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Abstract

As the growth of CPU clock speed has been no longer sustained, modern processors adopt a multicore

architecture to provide more computing power to users. Since multithreading becomes essential to un-

leashing the power of modern multicore machines, more and more applications, libraries, and runtime

systems are parallelized by threads. The key to achieving high performance on massively parallel pro-

cessors is keeping all cores busy. Fine-grained multithreading that decomposes a problem into many

small pieces of work is considered to be a promising approach to exploiting parallelism in irregular and

complex parallel programs. A threading overhead becomes more and more important since it dictates

the finest grain size of threads.

Multithreading programming with a traditional OS-level thread, however, imposes significant thread-

ing overheads, leading to poor scalability of fine-grained and irregular multithreaded programs on highly

parallel systems. To overcome the heavyweight nature of OS-level threads, another thread implemen-

tation has gained popularity. A stackless thread is a lightweight threading method that trims down

overheads by removing context switches on fork and join operations. A stackless thread has a few hun-

dred times lower fork-join overheads than an OS-level thread does. However, omitting context switches

lacks several scheduling capabilities including suspension and intermediate termination, limiting its pro-

grammability.

A user-level thread (ULT) is an alternative threading technique that implements a context switch in

user space. A ULT is positioned between the two opposite threading techniques; thanks to a lightweight

user-level context switch, it is more efficient than an OS-level thread while more capable than a stackless

thread. Nonetheless, because of its limited functionality than that of an OS-level thread and its higher

threading overhead than that of a stackless thread, parallel unit abstractions in major parallel systems

are based on either OS-level threads out of fear of missing capabilities or lightweight stackless threads

for performance. This prevailing practice imposes high threading overheads or excessively limits the

functionality, making high-performance multithreading unnecessarily challenging.

This dissertation presents that a ULT can be a solid replacement of an OS-level thread and a stack-

less thread as a means of multithreading. To investigate a highly optimized implementation of ULTs,

we design a user-level threading library that accommodate several user-level threading techniques with

different trade-offs of performance and functionality. We also develop a ULT-based runtime implementa-
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tion for OpenMP, which is one of the most popular high-level multithreading programming models. Our

OpenMP library demonstrates that mapping lightweight ULTs to OpenMP threads and tasks remarkably

enhances the performance of real-world applications without violating the OpenMP standard.

We first show the design of a highly customizable user-level threading library that offers optimization

opportunities to knowledgeable developers. Our proposed framework, Argobots, is a highly optimized

user-level threading library that balances generality and specialization by providing a low-level inter-

face to define and control the runtime behavior. The default policies and parameters in Argobots are

well optimized for generic use, while Argobots provides flexibility to manage memory resources and

customize scheduling algorithms via several functions. Argobots exposes three different parallel exe-

cution units associated with an OS-level thread, a stackless thread, and a ULT, each of which provides

different capabilities so that users can control the concurrency with necessary features.

Minimizing threading overheads is indispensable to exploiting fine-grained parallelism. We perform

an in-depth analysis of performance vs. functionality trade-offs of user-level threading techniques. We

identify a point during the execution of a thread that triggers a context switch as one of the highest

sources of overheads. This point, which we refer to as a deviation, disrupts an otherwise low-overhead

run-to-completion execution. We conduct a comprehensive investigation of a wide spectrum of user-

level threading methods with respect to how they handle deviations while covering both parent- and

child-first scheduling policies.

We implement Argobots with these user-level threading techniques and evaluate their performance

on various CPU architectures including Intel Skylake, Intel Xeon Phi, IBM POWER8, and 64-bit ARM.

Our evaluation involves an instruction- and cache-level analysis of all methods. Our experiments present

that threading methods that assume the absence of deviation and dynamically provide context-switching

support on deviation offer the best trade-off between performance and functionality when the likelihood

of deviation is low.

To showcase that a ULT can be substituted for a thread abstraction in a high-level multithreading

programming model, we developed BOLT, a highly optimized ULT-based OpenMP library derived from

LLVM OpenMP. BOLT significantly improves performance over existing OpenMP implementations

using OS-level threads thanks to lightweight threading operations. We find that such performance im-

provement is hardly obtained by a simple adaption of lightweight ULTs. Specifically, it is accomplished

on three fronts: (1) advanced data reuse and thread synchronization strategies; (2) a novel thread coor-

dination algorithm that adapts to the level of oversubscription; and (3) an implementation of the modern

OpenMP thread-to-CPU binding interface tailored to ULT-based runtimes.

Our evaluation focuses on OpenMP nested parallel regions, which are often unintentionally introduced

in real-world applications as a result of independent OpenMP parallelization in multiple software layers.

Nested parallel regions have been known to cause the destructive performance with leading OpenMP
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runtimes because of their reliance on heavyweight OS-level threads. Our BOLT runtime system can

successfully exploit such nested parallelism; our experimental results show that BOLT outperforms all

existing runtimes under nested parallelism while transparently achieving similar performance compared

with leading state-of-the-art OpenMP runtimes under flat parallelism.

These lightweight threading frameworks with our extensions and optimizations are publicly available.

Thanks to numerous collaborators and contributors, these libraries are maintained high quality and used

by several research and industrial projects. Our developed lightweight threading libraries, Argobots and

BOLT, prove that a ULT is a scalable and practical tool for multithreading, which elevates the perfor-

mance of massive and fine-grained parallel programs in the era of multicore and many-core processors.
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1 Introduction

The exponential growth of computing power, which is known as Moore’s Law, has driven scientific and

social innovation in the world. The twentieth century witnessed this unprecedented growth achieved

by shrinking the process of semiconductors, which increased clock speed without enlarging power con-

sumption. Dennard’s scaling was over, however, after entering the twenty-first century. Since the ex-

ponential growth of the single-core performance has become no longer sustainable, the semiconductor

industry instead has increased hardware parallelism to enhance the performance of chips as a whole.

Applications must be written to utilize hardware parallelism to truly exploit compute power in such

modern highly parallel hardware.

One of the major sources of hardware parallelism is core-level parallelism. Multiple cores that run in

parallel are embedded into a single processor. Multithreading is the dominant form of parallelization to

execute a single program on multiple cores. In a multithreading programming model, multiple indepen-

dent sequences of work are packaged as threads and distributed to cores so that they can be executed in

parallel. Numerous research- and production-level parallel programming systems provide an implemen-

tation of threads and have successfully exploited thread-level parallelism in countless applications.

Despite the abundance of potential thread-level parallelism in programs, an overhead in threading

operations such as thread creation and destruction (often referred to as fork and join), a yield operation,

and synchronization dictates how small granularity of each thread in programs can be. For example,

consider that a fork-join overhead is 10 microseconds on a certain processor. To keep the ratio of the

parallelization overhead less than 5%, the average execution time of threads needs to be at least larger

than 200 microseconds. As the numbers of cores in a single chip and compute nodes in a whole system

are increasing, achieving strong scaling—shortening execution time while keeping the problem size—

becomes increasingly challenging, which demands more lightweight thread implementation.

Moreover, in a highly parallel environment, dynamic load balancing with fine-grained parallelism

becomes critical to achieve efficient utilization of CPUs. Such dynamic load balancing is required for

not only irregular parallelism that often appears in recursive divide-and-conquer algorithms and graph

algorithms but also apparently regular parallelism that becomes irregular because of nondeterminism

of hardware performance. For example, even if each thread computes the same amount of data and

thus the computation size looks uniform across threads, several speculative behaviors in modern pro-
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Table 1.1: Difference of functionalities between an OS-level thread, a stackless thread, and a ULT. We assume

Pthreads [95], Argobots [1] tasklets, and Argobots ULTs as implementations of each type of thread.

OS-level threads Stackless threads User-level threads (ULTs)

Fork-join X X X

Synchronization other than fork-join X X

Suspension X X

Intermediate termination X X

Per-thread signal mask X

Non-cooperative preemption X

cessors including out-of-order execution, branch prediction, hierarchical memory caches, and memory

prefetching vary execution time of each thread. To keep all cores busy, fine-grained decomposition of a

problem and dynamically balance computational load across cores are known to be effective, rendering

lightweight threading more important.

Nonetheless, not all the popular thread implementations are suitable for fine-grained lightweight mul-

tithreading. A thread implementation provided by an operating system (OS), which is called an OS-level

thread, 1 has been the most commonly used implementation of threads. An OS-level thread supports

all the threading functionalities that nowadays people naturally expect for “threads”: fork and join, sus-

pension, various synchronization, thread-local storage, and non-cooperative preemption. However, an

OS-level thread has been criticized because of its heavyweight nature associated with kernel operations.

Another thread implementation has been proposed to minimize the threading cost by simply imple-

menting minimum thread functionalities with a function pointer and its argument. Such a thread does

not have its stack and can be invoked by a mere function call. Its stackless implementation, however,

lacks several threading capabilities including suspension and several types of synchronizations because

it is unable to freely save and resume the execution context during execution. In this work, we refer to

this thread implementation as a stackless thread2.

An OS-level thread and a stackless thread have extremely opposite trade-offs; an OS-level thread is

more capable but heavyweight while a stackless thread is lightweight but lacks several threading fea-

tures. A user-level thread (ULT) is a thread implementation positioned between these two threading

techniques. Unlike a stackless thread, each ULT manages its call stack so that every thread has an inde-

pendent execution context, enabling several threading operations including suspension and thread-thread

1An OS-level thread is sometimes referred to as a kernel thread, or a kernel-level thread. In some literature, it is simply

called a POSIX thread (Pthreads [95]) since, in most Linux systems, Pthreads follows a one-to-one mapping between a

user thread and a kernel thread.
2Some literature calls this a run-to-completion thread since such a thread cannot suspend while running. Other studies call

this type of thread a task, a microtask, or a tasklet to differentiate it from an OS-level thread.
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OS-level threads Stackless threads User-level threads (ULTs)
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Figure 1.1: Fork-join overheads on an Intel Knights Landing processor using a microbenchmark presented in

Figure 3.9 ((N,n) = (256, 0)). This experiment used Pthreads, Argobots [1] stackless threads, and

Argobots ULTs as implementations of OS-level threads, stackless threads, and ULTs, respectively.

synchronization. ULTs are more lightweight than OS-level threads because ULT’s context switch im-

plemented in the user space (which is often called user-level contest switch) does not incur heavyweight

kernel operations that are the performance bottlenecks of OS-level threads.

Table 1.1 overviews the difference of functionalities between three thread implementations: an OS-

level thread, a stackless thread, and a ULT. The table shows that an OS-level thread provides the widest

variety of threading functionalities while a stackless thread only supports a basic fork-join operation.

A ULT supports more threading operations than a stackless thread but fewer than an OS-level thread

because some features require the involvement of an OS kernel.

A stackless thread, in contrast, achieves the best fork-join performance among three thread types.

Figure 1.1 presents the fork-join overheads of three thread types on Intel Knights Landing 72103. No-

tably, OS-level threads incur more than 600 times larger fork-join overheads compared with stackless

threads. ULTs are not as slow as OS-level threads, although they have 2.2x larger overheads than stack-

less threads because of the cost associated with user-level context switching and stack manipulations.

Such an opposite trade-off of performance and functionalities leads the community to settle on a

black-and-white perspective. Nowadays, major multithreading systems avoid using ULTs because of its

limited threading features than those of OS-level threads or its higher threading cost than that of stack-

less threads. For example, thread implementations natively supported by major compilers such as C++

standard threads [104] and OpenMP multithreading extensions [102, 126, 132] map their “threads”

to OS-level threads for their rich threading capabilities. On the other hand, numerous lightweight

multithreading frameworks including Intel Thread Building Blocks (Intel TBB) [143] and OpenMP

tasks [102, 126, 132] adopt a lightweight stackless thread for performance. This prevailing standpoint

of the runtime developers often imposes excessive threading overheads when underlying thread imple-

mentations are OS-level threads, or unnecessarily limits the threading functionalities when runtimes

3We used a microbenchmark shown in Figure 3.9 while setting n and N to 0 and 256. In Section 3.7 we explain the detailed

experimental environment.
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employ stackless threads, making the high-performance multithreading unnecessarily challenging from

the viewpoint of performance or functionalities.

This thesis argues that a ULT is placed at the best position in this trade-off relationship and can

be a solid replacement of an OS-level thread and a stackless thread as a means of high-performance

multithreading. This work makes the following statements:

1. A ULT can be as efficient as a stackless thread. With proper designs and implementations, the

threading overhead of ULTs can be as low as that of stackless threads without losing critical

threading capabilities (Chapter 3).

2. A ULT can be a substitute for an OS-level thread as a thread abstraction in parallel programming

languages. A ULT can be used for a thread abstraction in one of the most popular multithread-

ing programming models, OpenMP [129]. Such a replacement significantly reduces threading

overheads thanks to lightweight threading operations (Chapter 4).

We first show a highly optimized user-level threading library, Argobots [1], and describe numerous

thread implementations in Argobots that have different trade-offs between performance and functional-

ities, proving that some user-level threading techniques have low threading overheads close to that of

a stackless thread [2]. Next, we present our highly optimized OpenMP implementation over Argobots,

BOLT [3]. BOLT shows that replacing OS-level threads with ULTs in an OpenMP threading layer can

significantly improve the performance of fine-grained parallel programs without breaking the OpenMP

specification. These artifacts demonstrate that a ULT is a scalable thread implementation with rich

threading capabilities and suitable for multithreading in the era of multicore and many-core processors.

1.1 Contributions

The primary contributions of this dissertation are twofold. First, a highly optimized user-level threading

library with numerous lightweight user-level threading methods, some of which are as fast as a stackless

thread. Second, design and implementation of a practical and scalable ULT-based OpenMP library. We

develop both libraries with in-depth performance analysis and confirm the performance improvement by

evaluating them with several applications. Specifically, our detailed contributions are as follows.

Lightweight User-Level Threading Library

1. We first show design and implementation of a highly optimized user-level threading library, Ar-

gobots [1]. Argobots exposes a low-level interface to control scheduling and synchronization
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methods so that application and runtime developers can keenly optimize programs running on top

of Argobots.

2. We analyze the difference of performance and functionalities between two thread types in Argob-

ots: a ULT and a stackless thread. Our highly optimized implementations of a ULT and a stackless

thread reveal that a deviation [151, 152] is the fundamental cause of context switching and thus

the associated fork-join cost when implementing ULTs.

3. We explore the full spectrum of threading techniques with an in-depth analysis at the instruction

and cache levels. We characterize performance vs. functionalities trade-offs of these threading

techniques regarding the probability of deviation while covering all feasible methods for building

a generic threading library, including a few methods missing from the past literature.

4. Our detailed analysis demonstrates that some of our threading techniques have as low fork-join

overheads as that of stackless threads. This result poses a question to the prevailing use of stackless

threads for performance at the cost of several threading features that are useful to write parallel

programs with ease.

5. We provide highly optimized implementations of all the methods within the same threading library

for a fair comparison of all the threading techniques. Our implementation covers major hard-

ware architectures in the high-performance computing community—Intel Skylake, Intel Knights

Landing, ARM 64, and IBM POWER8 processors—and highlights the importance of lightweight

user-level threading techniques for architectures that employ less powerful cores and have larger

thread contexts.

6. We discuss Argobots from aspects of software maturity and composability. Thanks to its cus-

tomizability, Argobots can be easily adopted by other runtime systems and libraries such as

OpenMP [129] (i.e., BOLT) and MPI [121]. Argobots is used in several research and production

runtimes, which enables these software components to interoperate via the Argobots interface.

ULT-based OpenMP Library

1. We present that a ULT is suitable for thread implementation of multithreading programming mod-

els that traditionally use OS-level threads. Specifically, we target one of the most popular multi-

threading programming models in high-performance computing, OpenMP [130]. We describe the

detailed design of a ULT-based OpenMP library, called BOLT, which integrates ULTs into LLVM

OpenMP [132] without violating the OpenMP specification.
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2. We showcase that naive use of lightweight ULTs by replacing call sites of OS-level threads in a

runtime system originally designed for OS-level threads cannot fully exploit lightweight ULTs.

In particular, our performance analysis finds several performance barriers of an OpenMP parallel

region, which is the most popular parallelization method in OpenMP.

3. We focus on nested OpenMP parallel regions in LLVM OpenMP and devise several solutions to

address the scalability issue: 1) several optimizations to remove bottlenecks in LLVM OpenMP

(e.g., thread resource management and thread creation algorithms) which are negligible in the

original LLVM OpenMP implementation relying on heavyweight OS-level threads, 2) an algo-

rithm to implement OpenMP’s thread-to-CPU binding interface tailored specifically to ULT-based

runtimes, and 3) a novel thread coordination algorithm that transparently achieves high perfor-

mance for both flat and nested parallelism, which is required by an OpenMP multithreading model

since OpenMP is used for both coarse- and fine-grained parallelism.

4. Our evaluation with several microbenchmarks demonstrates that BOLT significantly outperforms

existing OpenMP runtimes when parallel regions are nested without hurting performance under

flat parallelism.

5. We assess the practicality of BOLT for mainstream use. Thanks to LLVM OpenMP, BOLT works

with existing OpenMP-parallelized applications and libraries compiled with GCC, LLVM, and

Intel OpenMP compilers without recompilation, which significantly improves practicality. We

also discuss limitations in using ULTs for OpenMP threads that stem from the fact that 1) some

well-known computational libraries assume an OS-level thread as an OpenMP thread and 2) the

specification has been designed primarily for OS-level threads-based OpenMP runtimes.

Evaluation with Applications

1. We evaluate all the user-level threading methods in Argobots with highly optimized FMM imple-

mentation and distributed graph analytics code. We argue that ULTs in applications that require

low fork-join overheads incur fewer deviations. Our evaluation indicates that, in such applications,

user-level threading techniques that defer context management until a deviation happens show the

best performance vs. functionality trade-off.

2. We evaluate BOLT with OpenMP-parallelized N-body and quantum chemistry code which have

parallel regions unintentionally nested in multiple OpenMP-parallelized software layers. Our ex-

periments show that our ULT-based lightweight OpenMP runtime, BOLT, can exploit such nested

parallelism efficiently compared with existing OS-level thread-based and ULT-based OpenMP

runtimes.
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3. Our experiments evaluate the effect of choosing optimal user-level threading methods in BOLT.

Our evaluation with KMeans code shows that adopting the optimal ULT type in the underlying

Argobots layer enhances the performance of fine-grained multitasking of OpenMP when the de-

viation probability is low.

1.2 Outline

The organization of this thesis is as follows. In Chapter 2 we first describe the background of three types

of thread implementation and then explain OpenMP as one of the most widely used multithreading

programming models. Chapter 3 discusses the design and implementation of Argobots and explores

the various lightweight user-level threading techniques implemented in Argobots with in-depth analysis

from the viewpoints of performance and functionalities of threads. Chapter 4 presents the design and

implementation of BOLT, an OpenMP library over Argobots. In Chapter 5 we evaluate the performance

of Argobots and BOLT with several applications. Chapter 6 discusses the practicality of our proposed

frameworks. Chapter 7 covers the related work and Chapter 8 gives conclusions of this thesis.
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2 Background

This chapter overviews the background knowledge about lightweight threading frameworks. The first

section describes three major thread implementations–OS-level threads, stackless threads, and ULTs–

and looks into the difference of threading features and associated overheads between these three tech-

niques. The next section explains one of the most widely used multithreading programming models,

OpenMP [130], and its representative implementations.

2.1 Thread Implementations

Modern compute resources expose several levels of parallelism: for example, parallelism in a single

instruction (e.g., SIMD instructions), parallelism across multiple instructions (e.g., out-of-order execu-

tion and pipelining), core-level parallelism (e.g., multicore execution), and node-level parallelism (e.g.,

distributed computing). Multithreading is referred to as a means to exploit core-level parallelism by

running threads in parallel on multiple cores. In comparison to multiprocessing (e.g., MPI [121], which

runs processes that have isolated virtual memory spaces1 in parallel), most thread implementations by

default share the memory space among threads.2 In multithreading, therefore, all data are visible to ev-

ery thread without explicit memory read and write operations although correct multithreaded execution

often requires explicit memory synchronizations such as a memory barrier and atomic operations. In

this work, we define a thread as a schedulable work unit that executes a sequence of work in a shared

memory environment. We note that we use the term thread instead of task, which is also a widely used

term to refer to such a parallel work unit; literature on a parallel programming model tends to refer to

such a lightweight parallel unit as a task, while their underlying implementations are often discussed as

threads. This paper focuses on implementations and thus uses threads.

Since multithreading is a dominant form to exploit core-level parallelism, there exist several thread

implementations that have different characteristics in terms of performance and capabilities. In this

section, we overview three representative implementations of threads and discuss their performance and

functionalities.

1Some process implementations share memory space [89].
2Some thread implementations do not transparently share memory and require explicit operations [14].
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2 Background

2.1.1 OS-Level Threads

OS-level threads are thread implementations that are provided by and integrated into OS. The most

notable implementation is POSIX threads (Pthreads), which implements threads specified in the POSIX

standard [95]. Although the POSIX specification defines only an interface and functionalities of threads,

threads in most Pthreads packages are mapped to kernel threads managed by OS. Solaris threads [154]

and Windows threads are other examples of OS-level threads. In the following, we assume Pthreads as

an OS-level thread.

OS-level threads provide the widest range of functionalities. In addition to the most basic fork

and join operations (pthreads create() and pthreads join()), most OS-level thread implementations

support several synchronization objects such as a barrier (pthreads barrier t), a spinlock (pthreads -

spinlock t), a mutex (pthreads mutex t), and a condition variable (pthreads cond t). A yield operation

(pthreads yield()) and an intermediate termination operation (pthreads exit()) provide scheduling

flexibility. Furthermore, OS-level threads support thread-local storage (TLS, which is supported by

pthread specific t), thread-core binding (cpu set t), and per-thread signal masks (signal set()). One

of the unique functionalities of OS-level threads is non-cooperative preemption, which interrupts the

currently running thread by a kernel timer, saves its execution context, and schedules other threads for

fair scheduling. Because an OS-level thread is integrated into a kernel and thus considered as a first-level

thread implementation, major compilers assume OS-level threads as “threads” by default. These com-

pilers provide an efficient implementation of TLS accesses, which can be optimized by compilers. For

example, most C++ compilers support TLS for OS-level threads by default as std::thread introduced

in C++11 [104].

OS-level threads, however, suffer from high threading overheads incurred by kernel involvement. Be-

cause schedulers of OS-level threads are integrated into OS, any scheduling operation requires heavy-

weight system calls, which contributes to the enormous overheads of OS-level threads. For example,

on an Intel Skylake machine, system calls to change the CPU affinity or update the register pointing

to TLS cost more than a few hundred cycles. Another heavy operation associated with scheduling is

context switching, which exchanges a stack and saves and restores register states. Context switching re-

quires stack changes and pollutes caches. These overheads inflate the fork-join cost of OS-level threads,

inhibiting scalability under fine-grained multithreading. Such a heavyweight but fully capable thread

implementation is sufficient for coarse-grained multithreading, whereas more lightweight threads are

indispensable to fine-grained multithreading.
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2.1.2 Stackless Threads

A stackless thread is regarded as an implementation of a lightweight thread that is suitable for fine-

grained parallelism. A stackless thread achieves least fork-join overheads by eliminating extra resource

management and associated cost that is necessary for threading capabilities other than fork and join

operations, both of which are considered to be the minimum requirements for threads. As the essence

of threads is a schedulable function that can be detached from the current execution context and later

invoked, understanding a mechanism of function calls is important to know fundamental overheads of

fork and join operations. We first briefly overview how a function is called.

1 void callee(void *arg) {

2 // prologue.

3 [grow stack];

4 [save callee-saved registers];

5 // function body.

6 ...

7 // epilogue.

8 [restore callee-saved registers];

9 [restore a stack pointer];

10 [pop the parent instruction address];

11 // return to a caller.

12 [jump to the original instruction address];

13 }

14 void caller(...) {

15 ...

16 [save caller-saved registers];

17 [set an argument in a register/stack];

18 [push the current instruction address];

19 [set a stack pointer];

20 jump callee;

21 [restore caller-saved registers];

22 ...

23 }

Figure 2.1: Flow of a function call. In reality, compiler optimizations might reorder and eliminate some of these

instructions.

A function call can be executed only in sequential order, but it is the simplest way to perform a unit of

work. Figure 2.1 roughly presents an assembly-level flow of a function call. In the following discussion,

we use a void(*)(void*) function, whereby arguments can be packed and passed via a void pointer

and return values can be stored in one of the arguments. Values stored in caller-saved registers are not

kept after a function call, so a caller function needs to saves these values in callee-saved registers or

stack if necessary (line 16). The first argument is assigned to a predetermined place, usually a specific

register. After saving an instruction address and updating a stack register to point to the top of the stack,

23



2 Background

the control jumps to a target function. The callee grows a stack by updating a stack pointer. The callee

is responsible for keeping values in callee-saved registers before and after the function. In this case, a

callee saves and restores callee-saved registers that are modified in the function body at lines 4 and 8.

After running its body, it loads a parent stack pointer and returns to a callee using the parent instruction

address. The caller restores the evicted values originally in the caller-saved registers as needed at line

21 and resumes.

A standard function call is lightweight, but its execution order is predetermined because the call site

is embedded in a program. Threads need a mechanism to delay and synchronize execution. In addition

to overheads of function call, minimal additional operations to implement threads are twofold: (1) a

thread descriptor that stores completion status, a function pointer, and its argument and (2) a scheduling

mechanism that keeps thread descriptors and runs a ready ULT, both of which are fundamental for

detaching and deferring the execution of the function. The simplest and most lightweight threading

method satisfies only these requirements. This technique, however, abandons all threading features that

require context switching. Since this thread does not have its own stack, we call it a stackless thread.

We first present the implementation of a stackless thread and describe why it does not allow context

switching during execution.

1 struct thd_desc_t {

2 void (*f)(void *arg);

3 void *arg;

4 int state;

5 ...

6 };

7 void schedule_stackless(thd_desc_t *thd) {

8 thd->state = STARTED;

9 thd->f(thd->arg);

10 thd->state = COMPLETED;

11 }

Figure 2.2: Pseudocode of invocation of a stackless thread.

We present an algorithm to invoke a stackless thread in Figure 2.2. A stackless thread requires only

a thread descriptor that stores thread information and scheduling mechanism that is necessary to choose

and invoke a stackless thread. On thread creation, a thread descriptor that holds a function pointer and

its argument is allocated. A stackless thread can be invoked by simply calling it on top of the stack of

the current thread. Compared with an immediate function call natively supported by programming lan-

guages, a stackless thread incurs overheads of thread descriptor management and scheduling mechanism,

both of which are indispensable costs to detach the execution. A stackless thread has the least fork-join

overheads and thus is used in several implementations such as Filaments [116] and Intel TBB [143]. A
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stackless thread, however, lacks threading capabilities that require context switching because an invoked

child function is called on top of a parent invoking thread and thus we cannot resume the parent thread

until the child thread is completed. Consider a yield operation that returns control from a currently run-

ning stackless thread to an invoker. To restore the context of the invoking thread, values of hardware

registers (including a stack pointer and an instruction address) must be reinstated. Nevertheless, the

stackless thread saves none of them explicitly on invocation; thus, a threading library cannot retrieve

these values although they are possibly stored somewhere in the call stack of the stackless thread as in-

structed by a compiler. Even if registers could be restored, because both the child and the parent threads

share the same stack region, any stack growth such as a function call and an allocation of new variables

in a stack would overwrite the call stack of the child stackless thread. This parent-child welding deprives

a stackless thread of threading features that require an independent invoker’s context. This limitation is

the largest drawback of a stackless thread.

2.1.3 User-Level Threads (ULTs)

A stackless thread lacks the context-switching capability because it bonds contexts of a parent thread

and a child thread together. If their contexts are maintained independently, however, an invoked thread

can return to schedulers at any point. A user-level thread (ULT) creates and maintains a thread context

in order to support various threading capabilities that allow efficient scheduling. However, a ULT suffers

from context management overheads. In implementing ULTs, lightweight context switching plays an

important role to address the issue of context welding between an invoker and an invoked thread. Hence,

we first explain a lightweight context-switching implementation entirely performed in the user space,

which is often referred to as user-level context switch. Our implementation of user-level context switch

follows that of Boost C++ Libraries [35]; similar codes are found in major threading packages, for

example, in Qthreads [173], Nanos++ [120], Converse [108], and MassiveThreads [124] as well as

Argobots [1].

Figure 2.3 presents the pseudocode of user-level context switch. This implementation represents a

context as a single pointer to the call stack (ctx t* in the figure) since all the other data are saved at

the top of the stack. Since a caller of switch ctx() is responsible for saving and restoring caller-saved

registers before and after calling switch ctx(), switch ctx() itself needs to manage only callee-saved

registers (lines 3 and 9). We note that threading libraries must save and restore all callee-saved registers

specified by application binary interfaces (ABIs) because, without a special compiler help, libraries are

unable to obtain information about which callee-saved registers are read after calling switch ctx(). This

routine first saves all the callee-saved registers including an instruction address on top of the stack (lines

3 and 4) and stores the current stack pointer in self ctx (line 5). Then, switch ctx() updates the stack
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1 void switch_ctx(ctx_t **self_ctx, ctx_t *target_ctx) {

2 // save the current context.

3 [push callee-saved registers];

4 [push the parent instruction address];

5 *self_ctx = stack_pointer;

6 // restore the target context.

7 stack_pointer = target_ctx;

8 [pop the target instruction address to regA]; // regA is caller-saved.

9 [pop callee-saved registers];

10 // jump to the target context.

11 jump *regA;

12 }

Figure 2.3: Pseudo assembly code of user-level context switch.

1 void start_ctx(ctx_t **self_ctx, void *stack, void (*f)(void *), void *arg) {

2 // save the current context.

3 [push callee-saved registers];

4 [push the parent instruction address];

5 *self_ctx = stack_pointer;

6 stack_pointer = stack; // start f on top of stack.

7 // call the target function.

8 f(arg);

9 }

10 void end_ctx(ctx_t *target_ctx) {

11 // restore the target context.

12 stack_pointer = target_ctx;

13 [pop the target instruction address to regA]; // regA is caller-saved.

14 [pop callee-saved registers];

15 // jump to the target context.

16 jump *regA;

17 }

Figure 2.4: Pseudo assembly code to start and finish thread contexts.

pointer to the stack address pointed to by target ctx (line 7) and restores the instruction address and

the callee-saved register values from the stack of the target in reverse order (lines 8 and 9). The target,

which is suspended in switch ctx(), is resumed by jumping to the target instruction address (line 11).

We note that all of these operations are executed in the user space.

If a scheduler’s context has been saved properly, switch ctx() enables a ULT to save its context and

resume a scheduler whenever it needs to return to a scheduler. This method, however, is inappropriate

for initiating a ULT because switch ctx() takes target ctx that must have been already initialized.

This routine always saves the context of the current ULT, but this action is unnecessary when a ULT

finishes because that ULT will never be resumed again. To efficiently handle these cases, we split the

functionality of switch ctx() and create two methods, start ctx() and end ctx(), to start and finish
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contexts, respectively. Figure 2.4 shows the pseudocodes of these functions. Their implementations

come from the first and the latter parts of switch ctx(). start ctx() saves the context of the current

thread (lines 3–5) but freshly executes a function f() on top of stack (lines 6 and 8), while end ctx()

restores and resumes the target context (lines 12–14, 16) without saving the current context.

ULTs with the three context-switching functions described above address the parent-child bonding

issue and enable unconstrained scheduling among threads. We explain an invocation algorithm of ULTs

with switch ctx(), start ctx(), and end ctx(). We note that the following description assumes a typical

parent-first ULT (which we call Full in Chapter 3) as the representative ULT implementation.

1 struct thd_desc_t {

2 void (*f)(void *arg);

3 void *arg;

4 int state;

5 void *stack;

6 ctx_t *ctx; // context of this thread.

7 ...

8 };

9 ctx_t *g_caller_ctx; // a global variable

10 void schedule_ult(thd_desc_t *thd) {

11 if (thd->state != STARTED) {

12 start_ctx(&g_caller_ctx, thd->stack, ult_wrapper, thd);

13 } else {

14 switch_ctx(&g_caller_ctx, thd->ctx);

15 }

16 }

17 void ult_wrapper(thd_desc_t *thd) {

18 thd->state = STARTED;

19 thd->f(thd->arg)

20 thd->state = COMPLETED;

21 end_ctx(g_caller_ctx);

22 }

Figure 2.5: Pseudocode of invocation of a ULT (Full in Chapter 3).

Figure 2.5 shows the pseudocode of a function that invokes a ULT. A given ULT is started by start -

ctx() (line 12) if thd has not been executed previously; otherwise, it resumes thd by switch ctx()

(line 14) since its context has already been initialized. A user-given thread function is called in a wrapper

function ult wrapper() (line 17) so that end ctx() is executed on completion (line 21) because a ULT

invoked by start ctx() cannot return to the parent thread just by a standard return procedure. Since

both start ctx() and switch ctx() save the caller’s context in g caller ctx, the caller can be resumed

by switch ctx() or end ctx() at any time.

Independent management of contexts of parent and child threads allows yielding, intermediate termi-

nation, and efficient synchronization as explained in Section 3.2. Because of rich capabilities, several
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threading libraries adopt ULTs; for example, Qthreads [173], X10 [50], Task Parallel Library [114],

Nanos [120], Converse [108], and MassiveThreads [124] are well-known user-level threading libraries,

while some programming languages such as Python [165] and Go [145] natively support ULTs.

However, ULTs have larger fork-join overheads because of start ctx() and switch ctx() are heav-

ier than fork and join operations of a stackless thread. The stack change increases memory footprint

and pollutes caches, which lowers performance. Chapter 3 will discuss a high-performance user-level

threading library, called Argobots, and explore the implementations of lightweight ULTs that have as

low overheads as that of a stackless thread but are implemented without losing functionalities of ULTs.

Although ULTs have rich capabilities and low overheads, most applications do not directly use ULTs;

they rather use ULTs as an implementation of an abstracted parallel work unit. Numerous high-level par-

allel runtimes use ULTs for this purpose. Representative runtimes that use ULTs include Charm++ [107],

Chapel [47], XcalableMP [113], Legion [28], ParalleX [75], PaRSEC [36], Realm [13], Kokkos [43],

RAJA [90], and Adaptive MPI [91]. To deeply study a use case of ULTs in a real high-level parallel

runtime system, we focus on OpenMP [130], the most popular multithreading programming languages

in the high-performance computing field [29]. In the next section, we discuss existing work that tackled

fine-grained parallelism in OpenMP.

2.2 OpenMP for Multithreading

OpenMP [130] is a widely used multithreading application programming interface (API) that sup-

ports shared memory parallel programming in C, C++, and Fortran. The OpenMP community con-

tinues to extend its standard to cover several types of parallelism. The latest OpenMP specification

(OpenMP 5.0 [130]) includes SIMD-level parallelism [110], offloading for accelerators such as GPU [30]

and FPGA [149], and multitasking that supports deep recursion [22], fine-grained loops [159], and

dependency-based synchronization [78]. Nonetheless, multithreading has been initially supported since

OpenMP 1.0 [131] and is widely used to exploit the computing power of multi- and manycore CPUs. Be-

cause of simplicity, expressiveness, and multi-platform support, countless applications and libraries use

OpenMP for multithreading. For example, the survey of the US Exascale Computing Project reported

that OpenMP is the most popular programming model for multithreading [29]. Major C, C++, and

Fortran compilers including the GNU Compiler Collection (gcc, g++, and gfortran) [77], Intel C/C++

Compilers (ICC) [98], Intel Fortran Compiler (ifort) [55], Clang [54], flang [133], and F18 [67] support

OpenMP by default.
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1 void foo() {

2 #pragma omp parallel for

3 for (int i = 0; i < N; i++) {

4 compute(data[i]);

5 }

6 }

Figure 2.6: Loop parallelization by the OpenMP’s parallel for construct.

2.2.1 Programming Model of OpenMP

We briefly describe the basic programming model of OpenMP from the viewpoint of multithreading.

Figure 2.6 shows how a loop can be parallelized with OpenMP. In OpenMP, parallelism is expressed by

directives (in C and C++) or special comments (in Fortran). In the case of C and C++, #pragma omp is an

OpenMP directive and the following parallel for directs an OpenMP compiler to parallelize the loop

next to this directive. When the control encounters a statement annotated with a parallel construct,

the statement is regarded as an OpenMP parallel region and an OpenMP team is created for the parallel

region. The team consists of one or more OpenMP threads,3 where the OpenMP thread that reaches

and creates a parallel region, is called a master thread. Loop iterations annotated by the OpenMP’s for

keyword are distributed to OpenMP threads of the associated team and executed in parallel. There is an

implicit barrier after a parallel region, so the master thread exits the parallel region after completing all

the loop iterations. We note that, since it is multithreading, all data except loop induction variables (i.e.,

i in Figure 2.6) and local variables in the loop iteration are implicitly shared among OpenMP threads.

As shown in the example, despite the simple syntax, parallel for is a powerful multithreading con-

struct that can easily exploit loop parallelism, which is the most common parallel form in applications.

Knowledgeable users can use advanced OpenMP features to precisely control thread-level parallelism

by controlling a thread count (num threads clause), data sharing policies (several data-sharing attribute

clauses such as private and firstprivate), loop distribution policies (schedule clause), granularity

(chunk clause), how many loops in nested parallel loops should be collapsed (collapse clause), affinity

(proc bind clause), and reduction operations (reduction clause). OpenMP also provides various syn-

chronization mechanisms including atomic operations (atomic construct), critical sections (master and

single constructs), a barrier (barrier construct), and locks (omp set lock() and omp unset lock() func-

tions). OpenMP maintains both simplicity and high expressiveness and successfully meets demands for

both basic and advanced parallelization.

The latest OpenMP is more powerful since OpenMP extended its specification to support other types

3we note that this “thread” is a term in OpenMP. In this dissertation, we use an OpenMP thread to refer to it if the term

“thread” is confusing with ULTs or any thread implementation.
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of parallelism; the latest OpenMP 5.0 specification can direct compilers and runtimes to exploit SIMD-

level parallelism and data-level parallelism. In addition, offloading features for accelerators are actively

discussed and developed, which significantly expands the applicable range of OpenMP. As a result,

numerous applications, computational libraries, and runtime systems have been successfully parallelized

with OpenMP.

The multithreading constructs including parallel and parallel for are the most basic and most

widely used parallelization methods in OpenMP since multithreading has been and remains the center

of OpenMP and thus is well maintained and highly optimized on most platforms. Since the number

of cores in a processor is growing, fine-grained parallelism for strong scaling becomes increasingly

important. Moreover, multiple software layers that are independently parallelized by OpenMP often

introduce nested parallel regions, creating further fine-grained threads. Therefore, highly optimized

multithreading implementation in OpenMP has drawn attention.

OpenMP itself is a specification and does not indicate any specific implementation. To understand

the performance issue of multithreading programs in OpenMP, the following section describes imple-

mentations of multithreading mechanisms that are found in the major research and production OpenMP

systems.

2.2.2 Implementations of OpenMP

OpenMP-parallelized

executable

OpenMP library

OpenMP code Execution time
Compiled executable

with OpenMP library calls

Figure 2.7: Compilation and execution flow of OpenMP programs.

OpenMP is not an implementation but an international standard of APIs for C, C++, and Fortran.

Compilation of OpenMP-parallelized codes thus requires an OpenMP compiler that accepts the OpenMP

API and parallelizes programs as specified by the OpenMP standard. One possible implementation is

developing an OpenMP compiler that embeds thread management mechanism with direct thread prim-

itives (e.g., the Pthreads API) in the executable. However, since the OpenMP standard includes more

and more complicated functionalities, most OpenMP compilers choose to leave resource management

to OpenMP runtime libraries. The typical compilation and execution flow of OpenMP programs is il-

lustrated in Figure 2.7. Major OpenMP compilers do not inline OpenMP’s resource management logic
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in a program but simply emit call sites of OpenMP internal runtime functions that are implemented in

OpenMP runtime libraries bundled with compilers. At execution time, these OpenMP libraries handle

OpenMP’s complicated resource management for multithreading.

1 // automatically created by a compiler.

2 void omp_outlined(int gtid) {

3 int incr = 1;

4 int chunk = 1;

5 int lower, upper, stride;

6 __kmpc_for_static_init(gtid, &lower, &upper, &stride, incr, chunk);

7 for (int i = lower; i < upper; i += stride) {

8 compute(data[i]);

9 }

10 __kmpc_for_static_fini(gtid);

11 }

12 void foo() {

13 __kmpc_fork_call(N, omp_outlined);

14 }

Figure 2.8: Pseudo assembly code of loop parallelization by the OpenMP’s parallel for construct presented in

Figure 2.6. This pseudo code assumes an OpenMP ABI used by LLVM OpenMP [132]. We note that

several internal parameters and implementation details are omitted for the sake of brevity.

For example, consider LLVM OpenMP [132], which is an OpenMP system developed in the LLVM

project [111] and integrated into its C and C++ frontend compilers (Clang [54]) and its Fortran compil-

ers (Flang [133] and F18 [67]). Figure 2.8 presents the pseudo assembly code after compiling a program

illustrated in Figure 2.6. As shown in Figure 2.8, the OpenMP compiler does not inline resource man-

agement and parallelization logic in the executable (e.g., dividing the loop iterations into several chunks

and assigning them to newly created OpenMP threads based on the number of the available threads in

the associated OpenMP team). Instead, it calls OpenMP runtime functions starting from kmpc and

leaves all the complicated operations to the OpenMP runtime library. In this example, kmpc fork -

call() initializes the whole parallel region and assigns several newly created OpenMP threads to the

corresponding OpenMP team. Each OpenMP thread runs omp outlined() automatically generated by

a compiler and executes loop bodies associated with a certain range calculated by kmpc for static -

init(). Compared to inlining the OpenMP logic, relying on an external OpenMP library for runtime

management increases function calling overheads. However, this separation significantly improves the

modularity of the OpenMP runtime component and thus is preferred by many compiler projects. De-

spite different ABIs, all the major production OpenMP compilers including GNU C/C++ Compilers

(GCC) [126], Intel C/C++ Compilers (ICC) [102], and Clang [132] have their own OpenMP runtime

libraries.
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At present, all the production OpenMP implementations we mentioned above rely on OS-level threads

(e.g., Pthreads) to implement OpenMP threads; that is, kmpc fork call() creates OS-level threads to

execute omp outlined(). Such an OS-level thread-based implementation has been known to suffer from

large threading overheads if the granularity of OpenMP threads is small. Nested parallel regions ex-

acerbate the situation by incurring oversubscription of OS-level threads, which significantly degrades

performance. In practice, a large threading overhead compels programmers to manually control thread

granularity. Such a manual optimization does not only increase programmers’ burdens but also often

turns out to be infeasible since optimal thread granularity depends on underlying processors, the number

of available threads, and input. Several workarounds existing in the specification are rather ad-hoc be-

cause they do not reduce large overheads of OS-level threads but reduce parallelism to alleviate threading

overheads, often adversely reducing the amount of parallelism and results in underutilization of cores.

Our solution is fixing the root cause of this issue by replacing the heavyweight threading layer by our

lightweight ULTs explained in Chapter 3. In Chapter 4, we propose our ULT-based LLVM OpenMP

runtime, called BOLT, which employs several optimizations and resource management techniques to

unleash ULTs in an OpenMP runtime. Our evaluation shows that our lightweight OpenMP library can

efficiently exploit fine-grained nested parallelism in OpenMP parallel codes.
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Threading Techniques

This chapter describes our highly optimized user-level threading library, Argobots [1], and the work

of user-level context-switching methods that have different trade-offs of performance and functionali-

ties [2]. Argobots has been and is being developed by many collaborators and thus the article on the

Argobots framework lists many authors [1]. A paper on the investigation of efficient ULT implementa-

tions was written with Abdelhalim Amer, Kenjiro Taura, and Pavan Balaji.

3.1 Introduction

Multithreading is the predominant form of parallelization to exploit modern highly parallel multicore

and many-core processors. On self-bootable systems, such as traditional servers or the second genera-

tion Intel MIC accelerators, the majority of programming systems map their threading abstractions to

OS-level threads (e.g., most systems target the thread specification of POSIX, which itself maps Pthreads

to OS-level threads). This approach is known to be too heavyweight to exploit dynamic, irregular, and

massive parallelism because of its expensive thread management costs involving OS kernel operations.

Therefore, several threading libraries that adopt a stackless thread or a ULT have been proposed thanks

to their ability to bypass OS and relying mostly on user-space operations. Numerous production and

research parallel systems including Cilk [32, 71], Intel CilkPlus [115], major production OpenMP run-

times (as tasks) [102, 126, 132], Qthreads [173], Converse [108], Nanos++ [120], Filaments [116], and

MassiveThreads [124] have adopted lightweight threads as implementations of their abstract parallel

units.

To fully exploit fine-grained parallelism on modern massively parallel processors, however, a lightweight

and flexible multithreading library is required. Nevertheless, the existing user-level threading libraries

are either too general [124, 173] so that programmers cannot utilize domain-specific knowledge to opti-

mize applications and runtimes, or too specific [108, 120] for specific usages so that it loses generality.

Too general runtime systems often degrade performance by general but inefficient designs of thread pool

operations and scheduling policies, masking all the benefits of lightweight ULTs. On the other hand, a
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runtime that is too specific to certain applications or domains is inapplicable to other applications and

domains. Our first goal is to design a highly optimized low-level runtime system so that programmers

can flexibly customize its behavior and utilize highly optimized threading operations.

Specifically, the major challenges in designing and implementing a low-level runtime system are as

follows:

• Flexible resource management.

• User-definable thread schedulers.

• Low-overhead thread pools.

• Rich and efficient synchronization objects.

• Highly optimized implementation of threads.

Argobots [1] is a lightweight threading library to address these challenges. Argobots has a low-level

API to optimize resource usage in Argobots, modify a scheduler’s behavior, and choose an optimal

thread pool implementations. Argobots supports several synchronization objects including a barrier, a

mutex, a condition variable, a future, an eventual, and a readers-writer lock. Furthermore, Argobots

implements numerous types of threads that have different trade-offs between performance and function-

alities so that application developers can adopt the most lightweight thread type with minimum thread-

ing functionalities required for certain usage. We evaluate the overheads of various user-level threading

techniques in Argobots with several microbenchmarks.

The next section discusses the design and the implementation of Argobots, a lightweight threading

library that exposes low-level APIs for high customizability. Section 3.3 focuses on implementations

of ULTs and looks into the details of commonly seen ULT implementations and their overheads. Sec-

tion 3.4 analyzes user-level threading techniques to investigate ULT implementations that keep func-

tionalities but are as efficient as a stackless thread. We find that threading techniques that dynamically

promote threads on demand during execution show the best trade-off, which we call dynamic promotion

techniques. Section 3.7 explains the results of microbenchmarks that measure the overheads of these

threading techniques. We conclude this chapter in Section 3.9.

3.2 Design of Argobots

This section explains the basic design of our user-level threading library, Argobots. The most notable

feature of Argobots is an exposition of a low-level interface for customizability. For further explanation,

we first clarify the terminology used in the Argobots project and the corresponding terms we use in this

thesis.
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3.2.1 Argobots Terminology

Multithreading libraries have a long history of research and development. Nonetheless, there exists no

consensus of terminology for multithreading and thus all systems use different terms for their compo-

nents although some of them have similar to or the same as others’ components. For consistency, this

dissertation uses terms that are different from those in Argobots. We first clarify the terminology in

Argobots and that in this work.

• Execution Stream: A user-level threading library requires an executor that is assigned to a core

so that it can run threads on top of it. This is called an execution stream in Argobots, while some

work calls it a worker, a processor, or a virtual processor. We call it a worker since we believe this

term is most widely used.

• Scheduler: Unlike OS-level threads, threads need to be scheduled by a library, so Argobots needs

to have a policy to decide when and which threads should be scheduled. This scheduling policy

is often embedded into a worker, but Argobots exposes an object called a scheduler that explicitly

manages scheduling policies of threads. This scheduler is associated with a worker, while Ar-

gobots can change the scheduling policy by replacing a scheduler. In this thesis, we also call this

scheduling entity a scheduler.

• Thread Pool: To delay the execution of threads, the runtime system has to store ready threads in

a certain data structure so that a scheduler can take threads from it later. Since many threading

systems use a queue implementation to store threads, this data structure is often referred to as a

queue, a task queue, or a thread queue. In Argobots, this data structure is customizable and thus

might be implemented differently (e.g., LIFO instead of FIFO). Hence, Argobots as well as this

work calls this storage a thread pool or simply a pool.

• ULT, Thread, and Tasklet: Most threading libraries have only one implementation of an ab-

stracted parallel work unit. From an aspect of parallel programming model, such a work unit is

called a fiber, a task, a microtask, a thread, or a user-level thread . The Argobots API, nevertheless,

distinguishes two types of fine-grained parallel work units from the viewpoint of functionalities.

The official Argobots terminology uses the term ULTs or threads for a work unit that has the same

functionalities as a fully fledged ULT in this work, while a tasklet is a work unit which is run-to-

completion and does not allow any threading operations that require user-level context switch. In

this dissertation, ULTs have the same meaning, but we use the term stackless threads for tasklets

to clarify that such a work unit is also classified as a thread. In this work, threads contain ULTs,

stackless threads, and OS-level threads unlike Argobots terminology. We use a special term (e.g.,

Full) for a specific ULT implementation.
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With these terms, we will explain the basic work flow of Argobots.

3.2.2 Execution Model of Argobots

Core Core Core

OS-level thread OS-level thread OS-level thread

Worker Worker Worker

Scheduler Scheduler Scheduler

Thread pool Thread pool Thread pool

Thread pool

ULT Stackless thread ULT

Stackless thread Stackless thread

ULT ULT Argobots

Stackless thread ULT

Figure 3.1: Execution model of Argobots.

Figure 3.1 illustrates an execution model of Argobots. Argobots exposes two levels of parallelism to

users: workers and threads. A worker is a sequential instruction stream that can run ULTs and stackless

threads. From the viewpoint of implementation, a worker is mapped to an OS-level thread, so the number

of workers implies the number of OS-level threads used in Argobots. Since the number of workers is

independent of how many ULTs and stackless threads an application creates, programmers can easily

control the core utilization and avoid oversubscription of OS-level threads in Argobots. Each worker

runs its associated scheduler that picks up a thread from one of the thread pools based on a scheduling

policy and executes it. The scheduler needs to check a flag periodically so that a worker can exit from

the busy scheduling loop if asked by a program (e.g., finalization of Argobots).

The basic flow of execution is as follows. The program first initializes the Argobots library by call-

ing an initialization function and creates several workers as many as necessary, each of which runs a

scheduler. The scheduler pops a stackless thread or a ULT from one of the associated thread pools based

on their scheduling strategies specified by users. A stackless thread is just “called” by a scheduler and

executed on top of a scheduler’s stack while a ULT is invoked by a user-level context switch. If a ULT

yields during execution, the control goes back to the parent scheduler and a suspended ULT is pushed

back to the belonging thread pool. A finalization function joins all workers except the first worker and

frees all resources associated with Argobots.
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3.2.3 Towards a Lightweight and Low-Level Threading Framework

To meet a demand for a highly scalable and customizable threading library, Argobots is carefully de-

signed to expose several components without hurting performance. First, Argobots provides an interface

to efficiently use available compute resources including OS-level threads and memory. Schedulers and

thread pools in Argobots can be defined by users so that programmers who have application- or domain-

specific knowledge can write efficient and effective algorithms. To reduce the programmers’ burden,

Argobots implements various highly optimized synchronization objects. For performance, Argobots

exposes several types of threads to let programmers choose the optimal one.

Flexible Resource Management

Argobots exposes an interface to control the resource usage in Argobots. Since a CPU core is one of

the most important hardware resources, Argobots provides several functions to control core utilization.

Specifically, Argobots supports functions to fork and join a worker so that users can dynamically change

the number of workers. Users can finely and dynamically change affinity of workers (i.e., core binding)

to improve locality and avoid contentions with OS-level threads belonging to other processes and li-

braries. Argobots also has an interface to control memory usage; stacks for ULTs are dominant memory

consumption in a threading library, so Argobots has an interface to control stack sizes. In addition to

global settings of stack size for schedulers and ULTs, a ULT creation function in Argobots takes a stack

size argument to set a specific stack size per ULT, which allows users to finely control the memory usage

and minimize the memory consumption.

User-Definable Thread Schedulers

Scheduling is known to highly impact the efficiency of multithreaded programs. Most threading libraries

only provide a few predefined scheduling policies, whereas Argobots not only provides several prede-

fined scheduling policies but also exposes a user-defined scheduling interface for advanced users who

want to specialize scheduling algorithms for their applications and runtimes.

Figure 3.2 illustrates an example code that defines a user-defined scheduler in Argobots. Programmers

need to provide a scheduler function (scheduler()) as a function pointer, which will be run by a worker.

Based on their scheduling strategy, the scheduler obtains a thread from a thread pool and executes it.

For example, Figure 3.2 shows a template of a user-defined scheduler that pops a ready thread from

one of the thread pools associated with a scheduler and executes it. This flexible implementation can

accommodate several scheduling algorithms including priority-aware scheduling [96] and locality-aware

scheduling [8].
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1 void scheduler() {

2 const int FLAG_CHECK_INTERVAL = 1024;

3 int work_count = 0;

4 while (true) {

5 // pop a thread from pools. pop_pool() can be any function

6 // that obtains a thread from pools.

7 thd_desc_t *thd = pop_pool();

8 if (thd) {

9 schedule_thread(thd);

10 }

11 // the flag is checked every FLAG_CHECK_INTERVAL iterations

12 if (++work_count % FLAG_CHECK_INTERVAL == 0 && get_worker_flag() == STOP) {

13 break;

14 }

15 }

16 }

Figure 3.2: Design of a user-defined scheduler in Argobots.

An implementation restriction of the scheduler design in Argobots is that the scheduler must peri-

odically call an event check function (get worker flag() in Figure 3.2) to exit from the scheduler if

necessary. Since a scheduler implementation often becomes a busy loop that repeats checking the avail-

ability of threads in thread pools, such a periodic flag-check mechanism is necessary to finish a scheduler

and join an OS-level thread safely. We note that this restriction does not impose significant overheads

since the frequency of flag checking can be easily adjusted to amortize the associated overheads.

Low-Overhead Thread Pools

The efficiency of thread pools highly affects the performance of a user-level threading library since most

scheduling operations access thread pools. Argobots provides several types of pools so that the runtime

can internally use optimal implementations. Specifically, Argobots distinguishes the following five types

of pools regarding which workers can access a pool.

• Private (PRIV): a PRIV pool is only accessible by a single worker.

• Single-producer single-consumer (SPSC): an SPSC pool can be only pushed by a specific worker

and also popped by a specific worker. Unlike a PRIV pool, however, a worker that pushes a thread

and one that pops a thread can be different.

• Single-producer multiple-consumer (SPMC): an SPMC pool can be only pushed by a specific worker

but popped by any worker.
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• Multiple-producer single-consumer (MPSC): an MPSC pool can be only popped by a specific worker

but be pushed by any worker.

• Multiple-producer multiple-consumer (MPMC): an MPMC pool is accessible by any worker.

An MPMC pool is usable in any case while the implementation is less efficient. On the other hand, a

PRIV pool limits the applicability but has the least overheads; especially a PRIV pool does not require any

atomic operation to ensure thread safety, so it shows the best performance. Programmers are responsible

for using them correctly.

Fine-Grained Scheduling Primitives

Argobots provides several scheduling primitives to control scheduling not only from schedulers but

also on top of ULTs. yield() is a function that suspends the current execution of a thread and returns

the control to the parent scheduler. The resumed scheduler will push the suspended thread back to its

belonging pool and try to schedule another ready thread. Typically, this yield functionality is useful

to progress other threads while a certain ULT is waiting for completion of memory and communication

operations or synchronization of other threads. Specifically, just adding yield() to a busy wait including

a polling operation can remove waste of CPU resources in a busy loop and improve core utilization.

Another important function is exit(), which immediately finishes an execution of a running ULT and

returns a control to a parent scheduler. Although its functionality is similar to yield(), in the case of

exit(), the parent scheduler will not push the finished ULT back to a pool since the terminated ULT

has never been resumed. In addition, Argobots optimizes a context-switching function for exit() by

omitting the context saving because the context of the exiting thread will not be used after exit().

More fine-grained scheduling controls are feasible via suspend() and resume(). suspend() suspends

an execution of a current ULT and returns a control to a parent by user-level context switching. Unlike

yield(), the suspended ULT will not be pushed back to the pool immediately after returning to a parent;

the ULT will be pushed to the associated pool when another thread calls resume() with the suspended

ULT’s descriptor. Compared to yield() in a busy-loop, suspend() and resume() can avoid unnecessary

ULT scheduling by resuming suspended ULTs and making them schedulable only when ULTs can make

progress.

These scheduling primitives cannot be used on stackless threads since these operations require user-

level context switching; using these scheduling functions on stackless threads will crash the program.

This restriction critically limits applicable cases of stackless threads, motivating us to investigate lightweight

user-level threading techniques that can perform as good as stackless threads but can perform context

switching.
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Rich and Efficient Synchronization Objects

Various scheduling primitives provided by Argobots are generic enough to build most scheduling op-

erations, but correct and scalable implementations of widely used synchronization patterns that use

synchronization objects such as mutex and barrier are challenging. Argobots by default provides rich

and efficient synchronization objects to ease multithreaded programming. Argobots not only supports

the basic synchronization objects provided by Pthreads, including mutex, barrier, and condition variable,

but also some advanced ones including future, eventual, and readers-writer lock. Argobots avoids naive

implementations that use yield() in a busy-wait loop and instead adopt implementations optimized with

suspend() and resume() so that waiters are scheduled only when they can progress.

We emphasize that these operations are forbidden on stackless threads since these synchronization

objects might perform user-level context switching internally. This restriction limits the use cases of a

stackless thread although it has smaller fork-join overheads.

Highly Optimized Implementation of Threads

Fork-join cost of threads highly impacts the performance of fine-grained parallel programs, so Argobots

highly optimizes the implementation of threads. As we have explained, Argobots exposes two types

of threads. A ULT is a thread that has its execution context and thus can perform user-level context

switching and return to a parent thread during its execution, while its large context-switching overheads

inflate the fork-join cost. The other type of thread is a stackless thread, which has the smallest fork-

join overheads but cannot perform context switching during its execution. These threads have different

creation and join functions, so users can use both thread types in the same program.

As described in this section, Argobots has rich functionalities for scheduling and synchronization,

high customizability, and exposes several tuning knobs. The implementation of threads, however, has

not been fully investigated and thus remains suboptimal. In the next section, we take a close look at the

difference between a stackless thread and a ULT to explore the performance improvement opportunity.

3.3 Performance Comparison Between Stackless Threads and

ULTs

Our explanation in this chapter is based on a threading library with a simplified API sketched in Fig-

ure 3.3, which can be found in most threading libraries. Among functions listed in Figure 3.3a, fork

and join are the most basic operations; a fork function (create thd()) creates a ULT and a join function

(join thd()) waits for the completion of a given ULT and frees its resource. Here we do not impose

fully strict computation [32] and allow arbitrary synchronization operations (including a barrier and a
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thd_desc_t *create_thd(void (*f)(void *), void *arg);

void join_thd(thd_desc_t *thd);

void yield_thd(void);

(a) Threading operations that appear in the discussion of lightweight user-level threading techniques. A stackless thread does

not support a yield operation (yield thd()) because it requires a context-switching capability. Other operations such as

intermediate termination and synchronization objects (e.g., barrier and mutex) are omitted since they do not appear in our

example codes.

1 void comp(void *arg) { [...]; }

2 // A parallel version of the following loop:

3 // for (int i = 0; i < n; i++) comp(args[i]);

4 void parallel_loop(void **args, int n) {

5 thd_desc_t *thds[n];

6 for (int i = 0; i < n; i++) // fork ULTs.

7 thds[i] = create_thd(comp, args[i]);

8 for (int i = 0; i < n; i++) // join ULTs.

9 join_thd(thds[i]);

10 }

(b) Example code using create thd() and join thd().

Figure 3.3: Basic threading API of a user-level threading library and example code with this API. We use this API

to discuss implementations of lightweight ULTs.

mutex) between threads in order to maintain flexibility and generality. A thread pool is a data structure

to keep ready ULTs. A ready ULT is popped from a thread pool and executed by a scheduler that runs

with its own stack on the corresponding OS-level thread (worker). Our following explanation assumes a

work-stealing model [33] for load balancing; each worker has its own thread pool and attempts to steal

a ready ULT from another worker’s pool if needed (e.g., when its local pool is empty). We note that this

model does not assume a specific implementation of thread pools and work-stealing algorithms. This

fork-join mechanism is powerful enough to parallelize several parallel patterns including a parallel loop

presented in Figure 3.3b.

Consider the simplest thread implementation that supports only create thd() and join thd(). The

essence of fork and join operations is a schedulable function that can be detached from the current

execution context and later invoked. Compared with a function call, minimal additional operations to

implement such ULTs are twofold: (1) a thread descriptor that stores completion status, a function

pointer, and its argument and (2) a scheduling mechanism that keeps thread descriptors and runs a

ready ULT, both of which are fundamental for detaching and deferring the execution of the function. A

threading method that satisfies only these requirements is a stackless thread, which is the simplest and
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most lightweight technique. A stackless thread, however, abandons all threading features that require a

context switch; that is, once scheduled, such a ULT does not stop until completion.

We first revisit the implementation of a stackless thread in a user-level threading library and show

why a stackless thread can only run to completion. We then describe the ULT implementations by

showing how to overcome the limitation of stackless threads. Our description follows the scheduler

implementation in Argobots, which has its own stack and runs on the corresponding worker.

3.3.1 Stackless Threads in a User-Level Threading Library

1 void scheduler() {

2 [...];

3 while (true) {

4 thd_desc_t *thd = pop_pool();

5 if (thd) {

6 schedule_stackless(thd);

7 }

8 [flag check];

9 }

10 }

Figure 3.4: Pseudocode of a stackless thread. Real schedulers might sleep when no ULTs are ready in the pool

and have a branch to check a flag in order to terminate a scheduler.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

1. 

2. 

3. 

Scheduler’s
stack

2. (body)

3. return

(Unused stack space)

ULT’s
stack

3. return1. call

Figure 3.5: Flow of fork-join (stackless threads).

We present the pseudocode of a stackless thread in Figure 3.4 and its execution flow in Figure 3.5. In

a scheduling a loop, the scheduler tries to pop a thread in one of the pools. A thread in a pool is popped

by a scheduler running on a worker and simply called on top of the scheduler in schedule stackless()

presented in Figure 2.2. As shown in Figure 3.5, a stackless thread only imposes overheads associated

with scheduling, which is necessary for a threading library.

Although a stackless thread has the least fork-join overheads, it lacks threading capabilities that re-
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quire a context switch because a simple function call welds together a scheduler and an invoked thread;

a scheduler that spawns a stackless thread thread cannot be resumed while the invoked thread is run-

ning. Consider a yield operation (yield thd() in Figure 3.3a) that returns the control from a ULT to a

scheduler. In order to restore the context of the scheduler, values of hardware registers (including a stack

pointer and an instruction address) must be reinstated. Nevertheless, a stackless thread saves none of

them explicitly on invocation; thus, although these values are possibly stored somewhere in the call stack

of the child thread as instructed by a compiler, a threading library cannot retrieve these values. Even if

registers could be restored, because the invoked stackless thread and the scheduler share the same stack

region, any stack growth caused by a function call or an invocation of another stackless thread would

overwrite the call stack of the previous stackless thread. This scheduler-thread welding deprives a stack-

less thread of threading features that require an independent invoker’s context; unsupported features are

not only yielding but also intermediate termination, efficient synchronization, and child-first scheduling.

This limitation critically lowers the applicabilities of a stackless thread.

3.3.2 Threads with Full Threading Capabilities

Stackless threads lack the context-switching capability because it bonds contexts of a scheduler and a

thread together. If their contexts are maintained independently, however, ULTs can return to schedulers

at any point. A fully fledged threading technique creates and maintains a thread context in order to

support full threading capabilities. Such a thread allows efficient scheduling, but it suffers from context

management overheads. To understand the difference in performance and capabilities between these

two opposite threading techniques, we first explain user-level context switch, an essential operation to

implement fully fledged threads. We note that most ULT implementations do not maintain signal masks

and compiler-level thread-local storage for every ULT, so they are shared among ULTs running on the

same worker.

Fully fledged threads that support the full threading capabilities are implemented with the three con-

text switch functions described above. In the following, we explain the implementation of fully fledged

threads for parent- and child-first scheduling.

Fully fledged threads that support the full threading capabilities are implemented with the three

context-switching functions described in Section 2.1. In reality, we can find two implementations of

fully fledged threads that have been developed to support different scheduling policies; one is for parent-

first scheduling, and the other is for child-first scheduling.1 We first explain parent-first fully fledged

threads and then child-first threads.

1Parent-first scheduling is sometimes called help-first scheduling while child-first is called work-first.
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3.3.3 Parent-First Fully Fledged Threads (Full)

1 thread_local ctx_t *g_sched_ctx; // worker-local variable.

2 void scheduler() {

3 [...];

4 while (true) {

5 thd_desc_t *thd = pop_pool();

6 if (thd) {

7 if (thd->state != STARTED) {

8 start_ctx(&g_sched_ctx, thd->stack, p_ult_wrapper, thd);

9 } else {

10 switch_ctx(&g_sched_ctx, thd->ctx);

11 }

12 if (thd->state != COMPLETED) {

13 // return thd to a pool.

14 push_pool(thd);

15 }

16 }

17 [flag check];

18 }

19 }

20 void p_ult_wrapper(thd_desc_t *thd) {

21 thd->state = STARTED;

22 thd->f(thd->arg);

23 thd->state = COMPLETED;

24 end_ctx(g_sched_ctx);

25 }

Figure 3.6: Pseudocode of Full.

A parent-first scheduling policy is the same as the scheduling order of a stackless thread; on create -

thd(), a parent (i.e., a caller) pushes a child thread to a thread pool and resumes the execution of the

parent itself, and later a scheduler executes the child stored in the thread pool. For example, in Fig-

ure 3.3b, a parent thread that runs parallel loop() first creates all child threads and pushes them to a

thread pool in the loop (lines 6–7). On join thd() (line 9), the parent thread checks the completion of

each child thread. If the child thread is not completed (e.g., by this worker or other workers), the parent

cannot make progress and thus context-switches to a scheduler and runs a ready ULT.

In this work, we refer to the implementation of a fully fledged threading technique with parent-first

scheduling as Full. Figure 3.6 shows the pseudocode of Full. The scheduling mechanism is similar to

Figure 3.4; the scheduler first pops a ULT (thd) from a pool (line 5) and starts it. A ULT is invoked by

either start ctx() or switch ctx() as well as Figure 2.5.

Since both start ctx() and switch ctx() save the scheduler’s context in g sched ctx, the scheduler

can be resumed by switch ctx() or end ctx() at any time, thus allowing suspension, intermediate ter-

mination, and efficient synchronization. Child-first scheduling also requires user-level context switch,
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as we describe in the following section.

3.3.4 Child-First Fully Fledged Threads (C-Full)

Child-first scheduling [122] is a different scheduling policy from that of a stackless thread and Full;

under the child-first scheduling policy, on thread creation, a parent thread yields to a child thread, and

the child pushes the parent into a thread pool so that another scheduler can steal the continuation of the

parent ULT. After the child completes, it preferably jumps back to the parent thread if the parent is still

in the thread pool. For instance, in Figure 3.3b, a caller of parallel loop() (i.e., a parent) pushes its

continuation to a thread pool and executes a child thread first on create thd() (line 7). Parallelization is

achieved by exposing a continuation of a parent thread to other workers. If no work stealing happens, the

child returns to the parent context on completion and the parent creates a next child thread in the loop

(lines 6–7). Since this child-first scheduling naturally executes threads in sequential order (or depth-

first order) if no work stealing happens, it is often adopted to parallelize divide-and-conquer recursive

algorithms for better locality [32, 71]. Such a child-first fully fledged thread, which we call C-Full

in this paper, can also be implemented with the context-switching functions shown in Figure 2.3 and

Figure 2.4.

The pseudocode of C-Full is presented in Figure 3.7. C-Full performs a context switch in a thread

creation function (create thd()); after allocating and initializing a thread descriptor, a parent thread

saves its context and jumps to a child thread by start ctx() (line 15). The child pushes the parent to a

local thread pool (line 19) before running a user-given thread function (line 21) to expose concurrency.

On completion, the child thread checks the next thread in the pool, which is ideally the parent thread

so that execution order is depth-first. However, the child does not always succeed in taking the parent

because it might have been either stolen by another scheduler or resumed by threading operations (e.g.,

yield thd()). If this is the case, the child thread jumps to another thread if it exists; otherwise, the

child thread returns to the scheduler (scheduler() in Figure 3.6). We note that C-Full has also the

full threading capabilities that are not restricted by fully strict computation [32] since all parent and

child threads and schedulers maintain their contexts independently, allowing arbitrary synchronization

operations (including suspension) between threads in order to maintain flexibility and generality.

3.3.5 Performance Comparison

In both the parent- and child-first cases, the management of call stacks and callee-saved registers plays

a key role in supporting full threading capabilities and child-first scheduling. In real applications, how-

ever, the ULT is often executed as if it were just called by following a normal function-call procedure;

Full threads can finish without any context switch during execution, and C-Full threads can just run to
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1 struct thd_desc_t {

2 void (*f)(void *arg);

3 void *arg;

4 int state;

5 void *stack;

6 ctx_t *ctx; // context of this thread.

7 thd_desc_t *parent;

8 ...

9 };

10 thread_local thd_desc_t *g_current_thread; // worker-local variable.

11 thd_desc_t *create_thd(...) {

12 thd_desc_t *thd = allocate_thd_desc();

13 init_thd_desc(thd, ...);

14 thd->parent = g_current_thread;

15 start_ctx(&g_current_thread, thd->stack, c_thd_wrapper, thd);

16 return thd;

17 }

18 void c_thd_wrapper(thd_desc_t *thd) {

19 push_local_pool(thd->parent);

20 thd->state = STARTED;

21 thd->f(thd->arg);

22 thd->state = FINISHED;

23 // child-first scheduling expects next_ctx == thd->parent->ctx.

24 ctx_t *next_ctx = pop_local_pool_or_get_sched_ctx();

25 end_ctx(next_ctx);

26 }

Figure 3.7: Pseudocode of C-Full.

completion and return to the parent thread.

To analyze the performance difference, we use a notion of deviation appearing in [151, 152]2. A devi-

ation in the work by Spoonhower et al. [152] is defined as an event that prevents a ULT from sequential

execution (i.e., execution order where all thread creations are inlined). Since sequential execution is

often most efficient in terms of memory locality, the number of deviations has been used as a metric that

represents how far the resulting parallel execution differs from sequential execution. This idea works

well for child-first scheduling; the number of deviations can be zero if neither work stealing nor yield-

ing happens. If we follow the original definition, however, all fork and join operations of parent-first

threads incur deviations because, unlike child-first order, parent-first order is different from sequential

execution order even when a parent-first ULT is executed in the run-to-completion manner. This paper,

therefore, extends the idea of deviation by defining it as an event causing an execution that is different

from sequential execution except such an event on forking and joining a parent-first thread. With this

definition, the number of deviations under parent-first scheduling can be zero in a case where no context

2We note that this is called differently in other literature; for example, such an event is called as “drifted” in [8].
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• Save register values.

• Change stack pointer to ULT’s stack.
• Jump to ULT.

• Call ULT function.
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(a) Flow of Full.

• Save register values.

• Change stack pointer to child’s stack.
• Jump to child.

• Push parent to pool.

• Call child function.

• Run child body.

• Pop ULT (=parent) from pool.

• Restore stack pointer.
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(b) Flow of C-Full.

Figure 3.8: Flow of fork-join without deviation (Full and C-Full).

switch happens during the execution of thread. Deviations include any threading operations requiring a

context switch during execution (e.g., yielding, intermediate termination, and synchronization) and, in a

child-first case, an event where a parent thread is stolen by another scheduler. We note that no deviation

is allowed with a stackless thread.

Figure 3.8 illustrates the execution paths of Full and C-Full without deviation. Comparison of Fig-

ure 3.8 with Figure 3.5 shows that both Full and C-Full incur the following additional overheads com-

pared with a stackless thread, lowering the performance of Full and C-Full even when no deviation

happens.

1. Save callee-saved registers on ULT invocation (start ctx()).

2. Restore callee-saved registers on ULT completion (end ctx()).

3. Manage call stacks for thd->stack.

To quantify the performance difference, we created a microbenchmark that controls the chances of

deviation by adding a yield operation. Specifically, we ran a microbenchmark that creates and joins
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1 void kernel(void *yield_flag) {

2 if (yield_flag != NULL) {

3 yield_thd();

4 }

5 }

6 void microbenchmark(int n) {

7 void *yield_flags[N];

8 thd_desc_t *thds[N];

9 // n yield_flags are set to non-NULL while 0 <= n <= N.

10 set_yield_flags(yield_flags, n);

11 // fork ULTs.

12 for (i = 0; i < N; i++) {

13 thds[i] = create_thd(kernel, yield_flags[i]);

14 }

15 // join and free ULTs.

16 for (i = 0; i < N; i++) {

17 join_thd(thds[i]);

18 }

19 }

Figure 3.9: Microbenchmark that forks and joins N ULTs while random n out of N ULTs encounter deviation

events invoked by suspension.
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Figure 3.10: Fork-join overheads on an Intel Skylake machine using a microbenchmark presented in Figure 3.9

(N = 4,096). Stackless shows the performance at D = 0% because a stackless thread does not allow

any deviation.

N empty ULTs as shown in Figure 3.9. In this benchmark, n randomly chosen ULTs yield once, so

n/N% of ULTs encounter deviations. We define a deviation possibility D as n/N and changed D by

controlling n while fixing N to 4,096. We ran this microbenchmark on a single core of an Intel Xeon

Platinum 8180M processor (see Section 3.7 for details).

Figure 3.10 shows the fork-join overheads regarding the deviation probability. Our result is the arith-

metic mean of all iterations. Because a stackless thread does not allow deviation, we draw a horizontal

line that has the value at D = 0% (i.e., no deviation). The result shows that even when no deviation takes
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place, the overhead of Full is 1.7x higher than that of a stackless thread because of context management.

We note that although their scheduling policies are different, Full and C-Full perform similarly because

the expensive operations including register and stack management are common, implying that C-Full

also suffers from unnecessary context management overheads.

Ideally, Full would perform as well as a stackless thread when no deviation occurs, and so would C-

Full. However, it has been an open question whether this performance gap is inevitable when employing

full threading capabilities or whether other threading techniques offer different performance and capa-

bility trade-offs. In the next section we analyze the performance discrepancy and investigate threading

techniques that exist between these two opposite directions, that are more efficient than Full and C-Full

when no deviation happens, and that keep full threading capabilities.

3.4 Lightweight Parent-First ULTs

In the following sections, we analyze the performance gap between fully fledged techniques (Full and

C-Full) and a stackless thread method and explore intermediate threading techniques. The analysis

uses the same microbenchmark presented in the preceding section (Figure 3.9) and progressively cuts

down the overheads of Full and C-Full at D = 0%. Each step of the analysis finds a lightweight

threading technique that has a different trade-off between performance with and without deviation and

programming constraints.

We note that this analysis does not attempt to revive the old threads vs. event debate [168]. Al-

though running to completion is the mode of operation in event-driven programming models, our target

is traditional threading models. That is, on encountering a blocking operation, we do not require the

programmer to rip the code [11] and register event handlers as done in event-driven programming. Fur-

thermore, the trade-off between Full and a stackless thread can also be encountered in the OS context,

such as the distinction between work queues and tasklets in the Linux kernel [174]. Our analysis targets

user-space applications and leaves the kernel space out of the scope. We do not explore a granularity

control technique that serializes threads [7, 61, 106]; our approach tackles the granularity issue from a

different aspect by minimizing threading overheads, which can coexist with granularity control strate-

gies proposed in the previous studies. All the techniques described in this thesis are suitable for building

generic threading libraries because they do not rely on compiler modifications, special compiler exten-

sions, kernel modifications, or source-to-source translations.

We first look at parent-first threading techniques. Our analysis reduces the overhead of Full toward

that of a stackless thread while keeping the capabilities of Full. Instruction breakdowns and performance

data of all the parent-first methods are summarized in Figure 3.17 and Figure 3.18, respectively.
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3.4.1 Removing Context Switch on Completion (RoC)

1 void start_ctx_RoC(ctx_t **self_ctx, void *stack, void (*f)(void *), void *arg) {

2 [push callee-saved registers];

3 [push an instruction address];

4 *self_ctx = stack_pointer;

5 stack_pointer = stack;

6 f(arg); // a user function is directly called.

7 return;

8 }

9 void end_ctx_to_sched() {

10 end_ctx(g_sched_ctx);

11 }

Figure 3.11: Pseudo assembly code of a context switch in RoC.

• Save register values.

• Change stack pointer to ULT’s stack.
• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

1. 

2. 

3. 

3. return

Scheduler’s
stack

ULT’s
stack

2. (body)

1. context switch

(Unused stack space)

(Unused stack space)

Figure 3.12: Flow of RoC when no deviation happens. The difference from Full (Figure 3.8) is written in italic.

Our instruction analysis shows a large difference in instruction counts between Full and a stackless

thread at D = 0%; even if no deviation occurs, Full performs context switch twice, imposing as many

as 50 instructions. The first context switch from a scheduler to a ULT is necessary in order to make a

scheduler resumable at any point. If no deviation occurs, however, the second manipulation of callee-

saved registers is unnecessary since the register values of the scheduler are restored by a user-given

thread function (thd->f()). A return-on-completion technique (RoC) exploits the fact that the first

context switch is inevitable but the last one can be omitted if no deviation takes place during execution;

RoC replaces the second context switch by a standard return procedure to reduce the context-switching

cost on completion.

Figure 3.11 presents the pseudocode of a function that invokes RoC, and Figure 3.12 illustrates its

execution flow without deviation. start ctx RoC() first saves callee-saved registers (lines 2 and 3),

changes a stack (lines 4 and 5) as start ctx() does (Figure 2.4), and directly calls a thread function

f() (line 6). If a created thread has not encountered a deviation, the parent scheduler has never been
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resumed, so the RoC thread can simply return to a scheduler without restoring callee-saved registers

saved at lines 2 and 3 because they were restored by f(). Thus, start ctx RoC() can return to a scheduler

by a return instruction. We note that our explanation assumes a return mechanism similar to that of the

x86/64 ABI [92]; a return instruction pops an instruction address from the call stack and jumps to that

address. Unlike the x86/64 instruction set [97], however, several architectures including ARM [21]

and POWER [138] do not have such a multifunctional return instruction. Nevertheless, their ABIs [5,

140] adopt similar calling conventions, which save an instruction address at a predefined location at a

stack frame boundary. Thus we can implement the same algorithm on these architectures by combining

multiple instructions as most compiler-generated codes do in a function epilogue.

However, the scheduler cannot simply be resumed by a return procedure if a deviation has happened

because a deviation staled the callee-saved registers saved in f(). In order to address this issue without

extra overheads, the return address stored in the call stack of start ctx RoC() is updated to end ctx -

to sched() when a first deviation happens; if the RoC thread has confronted deviation, start ctx RoC()

does not directly return to the scheduler but jumps to end ctx to sched() by return so that the context

of the scheduler can be properly restored by end ctx() (line 10). We note that only the first deviation

needs to modify the return address, so succeeding deviation events do not incur any overhead.

When D is 0%, RoC omits one context switch per fork-join and successfully saves 24 instructions

compared with Full, achieving 16% less overheads than does Full. However, RoC degrades perfor-

mance when D is large (4% worse at D = 100%) because when a deviation event happens, RoC

performs the same number of context switches but complicates the control flow.

3.4.2 Removing Context Switch on Invocation (SS)

1 void start_ctx_SS(ctx_t **self_ctx, void *stack, void (*f)(void *), void *arg) {

2 *self_ctx = stack_pointer;

3 stack_pointer = stack;

4 f(arg); // a user function is directly called.

5 return;

6 }

7 void end_ctx_invoke_sched() {

8 stack_pointer = [scheduler's stack_top];

9 scheduler();

10 }

Figure 3.13: Pseudo assembly code of a context switch in SS.

Although RoC successfully skips register manipulations on completion at D = 0%, saving a context

on invocation makes RoC slower than a stackless thread. We save the scheduler’s context in order to

resume it later, but if the scheduler does not need to preserve its state including local variables and its

51



3 Argobots and Lightweight User-Level Threading Techniques

• Save register values

• Change stack pointer to ULT’s stack.
• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.
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stack
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2. (body)
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Figure 3.14: Flow of SS when no deviation happens. The difference from RoC (Figure 3.12) is written in italic.

progress, we can freshly start a new one. We call this property of a scheduler statelessness. We propose

a new threading technique stack separation (SS) that separates stacks but does not save a context of the

scheduler on invocation, while this technique requires a stateless scheduler.

Figure 3.13 shows the pseudocode of SS. After changing a stack pointer (lines 2 and 3), SS directly

calls a thread function (line 4). As illustrated in Figure 3.14, if no deviation happens, it returns to the

scheduler with a standard return (line 5) as RoC does. If a deviation occurs, the return address in the

call stack of the SS thread is updated so that SS jumps to a function without restoring the outdated

scheduler’s context. However, SS cannot resume the scheduler by end ctx to sched() in Figure 3.11

because SS does not save the scheduler’s callee-saved registers. Instead, SS calls scheduler() on the

stack of the original scheduler, which flushes all the local variables in the call stack and the progress

stored in an instruction address.

SS further reduces 14 instructions compared with RoC when D is 0%, achieving 14% higher perfor-

mance than RoC does. However, SS lowers performance if a deviation happens (7% slower than Full at

D = 100%) because SS essentially needs to rerun a scheduler from the beginning of the function, which

is unnecessary if the scheduler context is properly saved.

Although SS performs better than Full and RoC at D = 0%, SS imposes a programming constraint

that requires a stateless scheduler, narrowing the applicability of SS. A random work-stealing sched-

uler [33] can be implemented as stateless, but we note that not all schedulers are trivially stateless; for

example, a scheduler is not stateless if it saves counters in local variables to select a victim of work

stealing or if it sleeps when work stealing fails continuously.
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3.4.3 Lazy Stack Allocation (Full-L, RoC-L, and SS-L)
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• Save register values.

• Change stack pointer to ULT’s stack.
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• Call ULT function.

• Run ULT body.

• Restore stack pointer.
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• Free ULT’s stack.
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(a) Flow of Full-L.

• Allocate ULT’s stack.
• Save register values.

• Change stack pointer to ULT’s stack.
• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

• Free ULT’s stack

1. 

2. 

3. 

3. return

Scheduler’s
stack

ULT’s
stack

2. (body)

1. context switch

(Unused stack space)

(Unused stack space)

(b) Flow of RoC-L.

• Allocate ULT’s stack.
• Change stack pointer to ULT’s stack.
• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

• Free ULT’s stack.
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3. 

3. return
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stack
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stack
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(c) Flow of SS-L.

Figure 3.15: Flow of threading techniques with lazy stack allocation (Full-L, RoC-L, and SS-L) when no devia-

tion takes place. The differences from Full (Figure 3.8), RoC (Figure 3.12), and SS (Figure 3.14) are

highlighted by italicizing them.

SS remains slower than a stackless thread. We observe that a stackless thread incurs fewer L1 and L2

cache misses than do the other techniques at D = 0% because a stackless thread accesses only the

scheduler’s stack while each invocation of Full, RoC, and SS touches an independent call stack that

is preallocated on creation. Such an eager stack allocation strategy is common in practice to facilitate

management of a thread descriptor and a stack; it allows a runtime to reduce memory management
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operations by allocating together thread descriptors and their corresponding stacks (i.e., use part of a

stack region as a descriptor). Nevertheless, this practice increases the memory accesses since each ULT

invocation accesses a different stack area that is unlikely in caches. As a result, Full, RoC, and SS

increase L1 and L2 cache misses at D = 0%.

However, not all the ready ULTs need to have independent stacks; only simultaneously active ULTs

require independent stacks. To reduce the memory footprint, we introduce a lazy stack allocation method

(LSA) that decouples the management of thread descriptors and stacks and assigns a stack at invocation

time. Since most ULTs are forked and joined sequentially when D is small, a call stack can be reused

across thread invocation. Full, RoC, and SS can adopt LSA without changing their context-switching

algorithms. We refer to these techniques by adding a suffix -L to their names. We show the flow of

threading techniques with LSA in Figure 3.15. As presented in the figure, these techniques allocate

stacks on creation and release them on completion, which promotes stack reuse.

We observe that Full-L, RoC-L, and SS-L achieve slightly higher performance than do the original

techniques by successfully reducing L1 and L2 cache misses at D = 0%; their numbers of L1 and L2

cache misses are almost the same as those of stackless threads. However, LSA adds 11 instructions

to manage a stack and a thread descriptor independently, so LSA possibly degrades performance on

different machines that have different instruction, memory, and cache costs. The results also show that

the advantage of LSA becomes negligible as D gets higher since more ULTs need independent stacks;

as a result, the additional allocation operations incurred by LSA lower the performance.

3.4.4 Removing Stack Change (SC)

• Call ULT function.

• Run ULT body.

• Return to scheduler.

• Check if a deviation has happened

1. 

2. 

3. 

Scheduler’s
stack

2. (body)

3. return

(Unused stack space)

ULT’s
stack

3. return &

flag check

1. call

Figure 3.16: Flow of SC when no deviation occurs. The difference from SS (Figure 3.14) is written in italic.

Threading overheads still exist in the stack management, which fundamentally makes SS-L slower

than a stackless thread. If a scheduler is stateless, however, a scheduler can be spawned on top of the

newly allocated stack, which eliminates management of both callee-saved registers and stacks. The

technique that newly creates a scheduler has been adopted by some runtimes [62, 68, 180]. We refer to
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Figure 3.17: Instruction breakdown of fork and join operations on Skylake (parent-first methods). We used Intel

SDE [103] to obtain series of instructions.

this technique as scheduler creation (SC). When an SC thread encounters a deviation for the first time,

it spawns a ULT with a new stack and starts a scheduler on top of it. At the same time, the original

scheduler currently running the SC thread is invalidated by updating a flag in order to keep the number

of active schedulers. On completion, a scheduler checks the invalidation flag; if invalidated, it jumps to

an active scheduler using g sched ctx.

In addition to the requirement of a stateless scheduler as SS and SS-L have, SC imposes a new

constraint on the stack size; because stacks are shared with SC threads and schedulers, the stack size of

all SC threads must be the same as that of the scheduler, forcing users to adopt the largest stack size that

fits all threads in a program. This constraint is significant when one application contains multiple types

of threads each of which requires a different stack size.
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Figure 3.18: Fork-join overheads of the parent-first threading methods on Skylake.
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Figure 3.19: Cache misses of the parent-first threading methods on Skylake. These values are obtained by

PAPI [41]. Almost no L3 cache miss happens in this experiment because each ULT accesses a small

portion of a call stack; we therefore omit the data.

Figure 3.17 summarizes the instruction breakdowns with and without deviation and Figure 3.18 shows

the performance and cache misses of parent-first threading techniques. Figure 3.17a shows that at D =

0% SC adds only three instructions to check the invalidation flag. As a result, the overhead of SC is as

small as that of stackless threads at D = 0% while SC supports all the threading capabilities that may

cause deviations. However, restarting a scheduler on a new stack is expensive in terms of the number of

instructions and memory accesses; hence, SC shows the worst performance among the seven methods

at D = 100%.

3.5 Lightweight Child-First ULTs

In this section, we apply the same analysis methodology to child-first techniques. We use the same

microbenchmark to evaluate their overheads. Their instruction breakdowns and performance are sum-

marized in Figure 3.25 and Figure 3.26.

3.5.1 Eager Stack Release (C-Full-E)

C-Full suffers from large L1 and L2 cache misses because each ULT has an independent stack. LSA,

which allocates stack on invocation, seems promising to reduce cache misses incurred by stack accesses.

However, LSA itself is not applicable to child-first techniques because creation and invocation are done

in the same function (i.e., create thd()). To promote stack reuse, we devise an eager stack release

method (ESR) that frees stacks not when threads are joined (i.e., join thread()) but on completion of

ULTs. ESR allows consecutively spawned ULTs to reuse the same stack region if no deviation hap-

pens; however, ESR needs to decouple the management of thread descriptors and stacks, adding extra
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Figure 3.20: Flow of C-Full-E without deviation. The difference from C-Full (Figure 3.8) is written in italic.

overheads to handle them separately. We call this technique C-Full-E.

Although ESR imposes 11 instructions for independent management of thread descriptors and stacks,

C-Full-E successfully eliminates L2 cache misses and reduces L1 cache misses, achieving an overall

performance improvement of 13% when no deviation takes place. However, ESR fails to effectively

reuse stacks and degrades performance by additional stack and thread descriptor management as the

deviation probability increases.

3.5.2 Removing Context Switch on Completion (C-RoC and C-RoC-E)

As Full-L does, C-Full-E manipulates callee-saved registers on both invocation and completion. Unlike

parent-first scheduling, child-first scheduling must preserve the context of the parent ULT since it is con-

trolled by the users. Hence, child-first scheduling needs to maintain an independent stack and manage

callee-saved registers on invocation. If no deviation happens, however, the parent thread can be resumed

by a return function using a return-on-completion technique. This technique is applicable to both C-Full

and C-Full-E; we call them C-RoC and C-RoC-E, respectively. Child-first return-on-completion tech-

niques, however, need to deal with a deviation caused by work stealing to the parent thread, which does

not happen with parent-first scheduling since a scheduler, which corresponding to a parent in child-first

scheduling, is never stolen by another worker. Therefore, C-RoC and C-RoC-E need an algorithm that

allows a thief to update the return address in the call stack of the child ULT.

We first look at the algorithm of C-RoC. The pseudocode of C-RoC is shown in Figure 3.21. The first

context switch uses start ctx RoC() presented in Figure 3.11; if no deviation happens, the child ULT can

return to the parent (line 19). As RoC does, the first occurrence of any threading operation that causes a

deviation updates the return address stored in the stack. In the case of C-RoC, however, deviations can

be caused by work stealing; even if no context-switching operation is performed by the child ULT, the

child may not simply return to the parent ULT if the parent has been stolen. To handle this case, the thief
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1 thd_desc_t *create_thd(...) {

2 thd_desc_t *thd = allocate_thd_desc();

3 init_thd_desc(thd, ...);

4 thd->parent = g_current_thread;

5 start_ctx_RoC(&g_current_thread, thd->stack, C_RoC_thd_wrapper, thd);

6 if ([true if stolen by another worker]) {

7 *(thd->stack + RETURN_ADDRESS_OFFSET) = end_ctx_to_sched;

8 }

9 return thd;

10 }

11 void C_RoC_thd_wrapper(thd_desc_t *thd) {

12 push_local_pool(thd->parent);

13 thd->state = STARTED;

14 thd->f(thd->arg);

15 thd->state = FINISHED;

16 // child-first scheduling expects next_ctx == thd->parent->ctx.

17 ctx_t *next_ctx = pop_local_pool_or_get_sched_ctx();

18 if (next_ctx == thd->parent->ctx) {

19 return;

20 } else {

21 end_ctx(next_ctx);

22 }

23 }

Figure 3.21: Pseudo assembly code of context switch in C-RoC.

• Save register values.

• Change stack pointer to child’s stack.
• Jump to child.

• Push parent to pool.

• Call child function.

• Run child body.

• Pop ULT (=parent) from pool.
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Figure 3.22: Flow of C-RoC when no deviation occurs. We italicize the difference from C-Full (Figure 3.8).

updates the return address of the child (lines 6–7), which does not exist in RoC. We note that there is no

data race between an update by a thief (line 7) and reading a return address by a child (line 19) because

the child ULT performs return only after taking the parent ULT (line 12). As illustrated by Figure 3.22,

C-RoC successfully removes callee-saved register management on completion when no deviation takes

place.

In addition to changing the stack management, C-RoC-E requires a small modification to C-RoC as

presented in Figure 3.23 because a parent may update a child stack that has been already freed under the

ESR policy (i.e., at line 7 in Figure 3.21). A thread descriptor of a child is, however, always available
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1 void *C_RoC_E_thd_wrapper(thd_desc_t *thd) {

2 push_local_pool(thd->parent);

3 thd->state = STARTED;

4 thd->f(thd->arg);

5 thd->state = FINISHED;

6 // child-first scheduling expects next_ctx == thd->parent->ctx.

7 ctx_t *next_ctx = pop_local_pool_or_get_sched_ctx();

8 if (next_ctx == thd->parent->ctx) {

9 *(thd->stack + RETURN_ADDRESS_OFFSET) = [thd's return address];

10 return;

11 } else {

12 end_ctx(next_ctx);

13 }

14 }

Figure 3.23: Pseudo assembly code of context switch in C-RoC-E.

• Save register values.

• Change stack pointer to child’s stack.
• Jump to child.

• Push parent to pool.

• Call child function.

• Run child body.

• Pop ULT (=parent) from pool.

• Read return address.
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• Free child’s stack.
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Figure 3.24: Flow of C-RoC-E when no deviation happens. The difference from C-RoC (Figure 3.22) is empha-

sized by italicizing it.

in create thd() since the descriptor has not yet been returned to the caller of create thd(). C-RoC-E,

therefore, does not access a return address in the call stack but reads a member variable in a thread

descriptor. This change makes an update by a thief safe but imposes additional overheads for reference

in comparison with directly manipulating values in a call stack at D = 0%.

The instruction breakdowns and performance of the four child-first threading methods are summarized

in Figure 3.25 and Figure 3.26. Figure 3.25 shows that at D = 0% C-RoC and C-RoC-E in total reduce

5 and 4 instructions compared with C-Full and C-Full-E, respectively. However, C-RoC increases the

memory footprint because the complicated operations in thd wrapper() require larger stack space, which

increases L1 and L2 cache misses. Overall, C-RoC is 10% slower than C-Full even if no deviation

happens. C-RoC-E overcomes this issue of memory footprint by reusing stacks, which successfully

trims down the overhead by 29% compared with C-Full at D = 0% while worsening performance by

7% at D = 100%.
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Figure 3.25: Instruction breakdown for fork and join of the child-first methods on Skylake. We used Intel

SDE [103] to obtain series of instructions.
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Figure 3.26: Fork-join overheads of the child-first threading methods on Skylake.
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Figure 3.27: Performance of the child-first methods on Skylake. Cache misses are obtained by PAPI [41]. Higher

levels of caches do not suffer from cache misses in this experiment because each ULT accesses a

small portion of a call stack; we therefore omit the data.
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3.6 Trade-off of Performance and Functionalities

Table 3.1: Summary of the threading techniques.

D = 0% D = 100%

Constraints
LSA

or

ESR?

Change

stack?

# of

Register

Manage-

ments

Overheads Overheads

P
ar

en
t-

F
ir

st

Fully Fledged Thread
No Yes 2 Highest Lowest No

(Full)

Fully Fledged Thread (LSA)
Yes Yes 2 No

(Full-L)

Return on Completion
No Yes 1 No

(RoC)

Return on Completion (LSA)
Yes Yes 1 No

(RoC-L)

Stack Separation
No Yes 0

Scheduler must

(SS) be stateless.

Stack Separation (LSA)
Yes Yes 0

Scheduler must

(SS-L) be stateless.

Scheduler must

Scheduler Creation
Yes No 0 Highest

be stateless.

(SC) Stack size is

shared.

(Stackless Thread)
- No 0 Lowest -

No deviation is

(Stackless) allowed.

C
h
il

d
-F

ir
st

Fully Fledged Thread
No Yes 2 Highest Lowest No

(C-Full)

Fully Fledged Thread (ESR)
Yes Yes 2 No

(C-Full-E)

Return on Completion
No Yes 1 No

(C-RoC)

Return on Completion (ESR)
Yes Yes 1 Lowest Highest No

(C-RoC-E)

Table 3.1 shows the trade-off regarding performance and programmability. Full, Full-L, RoC, RoC-

L, and all the child-first threading techniques have no programming constraints because they save a

parent context, while SS, SS-L, and SC require stateless schedulers. SC has an additional constraint on

stack size, which further narrows its applicability. A stackless thread supports no threading capability
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that requires a context switch such as yielding, intermediate termination, and efficient synchronization.

However, highly constrained threading techniques perform better if no deviation happens; in the case of

parent-first scheduling, Stackless threads and SC perform better than the others. We also note that in both

parent- and child-first cases, threading techniques that show better performance at low D tend to perform

worse at large D because if deviation happens, dynamic promotion methods that lazily manage the stack

and callee-saved registers incur extra overheads than do eager methods. We note that these techniques

can co-exist in a single threading library without impacting other techniques. We will discuss how to

choose the best technique in Section 3.8.

3.6.1 Coverage of Our Techniques

Table 3.2: Coverage of our analysis.

Change Stack? # of Register Managements LSA/ESR Parent-First Child-First

Yes

2
No Full C-Full

Yes Full-L C-Full-E

1
No RoC C-RoC

Yes RoC-L C-RoC-E

0
No SS

(*2)

Yes SS-L

No

2
No

(*1)
Yes

1
No

Yes

0
No (*3)

Yes SC

Table 3.2 summarizes the coverage of our analysis. An area labeled with (*) in the table denotes an

absence of practical techniques. In the following, we explain reasons why these techniques are infeasible

for general threading libraries.

Saving Registers (*1)

Our analysis does not include threading techniques that do not change a stack but explicitly maintain

callee-saved registers on invocation. Intuitively, if a stack is shared between a parent and a scheduler,

resuming a scheduler is prohibitive since a scheduler can potentially overwrite the invoked stack. On the

other hand, if we totally rerun a new scheduler as SC does, storing callee-saved registers is pointless.

In the past, however, such techniques have been proposed for child-first scheduling [79, 157, 158, 176].
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Cilk 1.0-3 over Tapir/LLVM [144] is an actively developed multitasking framework that adopts this idea.

We note that these techniques are not suitable for building threading libraries because compiler mod-

ifications are required. Their approaches assume the following premises:

1. All local variables in the stack are addressed by a frame pointer instead of a stack pointer.

2. The call stack is not dynamically grown after a function prologue.

3. All threads are joined in a function that creates them (i.e., fully strict computation [32]).

Under these premises, a parent can call a child function on top of the parent stack after saving (or

clobbering) callee-saved registers. The algorithm works as follows. If no work stealing happens, the

child just returns to the parent. When another worker steals the parent ULT, the thief worker restores the

original registers while setting a newly allocated stack to a stack pointer and resumes the parent on top

of the new stack. Premise 1 guarantees that spaces for all local variables have already been allocated

or reserved before the child invocation and these locations are referenced by a frame pointer. Premise 2

assures no stack growth, so a parent thread will not erode the stack used by the child thread. We note that

premise 2 allows function calls because the stack address of a new function is based on a stack pointer.

Premise 3, which narrows the expressiveness of parallelization, is required in order to prevent the caller

of the parent ULT from overwriting the stack of the child thread prior to the completion of a child.

However, premises 1 and 2 require compiler modifications, and therefore StackThreads/MP [157],

LazyThreads [79], and Cilk [71] modified a compiler. Yang and Mellor-Crummey [176] tried to avoid

compiler modifications by adding a GCC compiler flag, -fno-omit-frame-pointer, but it does not guar-

antee premise 1. Unfortunately, the current popular C compilers do not provide a flag that guarantees

premises 1 and 2. These techniques are not evaluated in this paper because our work targets threading

techniques without compiler modifications.

Restarting Parent ULTs (*2)

With parent-first scheduling, SS, SS-L, and SC restart a stateless scheduler on deviation. This tech-

nique is not applicable to child-first threads, however, since parent ULTs are in most cases not stateless;

rerunning a parent ULT loses not only the result computed by the parent ULT but also a child thread

descriptor if the parent is in the midst of the thread creation function. This is an impractical restriction

as a thread, so we do not show child-first techniques that require stateless parent ULTs.

Eager Stack Management for SC (*3)

From the viewpoint of stack management, SC follows the LSA policy; SC allocates a stack for a sched-

uler not on creation but on deviation. One might suggest allocating a stack and a thread descriptor
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together on creation for SC, but such an eager stack allocation strategy does not work for SC. Full,

RoC, and SS always keep the same pair of a stack and a thread descriptor, while SC needs to decouple

the management of the stack and thread descriptor since a stack required on deviation is assigned to a

new scheduler, not a thread associated with a thread descriptor.

3.7 Evaluation with a Microbenchmark

Table 3.3: Experimental environments used for the evaluation in Section 3.7.

Name Skylake KNL POWER8 ARM64

Processor Intel Xeon Plat-

inum 8180M

Intel Xeon Phi

7210

IBM S822LC (10

cores)

AMD Opteron

A1120

Architecture Skylake Knights Landing POWER8 LE ARMv8-A

Frequency 2.5 GHz 1.3 GHz 2.9 GHz 1.7 GHz

# of sockets 2 1 2 1

# of cores 56 64 20 4

# of HWTs 112 256 160 4

Memory 396 GB 198 GB 130 GB 8 GB

OS Red Hat 7.5 Red Hat 7.5 Red Hat 7.6 openSUSE 42.2

Compilers Intel Compiler

17.2.174

Intel Compiler

17.2.174

IBM XL Compilers

16.1.1

GNU Compilers

4.8.5

In this section, we evaluate the performance of all the threading techniques presented in the preceding

sections with a microbenchmark and three fine-grained parallel applications. All the parent- and child-

first threading techniques were implemented in Argobots. Our experimental environments are described

in Table 3.3. All the programs were compiled with -O3. We set the same stack size (16 KB) to both

ULTs and schedulers to the advantage of SC. All results reported in this paper are the arithmetic mean.

The error bars in the charts indicate the 95% confidence intervals.

We evaluate the threading overheads with the fork-join microbenchmark used in the preceding sec-

tions; the code is presented in Figure 3.9. This microbenchmark repeats creating and joining N ULTs

on a single worker. Deviations are artificially introduced by yield thd(); the deviation probability D is

calculated by n/N , where n ULTs uniformly selected out of N ULTs yield once. We used a lightweight

private pool [1] to minimize overheads of pool operations. In the microbenchmark, the set of N fork-

join operations was repeated 219/N times and obtained the average of the execution time. The result

of stackless threads is at n = 0 (i.e., D = 0%) because stackless threads cannot yield. We ran this

microbenchmark 50 times on Skylake, KNL, POWER8, and ARM64.
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Figure 3.28: Cycles per fork-join with various D values with parent-first threading techniques (N = 4,096).

3.7.1 Performance with Different Deviation Probabilities (D)

We first shows the results with various D values where N is fixed to 4,096 in order to see how the devi-

ation probability affects the threading overheads. For better visibility, we separate results by scheduling

type; Figure 3.28 shows the parent-first techniques while Figure 3.29 plots only the child-first ones. First,

all the results indicate the same performance trend: SC, SS, and RoC outperformed Full at D = 0%

because these dynamic promotion techniques alleviate the context management overheads when no de-

viation takes place. In the case of child-first scheduling, at D = 0% C-RoC outperformed C-Full on

KNL, POWER8, and ARM64 by reducing context-switching overheads, while it degraded performance

on Skylake because of complex control as we discussed in Section 3.5.2. LSA and ESR (-L and -E) mit-

igated cache misses at the cost of additional stack management overheads, with elevated performance
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Figure 3.29: Cycles per fork-join with various D values with child-first threading techniques (N = 4,096).

overall. The performance of SS-L and SC was close to that of stackless threads but these threading

techniques have programming constraints as discussed in Section 3.6.1.

On the other hand, at a larger D, SC, SS, RoC, and C-RoC were slower than the traditional fully

fledged techniques (Full and C-Full) because the dynamic promotion techniques lose their advantages

and become extra overheads. LSA and ESR (-L and -E) further degraded the performance since they no

longer promote stack reuse and result in additional overheads to manage thread descriptors and stacks

independently.

Although there is a fundamental scheduling difference between parent- and child-first techniques, the

results of corresponding techniques (e.g., RoC and C-RoC) are similar because the expensive context-

switching operations are common; in terms of context-switching overheads, there is no significant per-

formance difference between parent- and child-first scheduling, while the applicability of dynamic pro-
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Figure 3.30: Cycles per fork-join with various numbers of threads with parent-first threading techniques (D is

fixed to 0%).

motion techniques is limited in the child-first cases. We note that, as pointed out by vast literature (e.g.,

[82] and [127]), the scheduling policies have been known to affect the application performance. KMeans

and ExaFMM in our evaluation showcase the difference in application-level performance, while in both

cases the dynamic promotion methods enhance performance by reducing threading overheads.

3.7.2 Performance with Different Numbers of Threads (N )

With the same microbenchmark, we examined the effect of the dynamic promotion techniques by vary-

ing ULT counts (N ) while fixing D to 0% and 100%. Figure 3.30, Figure 3.31, Figure 3.32, and

Figure 3.33 show fork-join overheads with different N . Overall the performance trend is the same; at
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Figure 3.31: Cycles per fork-join with various numbers of threads with child-first threading techniques (D is fixed

to 0%).

D = 0% the dynamic promotion techniques (SC, SS, RoC, and C-RoC) are faster than fully fledged

techniques (Full and C-Full). With smaller N , however, LSA and ESR (-L and -E) are insignificant

because stack accesses hit caches without LSA and ESR; on the contrary, decoupling the management

of thread descriptors and stacks negatively affects the performance even at D = 0%. The results in-

dicate that if only few ULTs are used in the runtime, LSA and ESR do not contribute to performance

improvement and possibly just impose additional overheads.
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Figure 3.32: Cycles per fork-join with various numbers of threads with parent-first threading techniques (D is

fixed to 100%).

Performance on Different Architectures

The effectiveness of the dynamic promotion techniques varies on different architectures. Figure 3.28

and Figure 3.29 indicate that KNL shows the largest performance difference at D = 0%; the gaps

between Full and stackless threads are 1.7x, 3.8x, 2.4x, and 2.2x while speedups of C-RoC-E over

C-Full are 1.4x, 2.0x, 1.3x, and 1.3x on Skylake, KNL, POWER8, and ARM64, respectively. This

difference comes from the design of KNL. In comparison with Skylake, which is a general-purpose Intel

CPU, in spite of the identical calling convention, KNL showed a larger gap because of its throughput-

oriented architecture; KNL poorly performs pointer-based operations with many branches and noncon-

tiguous memory accesses, both of which highly impact the context-switching performance. The context-
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Figure 3.33: Cycles per fork-join with various numbers of threads with child-first threading techniques (D is fixed

to 100%).

switching overhead on POWER8 is also high. For example, at D = 0% and N = 128, the performance

gap between Full and stackless threads is 2.7x while the gaps of Skylake, KNL, and ARM64 are be-

tween 1.9x and 2.2x. Context switching on POWER8 is costly because more instructions are required

to save its larger context; the context size of POWER8 is as large as 528 bytes because its ABI marks

more registers as callee-saved [5]. In contrast, the size of x86/64 and ARMv8-A is only 64 bytes and

176 bytes, respectively [92, 140]. We observe that the dynamic promotion techniques are more effective

on architectures that are throughput oriented or have a large context.
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3.8 How to Choose the Best Threading Technique

Our work investigate several user-level threading techniques that have different performance charac-

teristics and programming constraints. As all the threading techniques can coexist in a single library,

users and developers can choose the suitable techniques from Table 3.1 for their assuming workloads.

Practically, the first decision should be a choice of either parent- or child-first scheduling. In general,

parent-first scheduling performs better for shallow parallelism (e.g., loop parallelism in KMeans as pre-

sented in Section 5.2.1) while a child-first scheduling is preferred when the parallelism is deep and

nested (e.g., divide-and-conquer parallelism in ExaFMM as shown in Section 5.1.1). Several papers in-

vestigated the performance differences between parent- and child-first scheduling policies and proposed

mixed scheduling policies [51–53, 166], but this direction is out of scope of this work. The optimal

technique under a specific scheduling policy should be chosen based on scenarios regarding the number

of created ULTs, typical deviation probability, and required threading capabilities, all of which depend

on their algorithms, machines, and inputs.

If the user has no idea about the application behavior, we recommend RoC-L for parent-first schedul-

ing or C-RoC-E for child-first scheduling; they perform well at low deviation probability with mini-

mum memory footprint while retaining all the threading capabilities. Nevertheless, among fully capable

threads, these two do not always perform the best. When a deviation probability is high, they are slower

than Full and C-Full. As we have seen in the evaluation, however, when deviations are frequent, thread-

ing overheads often become negligible because events that cause deviations (e.g., lock contention and

blocking communication) hide the benefit of lightweight threads. RoC and C-RoC also outperform

RoC-L and C-RoC-E when deviations rarely happen, and fewer ULTs are used because LSA and ESR

are not effective when stack accesses hit caches. Although our microbenchmark uses an empty function

for a thread function, real thread functions are likely to require larger function stacks for computation,

rendering LSA and ESR more beneficial. We recommend RoC-L or C-RoC-E in general, but the most

promising approach is the automatic selection of the best threading techniques, which is one direction

of our future work.
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3.9 Summary

This chapter explores user-level threading techniques that are suitable for building threading libraries

from a viewpoint of threading overheads. Our in-depth instruction- and cache-level analysis of twelve

methods revealed their performance characteristics and programming constraints. We found that a

deviation—an event that inhibits a run-to-completion execution of thread—highly impacts fork-join

overheads. We implemented all the techniques in the same runtime system and evaluated fork-join

overheads on Skylake, KNL, POWER8, and ARM64 architectures. Our evaluation with a microbench-

mark indicates that the dynamic promotion techniques that defer the context management show the best

trade-off between fork-join overheads and programming constraints when the chances of deviation are

low.
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This chapter focuses on the OpenMP parallel programming model [130]. We explore the highly efficient

OpenMP runtime library over lightweight ULTs we discussed in the previous chapter and develop a ULT-

based OpenMP library, BOLT [3]. This work was conducted with Abdelhalim Amer, Kenjiro Taura,

Sangmin Seo, and Pavan Balaji.

4.1 Introduction

Multithreading becomes essential to exploiting multicore processors, threading primitives provided by

threading libraries are often too low-level for high-level application developers to describe parallel algo-

rithms. Among several highly productive parallel programming models, OpenMP [130] is considered the

most popular intranode parallel programming interface in the high-performance computing field [29].

OpenMP provides various features to exploit hardware parallelism methods including SIMD instruc-

tions, irregular task-level parallelism, data-flow parallelism, and utilization of accelerators, while multi-

threading is the most widely used form to exploit compute resource of multi- and many core CPUs. Nu-

merous applications, computational libraries, and runtime systems have been successfully parallelized

with OpenMP multithreading constructs.

Such multithreading often targets uniform and regular data-level parallelism such as a loop in which

every loop iteration computes the same amount of data, so coarse-grained parallelism has been often

considered to be sufficient for multithreading in OpenMP. However, as the current complex applications

become composed of several OpenMP-parallelized components, fine-grained parallelism becomes com-

monly seen. Consider contemporary applications developed on top of deep software stacks. Because

the parallelization at each software layer is more or less independent of the other layers, this often leads

to nested parallelism where one OpenMP parallel region embeds another. Although an abundance of

parallelism is potentially an opportunity for further performance improvement, it often results in catas-

trophic performance degradation by oversubscription of threads. Because most production runtimes use

OS-level threads to represent OpenMP threads, a naive implementation that blindly spawns additional

threads at each nested parallel region can hardly tolerate the oversubscription cost.

To address this challenge, two orthogonal directions have been explored: avoidance of oversubscrip-
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tion and reduction of oversubscription overheads. The first direction is adopted by widely used com-

mercial and open-source OpenMP implementations such as GCC OpenMP [126], Intel OpenMP [102],

and LLVM OpenMP [132]. Their default settings turn off nested parallel regions and consequently are

tuned for flat parallelism (i.e., a single-level parallel region). This solution avoids the oversubscription

issue without hurting the performance of flat parallelism, but such an aggressive serialization misses any

parallelism opportunity exposed by nested parallel regions. This situation is especially true when the

top-level parallel region does not have sufficient parallelism or the amount of computation across loop

iterations is irregular.

The second direction aims at reducing oversubscription overheads. Leading OpenMP runtimes ac-

complish this by reusing nested teams (threads and data associated with parallel regions) across parallel

regions [164] and by avoiding busy waiting [175]. Reusing, and thus keeping alive a large number of

OS-level threads, is more efficient than recreating and destroying them but requires nevertheless ex-

pensive suspension and reactivation operations. Furthermore, taking away busy-waiting implies the

involvement of the kernel when synchronizing threads at the entry and exit of a parallel region, which

hurts the performance of flat parallelism.

Mapping OpenMP threads to ULTs has also the benefit of reducing oversubscription overheads thanks

to lower fork-join costs. Numerous OpenMP implementations have followed this approach [39, 40, 86,

118, 135, 155] but fall short for several reasons. First, although an OpenMP thread has its own descriptor

in addition to encapsulating a native thread (be it OS- or user-level), these systems ignored other costs

outside the native thread fork-join overheads. An OpenMP runtime has to manage other OpenMP-

specific data and descriptors that are orthogonal to the native threading layer. Second, they overly

relied on ULT-based fork-join operations that poorly handle flat parallelism, which is more efficiently

implemented with busy-waiting methods. Third, they offer virtually no control to the user over thread-

to-CPU binding, which is important in modern systems to improve data locality. As a result, existing

ULT-based runtimes perform overall worse than finely configured production OpenMP systems, leaving

open questions regarding their suitability as all-purpose OpenMP runtimes.

In this chapter, we explain BOLT [3], a practical ULT-based OpenMP runtime that attains unprece-

dented performance for nested parallelism while also transparently supporting the efficient execution of

flat parallelism. Through our in-depth investigation of the ULT-based OpenMP runtime optimization

space by exploring both generic and OpenMP specification-driven optimizations, we found necessity

of optimizations beyond the naive mapping of ULTs and OpenMP threads; our solutions are: 1) team-

level data reuse and thread synchronization strategies to minimize overheads in the OpenMP runtime;

2) a novel thread coordination algorithm that transparently achieves high performance for both flat and

nested parallelism by adapting to the level of oversubscription; and 3) an implementation of the modern

OpenMP thread-to-CPU binding interface tailored specifically to ULT-based runtimes. Our evaluation
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with several microbenchmarks and N-body and quantum chemistry codes demonstrates that BOLT sig-

nificantly outperforms existing OpenMP runtimes when parallel regions are nested, and it suffers the

least performance loss under flat parallelism.

We note that our study in this chapter is different from the past literature that mentions this BOLT

project [44, 45], since none of the literature presents the details of its design and performance evaluation.

This work is to identify and address the issues in efficiently utilizing ULTs in OpenMP.

4.2 Fine-Grained Parallelism in Nested Parallel Regions
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Figure 4.1: Example of nested parallel regions. If the default number of OpenMP threads is 64 (e.g., on a 64-core

machine), this example creates 4,096 threads.

Compared with flat parallelism (i.e., a single-level parallel region), efficient handling of nested paral-

lelism in OpenMP has been considered challenging and thus the subject of studies from the early years

of OpenMP [118, 155]. In this work we do not advocate the use of nested parallel regions in a stan-

dalone OpenMP program (e.g., [42]); after all, several alternatives, such as task and taskloop constructs,

are offered by the OpenMP specification to leverage massive, deeply nested, or recursive parallelism

efficiently. The primary focus of our investigation is nested parallel regions that the user has limited

control over; for example, nested parallelism that takes place across multiple layers of the contemporary

software stack. We illustrate this situation with the example in Figure 4.1. We observe that two layers

of the software stack (the application layer and the external library) depend on the same OpenMP run-

time. The user application code calls an external function (e.g., dgemm()) in a parallel region, which is

also parallelized by a parallel region. An OpenMP runtime that blindly creates OpenMP threads at each

parallel region would result in the exponential growth of the number of threads in the system and serious

performance degradation.
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As shown in Figure 4.1, OpenMP runtimes rely on a lower-level threading layer, that we refer to as

native, to implement OpenMP threads and could be classified into two broad categories: heavyweight

OS-level threads and lightweight ULTs. The remainder of this section surveys the current landscape

in supporting nested parallelism. In the following, we classify the various runtimes with respect to the

weight of the dependent threading library given its significant role: runtimes using (1) OS-level threads

and (2) ULTs.

4.2.1 Current State in OS-Level Thread-Based Runtimes

Oversubscribing OS-level threads to hardware cores severely degrades performance because of expen-

sive context switching between threads and preemptive scheduling. Out of fear of oversubscription,

OS-level thread-based runtimes focus mostly on avoiding nesting altogether through various methods.

In the following, we enumerate the most common practices. In this work, we assume OpenMP 4.5 [129].

Disabling Nested Parallelism

This is the prevailing method in practice. The OpenMP standard specifies an internal variable called

nest-var that can be controlled via the environment variable OMP NESTED or a function omp set nested().

The standard defines the default value of nest-var as false, pessimistically assuming negative side

effects from setting it to true. This workaround wastes parallelism opportunities and might lead to CPU

underutilization.

We note that OpenMP 5.0 [130] marks nest-var as deprecated and sets its default value to implemen-

tation defined. We think that most production implementations will continue to support it and disable

nested parallelism by default.

Manual Concurrency Control

Users can explicitly control the numbers of threads at each parallel region with the nthreads-var control

variable. This approach gives more fine-grained concurrency control to the user, which is better than se-

rializing all inner parallel regions. It remains cumbersome, however, to coordinate multiple independent

libraries and applications on the degree of concurrency at each parallel region. The optimal configuration

is nontrivial to find because it depends on various factors (for example, target hardware, input problem,

and application characteristics) [94], rendering tuning concurrency at each parallel region impractical.

Collapsing of Nested Loops

With compiler support, the collapse clause partitions iterations across nested loops, where chunks of

the nested loops are uniformly distributed while keeping the number of OpenMP threads constant. This
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method is impractical for parallel regions situated in independent software libraries because it requires

code changes and is applicable only to consecutive nested loops.

Dynamic Concurrency Control

The specification defines the thread-limit-var and dyn-var control variables that allow users to cap the

number of threads in a contention group and to dynamically adjust the number of threads in a parallel

region, respectively. While these hints allow the runtime to avoid the exponential concurrency growth,

their effectiveness is limited. The control variable thread-limit-var suffers from the same shortcomings

as the manual concurrency control since users have to tune the upper bound on concurrency. Dynamic

concurrency control is implementation defined; for instance, LLVM OpenMP 7.0 calculates the number

of currently running OpenMP threads in the process in order to avoid oversubscription. As we demon-

strate in Section 4.4.1, the number of threads is hardly a reliable metric to infer resource utilization

because it ignores factors such as load imbalance and thread binding.

We note that the OpenMP specification explicitly states that the dynamic concurrency is unsafe when

programs require a specific number of threads during execution (e.g., accessing data indexed by thread

ID).

Use of OpenMP Tasks

OpenMP tasks are designed as lightweight parallel units of execution [22]. For example, LLVM OpenMP

implements user-space context switching between tasks. Furthermore, taskloop has recently emerged

as a task-based substitute for parallel for [159]. Unfortunately, because of semantic differences,

OpenMP threads are not always replaceable by tasks, as explored in [12]. For instance, OpenMP tasks

do not support thread-local storage, some synchronization primitives (e.g., barrier), and CPU binding.

In addition, this approach requires rewriting inner parallel loops in every external library, clearly making

it impractical. Thus, improving support for nested parallelism remains the most practical direction given

that parallel for is the predominant form of parallelization by applications and libraries.

4.2.2 Current State in ULT-Based Runtimes

A trade-off is possible between exposing parallelism through nested parallel regions and the correspond-

ing thread management costs; however, the high penalizing OS-level thread management costs make

searching for the best trade-off challenging. The workarounds introduced by the specification and im-

plemented by leading OpenMP runtimes thus have limited effectiveness when OS-level native threads

are adopted. In theory, with extremely lightweight native threads, overprovisioning of threads is sig-

nificantly less penalizing and renders searching for the best trade-off much more practical. Mapping
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OpenMP threads to lightweight ULTs is thus a promising approach and has been investigated by numer-

ous studies [39, 40, 86, 118, 135, 155]

However, we found that existing ULT-based runtimes perform worse than do finely tuned OS-level

thread-based runtimes from both flat and nested parallelism perspectives. The benefits of lightweight

ULT-based native thread implementations are diminished by overheads of managing OpenMP-specific

data and descriptors. The ULT-based runtimes rely on user-level context switching to fork and join

threads before and after every parallel region, but this algorithm is inefficient under flat parallelism com-

pared with busy-waiting-based methods used by leading OS-level thread-based runtimes. In addition,

because of the absence of an interface to control thread-to-CPU binding, these runtimes miss the op-

portunity to exploit the locality of hierarchical hardware and proximity among threads. As a result, the

effectiveness of ULT-based OpenMP runtimes remains questionable.

4.3 BOLT: Lightweight ULT-Based OpenMP Runtime

Our goal is to develop a practical OpenMP runtime system that efficiently supports both flat and nested

parallelism to exploit the ignored parallelism in contemporary applications built atop highly stacked

software layers. However, developing a cutting-edge OpenMP runtime from the ground up is a daunting

task. We, therefore, created a runtime system based on an existing leading OpenMP system, while, to

boost the performance of nested parallelism, we adopted ULTs as OpenMP threads. Specifically, we

chose the open-source LLVM OpenMP library [132] as a baseline OpenMP implementation in order to

take advantage of its maturity in terms of performance and robustness. As for the native threading layer,

we chose Argobots, our highly optimized user-level threading library.

The next section briefly describes the changes necessary to the upstream LLVM OpenMP in order to

run over a user-level threading library. We follow with a deep dive into the various overheads and bottle-

necks that occur under flat and nested parallelism and the corresponding solutions. We also describe how

they relate to or leverage knowledge from the OpenMP standard, and we identify some shortcomings in

the current specification that limit optimization opportunities.

4.3.1 Basic Design of BOLT

Developing a cutting-edge ULT-based OpenMP runtime from the ground up is a daunting task; it would

require tremendous effort and time to bring it up to the level of leading production runtimes. Conse-

quently, the practical direction is to reuse an existing runtime as a baseline. On the one hand, reusing

one of the leading OS-thread-based runtimes benefits from its maturity but would require a nontrivial

shift of its threading layer to a more lightweight ULT one. On the other hand, reusing one of the in-
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frastructures of an existing ULT-based runtime is attractive but requires a significant upgrade to modern

OpenMP and carries the risk of considerable effort to bring its performance and robustness to the level of

leading OS-thread-based runtimes. Fortunately, recent years have seen the emergence and convergence

of highly performing open-source implementations of OpenMP. In particular, the maturity, in terms of

performance and robustness, of the recently released open-source Intel OpenMP runtime, which is now

part of the LLVM effort, is the product of more than a decade of performance engineering. We seized

this opportunity by taking the former route; we developed BOLT based on the LLVM OpenMP runtime

by shifting its threading layer.

Intel Compiler Clang

Intel/LLVM OpenMP BOLT

Argobots

GNU Compiler

GCC OpenMP

POSIX Threads (Pthreads)

Figure 4.2: Compiler compatibility of BOLT. As well as Intel OpenMP and LLVM OpenMP, BOLT supports GNU

Compiler, Intel Compiler, and Clang as an OpenMP frontend compiler.

BOLT was derived from LLVM OpenMP 7.0 [132] to inherit its optimized and modern OpenMP sup-

port as well as its application binary interface (ABI) compatibility with other leading OpenMP runtimes.

Indeed, despite LLVM OpenMP being a recent project, it is a capable runtime because it builds on the ac-

cumulated experience of the Intel OpenMP runtime [102], from which it has been derived. Furthermore,

as illustrated in Figure 4.2, the ABI compatibility with GCC OpenMP and Intel OpenMP allows BOLT

to work with OpenMP-parallelized applications compiled with the GNU, Intel, and Clang compilers.

Unlike existing ULT-based runtimes, this compatibility allows BOLT to evaluate real workloads with-

out modification and recompilation; in particular, BOLT can be used even with commercial and closed

source OpenMP-parallelized codes. BOLT can utilize cutting-edge compiler support, including the omp

simd directive that promotes vectorization [110] and the omp atomic directive that forces a compiler and

a runtime to perform an operation atomically.

Our main focus is optimizing threading and tasking in OpenMP, so BOLT directly uses most func-

tionalities from LLVM OpenMP. Thanks to rich runtime features supported by LLVM OpenMP, BOLT

supports most of OpenMP 4.5 features. It includes several functions to get and set runtime status and pa-

rameters, memory allocator, target offloading for accelerators [30, 149], and data-flow parallelism [78].

Since at present most of the applications and runtimes parallelized by OpenMP use OpenMP 4.5, BOLT

can run most OpenMP parallelized applications in the real world without missing OpenMP directives

specified by programmers.
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Figure 4.3: Difference of threading layers between LLVM OpenMP and BOLT.
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Figure 4.4: Execution Model of BOLT. Created threads by a scheduler are pushed to its local pool. A scheduler

pulls a thread from its own pool; if it is empty, random work stealing takes place.

Optimizations of a threading layer are performed as follows. The first step in deriving BOLT from

LLVM OpenMP is a straightforward replacement of any use of the Pthreads interface with the simi-

lar interface provided by Argobots. This involves not only replacing fork-join calls but also inheriting

configuration parameters (e.g., stack size) and adopting ULT-based thread-local storage (TLS) and sev-

eral synchronization mechanisms. The critical aspect that motivated using Argobots is, in addition

to a heavily optimized ULT library, the ability to fully control scheduling and ULT pools, which allows

BOLT fine-grained control over thread management. Figure 4.3 visualizes the threading layers in LLVM

OpenMP and BOLT. As presented in Figure 4.3, BOLT can keep the number of OS-level threads regard-

less of the number of OpenMP threads, while LLVM OpenMP has oversubscription of threads since

OpenMP threads are mapped to OS-level threads.

Figure 4.4 shows the basic components of BOLT and how OpenMP threads are managed. When

the runtime is initialized, BOLT spawns OS-level threads, typically as many as the number of CPU

cores, and runs schedulers on top of each of the OS-level threads, which work as processors in the

OpenMP standard. Each scheduler has a shared ULT pool that is accessed mainly by the owner but can

be a target of work stealing. We adopt a simple random work-stealing algorithm [33]; the scheduler
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steals ULTs from another pool only when its own pool is empty. This model follows the same practice

found in existing ULT-based OpenMP runtimes. OpenMP tasks are also mapped to ULTs, but careful

mechanisms are in place to maintain a correct thread-task relationship in order to satisfy the OpenMP

semantics (e.g., tied tasks).

At this stage, BOLT shows decent performance compared with several OS-level thread-based and

ULT-based runtimes. Unfortunately, at this stage, which we refer to as baseline, BOLT underperforms

in several cases as other ULT-based runtimes do; it relies on low threading overheads of ULTs but mostly

ignores OpenMP-specific knowledge in the optimization space. In particular, massive thread parallelism

created by nested parallel regions stresses the scalability of data management and thread synchronization

operations, diminishing performance gain by the lightweight nature of the native ULTs. To tackle this

scalability challenge under nested parallelism, we first focus on the OpenMP specification that enables

efficient data reuse and two bottlenecks in thread synchronization that have been overlooked in LLVM

OpenMP; these techniques are either known methods in the context of OS-level thread-based systems or

general optimizations, while these performance issues are significant with lightweight threads. We then

investigate efficient and transparent support for flat parallelism and ULT-based OpenMP thread-to-CPU

binding and propose new techniques that are specific to ULT-based OpenMP runtimes.

4.3.2 Team-Aware Resource Management

Despite its abstract nature, the concept of OpenMP team has important performance implications for

nested parallelism by promoting reuse and isolation. Let us first assume that only flat parallelism is

supported. In this case, the concept of the team is unnecessary since there is at most one active parallel

region at a time. Consequently, it is sufficient to reuse the same set of threads to execute successive

parallel regions. Reuse here applies to the OpenMP thread descriptors that contain native threads and the

per-thread OpenMP-specific data. The set of threads can also dynamically expand to account for variable

thread counts across parallel regions. In LLVM OpenMP and BOLT, an OpenMP thread descriptor

embeds a native thread; it follows that reusing an OpenMP thread descriptor allows reusing the same

native thread to avoid expensive fork-join calls. In order to support the OpenMP fork-join execution

model, barrier synchronization is used in LLVM OpenMP instead. The same is achieved in BOLT by

using the join-revive Argobots pattern; this is a unique trait of Argobots that allows joining threads

without destroying them (similar to a barrier synchronization) and later revive them to execute a new

parallel region.

This model is impractical for nested parallelism, however. It is unfeasible to execute all parallel

regions by the same set of threads while maintaining parent-children dependencies between regions,

independence among sibling regions, and region-local barrier synchronization. The notion of the team
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satisfies these needs and allows for optimizations. The isolation of threads within the same team allows

independent teams to run in parallel and limits the scope of barrier synchronization to team-local threads.

The above global reuse model can also be adopted at the team level. When a team finishes executing

a parallel region, its corresponding data, which includes OpenMP thread descriptors, can be reused for

a subsequent parallel region. Exploiting team-level optimizations is not new but has been limited to

leading OS-level thread-based runtimes. This reuse method, called a hot team [164], has been adopted

by Intel and LLVM OpenMP and saves not only on thread management operations but also on team-level

data management and initialization (e.g., barrier-related data).

The original implementation of hot teams is limited to the outermost parallel region by default because

the OS-level thread is a precious system resource; since the number of OS-level threads grows exponen-

tially, keeping them alive can rapidly reach the system limit. This is not an issue for ULT-based runtimes

since threads are managed in the user space. Here the primary physical limit is memory resource but

it can fit a massive number of ULTs since their memory footprint is relatively small (the largest object

is stack, which is 4 MB by default). As a result, the hot team optimization has even more potential for

ULT-based runtimes since caching ULTs only consumes memory without wasting a system resource.

4.3.3 Scalability Optimizations

Shifting the threading layer of the original LLVM OpenMP to ULTs reveals scalability bottlenecks

that were not previously visible because the costs of managing OS-level threads dwarfed them. These

bottlenecks are related to accessing shared data and the startup overhead of a parallel region that we

address as follows.

Scalable Shared Data Management

The first bottleneck is related to how shared data within the runtime is protected. A coarse-grained

critical section was protecting several runtime resources, including global thread and team descriptor

pools, which are used if teams are not cached, and global thread IDs. Accessing this data is on the

critical path of every construction of a parallel region. This critical section also serializes updates of

thread counters that are used to adjust the number of threads (e.g., as hinted by thread-limit-var).

This is a generic critical section contention issue, which we alleviated with established contention-

avoidance practices. We divided the coarse-grained critical section into smaller ones that protect distinct

resources. Since it belongs to the associated master thread, hot team data needs no protection, which

gets manipulated in a lockless manner. Thread counters are kept consistent by using hardware atomic

operations. These optimizations eliminate most serialization.
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Scalable Thread Startup

The second bottleneck is related to the startup phase of a parallel region where the master thread dis-

tributes work to threads in the team. The baseline join-revive model employs an O(N) distribution

algorithm that limits scalability under nested parallelism. This is a known pattern that has been improved

with O(logN) divide-and-conquer algorithms such as done by Intel CilkPlus [115] and Intel Thread-

ing Building Blocks [143]. LLVM OpenMP adopts the same approach but only for taskloop, however.

Thus, we applied this model to the join-revive pattern by distributing work in a binary tree manner

until the number of revived threads is one.

Our two optimizations drastically improve the scalability of the baseline BOLT under nested paral-

lelism. Nevertheless, it underperforms in the case of flat parallelism. Across successive parallel regions,

native threads (i.e., ULTs) cached by the hot team optimization are coordinated by ULT-based synchro-

nization that essentially relies on lightweight user-level context switching. This ULT-based coordination

method, however, performs worse than busy-waiting when no oversubscription happens. The next sec-

tion closely explores better thread coordination strategies across parallel regions, a direction that was

completely overlooked by previous ULT-based runtimes.

4.3.4 Thread Coordination Across Successive Parallel Regions

With OS-level threads, even if the hot team eliminates thread creation costs with OpenMP threads as

we presented in Section 4.3.2, sleeping and awakening threads on every parallel region invocation are

costly since they involve expensive OS-level context switching. Production OpenMP runtimes by de-

fault enable an aggressive synchronization that keeps finished OpenMP threads busy-waiting in order

to save the cost of waking up threads on creating the succeeding parallel region. Nevertheless, busy

waiting is obviously harmful under oversubscription cases because it essentially wastes CPU resources.

The OpenMP specification gives control to users via a run-time interface, OMP WAIT POLICY, that hints at

the runtime the desired behavior of waiting threads with active and passive keywords; the specification

explains that active implies busy-waiting, while passive sleep- or yield-based implementations. Al-

though the specification defines the behavior as implementation defined, this wait policy is exploited by

leading OpenMP runtimes to alleviate overheads of parallel region creation. For example, with active,

LLVM OpenMP 7.0 infinitely busy-waits for the next parallel region; but if the total number of OpenMP

threads is greater than the number of hardware threads, sched yield() is called in the busy loop. Under

the passive policy, threads immediately sleep after finishing their work; team reinvocation relies on a

tree-based barrier using Pthreads condition variables. This setting is known to significantly affect the

performance of flat and nested parallelism [94]; the active policy minimizes the latency for a repeated,

short, and single-level parallel region, but it imposes immense overheads when oversubscription hap-
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1 void omp_thread_func(...) {

2 const int YIELD_INTERVAL = 1e6;

3 START_THREAD:

4 [run an implicit task (= work of an OpenMP thread)];

5 int count = 0;

6 switch (omp_wait_policy) {

7 case ACTIVE:

8 while (true) {

9 if (is_next_team_invoked()) {

10 goto START_THREAD; // restart a thread.

11 }

12 if (count++ % YIELD_INTERVAL == 0) {

13 yield_to_sched(); // avoid hang.

14 }

15 }

16 case PASSIVE:

17 return; // immediately returns to a scheduler.

18 case HYBRID:

19 while (true) {

20 if (is_next_team_invoked()) {

21 goto START_THREAD; // restart a thread.

22 }

23 thd_desc_t *thd = pop_from_one_of_pools();

24 if (thd) {

25 // finish, return to a scheduler, and execute a thread.

26 return_to_sched_with_thread(thread);

27 }

28 }

29 }

30 }

Figure 4.5: Pseudo code of wait policy implementation in BOLT. We omit detailed flag management from this

code. Here yield to sched() behaves as preemption, which is necessary to avoid a dead lock with

the active policy.

pens (e.g., parallelism is nested). On the other hand, with the passive policy, the latency is large under

flat parallelism.

Static Wait Policy

A common misconception is that the threading cost of ULTs is minuscule (e.g., as small as synchroniza-

tion based on busy-waiting). Indeed, the previous ULT-based OpenMP runtimes have ignored the wait

policy and merely implemented a passive behavior relying on user-level context switches. Nevertheless,

we found that even with lightweight ULTs, thread coordination algorithms indicated by the wait policy

have a large performance impact on flat and nested parallelism because under no oversubscription busy-

waiting is more efficient than user-level context switches containing several memory accesses. BOLT
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is aware of the importance of flat parallelism and therefore employs both active and passive strategies,

which allow efficient execution of flat parallelism if active is specified. Figure 4.5 shows the pseudo

implementations of the wait policies in BOLT; under the active policy, a flag (is next team invoked())

is checked in a busy loop (line 9), whereas with passive a thread finishes immediately after its work to

possibly schedule another ready thread (line 17).

However, this static policy mechanism requires users to prioritize the performance of either flat or

nested parallelism. The API proposal by Yan et al. [175], which allows the policy change at runtime

with omp set wait policy(), can alleviate the current one-time black-and-white setting. However, it

imposes a burden on users to control optimal settings, which is impractical for real-world complicated

applications that consist of both flat and nested parallelism.

Hybrid Wait Policy

To address this issue, we propose a hybrid policy, a new ULT technique that encompasses both strengths

by executing the active and passive behaviors alternately. This optimization comes from the observation

that both implementations are composed of busy loops; the active implementation contains busy waiting,

whereas with passive, after the thread finishes, the scheduler enters a busy loop to pop and execute the

next ULT. The hybrid implementation embeds the ULT pool operations in the thread coordination code

and checks a flag and availability of ULTs alternately in a busy loop, as shown in Figure 4.5. If a ULT

is successfully taken in this loop (line 23), the thread exits and returns to the scheduler with the popped

ULT, which will be executed next (line 26). This hybrid strategy consists of both the active and passive

strategies; it works as active with a pool-checking overhead (line 21) under flat parallelism, while

passive with a flag-checking overhead (line 20) under oversubscription. Since any expensive operation

is involved in a busy loop to check a pool and a flag alternately, it performs almost best in both flat and

nested parallelism cases without the programmers’ burden to choose the wait policy.

This hybrid technique is not applicable to OS-level thread-based implementations since a kernel does

not expose a scheduling loop to users. Instead of a hybrid behavior, one might suggest an adaptive

strategy that dynamically switches active and passive modes based on plausible metrics: for example,

total numbers of threads and parallel regions, depth of nests, CPU loads, and real performance obtained

by profiling. However, such an adaptive technique is potentially harmful because of the expensive

wait policy change that requires suspension and reactivation of OS-level threads. We note that our

hybrid technique has the least negative side effect under the assumption of ULT scheduling; especially

the hybrid technique does not perform any context switching without acquiring the next work unlike

yield to sched() (line 13) with active, which eliminates unnecessary context switches that increase

the latency in the thread restart path.
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Unfortunately, neither the OpenMP specification nor the proposal of extensions [175] contains a key-

word that can be mapped to this hybrid behavior. BOLT uses a keyword hybrid, while we simply suggest

a keyword runtime or auto to the specification, which allows a runtime to choose the best algorithm (i.e.,

the hybrid algorithm in the case of BOLT).

4.3.5 Thread-to-Place Binding

To efficiently run a parallel program on modern hierarchical multi-core CPUs, in addition to the effi-

cient execution of parallel regions, exploitation of locality is essential. Several studies tackle locality

issues by scheduling them in a locality-aware manner [160, 167], but their proposals are neither portable

nor implicit. As a specification, OpenMP 4.0 introduced the concept of thread binding, which allows

users to hint preferable thread affinity; this facilitates exploiting data locality by mapping threads to the

hardware topology and by exploiting physical proximity among threads. Specifically, OpenMP allows

fine-grained affinity control via places; users can define places that encapsulate sets of hardware threads,

and OpenMP threads can be bound to specific places according to a given binding setting (bind-var).

This thread-to-place binding interface is straightforward to use for flat parallelism, but it is not so trivial

for nested parallelism. For instance, the user can use the binding interface to carefully map threads in a

way that maximizes resource utilization. This solution, while already cumbersome for the user, becomes

impractical the moment the thread count exceeds the number of processors or the per-thread workload

is irregular. In this case, dynamically scheduling threads is more practical.

Dynamically moving threads can take place only within one place, however. This creates a multidi-

mensional trade-off between data locality granularity (small places give more fine-grained control), load

balancing (larger places allow for better utilization) and scheduling overheads (moving threads within

one place). The quest for the best trade-off favors ULT-based runtimes, thanks to high-control and low-

cost scheduling, but remains completely unexplored since existing ULT-based runtimes support only old

OpenMP specifications. Whether an OpenMP runtime fulfills the thread-to-place binding specification

is implementation defined; thus, the baseline BOLT remains standard-compliant but prohibits the user

from the corresponding optimizations. We believe this should not be the case; that a ULT-based run-

time can equip the user with the same optimization tools as OS-level thread-based runtimes do. In the

following, we describe our binding support, which is fully compliant with the specification.

ULT-Based Thread-to-Place Binding

OS-level thread-based runtimes often rely on CPU masks to map threads to places; the OS schedules

threads only on CPU sets that threads are allowed to run onto. This approach is not practical for ULT

scheduling because threads are scheduled by using decentralized thread pools. For a close mapping
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Shared pools
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OS-level thread
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OS-level thread OS-level thread
OpenMP thread
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(place 0: [0-1]) (place 1: [2-3])

Figure 4.6: Place pools in BOLT. In addition to shared pools, Scheduler 1 can access its own place pool (place 0),

but not the other place pools.

between places and thread pools, we created the concept of place pool associated with a place (i.e., a

user-defined set of processors, or schedulers in BOLT) as shown in Figure 4.6. Since only schedulers

associated with a place have access to a corresponding place pool, ULTs bound to the place pool can be

executed among these limited schedulers. By pinning schedulers in BOLT to hardware threads, ULTs

are virtually bound to specific core sets. Places are immutable once defined, so BOLT does not need to

create and destroy place pools dynamically; thus, the additional overhead to support places is negligible.

The Problem with Binding Policy Inheritance

The previous step allows BOLT users to control thread mapping as they would do with widely used

OpenMP runtimes. Unfortunately, the deterministic nature of this binding interface constrains thread

scheduling; it ignores processor utilization at runtime and can lead to load imbalance. We believe

that to approach the optimal trade-off, a promising strategy is to combine tight-binding policies for the

outermost parallel region (to promote data locality) with loose binding policies for inner regions to allow

threads more freedom to move and exploit dynamic load balancing. This strategy maps cleanly to the

BOLT internal thread pool and scheduling system, but there is an obstacle in the specification. If the

binding policy for the outermost parallel region is set, the inner binding policy either inherits the parent

region’s policy if the user does not set it or takes the user-chosen policy. In both cases, binding is always

enforced onto the inner parallel regions, which prohibits dynamic scheduling.

To address this issue, we suggest an extension to the specification to support a new bind-var keyword,

unset, which literally unsets bind-var; technically, it sets bind-var and place-partition-var to the

default ones, while in BOLT the default bind-var is no thread binding. With this keyword, we can

specify the strategy described above by, for instance, setting OMP PROC BIND to spread,unset. With

this extension, BOLT is capable of dynamic scheduling through random work-stealing when binding is

unset. We believe this keyword is also useful with OS-level thread-based implementation for dynamic

load balancing.
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1 #pragma omp parallel for num_threads(L)

2 for (int i = 0; i < L; i++) {

3 #pragma omp parallel for num_threads(N)

4 for (int j = 0; j < N; j++) {

5 empty(i, j); // no computation

6 }

7 }

(a) Kernel of the microbenchmark. N is the number of cores.
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(b) Performance of the microbenchmark on Skylake.

Figure 4.7: Microbenchmark that evaluates overheads of nested parallel regions.

4.3.6 Performance Breakdown and Analysis

The preceding sections described several implementation aspects that affect the performance of parallel

regions in flat and nested parallelism regimes but did not quantify the individual contributions. This

section provides a breakdown analysis using simple microbenchmarks that were run on a 56-core Intel

Skylake server (detailed experimental setting is provided in Section 4.4).

Performance Breakdown Analysis

To evaluate BOLT under nested parallelism, we first used a microbenchmark that stresses the overheads

of nested parallel regions, as shown in Figure 4.7a. We set N to the number of cores (i.e., 56) and ran

this microbenchmark with different values of L. Figure 4.7b shows the results following an incremental

bottleneck elimination approach; at each step, the optimization being applied is the one that eliminates

the major bottleneck at that step (which does not necessarily follow the same order as the optimiza-

tion descriptions above). We set OMP WAIT POLICY to passive by default, which is beneficial for nested

parallelism.

We found that team construction and destruction take more than 92% of the total execution time on the
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critical path with L = 56. As a result, the hot team optimization (Section 4.3.2) can significantly reduce

the team management cost (Team-aware management) and improves the execution time by roughly

10x. The next most significant bottleneck is the contention for the coarse-grained critical section, which

consumes 13% of the execution time when L is 56. By adopting the Scalable data management opti-

mization (Section 4.3.3), the contention is significantly reduced and the benefits are proportional to the

size of the outer parallel region L. Binary thread startup (Section 4.3.3) shortens the critical path by

reducing the workload on the master thread (Scalable thread startup), which improves performance

especially with smaller L. Merely setting affinity—set to spread in this example—does not improve

performance (Bind=spread) because, as discussed in Section 4.3.5, the affinity setting is inherited by

the inner parallel regions and incurs load imbalance because of the loss of scheduling flexibility. Giv-

ing scheduling freedom to the inner nested level by setting spread,unset (Section 4.3.5) improves CPU

utilization by reducing load imbalance (Bind=spread,unset). The hybrid wait policy presented in Sec-

tion 4.3.4 improves performance with smaller L because of its active behavior, while it shows the least

performance degradation with larger L (Hybrid policy).

We also compared the optimized BOLT with the pure Argobots library, which we consider as the

upper bound on performance. We created a microbenchmark that is directly parallelized with Argobots

in the same way as done with the optimized BOLT; we mimicked BOLT’s scheduling and thread man-

agement (e.g., affinity and team-aware resource management) but removed OpenMP function calls and

omitted other unused OpenMP features for this microbenchmark (e.g., initialization of task pools and

management of thread IDs). Figure 4.7b indicates that the optimized BOLT incurs up to 23% overheads

compared with Argobots (Argobots in the figure). We think any further performance improvement

beyond this point must involve improving Argobots itself.

Wait Policy and Performance

To assess the trade-off of the wait policy, we evaluated the performance of flat and nested parallelism

with both the active and passive policies. We used the optimized BOLT (Bind=spread,unset in Fig-

ure 4.7b). In addition to the widely used OpenMP implementations (GCC, Intel, and LLVM OpenMP),

we evaluated three ULT-based OpenMP runtimes: MPC [135], OMPi [86], and Mercurium [27]. Sec-

tion 4.4 includes the details of the OpenMP runtimes we evaluated. We note that these ULT-based

runtimes employ only the passive strategy (i.e., no busy-waiting). We tuned the affinity settings of GCC,

Intel, and LLVM OpenMP as done in Section 4.4.1.

Figure 4.8a shows the overheads of a single parallel region creating 56 threads doing no computation

on the Intel Skylake processor. We show the best affinity settings for GCC, Intel, and LLVM OpenMP

(GOMP, IOMP, and LOMP) in the figures; the first affinity was set for active and the other for
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Figure 4.8: Performance of the microbenchmarks that evaluate the effect of wait policy on Skylake.

passive. Figure 4.8a shows that BOLT with passive is faster than GOMP, IOMP, and LOMP with

passive, thanks to lightweight ULTs, while it is slower than IOMP and LOMP with active because

their coordination algorithms based on busy-waiting are more efficient than is the passive algorithm

relying on user-level context switching. BOLT with active performs as good as do IOMP and LOMP.

The previous ULT-based OpenMP runtimes (MPC, OMPi, and Mercurium) show higher overheads

than do the OpenMP implementations with OS-level threads with active, indicating the importance of

the active wait policy for efficient support of flat parallelism even with lightweight ULTs.

Figure 4.8b shows the performance of nested parallel regions creating 56 threads at each level. GOMP

suffers from immense thread management overheads, diminishing the performance difference between

active and passive. IOMP and LOMP in this case significantly degrade performance with active

because busy waiting delays execution of other threads that have real work. BOLT shows the same

performance tendency, but is faster than the other OpenMP runtimes except for MPC; in Figure 4.8b,

MPC shows the best performance because the implementation of MPC does not allow oversubscription
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and completely serializes inner parallel regions. BOLT can achieve better performance by disabling

nested parallelism (BOLT (nest=F)). In Section 4.4.1 we discuss the performance penalty of aggressive

serialization.

These results demonstrate that the performance of flat and nested parallelism is sensitive to the wait

policy. BOLT with hybrid in both cases shows almost the best performance, proving the efficacy of

the hybrid algorithm which eliminates a burden to manually tune the wait policy but maintains high

performance under both flat and nested parallelism.

4.4 Evaluation with Microbenchmarks

Table 4.1: Experimental environment used for microbenchmarks of BOLT

Processor Intel Xeon Platinum 8180M Architecture Skylake

Frequency 2.5 GHz # of sockets 2

# of cores 56 (28 × 2) # of HWTs 112 (56 × 2)

Memory 396 GB OS Red Hat 7.4

Compilers Intel Compiler 17.2.174

In this section, we compare the performance of BOLT with six other OpenMP runtimes using care-

fully crafted microbenchmarks and two real-world N-body and chemistry applications that exhibit nested

parallelism. We ran experiments on the heavily threaded Intel Skylake system described in Table 4.1.

Since not every OpenMP runtime found in literature has a publicly available or usable implementation,

we present results only with runtimes that we could collect and run. The OS-level thread-based cate-

gory contains the GCC OpenMP [126], Intel OpenMP [102], and LLVM OpenMP [132] runtimes that

ship with GCC 8.1, Intel 17.2.174, and Clang/LLVM 7.0 [111], respectively. The ULT-based category

consists of MPC 3.3.0 [135], OMPi 1.2.3 [86] with psthreads 1.0.4 [85], and Mercurium 2.1.0 [27]

with Nanos++ 0.14.1.1 BOLT does not have its own compiler, so we compiled programs with the Intel

compiler and replaced the OpenMP library with BOLT by modifying LD LIBRARY PATH.

All programs were compiled with -O3. To evaluate nested parallelism, we set OMP NESTED to true. For

a fair comparison, we enabled nested hot teams for LLVM and Intel OpenMP for efficient resource man-

agement. In our evaluation, the hybrid policy was enabled for BOLT. For other runtimes, we followed

the common practice; we set OMP WAIT POLICY to active if nested parallelism is not used while disabling

1We could not find the source code of Omni/ST [155] and NanosCompiler [118]. The source code of ForestGOMP [39] is

available, but we did not include it because we could not compile and run it in our environment. The latest libKOMP [40]

(https://gitlab.inria.fr/openmp/libkomp) focuses on tasking and no longer maps OpenMP threads to ULTs, so we

exclude it in our evaluation.
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the busy-wait configuration under any nested parallelism, an approach that is overall beneficial as dis-

cussed in Section 4.3.6. We note that OMP WAIT POLICY was set to active for the taskloop evaluation to

maximize the performance because it requires only a single-level parallel region. The optimized BOLT

includes all the optimizations of Section 4.3 with the affinity setting of OMP PROC BIND=spread,unset,

which performed best in the following experiments. We present the results as the arithmetic mean of

ten runs with a 95% confidence interval shown as error bars. We note that some bars are hardly visible

because of small error values.

4.4.1 Doubly Nested Loops

We first evaluated two microbenchmarks that reflect cases where the efficiency of nested parallel regions

impacts performance. Unlike what we used in Section 4.3.6, the computation is added in order not to

let merely aggressive serialization be the best optimization. The first case is the microbenchmark shown

in Figure 4.9a. When L is less than the number of cores (N ), parallelizing only the inner or the outer

parallel loop cannot utilize all the available cores. We changed the outer loop count L and evaluated the

performance.

1 #pragma omp parallel for num_threads(L)

2 for (int i = 0; i < L; i++) {

3 #pragma omp parallel for num_threads(N / 2)

4 for (int j = 0; j < N / 2; j++) {

5 computation(i, j, 20000 /* cycles */);

6 }

7 }

(a) Insufficient parallelism

1 #pragma omp parallel for num_threads(N)

2 for (int i = 0; i < N; i++) {

3 int c = 20000 * N * pow(i + 1, A) / (pow(1, A) + ... + pow(N, A));

4 #pragma omp parallel for num_threads(N)

5 for (int j = 0; j < N; j++) {

6 computation(i, j, c /* cycles */);

7 }

8 }

(b) Unbalanced inner loop parallelism

Figure 4.9: Kernels of the microbenchmarks that evaluate nested parallel regions.

The second case is a program that has unbalanced inner parallel loops, as shown in Figure 4.9b.

Since the amount of work of the inner loop is uneven, load imbalance occurs if only the outer loop is

parallelized. In theory, parallelizing only the inner loop achieves performance as good as that of nested
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100 101 102

Outer loop count (L)

10-5

10-4

10-3

10-2

10-1

100

E
x
ec

u
ti

o
n
 t

im
e 

[s
]

BOLT (baseline)
BOLT (opt)
IOMP (spread)
IOMP (TL=896, true)
IOMP (dyn, true)
IOMP (taskloop, spread)
Ideal
Ideal (outer)

(c) Intel OpenMP (IOMP)
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Figure 4.10: Performance of the microbenchmark that has insufficient parallelism on Skylake.

parallelism, although disabling outermost parallelism is difficult in practice because outer parallel loops

often contain other computations. This benchmark has a parameter α (A in Figure 4.9b) to control the

degree of imbalance. Let N be a number of cores. The computation size of the ith outer loop iteration

is set to Wi cycles, where Wi is calculated as follows:

Wi = 20000 ·N ·

(i+ 1)α
∑N

j=1
jα

.

Wi is 20, 000 when α is 0 and gets unbalanced with larger α. By definition, the total amount of work is

always 20000 ·N regardless of α. We changed α from 0.1 to 10.

Each measurement calculates the average execution time of the kernel repeated for three seconds after
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(d) ULT-based OpenMP

Figure 4.11: Performance of the microbenchmark that has unbalanced inner loop parallelism on Skylake.

a one-second warm-up. To evaluate the common workarounds in OpenMP, in addition to the default

setting, we measured the performance of the dynamic adjustment of thread counts (i.e., dynamic-var

(dyn) and thread-limit-var (TL)). For thread-limit-var, we tried several numbers (N , 2N , 4N , 6N ,

8N , 12N , 16N , and 32N ). Thread affinity impacts performance, so we evaluated four settings—true,

close, and spread set OMP PROC BIND to true, close, and spread, respectively, and setting OMP PLACES

to cores, and nobind, which unsets those variables. Because of space limits, although we tried all

the combinations, we show the performance of the fastest series; specifically, since one series contains

multiple results at different X values, we chose one that has the smallest geometric mean of execution

time.

Figure 4.10 and Figure 4.11 show the performance of BOLT, GCC, Intel, and LLVM OpenMP with
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several settings and three ULT-based OpenMP systems. We split charts for better readability, so the

results of BOLT are identical among the four charts. BOLT (baseline) denotes the baseline BOLT,

and BOLT (opt) includes all the optimizations. Ideal and Ideal (outer) show the theoretical maximum

performance if all the parallelism is exploited and only the outer loop is parallelized, respectively. The

results indicate that BOLT (opt) overall performs better than BOLT (baseline) and the other OpenMP

systems. We note that MPC does not allow oversubscription, so it serializes inner parallelism except

L = 2 in Figure 4.10. This result shows that such an aggressive serialization adopted by MPC fails to

exploit parallelism and, at maximum, achieves performance as good as that of Ideal (outer). We note

that OpenMP threads in BOLT is as efficient as or even faster than OpenMP tasks in GCC, Intel, and

LLVM OpenMP; taskloop shows the performance of the microbenchmarks in which we replaced the

inner parallel loop with taskloop.

4.4.2 Deeply Nested Loops

We further investigate the overheads of OpenMP parallel regions by artificially introducing deeply nested

parallel regions, which can be caused by highly stacked OpenMP-parallelized components. Figure 4.12

shows a microbenchmark to evaluate the overheads under deeply nested parallel regions. In this bench-

mark each thread recursively creates a parallel region that consists of four threads until the depth reaches

D. The leaf thread consumes cycles 20, 000·45−D so that the total amount of work is fixed to 20, 000·45

cycles. When D is 0, only the master thread executes the entire work. The experimental setting is the

same as that of the experiments with doubly nested loops.

1 void parallel_region(int depth) {

2 if (depth == D) {

3 int c = 20000 * pow(4, 5 - D);

4 computation(i, j, c /* cycles */);

5 } else {

6 #pragma omp parallel for num_threads(4) firstprivate(depth)

7 for (int i = 0; i < 4; i++) {

8 parallel_region(depth + 1);

9 }

10 }

11 }

12

13 parallel_region(0);

Figure 4.12: Kernels of the microbenchmarks that evaluate deeply nested parallel regions.

Figure 4.13 shows the performance. In the figure Ideal shows the theoretical maximum performance

under available parallelism with a given D. BOLT (baseline) represents the baseline BOLT and BOLT

(opt) denotes BOLT with all the optimizations we described. The result shows that with a smaller D
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(d) ULT-based OpenMP

Figure 4.13: Performance of the microbenchmark that has deep nested parallel regions on Skylake.

(e.g., D < 2) the performance difference is negligible since the parallelism is nonexistent or flat, while

as D becomes larger only BOLT (opt) can exploit the nested parallelism.

We note that, although BOLT can minimize the parallelization cost of deeply nested parallelism, at

present exploiting such deeply nested parallelism is not beneficial in most cases since it often exceed-

ingly decomposes work and hurts locality. As far as we investigated, we could not find a program

that creates more than doubly nested parallel regions at different software stacks. One possible use

case would be self-recursive parallel algorithms (e.g., recursive divide-and-conquer parallelism), but

OpenMP tasks are provided for such deeply nested parallelism. One can argue that, as our results in

Figure 4.10 and Figure 4.11 imply, OpenMP parallel regions using efficient implementation of OpenMP

threads can be as lightweight as OpenMP task and taskloop, while task and taskloop provide a better
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abstraction for self-recursive parallel algorithms. Deeply nested parallel regions could be useful in the

future if programs get more and more highly stacked and complex and numbers of cores of a single

processor keep increasing.

4.5 Summary

We presented a ULT-based OpenMP runtime called BOLT, which is aimed at production use by offering

modern OpenMP support, unprecedented scalability for nested parallelism support, and high efficiency

of flat parallelism support compared with leading production runtimes. We showed that the previous

ULT-based OpenMP implementations lack efficient support for nested parallel regions while failing to

provide latest OpenMP features. The design of BOLT came from an in-depth investigation of LLVM

OpenMP implementations as well as OpenMP specification. We also discovered some limitations in

specification that inhibit optimization for lightweight ULT-based runtimes. Our microbenchmarks show

that BOLT achieves better performance under nested parallelism than do both the widely used OS-

level thread-based OpenMP runtimes and the state-of-the-art ULT-based runtimes without hurting the

performance of flat parallel regions.

The study of BOLT heavily focuses on traditional parallel region but leaves other aspects such as

support for tasks and accelerators. Investigating their efficient supports in the context of ULTs is our

future work. We solely focus on OpenMP and thus do not integrate our techniques into non-OpenMP

systems although some of our techniques are generally applicable; for example, our hybrid wait policy

should be beneficial for ULT-based parallel systems that have a parallel loop abstraction. Hence, another

direction of extending this work is to evaluate the efficacy of our techniques on other ULT-based parallel

systems.
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In this chapter we evaluate our lightweight threading libraries, Argobots and BOLT, with five real-world

applications. The first section evaluates the user-level threading techniques that support parent- and

child-first scheduling implemented in Argobots. Section 5.2 shows the performance of BOLT in two

applications that have OpenMP nested parallel regions. Finally, Section 5.3 presents the result of an

OpenMP-parallelized KMeans over BOLT to see the effect of choosing different user-level threading

techniques in BOLT.

5.1 Evaluation of Lightweight Threading Techniques in Argobots

Section 3.7 uses a microbenchmark to measure the threading overheads of the various user-level thread-

ing techniques in Argobots regarding the deviation probability. We evaluate the benefits of the lightweight

user-level threading techniques with two fine-grained parallel applications: ExaFMM and Graph500.

These applications utilize context switch to efficiently schedule other ready work when currently run-

ning ULTs need to wait for the completion of other threads or communications. All the applications

were compiled with -O3. The stack sizes of ULTs and schedulers were set to 64 KB for ExaFMM and 16

KB for Graph500. All the following results are the arithmetic mean. The error bars in the charts indicate

the 95% confidence intervals.

5.1.1 ExaFMM

Table 5.1: Experimental environment of ExaFMM

Processor Intel Xeon Phi 7210 Architecture Knights Landing

Frequency 1.3 GHz # of sockets 1

# of cores 64 # of HWTs 128

Memory 198 GB OS Red Hat 7.5

Compilers Intel Compiler 17.2.174

ExaFMM [179] is a highly optimized O(N) N-Body solver using a fast multiple method. In the

kernel, a tree is traversed in a divide-and-conquer manner, and leaf nodes calculate the actual forces.
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Recursive divide-and-conquer task parallelism has been known to efficiently parallelize the ExaFMM

kernel [156]. Deviations can happen while waiting for completion of child ULTs, but they never occur in

leaf nodes because they just perform computation without synchronization. The most efficient solution

seems mapping leaf nodes to stackless threads and internal nodes to ULTs. However, this optimization

requires identifying leaf ULTs on creation, which is not only cumbersome but also expensive if the

leaf condition is complicated. The dynamic promotion techniques alleviate the programmers’ burden

without hurting performance.

We evaluated ExaFMM on KNL as described in Table 5.1. We ran ExaFMM ten times on KNL with

--ncrit 16 -t 0.15 -P 4 --dual -n 524288 as arguments. As the number of workers changed, we

adjusted --nspawn to keep the number of created ULTs per worker constant (within 5% of error) while

--nspawn 256 was set with 64 workers. In addition to the original vectorization in ExaFMM [178], we

further manually vectorized the compute kernels to efficiently utilize SIMD units in KNL. To reduce

internal nodes, we applied the orthogonal decomposition; we changed the way of work decomposition

and collapsed internal nodes in the traversal tree while keeping the computation of leaf nodes. We

measured the performance of the tree traversal where the program spends more than 90% of the total

execution time.

Figure 5.1 presents the performance of ExaFMM with different numbers of workers. Since the devi-

ation probability is low (regardless of the number of workers, approximately 1.5% of ULTs are dynam-

ically promoted), the dynamic promotion techniques achieved better performance. LSA and ESR (-L

and -E) improved performance with 64 workers. Reduction of context-switching overheads contributes

to a 9% speedup for parent-first (SC over Full-L) and 2% for child-first scheduling (C-RoC-E over

C-Full-E). This ExaFMM showcases the merit of child-first scheduling; the child-first methods overall

perform better than the parent-first ones because child-first scheduling can efficiently exploit locality

when parallelism is deep and narrow [122].

We note that the dynamic promotion techniques are suitable for divide-and-conquer recursive paral-

lelism; in a k-ary tree approximately 1− 1

k
% of ULTs are leaves;1 and therefore if no deviation happens

in leaf ULTs (e.g., no yielding), D is approximately 1

k
%. The results in Figure 3.28 and Figure 3.29 show

that the dynamic promotion techniques perform better than the fully fledged threads when D is less than

30 to 50%. Because D is at most 50% (k = 2), the dynamic promotion techniques are beneficial in most

cases.

1Denote the number of internal nodes in a task tree N and the number of leaf nodes n. When N = 1, (N,n) is (1, k).

Because 1 leaf can be replaced with 1 internal node and k leaves, (N,n) becomes (N,N(k− 1) + 1). Hence, the ratio of

leaf ULTs is calculated as n

N+n
≈ 1− 1

k
with a larger N .
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Figure 5.1: Relative performance of ExaFMM on KNL. The baseline is the performance of fully fledged threads

(Full and C-Full) with a single worker.

5.1.2 Distributed Graph500

Graph500 [19] is a well-known benchmark that traverses a distributed graph in a breadth-first manner.

Our Graph500 is based on the reference implementation of MPI+Thread found in [17], which achieves

distribute memory parallelization with MPI [121] while threads are used for intra-node parallelism.

Since each process has only a part of the whole graph, interprocess communication is necessary in

order to visit vertices in remote subgraphs. Specifically, in each iteration, every process repeats visiting

adjacent vertices. A process can update a vertex if locally owned, while it needs to send a message

to another process if the vertex exists in a remote node. In order to avoid the finest communication,

message aggregation is commonly adopted. Each process has buffers associated with all the target
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Figure 5.2: Traversed edges per second of Graph500 using 1,024 cores.

ranks to store visit messages; messages are sent only when a buffer gets full and thus needs to be

flushed. Because the bottleneck of Graph500 is communication, hybrid parallelism is often used to

reduce the intranode communication overheads. MPI+Thread, where ULT is used as Thread, has been

studied to exploit fine-grained communication on a distributed system [72, 117], because a ULT can

efficiently switch to another ULT when an MPI function blocks. We note that the current state-of-

the-art MPI+Thread implementation [123] sometimes acquires a lock even in nonblocking MPI calls

(e.g., MPI Isend() and MPI Test()) since MPI functions need to periodically handle global progress for

active messages and nonblocking collectives, which is typically protected by a global lock. The dynamic

promotion techniques are expected to reduce overheads in cases where ULTs do not call an MPI function

or happen to avoid lock contentions in the MPI runtime.
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Table 5.2: Experimental environment of Graph500

Processor Intel Xeon Phi 7230 Architecture Knights Landing

Frequency 1.3 GHz # of sockets 1

# of cores 64 # of HWTs 128

Memory 99 GB OS CentOS 7.6

Compilers Intel Compiler 17.0.4 Interconnect Intel Omni-Path

We parallelized the Graph500 implementation in [17] with Argobots and evaluated the performance

over Argobots-aware MPICH [123]. We associated one visit with a ULT to focus on threading overheads.

A buffer length B is a parameter to control the communication granularity; with a larger B, more

memory is consumed, but more messages are aggregated. We set a scale factor to 26, so the whole graph

over nodes consists of 226 vertices. We executed this benchmark on 16 KNLs described in Table 5.2.

We spawned a single MPI process per node, each of which ran 64 workers, so 1,024 workers were used

in total.

Figure 5.2 shows the averages of ten times execution. In this setting, the ratio of promoted ULTs is

less than 1.0%, highlighting the efficacy of the dynamic promotion techniques. The fully fledged (Full

and C-Full) techniques should perform better with extremely small B and higher deviation probability,

while the communication overheads would mask their benefit.

5.2 Evaluation of BOLT

In this section, we evaluate the performance of BOLT. To illustrate the benefits of nested parallelism

in real-world cases, we chose two applications for evaluation: KIFMM [48] and Qbox [84]. They are

good examples of nested parallel regions in real-world code; outer parallel loops appear in application

codes, and inner parallel loops are in external math libraries. Our evaluation used Intel OpenMP for

comparison because (1) it performs best among the existing OpenMP runtimes, and (2) its runtime and

compiler are expected to perform best on Intel machines with Intel MKL [100].

5.2.1 KIFMM

Table 5.3: Experimental environment of KIFMM

Processor Intel Xeon Platinum 8180M Architecture Skylake

Frequency 2.5 GHz # of sockets 2

# of cores 56 (28 × 2) # of HWTs 112 (56 × 2)

Memory 396 GB OS Red Hat 7.4

Compilers Intel Compiler 17.2.174
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KIFMM is a kernel-independent fast multipole method that is another efficient solver of N-body

problems [177]. Our evaluation used its highly optimized implementation [48]. The phases upward

and downward are time-consuming phases that have node traversals consisting of OpenMP-parallelized

loops calling BLAS routine dgemv(), as presented in Figure 5.3. Major BLAS implementations including

Intel MKL and OpenBLAS provide OpenMP-parallelized implementations, so applications developers

might want to exploit nested parallelism especially when loop counts of outer parallel loops are small.

1 for (int i = 0; i < max_levels; i++) {

2 #pragma omp parallel for

3 for (int j = 0; j < nodecounts[i]; j++) {

4 [...];

5 dgemv(...); // dgemv() creates a parallel region.

6 }

7 }

Figure 5.3: Kernel of the upward phase in KIFMM; dgemv() is parallelized with OpenMP’s parallel for in

MKL.

We changed two factors in KIFMM to evaluate the performance of nested parallelism. The first is the

number of points (i.e., N in N-body), which affects nodecounts[i] in Figure 5.3; larger N creates more

nodes at each level. When the input contains more points, inner loop parallelism becomes less important

because outer parallelism is adequate. The second factor is NP, a parameter determining the accuracy of

outputs. It affects the input matrix size of dgemv(); larger NP requires larger matrix-vector multiplication.

Parallelizing small dgemv() does not perform well because of threading overheads and bad locality, so

nested parallelism can be more efficiently exploited with larger NP. We artificially changed these input

parameters and evaluated the effectiveness of nested parallelism. We used the input following the Plum-

mer model. We also manually vectorized code with AVX-512, where the outdated SSE vectorization was

embedded. We used OpenMP-parallelized Intel MKL for the BLAS library. Since it assumes Pthreads

as a native thread, a few functions in Intel MKL create, use, and destroy TLS via the OS-level thread

API (e.g., pthread specific instead of omp threadprivate) or implement their own synchronization

algorithms with non-OpenMP functions (e.g., a hand-written barrier instead of omp barrier); we over-

rode these functions to correctly run dgemv() on BOLT. We executed KIFMM ten times and calculated

speedups of the upward’s traversal with different MKL NUM THREADS while setting OMP NUM THREADS to 56.

In addition to different affinity settings, we measured the performance of dyn by setting OMP DYNAMIC to

true and letting the runtime decide the number of OpenMP threads.

Figure 5.4 shows the relative performance of the traversal in the upward phase, where the baseline

is the performance of BOLT with one MKL thread; the performance obtained by parallelizing only the

outer loop is the result with a single MKL thread. We ran KIFMM on an Intel Skylake processor pre-
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Figure 5.4: Performance of the traversal in the upward phase of KIFMM on Skylake.
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sented in Table 5.3. Figure 5.4 indicates that nested parallelism contributes to overall performance im-

provement, and in all cases, BOLT achieves the best performance with a certain number of MKL threads,

while the excessive increase of inner threads enlarges threading overheads and degrades performance.

As we increase the number of points (from left to right in Figure 5.4), the performance improvement

gets small because the outer loop parallelism becomes sufficiently large. On the other hand, larger NP

increases the granularity of dgemv(), emphasizing larger benefits of nested parallelism. Importantly, if

the number of MKL threads is 1, the performance of BOLT is the same as that of Intel OpenMP, showing

that BOLT has no performance penalty for flat parallelism compared with Intel OpenMP.

5.2.2 Qbox

Table 5.4: Experimental environment of Qbox

Processor Intel Xeon Phi 7230 Architecture Knights Landing

Frequency 1.3 GHz # of sockets 1

# of cores 64 # of HWTs 128

Memory 99 GB OS CentOS 7.6

1 #pragma omp parallel for

2 for (int i = 0; i < num / nprocs; i++) {

3 // fftw_execute() internally creates a parallel region.

4 fftw_execute(plan_2d, ...);

5 }

Figure 5.5: Kernel of the 3D FFT in Qbox with a 2D FFTW plan.

Qbox is a first-principles molecular dynamics code [84] supporting both intranode parallelism with

OpenMP and internode parallelism with MPI. We chose the implementation in the CORAL benchmark

with the Gold benchmark, which computes the electronic structure of gold atoms. We focus on a fast

Fourier transform (FFT) phase in Qbox that creates nested parallel regions. Qbox contains several FFT

operations in the kernel; in the Gold benchmark, 3D FFT is the most time-consuming among them.

With OpenMP-parallelized FFTW 3.3.8 [69, 70], Qbox offers two ways to parallelize 3D FFT: one

is executing a single plan that performs 3D FFT in FFTW3, and the other is running a parallel loop

invoking 2D FFTs. We found that FFTW3 internally creates parallel regions for each dimension, so

parallel regions are nested in both of the 2D and 3D FFT cases. We use a KNL machine described in

Table 5.4 for both 2D and 3D cases.
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Two-Dimensional FFT

We first evaluated the 2D FFT case. Figure 5.5 presents the kernel of the FFT kernel in Qbox; the inner

OpenMP parallel loop calls fftw execute(), which executes a 2D FFT. We changed two parameters to

evaluate the nested parallelism. The first one is the number of MPI processes. As implied in Figure 5.5,

the outermost dimension of the 3D FFT is distributed over MPI processes, so the outer loop parallelism

is reduced by increasing MPI processes, making the inner loop parallelism more important for utiliz-

ing all cores. The second parameter is the number of atoms, which changes num in Figure 5.5; larger

input having more atoms increases num, rendering nested parallelism less significant. We note that the

computational size of the 2D FFT is independent of these parameters.

For evaluation, we extracted the FFT kernel from the Qbox code and simulated its performance by

changing the outer loop count according to values we obtained by running Qbox. Since heuristics-based

FFTW plans obtained with FFTW ESTIMATE were suboptimal, we created optimized wisdom files on KNL

with FFTW PATIENT for all combinations of numbers of FFTW threads and OpenMP settings and used the

obtained highly optimized plans. The 2D FFT internally creates two-level nested parallelism in FFTW3.

To avoid an excessively fine-grained decomposition, we disabled the third-level parallelism by setting

OMP MAX ACTIVE LEVEL to 2. The Intel OpenMP settings are the same as for KIFMM. We set OMP NUM -

THREADS to 64 and changed the number of FFTW threads. We note that we are aware of nesting levels

during the autotuning process; 2D FFT plans were autotuned in a parallel region with single because

the created FFT plans are used in a parallel loop in our evaluation. In this evaluation, we used GCC 8.1

for GNU OpenMP, Clang/LLVM 7.0 for LLVM OpenMP, and Intel Compiler 17.0.4 for BOLT and Intel

OpenMP and compile the FFTW3 library and the kernel with -O3 and hardware-specific optimization

flags to fully exploit KNL. We omit the performance data of MPC, OMPi, and Mercurium because they

did not work correctly.

Figure 5.6, Figure 5.7, and Figure 5.8 show the relative performance of the 3D FFT in the backward

phase compared with GNU, Intel, and LLVM OpenMP. The baseline is the performance of BOLT with

one FFTW thread. These figures demonstrate that only BOLT can exploit nested parallelism and im-

prove performance. This improvement is more significant with fewer atoms and more MPI processes,

indicating that exploiting nested parallelism is important for strong scaling, which is increasingly de-

manded to exploit massively parallel hardware. The result also shows that BOLT outperforms the others;

the autotuning process generates efficient plans for the lightweight OpenMP runtime.
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Figure 5.6: Performance of the 3D FFT kernel in Qbox with a 2D FFTW plan compiled with GNU C Compiler.
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Figure 5.7: Performance of the 3D FFT kernel in Qbox with a 2D FFTW plan compiled with Intel C Compiler.
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Figure 5.8: Performance of the 3D FFT kernel in Qbox with a 2D FFTW plan compiled with Clang/LLVM.
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Three-Dimensional FFT

1 // fftw_execute() creates nested parallel regions.

2 fftw_execute(plan_3d, ...);

Figure 5.9: Kernel of the 3D FFT in Qbox with a 3D FFTW plan.

We also evaluate the performance of the 3D case that has the kernel presented in Figure 5.9. The 3D

case is simple since users only need to run a single function. Compared with the 2D case, however,

since FFTW3 provides only one variable to control the number of threads, users cannot flexibly control

parallelism in the 3D FFT case. The experimental setting is the same as that of the 2D FFT case. We

first created optimized wisdom with FFTW PATIENT for all combinations of numbers of FFTW threads

and OpenMP settings to use the optimal plans. The 3D FFT creates three-level nested parallelism in the

FFTW3 library, which we found excessively fine grained. To avoid excessively fine-grained parallelism,

we disabled the third-level parallelism by setting OMP MAX ACTIVE LEVEL to 2. We changed the number

of threads in FFTW3 and evaluated the performance. Unlike the 2D FFTW case, this kernel works with

MPC 3.3.0 and Mercurium 2.1.0, so in addition to GNU, Intel, and LLVM OpenMP, we compared BOLT

with them in this evaluation.

Figure 5.10, Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 present the relative performance of

the 3D FFT cases compared with GNU OpenMP, Intel OpenMP, LLVM OpenMP, MPC, and Mercurium.

The baseline is the performance of BOLT with one FFTW thread and thus it shows the single-threaded

performance. These results show that BOLT achieves the best performance among all the OpenMP sys-

tems, proving that, as well as the 2D FFT case, optimized BOLT can efficiently exploit nested OpenMP

parallel regions.
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(i) 128 atoms + 48 MPI processes

Figure 5.10: Performance of the 3D FFT kernel in Qbox with a 3D FFTW plan compiled with GNU C Compiler.
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Figure 5.11: Performance of the 3D FFT kernel in Qbox with a 3D FFTW plan compiled with Intel Compilers.
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Figure 5.12: Performance of the 3D FFT kernel in Qbox with a 3D FFTW plan compiled with Clang/LLVM.
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Figure 5.13: Performance of the 3D FFT kernel in Qbox with a 3D FFTW plan compiled with the MPC compiler.

Since MPC 3.3.0 is based on GCC 6.2, we used GCC 6.2 for BOLT for a fair comparison.
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Figure 5.14: Performance of the 3D FFT kernel in Qbox with a 3D FFTW plan compiled with the Mercurium

compiler. Since Mercurium used GCC 4.8.5 as a backend compiler, we used the same version of

GCC for BOLT for a fair comparison.
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5.3 Evaluation of Lightweight Threading Techniques in BOLT

In the last section of this chapter, we evaluate the effect of choosing optimal user-level threading tech-

niques in BOLT. To evaluate the performance of BOLT, we used an OpenMP-parallelized KMeans.

5.3.1 OpenMP-Parallelized KMeans

For multithreading, OpenMP offers threads and tasks as parallel work units. OpenMP threads are sus-

pendable parallel units since they need to support several thread-thread synchronization operations such

as barrier and single. OpenMP tasks are not required to be suspendable, while the specification pro-

vides an interface to hint at runtime about scheduling. Specifically, according to the standard taskyield

creates a user-defined scheduling point, which can be implemented as no operation while several studies

pointed out the usefulness of suspendable tasks [23, 146]. In this evaluation, we assume tasks yield

at taskyield, so they were created as ULTs in BOLT. However, not all OpenMP threads and tasks en-

counter deviations in real programs (e.g., no task scheduling during execution). The dynamic promotion

techniques are expected to improve performance when deviations rarely happen. We used OpenMP-

parallelized KMeans for evaluation.

KMeans is a machine learning algorithm that partitions N data points into K clusters. Our benchmark

is based on the KMeans implementation found in NU-MineBench [125]. In the KMeans algorithm, a

point is considered belonging to a cluster with the nearest center. The algorithm first randomly distributes

each center of K clusters and repeats updating the cluster centers to the centroids of their points until

the positions of the centers get stable enough. The computation of the new centroids is parallelized by

a simple method adopted by Chabbi et al. [46]; in our benchmark, each of N ULTs is associated with a

data point and updates the partial sum of the centroid of the nearest cluster. At the end of an iteration a

master ULT sums up the partial results. The partial sums are shared among workers, so the updates are

protected by locks to avoid data race.

To control the lock granularity, we artificially change the number of replications per cluster, which we

denote by r. When r = 1, each cluster has one partial sum protected by a corresponding lock, so any

attempt to update the partial sum of the same cluster incurs lock contention. Creating multiple partial

sums increases the reduction cost at the end of iterations but alleviates contention. When r > 1, every

cluster has r partial sums each of which is accessed by only r/W workers, where W is the number of

workers. Accordingly, no contention occurs if r = W .
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Figure 5.15: Throughput of KMeans using 64 cores. The ratio of converted ULTs is calculated by dividing the

number of promoted ULTs by the number of created ULTs during execution. We obtain these re-

sults with SC for parent-first scheduling and C-RoC-E for child-first scheduling. Other dynamic

promotion techniques show similar results.

Table 5.5: Experimental environment of KMeans

Processor Intel Xeon Phi 7210 Architecture Knights Landing

Frequency 1.3 GHz # of sockets 1

# of cores 64 # of HWTs 128

Memory 198 GB OS Red Hat 7.5

Compilers Intel Compiler 17.2.174

The kernel of the original KMeans was parallelized with OpenMP by a nested parallel loop; the outer

loop creates W OpenMP threads each of which spawns N/W tasks in the inner loop. We used KNL

for the evaluation presented in Table 5.5, so W was set to 64 in this benchmark. We built the program
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with Intel compilers, while we needed to apply manual vectorization to the compute kernel to exploit

SIMD units in KNL. We used the first 10% data of KDD Cup 1999 [109]; our experiment classifies

N = 5.0× 105 points, each of which has 41 floating-point features,2 into K = 24 clusters as instructed

by the original problem statement. We changed r from 1 to 64 and measured the performance with

different ULT types.

To exploit better locality, we set the OpenMP’s close affinity for the parent-first threading tech-

niques. The affinity of ULTs can be implemented by limiting the access of a specific pool; as we have

seen, BOLT implements the OpenMP’s affinity by limiting ULTs associated with OpenMP threads to be

scheduled by a specific worker associated with a specific core. Although this strategy works well in a

parent-first case, such an affinity setting inhibits dynamic load balancing in a child-first case. Consider

a case where r is 64 and no deviation happens in innermost ULTs (an inner OpenMP tasks). Under the

child-first scheduling policy, not a child ULT but a parent ULT (i.e., an outer OpenMP thread) is made

stealable. Because of the affinity setting, however, a parent ULT cannot be scheduled other than by a

specific worker, disabling dynamic load balancing across workers. Thus, we disabled the affinity setting

for the child-first threading techniques.

Figure 5.15 shows the average throughputs of 64 executions each of which repeats the KMeans algo-

rithm five times after a warm-up (one execution). An increase in replicates alleviates lock contention and

reduces the deviation probability, elevating overall performance. At a larger r, LSA and ESR (-L and

-E) enhances performance. Reducing context-switching overheads (SC, SS-L, RoC-L, and C-RoC-E)

further improves throughputs. With fewer replicates, fully fledged techniques perform better, but the

absolute performance is worse because of significant lock contention. The results show that the dynamic

promotion techniques speed up programs if deviations happen infrequently, whereas the threading over-

heads often get negligible when deviations are frequent because the causes of deviations become the

performance bottleneck. We also note that although the dynamic promotion methods improve perfor-

mance with both parent- and child-first scheduling policies, the KMeans algorithm favors parent-first

scheduling because it suits the OpenMP’s affinity setting.

2We arbitrarily mapped string-typed values to floating-point values.
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The thesis mainly discusses performance of Argobots and BOLT since performance is the most impor-

tant metric for high-performance computing. In practice, however, software maturity is also extremely

important to let people outside the project use our research products and impact the real world. This

chapter briefly discusses Argobots and BOLT from a practicality perspective. We emphasize that, since

both are open-source projects, these runtime systems have been and are developed by not only the author

but also numerous collaborators and anonymous users.

6.1 Suitability of Argobots for Mainstream Use

Although countless lightweight threading libraries have been proposed, many research products suf-

fer from several problems caused by lack of engineering efforts such as ill-written documents, limited

supported architectures, and poor interoperability in addition to compile-time errors and run-time bugs.

The Argobots project has been developed with awareness of these problems commonly seen in research

projects.

First and foremost, supporting various environments is crucial since computing environments are get-

ting more and more diverse. For example, majority of personal laptops and enterprise servers use Intel

processors, while state-of-the-art supercomputers use non-Intel architectures; it has been announced

that Fugaku, which will be the top Japanese supercomputer, will employ ARM-based processors while

the Summit supercomputer at Oak Ridge National Laboratory adopted IBM POWER9. Different en-

vironments have different compilers; GCC and Clang are commonly used on personal laptops, while

commercial compilers such as Intel Compilers and IBM XLC Compilers can keenly optimize programs

for specific architectures. Supporting various environments is often challenging because of differences

of compiler’s behaviors and instruction sets. Unfortunately, there is no silver bullet to support all the

architectures with ease; Argobots tries to avoid using platform-dependent features and language exten-

sions. Argobots includes context-switching codes that are written in assembly languages and thus highly

depends on compiler and architecture, so they are maintained for popular architectures. The Argobots

project adopted continuation integration that tests all the changes with several compilers including GCC

(versions 4.8, 6.5, and 8.3), Clang (versions 3.4, 7.0) and ICC 19 with several sets of optimization
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flags. Besides, Argobots is occasionally tested on architectures other than 64-bit Intel machines with

their associated compilers in addition to open-source compilers; the environments include 64-bit ARM,

POWER 8 and POWER 9, and 32-bit Intel architecture. This effort is necessary to allow developers to

use Argobots on various machines in a portable manner. Since the compilation can be often a barrier to

use a software package, in addition to a configure-and-make option, we provide a Spack package [74] for

developers who want to try Argobots and users who do not directly use Argobots but their applications

depend on Argobots and thus need to install Argobots.

Lack of documents and sample programs is commonly seen in research products, discouraging users

from using these software packages. We carefully maintain them so that users can easily access nec-

essary information to start programming with Argobots. Another effort is holding a tutorial to educate

how to parallelize programs with lightweight threads. The project also has its own website, GitHub, and

mailing list to announce and discuss important topics and issues.

Interoperability plays a key role in running a complicated program that contains several software

stacks. Since all the environments by default support their OS-level threads, most software components

assume OS-level threads as “threads” at present. Lack of interoperability with other runtime libraries has

been a traditional issue of user-level threading libraries. We found several proposals on interoperability

layers for lightweight threading models [45, 93], but in our understanding, no attempt succeeded; there

exists no generic threading layer that is widely used by other runtime systems. The approach taken by

the Argobots project is collaborating with other runtime developers to implement an interoperability

layer in each of them. There exists ongoing work including Cilk [32], OmpSs [60], PaRSEC [36], and

XcalableMP [113], which try to support Argobots as “threads”. In this thesis, nonetheless, we focus on

the two parallel programming models: OpenMP and MPI.

6.1.1 Interoperability with OpenMP

OpenMP [130] is a simple programming extension for multithreading and successfully parallelizes nu-

merous softwares. As OpenMP is supported and optimized by most research and production compil-

ers, not only applications but also high-level parallel programming models such as C++ executor and

Kokkos [43] and math libraries such as FFTW3 [70] Open BLAS [128], ATLAS [172], Intel MKL [100],

Intel MKL-DNN [101], Eigen [65], and SLATE [76] use OpenMP as a backend multithreading library.

Interoperability of each multithreading layer highly impacts the overall performance since contemporary

software contains multiple software components to improve modularity, maintainability, and portability.

In Chapter 4 we discuss the interoperability of multiple OpenMP-parallelized components. BOLT

solves the oversubscription issue by using the lightweight Argobots ULTs. Our evaluation shows that

BOLT can exploit fine-grained parallelism introduced by multiple parallel software packages. Although
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we successfully showed that BOLT can achieve high composability within the context of OpenMP, one

of the performance concerns is mixing multiple multithreading programming models. For example,

using an OpenMP-parallelized math library in an Argobots-parallelized program might cause a conflict

of resource management since these two software packages are unaware of each other. Better scheduling

across multiple independent parallel libraries is our future work.

6.1.2 Interoperability with MPI

Nowadays, node-level parallelism is indispensable to achieving absolutely high performance since the

increase of CPU frequency has no longer been sustained. MPI [121] is the de facto standard program-

ming model for internode parallelism. In addition to process-level parallelism, MPI supports hybrid

parallelism called MPI+Thread to allow multiple threads to asynchronously call MPI functions. Most

MPI runtimes including MPICH [123], Open MPI [73, 80, 81], and MVAPICH [123] assume OS-level

threads as “Thread” in MPI+Thread, however. Hence, programs multithreaded by ULTs might cause a

data race or a deadlock, which has been one of the major barriers to prevent a mainstream use of ULTs

in the field of high-performance computing. To address this issue, we have implemented and are im-

plementing an abstracted threading layer for Argobots in these MPI runtimes so that users can choose

Argobots threads as “Threads” on compilation.

Specifically, MPICH [123], which is one of the most widely used implementations of MPI runtimes,

is an MPI implementation we used for the evaluation of distributed Graph500 described in Section 5.1.2.

MPICH has an abstracted threading layer to support several threading packages including Argobots in

addition to OS-level threads such as POSIX threads [95], Solaris threads [154], and Windows threads.

Unlike OS-level threads, ULTs do not support cooperative preemption, so MPICH is being developed so

that a thread explicitly yields in all the possible busy loops. This change has been merged to the master

branch so anyone who wants to use lightweight ULTs over MPI can try it. With researchers at Sandia

and Los Alamos National Laboratories, we are also working on introducing the thread interoperability

layer in Open MPI [73], which should widen the applicability of lightweight ULTs on supercomputers.

Using lightweight threads over MPI runtimes does not only provide the convenience for ULT users,

but also is a promising direction to alleviate lock contentions in MPI runtime systems. Because a mul-

tithreaded MPI performs poorly in general, existing work has aimed at improving the thread-safety

mechanism in MPI with OS-level threads [15, 16, 18, 57]. However, ULTs that support lightweight con-

text switching and flexible user-level scheduling have a potential to dramatically improve performance

especially when the communication is fine grained [72, 117]. Investigating this direction is also our

future work.
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6.1.3 Summary

As we discussed in this section, Argobots has been and is being developed to maintain high software

quality. We collaborate with other projects with respect to interoperability. The software maturity of

Argobots has been highly valued and thus it is used in several projects in both academia and industry;

Argobots has been used by not only research projects (e.g., Margo [119], a wrapper for the Mercury

library [150]), but also some industrial projects such as Intel DAOS [37]. However, several areas es-

pecially regarding interoperability have not been fully explored as we mentioned, which is our primary

future work.

6.2 Suitability of BOLT for Mainstream Use

Chapter 4 shows that BOLT can exploit fine-grained parallelism introduced by unintentional nested

parallel regions without hurting performance of a flat parallel region. Because most popular OpenMP

runtime systems utilize OS-level threads as OpenMP threads, however, one might doubt the suitability

of BOLT for mainstream use from specification and practicality perspectives. As far as we examined,

BOLT does not break the current OpenMP 4.5 specification. In reality, however, BOLT fails to run

some programs which assume an OS-level thread as a native thread implementation and thus sometimes

requires workarounds. This supplemental section details these issues.

6.2.1 Standard Compliance of BOLT

Because OS-level threads are dominantly used for OpenMP threads and existing ULT-based OpenMP

runtimes stagnate at the old OpenMP specification (to the best of our knowledge, the newest is OpenMP 3.1),

the current specification might implicitly or explicitly assume OS-level threads as OpenMP threads. As

far as we examined the standard, BOLT successfully follows the OpenMP 4.5 semantics [129]. Specifi-

cally, BOLT complies with the OpenMP specification with respect to its use of ULTs since the OpenMP

standard defines a thread as an execution entity with a stack and thread local storage, which an Argobots

ULT satisfies. BOLT integrates new OpenMP features introduced in OpenMP 4.0 and 4.5 (e.g., data-

dependent task and accelerator offloading) without breaking the standard. The functionality of BOLT

has been verified through various test suites with GCC, Intel, and Clang/LLVM compilers. Although the

current standard requires some extensions to fully utilize underlying lightweight ULTs as described in

this thesis, we believe that BOLT is a standard-compliant implementation of OpenMP 4.5. We also be-

lieve that BOLT can follow the latest OpenMP 5.0 [130] specification as well. Supporting OpenMP 5.0

is our future work.
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6.2.2 Suggested OpenMP Changes

Despite the compliance of the OpenMP specification, we proposed several extensions to fully utilize

lightweight threads in BOLT. The first extension is support of unset as a keyword of bind-var, which

clears bind-var and place-partition-var. Since unset allows dynamic load balancing across cores (i.e.,

by random-work stealing in BOLT), this keyword allows users to express that dynamic load balancing is

preferred for a specific parallel region. Although such dynamic load balancing should be more effective

with lightweight threads, this keyword should be beneficial for OS-level thread-based runtimes.

Another suggestion is a wait policy keyword that allows a runtime to decide the best strategy, which

we call auto and runtime in Chapter 4. Although the OpenMP standard does not specify the imple-

mentation, the current two keywords, active and passive, are extremely opposite. If either is set, an

OpenMP runtime is urged to assume extreme situations, although, as our evaluation shows, there might

exist a better scheduling technique such as hybrid. This change would be also beneficial for OS-level

thread-based runtimes since some of these systems including GCC and LLVM OpenMP implement an

intermediate wait behavior enabled only when a wait policy is not set. With the new keyword, users can

explicitly choose this default behavior.

As explained in Section 5.3.1, OpenMP tasks in BOLT yield at omp taskyield, while the current

OpenMP specification allows the runtime to ignore all scheduling points [23]. In reality, most pro-

duction OpenMP runtimes perform nothing at omp taskyield. One possible definition of a yieldable

OpenMP task is a task that guarantees that a task yields to another task at scheduling point if a task

encounters scheduling points a finite number of times. Such an implementation should be useful es-

pecially for runtime systems that can block (e.g., MPI). For example, Schuchart et al. reported that

an OpenMP implementation with yieldable tasks are beneficial for the performance of MPI communi-

cations [146]. However, it should require large changes in the existing OpenMP runtimes since they

implement OpenMP tasks as stackless threads. Our work on lightweight user-level threading techniques

show that some ULT implementations can perform as good as stackless threads; this discovery encour-

ages major OpenMP runtimes that implement tasks as stackless threads to use yieldable ULTs (e.g.,

RoC).

Finally, as suggested in [146], task scheduling significantly impacts the performance of OpenMP

tasks. An extension to customizable scheduling for loops (e.g., parallel for) has been proposed [24],1

but customizable scheduling for tasking remains an open question in terms of interface since OpenMP

tasks can express more complex parallelism. BOLT allows users to change schedulers at runtime via the

Argobots layer while this is not portable as the default scheduler implementation in BOLT is hidden to

1Loop chunks created by omp for are neither spawned as ULTs nor scheduled as tasks since, conceptually, they are work-

shared among OpenMP threads.
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users. Devising a portable but powerful interface to control task scheduling is our future work.

6.2.3 Using BOLT in the Real World

Since BOLT correctly implements the specification, it works well with most OpenMP-parallelized pro-

grams and libraries without any modification and transparently achieves good performance for both flat

and nested parallelism. Because OS-level thread-based runtimes dominate largely in production en-

vironments, however, OpenMP users are accustomed to OS-level mapping of OpenMP threads. This

situation has led to the emergence of user codes that assume OpenMP threads are always mapped to

OS-level threads. We emphasize that this is not an issue of BOLT, while in practice we have to deal with

such complexities in order to run complex real-world programs. As briefly mentioned in Section 5.2.1,

we sometimes need to work around such assumptions using clever tricks outside the BOLT implemen-

tation, but doing so might not always be feasible. This section discusses the two most common user

practices we encounter that assume OS-level thread-based implementations.

Synchronization with Non-OpenMP Functions

Some programs assume OpenMP threads are running on OS-level threads and thus implement their

own synchronization algorithms with non-OpenMP functions (e.g., a hand-written barrier instead of

omp barrier). We experienced this case when we ran MKL’s dgemv() used in Section 5.2.1; dgemv()

synchronizes OpenMP threads with its own barrier function, not one provided by Intel OpenMP. This

barrier function is implemented with busy-waiting calling sched yield(), but ULTs cannot be switched

to others by the OS-level scheduling function, so the program hangs if more OpenMP threads than the

number of schedulers attempt to perform the barrier. We overcame this issue by overriding these MKL

functions by LD PRELOAD; the barrier function was replaced with one using a ULT-aware algorithm. We

also observed a similar issue in MKL’s dgemm(); it also performs a synchronization based on busy-

waiting, which may hang with BOLT since ULTs are nonpreemptive and thus a context switch never

happens. Note that BOLT works with these applications if not nested or, technically, when the total

number of OpenMP threads is not greater than the number of schedulers, since all ULTs are mapped to

schedulers, and thus OS-level threads, one by one. However, in oversubscription cases, especially under

nested parallelism, BOLT requires modification to user programs.

TLS Access

Some libraries try to create, use, and destroy TLS via the OS-level thread API (e.g., pthread specific

or compiler-level TLS), under the assumption of an underlying threading library of OpenMP threads.

MKL’s dgemv() internally accesses TLS with pthread getspecific() to manage some environmental
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settings. Because ULTs do not individually support Pthreads’ TLS, a value accessed via pthread -

getspecific() is one of the scheduler, not one of the ULTs. We addressed this issue by replacing a

function using Pthreads’ TLS with a function returning intended values correctly. Unfortunately, to

make matters worse, some compilers, including Clang 7.0, translate OpenMP TLS (i.e., threadprivate)

into compiler-level TLS. In this case, we need to patch a compiler and recompile programs.

Other Features Specific to OS-Level Threads

In addition to those problems, a signal mask and a CPU mask can be problematic because most ULT

implementations including Argobots do not support them, although we have not encountered such sit-

uations. We believe that BOLT can run OpenMP-parallelized programs without any modification if the

programs properly use OpenMP features.
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The multithreading overhead inhibits good scalability on modern highly parallel computing systems.

A tremendous amount of literature has proposed thread-scheduling strategies to mitigate resource con-

tentions, improve locality, and address load imbalance, while the threading overhead fundamentally

imposes a penalty on fine-grained decomposition of work. The threading cost prevents programmers

from parallelizing work, which caps the possible speedups of multithreaded programs [63]. Moreover,

such coarse-grained parallelization limits the scheduling flexibility as the number of schedulable threads

is decreased, rendering scheduling optimizations insignificant. The efficient execution of programs that

contain fine-grained parallelism has been a traditional problem and thus numerous studies exist.

One of the research directions to tackle threading overheads in fine-grained parallelism is letting pro-

grammers write fine-grained multithreaded programs and compilers and runtime systems make threads

coarse grained. Several studies proposed static techniques using compile-time information [10, 106],

dynamic techniques using runtime systems [31, 61, 169], hybrid techniques that combine static anal-

ysis and a run-time adaptive approach [147, 162, 171], or using an autotuning strategy [20, 105] or a

machine-learning technique [141] to choose the best granularity parameters. Importantly, these tech-

niques are orthogonal to our optimizations of threading overheads; more lightweight threads allow these

techniques to leave threads fine grained, reducing risks of adverse serialization and providing more

flexibility to scheduling algorithms to achieve better dynamic load balancing, locality, and resource

management.

This chapter discusses precedent work of lightweight threads from viewpoints of a user-level threading

library (Section 7.1) and parallel runtime systems including OpenMP implementations (Section 7.2). As

we discussed previously, because OS-level threads are heavyweight due to system calls, lightweight

threads are mostly implemented in the user space. The following sections explain lightweight user-level

threading libraries and parallel systems using ULTs.

7.1 User-Level Threads

Although numerous parallel systems have adopted ULTs as an implementation of lightweight parallel

units, the focus of the past papers on ULT-based systems is not a threading technique but other compo-
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nents such as programmability, usability, portability, abstraction, and other performance optimizations

such as scheduling and task queue implementations. The performance comparison between these par-

allel systems [137, 139] only measured the overall performance and fundamentally lacked a detailed

performance analysis of threading techniques. Another existing direction was a survey on functionali-

ties of multithreading and multitasking frameworks [161], while this work argues only the interface, not

the implementation. This section describes notable studies out of countless research on ULTs from the

aspect of user-level threading techniques.

7.1.1 Fully Fledged Threads

Fully fledged threads are widely used to implement ULTs with full threading capabilities. For exam-

ple, Qthreads [173], Converse [108], MassiveThreads [124], and Argobots [1] are well-known threading

libraries that use fully fledged threads. Their stack management policies are different, however. For

example, Converse 6.9.0, MassiveThreads 1.00, and Argobots 1.0rc2 (the latest stable version) em-

ploy a parent-first fully fledged ULT without LSA while Qthreads 1.15 and Nanos++ 0.15 implement

it with LSA. MassiveThreads 1.00 also supports a child-first thread, which is implemented with ESR.

The trade-off disclosed by this paper would be helpful for these runtimes to choose the best thread im-

plementation based on their assuming workloads. Evaluating the performance impact of choosing the

optimal technique in these libraries is lifted as our future work.

7.1.2 Saving Registers

Our techniques do not include techniques that do not change stacks but only save (callee-) registers.

Nevertheless, some previous studies including LazyThreads [79], StackThreads/MP [157, 158], and

Fibril [176], proposed such techniques for child-first scheduling. Cilk 1.0-3 over Tapir/LLVM [144]

is also a child-first multitasking framework that adopts this idea. As we explained in Section 3.6.1,

however, these techniques require compiler modifications or special assumptions on program executions,

so they cannot be a building block of a generic threading library. We thus did not evaluate these methods.

7.1.3 Stack Separation

Some studies have proposed methods that omit register manipulations but change only the stacks. Their

approaches are different from ours in that a thread invocation function adopts a special calling conven-

tion that only marks registers for a stack pointer and an instruction address as callee-saved (e.g., Intel

CilkPlus [99]). This approach can be seen as a technique that utilizes a calling convention to save all the

necessary registers (including registers marked as callee-saved in widely adopted ABIs). This approach
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requires patching a compiler to recognize a custom calling convention, whereas neither SS nor SS-L

requires compiler modification.

7.1.4 Scheduler Creation

A few parallel systems have adopted the scheduler creation technique. Chores [62] and Wool [68]

are parent-first threading libraries that utilized this method to reduce threading overheads. Concurrent

Cilk [180] is a child-first threading library that adopted this technique to implement a yield feature in

Intel CilkPlus [115]. The past work, however, solely implemented the scheduler creation technique

and thus lacked performance comparison and analysis of programming constraints. We also note that

their approaches specially handle ULTs that encountered a deviation, so promoted ULTs are differently

scheduled from unpromoted ULTs. Our techniques uniformly schedule all ULTs including promoted

SC threads.

7.1.5 Stackless Threads

Numerous runtime systems including Filaments [116], Qthreads [173],1 and Argobots [1] support a

run-to-completion thread in order to eliminate all the cost associated with user-level context switch.

OpenMP task implementations found in the popular OpenMP runtimes [102, 126, 132] and task in

Intel TBB [143] are essentially classified as stackless threads but not “run to completion” in a narrow

sense because they can wait for the completion of children.

In general, stackless threads are lightweight and easy to implement, but its constraint significantly

limits the applicability because it cannot perform a context switch at an arbitrary point. Several papers

have argued yieldable threads in non-yieldable threading packages from performance and programma-

bility perspectives. For example, Zakian et al. [180] showed that a yield operation in Cilk [71] enables

efficient blocking communication and synchronization while several papers on OpenMP [23, 146] re-

ported the same benefits of yieldable OpenMP tasks. Graph500 in our evaluation is a good example that

a stackless thread cannot execute; removing a yield operation from a polling loop in the MPI runtime

might cause a deadlock.

7.1.6 Other Threading Techniques

Several threading techniques cannot be classified into the categories above. Sivaramakrishnan et al. [148]

proposed MultiMLton, which allows relocation of function stacks. This technique might be applicable

to functional languages, but it can hardly support C/C++ programs. Cilk-M [112] enables stack copying

1Qthreads executes a thread on top of the scheduler’s stack when QTHREAD SPAWN SIMPLE is specified. No blocking operation

(i.e., qthread yield()) inside threads is allowed.
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by modifying OS to expose the same address space so that a pointer reference to a call stack is valid

after copying a stack. This technique requires OS modification. Tascell [88] is a compiler-based tech-

nique adopting a lazy task creation policy. This technique invokes threads in a sequential manner and

lazily creates logical threads if necessary by backtracking call stacks. Acar et al. [9] propose a threading

technique that lazily creates parallel threads at a heartbeat. This method requires the cactus stack im-

plementation [79], which breaks the interoperability with precompiled libraries and thus is not suitable

for a generic threading library.

7.2 Parallel Programming Models Using ULTs

7.2.1 ULTs in OpenMP

Before OpenMP 3.0, OpenMP supports only threads as parallel units, so lightweight ULTs for OpenMP

threads have been intensively explored to parallelize multilevel, recursive, or dynamic parallel programs

with OpenMP. NanosCompiler [118] and Omni/ST [155] are early studies proposing ULT-mapping of

OpenMP threads; however, they lack implementation details beyond the initial concept. As OpenMP

evolved, several ULT-based OpenMP runtimes sought for efficient scheduling over ULTs for nested

parallelism. The OMPi system [86] adopted a hierarchical scheduling algorithm to execute innermost

threads on close cores, in order to improve locality [87]. ForestGOMP [39], an OpenMP runtime library

over a lightweight threading library called Marcel [160], adopted a BubbleSched scheduler, which is a

NUMA-aware hierarchical scheduling policy based on hardware locality information [38]. Our evalu-

ation shows that OpenMP’s thread affinity supported in the latest OpenMP standard with our proposal

unset can realize thread affinity over ULTs in an efficient, transparent, and flexible manner.

Recent OpenMP studies using ULTs have focused on issues other than nested parallel regions. For

example, libKOMP [40], OpenMP over Qthreads [127], and OmpSs [60] utilized ULTs for efficient

task parallelism, although their mapping of OpenMP threads is different; libKOMP mapped OpenMP

threads to ULTs, and Qthreads’ work mapped them to OS-level threads. OmpSs radically stops support-

ing parallel regions to focus on its own task-oriented parallel programming model, while their compiler,

Mercurium [27], keeps an OpenMP-compatible option. Several researchers tackled the interoperability

issue. The developers of MPC [135] integrated their ULT-based OpenMP runtime with their MPI im-

plementation. OpenMPIR [153] is an extension of an LLVM intermediate language [111] for OpenMP

to optimize OpenMP codes with the Tapir backend [144]. Programs compiled with OpenMPIR inter-

nally ULTs, while this study covers limited OpenMP features because of the poor expressiveness of

Tapir. Some work mapped OpenMP threads to ULTs for distributed programming models, for exam-

ple, OpenMP over Charm++ [25, 26], although it failed to strictly follow the OpenMP semantics since
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OpenMP is thoroughly designed for a shared-memory architecture.

Overall, these OpenMP parallel systems might secondarily achieve good performance of nested par-

allel regions, while to the best of our knowledge they lacked further improvements to efficiently process

nested parallel regions, leaving the performance suboptimal and often worse than the leading OS-level

thread-based runtimes (e.g., Intel and LLVM OpenMP). BOLT employs several optimizations to fully

exploit lightweight ULTs and presents the lowest overheads of flat and nested parallel regions. We be-

lieve that our techniques are helpful for the existing ULT-based systems to improve the performance

of most OpenMP applications since many real-world OpenMP programs are parallelized by parallel

regions.

7.2.2 ULTs in Parallel Programming Models

Several high-level parallel programming models, such as Cilk [71], CilkPlus [115], Charm++ [107], and

X10 [50], have only an abstract task as a parallel work unit, in order to leave room for implementing it as

a ULT. These parallel systems do not critically suffer from the oversubscription issue because the number

of OS-level threads is constant or easily adjustable during execution. OpenMP, however, exposes two

types of parallel units: thread and task. As their names imply, thread and task are typically implemented

with an OS-level thread and a ULT in many OpenMP implementations. This work shows that, as high-

level programming models do, mapping parallel units to ULTs can exploit nested parallelism, while

BOLT coexists with OpenMP-parallelized software resources.

7.2.3 Interoperability with Parallel Libraries

In a broader sense, our work tries to address the interoperability issue of multiple parallelized compo-

nents. A number of studies, such as Lithe [134] and DoPE [142], have proposed low-level abstract sys-

tems designed to encapsulate several parallel runtimes and supervise them uniformly. These abstracted

runtime layers essentially lose semantics in the original parallel programming models, and hence achiev-

ing optimal performance is difficult. Some studies have focused on the interoperability of OpenMP and

other threads [163, 175]. Our work focuses solely on the interoperability issue within OpenMP.

7.2.4 Mitigating Overheads of Nested Parallel Regions

Oversubscription of threads is a traditional performance issue and has been intensively studied [56, 94].

The OpenMP specification offers several interfaces to avoid the oversubscription as we described. In the

context of OpenMP, this issue is specifically critical when parallel regions are nested. Several studies,

therefore, have tried to mitigate the cost of nested parallel regions by using OS-level threads. Forest-

GOMP [39] and Intel OpenMP [164] store threading resources of nested parallel regions so that suc-
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ceeding nested parallel regions can be efficiently created. LLVM OpenMP employs this mechanism as a

nested hot team, which improves the performance of both BOLT and LLVM OpenMP. When OpenMP

threads are mapped to OS-level threads, caching OpenMP threads results in wasting OS resources, so

aggressive caching is harmful when the total number of threads is limited. The hot team optimization

can be applied safely in BOLT, however, since caching ULTs increases only the memory footprint.

Even if fork-join overheads are mitigated, however, waking up OS-level threads is costly. To reduce

this cost, several OpenMP implementations have options to keep threads running for a certain duration

after finishing threads. Our evaluation tweaked such values (e.g., GOMP SPINCOUNT and KMP BLOCKTIME)

for the benefits of existing libraries. Unfortunately, no automatic way exists to determine the optimal

value without running it on a real machine. BOLT users do not need to tweak this parameter since the

context-switching cost of ULTs is cheaper than that of OS-level threads.
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As the number of cores per processor is increasing, multithreading becomes essential to exploiting mod-

ern processors. Overheads in thread implementations become increasingly important to efficiently run

complex fine-grained parallel programs on highly parallel systems. However, widely adopted thread

implementations adopt either (1) a lightweight stackless thread for performance-sensitive programs or

(2) an OS-level thread out of fear of missing capabilities required by multithreading programming mod-

els. As a result, some runtimes use stackless threads with unnecessarily restricted threading features and

lose the potential scheduling points, narrowing scheduling flexibility and expressiveness of programs.

Other runtimes rely on fully capable but heavyweight OS-level threads and lose parallelism, leading

underutilization of cores.

We pose a question to this prevailing idea and suggest a ULT for an efficient and capable thread

implementation, which is as fast as a stackless thread but supports most critical threading features such

as suspension as an OS-level thread employs. This work first shows a lightweight threading library,

Argobots, and several user-level threading techniques to explore a ULT that can be as fast as a stackless

thread with a context-switching capability. Our comprehensive analysis of possible implementations

of ULTs covers both parent- and child-first scheduling, revealing more than ten user-level threading

techniques each of which has a different trade-off between performance and functionality. Specifically,

RoC-L and C-RoC-E are ones that perform best in most cases: their fork-join overheads are close to

that of stackless threads while they have the same functionality that widely used fully fledged ULTs

have.

We adopted ULTs to one of the most widely used multithreading programming models, OpenMP.

Based on our highly optimized user-level threading library, we build a lightweight OpenMP runtime,

called BOLT. Our finding is that, although a ULT can be easily substituted for a thread abstraction in

OpenMP, several optimizations are required to fully unleash ULTs. With our in-depth performance

analysis, we applied several optimizations such as scalable resource management, ULT friendly affinity

implementation, and a thread coordination algorithm, all of which are necessary to attain high perfor-

mance for both flat and nested parallelism regardless of the level of oversubscription. BOLT showed

unprecedented performance if parallelism is nested by creating lightweight ULTs as OpenMP threads,

while transparently achieving the best performance if parallelism is flat.
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Our resulting software products, Argobots and BOLT, are publicly available and supported by nu-

merous contributors. Most of the optimizations explained in this work have been already merged to the

master branches of Argobots and BOLT after minor updates to make them production ready. Partic-

ularly, dynamic promotion techniques have been merged and were included in Argobots from version

1.0b1 whereas BOLT contains most optimizations explained in this thesis from version 1.0rc2.

Our quest is a comprehensive understanding of designs and implementations of lightweight threading

libraries. This thesis mainly investigates the fork-join performance of threads in Argobots and OpenMP.

Arguably, other factors including schedulers and thread pools are known to highly affect the overall

performance. Argobots can take the advantage of its low-level design; because schedulers and thread

pools are designed as customizable, changing these components is relatively easy. Investigating their

design and performance in Argobots by developing efficient scheduling policies (e.g., implementing [8]

and [83]) and in BOLT by enhancing scheduling in OpenMP for data-flow tasking [136] is our future

work.

We cannot ignore a viewpoint of software quality assurance. Although Argobots and BOLT are rigor-

ously tested with their continuous integration process and checked with several compilers and machines,

these tests are rather ad-hoc and not thorough. BOLT passes most tests bundled with LLVM OpenMP,

while using other several OpenMP validation and verification testsuites[58, 59, 170] for BOLT should be

naturally our next step. In addition to further engineering efforts for empirically advanced testing, formal

verification on threading libraries (such as model checking for Qthreads [66]) is a futuristic direction.

Standard compliance is essential to BOLT since it should work with major compilers including GCC,

Intel Compilers, and Clang. In order to fully support OpenMP 5.0, the implementation of OpenMP Tool

and Debug interface [64] would be challenging, which is lifted as part of our future work. Contributing

the OpenMP community from the perspective of a ULT-based OpenMP runtime is as important as mak-

ing BOLT standard compliant by implementing new OpenMP features. For example, a keyword unset

for OpenMP affinity should be useful for not only ULT-based implementation but also traditional OS-

level thread-based runtimes. Attending the OpenMP language committee and explaining the necessity

of these changes is time-consuming but important.

Last but not least, we need to establish an ecosystem to build a software stack that is fully aware of

ULTs. To utilize ULTs, we often require code changes in other software pieces; for example, as we

have seen, ULT support for MPI requires code changes in MPI implementations. Initial ULT support

has been merged into the MPICH master [123], while the effort to Open MPI [73] is ongoing. Similar

efforts are required for other communication layers such as OpenSHMEM [49] and GASNet [34]. If

we look at a non-HPC application, machine learning becomes an increasingly important workload, so

trying ULTs in a deep-learning framework would be promising. Since real deep-learning frameworks

are extremely complex, oversubscription is easily caused by highly stacked software components. For
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example, Tensorflow [6] utilizes CPU resources by using Eigen’s thread pools [65], Intel MKL [100],

and Intel MKL-DNN [101]. Investigating this direction is one of our most important future plans.
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[45] A. Castelló, S. Seo, R. Mayo, P. Balaji, E. S. Quintana-Ortı́, and A. J. Peña. GLTO: On the adequacy

of lightweight thread approaches for OpenMP implementations. In Proceedings of the 46th International

Conference on Parallel Processing, ICPP ’17, pages 60–69, Bristol, UK, Aug. 2017.

[46] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High performance locks for multi-level NUMA systems. In

Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’15, pages 215–226, San Francisco, California, USA, Feb. 2015.

[47] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the Chapel language.

International Journal of High Performance Computing Applications, 21(3):291–312, Aug. 2007.

[48] A. Chandramowlishwaran, J. Choi, K. Madduri, and R. Vuduc. Brief announcement: Towards a commu-

nication optimal fast multipole method and its implications at exascale. In Proceedings of the 24th Annual

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 182–184, Pittsburgh,

Pennsylvania, USA, June 2012.

139



References

[49] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith. Introducing OpenSH-

MEM: SHMEM for the PGAS community. In Proceedings of the Fourth Conference on Partitioned Global

Address Space Programming Model, PGAS ’10, page 2, New York, New York, USA, Oct. 2010.

[50] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.

X10: An object-oriented approach to non-uniform cluster computing. In Proceedings of the 20th An-

nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA ’05, pages 519–538, San Diego, California, USA, Oct. 2005.

[51] Q. Chen and M. Guo. Locality-aware work stealing based on online profiling and auto-tuning for mul-

tisocket multicore architectures. ACM Transactions on Architecture and Code Optimization, 12(2), July

2015.

[52] Q. Chen, M. Guo, and Z. Huang. CATS: Cache aware task-stealing based on online profiling in multi-socket

multi-core architectures. In Proceedings of the 26th ACM International Conference on Supercomputing,

ICS ’12, page 163172, San Servolo Island, Venice, Italy, June 2012.

[53] Q. Chen, Z. Huang, M. Guo, and J. Zhou. CAB: Cache aware bi-tier task-stealing in multi-socket multi-

core architecture. In Proceedings of the 40th International Conference on Parallel Processing, ICPP ’11,

pages 722–732, Taipei, Taiwan, Sept. 2011.

[54] Clang: a C language family frontend for LLVM. https://clang.llvm.org/.

[55] Intel® Fortran Compilers — Intel® Software. https://software.intel.com/en-us/

fortran-compilers.

[56] M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S. Nikolopoulos. An evaluation of OpenMP

on current and emerging multithreaded/multicore processors. In Proceedings of the First International

Workshop on OpenMP, IWOMP ’05, pages 133–144, Eugene, Oregon, USA, June 2008.

[57] H.-V. Dang, S. Seo, A. Amer, and P. Balaji. Advanced thread synchronization for multithreaded mpi

implementations. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing, CCGrid ’17, pages 314–324, Madrid, Spain, May 2017.

[58] J. M. Diaz, K. Friedline, S. Pophale, O. Hernandez, D. E. Bernholdt, and S. Chandrasekaran. Analysis of

openmp 4.5 offloading in implementations: Correctness and overhead. Parallel Computing, 89, Nov. 2019.

[59] J. M. Diaz, S. Pophale, O. Hernandez, D. E. Bernholdt, and S. Chandrasekaran. OpenMP 4.5 validation

and verification suite for device offload. In Proceedings of the 13th International Workshop on OpenMP,

IWOMP ’18, pages 82–95, Barcelona, Spain, Sept. 2018.
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