1, ..., wg) € [~2,2]¢ such that z = wizp; + - - + wgrrg. By means of this w,

(0, — 1*) T2 can be expressed as

. (d kit \ d
(b — E*)T:L' = \Z Z Z éjzkijw;ij_l — E*T/ Z WsThs
=1 j s=1

d d tkij+1 d
_ Vi Y PRI
= (t —) LkijL iz Vi WsTs
i=1]ZO f:tkl‘]'—Fl s=1
d d d tkij+1
T T -1
= Z W Z Z Z (& xkij)xkijvk LTks) (3.24)

s=1 =1 jZO t:tkij+1

35

where the first equality comes forrn the definition (3.19) of ék, the second equality comes from
d d tki — d d — .

D im1 22j=0 PO tj,;1+1]ﬂ]:L'k”V = Dic12.j=0 Tk,;jmkijx;ij 1 = I, and the last equality

comes from & = ¢ — £*. We give a uniform bound for this value by the following claim:

with probability at least 1 — ¢, it holds for all K =1,2,... and s = 1,...,d that

tkz J+1

d
LR
S5 3 i < 1 525
i=1 j=0t=tp;;+1
Since the expectation of & = ¢, — ¢* is equal to 0, and since [|&]2 < [[€]l2 + [[€*||2 < 2L and
|2kijll2 < R hold from Assumption 3.2.1, {¢, z4;;} are independent random variables with mean
0 and absolute value at most 2L R. Hence, from Hoeffding’s inequality, it holds with probability

)
at least 1 — TROFT) that

tkz J+1

ZZ Z (gt Lkij xkzgv Tks

1=1 j=0t=tp;;+1

d
2dk(k + 1)
<2LR |8log <(5+> > Z (@0, Vi " ors)?

i=1 j=0 t=tg;;+1

2dk(k + 1
= 2LR\/8 log (M) a) Vi o (3.26)

d thi,j+1
= 2LR |8log <2dk(l§+1)> x;—st_l (ZZ XJ: xkijm;j) Vk—lxks

o

The value a:gSVk_lxks is bounded as xZSVk_lxks < Ckfl. Indeed, we have

d d
T T
Vi = ETksjwksja?ksj = Ck E AksjThsjThs;
§=0 J=0

d)
= (i | ThsThy + Z Misj (Thsj — Ths) (Thsj — Ths) | | = ChThsThgs
Vs)
where the first inequality comes from the definition (3.19) of Vj, the second inequality comes

from Thsj = [CuAksj| = CuAksj (Step 8 of Algorithm 6), and the equality comes from that
Aeso + -+ Aksg = 1 and that Aggo@rso + + + + + ApsdThsd = Tks- Lhis inequality indicates

0< (Vi tans) " (Vi — Geopsng) (Vi tans) = ap Vi g (1 — Gel Vi togs),

from which we have kast,_lmks < Ck_l.

Plugging this bound on xg—st_lmks into (3.26) and the definition of (; (Step 4 of Algorithm 6)
show that the inequality (3.25) holds with probability at least 1—
we have

m for each k and s. Hence,

Prob] (3.25) does not hold for some k and s | < Prob[(3.25) does not hold for k and s]

] =
M&

o
Il
—
w
Il
=

M=
M:“

dk(k+1)

i
MA
w
Il
_

which means that, with probability at least 1 — 4§, (3.25) holds for all £ and s. Combining this,

(3.24), and |ws| < 2 for all s € [d], we obtain (3.23). O
Lemma 3.5.2. Fiz a* € arg min¢*"a. With probability at least 1 — 6, for all k, we have
acA
a* € Py, and 0Tz — 0*Ta* < 22°FLR for all x € Py. (3.27)

Proof. From Lemma 3.5.1, we can assume that (3.23) holds for all £ and x € Py. Under this
assumption, we show (3.27) by induction in k. We can confirm that (3.27) holds for £ = 1.
Indeed, a* € Py follows from A C Py, and £*Tz — 0*Ta* < ||¢*|2]|lz — a*||2 < 2LR follows from
|1€*|l2 < L and ||z]|]2 < R for € P;. Suppose that (3.27) holds for k£ = s. Then, Py, defined
by (3.20), contains a* because

(la* <0 Ta* + 27V LR < 0T + 271 LR < ¢ a* + 27°LR,

where the first and the third inequalities come from (3.23) and the second inequality comes from
Ta = minge4{¢*Ta} = mingep, {¢*Tx} < £*Tz¥. Furthermore, for all z € Py 1, we have

CTe<tlz+ 2 'LR<{]at+3-27'"LR<{]a*+3-27° '"LR < ¢*Ta* + 27°M'LR,

where the first and the fourth inequalities come from (3.23), the second inequality comes from
the definition (3.20) of Pj41, and the third inequality comes from a* € Ps and z € arg min é;—x

:BE’PS
Hence, (3.27) holds for & = s + 1. By induction in k, (3.27) is proven to hold for all positive
integers k. O
Let T} denote the number of rounds in the k-th phase, i.e.,
d d
Ty, = Z Z Trij = thk+1,1,0 — tk,1,0- (3.28)

i=1 j=0

From the definition of Tj;; = [CxAkij| (Step 8 of Algorithm 6), we have (A pij < Thij < CpApij+1.
Combining this and the condition that Z;‘l:o Akij = 1, we obtain

d¢ < Ty < d¢p, +d(d +1). (3.29)

Let K be the index of phases such that the K-th phase includes T-th round, i.e., K is the number
such that Ef:_ll T, <T < Zszl Ty. Note that K > 2 follows from the assumption 3.22. From
(3.29) and the definition of () (Step 4 in Algorithm 6), we have

24K (K —1 2K (K +1
T> Tk > d(x1 =22 Td log <d(5)> > (2579)2d° log (d(5+)> :

2
where the last inequality follows from 2 log (%) = log (%) > log <%) .

This inequality implies the bound on 2% and K, as follows:

2 < L (L) (g (UL D)) 330

1
K < §log2(T) - 3. (3.31)

37

By means of these inequalities, we can bound the value Zthl 0*" (a; — a*), for the output a; of

Algorithm 6, and a* € arg min ¢* ' a:

a€eA
T tk+1,1,0
ZE*T (ap —a* Z Z T (ay — a*)
t=1 k=1t= tk 1 0+1
K
< Z 22k LR (Lemma 3.5.2, a; € Py)
k=1
K
<dLRY 2* (G +d+1) (from (3.29))
k=1
X 2dk(k + 1)
=dLR <2k+11d2 log (5> + 2%k + 1)) (Step 4 in Algo. 6)
2dK (K + 1
< dLR <2K+12d2 log <(5+)> +4(d + 1))
1
2dK (K + 1)\ 2
< dLR <29d2 <d3 lo <(5+)>> S a(d+ 1)) (from (3.30))
d(log, T)?
< dLR <29\/dT log <(Og52)> +4(d + 1)) (from (3.31))
log T
< dLR <210\/dT log (d (;g) +4(d+ 1)) . (3.32)

By combining this and the following lemma, we obtain an upper bound on the regret Ry(a) =
S U (ar — a).

Lemma 3.5.3. Let a* € arg min*"a. With probability at least 1 — 6, it holds for all a € A

acA
2d
T(ar —a%) + 8LRy [dT log =). (3.33)
Proof. We show (3.33) by proving the following two inequalities:
T T 9
> tlay =Y ¢Ta, < LRy[/8Tlog (5) (3.34)
t=1 t=1
d / 2d

> Tar Zﬁt a < LRy[8dT log (5) (3.35)
t=1 t=1

Denote X, := >1_, (s — £*) "as. Since {X,}I_, is a martingale such that |X,41 — X,| < 2LR,

from Azuma’s inequality, with probability 1 — g, we have Xp < LR+/8T log (%), which means
that (3.34) holds. Similarly, from Hoeffding’s inequality, we have

2 < Ly/dTlog (2;) (3.36)

38

that

IIM%

T

> —t)

t=1

with probability at least 1 — g. Under this condition, we have

T T T 2d
S tTa< - 0¢Ta+ LR/dT 1o ¢*Ta* + LRy|8dT 1o <)

where the first inequality follows from (3.36) and ||al2 < R, and the second inequality follows

from a* € arg min¢*"a. Hence, we have (3.35) for all @ € A with probability at least 1 — 5.
acA

Since each of (3.34) and (3.35) holds with probability 1 — %, both (3.34) and (3.35) hold with
probability 1—4. Then, by taking the sum of each side of (3.34) and (3.35), we obtain (3.33). [

By combining (3.32), Lemma 3.5.3 and (3.22), we obtain

log T
Ry(a) < 211LR\/d3Tlog (d (;g)

with probability at least 1 — 26. Replacing § with §/2, we obtain (3.21).

39

40

Chapter 4

Tight Regret Bounds for Bandit
Combinatorial Optimization

Bandit combinatorial optimization is a bandit framework in which a player chooses an action
in a given finite set A C {0, 1}¢ and suffers a loss that is the inner product of the chosen action
and an unobservable loss vector in R? in each round. This chapter aims to reveal what property
makes the bandit combinatorial optimization hard. Recently, Cohen et al. [44] showed a lower
bound Q(+/dk3T/log T') of the regret, where k is the maximum ¢;-norm of action vectors, and T'
is the number of rounds. Their lower bound was constructed via continuous strongly-correlated
distribution of losses. Our main result is to improve their bound to Q(vdk3T) by a factor of
Vlog T, which can be done by means of strongly-correlated losses with binary values. The bound
derives better regret bounds for three specific examples of bandit combinatorial optimization:
the multitask bandit, the bandit ranking and the multiple-play bandit. In particular, our
bound for the bandit ranking answers to an open problem posed in [44]. In addition, we show
that the problem becomes easier without correlations among entries of loss vectors. In fact, if
each entry of loss vectors is an independent random variable, then one can achieve a regret of
O(Vdk2T), which is vk times smaller than the lower bound shown above. Our results indicate
that correlation among losses is essential to having a large regret.

4.1 Introduction

This chapter investigates the bandit combinatorial optimization problem defined as follows: A
player is given a finite action set A C {a € {0,1}%] |lal|; = k} and the number T' of rounds for
decision-making. In each round t = 1,2,...,T, the player chooses an action a; from A. At the
same time, the environment privately chooses a loss vector £y = [ly1,. .., 4yq] " € [0,1]%, and the
player observes the loss Eg—at incurred by the action a;. The goal of the player is to minimize
the expected cumulative loss E[X:tT:1 EtTat], where the expectation is taken w.r.t. the player’s
internal randomization. The performance of her algorithm is measured in terms of the regret
Rr defined by Ry = max,c 4 E Zthl ¢l ap — 2;{21 (al.

Our focus is on the minimax regret, the worst-case regret attained by optimal algorithms,
which can be expressed as Ry := minaigorithm MaX g 7 [o,1)d Rp. The minimax regret can
be bounded from above by designing algorithms. The current best upper bound is Ry =
O(\/dk3T log(ed/k)), as reported by a number of papers [13, 32, 38, 52, 79]. By way of con-

41

trast, lower bounds of the minimax regret can be proven via constructing a probabilistic dis-
tribution of loss vectors for which any algorithm suffers a certain degree of regret. To give
a lower bound, Audibert et al. [13] constructed a probabilistic distribution of loss vectors for
which arbitrary algorithms suffer a regret of Q(v dk2?T), and they conjectured that this is tight,
ie., Ry = ©(Vdk®T). More recently, however, Cohen et al. [44] showed the lower bound of
R = Q(\/dk3T/log T), which would disprove the above-mentioned conjecture, and they have
decreased the gap between the upper and lower bounds to O(y/log(ed/k)logT) consisting of
logarithmic terms alone.

The input distribution constructed by Cohen et al. [44] for deriving the lower bound has
unique characteristics that cannot be found in previous studies, such as lower bounds for a multi-
armed bandit [16], a combinatorial semi-bandit [32, 119, 160] and a combinatorial bandit [13]. In
previous studies on lower bounds, only binary inputs and an arm-wise independent distribution
have been considered, i.e., #1,..., g are mutually independent {0, 1}-valued discrete random
variables. Such inputs have been shown to give tight lower bounds for multi-armed bandits [16]
and combinatorial semi-bandits [13, 119]. In contrast to these, Cohen et al. [44] introduced loss
vectors following a continuous distribution over [0, 1]¢ that have a strong correlation among d
entries. Furthermore, the lower bound given by Cohen et al. [44] includes a 1/y/logT term
which does not appear in the other lower bounds for bandit problems. In addition, their lower
bounds apply to special cases such as the multitask bandit and the bandit ranking problem.
Their results are, however, restricted to the problems under certain parameter constraints, and
consequently, the tight bounds for some important special cases, including the problem referred
to as bandit ranking with full permutations, are left open.

Such characteristics w.r.t. the input distribution given by Cohen et al. [44] lead to the
following research questions:

Q. 1 Is the 1/y/logT factor in the lower bound given by Cohen et al. [44] redundant or in-
evitable?

Q. 2 Does a continuous distribution of loss vectors make the problem essentially harder than a
discrete (binary) distribution? If we restrict to the loss vectors in {0,1}¢, then the player
can see the number of good arms (i € [d] s.t. ly; = 0) in the chosen arms Sy, which may,
or may not, be more informative than real values.

Q. 3 Does the correlation of loss among different arms make the problem essentially harder
than arm-wise independent loss?

Q. 4 Can we obtain tight lower bounds for the special cases such as the bandit ranking problem
with full permutations, resolving the open question in [44]?

4.2 Main Results

Our main result is to answer the above four questions. First, we improve the regret lower bound
given by Cohen et al. [44] to Q(Vdk3T), by a factor of /log T, as shown in Table 4.1. Such
bounds can be proven by constructing a distribution of strongly-correlated losses taking binary
values. We show the bounds for two specific examples of bandit combinatorial optimization that

42

Table 4.1: Regret bounds R for bandit combinatorial optimization.
Assumption H Upper bound by Algorithms ‘ Lower bound

Q(\/dk3T/1log T) by ¢; € [0,1]?

O(Vdk>T log | A|) ([44)),
No assumption = O(\/Wg(ed/k))

([32] and [38])

Q(Vdk3T) by ¢, € {0,1}¢
(Theorems 4.2.1 and 4.2.2)

O(\/dkT log | A|log T)
Independent losses = O(v/dk2T log(ed/k)log T)
(Algorithm 7 and Theorem 4.2.3)

Q(Vdk2T) by £; € {0,1}¢
([13])

are of practical importance: the multitask bandit problem, the bandit ranking problem (Theo-
rem 4.2.1), and the multiple-play bandit problem (Theorem 4.2.2). This result gives answers
to Q. 1 and Q. 2 in Section 4.1: The 1/y/logT factor in the lower bound is redundant, and
the difference between continuous-valued and discrete-valued losses has no large impact on the
hardness of the problem. This also answers to Q. 4, an open problem posed in [44].

The multitask bandit problem [38, 44| is a bandit framework in which the player tries to
solve k instances of the n-armed bandit problem. This is a special case of bandit combinatorial
optimization with d = kn and

A:{ae{o,l}d i a; = 1 (je[k])}. (4.1)
\)

i=(j—1)n+1

In the bandit ranking problem or online ranking problem [83] with bandit feedback problem,
the goal of the player is to find a maximum matching in the complete bipartite graph K}, ,, with
d = kn edges, where k € [n]. The set of all maximum matching can be expressed by

Jjn k
A={ac{o | Y w=1Gek) Yagyus<lGeh) . (42
i=(j—1)n+1 i=1

For these problems, we give the following regret lower bound.

Theorem 4.2.1 (multitask bandit, bandit ranking). Suppose that A is defined by (4.1) or
(4.2) and n > 2. There is a probability distribution D over {0,1}? for which the following holds:
If ¢y is drawn from D for t = 1,...,T independently, the regret for any algorithm satisfies
E[R7] = Q(min{Vdk3T, k*/*T}), where the expectation is taken w.r.t. the randomness of /;.

dk3T)
logT

under the assumption of n > 2k, and the full-permutation case (kK = n) has been left as an

For the bandit ranking problem, Cohen et al. [44] have shown a lower bound of €(

open problem, as mentioned in their conclusion. Theorem 4.2.1 answers to this open problem:
Even if k = n, the minimax regret is of Ry = O(Vdk3T) = O(Vk>T), ignoring a v/Iog k factor.
Theorem 4.2.1 can also be extended to the online shortest path problem [17], via the standard
reduction from multitask bandit to the online shortest path. See e.g., [44] for details of the
reduction. The proof of Theorem 4.2.1 is given in Sections 4.4.3 and 4.4.5.

The multiple-play bandit problem [38, 112, 116, 160] is another bandit framework in which
the player can choose arbitrary k& arms from a set of d arms in each round. This problem
corresponds to A = ([Z}) ={ac{0,1}?] |lal; = k}.

43

Theorem 4.2.2 (mutiple-play bandit). Suppose that A = ([Z]), There is a probability distribu-
tion D over {0,1}? for which the following holds: If £; is drawn from D fort =1,...,T indepen-
dently, the regret for any algorithm will satisfy E[Rr] = Q (min {(%)Zv dk3T, d%dkk?’/‘lT}),
where the expectation is taken w.r.t. the randomness of ly.

The above lower bound means that Ry = Q(Vdk3T) for T = Q(dk3/?) and d = Q(k). Note
that existing works [13, 44, 119] gave weaker lower bounds only for the case of d > 2k, while
ours are valid for general d and k. The proof of Theorem 4.2.2 is given in Section 4.4.4.

A basic idea for proving a nearly tight bound is to construct an environment where all entries
of ¢; are strongly correlated with one another, which has been introduced by Cohen et al. [44].
If losses are strongly correlated, the observed value 6? a has a larger variance; For example,
the variance is of order k if all the entries are independent, while it can be of order k2 if all
the entries take the same value. When the observed values ¢; a have larger variances, the KL
divergence among the values for different actions a is small, which implies that no algorithm
can detect “good” actions well. Cohen et al. [44] constructed such an environment by means
of normal distributions, which improve the lower bound by an O(\/E) factor. On the other

1/2

hand, unfortunately, their bound includes a redundant (log7")~"/* factor due to the unbounded

1 We remark that their technique has been used recently for

support of normal distributions.
proving a lower bound for bandit PCA [113], which includes a redundant (log T')~*/? factor too,
for the same reason as the above.

To shave off the (log T)~'/2 factor, this chapter introduces a novel class of discrete distribu-
tions over {0,1}% so that entries of loss vectors are bounded and strongly correlated. In order
to make the losses correlated, we consider d Bernoulli distributions that share the parameter,
by which the observed value has a large variance of O(k?). It is, however, not straightforward
to set “good” actions in this approach. The previous work [44] simply decreases the mean pa-
rameter in normal distribution to set “good” actions, but it does not work as it causes large KL
divergences between good actions and the others in our distribution. In the present work, we
adjust the parameter of Bernoulli distributions carefully with the intention of having small KL
divergence, which successfully improves the regret lower bound. Our idea is potentially used to
improve the idea of [44] even in other problems.

Second, we show that the correlation among losses is essential to having a large regret. In
fact, if each entry of loss vectors is an independent random variable, then one can achieve a regret
of O(Vdk2T) as below, which is vk times smaller than the lower bounds in Theorems 4.2.1
and 4.2.2. This gives an answer to Q. 3: The correlation among losses makes the problem
essentially harder, as the minimax regret bound gets larger by a factor of é(\/%)

Theorem 4.2.3 (smaller regret bound for arm-wise independent loss). There exists an al-

gorithm that achieves E[Ry] = O(\/dk:QTlongog %) for T = Q(d?), under the assumption
that 4y follows a distribution of mutually independent d random wvariables in [0,1], i.i.d. for
t=1,2,...,T.

This upper bound is nearly tight; Theorem 5 in [13] implies that any algorithm suffers
E[Rr] = Q(VdEk2T) in the worst case under the same assumption as in Theorem 4.2.3.2 By

'To keep ¢; in the bounded region [0, l}d with high probability, the variances of normal distributions need to
be kept sufficiently small, which makes the KL divergence large.

2 Although the original statement in [13] does not include the independence assumption, we can confirm that
it is satisfied in their proof.

44

combining this result and Theorem 4.2.3, we obtain the following corollary:

Corollary 4.2.1. Under the same assumption as in Theorem 4.2.3, the minimax regret in
bandit combinatorial optimization is of order é(v dk?T), where we ignore logarithmic factors
ind andT.

To prove Theorem 4.2.3, we analyze regret upper bounds for stochastic linear bandits, which
are a generalization of bandit combinatorial optimization with stochastic environments. In
stochastic linear bandits, a player is given a finite set A C R of d-dimensional vectors. In
each round, the player chooses a; € A and receives loss L; = 0Ty + 1¢, where 1, is the noise,
which we assume is conditionally a-subgaussian. We also assume that sup, jc 4 ¢*T(a—b) < L.
We observe that bandit combinatorial optimization with the assumption in Theorem 4.2.3 is a
special case of stochastic linear bandits with o = vk/2 and L = k.

For stochastic linear bandits with & = 1 and L = 1, Lattimore and Szepesvari [118] provided

an algorithm that achieves Rp = O(y/dT log M“%T).S This upper bound, however, does not
directly lead to Theorem 4.2.3 because their bound stands only for the case of &« = 1 and
L = 1; If we directly apply their result, we have Rp = O(\/deTlog W%T) = O(Vdk3T) by
multiplying losses by 1/k. This is Q(v/k) times larger than the bound in Theorem 4.2.3.

To cope with this issue, we modify their algorithm so that we can provide a more refined

analysis for the case of arbitrary o and L. The differences between our Algorithm 7 given in
Section 4.5.1 and Algorithm 12 in [118] are summarized as follows:

e They deal with only the case in which the noise 7, has a bounded variance, i.e., « = 1. To
deal with the case for a general o, we modify the definition (4.31) of T}, in their algorithm.

e They assume that the suboptimality gap maxaybGA{ﬁ*T(a —b)} is bounded by 1. To cope
well with changing suboptimality gaps, we modify the definition of €; in their algorithm.

e They basically consider maximization problems, while we consider minimization (This
results in no essential differences).

We show that Algorithm 7 achieves the following regret bound:

Theorem 4.2.4. For any input parameters § > 0 and 1 > 0, with a probability of at least
1 -9, the output of Algorithm 7 satisfies

T
log T 2da® . 2
max » ' (a; —a) < 9a\/dT log A log + L (; log A + (L +e1)d*. (4.3)
acA 1 d €1 0

Theorem 4.2.4 means that the upper bound L of ¢*Ta; does not affect the leading term of
the regret upper bound, but « does. By substituting o = \/E/ 2 and L = k into the bound in

Theorem 4.2.4, we obtain Theorem 4.2.3.

4.3 Related Work

Bandit combinatorial optimization was introduced by McMahan and Blum [131] and Awer-
buch and Kleinberg [17]. They proposed algorithms achieving regret of O(T%/%) and O(T?%/?),

3In their book, the proof is left for the reader as an exercise.

45

respectively, ignoring dependence on d and logarithmic factors in 7. Algorithms with better
regret bounds have been proposed in several papers [13, 32, 38, 52]. These algorithms achieve
Rp = O(\/dk3T log(ed/k)) in our problem setting. Recently, computationally efficient algo-
rithms achieving sublinear regret have also been considered in, e.g., [38, 45, 79, 148].

In terms of lower bounds for bandit combinatorial optimization, Audibert et al. [13] showed
that Ry = Q(Vdk?T), and they conjectured that this lower bound was tight. Very recent work
by Cohen et al. [44], however, disproved the conjecture showing Ry = Q(\/dk3T/logT).

Combinatorial semi-bandit optimization is a variant of bandit combinatorial optimization,
in which the player can observe not only the total loss £, a; but also the entry ¢; for each chosen
arm i € Sy. This problem was introduced by Gyérgy et al. [71] in the context of the online
shortest path problem, i.e., they considered the case in which A is a set of all subsets of edges
constructing a path in a given graph. For general action sets A C ([Z]), Audibert et al. [13]
proposed an algorithm achieving regret of O(\/M), and showed that this is minimax optimal,
i.e., there is an action set A C ([z]) such that Ry = Q(V/dkT). For the multiple-play bandit
problem, i.e., the case of A = ([Z]), with semi-bandit feedback, Uchiya et al. [160] showed that
Ry = Q(VdT), but it remained open whether this is tight, until very recent work by Lattimore
et al. [119] provided the proof that Ry = Q(VdkT).

The study of stochastic linear bandits dates back to work by Abe and Long [2]. They and
Auer [14] considered the case of finite action sets that can change every round. Bandit combi-
natorial optimization with a stochastic environment can be seen as a special case of stochastic
linear bandits in which the action set is included in ([Z}) and does not change every round. Auer
[14] introduced a technique of dividing rounds to achieve Ry = O(y/dT (log(]A|T log T))3), un-
der the assumption of bounded loss. We remark that a similar technique is used in Algorithm 7.

A similar technique was used for spectral bandits given by Valko et al. [161], in which they

eliminated unpromising arms over several phases.

4.4 Lower Bounds

In this section, we give proofs for Theorems 4.2.1 and 4.2.2. First, we revisit proofs in the
previous work, Theorem 5 in [13] and Lemma 4 in [44], which show regret lower bounds of the
order Q(Vdk2T) and Q(\/dk3T/logT) for multitask bandits, respectively. From their proofs,
we can observe that regret lower bounds can be derived from upper bounds on KL divergences
that are determined by distributions of loss vectors. Second, we construct a distribution of loss
vectors so that the corresponding KL divergence is small enough. Combining these two results,
we obtain Theorem 4.2.1, an improved lower bound for multitask bandits. Finally, we extend
the proof for multitask bandit to prove Theorem 4.2.2 for multiple-play bandits.

4.4.1 Proof idea in previous work

This subsection revisits the proofs for regret lower bounds for multitask bandit, given in [13]
and [44]. We note that, from Yao’s minimax principle, it suffices to construct a probabilistic
distribution of ¢; such that any deterministic algorithm suffers large regret in expectations.

In both of the proofs, the probabilistic distribution of the loss vectors is defined as follows.
Set a parameter ¢ > 0, which is to be optimized later. For a* = [a*{,...,aé‘l]T € {0,1}%, a

46

probabilistic distribution Dy« over R? is defined so that ¢ ~ Dg- satisfies

E [4]= L ea; (4.4)
U~Dgx 2

for each i € [d]. More concretely, [13] define Dy« such that the i-th entry of the vector follows
a Bernoulli distribution of parameter % — ea, independently. Cohen et al. [44] define D, such
that the i-th entry is equal to % —ea} + Z where Z follows the normal distribution N (0, 0?). We
can confirm that these two definitions satisfy (4.4). The environment picks a* € A uniformly
at random before the game begins, and then in round ¢t = 1,2,...,7T, generates a loss vector ¢,
following Dg« i.i.d. Recall that A is defined by (4.1) here.

We analyze the regret bounds for these loss vectors. Let S* = {i € [d] | a] = 1}, and a; be
the action chosen by the player in round ¢. Let us define N; to be the number of rounds in [7]
in which the player suffers a loss for the i-th entry of loss vectors, i.e., N; = [{t € [T] | ay; = 1}|.
Then, from (4.4), the regret Ry satisfies

T T
E Ry] > E la, = tla*| = | kT - E N]|. (45

From (4.5), in order to obtain a lower bound on Ry, it suffices to bound) . _¢. N;. To obtain
a bound on N;, we use the following lemma:

Lemma 4.4.1. Let D and D' be probability distributions over [0,1]%. We then have

T
E [N- E [N)|<T B [Dw (T fljal ¢ (4.6)
by, bp~D ly,...,4p~D’ 1=y at~Au(D) L~D0'~D’

for any deterministic algorithm, where Ay(D) represents the probability distribution of outputs
from the algorithm in round t for the inputs €1,%s, ..., ls_1 following D independently.

This lemma follows from Pinsker’s inequality and the chain rule for the KL divergence. For
details, see, e.g., Lemma A.l. in [16].

Lemma 4.4.1 gives a connection between bounds on N; and upper bounds on KL divergences
of specific distributions. To give a bound on N; by means of Lemma 4.4.1, Audibert et al. [13]
and Cohen et al. [44] used specific properties of their distributions. We observe that the key in
their arguments is the fact that their distributions of loss vectors satisfy the following condition
regarding the KL divergence:

acA a*,ae{0,1}, a"a—a*Ta=1, {* ~ Dyl ~ D,

— Dx,(t*"a|[fTa) < Cpe? for a constant Cp depending on {Dy}. (4.7)

Intuitively, the precondition of (4.7) means that the discrepancy w.r.t. the expected loss is at
most €. In fact, a* " a in (4.7) corresponds to “goodness of action a” for the loss vector £ ~ D=

because the expected loss for action a is equal to k/2 — ca*"Ta from (4.4). Thus a'a —a*Ta =1
means that the expected loss for D, is smaller than that for D; by €.

We can show that, if (4.7) is true, then Lemma 4.4.1 implies that, if a* follows a uniform

distribution over A defined by (4.1), we have E [ZZES* Ni] <k (g + Tey/ k"fCD> .

a* 0o fp~Diys

47

Hence, if we set ¢ < /d/(16CpkT'), we have E [Yicqx Ni| < 3kT/4, and conse-

a* 1 oD g
quently, we obtain E[Rr] > EkTT from (4.5). A key observation in this subsection is summarized
as follows:

Observation 4.4.1. Suppose a family {D g } of distributions with a parameter
e < \/d/(16CpkT) satisfies (4.4) and (4.7). If A is given by (4.1) with n > 2, then we have a
regret lower bound of E[Rr] = Q(ckT).

4.4.2 Construction of probabilistic distribution

The goal of this subsection is to construct a family { D+ | a* € {0,1}?} of distributions such that
(4.4) and (4.7) are satisfied with Cp = O(1/k?). From Observation 4.4.1, such a construction
leads to a regret lower bound of E[Ry] = Q(Vdk3T) for the multitask bandit problem, proving
Theorem 4.2.1.

Our probabilistic distribution of loss vectors is defined as follows. Set a parameter € €
[0,2716], which is to be optimized later. For a* = [a],...,a]" € {0,1}¢, let Dy~ be a distribu-
tion of £ = [(1,...,4q]" € [0,1]? generated in the following way:

(i) Draw ug from a uniform distribution over [0, 1]. (4.8)

(ii) Draw b; from a Bernoulli distribution of parameter (1/2 + 2ea}).

0,1/2] if b; =1,
(1/2,1] if b; = 0.

(iii) For ¢ € [d], draw u; from a uniform distribution over {
(iv) Let £; = 1 if u; > ug, and otherwise, ¢; = 0.

We can confirm that (4.4) holds for this Dg«. In fact, step (iv) means E[¢;] = Problu; > wo],

and since ug follows the uniform distribution over [0, 1] and u; € [0, 1], we have Prob[u; > ug] =

E[uz] Moreover, from steps (ii) and (iii), we have E[u;] = 1 Problb; = 1] + 2 Prob[b; = 0] =
(+ 2ea)) + % 3 — 2ea}) = 4 — ea}, which means that (4.4) holds.

Let us show that (4.7) is satisfied with Cp = O(1/k?). Since D, is a distribution over
{0,1}¢, ¢*Ta takes values over {0,1,...,k} for any a € A. For i = 0,1,...,k, define P(i) =
Prob[¢*Ta = i] and P'(i) = Prob[{"a = i]. Then, from the definition, the KL divergence can
be expressed as follows:

k
me”wﬁw=—2ywn%

b P'(i) — P(i

ZP)log((1)'%@)()>

=0

L[PG~ P P'(i) P’>— (i)*
'><zw@—2(p@>> —2§: ’

where the inequality comes from the facts that log(1 +) > x — 222 for |z| < 1/2 and |P'(i) —
P(i)|/P(i) < 1/2 holds.* Thus, it suffices to bound (P'(i) — P(i))?/P(i) for deriving an upper
bound on the KL divergence. We can then show that P(i) = Q(1/k) for all i. Indeed, if € = 0,
then we have P(i) = 1/(k + 1); since Prob[{;; = 1] = Prob[u; > wug] from the definition (4.8) of

IA
|
|'M
)

“The fact |P’(i) — P(i)|/P(i) < 1/2 comes from ¢ < 27'6. See the proof of Lemma 4.4.2 for details.

48

D,, and since each u; is a uniform random variable over [0, 1] under the condition of € = 0, we

have
IS 1
P(i) = Prob L; by = zJ = Prob [ug is the (i 4 1)-th smallest among {u;}7_, | = Pl
where the last equality comes from the fact that ug, w1, ..., us are i.i.d. random variables. Even

if ¢ > 0, we show in the proof of Lemma 4.4.2 that, for ¢ < 2716 P(i) is sufficiently close

to k%-l to have an order of Q(1/k). Thus, we have P(i) = Q(1/k) for all « = 1,...,k and

e € [0,271], and hence Dk, (¢*Ta|[{Ta) = O (k Sk (P'(3) —P(z’))2>. Finally, by proving
|P'(i) — P(i)| = O(e/k?), we obtain the following lemma:

Lemma 4.4.2. Let a*,a € {0,1} and (* ~ Dg+,l ~ Ds. Then, fore € [0,271] and a € {0,1}¢

Ak T

satisfying ||la|li = k and 6" a — a*Ta = 1, we have

- g2 ¢t
Dxr,(¢*Tal|f"a) = O (kQ + W) : (4.9)
Proof. Let x(S) € {0,1}? denote the indicator vector of subset S C [d]. Without loss of general-
ity, we suppose that a = x([k]), @ = x([s]), and a* = x([s] U {k}) for some s € {0,1,...,k—1}.
We then have /Ta = Zle l; and (*Ta = Zle ¢;. Note that (Ta and ¢*Ta take values in
{0,1,...,k}. Let us denote

P(i) = Prob[{Ta =1i], P'(i) = Prob[*"a =i (4.10)
fori=0,1,...,k. For j =1,2,...,k, we denote B; = 2521 b; and B} =37 lb;, where b; and

bl stand for the values b; in (4.8) for generating ¢* and l respectively. Let us denote

Q;(i) = Prob[B; = i], Q}(i) = Prob[B} =] (4.11)

¢*Ta given By, and ug in (4.8). Given

fori=0,1,..., j Let us consider conditional probability of
By, and ug € [0,] ¢*Ta follows a uniform distribution over { By, By +1, ..., k}. Indeed, we have
; =1 for each j € I, := {j' € [k] | by = 1} since we have u; > 3 1 > wp. Since u; for j € I, :=
{s" € [K] | bjy = 0} and ug follows a uniform distribution over [0, 2] independently, > ., (7, the
number of j € I, with u; lager than ug, follows a uniform distribution over {0, 1,..., |} Slnce
we have [Ip| = By and |In| = k — By, it holds that £*Ta = Y, €5+ ,c; £ Bk +2ien,
follows a uniform distribution over {By, Bx + 1,...,k}, given Bk and wug E [0, é] Slmllarly7
given By and ug € [§,1], £*Ta follows a uniform distribution over {0,1,..., B}. Hence, P(i)

can be expressed as

1 1 1 1 1
()_Qk(0)2 k+1 Qk() "'+Qk(i—1)§ e R PR e
1 Qk(] Qku
QjX:O/{:—j—Fl Z]_|_1 (4.12)

49

for each 1 = 0,1,..., k. Similarly, we have

s @)1= QL)
P(Z)Z§Zﬁ+52j’ll. (4.13)
j=0 j=i
Hence, we have
P(i) — P'(i) ZQ’“ _j+1 ZQ’“]+?(). (4.14)

From the assumption that a = x([s]), and a* = x([s] U {k}) for s < k — 1, we have Qr_1(j) =

1o1(i) and Qi (j) = 3Qr-1(j) + 3Qr-1(G — 1), Q,(J) = (5 +22)Qr—1(j) + (5 —26)Qr—1(j — 1),
and hence, we have Q(j) — Q% (J) = 26(Qr-1(j —1) —Qx—1(j)). By substituting this into (4.14),
we obtain

Qr-1(j — 1) = Qr_1(j Qr—1(7 — 1) = Qr=1())
P - Z k—j+1 Z JE

S Qi ()
=¢ (;)le(]) (k’ij_k—;‘Fl) _kfil_Fl
k—1

Qr—1(i — 1) < 1 1)
pl — -
i+1 ZQ’” it2 j+1

o (@ai-) @) S el Qi)
_E\ i1 k—i+1+z(k—j)(—g+1) Z(] (]+2)}

The last term Zf;zl % can be bounded as follows:

k—1 k—1 k—1 .
Qk J Qr— k Q1))
RN <pob[mi< 5]+ 3 o
j=i = J= k4]
k—1
Qr—1(4) k.16 21
<Pr0b[Bk 1= E[By1] < —¢ }+]§4JIWM§GXP(_32)+W§W,

where the third inequality comes from the fact that E[B;—1] > 3(k D and the fourth inequality

comes from Hoeffding’s inequality. In a similar way, we can show that Z =0 % < 2]%21
Hence, we have

, : Qr-1(i—1) Qp1(d) | 2"
- P'(i)| < - - 4.1
1P () P(@)I_eq T 1 P R (4.15)
Next, we show =102 O(1/k*+¢/k) via showing that R;(i) := @0) o dtlzi

i+1 k— z+1 QJ(Z 1)~ i
Define g = 1+45 We show it holds for all j =1,2,...;)k—1andi=1,...,j, that

1itl—; S
7j+ Z<R]~(i)<‘7+)

5o == (410

50

by induction in j. For j = 1, (4.16) clearly holds. Since @; corresponds to the probability
distribution of >>7_, b; and b; for k < k — 1 follows a Bernoulli distribution as defined in (4.8)
with a® = x([s]), Rj+1 can be expressed as

R. 1(@) _ Qj_;,_l(i + 1) _ Oéij(i + 1) + Q](l) _ 1+ OéjRj(i) _ i 1+ OéjR]'(i)
MO ="000 T mQ@ @i D) e UG- 1) ey LT ey Ryl - 1)

forj=1,2,...,k—2, where a; = for j < s—1 and o; = 1 otherwise. Assuming (4.16) holds
for j = j" and o = 3, we obtain

Rouy(i) = L LT R () <11+6@ i+BG +1=0) jA2—i 42—

’ 1 — — —

It BI+1/(BRy(i—1)) = Bl+ b, —i—1+8(/+2—4) & —
1 1+BRi(i R I

Rjii1(i) = r () Z = !

E+1/(5Rj/(i—1))‘ﬁ1+,+22 R

which means (4.16) also holds for incremented j = j' 4+ 1. Similarly in the case of ajy = 1, we
can show that (4.16) for j = j” implies that (4.16) holds for j = 5/ + 1. Hence, (4.16) holds for
all j € {1,2,...,k—1}and i € {0,1,...,7i — 1}. As a result, we have

Qe-1(i—1) Qr_1(i) 1 Rpa(i—1)

i1 k—i+1‘:Qk_l.<i_1)‘i+1 kil |
SO IS B TR B SR
< Qeali—1) ((i+1)(i—21]§(k—i+ nt z’8—51)

From Hoeﬁding’s inequality, for i < |k/4], Qr_1(i — 1) < exp(—k?/32) < 219/k%. For i >

|k/4], Y= 1)(k o S 219/k2. Hence, the right-most-hand side above is bounded by 2,%20 +

M’Vifllul). From this and (4.15), we have

13 s
P(i) — P'(i)| < e <2]€2 4 W) (4.17)
Further, from (4.12), we have
: L Qul) 1
Z —g+1 ; Zk+1:2(k+1) (4.18)

From (4.17) and (4.18), |P(i) — P'(i)|/P(i) < 1/2 for e < 2716, The KL divergence between P

o1

and P’ is bounded as

Dk (¢ a|[fTa) ZP z)log(> ZP) log <1+ ()(_) ())
P'(i) — P(i P'(i) — P(i)*
S‘ZP (T (M U))
(P'(i) — P(i
< 22 (4) i ()
=0
k 13 . 2
1)e? 2 Sst—l(l —1)
Ak +1 ;(+ >
k . 2
s (30 () 50 (Ste=0)’)
=0 =0
226 k 21662 25182 21664
< 8(k +1)e? (k4+ + k5/2> <t

where the first inequality comes from log(1 +) > x — 222 for |z| < 1/2, the second inequality
comes from) P(i) = Y P'(i) = 1, the third inequality comes from (4.17) and (4.18), the forth
inequality comes from a standard inequality of (z + y)? < 2(2% + y?), and the fifth inequality
comes from Hoeffding’s inequality and Qj_; (i — 1) < 20k~1/2, O

4.4.3 Lower Bound for the Multitask Bandit Problem

We obtain an improved lower bound for A defined as (4.1), by combining Observation 4.4.1 and
Lemma 4.4.2.

From Lemma 4.4.2, if ¢ < 2*16141_%, there is a global constant C' for which (4.7) holds
with Cp = (C/k)?. Hence, setting ¢ = min{2*16k_i,%\/d¥}, we have E[Rr| = Q(ekT) =
Q(min{k%T, Vdk3T}), which provides the lower bound in Theorem 4.2.1, for A given by (4.1),
i.e., the multitask bandit problem. A key point for shaving off the \/logT factor is that our
probabilistic distribution constructed in Section 4.4.2 satisfies (4.7) with Cp = O(1/k?), while
the previous work [44] does not exceed Cp = O(log T'/k?).

4.4.4 Lower Bound for the Multiple-Play Bandit Problem

For the multiple-play bandit problem, i.e., for A = ([Z}), Observation 4.4.1 does not directly
derive a regret lower bound. In this subsection, we extend the observation to multiple-play
bandit problems.

Proof of Theorem 4.2.2. Let U(X,;) denote a uniform distribution over all permutations of
[d]. For a permutation o : [d] — [d], let o([i]) denote the element of {0, 1}% such that the o (j)-th
component is 1 if j € [i], and 0 otherwise; i.e., o([i]) is the indicator vector of {o(j) | j € [i]}.
If o ~ U(Xy), then o([k]) follows a uniform distribution U(A) over A = ([Z]). We hence have

52

E [E [RT]} = E E [R7]| . Let us define M (k,i) € R by
a*~U(A) 1yl ~D g o~U(2g) | 4aselr~Do((r))
M(k,i)= E E [No@)]| -
UNU(Ed) Elr”yéT’\“Da([k])
We then have M (k,1) = M(k,2) = --- = M(k,k) and M(k,k+1) = M(k,k+2) = --- =

M (k,d). From (4.5), the expectation of the regret can be expressed as

E
o~U(2g)

E [Rr]
L1, lr~Do (k)

k
=¢ (k:T = M(k, i)) = e(kKT — kM (k,k)) = ek(T — M (k, k).
- (4.19)

Let us evaluate M (k, k) with the difference between M (k, k) and M (k—1, k). From Lemma 4.4.1,

we have

E [No@)] — E [No ()]

Lyl ~ Do (r—1)) L1, b~ Do (1))
T

<T,\| > E [Dk, (a] Llja] e1)]. (4.20)
=1 at~At(Do((k-1))) [¢~Do(k—1))4'~Do(k])

Let us consider Dk (a/ £||a; ¢') for £ ~ Dy(p_1)), ¢ ~ Do) fixed o € 5q, and fixed a; € A.
If a; ;1) = 1, we have Dy (af £||a) 0") = O(Z—z + ki%) from Lemma 4.4.2. Otherwise, we have
Dxr(a; ¢]|af ¢') = 0 because the probabilistic distribution of a, ¢ is equal to that of a; #. Hence,

T
T T
Z E Dxr, (a; Ll|a; &)
i—1 @~At(Do((e—1))) [£~Do(e—1)) 4" ~Do (k)

- Ce\? O\ 2
< Prob Qo = 1 () _ E N, () |
;atNAt(D”([k”))[b | k 81,...,£T~Da([k_1])[] k
From this and (4.20), we have
CeT
E [No@i)] — E [Nyl < E Nl
01,0 fp~Dy (—1)) (k) 01,0l ~D g (1)) (k) k 01l ~Do(s_1)) [()]

Using this inequality, we obtain

|M(k7 -1, k) - M(l{?, k)| <E E [No(k)] — E [No(k)]
o ||l lr~Do (k-1 01,5l ~ Do (1))
CeT CeT CeT
< E E N, < E E N, = Mk —1,k),
koo \/417"-78TNDU<M—11) o) ko \ o | trtr~Dypon) o] k ()

where the first and the last inequalities come from Jensen’s inequality. Hence, M (k, k) is
bounded as M (k,k) < M(k — 1,k) + CET\/M(k —1,k). Similarly, we can also show that
M(k,1) < M(k—1,1)+<L\/M(k — 1,1). Noting that M (k,1) = M (k, k), we obtain M (k, k) <

53

B+ C;T\/B for § = min{M(k — 1,k), M(k — 1,1)}. Since we have M(k — 1,1) = M(k —
,2)=---=Mk-1,k—1) and M(k — 1,k) = --- = M(k — 1,d), and ch-l:lM(k—l,i) =

E Zle NZ-] = kT, we have 3 <]%T. Hence, we have M (k, k) < /%T +
o~U(Za)l1se b ~Do([—1))

CZT /%T _ 7 (5 N C\/EE). By setting ¢ = 2—16min{k—1/47gcs\/¥}, we have M (k, k)
Tk + 2F) = T(gj{k). From (4.19), we have E[Ry] > ek(T — M(k,k)) > ekT (1 — 4F) =
T ooy { 4 (4)° VAT, dkkiT) . O

IN

4.4.5 Lower Bound for the Bandit Ranking Problem

For the bandit ranking problem, Cohen et al. [44] have provided lower bounds by considering
by ~ Dy~ for a® € A, similarly to the multitask bandit problem. Unfortunately, this approach
does not work well for the case of full permutations (i.e., with & = n), and has left an Q(y/n)-gap
between the lower and the upper bounds, as mentioned in their conclusion.

We can get rid of this Q(y/n)-gap by improving the lower bound, by means of a surprisingly
simple approach. In contrast to the probability distribution by Cohen et al. [44] that has k
good arms (7 such that af = 1), we consider the probability distribution with m = [k/2] good
arms, i.e., we consider a* € A’ C {0,1}¢ defined by

o 1 1<j<m) < .
A = {a e {0,1}¢ Z a; = {) ; Za(i—l)n <1 (jeln]) ¢
L i=(j—1)n+1 0 (m<j<k) i=1 v)
(4.21)

Lemma 4.4.3. Suppose a family {Dy« | a* € {0,1}¢} of distributions with a parameter ¢ <
\Vd/(32CpkT) satisfies (4.4) and (4.7). Suppose n > 2 and 1 < k < n. If a* is chosen from
A’ defined by (4.21) and ¢y follows Dy fort = 1,2,...,T, independently, then, for the bandit
ranking problem defined by (4.2), any algorithm suffers regret of E[Rr] = Q(ekT).

Proof. We start with introducing notations: There is a one-to-one correspondence between A
defined by (4.2) and the set of all injection o from [k] to [n]. In fact, given an injection o : [k] —
[n], the indicator vector x(S) € {0,1}¢ of S for S = {(i —)n+j | i € [k],j € [n],0(i) = j}
is an element of A. Conversely, for any a € A, there is a unique injection o : [k] — [n] such
that ag_1y,4; = 1 if and only if j = o(i). Hence, we can regard each element in a € A as
an injection from [k] to [n]. For outputs a; from the algorithm, let denote o, : [k] — [n] the
corresponding injection. Similarly, There is a one-to-one correspondence between A’ and the
set of all injection o from [m] to [n]. Let * : [m] — [n] denote the injection corresponding to
a* € A'. Then we have a* = x{(: = D)n+j | i € [m],j € [n],0"(i) = j}) =: b(c*). Let ¥,
denote the set of all injections from [m] to [n].

Since we have E [a] = %—e Yoty GG—1)n+o+ (i) from (4.4), the expectation of the regret

t~o D g

can be expressed as

E[Rr] =)

T m
t=1 i=

e (1= Elay(i—1ynto+)]) =€ <mT ->'E [N(i—l)n—i-a*(i)]) 7 (4.22)

1 i=1

where the expectation is taken w.r.t. f; ~ Dy« = Dy, for t € [T]. We consider bounding
E [N(i-1)n+0+(i)] by means of Lemma 4.4.1. For o* : [k] — [n], define V/'(0*) := x({(i — 1)n+j |

o4

i€[m-—1],5 €[n],0*(i) =j}). From Lemma 4.4.1, we have

E [N - E E [Ny
U*NU(Xm,n)ftNDb(a*)[(m—tyna(m)] U*NU(Em,n)Zt’\’Db/(a*)[(n=yto(m)]
< E E [Nn- ~ B [Nem
" ~U (S n) zwDb(a*)[(m—tjo(m) etNDb,<a*>[(m=Vrto(m)]
T
=T E > E Dy, (a l||a/ €)
U*NU(Em,n) t=1 atNAt(Db’(o*)) eNDb’(a‘*)7£/NDb(o-*)
T
=T B E Dxr, (af lllal)], (4.23)
o~ U (Bm,n) 47 a6~ Ae(Dys (o)) [€Dy (o) £ ~Di(ox)

where the first and the third inequalities follows from Jensen’s inequality, and the second in-
equality follows from Lemma 4.4.1. Let us consider Dky(a/ €|[a] ') for £ ~ Dy (y+y, €' ~ Dyyey,
fixed 0" € ¥y, and fixed a; € A. If a4 (,—1)n4o(m) = 1, from the assumption of (4.7), we have
Dxi(af £||a) ¢') < Cpe?. Otherwise, we have Dkr(a, ¢||a]) = 0 because the probabilistic
distribution of a; £ is equal to that of a, ¢'. Hence, We have

T
> E DyL, (af €lla; ')
t=1 atNAt(Db/(o-*)) ENDb’(a*)vf/NDb(cr*)

T

<> Prob [t m-tyntem =1UCpe® = B [Nun-1)nto(m)Cpe (4.24)

= prt ‘“"’At(Db’(a*)) ZtNDb,(d*)

Define S € R by

S = E E Nim—1nio(m 4.25
O*NU(Em,n)ewDb,(U*)[(m—1)n+o(m)] (4.25)

Combining the above two inequalities (4.23) and (4.24), we have

E E [N(m—l)n—i-cr(m)] < S+ T Cpe?S. (4.26)
0*~U(Bm,n) be~Dyo)

Then we evaluate S defined by (4.25). Let o*[(;,,_1) denote the restriction of o* : [m| — [n]
to [m — 1], i.e., 0*[p—1) : [m — 1] = [n] is defined by 0*|,,—1)(i) = o*(4) for i € [m — 1]. Let
R'(c*) denote the range of o*|,_q). From the definition of ¥, ¥'(0*) does not depend on o*,
but is determined by ¢*|,,_y). If 0 follows an uniform distribution over %, ,, the posterior
probability of o*(m) given o*[j,_y) is an uniform distribution over [n] \ R'(c*). Hence, S can
be evaluated as follows:

o ol syt oy D)
= .E B % > Non-tynts
syt |WNRG 22 |
- 1 h)
B ”*|[]::nfl] ngj/(o*) _W ;je[né(g*)at’(m_l)wq S mit (427)

95

where the last inequality comes from |R'(ox)] = m — 1 and that a; € A defined by (4.2).
Combining (4.26) and (4.27), we have

T CD€2T
B E [N < T Tﬁ'
o*~U(Zmn) etND,,((,*)[(m 1)n+0(m)] n—m+1 n—m-+1

Since we assume kK < n and n > 2, we have n —m+1=n—[k/2]+1>n—[n/2]+1 >

max{2,n/2}. Hence, by setting € = , /ﬁ, we obtain

T [2Cpe?T T T 3T
E E Nm—nam <—+T\ ——=—+—-—=—.
o*~U(Bm,n) ZzNDb(o.*)[(Dno()] 2 n 2 4 4

For each i € [m] besides m, we can show E[N(;_1)n40(i)] < % in a similar way. Then, from this
and (4.22), we have

" 3T emT m nT k dkT
3 > T - —_— = _ — —
Blfir] > < (m Z“ 4 > 1~ 1V30, s 320D \/ 32Cp

where the inequality comes from m = [k/2] > k/2 and the last inequality domes from d =
kn. O

The lower bound in Lemma 4.4.3 is valid even if & = n, while the previous work [44]
considering a* € A applies only to the case of n > 2k. Intuitively, this difference can be
explained as follows: the regret depends on the number of good arms (i € [d] such that a = 1)
in chosen arms (i € [d] such that a;; = 1). If a* and a; are chosen from A with k£ = n, and if
the chosen arms (defined by a;) includes k — 1 good arms, then the chosen arms automatically
includes the whole [k] good arms, because a* and a; express edge sets of perfect matchings of
the complete bipartite graph K, . This means that, in this setting, the probability of choosing
some good arms strongly affects that of choosing other good arms, which makes the analysis
difficult. On the other hand, such an effect can be reduced if a* is chosen from A’, i.e., a* has
only m = [k/2] good arms.

The lower bound in Theorem 4.2.1 for the bandit ranking problem, i.e., A given by (4.2), can
be derived in the same way as in Section 4.4.3. This accomplishes the proof of Theorem 4.2.1.

4.5 Upper Bounds

In this section, we give the proof of Theorems 4.2.3. We consider a generalization of the ban-
dit combinatorial optimization called stochastic linear bandit with finite number of arms. In
this problem, a player is given a finite decision set A before the game starts. In each round
t € [T, the player chooses action a; € A. After that, observe loss Ly = £*"a; + n;, where 7; is
conditionally a-subgaussian given aq, L1, a2, Lo, ...,a;—1,Li—1 and ay, i.e., E[exp(An) | Fi] <
exp(a?X\?/2) almost surely, for 7; = o(ay, L1,...,a¢_1,Li_1,a:), which is the o-algebra gener-
ated by {a1, L1, ...,a;—1, Ly_1,a;}. We suppose that the suboptimality gap maxg pe 4 £*' (a — b)
is at most L. For this problem, we define the regret R’. as follows:

T T T

T
Ry = r;leajcz Ty —a) = Z ¢ Tay — {lr.lelil Z o = Z " (ay — a*), (4.28)
t=1

t=1 t=1 t=1

where we define a* € arg min {E*Ta}.
acA

56

4.5.1 Algorithm for Stochastic Linear Bandit

We analyze R/, for output of Algorithm 7, which is modified from Algorithm 12 in Section 22
of the preprint book by Lattimore and Szepesvari [118]. The differences between Algorithm 7
here and Algorithm 12 in [118] are:

e They deal with only the case in which the noise 7, has a bounded variance, i.e., « = 1. To
deal with the case for a general o, we modify the definition (4.31) of T} in their algorithm.

e They assume that the suboptimality gap maxa,bgA{ﬁ*T(a —b)} is bounded by 1. To cope
well with changing suboptimality gaps, we modify the definition of ¢; in their algorithm.

e They basically consider maximization problems, while we consider minimization (This

results in no essential differences).

Algorithm 7 is controlled by parameters €1 > 0 and § > 0. The algorithm divides rounds
into phases: the k-th phase consists of T}, rounds, where T}, will be defined later. In each phase,
a subset A of action set A is maintained. The algorithm chooses actions from Ay in the k-th
phase, and Ay does not change over all rounds in this phase. At the beginning of each phase,
the algorithm constructs a probabilistic measure 7 over Ay satisfying the following:

-1
max {b—r /Z Wk(a)aaT\ b¥ <d, |mkllo < dd+1) + 1. (4.29)
be Ay, L \aEAk } } 2

Such a measure always exists for all k. Indeed, as Kiefer and Wolfowitz [107] showed, if
span(A) = R%, a maximizer 7* of det(},c 4 m(a)aa") satisfies

-1
max {b—r (Z W*(G)CLCLT> b} =d. (4.30)

(acA

Even if span(A) does not equal R¢, equivalently if d’ = dim(span(.A)) is smaller than d, we can
obtain 7* for which the left-hand side of (4.30) is equal to d’, by maximizing the determinant
of 3 ,cam(a)(Ba)(Ba)" for an appropriate matrix B € R¥*d_ Hence, the left inequality of
(4.29) can be satisfied. Further, Carathéodory’s theorem implies that for arbitrary 7 € A4 :=
{r: A= Rso| Y ,cqm(a) =1}, there exists 7' € A such that

Y w(a)aa” => w(a)aa’, |70 < dim(span{aa’ |a € A}) + 1.
acA acA

The dimensionality of span{aa' | a € A} is at most d(d + 1)/2, which is the dimensionality of
the linear space of all symmetric matrices of size d. Hence, the right inequality of (4.29) can be
satisfied.

The k-th phase consists of Ty rounds from the (tx + 1)-th round to the t;yi-th round, in
which the algorithm chooses action a € Ay in exactly T;(a) rounds for each a € Aj. Here,
Ti(a) (a € Ag), Ty, and t;, are defined as

92da? ANAlk(k + 1 e,
R e I S T N SE /MY
€k ac Ay, j=1

o7

Algorithm 7 Algorithm for stochastic linear bandits with finite arms
Require: A C R% a, 6, ¢,
1: Set A1 = A, t1 =0.
2: for k=1,...do
3. Let m, € A be a probabilistic measure over Ay, such that (4.29) is satisfied.
4: Define Tk(a), Ty and tx41 by (431)
5. Choose action a € Ay exactly Tg(a) times, from the (t; + 1)-th round to the tj1-th
round.

6: Calculate empirical estimate ¢, of £* by (4.32).
7. Eliminate arms with a high estimated loss on the basis of (4.33).
8: end for

—k+1

where ¢, = 2 €1. At the end of the k-th phase, the algorithm calculates a least squares

estimator ¢ of ¢* by

tp+Ty te+Ty
by = Vk_1 Z riap with Vi = Z Tp(a)aa" = Z aa; . (4.32)
t=trp+1 aE.Ak t=trp+1

Moreover, A1 is defined by eliminating actions that are not promising, as follows:

Apy1 = {G € Ax

in 0] (b—a) > —2¢4 ». 4.33
52}41; k(a)_ Ek} ()

4.5.2 Regret Bound for Stochastic Linear Bandit

The outputs of Algorithm 7 satisfy the regret upper bound in Theorem 4.2.4.
Proof of Theorem 4.2.4. To derive an upper bound of the regret defined by (4.28), we first
consider confidence bound for éga. From the standard analysis of confidence bounds for least
2|Alk(E + 1 4]
< exp (—log |Alk(k +1)

Ftkl]
5) " ARk + 1)

From the definitions of Vi, T} and 7, it holds for all b € A that

squares estimators (see, e.g., [118]), for all b € RY, we have

2|Alk(E+1)

Prob [m —)b > a\/?bTVklblog 5

(4.34)

(Vo
bV =b" | > Ti(a)aa” | b

\aE.Ak / »

2da? . 2lAlk(k+1)\ " 202 2lAlk(k+1)\ "
< (;l log ’A’ (+)> bT Z Wk(a)aa"r b < (Célog “A‘ (+)) 7
) eyl o)

€k
where the first equality comes from (4.32), and the first and the second inequalities come from
(4.31) and (4.29), respectively. Combining the above and (4.34), we obtain

o

Prob[|(£* — £;,) Tb| > S —
To “(k) |_ €k|ftk—1] = ’A’k‘(k‘—l—l)

58

for all k£ and b € Aj. Hence, we obtain

. |Akld -
Prob |3k, dbe A - Z b
ro[) € Ag, |(k) |>€k} Z|A|k’k—|—1)_ kz:: k’—l—l
In the discussion below, we assume that
(¢ —) Ta| < e for all k € {1,2,...} and a € A, (4.35)

Then, for all k = 1,2,..., we have a* € A, because a* € A1 = A and ékT(b— a*) > 0T (b—a*) -
2¢ey, > —2¢ for all k. Further, we have

"(a—a) < 8, for all k € {2,3,4,...} and a € Ay, (4.36)

Indeed, if £*T (a —a*) > 8¢j, we can see that a ¢ Ay, in both cases of (i) a ¢ Ap_1 and a € Aj_q:
(i)since Ay C Ag_y from the definition (4.33) of Ay, a ¢ Ax_1 implies a ¢ Ay; (ii)assuming
a,a* € Ap_1, 0*T (a—a*) > 8¢j, = 4ej_1 and (4.35), we obtain é;—_l(b—a) > 0T (b—a)—2e_1 >
T(a —a) — 2e_1 > 2ej_, for all b € Aj_, which implies a ¢ A;, from the definition (4.33)
of Ak

Define k(t) to be k € {1,2,...} such that ¢, < t < tjy1. Since t < t < tp41 means a; € Ay,
we have a; € Ay for all t. Hence, from (4.36), we have £ T(ay —a*) < 8y for t > Ti.
Therefore, for T > 17, we have

T T T
ZE*T(at - a*) < LT + Z E*T(at - a*) < LT +8 Z Ek(t)
t=1 t=ta t=ta
t(T)+1 k(T)
< LT +8 Z €k(t) < LTy +8 Z Trek. (4.37)
t=to k=2

Let us evaluate T}, and ¢, = Ef;ll T;j. From the definition (4.31) of T}, we have

2da? 21A4k(k + 1 2da? 2141k (k + 1 d(d+1
O o ZAREFL) gy 207 AARGE D) dld) (4.38)
€3 1) €5 1) 2

since T (a) — 2da2€”k() log 2|A|k(k+1) € [0,1) for at most d(d + 1)/2 + 1 actions a € A and

Ti(a) = 0 for the other actions. From the left inequality of (4.38), for T' > T}, we have

2da? NAIK(T)(K(T) — 1) da222k@) 9| Alk(T
T >tyry 2 Tr)-1 2 = log [AIR(T)(5(T))Z —log |AIK(),
€k(T)-1 0 8¢e? 5

which implies that

T ([2Ak(T)\ T
20 < 7, /87 <1Og W(s()) KT < log, < ,/8d> <logT. (4.39)

59

From this inequality and (4.36), we have

k(T) k(T) 9 :
2da 2[Am(m+1) epn(d+2)
Z Tmem < Z < log 5 + 5
k(T) 2 —m+1 2
- Z (2do 2 A|k(T)(k(T) + 1) N £12 (d+2))
e 2-m1 108 5 2

25k(T)
. 2da 20 | GHARDED D)) o

€1 1)

9 —1/2

< 2aV8dT (10 |A|k) |A|5() + 2¢1d?
< 4a\/8dTl 2‘“4‘;() + 2e1d? < 16ay/dTlogw;(T) + 2e1d?,

where the first inequality comes from the right inequality of (4.38), the fourth inequality comes
from the left inequality of (4.38) and the fact that 2|A|k(T)(k(T) + 1) < (2|A|k(T))%. From
the above inequality and (4.37), we have

T
log T
> 0 T(ag—a*) < LTy + 128a\/dT log |A|;g + 162 d?
t=1

|A|log T N 4dLa? o |A|
5 2 8

< 128a\/dT log + (L + 16¢;)d>.

O]

4.5.3 Regret Bound for Stochastic Combinatorial Bandit

In this subsection, we show Theorem 4.2.3 by means of Theorem 4.2.4.

Proof of Theorem 4.2.4. Suppose ¢; follows an arm-wise independent distribution D*, i.i.d.
Then, the bandit combinatorial optimization for {¢;} will be a special case of the stochastic
linear bandits with £* = ,]:;,)*[E] and n; = (¢ — n*) Tas. In this problem, the suboptimality gap

L = max,pes ¢*" (a — b) is at most k because ¢* € [0,1] and A C {a € {0,1}¢ | |lallo = k}.
Further, 7, is Vk /2-subgaussian from Hoeffding’s Lemma, since {41, lsa, . . ., g are independent
and [0, 1]-valued random variables. Hence, applying Algorithm 7 with L = k, o = vk/2 and
d = ¢'/2, we have

T
2| Allog T |.A|
* 1 *
Ry = ;E (ag —a™) < 64\/dkT10g6, + ? log 5 + (k + 16¢1)d? (4.40)
with probability 1 — ¢’/2. Moreover, we have Ry — R/, = O(\/kT log(|.A|/¢’)) with probability
1—4'/2. In fact, we have Zthl ¢ (ay—a)— Ry < Zle e — Zle(ét —¢*)Ta for all a € A, and

from the Azuma-Hoeffding inequality, we have

T

4|A| o’
<
Prob [E 5 } S A Prob

T
44
) e > 1 <)
ZH“) az 20g5}—4\,4\

60

From the second inequality, the probability that there exists a € A such that ZtT_l(é* —

Et)—ra Z 4|~A|

is at most ¢'/4. Combining this and the above first inequality, we obtain

Ry — Ry < y/2kT log 1

(4.40), with probability

AL < 66/ akT log 2AL0ET . dk?

66\/dk2Tlog Zedlog T %log 2ed | (k + 16¢1)d?. By setting €1 = @(k) and &' = ©(VdT),
we have Ry = O(\/deTlog(edlogT/k(S’) + d%k) with probability 1 — ¢, and Ry = O(kT)
with probability ¢’. Hence, we have E[Rr] = O(\/dk2T log(edlogT/kd') + d?k + 0'kT) =
O(\/dk2T log T log(ed/k)) for T = Q(d®). O

1— 6, we have Ry < R+ 2 4 (k+16e1)d? <

4.6 Conclusion

This chapter has considered regret bounds of bandit combinatorial optimization. We have
proven regret lower bounds that are improved upon the existing study [44] by a factor of
V1ogT. Our lower bounds apply to three practically important examples of bandit combinato-
rial optimization, and are valid under parameter constraints milder than in existing studies. In
particular, our bound for the bandit ranking answers to an open problem posed in [44]. To shave
off \/logT factor, we have introduced a novel class of distributions, which is potentially used
to improve regret lower bounds even in other problems. We have also shown that correlation
among losses is essential to having a large regret, by proving a smaller regret bound under the
assumption of independent losses.

For bandit combinatorial optimization, this work has decreased the gap between the upper
and the lower bounds to O(log(ed/k)). We leave it as an open question to improve this to a
constant factor alone.

61

62

Chapter 5

Submodular Function Minimization
with Noisy Evaluation Oracle

This chapter considers submodular function minimization with noisy evaluation oracles that
return the function value of a submodular objective with zero-mean additive noise. For this
problem, we provide an algorithm that returns an O(n3/ 2/ \/T)—additive approximate solution
in expectation, where n and T stand for the size of the problem and the number of oracle calls,
respectively. There is no room for reducing this error bound by a factor smaller than O(1//n).
Indeed, we show that any algorithm will suffer additive errors of Q(n/v/T) in the worst case.
Further, we consider an extended problem setting with multiple-point feedback in which we can
get the feedback of k function values with each oracle call. Under the additional assumption
that each noisy oracle is submodular and that 2 < k = O(1), we provide an algorithm with
an O(n/V/T)-additive error bound as well as a worst-case analysis including a lower bound of
Q(n/v/T), which together imply that the algorithm achieves an optimal error bound up to a
constant.

5.1 Introduction

Submodular function minimization (SFM) is an important problem that appears in a wide range
of research areas, including image segmentation [97, 109], learning with structured regulariza-
tion [19], and pricing optimization [87, 88]. The goal in this problem is to find a minimizer
of a submodular function, a function f : 2" — R defined on the subsets of a given finite set
[n] :={1,2,...,n} and satisfying the following inequality:

X))+)z f(XNY)+ f(XUY). (5.1)

This condition is equivalent to the diminishing marginal returns property (see, e.g., [64]): for
every X CY C [n] and i € [n] \ Y, F(X U{i}) = F(X) > F(Y U{i}) = £(Y).

Existing studies on SFM assume access to an evaluation oracle for f that returns the
value f(X) for any X in the feasible region. Under this assumption, a number of efficient
algorithms have been discovered, in which the number of oracle calls as well as other com-
putational time is bounded by a polynomial in n. The first polynomial-time algorithm was
given by Grotschel, Lovdsz, and Schrijver [70] and was based on the ellipsoid method. Com-
binatorial strongly polynomial-time algorithms have been independently proposed by Iwata,

63

Fleischer, and Fujishige [94] and by Schrijver [151]. The current best computational time is
of O(n?log?n - BEO + n*log®M n) by Lee et al. [121], where EO denotes the time taken by
the evaluation oracle to answer a single query. For approximate optimization, Chakrabarty et
al. [40] have recently proposed an algorithm that finds an e-additive approximate solution in
O(n®/3 - EOQ/e?) time.

In some applications, however, evaluation oracles are not always available, and only noisy
function values are observable. For example, in the pricing optimization problem, let us consider
selling n types of products, where the value of the objective function f(X) corresponds to the
expected gross profit, and the variable X C [n] corresponds to the set of discounted products.
In this scenario, Ito and Fujimaki [87] have shown that —f(X) is a submodular function under
certain assumptions, which means that the problem of maximizing the gross profit f(X) is
an example of SFM. In a realistic situation, however, we are not given an explicit form of f,
and the only thing we can do is to observe the sales of products while changing prices. The
observed gross profit does not coincide with its expectation f(X), but changes randomly due
to the inherent randomness of purchasing behavior or some temporary events. This means that
exact values of f(X) are unavailable, and, consequently, existing works do not directly apply
to this situation.

To deal with such problems, we introduce SFM with noisy evaluation oracles that return
a random value with expectation f(X). In other words, the noisy evaluation oracle f returns
f(X) = f(X)+¢&, where £ is a zero-mean noise that may or may not depend on X. We assume
access to T' independent noisy evaluation oracles f'l, fg, R i with bounded ranges. We start
with the single-point feedback setting and then study the more general multiple-point feedback
(or k-point feedback) setting: In the former setting, for each ¢ € [T], we choose one query X; to
feed ft, and get feedback of ft(Xt). In the latter setting, we are given a positive integer k, and
for each ¢, choose k queries to feed ft and observe k real values of feedback. Such a situation
with multiple-point feedback can be assumed in some applications. For example, in the case of
pricing optimization for E-commerce, we can get multiple-point feedback by employing the A /B-
testing framework, i.e., by showing different prices to randomly divided groups of customers.
Note that each ft is not necessarily submodular even if its expectation is submodular.

Our contribution is two-fold, positive results (algorithms, Theorem 5.4.1) and negative
results (worst-case analyses, Theorem 5.4.2): We propose algorithms that return O(1/v/T)-
additive approximate solutions, and we show that arbitrary algorithms suffer additive errors of
Q(1/VT) in the worst case. The results are summarized in Table 5.1 with positive results in
O(-) notation and negative ones in Q'(-) notation.

As shown in Table 5.1, for the single-point feedback setting, we propose an algorithm that
finds an O(n3/?/v/T)-additive approximate solution. Moreover, there is no room for reducing
this additive error bound by a smaller factor than O(1/y/n). Indeed, our Theorem 5.4.2 implies
that arbitrary algorithms, including those requiring exponential time and space, suffer at least
Q(n/V/T) additive errors. For the k-point feedback setting, both the lower and the upper
bounds are decreased by 1/ VE factors, without additional assumptions. Under the assumption
that each ft is submodular (Assumption 5.3.1), however, the situation changes: Our proposed
algorithm achieves O(n/vkT)-additive error, which is O(1//n)-times smaller than without
Assumption 5.3.1. We also show the lower bound of Q(n/\/ﬁ + /n/VET), which implies
that, if £ = O(1) or k = Q(n), then our algorithm is optimal up to constant factors, i.e., no
algorithms achieve additive errors of a smaller order.

64

Table 5.1: Additive error bounds for submodular minimization with noisy evaluation oracle.

H Assume f;: submodular ‘ Do not assume f;: submodular
single-point feedback [78]': O (T?/‘S) (if T = Q(n?))
n3/2 n i
[This work]: O (f) and (ﬁ) (Q'(-) :== Q(min{1,-})
k-point feedback [This work]: [This work]:
n 1{_n vn n3/2 n
2<ks<n) O(m)”‘m(ﬁ f) 0(\//~TT) dQ(F)
(n + 1)-point feedback || [78]: [This work]:
vn 1 ¥n n_ 1 V/n
0 () and @ () 0 () and @ (7)

To construct the algorithms, we combine a convex relaxation technique based on the Lovdsz
extension and stochastic gradient descent (SGD) method. The Lovasz extension for a submod-
ular function is a convex function of which minimizers lead to solutions for SFM. Thanks to
this, we can reduce SFM to a convex optimization problem. In this study, we seek a minimizer
of the Lovasz extension by means of SGD, in which we need to construct unbiased estimators
of subgradients. The performance of the SGD depends strongly on the variance of subgradient
estimators. We present ways for constructing subgradient estimators, and it turns out that
Assumption 5.3.1 enables us to obtain estimators with smaller variances. The combination
of Lovasz extension and SGD has been already introduced in the work on bandit submodular
minimization by Hazan and Kale [78]. Our work, however, considers different problem settings,
including multiple-point feedback, and presents tighter and more detailed analyses. Details in
the difference are given in Section 5.2.

A key technique for our lower bounds comes from the proof of regret lower bounds for
bandit problems by Auer et al. [16]. Their proof consists of two steps: they first construct a
probabilistic distribution of inputs for which it is hard to detect a good arm offering a large
reward, and then show that any algorithm actually chooses the good arm only infrequently. We
follow a line similar to these two steps to prove Theorem 5.4.2, in which a number of technical
issues arise. In the case of multiple-point feedback, in particular, we need to assess the KL
divergence carefully for the observed signals from evaluation oracles.

5.2 Related Work

Bandit submodular minimization (BSM) by Hazan and Kale [78] is strongly related to our
model. BSM is described as follows: in each iteration ¢ € [T'], a decision maker chooses X; C [n]
and observe f;(X;), where each f; : 2"} — [=1,1] is a submodular function. In contrast to our
model, no stochastic models for f; are assumed, and the performance of the decision maker is
measured by the regret defined as Regret, := Zle ft(Xy) — minxcpy, Zle f+(X). This BSM
problem can be regarded as a generalization of our problem with single-point feedback under As-
sumption 5.3.1. Indeed, given a BSM algorithm achieving Regret,; < b(n,T') for some function
b, one can construct an SFM algorithm that returns b(n,T")/T-additive approximate solutions
(see, e.g., [77]). Since a BSM algorithm with an O(nT?3) regret bound has been proposed

!This work applies to more general problem settings than ours, bandit submodular minimization and online
submodular minimization. See Section 5.2 for details.

65

in [78], an O(n/T"/3)-additive approximate algorithm immediately follows, as in Table 5.1. In
BSM, however, it has been left as an open problem whether or not one can achieve O(n®M+/T)
regret bounds.

With respect to SFM with an ezact evaluation oracle, there is a large body of literature [19,
39, 93, 140, 166, 49], in addition to the works mentioned in Section 5.1. The Fujishige-Wolfe
algorithm [64], based on Wolfe’s minimum norm point algorithm [166] and the connection
between minimum norm points and the SFM shown in [63], is known to have the best empirical
performance in many cases [18, 65]. Chakrabarty et al. [39] have shown that the Fujishige-Wolfe
algorithm finds an e-additive approximate solution with a running time of O(n?(EO + n)/e?).
The same runtime bound can be achieved by a gradient descent approach presented by Bach

[19].

For submodular function maximization with noisy evaluation oracles, there have been many
studies . Hassani et al. [75] provided a nearly 1/2-approximate algorithm for monotone submod-
ular maximization. Singla et al. [155] considered a similar problem with applications to crowd-
sourcing. Karimi et al. [103] considered maximizing weighted coverage functions, a special case
of submodular functions, under matroid constraints, and presented an efficient nearly (1 —1/e)-
approximate algorithm. Hassidim and Singer [76] provided a nearly (1 — 1/e)-approximate
algorithm for monotone submodular maximization with cardinality constraints. Mokhtari et al.
[133] showed that a stochastic continuous greedy method works well for monotone submodular
function maximization subject to a convex body constraint. For minimization problems with
similar assumptions, in contrast to maximization problems, only a little literature can be found.
Blais et al. [22] considered approximate submodular minimization with an approzimate oracle
model, and presented a polynomial time algorithm with a high-probability error bound. Their
model is more general than ours while their algorithm requires a larger computational cost
than ours to achieve a similar error bound. Halabi and Jegelka [73] dealt with minimization of
weakly DR-submodular functions, which is a class of approximately submodular functions, and

provided algorithms with reasonable approximation ratios.

Zero-order or derivative-free convex optimization [6, 95, 153], optimization problems with
evaluation oracle for convex objectives without access to gradients, is also related to our model
because Lovdsz extensions are convex. For general convex objectives, Agarwal et al. [6], Belloni
et al. [20] and Bubeck et al. [34] have proposed algorithms that return O(1/v/T)-additive ap-
proximate solutions, ignoring factors of polynomials in log T and n°() | where n stands for the
dimension of the feasible region. Though the error bounds in these results include factors larger
than O(n?), it has been reported [18, 80] that dependence w.r.t. n can be improved under such
additional assumptions as the smoothness and the strong convexity of the objectives. These
improved results, however, do not apply to our problems because Lovasz extensions are neither
smooth nor strongly convex. Multiple-point feedback has been considered in zero-order convex
optimization, and some algorithms have been reported to achieve optimal performance in such
problem settings [5, 54, 154]. In terms of the lower bound on the additive error, Jamieson et al.
[95] and Shamir [153] have shown lower bounds of Q(1/vVT) or Q(1/T) for various classes of
convex objectives, which, however, do not directly apply to our model.

66

5.3 Problem Setting

Let n be a positive integer, and let [n] = {1,2,...,n} stand for the finite set consisting of
positive integers at most n. Let L C 2" be a distributive lattice, i.e., we assume that X,Y € L
implies X N Y, X UY € L. Let f: L — [—1,1] be a submodular function that we aim to
minimize. In our problem setting, we are not given access to exact values of f, but given noisy
evaluation oracles { ft}thl of f, where f; are random functions from L to [—1,1] that satisfy
E[ff(X)] = f(X) for all t = 1,2,...,T and X € L. We also assume that fi, far., fr are
independent.

Our goal is to construct algorithms for solving the following problem: First, the algorithm
is given the decision set L and the number T of available oracle calls. For ¢t = 1,2,...,T, the
algorithm chooses X; € L and observes ft(Xt). The chosen query X; can depend on previous
observations {f;(X;) ;;11 After T rounds of observation, the algorithm outputs X € L. We call
this problem a single-point feedback setting. In an alternative problem setting, a multi-point or
k-point feedback setting, we are given a parameter k > 2 in addition to 7" and L. In the k-point
feedback setting, the algorithm can choose k queries Xt(l),Xt(Q), e ,Xt(k) € L, and, after that,
it observes the values ft(Xt(l)), ft(Xt(z)), . ,ft(Xt(k)) from the evaluation oracle in each round
t € T. In both settings, the performance of the algorithm is evaluated in terms of the additive
error Ep defined as Er = f(X) — minxey, f(X).

A part of our results relies on the following assumption. Note that the following is assumed

only when it is explicitly mentioned.

Assumption 5.3.1. Assume that each f; : [— [—1,1] is submodular and that k& > 2.

5.4 Our Contribution

Our contribution is two-fold: positive results (Theorem 5.4.1) and negative results (Theo-
rem 5.4.2).

Theorem 5.4.1. Suppose 1 < k < n + 1. For the problem with k-point feedback, there is an
algorithm that returns X such that

E[Er] = E[f(X)] - minxer, f(X) = O(n®?/VET). (5:2)
If Assumption 5.3.1 holds, there is an algorithm that returns X such that
E[Er] = E[f(X)] - minxer, f(X) = O(n/VET). (5.3)

The expectation is taken w.r.t. the randomness of oracles ft and the algorithm’s internal ran-
domness. In both algorithms, the running time is bounded by O((KEO + nlogn)T), where EO
stands for the time taken by an evaluation oracle to answer a single query.

The proof of this theorem is given in Section 5.5.4. If we can choose the number 7" of oracle
calls arbitrarily, we are then able to compute e-additive approximate solution (in expectation)
for arbitrary ¢ > 0, by means of the algorithm with the error bound (5.2). The computational
time for it is of O(Z—;(EO + Zlogn)). Indeed, to find an e-additive approximate solution, it

. n3/2
suffices to set T so that e = @(—\/ﬁ

is then bounded as O((KEO +nlogn)T') = O(Z—;(EO + % logn)). Similarly, if Assumption 5.3.1

), which is equivalent to T" = @(g—;) The computational time

67

holds and the algorithm achieving (5.3) is used, an e-additive approximate solution can be found
in O(Z—E(EO + 7 logn)) time.
The following theorem gives an insight regarding how tight the above error bounds in The-

orem 5.4.1 are.

Theorem 5.4.2. There is a probability distribution of instances for which any algorithm suffers

errors of
E[Er] = E[f(X) — minxer, f(X)] = ' (n/VET), (5.4)

where we denote '(+) := Q(min{1,-}). In addition, there is a probability distribution of in-

stances satisfying Assumption 5.3.1 for which any algorithm suffers errors of
E(Er] = E[f(X) — minxe; f(X)] = @(n/V2*T + /n/T). (5.5)

The expectation is taken w.r.t. the randomness of the instance f and oracles ft, and the algo-
rithm’s internal randomness.

The proof of this theorem is given in Section 5.6.2. From (5.4) in this theorem, we can see
that at least Q(?—jEO) computational time is required to find an e-additive approximate solution.
This can be shown by an argument similar to that after Theorem 5.4.1. For the problem with

exact evaluation oracles, on the other hand, Chakrabarty et al. [39] have proposed an algorithm
5/3

’I"LE2

is essentially harder than SFM with exact oracle.

running in O(EO). By comparing these two results, we can see that SFM with noisy oracle

5.5 Algorithm

5.5.1 Preliminary

Lovasz extension of submodular function For a [0, 1]-valued vector = (z1,...,2,)" €
[0,1]¢ and a real value u € [0, 1], define H,(u) C [n] to be the set of indices i for which z; > u,
ie., Hy(u) = {i € [n] | 2; > u}. For a distributive lattice L, define a convex hull L C [0,1]" of

L as follows: L = {x C [0,1]" | Hy(u) € L for all u € [0,1]}. Given a function f: L — R, we
define the Lovész extension f : L — R of f as

fz) = [y f(Hy(u))du. (5.6)

From the definition, we have f(xx) = f(X) for all X € L, i.e., f is an extension of f.> The
following theorem provides a connection between submodular functions and convex functions:

Theorem 5.5.1 ([126]). A function f: L — R is submodular if and only if f is convex. For a
submodular function f: L — R, we have minyey, f(X) = min__; f(x)

For a proof of this theorem, see, e.g., [64, 126].
For z € [0,1]", let o : [n] — [n] be a permutation over [n] such that z,1) > z,9) > -++ >
Ty(n). For any permutation o over [n], define S, (i) = {o(j) | j < i}. The Lovész extension

2xx € {0,1}" denotes the indicator vector of X, i.e., (xx):; = 1 for i € X and (xx): = 0 for i € [n] \ X.

68

defined by (5.6) can then be rewritten as

f ())+ Z(f (1)) = (8o (i = 1))z () (5.7)

= f([OD(1 = z5()) + Z F(So(D))(@o(i) = To(irr)) + F([R)To(n)- (5.8)
i=1
Similar expression can be found, e.g., Lemma 6.19 in the book [64].

Subgradient of Lovasz extension From the above two expressions (5.7) and (5.8) of the
Lovasz extension, we obtain two alternative ways to express its subgradient. For a permutation
o over [n] and i € {0,1,...,n}, define ¢, (i) € {—1,0,1}" as

Vo(0) = ~Xo(1)s Yo() = Xom)s Voli) = Xo(i) = Xo(i+1) (E=1,2,...,n—1). (5.9)

A subgradient of f at x can then be expressed by g(o,) defined as

n

9(0) = > _(f(Sa(i) = f(Sa(i — 1)) Xo() (5.10)

=1

0))Xo(1) + Z F(Sa(4)(Xo (i) = Xo(i+1)) + F(N)Xon) = Z f(85(4))s (4), (5.11)
where (5.10) and (5.11) come from (5.7) and (5.8), respectively.

5.5.2 Stochastic Gradient Descent Method

Our algorithm is based on the stochastic gradient descent method for f : L — [0,1]. To start
with, we initialize 21 = % 1€ L. Fort = 1,2,...,T, we update x; by iteratively calling the
oracle ft to obtain x;y1. In each update, we construct an unbiased estimator §; of a subgradient
of f at x; (a more concrete construction will be given later), and z;4; is given by

Ti41 = Pi(l’t —ngt), (5.12)

where P; : R" — L stands for a Buclidean projection to L, i.e., P;(xz) € arg min |ly — x|z,
yeL

and n > 0 is a parameter that we can change arbitrarily. We then compute z = % Zle i

and draw u from a uniform distribution over [0,1], and output X = Hz(u). From (5.6), we

have E[f(X)] = E[f(z)]. To analyze the performance of our algorithm, we use the following

theorem:

Theorem 5.5.2. Let D € R" be a compact convex set containing 0. For a convex function
f:D =R, let x1,..., 27 be defined by z1 = 0 and xi+1 = Pp(xy — ngr), where Elg|xt] is a
subgradient of f at x; for each t. Then, T := % Z;FZI T+ satisfies

IN

_ L w (A
E[f(z)] — min f(z") 22 (5.13)

z*eD T

69

Proof. Since f is convex, from Jensen’s inequality, we have

T
- (1 1 -
fz)=1f <T2$t> < TZf(l’f) (5.14)
Denote g; = E[j;|z;]. since g; is a subgradient of the convex function f at z;, we have
fla) = (=) < g (we — %), (5.15)
for all ¢t € [T'] and z* € D. By combining (5.14) and (5.15), we obtain

th (xt — ")

Elf(Z)] - f(x

T
E | 3 (- m*)} : (5.16)
t=1

Since we have |lz; —ng — 2|2 = ||zt — %12 — 2ng, (x: — 2*) + 12| |12, the value of g, (z; — z*)
can be bounded as follows:
1

AT * * ~ * i~
gy (w7 —a*) = %(th — a3 = e = nge — 2*[I3) + 5||gt||§- (5.17)

From the Pythagorean theorem (see, e.g., Theorem 2.1 in [77]), since z* € D, we have ||z; —
ngt — x*||2 > ||Pp(x¢ — nge) — x*||2 = ||x¢+1 — 2*|]2. From this and (5.17), we have

. 1 /I
9 (= 2%) < — (o — 27|13 = llwea — 27)13) + §HgtH§.

By taking summation of this for t = 1,2,...,T, we obtain

T 1 I 77 T
Yool (@ —a") < 2 > (e = 215 = e — 27|13) 52 123
t=1 t=1 t=1
1 77 T
= o (llor = 2*|3 = llzrs — 27)13) + Z 19113
2n 2

IN

T
1 7
%I'naXHle 52 |gt||§,

where the last inequality follows from z1 = 0, 2* € D and ||x741 — 2*||3 > 0. From this and
(5.16), we have

T
= = 1 (1
Blf (@) - fa") < <2max ol + 5 3 Bl)
Since this holds for arbitrary «* € D, we have (5.13). O

A similar analysis can be found in, e.g., Lemma 11 of [78]. When setting D = L— % -1, we

have max,ep [|z]|3 < %. From this, Theorems 5.5.1 and 5.5.2, if §; is bounded as E[||g/|3] < G?
for all ¢, we then have E[f(X)] — miny«cs, f(X*) < + (8% + gG2T>. The performance of the
algorithm here depends on GG, an upper bound on the expected norm of unbiased estimator g;.

We evaluate the magnitude of G for specific examples of g, in the following subsection.

70

5.5.3 Unbiased Estimators of Subgradients

In this subsection, we present two different ways to construct unbiased estimators for a sub-
gradient of f that are based on (5.11) and (5.10), respectively. The latter is available for
the case of multiple-point feedback, i.e., k& > 2, and produces a smaller error bound un-
der Assumption 5.3.1. Without such an assumption, the former gives a better error bound.
Given xy = (z41, T2, ., %) € [0,1]7, let o : [n] — [n] be a permutation over [n] for which

Tto(1) > Tto(2) >z Lto(n):

An estimator based on the expression (5.11) Suppose k 6 [n + 1]. Consider choosing
queries {X(J)}k,1 randomly as follows: Choose a subset I; = {i; () }’IZ1 C {0,1,...,n} of size
k, uniformly at random, i.e., I; follows a uniform distribution over the subset family {I C
{0,1,...,n} | |I] = k). Then let X9 = 5,69 = {o(j) | 5 <%} and observe fi(X") for
j € [k]. Define g; as

N k r j (7 r . .

gt = nTH Zj=1 ft(Xt(j))l/’o(Zg])> = nTH 2ier, Jt(S0(1))9q (7), (5.18)
where 1, (i) is defined in (5.9). Note that g; relies on z; since o depends on z;. Then, §; is an

unbiased estimator of a subgradient and satisfies E[||g:3] = O(n?/k):
Lemma 5.5.1. Suppose that g; is given by (5.18). We then have

E(gi|z.] € 9f(z.), Ellg:3] < 2(n+ 1)(n + k) /k. (5.19)

Proof. From the definition (5.18) of g, its expectation may be expressed as

Bloded = "0 B | S0 A5 >} = LD S Probli € LB [£:(,(3)] o (i)
i€l =0
n+1 o . . .
=— > " Probli € L) fy(So(i)) s (i), (5.20)
=0

where the last equality comes from the assumption of E[f;(X)] = f(X). Since I; is chosen
uniformly at random from all subsets of {0, 1,...,n} having size k, for each i € {0,1,...,n}, the
probability that i € I; is (kfl)/("zl) = n+1 Sub%tltutmg this into (5.20), we obtain E[g:|x¢] =
Yoo f[t(Se(i))1s(i). This vector is equal to g(o) given in (5.11), which is a subgradient of f at
7. We next evaluate the expectation of ||g¢[|3. From the definition (5.18) of g;, we have

Ellal = "5 B [2 5 ﬁ(&@))ft(so<j>>¢a<z’>wa<j>}
i€l jely
n 2 n n R)
= u > Probli,j € LB | £i(Se(0)Fi(So(i))] o (i) T (5)
=0 j=0
n+ 1 L .o AT .
> [Probli, j € I]tbs (i) "5 (5)), (5.21)
=0 j=0

where the last inequality follows from the assumption that f,(X) € [-1,1]. From the definition
of I, we have

r .. _ (kﬁl)/(nzl) = nil (Z = j)
prebh s et { G/ = G2 2

Further, from the definition (5.9) of ¢, (i), we have

2 (i=j)
o) o(j) =4 —1 (li—jl=1) . (5.23)
Lo (li — 4] > 2)

Combining (5.21), (5.22) and (5.23), we have

n—1 n
1
E[ll4:]3] < ("Z) (Z Probli € I] -2+) Prob[i,i+ 1€ I]+ » Probli,i—1¢€ It]>
=0 =0 =1

C(nt1)? (& — k(k—1) k(k—1)
k2 (Zznle ; +1) ;n(nle))

:(n—k:l)z<2k+ k(k —)> 2(n+1]1(n+k)7

which proves (5.19). O

An estimator based on the expression (5.10) Suppose 2 < k < n + 1 holds, and let [
denote | = |k/2] > 1. Consider choosing queries {Xt(j)}le randomly as follows: Choose a

subset J; C {1,...,n} of size [, uniformly at random. Then, set queries {Xt(j)}§:1 so that
Ui, 185(), S (z - 1)} C{X,])}j 1, and observe f;(S,(i)) and f;(Sy(i — 1)) for i € J;. Define

gt as
Gt =23 ses (f1(So(0) = fi(So(i — 1)) Xo@)- (5.24)

Then, §; is an unbiased estimator of a subgradient and satisfies E[||§;]|3] = O(n?/k), and if f,
is a submodular function, then E[||g:]|3] = O(n/k) holds.

Lemma 5.5.2. Suppose that g; is given by (5.24). We then have
E(gi|r:] € 0f (ze), E[lge]3] < 4n*/1 < 120°/k. (5.25)
In addition, if ft is a submodular function, we then have
E[||g:/[3] < 16n/1 < 48n/k. (5.26)

Proof. From the definition (5.24) of g, its expectation may be expressed as

Elgeled = 7B | 2 (fi(So(0)) = fi(S4i = 1>>x0<,;>]
i€ Jt
= 23" Probi € JIE |f:(5, (1) = fi(S(i = 1] X009
i=1
= Z(ft(o (1)) = fe(Ss(i — 1))Xo(i)7

where the last equality follows from the fact that Prob[i € J;] = (?__11) /() = L holds for all

i € [n] and the assumption of B[f;(X)] = f(X). This vector is equal to the g(c) given in

72

Algorithm 8 An algorithm for submoudular function minimization with noisy evaluation oracle

Require: The size n > 1 of the problem, the number 7" > 1 of oracle calls, the number

k € [n 4+ 1] of feedback values per oracle call, and the learning rate n > 0.
1

1: Setx1:§1

2: fort=1,2,...,7T do

3: Let o :[n] = [n] be a permutation corresponding to x, i.e., Tyy(1) = *++ > Tyo(n)-
4: if Assumption 5.3.1 holds then

5: Choose a subset J; C [n] of size | = |k/2], uniformly at random.

6: Call the evaluation oracle f; to observe f;(S,(i)) and f;(S,(i — 1)) for i € J;.
7 Construct an unbiased estimator §; of a subgradient of f at 2y, as (5.24).

8: else

9: Choose a subset I; C {0,1,...,n} of size k, uniformly at random.

10: Call the evaluation oracle f; to observe fy(Sy(i)) for i € I.

11: Construct an unbiased estimator §; of a subgradient of f at x, as (5.18).

12: end if

13: Compute x411 from x; and §; on the basis of (5.12).

14: end for

15: Set T = = S w)
16: Draw u from a uniform distribution over [0, 1], and output X = Hz(u) = {i € [n] | Z; > u}.

(5.10), which is a subgradient of f at z;. We next evaluate the expectation of ||g;||3. From the
definition (5.24) of §;, we have

Ellg:3] = % E {Z D (£l Sa(8) = FilSo (i = D)) (fi(So(4)) = £ilSs (G — 1>>>xl<z>xo<j>}

i€y jeJt

n2 n N .
= 5 > Probfi € J B [(fu(So() = fu(S,(i = 1))?]

i=1
n - r . A . 2 4n2
= Y B[(lSel) - filSeli -)] < T (5.21)
i=1
1 (=
where the second equality comes from that Xz‘T Xj = {0 EZ y ‘7; , the third equality comes from
7]

that Prob[i € J;| = %, and the inequality follows from the assumption that f;(X) € [—1,1].
From this and the fact that [= |k/2| > k/3, (5.25) follows. If f; is a submodular function,
from Lemma 8 in [78], or Lemma 1 in [96], we have 3.7 | (f:(So(i)) — fi(S,(i—1)))? < 16. From
this and (5.27), we obtain (5.26). O

A key factor in the advantage of the estimator defined by (5.24) is that the vector (f;(S,(7))—
ft(Ss(i — 1)), € R™ has a smaller norm than (f;(S,(i)))", € R, which is implied by
Lemma 8 in [78] or Lemma 1 in [96].

5.5.4 Proof of Error Upper Bound

By combining SGD described in Section 5.5.2 and unbiased estimators defined by (5.18) or
(5.24), we obtain Algorithm 8. Let us evaluate the additive errors for this algorithm. Note that

73

we have B[f(z)] — min_, 7 f(z*) = B[f(X)] — minx«cz, f(X*) from (5.6) and Theorem 5.5.1.
Suppose X is produced by Algorithm 8 in which Steps 9-11 are chosen. From Theorem 5.5.2

and Lemma 5.5.1, we have E[f(X)] — miny-¢cr, f(X*) < * (% + w> The right-

hand side is minimized when 7 is chosen as n = ,/WM. We then have E[f(X)] —
miny«cp, f(X*) <4/ % = O(%:/Fz), which proves (5.2).

Suppose that Assumption 5.3.1 holds and that X is produced by Algorithm 8, where Steps

5-7 are chosen. From Theorem 5.5.2 and Lemma 5.5.1, we have E[f(X)] — miny«er f(X*) <

- (ﬂ + 247LT”). The right-hand side is minimized when 7 is chosen as n = y/ —=. We then

T \ 8y 192T
have E[f(X)] — miny-cz, f(X*) < % = O(f=), which proves (5.3).

The computational time of Algorithm 8 can be evaluated as follows: Step 3 can be conducted
by a sorting algorithm, which takes O(nlogn) time. Step 5 can be done by generating uniform
random numbers over [m] for m =n,n—1,...,n — k+ 1, which takes O(klogn) times. Step 6
requires O(kEO) time computation. Step 7 can be computed with O(n) arithmetic operations.
Steps 9-11 are similar to Steps 5-7. Step 13 takes O(n) time since z; —ng; can be computed with
O(n) arithmetic operations and since Pj(x) has an explicit form. Hence, Steps 2-14 require
O((nlogn + klogn + kEO +n+mn)-T) = O((KEO + nlogn)T) time. The other steps do not
require time greater than this. Therefore, the overall time complexity is of O((kEO+nlogn)T).

5.6 Lower Bound

5.6.1 Construction of Hard Instance

-1 (ieX)
1 (i¢X)
and a positive real value ¢ € [0,1]. Consider the following procedure that produces a function
f:2 — {—1,1}: (1) Choose i € [n] uniformly at random, and set s = 1 with probability
o2 s = —1 with probability 2. (2) Define f : 2" — {~1,1} by f(X) = s h(S*AX) =
s+ hi(S*)hi(X), where S*AX stands for the symmetric difference between S* and X, i.e.,
S*AX = (S*\ X)U (X \ S*). Let F(S*,¢) denote the distribution of functions generated by
the above procedure. A similar construction can be found in [52], which is for a lower bound of

Define h; : 2" — {—1,1} as hy(X) = . for i € [n]. Fix a subset S* C [n]

bandit linear optimization.

In addition, define F’'(S*, ¢) similarly, so that all function values of f ~ F'(S*, ¢) are stochas-
tically independent: Choose ix € [n] and sx with the probability defined as the above, in-
dependently for all X C [n], and define f(X) = sx - hiy (S*)hi(X). Let F'(S*) denote the
distribution of functions generated by this procedure. Note that each f generated from F'(S*,¢)
is a modular function and that this does not always hold for F'(S*,¢). If Dg- = F(S*,¢) or if
Dg+« = F'(S*,¢), the expectation of f ~ Dg+ is a submodular function expressed as

fs+o(X) :=f% F(X)] = <30 hi(SH)hi(X) = £(2|S*AX| - n), (5.28)

— lfe _ _
5 = —¢€.

where the second equality comes from E[s] = E[sx] = 15¢

74

5.6.2 Proof of Error Lower Bound

To prove Theorem 5.4.2, we start with bounding the additive error from below by means
of KL divergences. Fix XM x®@ . X®) C [n] arbitrarily. For a class {Dg+ | S* C
[n]} of distributions over {f : 2" — {—1,1}}, let Pg- denote the distribution of y(f) =
FXOY, £ XY, f(X®NT € RF for f ~ Dg+. We then have the following:

Lemma 5.6.1. Suppose that a class of distributions {Dg~ | S* C [d]} satisfies (5.28) for all
S* C [d]. In addition, suppose that the following holds for arbitrary S xMW x@ o x k) C
[n]:

>y Dk (Ps-

Pongy) < 2= (5.29)

If S* is chosen uniformly at random from 2", and ft follows Dg+ i.i.d. fort =1,2,...,T,
then any algorithm suffers an additive error of B[ET] = E |fs+(X) — mingo(n) fS*ﬁ(S)] > 5,

where the expectation is taken w.r.t. S*, ft, and the internal randomness of algorithms.

Proof. Since any randomized algorithms can be regarded as a convex combination of deter-
ministic algorithms, it suffices to consider only deterministic algorithms. Fix a determinis-
tic algorithm and let {(Xt(l), .. .,Xt(k))}tT:1 denote the queries generated by it. Denote y; =

(ft(Xt(l)), e ft(Xt(k)))T € {—1,1}*, the input to the algorithm. From (5.28), we have

foro(X) = —% S hi(S*AX). (5.30)
=1

To evaluate the above value, we fix i € [n], and focus on E [E [hi(S*AX)]]. Since S*A{i}
5% | fimDgn

follows a uniform distribution over 2["), the same distribution as of S*, we have

=-E

E [((S"AihAX))| = - B

E[E [hi(S*AX)]} =E
S* Lft~Dgx S* ftNDS*A{i}

E [hi(S*AX)]
ft~Dgxagiy

where the second equality comes from the definition of h;. Hence, we have

SE[E [hi(S*AX)]]:;E:: E [h(S*AX)] - E [hi(S*AX)]}
fr~Dgx S* | fi~eDgx fe~Dgxngiy
:%E hi(S*)< E [L(X)]- E [hi@)])}, (5.31)
S* fet~Dgx fe~Dgx aqqy

where the second equality comes from hi(SAS") = hi(S)hi(S"). Since X is determined by
YT = (y1,...,yr) € {~1,1}**T there is a function ¢; : {—1,1}**T — {—1,1} such that
hi(X) = ¢;(YT). Let Q and Q) denote the probability distributions of Y7 for f; ~ F(S*¢)

75

and f; ~ D(S*A{i},e), respectively. We then have

E h(X)]- E [h(X)
Jt~Dgx Je~Dsx aqay

=| D Qe - > QW)

yE{—l,l}T yE{—l,l}T

=1 > Q) —Qiy)si(y)

y€{7171}T

< > 1RW - QI =1Q - Qilk (5.32)

ye{flvl}T

where [|Q — Q%1 stands for the total variation distance between @ and Q). From Pinsker’s
inequality (see, e.g., Theorem 12.6.1 in [48]), the total variation distance can be bounded by
means of the KL divergence as

1Q — Qillr < 1/2DkL(Q|Q})- (5.33)
Combining equations (5.30) — (5.33) and |h;(S*)| = 1, we have

Z¢wm@m} JE {jimﬂ@Qq,ww
i=1

where the second inequality follows from the Jensen’s inequality and the concavity of \/x.
Denote Y = (y1,...,9;). From the chain rule of KL divergence (see, e.g., Theorem 2.5.3 in
[48]), we have

g
~ B [fe(X)<—
5%, fi~Dgx 2n

n
ZDKL Q@) = Z Dy, (%HZ/Q)} : (5.35)
=1 Y =1 Yt~Qlyt—1, ¥;~Qilyt—1
When Y1 is fixed, Xt(l), R Xt(k) are also fixed since we have fixed a deterministic algorithm.

Hence, from the assumption of (5.29), we have
n
n

i=1 ytNQlyt—h y;NQ;‘yt—l

By combining this, (5.34), and (5.35), we have

[fS*,E(X” <

| ™

- E
S*, fe~D g

We also here have
min fs*,E(S) = fg*ﬁ(s*) = —£&.
Se2ln]
From the above two inequalities, the expected additive error is bounded as

E|fso(X) — min fs(S)| > -2

—+&=
Sealn] 2

€
2)
which accomplishes the proof. O

76

Intuitively, the condition (5.29) means that the distribution of the observed values y does
not change much even if the optimal solution S* is perturbed. Consequently, under the condi-
tion (5.29), it is hard for any algorithm to detect S*. Sufficient conditions for (5.29) are given
in the following two lemmas:

Lemma 5.6.2. Suppose that {Ps-} is defined by Dg+ = F'(5*) for 0 < ¢ < min{3,
Then (5.29) holds for arbitrary S*, XM, ..., X*) C [n].

Ve)

Proof. Suppose that XM ... X*) are distinct. Then, since f(X(j)) with f ~ F'(S*,¢) are

stochastically independent for j = 1,...,k, we have
k
Du(Ps+||Pseagy) = D, Dxr, (FXD)f(x)). (5.36)
j=1 f~F(8*.e), [/ ~F' (S* A} e)

From the definition of F'(S*,¢), f(X) follows Bernoulli distributions of parameters 6 := % +

£ (2|S*AX¢|—n) and 0’ := 3+ (2|(S*A{i}) AXy|—n) for f ~ F(S*,¢) and f ~ F(S*A{i},¢),
respectively. Since 6,6’ € [, %] and |6 — ¢'| = £ < ¢, we have

BN o 1-0

. Da (FXOYIFXD) = ~0log 7 — (1 —0)log =7

FrFI(S*e), fim (S Adi}e) -

0 —0 4/60 —0\> 0—0 4/6—0\2
< — P _ _ J—
<o (S (1)) -a-a (452 ()
4 . (1 1 4e? 1
50 =0) <9+1—0>_n2_2kT’
1

where the first inequality follows from —log(l + z) < —x + %xQ for |z| < 5 and the last

inequality follows from the assumption of ¢ < —£—. By combining (5.36) and (5.37), we obtain

(5.37)

V8ET '
Dx1(Ps+||Ps+nqiy) < 57 for all i € [n], which implies that (5.29) holds. For the case that
X(l), R X) are not distinct, i.e., when {X(l), . ,X(k)} consists of k' < k elements, we can
show Dk, (Ps+||Ps«agi)) < % in the same way, from which (5.29) follows. O

Lemma 5.6.3. Suppose that {Ps-} is given by Dg~ = F(S*,¢) for a nonnegative € such that

e < min{%,n m} Then (5.29) holds for arbitrary S*, XM, ... X®) C [n].

Proof. From the definition of F(S*,¢), f ~ F(S*,¢) can be expressed as f(X) = V-h(S*AX),
where I and V follows distributions over [n] and {—1,1}, respectively. Hence, if S* and
XM, X® are fixed, y(f) = (F(XD),..., fF(X®)) € {~1,1}* changes depending only on I
and V. Therefore, there exists a function A : [n] x {—1,1} = {—1, 1}* such that y(f) = AX(I, V).
Denote Z = range(\) = {\(,5) € {—1,1}* | i € [n],s € {~1,1}}. Then we have

1Z| < min{|{—1,1}*],|[n] x {—1,1}|} = min{2*, 2n}. (5.38)

From the definition of F'(S*,¢), for any fixed z € Z and i € [n], we have

Prob [y(f)=2]— Prob [y(f)= 2]
FrF(S%6) FF(S*ALi)e)

:{ é (2 € {M(i, 1), A0 1)}) (5.39)

From this and the definition of the KL divergence, we have
~ Prob [y(f) = 2]
f~F(S*Adi}e)

Dx1,(Ps+ Prob [y(f) = 2]

Pgepgiy) = — _Prob [y(f) = z]log
{} ;fNF(S*7€)

fNF(S*vs)
2
<A Prob [y =y]— Prob [y(f) = Z]>
% Z f~F(S*e) f~F(S*A{ite)
9l Prob [y(f) = 2]

fNF(S*75)

4e? (1 1 \

= — — + =)
512 | Prob [y(f) = AG.—1)] | Prob [y() = A(i,1)])
f~F(S*,e) F~F(S*,e)

where the inequality follows from a calculation used in (5.37), and the last equality follows from

)

(5.39). By taking a sum of the above for ¢ € [n], we obtain the following:

" 4e2 & 1 1
2 DalPollPs-o) < 55 2 | 5 T m 50T b () = D))
f~F(S*e) f~F(S*,e)
_ 2 g (e NG =] e] 261 = 1)
502 2| Prob [y(f) =4 “Prob [y(/) = 7])
f~F(S*e) f~F(S*e)
_ ﬁz [{(i,s) € [n] x {=1,1} | A(4,8) = 2}
52 2~ “Prob [y(/) = 7] |
FaF(S*,6)

Since I follows a uniform distribution over [n] and V follows a Bernoulli distribution with the
parameter 152, we have Prob[l =4,V =s] > 12 > L for all i € [n] and s € {—1,1}. Hence,
we have
; ,5) € —1,1} | A (i, 8) =
API‘Ob [y(f):Z]: API‘Ob [A(I,V):Z]z |{(278> [n]x{ ? }| (7’78) Z}|
FrE(S7) FrE(S7e) 3n

Combining the above two equations, (5.38), and the assumption of ¢ < n, /m, we
obtain

n
4e? 12e21Z] _ n
> Dri (il <5 Y 3= <
im1 Ye~Plyi—1, vi~Pllyia on ez 5n 2T

O

Theorem 5.4.2 can be proven by combining Lemmas 5.6.1, 5.6.2, and 5.6.3. From Lem-
mas 5.6.1 and 5.6.2, if S* is chosen uniformly at random from 2/ and if f; follows F'(S*¢e)
with e = min{%, \/%}, i.i.d. for t € [T], we then have E[Er] > § = min{;, \/ﬁ} = Q/(\/%)’

which proves (5.4). If k > 2 and if S* is chosen uniformly at random from 2[", and fi follows

F(S*,e) with e = min{%,n,/m}, iid. for t € [T], then Assumption 5.3.1 is sat-

isfied since ft ~ F(S*,e) is a submodular. Further, from Lemmas 5.6.1 and 5.6.3, we have

E[Er] > § = min{ll—z,n m} = Q’(max{ﬁ,\/?}) = Q’(\/;? + /%), which
proves (5.5).

78

5.7 Conclusion

We have introduced submodular function minimization with noisy evaluation oracle, and have
provided algorithms and lower bounds, which together implies that the proposed algorithms
achieve nearly optimal additive errors, modulo O(y/n) factors. For the special cases of k-point
feedback settings, in which 2 < k = O(1) and each noisy evaluation oracle itself is a submodular
function, we have provided a tight error bound. For the other cases, we leave it as an open

question to find tight bounds.

79

80

Chapter 6

Price Optimization via Submodular
Function Minimization

This chapter deals with price optimization, which is to find the best pricing strategy that max-
imizes revenue or profit, on the basis of demand forecasting models. Though recent advances in
regression technologies have made it possible to reveal price-demand relationship of a large num-
ber of products, most existing price optimization methods, such as mixed integer programming
formulation, cannot handle tens or hundreds of products because of their high computational
costs. To cope with this problem, this chapter proposes a novel approach based on network
flow algorithms. We reveal a connection between supermodularity of the revenue and cross
elasticity of demand. On the basis of this connection, we propose an efficient algorithm that
employs network flow algorithms. The proposed algorithm can handle hundreds or thousands of
products, and returns an exact optimal solution under an assumption regarding cross elasticity
of demand. Even if the assumption does not hold, the proposed algorithm can efficiently find
approximate solutions as good as other state-of-the-art methods, as empirical results show.

6.1 Introduction

Price optimization is a central research topic with respect to revenue management in market-
ing science [130, 141]. The goal is to find the best price strategy (a set of prices for multiple
products) that maximizes revenue or profit. There is a lot of literature regarding price opti-
mization [21, 36, 114, 136, 141, 147], and significant success has been achieved in industries
such as online retail [56], fast-fashion [36], hotels [114, 120], and airlines [130]. One key compo-
nent in price optimization is demand modeling, which reveals relationships between price and
demand. Though traditional studies have focused more on a single price-demand relationship,
such as price elasticity of demand [114, 120] and the law of diminishing marginal utility [130],
multi-product relationships such as cross price elasticity of demand [128] have recently received
increased attention [36, 136]. Recent advances in regression technologies (non-linear, sparse,
etc.) make demand modeling over tens or even hundreds of products possible, and data ori-
ented demand modeling has become more and more important.

Given demand models of multiple products, the role of optimization is to find the best
price strategy. Most existing studies for multi-product price optimization employ mixed-integer
programming [36, 114, 120] due to the discrete nature of individual prices, but their methods

81

cannot be applied to large scale problems with tens or hundreds of products since their compu-
tational costs exponentially increases over increasing numbers of products. Though restricting
demand models might make optimization problems tractable [36, 56], such approaches cannot
capture complicated price-demand relationships and often result in poor performance. Ito and
Fujimaki [88] have recently proposed a prescriptive price optimization framework to efficiently
solve multi-product price optimization with non-linear demand models. In this prescriptive
price optimization, the problem is transformed into a sort of binary quadratic programming
problem, and they have proposed an efficient relaxation method based on semi-definite pro-
gramming (SDP). Although their approach has significantly improved computational efficiency
over that of mixed-integer approaches, the computational complexity of their SDP formulation
requires O(M?®) in theory, where M is the number of products, and it is not sufficiently scal-
able for large scale problems with hundreds of products, as our empirical evaluation show in
Section 6.5.

The goal of this chapter is to develop an efficient algorithm for large scale multi-product price
optimization problems that can handle hundreds of products as well as flexible demand models.
Our main technical contributions are two-fold. First, we reveal the connection between submod-
ularity of the revenue and cross elasticity of demand. More specifically, we show that the gross
profit function of the prescriptive price optimization is supermodular (i.e., the maximization of
the gross profit function is equivalent to the submodular minimization) under the assumption
regarding cross elasticity of demand that there are no pairs of complementary goods (we refer
to this property as a substitute-goods property).! On the basis of the submodularity, we propose
a practical, efficient algorithm that employs network flow algorithms for minimum cut problems
and returns exact solutions for problems with the substitute-goods property. Further, even
in cases in which the property does not hold, it can efficiently find approximate solutions by
iteratively improving submodular lower bounds. Our empirical results show that the proposed
algorithm can successfully handle hundreds of products and derive solutions as good as other
state-of-the-art methods, while its computational cost is much cheaper, regardless of whether
the substitute-goods property holds or not.

6.2 Literature Review

Our price optimization problems are reduced to binary quadratic problems such as (6.4). It
is well known that submodular binary quadratic programming problems can be reduced to
minimum cut problems [111], and hence it can be solved by maximum flow algorithms. Also,
for unconstrained non-submodular binary quadratic programming problems, there is a lot of
literature regarding optimization algorithm using minimum cut, especially in the context of
Markov random fields inference or energy minimization in computer vision [25, 26, 27, 69, 110,
158]. Above all, QPBO method [25, 110] and its extensions such as QPBOI method [145] are
known to be state-of-the-art methods in terms of scalability and theoretical properties. These
QPBO/QPBOI and our method are similar in that they all employ network flow algorithms
and derive not only partial /approximate solutions but also lower bounds of the exact optimal

1» Complementary goods” and ”substitute goods” are terms in economics. A good example of complementary
goods might be wine and cheese, i.e., if we discount wine, the sales of cheese will increase. An example of
substitute goods might be products of different brands in the same product category. If we discount one product,
sales of the other products will decrease.

82

(minimum) value. Our methods, however, differs from QPBO and its extensions in network
structures, accuracy and scalability, as is shown in Section 6.5.

6.3 Submodularity in Cross Elasticity of Demand

Suppose we have M products and a product index is denoted by ¢ € {1,..., M }. In prescriptive
price optimization [88], for a price strategy p = [p1,...,pan] ", where p; is the price of the i-th
product, and for external variables r = [rq, ..., rD]T such as weather, temperature and days of
the week, the sales quantity (demand) for the i-th product is modeled by the following regression

formula:
M D
r) =Y fii(p) + Y gulre), (6.1)
j=1 t=1

where f;; expresses the effect of price elasticity of demand, f;; (i # j) reflects the effect of cross
elasticity, and g;; represent how the t-th external variable affect the sales quantity. Note that
fij for all (i,j) can be arbitrary functions, and Eq. (6.1) covers various regression (demand)
models, such as linear regression, additive models [156], linear regression models with univariate
basis functions, etc. This chapter assumes that the regression models are given using existing
methods and focuses its discussion on optimization.

Given ¢;(p) for all i and a cost vector ¢ = [cy,...,car]", and fixed external variables r, the
gross profit can be represented as

M

Z(pt—)ai(p) = D _(pi — ci) (qu (p)) +Zgzt(rt) (6.2)
=1

The goal of price optimization is to find p maximizing £(p). In practice, p,, is often chosen
from the finite set P; = {P;1,...,Pik} € R of K price candidates, where P;x might be a
list price and Py, (k < K) might be discounted prices such as 10%-off, 5%-off, 3%-off. Then,
the problem of maximizing the gross profit can be formulated as the following combinatorial
optimization problem:

Maximize /(p) subject to p; € P;. (6.3)

It is trivial to show that (6.3) is NP-hard in general.
Let us formally define the ”substitute-goods property” as follows.

Definition 6.3.1 (Substitute-Goods Property). The demand model defined by (6.1) of the i-th
product is said to satisfy the substitute-goods property if f;; is monotone non-decreasing for all

The concept of substitute-goods property is practical and important because retailers often
deal with substitute goods. Suppose the situation that a retailer decides a price strategy of
different brand in the same products category. For example, supermarkets sell milk of different
brands and car dealerships sell various types of cars. These products are usually substitute
goods. This kind of cross elasticity effect is one of advanced topics in revenue management
and is practically important [114, 120, 136]. Our key observation is the connection between
the substitute-goods property in marketing science and the supermodularity of the gross profit
function, which is formally described in the following proposition.

83

Proposition 6.3.1. The gross profit function £ : Py x---x Py — R is supermodular® if demand
models defined by (6.1) for all products satisfies the substitute-goods property.

Proof. Since the sum of supermodular function is supermodular[64], it suffices to show that
l;; and ¢; are supermodular for all i and j, under the assumption of the substitute goods
property. First, ¢; are supermodular because arbitrary univariate functions are supermoludar
by the definition. Next, let us show the supermodularity of ¢;;. Let p;, p; and pj,p’j be arbitrary
elements of P; and P, respectively. Denote p. = min{p;, p;}, p; = max{p;, p; }, p; = min{p;, p’;},
and p; = max{p;,pj}. Without loss of generality, assume p; < p}. If p; < p, then we have
Cij(pis pj) + Lig (P, ;) — Lij(Pis Pj) — &j(&,gj) = 0. Otherwise, i.e, if p; > p’;, then we have

Cij(pis pj) + Lis (D}, D) — 4ij (P D) — Cij(p; ;)
= Lij(pi, pj) + Lij (03, 1) — €ij (D} pj) — Lij (pi,)
= (pi — P)(fij(ps) — fis (1)) <0,

where the last inequality comes from the substitute goods property. These inequality implies
the supermodularity of ¢;;. O

The above proposition implies that, under the assumption of the substitute-goods prop-
erty, problem (6.3) can be solved precisely using submodular minimization algorithms, where
time complexity is a polynomial in M and K. This fact, however, does not necessarily imply
that there exists a practical, efficient algorithm for problem (6.3). Indeed, general submodular
minimization algorithms are slow in practice even though their time complexities are polyno-
mial. Further, actual models do not always satisfy the substitute-goods property. We propose
solutions to these problems in the next section.

6.4 Submodularity-based Algorithm for Revenue Maximization

6.4.1 Binary Quadratic Programming Formulation

This section shows that problem (6.3) can be reduced to the following binary quadratic pro-
gramming problem (notations are explained in the latter part of this section):

Minimize rT Ar+bTx
subject to r=[z1,...,2,]" €{0,1}", (6.4)
Ty < xy ((u,v) € 0),
Each variable p; takes Py if and only if the binary vector z; = [z;1, ..., sni,K_l]T € {0, 1}(K*1)
satisfies:
i =cp:=[1,...,1,0,...,0]" (k=1,...,K). (6.5)
—— ——
k—1 K—k

Also we define z = [z{,...,z},]" € {0, 1} (K=DM and redefine the indices of the entries of = as
T = [T1,22,. .., T(k_1)M]; 1., Tip = Ti(g_1)4 for notational simplicity.

2We say that a function f: Dy x --- x D, = R (D; C R) is submodular if f(z)+ f(y) < f(x V) + f(z Ay)
for all z,y, where = V y and x A y denote the coordinate-wise maximum and minimum, respectively. We say a
function f is supermodular if —f is submodular.

84

Defining ¢;; : P; x P; — R by 4;;(ps,pj) = (pi — i) fij(p;) for i # j and ¢; : P; — R by
li(pi) = (pi — i) (fii(pi) + Z?:l git(r¢)), we can express £ as

M
l(p) = Z lij(pispj) + Z Li(pi)- (6.6)
1<i,j< M, i#j i=1
Using x;, we can construct matrices A;; € RE-DX(K=1) for which it holds that
lii(pi,pj) = —x;rAijxj + const. (6.7)

Indeed, matrices A;; = [ailjv]lgu,USK—l e RE-Dx(K-1) defined by

aidy = —Lij(Pius1: Piws1) + Lij(Pins, Pjos1) + Cij(Piust, Piow) = Cij(Pius Piw) (6.8)
satisfy (6.7). In a similar way, we can construct b; € RE~! such that ¢;(p;) = —b, 2; + const.

Accordingly, the objective function ¢ of problem (6.3) satisfies £(p) = — (2" Az + b"z) + const,
where we define A = [A;j]i<ij<m € RE-DMx(E-DM andq p = [bili<i<m € RE-DM — The
conditions z; € {c1,...,cx} (i=1,...,M) can be expressed as z, <z, ((u,v) € C), where
we define C = {(K -1 —-1)+k+1,(K-1)@GE—-1)+k)|1<i<MI1<k<K-2}
Consequently, problem (6.3) is reduced to problem (6.4). Although [88] also gives another BQP
formulation for the problem (6.3) and relaxes it to a semi-definite programming problem, our
construction of the BQP problem can be solved much more efficiently, as is explained in the
next section.

6.4.2 Minimum Cut for Problems with Substitute Goods Property

As is easily seen from (6.8), if the problem satisfies the substitute-goods property, matrix A has
only non-positive entries. It is well known that unconstrained binary quadratic programming
problems such as (6.4) with non-positive A € R™*" and C' = () can be efficiently solved® by
algorithms for minimum cut [46]. Indeed, we can construct a positive weighted directed graph,
G=(V={st1,2,....n}, ECV xV,w: E — RsgU{cc})?* for which

eT Az +b" 2z =co({s} U{u |z, = 1}) + const (6.9)

holds for all z € {0,1}", where cg is the cut function of graph G°. Hence, once we can compute
a minimum s-t cut U that is a vertex set U C V minimizing c¢g(U) subject to s € U and ¢t ¢ U,

we can construct an optimal solution = = [x1,...,7,] to the problem (6.4) by setting
1 (uel)
= =1,...,n). 6.10

For constrained problems such as (6.4) with C' # (), the constraint z, < x, is equivalent
to z, = 1 = =z, = 1. This condition can be, in the minimum cut problem, expressed as
u € U = v € U. By adding a directed edge (u,v) with weight co, we can forbid the minimum
cut to violate the constraints. In fact, if both v € U and v ¢ U hold, the value of the cut
function is oo, and hence such a U cannot be a minimum cut. We summarize this in Algorithm
9.

3The computational cost of the minimum cut depends on the choice of algorithms. For example, if we use
Dinic’s method, the time complexity is O(n®logn) = O((KM)?log(K M)).

s, t are auxiliary vertices different from 1,...,n corresponding to source, sink in maximum flow problems.
®For details about the construction of G, see, e.g., [27, 111].

85

Algorithm 9 s-t cut for price optimization with the substitute-goods property

Require: Problem instance (A,b,C) of (6.4), where all entries of A are non-positive.
Ensure: An optimal solution z* to (6.4).
1: Construct a weighted directed graph G = (V, E, w) satisfying (6.9).
2: Add edges C' with weight co to G, i.e., set E < E U C and w(u,v) < oo for all (u,v) € C.
3: Compute a minimum s-t cut U* of G, define z* by (6.10) and return z*.

6.4.3 Submodular Relaxation for General Problems

For problems without the substitute-goods property, we first decompose the matrix A into AT
and A~ so that AT + A~ = A, where A" = [af,] and A~ = [a;,,] € R"*" are given by

uv uv 2 0 _ 0 wv 2 0

agy = “ (a) , Ay = (a) (u,v € N). (6.11)
0 (ayy < 0) Gy (ayy < 0)

This leads to a decomposition of the objective function of Problem (6.4) into supermodular and

submodular terms:

e Az + b z=2"ATe+aT A r + bz, (6.12)

where 2" Atz is supermodular and 2" A~z + b’z is submodular. Our approach is to replace
the supermodular term z' Atz by a linear function to construct a submodular function ap-
proximating " Az + bz, that can be minimized by Algorithm 9. Similar approaches can be
found in the literature, e.g. [69, 158], but ours has a significant point of difference; our method
constructs approximate functions bounding objectives from below, which provides information
about the degree of accuracy.

Consider an affine function h(z) such that h(z) < 2" A%z for all € {0,1}". Such an h can
be constructed as follows. Since

Vuv(xu + xy — 1) < Tyy (ZL’U,:L‘U € {O? 1}) (613)
holds for all vy, € [0,1], an arbitrary matrix I' € [0, 1]"*" satisfies
T A+ T(g+ T4+ T4+ _.
' ATz >z (AT ol)14+1 (AToD)z—1' (AT o)1 =: hp(x), (6.14)

where AT o I' denotes the Hadamard product, i.e., (AT o ')y, = alf, - yup. From inequality
(6.14), the optimal value of the following problem,

Minimize T A"z + bz + hp(x)
subject to x = [x1,...,2,]" €{0,1}", (6.15)
Ty <y ((u,v) € C),

is a lower bound for that of problem (6.4). Since A~ has non-positive entries and b'z + hp(x)
is affine, we can solve (6.15) using Algorithm 9 to obtain an approximate solution for (6.4) and
a lower bound for the optimal value of (6.4).

86

Proximal gradient method with sequential submodular relaxation An essential prob-
lem in submodular relaxation is how to choose I' € [0, 1]™*™ and to optimize x given I'. Let ¢(T")
denote the optimal value of (6.15), i.e., define ¥)(I") by ¥(T') = mingepx' A~z + bz + hr(z),
where R is the feasible region of (6.15). Then, for simultaneous optimization of z and I", we
consider the following problem:

Maximize ¥ (T') subject to T € [0, 1]"*", (6.16)
which can be rewritten as follows:®
Minimize —¢(T) + Q(T') subject to T' € R™*", (6.17)
where we define Q : R"*" — R U {oo} by
nxn
Q) = { go g ; {8: Hnm; . (6.18)

Then, —¢(I") is convex and (6.17) can be solved using a proximal gradient method.
Let I'y € R™™™ denote the solution on the ¢-th step. Let z; be the optimal solution of (6.15)
with T = T}, i.e.,

Ty € arg mig{xTA_w +b'z+ hr,(z)}. (6.19)
HAS

The partial derivative of —hp(z) w.r.t. T at (T, z;), denoted by Sy, is then a subgradient of
—(I") at T';, which can be computed as follows:

S;=A o (11" — 1" —1z)) (6.20)

By using S; and a decreasing sequence {n;} of positive real numbers, we can express the update
scheme for the proximal gradient method as follows:

1
[yyy €arg min {S;- T4+ —|T —Ty|? + QI)}, (6.21)
TeRnxn 2771‘,

We can compute I'yy; satisfying (6.21) by
Ft+1 = Proj[071]nxn(rt — ’I’]tSt), (622)
where Projo;(X) is defined by

0 (X)uw <0)
(Projo,1)(X))uv = § 1 (X)uww >1) . (6.23)
[(X)uo (otherwise)

The proposed algorithm can be summarized as Algorithm 10.

The choice of {n:} has a major impact on the rate of the convergence of the algorithm.
From a convergence analysis of the proximal gradient method, when we set n; = ©(1/v/1), it is
guaranteed that 1; converge to the optimal value 9, of (6.16) and | — .| = O(1/v/t). Because
¥ (T") is non-smooth and not strongly concave, there is no better guarantee of convergence rate,
to the best of our knowledge. In practice, however, we can observe the convergence in ~ 10
steps iteration.

5Problem (6.16) can be also solved using the ellipsoid method, which guarantees polynomial time-complexity
in the input size. However, it is known that the order of its polynomial is large and that the performance
of the algorithm can be poor in practice, especially for large size problems. To try to achieve more practical
performance, this chapter proposes a proximal gradient algorithm.

87

Algorithm 10 An iterative relaxation algorithm for (6.4)

Require: Problem instance (A,b,C) of (6.4).

Ensure: An approximate solution Z to (6.4) satisfying (6.25), a lower bound 1 of optimal value
of (6.4).

: Set Ty =117 /2, t = 1, min_value = oo, 1) = —o0.

[

2: while Not converged do
3: Compute x; satisfying (6.19) by using Algorithm 9, and compute
T T _ T a- T _
value, =z, Axy +b xy, Yy =x, A ¢ +b xp+ hr,(2¢), ¢ = max{y, s}
4: if value; < max_value then
5: Update value and & by
min_value = value;, & = x. (6.24)
6: end if
7. Compute I';11 by (6.22) and (6.23).
8: end while
9: Return &, min_value and .

Initialization of I' Let Z1 denote an optimal solution to (6.15). We employ I'y = /2117 for
the initialization of I" because (z,, + x, — 1)/2 is the tightest lower bound of x,z, in the max-
norm sense, i.e., h(ry,,) = (24 + o, — 1)/2 is the unique minimizer of max,, , cf0,1}{|Tu®v —
h(xy,xy)|}, subject to the constraints that h(xz,, z,) is affine and bounded from above by x,x,.
In this case, Zr is an approximate solution satisfying the following performance guarantee.

Proposition 6.4.1. IfT' = 117 /2, then Zr satisfies
FpAfp 4+ b ip < 2] Az, + bz, + %1TA+1, (6.25)
where x, is an optimal solution to (6.4).
Proof. From (6.14), we have
] Az, +b @, > x] A2, + 0z, + hp(zy). (6.26)
Further, it holds that
) A"z, + bz, + hp(x,) > 2L A" Ep 4+ b Zr + hp(Zr) (6.27)

since Zr is an optimal solution to (6.15). From the definition (6.14) of hr, hy(Zr) withT = 117 /2
satisfies

hr(ir) =2 (AT oD)1+1T (AT o) —1T (AT o)1
1 1 1
=i At1+-1TATE - 217471
2 2 2
1 1
=gp Atap — §@§A+5cp - 5= ir)TAT(1—ap)

1
> ip At ap — 51TA+1. (6.28)

88

Table 6.1: Ranges of parameters in regression Table 6.2: Results on real retail data. (a)
models. (i) is supermodular, (ii) is supermodu- is computational time, (b) is estimated

lar + submodular, and (iii) is submodular. gross profit, (c) is upper bound.
Bij (i #3) B o actual proposed QPBO
(i) [0,2] [—2M, —M] [M,3M] (a) - 36(s] 964[s]
(i) [-25,25] [-2M,0] (M, 3M] (b) 1403700 1883252 1245568
(ili) [~2,0] M —3,M—1] [1,3] (c) ; 1897393 1894555

From (6.26), (6.27) and (6.28), we obtain
1
2] A"z, + b0 x4+ hp(x,) > FL A Ep + b @p + &) At Ep — 51TA+1.

1
= G Adp + b @ — 51TA+1.

6.5 Experiment

6.5.1 Simulations

This section investigates behavior of Algorithm 10 on the basis of the simulation model used in
[88], and we compare the proposed method with state-of-the-art methods: the SDP relaxation
method [88] and the QPBO and QBPOI methods [110]. We use SDPA 7.3.8 to solve SDP
problems’ and use the implementation of QPBO and QPBOI written by Kolmogolov.® QPBO
methods computes partial labeling, i.e., there might remain unlabeled variables, and we set
unlabeled variables to 0 in our experiments. For computing a minimum s-t cut, we use Dinic’s
algorithm [46]. All experiments were conducted in a machine equipped with Intel(R) Xeon(R)
CPU E5-2699 v3 @ 2.30GHz, 768GB RAM. We limited all processes to a single CPU core.

Revenue simulation model [88] The sales quantity ¢; of the i-th product was generated
from the regression model ¢; = Oéi+2j]\i1 Bijp;, where {o;} and {f;;} were generated by uniform
distributions. We considered three types of uniform distributions to investigate the effect of
submodularity, as shown in Table 6.1, which correspond to three different situations: (i) all pairs
of products are substitute goods, i.e., the gross profit function is supermodular, (ii) half pairs are
substitute goods and the others are complementary goods, i.e., the gross profit function contains
submodular terms and supermodular terms, and (iii) all pairs are complementary goods, i.e.,
the gross profit function is submodular. Price candidates P; and cost ¢; for each product are
fixed to P; = {0.6,0.7,...,1.0} and ¢; = 0, respectively.

Scalability and accuracy comparison We evaluated four methods in terms of computa-
tional time (sec) and optimization accuracy (i.e. optimal values calculated by four methods).
In addition to calculating approximate optimal solutions and values, all four algorithms derive

"http://sdpa.sourceforge.net/
Shttp://pub.ist.ac.at/~vnk/software.html

89

N
&
S

g
3

BHE proposed BHE proposed BHE proposed

k) 200 ¢ aorso) 200 4 qrso) 200 4 arsO
o A—A QPBOI) [|a=A qQPBOI o A—A QPBOI
E SDPrelax E SDPrelax £ SDPrelax
= =] =1
= 150 = = 150
c c c
L 2 2
E 100 E :i 100
=3 3 3
Q Q Q
£ so0 £ £ s0
=} o o
s} 5] o

0 = 0

0 50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 300

M: number of products M: number of products M: number of products
110
e ' -5 105 | o2 T T T
5] (] ° vl 5]
2 ©]
T @ ©] S 100 g 1o Q:;c:;:8:::8:;:.:;::.:;;:.:: 004
c (¢} = c o O
= @ o09sf 2
2 2
R e e e | 2 D 08
> O 090 = =
T osg < T o —o—o-p—a—a—y
@ Q oss| 9}
2 o =
2 — EHE proposed 9
o %8 [[mHm proposed g 0801 g—4 QPBO « O4T[m-m proposed
© || arso S gs||AA apBOI o ||o-# areo
5 07r|A-A QPBOI < SDPrelax 3 %21|A-A QPBOI
0.70 . , , , ,

g 06 SDPrelax o 50 100 150 200 250 300 g 00 SDPrelax

0 50 100 150 200 250 300 M: number of products 0 50 100 150 200 250 300
M: number of products M: number of products

(ii) supermodular +

(i) supermodular (iii) submodular

submodular

Figure 6.1: Comparisons of proposed, QPBO, QPBOI, and SDPrelax methods on revenue
simulation data. The horizontal axis represents the number M of products. The vertical axes
represent computational time (top) and optimal values of four methods (6.3) (bottom). For the
bottom, circle markers with dashed line represent the computed upper bounds of the optimal
values, and optimal values and upper bounds are normalized so that upper bounds with the
proposed method are equal to 1.

upper bounds of exact optimal value, which provide information about how accurate the calcu-
lated solution.® Fig. 6.1 shows the results with M = 30,60, ...,300 for situations (i),(ii) and
(iii). The plotted values are arithmetic means of 5 random problem instances. We can observe
that proposed, QPBO and QPBOI methods derived exact solutions in the case (i), which can
be confirmed from the computed upper bounds coinciding with the values of objective function.
For situations (ii) and (iii), on the other hand, the upper bound and the objective value did not
coincide and the solutions by QPBO were worse than the others. The solutions by QPBOI and
SDPrelax are as good as the proposed methods, but their computational costs are significantly
higher especially for the situations (ii) and (iii). For all situations, the proposed method suc-
cessfully derived solutions as good as the best of the four methods did, and its computational
cost was the lowest.

6.5.2 Real-World Retail Data

Data and settings We applied the proposed method to actual retail data from a middle-size
supermarket located in Tokyo [164].1° We selected 50 regularly-sold beer products. The data
range is approximately three years from 2012/01 to 2014/12, and we used the first 35 months
(1065 samples) for training regression models and simulated the best price strategy for the next
20 days. Therefore, the problem here was to determine 1000 prices (50 products x 20 days).

9For example, the coincidence of the upper bound and the calculated optimal value implies that the algorithm
computed the exact optimal solution.
0The Data has been provided by KSP-SP Co., LTD, http://www.ksp-sp.com.

90

For forecasting the sales quantity qu)

; ~ of the i-product on the d-th day, we use prices features

{p§d)}1§j§507d_19§d/§d of 50 products for the 20 days before the d-th day. In addition to these
1000 linear price features, we employed “day of the week” and “month” features (both binary), as
well as temperature forecasting features (continuous), as external features. The price candidates

{Pi(,j)}izl were generated by splitting equally the range [P;1, Pjs], where P;; and Pj5 are the

(d)

highest and lowest prices of the i-th product in the historical data. We assumed that the cost ¢;
was 0.3P;5 (30% of the list prices). Our objective was to obtain a price strategy for 50-products
over the 20 days, from the 1066-th to 1085-th, which involves 1000-dimensional variables, in
order to maximize the sum of the gross profit for the 20 days. We estimated parameters in
regression models, using the ridge regression method. The estimated model contained 310293
pairs with the substitute-goods property and 189207 pairs with complementary goods property.

The results are summarized in Table 6.2, where “actual” means the gross profit computed
on the basis of the historical data regarding sales quantities and prices over the 20 days, from
the 1066-th to 1085-th, and costs cl(d) = 0.3P;5. Thus, the target is to find a strategy that
expectedly achieves better gross profit than “actual”. We have omitted results for QPBOI
and SDPrelax here because they did not terminate after running over 8 hours. We observe
that the proposed method successfully derived a price strategy over 1000 products, which can
be expected to increase gross profit significantly in spite of its cheap computational cost, in
contrast to QPBO, which failed with more expensive computation. Although Table 6.2 shows
results using a single CPU core for fair comparison, the algorithm can be easily parallelized that
can finish optimization in a few seconds. This makes it possible to dynamically change prices
in real time or enables price managers to flexibly explore a better price strategy (changing a

price range, target products, domain constraints, etc.)

6.6 Conclusion

In this chapter we dealt with price optimization based on large-scale demand forecasting mod-
els. We have shown that the gross profit function is supermodular under the assumption of
the substitute-goods property. On the basis of this supermodularity, we have proposed an ef-
ficient algorithm that employs network flow algorithms and that returns exact solutions for
problems with the substitute-goods property. Even in case in which the property does not
hold, the proposed algorithm can efficiently find approximate solutions. Our empirical results
have shown that the proposed algorithm can handle hundreds/thousands products with much
cheaper computational cost than other existing methods.

91

92

Chapter 7

Optimal Algorithm for Online
Convex Optimization with Bandit
Feedback

We consider non-stochastic bandit convex optimization with strongly-convex and smooth loss
functions. For this problem, Hazan and Levy have proposed an algorithm with a regret bound
of O(d3/?V/T) given access to an O(d)-self-concordant barrier over the feasible region, where d
and T stand for the dimensionality of the feasible region and the number of rounds, respectively.
However, there are no known efficient ways for constructing self-concordant barriers for general
convex sets, and a O(\/ﬁ) gap has remained between the upper and lower bounds, as the
known regret lower bound is Q(d\/T) Our study resolves these two issues by introducing an
algorithm that achieves an optimal regret bound of O(dv/T) under a mild assumption, without
self-concordant barriers. More precisely, the algorithm requires only a membership oracle for
the feasible region, and it achieves an optimal regret bound of O(dﬁ) under the assumption
that the optimal solution is an interior of the feasible region. Even without this assumption,
our algorithm achieves O~(d3/2 VT)-regret.

7.1 Introduction

Bandit convex optimization (BCO) is a framework for online decision-making with limited feed-
back. In this framework, a player is given a convex feasible region K and the number T of
rounds. In each round ¢t = 1,2,...,T, the player chooses an action a; € K, and the environment
independently chooses convex loss function f; : K — [—1,1]. Not all information about the loss
function is revealed to the player then, but only the bandit feedback is available, i.e., the player
can observe fi(x;) alone. The goal of the player is to minimize cumulative loss Zthl fi(xy), and

performance is evaluated in terms of the regret R (z*) defined by

T

T
Ry (2") = Z fe(zt) — Z fe(z™) (7.1)

t=1

for z* € K.
This chapter focuses on a non-stochastic or adversarial setting. In this setting, we do not
assume any generative model for the loss functions f;, and f; can change arbitrarily. An alter-

93

Table 7.1: Regret bound for bandit convex optimization with strongly-convex and smooth

objective functions.

Reference H Regret bound ‘ Notes

Flaxman et al. [58], O(d?/3T?/3) | No additional assumptions.

Agarwal et al. [5] O(dVT) Assume that the optimization is unconstrained, i.e., K = R%.

Hazan and Levy [80] O(dVvT) Require a v-self-concordant barrier for K. Parameter v is at least d.
Corollary 7.5.1 [This work] | O(dv'T) Assume that the optimal solution is an interior of K.

Corollary 7.5.2 [This work] | O(d*/?V/T) No additional assumptions.

Shamir [153] H Q(dV'T) ‘ A lower bound that implies O(dv/T)-bounds are minimax optimal.

native setting, a stochastic setting in which f; independently follows an unknown probabilistic
distribution, can be regarded as a special case of the non-stochastic setting. Indeed, algorithms
for the non-stochastic setting work even for this stochastic setting, and regret upper bounds for
the former setting apply even to the latter.

Work on non-stochastic BCO was initiated by Flaxman et al. [58] and Kleinberg [108], in
which algorithms with regret bounds of O(T3/*) were proposed. Note that there has been a
lower bound of Q(v/T), i.e., it is known that no algorithm can achieve a better regret bound than
O(VT). A gap of O(TY*) between the upper and the lower bounds remained for a long time,
until Bubeck et al. [33], Bubeck and Eldan [31] and Bubeck et al. [34] proposed algorithms with
O(\/T)-regret bounds, where O() notation ignores factors of poly-logarithmic terms. There has
still been a large gap, however, w.r.t. the dimension d of the feasible region C; the best known
upper and lower bounds are of O(d°v/T) and Q(dv/T), respectively. Bubeck et al. [34] have
conjectured that the optimal regret bound is of é(d?’/2 \/T), but there have been no significant
improvements since their study.

This chapter focuses on an important special case of BCO in which the loss functions are
strongly-convex and smooth. Work on such special cases is summarized in Table 7.1. Agarwal
et al. [5] showed that a modified version of the algorithm by [58] can achieve a regret of O(dv/T)
for unconstrained problems, i.e., for problems with X = R¢. This result can be said to be
minimax optimal because Shamir [153] proved a lower bound of Q(dv/T) that holds even for
strongly-convex and smooth losses. On the other hand, for general constrained problems, the
minimax optimal rate remains to be determined.

An important sign of progress in strongly-convex and smooth BCO has been shown by Hazan
and Levy [80]. They proposed an algorithm that can be applied to constrained problems and
has a better regret bound. However, this algorithm does not directly apply to general problems
because it requires a v-self-concordant barrier! for the feasible region K, where a self-concordant
barrier is a convex function with certain properties and v > 0 is a parameter of it. For some
special cases of convex sets, we have explicit forms of self-concordant barriers; for example, if
K can be expressed by m linear inequalities, one has an m-self-concordant barrier for K. For a
general convex set, however, there are no known efficient ways for constructing a self-concordant
barrier. Further, even if we were to have a v-self-concordant barrier, the regret bound would be
O(dv/vT), which implies that there would still be a /v gap between the upper and the lower
bounds. Because v is in general at least d for a compact convex set K (see, e.g., [137]), there is
a gap of Q(v/d) from the lower bound of O(dv/T), and if we were to have only self-concordant

!Self-concordant barriers are special cases of convex functions that were introduced in order to develop interior-
point methods for convex optimization. For details on self-concordant barriers, see, e.g., [137].

94

barriers with a large v, e.g., if were expressed by m(>> d) linear inequalities, the gap would
be even worse.

Our contribution is to overcome the above issues by developing a novel algorithm with the
following two strengths. (i) Under a mild assumption, our algorithm achieves O(dﬁ)—regret,
which is minimax optimal up to logarithmic factors. This represents the first tight bound
for bandit convex optimization that applies even to constrained problems. More precisely,
under the assumption that the optimal solution is an r-interior,? our algorithm enjoys a regret
bound of O(dVT + d?/r?), as given in Corollary 7.5.1. Also, even without the assumption of
interiors, the algorithm has a regret bound of O(dS/ 2T), which is, at least, not worse than
existing algorithms. (ii) Our algorithm does not require self-concordant barriers. Indeed, we
only assume that we have access to a membership oracle for the feasible region. This means
that our algorithm works well even if K is expressed by an exponentially large number of linear
inequalities, or if we are not given explicit forms of K.

A key ingredient in our algorithm is the multiplicative weight update (MWU) method [11],
in which we update probabilistic distributions over X on the basis of estimators of objective
functions. To estimate objective functions from bandit feedback, we use techniques of smoothing
and ellipsoidal sampling [58]. Our analyses for regret bounds rely on theories for log-concave
distributions [127], which is a class of continuous distributions that includes normal distribu-
tions, exponential distributions, and distributions in our algorithm. Further, this algorithm can
be implemented so that it runs in polynomial time, thanks to efficient algorithms for sampling
from log-concave distributions [127, 135].

7.2 Related Work

For bandit linear optimization, an important special case of BCO in which objectives are linear
functions, there have been many signs of progress. Bubeck et al. [32] and Cesa-Bianchi and
Lugosi [38] provided algorithms that achieve regret of O(dv/T). These algorithms can be applied
to combinatorial bandits, bandit linear optimization problems in which the feasible region K is
a discrete finite set. The regret bounds of O(dv/T) can be said to be non-improvable because
Dani et al. [52] showed a regret lower bound of Q(dv/T). However, computationally efficient
implementation achieving O(dﬁ)-regret for a general K, including discrete sets, remains a
possibility. Hazan and Karnin [79] have proposed a computationally efficient algorithm that
achieves O(dv/T)-regret if K is a convex set.

Online convex optimization [152, 77, 37] is a variant of BCO in which a player can get
feedback on complete information about objective functions, rather than bandit feedback. For
general convex objectives, it has been known that online gradient descent methods [169] can
achieve O(\/d7T) regret, and this bound is minimax optimal. For a special case called exp-
concave functions, which involves a milder assumption than strong-convexity, Hazan et al. [81]
provided efficient algorithms with a regret bound of O(dlogT), which is minimax optimal as
well because there is a lower bound of Q(dlogT") [139].

It has been shown that one can achieve better regret for BCO if multi-point feedback is
available, i.e., if the player can observe the values of objective functions on k& > 2 different
points in each round [5, 138, 54]. For general convex functions, it is known that one can achieve

2The definition of r-interior is given in Section 7.3 and Figure 7.1.

95

O(d?*V/'T) regret in a two-point feedback setting. Further, Agarwal et al. [5] have shown that,
under the assumption of strong-convexity and two-point feedback, one can achieve O(d?log T')
regret.

After the study by Hazan and Levy [80], many works regarding BCO have followed. Hu et al.
[84] have considered a more general problem setting in which biased noisy gradient is available.
Mohri and Yang [132] provided a BCO algorithm that does not require a priori assumptions of
strong convexity or smoothness. These two studies capture more general scenarios than ours,
but their regret bounds achieved in our setting are not superior to those by Hazan and Levy [80].
Kumagai [115] considered a dueling bandit problem with strongly-convex and smooth costs, in
which an algorithm based on self-concordant functions was proposed. Chen et al. [41] focused
on computationally efficient methods for BCO, and provided a projection-free algorithm that
achieves sublinear regret for general convex losses.

Our proposed algorithm is based on the multiplicative weight update (MWU) method [11].
Algorithms similar to MWU can be found in the literature in the early 1950s in the context of
game theory [29, 28, 144], and MWU has been independently rediscovered in other fields includ-
ing computational geometry, and machine learning. Our approach is to use continuous MWU,
multiplicative weight update over continuous domains, which has been applied to various online
optimization problems, including Cover’s universal portfolios [47], bandit linear optimization
[79], and online improper learning [82].

7.3 Problem Setting and Assumption

A player is given a convex feasible region K C R? and a number T of rounds of decision making,
where d is a positive integer standing for the dimensionality of the feasible region. For each
t =1,2,...,T, the player chooses an action a; € K, and an environment chooses a convex
function f; : K — [—1,1] at the same time. The player observes feedback of f;(a;) before
choosing the next action a;11. We assume that I has a positive volume, i.e., fxelc 1dz > 0. We
assume that f; is o-strongly convex and f-smooth, i.e., that the following hold for all z,y € K:

Jiw) 2 @) + V@) (0 = @) + Sy = 23, (7.2)
Fily) < Fil@) + V@)t~)+ 5y ol (73)

where V fi(2) € R? stands for the gradient of f; at x.
The performance of the player is evaluated in terms of the regret Rp(z*), which is defined
as

T T
Rp(z*) = filar) = > fula"). (7.4)
t=1 t=1

In this chapter, we suppose that a player arbitrarily chooses a convex benchmark set K' C K.
We consider regret Rp(z*) for z* € K/, i.e., we care about the value of sup .. E[R7(z*)], the
expected gap between the cumulative losses for the algorithm’s outputs and for the optimal
single action z* belonging to K’. The value sup, .. E[Rr(z*)] is equal to the standard worst-

case regret sup,cx E[Rr(x")], if the optimal single action z* € arg min Zle fi(z) belongs to
e
K.

96

Figure 7.1: Geometric interpretation of K’ that consists of r-interiors of K.

A point 2 € R? is called a y-interior of K if ||y — z|2 < v implies y € K. For example,
if K is expressed by m linear inequalities, i.e., K can be expressed as K = {z € R? | ajTa: <
bj (j € [m])} with a; € R% b; € R such that ||a;]|2 = 1, then the convex set K’ defined by
K'={z € R?| ajT:Jc <bj—r (j€[m])} consists of r-interiors of K. For general benchmark
set K' C K, let r > 0 be a non-negative real value for which all members of K’ are r-interiors.
Figure 7.1 shows a geometric interpretation of how r is determined for K and K’ C K. For the
special case in which K/ = K, r is equal to zero.

We assume that we have access to a membership oracle for K’. This means that, given
z € R? we can determine if z € K’ or not, by calling on the membership oracle. If K is
expressed by m inequalities (K’ = {z € R? | g;(z) < 0 (j € [m])}), then we have access to
the membership oracle for K’ because one can check if € K by evaluating g;(z) for i € [m].
Further, it is known that we will have a polynomial-time membership oracle for K’ if we can
solve linear optimization problems over K’ in polynomial time [150].

7.4 Algorithm

7.4.1 Preliminary

Notation For a vector x = (x1,...,24)| € R% let ||z|2 denote the f3 norm of , i.e., |||z =
VaTe = /3%, 22, For a matrix X € R¥?, | X ||, denotes the y-operator norm, i.e., | X|2 =

max{||Xyll2 | y € R, |lyll2 = 1}. If X is a symmetric matrix, || X | is equal to the maximum
absolute value of eigenvalues of X. Given a positive semidefinite matrix A € R%*? and a vector
z € RY define ||z]|a by ||z]|a = VaT Az = ||AY2z|5. Similarly, for a matrix X € R?, let
| X|la = [|[AY2X AY?|)5. Given two symmetric matrices A, B € R¥?, denote A @ B = tr(AB).

Smoothed convex function Let v and u be random variables that follow uniform distribu-
tions over BY = {v € R? | |lv]|z < 1} and S§? = {u € R? | ||ul|z = 1}, respectively. For a convex
function f over R¢ and a positive-definite matrix B € R?*¢, define the smoothed function f by

fp(x) = E[f(z + Bo)]. (7.5)
Then we have the following:

Lemma 7.4.1 ([80]). The gradient of fz can be expressed as

Vfg(z) = Eld- f(z + Bu)B). (7.6)

97

If f is B-smooth, it holds that
0< fale) ~ (@) < SIBTBl2 = S (BT B) (17)

If f is o-strongly convex then so is fB,

Equation (7.6) can be shown using Stokes’ theorem, and (7.7) follows from the definition of
B-smoothness. In the bandit feedback setting, though unbiased estimators of the gradient of f;
are unavailable, those for the smoothed ones f; can be constructed through (7.6). Differences
between f; and f; will be bounded by means of (7.7).

Log-concave distribution A probability distribution over a convex set K C R? is called
a log-concave distribution if its probability density function p : — R can be expressed as
p(x) = exp(—g(x)) with a convex function g : K — R, i.e., the logarithmic of p(x) is a concave
function. Our algorithm maintains log-concave distributions. Random samples from log-concave
distributions can be efficiently generated under mild assumptions. Indeed, as shown in [127],
there are computationally efficient MCMC algorithms for sampling from p that work given a
membership oracle for X and an evaluation oracle for g. Accordingly, we can efficiently compute
estimators of the mean p(p) and the covariance matrix Cov(p) for p. The following lemma is

useful for bounding the variance of log-concave distributions:

Lemma 7.4.2 (Prop. 10.1. in [149]). Suppose that a log-concave distribution over K has a
probability density function p(x) = exp(—g(x)), where g is a o-strongly convex function. Then,

the covariance matriz ¥ of p satisfies || X2 < 1/o.
The following lemma is used to prove a regret bound for our algorithm.

Lemma 7.4.3 (Lemma 5.7 in [127]). Let X be a random point drawn from a log-concave
distribution on R. Assume that E[X?] < 1. Then for every t > 1, Prob[|X| > t] < exp(—t+1).

We use the following lemma to guarantee that the outputs a; of our algorithm are included

in KC.

Lemma 7.4.4 (Lemma 5.5 (a) and Lemma 5.12 in [127]). Let p be a log-concave distribution
over KC. The ellipsoid {x € R? | ||z — 1(P) | covipy—1 < 1/e} will then be included in K.

7.4.2 Continuous Multiplicative Weight Update

In our algorithm, we maintain a function z; over K’ using the multiplicative weight update
method [11]. We initialize z; by 21(x) = ol|z||3/2. In each round, let p, be a probability
distribution over K’ with density proportional to exp(—nz:(z)), i.e., p; is defined by

Zy = /ze,c, exp(—nz(z))dz, pi(z) = GXp(_ant(x)). (7.8)

Let s and X denote the mean and the covariance matrix for p,. We then compute estimators
¢ and 3, for them such that

I = el < 1/9, 118 = Sellyg-r < 1/9, Elilu] = - (7.9)

98

Algorithm 11 Continuous multiplicative weight update method for bandit convex optimization

Require: Time horizon T € N, learning rate n > 0, membership oracle M for K’, exploration
parameters {a;}1_; C Ry, strong-convexity parameter o > 0.
1: Set 21 : K — R by z1(z) = of|z|3%/2.
2: fort=1,2,...,T do
3. Compute fiy and 3 for which (7.9) holds.
Compute a positive-definite matrix B; € R**? such that B,B; = f]t.
Pick u; from S uniformly at random.

Set g¢ by (7.11) and update z; by (7.13).

4
5
6: Play a; = iy + o4 Byu, and observe fi(ay).
7
8: end for

Specific methods for computing such f; and 3¢ will be discussed in the next subsection. Let
By € R4 be a positive-definite matrix for which B,;B; = ;. Such a matrix can be computed,
e.g., via eigenvalue decomposition. Consider smoothing f; as (7.5) with B = oy By:

fi(x) == Blfi(z + a,Bw)], (7.10)

where «; is the exploration parameter that we will adjust later, and v follows a uniform distri-
bution over BY. An unbiased estimator of the gradient of ft can then be constructed as follows.
Choose uy from a unit sphere S = {u € R? | ||ul|s = 1}, uniformly at random. Play an action
of a; = g + oy Byuy, and then observe f;(a;). On the basis of this observation, define §; € R? by

ge =d- fi(ar)(aBy) uy. (7.11)

This is an unbiased estimator of the gradient V ft(ﬂt), i.e., given fi; and B, the conditional
expectation of g, satisfies

E[§:] = Eld - fi(iu + w:Byug)(awBy) " uy] = V folfur), (7.12)

where the second inequality follows from (7.6). By means of this unbiased estimator §;, we
update z; as

A N g N
a1 (@) = 20(2) + g/ (= i) + Sl = full3- (7.13)

7.4.3 Computation of Approximate Mean /i, and Covariance 3,
Estimators fi; and 3, satisfying (7.9) can be computed from samples l'(l), - ,x%M) generated

by p; as follows:

fip = sz(y)7 $ Z 4 i (J) ﬂgj)).

If we set M sufficiently large, (7.9) holds with high probability.
The remaining problem is how to get samples from p;. A simple way for this is to use normal
distributions; since p; is defined by z1(z) = o|z|3/2, (7.8) and (7.13), the distribution p; is a

99

multidimensional truncated normal distribution over K expressed as

pi(x) o< exp(—ont||z — 613/2) (z € K'),

pe(z) =0 (z e RT\ K'),
where 6, = %Z;;ll(ﬂj — %g]) Hence, by sampling = from a normal distribution N (6, %MI)
until z € K’, we can get x following p;. Note that this procedure cannot, however, always
terminate in polynomial time, though it will be practical enough in many cases. Even if the
simple procedure does not work well, we can apply an alternative polynomial-time sampling
method based on MCMC [127], since p; is a log-concave distribution. For more efficient ways
of computing i and 3 and sampling from py, see, e.g., [20, 135].

7.4.4 Choice of Exploration Parameter «;

It is necessary to choose a; so that a; = s + oz Byuy is a feasible solution, i.e., a; € K. The
following proposition provides a sufficient condition for this.

Proposition 7.4.1. If a; is bounded as 0 < ay < 1/9 4 ry/tno /2 then ay = iy + oy Byuy is in
K.

Proof. Let ay; and ays be positive numbers such that oy < 1/9, aye < ry/tno/2 and oy =
ay1 + ayo. Since a; can be expressed as a; = fi; + ay1 Byus + oy Byuy and since all points of K’
are r-interior of K, it suffices to show that (i) fiz + a1 Bruy € K’ and (ii) ||awe Brull2 < r.

From Lemma 7.4.4, ||i; + ap Byug — Mt”zt‘l < 1/e implies fi; + a1 Byuy € K'. From the
triangle inequality, we have

| fie + g1 Byug — Mt||g;1 <l — Mt||z;1 + Oét1||Btut||g;1

1 1, 1 _
< gt gl P Banllz < SO+ (15, Byl2). (7.14)

From (7.9), we have ||Z;1/2Bt||2 < 2. Combining this and (7.14), we have ||fi; + anBrus —
,ut||2;1 < 1/3 < 1/e, which implies that (i) holds.

Since nz¢(z) is a (tno)-strongly convex function, from Lemma 7.4.2, the covariance matrix
3¢ = Cov(py) is bounded as ||S¢||s < 1/(tno). From this and (7.9), we have ||S¢|2 < 2/(tno).
Accordingly, we have

IBill2 < \/12¢ll2 < V/2/(tno). (7.15)

From this, ||u¢]| = 1, and ay < ry/tno/2, we have (ii). O

Proposition 7.4.1 implies that, under the assumption of 0 < oy < 1/9 + r\/tno/2, for
arbitrary 2 € K/, the value of f(z) can be defined by (7.10). In addition, we have fi(z) € [~1,1]
for © € K/ since fi(z) is defined to be a convex combination of values of f;(y) for y € K.
Hereafter, we suppose that 0 < ay < 1/9 + ry/tno/2 holds.

7.5 Regret Analysis

This section shows regret upper bounds for Algorithm 11.

100

7.5.1 Main Results

We analyze the expected regret for the case in which oy is defined by
1 t
at:min{g—i—r ga,\/g}. (7.16)

We also assume that the learning rate n is bounded as

(67
< 1
= 2d1og(50T) (7.17)

We then have the following regret bound:

Theorem 7.5.1. Suppose that «y is chosen as (7.16) and that n satisfies (7.17). Then, for the
output of Algorithm 11 and for arbitrary x* € K', the regret is bounded as

dBlog T d2log d
E[Rr(z*)] =0 (Bog 1 0dT + min{ndQT, o8 }) :

on rio

where the expectation is taken w.r.t. the randomness of the algorithm.

From this theorem, by setting n = ©(T~'/2) (ignoring factors in d, 8, 0, 7), we obtain regret
bound of O(\/T)?’ More precisely, if » > 0, we have the following regret bound:

Corollary 7.5.1. If we set n = +/(BlogT)/(cT), and if (7.16), (7.17), and r > 0 hold, for all

z* € K/, we have
[BT1logT d?logd
o réo

In addition, even if » = 0, e.g., even when K’ = K, we have the following regret bound:

Corollary 7.5.2. If we set n = +/(BlogT)/(doT), and if (7.16) and (7.17) hold, for all

z* € K/, we have
. TlogT
BlRp(e")] = O (dsm /50g> |
o

7.5.2 Auxiliary Lemmas

Lemma 7.5.1. Suppose that K C R? is a convex set including the zero vector, and that there
exists a o-strongly convex function f: K — [—1,1]. Then, for all z € K, we have o||z|3 < 16.

Proof. From the o-strong convexity of f, we have

1 2

-

10)+ 1)~ 2f (32) 2 o |

— %2
= 4||5L"||2-

2

Hence, we have

olelfy < 4 (10 +) 27 (o)) <16

where the last inequality follows from f(y) € [-1,1] for y € K. O

3Note that, if the number T of rounds is sufficiently large and if the parameter 7 is of order O(T_I/Q), then
the condition (7.17) is automatically satisfied.

101

7.5.3 Proof of Theorem 7.5.1

To prove Theorem 7.5.1, we start by bounding the regret Rp(z*) by means of the smoothed
objectives f; defined by (7.10), on the basis of Lemmas 7.4.1 and 7.4.2.

Lemma 7.5.2. For arbitrary z* € K', the regret for Algorithm 11 is bounded as

Blai + 1)) _

not

T
NCCEDD (m[ﬁ(m) e+

t=1

Proof. Since f; is a B-smooth function, we have

Blfa0) = Bl + o) < B | (i) + e fi)" B+ 5o Bua]

Bai|| Bl Bai

< E [fe(fe)] + 9 I <E [ft(ﬂt)} + o’

where the first inequality comes from (7.3), the second inequality follows from that E[u;] = 0
and that |Ju|l2 = 1, and the last inequality comes from (7.7) and (7.15). Similarly, from (7.7)
and (7.15), we have

—Elfi(z")] < - Elfi(a®) + Bl B:||3/2] < — Elfs(a*) + B/(tno)].

By combining the above two inequalities and taking the sum for ¢ € [T], we obtain the bound

for E[Rr(z*)]. O

We can provide a bound for the value ZtT:1(fi(z*) = fi(f)) by combining an analysis for
continuous multiplicative weight update methods [11, 79], (7.12), Lemma 7.4.2, and assumption
of (7.9).

Lemma 7.5.3. Suppose that n satisfies (7.17). For arbitrary z* € K', we have

- 2
> Elfilin) — fila™)] < :bgi +47T+Z <4nd N 25) s

o ot
t=1 t=1 t N

Proof. Since f; is o-strongly convex, from Lemma 7.4.1, ft is also o-strongly convex. Hence, it
holds for all z* € K’ that

Elfi(jie) = fo@")] < — B Vi) @ =) + S o = ull3] = =B |3 (" — i) + o — 3]

where the inequality follows from (7.2) for strongly convex functions, and the equality follows
from (7.12). By taking the sum of the above for t =1,2,...,T and using (7.13), we have

T
> (" —) gnx—mn%)}=—E[ZT+1<x*>—z1<m*>].

t=1

T
D Elfelin) — filz")] < —E
t=1

(7.18)

102

We are able to give a bound for zp4q(2*) by means of Zr,; defined by (7.8). For arbitrary
x* € K, define Ko := (1 —v)z* + K’ C K'. Then, Z7,1 can be evaluated as follows:

Zroi= [esplnera@)ar> [esp(nzriae)ds
zeK! €0

_ / Aexp(=nera((1 = 7)e” + ya))do
xeK!
> / . vl exp(—n(1 —) zri1(z*) — nyerii(z))da
xek’
— exp(dlog Y — (1 — 7)zrs1(a”)) / explmeri(a)ds,
zeK!

where the first inequality follows from the fact that Ky C K’ and that the integrand is nonnega-
tive, the second equality is given by the change of variables z < (1 —yz*) + vz, and the second
inequality holds since zp 1 is a convex function. Hence, —zp1(z*) can be bounded as

—zr41(2”) < o 1_ 9 (d log}y + log(Zr+1) — log </IEK/ eXp(—ﬁ72T+1(fE))de>> (7.19)

Define & € arg max Y., (¢ (x — fu) + ||z — fu||3). We then have
ek’

T
nvyo N N g N
/ exp(— 1z (2))de = / exp | =22l — iy Y6 @ —) + 2l — ful?)) de
‘/Ke)c/ xe’C/ 2 2

t=1

. T
o T o T -
2/ exp | ———lll3 — 0y Y (4] (@ — i) + S1IE — fuel3) | da
e’ 2 2

t=1

T
nmo Tia vy Tia s
= / exp (—7 |le|§) dz - exp <—m 20 @ =) +)7 - mll%))
zek! t=1
no 4 o
> [e (<DalB) do-exp (i 07 @ -) + 513 — ulB)
ek 2 pa 2

T
AT/~ A g~ A
= Zy exp (—m 2 (6] @ =) + 17 - mlI%)) :
t=1

where the first equality follows from (7.13), the first inequality follows from the definition of Z,

the second inequality follows from v < 1, and the last equality follows from the definition (7.8)
of Z; and z1(z) = §||z[|3. Hence, we have

T
.
~E [log/ . exp(—nw:r+1(:v))d4 < —log Zi+m Y B |9 (& —) + 5117 — jull}]
zek! t=1
T [g
= —log Z, +7772E Vi) (@ — fu) + 5’\50—/%”%]
t=1
T
< —log Zi + 117 Y B [fu(®) - filio)]

t=1
< —log Z1 + 2T,

103

where the equality follows from (7.12), the second inequality holds since ft is o-strongly convex
from Lemma 7.4.1 and hence (7.2) applies, and the last inequality follows from f,(z) € [—1,1]
for x € K.

Combining this and (7.19), we have

_
n(l—7)

The term E[log Zr11 — log Z1] can be expressed as

1
—E[zr41(z")] < (d log 5 + 2nyT + Ellog Zp41 — log Zl]> . (7.20)

T
Z Z,
Ellog Zpi1 —log Z1) = E [log ;H} = g E {log ;rl] .
1 P t

We will construct a bound for the left-hand side by bounding the values E[log ZtZ—tl] We have

Zit1 _ / exp(—nz¢(x))
Zy ek Zy

N R no “
exp (-l (@ = i) = "5l — jul}3) do
< / pe(@) exp(—ng] (x — fi))da
xeK!
~T ~ AT ~ 2
< / () (=i (o)+ (] (@ =)l
zeK!

+f p@)expl=ng] (o = pu))do
zel! mg (z—pe)<—1

=1l = i)+ [@] (@ =)P (7.21)
zel’

+ [) exp(-ng] (« —)i, (7.22)
2K mg] (a—fi)<—1

where the first inequality follows from the definition (7.8) of p; and no||z — fi||3 > 0, the second
inequality holds since we have exp(y) < 1 +y + 42 for y < 1, and the last equality follows from
the definition of py. The third term of (7.22) can be expressed as follows:

[ol @ = s =il ([miote - gt - o) ds) g

=%y <Zt + (e — fue) (e — ﬂt)T> gt

0’ fear)® T ,-)) B
= S B (S (e —) —) T) By M
t
d2’l72 _ _ R 4d2772
S (IIBt By e A+ [l — mll%t) < (7.23)
t t

where the second equality follows from the definitions of ¥; and u;, the second equality follows
from the definition (7.11) of g, the first inequality follows from |fi(a)] < 1, [Jut]2 = 1 and
B;B; = 3 and the last inequality follows from (7.9). From (7.23) and Lemma 3.4.2, we can
bound the last term of (7.22). Indeed, —ng, (z — ji;) follows a one dimensional log-concave
distribution when z follows the log-concave distribution p; because the log-concavity of distri-
butions is preserved under any linear transformation (see, e.g., [149]), and consequently, we can
apply Lemma 3.4.2 to obtain the following inequality:

exp(3 — &
B~ ad) (—;dt), (7.24)
0

/ pe(z) exp(—ng) (z — fu))da <
z€K' Mg, (z—fu)<—1

where the last inequality follows from the assumption of a; > 4dn. Combining (7.22), (7.23),
(7.24) and the fact that log(1 + y) < y, we have

7 A
E[log t+1:| SE{ t+1]_1
Zy

<-—nE [QtT(Mt - ﬂt)] + 772 E [92— <Zt + (e — fu) (e — ﬂt)T) ét] + 50 exp <_2adt77> . (7.25)

The first term of (7.25) can be bounded as follows:

Elg/ (ie —)] = BIV fi(iue) T (e —)] < BIV filp) " (e — p)] + Bllfue — pael3

= Bl = pell} < Bllie = oI5k < - (7.26)
where the first equality comes from (7.12), the first inequality follows from (7.3) for S-smooth
convex functions, the second equality follows from E[fi¢|pt] = pe in (7.9), and the last inequality
follows from (7.9) and Lemma 7.4.2 and the (not)-strong convexity of z;. The second term of
(7.25) can be bounded as

ﬂt)T> ?]t] Lft(at)

o2 (B¢ + (e — fie) (e — fue) 7)) © (B[B; 'wpu) By ')

E [@tT (Et + (e — fue) (e —

<7d
- 2
t

(S (e =) =)) o2 < (T27)
t

where the first equality follows from (7.11), and the last ineqality follows form (7.9). Combining
(7.25), (7.26) and (7.27), we have

Zii1 B 2772d2 Q¢
1 < = 50 —— . 7.28
E [og Z,] = + o? + 50 exp 2dn ()
Hence, we have
T T
Zt+1 2772d2 5
log Z7p — log Z1] = <1 — . 7.29
E(log Zr — log Z1] EE[Zt]_ +§<a? + (7.29)
Combining this and (7.20), we obtain
T
1 1 2n%d? B
—Elzri1(2")] < — dlog +2myT + 1+ < + —
e < i N EE

| /\

d. 1 dnd* 2
nlogfy+4’yT+Z<n —|—B>,

P a? not

where the second inequality can be derived from « < 1/2. From this and (7.18), we have

And®> 2
nd” B
ozt not

Blfu(in) ~ fie7)] < Tlog S + 497+ 5 () T ae).

t=1

From Lemma 7.5.1, we have z(z*) = §||z*||3 < 8. By combining this and the above-displayed
inequality, we obtain Lemma 7.5.3. OJ

105

We shall complete the proof of Theorem 7.5.1 by means of Lemmas 7.5.2 and 7.5.3.
Proof of Theorem 7.5.1. By combining the above and Lemmas 7.5.2 and 7.5.3, and by
setting v = %, we obtain

4And? N B(of + 3)) .

E[Rr(z)]<12—|—dlogT—|-Z(ot

a?
t=1 t

If we set o by (7.16), since a7 < d holds, we have

T
B(a? + 3) 4d5 1 _ 4dp log eT)
Z Z —

Combining the above two displayed inequalities and the fact that 1 < §/o, we have

T
E[Rr(z*)] < 12+ 8dB log(eT) +4nd®) % (7.30)

o «
n = %t

Let us consider bounding Zle 1/a2. From (7.16), we have

il ZTj { & 1}<81T (731)
ooy T =N WB 9 e df T '

where the inequality holds for arbitrary r > 0 (even if r = 0) since we have 1/a? < 81. Assuming

2/(V2/9 + rytno)? < 1/d

r > 0, we obtain a tiger bound for it; Denote 7" :=
holds for t > T, we have

T T’

ZL<Z 2 +max{T T",0} 2 Z 1 +I
of T (V2/9+ ryino)? d T e &= t+2/8lr2e) | d

IN

2 T
s— log(1 + 81r*noT'/2) + = < (7.32)
g T

2
log(1 + 81d
y QUog(Jr)+

Ev
where the third inequality follows from the fact that Z?;l 1/(t +y) < log(l+T'/y) holds for
any y > 0, and the last inequality follows from T" < ngg. Combining (7.30), (7.31) and (7.32),
we obtain

E[Rr(z")] <12+

8d3log(eT")
o

T
+ 4nd? min { log(l + 81d) + ¥ }

2
:O<W+ dT+m1n{ dlogd}>'
no

7.6 Discussion

We discuss the possibility of removing the assumption of » > 0, i.e., the assumption that the
optimal solutions (or the benchmark set) are interiors, in Corollary 7.5.1.
From Lemmas 7.5.2 and 7.5.3, if we can set oy = ©(v/d), we have

E[Rr(z*)] = <dﬁ+ dT> O(d\/?) (7.33)

106

by setting n = O(%) Setting oy = ©(v/d), however, may cause an infeasible action a; =
it + ayByug ¢ K in Algorithm 11 without the assumption on r, and consequently, may make
it impossible to bound the regret. The possibility of a; ¢ K seems to be, on the other hand,
quite small if we set a; = ¢v/d with a small constant ¢ > 0, even when K’ = K. Under the
assumption that the possibility of a; ¢ K is sufficiently small, our analysis in Section 7.5 works
similarly and leads to a regret bound of O(dv/T). A sufficient condition for this assumption of
small possibilities can be formulated as follows:

Conjecture 7.6.1. Let K C R? be a d-dimensional convex set. Let p be a multidimensional
truncated normal distribution over K, i.e., p(x) exp(—||z||3/2) for x € K and p(x) = 0 for
r € R? \K. Let u € R? and ¥ € R¥? be the mean and the covariance matriz of p, respectively.
Then, for a random variable u following a uniform distribution U(SY) over the unit sphere S¢,
the probability of that 4+ aX'/?u is not in K is bounded as

Prob |p+ aX'/?u ¢ IC} < exp <(1 + log d)O(l) _
u~U(S9)

Vd
a- (14 logd)°M

for all a > 0.

If this conjecture holds, we have a regret bound of E[Rr(z*)] = O(dVT) for arbitrary
z* € K, without the assumption of interior optimal solutions, i.e., the bound holds even for the
case of K' = K.

Since a truncated normal distribution is a log-concave distribution, in Conjecture 7.6.1, the
probability of u + aX2u ¢ K is equal to zero for a < 1/e, from Lemma 7.4.4. This fact is
used to prove Proposition 7.4.1. The question is if we can obtain a bound of the probability for

a = Q(Vd).

7.7 Conclusion

This chapter considered bandit convex optimization problems with strongly-convex and smooth
objectives. We provided an algorithm with tight regret bounds, w.r.t. the number T' of rounds
as well as the dimension d of the feasible region, under milder assumptions than existing works.
More precisely, we gave a regret bound of O(dv/T+d?/r?) under the assumption that the optimal
solutions (or the benchmark set) are r-interiors, and without this assumption, our algorithm
achieves a regret of O(d?’/ 2T). Our algorithm, further, works given only a membership oracle
for the feasible region, without self-concordant barriers.

The assumption of interior optimal solutions, however, might be abundant, and the tight
regret bounds might apply to more general problem settings. To prove that our algorithm
achieves O(d\/f)-regret without the assumption, we introduced an approach based on the in-
equality for probability regarding log-concave distributions (more precisely, multi-dimensional
truncated normal distributions) in Conjecture 7.6.1. We leave it as a feature work to prove this
conjecture.

Another future direction is to pursue tighter regret bounds for general BCO without assump-
tions of strong convexity and smoothness of objective functions. For this more general problem,
there is a larger gap w.r.t. d between the upper bound of O(dg"t’\/f) and the lower bound of
Q(dVT). If a lower bound of Q(d*?v/T) would hold as conjectured in [34], it would, together

107

with our results, imply a Q(\/E) gap between minimax regrets for BCO with strongly-convex
and smooth losses and that for general BCO.

108

Chapter 8

Online Portfolio Selection with
Combinatorial Constraints

Online portfolio selection is a sequential decision-making problem in which a learner repetitively
selects a portfolio over a set of assets, aiming to maximize long-term return. In this chapter,
we study the problem with the cardinality constraint that the number of assets in a portfolio
is restricted to be at most k, and consider two scenarios: (i) in the full-feedback setting, the
learner can observe price relatives (rates of return to cost) for all assets, and (ii) in the bandit-
feedback setting, the learner can observe price relatives only for invested assets. We propose
efficient algorithms for these scenarios, which achieve sublinear regrets. We also provide regret
(statistical) lower bounds for both scenarios which nearly match the upper bounds when £ is a
constant. In addition, we give a computational lower bound, which implies that no algorithm
maintains both computational efficiency, as well as a small regret upper bound.

8.1 Introduction

Online portfolio selection [47, 123] is a fundamental problem in financial engineering, in which a
learner sequentially selects a portfolio over a set of assets, aiming to maximize cumulative wealth.
For this problem, principled algorithms (e.g., the universal portfolio algorithm [47]) have been
proposed, which behave as if one knew the empirical distribution of future market performance.
On the other hand, these algorithms work only under the strong assumption that we can hold
portfolios of arbitrary combinations of assets, and that we can observe price relatives, the
multiplicative factors by which prices change, for all assets. Due to these limitations, this
framework does not directly apply to such real-world applications as investment in advertising
or R&D, where the available combination of assets is restricted and/or price relatives (return
on investment) are revealed only for assets that have been invested in.

In order to overcome such issues, we consider the following problem setting: Suppose that
there are T' rounds and a market has d assets, represented by [d] := {1,...,d}. In each round ¢,
we design a portfolio, that represents the proportion of the current wealth invested in each of the
d assets. That is, a portfolio can be expressed as a vector xy = [x41, ... ,:Jctd]T such that x4 > 0
for all i € [d] and Zle x4 < 1. The combination of assets is restricted with a set of available
combinations S C 29, that is, a portfolio z; must satisfy supp(z;) = {i € [d] | z; # 0} € S.
Thus, in each period ¢, we choose Sy from S and determine a portfolio z; only from assets in S;.

109

Table 8.1: Regret bounds for the full-feedback setting.

Constraints H Upper bound by Algorithm 12 ‘ Lower bound
Single asset (S = &1) Ry = O(\/Tlogd) Ry = Q(+/Tlogd)

Combination (§ = Sy) || Rr = O <\/Tk log Z) Rr=Q (y/Tlog z> for d > 17k

and no poly(d, k, T)-time algorithm

in T(%) poly (k)-ti
(run in T'(3)poly (k)-time) achieves Ry < T'®poly(d, k)

Table 8.2: Regret bounds for the bandit-feedback setting.

Constraint H Upper bound by Algorithm 13 ‘ Lower bound
Single asset (S = &) Ry =O(/dT logT) Ry = Q(VdT)

Combination (§ =S8y) || Rr = O (Tk(g) logT) Rr =Q (\/T (C‘is)k> ford > k

and no poly(d, k, T')-time algorithm

in Tpoly(d, k)-ti
(run in Tpoly(d, k)-time) achieves Ry < T %poly(d, k)

A typical example of S can be given by cardinality constraints, i.e., Sy := {S C [d] | |S| = k} for
some k < d. We denote by ry = [ry, ... ,rtd]T a price relative vector, where 1 4 ry; is the price
relative for the i-th asset in the ¢-th period. Then the wealth Ap resulting from the sequentially
rebalanced portfolios x1, ...,z is given by Ap = Hthl(l + r;r x¢). The best constant portfolio
strategy earns the wealth A} := max, Hle(l + r, x) subject to the constraint that z is a
portfolio satisfying supp(x) € S. The performance of our portfolio selection is measured by
Ry = log A} — log A, which we call regret. The reason that we use log A7 rather than Arp
comes from capital growth theory [72, 106]. In terms of the observable information, we consider
two different settings: (i) in the full-feedback setting, we can observe all the price relatives ry;
fori=1,...,d, and (ii) in the bandit-feedback setting, we can observe the price relatives r; only
for ¢ € S;. Note that in each round ¢ a portfolio z; has to be determined before knowing ry;
in either of the settings. Note also that we do not make any statistical assumption about the
behavior of 74, but we assume that r; is bounded in a closed interval [C1, C3], where C; and
Cy are constants satisfying —1 < C7 < Cs.

Our problem is a generalization of the standard online portfolio selection problem. In fact, if
portfolios combining all assets are available, i.e., if S = 204 then our problem coincides with the
standard online portfolio selection problem. For this special case, it has been shown that some
online convex optimization (OCO) methods [81, 77, 152] (e.g., the online Newton step method)
achieve regret of O(dlogT), and that any algorithm will suffer from regret of Q(dlogT) in the
worst case [139].

Our contribution is twofold; algorithms with sublinear regret upper bounds, and analyses
proving regret lower bounds. First, we propose the following two algorithms:

e Algorithm 12 for the full-feedback setting, achieving regret of O(1/T log |S]).

e Algorithm 13 for the bandit-feedback setting, achieving regret of O(y/Tk|S|logT), where
k denotes the largest cardinality among elements in S, i.e., k = maxges |S].

Tables 8.1 and 8.2 summarize the regret bounds for the special case in which the cardinality
of assets is restricted to be at most 1 or at most k. As shown in Table 8.1, Algorithm 12 can
achieve regret of O(v/Tpoly(d)) even if k = Q(d) when S has an exponentially large size with

110

respect to d. In such a case, however, Algorithm 12 requires exponentially large computational
time. For the bandit-feedback setting, the regret upper bound can be exponential w.r.t. d if
k = Q(d), but it is still sublinear in 7. One main idea behind our algorithms is to combine
the multiplicative weight update method (MWU) [11, 60] (in the full-feedback setting) / multi-
armed bandit algorithms (MAB) [16, 30] (in the bandit-feedback setting) with OCO. Specifically,
for choosing the combination S; of assets, we employ MWU/MAB, which are online decision
making methods over a finite set of actions. For maintaining the proportion x; of portfolios,
we use OCO, that is, online decision making methods for convex objectives over a convex set
of actions.

Second, we show regret lower bounds for both the full-feedback setting and the bandit-
feedback setting where & = Si, which give insight into the tightness of regret upper bounds
achieved with our algorithms. As shown in Table 8.1, the proven lower bounds for the full-
feedback setting are tight up to the O(\/E) term. For the bandit-feedback setting, the lower
bounds are also tight up to the O(y/logT) term, if & = O(1). Note that, if & = d then
the problem coincides with the standard online portfolio selection problem, and hence, there
exist algorithms achieving Ry = O(y/T logd). This implies that the assumption of d = Q(k) is
essential for proving the lower bounds of Q(+/T). We also note that these statistical lower bounds
are valid for arbitrary learners, including exponential-time algorithms. Besides statistical ones,
we also show computational lower bounds suggesting that there is no polynomial-time algorithm
achieving a regret bound with a sublinear term in 7" and a polynomial term w.r.t. d and k, unless
NP C BPP. This means that we cannot improve the computational efficiency of Algorithm 12
to O(poly(d, k,T))-time while preserving its regret upper bound.

To prove the regret lower bounds, we use three different techniques: for the statistical lower
bound for the full-feedback setting, we consider a completely random market and evaluate how
well the “best” strategy worked after observing the market behavior, in a similar way to that
for the lower bound for MWU [11]; for the bandit-feedback setting, we construct a “good”
combination S* € § of assets so that it is hard to distinguish it from the others, and bound the
number of choosing this “good” combination via a technique similar to that used in the proof
of the regret lower bound for MAB [16]; to prove the computational lower bound, we reduce
the 3-dimensional matching problem (3DM), one of Karp’s 21 NP-complete problems [104], to
our problem.

8.2 Related Work

Online portfolio selection has been studied in many research areas, including finance, statistics,
machine learning, and optimization [4, 47, 99, 123, 122] since Cover [47] formulated the problem
setting and proposed a wuniversal portfolio algorithm that achieves regret of O(dlogT) with
exponential computation cost. This regret upper bound was shown to be optimal by Ordentlich
and Cover [139]. The computation cost was reduced by the celebrated work on the online
gradient method of Zinkervich [169] for solving online convex optimization (OCO) [77, 152],
a general framework including online portfolio selection, but the regret bound is O(d\/T) and
suboptimal for online portfolio selection. A breakthrough w.r.t. this suboptimality came with
the online Newton step and the follow-the-approxzimation-leader method of Hazan et al. [81],
which are computationally efficient and achieve regret of O(dlogT) for a special case of OCO,
including online portfolio selection. Among studies on online portfolio selection, the work by Das

111

et al. [53] has a motivation similar to ours: the aim of selecting portfolios with a group-sparse
structure. However, their problem setting differs from ours in that they did not put constraints
about sparsity but, rather, defined regret containing regularizer inducing group sparsity, and
that they supposed that a learner can observe price relatives for all assets after determining
portfolios. In contrast to this, our work deals with the sparsity constraint on portfolios, and
our methods work even for the bandit-feedback setting, in which feedbacks are observed only
on assets that have been invested in.

Another closely related topic is the multi-armed bandit problem (MAB) [15, 16, 30]. For non-
stochastic MAB problems, a nearly optimal regret bound is achieved by the Exp3 algorithm [16],
which our algorithm strongly relies on. For combinatorial bandit problems [38, 42, 45] in which
each arm corresponds to a subset, the work by Chen et al. [42] gives solutions to a wide range
of problems. However, this work does not directly apply to our setting, because we need to
maintain not only subsets S; but also continuous variables z;, and both of them affect regret.

Remark 8.2.1. When the reward Ap changes multiplicatively, the expectation of the logarithm
E[log Ap] can be regarded to be a more reasonable evaluation metrics than would be the ex-
pected reward E[Ar]. This is supported by the following example: suppose that (X;)L, =
1.3 w. p. 0.5

x®@ _
09 w.p. 05" t

((Xt(l),Xt(Q)))tT:1 are Bernoulli random variables such that Xt(l) =

2.0 w.p. 0.5
{ We b o , and that X; and Xy are independent random variables for ¢t # t. Note

04 w.p. 0.5

that we do not assume Xt(l) and Xt(Q) to be independent. Define A(Tl) = Hthl Xt(l) and
AEFQ) = Hle Xt(z). Then, since E[Xt(l)] = 1.1 and E[Xt(l)] = 1.2, we have E[Agpl)] =117 <
E[Ag?)] = 1.27, which implies that we prefer Ag}) to Ag?) when determining on the basis of
the expectation. However, we can show that limp_, Ag,}) = oo and limp_, Ag) = 0 with
probability one, respectively. In fact, if Ap = H;{:l X, is the product of i.i.d. random variables,
we have

T
. 1 .1
Th—{%o(AT)T = exp (Th—{r;oT glogXt> = exp(E[log X1]) (8.1)

with probability one, where the last equality comes from the law of large numbers. Applying
(8.1) to Agpl) and Ag?), we obtain limTﬁoo(Agﬂz))% <1< limyr_s (Agpl))% with probability one.
In general, if Agpl) = H;f:1 Xt(l) and Ag?) = Hle Xt(Q) are products of i.i.d. random variables,
then E[log Xfl)] > E[log XfQ)] if and only if lim!_; A(Tl)/Agg) = oo with probability one. These
arguments imply that, in the case of a multiplicative reward model, it is reasonable to compare
reward logarithms if we focus on events expected to happen with high probability.

8.3 Upper Bounds

8.3.1 Notation and Preliminary Consideration

Let us introduce some notations. For S C [d], denote by A¥ the set of portfolios whose supports
are included in S, ie., A% = {a: |z; >0 (i e [d])72?:1 z; < 1,supp(z) C S}. Let (S*,z%)

denote the optimal fixed strategy for 7" rounds, i.e., (S*,2*) € arg max Zthl log(1 47 x). Let
SES,zeNS

112

x¢ denote the output of an algorithm for the ¢-th round. Then the regret Rr of the algorithm
can be expressed as

T
R = ma lo 1+rm log(1+7 2) = lo 1+7" - log(1 4 7,).
T SeSngSZ g(l+r/x) - Z g(l+ 1) z) = Z g ; g(l+ 7/ z)

The algorithms presented in this section maintain vectors 27 € A for all S € S at the
beginning of the ¢t-th round. They then choose S; from S, and output (St,xf). Although
other vectors :zrt (S # S;) do not appear in the output, they are used to compute outputs in
subsequent rounds.

In the computation of q:tSH, we refer to the following vectors g; and matrices Hts :

s rt|s s (1+C)?

—, A = (4 S ST? 8.9
T A (1+C)2q”f 39t 9t (8.2)

where r¢|s = [r}y,... 7}, is defined by |, = ry; for i € S and 7}; = 0 for i € [d] \ S. These g}
and HtS have the following property which plays an important role in our analysis:

Lemma 8.3.1. For any x € A®, it holds that

1

log(1 41/ x) —log(1+ra}) < g7 T (x — 27) — 5 —)T H (@ — 2}). (8.3)

Proof. Since it holds for all z, zg € [C1, Cy] that ~log(l+z) = H% and 4 de log(1+z) = ﬁ,
14+C1)?

we have log(1+x)—log(1+z¢) < ﬁ}fg 2((961+?2))2 < Qerfg C;’ (%ﬁ) , where we set C3 = EJCSQ.
Hence, by substituting x = rtT:L',J:o = rt xt for arbltrary te[T],SeSandz e A%, we obtain

) S

log(1+] a) —log(1 4+ 2f) < "z=) G (D) < 8T (n) G (gFT (w—af))? =
g (@ —af) — §(x —a7) T HY (x — 27), O

8.3.2 Algorithm for the Full-Feedback Setting

We propose an algorithm for the full-feedback setting, created by combining the multiplicative
weight update method (MWU) [11] and the follow-the-approximate-leader method (FTAL) [81].
More specifically, our proposed algorithm updates the probability of choosing a subset S € S
by MWU and updates the portfolio vector xt by FTAL. The entire algorithm is summarized in
Algorithm 12.

Our algorithm maintains weight wy > 0 and a portfolio vector z7 for each subset S € S at
the begining of the ¢-th round, where w{ and x7 are initialized by w{ = 1 and :Ef = 0 for all
S € S. In each round ¢, a subset S; is chosen with a probability proportlonal to wt Given the
feedback r¢, the algorlthm computes wa and z7 " 1- The weight wy .1 is obtained from wy by
multiplying (1 + 7/ 27)", where n > 0 is a parameter we optimize later. The portfolio vector
zj, is computed by FTAL as follows:

t
1 p
x| € arg max {Z (ng(q; — xf) — 5(1’ — xf)THJS(:z: — xf)) — 2||x||§} , (8.4)

where [is a regularization parameter optimized later, and || - || stands for the ¢ norm:
[x1,...,2q] T2 = Zle x?. Since (8.4) is a convex quadratic programming problem with

113

Algorithm 12 An algorithm for the full-feedback setting.
Require: The number T of rounds. The number d of assets. The set of available subsets
S C 214l Parameters n>0and g > 0.
1: Set wy = (w})ses € RS and (27)ses by wy = 1 and z§ = 0, respectively, for S € S.
2: fort=1,...,7 do
3: Set Sy by randomly choosing S € § with a probability proportional to wts, i.e., choose S

with probability w? /||w¢|1.

St

Output S; and x; = ;" and observe 74 for all ¢ € [d].
Update wt, set wt+1 by wy, = w (1 +r][af)" for S € S.
Update x7; set ¥, ; by equation (8.4) for S € S.

end for

linear constraints, :L'fH can be computed efficiently by, e.g., interior point methods [125]. Re-
cently, Ye et al. [167] have proposed a more efficient algorithm for solving (8.4). For the
special case of the single asset selection setting, i.e., if S = & = {{i} | ¢ € [d]}, then

. . >i1 i
a:;[Jr}l = (0,...,0,7441,40,...,0) has a closed-form expression: z;y1; = 7,1 <B+C;le_igjl ,
where gj; := ﬁ and 7) (+) stands for a projection onto [0, 1] defined by g 1)(y) = 0 for

y <0, moy(y) =y for 0 <y <1, and 7 1)(y) = 1 for y > 1.

Our algorithm achieves the regret described below for arbitrary inputs, where constants Cs,

(14+C1)? _ 14Cy _ max{C},C3}
(T2 C1 = log 1, and s = =74

Cy, C5 are given by C3 =
Theorem 8.3.1. Algorithm 12 achieves the following regret upper bound if n < 1/Cy:

log\S] 2 1 k (CgCg,T)
< = — . .
E[R7] <) + CinT + 2,8+03 log (1+ 5 (8.5)

In particular, setting n = C%; min {1, \/ logT|S|} and =1, we obtain

=0 (VT10g]S] + klog T +log|S]) . (8.6)

Proof. In the following, we denote fi(x) = log(1 + r;/z) — log(1 + C;). The regret Ry can be
expressed as

T T) T) T
Rr = (Z fi(@™) = Z felwp)) + (Z fi(a?") - Z ft(:vf*)> . (8.7)
t=1 t=1 t=1 t=1

Since S; is chosen by MWTU taking the input (F)scs = (fi(x}))ses, the second term on the
right-hand side of (8.7) can be bounded as follows (see e.g., [11]):

d |8|
> hiaf) th St)] 2181 | c2r (8.8)

Since 7" is computed by FTAL, the first term on the right-hand side of (8.7) can be bounded
as follows (see e.g., [81]):

T
S* Cs3C5T
th)= f (ib'f)ééJr |log<1+ 3 > (8.9)
t=1 2 3 s
Combining (8.7), (8.8) and (8.9), we obtain (8.5). O

114

Algorithm 13 An algorithm for the bandit-feedback setting.
Require: The number T of rounds. The number d of assets. The set of available subsets
S C 219, Parameters n > 0, y € (0,1) and 3 > 0.
1: Set wy = (w})ses € RS and (27)ses by wy = 1 and z§ = 0, respectively, for S € S.
2: fort=1,...,7 do
3: Set the probability vector p; = (p¥)ses € [0,1]° by p¥ = &—' +(1—7)
4: Randomly choose S; € S on the basis of the probability vector p;.

llwells

5. Output S; and x; = xf‘, and observe ry; for i € S;.

147, a4 n/ptiy
1+Cy

7. Update z7; set 27, by equation (8.11).

6: Update wy; set wy,; by wiﬁl = Wy, < and wy,; = wy for § € 8\ {5}

8: end for

Running time If (8.4) can be computed in p(k)-time, Algorithm 12 runs in O(|S|p(k))-time
per round. If S is an exponentially large set, e.g., if S = {S C [d] | |S| = k} and k = O(d),
the computational time for O(|S|p(k)) will be exponentially large w.r.t. d. This computational
complexity is shown to be inevitable in Section 8.4.1. For the special case of the single asset
selection set“{ci;ng, ie,if § =& = {{i} | i € [d]}, Algorithm 12 runs in O(d)-time per round
(2
t

since each x;’ can be updated in constant time.

8.3.3 Algorithm for the Bandit-Feedback Setting

We construct an algorithm for the bandit-feedback setting by combining the Exp3 algorithm [16]
for the multi-armed bandit problem and FTAL. Similarly to the process used in Algorithm 12,
the algorithm updates the probability of choosing S; € S by the Exp3 algorithm (in place
of MWU) and updates portfolios 7 by FTAL. The main difficulty comes from the fact that
the learner cannot observe all the entries of (r;;)%,. Due to this limitation, we cannot always
update a:ts for all S € S. In order to deal with this problem, we construct unbiased estimators
of g7 and H} for each S € S by

s _ 9 s HY s R
étt = F7 Htt = pSt) Qt =0, Hy= O (S € S\{St})v (8‘10)
t t

where pf is the probability of choosing S in round ¢, which is computed by a procedure similar
to that used in the Exp3 algorithm. Note that §; and I:Its can be calculated from the observed
information alone. Using these unbiased estimators, we compute the portfolio vectors xf 1 by
FTAL as follows:

t
R 1 X 1
z:fH € arg max {Z (ng(x - xf) - E(m - xf)THJS(:E - xf)) - 26||:c||§¥ : (8.11)
TEAS (]:1 J
Note that z¥,, = 2 for each S € S\ {S;} since g7 = 0 and HP = O. Hence the convex
quadratic programming problem (8.11) is solved only once in each round. The entire algorithm
is summarized in Algorithm 13.

Theorem 8.3.2. Algorithm 13 achieves the following regret upper bound if n < 047\5| :
log |S 1 k|S CsCsT
mirr < 88 c2nis) - o+ Lo Ol (1 + 252) . (8.12)
n 2 COyy p

115

Setting v = min {1, W}, n= ﬁmin{l, \/ kli%ﬁli“)} and B = C3C5, we obtain

E[Rr] = O (T|S|klog T + |S| klogISllogT+|8|k>

Proof. The regret Ry can be expressed as (8.7). Since S; is chosen by Exp3 taking the input
(FP)ses = (fi(27))ses, the second term on the right-hand side of (8.7) can be bounded as
follows (see e.g., [16]):

T T
B3 A - 3 } logn“g’ T (CIn|S| + Co)T. (8.13)
t=1 t=1

The first term on the right-hand side of (8.7) can be bounded as follows:

T

T
E|Y fila) =3 filad)
t=1

(8.14)

where the inequality comes from (8.3) and the equality comes from the fact that gf and f[;g are
unbiased estimators of g and H,®, respectively. Since x7 is computed by FTAL as in (8.11),
the right-hand side of can be bounded as follows (see e.g., [81]):

t*l

ﬁHx "2_’_ZASTBI+ZHS) 155°

j=1

ﬂ S *A * */\ ~ *
2+g¥yz(13pf a5 T(BI+ZCspf a5 e

IN

IN

B, 18l det(ﬁI+C3Z P57
Ot (8.15)

037 det BI ’

where the first and third inequalities come from the standard analysis of FTAL, and the second
inequality holds since p’|S|/y < 1 from the definition of p¥. Denote M7 = C Z] 1p7 gs*g‘f*—r.
Since ||g7 [0 < |S*| < k, the eigenvalues {\i,...,\q} of My include at least d — k zero
eigenvalues. From this and the fact that \; > 0 and 2?21 Aj = tr(M;), we have det(81 +
Mr) = H;lzl(ﬁ + Xi) < BUR(B + ftr(Mp))k. This inequality and Jensen’s inequality yield
E[log(det(8I + Mr))] < (d — k)log B + Elklog(B + ttr(Mr))] < (d — k)log 8 + klog(B8 +
LE[tr(M7)]). Since E[tr(M7)] = S, Eltr(H7)] = Y., Eltr(H")] < TkC3Cs, we have
Ellog(det(8I + Mr))] < (d — k)log 8 + klog(8 + T'C5C5). Combining this with (8.14) and
(8.15), we obtain (8.12). O

Running time Algorithm 13 runs in O(p(k)+log?(|S]))-time per round, assuming that (8.11)
can be computed in p(k)-time. In fact, from the definition (8.10) of §° and HJ, the update

116

of 27 given by (8.11) is needed only for S = S;. Furthermore, for S = {Sj, 5o, ... ,S|s|}, both

updating w; for some S € S and computing the prefix sum 23:1 wfj for some i € [|S|] can

be performed in O(log|S|)-time by using a Fenwick tree [55]. This implies that sampling S;
S

w.r.t. pp = %‘ + ”;UW can be performed in O(log?|S|)-time.

8.4 Lower Bounds

In this section, we present lower bounds on regrets achievable by algorithms for the online
portfolio selection problem. We focus on the case of S = S = {S C [d] | |S| = k} throughout
this section.

8.4.1 Computational Complexity

We show that, unless the complexity class BPP includes NP, there exists no algorithm for the
online problem with a cardinality constraint such that its running time is polynomial both on
d and T and its regret is bounded by a polynomial in d and sublinear in 7. This fact is shown
by presenting a reduction from the 3-dimensional matching problem (3DM). An instance U of
3DM counsists of 3-tuples (z1,y1,21),-- ., (T4, Yd, 2a) € [k] X [k] x [k]. Two tuples, (z;,y;, z;) and
(x,y;,2;), are called disjoint if x; # x;, y; # y;, and z; # z;. The task of 3DM is to determine
whether or not there exist k pairwise-disjoint tuples; if they do exist, we write U € 3DM.

of the online portfolio selection problem as follows. Let A = (a;;) € {0, 1}1%6%d bhe a matrix
such that a;; = 1if i = x; or i = k + y; or ¢« = 2k + z;, and a;; = 0 otherwise. From A, we
construct B € R3kx(d+1) by B = i [A, —13k], where 131 is the all-one vector of dimension 3k.
Let T > max{(4 - 5184k*)?, (5184k* -pg(d))%} for an arbitrary polynomial p and an arbitrary
positive parameter 6. For each t € [T], take z; from the uniform random distribution on
{—1,1}?*, independently. Then, r; can be defined by r; = 1441 + BT 2 for each t € [T]. Note
that r, € [0,2](¢+1) holds for each ¢ € [T].

We give the sequence (7)1, 7 to an algorithm A. Let (z;);=1,. 7 denote the sequence
output by A. We determine that U € 3DM if 23:1 log(1 + rf 2¢) > T(log2 — @) holds,
while otherwise we determine U ¢ 3DM to hold. We can prove that this determination is
correct with a probability of at least 2/3.

Theorem 8.4.1. Let § be an arbitrary positive number, and p1 and po be arbitrary polynomi-
als. Assume that there exists a pi(d,T)-time algorithm A for the full-feedback online portfolio
selection problem with S = Spy1 that achieves regret Ry < pao(d)T =% with a probability of at
least 2/3. Then, given a 3DM instance U C [k] X [k] x [k], one can decide if U € 3DM with a
probability of at least 2/3 in pi(|U], max{k®, (k4p2(|U|))%})-time.

Proof. From a 3DM instance U = {(z;,y;, zj)};l:l, we construct an input sequence (7¢)i=1,.. 7
for algorithm A as follows. Let A = (a;;) € {0,1}***¢ be a matrix such that a;; = 1 if
i = x5 0ri=Fk+uy; or i =2k+ z;, and a;; = 0 otherwise. From A, we construct B €
R3**(d+1) by B = %k [A, —13x], where 13 is an all-one vector of dimension 3k. Let T' >
max{(4 - 5184k%)%, (5184k* -pg(d))%}. For each ¢t € [T], take z from the uniform random
distribution on {—1,1}3% independently. Then, 7; can be defined by 7; = 14,1 + B 2 for each

t € [T]. Note that r, € [0,2]@1) holds for each ¢ € [T7].

117

We give the sequence (r¢)i=1,.. 7 to A. Let (z:);=1,. 17 denote the sequence output by A.
We determine that U € 3DM if ZtT:1 log(1 +r)azy) > T(log2 — 518#) holds, while otherwise
we determine that U ¢ 3DM holds. Below, we prove that this determination is correct with a
probability of at least 2/3.

Assume that U € 3DM. Then, there exists y* € {0,1}¢ such that ||y*|jo = k and Ay* =
13, and there exists y* € {0,1}¢ such that ||y*|lo = ||¥*[1 = k and Ay* = 13;. Define

k+1 1

rfa* = 1;190* + 2/ Br* =1+ mz;(/ly* — 13;) = 1. Hence, we obtain

¥ = [y . The vector z* satisfies * € A® for some S € Si41. Moreover, it holds that

T

T
max log(1+ 7,) > log(1+ 7, 2*) = T'log 2.
SeStr mens ; g(¢ T) ; g() g

From this inequality and Ry < po(d)T'~? (with a probability > 2/3), we obtain

T T

log(1 + 7, @) > max log(1+7, 2)— R
; g(t t)_SESk+1,z€AS; g(t) T

> Tlog2 — po(d)TH 0 >T (log2 — ———
= og pQ() el <Og 5184]{4)7

where the last inequality comes from 7' > (5184k* - pg(d))%. This inequality means that the
decision is correct with a probability > 2/3 if U € 3DM.

For the remainder of the proof, we assume that U ¢ 3DM. This assumption implies that,
for all y € RY satisfying ||y[lo < k, we have minj<;<3x(Ay); = 0. Moreover, since each column
of A has at least one entry of value 1, we have maxj<;<3x(Ay); > ||ly[le for all y € RL,.

We first prove that ||Bx|2 > ﬁ”m”l holds for all z € R?Bl satisfying ||z|lo < k+ 1. We
consider the following two cases: the last entry of x is either positive or zero. The former case
Y

yo} with y € R‘éo, llyllo < k and yp > 0. In this case, we have

is when z is expressed as © = [

1
> ; L -
[Bx|loo > 35, X {\ @lsgk(fly)z vol, | @gk(z‘ly)z yo!}

1
- Ay)s —
maX{lyol,llg;gk(Y)i yol}

3k

1 1 1 1 1
> - Ayl b > — = > ,
Z 3 maX{wol, 2|1I§i§k(Y) I} Z o maX{I?JoI 2||y||<>o} 2 rllzlleo

where the second inequality comes from the fact that arbitrary yg satisfies max{|yo|, |a — yo|} >
|a|/2. In the latter case, namely, when x = !z] with some z € Réo such that [|yllo < k + 1,

we have ||Bx| o > %k||y||oo = 3ik||ar:||Oo Accordingly, in both of these cases, we have ||Bz||s >
aillzllsc, and hence, we have || Bz|l2 > [|Bzllw 2 grllzlle 2 grarpy el = w2l

Then, since log(1+y) < log2+3(y—1)— 5 (y—1)? for y € [0,2], and since z; are statistically

118

independent of z; and E[z] = 0, E[2¢2, | = I, we have

E [log(1+7/)]

Zt,Tt
1 1
<log2+ B | Ll + 2 Bro— 1)~ (il + 7 Bro - 1)?
zewe | 2 18
1 1 1
=log2 — 5 + E [QthHl 18 (x;rBththth — 2ZtTB£Bt(||J}t||1 — 1)+ (&)1 — 1)2>]
XTt,2t

1 1 1
<log2— - - — —||Bx4||3
<log2— 3+ B | Lol — 55182l

<log2 —

1
2592k%"

<log2— 4B | L
0g2 — = —[|ze]]1 —
= log SRR t1

1 2
18(121{:2)2th”1]
This inequality means that the stochastic process {X;}._,; defined by X; = Z;Zl log(1+7rpx) —
t(log2 — m) is a sub-martingale. From the definition, { X} satisfies |X; — X;41| < log 3
for all ¢t. Hence, from the Azuma-Hoeffding inequality [9], X7 is bounded as Xp < 4T with a
probability of at least 2/3. Consequently, we have

T
Z log(1 +) ;) < T(log2 —
t=1

)+4ﬁ§T<log2—

1 1
2592k* 5184k*)’

where the last inequality comes from 7' > (4 - 5184k*)2. This means that the decision is correct
with a probability of at least 2/3. O

Corollary 8.4.1. Under the assumption of NP ¢ BPP, if an algorithm achieves O(p(d, k)T'~?)
regret for arbitrary d and arbitrary k, the algorithm will not run in polynomial time, i.e., the
running time will be larger than any polynomial for some d and some k.

Note that the computational lower bounds described in Theorem 8.4.1 and Corollary 8.4.1
are also valid for the bandit-feedback setting, since algorithms for the bandit-feedback settings
can be used for the full-feedback setting.

8.4.2 Regret Lower Bound for the Full-Feedback Setting

We show here that, for the full-feedback setting of the online portfolio selection problem
with & = Sk, every algorithm (including exponential-time algorithms) suffers from regret of

Q <\/ T log z) in the worst case. We can show this by analyzing the behavior of an algorithm

for a certain random input. In the analysis, we use the fact that the following two inequalities
hold when 7; follows the discrete uniform distribution on {0, 1} independently:

<TE [log <1—|—1X>] ,
X k

>T-E |log l—i—lX +Q \/Tlogg)
X k k

where X is a binomial random variable following B(k,1/2).

E

Tt,Tt

T
> log(1 + 17 a1
t=1

T
max log(1 + 7, x
SES),reAS t:zl g(¢)

E

Tt,Tt

119

Theorem 8.4.2. Let d > 17k, and consider the online portfolio selection problem with d
assets and available combinations S = Si. There is a probability distribution of input se-
quences {Tt};‘rzl such that the regret of any algorithm for the full-feedback setting is bounded as

E[Rr] = Q <\/Tlog Z), where the expectation is with respect to the randomness of both r and
the algorithm.

To prove Theorem 8.4.2, let us start with the following lemma.

Lemma 8.4.1. If 0 < p; < ps < 1 and random variables X1, Xo follow the binomial random
distributions B(k,p1), B(k,p2), respectively, then we have

1 1 —
E [log (1 n X2>] - E [log <1 n X1>] > P2 P (8.16)

Xo~B(k,p2) k X1~B(k,p1) k 2
Proof. Define Y1 = k — X1 and Y5 = k — X5. Then we have Y] ~ B(k;,l —p1) and Yy ~
B(k,1—p3). From the Maclaurin series of log(2—x) = log 2—%3:—2122 g?—- . =log2-Y >, %,

we have

1 1
E [log <1 + Xg)] — E [log (1 + X1>]
Xo~B(k,p2) k X1~B(k,p1) k
1 1
= E [log (2 — Yg)] — E [log <2 - Y1>:|
Ya~B(k,1—p2) k Y1~B(k,1-p1)

1
E Y — E Yo'
n(2k)" (Yle(kz,l—pl)[v Y2~B(k,1—p2)[?])

1D) [yl] _ E [Yg] _ b2 — P1'
Y1~B(k,1—p1) Ya~B(k,1—ps) 2

o

I
SEANE

v

We are now ready to prove Theorem 8.4.2.

Proof of Theorem 8.4.2. We construct an input sequence {r:}:—1 2 . so that entries 7 follow a
uniform random distribution over {0, 1} independently. We can show that

/ d
log(1 + log(1 + =Q/Tlog~ 8.17
senax Z og(l+r/z) - Z og(l+r, xt)} (og k) (8.17)

for all algorithms, by means of considering the following two inequalities:

[RT(T)] -

Tz

E [log(1+ 7 2z)] < E [log (1 + 1X1>] , (8.18)

Tt,Tt X1 k:

=T B [log <1 + ;X1>] +Q <\/Tlog Z) : (8.19)

where X is a binomial random variable following B(k,1/2).
First, let us prove the inequality (8.18). Consider a function x E[log(l + rl)], and

max Zlog 1+rt x)
SeSk,zEAS

7”f Tt

suppose S € Si. We can then confirm that this is a concave functlon and that, for the

120

optimization problem arg msax E}[log(l + rl)], the vector %15 is the unique point satisfying
€A t

KKT conditions, where 1g stands for the indicator vector of S, i.e., 1g = [x1,.-. ,Xd]T

where
xi = 1ifi € Sand y; = 0if i € [d]\ S. Consequently, we have max s log(l + 7, z) =

E[log(1 + %1—'5—7‘,5)] = E[log(1l + %Xl)] since 107, follows the binomial distribution B(k,1/2).
X1

Tt
Since z; € A for some S; € Si and Si, xy are stochastically independent of r;, we obtain
E [log(l + rtht)] <E [log (1 + %r?lgt)] =)](5) [log (1 + %Xl)] .

Tt 1

Tt, Xt

Next, let us prove the inequality (8.19). For each ¢ € [d], define r; := 23;1 Ty Since
ry; follows a Bernoulli distribution with parameter 1/2 independently, r; follows the binomial
distribution B(T,1/2). Let o : [d—k] — [d— k] be a permutation such that 7,(1) > r,2) > +-+ >
To(d—k)- Since the posterior random distribution of r4; given r; is the Bernoulli distribution of
parameter r; /T, for zo = %1{0(1)70(2)"”,0(@} and for arbitrary constant s > 7'/2, we have

T T
1
]71? X{roy>s} § :10g(1 + T;rmZ):| > XQNBE(I{J a [X{Ta‘(k)Zs} ' § :log(l + k,X2):|
t=1 T t=1

1
=T- PI‘Ob[TU(k) > S] . E |:10g(1 + X2):| ,
Xo~B(k, 2 k
where x 4 stands for the indicator function for arbitrary events A. Moreover, since r4_g11,...,74

are independent of 74, for z; = %1{d—k+1,...,d}a we have

1
=T - Problryu < s]- E [log(l + Xl)] :

T
T
X{T'o-(k)<3} Z l()g(l + Tt xl) Xi~B(k l) k
’2

t=1

E
"

Hence, we obtain

T
]E} Seg,i}e{AS f_Zl log(1 + r;a:)}
T T
=E X@dm>ﬂ563ﬁéAS;;1mdl+T:x)-+§ Xpdm<gS€£ﬁﬁAsgglmdl+rfxﬁ
T - T -
2 E | X{r,q>5) > log(l+7r/ @) | + E | X{r,q<s} > log(1+ TtTﬁl)}
t=1 t=1

1
> T - Prob[ryy) > s])]? [log(l + ng)} + T - Prob[r,g) < s] -)](5]
2 1

a 1
}:mg1+kxg]
t=1

1 1 s 1
>T- log(1+ —-X T - Prob >s]-=- | =—=
>T-E [Og(+ 1)] +T - Problry) 2 5] - 5 <T 2>,
where X1 ~ B(k, 3), Xo ~ B(k, %) and the last inequality comes from Lemma 8.4.1. We now

can show that we have Prob[r,) > s] = Q(1) for s = L+Q(\/Tlog %), which proves (8.19). Let
F :R — [0,1] denote the cumulative distribution function of B(7,1/2), i.e., F(z) = Prob[r; <
x|. From a standard concentration lemma of a binomial distribution (see, e.g., Proposition 7.3.2

121

n [129]), we have F(% +1) <1— Lexp (—16%). Hence, setting t = /7T log %, we obtain

T T
Prob [ra(k) > 3 + t] = Prob [(Toy) = F (+t>}
1 t? k
> Prob |F(reg)) > 1 - 5 &P —16? = Prob | F(ryp)) > 1 - Tk

Since F'(r;) follows the uniform distribution on [0, 1] independently, F'(r4x)) follows the proba-
bility distribution of the order statistic sampled from the standard uniform distribution, which
is the beta distribution Beta(d —2k+1, k) (see, e.g., [67]). This means that Prob[1 — F(r,)) <

ﬁ] > 1/2. Combining the above two inequalities, for s = % + %\/Tlog %, we have

max Zlog —}—Tt
SESk,l‘EA

7,.

1 1 T
>T-)](5]1 _log(l + %Xl)_ + §Prob[ra(k) > s]- (s - 2)

X1 | k 15k

[1 1 d
>T-E |log(1+ —-X1) +Q<\/Tlog>,
X1 L k] k

where the last inequality comes from d > 17k. Consequently, we obtain (8.19). From (8.18)
and (8.19) we have (8.17). O

[1 1 —
>T-E log(1+—X1) 16(Tlogd k)

8.4.3 Regret Lower Bound for the Bandit-Feedback Setting

In this subsection, we consider the bandit-feedback setting of the online portfolio selection
problem with & = S;. We show that every algorithm (including exponential-time algorithms)

for this setting suffers from regret of (2 (T (L when the input sequence is defined as

am)"
follows. Let S* € S,. We define a random distribution Dg+ on {—1,1}¢ so that a random
vector z = [z1,..., 24" following this distribution satisfies

Hziz{ ponRee sz:{ LR (g e gl (0.5,

Poted -1 w.p. 1/24¢ s -1 w.p. 1/2

1 wop. 1/2

Such a distribution can be constructed as follows: fix an index i* € S*, let z; = w-p- 1/
-1 w.p. 1/2

1 wp. 1/2—¢
-1 w.p. 1/24¢

20 HieS*\{i*} zi. Then z = [z, ... ,zd]T ~ Dg+. The price relative vector r; in the ¢-th round

for each i € [d] \ {i*}, and let zp = { independently. Define z; =

can be defined by r; = 14 — 2;, where z; ~ DY independently for ¢ € [T]. We can show that r|g

follows a uniform distribution for any S € Sk \ {S*} and only r¢|g~ follows a slightly different
distribution. Because of this, it is difficult for algorithms to distinguish S* from others, which

makes their regrets large.

122

Theorem 8.4.3. Let d > k—1, and consider the online portfolio selection problem with d assets
and available combinations S = Si. There is a probability distribution of input sequences {rt}le
such that the regret of any algorithm for the bandit-feedback setting is bounded as E[Rr| =

k(Ck)k
r and the algorithm, and C is a constant depending on Cy and Cs.

Q <min I _ T(ﬁ)k , where the expectation is with respect to the randomness of both

We introduce the following lemma to prove Theorem 8.4.3.

Lemma 8.4.2. For arbitrary ¢ € [0,1/2], let z9,21,...,2k € {—1,1} be independent random

1 p-1/2 — 1 p-1/2
variables such that zg = wop- 1/ c and z; = wop- 1/ fori=1,...,d. Set
-1 w.p.1/2+¢ -1 w.p.1/2
X = Zle zi and Xo = Zfz_ll zi + 20 H;:ll zj. We then have
1 1 2¢e
1 2—-=-X —E |l 2—--X > . 8.20
ol (20| = o (230 620
Proof. Denote w = zg Hf;ll zj. Let ni,ng,...,n; be arbitrary non-negative integers. Set m; to
be n; modulo 2, i.e., m; = 0 if n; is even and m; = 1 if n; is odd, for ¢ = 1,..., k. We then have
o - 1 ifmp=--=mp=0
El2'23% - 5.0 M = Bl 2 gt] = { 0 otherwise
1 ifmy=-=mp=0
E[z]" 257 - - zZi‘llw"k] =E[z{"25? - -z;n_k'l_lwmk] =< =2 ifm=-=mr=1,
0 otherwise
which means E[z]" - 2" 2/%] > B[] - 2" 'w™]. Hence, X; = Y.F 2 and X =
Zi:ll z; + w satisfies E[X]] > E[XJ] for all non-negative integers n and E[XF] — E[X}] = 2.
From the Maclaurin series of log(2 —) =log2 — > >, %, we have
B [log (2— ~x E|log (2— 1x i L (BIX7] - BIXE))
0 - = — 0 - = = — —
g 2 2 g 2 1] n(2k)n 1 2
2e
> XM -Eg[x%) = :

Proof of Theorem 8.4.3

Proof. For each S* € S, we define a random distribution Dg« on {—1,1}% so that z =
[21,...,24) " ~ Dg~ satisfies

Hzi:{ Lowop 1/2-c Hzi:{ 1 w.p. 1/2 (5 €29\ 0.5, (8.21)

P -1 w.p. 1/2+¢ polys -1 w.p. 1/2

Such a distribution can be constructed as follows: fix an index i* € S* and, for ¢ € [d] \ {i*},

1 . p-1/2 1 . p-1/2—
let z; = we p- 1/ and zg = wep. 1/2—¢ independently. Define z;x =
-1 w.p. 1/2 -1 w.p. 1/2+¢

123

20 HieS*\{i*}Zi' Suppose that the input sequence 7; is given by r; = 1 — 24, where z; ~
D% independently for ¢t = 1,2,...,T. If z follows D%, for any S € Sj \ {05*}, z|g follows
the uniform distribution on {—1,1}*, and hence, we have max, s+ E [log (1+ T;FIL')] =
ZtNDS*
E [log (1 + %rtTlg)] . From Lemma 8.4.2, for S € S;, \ {#S*}, we have

ZtNDS*
1 T T
E log | 14+ —r; 1g= —max E [log (1 + 7, a:ﬂ
ze~Dgx k xEAS zi~Dgx

1 1 2
> log [14+ =r 1g: || — log [1+ =r 1 > 8.22
= thFbS* |:Og< + k‘rt S >:| thFbS* |:Og(+ k_rt S>:| =]{3(2]€)k ()

Since any randomized algorithm is equivalent to an a priori random choice from the set
of all deterministic strategies, and since the input defined above is oblivious to the output of
the algorithm, it suffices to prove a lower bound on the expected regret of any deterministic
algorithm (this is not crucial for the proof but simplifies the notation). We consider an arbitrary
deterministic algorithm and let {(S;, z;)}._,; denote the output for the random input sequence
{rt}le given by vy =1+ z; and z; ~ Dg-. Let Ng be a random variable denoting the number
of t € [T] such that S; = S, i.e., Ng = [{t € [T] | St = S}|. From the equation (8.22), we have

T
> — _
E [Rr] > g E [log (1 + R 15)] E:, Lrélgé(t zw%s* [log <1 +r, a:)H

1M

2zt~ D g+ i—1 zg~Dgx
2e
>|\T—- E [N 8.23
> (17— B Ve]) o (829
Let us evalute E [Ng:]. Define Dy to be the uniform probabilistic distribution on {—1,1}¢,
thDS*

Then, for all S € S \ {0, S*}, we have Dg+|s = Dy|g, i.e., if z ~ Dg+ and 2’ ~ Dy, then z|g
and 2’| g follows the same distribution (a uniform distribution on {—1,1}*). Hence, in the same
way as in Lemma A.1. of [16], we can show that

E [Ns:]— E [Ng] \/ZWDO [Ng] - KL(> (8.24)

Zt NDS* Zt NDO

s

where KL(P||Q) = E(log %) is the Kullback-Leibler divergence. The chain rule for relative
P
entropy (see, e.g., Theorem 2.5.3 of [48]) gives, for S* = {i1,...ix},

KL(D S*) = KL(Prob[(Zi)ieS*] I PTOb [(zi)ies])

z~D S*

o

k
Z (z [KL(Prob[zl | (zi.)s<j] || Prob [z | (Zis)5<j]):|

z~Dy zrvD g

B [KL(Prob[zik (2o)oct] || Prob [z, | <zis>s<k1>}
(Zig)s<k z~Dg ZNDS*

1
= —5 log(1 - 4¢?). (8.25)

In the above equations, the third equality holds because Pr%b[zij | (2i,)s<;] and PI‘[())b [z, |
z~Do

*

(zi,)s<j] are equal to the Bernoulli distribution of parameter 1/2 for j < k. The last equality

holds because Pr%b[zik | (2i,)s<k] follows Bernoulli distribution of parameter 1/2 and P%)b B
zZ~ 1 zn S*

124

(zi,)s<k| follows Bernoulli distribution of parameter 1/2+¢ or 1/2—¢. Combining (8.23), (8.24)
and (8.25), we have

T 2¢e
E [Rr]>|(T- E [Ns«]—=,/— E [Ng«|log(l—¢€?)| ——.
ZtNDs*[= (ZtNDo[] 2\/ thDo[s+ log ’)> k(2k)k

Suppose that S* is chosen at random uniformly from S, before play begins. Then, from the
above inequality, the expected regret is bounded as

Rel > o 3 (T—ZE [qu—w— B [Ns*uog(l—zxs?))ké‘;)k

E
S*-,ZtNDS* S*eSk tNDQ ZtNDQ
T T T 2e
> (T - = — =/ ———log(1 — 4¢? :
(A 2\/ 5] 8)> FoR)F
where the second inequality comes from } g5 E [Ns] = T and } g, E [Ng| <
zt~Do z¢~Do

V/T|Sk|. Using the inequality —log(1l — z) < x/2 for z € [0,1/4], we have

1 T 2e
E Rpl>T|1—- — — —_
e opg. BT12 (GI 2|sk|> R

for e € [0,1/4]. By setting ¢ = min{1/4, %\/ @}, we obtain

. |S,| . d ’“}
o B, Bl =4 (mm { k(sz:)k’ k?T(Qkk)% }) = (mm { k(zj;;)k’ Vt <ok3>) ’
() (

8.26)

where the second inequality follows from |S| = (Z) > (%)k and k? = O((5)).

Consider an arbitrary randomized algorithm and let A denote the algorithm’s internal ran-
domization. Then, since \ is probabilistically independent from S*,r and (8.26) for all deter-
ministic algorithms, we have

A

ol T T<d)’“\.

\ k(2k)k’ 5k3 }

E[RT]] _E
S* {r} A

8.5 Experimental Evaluation

We show the empirical performance of our algorithms through experiments over synthetic and
real-world data. In this section, we consider the online portfolio selection problem with & = &j.
A problem instance is parameterized by a tuple (d, T, {rt}z;l). A synthetic instance is generated
as follows: given parameters d, T', Cq, and Co, we randomly choose an asset i* from [d|, and
generate ry= ~ U((Cy + C1)/2,C3) and 1y ~ U(C1,Cy) for i € [d] \ {i*}.

125

We also conduct our experiments for two real-world instances. The first is based on crypto
coin historical data!, including dates and price data for 19 crypto coins. From this data, we
select 7 crypto coins, each having 929 prices, and obtain price relatives ry; of coin ¢ at time ¢
by (pti/pt—1,) — 1, where py; indicates the price of coin ¢ at time ¢. Thus, d = 7 and T' = 928 in
this instance. The other instance is based on S&P 500 stock data?, including dates and price
data for 505 companies. From this data, we choose d = 470 companies, each having 1259 stock
prices, and compute T = 1258 price relatives for each company in the same way.

For purposes of comparison, we prepare three baseline algorithms: Exp3_cont, Exp3_disc,
and MWU_disc. MWU_disc (based on MWU [11]) works in the full-feedback setting and is
compared with Algorithm 12. Exp3_cont and Exp3_disc (based on Exp3 [16]) work in the
bandit-feedback setting and are compared with Algorithm 13. These baseline algorithms have
different ways of updating z7 from those of Algorithms 12 and 13. Note that since S = S; =
{{i} | i € [d]}, x7 can be expressed as ¥} = xii} =[0,...,0,24,0,...,0] . Below, we offer a
brief explanation of the comparisons.

MWU_disc Set x4 = 1 if 23;11 rj; > 0 and x4 = 0 otherwise. For each t € [T, select i,
by MWU, where rewards in the ¢-th round are given by [log(1 + rz4;)]%;, and output
it, LL’EH}.

Exp3_disc Set x4 = 1 if Zje[tfl]:ij:i rj; > 0 and x4 = 0 otherwise. For each t € [T, select i
by Exp3, where reward in the ¢-th round is given by log(1 + 74,4,), and output iy, ;vilt}.

Exp3_cont Set a parameter B € N, and consider an MAB problem instance with d(B + 1)
arms in which the rewards for the d(B + 1) arms in the ¢-th round are given by (log(1 +
r4ib/B))1<i<d,0<b<B- Apply Exp3 to this MAB problem instance.

We assess the performance of the algorithms on the basis of regrets for synthetic instances
and of cumulative price relatives for real-world instances, where regrets and cumulative price
relatives are averaged over 10 executions. We set parameters n according to Theorem 8.3.1
for Algorithm 12 and MWU _disc, and 5 and 7 according to Theorem 8.3.2 for Algorithm 13,
Exp3_disc, and Exp3_cont.

Figure 8.1 shows average regrets for a synthetic instance with the following parameters:
(d, T,C1,C) = (20,10000,—0.5,0.5). We observe that both Algorithms 12 and 13 converge
faster than MWU _disc, Exp3_cont, and Exp3_disc. In addition, the results empirically show
that our theoretical bounds are correct.

Figures 8.2 and 8.3 show average cumulative price relatives for a real-world instance of S&P
500 stock data with (d,7,C,C2) = (470,1258,—0.34,1.04) and for a real-world instance of
crypto coin data with (d,7T,Cq,Cq) = (7,928, —0.7,3.76), respectively. From these figures, we
observe that the cumulative price relatives of our algorithms are higher than those of baseline
algorithms.

"https://www.kaggle.com/sudalairajkumar/cryptocurrencypricehistory
*https://www.kaggle.com/camnugent/sandp500

126

2,000

Ry

1,000

Figure 8.1:
regrets over the synthetic
dataset with (d,T,Cq,Cs) =
(20, 10000, —0.5,0.5)

—— Algorithm 1

- MWU _ disc
{-| —— Algorithm 2
—— Exp3_cont
—— Exp3_disc

o
>
=
=
< O
—_
[}
S
2 02
5 -0
© .
R S —— Algorithm 1
= —— MWU_disc
& =04 H ___ Algorithm 2
= —— Exp3_cont
= |
1 = Exp3_disc
‘ &

The average

127

I I I Il Il Il Il
0 200 400 600 800 1,0001,200

T

Figure 8.2: The average cu-
mulative price relatives over
S&P 500 stock dataset

q>_> _| —— Algorithm 1

= — MWU _disc

E .| | — Algorithm 2

S 0 L3 e]
bt —— Exp3_cont

8 —— Exp3_disc

24 4
o

[©]

Zo2f :
+~

=

=} I I I I I I
@) 0 200 400 600 800 1,000

T

Figure 8.3: The average

cumulative price relatives
over the cryptocoin histori-

cal dataset

128

Chapter 9

Conclusion

In this thesis, we considered online optimization with limited information. We have presented
algorithms and have analyzed the complexity for several problem settings including bandit online
optimization, bandit linear combinatorial optimization, submodular function minimization with
noisy evaluation oracle, bandit convex optimization, and online portfolio selection. Through
these studies, we have assessed the performance of online algorithms and their limitations, as
well as computational complexity.

For bandit linear optimization, we provided an oracle-efficient algorithm, by which we proved
that the computational complexity of each bandit problem is equivalent to that for underlying
offline optimization problem under polynomial-time reduction. Interestingly, we achieved a
smaller oracle-complexity bound in stochastic settings than in non-stochastic settings, which
might imply that non-stochastic setting is computationally harder. To prove a gap between
these two settings in terms of computational complexity, we require lower bounds for the oracle
complexity of online optimization, which seems to be currently open.

For some special cases of bandit combinatorial optimization, we presented tighter lower
bounds for regrets, in which abundant log T-factors are shaved off. Further, our lower bounds
apply to more general problems than existing results. There has been, however, remained a gap
of logarithmic factors in the dimensionalities of the feasible region between the upper and lower
bounds. Furthermore, tight regret bounds that apply to general feasible regions are still open.
To prove this, a novel technique for proving would be required.

We have also introduced the problem setting of submodular function minimization with
noisy evaluation oracle, and have provided algorithms and lower bounds. The lower and upper
bounds together imply that the proposed algorithms achieve nearly optimal additive errors,
modulo O(y/n) factors. Removing this O(y/n)-gap would be an interesting feature work. For
the special cases of k-point feedback settings with a bounded k at least 2, we have provided a
tight error bound up to constant factors. For the other cases, we leave it as an open question
to find tight bounds. Besides, extending our results to the non-stochastic bandit setting is also

left as a feature work.

For bandit convex optimization problems with strongly-convex and smooth objectives, we
provided an algorithm with tight regret bounds under milder assumptions than existing works.
However, the assumption of the existence of interior optimal solutions might be abundant,
and the tight regret bounds might apply to more general problem settings. To prove that our
algorithm works without the assumption, we need to show a novel concentration inequality for

129

log-concave distributions (more precisely, multi-dimensional truncated normal distributions).

Finally, we considered online portfolio selection with combinatorial constraints and intro-
duced two problem settings of full-feedback and bandit-feedback. For each setting, we provided
an algorithm that achieves a nearly minimax optimal regret bound. Interestingly, the gap be-
tween tight regret bounds for these two settings are exponentially large while such a large gap
does not appear in problems with linear objectives. This result implies that, compared to linear
problems, the price of information gets increased drastically in nonlinear problems.

Through the above studies, we have obtained a deeper understanding of the relationship
among three concepts: information, computation, and optimality, in the context of online op-
timization. In particular for the class of bandit linear optimization including combinatorial
bandits, we have concluded that both computational efficiency and optimal regret bound can
be achieved simultaneously, which implies that online linear optimization problems are essen-
tially free from trade-off relation among information, computation, and optimality. Even for
nonlinear problems such as submodular minimization and convex optimization, we have offered
improved regret bounds with efficient algorithms, for some special cases. However, for more
general problems, such as bandit convex optimization for general convex loss and bandit sub-
modular minimization, optimal rates have been still open, which would be significant future
work.

130

Bibliography

[1]

[11]

[12]

[13]

Y. Abbasi-Yadkori, D. Pal, and C. Szepesvari. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems, pages 2312-2320, 2011.

N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic
concepts. In International Conference on Machine Learning, pages 3—11, 1999.

M. Abeille, A. Lazaric, et al. Linear thompson sampling revisited. FElectronic Journal of
Statistics, 11(2):5165-5197, 2017.

A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire. Algorithms for portfolio management
based on the Newton method. In International Conference on Machine Learning, pages
9-16, 2006.

A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization
with multi-point bandit feedback. In Conference on Learning Theory, pages 28—40, 2010.

A. Agarwal, D. P. Foster, D. J. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic convex op-
timization with bandit feedback. In Advances in Neural Information Processing Systems,
pages 1035-1043, 2011.

S. Agrawal and N. R. Devanur. Fast algorithms for online stochastic convex program-
ming. In Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1405-1424, 2014.

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs.
In International Conference on Machine Learning, pages 127-135, 2013.

N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 2004.

N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, Y. Mansour, and O. Shamir. Non-
stochastic multi-armed bandits with graph-structured feedback. SIAM Journal on Com-
puting, 46(6):1785-1826, 2017.

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-
algorithm and applications. Theory of Computing, 8(1):121-164, 2012.

J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits.
In Conference on Learning Theory, pages 217-226, 2009.

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial optimization.
Mathematics of Operations Research, 39(1):31-45, 2013.

131

[14]

[16]

[17]

[27]

28]

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov):397-422, 2002.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235-256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002.

B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In Proceedings of the Thirty-Sizth Annual
ACM Symposium on Theory of Computing, pages 45-53, 2004.

F. Bach. Convex analysis and optimization with submodular functions: A tutorial. arXiv
preprint arXww:1010.4207, 2010.

F. Bach. Learning with submodular functions: A convex optimization perspective. Foun-
dations and Trends®) in Machine Learning, 6(2-3):145-373, 2013.

A. Belloni, T. Liang, H. Narayanan, and A. Rakhlin. Escaping the local minima via
simulated annealing: Optimization of approximately convex functions. In Conference on
Learning Theory, pages 240-265, 2015.

G. Bitran and R. Caldentey. An overview of pricing models for revenue management.
Manufacturing & Service Operations Management, 5(3):203-229, 2003.

E. Blais, C. L. Canonne, T. Eden, A. Levi, and D. Ron. Tolerant junta testing and the
connection to submodular optimization and function isomorphism. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2113-2132,
2018.

A. Blum. On-line algorithms in machine learning. In Online algorithms, pages 306—325.
Springer, 1998.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 2005.

E. Boros and P. L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1):155-225, 2002.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEFE Transactions on Pattern Analysis and
Machine Intelligence, 26(9):1124-1137, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222-1239,
2001.

G. W. Brown. Iterative solution of games by fictitious play. Activity Analysis of Production
and Allocation, 13(1):374-376, 1951.

132

[29]

[30]

[31]

[32]

[36]

[37]

[41]

[42]

[43]

[44]

G. W. Brown and J. Von Neumann. Solutions of games by differential equations. Ann.
Math. Studies, 24:73-79, 1950.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1-122,
2012.

S. Bubeck and R. Eldan. Multi-scale exploration of convex functions and bandit convex
optimization. In Conference on Learning Theory, pages 583-589, 2016.

S. Bubeck, N. Cesa-Bianchi, and S. Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on Learning Theory, pages 41.1-41.14,
2012.

S. Bubeck, O. Dekel, T. Koren, and Y. Peres. Bandit convex optimization: VT regret in
one dimension. In Conference on Learning Theory, pages 266278, 2015.

S. Bubeck, Y. T. Lee, and R. Eldan. Kernel-based methods for bandit convex optimization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 72-85, 2017.

P. Bithlmann and S. Van De Geer. Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer Science & Business Media, 2011.

F. Caro and J. Gallien. Clearance pricing optimization for a fast-fashion retailer. Opera-
tions Research, 60(6):1404-1422, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404-1422, 2012.

D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization using wolfe’s
algorithm. In Advances in Neural Information Processing Systems, pages 802-809, 2014.

D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C.-w. Wong. Subquadratic submodular
function minimization. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1220-1231, 2017.

L. Chen, M. Zhang, and A. Karbasi. Projection-free bandit convex optimization. In
International Conference on Artificial Intelligence and Statistics, pages 2047-2056, 2019.

W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International Conference on Machine Learning, pages 151-159, 2013.

K. L. Clarkson. Las vegas algorithms for linear and integer programming when the di-
mension is small. Journal of the ACM (JACM), 42(2):488-499, 1995.

A. Cohen, T. Hazan, and T. Koren. Tight bounds for bandit combinatorial optimization.
In Conference on Learning Theory, pages 629-642, 2017.

133

[45]

[46]
[47]

[48]

[49]

[59]

[60]

R. Combes, M. S. T. M. Shahi, A. Proutiere, and M. Lelarge. Combinatorial bandits
revisited. In Advances in Neural Information Processing Systems, pages 2116-2124, 2015.

T. H. Cormen. Introduction to Algorithms. MIT press, 2009.
T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29, 1991.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
2012.

D. Dadush, L. A. Végh, and G. Zambelli. Geometric rescaling algorithms for submodular
function minimization. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 832—-848. STAM, 2018.

V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric optimization
against an adaptive adversary. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, pages 937-943, 2006.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit
feedback. In Conference on Learning Theory, pages 355-366, 2008.

V. Dani, S. M. Kakade, and T. P. Hayes. The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems, pages 345-352,
2008.

P. Das. Online convex optimization and its application to online portfolio selection. 2014.

J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-
order convex optimization: The power of two function evaluations. IEEE Transactions
on Information Theory, 61(5):2788-2806, 2015.

P. M. Fenwick. A new data structure for cumulative frequency tables. Software: Practice
and Experience, 24(3):327-336, 1994.

K. J. Ferreira, B. H. A. Lee, and D. Simchi-Levi. Analytics for an online retailer: Demand
forecasting and price optimization. Manufacturing & Service Operations Management,
pages 69-88, 2015.

A. Fiat and G. J. Woeginger. Online Algorithms: The State of the Art, volume 1442.
Springer, 1998.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the
bandit setting: Gradient descent without a gradient. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 385-394, 2005.

D. Foster, S. Kale, and H. Karloff. Online sparse linear regression. In Conference on
Learning Theory, pages 960-970, 2016.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119-139,
1997.

134

[61]

K. Fujii and H. Kashima. Budgeted stream-based active learning via adaptive submodular
maximization. In Advances in Neural Information Processing Systems, pages 514-522,
2016.

K. Fujii and S. Sakaue. Beyond adaptive submodularity: Approximation guarantees of
greedy policy with adaptive submodularity ratio. In International Conference on Machine
Learning, pages 2042-2051, 2019.

S. Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, 5(2):186-196, 1980.

S. Fujishige. Submodular Functions and Optimization, volume 58. Elsevier, 2005.

S. Fujishige and S. Isotani. A submodular function minimization algorithm based on the
minimum-norm base. Pacific Journal of Optimization, 7(1):3-17, 2011.

D. Garber. Efficient online linear optimization with approximation algorithms. In Ad-
vances in Neural Information Processing Systems, pages 627-635, 2017.

J. E. Gentle. Computational Statistics. Springer Science & Business Media, 2009.

D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427—
486, 2011.

L. Gorelick, Y. Boykov, O. Veksler, I. Ayed, and A. Delong. Submodularization for binary
pairwise energies. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1154-1161, 2014.

M. Grotschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169-197, 1981.

A. Gyorgy, T. Linder, G. Lugosi, and G. Ottucsak. The on-line shortest path problem
under partial monitoring. Journal of Machine Learning Research, 8(Oct):2369-2403, 2007.

N. H. Hakansson and W. T. Ziemba. Capital growth theory. Handbooks in Operations
Research and Management Science, 9:65—86, 1995.

M. E. Halabi and S. Jegelka. Minimizing approximately submodular functions. arXiv
preprint arXiv:1905.12145, 2019.

J. Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory of
Games, 3:97-139, 1957.

H. Hassani, M. Soltanolkotabi, and A. Karbasi. Gradient methods for submodular maxi-
mization. In Advances in Neural Information Processing Systems, pages 5841-5851, 2017.

A. Hassidim and Y. Singer. Submodular optimization under noise. In Conference on
Learning Theory, pages 1069-1122, 2017.

E. Hazan. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157-325, 2016.

135

78]

[79]

[30]

[81]

[89]

[90]

E. Hazan and S. Kale. Online submodular minimization. Journal of Machine Learning
Research, 13(Oct):2903-2922, 2012.

E. Hazan and Z. Karnin. Volumetric spanners: An efficient exploration basis for learning.
Journal of Machine Learning Research, 17(1):4062—-4095, 2016.

E. Hazan and K. Levy. Bandit convex optimization: Towards tight bounds. In Advances
in Neural Information Processing Systems, pages 784-792, 2014.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169-192, 2007.

E. Hazan, W. Hu, Y. Li, and Z. Li. Online improper learning with an approximation
oracle. In Advances in Neural Information Processing Systems, pages 5652-5660, 2018.

D. P. Helmbold and M. K. Warmuth. Learning permutations with exponential weights.
Journal of Machine Learning Research, 10(Jul):1705-1736, 2009.

X. Hu, L. Prashanth, A. Gyo6rgy, and C. Szepesvari. (Bandit) convex optimization with
biased noisy gradient oracles. In International Conference on Artificial Intelligence and
Statistics, pages 819-828, 2016.

S. Ito. Submodular function minimization with noisy evaluation oracle. In Advances in
Neural Information Processing Systems, pages 12103-12113, 2019.

S. Ito. An optimal algorithm for bandit convex optimization with strongly-convex and
smooth loss. In International Conference on Artificial Intelligence and Statistics, to ap-
pear, 2020.

S. Ito and R. Fujimaki. Large-scale price optimization via network flow. In Advances in
Neural Information Processing Systems, pages 3855-3863, 2016.

S. Ito and R. Fujimaki. Optimization beyond prediction: Prescriptive price optimiza-
tion. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1833-1841, 2017.

S. Ito, D. Hatano, H. Sumita, A. Yabe, T. Fukunaga, N. Kakimura, and K. Kawarabayashi.
Online regression with partial information: Generalization and linear projection. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 1599-1607, 2018.

S. Ito, D. Hatano, H. Sumita, A. Yabe, T. Fukunaga, N. Kakimura, and K. Kawarabayashi.
Regret bounds for online portfolio selection with a cardinality constraint. In Advances in
Neural Information Processing Systems, pages 10588-10597, 2018.

S. Ito, D. Hatano, H. Sumita, K. Takemura, T. Fukunaga, N. Kakimura, and K.-I.
Kawarabayashi. Improved regret bounds for bandit combinatorial optimization. In Ad-
vances in Neural Information Processing Systems, pages 12050-12059, 2019.

S. Ito, D. Hatano, H. Sumita, K. Takemura, T. Fukunaga, N. Kakimura, and K.-I.
Kawarabayashi. Oracle-efficient algorithms for online linear optimization with bandit

feedback. In Advances in Neural Information Processing Systems, pages 10590-10599,
2019.

136

[93]

[94]

[95]

[96]

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

S. Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM Journal
on Computing, 32(4):833-840, 2003.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm
for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761-777, 2001.

K. G. Jamieson, R. Nowak, and B. Recht. Query complexity of derivative-free optimiza-
tion. In Advances in Neural Information Processing Systems, pages 2672-2680, 2012.

S. Jegelka and J. Bilmes. Online submodular minimization for combinatorial structures.

In International Conference on Machine Learning, pages 345-352, 2011.

S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: Coupling edges
in graph cuts. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1897-1904, 2011.

S. M. Kakade, A. T. Kalai, and K. Ligett. Playing games with approximation algorithms.
SIAM Journal on Computing, 39(3):1088-1106, 2009.

A. Kalai and S. Vempala. Efficient algorithms for universal portfolios. Journal of Machine
Learning Research, 3(Nov):423-440, 2002.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291-307, 2005.

S. Kale. Open problem: Efficient online sparse regression. In Conference on Learning
Theory, pages 1299-1301, 2014.

S. Kale, Z. Karnin, T. Liang, and D. Pal. Adaptive feature selection: Computationally
efficient online sparse linear regression under RIP. In International Conference on Machine
Learning, pages 1780-1788, 2017.

M. Karimi, M. Lucic, H. Hassani, and A. Krause. Stochastic submodular maximization:
The case of coverage functions. In Advances in Neural Information Processing Systems,
pages 6853-6863, 2017.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85-103. Springer, 1972.

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal
finite-time analysis. In International Conference on Algorithmic Learning Theory, pages
199-213. Springer, 2012.

J. Kelly. A new interpretation of information rate. Bell Sys. Tech. Journal, 35:917-926,
1956.

J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems. Canadian Journal
of Mathematics, 12(363-366):234, 1960.

R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In
Advances in Neural Information Processing Systems, pages 697-704, 2005.

137

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

P. Kohli and P. H. Torr. Dynamic graph cuts and their applications in computer vision.
In Computer Vision, pages 51-108. Springer, 2010.

V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph cuts-a
review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):1274—
1279, 2007.

V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147-159, 2004.

J. Komiyama, J. Honda, and H. Nakagawa. Optimal regret analysis of thompson sampling
in stochastic multi-armed bandit problem with multiple plays. In International Conference
on Machine Learning, pages 1152-1161, 2015.

W. Kotlowski and G. Neu. Bandit principal component analysis. Proceedings of Machine
Learning Research, 99:1-31, 2019.

D. Koushik, J. A. Higbie, and C. Eister. Retail price optimization at intercontinental
hotels group. Interfaces, 42(1):45-57, 2012.

W. Kumagai. Regret analysis for continuous dueling bandit. In Advances in Neural
Information Processing Systems, pages 1489-1498, 2017.

P. Lagrée, C. Vernade, and O. Cappe. Multiple-play bandits in the position-based model.
In Advances in Neural Information Processing Systems, pages 1597-1605, 2016.

T. L. Lai. Adaptive treatment allocation and the multi-armed bandit problem. Annals of
Statistics, 15(3):1091-1114, 1987.

T. Lattimore and C. Szepesvari. Bandit algorithms. Preprint, Revision: 1699, 2019.

T. Lattimore, B. Kveton, S. Li, and C. Szepesvari. Toprank: A practical algorithm for
online stochastic ranking. In Advances in Neural Information Processing Systems, 2018.

S. Lee. Study of Demand Models and Price Optimization Performance. PhD thesis,
Georgia Institute of Technology, 2011.

Y. T. Lee, A. Sidford, and S. C.-w. Wong. A faster cutting plane method and its impli-
cations for combinatorial and convex optimization. In IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 1049-1065, 2015.

B. Li and S. C. Hoi. On-line portfolio selection with moving average reversion. In Inter-
national Conference on Machine Learning, pages 563-570, 2012.

B. Li and S. C. Hoi. Online portfolio selection: A survey. ACM Computing Surveys, 46
(3):35, 2014.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285-318, 1988.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear Algebra and Its Applications, 284(1-3):193-228, 1998.

138

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

L. Lovasz. Submodular functions and convexity. In Mathematical Programming: The
State of the Art, pages 235-257. Springer, 1983.

L. Lovész and S. Vempala. The geometry of logconcave functions and sampling algorithms.
Random Structures & Algorithms, 30(3):307-358, 2007.

A. Marshall. Principles of Economics. Library of Economics and Liberty, 1920.
J. Matousek and J. Vondrak. The probabilistic method. Lecture Notes, 2001.

J. I. McGill and G. J. Van Ryzin. Revenue management: Research overview and prospects.
Transportation Science, 33(2):233-256, 1999.

H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against
an adaptive adversary. In International Conference on Computational Learning Theory,
pages 109-123, 2004.

M. Mohri and S. Yang. Adaptive algorithms and data-dependent guarantees for bandit
convex optimization. In Conference on Uncertainty in Artificial Intelligence, pages 815—
824, 2016.

A. Mokhtari, H. Hassani, and A. Karbasi. Conditional gradient method for stochastic
submodular maximization: Closing the gap. In International Conference on Artificial
Intelligence and Statistics, pages 1886-1895, 2018.

T. Murata and T. Suzuki. Sample efficient stochastic gradient iterative hard threshold-
ing method for stochastic sparse linear regression with limited attribute observation. In
Advances in Neural Information Processing Systems, pages 5312-5321, 2018.

H. Narayanan and A. Rakhlin. Efficient sampling from time-varying log-concave distri-
butions. Journal of Machine Learning Research, 18(1):4017-4045, 2017.

M. Natter, T. Reutterer, and A. Mild. Dynamic pricing support systems for DIY retailers—
A case study from austria. Marketing Intelligence Review, 1:17-23, 2009.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. STAM, 1994.

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

E. Ordentlich and T. M. Cover. The cost of achieving the best portfolio in hindsight.
Mathematics of Operations Research, 23(4):960-982, 1998.

J. B. Orlin. A faster strongly polynomial time algorithm for submodular function mini-
mization. Mathematical Programming, 118(2):237-251, 2009.

R. L. Phillips. Pricing and Revenue Optimization. Stanford University Press, 2005.

A. Prékopa. Logarithmic concave measures with application to stochastic programming.
Acta Scientiarum Mathematicarum, 32:301-316, 1971.

139

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the Amer-
ican Mathematical Society, 58(5):527-535, 1952.

J. Robinson. An iterative method of solving a game. Annals of mathematics, pages
296-301, 1951.

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary mrfs via
extended roof duality. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1-8. IEEE, 2007.

P. Rusmevichientong and J. N. Tsitsiklis. Linearly parameterized bandits. Mathematics
of Operations Research, 35(2):395-411, 2010.

P. Rusmevichientong, B. Van Roy, and P. W. Glynn. A nonparametric approach to
multiproduct pricing. Operations Research, 54(1):82-98, 2006.

S. Sakaue, M. Ishihata, and S.-i. Minato. Efficient bandit combinatorial optimization
algorithm with zero-suppressed binary decision diagrams. In International Conference on
Artificial Intelligence and Statistics, pages 585-594, 2018.

A. Saumard and J. A. Wellner. Log-concavity and strong log-concavity: A review. Statis-
tics Surveys, 8:45, 2014.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346-355, 2000.

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107-194, 2012.

O. Shamir. On the complexity of bandit and derivative-free stochastic convex optimiza-
tion. In Conference on Learning Theory, pages 3—24, 2013.

O. Shamir. An optimal algorithm for bandit and zero-order convex optimization with
two-point feedback. Journal of Machine Learning Research, 18(52):1-11, 2017.

A. Singla, S. Tschiatschek, and A. Krause. Noisy submodular maximization via adaptive
sampling with applications to crowdsourced image collection summarization. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

C. J. Stone. Additive regression and other nonparametric models. Annals of Statistics,
pages 689-705, 1985.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal of
Machine Learning Research, 4(Oct):773-818, 2003.

M. Tang, I. B. Ayed, and Y. Boykov. Pseudo-bound optimization for binary energies. In
European Conference on Computer Vision, pages 691-707, 2014.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

140

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

T. Uchiya, A. Nakamura, and M. Kudo. Algorithms for adversarial bandit problems
with multiple plays. In International Conference on Algorithmic Learning Theory, pages
375-389, 2010.

M. Valko, R. Munos, B. Kveton, and T. Kocdk. Spectral bandits for smooth graph
functions. In International Conference on Machine Learning, pages 46-54, 2014.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXww:1011.3027, 2010.

V. G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on
Computational Learning Theory, pages 371-386, 1990.

J. Wang, R. Fujimaki, and Y. Motohashi. Trading interpretability for accuracy: Oblique
treed sparse additive models. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1245-1254. ACM, 2015.

M. K. Warmuth and D. Kuzmin. Randomized online pca algorithms with regret bounds
that are logarithmic in the dimension. Journal of Machine Learning Research, 9(Oct):
2287-2320, 2008.

P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11(1):
128-149, 1976.

Y. Ye, L. Lei, and C. Ju. Hones: A fast and tuning-free homotopy method for online
newton step. In International Conference on Artificial Intelligence and Statistics, pages
2008-2017, 2018.

J. Zimmert and Y. Seldin. An optimal algorithm for stochastic and adversarial bandits.
In International Conference on Artificial Intelligence and Statistics, pages 467-475, 2019.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In International Conference on Machine Learning, pages 928-936, 2003.

141

