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Abstract

Hiroshi KERA

Learning Algebraic Varieties under Noise

How can we retrieve the relations between variables from noisy observation?
This has been a fundamental problem in various fields. It has been shown that
if data lie on am algebraic variety, which is described by a set of polynomials,
we can enjoy several strong theoretical statements in supervised classification,

semi-supervised learning, and clustering.

In the present thesis, we address the problem of computing a polynomial system
from data. In particular, we would like to obtain a nice polynomial system from
noisy data. In the last decade, this problem has been addressed in the context
of the basis construction of the approximate vanishing. However, most existing
algorithms are heavily dependent on the use of the monomial order, which is
problematic prior information in various applications. Without using the mono-
mial order, existing algorithms encounter various theoretical issues, resulting in
a low quality of the output polynomial system. The main contribution of the
present thesis is to realize a monomial-order-free basis construction algorithm

that overcomes the following issues which the existing algorithms suffer from.

The spurious vanishing problem—A polynomial g can approximately vanish
for a point x, i.e., g(x) ~ 0 not because x is close to the roots of g but merely
because ¢ is close to the zero polynomial (i.e., the coefficients of the monomials

in g are all small).

Redundancy in the basis set—The output basis set can contain polynomials
that are redundant because they can be generated by other lower-degree poly-
nomials. For example, a basis polynomial gh is redundant if g is included in
the basis set. Determining the redundancy usually needs exponentially costly

symbolic procedures and is also unreliable in our approximate setting.



v

Inconsistency of the basis set with respect to input transformation—
Given translated or scaled data points, the output of the basis construction can

drastically change in terms of the number of polynomials and their nonlinearity.

For the first issue, we design a monomial-order-free algorithm with normalization,
which is proven valid, stable, and optimal. We consider coefficient normalization
and gradient normalization. In particular, the gradient normalization is the first
to realize the polynomial-time normalization in monomial-order-free basis con-
struction. For the second issue, we reveal that the gradient of basis polynomials
reflects the symbolic relation between polynomials. With this result, a basis re-
duction method is proposed to remove redundant basis polynomials. The last
issue is resolved by the gradient normalization. We prove that with the gradient
normalization, one can realize a sort of invariance of the basis set with respect

to input transformation.

With these results, we establish an efficient basis construction framework that is
accompanied by a rich theoretical foundation even without using the monomial

order.
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Chapter 1

Preliminaries

1.1 Definitions and Notations

Definition 1 (Polynomial ring). The polynomial ring K[xq, o, ..., z,] in n vari-
ables {x;} over a field K is the set of n-variate polynomials. In particular, the

polynomial ring over real is denote by P, = R[xy, xo, ..., Ty).

Definition 2 (Vanishing Ideal). Given a set of n-dimensional points X C R",
the vanishing ideal of X is a set of n-variate polynomials that take zero values,

(i.e., vanish) at all points in X. Formally,

I(X)={g€P,|Vr e X, g(x)=0}.

Definition 3 (Evaluation vector). Given a set of points X = {1, 2, ..., x|x|} C
R™, where |-| denotes the cardinality of a set, the evaluation vector of polynomial

h € P, is defined as:
h(X) = (h(wl) h(xy) - h(m|x)>T c RIXI.

For a set of | polynomials H = {hq, ha, ..., i}, its evaluation matrixz is H(X) =
(hi(X) hao(X) -+ hy(X)) € RXIXE,

Definition 4 (e-vanishing polynomial). A polynomial g is an e-vanishing polyno-
mial for a set of points X when the evaluation vector for X satisfies ||g(X)|| <'e,
where || - || denotes the Euclidean norm. Polynomials that do not satisfy this

condition s called e-nonvanishing polynomials.
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Definition 5 (Ideal generated by a polynomial set). Given a set of polynomials

G C P, the following set of polynomials is an ideal generated by G.

(@) = {Zhgg | hy € Pn}.

geG

Definition 6 (A polynomial set spanned by a polynomial set). Given a set of
polynomials F' C Py, the following set of polynomials are spanned by F'.

span(F) = {Zaff |ay € R} :

fer

1.2 From Polynomials to Vectors

As Definition 2 indicates, the evaluation values of polynomials at given set of
points X are of our interest. Hence, a polynomial h can be represented by its
evaluation vector h(X). As a consequence, the sum and product of polynomials
(say, hi, hy) become linear-algebraic operations: hy + hy is mapped to hq(X) +
hao(X) and hyhsy is mapped to hy(X) ® hy(X), where ® denotes the entry-wise
product.

In particular, the weighted sum of polynomials plays an important role in the
basis construction. Let us consider a set of polynomials H = {hq, ho, ..., hju }.
Then, the a weighted sum Zgll w;h; by w; € R is mapped to Zg‘l wih(X). In

matrix—vector form,
(Hw)(X) = H(X)w,

where w = (wy, wa, ..., wg|) ", and the product of a polynomial set H and vector
w is defined as Hw = Z‘lﬂ w;h;. In words, this relation means that the eval-
uation vector of a weighted sum of polynomials equals to the weighted sum of
evaluation vectors of polynomials. Similarly, the product of a polynomial set H
and a matrix W € RI71*s is defined as HW := { Hw,, Hws, ..., Hw,}, where w;
is the i-th column vector of W. With this notation, the following holds:

(HW)(X) = H(X)W.

In the basis construction, one has to be aware that each operation can be inter-
preted in two ways—operations of vectors (matrices) and operations of polyno-

mials. A good example is H (X)W shown above; it is a multiplication of matrices,
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but at the same time, it is a weighted sum of polynomials.

1.3 Basis Set of Vanishing Ideals

A vanishing ideal Z(X') # {0} is an infinite-size polynomial set. This is obvious
from the fact that given g € Z(X), it is gh € Z(X) for any polynomial h € P,.
Nevertheless, the Hilbert basis theorem tells us that any vanishing ideal can be
generate by a finite set of vanishing polynomials. More formally, for any Z(X),

there is a finite polynomial set—a basis set—G that generates Z(X); that is,

I(X) = (G) = {Z heg | hy € Pn} .

geG

As a linear subspace does not, a vanishing ideal does not have a unique basis
set. There are various types of basis sets. Among others, the Grébner basis
and border basis have extensively studied in computer algebra. We will now
introduce these two types of bases and then present a relaxed requirement on

which we focus.

1.3.1 The Grobner bases

The most fundamental bases are the Grébner bases [Buc65|, which are used
to address numerous important problems in computer algebra such as solving
polynomial equations, the ideal membership problems, and cylindrical algebraic
decomposition [CLO92; Jir95].

One of the powerful properties of the Grobner bases is the unique normal form
after a reduction as follows. Suppose we have a polynomial f and a set of

polynomial B. One can reduce f to a reduced form r as

f=> heg+r,

geB

where hy € P,. Intuitively, r is a reminder after the polynomial divisions of f
by polynomials in B. For example, when f = z® + x + 1 and B = {z + 1}, then
r =2z + 1 because f = (2* — x)(x + 1) + 22 + 1. However, in the multivariate

case, the reduction becomes nontrivial.

e Suppose we divide f by g € B. Then, which monomial should be divided
first? For example, if f = 2%y + y® and g = = + y, should we first divide
2%y by x or 2%y by y (or in other way)?
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e If f can be divisible by both ¢;,9, € B. Then, which division should we
perform first, division of f by g or by ¢o7

It is known that different choices can result in different results.

The first issue is resolved by fixing a monomial order o. For example, the Degree
Lexicographical order defines the order as 1 < y < 2 < y> < xy < ---, where
monomials of larger degree are “larger” (e.g., x < y?) and for monomials of the
same degree, those of larger degree with respect to z is “larger” (e.g., zy* < z%y).
Once the monomial order is fixed, terms in each polynomial are sorted by the
monomial order ¢ in descending order. The first term of f is called the leading
term, and the polynomial division of f by g is performed by first comparing the
leading terms of f and g. Therefore, if we adopt the Degree Lexicographical
order, the answer to the first issue is that 2%y of f should be divided by z of g
first; that is, f = (2y)g + (—xy? + y*). The reminder —2?y* + y> can be further
divided by g. At each division, the leading monomial of the reminder is strictly

smaller than that of g, and thus the reduction terminates in finite divisions.

The second issue is elegantly resolved by the theory of the Grébner bases. If B
is a Grobner basis with respect to a monomial order, the form of r is unique up
to a constant factor. If B is not such a basis, than one can transform B into a
Grobner basis by using some algorithms. The definition of the Grobner basis is

as follows.

Definition 7 (Grobuner basis [CLO92|). Fiz a monomial order. A finite subset
G =A{q1,92,--,9:} of an ideal I is said to be a Grébner basis (or standard basis)

of
<LT(91)7 LT<g2)7 ) LT(Qt» = <LT<I)>7

where LT (g;) denotes the leading term of g;) and LT (I) denotes the set of leading

terms of polynomials in I.

In particular, we are interested in the zero-dimensional ideals. In this case, the

Grobner basis has the following property.

Remark 1. Let G be a Grébner basis of a zero-dimensional ideal I C P, with
respect to a monomial order . The residual classes of monomials LT(I), which
is a set of monomials that are not contained in LT(I), form a basis set of vector
space Py /1.

In words, for any polynomial h € P,, its reduced form r after the reduction

by G can be represented as a linear combination of monomials in LT¢(1), i.e.,
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LM(I)

y2<> ......... xy2

Y a:zy Q Border monomials
Y Order ideal (or LM°(I))

2 513‘3

1 r I

FIGURE 1.1: Illustration of border monomials (empty circles) and order ideal (filled
circles in blue) for two-variate case. The order ideal corresponds to LM€(I), where
LM(-) denotes the leading monomial.

r € span(LT¢(I)). This fact is evident because for any polynomial h € P,,, it can
be reduced to r, which consists of monomials in LT¢(/). Note that LT¢(/) is a
finite set when [ is a zero-dimensional ideal. By definition of the zero-dimensional
ideal, the variety V() consists of a finite number of points (say, X). If LT([) is
not a finite set, this implies that any nonzero polynomial f € span(LT(7)) does
not vanish for X'. However, the evaluation vector m(X) € R of a monomial
m € LT¢(I) is of finite dimension and this implies that for any | X |+ 1 monomials
in LT¢(I), there is a combination vector by which the evaluation vector of the

linear combination of these monomials results in the zero vector.

Basis construction algorithms of zero-dimensional ideals exploit the finiteness
of LT¢(I). Conceptually, given a finite set of points X, these algorithms check
monomials from smaller to larger with respect to a fixed monomial order, and
form a set of monomial so that the evaluation vectors of these monomials are
linearly independent. When the algorithm terminates (in noise-free case), the

size of the monomial set is | X].

1.3.2 Border bases

Despite its theoretical elegance and usefulness of the Grébner bases, it has been
known that the computation of the Grébner bases is numerically unstable. Small
difference in coefficients can change the Grobner bases drastically [Ste04; RA10;

Fas10]. This becomes problematic in floating-point computations and also in the

f f vanishes for X, this means that f is divisible by G, which contradicts the fact f does
not contain monomials of LT(I)
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setting of our interest—computing the approximate basis set of vanishing ideals
from noisy data. For more stable computation, border bases have been exten-
sively studied recently, which is robust for s small change in coefficients [Ste04;
RA10; Fas10].

The main focus of border bases is zero-dimensional ideals, which form varieties
that consists of a finite number of points. In this case, border bases can be
regarded as a generalization of the Grobner bases. Thus, as in the Grébner bases,
the reduction of a polynomial by border basis with respect to a monomial order
is unique up to a constant factor. One of the differences between border bases
and the Grobner bases is that a border basis consists of more basis polynomials
than the corresponding Grébner basis. Such redundancy of basis sets results in

the robust behavior for small changes in coefficients.

Definition 8 (Order Ideal). A finite set of monomials O C M™ is called an

order ideal if t € O implies that O contains all monomials dividing t.

Definition 9 (Border). The border 0O of an order ideal O is defined as
00 =U!" 2,0 — O,
where x; is the i-th variable and x;O is a set of monomials that are products

across x; and monomials in O.

Definition 10 (O-border basis). A set of polynomial G = {g1, 2, ..., 9|} 15
called O-border basis if it satisfies the followings.

e Vi, g; can be represented as g; — b; € Span(O).

e The residue classes of the elements of O forms a basis set of a vector space
P,./T.

When G only satisfies the first condition, G is called O-border prebasis.

In words, the first property states that g; is a linear combination of one border
term b; and monomials in O. The second property is the same as Remark 1. In

Fig. 1.1, we provide an example of order ideal and border in the two-variate case.

1.3.3 Defining basis sets without monomial orders

As we have seen, the Grobner basis is defined using a monomial order and the
border base is defined using an order ideal. Thus, we need to assume some prior
structure in basis polynomials to compute these basis sets. It is common for many

applications that such prior information is not available. Although some works
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use methods that rely on monomial orders in applications, they heuristically
select the monomial orders [L.S04; KI16].

Now, we present a relaxed requirement for the basis set, which are not based on

the monomial order nor the order ideal.

Definition 11 (Requirements for the basis set). Let G = |J, G; be a polynomial
set, where Gy is a subset of G of the degree-t polynomials. We require G to satisfy

the following condition.

e For anyt, any degree-t vanishing polynomial g € Z(X) can be generated by
G'=U_, G, ie, g€ (G).

Remark 2. When a polynomial set G satisfies the condition in Definition 11, it

readily follows that any vanishing polynomial g € Z(X) can be generated by G,
i.e., g € (G).

Definition 11 implies that G consists of lower-degree polynomials as possible. For
example, let us consider a vanishing ideal Z(X) and its basis set G = {g1, 92},
where deg(g;) = deg(g2) — 1 = t. Suppose that ¢ is the lower degree of the
vanishing polynomials in Z(X'). Thus, G contains a vanishing polynomial g; of
the lowest degree and any vanishing polynomial of degree ¢ can be generated
from g;. On the other hand, we also can consider another basis set G' = {g}, g5},
where ¢g; = g1 + g2 and g5 = 2g; + go. This also satisfies Z(X) = (G’). However,
the subset of G’ of degree-t polynomials is an empty set; thus, it cannot generate

vanishing polynomials of degree ¢.

In many applications, the polynomials of lower degrees reflects more basic struc-
ture of the algebraic varieties. Furthermore, in noisy case, the lower-degree
polynomials are less sensitive to noise. For these reasons, the requirement in
Definition 11 has an significant importance. The Grobner bases and border
bases also satisfy this requirement when monomial orders that are degree-graded
are used. It is common to assume the degree-graded structure for the basis con-
struction. In fact, all the basis construction algorithms that are introduced in
this thesis, such as the BM algorithm, the AVI algorithm, VCA, AVICA, and so
forth, are designed to compute from lower to higher degree polynomials. This
assumption is also valid for many applications—given two polynomials of the
same fidelity to data points, the lower-degree one is preferred according to the

Occam’s razor.

In [Liv+13], it is proven that the output of VCA in the noise-free case satisfies

Definition 11. However, the importance of this requirement is not discussed. We
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emphasize that this requirement does not assume special structure such as the
monomial order and the order ideal. On the other hand, as a consequence of
the relaxation, the output basis set do not sustain the properties of the Grobner
bases and border bases; the reduction of a polynomial of the basis set does not
results in a unique form. However, such operations that exploit the Grobner bases
and border bases are no longer of our interest because we are focusing on the
noisy setting. We receive a set of perturbed points and compute an approximate
basis set that consists of approximate vanishing polynomials. The reduction of
a polynomial by a set of approximate vanishing polynomials accumulates errors
along the divisions and the evaluations of the target polynomial can drastically

different before and after the reduction.



Chapter 2

Existing Basis Construction

Algorithms of Vanishing Ideals

2.1 Overview

In computer algebra, it is common to receive a set of polynomials as input and
compute a Grobner basis (or a border basis). In this case, the complexity of
computing a Grobner basis is known to be doubly exponential [CLO92|. A
fascinating result of the BM algorithm is that, by taking a set of points as
input, it works with a polynomial time complexity with respect to the number of
variables and points. In the BM algorithm, monomials are handled from lower
to higher degrees and vanishing polynomials are generated by linearly combining
monomials. Although the number of monomials grow exponentially according to
degree and the number of variables, the BM algorithm exploit a monomial order
to restrict the number of monomials; one only has to handle a set of monomials
of a polynomial-order size. There are a few monomial-based algorithms that
work without monomial orders. For example, Sauer et al. [Sau07| proposed
an algorithm to compute approximate H bases, which consist of homogeneous
polynomials. Hashemi et al. [HKP19] proposed a method to compute border
bases for all possible monomial orders. Unfortunately, none of these algorithms

work in polynomial time because the number of monomials are not restricted.

How does the basis construction algorithms in machine learning circumvent
the awkward monomial order while enjoying a low computational complexity?
Briefly speaking, these algorithms generate vanishing polynomials by linearly
combining polynomials instead of combining monomials and the number of poly-
nomials grows in a polynomial order. Thus, the shift from monomial-based ap-
proach to polynomial-based approach results in a new paradigm of the basis

construction, i.e., the polynomial-time monomial-order-free basis construction.
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Unfortunately, as a consequence of discarding the monomial order, these al-
gorithms lost many advantages properties, resulting in the degradation of the

quality of the basis set. We will discuss this issue in the next chapter.

In this chapter, we introduce three basis construction algorithms of approximate
vanishing ideals. The first algorithm uses a monomial order and the rests do not.
These are all polynomial-time algorithms that receive a set of points and output
a basis set of its vanishing ideal. These algorithms have a hyperparameter € of
error tolerance and when € = 0, they output basis sets of exact vanishing ideals.

A short summary for these algorithms are as follows.

Approximate Buchberger—Moéller (ABM) algorithm [Lim13] The ABM
algorithm belongs to the line of algorithms which compute border bases from
noise-free or noisy points. It is based on milestone algorithms, the Buchberger—
Méller (BM) algorithm [MB82] and its extension to compute approximate border
bases from noisy points [Hel-+09]. There are several algorithms that computes
approximate border bases, we introduce the ABM algorithm because consists of
more simpler procedures than others. The ABM algorithm requires a monomial
order and error tolerance parameter that is a prior information of the extent of

noise in input points.

Vanishing Component Analysis (VCA; [Liv+13]) Different from the pre-
vious two algorithms, VCA is proposed in machine learning. The design of VCA
is more favorable for machine learning. VCA can deal with noisy points as the
ABM algorithm, but does not require the monomial order, and can be imple-
mented as the matrix—vector computation. VCA is the most commonly used in
various applications such as classification and blind signal separation. However,
as a consequence of discarding the monomial order, VCA does not sustain various

theoretical properties that computer-algebraic algorithms hold.

Approximate Vanishing Ideal Component Analysis (AVICA; [KKT14])
AVICA is also proposed in machine learning. AVICA has similar advantages
to VCA; namely, it can deal with noisy points without monomial order in the
matrix—vector computation. The notable point of AVICA is that it uses kernel
functions for the basis construction. In [Liv+413], it is proven that the the basis
set of vanishing ideal cannot be obtained by the kernel trick, which is a com-
mon technique to use kernel functions in machine learning. AVICA computes

the value of kernel functions not across data points but between data points and
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randomly sampled points instead. Although AVICA provides a few computa-
tional advantages and new theoretical aspects, the output is non-deterministic
(due to the randomly sampled points) and more hyperparameters needs to be

controlled.

2.2 The Approximate Buchberger—Moller algorithm

2.2.1 Procedures

The input of the ABM algorithm is a set of points X C R", the error tolerance
e > 0, and a monomial order 0. The output are the basis set B and an order
ideal O is updated. By initializing B = {} and O = 1, the following steps are
performed for degree t = 1,2, ....

Step 1: Generate a set of new monomials L. A set L of new monomials

of degree t are generazed as follows.

i=1

L= {b\beUxi(’)—O,deg(b) :t}.

If L is the empty set, then terminate with output B and O.

Step 2: Check the monomials in L. one by one Select a least monomial
b € L with respect to monomial order o and remove b from L. Solve the following

eigenvalue problem.

-
(000 0(x) ) (B(X) OX) ) Vmin = Amin¥nin (2.1)
where A\, is the smallest eigenvalue and vy, is the corresponding eigenvector.

Step 3: Update basis sets If VA, < €, then append a polynomial g =
({b} UO)Vmin to B. Otherwise, append b to O. Go back to Step 2 if L is not the
empty set.




12 Chapter 2. Existing Basis Construction Algorithms of Vanishing Ideals

2.2.2 Details

At Step 1, we generate degree-t border monomials of O. The key step of the basis
construction is Step 2. Over the basis construction, we handle monomials from
lower to higher degrees, and for each degree, from smaller to large monomials
according to a monomial order o. A set of monomial O is updated so that it
always has the full-rank evaluation matrix O(X). To be precise, O is maintained
so that the smallest eigenvalue of O(X) is always larger than e. A new monomial
b is appended to O only if the new O(X) keeps this condition. Intuitively, b
is appended to O if b(X) is sufficiently linearly independent to the evaluation
vectors of monomials in @. When € = 0, it is actually checking the linear
independency of the evaluation vectors. If b(X) is (almost) linearly dependent
on the column vectors of O(X), it implies that we can obtain an (approximate)
vanishing polynomial; that is, with the vector vmin = (v1,v2, ..., vj0j41), We have

a polynomial g as follows.
g = v1b + 201, V309, ..., V|0|4+10s,

where O = {01, 09, ..., 05 }. The extent of vanishing of g for X equals to the square
root of the smallest eigenvalue, i.e., ||g(X)| = v/ Amin because

oI = ok, (00) 00x) ) () O(X) ) vt = Ausn

The output of the ABM algorithm has the following properties.

Remark 3 (|[Lim13]). The output (B,O) of the ABM algorithm for input (X, €)
satisfies the followings.

e Any polynomial in g € B, the coefficient norm of g is unity and ||g(X)|| < €

e The is no polynomial of the unit coefficient norm in span(Q) that is e-

vanishing for X.

e If O is an order ideal of terms, then the set B = {g/LC(g) | g € B} is
an O-border prebasis, where LC(g) denotes the coefficient of the leading

monomial of g.

e If O is an order ideal of terms, then the set B is an d-approzximate border
basis with 6 = 2|| X ||max/ min; || + v/(min; [;])?, where || X ||max denotes
the mazimal abosolute coordinate in X and ~y; denotes the coefficient of the

border monomial of g; € B.
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e [fe =0, then the algorithm produces the same results as the BM algorithm
for border bases [].

Refer to [Lim13| for details.

In general, the number of monomials grows exponentially with respect to degree
and number of variables. However, in the ABM algorithm (to be precise, in the
framework of the BM algorithm [MB82]), we only have to deal with much fewer
number of monomials. More specifically, we only have to handle at most |X|n

monomials, where n is the number of variables).

Remark 4. In the basis construction by the ABM algorithm, for any degree t,
|L| <|X|n at Step 1.

Note that it is |O] < |X| because O is designed to have a full-rank evaluation
matrix O(X) € RXIXIO in the ABM algorithm. The equality holds when the
algorithm runs with ¢ = 0. From another point of view, this relates to the
discussion in Section 1.3.3: when we consider an exact vanishing ideal for finite
data points, the complementary monomial set of LT((G)) is a finite set and its
size is | X|. Now, it can be readily proven based on the fact that |O| < |X| and

L is a subset of |J_; z;0 by construction.

2.3 Vanishing Component Analysis

2.3.1 Procedures

The input of VCA is a set of points X C R™ and the error tolerance ¢ > 0.
The output is a basis set G and a basis set F. By initializing Gy = {} and
Fy = 1/4/|X]|, the following steps are performed for degree ¢t = 1,2,.... In the

following, we use notations G* = |J'_, G, and F* = |J!_, F,.

Step 1: Generate a set of candidate polynomials Pre-candidate polyno-
mials of degree ¢ for ¢ > 1 are generated by multiplying nonvanishing polynomials

across F and F;_;.

CY™ ={pg|peFi,qe F}.
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At t =1, CT° = {x1, 29, ..., x, }, where x;, are variables. The candidate basis is

then generated through the orthogonalization.
Cy = CP" — ' PH(XO)TCPe(X), (2.2)
where -1 is the pseudo-inverse of a matrix.
Step 2: Perform SVD We perform SVD on Cy(X).
Cy(X)=UDVT,

where U € RXXXT and V' e RICXIC are orthonormal matrices and D is a
rectangular diagonal matrix with singular values o1, 0, ..., Omin(c,|,| x|) along its

diagonal.

Step 3: Construct sets of basis polynomials Basis polynomials are gen-

erated by linearly combining polynomials in C; with {v1,vs, ..., vc, |}

Gy = {C; | 05 < €},
F, = {C’tvi/ai ‘ o; > 6}.

If |F3| = 0, the algorithm terminates with output G = G* and F = F.

2.3.2 Details

At Step 1, the orthogonalization procedure (2.2) makes the column space of
Cy(X) orthogonal to that of F*'(X). This aims at focusing on the subspace of
RIXI that cannot be spanned by the evaluation vectors of polynomials of degree
less than ¢. Note that

Ci(X) = (I = FH(X)F'7H(X)HOP™(X).

At Step 3, a polynomial Cyv; is classified as an e-vanishing polynomial if o; < €

because 0; equals the extent of vanishing of a polynomial Cv;. In fact,

[(Co) (Il = /o] CL(X)TCUX); = o

Note that for nonvanishing polynomials in F}, the polynomials are rescaled by

1/0; so that the norm of the evaluation is equal to unity. This is introduced to



2.4. Approximate Vanishing Ideal Component Analysis 15

avoid overflow and underflow in the computation. As a consequence, polynomials
in F is not necessarily e-nonvanishing polynomials. If one wants F' to be a set
of e-nonvanishing polynomials, it can be simply resolved. We keep F, = {Cyv; |
o; > €} for output and use F; for the computation in higher degrees. When the

algorithm terminates (say, at T'), then output FT instead of F7.
Remark 5. The VCA algorithm has the following properties [Liv+13].
o [f VCA runs with e = 0, then G generates Z(X)

o If VCA runs with ¢ = 0, any polynomial h can be written as h = f + g,
where f € span(F) and g € (G).

o [f VCA runs with e =0, then for all t, any polynomial h of degree at most
t can be written as h = f + g, where f € span(F") and g € (G").

o |F| < |X| and |G| < |F[? - min(|F],n)

In particular, the third statement is the most fundamental. The first and second
statements derive from the third statement. The basis set G also satisfies the

requiement in Definition 11. Refer to [Liv-+ 13| for more properties.

2.4 Approximate Vanishing Ideal Component Anal-

ysis

2.4.1 Procedures

The input of AVICA is a set of points X C R", an error tolerance ¢ > 0, a linear
polynomial kernel k(x,y) = 0 +x "y, where 6 is also an input hyperparameter, a
probability distribution D for random sampling, the number of random samples

N, and a degree T to terminate. The output is a basis set G and a basis set F.

As the initialization, we first obtain a set of random samples Y = {y,, Yo, ..., Yy}

from the distribution D. Then, generate a set of polynomials K = {k(-,y,), k(-, y5), -..

We denote the evaluation matrix of K by K(X;Y) € RN We also set
Ky = {1}. Then, the following steps are repeated for degree t =1,2,...,T.

Step 1: Generate a set of candidate polynomials We generate a candi-

date polynomials of degree t as follows.

K, =K1 0K.

7k('7yN)}'
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Step 2: Perform SVD We perform SVD on K;(X;Y).
K(X:Y)=UDV,

where U € RXXIXT and V € RY*N are orthonormal matrices and D is a rectan-

gular diagonal matrix with singular values o1, 03, ..., Omin( x|, along its diagonal.

Step 3: Construct sets of basis polynomials Basis polynomials are gen-

erated by linearly combining polynomials in K; with {vy, v, ..., ¢, }.

Gy = {Kw; | 0; < €b'},
F, = {Ktvi | o; > EQt}.

Set K, =U 1517, where V represents a matrix whose columns consist of those of

V' which are used to generate F} ((7 and V are defined similarly).

2.4.2 Details

Remark 6. Here, we present a slightly simplified version of AVICA to reduce the
parameters. In the original algorithm, at Step 3, the machine precision €yachine S
considered and Gy = {K;v; | €machine < 07 < €0'}. In addition, it stores ¢ = ;6"
for each polynomial as its importance. This quantity q is used when one wants

to sort obtained polynomaials from more informative to less informative ones.

The interesting idea of AVICA is that the vanishing polynomials are generated by
using the polynomial kernel. In [Liv-+13], it is proven that vanishing polynomials
cannot be generated from the usual kernel trick. More specifically, let k£ : R™ x
R™ — R be a reproducing kernel function (e.g., the polynomial kernel). We
consider the Gram matrix K (X, X) € RXXXl for X = {x}, zs, ..., x|}, where
the i-th entry of K(X, X) is k(z;, ;). Then, the solution of the following problem

K(X,X)v =0, (2.3)

generates a polynomial g(x) = Zgll k(x,x;)v;. Here, g consists of the linear
combination of kernel functions that are evaluated for each point a;. This kind
of technique is called the kernel trick and widely used in machine learning for
extending linear methods to nonlinear methods. Typically, the right hand side

of Eq. (2.3) is a nonzero vector, or v' K (X, X)v is maximized instead.
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Interestingly, in our case, the polynomial g generated by the kernel trick is the
zero polynomial, although v is a nonzero vector in general. Intuitively, this is
because the kernel trick only uses the relative relations between points but the
coefficients of a vanishing polynomial relies not on the relative relations. A rough
explanation is as follows. For instance, let us consider the case where X lies on a
variety V and let us apply a rotation by an orthonormal matrix U to obtain X’
and V'. Then, for any x;,x; € X and the corresponding points @, x, € X', it
is (z})Txy = (Uz,) " (Uxy) = x| T Therefore, K (X, X) and K (X', X') yields
the same vanishing polynomial g(x) = Zl)jl k(x,x;)v;', which implies that the
coefficient vector of g (note that it is not v) is invariant to the rotation. However,
it seems less likely that a vanishing polynomial ¢ which is calculated for X is
also vanishing for X’ = XU for arbitrary orthonormal matrix U—unless g is the

zero polynomial.

The above discussion only provides an intuitive explanation of why usual ker-
nel trick does not work for the calculation of the vanishing polynomials. Refer

to [Liv{13] for the formal proof in the case of the reproducing kernel functions.

The key idea of AVICA to exploit kernel functions for computing vanishing poly-
nomials is to consider K (X,Y) instead of K (X, X), where Y is a set of randomly

sampled points. We solve the following problem,
K(X,Y)v =0,

and generate a polynomial g(x) = ), _ k(x,y)vy. Now, y is a randomly sam-

yey
pled point and in general, it does not lie on the variety to which X belongs.

Therefore, g is represented from the outside of the variety.

Now, we explain the algorithm of AVICA. At the initial step, we calculate a set
of polynomial K = {k(-,y,),k(-,ys), ..., k(-,yx)}, where k(x,y;,) = 0 + x'y.
Thus, for each y,, k(+,y;) is a linear polynomial. Both the ABM algorithm and
VCA consider L = CT™ = {x1,x, ..., 2, } as a set of linear polynomials. Namely,
if we randomly sample enough number of points, then the expressive power of K
is equivalent to L = CP™. Then, at Step 1, degree-t polynomials are generated
from polynomials of degree t — 1 and 1. At Steps 2 and 3 are almost identical to
those of VCA.

The only concern is that weather the capacity of K;(X;Y) is enough large that
we can discover all the degree-t nonvanishing and vanishing polynomials that

are necessary for basis sets. In [KKT14], it is discussed that the capacity of

'We here focus on the polynomial kernel.
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K;(X;Y) is sufficiently large when | X| and |Y| are larger than the dimension of

the algebraic variety where X lie.

Different from the previous two algorithms, the output polynomial set G of
AVICA at € = 0 forms a basis set of the vanishing ideal only when sufficiently
many random points are sampled and the termination degree T is large enough

(T is a hyperparameter).
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Chapter 3

Monomial-Order-Free Basis

Construction with Normalization

In this chapter, we introduce a monomial-order-free basis construction with nor-
malization. We discuss fundamental issues that arises in the monomial-order-free

basis construction. In particular, we tackle the following issues.

The spurious vanishing problem—A polynomial g can approximately vanish
for a point @, i.e., g(x) ~ 0 not because x is close to the roots of g but merely
because ¢ is close to the zero polynomial (i.e., the coefficients of the monomials

in g are all small).

Redundancy in the basis set—The output basis set can contain polynomials
that are redundant because they can be generated by other lower-degree polyno-
mials’. Determining the redundancy usually needs exponentially costly symbolic

procedures and is also unreliable in our approximate setting.

Inconsistency of the basis set with respect to input transformation—
Given translated or scaled data points, the output of the basis construction can

drastically change in terms of the number of polynomials and their nonlinearity.

The first and the second issues relate to the quality of the output basis set. A
basis set is desired to be succinct description of the algebraic variety. However, if
a basis set contains many polynomials close to the zero polynomial, this implies
that the basis set is noisy; the symbolic relations represented by such spurious
vanishing polynomials do no reflect the actual structure of input data points.
Similarly, if the basis set contains many redundant basis polynomials, this means
that the basis set is not compact enough; the same relations between variables

are repeatedly described by different polynomials.

'For example, a polynomial gh is unnecessary if g is included in the basis set.



20  Chapter 3. Monomial-Order-Free Basis Construction with Normalization

Both issues can be elegantly resolved by using a monomial order and/or sym-
bolic operations. However, in many applications, proper monomial orders are
unknown. Also, symbolic operations are common only in limited research areas
and it is computationally costly. Therefore, we are interested in how to resolve

the aforementioned fundamental issues in the numerical computation.

The third issue contradicts an intuition that the intrinsic structure of an algebraic
variety does not change by a translation or scaling on data. We would like the
basis sets to share the same number of polynomials at each degree. However,
most basis construction algorithms including ABM, VCA, and AVICA, do not
have the invariance for translation and scaling on data regardless how well the
parameter € is controlled. Note that VCA has a invariance for the translation on

data but not for the scaling.

In this chapter, we first introduce a basis construction algorithm with normal-
ization, which is a key tool of our analysis and discussion. Then, we discuss each

of the three issues in detail and present approaches to resolve them.

3.1 Simple Basis Construction

We present the Simple Basis Construction (SBC) algorithm, which is a general
framework of monomial-order-free basis construction algorithms with normal-
ization. This is the first algorithm that takes normalization into account in the
basis construction in polynomial time without using a monomial order. The SBC
algorithm is designed based on VCA, and many monomial-order-free algorithms

can be discussed using this framework.

3.1.1 Procedures

The input of SBC is a set of points X C R™ and the error tolerance ¢ > 0. The
output is a basis set G and a basis set F. By initializing Gy = {} and Fy = m,
where m is a nonzero constant polynomial, the following steps are performed

for degree t = 1,2,.... In the following, we use notations G* = UtT:O G, and
P = Ui:o .

Step 1: Generate a set of candidate polynomials Pre-candidate polyno-

mials of degree ¢ for ¢ > 1 are generated by multiplying nonvanishing polynomials
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across F and F;_y.
Cr={pglpeF,qe F1}.

At t =1, CT° = {x1, 29, ..., x,}, where x}, are variables. The candidate basis is

then generated through the orthogonalization.
Cy = CP* — F' PP XO)ToP™ (X)), (3.1)
where -T is the pseudo-inverse of a matrix.

Step 2: Solve a generalized eigenvalue problem We solve the following

generalized eigenvalue problem:
Cy(X)TCUX)V = N(Cy) VA, (3.2)

where a matrix V' that has generalized eigenvectors vy, v, ..., v|¢,| for its columns,
A is a diagonal matrix with generalized eigenvalues A;, Ao, ..., A¢,| along its di-
agonal, and MN(C;) € RICXI% ig the normalization matrix, which will soon be

introduced.

Step 3: Construct sets of basis polynomials Basis polynomials are gen-

erated by linearly combining polynomials in C; with {v1,vs, ..., vc,|}.

Gy = {Ci | VN < e},
F, = {Cyv; | Vi > €}

If |F3| = 0, the algorithm terminates with output G = G* and F = F.

3.1.2 Toy example

We demonstrate the computation of SBC-I, where M(C;) = I at each ¢t. We will
also encounter the spurious vanishing problem in this example. Let us consider
SBC-I for X = {(1+&,1),(1,14&),(-1+& —-14&),(—1,—1)}, where £ = 0.1.
We use € = \/@ = 2§ = 0.2. The constant polynomial m at degree 0 is set to
m = 1, and thus, Fy = {f; :== 1}, Gy = {}. We use x and y for variables and the

7

values are rounded for illustration while keeping the use of “=" notation. The
coefficient vector of a polynomial h is denoted by n.(h), e.g., n.(1 — z + 2xy) =

(1,-1,0,0,2,0)", and |[n.(h)]| is called the coefficient norm of h.
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Degree t =1 At Step 1, the candidate polynomials are generated as follows.

Clz{x,y}—{l};l<1 11 1) c

= {z — 0.05,y — 0.05}.

The eigenvalues of C(X) is {0.01,8.01}, and the corresponding eigenvectors are
v, = (—0.707,0.707)" and v, = (0.707,0.707)". According to the square roots

of eigenvalues {1/0.01,/8.01} = {0.1, 2.83},

G1 = {g1 := Crvy = —0.707(x — 0.05) + 0.707(y — 0.05)},
Fy = {f» == Cyvy = 0.707(x — 0.05) + 0.707(y — 0.05)}.

Degreet =2 The set of precandidate polynomials is C5™ = { f2} = {(0.707(z—
0.05) + 0.707(y — 0.05))?}, and thus, the set of candidate polynomials of degree
21is

Cy = {(0.707(z — 0.05) + 0.707(y — 0.05))*}
T
- {1,f2}< 1y fo(X) ) f3(X),
= {0.52% + zy + 0.5y* — 0.0962 — 0.0963y — 2.00},
where 1, € R?* is the all-one vector. The eigenvalue and eigenvector of Cy(X)

are 0.78 and (1.0), respectively. Thus, Go = {} and Fy = {f3 := 0.52% + zy +
0.5y% — 0.096z — 0.0963y — 2.00}.

Degree t =3 The set of precandidate polynomials is C}™° = { fof3} and thus,

the set of candidate polynomials of degree 3 is

CS = {f2f3}

(LA} (1 RX) 5X)) (A
= {0.3542° 4 1.0612%y + 1.0612y* + 0.354y°
+0.60122 + 1.202zy + 0.601y* — 1.549x
— 1.549y — 2.671}.
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SBC with € = 0.2

f2.. /3 g1 \ g2

[ne(f2)ll = 1.0 [Inc(f3)] = [ne(g)] = 1.0 |
[f2(X)] = 2.8 [If5(X)] |

FIGURE 3.1: e-nonvanishing polynomials (f2 and f3) and e-vanishing polynomials (g;
and g2) obtained by the SBC algorithm for four points around (—1,1) and (—1,—1)
with € = 0.2. The coefficient vector of a polynomial h is denoted by n.(h). Here, f3 is
classified as a nonvanishing polynomial based on its extent of vanisng | f3(X)| = 0.28 >
€, which is overrated because of the relatively large coefficient norm ||n.(f3)|| = 2.3.
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SBC with ¢ = 1.0

Ja j g1 '92

[ne (f)ll = 1.1 e (fs)l =14 Inc (90)[| = 1.2 [Inc (92)[] = 0.0
SO =13 [fs(X) =12 Jlg(X)]| = 0.09 [[g2(X)]| = 0.0

FIGURE 3.2: Some of the e-nonvanishing polynomials (f4; and f5) and e-vanishing
polynomials (g1 and g2) obtained by the SBC algorithm for perturbed points X that
are sampled from a unit circle (see the main text for detail). with e = 1.0. Here, go
is classified as an e-vanishing polynomials based on its extent of vanishing ||g2(X)| =
0.0 <€, which is underrated because of its small coefficient norm |[n¢(g2)|| = 0.0 (only
approximately equal to zero but rounded off as 0.0).

The eigenvalue and eigenvector of C3(X) are 0 and (1.0), respectively. Thus,

Gs = {¢2} = C3 and F» = {}, and the algorithm terminates with the outputs
G = Ufzo Gy = {91,092} and F = Uf:o Fy=A{1, fo, fs}-

We provide contour plots of the obtained polynomials (except f1) in Fig. 3.1.
The coefficient norm and the extent of the vanishing of these polynomials are
listed below the plots. Here, f3 is classified as a nonvanishing polynomial based
on ||f3(X)|| = 0.28 > ¢, although the lines approximately pass through the
points. This results from the large coefficient norm of fs, i.e., ||n.(f3)]| = 2.3
In other words, f3 is a spurious nonvanishing polynomial. In fact, once f5 is

normalized to f := f3/||n.(f3)||, it becomes an e-vanishing polynomial because
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of ||[f5(X)] = 0.12 < e. We observe the opposite case when we apply SBC to
another set of points X = {(0.53,0.87), (—0.49,0.83), (—1.1,0.1), (0.5, —0.81),
(—0.46, —0.83), (0.99,0.02)} with e = 1.0. This X is generated by perturbing
points of Xy = {(cos(km/3),sin(km/3))}r=01..5 on a unit circle with the zero-
mean additive Gaussian noise (the standard deviation is 0.01). As shown in
Fig. 3.2, g5 is classified as an e-vanishing polynomial, although the lines on the
plot do not pass through the points at all. This is because the magnitude of the
coefficients of g, is extremely small. In other words, g; is a spurious vanishing

polynomial.

3.1.3 Analysis

We will now analyze the SBC algorithm. In particular, we discuss the following

questions.
e What is the normalization matrix M(C;) € RI%XI% in Eq. (3.2)?
e What is the usefulness of the generalized eigenvalue problem Eq. (3.2)?

e Does the SBC algorithm output a basis set that satisfies the requirement
of Definition 117

The overview of the discussion is as follows. We first define a normalization
mapping n : P, — RY. With n, the (i, j)-th entry of 91(C}) is defined as the inner
product n(¢;)"n(c;) for Cp = {c1,¢a,...,¢/c,}. Solving a generalized eigenvalue
problem Eq. (3.2) yields a polynomial A, which is normalized with respect to n(h),
i.e., [[n(h)|| = 1. For example, if coefficient vectors are used for normalization,
i.e., if n = n., then basis polynomials are normalized to have unit coefficient
vectors. In this way, we can avoid including spurious vanishing polynomials
(polynomials that are close to the zero polynomial) in the basis set. We will
also show that the gradient normalization does not only resolve the spurious
vanishing problem but also resolve the “inconsistency issue” (the second issue).
We also prove that the output of the SBC algorithm satisfies the same properties

of Remark 5 (and so as Definition 11.

Normalization mapping

A polynomial g is exactly vanishing for X when |g(X)|| = 0. This implies
that X is a subset of roots of g. Since a scaling does not change the roots
of a polynomial, kg (k # 0) is also vanishing for X. However, this is not the

case for the approximate vanishing. For example, g is e-nonvanishing for X, i.e.,
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lg(X)]|| > €, it can turn into e-vanishing by scaling kg for small k. More precisely,

any ¢ turns into approximate vanishing for X by using sufficiently small k.

To sidestep this issue, it is necessary to normalize g before evaluation as follows.

G= 9
In()II

where n : P, — R’ is a normalization mapping. For example, we can consider the
coefficient normalization with n = n., where n.(g) is the coefficient vector of g.
For any k # 0, we obtain the same g and thus, we can measure the approximate

vanishing in a consistent way.

Such a normalization is an essential part of the basis construction of the ap-
proximate vanishing ideal. In fact, the computer-algebraic basis construction
algorithms adopt the coefficient normalization. They construct a polynomial
from a linear combination of distinct monomials by a unit combination vector
(recall (b U O)vmin at Step 3 in the ABM algorithm). Although the number of
monomials grow exponentially according to degree and the number of variable,
the linear combination can be performed efficiently because it is only necessary to
handle not all but only a limited number of monomials by exploiting the mono-
mial order. On the other hand, monomial-order-free algorithms such as VCA and
AVICA does not takes normalization into account because it is unknown how to
optimally and efficiently introduce a normalization into the basis construction.
As we discuss later, the SBC algorithm provides a simple framework to introduce

a normalization in optimal fashion.
Now, we present the conditions that we impose on the normalization mapping.

Definition 12 (Valid normalization mapping for A). Let n : P, — R’ be a
mapping that satisfies the following.

e n is a linear mapping, i.e., n(ahy +bhy) = an(hy) +bn(hs), for any a,b € R
and any hy, hy € P,.

e The dot product is defined between normalization components; that is, (n(hy),n(hs))
is defined for any hy, hy € P,,.

e In a basis construction algorithm A, ||n(h)|| takes the zero value only for

polynomials that can be generated by basis polynomials of lower degrees.

Then, n is a valid normalization mapping for A, and n(h) is called the normal-

ization component of h.
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The third condition implies that ||n(h)|| takes the zero value only for polyno-
mials that are unnecessary for the basis set. For example, it is evident that
the coefficient normalization mapping n. satisfies the first two conditions. Since
IInc(h)|| = 0 if and only if h is the zero polynomial, the third condition is also
satisfied. Later, we consider the coeflicient normalization mapping n,. Although
|ng(h)|| can take the zero value for a nonzero polynomial h, we will show that
n, can be used in the SBC algorithm because ||ng(h)|| # 0 if & is necessary for

the basis set.

The validity of the SBC algorithm

With a valid normalization mapping, the output of the SBC algorithm satisfies

the same properties listed in Remark 5 as VCA.

Theorem 1. Let n be a valid normalization mapping for the SBC algorithm.
When SBC runs with n and € = 0 for a set of points X, the output basis sets G
and F satisfy the following.

e Any vanishing polynomial g € Z(X) can be generated by G, i.e., g € (G).

e Any polynomial h can be represented by h = '+ ¢', where f' € span(F)
and ¢' € (G).

e For anyt, any degree-t vanishing polynomial g € Z(X) can be generated by
G, ie., g€ (GY).

e For any t, any degree-t polynomial h can be represented by h = f' + ¢,
where f' € span(F*) and ¢’ € (G").

Proof. The SBC algorithm with M(C;) = I (SBC-I) is identical to VCA up
to a constant factor in basis polynomials. Specifically, VCA set Fy = {m} =
{1/4/]X[}, and normalize polynomials f € F; by || f(X)| at each degree. Thus,
from Theorem 5.2 in [Liv-+13|, which shows that VCA satisfies Theorem 1, we
can conclude that SBC-I also satisfies Theorem 1.

Next, we prove the claim by induction with respect to degree ¢ for general n (SBC-
n). We compares two processes (SBC-I and SBC-n) and . We refer to the former
and the latter, respectively, as SBC-I and SBC-n. If we use symbols such as G}
and F} in SBC-I, we put tildes on the corresponding symbols such as ét and ﬁt
in SBC-n.

Let I} and G be the basis sets of nonvanishing polynomials and vanishing poly-

nomials, respectively, obtained at degree ¢ iteration in SBC-I. We know that
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collecting F; and G, yields complete basis sets for both nonvanishing and van-
ishing polynomials. Here, we prove the claim by comparing E and ét with F;
and G,. Specifically, we show span(F}) = span(F;) and (G") = (G'). Note that
span(F,) C span(F;) and (G') C (G') are obvious because F, and G, are gen-
erated by assigning additional constraints of normalization on the generation of

F, and G,. Thus, our goal is to prove the reverse inclusion span(F;) D span(F})

and (G) D (GY).

At ¢t = 1, it is obvious that span(F}) = span(F}) and (GY) = (G'). We as-
sume span(F,) = span(F}) and (GY) = (G') for all ¢ < 7. Then, we can
show span(CY\,) = span(fol) and span(C,,1) = span(Cr41). In fact, it is
pq € span(éffl) for any pg € C}\, where p € Fy and ¢ € F., because
p € span(F}) and ¢ € span(F}), and vice versa. The orthogonalization Eq. (1)
projects span(Cr) to subspace span(C;41), which are orthogonal to span(F7)
in terms of the evaluation at points, i.e., span(C,41(X)) L span(F7(X)). From
span(Cr) = span(épfl) and span(F7(X)) = span(F7(X)), the orthogonal-

T T

ization projects CY\ and CT into the same subspace, i.e., span(Cry1) =

Span(5’7+l)'

Next, we show span(F,1) = span(F,,1) by showing span(F,;) C span(Fy.1).
Let f € span(F,y1) be an nonvanishing polynomial. As shown above, f €
span(C,4,) = span(C,,1). By construction, f € span(F,,;) unless n(f) = 0.
On the other hand if n(f) = 0, then f need not be included in basis sets because

of the third requirement of n. Therefore, span(F,;1) = span(F,41).

We show (G™1) = (G™*1) in a similar way. Let g € span(G,41) be a vanishing
polynomial. Then, g € span(G.41) unless n(g) = 0. From the third requirement
for n, if n(g) = 0 implies g need not be included in G,. Therefore, (G*) D (G)

and thus (G) = (GY). O

The optimality of the normalization scheme in the SBC algorithm

The SBC algorithm generates normalized polynomials by solving the generalized
eigenvalue problems. On the other hand, one can consider a simple two-step
approach. Namely, we first generate a polynomial g and then normalize it as
g/|In(g)||. However, this two-step approach does not provide optimal vanishing
polynomials; there can be normalized polynomials that are more vanishing for
data points. Solving Eq. (3.2) is equivalent to minimizing the extent of vanishing
under the normalization constraint in one step. Recall that in Step 3 of the SBC

algorithm, a new polynomial ¢ is generated by linearly combining candidate
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polynomials in C; = {c1, ¢a, ..., ¢jcy }. This can be formulated as

|Ct]

g= szcz = Ctlva

where v = (v1, 02, ..., v|¢,|) | i a combination vector to be sought. From the first

condition of Definition 12,

|Ct

= Z vin(c;) = n(Cy)v,

where we use a slight abuse of notation such that n(C;) is a matrix whose i-
th column is n(¢;). Namely, n(g) is calculated from n(C;) in the same way
g is calculated from C;. Let us consider to generate g, = C,v; from vy for
k=1,2,....,r. We minimize the square sum of the extent of vanishing under the

constraint that g; is normalized and orthogonal to each other with respect to n.

min Z g CON?, st YV, 1, n(gr) 'n(g) = 6w, (3.3)

v1,v2,...,0-€ERICt]

where 0, is the Kronecker delta. Note that

ZHgk )P =Te (VI Cu(X) ' CuX)V),

where V' = (v vy --+ v,) and Tr(-) is the trace operator. Using the first and

the second conditions of Definition 12,

(gk) n(g) = (Ctvk) n(Cyv;)

= n(Z civ,(:))Tn(Z c]vlu)>,

4 J

=3 " n(e) (e v v,
i?j

= ’v;—‘ﬁ(Ct)’Ul

Thus, it is the constraint is summarized to VI O0(C;)V = I. Therefore, the
problem Eq. (3.3) can be reformulated as

min  Tr (V' Cy(X)'Cy(X)V), s.t. VINCHV = 1. (3.4)

VEeRICtIxr
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The following theorem states the optimality of the normalization scheme of the
SBC algorithm.

Theorem 2. Let r be an integer such that 1 < r < rank(M(Cy)). The r gen-
eralized eigenvectors vy, Vs, ..., v, of (3.2), which correspond to the r-smallest
generalized eigenvalues, generate polynomials Cyvq, Cyvs, ..., Cyv,., whose square
sum of the extent of vanishing achieves the minimum under the orthonormal

constraint on the normalization components of polynomials.

Proof. 1t is known that the column vectors of the optimal V' of the problem

Eq. (3.4) are generalized eigenvectors corresponding to the r-smallest generalized
eigenvalues of (Cy(X)TCy(X),M(C;)). The following proof is based on [VMS16].

|x|Ct

Introducing a Lagrange multiplier A e RIC |, we have

L= %Tr [VTC(X) Cux)V] + %Tr [(1 - VT‘JI(Ct)V)K] .

Note that here A is symmetric due to the symmetric constraint, but not diagonal

in general. By differentiating £ with V' and setting it to zero,

9L G(x)TC(X)T — N(CTA = 0.
v, o

Thus, we obtain

Cy(X)TCUX)V = N(C,)VA.

Note that this is not yet a generalized eigenvalue problem because A is not
diagonal. Because Ais symmetric, it has an eigenvalue decomposition A = RART
for some orthonormal matrix R and diagonal matrix A. Thus, we obtain the

generalized eigenvalue problem (3.2) by V = VR. The cost function is
Tr [VIC(X)TCUX)V] = Tr [VR(C,)VA] = Tr [A],
which means that the r smallest generalized eigenvalues minimize the cost. [J

Stable computation of the generalized eigenvectors

It is known that in practice, we need to solve the following problem instead

of (3.2) for numerical stability.

Cy(X)TCUX)V = (N(Cy) + al)VA, (3.5)
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where « is a small positive constant. Such « is typically set to a small multiple
of the average eigenvalue of 9M(C}), i.e., Tr(M(Cy))/|Cy| [Fri89]. It can be shown
that such an addition by al only gives a slight change both on the extent of

vanishing and the normalization of obtained polynomials.

Theorem 3. Let {v{,v9,... ,v‘act‘} be the generalized eigenvectors of (3.5) for
a > 0. Both the extent of vanishing and the norm of Cyv¢ differ only by O(«)
from those of Cyv?. Specifically,

: X
KR e
)\0
—alloflP 55 + 0(e?) < \/@) TR(CY] — /(v TR(Co,

min
0

A
< —aflo| 555+ 0(e?),

max

where X2, and N0, are the smallest and the largest eigenvalues of \) for k =

min max

1,...,|Cy|, respectively.
The proof of Theorem 3 relies on the following lemma.

Lemma 1. Suppose square matrices A, B € R™"™ are symmetric and positive-
semidefinite, and nullspace(A) D nullspace(B). Let us consider a perturbed
generalized eigenvalue problem Avy = A} (B + al)v§ for a small nonnegative
constant o, (k =1, ...,rank(B)). Then

I
1+ afvy?
—alluflP A + 0(0) < (Wl — [Wop < —axloll*aie + Ola?).
where A\ and A2 are the smallest and the largest generalized eigenvalue among
A )\?ank(B), respectively.

Proof. A symmetric and positive-semidefinite matrix B has orthonormal eigen-
vectors uq, ..., U,, where the first rank(B) eigenvectors span the column space
of B and the rest span the nullspace. Note that the generalized eigenvectors

vY (k= 1,...,rank(B)) are mutually linearly independent due to (v?) " Bv) = dy,.
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Hence, {v‘lj, o 'vfank(B), Urank(B)+1s -+ u,, } becomes a complete basis of R”. There-
fore, for any k,
rank(B) n
a __ a,,0 a, .
v, = E a; v; + E a; w;,
i=1

i=rank(B)+1

for some af, ..., al. Substituting the above expression into Av{ = A\ (B + al)vg,

we have
rank(B) rank(B) rank(B) n
§ a,,0 o § a,,0 « § a,,0 § «
i=1 i=1 i=1 i=rank(B)+1

where we used Au; = 0 for ¢ > rank(B) because nullspace(A4) D nullspace(B).
Multiplying both sides by (v?)" from the left,

ag Ay = Apag + adpag|lv],

where (v9)T Av? = X0 (v))T Bv? = A0y, is used. When « is sufficiently small, a¢

is nonzero (almost 1). Thus, dividing by af, we obtain

A\Y
Ne=_ "k _ N0, ) )
P I r+O0(a) >0 (3.6)

Next, by simple calculations,

Ai = (vp) " Avg,

rank(B) T rank(B)

_ a,,0 a,,0
= 5 ajv;, | A 5 alv;,
i=1 =1

rank(B)
o a\21\0
- E : (ai ) )\ia
=1
rank(B

=\ 4 Z Sir) N,

Note that A¢ = \) — a\?||v?]|? + O(a?) from (3.1.3). Therefore,

rank(B)

Y (@) =) X = —ad][|v}]]* + O(a®).

=1
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For sufficiently small o, the right-hand side is negative because a\)||[v?[|? > 0

and O(a?) ~ 0, and thus, the left-hand side is also negative. Hence,

0 rank(B) /\0
—OéH’ngQKkin +0(a”) < Z:; ((af)” = i) < _aAQHU%PA%ZX +0(a”).
O]
Proof of Theorem 3. To simplify the notations, let A = Cy(X)"Cy(X) and B =
MNM(Cy). Let us consider
Avy = A\ (B + al)vy, (3.7)

where ol is a small perturbation on B and A} is the perturbed k-th generalized
eigenvalue. We cannot directly apply the standard matrix perturbation theory,
which assumes positive-definite B and describes v} by a linear combination of
unperturbed generalized eigenvectors. In our case, B is positive-semidefinite, and
thus there are only rank(B) generalized eigenvectors. Hence, the generalized
eigenvectors do not form a complete basis of RI! and v¢ cannot always be
described by these generalized eigenvectors. Fortunately, the theorem above
holds using the fact nullspace(A) D nullspace(B), where nullspace(-) denotes
the nullspace of a given matrix. This relation holds because any vector v €
nullspace(B) implies the zero polynomial according to the third requirement for

n. From Lemma 1, we conclude that the claim holds. O

Other propositions

Proposition 1. At t =1, the orthogonalization Eq. (2.2) is equivalent to mean

centralization.

Proof. We use the notations of the SBC algorithm in Section 3.1.1. Let us

consider the evaluation matrices at the orthogonalization Eq. (2.2) as follows.

Ci(X) = CP°(X) = FUPH(X)TOP (X)),
= (I = FH(X) P (X)NG(X).

Note that P = [ — \/LﬁllT € RY*N where 1 € R¥ is the all-one vector, is

a matrix such that PM is column-wise mean-centralized for any matrix M €

RN*P: that is, the mean of each column vector of PM is zero. We now show
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FEYX)FEH(X)T = 2117 € RV,
FEHX)FHX)T = (m1)(ml)
= (m1) (mileT) :
1
= NHT‘
For the second equality, we used a relation a' = a'/||a|. O
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3.2 Spurious Vanishing Problem

In the basis construction, we evaluate a polynomial (say, g) for given set of points
X. When g is approximately vanishing for X, two possibilities exist: (i) the roots
of g are closes to the points in X or (ii) g is close to the zero polynomials, which
takes the zero values everywhere. Needless to say, we would like to discover
approximate vanishing polynomials of case (i) because such polynomials reflect

the structure of data points.

The spurious vanishing problem is that polynomials of case (ii)—spurious van-
ishing polynomials—are classified as approximate vanishing polynomials and ap-
pended to the basis set. Similarly, the spurious nonvanishing problem is that
polynomials of case (i) are classified as nonvanishing polynomials when they
have a large coefficient norm. For simplicity, we use the term “spurious vanishing
problem” for both of the problems throughout the thesis. Let us see the following

example.

Example 1. Let us consider polynomials g = 0.012% and ¢’ = 2> — 1. Then, for
a set of points X = {(1.1),(=1.1)} C R, g is 0.15-vanishing but g’ is not.

In this example, g is more (approximately) vanishing for X than ¢’ even though
the roots of g is further than ¢’ in the Euclidean distance. If we use € = 0.15, then
g is a spurious vanishing polynomial and ¢’ is a spurious nonvanishing polynomial.
Obviously, this is because of the small coefficient of g. The coefficient norm of g
and ¢’ is 0.01 and v/2, respectively. If we normalize ¢ and ¢ by their coefficient
norms to g = ¢/0.01 = 22 and §’ = ¢'/v/2 = (2% — 1)/+/2, then § becomes more

vanishing than g.

To summarize, we need to normalize polynomials by some scale before comparing
the approximate vanishing. Most basis construction algorithms using a monomial
order (e.g., the ABM algorithm) use the coefficient norm as a scale; polynomials
are generated to have a unit coefficient norm. Such monomial-order-dependent
algorithms can efficiently take coefficient normalization into account. This is
because polynomials are generated by linear combinations of distinct monomials
by unit vectors and the number of monomials to consider is narrowed down from
exponential to a polynomial order. On the other hand, most monomial-order-free
algorithms generate polynomials (e.g., VCA and AVICA) by linear combinations
of polynomials. As a consequence, we need a huge computational cost to calculate
the coefficient norm of polynomials. Therefore, we need to answer the following

questions to overcome the spurious vanishing problem.
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e Which scale for normalization should we use for the basis construction? In

particular, which scale is efficient to calculate?

e How can be introduce the normalization into the monomial-order-free basis
construction? Is there any simple method that can be introduce into various

algorithms?

We will present a simple monomial-order-free algorithm, which generate polyno-
mials under normalization in a simple and optimal fashion. This algorithm is
general enough that various monomial-order-free algorithms can be discussed on
this framework. As specific scales for normalization, we discuss coefficient nor-
malization and gradient normalization. In particular, the latter can be computed

much efficiently.
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3.2.1 Coeflicient normalization

Coefficient normalization is an intuitive normalization, which normalizes a poly-

nomial A by n.(h) to h/||n.(h)].

In fact, it has been commonly used by computer-algebraic basis construction
algorithms such as the ABM algorithm. However, without using a monomial
order, coefficient normalization becomes computationally costly. There are two

sources that cause the cost.

Polynomial expansion—We need to expand polynomials to obtain their co-
efficient vectors because in the SBC algorithm, polynomials are in the nested
sum-product form of polynomials due to the repetition of Stepl and Step3 along
the degree. In general, such an expansion is computationally expensive because
one has to manipulate exponentially many monomials from the expansion in the

worst case.

Exponentially long coefficient vectors—Even after the polynomial expan-
sion, the obtained coefficient vectors of polynomials are exponentially long in

general. Specifically, a degree-t n-variate polynomial has a coefficient vector of
length (n:t)

We present two methods for each of the two challenges above. For the former
challenge, the iterative nature of the basis construction is exploited. The precom-
putation can also help us calculate coefficient vectors. For the latter challenge, we
present a coefficient truncation method that enables the coefficient normalization

to work much faster while giving up the exact calculation of coefficients.

Circumventing polynomial expansion

The main idea for circumventing polynomial expansion is to hold coefficient vec-
tors of polynomials separately and update these vectors by applying to them the
equivalent transformations that are applied to the corresponding polynomials.
For example, let us consider a weighted sum af + bg of two polynomials f and
g by weights a,b € R. Then, the coefficient vector of af + bg is also a weighted
sum n.(af + bg) = anc(f) + bn.(g). In contrast to the weighted sum case, it is
not easy to calculate the coefficient vector of the product of polynomials, e.g.,
n.(fg). We encounter such a case at Step1, where the precandidate polynomials
are generated from the multiplication across linear polynomials and nonlinear

polynomials. We will now deal with this problem.



3.2. Spurious Vanishing Problem 37

Let us consider n-variate polynomials. Let M! = ("*~") and M=t = (") be
the number of n-variate monomials of degree t and of degree up to t, respectively.
For simple description, we assume that monomials and coefficients are indexed in
the degree-lexicographic order. For instance, in the two-variate case, the degree-
lexicographic order is 1, z,y, %, xy, y?, 23, ..., and so forth (x, y are variables). We
will refer to “the i-th monomial” according to this ordering. Now, we consider
a matrix that extends a coefficient vector of a degree-t polynomial to that of a
degree-(t + 1) polynomial after multiplication by a linear polynomial.

<t+1 <
Remark 7. Given a linear polynomial p, there is a matrix RE"/ € RM& Mzt

such that

ne(pg) = R"ne(q),

for any polynomial q of degree t.

The existence of such matrix R>* will soon become evident (see [VYS05] for the
case of homogeneous polynomials). Suppose a linear polynomial p is described
by p = Z?:o brxy, where b, € R are coefficients and x4, ..., z,, are variables. For

convenience, we use a notation xy = 1. Then, Rgt can be described as

n
<t _ <t
R:' =" bRS!,
k=0

because as observed above, the coefficient vector of the weighted sum of polyno-
mials is the weighted sum of their coefficient vectors. Now, the existence of R/
is evident. In fact, the (i, j)-th entry of jo takes value one if the i-th monomial
becomes the j-th monomial by the multiplication with z;, and otherwise the
(4,j)-th entry of R:'is zero value. Note that R:' is not dependent on input
data (except the number of variables), and thus, we can compute these matri-
ces in advance. Different monomials are mapped to different monomials after
multiplied by zj. Thus, each column of R;}f has exactly one nonzero entry (and
it is 1), implying R%If is a sparse matrix with only M=! entries, which can be

efficiently handled. Moreover, we can represent R;}f in a block diagonal matrix

for 1 <k <mn,
RSt — R%}fil O
T ¢ ’
o R,

where O is the zero matrix, and R}, € RM#™ XMy s 5 submatrix of R:! that

corresponds to the mapping from degree-t monomials to degree-(t+1) monomials.
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<t M§t+1><MSt . . . .
For k =0, R € RY" 7 is a rectangular diagonal matrix with value one

along its diagonal.

In summary, in the basis construction, we first hold the coefficient vectors of Fj
besides polynomials (or their evaluation vectors). Then, for each p € Fj, we
linearly combine precomputed R3' to obtain R>'. Using these matrices, we can
obtain the coefficient vectors of C3™. We then extend R' to R5? by appending
R?, which is a linear combination of the precomputed R2_to obtain C}™. In this
way, we can directly manipulate coefficient vectors without performing costly

polynomial expansions.

In addition to its less computational cost, there is another practical advantage
in the approach that skips the polynomial expansion: it can work with the fast
numerical implementation of basis construction. In the numerical implementa-
tion, a polynomial is expressed by its evaluation vector instead of a symbolic
entity (for example, see the code of [Liv+ 13| provided in the first author’s web
page). Because we only know an evaluation vector of a polynomial in the numer-
ical implementation, the “polynomial” cannot be expanded because its symbolic
form is unknown. Numerical implementations work much faster because in prac-
tice, symbolic operations are much slower than the same number of numerical
operations (matrix—vector operations). Also, it is slow to evaluate symbolic en-
tities, although many evaluations are necessary to obtain evaluation vectors of

polynomials.

Coeflicient truncation for acceleration

We here describe the coefficient truncation method to deal with significantly
long coefficient vectors. Coefficient vectors are truncated based on the impor-
tance of the corresponding monomials. In particular, at each degree t, we only
keep degree-t monomials that have large coefficients in the degree-t nonvanishing
polynomials F;, = {fi, fo, ..., fs}. Although this strategy is simple, the coefficient
truncation method has an interesting contrast to a monomial-based algorithm as

will be further discussed.

The specific procedures of the coefficient truncation are as follows. Let nf : P,, —
M?! be a mapping that gives the coefficient vector corresponding to degree-t
monomials of the given polynomial; thus, n'(f;) is a subvector of n.(f;). With
the same abuse of notation of n.(F;), we define n’(F;) as a matrix whose i-th
column is n’(f;). Note that the j-th row of n’(F}) corresponds to the coefficients
of the j-th degree-t monomial across polynomials of F;. Let A; be the norm of the

j-th row of n’(F). Then, setting a threshold parameter 6, we select monomials
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individually from larger A; as long as the following holds,

> A< (3.8)

JEB:

where B, is the index set of selected degree-t monomials. We also truncate R,
of the previous section to size M/ x |B;|, which becomes a sparse matrix with
|B;| nonzero entries. Because the coefficient norm is always underestimated from
the truncated coefficient vectors, we need to scale the norm of the truncated
coefficient vectors according to the truncation rate. To this end, we calculate a
rate 7y, which is a ratio of the root square sum of the preserved coefficients to

the root square sum of the full coefficients; that is,

\/Z A2 /| (F) 2.

JEB:

The product HtT:1 v, approximates the truncation rate up to degree t. The

normalization matrix for Step2’ is set to

1.(Cy) "0 (C)) <H7T> , (3.9)

where n.(C}) is a matrix whose column vectors are consist of the truncated

coefficient vectors of C;.

The coefficient truncation is similar to a monomial-based algorithm, approxi-
mate Buchberger-Moéller algorithm (ABM algorithm; [Lim13]). This algorithm
proceeds from lower to higher degree monomials, while updating a set of “impor-
tant” monomials O (called an order ideal), which corresponds to the basis set F'
of nonvanishing polynomials of the SBC algorithm. Given a new monomial b, if
the evaluation vector of b cannot be well approximated by a linear combination
of monomials in O, the ABM algorithm assorts b into @. More specifically, if
b(X) =Y cocmm(X) for some coefficients {cp, }meo, then b—3 "

approximate vanishing polynomial and b is discarded; otherwise b is appended

meo CmM 18 an
to O. Importantly, monomials divisible by b (i.e., multiples of b) need not be
considered at a higher degree, which reduces the number of monomials to handle.
It is shown that |O| < |X|; thus, the number of monomials to handle does not

explode.

The coefficient truncation is distinct from the strategy of ABM algorithm in that

it is fully data driven, whereas ABM algorithm relies on a specific monomial
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TABLE 3.1: Summary of Example 2

. m1 < Mo
Settin ’
Nonvanishing basis | Most important monomial
ABM my ma
k 1 mq (k’ < 1)
SBCme | Zimm + Frgmme {mQ (k>1)
TABLE 3.2: Summary of Example 3
my < Mo < Mg,
Setting my(X) = kma(X),
Nonvanishing basis Top-2 important monomials
ABM my, ms my, m3
k 1 mq (k < 1)
SBC-ne | Az + gmma, ms ms, {m2 (k> 1)

ordering. Now, we provide two examples to highlight the difference in their

strategies (also see Tables 3.1 and 3.2).

Example 2. Let us consider to decide the more “important” monomial from
my and my of the same degree, where my(X) = kma(X) # 0 for a constant k
and my < mo for some monomial order. The ABM strategy selects my as the
more important monomial because of m; < mo, whereas the coefficient truncation

selects my when k > 1 and mo when k < 1.

The coefficient truncation gives higher importance on m; than ms as follows. By
solving a generalized eigenvalue problem, the following nonvanishing polynomial

is obtained.
k 1

my + my.
VIt ViR

According to the coefficients of each monomial, m; is considered more important

(3.10)

when k£ > 1, and my is considered more important when k£ < 1. This result is
quite natural because, for example, k£ > 1 implies that m; is more nonvanishing
than my because ||m1(X)|| = k|jma(X)||. In this way, the truncation strategy
that keeps monomials with larger coefficients is fully data-driven. In contrast,
due to the predefined monomial order m; < msy, the ABM strategy consistently

selects mq, regardless of k.
Next, we introduce an additional monomial msg.

Example 3. In addition to my and mo tn Example 2, let us consider a monomzial
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mg, where the degree of ms is the same as that of my and mo, the evaluation
vector mg(X) that is orthogonal to my(X) and my(X), and m; < my < ms3.
The ABM strategy selects my and ms as the most important and the next most
important monomial, respectively, due to the monomial order and the relation of
evaluation vectors. On the other hand, the proposed strategy considers mg as the

most important and mq or mo as the next most important based on k.

The coefficient truncation first selects mg and then m; is as follows. By solving
a generalized eigenvalue problem, we obtain mg and (3.10) as nonvanishing poly-
nomials. Based on the coefficients of the monomials, ms is considered the most
important in this strategy. From the previous discussion, the second most impor-
tant monomial is m; if £ > 1, otherwise my. We emphasize that the magnitude
of the coefficient of mjs is larger than that of m; and my because the coefficient
norm of nonvanishing polynomials are normalized and m3 completely takes the
coefficient norm 1, whereas m; and my share the coefficient norm 1 by &/ V1+ k2
and 1/ V1 + k2 due to their mutually linearly dependent evaluation vectors. This
result implies that the coefficient truncation gives a priority to monomials that
have unique evaluation vectors, such as ms. The monomials that have similar
evaluation vectors to others, such as m; and ms, tend to have moderate coeffi-
cients. Hence, the coefficient truncation takes monomials from those with unique

evaluation vectors to those with less unique evaluation vectors.

As a consequence of truncating coefficient vectors, coefficient normalization ma-
trix N(C;) = n(Cy) "n(Cy) in (3.2) is replaced with the one computed from
the truncated coefficient vectors (3.9). The coefficient norm of the obtained
polynomials is no longer equal but only close to unity. However, we can still
calculate the exact evaluation of polynomials by keeping their evaluation vectors
and coeflicient vectors separate. Thus, the generalized eigenvalues {A;}i—12 .y

at Step2’ maintain the exact value of the square extent of vanishing.

It is difficult to estimate the error caused by the coefficient truncation because
basis construction proceeds iteratively, and error gets accumulated. The follow-
ing theorem gives a theoretical lower bound of the coefficient truncation without

any loss.

Theorem 4. For an exact calculation of coefficients, we need at least | Fy| mono-

mials for each degree t.

Proof. Evaluation vectors of nonvanishing polynomials are mutually orthogonal.
They form a basis that spans the subspace of RX! for a set of data points X,

and appending new nonvanishing polynomials gradually completes the basis.
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By construction, span(F;(X)) is a subspace of rank(|F;|) that is orthogonal to
span(F*1(X)). A degree-t polynomial is the sum of a linear combination of
degree-t monomials and a polynomial of degree less than ¢. Thus, we need |F}|
or more degree-t monomials to obtain F; whose evaluation vectors are mutually
orthogonal and orthogonal to span(F*~!(X)), which concludes that the claim
holds true. O

Theorem 4 states the minimal number of monomials required to perform an ex-
act calculation of coefficient vectors. The equality holds when the evaluation
vectors of monomials are always orthogonal until the termination. Since this is
too optimistic in practice, we propose to keep O(|F;|) coefficients at each degree
t. Suppose the basis construction terminates at ¢t = T. Then, the length of coef-
ficient vectors at T'— 1 is O(|FT71|). The matrix used to calculate the coefficient
vectors of Cr is O(|FT7!|)-sparse. The number of new monomials in this step
is O(|JFT=tn). Tt is known |FT| < |X| because the evaluation vectors of FT
(approximately) spans the RI¥I. Therefore, the coefficient truncation yields coef-
ficient vectors in polynomial-order length O(n|X|). As a consequence, computing
ne(Cy) Tne(Cy) in (3.2) costs O(|Cy|>-n| X|) = O(n®| X|?). This is acceptable when
one considers the cost of solving (3.2) is also O(|Cy|?) = O(n®| X |?).

An unhelpful approach for the coefficient norm estimation.

We can consider another approach for approximating coefficient norm of polyno-
mials: how about calculating the norm of the evaluation vector of a polynomial
at randomly sampled points to infer the coefficient norm? Unfortunately, this

strategy does not work.

Let V! (-) be the Veronese map, which gives the evaluations of n-variate monomi-
als of degree up to t. For instance, Vi (x) = (1, x1, T2, 73, 1179, 73) € R™C. For a
set of points X, we define Vt(X) € RXIXMZ" a5 a matrix whose i-th row is the
Veronese map of the i-th point. Now, let us consider a polynomial g = Cyv and

its evaluation for randomly sampled points Y.

lg(M)|I* = [IC(Y)wl?,
= [V (Y)ne(Covll?,
= v 0 (C) V(YY) TV (Y)ne(Cy)w.

Note that n.(C;)v is the coefficient vector of g. Thus, if VL(Y)TVL(Y) = I, then

we can estimate the coefficient norm of g from the random evaluation vector g(Y).
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TABLE 3.3: Statistics of basis sets of nonvanishing polynomials computed by SBC-I
and SBC-n, with coefficient truncation thresholds 8 = 0.0,0.5,0.9,1.0. The basis sets
of degree up to ten are considered in the calculation of the statistics for fair comparison.
One can see that (i) the nonvanishing polynomials obtained by SBC-I have significantly
large coefficient norms, while those found by SBC-n. (# = 1.0) have unit coefficient
norms; (ii) even with the coefficient truncation (# = 0.0,0.5,0.9), the coefficient norms
are close to unity despite of the drastically shortened coefficient vectors; and (iii) at
the same time, runtimes and used memories are reduced by approximately 2-20 times.

SBC-n, SBC-1
0 0.0 | 05 | 09 | 10
Length of coeff. vec. 21 21 233 19427 19448
Mean coeff. norm 2.11 2.11 3.00 1.00 1.19e+4
D2 | Min / Max coeff. norm | 0.60 / 4.46 | 0.60 / 4.46 | 1.00 / 6.21 | 1.00 / 1.00 | 1.00 / 2.33
Runtime [msec| 1.50e+1 1.52e+1 1.62e+-2 4.58e+1 1.57
Memory [MB] 2.46e+1 2.46e+1 2.72e+1 8.18e+1 2.42
Length of coeff. vec. 38 38 4207 646625 646646
Mean coeff. norm 1.79 1.79 2.12 1.00 1.08e+¢
D3* | Min / Max coeff. norm | 0.54 / 5.30 | 0.54 / 5.30 | 0.88 / 3.89 | 1.00 / 1.00 | 1.00 / 1.00¢
Runtime [msec| 8.17e+2 8.31e+2 3.61e+3 1.79e+4 4.47e+]
Memory [MB] 1.10e+3 1.le+3 4.01e+3 1.17e+4 3.54

However, this cannot be achieved. For instance, when Y = {(y1,12) "} C R2,

VO = (1 e ) (1 ).

1

Y3

= - vivs |
yiys

which has 4?2 both in diagonal and off-diagonal entries. Therefore, V2(x) " V2(x)

will not be the identity matrix regardless of the sampled points.

3.2.2 Demonstration of the spurious vanishing problem in

numerical experiments

Here, we compare VCA, SBC without any normalization (i.e., SBC with Step2;
SBC-I), and SBC with the coefficient normalization (SBC-n.). In the first ex-
periment, we show that VCA and SBC-I encounter severe spurious vanishing
problem even in simple datasets, whereas SBC-n. does not. In the second exper-

iment, we compare these methods in classification tasks. All experiments were
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FIGURE 3.3: Coefficient norm of nonvanishing polynomials (upper row of each panel)
and vanishing polynomials (lower row of each panel) by (a) VCA and (b) SBC-I for
three datasets (each column for each dataset). The mean coefficient norms of each
degree are linked by solid lines. The range from the smallest to the largest coefficient

norms is represented by shades. The coeflicient norm is considerably different even at
a degree, and the average coefficient norm increases sharply over degree.

performed using Julia implementation on a desktop machine with an eight-core
processor and a 32 GB memory. We emphasize that the proposed methods (coef-
ficient normalization with the generalized eigenvalue problem and the coefficient
truncation) can be easily unified with other basis construction methods because
these methods are all based on the SBC framework. However, these methods are
less commonly used than VCA, and they need more hyperparameters to control,

which makes the analysis unnecessarily complicated.

Analysis of coefficient norm and the extent of vanishing with Simple

Datasets

We perform basis construction by VCA, SBC-I, and SBC-n.. The coefficient
norm and the extent of vanishing of obtained polynomials are respectively com-
pared between three methods. We also compare SBC-n, with and without the

coeflicient truncation.



3.2. Spurious Vanishing Problem 45

TABLE 3.4: Classification results by VCA and SBC-n. in three datasets (Iris, Vowel,
and Vehicle). SBC-n. achieved comparable or even lower errors than VCA with sig-
nificantly shorter feature vectors, which implies VCA basis sets contain many spurious
vanishing polynomials. The results are averaged over ten independent runs.

SBC-n, VCA
0 05 | 09 [ 1.0

Error 0.03 0.05 0.06 0.05
1 | Length of F(-) [ 82001 | 9.29¢ 1 | 6.35¢ 1 | 1.51e 2

" | Runtime [msec| | 1.0le+1 | 1.10e+1 | 8.66 6.90

Memory |[MB] 5.61 6.50 491 4.74

Error 0.45 0.50 0.34 0.45
Vo Length of F(-) | 3.29e+3 | 3.24e+3 | 3.12+3 | 4.74e+3
" | Runtime [msec| | 5.47e+3 | 5.85¢+3 | 4.89¢+3 | 7.20e+3
Memory [MB]| | 5.24e+2 | 5.71e+2 | 6.88e+2 | 3.97e+2

Error 0.26 0.25 0.20 0.19
Ve Length of F(-) | 5.57e+3 | 5.78e+3 | 5.25e+3 | 8.26e+3
" | Runtime |msec| | 2.95e+4 | 3.89e+4 | 4.69¢+4 | 1.31e+4
Memory [MB| | 4.23¢+3 | 4.24¢+3 | 4.38¢+3 | 1.0le+3

Datasets and parameters We use three algebraic varieties: (D1) double con-
centric circles (radii 1 and 2), (D2) triple concentric ellipses (radii (v/2,1/v/2),
(2v/2,2/4/2), and (3v/2,3/+/2)) with 37 /4 rotation, and (D3) {zz — y?, 2° — yz}.
We randomly sampled 50, 70, and 100 points from these algebraic varieties, re-
spectively. We further consider two datasets by adding variables to D2 and D3.
(D27%) five additional variables y; = k;z14+(1—k;)xs for k; € {0.0,0.2,0.5,0.8,1.0},
where x1 and x5 are the variables of D2. (D3%) nine additional variables y; =
kizy + liwg + (1 — k; — 1;)x3 for (ki 1;) € {0.2,0.5,0.8}%, where x1, o, and x3 are
the variables of D3. Each dataset is mean-centralized and then perturbed by the
additive Gaussian noise. The mean of the noise is set to zero, and the standard

deviation is set to 5% of the average absolute value of the points.

For each dataset and method, the threshold € is selected as follows. First, we
compute a Grobner basis GG of the algebraic variety of the dataset. Suppose
G contains My, M, 1, --- , My polynomials at degree t,t + 1, ..., T, respectively,
where ¢t and T are the lowest degree and highest degree of polynomials in G,
respectively. Then, € is selected so that the target basis construction yields a
basis G' whose lowest-degree polynomial is degree ¢, and |G"| > M, for 7 > t.
To be more precise, we first search the range of such thresholds, and set € to the

mean of that range.

Results In Fig. 3.3, the coefficient norm of nonvanishing polynomials (upper

row of each panel) and that of vanishing polynomials (bottom row of each panel),
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which are obtained by VCA and SBC-I, are plotted along the degree. The mean
values are represented by solid lines and dots, and the range from minimum to
maximum is represented by shades. As can be seen from the figure, the mean
coefficient norm tends to sharply grow along the degree (note that the vertical
axes are in the logarithm scale) for both methods. Even within a degree, there
can be a huge gap as in degree-5 VCA vanishing polynomials of D1, degree-6
SBC-I vanishing polynomials of D2 (bottom middle panel), and so on. These
results imply that some vanishing (or nonvanishing) polynomials might be van-
ishing (or nonvanishing) merely due to their small (or large) coefficients; such
polynomials might become nonvanishing (or vanishing) polynomials once these
polynomials are normalized to have a unit coefficient norm. In fact, this is cor-
roborated by the result shown in Fig. 3.4(a,b). The extent of vanishing (blue
dots and solid lines) is contrasted against the rescaled extent of vanishing (red
dots and dashed lines), which is calculated by rescaling the extent of vanishing
using the coefficient norm of polynomials at post-processing so that polynomials
have a unit coefficient norm. After the rescaling, some nonvanishing polynomials
show the extent of vanishing below the threshold (gray dotted line) and some
vanishing polynomials show the extent of vanishing above the threshold. For ex-
ample, degree-5 VCA vanishing polynomials become nonvanishing polynomials
after the rescaling; degree-10 SBC-I nonvanishing polynomials become vanish-
ing polynomials after the rescaling. The variance of the extent of vanishing at
each degree also changes drastically. For example, the rescaling degree-5 VCA
vanishing polynomials show large variance of the extent of vanishing, but the
rescaling reveals that the actual extent of vanishing is almost identical to these
polynomials. The reverse is also observed as in degree-5 VCA nonvanishing
polynomials. Note that both VCA and SBC-I required expensive calculations
for this post-processing (rescaling), because usually, these methods cannot access

the coefficient norm of polynomials (especially in the numerical implementation).

In contrast, as shown in Fig. 3.4(c), the extent of vanishing of polynomials from
SBC-n, are consistent before and after the normalization, which is simply because
the polynomials are generated under the coefficient normalization. Moreover,
we can see that under coefficient normalization, the extent of vanishing shows
considerably lower variance for both nonvanishing and vanishing polynomials.
In other words, VCA and SBC-I overestimate (or underestimate) the extent of

vanishing due to the bloat in the coefficient norm.

Next, we evaluate SBC-n, with the coefficient truncation. The result is sum-
marized in Table 3.3. We change the truncation threshold 6 in (3.8) from 0.0
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to 1.0. Following Theorem 4, we keep at least |F}| coefficients at each degree
regardless of . Thus, § = 0.0 corresponds to the case where we keep exactly |Fj|
coefficients for each degree. 6 = 1.0 corresponds to SBC-n. without the coeffi-
cient truncation. Here, we analyze the nonvanishing polynomials in terms of the
length of coefficient vectors, the actual coefficient norm (mean, minimum, and
maximum), the runtime of basis construction, and the memory used during the
basis construction. To measure these statistics consistently across methods and
parameters, the basis construction is terminated at degree 10 even if the termina-
tion condition is not satisfied. We also show the same statistics of SBC-1. As for
VCA, we cannot find proper parameter € so that the degree and number of basis
polynomials are similar to the Grobner basis. VCA rescales each nonvanishing
polynomial by the norm of its evaluation vector during the basis construction.
We consider that this rescaling can lead to more spurious vanishing polynomials,
resulting in too early termination, or lead to more spurious nonvanishing polyno-
mials, resulting in fewer vanishing polynomials than those of the Grébner basis
at each degree. Because the computation of VCA and SBC-I is quite similar, it

is enough only to consider SBC-I for measuring runtime and memory.

As can be seen in Table 3.3, with § = 0.9, the truncated coefficient vectors
are approximately 100 times shorter. Nevertheless, the mean, minimum, and
maximum of the coefficient norm are still moderately close to unity, respectively,
for both datasets. This means that only about 1% of monomials and coefficients
have a significant contribution to the basis polynomials. Even in the extreme
case (0 = 0.0), the coefficient norm of polynomials still lies in the moderate
range, while the coefficient vectors are significantly shortened (less than 0.1%).
By the coefficient truncation, the runtime and memory for SBC-n. is reduced.
For example, at ¢ = 0.9, the runtime and memory of SBC-n. is reduced by
around 3 for both datasets; at # = 0.5, the runtime is reduced by 20 times
for D3*. SBC-I remains faster than SBC-n. even with 8 = 0.0. However, the
coefficient norm of SBC-I significantly varies across polynomials (e.g., 10'° gap
between minimum and maximum for D3T). In other words, the fast calculation
of SBC-I is a consequence of allowing the basis construction to encounter the

spurious vanishing problem.

Again, note that coefficient vectors are typically not accessible for VCA and SBC-
I in the numerical implementation. Thus, one cannot normalize nor discard
polynomials by weighing their coefficient norms, as done in the analysis. For
the above analysis, we calculated the coefficient vectors for VCA and SBC-I in

the same manner as in SBC-n., which takes the additional cost. The runtime
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was measured by independently running VCA and SBC-I without the coefficient

calculation.
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FIGURE 3.4: The extent of vanishing of polynomials obtained by (a) VCA and (b) SBC-
I, and (c) SBC-n, for three datasets (each column for each dataset). In each panel,
the upper and lower rows show the result for nonvanishing and vanishing polynomials,
respectively. The mean extent of vanishing at each degree is linked by dots and solid
lines (blue), and the mean extent of vanishing of polynomials whose coefficient norm is
normalized to unity by a post-processing is linked by dots and dashed lines (red). The
range from the smallest to the largest extent of vanishing is represented by shades (red
and blue). Dotted lines (gray) represent threshold e.
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3.2.3 Gradient normalization

The spurious vanishing polynomials are closed to the zero polynomial. The coef-
ficient normalization in the previous section measure the closeness by the coeffi-
cient norm; namely, polynomials that consists of small magnitude of coefficients
are considered close to the zero polynomials. Here, we shift our thinking and con-
sider gradient normalization, where the closeness to the zero polynomial is mea-
sured by how “flat” polynomials are. Specifically, given a polynomial h, we con-
sider the evaluation of its partial derivatives Vh := {Oh/0x1,0h/0xs, - -+ ,0h/0x,}
at the given set of data points X C R"; that is, from the definition of the evalu-
ation matrix, we consider

VAX) = (%) Z(X) o 2(X) ).

1 dzy Oxn

If h is close to the zero polynomial, Vh(X) &~ O, which implies that h is “flat”
at all the points of X. We will show that the following mapping is a valid

normalization mapping for the SBC algorithm.
ng(h; X) = vec(Vh(X)) € R, (3.11)

where vec(:) denotes the vectorization of a given matrix. Under the gradient
normalization, the gradient norm ||ng(h; X)|| of h for X is unity. The gradient

normalization has the following advantages.

Polynomial time complexity—The normalization vector ng,(h; X) is of length
| X'|n, where n is the number of variables. This is a noticeable difference from
the coefficient normalization vector, the length of which grows exponentially

according to n and the degree of a polynomial.

Exact gradient calculation without differentiation—By exploiting the it-
erative nature of the basis construction, exact normalization vectors can be com-
puted without performing a differentiation. Thus, we do not have to resort to

symbolic differentiation nor the finite difference approximation.

Bounding the approximate vanishing based on the noise level—For each
point & € X of given dataset X, we can consider the “noise-free” point * = x—n,
where n is the perturbation. A basis polynomial approximately vanishes for @
but does it also approximately vanish for *, too? The basis construction with

gradient normalization answer the question affirmatively when the noise is small.

Consistent basis sets for input transformation—Simple translation and

scaling can drastically change the basis set—this inconsistency issue is overcome
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by using the gradient normalization as we will discuss in Section 3.4.

Based on a classical basis construction algorithm for noise-free points [MB82],
most algorithms of the approximate vanishing ideal in computer algebra effi-
ciently sidestep the issues with the spurious vanishing problem and basis set
redundancy using the monomial order and symbolic computation. To our knowl-
edge, there are two algorithms that work without the monomial order in com-
puter algebra [Sau07; HKP19], but both require exponential-time procedures.
Although the gradient has been rarely considered in the basis construction of
the (approximate) vanishing ideal, Fassino (2010) used the gradient during basis
construction to check whether a given polynomial exactly vanishes after slightly
perturbing given points. Vidal et al. (2005) considered a union of subspaces for
clustering, where the gradient at some points are used to estimate the dimension
of each subspace where a cluster lies. Both of these works use the gradient for
purposes that are totally different from ours. The closest work to ours is [FT13],
which proposes an algorithm to compute an approximate vanishing polynomial of
low degree based on the geometrical distance using the gradient. However, their
algorithm does not compute a basis set but only provide a single approximate
vanishing polynomial. Furthermore, the computation relies on the monomial

order and coeflicient normalization.

Validity of the gradient normalization.

A natural concern about the gradient normalization is that the gradient norm
|ng(h; X)|| can be equal to zero even for a nonzero polynomial h. In other words,
what if all partial derivatives Oh/0x}, are vanishing for X, i.e., (Oh/0z)(X) = 07
Solving the generalized eigenvalue problem Eq. (3.2) only provides polynomials
with the nonzero gradient norm. Is it sufficient for basis construction to only
collect such polynomials? We can answer this question affirmatively. We first

prove the following lemma.

Lemma 2. Any g € P,, of degree at least one can be represented as
SR N
k=1
where hy,r € P, and deg,(r) < deg,(g) for k =1,2,...,n. Here, deg,(-) denotes
the degree of a given polynomial with respect to the k-th variable xy,.

Proof. We provide a constructive proof. For simplicity of notation, we use t;

such that ¢, + 1 = deg,(g). If deg,(g) < t1 + 1, we set hy = 0 and proceed to
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k = 2. Otherwise, we rearrange g according to the degree of x; as follows.

g=ai g +alig) oo g,

where gl ) denotes an (n — 1)-variate polynomial of degree at most 7 that does
not contain zy, (1 =0,1,...,¢; + 1). Then,

dg

o= (it Datgl” + 2t g 4 40,
1

By setting hy = x1/(t; + 1),

dg r
=h
g 18$1+t1+1

where 1| = xtllgg )+ 228 1952) c+ (t + 1)g§t1+1). Note that deg,(r;) < t and

deg;(r1) < t; + 1 for [ # 1. Next, we perform the same procedures for k = 2
and rq; if degy(r1) < ta + 1 then set hy = 0 and r = 71, and proceeds to k = 3;

otherwise, rearrange r; according to the degree of x5 as

rl_l,g2+1 ()—FZEQTé)—I-"-—I—’r‘étZ—H),

where 7’2 ) denotes an (n — 1)-variate polynomial of degree at most 7 that does

not contain zy, (7 =0,1,...,t + 1). Again, setting ho = x5/ (t2 + 1), we obtain

dg
0,

dg
81‘2 + T,

g=hi——+hy—
where 7y = :13527’51) + 2zt (2) o+ (t + 1)r§t2+1). Note that deg,(r2) < t1,
degy(re) < ty and deg;(ry) < t; 4+ 1 for [ # 1,2. Repeating this procedure until

k = n, then r := r, satisfies deg;(r) < t; for all [. O

With Lemma 2, we can prove the following two lemmas, which states that the
gradient norm of a polynomial equals the zero value only when the polynomial

is not necessary for the basis set.

Lemma 3. Suppose that G C P, is a basis set of vanishing polynomials of
degree at most t for a set of points X such that for any g € Z(X) of degree at
most t, g € (G'). Then, for any g € Z(X) of degree t + 1, if (9g/0zx)(X) =0
for allk =1,2,....,n, then g € (G").
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Proof. The degree of g and dg/0x) are t + 1 and at most ¢, respectively. g can

be represented as
= h _ + /’n’
g ; F Ox k

where hj and r are polynomials. From Lemma 2, h; can be selected so that the
degree of r is at most t. By evaluating this for X, we obtain r(X) = 0. Since
G' can generate any vanishing polynomial of degree at most ¢, r € (G*). Also,
0g/0xy € (G') for k = 1,2,...,n. From the absorption property of the ideal,
g € (G, O

Lemma 4. Suppose that F* C P, is a basis set of nonvanishing polynomials of
degree at most t for a set of points X such that for the evaluation vector ]?(X) of
any nonvanishing polynomial ]? of degree at most t, ]?(X) € span(F*(X)). Then,
for any nonvanishing polynomial f € P, of degree t + 1, if (0f/0x)(X) =0 for

all k =1,2,...,n, then f(X) € span(F*(X)).

Proof. Since f and 0f/0xy are polynomials of degree ¢ + 1 and degree at most

t, respectively, there are polynomials A and r such that

where the degree of h;, and r are polynomials. From Lemma 2, h;, can be selected
so that the degree of r is at most t. By evaluating this for X, we obtain r(X) =
f(X). Since column space of F*(X) spans evaluation vectors of any polynomial
of degree at most ¢, r(X) € span(F*(X)). O

Remark 8. FEven without gradient normalization, any monvanishing polyno-
mial f € Fiy1 has a nonzero gradient norm. Due to the orthogonalization
Eq. (2.2), Cypq consists of polynomials such that span(Cyi1(X)) is orthogonal
to span(F*(X)). Thus, for any nonvanishing polynomial f € span(Cyyq), it is
J(X) ¢ span(FY(X)) and thus, ng(f; X)|| £ 0.

Lemmas 3 and 4 imply that we do not need polynomials with a zero gradient
norm for constructing basis sets because these polynomials can be described
by basis polynomials of lower degrees. Therefore, it is valid to use ng for the
normalization in the SBC algorithm. Now, we can readily show that n, is a valid

normalization mapping for SBC.
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Theorem 5. The mapping n, of Eq. (3.11) is a valid normalization mapping for
the SBC algorithm.

Proof. 1t is trivial that the first two requirements are satisfied. As for the third
requirement, Lemmas 3 and 4 state that we do not need to use polynomials
with zero gradient norm for the basis sets of both vanishing polynomials and

nonvanishing polynomials. O]

Exact gradient computation without differentiation

In our setting, exact gradients for input points can be computed without differ-
entiation. Recall that at degree t, Step 3 of SBC computes linear combinations
of the candidate polynomials in C;. Noting that C; is generated from the linear

combinations of CI'™® and F'~! any h € span(C;) can be described as

h = Z UeC + Z vy f,

ceCPe ferpt-—1

where u., vy € R. Note that ¢ € C{™ is a product of a polynomial in F} and a
polynomial in F; ;. Let p. € F} and q. € F;_; be such polynomials, i.e., ¢ = p.q..
Using the product rule, the evaluation of 0h/0xy for € X is then

oh O(peqe 9
8_xk(w): Z uc(apTZ)(m)-f— Z Ufa_xfk(m)’

ceCP™e fert-1
Ipe 9. of
= Z ucqc(a:)aT(a:)—l— Z ucpc(a:)ax (x) + Z U Ber (x).
ceCcyre k ceCyre k feFt-1 k

(3.12)

Note that p.(x), ¢.(x), (Op./0zk)(x), (0g./0x)(x), and (Of /Oxy)(x) have al-
ready been calculated in the previous iterations up to degree t — 1. For degree
t = 1, the gradients of the linear polynomials are the combination vectors v; ob-
tained in Step 2. Thus, VA(X) can be exactly calculated without differentiation

using the results at lower degrees.

Proposition 2. Suppose we perform SBC for a set of points X € R™. At the
iteration for degree t, for any polynomial h € span(C; U F*™1) and any point
x € R", we can compute Vh(x) without differentiation with a computational
cost of O(n|Cy|) = O(nrank(X)|X|).
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Proof. Equation (3.12) shows that the evaluation of a partial derivative (Oh/0zy)(x)
is the sum of |CP™| + |F*"!| terms (note |Cy| = |CP™|). Hence, Vh(x) re-
quires O(n(|Cy] + |F*"!])). Note that for an final output F of SBC |F| < | X]|
holds. This is because F(X) is full-rank thanks to the orthogonalization in
Eq. (1), and rank(F*(X)) < |X| because span(F (X)) C RIXI (the equalities
hold at € = 0), where rank(-) denotes the matrix rank of given matrix. Hence,
O(|F*') = O(|X]). Also, by its construction, |F;| < rank(X). Therefore,
|Cy| = |Fi||Fi—1] < rank(X)|X|, and thus, O(|Cy|) = O(rank(X)|X|). Thus,

O(n(|Cy] + |F™1])) = O(n|C1]) = O(n - rank(X)|X ). =

This computational cost O(nrank(X)|X]) is quite acceptable, noting that gen-
erating Cy already needs O(rank(X)|X|) and solving Eq. (3.2) needs O(|C4]?) =
O(rank(X)3|X]3). Moreover, in this analysis, we use a very rough relation
O(|Fy]) = | X|, whereas |F| < |X| in practice. Giving up the exact calculation,
one can further reduce the runtime by restricting the variables and points to be
taken into account. That is, a normalized component of a polynomial i can be
ng(h) = Vaoh(Y), where Q C {1,2,...,n}, Y C X, and Voh = {0h/0xz; | i € Q}.
For example, €2 can be the index set of variables that have large variance and Y

as the centroids of clusters on X.

Bound on the approximate vanishing based on the noise level

Let X, be the “noise-free dataset” of given dataset X; that is, for each x € X,
there is g € X such that @ = xy+ n, where n is the perturbation. In practice,
one can only have access to a set of perturbed data points X and run a basis
construction algorithm to obtain the approximate vanishing polynomials G for
X. Implicitly, it is assumed that any approximate vanishing polynomial ¢ € G
approximately vanishes for the points in X,. However, this is not the case when
one uses coefficient normalization. For simplicity, we analyze the behavior of the

exact vanishing polynomials for X.

Example 4. Let us consider a polynomial g = (v — p)a®/\/1 + p?, which is an
exact vanishing polynomial for a set of single one-dimensional point X = {p} C
R. Let p* = p — 6 be a noise-free point of p, where § is the noise. Note that g is
normalized by its coefficient norm. Then, it is g(p*) = (5p5/\/m = O(6p?).

Therefore, the effect of noise can be arbitrarily large by increasing the value of p.

On the other hand, if we normalize ¢ by its gradient in Example 4 (say, g), the

value of p has no effect on the evaluation of g at p* is only determined by §.
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Example 5. Let us consider the same setting as in Example 4. If g is normalized
by its gradient, i.e., g := g/(dg/dx)(p) = (x — p), then its evaluation at p* is

9(p*) = 6/5 = 0(3).

This difference between coefficient normalization and gradient normalization
arises from the fact that the latter is an data-dependent normalization. Al-
though Examples 4 and 5 cannot be directly generalized to multi-variate and
many-point cases, we can still prove a similar statement. The following proposi-
tion argues that when noise is small enough, the extent of vanishing at noise-free

points are also small or more specifically, bounded by the largest noise.

Proposition 3. Let X C R" be a set of points which are generated by perturbing
X* C R™. We denotes the corresponding noisy point in X and noise-free point
in X* by x and x*, respectively. Let g be any exact vanishing polynomial for
X. If g is normalized with respect its gradient at X, then it is ||g(X*)|| <

Mmax]| + O(|maxl|?), where Mpay = maxgey ||2* — |
Proof. We consider a set of noisy points X = {x1,..., x|} and noise vectors
n;=x"—x (i=1,2,...,|X]). By the Taylor expansion,

| X

lg(X)* = Zgwﬁnm

\XI
—Z (@) + Vg(ai)n; + O(|ni|*)”

\XI

= Y (Vgl@)m)? + O(lmil1)

1=1

Since ¢ is normalized with respect to its gradient,

1] 1]
Z(Vg(wi)ni)Q < Z Vg ()l

| X

= (max||n;|*) Y Vgl
1=0

= max|r
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TABLE 3.5: Comparison of basis sets obtained by SBC with different normalization
(ne and ng). Here, n-ratio denotes the ratio of the largest norm to the smallest norm
of the polynomials in the basis set with respect to n.

] ‘ | # of bases | ne-ratio | ng-ratio | runtime (ms) |

. Lne 41 100 [122e+2] 48.0¢+1
' g 30 46.6 1.00 13.4
o, | 70 1.00 | 19.6e+2 | 17.5¢+3
? g 33 76.9 1.00 11.4

where we used the Cauchy—Schwarz inequality for the second inequality. There-

fore, we can conclude

lg(XH)] < \/mgx [l72: (1% + O (max [, |),

= max [|n[| + O(max |n,]*).

3.2.4 Comparison of basis sets in numerical experiments

We compare four basis construction algorithms, VCA, SBC with the coefficient
normalization (SBC-n.), SBC-n,, and SBC-n, with the basis reduction. All ex-
periments were performed using Julia implementations on a desktop machine

with an eight-core processor and 32 GB memory.

We construct two datasets (D; and Do, respectively) from two algebraic varieties:
(i) triple concentric ellipses (radii (v/2,1/v/2), (2v/2,2/v/2), and (3v/2,3/v/2))
with 37 /4 rotation and (ii) {z 23 — 23, 23 — xox3}. From each of them, 75 points
and 100 points are randomly sampled. Five additional variables y; = k;z1 + (1 —
k;)xo for k; € {0.0,0.2,0.5,0.8,1.0} are added to the former and nine additional
variables y; = k;z1 + lizo + (1 — ks — 1;) 23 for (k;, ;) € {0.2,0.5,0.8}? are added to
the latter. Then, sampled points are mean-centralized and perturbed by additive
Gaussian noise. The mean of the noise is set to zero, and the standard deviation

is set to 5% of the average absolute value of the points.

The parameter € is selected so that (i) the number of linear vanishing polynomials
in the basis set agrees with the number of additional variables y; and (ii) except
for these linear polynomials, the lowest degree (say, dyi,) of the polynomials agree
with that of the Grobner basis of the target variety and the number of degree-d;,,
polynomials in the basis set agrees with or exceeds that of the Grobner basis.

Refer to the supplementary material for details.
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TABLE 3.6: Classification results. Here, dim. denotes the dimensionality of the ex-
tracted features, i.e., the length of F(x), and br. denotes the basis reduction. The
result of the linear classifier (LC) is shown for reference. The results were averaged
over ten independent runs.

VCA SBC LC
n. | ng [ ngtbr

Iris dim. | 80.0 | 44.7 | 148 24.4 4
error | 0.04 | 0.03 | 0.04 | 0.08 0.17

Vowel dim. | 4744 | 3144 | 3033 | 254 13
error | 0.44 | 0.33 | 0.45 0.40 0.67

Vehicle dim. | 8205 | 6197 | 5223 | 260 18
error | 0.18 | 0.22 | 0.16 | 0.25 0.28

As can be seen from Table 3.5, SBC-n, runs substantially faster than SBC-n,
(about 10 times faster in D; and about 10° times faster in Dy). Here, n-ratio
denotes the ratio of the largest to smallest norms of the polynomials in a basis set
with respect to n. Hence, nc-ratio and ng-ratio are unity for SBC-n, and SBC-n,
respectively. Here, VCA is not compared because a proper € could not be found;
if the correct number of linear vanishing polynomials were found by VCA, then
the degree-d,,;» polynomials could not be found, and vice versa. This implies the

importance of sidestepping the spurious vanishing problem by normalization.

Detail of the experiment—We select € for a basis construction algorithm .4
and a variety as follows. First, we compute the Grobner basis of the variety
with the degree-reverse-lexicographic order, which determines the number N of
the lowest degree d,,, of basis polynomials. We added M dummy variables to
our datasets (five for D; and nine for Dy) and thus M approximate vanishing
polynomials of degree 1 should be obtained, too. Using a linear search, we
estimate the range (e, €2) of € with which A outputs a basis set of vanishing
polynomials such that (i) M linear polynomials are contained, (ii) at least N
polynomials of degree d,, are contained, and (iii) no nonlinear polynomials of
degree less than dp, are contained. Finally, € is set to € = (&1 + €)/2. The
condition (ii) does not require "exactly" N but "at least" N. This is because
VCA and SBC do not calculate the Grobner basis and thus there can be more
than NV polynomials of degree d,, for several reasons (e.g., the spurious vanishing

problem and redundancy of the basis set).

3.2.5 Classification

We compared the basis sets obtained by different basis construction algorithms

in the classification tasks. This experiment aims at observing the output of basis
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construction algorithms for data points not lying on an algebraic variety, and for
e that is tuned for a lower classification error. Following |Liv 1 13|, the feature
vector F(x) of a data point & was defined as

9\ ()

Fla)= (-

.

(0 !
. "9|Gi\(w)‘f"> 7 (3.13)

G;

where G; = {g%i), e gfgi‘} is the basis set computed for the data points of the ¢-th
class. Because of its construction, the G; part of F(x) is expected to take small
values if  belongs to the i-th class. We trained /5-regularized logistic regression
with a one-versus-the-rest strategy using LIBLINEAR, [Fan+08]. We used three
small standard datasets (Iris, Vowel, and Vehicle) from the UCI dataset repos-
itory |Licl3]. Parameter ¢ was selected by 3-fold cross-validation. Because Iris
and Vehicle do not have prespecified training and test sets, we randomly split
each dataset into a training set (60%) and test set (40%), which were mean-
centralized and normalized so that the mean norm of data points is equal to one.
The result is summarized in Table 3.6. Both SBC-n. and SBC-n, achieved a
classification error that is comparable or lower than that of VCA with a much
lower dimensionality of feature vectors. In particular, the basis reduction dras-
tically reduces the dimensionality of the feature with a slight change in error.
Interestingly, the classification error of VCA is mostly comparable with that
of other methods despite many spurious vanishing polynomials and redundant
polynomials. We consider this is because these polynomials have little effect on
the training of a classifier; spurious vanishing polynomials just extend the fea-
ture vector with entries that are close to zero, and redundant basis polynomials
behaves like a “copy" of other non-redundant basis polynomials. It is interesting
to construct the feature vector using discriminative information between classes
using discriminative basis construction algorithms, e.g., [KKT14; HNT16]. One
can consider normalization and basis reduction for these algorithms, but this is

beyond the scope of this paper.
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3.3 Redundancy in the Basis Set

A basis set G of a vanishing polynomial Z(X) can generate any polynomial of
Z(X); that is, Vg € Z(X),g € (G). Therefore, if g; € (G — {g1}), then ¢ is
a redundant polynomial in G. More precisely, let G be an output basis set of
vanishing polynomials (e = 0). Then, G can contain redundant polynomials (say,
g € G) that can be generated from polynomials of lower degrees in G; that is,
with some polynomials {h,} C P,

9= Z hg’gla (3.14)

gleGdeg(g)fl

which is equivalent to g € (G4°59)~1). To determine whether g € (G3°@~1) or
not for a given g, a standard approach in computer algebra is to divide g by
the Grobner basis of G489~ However, the complexity of computing a Grébner
basis is known to be doubly exponential [CL.O92|. Polynomial division also needs
an expanded form of g, which is also computationally costly to obtain. More-
over, this polynomial division-based approach is not suitable for the approximate
setting, where ¢ may be approximately generated by polynomials in Gd°8(9)~1,
Thus, we would like to handle the redundancy in a numerical way using the eval-
uation values at points. However, (exact) vanishing polynomials have the same

evaluation vectors 0.

To summarize, we need to answer the following questions to resolve the redun-

dancy in the basis set.

e Given a vanishing polynomial g and a set of vanishing polynomials GG, how

can we know weather g can be generated by G?

e [s there any method that can work in the approximate setting” Namely, is
there any method to detect whether g can be approximately generated by
G?

The brief answers are as follows. We exploit the gradient of polynomials at the
points of the given set. We will show that the redundancy is reflected in the
linear dependency of the gradients at each point. Since the linear dependency
of a vector to vectors can be checked by solving a least square problem, this

approach works even in the approximate setting.
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3.3.1 The gradient of redundant basis polynomials

We will now show that the gradient reveals the symbolic relations across polyno-
mials. For example, if a vanishing polynomials g; for X is a polynomial multiple
of another vanishing polynomial ¢, i.e., g1 = goh for some h € P,, then, then
for any @ € X, Vg;(x) and Vgo(x) are identical up to a constant scale. This

can be readily proven as follows. For any « € X,

For the last equality, we used gs(x) = 0.

We can show a more general statement: if a vanishing polynomial g for X can
be generated by a set of vanishing polynomials G, then for any & € X, g(x) €

span(VG(x)) Formally, we have the following conjecture.

Conjecture 1. Let G be a basis set of a vanishing ideal Z(X), which is output
by the SBC algorithm with e = 0. Then, g € G is g € (G891 if and only if
for any x € X,

V@)= Y ag.Vy(z), (3.15)

g c(Gdeg(g)—1

for some oy o € R.

The sufficient condition (“if" statement) can be readily proven by differentiating
9= yccuesto—1 § hy and using ¢g'(x) = 0. From the assumption g € (Gdeel9)=1)

we can represent g as g = Y cqaeato)—1 § Ry, for some {hy} C P,. Thus,

Vo(@)= Y hy(@)Vy(@) + ¢ (@)Vhy(2),

gleGdcg(g)fl

= Y hy(@)Vy(a),

gleGdeg(g)fl

where we used ¢'(x) = 0 in the last equality.

Basis reduction method

We now present a method to remove redundant polynomials. Given g and

G989~ in Conjecture 1, we solve the following least squares problem for each
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xr e X:

min ~ ||Vg(x) — v VGEE9D~1(g)]|, (3.16)

veRlcdee(@)—1

where VGae@)—1(g) e RIC“*7'xn ig o matrix that stacks V¢/(z) for ¢ €
G89)~1 in each row (note that Vg(z) € R'*"). This problem has a closed-form

solution
v = Vg(x)VGew) 1 (g)

If the residual error is zero for all the points in X, then g is removed as a
redundant polynomial. In the approximately vanishing case (¢ > 0), we set a
threshold for the residual error. The procedure above can be performed during

or after basis construction.

From the sufficiency of Conjecture 1 , we can remove all the redundant polyno-
mials in the form of Eq. (3.14) from the basis set by checking whether or not
Eq. (3.15) holds. Note that we may accidentally remove some basis polynomials
that are not redundant because the necessity (“only if" statement) remains to
be proven. Conceptually, the necessity implies that one can know the global
(symbolic) relation g € (G&9)~1) from the local relation Eq. (3.15) at finitely
many points X. This may not be true for general g and G4#9)~! However, g
and G9e@-1 are both generated in a very restrictive way, and this is why we

suspect that this conjecture can be true.

We can support the validity of using Conjecture 1 from another perspective.
When Eq. (3.15) holds, this implies the following: using the basis polynomials
of lower degrees, one can generate a polynomial g that takes the same value and
gradient as ¢ at all the given points; in short, g behaves identically to g up to
the first order for all the points. According to the spirit of the vanishing ideal—
identifying a polynomial only by its behavior for given points—it is reasonable

to consider ¢g as ‘“redundant" for practical use.

Remark 9. When the SBC algorithm with n # ng, it is also necessary to check
the linear dependency of the gradient within Gy because N(Gy) may not be a full-
rank matriz. In this case, we need an additional procedure in our basis reduction
as follows: (i) compute the rank of N(Gy) and (ii) remove |Gy| — rank(M(Gy))
polynomials from Gy according to the extent of vanishing in ascending order (poly-

nomials with the small extent of vanishing are removed first).
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3.3.2 Numerical experiments of the basis reduction

We demonstrate that redundant basis sets can be reduced by the basis reduction
method. The threshold of the basis reduction is set to 107?. We consider the van-
ishing ideal of X = {(1,0),(0,1),(—1,0),(0,—1)} in a noise-free setting, where
the exact Grobner basis and polynomial division can be computed to verify the
reduction. As shown in Fig. 3.5, the VCA basis set consists of five vanishing
polynomials and the SBC-n, basis set consists of four vanishing polynomials.
These basis sets share two polynomials, g; = 2 + y* — 1 and g, = zy (the con-
stant scale is ignored). A simple calculation using the Grébner basis of {g1, g2}
reveals that the other polynomials in each basis set can be generated by {g1, g2}

Using the basis reduction method, both basis sets were successfully reduced to

{91,92}-

We obtain the same result for six-point dataset X = {cos(k7/3),sin(k7/3)}r=01... 5
as shown in Fig. 3.7. Redundant polynomials are successfully found by the ba-
sis reduction method. Again, the correctness is confirmed by computing the

Grobner basis.

Next, we apply the basis reduction to the perturbed datasets. The 4-point
dataset and 6-point dataset are perturbed by additive Gaussian noise N (0, 0.05)
and the basis sets are computed with ¢ = 0.05. The results are shown in
Figs. 3.6 and 3.8. Note that the polynomials that are considered redundant
by the reduction are not exactly but only approximately generated from the
lower-degree basis polynomials. Thus, it is no longer meaningful to compute the
exact Grobner basis to find the ezact redundant basis polynomials. A few poly-
nomials of obtained basis sets are considered redundant by the basis reduction,

which seems reasonable according to the noise-free case.

Both the third basis polynomial in VCA basis set in Fig. 3.6 and the second
basis polynomial in VCA basis set in Fig. 3.6 are drawn in clutter lines, which
do not go through the points. This is because this polynomial is close to the zero
function; in fact, the coefficient norm of these polynomials are approximately
1.0e-16.
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FIGURE 3.5: Sets of vanishing polynomials obtained by VCA (top row), by SBC-n,
(middle row), and by SBC-n. (bottom row) for four-point dataset in a noise-free case.
All sets contain redundant basis polynomials, which can be efficiently removed by the

basis reduction.
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FIGURE 3.6: Sets of vanishing polynomials obtained by VCA (top row), by SBC-n,
(middle row), and by SBC-n. (bottom row) for four-point dataset in a noisy case. All
sets contain polynomials that are suggested as redundant by the basis reduction.
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FIGURE 3.7: Sets of vanishing polynomials obtained by VCA (top row), by SBC-n,
(middle row), and by SBC-n. (bottom row) for six-point dataset in a noise-free case.
All sets contain redundant basis polynomials, which can be efficiently removed by the
basis reduction.
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FIGURE 3.8: Sets of vanishing polynomials obtained by VCA (top row), by SBC-n,
(middle row), and by SBC-n. (bottom row) for six-point dataset in a noisy case. All
sets contain polynomials that are suggested as redundant by the basis reduction.
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3.4 Inconsistency of the Basis Set on Translation

and Scaling.

The goal of the basis construction is to reconstruct the algebraic variety on
which the input set of points X C R" lies. Let us consider the translation and
scaling of X. Obviously, such transformation does not change the structure of the
algebraic variety; the basis sets should consist of the same number of polynomials
of the same degree before and after the translation and scaling. Therefore, we
expect a basis construction algorithm to output consistent basis sets for X and

transformed X.

Here, we present that the SBC algorithm with gradient normalization equips a
sort of invariance for the input transformation. On the other hand, the SBC
algorithm with coefficient normalization does not. This derives from the essen-
tial difference between gradient normalization and coefficient normalization—the

former is data-dependent normalization whereas the latter is not.

Example 6. Let us consider X = {(0), (1)} and its translation X = {(1), (1+1)},
where | € R. Then, g = x(x — 1) + € is an e-vanishing polynomial for X and
its natural counterpart for X is § = (x — )(x — 1 — 1) + €. We eapect both g
and g are vanishing to the same extent even after normalization. This is the
case for gradient-based normalization. Actually, (dg/dz)(X) = (dg/dz)(X) =
(=1,1)T, thus the gradient norm is the same. However, the coefficient norm of

G is /14 (20 + 1)2 + (124 1)2, which varies according to l.

One may argue that any basis construction algorithm could obtain translation-
and scale-invariance by introducing a preprocessing stage for input X, such as
mean-centralization and normalization. Although preprocessing can be helpful
in some practical scenarios, it discards the mean and scale information, and thus

the output basis sets do not reflect this information.

The goal of this subsection is to prove the following Proposition 4, which states a
consistency of the SBC algorithm with the gradient norm (SBC-n,). It is worth
noting that in contrast to Theorem 1 and Conjecture 1, this proposition holds

even under noisy data points because it holds for arbitrary ¢ > 0.

Proposition 4. Suppose SBC-n, outputs (G, F) for input (X, e), (é, ﬁ) for
input (X — b,€), and (@, ﬁ) for input (aX, |ale), where X is mean-centralized,
X —b denotes the translation of each point in X by b and aX denotes the scaling
by o # 0.
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o G,é, and G have exactly the same number of basis polynomials at each

degree.

o I, ﬁ, and F have exactly the same number of basis polynomials at each

degree.

e Any pair of the corresponding non-constant polynomials heGUF and
h € GUF satisfies h(xy, xo, ..., Ty) = E(ml + b1, x1 + b, ...,y + by), where
h(z1, g, ...,x,) here denotes a polynomial in n variables xy, s, ..., x, and

b - (bl, bg, ceey bn)T

e For any pair of the corresponding polynomials heGUF and h € GU F,
h is the (1, av)-degree-wise identical to h (the definition will be introduced

soon).

The first statement argues the correspondence between G, é, and @; if g € G,
there are corresponding polynomials g and g of the same degree. Similarly,
the second statement argues the correspondence between between F, ﬁ, and F.
Therefore, the basis construction shows a consistent behavior with translation

and scaling of input.

The third statement argues how two corresponding polynomials A and h relate
to each other at a translation of data. It argues that a translation of X results
in the shift in variables of polynomials while the evaluation vectors are the same,
i.e., g(X) = g(X). Note that although it is trivial that a translation of data can
be handled by translated polynomials, it is not trivial that the algorithm outputs

such polynomials.

The last statement argues how two corresponding polynomials i and 1 relate to
each other at a scaling of data. To elaborate the relation, we first introduce the

following definition.

Definition 13 ((¢, a)-degree-wise identical). Let k # 0 and let t be an integer.
A polynomial h € P, is (t, a)-degree-wise identical to a polynomial h € P, if h
and h consist of the same terms up to scale, and any pair of the corresponding

terms m of h and m ofﬁ satisfies m = ot~y
Example 7. h= 2%y + 8y is (3, 2)-degree-wise identical to h = x%y + 2y.

In the last statement of Proposition 4, B is (1, av)-degree-wise identical to h. By
definition, it indicates that A and h consist of the same terms up to a scale,
and the corresponding terms m of h and m of 1 relate as m = a'~"m. Thus,
as « increases, the magnitude of the coefficients of monomials decreases. In

particular, the coefficients of higher-degree monomial decay more sharply. This
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is quite natural because the evaluation value of highly nonlinear terms grows

sharply as the input value increases.

As for the evaluation vector, the (1, «)-degree-wise identicality of h to h, where
h and h are both normalized with respect to ng, implies the following relation
(cf. Lemma 7):

-~

h(aX) = ah(X). (3.17)

In words, the scaling by « on input X only linearly affects the evaluation vectors
of the nonlinear polynomials of the basis sets. Thus, we only need linearly
scaled threshold |ale for aX. Without this property, a linear scaling on the
input leads to nonlinear scaling on the evaluation of the output polynomials;

thus, a consistent result cannot be obtained regardless of how well € is chosen.
The relation Eq. (3.17) is proven as a direct result from the following lemma.

Lemma 5. Let a polynomial h € P, be (t, v)-degree-wise identical to a poly-
nomial h € P,. Let X C R" be a set of points. Then, ﬁ(&X) = o'h(X) and
Vﬁ(aX) = o' 'Wh(X), and thus,

haX)  h(X)

lng(hiax)|  Ing(h X))

Proof. Let m and m be any corresponding terms between h and ﬁ, which satisfy

deg(m) = deg(m) and m = o'~ Then,

m(aX) = o' 4Mm(aX),

_ at—deg(rﬁ) adeg(m)m<X)’

= a'm(X)
Similarly, for any k,
om ~.Om
“aX) = t—deg(m) X
&r;k(a )=« —axk(a )
om
__ _t—deg(m) . deg(m)—1 X
om
t—1
= X
T (X),

resulting in Vin(aX) = o~!'Vm(X). O
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Now, we prove three lemmas (Lemmas 6, 7, and 8). Proposition 4 will be proven

mainly from Lemma 7, where Lemma 7 is proven from Lemmas 6 and 8.

Lemma 6. Let us consider two sets of polynomials, H = {hq, hs,...,hs} C P,
and H = {/ﬂl,ﬁ27 ...,ES} C P., where h; is (t, )-degree-wise identical to h for
i=1,2,...,s. Then, any pair of nonzero vectors w,w € R* such that w = o w

yields a polynomial Huw that is (t + 7, )-degree-wise identical to Hw.
Proof. The proof is trivial from Definition 13. m

Lemma 7. Suppose we perform SBC-n, for (X,€) and for (aX, |ale), (k #0),
and obtain (F™,G7) and (]/7\7, @T), respectively, up to degree t = 7. Suppose that
forallt < 7, F, UG, and ﬁt U @t have one-to-one correspondence such that
for any corresponding pair h € F, UG, and he ﬁt U @t, his degree-wise-(1, a)
tdentical to h. Then, the same claim holds fort =1+ 1.

Proof. Fort =7+1, C; 41 and (1“ are generated from (Fi, F,) and (ﬁl, ﬁTH),
respectively. From the one-to-one correspondence between F; and ﬁt for t <,
There is also one-to-one correspondence between CF\ and éfj_el. Moreover,
e ¢ C*Efl is (2, k)-degree-wise identical to the corresponding ¢*™ € CPY, due to
the assumption. Suppose cP*® and ™ becomes ¢ € C, 1 and ¢ € @H after the
orthogonalization Eq. (2.2). In can be shown that ¢ is (2, k)-degree-wise identical

to ¢ (cf. Lemma 8).

From Lemma 5, h(aX) = o2h(X) and Vh(aX) = kVh(X). Therefore, C, 1 (aX) =
a?Cr41(X) and VO, (aX) = kVC,,1(X). Note that ng(afﬂ)(aX) = a?ng(Cr 1) (X).
Thus, the generalized eigenvalue problem Eq. (3.2)

Cri1(aX) Cria(aX)V = Ny(Cryn; aX)VA,

where 91, is 91 for the gradient-based normalization, is equivalent to

1 R
Cria(X) T Cra(X)V = ;mg(crﬂ; X)VA,

which leads to A = a2A. Also,

VTCrp1(aX) Cras(aX)V =1,
PVTC 1 (8)TCr (X)V =1.

Comparing with VT Cr41(X)TCryt (X)V = I, we obtain V = a1V,
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Let v; and v; be the i-th column of V' and 17, respectively. From v; = o~ 'v; and
Lemma 6, 61@ is (1, a)-degree-wise identical to C'.1v;. Hence, any polynomials
h€Fry1UGryy and h € Fr U Gryy satisfy h(aX) = ah(X). This fact is also
supported by A =a?A (recall that the square root of the eigenvalues corresponds
to the extent of vanishing). Note that polynomials in 6T+1‘A/ are assorted into
ﬁ7+1 or CAJTH by the threshold ke, which leads to the same classification as F,
and G,y by €. Thus, the one-to-one correspondence is kept between F.,; and

ﬁTH and also between G, 1 and GTH. O

Lemma 8. Consider the same setting in Lemma 7. Suppose h*™® € CT and

cPre e Affl become ¢ € Cryq and € € 6T+1, respectively, after the orthogonaliza-

tion Eq. (2.2). Then, ¢ is (2, «)-degree-wise identical to c.

Proof. The entry-wise description of the orthogonalization Eq. (1) for C,; and

C.y1 is respectively as follows.

c °— FTFT(X)TeP(X),

cPr
e — FTE (X))o (aX).

c

Let @ = F7(aX)e(aX) and w = F7(X)'c¢P™(X). We will now show @ =
kw. If this holds, each entry of F7@ becomes (2, k)-degree-wise identical to
the corresponding entry of F7w. Thus, from Lemma 6, ¢ is (2, «)-degree-wise

identical to c.

First, note that the column vectors of ﬁT(ozX ) are mutually orthogonal by con-
struction because the orthogonalization makes span(F,, (aX)) and span(F,, (X))
mutually orthogonal for any ¢; # ¢, and the generalized eigenvalue decomposi-

tion makes the columns of E(aX ) mutually orthogonal for ¢t < 7. Therefore,
D := F"(aX) F(aX),

=’ F"(X) FT(X),
=: a’D,
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where both D and D are diagonal matrices with positive entries in their diagonal.

Hence, the pseudo-inverse becomes

F(aX) =D F (aX)T,
= (2D (aFT(X) "),
— a_lD_lFT(X)T,
= o 'FT(X)T

Therefore,

W = F(aX)e(aX),
= a ' FT(X)N (o (X)),
= aF"(X) ePe(X),

= Qw.

Now, Proposition 4 is proven as follows.

Proof of Proposition /. Inthe proof, we consider the basis construction for (X €),
(X — b,¢), and (aX,|ale). We use notations such as H, H, and H for the cor-

responding symbols across three basis constructions.

First, we consider the case of the translation. At ¢ = 1, it is CP™ = CP™. By
Proposition 1, both C1(X) and Cy(X) are mean centralized. Thus, the effect
of translation is canceled in terms of the evaluation matrices. Therefore, the
succeeding basis construction proceeds in the same way. Symbolically, the mean

centralization is translated in the shift of variables.

Next, we consider the case of the scaling. From the assumption, the mean vector
of X and X is the zero vector. Thus, it is C; = C} and aCy(X) = al(ozX) be-
cause C; and C consist of linear polynomials. It is also n,(C1; X) = ng(al; aX)
because the partial derivatives of linear polynomials are constant polynomials.
Thus,

Ci(aX)TCi(aX)V = N (Ch; aX)VA,

= GGV = (O XIVA,
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which implies V' = V and a?A = A. Therefore, F; UG, and F 1 U@l consist of the
same polynomials and for any corresponding pair h € F; U G| and herF 1 U @1,
where h = h in this case, h is (1,a)-degree-wise identical to h. The extent
of vanishing of the polynomials in F, UG, are scaled by a from that of the
polynomials in F} U G;. Thus, by using € = |ale, F} = Fy and G; = G. By

induction and Lemma 7, we can conclude our proof. O
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FIGURE 3.9: Vanishing polynomials obtained by SBC-n, with € = 0 for points sampled
from a unit circle. Polynomials that are considered redundant by our basis reduction

are grayed out.

3.5 Dimension Restriction

In this thesis, we discuss the basis construction algorithm for vanishing ideals of
points. In particular, when € = 0, the obtained basis set (say, G) generates any
polynomial that vanish for given set of points X. In other words, the algebraic
variety that is represented by G is a (finite) set of points X. This is why vanishing
ideals are referred to as zero-dimensional ideals in some literature. All basis
construction algorithms that were introduced in this thesis aims at the basis

construction of zero-dimensional ideals.

However, in many applications, the dimensionality of the target algebraic variety
is not necessarily zero; data points can be sampled from a smooth algebraic
hypersurface (the dimension of hypersurfaces is one). For example, as can be
seen in Fig. 3.9, a basis set for the vanishing ideal of points that are sampled
from a unit circle includes a unit circle; however, the basis set also includes
highly nonlinear polynomials. Intuitively, such polynomials does not have much

information on the target algebraic variety (in this case, a circle).

One typical approach is restricting the degree or number of basis polynomials.
However, it is difficult to choose proper number for these parameters. Instead,

we propose to restrict the dimension of the algebraic variety.
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rank(VG(z)) = 2

G ={zz,yz}

>

FIGURE 3.10: The union of a line and a plain, which is the zero set of G = {xz,yz}.
The rank of VG(x) is two at the point on the line and one on the plain. This indicates
the dimension of this algebraic variety is 3 — min{1,2} = 2

Definition 14 (Dimension of an algebraic variety). Let V C R" is a algebraic
variety, which is the zero set of a polynomial set G. Dimension dim(V) of V is

defined as follows.

dim(V) =n — melg rank(VG(x)),
where VG(x) € R™IC(x) is a matriz whose i-th column is the gradient (at ) of

the i-th polynomial of G. First, we define the dimension of an algebraic vairty.

We provide an example in Fig. 3.10. In this example, we consider the union of
a line and a plain, which is the zero set of G = {xz,yz}. At the point on the
vertical line, the rank of VG(x) is one and at the point on the plain, the rank

of VG(x) is two. Therefore, the dimension of this variety is 3 — 1 = 2.

In practice, we estimate the dimension of the algebraic variety from sample points

X C R™ In particular, the following two numbers are of our interest.

dmax = n — minrank(VG(x)),

zeX
Aiin =N — max rank(VG(x)).
Instead of the degree and number of basis polynomials, we propose to restrict
these numbers. For example, restricting d,,.x corresponds to restricting the di-
mension of the algebraic variety to estimate. In the case of the union of a line
and a plain in Fig. 3.10, we can impose dn.x < 2 on the basis construction.
One can also consider d,,;, > 1. In both cases, the output basis set becomes

much smaller. The major advantage of using dimension rather than the degree
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or number is that the range of dimension is evident. If one deals with data points
in R™, then the dimension ranges from 1 to n. This is not the case for the degree
restriction nor the number restriction; it is difficult to estimate the degree and

number of basis polynomials without performing the basis construction.

Example 8. In the case of Fig. 3.9, one can obtain the circle polynomial only
by setting dpax = 1 (07 dpax = 1).

Note that with dimension restriction, the output set of vanishing polynomials
does not form a basis set any longer as the restriction of the degree and number
of polynomials does not; that is, the polynomial set only generate subset of the
vanishing polynomials. It is an interesting future direction to consider general
statements for the range of vanishing polynomials that can be generated by the

imparfect basis set.
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Chapter 4

Tradeoff between Algebraicity and

Noise Tolerance

The central subject of this thesis is the basis construction of algebraic varieties
under noise. In many applications, available data are exposed to noise for various
reasons such as the measurement error. Computing not exact but approximate
vanishing polynomials is a fundamental approach. However, this approximation

destroys the sound algebraic structure of the vanishing ideal.

For example, in the left panel of Fig. 4.1, three curves only loosely intersect with
each other around noisy data points (red dots). This indicates that the approxi-
mate basis set that is computed by the basis construction does not hold a strict
algebraic structure any longer. Of course, we can realize the tight intersection
by setting € to zero or small value. However, this only results in a overfitting to
noisy points; consequently, the obtained algebraic variety is far from the target

algebraic variety of the noise-free data.

The goal of this chapter is to present a method to deal with this tradeoff—how
can we avoid the overfitting to noise while preserving the algebraicity? This
goal is illustrated in the right panel of Fig. 4.1, where three curves are tightly
intersecting with each other at a few points (blue circles) as well as loosely

intersecting around noisy points (red dots).

In this chapter, we address a new task that jointly discovers a set of polynomials
and summarized data points (called data knots) from the input data. Specifically,
given a set of data points X, we seek a set of polynomials G and data knots Z

such that the polynomials in G loosely vanish for X and tightly vanish for Z.
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— Loose intersection
around red dots

— Tight intersection
at a blue circle

FIGURE 4.1: A tradeoff between the algebraicity and noise tolerance. (Left panel)
three curves only loosely intersect with each other around noisy data points (red dots).
(Right panel) three curves not only intersect with each other around noisy data points
but also tightly intersect at blue circles.

Formally,
Vg e G, lgX)l <€ llg(2)] <6, (4.1)

where ¢ and  are given error tolerances that require g to be e-vanishing for X
and d-vanishing for Z. It is assumed that § is much smaller value than & (or
zero for exact vanish). In this way, we can achieve both two objectives (noise
tolerance and algebraic structure) at once, whereas other methods only focus on

the former and the classical methods only focus on the latter.
The method presented here consists of two components.

Double-scale basis construction for two datasets and two scales—For
(X,€) and (Z,¢'), vanishing polynomials satisfying Eq. (4.1) are constructed.
Two problems are successively solved. First, by solving a generalized eigenvalue
problem, we discover the subspace of polynomials that are e-vanishing for X.
From this subspace, we discover ¢’-vanishing polynomials for Z by performing

the Singular Value Decomposition (SVD).

Data knotting for pursuing exact vanishing—Given approximate vanishing
polynomials and nonvanishing polynomials, tentative data knots Z is refined
by gradient-based scheme. Gradient-based scheme updates Z to minimize the

vanishing.

These components are alternatingly and repeatedly performed. One one hand,
0" gradually decreases from € to 0 and on the other hand, a set of data knots Z

are updated.
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4.1 Double-Scale Basis Construction

We now present the double-scale basis construction method, which generates
polynomials that are e-vanishing for X and ¢-vanishing for Z from the candidate
polynomials C;. This method consists of two stages. First, a set of e-vanishing

polynomials for X are generated by solving the following problem.
Cy(X)TCUX)V = N(Cy; X)VA.

Let us split V' into two matrices V and V., where V and V. consist of the general-
ized eigenvectors corresponding to the generalized eigenvalues exceeding €2 and
and not exceeding €2, respectively. Thus, C;V; is a set of e-vanishing polynomials

for X. Then, we apply SVD to Cy(Z)V..
Cl(Z)Ve=UDWT,

where U € RIZXIZl and W e RICIXICI are orthogonal matrices and D is a
rectangular diagonal matrix with singular values along its diagonals. Similar to
V and V., we split W into W and Ws, where W and Ws consist of the right
singular vectors corresponding to the singular values exceeding ¢ and and not

exceeding ¢, respectively.

Proposition 5. Any polynomial g € C,V.Ws is e-vanishing for X and 0'-
vanishing for Z. In addition, polynomials in CyV. Wy are normalized and mutu-

ally orthogonal with respect to n( - ; X) i.e., ||n(g; X)|| = 1.
We first prove the following lemma.

Lemma 9. Let C be a set of polynomials and let V = (v, vy --- v,) € RIXI*s,

where X 1s a set of points. Then, for any unit vector w € R?,
min [|(Co;)(X)[| < [[(CVw)(X)|| < max [[(Cv:) (X)].

Proof. Note that ||(CVw)(X)||* = >0, [[(Cv;)(X)|*w?, where w; is the i-th
entry of w. Thus,

min [|(Cv;) (X)) Zw <Z|| Cvy)(X)|Pwf < max |(Coi) (X)) Zw

With ||w|* = 1, we can conclude the proof. O

This lemma tells us that (i) the linear combination of e-vanishing polynomials
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by any unit vector yields an e-vanishing polynomial and (ii) the linear combina-
tion of e-nonvanishing polynomials by any unit vector yields an e-nonvanishing

polynomial.

Proof of Proposition 5. By construction, C;V, is a set of e-vanishing polynomi-
als for X and these polynomials are normalized with respect to n( - ;7). By
Lemma 9, C;V. W is a set of e-vanishing polynomials for X. In particular, by

construction, C;V, Wy is a set of ¢’-vanishing polynomials for Z. Note that
WVINCE X)) VW =W'W =1.

Thus, all the polynomials in C;V.W are normalized and mutually orthogonal
with respect to n( - ; X). ]

4.2 Data Knotting

Given a set of approximate vanishing polynomials G' = Ui:o G, that are ob-
tained up to degree t, data knotting refines a set of data knots from Z to Z* so
that these polynomials vanish more tightly for Z*. The problem of our interest

is in the following form.

min > wgllg(Z9)))?, st Z* €D, (4.2)

geGt

where w, € R is a weight for g and D is some constraint space for Z*. Since
9’ is not small enough before convergence, ||g;(Z)|| for tentative Z distributes
moderately wide range across different g; some polynomials vanish relatively
more tightly than others. The weights {w,},eqt are introduced to take these

difference into account. Specifically, we defined w; as follows:

1
a2

Consequently, data knots are updated to make well-vanishing polynomials more

w;

tightly vanishing for Z* at the cost of deterioration of the extent of vanishing of
other polynomials. One may consider that such survival-of-the-fittest principle
may cause overfitting. However, this is less likely happen because the basis
construction and data knotting are performed from lower to higher degree, and

tentative Z at degree t has already refined for polynomials G*~!.
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Next, we discuss the constraint space D for Z*. This constraint is expected to re-
strict the deviation from the original data points; otherwise, the optimal Z* may

.....

where Dy, is a constraint space for the k-th points z; of Z, and

Dy = {5 | IF'G0) - Fiell <6 TP}, 43)

where F' = Ul_,F; is a set of non-vanishing polynomials obtained up to degree
t. Intuitively, the constraint Dj restrict z; to be near from the start point
z,. The distance of points are the Euclidean norm of the nonlinear feature of
points by projection F*(-), and the distance is bounded to ¢’ normalized by the

dimensionality of the feature space.
In the linear case, the data knotting can be optimally solved.

Proposition 6. Let G; and F} be a set of e-vanishing polynomials for Z and a set
of e-nonvanishing polynomials for Z, respectively, obtained by SBC-ng. Let Z be
denoted by Z = Z.+m, where m is the mean of Z and Z,. is the mean-subtracted
component of Z. Then, the optimal solution of Eq. (/.2) is

7 =2VV' +m,

where V is a matriz whose columns consist of the right singular vectors of Z.

corresponding to the singular values exceeding e.

Proof. Let us consider SVD of Z, = UD(V V,)T. Note that in SBC-n,, from
Proposition 1, it is Cy = Z,. Thus, it is G1(Z) = Z.V. and F\(Z) = Z.V. Since
VTV, =0,

Ci(Z") = (Z" —m)V, = ZVV V.= 0.
Similarly, using VIV =1 ,
F(Z*) = (Z" —=m)V = ZVV'V = F\(Z).

Therefore, we can achieve the minimum by Z* = ZC‘N/‘N/T -+ m in the constraint
space Eq. (4.3) (note that |F}(Z*) — F1(Z)] = 0). O

With such Z* in Proposition 6, G; becomes a set of e-vanishing polynomials for
Z and 0-vanishing polynomials for Z* and F; becomes a set of e-nonvanishing

polynomials for Z and 0-nonvanishing polynomials for Z*.
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In the nonlinear case, it is difficult to obtain the optimal Z*. Thus, we resort to
the gradient-based optimization. As already shown, the gradient of the polyno-
mials can be efficiently obtained in the SBC algorithm.

4.3 Scale Control and Resetting Framework

We now present the overall algorithm, which is based on the SBC algorithm.
Step 1 is same as that of the SBC algorithm. At Step 2, we alternatingly and
repeatedly perform double-scale basis construction and data knotting. At Step 3,
we select the next step from “terminate”, “reset”, or “continue”. When “reset” is
selected, then all the items but Z and ¢’ are initialized and the calculation restart

from ¢t = 1.

4.3.1 Procedures

The input of is a set of points X C R™, two error tolerances ¢, > 0, and a
cooling parameter 0 < v < 1. The output is basis sets (G, F') and the data knots
Z. By initializing Gy = {}, Fo = m, Z = X, ¢’ = 0, where m is a nonzero
constant polynomial, the following steps are performed for degree t =1,2,.... In
the following, we use notations G* = |J!_, G, and F* = J._, F..

Step 1: Generate a set of candidate polynomials Pre-candidate polyno-
mials of degree ¢ for ¢t > 1 are generated by multiplying nonvanishing polynomials

across F and F;_q.
Cr={pglpeF,qe F 1}

At t =1, C7° = {x1, 29, ..., x, }, where z;, are variables. The candidate basis is

then generated through the orthogonalization.
Cy = OP — PP X)TCP(X), (4.4)
where -t is the pseudo-inverse of a matrix.

Step 2: Basis construction of degree ¢t Set n = ¢’. We repeat the following
steps.
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Step 2-1: Double-scale basis construction We first solve the following

generalized eigenvalue problem:
Cy(X)TCUX)V = N(Cy; X)VA, (4.5)
Then, we perform SVD.

Cy(Z)V. =UDW.

Then, we generate G, = C;V.W,, and F;, = C;V (see Section 4.1 for the definition
of V, V. and W,).

If G; is an empty set, n < 4, or the improvement of the extent of vanishing
by data knotting is not significant. Then, we break the loop and go to Step 3;
otherwise, go to Step 2-2.

Step 2-2: Data knotting With G! and F'*, we update Z by the data knotting
(see Section 4.2). Update 7 to the largest extent of vanishing of the polynomials
in G*. Then, go to Step 2.

Step 3: Decide the next step The we select the next step (“terminate”,

“reset”, or “continue”) by the following rules.

o If || =0, |G # 0, and for any g € G, ||g(Z)|| < 0, then the algorithm
terminates with output G = G* and F = F'.

e If |F}| =0 and |G*| = 0, then we restart at Step 1 with ¢ = 1, all the items
are reset except Z and ¢'. Update ¢ with the largest extent of vanishing

of the polynomials in G* if it is smaller than 0’; otherwise, update ¢’ with
5.

e If |F}| # 0, then continue to Step 1 of the next degree (¢ becomes ¢ + 1).

Remark 10. The output G is not necessarily a basis of the vanishing ideal for
Z even when € = 0. This is because polynomials that are §-vanishing on Z but
e-nonvanishing on X are excluded from G. This result is reasonable because
the polynomials in G do not well approximate the original data. In some cases,
however, we require a basis of the vanishing ideal. Such a basis can be generated
by applying existing basis generation methods to small data knots Z, which is

much less computationally costly than applying it to X.
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4.4 Related Work

Although the present work deals with a new problem of jointly computing van-
ishing polynomials and its data knots, several works are closely related to our
work. The most straightforward approach to obtain exact vanishing ideal from
noisy data is to summarize data by clustering-like approaches, and then com-
pute exact vanishing polynomials. [AFTO07] addressed a new task of thinning
out the data points as a preprocessing for successive vanishing polynomial com-
putation. Similar to clustering, their approach computes the empirical centroids
of the input data. As thinning out and the vanishing-ideal computation are
performed independently, the empirical centroids do not necessarily result in
compact, lower-degree vanishing polynomials. For instance, three centroids of
data points generated from a line are not necessarily linearly aligned; the ex-
act vanishing polynomials for them become nonlinear. In contrast, our method
conjointly performs the thinning out and vanishing-ideal computation in a single
framework. Note that both methods by Abbott et al. (2007) and by us aim
to reduce data points by summarizing nearby points, which are different from
the clustering tasks that aim to group even distant points according to their

categories.

Another two-step algorithm is Rational Recovery proposed by [Lim13|, which
first computes approximate vanishing polynomials for noisy data and then recov-
ers the exact vanishing polynomials from them. However, their method results in
noisier vanishing ideal than ours because polynomials from lower to higher degree
are equally considered. Given that lower-degree polynomials are less overfitting
to noisy data, our approach to pursuit exact vanishing from lower degree is more
reasonable. Moreover, Rational Recovery method is only tailored for a special
set of approximate vanishing polynomials (approximate border basis). Although
border basis has rich theoretical foundation such as link to Grobner basis and ro-
bustness for coefficient perturbation, other type of bases are preferred according
to applications. For instance, VCA is more commonly used in machine learning,
because of its rotation invariance on input data, monomial-order-free compu-
tation, and empirical performance for feature extraction in classification tasks.
In contrast to Rational Recovery, our approach provides more generate frame-
work which can be unified with standard SVD-based basis construction including

approximate border basis construction methods.

Fassino (2010) proposed the Numerical Buchberger-Moler (NBM) algorithm that
computes approximately vanishing polynomials for the vanishing ideal of input

data X [Fas10]. NBM requires that each polynomial exactly vanishes on a set
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of nearby data points X¢ (called an admissible perturbation) from X up to
a hyperparameter €. However, because the admissible perturbations can differ
among the approximately vanishing polynomials, NBM does not generally output
vanishing polynomials that vanish on the same points. In addition, NBM does
not specify the admissible perturbations, but only checks the sufficient condition

of the existence of such points.

4.5 Numerical Experiments

We provide graphical results of our method. We consider four simple datasets:
(D1) 28 sample points from a unit circle, (D2) 48 sample points from a concentric
circle (radii 1/2 and 1), and (D3, D4) 20 sample points from each of three
blobs whose centers are (0.6,1.0),(—0.6,—1.0) and (—0.4,1.0). Sample points
are perturbed by additive Gaussian noise. For D1, D2, and D3, the standard
deviation is set to 10 % of the mean absolute value of data points. For D4, the
standard deviation is set to 10 % of the mean absolute value of data points as in
D3, but the first coordinate of the points in the blob centered by (—0.6, —1.0) is
perturbed by 40 % noise.

In Fig. 4.2, we provide the contour plots of output approximate vanishing poly-
nomials for four datasets (each panel for each dataset). As shown in Fig 4.2(a),
the output polynomials by SBC-n, with data knotting are approximately vanish-
ing for input data points (blue small dots) and at the same time these are tightly
vanishing for the data knots (red larger dots), which are discovered along the
calculation. On the other hand, without data knotting, SBC-n, outputs more
polynomials (Fig 4.2(b)) and these polynomials only loosely intersect with each

other.
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(a) SBC- ng+ data knotting

(b) SBC-ng (degree bounded)

FIGURE 4.2: Contour plots of output approximate vanishing polynomials. (a) SBC-ng
and data knotting result in a few approximate vanishing polynomials. These polynomi-
als approximately vanish for data points (blue small dots) and tightly vanish for data
knots (red larger dots). (b) SBC-n, without data knotting outputs many approximate
vanishing polynomials, which only loosely intersect with each other. For visibility, only
low-degree polynomials are shown.
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Chapter 5

Conclusion

In this thesis, we addressed a task to retrieve an algebraic variety where given
noisy data lie. We presented a basis construction framework, the SBC algorithm,
that works efficiently and without any monomial order. Under this framework,
we overcame various fundamental issues that the existing monomial-order-free
basis construction algorithms encounter. In particular, the spurious vanishing
problem, redundancy of the basis set, and the inconsistent behavior of the basis
construction to an input transformation were discussed. The first two issues
have not been efficiently resolved without using the monomial order, which is
problematic in various applications. The third issue has not been discussed
and achieved by any existing basis construction algorithms. The key tool in
the present thesis was the gradient of polynomials at given points, which has
rarely been considered in prior studies. Specifically, we showed that the gradient
normalization vectors are the zero vector for unnecessary basis polynomials such
as the zero polynomial and polynomials generated from basis polynomials of
lower degrees. We believe that this thesis opens up a new path for monomial-
order-free basis construction algorithms, which have been theoretically difficult
to handle.

An important direction that is not well studied is the learning theory of the al-
gebraic varieties with noisy data. Currently, we do not have a theory that tells
us if the target algebraic varieties can be retrieved from noisy data in high prob-
ability. Intuitively, if we have enough number of points and if noise is sufficiently
small, then the obtained polynomials are approximately vanishing not only for
the given data but also for any point on the target algebraic variety. Assuming
the noise model (e.g., the additive Gaussian noise), we might be able to formulate
the relation between the extent of noise and the amount of the deviation from

the target algebraic variety.
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Appendix A

Minor lemmas

Here, we list several lemmas that are not used in the thesis but hopefully useful

for further analysis.

Lemma 10. During the the minimal basis construction with the orthogonal pro-
cedure, for t > 1, any polynomial h in CP5, Cy, and F; are orthogonal to a
constant polynomial 1, i.e., h(S)"1(S) = 0.

Proof. Since Fy = {1}, the orthogonalization procedure on span(C}*°(.S)) always
leads to span(Cy(S)) that is orthogonal to 1(.S). Since F; is generated by the
linear combinations of polynomials in span(C;(S)), span(F;(S)) C span(Cy(S))*.

We now show span(C?™(5)) is orthogonal to 1(S) for t > 3. Noting that span(Fy)
is orthogonal to span(F;) for t > 2, any pg € C}'°, where p € F; and ¢ € F,
satisfies (pq)(S)"1(5) = (p(S) © ¢(5))"1(S) = p(5) " q(S) = 0. O

Without the orthogonalization procesure, the minial basis caonstruction algo-
rithm can fail to find the basis set G.

Example 9. Symbols with a tilde on its head denotes those related to the basis
construction with the orthogonalization. Consider S = {(1,1),(1,—1),(-=1,1),(—1,1)}.
Since the mean point of S is (0,0), Fy = Fy = {x,y} and G, = Gy = {}. Thus,
CP = CP™ = {a2, zy, y2, yz}. By the orothogonalization, Cy = {z* — 1, zy, y2 —
1,yx}. Note that g = x* + y* — 1 is a vanishing polynomial for S. However, g
cannot be obtain from the linear combination of polynomials in Cy = CY™°, (per-
forming SVD to Cy(S) yields Gy = {x? — y*,0}; constant factors are ignored).
On the other hand, performing SVD to 52(3) yields Go = {22 +9y? —2,2% — 9}

(constant factors are ignored).

ITo be precise, one can readily show span(F3(S)) = span(C¢(S)).
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Pseudo code of the SBC algorithm
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Algorithm 1 Simple Basis Construction

Require: X CR". ¢ >0,m#0,n:P, — R’
Ensure: G, F
1: Go,F() = {}, {m}
2: G, F =Gy, Fy
3: fort=1,2,... do
if £t <1 then > Step 1
Cy ={x1, 29, ..., T, }
else
Cy={pq|p€ Fi,q€ F.}
end if
C, = Cy — FF(X)ICy(X)
10  M(C;) = NormlizationMatrix(Cy,n)
11: Gy, Fy = BasisConstruction(Cy, N(C), X, €)
12: G, F=GUG, FUF,
13: if F, = () then

14: terminate
15: end if
16: end for

Algorithm 2 NormalizationMatrix

Require: C;,n > Cy = {c1, 60, -, ¢y}
Ensure: 2(C;)
L n(C) = (n(a) nlea) -+ nlgey) )
2: N(Cy) = n(Cy) "n(Cy) > For the unnormalized case, simply return
N(Cy) = 1.

Algorithm 3 BasisConstruction

Require: C, N(Cy), X, €

Ensure: G, F
1: Cy(X)TCX)V = N(CHVA > Step 2/
> v;: the i column of V, \;: the i diagonal entry of A.
2. G={Cw; | VN > ¢€,i=1,2,....|C} > Step 3

3. = {Ctvi | \/)\_Z > 6,2. B 1,2,..., |Ot|}
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