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Abstract

Recent advance for training neural networks has allowed end-to-end neural-based
machine translation models. Though achieving considerable high translation quality,
a regular neural machine translation model still faces multiple folds of challenges.
These challenges include the exponentially increasing model size, high translation
latency and difficulties of obtaining translation results with diversity. In this thesis,
we explore a novel approach that leverages latent-variable models to improve neural
machine translation.

Our first contribution directly learns continuous latent variables to capture the
information about target tokens, which enables non-autoregressive neural machine
translation. By updating the posterior on the latent variables, we found that the
evidence lower bound of the log-likelihood can be improved significantly. We also
show that the proposed latent-variable approach coverages rapidly during updating.
The resultant model translates at a speed around 8x ~ 12x faster than the baseline
autoregressive models. The proposed model outperforms baselines on the ASPEC
Japanese-English translation task in terms of translation quality. On the WMT’14
English-German translation task, it narrows the performance gap between baselines
down to 1.0 BLEU point.

As our second contribution, we apply the discretization bottleneck in an auto-
encoder to learning discrete representation of words. The motivation is to compress
neural models by replacing the giant word embedding matrix with discrete codes.
Natural language processing (NLP) models often require a massive number of
parameters for word embeddings, resulting in a large storage or memory footprint. In
our approach, we assign each word a discrete code. To recover the word embeddings,
we learn code vectors and composing them according to the codes. To maximize the
compression rate, we adopt the multi-codebook quantization approach instead of a
binary coding scheme. Each code has multiple discrete numbers, such as (3,2, 1, 8).
We directly learn the discrete codes in an end-to-end neural network by applying the

Gumbel-softmax trick. Experiments show that the compression rate achieves 98%



vi

in a sentiment analysis task and 94% ~ 99% in machine translation tasks without
performance loss.

The third contribution is to learn a sentence-level discrete representation. In
this work, we add a planning phase in neural machine translation to control the
sentence structure. Our approach learns discrete structural representations to encode
syntactic information of target sentences. During translation, we can either let beam
search choose the structural codes automatically or specify the codes manually. The
word generation is then conditioned on the selected discrete codes. Experiments show
that the translation performance remains intact by learning the codes to capture
pure structural variations. Through structural planning, we are able to control the
global sentence structure by manipulating the codes. By evaluating with a proposed
structural diversity metric, we found that the sentences sampled using different codes
have much higher diversity scores.

To summarize, we show in this thesis that a well-trained latent-variable model
can capture structured linguistic features. This claim is mainly supported by the first
and third contribution where we show latent-variable models can capture intra-word
dependencies and syntactic structures in sentence level. For application, both studies
utilize the learned latent variable for controlling the text generation. By sharpening
the prediction of latent variables, we observe significant quality improvement of
translations. By manipulating the discrete latent codes learned with syntactic
structures, the model can produce sentences with great syntactic diversity. As a
sideline topic, we also show that discrete latent-variable learning models can be good

alternatives for quantizing long matrices such as the word embedding matrix.
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Chapter 1

Introduction and Background

1.1 Deep Learning for Natural Language Processing

Back in 2012, deep learning has proven its great potential in computer vision with the
name of Convolutional Neural Networks (CNN). In ILSVRC 2012, a computer vision
competition, the team “SuperVision” won with a superior prediction accuracy ; an
absolute 10% higher than the second team. The winner team is led by Alex Krizhevsky,
Ilya Sutskever and Geoffrey Hinton from University of Toronto (Krizhevsky et al.,
2012). Their model is a five-layer CNN, with max-pooling layers and dropout. The

training takes about a week on two GPUs.

In the mean time, the research community in Natural Language Processing (NLP)
are spending time on improving statistical models for various tasks®. From statistical
language model (LM) to statistical machine translation (SMT), the models are
generally count-based. As machine translation was regarded as one of the most
difficult task of artificial intelligence, many researchers were dedicated to this field.
In SMT community, people were using non-parameteric phrase-based translation
models (Zens et al., 2002, Chiang, 2007) or its extensions. The state-of-the-art SMT
models were those incorporating syntactic parse trees (Yamada and Knight, 2001,
Liu et al., 2006). For English-Japanese language pair, some state-of-the-art models
were supported by strong pre-processing methods, such as pre-reordering (Isozaki
et al., 2010b). To further improve the translation quality, people were looking at

more complicated grammar formalism such as combinatory categorial grammar (Auli,

IFrom a machine translation researcher point of view.
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Fig. 1.1 Number of ACL accepted papers and neural papers from 2012 to 2019

2009). Few people attempted to adopt the cutting-edge deep learning models to
NLP tasks.

Nevertheless, some researchers noticed that the trend of disruptive evolution in
computer vision will inevitably affect the research field of computational linguistics.
In ACL 2012, Richard Socher, Yoshua Bengio and Christoper Manning presented a
talk titled “Deep Learning for NLP without magic”’, which turns out to be the first
deep learning talk in the history of ACL. In the following years, NLP community
started to recognize neural networks and conduct experiments on their tasks. I can
recall in JNLP 2014 which is a domestic NLP conference in Japan, some open-mind
researchers had a discussion on whether deep learning is going to revolutionize

mainstream NLP tasks.

Surprisingly, the question received a definite answer not until the end of the
year. In 2014, a neural-based sequence-to-sequence model (Sutskever et al., 2014) is
published in NIPS. The model is powered by long short-term memory (LSTM), which
is an extension of recurrent neural networks. Most importantly, the model is trained
in an end-to-end fashion. The trained model can be directly utilized to translate a
sentence from one language to another language. Although skepticism exists as the
performance of the LSTM-based model was not on par with state-of-the-art SMT
models, researchers were astonished by the ability of neural networks to encode the
information of a full sentence into a single continuous vector. Furthermore, the model
can unroll the vector to generate a sequence of translation. The exciting results
motivated many NLP researchers to reproduce and explore the potentiality of neural

networks, including the author of this thesis.
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In the infancy of applying neural networks to NLP tasks, many models were
borrowed from computer vision, such as attention mechanism (Gregor et al., 2015),
residual connection (He et al., 2016) and batch normalization (Ioffe and Szegedy,
2015). In 2016, combining these new methods and other tricks, Google proposed a
deep neural machine translation system (Wu et al., 2016) that achieves human-level
translation performance. Fig. 1.1 shows the numbers of accepted papers and the
papers applied neural networks in ACL from year 2012 to 2019. In six years, the
ratio of deep learning papers grew from zero to 27% 2. The success of deep learning
in multiple core NLP tasks established it as an important machine learning model

for language processing.

1.2 Learning Representation for Natural Language

The fusion of natural language processing and neural networks began with learning
a vectorized representation of basic linguistic units. Along with the emerging of
Word2Vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014a), it became a
norm in NLP community to represent words with countinuos vectors. Indeed, the
adoption of feature vectors is not a new thing in the field, as old NLP pipelines are
using all sorts of hand-crafted features. For instance, in part-of-speech tagging, we
may have a feature to detect whether a word ends with a “-tion”, which is an obvious
sign of noun. However, the game changer is that, we do not need hand-crafted

features anymore.

In Mikolov’s 2010 paper (Mikolov et al., 2010), the first neural-based language
model was introduced. In the paper, the feature vectors of words are obtained in an
unsupervised way along with the training of language model. The language model is
trained on large-scale corpora such as all written documents on Wikipedia. In such
a model, each input word is considered as a contextual information to predict future
words. Therefore, the word vectors in similar context are forced to carry similar

information.

Then Word2Vec (Mikolov et al., 2013) was introduced 3 years later, which is
also referred to as SkipGram model. Word2Vec is a predictive model that directly

predicts the surrounding context of a specific word. Specifically, given a word

2The numbers are counted based on the data provided in ACL anthology. Only papers with
“deep” or “neural” are examined. After 2016, many papers without a neural title actually adopt
deep learning as a tool. Thus, the real number can be larger than reported.
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wy at position £, the model attempt to predict the following neighboring words:
Wy_9, W1, W1, Wero. Thus, we can say that the SkipGram model predicts a context
window, or a co-occurance window. Glove, another impactful word representation
model works similarly as Word2Vec. The difference is that Glove constructs a giant
co-occurence matrix and then factorize it into a low-dimension representation. Glove
achieves high impact in recent NLP researches as the pre-trained vectors are publicly
available on the Stanford NLP page®. In practice, those vectors corresponding to

words with similar semantic meaning tend to be close to each other.

actress |
waitress

elephant
horse

run
jump

Fig. 1.2 Selected word pairs plotted in the vector space. The word vectors are taken
from Glove 300D (Pennington et al., 2014a), visualized with t-SNE.

In Fig.1.2, we plot three pairs of words and their word vectors obtained from
the public Glove vectors (Pennington et al., 2014b). The word vectors are trained
on a dataset combines Wikipedia 2014 and Gigaword 5 texts. Each vector has 300
dimensions. The visualization is produced by t-SNE. The grey dots show the vectors
of 100 random words. We can see that the chosen words with high semantic similarity
are placed in close positions. Such a property of word vectors benefits classification
tasks such as sentiment analysis, where the semantic meaning of a language is much

more important that morphological traces.

After conquering the problem of representing a single word, the community started
to think about compositionality, that is, how to represent more complicated linguistic

units: phrases, sentences, and finally documents. The mainstream approaches now

Shttps:/ /nlp.stanford.edu/projects/glove/
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builds a sentence-level representation with unsupervised learning, which are also
essentially language models. The current state-of-the-art approach, BERT (Devlin
et al., 2018), is built as a masked language model.

One major division of opinions, however, still exists in the community and is
not expected to be resolved in near future. Heavily influenced by recent advance
in computer vision, most of the best NLP models are trained in end-to-end fashion
and does not rely on any linguistic feature, such as a linguistic parser. Meanwhile,
researchers that believe the benefits of adding linguistic bias are trying to mix the
conventional linguistic analysis with neural-based models. Some report positive
results (Socher et al., 2011b, Eriguchi et al., 2016, Nadejde et al., 2017, Aharoni and
Goldberg, 2017) in various NLP tasks. For machine translation, the majority of the
community holds an engineering point of view, at least until recently. The researchers

are open to take in any advance that pushes the translation quality higher.

1.3 Machine Translation based on Neural Networks

Machine Translation is a task that convert a sequence written in one language
into another language. We can think a machine translation model as a sequence
transducer, produces a new sequence with unconstrained length by observing an
existing sequence, following hidden rules. The machine translation model itself
does not observe the sequence in its utterance form as humans do. It reads the
sequence as a series of discrete symbols without even knowing which language is
the sequence corresponding to. In machine translation community, We typically
creates the symbols by assigning each word a unique ID in a vocabulary. Thus, the
model works more like the ribosomes in the cytoplasm that synthesize proteins by
processing DNA series or a crpytanalyst deciphering unknown numeric codes. The
following snippet gives a picture on how a machine translation model observes paired

translation data.

Source Language: f4 e8 ad e8 ad f4 b9 f4 ad bl
Target Language: ff f4 b6 f2 65 30 e9 bl

As the picture conveys, a model with no clues on how human language works

have to do an incredible job to extract patterns of translation from massive bilingual
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translation data. Then it has to further leverage the acquired knowledge to perform

translation, or more often we say “decoding”.

1.3.1 Disruptive Innovation against Statistical Machine Trans-

lation

The conventional data-driven approach for machine translation is known as Statistical
Machine Translation (Brown and Piet, 2002, Koehn et al., 2003, 2007, Chiang,
2007), or SMT. It takes a straight-forward way to tackle the translation problem.
In Statistical Machine Translation, we explicitly extract all possible patterns of
translation. When the model is asked to translate, it tries to match portions in the
given sentence with the extracted patterns. As we know the translation of these
patterns in the target language, we combine all partial translations or fragments in
the target language to form a fluent translation. More formally, the goal of translation
is to obtain an English sentence candidate e that maximizes the probability of p(e|f)
given a foreign sentence f*. Statistical Machine Translation rewrites this target into
argmax, p(f|e)p(e) by applying Bayes’ rule. There are two models in the equation: a
translation model p(f|e) and a language model p(e). The translation model proposes
plausible candidate translations by pattern matching. The language model then

finds the candidate that mostly looks like an English sentence.

In fig. 1.3, we give an illustration on the pipeline of Statistical Machine Translation
in the lower half of the figure. Firstly, noisy word alignments are learned based
on corpus statistics using IBM models (Brown and Piet, 2002). Then, all possible
bi-lingual phrase pairs are extracted by recognizing aligned blocks in word alignments.
These phrase pairs are stored in a list named phrase table (Koehn et al., 2003). At
this stage, the phrase table can be tremendously noisy as it tries to capture all
translation-alike patterns. Then, based on the statistics of the phrase pairs, each
pair is assigned a set of weights. They are used to determine the probability p(f|e)

of a candidate translation.

The second major component of Statistical Machine Translation is the language
model p(e), it evaluates whether the language of a candidate translation is fluent
and understandable. At its core, it computes a count-based statistical model for

all n-grams in a sentence. For instance, the probability of “I found a cat” is

4f also means French in the context of SMT, as the most investigated language pair is French-
to-English.
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Fig. 1.3 High-level comparison between Statistical Machine Translation and Neural
Machine Translation

decomposed into:
p(I found a cat) = p(cat|I found a)p(a|l found)p(found|I)p(I). (1.1)

A good language model assigns more probability to an English-alike sentence. Com-
bining the two models together, a SMT system selects good candidates when the
strengths of translation model and language model are well balanced. If the trans-
lation model is too strong, the result may be a precise translation, however, not
readable. If the language model is too strong, the result can be a fluent sentence but
fail to preserve the semantics of the input. In practice, the weights of translation

model and language model are tuned on a held-out development dataset.

Statistical Machine Translation is a non-parametric approach, which means it
directly utilize the training data as its “parameters”. In the decoding time, an large
phrase table has to be loaded into the memory. In some cases, it can consume over
100 Gigabytes of the on-board memory. Unfortunately, the language model is even
more memory hungry. As a language model can be trained on massive monolingual
corpus. When the n-gram table is loaded into memory, it can consume more than
1 Terabytes without compression. Multiple language model compression methods
(Heafield et al., 2013) are thus proposed to lower the memory consumption with
modest accuracy loss. Finally, to find a good translation in a reasonable time budget,

carefully designed algorithms are employed in the decoder (Koehn et al., 2007).

Combing all techniques in such a framework, Statistical Machine Translation
is a highly complicated pipeline. All models and decoding algorithms have to be

carefully tuned to achieve a high translation quality and decoding speed. However,
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as a common phenomenon in machine learning, the errors generated in every phases

of the pipeline will be propagated and negatively affect the final translation quality.

In 2014, the first workable neural-based sequence-to-sequence model (Sutskever
et al., 2014) is proposed. The model is built with solely neural networks. It is trained
by directly maximizing the log-likelihood log p(e| f) with stochastic gradient descent.
The only essential component other than the neural networks is the beam search

algorithm, which is used to reduce the search space during decoding.

It took Neural Machine Translation (NMT) approximately three years to surpass
Statistical Machine Translation in terms of performance. Notice that the latter
approach was developed for about 20 years. Most importantly, the neural approach
does not have a “pipeline”. It trains in an end-to-end fashion, where we feed the
source sentence as input and obtain the target sentence as the output. In contrast
to a SMT decoder, which is usually a large project that contains over 5,000 lines of
codes, an NMT model can be written in a single script with modern deep learning

frameworks.

Other than the contrasting simplicity, neural machine translation has a control-
lable memory footprint. The model size only depends on the number of parameters
which is pre-determined when designing the model. In practice, neural models
typically take less than 1 gigabyte of GPU memory during testing time. Therefore,
even at its infancy, the neural approach is not merely an academic prototype, but a

strong competitor.

1.3.2 Building Blocks of Neural Models

To facilitate the understanding of discussion on neural machine translation, we give a
brief overview of the model architecture in this section. Note that from this section,
we change the notation of p(e|f) to p(Y'|X) when describing the translation problem,

which is more commonly used nowadays in deep learning community.

Despite recent advance in creating more powerful translation models, the high-level
framework remains the same. Almost all NMT models follow the encoder-decoder

framework (Sutskever et al., 2014). The framework can be simply described as
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follows:

hx = fenc(E(X)) (12)
p(Y|X) = fdec(h:c)a (13)

where, E(-) return a seqeuence of word vectors of the input sentence X. Then
the encoder fe,.(-) creates an internal representation of the input sequence. The
representation is further passed to the decoder fy..(-). The decoder finally predicts
the translation probability p(e|f). Usually, both the encoder and the decoder are
parameterized by same kind of models. There, there are only two major building
blocks in encoder-decoder framework: the word embedding function E(-), and the
neural functions operating on the hidden states used for fen.(-) and fge.(-). The

latter one is implemented with recurrent neural networks in naive cases.

Word Embedding In natural language, words are considered as discrete symbols.
However, as neural networks are commonly trained with gradient descent, the
intermediate representations have to be continuous vectors in order to obtain valid
gradients. Therefore, the very first step is to convert words to their continuous

representations, particularly, word embeddings.

Word embeddings® are fixed-size continuous vectors, which usually contain 256 ~
1024 float numbers depending on the task. Each word in the vocabulary is assigned
a vector. Stacking all vectors together, we usually maintain a giant embedding
matrix in a neural network. The information contained in each embedding vector
is expected to represent the word. In other words, the neural model shall be able
to distinguish a word by looking at its vector. When two words share similar
meaning, their embeddings are expected to placed closely in a vector space. However,
in classification tasks, we often want the embeddings to capture task-dependent
information rather than its meaning, such as sentiment and syntactic roles. Generally,
the information captured by word embeddings depends on the training strategy we

use. The details of training word embeddings will be described in chapter 2.

Recurrent Neural Networks As word embedding provides a way to represent
words in continuous vectors, neural networks further provide ways to represent a

sentence. As a sentence is a sequence of words, the problem now becomes how to

5In some papers, word embeddings are referred to as word vectors.
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Fig. 1.4 Five types of neural models for creating sentence representations

combine word embedding. Actually, exploiting the compositionality of a language
with neural networks is still currently an active research area. Multiple models are
proposed to create sentence-level representations. These models can be generally
classified into five categories: pooling models, convolutional models, recurrent models,
recursive models and attentional models. Fig. 1.4 illustrates their architectures.
For pooling models, the most commonly used ones are averaging models such as
Deep Average Network (ILyyer et al., 2015). The convolutional models apply 1-D
convolution on embedding vectors to create less or same numbers of vectors. Then,
the recursive mode ls are proposed by Socher et al. (2013), which combine multiple
word embeddings following a given tree structure. Usually, the structure is extracted
from the parse result of a syntactic parser (e.g., CFG parser). The attentional
models in turn do not create a single vector representation, but multiple vectors in a

sequence.

The most impactful model is the recurrent neural network (RNN), which process
a sequence of vectors with an elegant recurrent function. Let the input sequence be

x1,...,xr, then a RNN has the computation in the following form:

hy = fRNN(E(:Et)a ht—l;e) ) (1-4)

where E(x;) returns the word embedding vector in ¢ time step. frnn(+) is a recurrent
function updates the hidden state h; in time step ¢t when receiving the input vectors
and the previous hidden state. The recurrent function is parameterized by 6. Eq. (1.4)
gives a high-level abstraction of recurrent models, which does not reveal its detailed
implementation. The notations in Eq. (1.4) will be used repetitively in this thesis

when encountering RNN computations.
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After processing the word embeddings with RNN, we can treat the last hidden
state hr as the sentence representation. Empirically, with a carefully designed
recurrent function, the RNN can “memorize” a fairly long sequence into a single
continuous vector. In classification tasks, the representation is handed over to a

neural classifier to predict the targets of interest.

1.4 Challenges in Neural Machine Translation

As Jason Brownlee stated in his article®, automatic machine translation is perhaps
one of the most challenging artificial intelligence tasks on human language. This
statement is still valid today. Even recent advance in training deeper and bigger
models raises the translation quality to a new level, and multiple research institutes
claimed that neural machine translation systems reached super-human performance,
we are still facing problems when translating real documents. The model still makes

catastrophic errors when translating sentences that human can easily understand.

The challenges are imposed from two sources. The first difficulty comes from
the machine translation task, and the second comes from the neural model itself.
In machine translation, the task becomes significantly difficult when handling two
conundrums: flexibility and ambiguity of the language. Natural languages are flexible

because the sentences can have arbitrary lengths and orders.

(1] (ot <] [Z@oLn ] [ % | [fEvELE] (. ]

re—ordering

[ He ] [ built ] @[wonderful] [ house ] [ on the mountain ] .

word ambiguity created family

made

Fig. 1.5 A Japanese-to-English example that illustrates reordering and word-level
ambiguity problems in machine translation task.

Challenges in MT Tasks In Fig. 1.5, we illustrate the aforementioned issues
in translation tasks. The figure shows an example translation from Japanese to
English. Generally speaking, translation is more challenging between languages

with drastically different typologies. In the case of Japanese-English translation,

Shttps://machinelearningmastery.com /introduction-neural-machine-translation /
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we can see long-range reordering is a common phenomenon as Japanese language
usually has the main verb in the end of a sentence. In order to correctly handle
long-range reordering, a machine translation model is required to precisely recognize
the underlying structure of the sentence. Another fold of difficulty is ambiguity. In
Fig. 1.5, we demonstrate the word-level ambiguity, where a single word can have
multiple possible target translations. In this case, the main verb of the Japanese
sentence is translated into “built” because it acts on the noun “house”. Therefore,
understanding the context is crucial to choose correct words from candidates. Beyond
word-level ambiguity, we also have the ambiguity in grammar, syntax and semantics.
For instance, grammar-level ambiguity pervasively exists in informal writing such
as conversation, mails and tweets. As the sentences are deliberately shortened, a
machine translation model has to uncover its broken grammatical structure in order

to translate well.

140M
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3 |
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Fig. 1.6 Increasing number of parameters of neural machine translation models.

Challenges in MT Models The second source of challenge lies in the model
design. As the neural models become deeper and more complicated, the number of
parameters in a single NMT model explodes. We have the parameters in a model
way more than the number of training data points. In Fig. 1.6, we show the number
of parameters in standard NMT models. As the bar plot demonstrates, the word
embedding layers alone already have 40M parameters. The LSTM-based models
add around 20M parameters. With the recent state-of-the-art Transformer model
(Vaswani et al., 2017), a single neural network reaches around 100M parameters. Then
the Big Transformer doubles the number of parameters in LSTM models, reaching

130M parameters. Although the over-parameterization is proved to significantly
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improve the resultant quality, it makes the model almost infeasible to be applied on

low-end devices.

In addition to the oversizing issue, the translation latency has a linear relationship
to the number of words it processes. This problem is caused by the autoregressive

modeling, which factorize the conditional probability p(Y'|X) by:

p(Y1X) = [ [ p(wlX, y<r). (1.5)

t=1

Here, y.; denotes the history v,...,y;_1. As the equation suggests, the target word
y; cannot be predicted unless its prefixing context is already generated. In practice,
the decoding algorithm has to execute the computational graph of the decoder neural
network in each time step. Therefore, the advantage of parallel computation of
modern processing units such as GPU cannot be exploited in this case. In the
following sections, we show that by learning latent variables of the language, one can

alleviate these issues.

1.5 Importance of Structure in Natural Language

(Generation

Natural language is complex as the meaning of language is composed by the structure
of sentences. There are two perspective related to the sentence structure: dependency
and syntax. Conventional natural language generation models such as language
models and machine translation models do not separate the generation process of the
structure and the words of a sentence. They are determined simultaneously during
generation. If we are able to develop a mechanism to capture these structures, we
can plan the structure before the generation in utterance level. This motivates us to

investigate the latent-variable approach for this purpose.

Dependency An output sentence can be treated as an interconnected graph that
all words in the sentence depends on each other. A good language generation model
has to correctly capture word dependency in a sentence in order to produce consistent
results.
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Syntax In the syntax level, we care about whether a sentence is a well-formed
hierarchical structure. To express the same meaning, a language may allow multiple
syntactic structures to be used. A model has to correctly choose one valid syntax for

generation.

1.6 Learning Latent Variables for Neural Machine

Translation

In this thesis, we introduce multiple latent-variable models with a purpose of tackling
the challenges in machine translation. Through empirical analysis, we show that
learned latent variables are capable of capturing semantics in words, intra-word
dependencies and even syntactical features. In this work, we not only propose and
learn latent-variable models, but further examine their application on large machine
translation datasets. We first propose a generative model that that learns low-
dimensional continuous latent variables to capture the dependencies among words.
We demonstrate that such a model can enable non-autoregressive translation with
significantly improved latency. Then we shift to discrete representation learning. We
propose a model that captures the semantics in word vectors with discrete variables.
In our experiments, we show that such a model can greatly compress the word
embeddings by over 90%, while still preserving the performance in down-stream
tasks. Finally, we propose a syntactic encoding model that encodes parse-tree level
features into discrete variables. For application, we show that learned discrete latent

variables can be used to generate drastically diverse translation candidates.

1.6.1 Enabling Non-autoregressive Translation by Encoding

Word Dependencies

In computer vision, we see both adversarial neural networks (Goodfellow et al., 2014)
and flow-based likelihood models (Kingma and Dhariwal, 2018) are now capable of
generating realistic images. In general, these models do not generate images pixel
by pixel. However, we can observe that the dependencies between pixels and local
features are well captured. If the model paints a blue eye in the left, then it will do
the same thing in the right side. Therefore, for neural language generation models,

we rethink the necessity of the autoregressive modeling, which force the model to
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generate only one word in a step. As a result, researchers began to think about the

possibility of non-autoregressive machine translation models (Gu et al., 2018a).

As mentioned in the previous section, neural machine translation models are

usually trained as autoregressive models, where the objective function is

logp(ylz) = > logp(yilz, yr). (1.6)

t=1

Such a way of modeling forces us to sample from the neural network recursively, which
impose a constraint that the decoding phase has to rely on searching algorithms.
Beam search, which is a depth-first algorithm is commonly used in neural machine
translation to find a translation with high log probability. This algorithm considers
K possible hypotheses of partial translation in each time step. After the decoding
ends, we pick the completed translation with the highest score in K candidates.
Unfortunately, beam search increases the computational burden in each decoding

step, negatively contributing to the translation speed.

Other than the speed issue, autoregressive modeling also forces researchers to
implement two different computational graphs for one NMT model. The training
graph predicts the target words in parallel, while the testing graph has to act like a

recurrent function that processes only one word at a time.

Non-autoregressive neural machine translation has an objective similar to au-
toregressive models, except without the context in the conditional probability (i.e.

assumes all words are independent given their positions):

log p(ylz) =Y log p(yl, ). (1.7)

Each target word y; is generated only based on the source sentence and its position .
In reality, such a model cannot be successfully trained to provide good translations,
as the position alone does not encode any information about the word dependencies.
Without capturing the word dependencies, the model is not capable of resolving the

ambiguity of language. Consider the following example translation:
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Source: HEJHFMIZE X U7z, (Japanese)
Candidate 1: I ___ my car.

Candidate 2: I _ an accident.

Here, the source Japanese sentence has a meaning of “I was involved in a car
accident.”. Given two partially filled candidates, our guesses on the missing word
are different. For the first candidate, the missing word shall be “crashed”, whereas
“encountered” for the second one. Therefore, the correct choice of the word not only
depends on the source sentence, but also the target-side context. In this example,
the second word (verb) depends on the last word (noun) in the sentence. As Eq. (1.7)
is insufficient for capturing the word dependencies, a trained model will produce a

sub-optimal translation “I crashed an accident.”.

One simple solution to effectively remove the ambiguity is to include a latent

variable z, by doing which we have the following objective (assuming z is continuous):
logp(yle) =g [ ply2la)d: (1)

T
= Z log/p(yt, z|z)dz (1.9)

t=1

:Zlog/p(yt|x,z)p(z|x)dz. (1.10)

A simple way to do that is to use the main verb in the sentence as a latent variable.
Note that in this scenario, z becomes discrete. Thus, when performing translation,

we first select the main verb, then generate the whole sentence as follows:

Source: FEEHEHIZEWFE U7z, (Japanese)
Latent Variable: 2z = ‘‘crashed”
Candidate 1: I crashed my car.

Candidate 2: I crashed my vehicle.

Now we can see that when we fixed the main verb, all candidate translations are
valid sentences. Unfortunately, such a hand-crafted latent variable does not work for

all situations in reality. A complex sentences may have multiple verb clauses, and the
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ambiguity can also happen in a noun clause. Therefore, we let the neural network to

automatically figure out the best latent variables by training with Eq. (1.8).

Fig. 1.7 Three different latent-variable models: (a) only one variable (b) the number
of latent variables is determined by the number of target words (c) the number of
latent variables is determined by the number of source words.

Now we consider how many latent variables are required to eliminate the ambiguity.
In Fig. 1.7, we show three different modeling strategies. The first approach is in line
with the example above, where we try to use only one latent variable to capture the
dependencies. The single latent variable z can be a continuous vector, and we can
model p(z|x) with spherical Gaussian as p(z|z) = N(z|ps, 0.). So the capacity of z
is determined by the number of dimension in z. In our experiments, however, such a
model results in disappointing performance. We hypothesize that as the amount of
information to capture grows linearly (or exponentially) with the number of target
words, it is tremendously difficult for the model to realize and efficiently encode
the information with a fixed capacity. A perhaps better strategy can be the one
in Fig. 1.7 (b), where the number of latent variables is equivalent to the number
of target words. The only problem is that we have to model the target length [ as

another latent variable as
log p(y|x) zlog//p(y,z,l\x) dz dl (1.11)
—tog [ [ yle.t.2)ptele Do) dz L. (1.12)

As the probability of generating y with a length variable not matching it, that is

p(ylz,l #1,, ), is always zero, we can remove the integral on [ as

log p(yz) =log / Pyl Ly, 2)plz ], 1y)p(Ly ) de. (1.13)
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This approach is adopted by multiple existing works on non-autoregressive neural
machine translation (Gu et al., 2018a, Lee et al., 2018). In order to preform correct
inference, we have to search over both the length variable [, and the latent variable
z, which lacks elegancy and may leads to sub-optimal results. The third strategy in
Fig. 1.7 (c) forces the number of latent variables to be determined by the number of

source tokens, which is formulated as follows:

log p(y|z) zlog//p(y,z,”x) dz dl (1.14)
—1og [ plufe. . 2ol e, 2)plele) d (1.15)

Contrary to previous two approaches, the third approach is essentially encoding the
length information into the latent variable z. Such a modeling strategy paves the
way for us to refine the latent variable after obtaining from the prior distribution
p(z|x), where the length prediction will be automatically updated when we update

the latent variables.

As a main contribution, we derive an iterative algorithm to deterministically
update the posterior on the latent variables based on an initial guess drawn from the
prior. The algorithm converges rapidly and pushes higher a lowerbound on log p(y|x).
In our experiments, our non-autoregressive NMT model closes the performance gap
on ASPEC Japanese-to-English task with a 8.6x speed improvement. On WMT’14
English-to-German task, the model achieves only 1.0 BLEU point gap with a 6.8x

faster decoding speed.

1.6.2 From Continuous to Discrete Representation Learning

The continuous representation dominates almost all recent neural NLP models
as it can be efficiently trained in an end-to-end neural network. The continuous
representation has the advantage of high capacity, which means it can encode the
input sequence with almost no information loss. As the capacity is controlled by the
number of dimensions in the vectors, one can easily enlarge the information capacity

by increasing the vector sizes.

Despite the inarguable success of neural networks which learn layers of continuous

representations, we can still enumerate some shortcomings of continuous representa-
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tions. The main disadvantages exist in three aspect: memory efficiency, computation
speed, interpretability.

Memory Efficiency A trained neural NLP model usually consumes significant
amount of space when it is loaded into memory. Commonly, the bottleneck of the
problem happens in the word embedding, the most basic building block of NLP
models. Suppose a neural model has a vocabulary of 200K words, each word is
assigned a 300-dimensional vector, then the embedding matrix will contain 60M
parameters. In our experiments, about 98% of the parameters of a baseline sentiment
analysis model are belong to the word embeddings. When the whole embedding
matrix is loaded onto memory, the uncompressed memory consumption will be about

240 megabytes, which is far above the memory budget especially for mobile platforms.

Computation Speed The computation with continuous vectors also consumes
huge amount of resource. Although using GPU acceleration can largely solve the
problem, it is not widely available on low-end devices. Even the GPU acceleration
is available, the intensive power consumption still hinders the application of neural

models.

Interpretability In computational linguistics, the interpretability of the model
is treated importantly. Learning interpretable representation can greatly help us to
understand the underlying factors of a language unit which is useful in a specific task.
For example, when a sentence representation is learned for sentiment analysis task,
we want the representation to directly reflect the most influential aspects related to
the sentiment. Let’s consider the sentence “The hotel has a great service, however
the room was dark and cold.”. An interpretable representation shall provide insights
on three aspects: “great service”, “dark room” and “cold room”. When a continuous
representation is learned, the only way for us to reveal the information encapsulated
in the vector is to plot it onto the vector space. Then, we can compare the distance
among multiple different representations. However, such analysis does not provide

direct insights.

1.6.3 Learning Compact Representation with Discrete Cod-

ing

Here, we are motivated to show the benefits brought by learning discrete representa-

tions for languages. In particular, we demonstrate that discrete representations have
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great potential to counter both the resource-intensive problem and the difficulty of
interpretation caused by the continuous counterpart. A discrete representation can
be seen as a set of discrete symbols. Inside a neural model, it can be formulated
either as binary vectors or one-hot vectors. Suppose we represent the word “dog” with
a discrete code (1,3), then in the binary case, the code will be ([0,1]",[1,1]7). In
the one-hot case, the code will be ([0, 1,0,0]",0,0,0, 1]T). Please note that a code
can mean either a continuous or a discrete variable in the literature of generative

modeling. However in this thesis, it is mainly used when we mean a discrete variable.

For discrete representations, the information capacity is determined by the number
of dimensions. A binary vector with K dimensions can represent 2% symbols, whereas
a one-hot vector with K dimensions can represent exactly K symbols. Thus, the

one-hot representation often has a low capacity even with a high dimension.

Limited Capacity However, even for the binary vector, the information
capacity is much lower than a continuous vector with the same size. Such property
of discrete vectors is important for us to consider when choosing between continuous
and discrete representations. The low capacity is a double-edge sword, applying it
in a discriminative neural network will almost certainly cause damage to the model
performance. When it is used in generative models, the limited capacity can force
the model to learn an efficient latent that explains the data. Therefore, discrete
representation learning is mainly being considered in the context of generative models,

specifically, variational auto-encoders (Kingma and Welling, 2014).

Methodology of Training The major difficulty of training a stochastic neural
net with discrete variables comes at the training phase. As we introduce a non-
differentiable layer inside the neural network, the gradients for the discrete variables
can not be efficiently estimated. In an early paper, Bengio (2013) evaluates four ways
to train Bernoulli variables (i.e., binary codes) in the neural networks, and empirically
found that the straight-through estimator (STE) proposed by Hinton (Hinton, 2012)
in his coursera video lecture has the best performance. The idea of STE is fairly
simple, which copies the gradients of a discretized layer to the continuous neurons
right before the threshold function. However, the problem of STE is that such an
estimator is biased and does not provide a way to learn categorical variables (i.e.,

one-hot codes).

In 2017, two research teams from DeepMind and Google Brain independently
discovered an effective continuous relaxation for the categorical variables, and simul-
taneously published in ICLR (Jang et al., 2016, Maddison et al., 2016). The new
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Context-free
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Fig. 1.8 Derived tree structures with context-free grammar (top) and dependency
grammar (bottom).

method is a reparameterization trick that uses Gumbel-Softmax random variables to
approximate the categorical variables. The technique can be seen as a break-through
as it allows the gradients to directly backpropagate through discrete categorical sam-
ples. Experiments show that the new trick drastically outperforms other estimators
such as STE with Bernoulli latents when evaluating with the variational lower bound.

The details of recently proposed learning methods will be given later in chapter 3.

1.6.4 Syntactic Coding for Diverse Translation

In this thesis, we are also interested in learning latent variables to encode higher-level
linguistic features rather than just words. In any language, the meaning of a sentence
is created with words and grammar. Words are units that convey semantic meaning,
whereas the grammar creates a structure to combine individual words together, giving
birth to complex meaning. Therefore, one obvious direction worth probing is how

can we learn latent variables to capture sentence structures.

In computational linguistics, researchers often adopt the formalism of content-
free grammars (CFG) developed by Noam Chomsky in 1950s to describe the block
structures of sentences, which is also referred to as constituency grammar. Context-
free grammar creates recursive block structures. On the other hand, we also have
dependency grammar (DG) that is also commonly used, which describes the relations

between linguistic units in a sentence.
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Both grammars can be expressed by tree structures. In Fig. 1.8, we demonstrate
an example sentence and the trees induced from its grammars. For simplicity, here
we omit the annotation for the non-terminal nodes and dependency relation. They
are distinct in two aspects. First, for the dependency tree, each node is a word,
while in the case of CFG tree, each non-terminal node covers a span. Second, a CFG
tree can be and usually is a binary tree. In dependency trees, each node can have

arbitrary number of child nodes.

It is challenging to learn latent variables to encode such tree structures as it is
unclear on how to correctly design a generative model to let the latent variables
capture similarity among different trees. In this thesis, we propose a latent-variable
model that encodes the tree structures with a TreeLSTM (Tai et al., 2015) auto-
encoder and produce syntactic codes with a discretization bottleneck. By using the
artificially created codes to condition the generation of neural machine translation, we
find that we can obtain translations with drastically different syntactic structures. In
the experiments, we perform quantitative and qualitative evaluation on the diversity
of translations and show the model is capable of significantly improve the diversity

of candidate translations.

1.7 Contributions of This Thesis

In this thesis, we introduce latent-variable models attempting to capture different
levels of linguistic features. We extensively evaluated our proposed models on neural
machine translation, a typical natural language generation task. With the recently
advanced neural-based machine translation models, the sentence-level translation
quality is already considerably high. As the outcome of this thesis, we further make
the state-of-the-art machine translation models more efficient by non-autoregressive
modeling and quantization. Moreover, we show a latent-variable model for learning
syntactic structures that can help machine translation models to produce highly

diverse translations.

We first show the strong capability for a latent-variable generative model with
continuous latent variables to direct model the machine translation problem. The
results demonstrate a 8x ~ 12x speed-up over the conventional neural machine

translation baseline using transformers on two large translation datasets.
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We also introduce the readers to discrete representation learning and its ap-
plication in text generation. We provide a comparison and analysis for variously
discretization methods. As a major contribution, we propose an auto-encoder to
learn compositional discrete codes of words. We demonstrate the compactness of
the learned codes by compressing the word embeddings over 94% without empirical
performance loss. In our experiments, we also compare our methods with previous
approaches including weight pruning and extension of produce quantization. The
results show that our approach has a higher compression rate as the code learning
model directly optimize the codes in a neural network to minimize the target loss.
Moreover, we show that the learned codes have strong interpretability. Comparing
the codes of multiple words that share same concepts, we are able to identify the

codes for specific concepts.

The third contribution is to propose a syntactic code learning model. Here, we
use the model to learn a set of codes to represent the structure of a sentence. By
augmenting the sentences with the learned syntactic codes, we are able to control
the output structure before generating the text. In our experiments, we show that
the quality of generated sentences is not negatively affected under the constraint
of the codes. By manipulating the codes, we are able to sample sentences with
drastically different structures. With a proposed quantitive diversity metric, we show
the sampled sentences have much higher structural diversity comparing to sampling

using beam search.

This thesis is organized as follows. In chapter 2, we introduce basic network
architectures and building blocks of neural NLP models including neural language
model and neural machine translation. In chapter 3, we introduce the training meth-
ods of latent-variable models and some recently proposed discretization bottlenecks
and their training methods. We also provide an empirical comparison of different
methods.

As main contributions, in chapter 4, we introduce a latent-variable neural machine
translation model trained using variational methods. In chapter 5, we describe our
approach for learning word-level discrete representation, and the effectiveness on
compressing word embeddings. In chapter 6, we propose a model to learn sentence-

level discrete representation and its application in generating diverse translations.

The content is arranged according to the training framework of the latent-variables.
The model described in chapter 4 is trained using the variational auto-encoder

framework. The models in chapter 5 and chapter 6 are trained with discretization
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bottlenecks. In Finally, in chapter 7, we summarize the insights we obtained from

our experiments, and provide some future directions of research.



Chapter 2

Prerequisite Knowledge for Neural

Machine Translation

In this chapter, we explain the core mechanisms of neural machine translation
models, the neural-based components, training algorithms and methods to search for

translation results.

In 2014, Devlin et al. (2014) won the best paper award in ACL’14. Their proposal
is to implant a neural network based feature estimator in to a statistical machine
translation decoder. By tuning on a validation corpus, the weight of this neural
estimator can be automatically adjusted to maximize the translation performance.
The movement of merging neural networks and the SMT models did not draw
researchers to further improve the conventional approach of machine translation.
Rather, it opened a new direction of research. Researchers started to think an exodus
from the 20-years-old well established statistical approach to create a new family of
translation models. From then on, multiple papers emerges to prob the possibility of
solving machine translation problem with neural networks alone, such as some early
works done by a group in Oxford (Kalchbrenner and Blunsom, 2013, Kalchbrenner
et al., 2014).

The first workable end-to-end neural machine translation model is proposed by
Sutskever et al. (2014), coined sequence-to-sequence model. For the first time, we
are able to train the model using back-propagation of the gradients. The model is
not positioned as a feature estimator to be used with statistical machine translation.
Rather, the model itself is a full translation model. With simple search strategies,

you can sample translations from a trained model. The work was developed on the
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ideas of recurrent neural networks (RNNs), that we use one RNN to recursively
encode the input sequence into one continuous vector. The vector can be consider as
a highly compressed form that holds all information in the source sequence. Then
we use another RNN to unroll the vector by T time steps until we reach the end of

target-side sentence.

However, there was a significant performance gap between the neural sequence-to-
sequence model, around 7 BLEU points away from the state-of-the-art SMT systems
without ensembling. The results caused some speculations among the research
community. Some negative thinking researchers were refusing to believe that the
“just neural” machine translation can outperform statistical machine translation in
near term. Some doubts whether deep learning is going to finally take over NLP just

like what it did in computer vision.

The next break-through comes from Bahdanau et al. (2015) to significantly
push up the performance, which is a follow-up work of the sequence-to-sequence
model. Notably, all these three milestone works are published in the same year,
implying a fast pace of the changing research field. Bahdanau et al. (2015) brings the
attention mechanism from the vision literature (Mnih et al., 2014) to neural machine
translation. Based on this proposal, Google built its large-scale neural machine
translation system (Wu et al., 2016), that finally brings the translation quality very

close to human level.

The proposed attention mechanism finally leads to a recently massive evolution
of neural machine translation, the Transformer (Vaswani et al., 2017). Transformer
stacks layers of attention-based computations. The model results higher translation
quality and is much faster to train comparing to previous recurrent-based models.
Recently, transformer becomes the de-facto model in neural machine translation. In
the following sections, we introduce the details of the major model families for neural
machine translation. We put focus on understanding how different models process

high flexible sequences of natural languages.

2.1 Recurrent Neural Networks

Recurrent neural networks are basic components in the neural networks for NLP. In
computer vision tasks, the model only deals with inputs that have fixed shapes. In

contrast, the most distinguishable difference in NLP tasks is that we have to deal
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with a sequence consisting arbitrary number of tokens. In machine translation, we
have to further generate a sequence with arbitrary number of tokens in the target

side. The first step is to build a vector representation of a given sentence.

Computing Softmax To begin with, we first consider a simple neural model that
predicts the next word. To represent words as continuous vectors to be used in
neural networks, we creates “embeddings” vectors for all words in our vocabulary. In
practice, the number of words in a vocabulary (|V|) can range from 20K to 200K.
Therefore, if we stack the word embeddings together, it will be a matrix that have a
shape |V| x D, where D is the dimensionality of each vector. We use E(w) to denote

an operation that returns the embedding vector for word w.
To compute the probability for w; to be the next word, we have the following

equation:

exp(s;)

p(wt+1 = U)i|UJt> = m, (2.1)

where s is a vector containing the logits before probability normalization. The loigits

can be computed by a matrix-vector multiplication as
s = Wy E(w) + b,, (2.2)

where W, is a D x |V| weight matrix, and b, is a bias vector. For convenience, we

denote the probability prediction of all words with a softmax operation:

p(wisr|wy) = softmax(Wo ' E(w¢) + b,). (2.3)

Elman Recurrent Neural Network Note that in Eq. (2.3), the neural network
for next-word prediction is a simple linear model. To increase the expressiveness of

this model, we add a hidden layer with an activation function as

hy = tanh(Wy ' E(wy) + b)), (2.4)
p(wii1|wy) = softmax(Wo " hy + b,), (2.5)
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where the first line of the equations computes the hidden state with two new

parameters: Wy and by,. The element-wise activation function tanh(-) is defined as

exp(z) — exp(—x)
exp(x) + exp(—x)

tanh(x) = (2.6)

Next, we move on to consider including more context in improve the prediction
of next words. To do this, we add all preceding words in a sentence to the condition
side of the probability, which gives p(w;y1|wy, ..., w;). In this paper, we denote a
sequence of words wq, ..., w; using wy.; for simplicity. As we are already have a model
to compute the probability p(ws|w;), the next step is to consider how can we compute
p(ws|wy, ws). The difference here is that we have to build a vector representation of
multiple tokens instead of only one token. In other words, we have to expand the
hidden state computed in Eq. (2.4) to enable it capture arbitrary numbers of tokens.
The obvious way to achieve this is to include the hidden state in a previous time

step into the equation as

h; = tanh(Wy, " by + Wy "E(wy) + by), (2.7)
pwigr|wiyg) = softmaX(WoTht + b,). (2.8)

Now we add a new parameter Wy, to the model for processing the hidden states in
different time steps. We notice that Eq. (2.7) becomes a recurrent function, which
can be simply denoted with

hy = fRNN(ht—lawt>- (2-9)

The parameterization of fryny described in Eq. (2.7) is firstly proposed by Elman
(1990), and thus is also referred to as Elman networks. We call any neural network

that implements this framework a recurrent neural network.

W3 W4 W5 Weg

[EREE}

wg)E w3

Fig. 2.1 Illustration of the computational graph of recurrent neural networks
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Long Short-term Memory Units In Fig. 2.1, we illustrate the computational
graph of recurrent neural networks. We can see that the hidden states have similar
function as the memory cells. A hidden state h; holds the information of all preceding
words wy.; until step t. The state vectors have to be arranged in a way that the
softmax operation can utilize the information contained in them to predict the
probability of the next word. In the same time, the vectors also have to preserve

useful information for future steps although they are blind to future inputs.

However, it is easy to notice that Eq. (2.7) will completely rewrites all dimensions
of the hidden states in each time step. Therefore, information can be easily erased
from the vectors, and such implementation of the recurrent function also causes
gradient diminishing problem. The error signal from a future word will diminish
quickly when propagated in the backward direction. For this reason, we have to
design a mechanism having stable memory cells. The information in the memory
cells should remain intact if there is no need to update them. The most broadly
adopted variation of recurrent neural network is Long Short-term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which is now the de-facto implementation of
RNN in NLP tasks.

In LSTM, two separate units are updated in each time step. The memory cells
keep useful information, which can only be updated when an input gate function
is activated. The gate is controlled based on the values in the hidden states. We
denote the hidden state in time step ¢ as h;, the memory cell as ¢;. First, the input

gate produces a sigmoid vector with

it :fgiate(wtv hi-1, 1) (2.10)
=0 (W, E(wy) + Wi hi1 + Wei T eim1 + by), (2.11)

where o(+) is a sigmoid activation function defined as o(z) = exp(z)/(exp(z) + 1).
The purpose of applying sigmoid activation function is to ensure that the values in
the gating vectors range from 0 to 1. We can control the flow of information with
an element-wise multiplication with another vector. When the value of a specific
dimension is close to zero, it blocks the information in the corresponding dimension

in the other vector. Similarly, we also have forget gate and output gate in LSTM as

it = fate (W, Py1, ¢1), (2.12)
01 = [gnte (W, hi—1, cr). (2.13)
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Both gates are computed in the same way as the input gate. One exception is that
the output gate is computed based on the memory cell in the current time step ¢,
as it is designed to apply after updating the cells. For updating the memory cells,
LSTM first propose a new cell content ¢; with

& = tanh(Wye  E(wy) + Whe ' hy—1 + b). (2.14)

Then we use the input gate and forget gate to selectively write and remove contents
from the cells, and use the output gate to selectively write information back to the
hidden states with

Ct :ftCt,1 -+ ’itét, (215)
hy =ostanh(c). (2.16)

The computational graph of LSTM is summarized in these two lines of equations *.
When the values in the forget gate f; is 1, and the values in the input gate i, is 0,
the memory cell ¢; be an exact copy of the cell in the previous step. The recurrent
model is thus capable of preserving the information for multiple time steps to capture
long-distance dependencies among the tokens. When the memory cell is not changed,
the gradient will also avoid being diluted during back-propagation, thus prevent
the magnitude of the gradients to vanish. For comparison, Elman network can be

written as h; = ¢.

Training of Recurrent Neural Networks To train the recurrent neural net-
works with back-propagation, we have to correctly estimate the gradients for all
parameters in the recurrent function fryn. Fortunately, it is still straight-forward.
As we can see that the computation over time can thought as stacked feed-forward
neural networks with shared parameters. For instance, the hidden state in the second

step can be written as

ho = fRNN(fRNN(h07w1>,w2)7 (2~17)

here hg is the initial hidden state, usually a zero vector. This suggests a backward
path to pass gradient from the end of sequence back to the beginning of the sequence.

Such way of gradient computation is named back-propagation through time (BPTT).

!There are multiple variations of LSTM computation. We follow the equations in Graves (2013).
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However, the downside of BPTT is that the high backward cost when we have a
long path. In language model tasks, a single sequence may contain all words in
a paragraph. In this scenario, it will be extremely time-consuming to compute
the full BPTT. As a compromise, truncated BPTT is often used in practice, which
back-propagate the gradients only for a fixed number of time steps. Truncated BPTT
can limit the backward cost in a fixed budget, it however may damage the model

performance for capturing long-term dependencies.

2.2 Neural Machine Translation

Autoregressive Modeling In machine translation, our goal is to translate a
source sequence X = {x1,...,2|x|} into a target sequence Y = {yi,...,y;y|}. Until
recently, the majority of neural machine translation works adopt autoregressive

modeling to tackle the problem, where we model the conditional model as

Yl

p(Y|X) = Hp(yt|?/1:t—1,X)- (2.18)

The equation suggests to generate one target token in each time step. The generation
is conditioned on the source sequence X and the a history of tokens ., 1 in target side.
Therefore, with this modeling strategy, the NMT model is effectively a conditional
language model. To train the NMT model, it is a common practice to minimize the

negative log likelihood as a loss function:

v
L==> logp(ylyri-1, X). (2.19)

t=1

Encoder-decoder Framework With the basis of recurrent neural networks, we
move on to introduce the architecture of NMT model. In 2014, Sutskever et al.
(2014) proposed encoder-decoder framework for translating one sequence into another

sequence, which is illustrated in Fig. 2.2.

We can see from the figure that there are two main components in the encoder-
decoder framework. The encoder creates a representation of the source sequence,

which is fed into the decoder. The decoder produces hidden vectors that contain
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Fig. 2.2 Encoder-decoder framework of neural machine translation

information for predicting the target tokens. The framework can abstracted as

h*"¢ =Encode(E(x1), ..., E(z)x))), (2.20)
hi®" =Decode(h™™, h\& |, E(y,)), (2:21)
P(yelyre-1, X) =TokenPredict (h;*), (2.22)

where the “TokenPredict” function in the last line is implemented with a softmax
applied after computing the logits. Surprisingly, even after 5 years, almost all
newly proposed translation models still follow the encoder-decoder framework. In
the original work of Sutskever et al. (2014), both the encoder and decoder are
implemented with LSTMs. The encoder state h™° is the final hidden state produced
by the encoder LSTM. As the encoder-decoder framework does not estimate the
probability of emitting the first target token y;, we usually use a begin-of-sentence
token “BOS” to prefix the target sentence. We also append a “EOS” token to the tail

of the target sentence as a sign to stop generation.

Teacher Forcing and Exposure Bias As a result of autoregressive modeling,
given a trained model, we recurrently apply argmax on the probability to obtain the

prediction of translation as

e = arg;naxp(ytlylzt_l, X). (2.23)

¢
However, the issue is that if we apply argmax to sample tokens in the training time,
the model cannot be well trained. As argmax is a discrete node in the computational
graph, the gradients cannot be correctly estimated for it. To bypass the issue,
although we sample from model distribution during inference, in the training time,
we force to model to take tokens from training data (data distribution) as input. The

consequence of teacher forcing is that the model experiences exposure bias, which
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means the inputs to the model are from a different distribution during inference.

This issue remains as an open problem.

Batching and Sharding To speedup the training phase, we combine sentences
from different datapoints into mini-batches. As different sentences have different
number of tokens, suppose a specific sentence is shorter than the longest one in the
batch, we fill the remaining positions with zeros. A source or target batch will appear

similar to the following matrix

x = [

[1, 32, 54, 75, 71, 53, 63, 2, 0, 0, 0],
[1, 25, 58, 42, 68, 30, 57, 18, 40, 42, 2],
[1, 53, 34, 21, 2, 0, O, O, O, O, O]

]

To reduce the number of padded zeros in the batches, we may sort the training
sentences according to their lengths. The sorting step force each batch to contain
sentences with similar numbers of tokens. As GPU are good at parallel computing,
the training is more efficient when batching more sentences together. When we
attempt to train models with large batches, we however start to encounter the
insufficient GPU memory problem. The bottleneck typically occurs in the softmax
computation. Recall that weight parameter for computing the logits is a D x |V
matrix. To make the problem worse, the hidden states now have a shape of BxT x D,
where B is the batch size and T is length of the longest sentence in the batch. The
result of this matrix-tensor multiplication will have a shape of B x T x |V|, which

takes tremendously huge memory space on GPUs.

To alleviate the problem, we slice the a single batch further into multiple shards
before computing softmax. For each shard, we continue to compute the final cross-
entropy loss and obtain the gradients on the decoder states htlgt7 o hr)g/t'. Similarly,
we obtain gradients for the decoder states iteratively for all shards, and accumulate
gradients on the decoder states. By doing this, the shape of the logit tensor will not
exceed S x T' x |V, where S is the number of batches in a shard. After the gradients
are accumulated on the decoder states for all shards, we further back-propagate the
gradients to other nodes in the computational graph. The pseudo-code of sharded

training is demonstrated in the following snippet.
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B + batch size

S < shard size

h**¢ < Encode(E(x1), ..., E(z|x|))

h'8" <— Decode(h*°, E(11), ..., E(y)v)));

For i+ 1 to floor(B/S):
S piE[x S (i+1) x 9] ;
loss +— CrossEntropy (TokenPredict(s'"));
BackPropagateToNode(loss, h'e");

Loop;

BackPropagate(h's");

2.3 Attention Mechanism

In our discussion on training recurrent neural networks, we articulate that one issue
of truncated BPTT is that the resultant model may fail to capture dependencies
between two distant tokens. One the other hand, if we consider this problem more
thoroughly, we may realize the root cause is not the training algorithm. In a classical
RNN-based language model or neural machine translation model, we rely on an
assumption that the memory cells in LSTM are capable of encoding all information
in a sequence, even when the given sequence is extremely long. This assumption
however does not hold a the memory cells only have fixed number of dimension,
implying a limited capacity. To release the pressure on the memory capacity, one
clever way is to introduce directly links between source and target tokens, proposed
by Bahdanau et al. (2015).

The core idea is to feed a specific source-side hidden state at position i to the

recurrent computation in the decoder LSTM as

Rt —psre, (2.24)
& =tanh(Wye ' E(w;) + Whe ' Ryt + Wae A5 4+ b,), (2.25)

where the source position ¢ is determined by a separate model:

i = HardAttention(h—1, b7, ..., B]Y)). (2.26)
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We refer to such a mechanism as hard attention, as the the model choose only one
source state to look at. As the hard attention mechanism is making a discrete
decision when selecting source states, the model has to be trained with reinforcement
learning or other tricks but not simple end-to-end back-propagation. With the high
variance generated by reinforcement learning, the hard attention mechanism makes

the model training more challenging, and potentially cancels out its positive impact.

To maintain the end-to-end trainable nature of the neural network, the authors
(Bahdanau et al., 2015) propose to apply a soft version of the attention mechanism,
we call it soft attention. Instead of picking only one source states, soft attention

considers all source states by assigning weights on different states as

| X
Dot = Z aﬁhfrc, (2.27)
i=1
exp(at
a; :%, (2.28)
> 5 exp(a))
@t =v, tanh(Way A + Wy Thi%', + b,). (2.29)

where the attention vector is produced by a weight summarization over the source
states. The weights are normalized to be a categorical distribution. The logits of this
distribution are computed by a one-layer neural network, which introduces three new
parameters. Other than this neural-network approach, a simpler way of computing
the attentional weights is proposed by Luong et al. (2015) that simply computes the
dot product as

at = (hs)"h# . (2.30)

the dot-product approach is much simpler and faster. However, it shall be used
cautiously. Firstly, the approach assumes both vectors have same dimensions. Sec-
ondly, the dot-production produces higher weight values when two vectors are similar.

Sometimes, we want the model to attend on distinct vectors but not similar vectors.

To wrap up, attention mechanism, especially soft attention is the break-through
that significantly boost the translation quality. It solve three major problems of
the recurrent neural networks within one model: (1) truncated BPTT problem (2)

memory capacity problem (3) it learns the alignments among tokens.
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2.4 Transformer

Although LSTM-based neural machine translation models are widely adopted due
to the simplicity and significant performance gain, one critical drawback still exists
when using recurrent neural networks. As each hidden state h; in recurrent nets is
computed based on previous states, the computation in each time step has to “wait”
for previous computations to finish. When training a large model, this constraint
on training speed makes the process enormously time-consuming. Researchers in

machine translations community started to realize that this issue has to be solved.

Fully Convolutional Neural Machine Translation Around 2017, multiple
works have been proposed aiming to tackle this problem. Gehring et al. (2017)
proposed to replace LSTM-based encoder and decoder with fully convolutional neural
networks. Because 1-d convolution does not force the temporal dependency, the
computation during training can be greatly speedup. When the filter size is 3, the

t-th hidden state in [-th layer is computed with
hy = ¢(conv(h 7y, by~ i), (2.31)

where ¢(-) is an non-linear activation function. The convolution-based models suffer
from two critical problems. First, when as we can observe from Eq. (2.31), if our
model has only one convolutional layer then it considers only the neighboring tokens
when building the hidden representation for a specific token. When the model
stacks two convolutional layer, it is capable of considering 5 surrounding tokens in
the encoder side. For the decoder side, however, as the convolution is masked to
consider only the left-hand tokens, it considers only 2 preceding tokens in the case of
two convolutional layers. Generally, when N convolutional layers are stacked, the
encoder is capable of considering 2N + 1 tokens as context, the decoder is capable
of considering N contextual tokens. Therefore, the convolution-based NMT model
has to be considerably deep to capture long-range dependencies. Second, even the
decoder has 20 convolutional layers, which means that each target token is predicted
based on 20 tokens in the left side, the model can still fail to get useful information for
the prediction. As in some languages such as Japanese, the last word may depends on
the first word in the sentence, and a sentence may have more than 100 words. In this

case, even a 20-layers deep model has no chance to make a correct prediction for the
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Fig. 2.3 Hllustration of the model architecture of Transformer

last word. These drawbacks significantly limits the application of convolution-based
NMT models.

Key-Value Attention To fundamentally improve the problematic recurrent-based
NMT models. (Vaswani et al., 2017) proposed to only use attention mechanism
to build a translation model, which finally gained huge success. The core idea of
Transformer is based on key-value attention (Miller et al., 2016), which is important
for understanding the mechanisms in Transformer. Recall the equation for computing

soft attention with weighted summarization:

|X]
has = > align(hy_y, b3, (2.32)

=1

Here, we use align(-) to abstract a function that determines the weight for each
source states. Examining the equation, we can see that the equation is similar to the
process of finding a item in a key-value store, that has the following form when one
query only matches one key:

[key]|

result = Z match(query, key, )value;, (2.33)
i=1

where in the equation, the match(-) function returns 1 when the query matches a

key. Otherwise, it returns 0. The soft attention in Eq. (2.32) can be thought as a
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soft version of this searching process. Therefore, we can generalize Eq. (2.32) to

hate =Attention(q, k, v) (2.34)
|X]
= Z match(g, ki)v;, (2.35)
i=1
exp(q; " k;)

match(q, k;) = (2.36)

S explaThy)

Here, we compute the soft matching function with dot product. The arguments of

this equation, ¢, k;, v;, are then computed with linear transformations as

G =Wq hi 1+ by, (2.37)
ki =W ' hS™ 4 by, (2.38)
v; =Wy hE™ 4 b, (2.39)

Comparing with Eq. (2.32), we found that the major difference is that the key k;
and value v; now can be different vectors. This allows the value v; to have more

capacity because it is no longer being used in the matching function.

Multi-head Attention We continue to extend the power of attention mechanism.
Examining Eq. (2.35), we can see that when match(-) is an indicator that returns
either 1 or 0. The attention mechanism can only gather information from one source
position. In order to gather information from multiple sources, we have to stack
multiple layers of such attention models. Although match(-) draws a categorical
distribution on source states but not a indicator in reality, source information can be
diluted if we mix too many vectors together. One clever workaround is to compute
multiple attentions in parallel. Here, we call each attention vector a head, which can
be thought as a glimpse to the source sequence. If we compute K attention heads,
then the decoder can gather information from K different source positions with just

one attention layer. We formally define multi-head attention as
MultiHead Attention(q,, k, v) = [phd; ...; Rhead], (2.40)

where [...] is a concatenation of all attention heads. However, if we compute each
head with the normal key-value attention model, the output of multi-head attention

will be have K times more dimensions comparing to other hidden vectors in the
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neural network. To avoid this problem, we reduce the dimensionality of each head
by a factor of 1/K. Suppose the hidden states have N dimensions, then each head is

computed with
hhead — Attention(qq[kn/K:(k+ 1)N/K], ki [kN/ (k1) N/ K], 05 [kN/ Kkt D)N/K]). (2.41)

As suggested by the equation, we actually computing separated attentions on different

portions of the vectors.

Self-Attention and Cross-Attention Next, we describe the most important
components in a Transformer model. Self-attention builds complex sentence-level
representation by summarizing information from multiple tokens in the same sentence.
When applying on the source sequence, self-attention computes attention vector for
a source state h'® with

SelfAttention(h;™) = MultiHead Attention(h;™, h*¢, h*°). (2.42)

We can see from the equation that both query, keys and values are from the same
sequence. The same computation can also applied on the target sequence. Very
similarly, we can use query vectors from one sentence, in machine translation the

target sentence, to match vectors in the source sentence. We define cross-attention as
CrossAttention(h;®") = MultiHead Attention(hy®", h*°, h*°). (2.43)

Cross-attention modules only exist in the decoder. Transformer uses cross-attention
to selectively gather source-side information as evidence to improve the prediction of

target tokens.

Feed-forward and Layer Normalization The attention mechanism alone does
not provide the biggest benefits of neural networks: non-linearity. Transformer adds
non-linear activations using feed-forward layers, which are composed by two linear

transformations and a ReLU(Nair and Hinton, 2010) activation as

FF(h) =Wl + by, (2.44)
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Note that the first linear transformation parameterized by Wy and b; increases
the dimensions by a factor of 8 according to the paper. Then the second linear
transformation parameterized by Wy and b, reduce the dimensions and recover the
original vector sizes. The non-linear activation is applied on the enlarged intermediate

vector. The feed-forward computation is applied after attentional computations.

(@) batch normalization (a) layer normalization

Fig. 2.4 Comparing batch normalization and layer normalization

Because the Transformer is a 12-layer deep model, we want the training to be
as stable as possible. As a quick trick, layer normalization is applied in the output
end of each Transformer layer. layer normalization is similar to batch normalization
(Ioffe and Szegedy, 2015). The only difference is that batch normalization is applied
on the batch dimension, but layer normalization is applied on the hidden dimension.
The comparison is illustrated in Fig. 2.4. For layer normalization the resultant vector

x;, in batch b and position 4 is computed with

/ Lo — Mo
1 N
Mo :N Lbi (2.47)

=1

(wpi — 1), (2.48)

I
2|~
=

=1

where, v and [ are trainable parameters of layer normalization, and € is a small

number to ensure the denominator does not drop to zero.
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2.5 Training

For training NMT models, we normally apply stochastic gradient descending methods

to minimize the log-likelihood over training data D:
f = argmin Ex,y)~p[logp(Y|X;0)]. (2.49)
0

We can monitor the log-probability averaged for each token with

T
1
J(0) = Exyyen[7 Y log p(uely<t, X;0)]. (2.50)
t=1

Although the average log-probability is high correlated with the model performance
(i.e. translation quality), the parameters saved when the model reaches a highest
log-probability on a valid dataset may not yield highest translation quality. The
reason has at least two folds. The first cause is teacher forcing, In Eq. (2.50),
the preceding tokens in the conditional probability are directly obtained from the
data samples. During real decoding, they are sampled from the model, which has
a different distribution. The second cause comes from the evaluation metric of
translation quality. The average log-probability evaluates the performance for each
token independently. However, most of time, our evaluation metric for translation
quality considers phrases (n-grams) rather than just individual words. Therefore,

the token-level log-probability cannot reflect the translation quality globally.

A simple work-around is to run the real decoding algorithm on the valid dataset
several times in each epoch, and report the BLEU scores. This approach, however, is
not easy to implement due the huge difference in the training computational graph
and decoding computation graph. In the current state-of-the-art transformer models,
the model is trained for a fixed number of iterations. Then the final parameters are

selected by averaging 5 to 10 different checkpoints.

2.6 Decoding and Evaluation

To generate translation results, NMT models rely on search algorithms, particularly
beam search, to find a good translation candidate. Beam search finds a hypothesis

Y that maximizes the log probability logp(Y|X), given an input sentence X. In
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<s>

______

_____________

Fig. 2.5 Tllustration of beam search algorithm in the setting of Japanese-to-English
translation task. The beam size here is 2. The numbers show the step when running
the algorithm.

each step, a fixed number of hypotheses are considered by the algorithm. Then the
NMT model predicts the probabilities of the next output token for each hypothesis.
Suppose that the fixed number (beam size) is B, and the vocabulary size is V. Then,
theoretically, we can obtain a maximum of B x V new hypotheses. Beam search
then keeps top-zB hypotheses with highest log probabilities. Thus, the hypotheses
considered in each step have the same length (i.e., number of tokens). The algorithm

ends when B finished translations are collected.

Deficiency of Beam Search Since the beam size is fixed, when the algorithm
attempts to explore multiple new decoding paths for a hypothesis, it has to discard
some existing decoding paths. However, the new decoding paths may lead to bad
hypotheses in the near future. As past hypotheses can not be revisited again, the
beam search has to decode the hypotheses with degraded qualities continually. This
phenomenon is illustrated in Fig. 2.5 (a), where the graph depicts the decoding
process of a sentence. The correct output is supposed to be “an apple tree is there’
or “there is an apple tree’. In step 3, as the algorithm explores two new hypotheses
in the bottom branch, the hypothesis “an apple tree’ is discarded. In the next step,
it realized that the hypothesis “there is @’ leads to a wrong path. However, as the
algorithm can not return to a discarded hypothesis, the beam search has to keep
searching in the hopeless path. In this case, the candidate “an apple tree is there”

can never be reached.

Automatic Evaluation Evaluating machine translation results automatically is a

challenging task itself. To accurately evaluate a small amount of translation results,
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hiring expert translators is still the best choice nowadays. The main purpose of
automatic evaluation is not to reveal the quality of a specific set of translations, but
to compare two systems. Commonly used evaluation metrics are used to seek the
statistical significance when applied on a large dataset. Therefore, comparing the

automatic scores on one data sample is statistically meaningless.

The most commonly used metric is BLEU score (Papineni et al., 2001). The
statistical significance test for BLEU scores is proposed in Koehn (2004). Given a
translation hypothesis h and a reference r, BLEU measures the overlap of n-grams in
h and r. Typically, it considers the precision from uni-grams to 4-grams. A brevity

penalty is introduced to punish short translations.

The correlation between BLEU scores and human evaluation can be problematic
depending on the languages. Recently, increasing research papers adopt newly
proposed metrics such as RIBES (Isozaki et al., 2010a) and AF-MF (Banchs and Li,
2011). However, the majority of the neural machine translation community still uses

BLEU as the main evaluation metric due to complicated reasons.






Chapter 3

Prerequisite Knowledge for
Latent-Variable Likelihood Models

In regular neural machine translation models, translation is modeled as a classification
problem. For each generation step, a discriminative model is used to produce the
probability distribution of emitting a certain word p(y;|y;, X)'. Discriminative
models are considered to be more powerful and easier to train because the model
can choose to omit all information unrelated to the final prediction. In language
modeling, a typical case is that if a natural or artificial language has only short-term
dependency among tokens, then the discriminative model can just consider few

preceding tokens and exploit the full model capacity to predict the next token.

3.1 Approximate Inference

In contrast to discriminative models, a generative model attempts to capture the
generation process of observed data. The distribution of interest is therefore p(z).
In order to correctly estimate this probability, all useful information in the given
data has to be considered. If the given data is an image of cat, then the model has
to know all subtle features of a real cat image, so the model can decide whether to

assign a high probability to any input datapoint. For natural language, a model has

!'Note that in natural language generation, the boundary between discriminative model and
generative model is difficult to define clearly. The word-prediction model p(y¢|y<¢, X) can also be
viewed as a generative model where y; is not treated as label, but the data we want to model.
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to know the correct relations among multiple words or phrases, so it can correctly

identify whether a sentence is natural.

To learn the probability distribution p(z), it is common in generative models to
introduce one latent variable z or several latent variables z = 21, ..., zx. We assume
the relation between the observed variable z and the (unobserved) latent variable z
follows the directed probabilistic graph z — x, which tells that the joint probability

of z and z can be computed by
p(x,z) = p(z|2)p(z). (3.1)

The latent variable helps to capture the hidden mechanism that produces the
data distribution. Latent variables in successfully learned generative models explain
the data distribution in an efficient way. In Table 3.1, we give two examples showing

how latent variables can interpret the observed data.

Xz ‘ 21 ‘ Z9 ‘ Z3
dog images | skin color angle of camera size of the dog
movie review | sentiment | object of complaint | number of sentences

Table 3.1 Examples of how latent variables interpret the data distribution

It is important to note that the latent variables can also be the parameters of
the distributions, which are usually denoted by 6 rather than z. Inference in such a

Bayesian model requires to compute the following posterior:

p(x|2)p()

[ p(al2)p(z)dz’ (3.2)

p(zlx) =

The integral in the denominator is intractable when the likelihood p(z|z) is a
complicated model or the amount of data is too large. In machine learning community,

researchers often use approximate inference as a solution to this problem.

Classical approaches for approximate inference rely on sampling. The most well-
explored approach is Markov Chain Monte Carlo (MCMC) (Hastings, 1970, Gelfand
and Smith, 1990). In MCMC, we construct a Markov chain so that the stationary
distribution equals to the posterior p(z|x). Based on the stationary distribution, we
can collect samples and form approximation of the true posterior. Popular methods
in MCMC includes Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings,
1970) and Gibbs sampling (Geman and Geman, 1984).
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The drawback of MCMC methods is the speed. Sampling is required every time
we want to compute the posterior. This problem becomes critical when we use deep
neural networks to model the distribution. With expensive models, the time cost for

computing each sample increases significantly.

To solve the same problem, contrasting to the sampling approach, variational
inference developed by (Jordan et al., 1999, Wainwright and Jordan, 2008) formulates
the inference as an optimization problem. The core idea of variational inference is to
restrict the family of an approximate posterior ¢(z) of the latent variables. Then we
minimize the Kullback-Leibler (KL) divergence between the approximate posterior

and the true posterior to find the best approximate posterior ¢(z) inside the family:

arg(n;in KL(q(2)[lp(z|2)). (3.3)
q\z

Note that in order to make a more accurate approximate posterior, we may use
q(z|z) rather than ¢(z).

Evidence Lower Bound However, the KL divergence in Eq. (3.3) is not directly
computatable because p(z|x) is intractable in our problem setting, which is also
the motivation of approximate inference. The core problem is the intractability of
log p(x), which is also called evidence. By marginalizing out the latent variables, we

know it can be computed by

logp(z) = log/p(x,z)dz. (3.4)

Although this density cannot be directly computated, we can derive a lower bound
by using Jensen’s inequaliy. Such a derivation was described in (Jordan et al., 1999),
which has three main steps. First, we write the marginal density in the form of an

expectation under ¢(z):

log p(x) :/p(x,z)dz (3.5)
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The second step applies Jensen’s inequality to obtain a lower bound of the evidence:

log p(x) >= B,y log p((}fzf, )Z)} (3.8)
= E.q(») [ log p(z|2) + log p(z) — log q(z)] (3.9)
= Eong(e) [ log p(]2)] = Eongpz [log q(2) — log p(2)] (3.10)

The second term in Eq. (3.10) is the KL divergence between ¢(z) and p(z). Therefore,

we write the lower bound in the following form as the final step:

log p(z) >=E. g [log p(z|2)] — KL(q(z)||p(2)) (3.11)
=ELBO(z, q) (3.12)

We call this function as the evidence lower bound, which is namely a lower bound
to the evidence of observation. Please note that the ELBO is a function of the
observation x and the approximate posterior ¢(-) we choose. The value of ELBO
does not depend on the actual value of a specific latent variable. Therefore, many

papers evaluates the model performance by comparing the ELBO of different choices
of q(-).

Derivation from KL Divergence with True Posterior There are multiple
ways for deriving the same evidence lower bound. We show another derivation that
directly starts from KL(q(z)||p(z|z)), which is the quantity we want to minimize.
Details of such a derivation can be found in Blei et al. (2017). By the definition of

KL divergence, we know the aforementioned quantity can be expanded as

KL(q(2)||p(2]2)) =E.ny(z) [ log q(2) — log p(z]2)] (3.13)
=E.q(-)[log q(2) — log p(z, 2)] + log p(x) (3.14)

As the log evidence log p(z) can be viewed as a constant. We can instead minimize

the first part of Eq. (3.14), which also means maximizing the following term:

E. g [logp(z, z) —logq(2)] (3.15)
=E.y(2) [log p(z]2) +log p(2) — log ¢(2)] (3.16)
=E.q(» [log p(z|2)] — KL(g(2)|[p(2)). (3.17)
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Here, we obtained the same function of the evidence lower bound we derived using
Jensen’s inequality. This derivation helps to realize that by optimizing the ELBO,
we are indirectly minimizing the KL divergence between the variational density and

the true posterior KL(q(2)||p(z|x)).

Connection with EM algorithm Expectation-Maximization algorithm (Demp-
ster et al., 1977) can be applied to compute the first term in the evidence lower
bound (Eq. (3.11)). The difference between EM algorithm and variational inference
is that EM usually compute point estimates of the parameters of the distributions.

Variational inference estimates the probabilistic distributions of parameters.

Mean-field Variational Family Mean-field variational family is the most com-
mon family of the variational density ¢(z), where z = z;, ..., zx and we assume the
K latent variables are independent from each other. Such a variational density can

be expressed as

K

q(z) = Hq(zk). (3.18)

k=1

The mean-field family encourages the latent variables to capture distinct factors of
the observation. However, due to the strong assumption, the variational density
has a low expressiveness. Some advanced variational inference methods use more

complex families for modeling ¢(z).

Exact Inference In variational inference, we can only compute a lower bound,
an approximate value of the true posterior. By carefully design our model, there
are methods allow us to perform exact inference. One recent actively investigated
approach is normalizing flow (Rezende and Mohamed, 2015). A flow model transforms
base densities into data distributions. Normalizing flow rely on invertible functions
for density transformation. The capacity of the transformation is strictly limited to
make the function invertible. Therefore, in real applications, flow-based models are

usually implemented with fairly deep neural networks.

In this thesis, we introduce and develop our proposed models based on the

approximate inference approach. In the rest of this chapter, we introduce methods
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for learning generative models with neural networks. We start from continuous latent

variables, then we cover approaches for learning discrete latent variables.

3.2 Variational Auto-Encoders

In this section, we consider the scenario that we use a more precise variational density
q(z|z). The ELBO of our model is then

ELBO(z,q) = Eoryiopn [p(z]2)] — KL(g(z[2)][p(2)). (3.19)

When we maximize this function, we notice that the model is acting similar to a
regularized auto-encoder. The first term E.q(.)) [p(2]2)] in the equation is exactly
a reconstruction objective, which encodes the information of data x into the latent
variables and then reconstruct the original data. However, without any regularization,
the hidden states inside a conventional auto-encoder will be a pure compression
of the input, thus highly entangled. With the regularization imposed by the KL
divergence, the objective forces that latent variables to be somehow predictable and

less entangled.

Armotized Inference In classical approaches, we may use EM algorithm to itera-
tively update the variational densities for each datapoint. The updated estimation is
saved in a table. Therefore, the table grows in size when the dataset is large, which
is inefficient. With the advance of neural networks, we use deep learning models (it
can also be traditional machine learning models) to estimate both the approximate
posterior ¢(z|z) and the likelihood p(z|z). Therefore, we only need to maintain
a fixed number of parameters in our models. Such approach is called armotized
inference, and is more efficient than conventional approaches. In practice, we may
call the neural network that computes ¢(z|x) a encoder, and the neural network that
computes p(x|z) a decoder. The input vectors of the decoder are sampled from the

distribution produced by the encoder.

Interpretability As approximate posterior is constrained by the KL divergence.
When we use a multivariate normal distribution with diagonal matrix as the variance
matrix as the prior, the KL term will discourage the entanglement in the latent

variables.
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To understand this property, suppose the prior has a zero mean and unit variance
for all latent variables, that is p(zz) = N(0,1). Then, the approximate posterior
has to set g(zx|z) closing to N(0,1) in order to reduce the penalty. For example,
when modeling face images, ¢(zx|r) can produce N(—2,1) for males, and N(2,1) for
females. The latent variable z; sampled from N(2,1) (distribution for female) has a
95% chance falling into the range [0,4], and it is unlikely to be mistreated as a male
variable in the decoder. However, if the variational density attempts to mix other
meanings in the same latent variable, then it needs to produce N (6, 1) to avoid being
confused as a female variable. Such a variational density will be heavily published

by the KL divergence.

3.3 Reparameterization Trick

In this section, we focus on one problem: how to obtain the gradient of the variational
density ¢(z|x). Let q(z|z) and p(z|z) be parameterized by ¢ and 6. As the KL
divergence can be computed by an analytical solution when the ¢(z|z) is an isotropic
Gaussian (each variable is independent), the gradient for the KL term can be easily

computed. Here, we focus on computing the gradient of the reconstruction objective:
Vg (al) [ 10g po (] 2)]. (3.20)

The problem that hinders the gradient estimation is the expectation in the

equation. Consider the following pseudo code for implementing this equation:

1. sample z from ¢,(z|z)
2. logp = log(py(x|2))
3. logp.backward()

To compute the expectation, we use Monte Carlo sampling methods. If we run
this code, the parameter ¢ cannot obtain a correct gradient as the sampling operation
in Line 1 is non-differentiable. Intuitively, to solve this problem, we have to move the
computation involving ¢ to somewhere after the sampling operation. In Kingma and
Welling (2014), the authors proposed an unbiased and differentiable solution to this

problem, which is commonly referred to as the reparameterization trick in the paper.
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The core idea is simple. Instead of directly sample z from g4(z|z), we compute z

with a proxy function as

z = gy, x), (3.21)
e ~ ple). (3.22)

Here, € is a standard noise, which is often obtained from a standard Gaussian N (0, 1).
Then the function g4(-) shifts and scales this noise according to the parameter. By
moving the randomness € into the input, the function g4(-) is fully differentiable.

When we model z with isotropic Gaussian, g,(-) has the following implementation:

e ~N(0,1), (3.23)
Py Ox =[o(2), (3.24)
2 =y + 0€, (3.25)

where, fs(x) is a neural network that outputs a mean vector and a variance vector. If
we want the variance vector to contain only positive numbers, we can add a softplus

activation before computing z.

3.4 Learning Discrete Latent Variables

In this section, we discuss the methods of learning the variational auto-encoder when
the latent variable z is discrete. In particular, the variational density is either a
multivariate Bernoulli distribution or a multivariate categorical distribution. Please
notice the difference of them comparing with binomial and multinomial distributions,

which can be easily confused.

We first discuss the simpler case that ¢ is a multivariate Bernoulli distribution with
K variables. Such a distribution is parameterized by K probabilities (p1, ..., pk).

Usually, the prior p(z) for each variable is a uniform distribution with a probability
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of 0.5. In this case, the KL divergence is computed as

KL(q(z[2)|lp(2)) = > KL(a(zla)lp(z1) (3.26)
B - B q(z = 1|o) _ q(z = 0|x)
= ;q(zk = 1]z)log =) + q(zr = 0]x) log D =0)

(3.27)

= Z H(q(zx|z)) + log 2 (3.28)
k=1

— H(q) + K. (3.29)

In the categorical case, the KL divergence also has a similar form, which is the sum
of entropy and a constant number. Therefore, in the rest of this section, we still focus

on computing the gradient of the reconstruction objective V4E. g, (z[a) [log pg(x|z)}.

3.4.1 Straight-Through Estimator

If we treat the stochastic sampling operation as a function sample, then the gradient

of interest can be written in the following form:
V, log pg(x|sample(gy(z|z))). (3.30)

Thus, the problem is indeed how to design such a sampling function and make it
differentiable. To be concrete, in Table 3.2, we show one example input and three

independent outputs of the sampling function.

Type Input Output 1 | Output 2 | Output 3
stochastic | [0.3,0.9,0.6]7 | [0,1,0]7 | [0,1,1]7 | [1,1,1]"
deterministic | [0.3,0.9,0.6]" | [0,1,1]T | [0,1,1]7 | [0,1,1]T

Table 3.2 Input and output examples of a sampling operation of a multivariate
Bernoulli distribution.

We can see that the outputs are binary vectors in the multivariate Bernoulli case.
When computing the reconstruction objective, we perform stochastic sampling. A

close function is deterministic sampling, which always outputs the binary vector with
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maximum probability. The deterministic sampling function can be implemented with
sign(+). In Bengio (2013), the author proposed to make the deterministic sampling
differentiable by simply copy the gradients in the backward phase. This method
is referred to as straight-through estimator (STE). It can be described using the

following equation:

sign(z) forward
fstr(z) = (3.31)
x backward

As shown in the equation, STE pretend to be an identity function in the backward

phase. In PyTorch, STE can be easily implemented by the following snippet:

def STE(x):

uuuureturn x + x.sign() .detach() - x.detach()

Following our discussion on the sampling operator, STE indicates that we can
just use the gradient of sampled discrete variables to compute the gradients of
the distribution parameters. Recent studies adopted STE on various applications
including binarizing neural networks (Courbariaux et al., 2016). However, the
gradient estimated by this method by no means is the true gradient of the loss
function. More recently, Yin et al. (2019) provide a theoretical jusitification and show

that the expected coarse gradient of STE correlates with the population gradient.

3.4.2 Semantic Hashing

In Salakhutdinov and Hinton (2009), the authors described a technique to push the
output of a sigmoid neuron towards binary. Their method is to compute o(z + €),
where o(-) is the sigmoid activation and € is a Gaussian noise in the original paper.
The authors use this technique to compute the hash of documents, attempting to
group semantically similar documents together. Kaiser and Bengio (2018) improves

the semantic hashing by using saturating sigmoid, which is defined as
o'(z) = max(0, min(1,1.20(x) — 0.1)). (3.32)

Here, o(z) computes the original sigmoid function. Comparing to the original version

of sigmoid, the saturating counterpart is able to output edge cases (0 or 1) while
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the original version cannot. In the paper, the discretization method of the proposed

improved semantic hashing can be summarized as

I(zx+€e>0) 50% forward passes
o'(z+¢) 50% forward passes and all backward passes

Here, 1(+) is an indicator function, and € is a standard Gaussian noise. We can see
that the mechanism of improved semantic hashing is similar to STE. In the forward
pass, it computes both saturating sigmoid and binarization. The result is randomly
chosen between the two. However, in the backward pass, the gradient always flow

back through the saturating sigmoid operation.

Similar to the straight-through estimator, the improved semantic hashing method
also has the advantage of simplicity. We adopt this method to compute the dis-

cretization bottleneck in chapter 6.

3.4.3 Gumbel-Softmax Reparameterization Trick

Let us then consider the scenario of dealing with categorical variables. Similar to
the sampling for Bernoulli variables. We show three example outputs sampled from
one categorical distribution. Please note that for simplicity, the example does not

show multivariate categorical distributions.

Type Input Output 1 | Output 2 | Output 3
stochastic | [0.3,0.2,0.5]" | [1,0,0]" | [0,0,1]" | [0,0,1]"
deterministic | [0.3,0.2,0.5]" | [0,0,1]" | [0,0,1]" | [0,0,1]"

Table 3.3 Input and output examples of a sampling operation of a categorical
distribution.

Comparing to the Bernoulli variables, the difference is that each sampled variable
is a one-hot vector but a binary vector. In this case, we still can consider to adopt
STE for backpropagation. However, when the number of categories increases, as the
gradient of the sample only tells the story of one specific category, the training is
likely to become unstable.

Following the success of reparameterization trick for continuous variables. Can we
derive a reparameterization rule for discrete variables? Denote P(z) as the categorical

distribution of interest with K categories. To sample a categorical variable, Gumbel



56 Prerequisite Knowledge for Latent-Variable Likelihood Models

and Lieblein (1954) described a simple sampling method as

z =one_hot( argmax [log P(2); + g]), (3.34)
e{l,...,K}
g; ~Gumbel (0, 1). (3.35)

where each g; is an independent Gumbel noise, which can be computed by
gi = — log(—log(€)), € ~ Uniform(0, 1). (3.36)

Here, the discrete variable is randomly sampled by applying argmax to the log-
probabilities injected Gumbel noises. The one_hot function simply convert the

category id into a one-hot vector.

Suppose we use the Gumbel rule to implement the sampling function, there is
only one problem: the argmax operation is non-differentiable. However, it has a
differentiable counterpart: softmax function. This suggests us to use softmax to
replace the argmax function in Gumbel rule. In 2016, Maddison et al. (2016) and
Jang et al. (2016) discovered the Gumbel-Softmax distribution independently and
published the work in ICLR. It can be considered as a reparameterization of the

discrete sampling. The Gumbel-Softmax rule can be described as

z =softmax; (log P(z) + g) (3.37)
g; ~Gumbel(0, 1). (3.38)

Note that here g is a vector containing independently sampled Gumbel noises. The
temperature of the softmax is controlled by 7. When the temperature is 0, Gumbel-
softmax collapses to the Gumbel-argmax rule. When 7 > 0, Gumbel-softmax is
differentiable, however, the results are not strictly correct samples of the categorical
distribution. In the paper, the authors mentioned a way to start the training with a

high temperature, and anneal 7 to a small value.

Straight-through Gumbel-Softmax One problem with the Gumbel-softmax
samples is that they are not strict one-hot vectors, which means a sampled vector
can have positive values in one or more categories. The authors (Jang et al., 2016)
propose to solve this problem by applying STE, which forces the discretization in the
forward pass, but not in the backward pass. The STE-enhanced Gumbel-Softmax
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rule can be described as

one_hot ( argmax (GumbelSoftmax(P(z));)) forward

faumbesT(P(2)) = i{l,...K}
GumbelSoftmax(P(z)) backward

(3.39)

Gumbel-Softmax is a theoretical-sound and reliable technique for implementing a
discrete VAE. We adopt this method in chapter 5.

3.4.4 Vector-Quantization VAE

Despite the success of various applications applying Gumbel-Softmax, it has a
significant practical drawback. Sampled Gumbel-Softmax variables are softmax
vectors, each vector K dimensions, identical to the number of categories. This means
that we have to scale our neural network according to the number of categories.
Suppose the discrete distribution has 65535 categories, then our neural net has to

handle a 65535-dimensional giant vector, which is almost impractical.

van den Oord et al. (2017) proposed a different approach to make the discrete
sampling operation differentiable, which is coined Vector-Quatization VAE (VQ-VAE).

Here, we still focus on computing the reconstruction objective:
L = log p(x|sample(q(z|z))). (3.40)

In VQ-VAE, we first prepare K vectors randomly distributed in the vector space,
each vector is treated as the embedding of one category. We denote these code vector
as {e1,...,ex}. Suppose we use an encoder function z.(x) to map the input x into a
vector with the same dimensionality as the code vectors, then the sampling function

is computed by

sample(q(z|x)) = ex, (3.41)
k = argmin ||z.(x) — e;]]2. (3.42)
jE{L, K}

Intuitive, VQ-VAE is a quantization that finds the code vector closest to the encoder
output. In this setting, we then need to solve two problems: how can we optimize

the encoder z.(z) and the code vectors {ej,...,ex}? For the first problem, similar
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to other discretization methods, VQ-VAE uses STE to create a pseudo gradient for
the encoder. It means that regardless of that we compute the decoder based on
a sampled vector, the model copies the gradient from the decoder directly to the

encoder output. The mechanism can be described as

Foquan(a(2]z)) = sample(q(z|z)) forward (3.43)

Ze(T) backward

The second problem is to optimize the code vectors. If the code vectors are not
optimize to fit the encoder outputs, the pseudo gradient will be highly inaccurate.
In the paper, the authors propose to modify the loss function to push the encoder

output and code vectors closer in the vector space.

L = logp(z| fvquar(a(z|2))) + [Isglze(2)] — exll3 + Bllze(x) — sglexll3.  (3.44)

Here, sg-| is a stop gradient function, whereas /3 is a coefficient for the loss term of
updating the encoder. In this loss function, the three terms individually update the
decoder, code vectors and encoder. As the hidden size in VQ-VAE is not affected
by the number of categories. In practice, we can train the model with fairly large
discrete latent variables. Please note that the variational density ¢(z|x) is actually
deterministic by computing argmin in the sampling function. Although we can easily

modify the VQ-VAE equations to make it stochastic, it is not covered in the original

paper.
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Latent-Variable Non-autoregressive

Neural Machine Translation

4.1 Motivation

Following the story presented by chapter 2, we can see see significant improvements in
neural machine translation over years (Bahdanau et al., 2015, Wu et al., 2016, Gehring
et al., 2017, Vaswani et al., 2017). Despite impressive improvements in translation
accuracy, the autoregressive nature of NMT models have made it difficult to speed
up decoding by utilizing parallel model architecture and hardware accelerators. This
has sparked interest in non-autoregressive NMT models, which predict every target
tokens in parallel. In addition to the obvious decoding efficiency, non-autoregressive
text generation is appealing as it does not suffer from exposure bias and suboptimal

inference.

Inspired by recent work in non-autoregressive NMT using discrete latent vari-
ables (Kaiser et al., 2018a) and iterative refinement (Lee et al., 2018), we introduce
a sequence of continuous latent variables to capture the uncertainty in the target
sentence. We motivate such a latent variable model by conjecturing that it is easier
to refine lower-dimensional continuous variables! than to refine high-dimensional
discrete variables, as done in Lee et al. (2018). Unlike Kaiser et al. (2018a), the
posterior and the prior can be jointly trained to maximize the evidence lowerbound

of the log-likelihood log p(y|x).

1'We use 8-dimensional latent variables in our experiments.
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In this work, we propose a deterministic iterative algorithm to refine the approxi-
mate posterior over the latent variables and obtain better target predictions. During
inference, we first obtain the initial posterior from a prior distribution p(z|x) and the
initial guess of the target sentence from the conditional distribution p(y|x, z). We
then alternate between updating the approximate posterior and target tokens with
the help of an approximate posterior ¢(z|z,y). We avoid stochasticity at inference
time by introducing a delta posterior over the latent variables. We empirically find
that this iterative algorithm significantly improves the lowerbound and results in
better BLEU scores. By refining the latent variables instead of tokens, the length
of translation can dynamically adapt throughout this procedure, unlike previous
approaches where the target length was fixed throughout the refinement process. In
other words, even if the initial length prediction is incorrect, it can be corrected

simultaneously with the target tokens.

Our models outperform the autoregressive baseline on ASPEC Ja-En dataset
with 8.6x decoding speedup and bring the performance gap down to 2.0 BLEU
points on WMT’14 En-De with 12.5x decoding speedup. By decoding multiple latent
variables sampled from the prior and rescore using a autoregressive teacher model,
the proposed model is able to further narrow the performance gap on WMT’14
En-De task down to 1.0 BLEU point with 6.8x speedup. The contributions of this

work can be summarize as follows:

1. We propose a continuous latent-variable non-autoregressive NM'T model for
faster inference. The model learns identical number of latent vectors as the
input tokens. A length transformation mechanism is designed to adapt the

number of latent vectors to match the target length.

2. We demonstrate a principle inference method for this kind of model by intro-
ducing a deterministic inference algorithm. We show the algorithm converges

rapidly in practice and is capable of improving the translation quality by around
2.0 BLEU points.

4.2 Non-Autoregressive NMT

Although autoregressive models achieve high translation quality through recent

advances in NMT, the main drawback is that autoregressive modeling forbids the
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decoding algorithm to select tokens in multiple positions simultaneously. This results

in inefficient use of computational resource and increased translation latency.

In contrast, non-autoregressive NMT models predict target tokens without de-

pending on preceding tokens, depicted by the following objective:

ly|

log p(y|z) = Zlogp(yi!x)- (4.1)

As the prediction of each target token y; now depends only on the source sentence x
and its location ¢ in the sequence, the translation process can be easily parallelized.

We obtain a target sequence by applying argmaz to all token probabilities.

The main challenge of non-autoregressive NMT is on capturing dependencies
among target tokens. As the probability of each target token does not depend
on the surrounding tokens, applying argmaz at each position ¢ may easily result
in an inconsistent sequence, that includes duplicated or missing words. It is thus
important for non-autoregressive models to apply techniques to ensure the consistency
of generated words.

4.3 Latent-Variable Non-Autoregressive NMT

In this work, we propose a latent-variable non-autoregressive NMT model by intro-
ducing a sequence of continuous latent variables to model the uncertainty about the
target sentence. These latent variables z are constrained to have the same length as
the source sequence, that is, |z| = |z|. Instead of directly maximizing the objective

function in Eq. (4.1), we maximize a lowerbound to the marginal log-probability

log p(yle) = log [ p(ylz, )p(zl)dz:

L(w,$,0) =E.q, [logpo(y|z, 2)]
~ KL[gs (2l )l Ipa 1), (4.2

where p,,(z|z) is the prior, gs(z|x,y) is an approximate posterior and py(y|z, z) is the
decoder. The objective function in Eq. (4.2) is referred to as the evidence lowerbound
(ELBO). As shown in the equation, the lowerbound is parameterized by three sets of

parameters: w, ¢ and 6.
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p(y‘17 27 l'l/)
p(yl2)
feed-forward
self-attention
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length transform mean pool
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P |
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Fig. 4.1 Architecture of the proposed non-autogressive model. The model is composed
of four components: prior p(z|x), approximate posterior ¢(z|z,y), length predictor
p(ly|z) and decoder p(y|x, z). These components are trained end-to-end to maximize
the evidence lowerbound.

Both the prior p,, and the approximate posterior g, are modeled as spherical Gaus-
sian distributions. The model can be trained end-to-end with the reparameterization
trick (Kingma and Welling, 2014).

4.3.1 A Modified Objective Function with Length Prediction

During training, we want the model to maximize the lowerbound in Eq. (4.2).
However, to generate a translation, the target length [, has to be predicted first. We
let the latent variables model the target length by parameterizing the decoder as:

p9<y|$v Z) = ZPG(ya l|$7 Z)
l

= Pe(yv ly|x7 Z)
= po(ylz, 2, 1,)po(ly| 2). (4.3)

Here I, denotes the length of y. The second step is valid as the probability py(y, [ #

ly|z, z) is always zero. Plugging in Eq. (4.3), with the independent assumption on
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both latent variables and target tokens, the objective has the following form:

|yl
E.g, [ Y log po(yilz, 2, 1,) + log po(l,|2)]

i=1

||

~ 3 KL gy (sl ) I (zel)]. (4.4)

k=1

4.3.2 Model Architecture

As evident from in Eq. (4.4), there are four parameterized components in our model:
the prior p,(z|x), approximate posterior g4(z|x,y), decoder py(y|z, 2,1,) and length
predictor py(l,|z). The architecture of the proposed non-autoregressive model is
depicted in Fig. 5.2, which reuses modules in Transformer (Vaswani et al., 2017) to

compute the aforementioned distributions.

Main Components To compute the prior p,(z|z), we use a multi-layer self-
attention encoder which has the same structure as the Transformer encoder. In
each layer, a feed-forward computation is applied after the self-attention. To obtain
the probability, we apply a linear transformation to reduce the dimensionality and

compute the mean and variance vectors.

For the approximate posterior g4(z|z,y), as it is a function of the source = and
the target y, we first encode y with a self-attention encoder. Then, the resulting
vectors are fed into an attention-based decoder initialized by x embeddings. Its
architecture is similar to the Transformer decoder except that no causal mask is used.

Similar to the prior, we apply a linear layer to obtain the mean and variance vectors.

To backpropagate the loss signal of the decoder to g4, we apply the reparame-
terization trick to sample z from ¢4 with g(e,q) = p, + o, * €. Here, e ~ N(0,1) is

Gaussian noise.

The decoder computes the probability py(y|z, z,[,) of outputting target tokens
y given the latent variables sampled from g4(z|x,y). The computational graph of
the decoder is also similar to the Transformer decoder without using causal mask.
To combine the information from the source tokens, we reuse the encoder vector

representation created when computing the prior.
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Z1 Z2 Z3 24 Z5

@e9®

Fig. 4.2 Nlustration of the length transformation mechanism.

Length Prediction and Transformation Given a latent variable z sampled
from the approximate posterior g4, we train a length prediction model py(l,|z2).
We train the model to predict the length difference between |y| and |z|. In our
implementation, py(l,|2) is modeled as a categorical distribution that covers the
length difference in the range [—50,50]. The prediction is produced by applying

softmax after a linear transformation.

As the latent variable z ~ g4(z|z,y) has the length |z|, we need to transform the
latent variables into [, vectors for the decoder to predict target tokens. We use a
monotonic location-based attention for this purpose, which is illustrated in Fig. 4.2.
Let the resulting vectors of length transformation be zi,...,%,. we produce each

vector with

d

Z = Z wl 2y, (4.5)
k=1

wi = exp(ai) (4.6)
Sy exp(af,)
1 || .
a, = — @(k - EJ)Q, (4.7)

where each transformed vector is a weighted sum of the latent variables. The weight

is computed with a softmax over distance-based logits. We give higher weights to the
||
1,

in this monotonic attention mechanism.

latent variables close to the location = 7. The scale o is the only trainable parameter

4.3.3 Training

If we train a model with the objective function in Eq. (4.4), the KL divergence often

drops to zero from the beginning. This yields a degenerate model that does not use



4.4 Inference with a Delta Posterior 65

the latent variables at all. This is a well-known issue in variational inference called
posterior collapse (Bowman et al., 2015, Dieng et al., 2018, Razavi et al., 2019). We
use two techniques to address this issue. Similarly to Kingma et al. (2016), we give
a budget to the KL term as

[

> max(b, KL[gs(zx]z. y)|[p.(ze)]), (4.8)

where b is the budget of KL divergence for each latent variable. Once the KL value
drops below b, it will not be minimized anymore, thereby letting the optimizer focus
on the reconstruction term in the original objective function. As b is a critical
hyperparameter, it is time-consuming to search for a good budget value. Here, we

use the following annealing schedule to gradually lower the budget:

1, if s < M/2

(M—s)
M2

b= (4.9)

otherwise

s is the current step in training, and M is the maximum step. In the first half of
the training, the budget b remains 1. In the second half of the training, we anneal b

until it reaches 0.

Similarly to previous work on non-autoregressive NMT, we apply sequence-level
knowledge distillation (Kim and Rush, 2016) where we use the output from an

autoregressive model as target for our non-autoregressive model.

4.4 Inference with a Delta Posterior

Once the training has converged, we use an inference algorithm to find a translation

y that maximizes the lowerbound in Eq. (4.2):

argmax E...,, [ log ps(y|z, 2)]
Yy
— KL[gy(2]2, y)||po(2]2)]

It is intractable to solve this problem exactly due to the intractability of computing
the first expectation. We avoid this issue in the training time by reparametrization-

based Monte Carlo approximation. However, it is desirable to avoid stochasticity at
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inference time where our goal is to present a single most likely target sentence given

a source sentence.
We tackle this problem by introducing a proxy distribution r(z) defined as
1, ifz=
"(z) = "

0, otherwise

This is a Dirac measure, and we call it a delta posterior in our work. We set this
delta posterior to minimize the KL divergence against the approximate posterior gy,

which is equivalent to

Vi loggs(ule,y) =0 & p = E,, [4]. (4.10)

We then use this proxy instead of the original approximate posterior to obtain a

deterministic lowerbound:

~

L(w, 0, 1) =logpe(y|e, z = p) — log p,(p|z).

As the second term is constant with respect to y, maximizing this lowerbound with

respect to y reduces to

argmax log py(y|x, z = u), (4.11)
Yy

which can be approximately solved by beam search when py is an autoregressive
sequence model. If py factorizes over the sequence y, as in our non-autoregressive

model, we can solve it exactly by

U; = argmax log pa(yi|z, z = 1).

Yi

With every estimation of y, the approximate posterior ¢ changes. We thus alternate
between fitting the delta posterior in Eq. (4.10) and finding the most likely sequence
y in Eq. (4.11).

We initialize the delta posterior r using the prior distribution:

1= Ep, 2z [2] -
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Algorithm 1 Deterministic Iterative Inference

Inputs:
x : source sentence
T : maximum step
to = By, 212 [2]
Yo = argimax, log po(y|z, 2 = po)
for t < 1to T do
Ht = E%(Zmyt—l) [Z]
y, = argmax, log pg(y|x, 2 = 1)
if ¥, =y, then
break
output vy,

With this initialization, the proposed inference algorithm is fully deterministic.
The complete inference algorithm for obtaining the final translation is shown in
Algorithm 1.

4.5 Related Work

This work is inspired by a recent line of work in non-autoregressive NMT. Gu et al.
(2018b) first proposed a non-autoregressive framework by modeling word alignment
as a latent variable, which has since then been improved by Wang et al. (2019). Lee
et al. (2018) proposed a deterministic iterative refinement algorithm where a decoder
is trained to refine the hypotheses. Our approach is most related to Kaiser et al.
(2018a), Roy et al. (2018). In both works, a discrete autoencoder is first trained on
the target sentence, then an autoregressive prior is trained to predict the discrete
latent variables given the source sentence. Our work is different from them in three
ways: (1) we use continuous latent variables and train the approximate posterior
q(z|z,y) and the prior p(z|x) jointly; (2) we use a non-autoregressive prior; and (3)

we propose a novel iterative inference procedure in the latent space.

Concurrently to our work, Ghazvininejad et al. (2019) proposed to translate with
a masked-prediction language model by iterative replacing tokens with low confidence.
Gu et al. (2019), Stern et al. (2019), Welleck et al. (2019) proposed insertion-based
NMT models that insert words to the translations with a specific strategy. Unlike
these works, our approach performs refinements in the low-dimensional latent space,

rather than in the high-dimensional discrete space.
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ASPEC Ja-En WMT’14 En-De
BLEU(%) speedup | BLEU(%) speedup
Base Transformer, beam size=3 27.1 1x 26.1 1x
Base Transformer, beam size=1 24.6 1.1x 25.6 1.3x
Latent-Variable NAR Model 13.3 17.0x 11.8 22.2x
+ knowledge distillation 25.2 17.0x 22.2 22.2x
+ deterministic inference 27.5 8.6x 24.1 12.5x
+ latent search 28.3 4.8x 25.1 6.8x

Table 4.1 Comparison of the proposed non-autoregressive (NAR) models with the
autoregressive baselines. Our implementation of the Base Transformer is 1.0 BLEU
point lower than the original paper (Vaswani et al., 2017) on WMT’14 dataset.

Similarly to our latent-variable model, Zhang et al. (2016) proposed a variational
NMT, and Shah and Barber (2018) models the joint distribution of source and target.
Both of them use autoregressive models. Shah and Barber (2018) designed an EM-like
algorithm similar to Markov sampling (Arulkumaran et al., 2017). In contrast, we

propose a deterministic algorithm to remove any non-determinism during inference.

4.6 Experimental Settings

Data and preprocessing We evaluate our model on two machine translation
datasets: ASPEC Ja-En (Nakazawa et al., 2016) and WMT’14 En-De (Bojar et al.,
2014). The ASPEC dataset contains 3M sentence pairs, and the WMT’14 dataset
contains 4.5M senence pairs.

To preprocess the ASPEC dataset, we use Moses toolkit (Koehn et al., 2007)
to tokenize the English sentences, and Kytea (Neubig et al., 2011) for Japanese
sentences. We further apply byte-pair encoding (Sennrich et al., 2016a) to segment
the training sentences into subwords. The resulting vocabulary has 40K unique
tokens on each side of the language pair. To preprocess the WMT'14 dataset, we
apply sentencepiece (Kudo and Richardson, 2018) to both languages to segment the
corpus into subwords and build a joint vocabulary. The final vocabulary size is 32K

for each language.
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Learning To train the proposed non-autoregressive models, we adapt the same
learning rate annealing schedule as the Base Transformer. Final model parameters is
selected based on the validation ELBO value.

The only new hyperparameter in the proposed model is the dimension of each
latent variable. If each latent is a high-dimension vector, although it has a higher
capacity, the KL divergence in Eq. (4.2) becomes difficult to minimize. In practice,
we found that latent dimensionality values between 4 and 32 result in similar
performance. However, when the dimensionality is significantly higher or lower, we
see a performance drop. In all experiments, we set the latent dimensionionality to
8. We use a hidden size of 512 and feedforward filter size of 2048 for all models in
our experiments. We use 6 transformer layers for the prior and the decoder, and 3

transformer layers for the approximate posterior.

Evaluation We evaluate the tokenized BLEU for ASPEC Ja-En datset. For
WMT’14 En-De datset, we use SacreBLEU (Post, 2018a) to evaluate the translation
results. We follow Lee et al. (2018) to remove repetitions from the translation
results before evaluating BLEU scores. To measure the decoding speed, the main
computational device we use is Nvidia V100 GPU. It has the 16GB on-board memory
with 5120 CUDA cores. The GPU is operating at a frequency of 1246 MHz.

Latent Search To further exploit the parallel computation ability of GPUs, we
sample multiple initial latent variables from the prior p,(z|z). Then we perform
the deterministic inference on each latent variable to obtain a list of candidate
translations. However, we can not afford to evalaute each candidate using Eq. (4.4),
which requires importance sampling on ¢g,. Instead, we use the autoregressive
baseline model to score all the candidates, and pick the candidate with the highest
log probability. Following Parmar et al. (2018), we reduce the temperature by a
factor of 0.5 when sampling latent variables, resulting in better translation quality.

To avoid the stochasticity, we fix the random seed during sampling.



70 Latent-Variable Non-autoregressive Neural Machine Translation

4.7 Result and Analysis

4.7.1 Quantitative Analysis

Our quantitative results on both datasets are presented in Table 4.1. The base-
line model in our experiments is a base Transformer. Our implementation of the
autoregressive baseline is 1.0 BLEU points lower than the original paper (Vaswani
et al., 2017) on WMT’14 En-De datase. We measure the latency of decoding each
sentence on a single NVIDIA V100 GPU for all models, which is averaged over all

test samples.

As shown in Table 4.1, without knowledge distillation, we observe a significant
gap in translation quality compared to the autoregressive baseline. This observation
is in line with previous ones on non-autoregressive NMT (Gu et al., 2018b, Lee
et al., 2018, Wang et al., 2019). The gap is significantly reduced by using knowledge
distillation, as translation targets provided by the autoregressive model are easier to

predict.

With the proposed deterministic inference algorithm, we significantly improve
translation quality by 2.3 BLEU points on ASPEC Ja-En dataset and 1.9 BLEU
points on WMT’14 En-De dataset. Here, we only run the algorithm for one step.
We observe gain on ELBO by running more iterative steps, which is however not
reflected by the BLEU scores. As a result, we outperform the autoregressive baseline
on ASPEC dataset with a speedup of 8.6x. For WMT’14 dataset, although the
proposed model reaches a speedup of 12.5x, the gap with the autoregressive baseline
still remains, at 2.0 BLEU points. We conjecture that WMT’14 En-De is more
difficult for our non-autoregressive model as it contains a high degree of noise (Ott
et al., 2018).

By searching over multiple initial latent variables and rescoring with the teacher
Transformer model, we observe an increase in performance by 0.7 ~ 1.0 BLEU
scores at the cost of slower translation speed. In our experiments, we sample 50
candidate latent varaibles and decode them in parallel. The slowdown is mainly
caused by rescoring. With the help of rescoring, our final model further narrows the
performance gap with the autoregressive baseline to 1.0 BLEU with 6.8x speedup on
WMT’14 En-De task.
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Fig. 4.3 ELBO and BLEU scores measured with the target predictions obtained at
each inference step for ASPEC Ja-En and WMT’14 En-De datasets.

4.7.2 Non-autoregressive NMT Models

In Table 4.2, we list the results on WM'T’14 En-De by existing non-autoregressive
NMT approaches. All the models use Transformer as their autoregressive baselines.
In comparison, our proposed model suffers a drop of 1.0 BLEU points over the
baseline, which is a relatively small gap among the existing models. Thanks of
the rapid convergence of the proposed deterministic inference algorithm, our model
achieves a higher speed-up compared to other refinement-based models and provides

a better speed-accuracy tradeoff.

Concurrently to our work, the mask-prediction language model (Ghazvininejad
et al., 2019) was found to reduce the performance gap down to 0.9 BLEU on WMT’14
En-De while still maintaining a reasonable speed-up. The main difference is that
we update a delta posterior over latent variables instead of target tokens. Both
Ghazvininejad et al. (2019) and Wang et al. (2019) with autoregressive rescoring
decode multiple candidates in batch and pick one final translation from them. As
our proposal is orthogonal to using BERT-style training (Devlin et al., 2018), it is

an interesting future direction to investigate their combination.
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| BLEU(%)  SPD
Transformer (Vaswani et al., 2017 ‘ 27.1 -

)
Baseline (Gu et al., 2018b) | 23.4 1x
NAT (+FT +NPD S=100) | 19.1 (-4.3)  2.3x
)

Baseline (Lee et al., 2018) | 24.5 1x
Adaptive NAR Model | 21.5 (-3.0) 1.9x

Baseline (Kaiser et al., 2018a) | 23.5 1x
LT, Improved Semhash | 19.8 (-3.7) 3.8x
Baseline (Wang et al., 2019) | 27.3 1x

NAT-REG, no rescoring | 20.6 (-6.7) 27.6x*
NAT-REG, autoregressive rescoring | 24.6 (-2.7) 15.1x*

BL (Ghazvininejad et al., 2019) | 27.8 1x
CMLM with 4 iterations | 26.0 (-1.8) -
CMLM with 10 iterations | 26.9 (-0.9)  2~3x

Baseline (Ours) | 26.1 1x
NAR with deterministic Inference | 24.1 (-2.0)  12.5x
+ latent search | 25.1 (-1.0) 6.8x
Table 4.2 A comparison of non-autoregressive NMT models on WMT’14 En-De
dataset in BLEU(%) and decoding speed-up. * measured on IWSLT’14 DE-EN
dataset.

4.7.3 Analysis of Deterministic Inference

Convergences of ELBO and BLEU In this section, we empirically show that
the proposed deterministic iterative inference improves the ELBO in Eq. (4.2). As
the ELBO is a function of z and y, we measure the ELBO value with the new target
prediction after each iteration during inference. For each instance, we sample 20
latent variables to compute the expectation in Eq. (4.2). The ELBO value is further

averaged over data samples.

In Fig. 4.3, we show the ELBO value and the resulting BLEU scores for both
datasets. In the initial step, the delta posterior is initialized with the prior distribution
pu(z|x). We see that the ELBO value increases rapidly by performing the iterative
inference, which means a higher lowerbound to log p(y|x). The improvement is highly

correlated with increasing BLEU scores. For around 80% of the data samples, the
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Fig. 4.4 Trade-off between BLEU scores and speedup on WMT’14 En-De task by
varying the number of candidates computed in parallel from 10 to 100.

algorithm converges within three steps. We observe the BLEU scores peaked after

only one iterative step.

Trade-off between Quality and Speed In Fig. 4.4, we show the trade-off be-
tween translation quality and the speed gain on WMT’14 En-De task when considering
multiple candidates latent variables in parallel. We vary the number of candidates
from 10 to 100, and report BLEU scores and relative speed gains in the scatter plot.
The results are divided into two groups. The first group of experiments search over
multiple latent variables and rescore with the teacher Transformer. The second group

applies the proposed deterministic inference before rescoring.

We observe that the proposed deterministic inference constantly improves the
translation quality in all settings. The BLEU score peaks at 25.2 after increasing
the number of candidates to a large value. As GPUs are good at processing massive
computations in parallel, we can see that the translation speed only degrades by a

small magnitude when decoding less than 50 candidates.
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4.7.4 Decoding Speed Related to Sentence Length

In Fig. 4.5 and Fig. 4.6, we the relation between the decoding speed and the input
sentence length. Fig. 4.5 compares the proposed model and autoregressive baseline
on Nvidia V100 GPU, whereas Fig. 4.6 compares the decoding speed of proposed

model on different devices.

autoregressive baseline on Nvidia V100

1000 | et proposed model on Nvidia V100

800
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Fig. 4.5 Relation between decoding speed and input sentence length of autoregressive
baseline and proposed model, running on Nvidia V100 GPU.
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Fig. 4.6 Relation between decoding speed and input sentence length of proposed

model, running on multiple devices.

We observe that the decoding time is constant for our proposed model when run-

ning on GPU. In contrast, autoregressive model slows down linearly when translating
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longer sequences. Interestingly, the decoding speed of proposed model on CPU is
even faster than the autoregressive model on GPU. The results demonstrate that
the non-autoregressive models can be well parallelized given enough computational

capacity.

Example 1: Sequence modified without changing length

Source | hyouki gensuiryou hyoujun no kakuritsu wo kokoromita.
Reference | the establishment of an optical fiber attenuation ...
Initial Guess | an attempt was made establish establish damping ...
After Inference | an attempt was to establish the damping attenuation ...

Example 2: One word removed from the sequence

Source | ...¢“sen bouchou keisu no toriatsukai’’ nitsuite nobeta.
Reference | ... handling of linear expansion coefficient .
Initial Guess | ... ‘¢ handling of of linear expansion coefficient >’ ...
After Inference | ... ¢ handling of linear expansion coefficient >’ are ...

Example 3: Four words added to the sequence

Source | ... maikuro manipyureshon heto hatten shite kite ori ...
Reference | ... with wide application fields so that it has been ...
Initial Guess | ... micro micro manipulation and ...
After Inference | ... and micro manipulation , and it has been developed ...

Table 4.3 Ja-En sample translation with the proposed iterative inference algorithm.
In the first example, the initial guess is refined without a change in length. In the
last two examples, the iterative inference algorithm changes the target length along
with its content. This is more pronounced in the last example, where a whole clause
is inserted during refinement.

4.7.5 Qualitative Analysis

We present some example translations to demonstrate the effect of the proposed
iterative inference in Table 5.5. In the first example, the length of the target sequence
does not change but only the tokens are replaced over the refinement iterations.
The second and third examples show that the algorithm removes or inserts words

to the sequence during the iterative inference by adaptively changing the target
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length. Such a significant modification to the predicted sequence mostly happens

when translating long sentences.

For some test examples, however, we still find duplicated words in the final
translation after applying the proposed deterministic inference. For them, we notice
that the quality of the initial guess of translation is considerably worse than average,
which typically contains multiple duplicated words. As the decoder py(y|z, 2) is
trained to reconstruct the y sequence given to the approximator gy, it is not expected
to drastically modify the target prediction. Thus, a high-quality initial guess is

crucial for obtaining good translations.

4.8 Conclusion

Our work presents the first approach to use a continuous latent-variable model for
non-autoregressive Neural Machine Translation. The key idea is to introduce a
sequence of latent variables to capture the uncertainly in the target sentence. The
number of latent vectors is always identical to the number of input tokens. A length
transformation mechanism is then applied to adapt the latent vectors to match the
target length. We train the proposed model by maximizing the lowerbound of the
log-probability log p(y|z).

We then introduce a deterministic inference algorithm that uses a delta posterior
over the latent variables. The algorithm alternates between updating the delta
posterior and the target tokens. Our experiments show that the algorithm is able
to improve the evidence lowerbound of predicted target sequence rapidly. In our
experiments, the BLEU scores converge in only one iteration. Despite its effectiveness,

the algorithm can be easily implemented.

Our non-autoregressive NMT model closes the performance gap with autoregres-
sive baseline on ASPEC Ja-En task with a 8.6x speedup, and reduces the gap on
WMT’14 En-De task down to 2.0 BLEU point with a 12.5x speedup. By decoding
multiple latent variables sampled from the prior, our model outperforms the baseline
by 1.2 BLEU points on En-Ja task with 4.8x speedup, brings down the gap on En-De
task down to 1.0 BLEU with a speedup of 6.8x.

When decoding multiple latent variables, a teacher model is essential as the latent-
variable model framework does not provide a way to correctly evaluate candidate

translations. The teacher model typically takes 15ms to compute. Future work that
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enables rescoring without the help of a external model may further improve the

decoding speed.






Chapter 5

Discrete Representation Learning for

Model Compression

5.1 Motivation

Word embeddings play an important role in neural-based natural language processing
(NLP) models. Neural word embeddings encapsulate the linguistic information of
words in continuous vectors. However, as each word is assigned an independent
embedding vector, the number of parameters in the embedding matrix can be huge.
For example, when each embedding has 500 dimensions, the network has to hold
100M embedding parameters to represent 200K words. In practice, for a simple
sentiment analysis model, the word embedding parameters account for 98.8% of the

total parameters.

As only a small portion of the word embeddings is selected in the forward pass,
the giant embedding matrix usually does not cause a speed issue. However, the
massive number of parameters in the neural network results in a large storage or
memory footprint. When other components of the neural network are also large, the
model may fail to fit into GPU memory during training. Moreover, as the demand
for low-latency neural computation for mobile platforms increases, some neural-based
models are expected to run on mobile devices. Thus, it is becoming more important
to compress the size of NLP models for deployment to devices with limited memory

or storage capacity.
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5.2 Representing Words with Discrete Codes

In this study, we attempt to reduce the number of parameters used in word em-
beddings without hurting the model performance. Neural networks are known for
the significant redundancy in the connections (Denil et al., 2013). In this work, we
further hypothesize that learning independent embeddings causes more redundancy
in the embedding vectors, as the inter-similarity among words is ignored. Some
words are very similar regarding the semantics. For example, “dog” and “dogs” have
almost the same meaning, except one is plural. To efficiently represent these two
words, it is desirable to share information between the two embeddings. However, a
small portion in both vectors still has to be trained independently to capture the

syntactic difference.

Following the intuition of creating partially shared embeddings, instead of as-
signing each word a unique ID, we represent each word w with a code C,, =
(CL.C2....,CM). Each component C! is an integer number in [1, K]. Ideally, similar
words should have similar codes. For example, we may desire Cdog =(3,2,4,1) and
Cdogs = (3,2,4,2). Once we have obtained such compact codes for all words in the
vocabulary, we use embedding vectors to represent the codes rather than the unique
words. More specifically, we create M codebooks Ei, Es, ..., Eys, each containing
K codeword vectors. The embedding of a word is computed by summing up the

codewords corresponding to all the components in the code as

M

E(Cy) =) E(C), (5.1)

i=1

(5.2)

where E;(C") is the C" -th codeword in the codebook E;. In this way, the number of
vectors in the embedding matrix will be M x K, which is usually much smaller than
the vocabulary size. Fig. 5.1 gives an intuitive comparison between the compositional
approach and the conventional approach (assigning unique IDs). The codes of all the
words can be stored in an integer matrix, denoted by C'. Thus, the storage footprint
of the embedding layer now depends on the total size of the combined codebook F

and the code matrix C.

Although the number of embedding vectors can be greatly reduced by using

such coding approach, we want to prevent any serious degradation in performance
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E(Cy)

(@) (b)

Fig. 5.1 Comparison of embedding computations between the conventional approach
(a) and compositional coding approach (b) for constructing embedding vectors

compared to the models using normal embeddings. In other words, given a set of
baseline word embeddings E(w), we wish to find a set of codes C' and combined
codebook E that can produce the embeddings with the same effectiveness as E(w).
A safe and straight-forward way is to minimize the squared distance between the

baseline embeddings and the composed embeddings as

(C,E) =argmin — > " ||E(C,,) — E(w)|? (5.3)

—argmln 7 Z HZE (C) — E(w)])?, (5.4)

where |V| is the vocabulary size. The baseline embeddings can be a set of pre-trained
vectors such as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014a)
embeddings.

In Eq. (5.3), the baseline embedding matrix E is approximated by M codewords
selected from M codebooks. The selection of codewords is controlled by the code
C. Such problem of learning compact codes with multiple codebooks is formalized
and discussed in the research field of compression-based source coding, known as
product quantization (Jégou et al., 2011) and additive quantization (Babenko and
Lempitsky, 2014, Martinez et al., 2016). Previous works learn compositional codes
so as to enable an efficient similarity search of vectors. In this work, we utilize such
codes for a different purpose, that is, constructing word embeddings with drastically

fewer parameters.

Due to the discreteness in the hash codes, it is usually difficult to directly optimize
the objective function in Eq. (5.3). In this paper, we propose a simple and straight-

forward method to learn the codes in an end-to-end neural network. We utilize the
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Gumbel-softmax trick (Maddison et al., 2016, Jang et al., 2016) to find the best
discrete codes that minimize the loss. Besides the simplicity, this approach also

allows one to use any arbitrary differentiable loss function, such as cosine similarity.

The contribution of this work can be summarized as follows:

e We propose to utilize the compositional coding approach for constructing the
word embeddings with significantly fewer parameters. In the experiments,
we show that over 98% of the embedding parameters can be eliminated in
sentiment analysis task without affecting performance. In machine translation

tasks, the loss-free compression rate reaches 94% ~ 99%.

e We propose a direct learning approach for the codes in an end-to-end neural

network, with a Gumbel-softmax layer to encourage the discreteness.

e The neural network for learning codes will be packaged into a tool'. With
the learned codes and basis vectors, the computation graph for composing
embeddings is fairly easy to implement, and does not require modifications to

other parts in the neural network.

5.3 Related Work

Existing works for compressing neural networks include low-precision computation
(Vanhoucke et al., 2011, Hwang and Sung, 2014, Courbariaux et al., 2014, Anwar et al.,
2015), quantization (Chen et al., 2015, Han et al., 2016, Zhou et al., 2017), network
pruning (LeCun et al., 1989, Hassibi and Stork, 1992, Han et al., 2015, Wen et al.,
2016) and knowledge distillation (Hinton et al., 2015). Network quantization such as
HashedNet (Chen et al., 2015) forces the weight matrix to have few real weights, with
a hash function to determine the weight assignment. To capture the non-uniform
nature of the networks, DeepCompression (Han et al., 2016) groups weight values
into clusters based on pre-trained weight matrices. The weight assignment for each
value is stored in the form of Huffman codes. However, as the embedding matrix is
tremendously big, the number of hash codes a model need to maintain is still large

even with Huffman coding.

Network pruning works in a different way that makes a network sparse. Iterative

pruning (Han et al., 2015) prunes a weight value if its absolute value is smaller than

!The code can be found in https://github.com /zomux/neuralcompressor
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a threshold. The remaining network weights are retrained after pruning. Some recent
works (See et al., 2016, Zhang et al., 2017) also apply iterative pruning to prune 80%
of the connections for neural machine translation models. In this paper, we compare

the proposed method with iterative pruning.

The problem of learning compact codes considered in this paper is closely related
to learning to hash (Weiss et al., 2008, Kulis and Darrell, 2009, Liu et al., 2012),
which aims to learn the hash codes for vectors to facilitate the approximate nearest
neighbor search. Initiated by product quantization (Jégou et al., 2011), subsequent
works such as additive quantization (Babenko and Lempitsky, 2014) explore the use
of multiple codebooks for source coding, resulting in compositional codes. We also
adopt the coding scheme of additive quantization for its storage efficiency. Previous
works mainly focus on performing efficient similarity search of image descriptors. In
this work, we put more focus on reducing the codebook sizes and learning efficient
codes to avoid performance loss. Joulin et al. (2016) utilizes an improved version of
product quantization to compress text classification models. However, to match the
baseline performance, much longer hash codes are required by product quantization.
This will be detailed in Section 5.6.2. Concurrent to this work, Chen et al. (2017)
also explores the similar idea and obtained positive results in language modeling
tasks. Also, Raunak (2017) tried to reduce dimension of embeddings using PCA.

To learn the codebooks and code assignment, additive quantization alternatively
optimizes the codebooks and the discrete codes. The learning of code assignment is
performed by Beam Search algorithm when the codebooks are fixed. In this work,
we propose a straight-forward method to directly learn the code assignment and

codebooks simutaneously in an end-to-end neural network.

Some recent works (Xia et al., 2014, Liu et al., 2016, Yang et al., 2017) in learning
to hash also utilize neural networks to produce binary codes by applying binary
constrains (e.g., sigmoid function). In this work, we encourage the discreteness with

the Gumbel-Softmax trick for producing compositional codes.

As an alternative to our approach, one can also reduce the number of unique
word types by forcing a character-level segmentation. Kim et al. (2016) proposed
a character-based neural language model, which applies a convolutional layer after
the character embeddings. Botha et al. (2017) propose to use char-gram as input
features, which are further hashed to save space. Generally, using character-level
inputs requires modifications to the model architecture. Moreover, some Asian

languages such as Japanese and Chinese retain a large vocabulary at the character
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level, which makes the character-based approach difficult to be applied. In contrast,

our approach does not suffer from these limitations.

5.4 Advantage of Compositional Codes

In this section, we formally describe the compositional coding approach and analyze
its merits for compressing word embeddings. The coding approach follows the scheme
in additive quantization (Babenko and Lempitsky, 2014). We represent each word w
with a compact code C,, that is composed of M components such that C,, € Zf )
Each component C? is constrained to have a value in [1, K], which also indicates
that M log, K bits are required to store each code. For convenience, K is selected to

be a number of a multiple of 2, so that the codes can be efficiently stored.

If we restrict each component C? to values of 0 or 1, the code for each word
C, will be a binary code. In this case, the code learning problem is equivalent to a
matrix factorization problem with binary components. Forcing the compact codes
to be binary numbers can be beneficial, as the learning problem is usually easier to
solve in the binary case, and some existing optimization algorithms in learning to
hash can be reused. However, the compositional coding approach produces shorter

codes and is thus more storage efficient.

As the number of basis vectors is M x K regardless of the vocabulary size, the
only uncertain factor contributing to the model size is the size of the hash codes,
which is proportional to the vocabulary size. Therefore, maintaining short codes is
cruicial in our work. Suppose we wish the model to have a set of IV basis vectors.
Then in the binary case, each code will have N/2 bits. For the compositional coding
approach, if we can find a M x K decomposition such that M x K = N, then each
code will have M log, K bits. For example, a binary code will have a length of 256
bits to support 512 basis vectors. In contrast, a 32 X 16 compositional coding scheme

will produce codes of only 128 bits.

A comparison of different coding approaches is summarized in Table 5.1. We also
report the number of basis vectors required to compute an embedding as a measure of
computational cost. For the conventional approach, the number of vectors is identical
to the vocabulary size and the computation is basically a single indexing operation.
In the case of binary codes, the computation for constructing an embedding involves

a summation over N/2 basis vectors. For the compositional approach, the number
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#vectors | computation | code length (bits)
conventional V| 1 -
binary N N/2 N/2
compositional MK M Mlog, K

Table 5.1 Comparison of different coding approaches. To support N basis vectors, a
binary code will have N/2 bits and the embedding computation is a summation over
N/2 vectors. For the compositional approach with M codebooks and K codewords
in each codebook, each code has M log, K bits, and the computation is a summation
over M vectors.

of vectors required to construct an embedding vector is M. Both the binary and
compositional approaches have significantly fewer vectors in the embedding matrix.
The compositional coding approach provides a better balance with shorter codes and

lower computational cost.

5.5 Code Learning with Gumbel-Softmax

Let E € RIVI*H be the original embedding matrix, where each embedding vector has
H dimensions. By using the reconstruction loss as the objective function in Eq. (5.3),
we are actually finding an approximate matrix factorization E ~ Zi]\io D?A;, where
A; € REXH ig a basis matrix for the i-th component. D? is a |V| x K code matrix
in which each row is an K-dimensional one-hot vector. If we let d?, be the one-hot
vector corresponding to the code component C? for word w, the computation of the

word embeddings can be reformulated as

M

E(C,) =) Aldi, (5.5)

=0

Therefore, the problem of learning discrete codes C', can be converted to a problem of
finding a set of optimal one-hot vectors dy,, ..., d™ and source dictionaries Ay, ..., Apr,
that minimize the reconstruction loss. The Gumbel-softmax reparameterization trick
(Maddison et al., 2016, Jang et al., 2016) is useful for parameterizing a discrete
distribution such as the K-dimensional one-hot vectors df, in Eq. (5.5). By applying
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Fig. 5.2 The network architecture for learning compositional compact codes. The
Gumbel-softmax computation is marked with dashed lines.

the Gumbel-softmax trick, the k-th elemement in df, is computed as

(di,), = softmax, (log af, + Gy (5.6)
_exp((log (o) + Gi)/7)
>y exp((log (ad ) + Gi)/T)

(5.7)

where G, is a noise term that is sampled from the Gumbel distribution by computing
— log(— log(Uniform[0, 1])), whereas 7 is the temperature of the softmax. In our
model, the vector af, is computed by a simple neural network with a single hidden

layer as

o, = softplus(0) ' h, + b)), (5.8)
h. = tanh(0" E(w) + b) . (5.9)

In our experiments, the hidden layer h,, always has a size of M K/2. We found
that a fixed temperature of 7 = 1 just works well. The Gumbel-softmax trick is
applied to o, to obtain df,. Then, the model reconstructs the embedding E(C,,)
with Eq. (5.5) and computes the reconstruction loss with Eq. (5.3). The model
architecture of the end-to-end neural network is illustrated in Fig. 5.2, which is
effectively an auto-encoder with a Gumbel-softmax middle layer. The whole neural

network for coding learning has five parameters (6,b,0’,b’, A).

Once the coding learning model is trained, the code C), for each word can be
easily obtained by applying argmax to the one-hot vectors db,, ...,d¥. The basis
vectors (codewords) for composing the embeddings can be found as the row vectors

in the weight matrix A.

For general NLP tasks, one can learn the compositional codes from publicly

available word vectors such as GloVe vectors. However, for some tasks such as
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machine translation, the word embeddings are usually jointly learned with other
parts of the neural network. For such tasks, one has to first train a normal model to
obtain the baseline embeddings. Then, based on the trained embedding matrix, one
can learn a set of task-specific codes. As the reconstructed embeddings E(C,,) are
not identical to the original embeddings E (w), the model parameters other than the
embedding matrix have to be retrained again. The code learning model cannot be
jointly trained with the machine translation model as it takes far more iterations for

the coding layer to converge to one-hot vectors.

5.6 Experiments

In our experiments, we focus on evaluating the maximum loss-free compression rate
of word embeddings on two typical NLP tasks: sentiment analysis and machine
translation. We compare the model performance and the size of embedding layer with
the baseline model and the iterative pruning method (Han et al., 2015). Please note
that the sizes of other parts in the neural networks are not included in our results. For
dense matrices, we report the size of dumped numpy arrays. For the sparse matrices,
we report the size of dumped compressed sparse column matrices (csc_matrix) in
scipy. All float numbers take 32 bits storage. We enable the “compressed” option
when dumping the matrices, without this option, the file size is about 1.1 times

bigger.

5.6.1 Code Learning

To learn efficient compact codes for each word, our proposed method requires a set
of baseline embedding vectors. For the sentiment analysis task, we learn the codes
based on the publicly available GloVe vectors. For the machine translation task, we
first train a normal neural machine translation (NMT) model to obtain task-specific

word embeddings. Then we learn the codes using the pre-trained embeddings.

We train the end-to-end network described in Section 5.5 to learn the codes
automatically. In each iteration, a small batch of the embeddings is sampled uniformly
from the baseline embedding matrix. The network parameters are optimized to
minimize the reconstruction loss of the sampled embeddings. In our experiments,
the batch size is set to 128. We use Adam optimizer (Kingma and Ba, 2014) with a
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fixed learning rate of 0.0001. The training is run for 200K iterations. Every 1,000
iterations, we examine the loss on a fixed validation set and save the parameters if
the loss decreases. We evenly distribute the model training to 4 GPUs using the nccl

package, so that one round of code learning takes around 15 minutes to complete.

5.6.2 Sentiment Analysis

Dataset: For sentiment analysis, we use a standard separation of IMDB movie
review dataset (Maas et al., 2011), which contains 25k reviews for training and
25K reviews for testing purpose. We lowercase and tokenize all texts with the nltk
package. We choose the 300-dimensional uncased GloVe word vectors (trained on
42B tokens of Common Crawl data) as our baseline embeddings. The vocabulary
for the model training contains all words appears both in the IMDB dataset and
the GloVe vocabulary, which results in around 75K words. We truncate the texts of

reviews to assure they are not longer than 400 words.

Model architecture: Both the baseline model and the compressed models have
the same computational graph except the embedding layer. The model is composed
of a single LSTM layer with 150 hidden units and a softmax layer for predicting
the binary label. For the baseline model, the embedding layer contains a large
75K x 300 embedding matrix initialized by GloVe embeddings. For the compressed
models based on the compositional coding, the embedding layer maintains a matrix
of basis vectors. Suppose we use a 32 x 16 coding scheme, the basis matrix will then
have a shape of 512 x 300, which is initialized by the concatenated weight matrices
[Ay; Aa;...; Apg] in the code learning model. The embedding parameters for both
models remain fixed during the training. For the models with network pruning, the

sparse embedding matrix is finetuned during training.

Training details: The models are trained with Adam optimizer for 15 epochs
with a fixed learning rate of 0.0001. At the end of each epoch, we evaluate the loss

on a small validation set. The parameters with lowest validation loss are saved.

Results: For different settings of the number of components M and the number
of codewords K, we train the code learning network. The average reconstruction
loss on a fixed validation set is summarized in the left of Table 5.2. For reference,
we also report the total size (MB) of the embedding layer in the right table, which
includes the sizes of the basis matrix and the hash table. We can see that increasing

either M or K can effectively decrease the reconstruction loss. However, setting M
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loss | M=8 M=16 M=32 M=64 size | M=8 M=16 M=32 M=64
K=8 | 29.1 258 21.9 15.5 K=8 | 0.28 0.56 1.12 2.24
K=16 | 27.0 228 19.1 115 K=16| 0.41  0.83 1.67 3.34
K=32| 244 204 14.3 9.3 K=32 | 0.62 1.24 2.48 4.96
K=64 | 219 16.9 12.1 7.6 K=64 | 095 191 3.82 7.64

Table 5.2 Reconstruction loss and the size of embedding layer (MB) of difference
settings

to a large number will result in longer hash codes, thus significantly increase the size
of the embedding layer. Hence, it is important to choose correct numbers for M and

K to balance the performance and model size.

To see how the reconstructed loss translates to the classification accuracy, we
train the sentiment analysis model for different settings of code schemes and report
the results in Table 5.3. The baseline model using 75k GloVe embeddings achieves
an accuracy of 87.18 with an embedding matrix using 78 MB of storage. In this task,

forcing a high compression rate with iterative pruning degrades the classification

accuracy.
#vec | vec size | code | code size | total size | acc.

GloVe baseline 75K 78 MB - - 78 MB 87.18
prune 80% 75K 21 MB - - 21 MB 86.25
prune 90% 75K 11 MB - - 11 MB 84.96

NPQ (10 x 256) | 256 | 0.26 MB | 80 bits | 0.71 MB 0.97 MB | 86.21
NPQ (60 x 256) | 256 | 0.26 MB | 480 bits | 4.26 MB 452 MB | 87.11
8 X 64 coding 512 | 0.52 MB | 48 bits | 0.42 MB 0.94 MB | 86.66
16 x 32 coding 512 | 0.52 MB | 80 bits | 0.71 MB | 1.23 MB | 87.37
32 x 16 coding 512 | 0.52 MB | 128 bits | 1.14 MB 1.66 MB | 87.80
64 x 8 coding 512 | 0.52 MB | 192 bits | 1.71 MB 223 MB | 88.15

Table 5.3 Trade-off between the model performance and the size of embedding layer
on IMDB sentiment analysis task

We also show the results using normalized product quantization (NPQ) (Joulin
et al., 2016). We quantize the filtered GloVe embeddings with the codes provided by
the authors, and train the models based on the quantized embeddings. To make the
results comparable, we report the codebook size in numpy format. For our proposed
methods, the maximum loss-free compression rate is achieved by a 16 x 32 coding

scheme. In this case, the total size of the embedding layer is 1.23 MB, which is
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equivalent to a compression rate of 98.4%. We also found the classification accuracy
can be substantially improved with a slightly lower compression rate. The improved

model performance may be a byproduct of the strong regularization.

5.6.3 Machine Translation

Dataset: For machine translation tasks, we experiment on IWSLT 2014 German-
to-English translation task (Cettolo et al., 2014) and ASPEC English-to-Japanese
translation task (Nakazawa et al., 2016). The IWSLT14 training data contains 178K
sentence pairs, which is a small dataset for machine translation. We utilize moses
toolkit (Koehn et al., 2007) to tokenize and lowercase both sides of the texts. Then
we concatenate all five TED/TEDx development and test corpus to form a test set
containing 6750 sentence pairs. We apply byte-pair encoding (Sennrich et al., 2016b)
to transform the texts to subword level so that the vocabulary has a size of 20K for

each language. For evaluation, we report tokenized BLEU using “multi-bleu.perl”.

The ASPEC dataset contains 300M bilingual pairs in the training data with
the automatically estimated quality scores provided for each pair. We only use the
first 150M pairs for training the models. The English texts are tokenized by moses
toolkit whereas the Japanese texts are tokenized by kytea (Neubig et al., 2011). The
vocabulary size for each language is reduced to 40K using byte-pair encoding. The
evaluation is performed using a standard kytea-based post-processing script for this

dataset.

Model architecture: In our preliminary experiments, we found a 32 x 16
coding works well for a vanilla NMT model. As it is more meaningful to test on a
high-performance model, we applied several techniques to improve the performance.
The model has a standard bi-directional encoder composed of two LSTM layers
similar to Bahdanau et al. (2015). The decoder contains two LSTM layers. Residual
connection (He et al., 2016) with a scaling factor of \/m is applied to the two
decoder states to compute the outputs. All LSTMs and embeddings have 256 hidden
units in the IWSLT14 task and 1000 hidden units in ASPEC task. The decoder
states are firstly linearly transformed to 600-dimensional vectors before computing
the final softmax. Dropout with a rate of 0.2 is applied everywhere except the
recurrent computation. We apply Key-Value Attention (Miller et al., 2016) to the
first decoder, where the query is the sum of the feedback embedding and the previous

decoder state and the keys are computed by linear transformation of encoder states.
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Training details: All models are trained by Nesterov’s accelerated gradient
(Nesterov, 1983) with an initial learning rate of 0.25. We evaluate the smoothed
BLEU (Lin and Och, 2004) on a validation set composed of 50 batches every 7,000
iterations. The learning rate is reduced by a factor of 10 if no improvement is
observed in 3 validation runs. The training ends after the learning rate is reduced
three times. Similar to the code learning, the training is distributed to 4 GPUs, each

GPU computes a mini-batch of 16 samples.

We firstly train a baseline NMT model to obtain the task-specific embeddings for
all in-vocabulary words in both languages. Then based on these baseline embeddings,
we obtain the hash codes and basis vectors by training the code learning model.
Finally, the NMT models using compositional coding are retrained by plugging in
the reconstructed embeddings. Note that the embedding layer is fixed in this phase,

other parameters are retrained from random initial values.

Results: The experimental results are summarized in Table 5.4. All translations
are decoded by the beam search with a beam size of 5. The performance of iterative
pruning varies between tasks. The loss-free compression rate reaches 92% on ASPEC
dataset by pruning 90% of the connections. However, with the same pruning ratio, a

modest performance loss is observed in IWSLT14 dataset.

For the models using compositional coding, the loss-free compression rate is 94%
for the IWSLT14 dataset and 99% for the ASPEC dataset. Similar to the sentiment
analysis task, a significant performance improvement can be observed by slightly
lowering the compression rate. Note that the sizes of NMT models are still quite
large due to the big softmax layer and the recurrent layers, which are not reported in
the table. Please refer to existing works such as Zhang et al. (2017) for the techniques

of compressing layers other than word embeddings.

5.7 Qualitative Analysis

5.7.1 Examples of Learned Codes

In Table 5.5, we show some examples of learned codes based on the 300-dimensional
uncased GloVe embeddings used in the sentiment analysis task. We can see that

the model learned to assign similar codes to the words with similar meanings. Such
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coding #vec | vec size | code | code size | total size | BLEU

baseline 40K 35 MB - - 35 MB 29.45

prune 90% | 40K | 5.21 MB - - 5.21 MB 29.34

De.Ey | Prune 95% | 40K | 2.63 MB - - 2.63 MB 28.84
32 x 16 512 | 0.44 MB | 128 bits | 0.61 MB 1.05 MB 29.04

64 x 16 1024 | 0.89 MB | 256 bits | 1.22 MB | 2.11 MB | 29.56

baseline S8OK | 274 MB - - 274 MB 37.93

prune 90% | 80K 41 MB - - 41 MB 38.56

Foga | PrUne 98% | 80K | 8.26 MB - - 8.26 MB 37.09
32 x 16 512 | 1.75 MB | 128 bits | 1.22 MB | 2.97 MB | 38.10

64 x 16 1024 | 3.50 MB | 256 bits | 2.44 MB 5.94 MB | 38.89

Table 5.4 Trade-off between the model performance and the size of embedding layer
in machine translation tasks

a code-sharing mechanism can significantly reduce the redundancy of the word

embeddings, thus helping to achieve a high compression rate.

category | word 8 X 8 code 16 x 16 code
dog 07017370|77083585B2EEO0OBOA
animal cat 77T017370|7728B58CB2EE4BO0OA
penguin |0 7 017360|77TE8764CFDE3D8O0A
go 77064330/ 2CC82C11BDOEOBY5S
verb went 40764320 BCC6BC75B86EO0DOA4
gone 77064330/ 2CC80B15BD6EO025A
Table 5.5 Examples of learned compositional codes based on GloVe embedding vectors

5.7.2 Analysis of Code Efficiency

Besides the performance, we also care about the storage efficiency of the codes. In the
ideal situation, all codewords shall be fully utilized to convey a fraction of meaning.
However, as the codes are automatically learned, it is possible that some codewords
are abandoned during the training. In extreme cases, some “dead” codewords can be

used by none of the words.

To analyze the code efficiency, we count the number of words that contain a

specific subcode in each component. Figure 5.3 gives a visualization of the code
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balance for three coding schemes. Each column shows the counts of the subcodes of a
specific component. In our experiments, when using a 8 x 8 coding scheme, we found
31% of the words have a subcode “0” for the first component, while the subcode “1”
is only used by 5% of the words. The assignment of codes is more balanced for larger
coding schemes. In any coding scheme, even the most unpopular codeword is used
by about 1000 words. This result indicates that the code learning model is capable

of assigning codes efficiently without wasting a codeword.

12000

22500 - 0 10000
20000 10500 5 9000
17500 9000 8000

10
7000
15000 7500
6000
15
12500
6000 5000
1
0000 10| 4500 20 4000
7500 i
12 3000 25 3000
5000 14 o 2000
1500
L 1000

0o 1 2 3 4 5 6 7 2500 6 8 10 12 14 0 5 10 15 20 25 30
(@) 8x8 (b) 16 x 16

N o u & W N = O

(c) 32 x 32

Fig. 5.3 Visualization of code balance for different coding scheme. Each cell in the
heat map shows the count of words containing a specific subcode. The results show
that any codeword is assigned to more than 1000 words without wasting.

5.7.3 Shared Codes

In both tasks, when we use a small code decomposition, we found some hash codes
are assigned to multiple words. Table 5.6 lists some samples of shared codes with
their corresponding words from the sentiment analysis task. This phenomenon does
not cause a problem in either task, as the words only have shared codes when they

have almost the same sentiments or target translations.

shared code | words
477 047 1 1| homes cruises motel hotel resorts mall vacations hotels
6 6 7140 2 0| basketball softball nfl nascar baseball defensive ncaa tackle nba
37 324 3 3 0| unfortunately hardly obviously enough supposed seem totally ...
4670475 0| toronto oakland phoenix miami sacramento denver ...
77667 30 0] yoyadiglol dat lil bye
Table 5.6 Examples of words sharing same codes when using a 8 X8 code decomposition
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5.7.4 Semantics of Codes

In order to see whether each component captures semantic meaning. we learned a set
of codes using a 3 x 256 coding scheme, this will force the model to decompose each
embedding into 3 vectors. In order to maximize the compression rate, the model

must make these 3 vectors as independent as possible.

word | code

man | 210 153 153
woman | 232 153 153

king | 210 180 039
queen | 232 180 039
British | 118 132 142
London | 185 126 142
Japan | 118 056 021
Tokyo | 185 036 021

Table 5.7 Some code examples using a 3 x 256 coding scheme.

)

As we can see from Table 5.7, we can transform “man/king” to “woman/queen’
by change the subcode “210” in the first component to “232”. So we can think “210”
must be a “male” code, and “232” must be a “female” code. Such phenomenon can

also be observed in other words such as city names.

5.8 Conclusion

In this work, we propose a novel method for reducing the number of parameters
required in word embeddings. Instead of assigning each unique word an embedding
vector, we compose the embedding vectors using a small set of basis vectors. The
selection of basis vectors is governed by the hash code of each word. We apply the
compositional coding approach to maximize the storage efficiency. The proposed
method works by eliminating the redundancy inherent in representing similar words
with independent embeddings. In our work, we propose a simple way to directly
learn the discrete codes in a neural network with Gumbel-softmax trick. The results
show that the size of the embedding layer was reduced by 98% in IMDB sentiment
analysis task and 94% ~ 99% in machine translation tasks without affecting the

performance.
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Our approach achieves a high loss-free compression rate by considering the
semantic inter-similarity among different words. In qualitative analysis, we found the
learned codes of similar words are very close in Hamming space. As our approach
maintains a dense basis matrix, it has the potential to be further compressed by
applying pruning techniques to the dense matrix. The advantage of compositional
coding approach will be more significant if the size of embedding layer is dominated
by the hash codes.






Chapter 6

Learning Syntactic Latent Variables

for Diverse Translation

6.1 Motivation

When using machine translation systems, users may desire to see different candidate
translations other than the best one. In this scenario, users usually expect the system

to show candidates with different sentence structures.

To obtain diverse translations, conventional neural machine translation (NMT)
models allow one to sample translations using the beam search algorithm, however,
they usually share similar sentence structures. Recently, various methods (Li et al.,
2016, Xu et al., 2018) are proposed for diverse generation. These methods encourage
the model to use creative vocabulary to achieve high diversity. Although produc-
ing creative words benefits tasks in the dialog domain, when applied to machine

translation, it can hurt the translation quality by changing the original meaning.

In this work, we are interested in generating multiple valid translations with high
diversity. To achieve this, we propose to construct the codes based on semantics-level

or syntax-level information of target-side sentences.

To generate diverse translations, we constrain the generation model by specifying
a particular code as a semantic or syntactic assignment. More concretely, we prefix
the target-side sentences with the codes. Then, an NMT model is trained with the
original source sentences and the prefixed target sentences. As the model generates

tokens in left-to-right order, the probability of emitting each word is predicted
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conditioned on the assigned code. As each assignment is supposed to correspond to
a sentence structure, the candidate translations sampled with different assignments

are expected to have high diversity.

We can think such model as a mixture-of-expert translation model where each
expert is capable of producing translations with a certain style indicated by the code.
In the inference time, code assignments are given to the model so that a selection of

experts are picked to generate translations.

The key question is how to extract such sentence codes. Here, we explore two
approaches. First, a simple unsupervised method is tested, which clusters the sentence
embeddings and use the cluster ids as the code assignments. Next, to capture only
the structural variation of sentences, we turn to syntax. We encode the structure of

constituent parse trees into discrete codes with a tree auto-encoder.

Experiments on two machine translation datasets show that a set of highly diverse
translations can be obtained with reasonable mechanism for extracting the sentence
codes, while the sampled candidates still have BLEU scores on par with the baselines.
As our approach only modifies the training data, but does not require modification to

the NMT models, it can be easily adopted in existing machine translation systems.

The contributions of this work can be summarized as follows:

1. We propose a novel approach for obtaining candidate translation with only
syntactic diversity. Our approach encodes the syntactic tags into few discrete

codes to minimize negative impact on translation speed.

2. Through experiments, we show that the quality of the best translation still

remains intact with the discrete codes as a syntactic prior.

3. To quantatively evaluate our approach, we propose a syntactic diversity met-
ric. The evaluation results show that our approach is capable of producing

translations with drastically different structures.
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6.2 Proposed Approach

6.2.1 Extracting Sentence Codes

Our approach produces diverse translations by conditioning sentence generation with
the sentence codes. Ideally, we would like the codes to capture the information about
the sentence structures rather than utterances. To extract such codes from target

sentences, we explore two methods.

Semantic Coding Model The first method extracts sentence codes from
unsupervisedly learned semantic information. We cluster the sentence embeddings
produced by pre-trained models into a fixed number of clusters, then use the cluster
ids as discrete priors to condition the sentence generation. In this work, we test two
semantic coding models. The first model is based on BERT (Devlin et al., 2018),

where the vectors corresponding to the “|CLS|” token are clustered.

The second model produces sentence embeddings by averaging FastText word
embeddings (Bojanowski et al., 2017). Comparing to the hidden states of BERT,
word embeddings are expected to contain less syntactic information as the word

order is ignored during training.

Syntactic Coding Model To explicitly capture the syntactic diversity, we also
consider to derive the sentence codes from the parse trees produced by a constituency
parser. As the utterance-level information is not desired, the terminal nodes are

removed from the parse trees.

To obtain the sentence codes, we use a TreeLSTM-based auto-encoder similar to
Socher et al. (2011a), which encodes the syntactic information into a single discrete
code. As illustrated in Fig. 6.1 (a), a TreeLSTM cell (Tai et al., 2015) computes a

recurrent state based on a given input vector and the states of N; child nodes:
hi = feen(i, hir, hag, .., hin,; 0). (6.1)

The tree auto-encoder model is shown in Fig. 6.1 (c¢), where the encoder computes
a latent tree representation. As the decoder has to unroll the vector representation
following a reversed tree structure to predict the non-terminal labels, the standard
TreeLSTM equation cannot be directly applied. To compute along the reversed tree,

we modify Eq. (6.1) for computing the hidden state of the j-th child node given the
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Fig. 6.1 Architecture of the TreeLSTM-based auto-encoder with a discretization
bottleneck for learning the sentence codes.

parent-node state h;:
hij = fdec(hi; 9]')7 (62)

where the internal implementation of the recurrent function is same as Eq. (6.1),
however, each node has a different parameterization depending on its position among
siblings. Note that in the decoder side, no input vectors are fed to the recurrent
computation. Finally, the decoder states are used to predict target labels, whereas

the model is optimized with cross-entropy loss.

As the source sentence already provides hints on the target-side sentence structure,
we feed the source information to the tree auto-encoder to encourage the latent

representation to capture the syntax that cannot be inferred from the source sentence.

As some target-side syntactic information is obvious given the source sentence,
we do not want the latent representation to encode such information, but rather
substitutable syntactic choices. For example, the structure of “NP VP” is obvious

given the source sentence in Fig. 6.1 (b). Therefore, we use an attention-based
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encoder followed by a mean pool operation to create a source representation and
feed it to the decoder.

To obtain the sentence codes from the latent tree representation, we apply
improved semantic hashing (Kaiser and Bengio, 2018) to the hidden state of the
root node, which discretizes the vector into a 8-bit code (binary vector). When
performing improved semantic hashing, the forward pass computes two operations:
binarization and saturated sigmoid, resulting in two vectors. One of these two vectors
are randomly selected for the next computation. However, in the backward pass, the
gradient always flows through the vector produced by saturated sigmoid. As the
model is trained together with the bottleneck, the codes are optimized directly to

minimize the loss function.

6.2.2 Diverse Generation with Code Assignment

Once we obtain the sentence codes, we prefix the target-side sentences in the training
data with the corresponding codes. The resultant target sentence has a form of

“(c12) (eoc) Here is a translation.”. The “(eoc)” token separates the code and words.

We train a regular NMT model with the modified training dataset. To generate
diverse translations, we first obtain top-K codes from the probability distribution of
code prediction. In detail, we select K sentence codes with the highest probabilities.
Then, conditioning on each code, we let the beam search continue to generate the

sentence, resulting in K translations conditioned on different codes.

6.3 Related Work

Our work is related to other works of diverse language generation. Though differing

in purpose, our approach is also related to NMT models with syntactic constraint.

Style Transfer for Natural Language As our task learns the structural
representation, the problem setting is closely related to style transfer for language
generation tasks. Hu et al. (2017) simultaneously learns a disentangled representation
along with entangled representations within the same latent vector. The disentangled
representation is trained with a style-specific discriminator. Shen et al. (2017) learns
a cross-aligned auto encoder to tackle the style transfer problem without parallel

text data. Prabhumoye et al. (2018) utilizes back-translation to create a style
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agnostic representation of sentence. Then multiple style transfer decoders is trained
to generate sentences in specific styles according to the latent representation. The
parameters are optimized with style classifiers using adversarial loss. The main
difference between our task and previous works in style transfer is in the objectives.
In the aforementioned works, the styles have finite categories. For example, the
label for sentiment style can only be “positive” or “negative”. In our task setting, the
objective is to learn a representation that captures the global sentence structure,

which has infinite variations.

Theoretically, we can still train a variational auto-encoder (VAE) that learns
a categorical latent code or a continuous latent variable with a Gaussian prior to
capture the structure. We can extend the VAE model described in Hu et al. (2017)
with an enhanced discriminator ¢p(c|z) to map the global structure of a sentence x
to the space of a latent variable ¢, and ensure that sentences with similar structures
are mapped to same or close latent representations. However, as the structural
information is highly entangled with the utterances, such a discriminator is fairly

difficult to implement.

Diverse Language Generation Existing works for diverse text generation can
be categorized into two major categories. The approaches in the first categoriy sample
diverse sequences by varying a hidden representation. Jain et al. (2017) generates
diverse questions by injecting Gaussian noise to the latent in a VAE for encouraging
the creativity of results. Xu et al. (2018) learns K shared decoders, conditioned on
different pattern rewriting embeddings. The former method is evaluated by assessing
the ability of generating unique and unseen results, whereas the latter is evaluated
with the number of unique uni/bi-grams and the divergence of word distributions
produced by different decoders. Independent to this work, Shen et al. (2019) also
explores mixture-of-expert models with an ensemble of learners. The paper discusses

multiple training strategies and found the multiple choice learning works best.

The second category of approaches attempts to improve the diversity by improving
decoding algorithms. Li et al. (2016) modifies the scoring function in beam search
to encourage the algorithm to promote hypotheses containing words from different
ancestral hypotheses, which is also evaluated with the number of unique uni/bi-grams.
Kulikov et al. (2018) uses an iterative beam search approach to generate diverse

dialogs.

Comparing to these works, we focus on generating translations with different

sentence structures. We still use beam search to search for best words in every
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decoding steps under the constraint of code assignment. Our approach also comes

with the advantage that no modification to the NMT model architecture is required.

NMT with Syntactic Constraint To our knowledge, there are no existing
works control the sentence structure ahead of translation. However, our approach is
related to NMT models under syntactic constraint. Stahlberg et al. (2016) syntac-
tically guides the NMT decoding using the lattice produced by Hiero, a statistical
machine translation system allowing hierarchical phrase structure. Eriguchi et al.
(2017) parse a dependency tree and combine the parsing loss with the original loss,
which improves the syntactic trace of translations in a soft way. The following works
also enhance the target sentence with extra syntactic tags. Nadejde et al. (2017)
interleaves CCG supertags with normal output words in the target side. Instead of
predicting words, Aharoni and Goldberg (2017) trains an NMT model to generate
linearized constituent parse trees. Wu et al. (2017) proposed a model to generate
words and parse actions simultaneously. The word prediction and action predic-
tion are conditioned on each other. These works focus on improving the syntactic

correctness, whereas our work focuses on syntactic diversity.

Similar to our code learning approach, some works also learn the discrete codes
for different purposes. Shu and Nakayama (2018) compresses the word embeddings
by learning the concept codes to represent each word. Kaiser et al. (2018b) breaks
down the dependency among words with shorter code sequences. The decoding can

be faster by predicting the shorter artificial codes.

6.4 Experiments

6.4.1 Experimental Settings

We evaluate our models on two machine translation datasets: ASPEC Japanese-to-
English dataset (Nakazawa et al., 2016) and WMT14 German-to-English dataset.
The datasets contain 3M and 4.5M bilingual pairs respectively. For the ASPEC Ja-En
dataset, we use the Moses toolkit (Koehn et al., 2007) to tokenize the English side
and Kytea (Neubig et al., 2011) to tokenize the Japanese side. After tokenization, we
apply byte-pair encoding (Sennrich et al., 2016b) to segment the texts into subwords,
forcing the vocabulary size of each language to be 40k. For WMT14 De-En dataset,
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. . IWSLT14 De-En ASPEC Ja-En
code setting | capacity
tag acc. | code acc. | tag acc. | code acc.
N=1, K=4 2 bits 27% 63% 35% 40%
N=2, K=2 2 bits 23% 67% 27% 55%
N=2, K=4 4 bits 35% 41% 58% 25%
N=4, K=2 4 bits 22% 44% 18% 79%
N=4, K=4 8 bits 44% 27% 14% 58%

Table 6.1 A comparison of different code settings on IWSLT14 De-En and ASPEC Ja-
En datset. For each code setting, we report the accuracy of recovering the syntactic
tag sequence using the codes (tag accuracy), and the accuracy of predicting the codes
using the source sentence (code accuracy).

we use sentencepiece (Kudo and Richardson, 2018) to segment the words to ensure a

vocabulary size of 32k.

In evaluation, we report tokenized BLEU for ASPEC Ja-En dataset. For WMT14
De-En dataset, BLEU scores are generated using SacreBleu toolkit (Post, 2018b).
For models that produce sentence codes during decoding, the codes are removed

from translation results before evaluating BLEU scores.

6.4.2 Obtaining Sentence Codes

For the semantic coding model based on BERT, we cluster the hidden state of
“|CLS]” token into 256 clusters with k-means algorithm. The cluster ids are then
used as sentence codes. For models using FastText Embeddings, pre-trained vectors
(Common Crawl, 2M words) are used. Please note that the number of clusters is
a hyperparameter, here we choose the number of clusters to match the number of

unique codes in the syntax-based model.

To train the syntax coding model, we parse target-side sentences with Stanford
CFG parser (Klein and Manning, 2003). The TreeL.STM-based auto-encoder is imple-
mented with DGL,! which is trained using AdaGrad optimizer for faster convergence.
We found it helpful to pre-train the model without the discretization bottleneck for

achieving higher label accuracy.

Thttps://www.dgl.ai/
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Model BLEU | Oracle | DP
ASPEC Ja — En
Transformer Baseline 27.1 - 22.4
+Diverse Dec (Li et al., 2016) 26.9 - 26.2
+ Random Codes 27.0 - 4.9
+ Semantic Coding (BERT) 26.8 28.8 | 30.6
+ Semantic Coding (FastText) | 27.3 28.5 31.1
+ Syntactic Coding 27.4 29.5 39.8
WMT14 De — En
Transformer Baseline 294 - 28.2
+Diverse Dec (Li et al., 2016) 29.1 - 31.0
+ Random Codes 29.5 - 3.8
+ Semantic Coding (BERT) 29.3 294 | 21.7
+ Semantic Coding (FastText) | 28.5 29.2 | 28.8
+ Syntactic Coding 29.3 30.7 | 33.0

Table 6.2 Results for different approaches. The BLEU(%) are reported for the first
sampled candidate. Oracle BLEU scores are produced with reference codes. Diversity
scores (DP) are evaluated with Eq. (6.3).

6.4.3 Quantitive Evaluation of Diversity

As we are interested in the diversity among sampled candidates, the diversity metric
based on the divergence between word distributions (Xu et al., 2018) can not be
applied in this case. In order to qualitatively evaluate the diversity of generated
translations, we propose to use a BLEU-based discrepancy metric. Suppose Y is a

list of candidate translations, we compute the diversity score with

DP(Y) =

TS0EE) ‘Y‘ Z Z 1-A (6.3)

ery €Yy #y

where A(y,y’) returns the BLEU score of two candidates. The equation gives a

higher diversity score when each candidate contains more unique n-grams.
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6.4.4 Experiment Results

We use Base Transformer architecture (Vaswani et al., 2017) for all models. The
results are summarized in Table 6.2. We sample three candidates with different
models, and report the averaged diversity score. The BLEU(%) is reported for the
candidate with highest confidence (log-probability). A detailed table with BLEU
scores of all three candidates can be found in supplementary material, where the

BLEU scores of the second and third candidates are on par with the baseline.

We compare the proposed approach to three baselines. The first baseline samples
three candidates using standard beam search. We also tested the diverse decoding
approach (Li et al., 2016). The coefficient 7 is chosen to maximize the diversity
with no more than 0.5 BLEU degradation. The third baseline uses random codes for

conditioning.

As shown in the table, the model based on BERT sentence embeddings achieves
higher diversity in ASPEC dataset, which contains only formal texts. However, it
fails to deliver similar results in WMT14 dataset, which is more informal. This may
be due to the difficulty in clustering BERT vectors which were never trained to work
with clustering. The model using FastText embeddings is shown to be more robust
across the datasets, although it also fails to outperform the diverse decoding baseline
in WMT14 dataset.

In contrast, syntax-based models achieve much higher diversity in both datasets.
We found the results generated by this model has more diverse structures rather
than word choices. By comparing the BLEU scores, no significant degradation is
observed in translation quality. As a control experiment, using random codes does
not contributes to the diversity. As a confirmation that the sentence codes have
strong impact on sentence generation, the models using codes derived from references

(oracle codes) achieve much higher BLEU scores.

6.5 Analysis and Conclusion

Table 6.3 gives samples of the candidate translations produced by the models condi-
tioning on different discrete codes, compared to the candidates produced by beam
search. We can see that the candidate translations produced by beam search has

only minor grammatical differences. In contrast, the translation results sampled with
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Tg DL L o % TI %= HE T&E/z.  (Japanese)

1. It is possible to eliminate I at

temperatures above Tg .

2. It is possible to eliminate I at
temperatures higher than Tg .

3. It is possible to eliminate I at the

temperature above Tg .

1. above Tg , I was able to be eliminated .
2. It was found that the photoresists were
eliminated at temperatures above Tg .

3. at the temperature above Tg , I was able

to be eliminated .

1. I could be eliminated at temperatures
above Tg .
2. I was removed at temperatures above Tg .

3. It was possible to eliminate I at

temperatures above Tg .

Table 6.3 A comparison of candidates produced by beam search (A), semantic coding
model based on BERT (B) and syntactic coding model (C) in Ja-En task

the syntactic coding model have drastically different grammars. By examining the
results, we found the syntax-based model tends to produce one translation in active

voice and another in passive voice.

We also observe that the resultant diversity is higher in the Ja-En task as the

target-side structures are less relevant to the input sentences.

To summarize, we show a diverse set of translations can be obtained with sentence
codes when a reasonable external mechanism is used to produce the codes. When
a good syntax parser exists, the syntax-based approach works better in terms of
diversity. The source code for extracting discrete codes from parse trees will be
publicly available.






Chapter 7

Summary

7.1 Contributions and Insights

Contributions In this thesis, we present a study to show that the latent-variable
models are capable of learning multiple levels of linguistic features to benefit natural
language generation models such as neural machine translation. The chapters of this
thesis are organized according to the framework we use to train the latent-variable

models.

In the first contribution, by learning sentence-level features using a generative
model with continuous latent variables, we show the resultant model can be applied
to obtain translation results with comparable quality comparing to autoregressive
baseline models. We propose a deterministic inference procedure for this type of
model to update the prediction of latent variables. On WMT 14 English-to-German
translation task, the proposed inference algorithm helps to close the performance
gap between the baseline model down to 1.0 BLEU point with a 6.8x faster decoding
speed.

The second contribution aims to learn a compact representation using discrete
latent variables. The proposed model represent the words with several discrete codes,
where the codes and the code vectors are optimize simultaneously in a neural network.
Such a joint training paradigm is enabled by Gumbel-softmax reparameterization
trick for discrete latent variables. Experiments show that the compression rate
achieves 98% in a sentiment analysis task and 94% ~ 99% in machine translation

tasks without performance loss.
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The third contribution takes a more challenging task of capturing syntactic
structures of sentences. We tackle this problem by learning discrete latent variables
to encode linguistic parse trees. In detail, we build a generative model with a pair
of TreeLSTM-based encoder and decoder. The latent variables are learnt through
the discretization bottleneck implemented by improved semantic hashing. Using
this model, we are able to generate translations with drastically higher syntactical

diversity.

Insights Through out the study, the experimental results provide insightful ob-
servations on applying latent-variable models to neural machine translation models.
These insights may also be generalized to other natural language generation tasks.
The study on non-autoregressive generation and diverse translation in chapter 4 and
chapter 6 show that the latent variables can be applied to effectively control the text
generation. In chapter 4, we show an example of improving the quality of generation
by manipulating the latent variable prediction. In chapter 6, we show an example
of controlling the syntactic structure of output sentences by imposing structural
constraint using discrete latent variables. In both cases, the output sentences are
generated from a decoder distribution p(y|x, z). However, the two works adopt
drastically different modeling strategies for controlling the generation process. In
the first case, continuous latent variables are passed to the decoder as an additional
condition, which is more suitable for non-autoregressive models. The second case
treats the discrete latent variables as discrete symbols. By merging the artificially
created discrete symbols with natural language text, the strategy naturally fits into

the autoregressive model.

The study on word embedding compression in chapter 5 then demonstrate that
applying discretization bottleneck in neural networks can create compact discrete
representation of vectors. The major difference comparing to conventional quan-
tization methods is that the neural networks learns the codes (i.e. assignment of
quantized clusters) and the codebooks (i.e. vectors of codes) simultaneously through
optimization. Thus it scales better comparing to conventional EM algorithms. Ex-
periment results demonstrate superior performance of compression. Although the
empirical experiments only cover the case on word embedding. The insights may
also be applied to quantize the softmax embeddings other learned continuous vectors.
If no empirical degradation of model performance is found, then such an additive

quantization scheme trades computational complexity for memory footprint. To con-
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struct word vectors, additive quantization requires to perform an advanced indexing
on the codebooks, which may slow down the neural network computation depending
on the platform.

7.1.1 A Latent-variable Framework for Neural Machine Trans

lation

In chapter 4, we show a new framework of formulating and training neural machine
translation models. It is a continuous latent-variable model trained directly with
evidence lowerbound in variational method. The distinct contribution of this pro-
posed model is that we show the target prediction can be significantly improved
by sharpening the prediction in the latent space. Hence, we come to an important
hypothesis, the quality of generated text in the token space depends on the quality
of latent variables. In chapter 4, we empirically demonstrates refining the latent
prediction by 1 ~ 3 iteration improves the quality of generation. However, one may
argue that it does not directly shows the correlation of the quality of latent variables

and generated text.

To confirm the hypothesis, we create some interpolated variables by computing
weighted average of the prior mean and variational density mean (i.e. mean of
q(z|z,y)). In Fig. 7.1, we show the BLEU scores produced by different interpolated
latent variables on ASPEC Ja-En translation task.

= jnitial guess
result after interative inference

H

0.0 0.2 0.4 0.6 08 1.0
interpolation ratio

Fig. 7.1 BLEU scores on ASPEC Ja-En translation task produced by interpolated
latent variables. The interpolation is created by computing weighted average of the
prior mean and variational density mean.
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When we move the latent variables from the prior mean to the center of the
variational density, which indicates increasing quality in the latent space, we can see
that the quality of generation improves monotonically. Therefore, this experimental
result strongly confirms the hypothesis we mentioned above. Moreover, we also

observe more upside gain which can be obtained by updating the latent prediction.

Following the result, we propose a hypothetic latent updating model r(2'|z, x),
which is an open opportunity for future researches to improve latent-variable text
generation models. The model simply updates the latent predictions from prior to
some areas in the latent space corresponding to higher-quality generation results.
The model may be modeled more complicated approaches such as normalizing
flow (Rezende and Mohamed, 2015). The advantage is that the computation can
still be fast even advanced models are used. This is because the dimensionality of
each latent variable is considerable small in our framework. In experiments, each

continuous latent variable has only 8 dimensions.

7.2 On Interpretability of Latent Variables

In this thesis, we put our focus on learning latent variables to capture linguistic
features and examine the application on neural machine translation. Therefore, much
efforts are allocated to quantitatively evaluating the impact on translation results.
We show with the latent-variables models, we can have a faster and more compact

NMT model. We also show more diverse translations can be obtained.

However, we also notice the importance of analyzing the interpretability of
learned latent variables. These variables might confirm the effectiveness of the
learning model and provide further insights on the linguistic features. With the wide
adoption of neural networks in natural language processing, the low interpretability
of the highly non-linear model family is becoming problematic for computational
linguistics. Without a straight-forward way to unbox the learned model and perform
analysis, researchers generally struggle to check whether the neural networks correctly

learns the linguistic feature of interest.

As part of the contribution of this thesis, we show that the latent variables
produced by the model can indeed capture rich and meaningful linguistic features,

forming interesting structures in the latent space.



7.2 On Interpretability of Latent Variables 113

7.2.1 Latent Variables for Sentence Generation

When we use a latent-variable model to directly generate sentences such as the
example of non-autoregressive translation, the target sentence is generated with the
decoder distribution p(y|x, z). When we constrain the number of latent variables |z
to be identical with the number of source tokens |z|, it indicates that each source word
z; is associated with a latent code z;. Please refer to Fig. 1.7(c) for an illustration
of the model. To understand what information do the latent codes capture, we
randomly sample the codes from the prior distribution p(z|z) and show the resultant

translations in the following snippet:

Source: DERS V7 bhox7 %2 AW T [ A KE ] O K=
£ % FEM 1 B TE %,

Result 1: wusing the DERS software , the dose rate of ‘“ Fugen plant ”’
can be calculated in detail .

Result 2: wusing DEDERS software , the dose rate of ‘‘ nuclear plant ”’
can be calculated in detail .

Result 3: wusing DEDE software software , the dose rate of ‘‘ nuclear

plant ’’ can be calculated in detail .

Here, we pick the first sentence in ASPEC test dataset as the example. We
can see by randomly choose different latent codes, the NMT model gives different
variations of translating the phrases “DERS” and “FUGEN Power Plant”.

As each code is associated with a word in our model, we further conjecture that
each code controls the translation of the word it associates with. More concretely,
we conjecture that changing the latent codes corresponding to “.5\F A F%E A will
alternate the translation of this specific phrase but not other parts. To perform the
experiment, we sample a latent code z, ..., z, as our base code. Then as “.5F
A F&FE A" are the Tth, 8th and 9th words in the sentence, we further alternate
27, 28, 29 by sample from p(z7|x), p(zs|z), p(29]). The latent codes in other locations
are kept unchanged in this process. The resultant translation results are shown in

the following snippet:
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Result 1: wusing the DERS software , the dose rate of ‘“ Fugen plant ”’
can be calculated in detail .

Result 2: wusing DERS software , the dose rate rate ‘‘ Fugen power
plant ’’ can be calculated in detail .

Result 3: wusing DEDERS software , the dose rate of ‘‘ nuclear plant ”’

can be calculated in detail .

We first observe the translation results contain more variations of “5\F A F&
#& A, which partially confirmed our hypothesis that each latent code controls
the translations of their corresponding tokens. However, the selective latent code
sampling did not prevent the translations of “DERS” to change. Therefore, the codes

in the model are not perfectly disentangled.

Finally, we are curious to see how the translation changes when we move the
latent variable in the latent space. We examine the results by interpolating the latent
codes corresponding to two very different translations y; and y,. The latent code
can be obtained using the Q distribution ¢(z|x,y). The interpolation can be done
by computing Zinterpolate = 721 + (1 — 1) 22, where r is the ratio of interpolation. We

show the results in the following snippet:

Soruce: UYA ) 1T B 5% b © FE & #HNH U 2,

Result 1 : this paper introduces recent topics on recycling .
Ratio=0.20: this paper introduces recent topics on recycling .
Ratio=0.24: recent paper introduces recent topics on recycling .
Ratio=0.28: recent paper introduces recent recycling are recycling .
Ratio=0.30: recent topics introduces the recycling are recycling .
Ratio=0.32: recent topics on the recycling are introduced .

Result 2 : recent topics on the recycling are introduced .

As a result, we observe that the transformation happens with an interpolation
ratio in the range 0.2 ~ 0.32. Different part of the translations are interchanged
during this process. To summarize the analysis presented in this section, we can see
that the latent variables in our proposed translation model capture the utterance-level

translations for each source token.
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7.2.2 Qualitative Analysis of Discrete Word Codes

When learning word-level discrete variables, the model produces a set of codes for
each word. By changing the hyperparameters, we force the model to learn 3 x 256
codes to quantize each word vector. In this setting, the discrete latent variable for
each word is a composition of three numbers, each number can take a value from 1

to 256. We show the learned codes for some example words in the following snippet:

Man: 210 153 153 Woman: 232 153 153
King: 210 180 39 Queen: 232 180 39
Male: 208 11 219 Female: 232 11 219

We can observe that the code for “Man” and “Woman” has a common part “153
153”. “King” and “Queen” share a common partial code “180 39”. We thus conjecture
that the former partial code can be the concept of man/woman, whereas the latter
partial code is the concept of king/queen. Both “Man” and “King” share the first
partial code “210”, whereas “Woman” and “Queen” share the code “232” in the first
position. Therefore, it is highly likely that “210” is a male concept and “232” is then

a female concept.

However, such approach has a limitation. The analysis is feasible only when each
word contains no more than three concepts and the model is able to disentangle
them into three partial codes. However, this assumption does not hold generally.
When a word has more than three concepts, the code learning model is forced to
represent two or more concepts using one code. If multiple concepts are entangled,
then such analysis cannot provide meaningful insights. In this thesis, we give a

detailed discussion on the entanglement problem in section 7.3.2.

7.2.3 Discrete Coding for Syntactic Structures

In this thesis, we also describe a TreeLSTM-based model to perform discrete coding for
syntactic structures. Similar to the word-level quantization model, we are interested
in the latent structure captured by the model. After training the coding model, we
obtain a discrete syntax encoder fe,c(Sy;6), where S, is the syntactic structure of the
given sentence y. In our experiments, we adopt Stanford parse trees for structural

representations. As a discrete encoder, the output of fe,.(+) is a K-bits binary vector.



116 Summary

We can also understand that the model clusters the syntactic representations into
2K groups. Please note that the analysis in section is performed on a pure syntax
coding model. However, the diverse translation model described in chapter 6 has
a different form: fe,.(Sy,z;60), which conditions also on the source sentence = to

increases the efficiency of encoding.

Latent Code | Tree 1 Tree 2 Tree 3
1| (8 S NP VP .) (S ADVP NP VP .) | (S CC NP VP .)
31 | (FRAG NP , PP .) (NP DT NN SBAR .) | (FRAG NP , SBAR .)
61 | (FRAG ADJP .) (FRAG PP .) (NP : NP PRN : NP .)
91 | (X NP NP .) (NP NP NP .) (PP IN NP)
131 | (S PP, INTJ VP .) | (SPP NP, VP .) -
161 | (S PP NP VP .) (S SBAR NP VP .) (S PP NP VP VP .)
191 | (S PP, VP .) (FRAG PP .) (FRAG SBAR .)
231 | (8 NP VP .) (S NP VP) (S NP VP ” .)

Table 7.1 Most frequent parse trees in each clusters as a result of training the syntactic
coding model with 256 clusters. We show the linearized form of top two levels of
each tree.

Clustering Syntactic Structures To analyze the hidden structure captured by
the model, we train a syntactic coding model on the English side corpus of WMT 14
that produces 256 clusters (i.e. latent codes). Then we analyze the most frequent

tree structures in each cluster. The results are shown in Table 7.1.

For simplicity, we show the linearized form of top two levels in the parse trees.
For example, (S NP VP .) indicates a parse tree with “S” as the root node, and
three non-terminal nodes under it (“NP”, “VP” and “.”). By qualitatively analyzing
the clustering results, we can see that the parse trees belong to each cluster tend to
have similar global structures. For example, the top three parse trees grouped to

cluster 1 have a common “(S * NP VP .)” structure.

To analyze the underlying vector space before discretization, we plot the contin-
uous vector of each parse tree in the last hidden layer of fen.(Sy;6). The result is
illustrated in Fig. 7.2. We use t-SNE to project the 256-dimensional vectors to the
2D space. Similar to the clustering experiment, we label each parse tree with the
linearized form of top two levels. In Fig. 7.2, each dot is a projection of a parsee tree.

Only 80 most frequent labels are shown in the figure. We can see that the model
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Fig. 7.2 Learned vector space of syntactic structures projected onto 2 dimensions by
t-SNE. The labels for 80 most frequent trees are shown in the figure.

forms a certain structure in the hidden vector space. Similar trees are close to each
other. For example, trees with a “NP” root are all located in the center of the figure.
Trees with a “SQ” root are all located in a small cluster in the right side. Through
the analysis, we confirmed that the model is capable of forming a interpretable latent

space even for syntactic structures.

7.3 Discussions

7.3.1 Modeling Strategies of Latent-Variable Models

Comparison with Continuous Latent Variables The unique property of dis-
crete bottleneck is the controllable information capacity. When we force a latent

variable to be sampled from a categorical distribution with K categories, we know
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that the amount of information counts up to log, K bits. This property also indicates

that it takes log, K bits to store each latent variable.

Continuous Discrete

Posterior Gaussian Categorical

Backpropagation | Reparam. (Kingma and Welling, 2014) Gumbel Softmax+*

Optimization Easy Difficult
Capacity High Low
Storage Efficiency Low High
Symbolic No Yes

Table 7.2 A high-level comparison of continuous and discrete latent-variable models.

In Table 7.2, we give an high-level comparison of continuous and discrete latent-
variable models. Due to the limited capacity and difficulty in the training, we usually
do not consider using discrete latent variables when our interest is maximizing the
evidence lowerbound. Rather, we train discrete latent variables in order to obtain
the discrete encoder, which is usually corresponding to the variational density ¢(z|x)
in the VAE setting.

Training Recall that we optimize the following evidence lowerbound (ELBO) when

training generative models:
ELBO(x,q) = E, [ log p(a]2)] — KL(g(z[)]p(=)). (7.1)

When ¢(z|z) is a categorical distribution with K categories and p(z) is a uniform
distribution, we can find that KL(q(z|x)||p(z)) = —H(q) + log K. Therefore the

ELBO for the discrete latent-variable model is now

ELBO(z,q) = E,[logp(z|2)] + H(q) —log K . (7.2)

constant

From the equation, we can see that the ELBO is a reconstruction objective function
with an entropy-based regularization term. Similar to the posterior collapse in the

continuous case, we may find that the entropy term is too strong for regularization

!Discrete bottlenecks also include Gumbel sigmoid, semantic hashing and VQVAE as discussed
in section 3.4.
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during training. In the discrete case, this problem is even more severe as we know the
reconstruction objective takes more time to fully optimize due to the low capacity
in the discretization bottleneck. One easy workaround is to drop the entropy from
the objective and only optimize for E, [log p(x|z)} Such a training strategy has a
risk that the resultant categorical distribution ¢(z|x) may be unbalanced. In our
experiments in chapter 5, we monitor H(q) during training to see whether ¢(z|z) is

extremely skewed.

7.3.2 Evaluating Performance of Discrete Bottleneck

For discrete latent-variable models, it is important to evaluate the performance
of the discrete bottleneck. In contrast to the continuous case where the de-facto
way of reparameterization is to apply the trick introduced in Kingma and Welling
(2014), there are multiple variations of discrete bottleneck. The performance of the

bottleneck directly impact the model performance.

The angle of evaluation varies depending on our model and purposes. Here, we
categorize the problem settings into two scenarios: auto-encoder and conditional
auto-encoder. The regular auto-encoder has a prior p(z|z) and a decoder p(zx|z),
whereas the conditional auto-encoder has a prior p(z|z) and a decoder p(y|z, z).
In both cases, we may care the balance of discrete codes, which can be measured
by the entropy of variational density H(q) as mentioned. If the codes are highly
concentrated in one category, or some categories are not being used, we may guess

that the capacity of the latent variables is not fully exploited.

Evaluation of Entanglement in Discrete Auto-Encoder In the auto-encoder
case, where the computational graph can be illustrated by x — z — x, we care two
metrics: ELBO and extent of entanglement of z. ELBO is a direct measurement of
model performance, whereas the entanglement indicates that whether each latent

variable learns an independent concept.

Suppose the discrete latent variables Z = 21, ..., 2z are sampled from multivari-
ate categorical distribution. Each variable z; is a discrete K-way one-hot vector.
Measuring the extent of entanglement in Z naturally translates to the problem of
investigating the correlation between arbitrary two latent variables in Z. Hence, it

is a problem of finding the correlation matrix of categorical variables. In Niitsuma
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and Okada (2005), Niitsuma and Lee (2016)?, we can find the derivation of the
covariance of categorical variables from Gini’s definition (GINI, 1971) of covariance,
where the authors also show that the derived results can be used to interpret the
mechanism of word2vec. The method described in Niitsuma and Okada (2005),
however, requires computing singular value decomposition, and there is no study of
deriving the correlation matrix using this approach. We left the investigation of this

approach to future works.

In statistics, we find that it is a common practice to measure the correlation
between two discrete variables using Cramér’s V (Cramir, 1946), which is based on
Chi-Square test of independence. For two K-way categorical variables a and b, let
N(a =1i,b = j) be the number of co-occurrence of @ =i and b = j, N(a = i) be the
number of occurrence of a = i and the total number of data samples be N. We first

compute the Chi-Square statistic with

K K . . 1 . \19
[N(a=1i,b=j) = 5N(a=0)N(b=j)
X2 — N , | (7.3)
L TN NG =)
In our setting, Cramér’s V is then computed by
XZ
Vap = - 7.4
’ N« (K —1) (7.4)

As a byproduct of using Chi-Square test, Cramér’s V is a symmetric measurement
of correlation, which means V,;, = V,,. Therefore, we are not expecting to observe

causal relations from the results.

Using Cramér’s V measurement, we analyze a set of 8 x 8 word codes learned
for all words in IMDB vocabulary. The word embeddings are obtained from Glove
(Pennington et al., 2014a). We encode the word embeddings using Gumbel-Softmax
bottleneck with the model we described in chapter 5. In Fig. 7.3, we show the
correlation matrix, where the number in each cell is produced by calculating V...
We can observe that the correlation between two discrete variables falls in the range
from 0.2 to 0.3 in most cases. The results show that the learned discrete latent
variables have balanced correlations. However, it also reveals that the information

contained in each variable is entangled with all other variables.

2A better version of the formal paper can be found in https://arxiv.org/pdf/0711.4452.pdf



7.3 Discussions 121

<c1> 0.28 0.3 0.28 0.22 0.27 0.31 0.24
- 0.90

<c2>- 0.28 0.23 0.2 0.19 0.25 0.22 0.21

<c3>- 0.3 0.23 0.25 0.25 0.26 0.26 - 0.75

<c4>-0.28 0.2 0.25 0.26 0.25 0.24 0.23

- 0.60
<c5>-0.22 0.19 0.25 0.26 0.25 0.25 0.25
<c6>-0.27 0.25 0.25 0.25 0.25 0.27 0.24 -0.45

<c7>- 031 0.22 0.26 0.24 0.25 0.270.27

<c8>-0.24 0.21 0.26 0.23 0.25 0.24 0.27
I

| | | I | |
<cl> <C2> <C3> <c4> <c5> <cb> <c7> <c8>

-0.30

Fig. 7.3 Cramér’s V correlation matrix produced by analyzing a set of 8x8 discrete
codes for all words in IMDB vocabulary. The codes are produced by encoding using
Gumbel-Softmax discretization bottleneck.

If we desire to learn independent discrete latent variables, we need to disentangle
Z during the model training. Due to the discreteness, Cramér’s V cannot be directly
added to the loss function. However, we may consider to use REINFORCE algorithm
to compute policy gradient to minimize the values of Cramér’s V. We left further

investigation of disentanglement to future works.

Evaluation of Conditional Discrete Auto-Encoder In the conditional discrete
auto-encoder scenario, we learn latent-variable model for the conditional probability
p(y|z). With the discretization bottleneck, we produce latent variables with the
variational density ¢(z|z,y) and reconstruct the target using p(y|z, z). An illustration
of the computational graph is z,y — 2z — y < x. The discrete latent variables in
conditional auto-encoders learns distinct information, but not just encoding y. Let
us first consider the case that the information capacity of z is infinite. That is, z can
remember all information in both z and y. When we maximize the reconstruction
objective E.q(:|z) [ 10g p(y|2, 2)], 2 just need to remember y to perfectly reconstruct
it.

However, when z is discrete, the information capacity of z is greatly limited. To

maximize the reconstruction objective, the variational density ¢(z|x,y) now has to
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selectively remember partial information in y. What information will the ¢(z|x,y)
remember? As the decoder p(y|z, z) has access to x, the best strategy is to remember
information that exists in y but not in . For example, in machine translation, z
can capture information such as the syntactic structure or formalness in the target
sentence y. Such information usually cannot be accurately predicted by only looking

at z.

Now, we see that our purpose of learning conditional discrete auto-encoder is to
force the latent variables z to capture information contained in y but not in x. We

propose a simple metric for this purpose:
METRIC(q) = md}n max log po(y|z, z4) — log pe(y|x) — log pe(z,|x). (7.5)

Here, z, are sampled discrete latent variables from ¢(z|z,y). We train three probabil-
ity models until they are fully optimized. The left-side term log py(y|x, z,) —log ps(y| )
evaluates the extent that z, contributes to the prediction of y. If z, only captures
information contained in z, this part of equation will be zero. logps(z,|x) then
evaluates the amount of information in z that is also contained in x. We want this
value to be minimized so all the capacity in the latent variables can be used to
capture things outside x. Note that because log p,(2,4|x) is a log-probability on z but

not y, we make add a weight « on this term to balance the metric.

7.4 Future Outlook: Learning Emergent Language

In chapter 6, we showed an application that use discrete latent variables for controlling
text generation. Here, we articulate another important motivation for learning
discrete representation, which is to learn an artificial language, which is referred to
as emergent language learning. As natural languages can be seen as a collection of
discrete symbols, the learned discrete representation can be naturally integrated into

the vocabulary of natural languages.

To give a concrete example, we learn an independent code sequence that carries
the same meaning of an original sentence in natural languages. The code sequence
is supposed to have certain properties that we are interested in. For example, the
code sequences can have a fixed length regardless of the original sentence length.

Alternatively, it can have a small code vocabulary. Consider the following examples:
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1. The fox hiding behind the wall.

<cl16> <c31> <c62> <c86> <cd2> <cl4> <cl1b> <c26> <c74> <c26>
2. He carefully went close to the wall and lean on it.

<cT74> <c33> <c26> <c73> <cb3> <c85> <c76> <cb67> <c48> <c63>

The sentences are encoded into code sequences with two constraints: (1) the
code vocabulary contains 100 unique tokens, (2) each sequence is composed by 10
codes. If we can successfully learn such a emergent language, from which we can
recover the original sentence, then it may benefit model training settings that have
difficulty dealing with variable length. One example can be reinforcement learning
based models.

Model Training and Evaluation In the aforementioned scenarios, the purpose
of learning discrete codes is no longer obtaining descriptive latent variables, but to
create an artificial language that satisfies specific requirements. Therefore, we are not
required to formulate our code learning model as a generative model. The model is
now trained solely to minimize task specific losses, where a discretization bottleneck
is added to the computational graph. In the case of VAE, we can simply remove the

KL-divergence term to let the model focus on minimizing the reconstruction loss.

One problem is that we are no longer able to evaluate the discretization methods
with ELBO, which is the loss of VAE. To solve the problem, a recent work (Kaiser and
Bengio, 2018) proposes to evaluate the effectiveness of the codes with the following

metric:
DSAE(C) o< log, (pp(X)) — logy (pp(X|C)), (7.6)

where, the function pp(X) computes the per-word perplexity of a sentence X with a
neural language model. The perplexity has a low value when the model assigns a
high probability to the sentence. Then, pp(X|C') measures the per-word perplexity
of the same sentences given the discrete codes C. Thus, Eq. (7.6) measures the
improvement of the perplexity when conditioning on the codes. In other words,
the discrete code has a high score if it can provide more information to recover
the original sequence. The metric is referred to as discrete sequence auto-encoding
efficiency (DSAE) in the Kaiser’s paper.
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Fig. 7.4 Tllustration of compositionality in emergent language during multi-agent
communication. Here, /C B L S P/ renders the meaning of “A blue circle in the left
of a purple square”. /S P L. C B/ means “A purple square in the left of a blue circle”.

Applications Indeed, Kaiser and Bengio (2018) is already an application of emer-
gent language learning. In the paper, the authors describe a discrete language
encoding model that follows the conditional auto-encoder setting. Their model cre-
ates a emergent language to encode the target sentence while reducing the length by
a factor of 8. Once the target sentence are completely encoded into artificially created
codes, the authors then train an autoregressive sequence-to-sequence predictor for
predicting the codes. Therefore, only eight generation steps are required in the

autoregressive model, which results in faster generation speed.

To generalize this framework, we see that emergent language learning is helpful
when we need to rewrite a sequence to comply specific constraints. Therefore, the
applications in this setting can be developed in all NLP problems but not only

machine translation.

7.4.1 Compositionality and Interpretability of Emergent Lan-

guage

The problem becomes interesting when we want the artificially created language to be
similar to human languages. Or even further, we may want to read and understand
the artificial language created by neural networks. Such properties are sought after
in mutlti-agent communications (Mordatch and Abbeel, 2017, Lazaridou et al., 2018,
Chaabouni et al., 2019b,a).

The first property is known as compositionality, which is the key for human
language to express infinite amount of meaning using a limited number of words. If

the emergent language learned by our model can also express compositional structure,
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the communication can be more efficient just like human languages. In Fig. 7.4, we
demonstrate an example compositional language used by agents to communicate the
color and position of objects. However, recent works point out that it is difficult
for neural networks to naturally produce languages that expressing compositionality
(Kottur et al., 2017, Baroni, 2019). As the first step of discussion, we have to find a
way of evaluating the compositionality. Andreas (2019) proposes a tree-reconstruction
measurement which calculates the distance between the model and a hypothetical
model composes inferred representational primitive. Resnick et al. (2019) measures
the compositionality using related entropy measured on the generated language. This
work also shows the relation between model capacity and compositionality. When a
model has limited capacity in the discretization bottleneck, it has a higher chance to

develop compositional structure.

The second property is interpretability of emergent language. Such a property is
important for human to understand the communication of neural networks. Both
Kirby et al. (2015) and Chaabouni et al. (2019a) point out the trade-off between
coding efficiency and interpretability. When we encourage the model to produce
a storage-efficient representation, it tends to become a compression of encoded
information and damage linguistic interpretability. Note the finding in Resnick et al.
(2019) indicates reducing capacity, which essentially encourages coding efficiency,
improves compositonality. We can see that it is considerable difficult to create a

language that is both compositional and interpretable.

More recently, Lee et al. (2019) discusses the grounding problem of the learned
emergent language. An obvious problem happens when we attempt to understand
the meaning and compositionally of the emergent language. The meaning of each
artificial symbol (or discrete code) does not carry the same meaning as that in
natural language. For example, when we train two agents to communicate using
human language, the agents can say “I'm hungry” but actually means “I'm moving
forward”. This is the meaning shift phenomenon. In the paper, the authors shows
improvement of using visual information for grounding and counter the meaning
shift problem. However, more generally, this is still an open problem when we try to

learn an interpretable emergent language.

As the discrete representation learning is currently an active research topic, we
are expecting to see more discretization methods and applications to be developed

over time, especially in the scenario of learning an augmented or emergent languages.
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7.4.2 Thoughts on Future Works for Natural Language Gen-

eration

Current natural language generation models and their training methods are large
based on the original work of sequence-to-sequence learning proposed in 2014 (Sutskever
et al., 2014). In this framework, the sequence generation model is essentially a condi-
tional language model, or more formally, an autoregressive model. Autoregressive
model is a typical solution for solving the structured prediction problem for sequence
generation. In computer vision, image generation can be also considered as a struc-
tured prediction problem. The value of one pixel depends on other pixels. For
example, for generated face images, the left eye and the right eye shall have the same
color. However, except for PixelCNN (van den Oord et al., 2016), almost all recent
state-of-the-art image generation models are not based on autoregressive models, but
adversarial training (Goodfellow et al., 2014). Therefore, we can say that the NLP
community and computer vision community were exploring the solutions for a single

problem (i.e., structured prediction) with drastically different ways.

Hence, we have to consider this question: is autoregressive modeling the only
solution for language generation task? If the answer is a “Yes”, then what is the
intrinsic reason? If the answer is a “No” or we cannot find a clear answer, then we
have to think whether we can apply the knowledge acquired in training generative
adversarial models to NLP. As highlighted in recent works seeking the connection
between GANs and energy-based models (Finn et al., 2016), adversarial training can
be treated as a method for minimizing the energy. In NLP community, energy-based
models for language generation is largely underexplored. More future works can
be done by training an energy-based model for solving the structured prediction

problem, thus enabling fast non-autoregressive language generation.
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