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Abstract

In this thesis, we study spectral and scattering properties for generalized Schrödigner
operators. In particular, we investigate essential self-adjointness and limiting absorption
principle for some differential operators on Rd and Zd.

In Chapter 3, we show the essential self-adjointness and the limiting absorption
principle for a d’Alembert operator on a Lorentzian space. Unlike the elliptic case, its
proof is non-trivial. Moreover, we need geometric conditions even for operators on the
Euclidean space with asymptotically constant coefficients.

In Chapter 4, we study the spectral properties of a repulsive Schrödinger operator.
We give a micolocal proof for the classical result on its essential self-adjointness. A
spectral property of its self-adjoint extensions is also studied.

In Chapter 5, we study the uniform bound of a Birman-Schwinger operator on a
square lattice. For uniformly decaying potentials, we obtain the same bound as in
the continuous setting. However, for non-uniformly decaying potential, our results are
weaker than in the continuous setting.

In Chapter 6, we investigate Lp-mapping properties and the Carleman estimate of
a Fourier multiplier operator and its resolvent. As an application, we prove existence
and completeness of wave operators for a Dirac operator and a fractional Laplacian.

In Chapter 7, we address the precise asymptotic expansions and non-existence of
resonant states for a discrete Schrödinger operator near its threshold energy.
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Chapter 1

Introduction

In this thesis, we study spectral properties of generalized Schrödinger operators. In
particular, we study

• The essential self-adjointness for Schrödinger operators,

• The limiting absorption principle and an application to scattering theory,

• An asymptotic behavior of threshold states at elliptic thresholds and non-existence
of thresholds states at hyperbolic thresholds for discrete Schrödinger operators.

The above topics and the method of these proofs are closely related to the scattering
theory. Main technical tools are harmonic analysis and microlocal analysis．

In Chapter 3 and Chapter 4, we study the essential self-adjointness and spectral
properties of Schrödinger operators. The notion of essential self-adjointness for a
Schrödinger operator P is important since it is equivalent to existence and uniqueness
of solutions to the following time-dependent Schrödinger equation:

i∂tu(t, x)− Pu(t, x) = 0, u(0, x) = u0(x) ∈ L2(Rn). (1.0.1)

When the operator P has a form −∆ + V (x), the essential self-adjointness has beed
widely studied since Kato proved the essential self-adjointness for Schrödinger operator
with the Coulomb potential −∆ − e

|x| [45]. It is believed that the completeness of
the Hamilton vector field generated by the corrsponding symbol p is closely related
to the essential self-adjointness of P , since they means well-posedness of fundamental
equations in the classical mechanics and the quantum mechanics respectively. A natural
question is whether for a differential operator P and its symbol p

Question 1. Is the completeness of Hp equivalent to the essential self-adjointness for
P?.

It is known that the Laplace-Beltrami operator ∆g is essentially self-adjoint on
C∞
c (M) if a Riemannian manifold (M, g) is geodesically complete. The converse is

not true, in fact, a Riemmanian manifold M = Rn \ {0} with the Euclidean metric is
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not geodesically complete, but the Laplacian is essential self-adjoint on C∞
c (M) with

n ≥ 4, which means that Question 1 is not always true. In addition, there exists
examples of one dimensional Schrödinger operators for which Question 1 is not hold [61].
Thus a next natural question is to find a sufficient condition for a class of Schrödinger
operators for which Question 1 is true. We expect that microanalysis is very effective for
attacking Question 1, since our approach reveals the connection between the classical
and quantum mechanics.

In Chapter 3, we prove the essential self-adjointness of real-principal type operators
on Rn under a non-trapping condition on the characteristic set. Moreover, we prove the
limiting absorption principle (a resolvent bound) of its self-adjoint extension. A typical
example of our operators is the d’Alembert operator on the asymptotically Minkowski
spacetime. In the quantum field theory, it is important to consider a special solution
to the wave equation, say, the Feynman propagator. In the exact Minkowski space-
time, the Feynman propagator coincides with the outgoing resolvent of the d’Alembert
operator. A natural question is whether this correspondence holds even on curved
spacetimes. In this chapter, we prove the essential self-adjointness (which is needed for
defining its resolvent) and existence of the outgoing resolvent in spacetimes where the
structure near infinity is similar to the exact Minkowski spacetime. It remains still an
open question that our outgoing resolvent coincides with the original definition of the
Feynman propagator.

In Chapter 4, we consider the repulsive Schrödinger operators

P = −∆− (1 + |x|2)α α > 1

and show that P is not essential self-adjoint on C∞
c (Rn). This result is classically

known, however, we give another proof of it via the microlocal or scattering technique.
In addition, as byproducts of our analysis, we can prove the following:

• The repulsive Schrödinger operators P has many L2 eigenfunctions associated
with almost all spectral parameter z ∈ C in the distributional sense.

• Every self-adjoint extension of P has the discrete spectrum when the space di-
mension is one.

These results show that the repulsive Schrödinger operator with α > 1 has spectral
properties similar to the Laplacian in a bounded domain Ω ⊂ Rn.

In Chapters 5, 6 and 7, we mainly study the spectral properties of the discrete
Schrödinger operator. The discrete Schrödinger operator is a natural discretization of
the Laplacian on the Euclidean space. Moreover, the discrete Schrödinger operator
appears in the model of an electron under the tight-binding approximation in the con-
densed matter physics and in the Anderson model of the random Schrödinger operators.
Some mathematical structure of the discrete Schrödinger operator is different from that
of the Schrödinger operator on the Euclidean space. For example,

• The discrete Schrödinger operator has thresholds strictly inside its spectrum.
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• The discrete space Zd has less symmetry than the continuous space Rd.

We study the above apply this with the spectral theory and the scattering theory for
the discrete Schrödinger operator.

In Chapter 5, we study a kind of limiting absorption principle for discrete Schrödinger
operators:

sup
z∈C\R

‖|V |
1
2 (H0 − z)−1|V |

1
2‖B(l2(Zd)) <∞, (1.0.2)

where the above operator is also called the Birman-Schwinger operator. A question
which we consider is the following:

Question 2. What is the conditions on V for which (1.0.2) hold?

In the case of H0 = −∆ on Rd, similar results are known as

• (1.0.2) hold if d ≥ 3 and V (x) = 〈x〉−2; d ≥ 3 and V ∈ L
d
2
,∞(Rd) ([50], [47]),

• (1.0.2) does not always hold if d = 1, 2; d ≥ 3 and V (x) = 〈x〉−k with k < 2;
d ≥ 3 and V ∈ Lp,∞(Rd) with p 6= d

2
,

where Lp,r(Rd) denotes the Lorentz space. For discrete Schrödinger operators, we show
the following:

• (1.0.2) hold if d ≥ 3 and V (x) = 〈x〉−2; d ≥ 4 and V ∈ l
d
3
,∞(Zd),

• (1.0.2) does not always hold if d = 1, 2; d ≥ 3 and V (x) = 〈x〉−k with k < 2;
d ≥ 5 and V ∈ lp,∞(Zd) with p = d

2
.

Compared with the results on Rd, if V has the form 〈x〉−k, our results are same as that
on Rd. However, in the case of a general class V ∈ lp, our results are very different from
that on Rd. This seems to reflect a lack of symmetry of the discrete space Zd. Moreover,
as a byproduct of our analysis, we show existence of the Feynman propagator on the
exact Minkowski spacetime and its mapping property.

In Chapter 6, we study the Lp − Lq-mapping properties of resolvents of Fourier
multipliers. We extend the results by [11] to (p, q) which is not Hölder exponent. More-
over, using the same method, we show the Hölder continuity and a Calreman type
estimate which are quite useful for scattering theory. As an application, we show exis-
tence and completeness of the wave operators for the Dirac operators and the fractional
Schrödinger operators.

In Chapter 7, we study thresholds properties for discrete Schrödinger operators.
More precisely, we prove

• Threshold resonances (or eigenfunctions) at the elliptic thresholds have the same
properties as threshold resonances for continuous Schrödinger operators

• There is no threshold resonances (or eigenfunctions) at the hyperbolic thresholds.
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Due to the celebrated work by Jensen and Kato [42], it is known that properties and
existence of threshold resonances (or eigenfunctions) are closely related to time decay
properties of the time propagators. From our results, in the discrete setting, we expect

• Near the elliptic thresholds, time decay properties are the same as that of the
continuous time propagators

• The hyperbolic thresholds are harmless for time decay properties of the time
propagator.

We would like to leave these justification in future work.
A part of the results in Chapter 3 are from joint work with Shu Nakamura [58], the

results in Chapter 5 are from joint work with Yukihide Tadano [68] and the results in
Chapter 7 are from joint work with Yuji Nomura [59].
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Chapter 2

Microlocal analysis

2.1 Definition of pseudodifferential operators

First of all, we recall the standard theory of microlocal analysis: the definition of the
pseudodifferential operators, some basic calculus, symbol classes, and the G̊arding type
inequalities. The symbol classes which we mainly use in this paper, are not the standard
Kohn-Nirenberg classes Sk, but so-called scattering symbol classes Sk,l. Symbols of
the scattering classes have many better properties than the Kohn-Nirenberg symbols
and play important roles for our analysis on the real principal type operators and the
repulsive Schrödinger operators.

For a ∈ S′(Rn), we define the Weyl quantization of a by

Op(a)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξa(
x+ y

2
, ξ)u(y)dydξ, u ∈ S(Rn),

which maps S(Rn) to S′(Rn) continuously. This definition of quantization is a bit
different from one of the standard quantization:

a(x,D)u(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξa(x, ξ)u(y)dydξ, u ∈ S(Rn).

2.2 Symbol class, symbol calculus

Let k, l ∈ R. For a ∈ C∞(R2n), we call a ∈ Sk,l if

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ〈x〉l−|α|〈ξ〉k−|β|

where Cαβ is independent of (x, ξ) ∈ R2n. Moreover, we denote

Sk,−∞ =
⋂
l∈R

Sk,l, S−∞,l =
⋂
k∈R

Sk,l, S−∞,−∞ =
⋂
k,l∈R

Sk,l.
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For a ∈ Sk,l(Rn) with k, l ∈ R, the range of Op(a) in S(Rn) is contained in S(Rn) and
hence

Op(a) : S(Rn) → S(Rn)

is continous. Moreover, if a ∈ S−∞,−∞, then Op(a) can be uniquely extended to a
continuous linear map

Op(a) : S′(Rn) → S(Rn).

We define the Poisson product of a and b by

{a, b} := Hab := ∂ξa · ∂xb− ∂xa · ∂ξb.

It is known that the Weyl quantization has the following symmetric property: Let
a ∈ Sk,l be a real-valued symbol with some k, l ∈ R. Then it follows that Op(a) is
formally self-adjoint on L2(Rn), that is,

(u,Op(a)w)L2(Rn) = (Op(a)u,w)L2(Rn) for u,w ∈ S(Rn). (2.2.1)

Lemma 2.2.1.

(i) (L2-boundedness) Let k, l ≤ 0 and a ∈ Sk,l. Then a continuous linear map Op(a) :
S(Rn) → S(Rn) can be uniquely extended to a bounded linear operator on L2(Rn).
Moreover, there exists C,M > 0 which depend only on the dimension n such that for
a ∈ S0,0, we have

‖Op(a)‖B(L2) ≤ C
∑

|α|≤M

sup
z∈R2n

|∂αz a(z)|.

(ii) (Compactness) If k, l < 0 and a ∈ Sk,l, then Op(a) is a compact operator on L2(Rn).

(iii) (Composition ) Let kj, lj ∈ R for j = 1, 2, a ∈ Sk1,l1 and b ∈ Sk2,l2. Then there
exists c ∈ Sk1+k2,l1+l2 such that

Op(c) = Op(a)Op(b), we denote a#b := c.

In addition, we have

a#b(x, ξ) =eiQ(D)(a(x, ξ)b(y, η))|x=y,ξ=η

=
1

πn

∫
R4n

e−2iσ(w1,w2)a(z + w1)b(z + w2)dw1dw2,

where z = (x, ξ) and

σ((x, ξ), (y, η)) = ξ · y − x · η, Q(D) =
1

2
σ(D)

Q =

(
0 −J
J 0

)
∈ GL(4n,R), J =

(
0 I
−I 0

)
∈ GL(2n,R).
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Moreover, we have

[Op(a), iOp(b)] = Op(Hab) + OpSk1+k2−2,l1+l2−2,

where we note

Hab ∈ OpSk1+k2−1,l1+l2−1.

(iv) (Disjoint support property) Let kj, lj ∈ R for j = 1, 2, a ∈ Sk1,l1 and b ∈ Sk2,l2.
Suppose

dist(supp a, supp b) > 0.

Then we have a#b ∈ S−∞,−∞.

(v) (Sharp G̊arding ineqality) Let a ∈ Sk,l with k, l ∈ R. Suppose a(x, ξ) ≥ 0 for
(x, ξ) ∈ R2n. Then there exists C > 0 such that for u ∈ S(Rn)

(u,Op(a)u)L2(Rn) ≥ −C‖u‖Hk−1,l−1(Rn).

In chapter 3, we will use more general symbol S(m, g). See [30, §18.4, §18.5] for
more detail.

2.3 Auxiliary lemmas

The following lemma implies that the microlocal wavefront set is characterized by the
semiclassical wavefront set.

Lemma 2.3.1. Let (x0, ξ0) ∈ R2n with ξ0 6= 0 and u ∈ L2(Rn). Suppose that there
exists a0 ∈ S such that a0(x0, ξ0) > 0 and ‖Op(a0,h)u‖L2 = O(hk+ε) for some ε > 0,
where ah(x, ξ) = a(x, hξ). Then it follows that u ∈ Hk microlocally at (x0, ξ0).

Proof. First, we prove that there exists a neighborhood U of (x0, ξ0) such that for any
a ∈ S supported in U , we have ‖Op(ah)u‖L2 = O(hk+ε). Take a relatively compact
open set U such that infU a0 > 0 and Ū∩{ξ = 0} = ∅. Let a ∈ S satisfying supp a ⊂ U .
By the standard parametrix construction, we can find b ∈ S such that

ah = bh#a0,h +OS(h
∞).

Thus we have

‖Op(ah)u‖L2 ≤ ‖Op(bh)‖B(L2)‖Op(a0,h)u‖L2 +O(h∞‖u‖L2) = O(hk+ε).

We may assume that u is supported around x0. Let χ ∈ C∞(Rn; [0, 1]) such that
χ(x, ξ) = 1 near a conic neighborhood of ξ0 and is supported in a conic neighborhood
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of ξ0. It suffices to prove 〈D〉kχ(D)u ∈ L2. We note

‖〈D〉kχ(D)u‖2L2 = ‖〈ξ〉kχ(ξ)û‖2L2(|ξ|≤1) +
∞∑
j=1

‖〈ξ〉kχ(ξ)û‖2L2(2j≤|ξ|≤2j+1)

≤ C‖χ(ξ)û‖2L2(|ξ|≤1) +
∞∑
j=1

22jk‖χ(ξ)û‖2L2(2j≤|ξ|≤2j+1)

Thus we only need to prove

‖χ(ξ)û‖2L2(2j≤|ξ|≤2j+1) = O(2−2j(k+ε)).

This follows from the scaling and the first half part of the proof.

The following lemma is useful for justifying the regularizing argument.

Lemma 2.3.2. Let k, ` ∈ R, aj ∈ Sk,ℓ be a unifornly bounded sequence in Sk,ℓ and
a ∈ Sk,ℓ. Suppose aj → a in Sk+δ,ℓ+δ for some δ > 0. Then, for each s, t ∈ R and
u ∈ Hs,t(Rn), we have

‖(Op(aj)−Op(a))u‖Hs−k,t−ℓ(Rn) → 0 as j → ∞.

Proof. Let u ∈ L2(Rn) and ε > 0. Set

C = ‖Op(a)‖B(Hs,t,Hs−k,t−ℓ) + sup
j

‖Op(aj)‖B(Hs,t,Hs−k,t−ℓ).

Take w ∈ S(Rn) such that ‖u− w‖Hs,t < ε/C.

‖Op(aj)u−Op(a)u‖Hs−k,t−ℓ

≤‖Op(aj)u−Op(aj)w‖Hs−k,t−ℓ + ‖Op(aj)w −Op(a)w‖Hs−k,t−ℓ

+ ‖Op(a)w −Op(a)u‖Hs−k,t−ℓ

≤C‖u− w‖Hs,t + ‖Op(aj)w −Op(a)w‖Hs−k,t−ℓ

<ε+ ‖Op(aj)w −Op(a)w‖Hs−k,t−ℓ .

Taking j → ∞, we obtain the desired result.
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Chapter 3

Essential self-adjointness of
real-principal type operators

3.1 Introduction

In this chapter, we consider formally self-adjoint real principal type operator P = Op(p)
on the Euclidean space Rn with n ≥ 1, where Op(·) denotes the Weyl quantization.
A typical example is the Klein-Gordon operator with variable coefficients (see Re-
mark 3.1.2), and the propagation of singularities plays an essential role in the proof of
the essential self-adjointness.

We suppose the symbol p(x, ξ) is real principal type with asymptotically constant
coefficients in the following sense:

Assumption A. Let m ≥ 2, p, pm ∈ C∞(R2n) and p0 ∈ C∞(Rn) be real-valued
functions of the form

p(x, ξ) =
∑
|α|≤m

aα(x)ξ
α, pm(x, ξ) =

∑
|α|=m

aα(x)ξ
α, p0(ξ) =

∑
|α|=m

bαξ
α

where bα ∈ R and aα ∈ C∞(Rn) such that for any multi-index α ∈ Zn+,

|∂βx (aα(x)− bα)| ≤ Cβ〈x〉−µ−|β|, x ∈ Rn

with some µ > 0, where we set bα = 0 for |α| ≤ m − 1. Moreover, there exists C > 0
such that

C−1|ξ|m−1 ≤ |∂ξp0(ξ)| ≤ C|ξ|m−1, C−1|ξ|m−1 ≤ |∂ξpm(x, ξ)| ≤ C|ξ|m−1

for (x, ξ) ∈ R2n.

Let (y(t), η(t)) = (y(t, x0, ξ0), η(t, x0, ξ0)) ∈ C1(R×R2n;R2n) be the solution to the
Hamilton equation:

d

dt
y(t) =

∂pm
∂ξ

(y(t), η(t)),
d

dt
η(t) = −∂pm

∂x
(y(t), η(t)), t ∈ R,
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with the initial condition: (y(0), η(0)) = (x0, ξ0) ∈ R2n. We suppose the following null
non-trapping condition:

Assumption B. For any (x0, ξ0) ∈ p−1
m (0) with ξ0 6= 0, |y(t, x0, ξ0)| → ∞ as |t| → ∞.

Our main theorem is the following:

Theorem 3.1.1. Suppose Assumption A and B. Then P = Op(p) is essentially self-
adjoint on C∞

c (Rn).

Remark 3.1.2. (Klein-Gordon operators on asymptotically Minkowski spaces) Let g0
be the Minkowski metric on Rn: g0 = dx21 − dx22 − ... − dx2n and g−1

0 = (gij0 )
n
i,j=1 be

its dual metric. A Lorentzian metric g on Rn is called asymptotically Minkowski if
g−1(x) = (gij(x))ni,j=1 satisfies, for any α ∈ Zn+ there is Cα > 0 such that

|∂αx (gij(x)− gij0 )| ≤ Cα〈x〉−µ−|α|, x ∈ Rn,

with some µ > 0. Suppose V (x), Aj(x) ∈ C∞(Rn;R), j = 1, . . . , n, such that

|∂αxV (x)| ≤ Cα〈x〉−µ−|α|, |∂αxAj(x)| ≤ Cα〈x〉−µ−|α|, x ∈ Rn,

for any α ∈ Zn+ . Then the symbol

p(x, ξ) =
n∑

j,k=1

gjk(x)(ξj − Aj(x))(ξk − Ak(x)) + V (x)

satisfies Assumption A. The essential self-adjointness for this model is studied by
Vasy [75].

Remark 3.1.3. In this paper, we only deal with operators with order greater than 1. The
essential self-adjointness of first order operators on C∞

c (Rn) can be proved by Nelson’s
commutator theorem with its conjugate operator N = −∆ + |x|2 + 1 ([61, Theorem
X.36]). We also note that if P commutes with the complex conjugation: Pu = Pu,
then, it is enough to assume the forward null non-trapping condition only instead of
null non-trapping condition (cf. [61, Theorem X.3]).

The study of essential self-adjointness has a long history but mostly on operators of
elliptic type (see [61] Chapter X and reference therein). For the construction of solutions
to evolution equation with real principal type operators, we refer the classical paper
[13] by Duistermaat and Hörmander, and the textbook by Hörmander [30]. Chihara
[9] studies the well-posedness and the local smoothing effects of the Schrödinger-type
equations : ∂tu(t, x) = −iPu(t, x) under the globally non-trapping condition. The
well-posedness implies essential self-adjointness of P if the operator P is symmetric.
We assume the non-trapping condition only for null trajectories, since the microlocally
elliptic region should not be relevant.

Recently, the scattering theory for Klein-Gordon operators on Lorenzian manifolds
has been studied by several authors (see, e.g., [3, 20, 75] and references therein). We
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also mention related work on Strichartz estimates for Lorenzian manifolds ([23, 55, 69]),
nonlinear Schrödinger-type equations with Minkowski metric ([22, 66, 77]), and quan-
tum field theory on Minkowski spaces ([76, 21]). In order to study spectral properties
of such equations or operators, self-adjointness is fundamental. We note a sufficient
condition for the essential self-adjointness is discussed in Taira [69]. The essential self-
adjointness for Klein-Gordon operators on scattering Lorentzian manifolds is proved by
Vasy [75] under the same null non-trapping condition. We had independently found a
proof of the essential self-adjointness using different method for compactly supported
perturbations (we discuss the basic idea in Section 3.5). Inspired by discussions with
Vasy during 2017, we generalized the model to include long-range perturbations, and
also to higher order real principal type operators. Our proof is considerably different
from [75], relatively self-contained, and hopefully simpler even though our result is more
general than [75] for the Rn case.

This chapter is constructed as follows: Our main result is proved in Section 3.2. In
Subsection 3.2.1 we show that (P − i)u = 0 implies u is smooth. The basic idea of
the proof is analogous to Nakamura [57] on microlocal smoothing estimates, and relies
on the construction of time-global escaping functions (see also Ito, Nakamura [41] for
related results for scattering manifolds). The technical detail is given in Section 3.4.
In Subsection 3.2.2, we show the local smoothness implies an weighted Sobolev esti-
mate, which is sufficient for the proof of the essential self-adjointness. The idea is
analogous to the radial point estimates of Melrose [53], and also related to the posi-
tive commutators method of Mourre. Here we construct weight functions explicitly to
show necessary operator inequalities. The proof relies on the standard pseudodifferen-
tial operator calculus. In Section 3.3, we prove non-trapping estimates for the classical
trajectories generated by pm(x, ξ), which are necessary in Section 3.4. The main lemma
(Lemma 3.3.2) is a generalization of a result by Kenig, Ponce, Rolvung and Vega [49],
though the proof is significantly simplified. In Section 3.5, we give a simplified proof
of the essential self-adjintness for the compactly supported perturbation case. In this
case the relatively involved argument of Subsection 3.2.2 is not necessarily.

3.2 Proof of Theorem 3.1.1

By the basic criterion for the essential self-adjointness ([61, Theorem VII.3]), it is
sufficient to show

Ker (P ∗ ± i) =
{
0
}

to prove Theorem 3.1.1. Since D(P ) = C∞
c (Rn), we have D(P ∗) = {u ∈ L2(Rn) |Pu ∈

L2(Rn)} where P acts on u in the distribution sense. We hence show:

(P ± i)u = 0 in D′(Rn) for u ∈ L2(Rn) implies u = 0.

We only consider “−” case. The “+” case is similarly handled. Moreover, we note if u
satisfies (P − i)u = 0 and u ∈ H

m−1
2
,− 1

2 (Rn), then u = 0 follows from a simple argument
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in [75]. Namely, we take a real-valued function ψ ∈ C∞
c ({t ∈ R | t ≤ 2}) such that

ψ(t) = 1 for t ≤ 1 and set ψR(x, ξ) = ψ(〈x〉/R)ψ(〈ξ〉/R). Then we have

−2i‖u‖2L2 = (Pu, u)L2 − (u, Pu)L2 = lim
R→∞

([Op(ψR), P ]u, u)L2 .

We note that [Op(ψR), P ] is uniformly bounded in OpSm−1,−1 and converges to 0 in
OpSm−1+δ,−1+δ as R → ∞ for any δ > 0. We obtain u = 0 by using Lemma 2.3.2.
Thus, in order to prove Theorem 3.1.1, it suffices to prove

Proposition 3.2.1. If u ∈ L2(Rn) satisfies (P − i)u = 0, then u ∈ H
m−1

2
,− 1

2 .

The proof of Proposition 3.2.1 is divided into two parts. In Subsection 3.2.1, we
prove the local smoothness of u. In Subsection 3.2.2, using the local smoothness of u,
we prove weighted Sobolev properties of u.

3.2.1 Local regularity

The main result of this subsection is the following proposition. We note that we need
the null non-trapping condition only for this proposition.

Proposition 3.2.2. If u ∈ L2(Rn) satisfies (P − i)u = 0, then u ∈ C∞(Rn).

Proof. It suffices to prove u ∈ Hk
loc(Rn) for any k > 0. We use the contradiction

argument. Suppose u /∈ Hk
loc(Rn) with some k. By Lemma 2.3.1, there exist (x0, ξ0) ∈

Rn×Rn with ξ0 6= 0, C > 0, and a sequence {hℓ} ⊂ (0, 1] such that for any a ∈ C∞
0 (Rn)

with a(x0, ξ0) = 1,

hℓ → 0 as `→ ∞, and ‖Op(ahℓ,m)u‖ ≥ Ch
k

m−1
+1

ℓ ,

where ah,m(x, ξ) = a(x, h
1

m−1 ξ). We may assume (x0, ξ0) ∈ p−1
m (0) since u is smooth

microlocally in R2n \ p−1
m ({0}). Now we use the following proposition.

Proposition 3.2.3. There exists a family of bounded operators {F (h, t)}0<h≤1,t≥0 on
L2(Rn) such that

(i) F (h, 0) = Op(ψh)
2 = Op(ψh)

∗Op(ψh), where ψh satisfies ψh(x0, ξ0) ≥ 1 and for
any α, β ∈ Zn+,

|∂αx∂
β
ξ ψh(x, ξ)| ≤ Cαβh

|β|
m−1 〈x〉−|α|.

(ii) There exists C > 0 such that for 0 < h ≤ 1,

‖F (h, t)‖B(L2) ≤ C〈t〉h(−m+2)/(m−1), t ≥ 0.

(iii) There exists R(h, t) ∈ B(L2(Rn)) such that

d

dt
F (h, t) + i[P, F (h, t)] ≥ −R(h, t), t ≥ 0,

sup
t≥0

〈t〉−1‖R(h, t)‖B(L2) = O(h∞) as h→ 0.
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Proposition 3.2.3 can be proved similarly as [57, Lemma 9]. For the completeness,
we give a proof of Proposition 3.2.3 in Section 3.4. Now we set u(t, x) := e−tu(x). Then
u(t, x) satisfies

i∂tu(t, x)− Pu(t, x) = 0, ‖u(t)‖L2(Rn) ≤ e−t‖u‖L2(Rn),

where the first equality is in the distributional sense. We set Fℓ(t) = F (hℓ, t). Then,
we have

Ch
2k

m−1
+2

ℓ ≤‖Op(ψhℓ)u‖2 = (u, Fℓ(0)u)

=(u(t), Fℓ(t)u(t))−
∫ t

0

d

ds

(
u(s), Fℓ(s)u(s)

)
ds

=(u(t), Fℓ(t)u(t))−
∫ t

0

(
u(s),

(
dFℓ
ds

(s) + i[P, Fℓ(s)]

)
u(s)

)
ds

≤Ch
−m+2
m−1

ℓ 〈t〉e−2t‖u‖2 +O(h∞ℓ ) · ‖u‖2
∫ t

0

e−2s〈s〉ds,

where all the inner products and norms here are in L2(Rn), and O(h∞ℓ ) is uniformly in t.
Now, we take t = h−1

ℓ then we conclude a contradiction. Thus, we obtain u ∈ Hk
loc(Rn)

for any k > 0. This completes the proof of Proposition 3.2.2

3.2.2 Uniform regularity outside a compact set

In this subsection, we prove a priori sub-elliptic estimates near infinity. The following
estimates are based on the radial points estimates in [53], where the radial points esti-
mates are used for scattering theory on scattering manifolds. By the classical propaga-
tion of singularities, the singularities of a solution to Pu = 0 (provided P is real-valued
real principal type) propagate along the Hamilton flow associated with p. At points
where the Hamilton vector filed vanishes, we may use the so-called radial points, which
implies u is rapidly decaying at a radial source if u has a threshold regularity at the
radial source.

In our case, the radial points estimates are analogous to the Mourre estimate mi-
crolocally near outgoing or incoming regions, which is used commonly in scattering
theory. We give a self-contained proof of the radial point estimate based on an explicit
construction of escaping functions. We note the operator theoretical framework of the
Mourre theory is not applicable here since we do not have the self-adjointness of P at
this point.

We set
P = P0 +Q, P0 = p0(Dx), Q = Op(q),

where

q(x, ξ) = p(x, ξ)− p0(ξ) ∈ Sm,−µ, V (x, ξ) = p(x, ξ)− pm(x, ξ) ∈ Sm−1,−µ.
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We use the following smooth cut-off functions: Let χ ∈ C∞(R) be such that

χ(t) =

{
1 if t ≤ 1,

0 if t ≥ 2,
0 ≤ χ(t) ≤ 1, χ′(t) ≤ 0 for t ∈ R,

and supp χ′ ⋐ (1, 2). We write χ(t) = 1− χ(t), and

χ
M(x) = χ(|x|/M), χ

M(x) = χ(|x|/M), x ∈ Rn,

with M > 0. A main result of this subsection is the following theorem.

Theorem 3.2.4. Let γ > 0 and z ∈ C \ R. There is M > 0 such that if ϕ ∈ L2(Rn),
(P − z)ϕ ∈ S(Rn) and χM(x)ϕ ∈ C∞(Rn), then ϕ ∈ Hk+1−m/2,−γ ∩ Hk+1/2,−γ−1/2 for
any k ∈ R.

Now we show Proposition 3.2.1 follows from Theorem 3.2.4.

Proof of Proposition 3.2.1. Suppose that u ∈ L2(Rn) satisfies (P − i)u = 0. By Propo-
sition 3.2.2, we have u ∈ C∞(Rn). In particular, we have χM(x)ϕ ∈ C∞(Rn) for any
M ≥ 1. Taking γ = 1/2 and k = m−1, we obtain ϕ ∈ Hm/2,−1/2 ⊂ H(m−1)/2,−1/2. This
completes the proof of Proposition 3.2.1.

Thus it remains to prove Theorem 3.2.4. In the following, we assume Im z > 0
without loss of generality. We may also assume 0 < γ < min(1/4, µ/2).

Weight functions

We choose ρ(t) ∈ C∞(R) such that

ρ(t) =

{
0 if t ≤ 0,

1 if t ≥ 1/8,
0 ≤ ρ(t) ≤ 1, ρ′(t) ≥ 0 for t ∈ R.

For δ ∈ (1/2, 7/8), we set

ρδ+(t) = ρ(t− δ), ρδ−(t) = 1− ρ(t+ 1− δ), ρδ0(t) = 1− ρδ+(t)− ρδ−(t),

for t ∈ R. We use the following notation:

x̂ =
x

|x|
, v(ξ) = ∂ξp0(ξ), v̂(ξ) =

v(ξ)

|v(ξ)|
, η = η(x, ξ) = x̂ · v̂(ξ).

Then we set
bδ(x, ξ) =

(
ρδ−(η)|x|γ + ρδ0(η) + ρδ+(η)|x|−γ

)
e−γη,

which is defined for x, ξ ∈ Rn \ {0}. We introduce cut-off functions and set

bδM,ν(x, ξ) = bδ(x, ξ)χM(x)χν(ξ), x, ξ ∈ Rn.
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with M, ν > 0. We also write

Ω1(M, ν) =
{
(x, ξ)

∣∣M ≤ |x| ≤ 2M, |ξ| ≥ ν
}
,

Ω2(M, ν) =
{
(x, ξ)

∣∣ |x| ≥M, ν ≤ |ξ| ≤ 2ν
}
.

The next lemma is a key of the proof of Theorem 3.2.4.

Lemma 3.2.5. Let 1/2 < δ < δ̃ < 7/8, k ∈ R, 0 < M̃ < M , 0 < ν̃ < ν, and write

B = Op(bδM,ν), B̃ = Op(bδ̃
M̃ ,ν̃

).

If M̃ is sufficiently large, then: There are pseudodifferential operators S = Op(f1),
T = Op(f2) such that f1, f2 ∈ S(1, g) and supp [f1] ⊂ Ω1(M, ν), supp [f2] ⊂ Ω2(M, ν);
If ϕ ∈ S′, B̃ϕ ∈ Hk−1+m/2,−1/2, B(P − z)ϕ ∈ Hk−(m−1)/2,1/2, Sϕ ∈ Hk+(m−1)/2 and
Tϕ ∈ L2 then

Bϕ ∈ Hk ∩Hk+(m−1)/2,−1/2.

Moreover, For any N > 0 and k ≥ 0 there is C > 0 such that

‖Bϕ‖2Hk+(m−1)/2,−1/2 + (Im z)‖Bϕ‖2Hk

≤ C
(
‖B(P − z)ϕ‖2Hk−(m−1)/2,1/2 + ‖B̃ϕ‖2Hk−1+m/2,−1

+ ‖Sϕ‖2Hk+(m−1)/2 + ‖Tϕ‖2L2 + ‖ϕ‖2H−N,−N

)
. (3.2.1)

Remark 3.2.6. The constant C in the lemma is independent of ϕ and z ∈ C \ R. We
note we assume B̃ϕ ∈ Hk+(m−1)/2,−1/2 for technical reasons, though only the norm of
B̃ϕ in Hk,−1 appears in the RHS of (3.2.1).

Theorem 3.2.4 follows from Lemma 3.2.5.

Proof of Theorem 3.2.4. For j = 0, 1, 2, . . . , we choose νj and ν̃j so that

0 < ν̃0 < ν0 = ν̃1 < ν1 = ν̃2 < ν2 = · · · < δ0 <∞

with an arbitrarily fixed δ0 > 0. We then chooseMj and M̃j so that the claim of Lemma
3.2.5 holds with k = j/2, M =Mj, M̃ = M̃j and

0 < M̃0 < M0 = M̃1 < M1 = M̃2 < M2 = · · · .

We also set δj = (1 + 2−j)/4 and δ̃j = δj−1 = (1 + 2 · 2−j)/4 for j = 0, 1, 2, . . . . We

write Bj = Op(b
δj
Mj ,νj

), B̃j = Op(b
δ̃j

M̃j ,ν̃j
) = Bj−1.

Suppose ϕ ∈ L2 and (P − z)ϕ ∈ S(Rn). Then we note

Bj(P − z)ϕ ∈ S(Rn).

At first, we have B̃0ϕ ∈ H0,−γ ⊂ H0,−1/2. By Lemma 3.2.5 with k = 1−m/2, we learn
B̃1ϕ = B0ϕ ∈ H1−m/2∩H1/2,−1/2, provided Sϕ ∈ H1/2 and Tϕ ∈ L2, which are satisfied
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under the assumptions of Theorem 3.2.4 (with M0 ≤ M). Then we use Lemma 3.2.5
again with k = (3 − m)/2 to learn B̃2ϕ = B1ϕ ∈ H(3−m)/2 ∩ H1,−1/2. Iterating this
procedure 2k-times, we arrive at

B2kϕ ∈ Hk+1−m/2 ∩Hk+1/2,−1/2.

Note that conditions Sϕ ∈ Hk/2+1/2 and Tϕ ∈ L2 are satisfied since χM(x)ϕ ∈ C∞(Rn).
Now we use the first inclusion B2kϕ ∈ Hk+1−m/2. We recall, by the assumption, χMϕ ∈
Hk+1−m/2, and this implies

B2kϕ+ χ
M(x)ϕ ∈ Hk+1−m/2.

Since
bM,ν + χ

M(x) ≥ c0〈x〉−γ, |ξ| ≥ 2ν,

by the elliptic estimates (or the sharp G̊arding inequality), we have ϕ ∈ Hk+1−m/2,−γ.
ϕ ∈ Hk+1/2,−γ−1/2 follows from B2kϕ ∈ Hk+1/2,−1/2 by the same argument.

For the proof of Lemma 3.2.5, we compute the commutator of B and P , and then
use a commutator inequality. We write b = bδM,ν , b̃ = bδ̃

M̃ ,ν̃
, ρδ∗ = ρ∗ and ρ̃∗ = ρδ̃∗, where

∗ = +,−, or 0. The following lower bound for the Poisson bracket is crucial in the
proof of Lemma 3.2.5.

Lemma 3.2.7. Let k,M and ν be as in Lemma 3.2.5. If M is sufficiently large, there
are symbols f1, f2 ∈ S(1, g) such that supp [f1] ⊂ Ω1(M, ν), supp [f2] ⊂ Ω2(M, ν),
f1, f2 ≥ 0, f2 ≤ C〈x〉−(1+µ−2γ)/2b, and δ4 > 0 such that

{p, 〈ξ〉2kb2} ≥ δ4
|v|
|x|

〈ξ〉2kb2 − 〈ξ〉2k+m−1f 2
1 − f 2

2 .

Proof. We first note

v · ∂xη = v · ∂x̂
∂x
v̂ = |v|

〈
v̂,

(
E

|x|
− x⊗ x

|x|3

)
v̂

〉
=

|v|
|x|

(1− η2),

where E denotes the identity matrix. We also note

ρ′0 = −ρ′+ − ρ′−, ∂x|x| = x̂, v · (∂x|x|) = |v|v̂ · x̂ = |v|η.
Using these, we compute:

{p0, b} = v · ∂xb
= (v · ∂xη)

{
ρ′−|x|γ + ρ′0 + ρ′+|x|−γ − γ

(
ρ−|x|γ + ρ0 + ρ+|x|−γ

)}
×

× χ
M(x)χν(ξ)e

−γη

+ (v · ∂x|x|)
(
γρ−|x|γ−1 − γρ+|x|−γ−1

)
χ
M(x)χν(ξ)e

−γη

+ (v · ∂x|x|)
(
ρ−|x|γ + ρ0 + ρ+|x|−γ

)
M−1χ′

(|x|/M)χν(ξ)e
−γη

=
|v|
|x|

(1− η2)
{
ρ′−(|x|γ − 1) + ρ′+(|x|−γ − 1)− γ(ρ−|x|γ + ρ0 + ρ+|x|−γ)

}
×

× χ
M(x)χν(ξ)e

−γη + γ
|v|
|x|
(
ηρ−|x|γ − ηρ+|x|−γ

)
χ
M(x)χν(ξ)e

−γη + r0,
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where
r0(x, ξ) = |v(ξ)|η(x, ξ)bδ(x, ξ)M−1χ′

(|x|/M)χν(ξ),

which is supported in Ω1(M, ν). We may suppose M ≥ 1, and then

ρ′−(|x|γ − 1) ≤ 0, ρ′+(|x|−γ − 1) ≤ 0

on the support of b. We also note

ηρ−(η) ≤ (−7/8 + δ)ρ−(η), −ηρ+(η) ≤ −δρ+(η),

and
(1− η2)ρ0(η) ≥ min(1− (δ − 1)2, 1− (δ + 1/8)2)ρ0(η).

We set
δ3 = min(7/8− δ, δ, 1− (δ − 1)2, 1− (δ + 1/8)2) > 0.

We substitute these inequality to the above formula on {p0, b} to learn

{p0, b} ≤ −γδ3
|v|
|x|
{
ρ0 + ρ−|x|γ + ρ+|x|−γ

}
χ
M(x)χν(ξ)e

−γη + r0

≤ −δ3γ
|v|
|x|
b(x, ξ) + r0(x, ξ).

Then we have

−{p0, b2} = −2b{p0, b} ≥ 2δ3γ
|v|
|x|
b2 + 2br0.

This also implies

−{p0, 〈ξ〉2kb2} = −2b{p0, b}〈ξ〉2k ≥ 2δ3γ
|v|
|x|

〈ξ〉2kb2 + 2〈ξ〉2kbr0. (3.2.2)

On the other hand, we have {q, 〈ξ〉2kb2} ∈ S(〈x〉−µ+2γ−1〈ξ〉2k+m−1, g). We consider
this function in more detail. We note, for any α, β ∈ Zn+,∣∣∂αx∂βξ bδ(x, ξ)∣∣ ≤ Cαβ|x|γ−|α||ξ|−|β|, x, ξ 6= 0, (3.2.3)

with some Cαβ > 0. We also note

{q, b} = {q, bδ}χM(x)χν(ξ) + bδ{q, χM(x)χν(ξ)}
= {q, bδ}χM(x)χν(ξ) + r1 + r2,

where
r1 = bδ(∂ξq) · (∂xχM)χν(ξ), r2 = −bδχM(x)(∂xq) · (∂ξχν).
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We observe that r1 is supported in Ω1(M, ν), and r1 ∈ S(〈ξ〉m−1, g); r2 is supported in
Ω2(M, ν) and r2 ∈ S(〈x〉−1−µ+γ, g). Using (3.2.3), we have∣∣{q, bδ}χM(x)χν(ξ)

∣∣ ≤ C〈x〉−µ+γ−1〈ξ〉m−1χ
M(x)χν(ξ)

≤ C ′M−(µ−2γ) |v(ξ)|
|x|

b(x, ξ)

with some C,C ′ > 0. Hence we learn

{q, 〈ξ〉2kb2} ≥ −2C ′M−(µ−2γ) |v(ξ)|
|x|

〈ξ〉2kb2 + 2〈ξ〉2kbr1 + 2〈ξ〉2kbr2,

uniformly in M ≥ 1. Combining this with (3.2.2), we learn

{p, 〈ξ〉2kb2} ≥ (2δ3γ − 2C ′M−(µ−2γ))〈ξ〉2k |v|
|x|
b2 + 2〈ξ〉2kb(r0 + r1 + r2).

We recall γ < µ/2. We now choose M so large that 2C ′M−(µ−2γ) ≤ δ3γ, and we obtain

{p, 〈ξ〉2kb2} ≥ δ3γ
|v|
|x|

〈ξ〉2kb2 + 2〈ξ〉2kb(r0 + r1 + r2).

We note supp [r0 + r1] ⋐ Ω1(M, ν) and r0 + r1 ∈ S(〈ξ〉m−1, g), hence we can find
f1 ∈ S(1, g), f1 ≥ 0, supp [f1] ⊂ Ω1(M, ν) such that

2〈ξ〉2kb(r0 + r1) ≥ −〈ξ〉2k+m−1f 2
1 .

Similarly, since supp [r2] ⋐ Ω2(M, ν), r2 ∈ S(〈x〉γ−µ−1, g), we can find f2 ∈ S(1, g),
f2 ≥ 0, supp [f2] ⊂ Ω2(M, ν) such that

2〈ξ〉2kbr2 ≥ −f 2
2 and 0 ≤ f2 ≤ C〈x〉−(1+µ−2γ)/2b.

By setting δ4 = δ3γ, we arrive at the conclusion of the lemma.

We write
B = Op(b), B̃ = Op(b̃), Λ = 〈Dx〉(m−1)/2〈x〉−1/2.

Lemma 3.2.8. Under the above assumptions, there are pseudodifferential operators
S, T, U, V and a constant δ4 > 0 such that

−i[P,B〈Dx〉2kB] ≥ δ4B〈Dx〉k|Λ|2〈Dx〉kB − S∗〈Dx〉2k+m−1S − T ∗T − U − V,

where

(i) S ∈ OpS(1, g) and the symbol is supported in Ω1(M, ν);

(ii) T ∈ OpS(1, g) and the symbol is supported in Ω2(M, ν);
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(iii) U = Op(u) with u ∈ S(〈x〉2γ−2〈ξ〉2k+m−2, g) and or any α, β ∈ Zn+,

|∂αx∂
β
ξ u(x, ξ)| ≤ C〈x〉−2−|α|〈ξ〉2k+m−2−|β|b̃(x, ξ)2;

(iv) V ∈ OpS(〈x〉−∞〈ξ〉−∞, g).

In the proof of Lemma 3.2.8, we use the following estimate:

Lemma 3.2.9. Suppose a be a symbol such that supp [a] ⊂ Ω′, where Ω′ =
{
(x, ξ)

∣∣
|x| ≥M ′, |ξ| ≥ ν ′

}
with M ′ > M̃ , ν ′ > ν̃, and for any α, β ∈ Zn+,∣∣∂αx∂βξ a(x, ξ)∣∣ ≤ Cαβ〈x〉2ℓ−|α|〈ξ〉2s−|β|b̃(x, ξ)2,

where s, ` ∈ R. Then for any N , there is C,CN > 0 such that

|〈ϕ,Op(a)ϕ〉| ≤ C‖B̃ϕ‖2Hs,ℓ + CN‖ϕ‖2H−N,−N , ϕ ∈ S(Rn).

Proof. We note, for any α, β ∈ Zn+,∣∣∂αx∂βξ b̃(x, ξ)∣∣ ≤ C ′
αβ〈x〉−|α|+2γ(|α+β|)〈ξ〉−|β|b̃(x, ξ), (x, ξ) ∈ Ω′.

We write g̃ = 〈x〉−2+4γdx2 + 〈x〉4γ〈ξ〉−2dξ2. Using the above estimate and the assump-
tion on a, and following the construction of parametrices for elliptic operators, we can
construct a symbol h(x, ξ) ∈ S(1, g̃) such that

Op(a) = B̃〈x〉ℓ〈Dx〉sOp(h)〈Dx〉s〈x〉ℓB̃ +R,

where R ∈ S(〈x〉−∞〈ξ〉−∞, g̃). The assertion follows from this since Op(h) is bounded
in L2(Rn).

Proof of Lemma 3.2.8. By the standard pseudodifferential operator calculus, we can
find f̃1, f̃2 such that f̃j ∈ S(1, g), supp [f̃j] ⊂ Ωj(M, ν), j = 1, 2, and

Op(〈ξ〉2k+m−1f 2
1 ) ≤ Op(f̃1)

∗〈Dx〉2k+m−1Op(f̃1) +R1,

Op(〈x〉2γ−1−µf 2
2 ) ≤ Op(f̃2)

∗Op(f̃2) +R2,

where Rj are smoothing operators. We set S = Op(f̃1) and T = Op(f̃2). If we write

ζ(x, ξ) = {p, 〈ξ〉2kb2} − δ4
|v|
|x|

〈ξ〉2kb2 + 〈ξ〉2k+m−1f 2
1 + f 2

2 ≥ 0.

We note, by the construction, ζ(x, ξ)b′(x, ξ)−2 ∈ S(〈x〉−1〈ξ〉2k+m−1, g), where b′ = bM ′,ν′

with M̃ < M ′ < M , ν̃ < ν ′ < ν. Hence by the sharp G̊arding inequality, we have

Op(ζ(b′)−2) ≥ −C〈Dx〉k−1+m/2〈x〉−2〈Dx〉k−1+m/2

22



with some C > 0. Then by the asymptotic expansion, we learn

Op(ζ) ≥ −CB′〈Dx〉k−1+m/2〈x〉−2〈Dx〉k−1+m/2B′ −R3,

where R3 ∈ S(〈x〉−3〈ξ〉2k+m−3, g), and the symbol is supported in supp [b′] modulo
S(R2d). Using Lemma 3.2.7, we can estimate R3 and other error terms from below by
−CB̃〈Dx〉k−1+m/2〈x〉−2〈Dx〉k−1+m/2B̃, modulo smoothing operators, and these will be
included in U to complete the proof.

Lemma 3.2.10. For ϕ ∈ S(Rn), the inequality (3.2.1) holds, where S = Op(f1),
T = Op(f2), f1, f2 ∈ S(1, g), and supp [f1] ⊂ Ω1(M, ν), supp [f2] ⊂ Ω2(M, ν).

Proof. We compute the commutator to obtain quadratic inequalities. For ϕ ∈ S(Rn),
we have〈

ϕ,−i[P,B〈Dx〉2kB]ϕ
〉
=
〈
ϕ,−i[(P − z), B〈Dx〉2kB]ϕ

〉
= −i

(〈
〈Dx〉kB(P − z̄)ϕ, 〈Dx〉kBϕ

〉
−
〈
〈Dx〉kBϕ, 〈Dx〉kB(P − z)ϕ

〉)
= −i

(〈
(Λ−1)∗〈Dx〉kB(P − z)ϕ,Λ〈Dx〉kBϕ

〉
−
〈
Λ〈Dx〉kBϕ, (Λ−1)∗〈Dx〉kB(P − z)ϕ

〉)
− 2(Im z)

∥∥〈Dx〉kBϕ
∥∥2

≤ 2
∥∥(Λ−1)∗〈Dx〉kB(P − z)ϕ

∥∥ · ∥∥Λ〈Dx〉kBϕ
∥∥− 2(Im z)

∥∥〈Dx〉kBϕ
∥∥2.

Combining this with Lemma 3.2.8, we have

δ4
∥∥Λ〈Dx〉kBϕ

∥∥2 + 2(Im z)
∥∥〈Dx〉kBϕ

∥∥2
− 〈ϕ, (S∗〈Dx〉2k+m−1S + T ∗T + U + V )ϕ〉

≤ 2
∥∥(Λ−1)∗〈Dx〉kB(P − z)ϕ

∥∥ · ∥∥Λ〈Dx〉kBϕ
∥∥

≤ δ4
2

∥∥Λ〈Dx〉kBϕ
∥∥2 + 4

δ4

∥∥(Λ−1)∗〈Dx〉kB(P − z)ϕ
∥∥2.

Thus we have

δ4
2

∥∥Λ〈Dx〉kBϕ
∥∥2 + 2(Im z)

∥∥〈Dx〉kBϕ
∥∥2

≤ 4

δ4

∥∥(Λ−1)∗〈Dx〉kB(P − z)ϕ
∥∥2

+ 〈ϕ, (S∗〈Dx〉2k+m−1S + T ∗T + U + V )ϕ〉.

Now we note, by Lemma 3.2.9,

〈ϕ,Uϕ〉 ≤ C‖B̃ϕ‖2Hk−1+m/2,−1 + C‖ϕ‖2H−N,−N

with any N . These imply (3.2.1) for ϕ ∈ S(Rn).
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We now extend Lemma 3.2.10 to more general ϕ to prove Lemma 3.2.5. We choose
M ′ and ν ′ so that M̃ < M ′ < M , ν̃ < ν ′ < ν, δ < δ′ < δ̃, and set

b′(x, ξ) = bδ
′

M ′,ν′(x, ξ), B′ = Op(b′).

We write
Aε = 〈εDx〉−1B, Ãε = 〈εDx〉−1B̃, A′

ε = 〈εDx〉−1B′

and we denote their symbols by aε, ãε and a
′
ε, respectively.

By the same computation as in the proof of Lemma 3.2.7, we have

{p, 〈ξ〉2k|aε|2} ≥ δ4
|v|
|x|

〈ξ〉2k|aε|2 − 〈ξ〉2k+m−1f 2
1 − 〈x〉2γ−1−µf 2

2 ,

modulo S(Rn)-terms, where constants are independent of ε, and f1 and f2 are indepen-
dent of ε. Then, as well as Lemma 3.2.8, we have

− i[P,A∗
ε〈Dx〉2kAε]

≥ δ4A
∗
ε〈Dx〉kΛ2〈Dx〉kAε − S∗〈Dx〉2k+m−1S − T ∗T − Uε − Vε,

where the symbol of Uε has the property:

|uε(x, ξ)| ≤ C〈x〉−2〈ξ〉2k+m−2|a′ε(x, ξ)|2, (3.2.4)

and symbols of Uε and Vε are bounded in the respective symbol classes. It follows that

|〈ϕ,Uεϕ〉| ≤ C‖A′
εϕ‖2Hk−1+m/2,−1 + C‖ϕ‖2H−N,−N , ϕ ∈ S(Rn),

where the constant is independent of ε. Thus we have, as well as Lemma 3.2.10, for
ϕ ∈ S(Rn),

‖Aεϕ‖2Hk+(m−1)/2,−1/2 + (Im z)‖Aεϕ‖2Hk

≤ C
(
‖Aε(P − z)ϕ‖2Hk−(m−1)/2,1/2 + ‖A′

εϕ‖2Hk−1+m/2,−1

+ ‖Sϕ‖2Hk+(m−1)/2 + ‖Tϕ‖2L2

)
+ CN‖ϕ‖2H−N,−N , (3.2.5)

with any N , where C and CN are independent of ε ∈ (0, 1].

Lemma 3.2.11. Suppose that ϕ ∈ S′(Rn) satisfies B̃ϕ ∈ Hk−1+m/2,−1/2,

Aε(P − z)ϕ ∈ Hk−(m−1)/2,1/2, Sϕ ∈ Hk+(m−1)/2 and Tϕ ∈ L2.

Then Aεϕ ∈ Hk+(m−1)/2,−1/2 ∩Hm and (3.2.5) holds.

Proof. We set, for L� 0,
XL = χ

L(x)χL(Dx).

We first note ‖XLψ−ψ‖Hs,ℓ → 0 as L→ ∞, provided ψ ∈ Hs,ℓ. We also note ψ ∈ Hs,ℓ

if and only if limL→∞ ‖XLψ‖Hs,ℓ <∞.
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We observe that the symbol of [XL, Aε] is bounded by C〈x〉−1〈ξ〉−1a′ε(x, ξ), modulo
S(R2d)-terms, uniformly in L, and also it converges to 0 locally uniformly as L → ∞.
These imply

lim
L→∞

‖XLAεψ‖Hs,ℓ ≤ lim
L→∞

(‖AεXLψ‖Hs,ℓ + ‖[XL, Aε]ψ‖Hs,ℓ)

≤ lim
L→∞

‖AεXLψ‖Hs,ℓ

with anyN , provided B̃ψ ∈ Hs−1,ℓ−1. In particular, since we assume B̃ϕ ∈ Hk−1+m/2,−1/2,

lim
L→∞

(‖XLAεϕ‖2Hk+(m−1)/2,−1/2 + ‖XLAεϕ‖2Hk)

≤ lim
L→∞

(‖AεXLϕ‖2Hk+(m−1)/2,−1/2 + ‖AεXLϕ‖2Hk).

By the same argument, using B̃ϕ ∈ Hk−1+m/2,−1/2, we learn

lim
L→∞

‖Aε(P − z)XLϕ‖2Hk−(m−1)/2,1/2 ≤ ‖Aε(P − z)ϕ‖2Hk−(m−1)/2,1/2 .

We have similar estimates for ‖Sϕ‖Hk+(m−1)/2 and ‖Tϕ‖L2 . Concerning the estimate for
‖A′

εϕ‖Hk−1+m/2,−1 , we use the fact that B̃ϕ ∈ Hk−1+m/2,−1/2 to obtain

lim
L→∞

‖A′
εXLϕ‖2Hk−1+m/2,−1 ≤ ‖A′

εϕ‖2Hk−1+m/2,−1 .

Combining these with (3.2.5) for XLϕ, we learn

lim
L→∞

(‖XLAεϕ‖2Hk+(m−1)/2,−1/2 + ‖XLAεϕ‖2Hk)

≤ lim
L→∞

(
C(‖Aε(P − z)XLϕ‖2Hk−(m−1)/2,1/2 + ‖A′

εXLϕ‖2Hk−1+m/2,−1

+ ‖SXLϕ‖2Hk+(m−1)/2 + ‖TXLϕ‖2L2) + CN‖XLϕ‖2H−N,−N

)
≤ C

(
‖Aε(P − z)ϕ‖2Hk−(m−1)/2,1/2 + ‖A′

εϕ‖2Hk−1+m/2,−1

+ ‖Sϕ‖2Hk+(m−1)/2 + ‖Tϕ‖2L2

)
+ C ′

N‖ϕ‖2H−N,−N ,

and this implies the assertion.

Proof of Lemma 3.2.5. It remains to take the limit ε→ 0 in (3.2.5). We note

‖Aεϕ‖Hs,ℓ = ‖〈Dx〉s〈x〉ℓ〈εDx〉−1Bϕ‖L2

= ‖〈εDx〉−1〈Dx〉s〈x〉ℓBϕ+ 〈Dx〉s[〈x〉ℓ, 〈εDx〉−1]Bϕ‖L2 ,

and hence
‖〈εDx〉−1〈Dx〉s〈x〉ℓBϕ‖L2 ≤ ‖Aεϕ‖Hs,ℓ + C‖Bϕ‖Hs−1,ℓ−1 .

Thus we have
‖Bϕ‖Hs,ℓ ≤ lim

ε→0
‖Aεϕ‖Hs,ℓ + C‖Bϕ‖Hs−1,ℓ−1 .
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We note this holds without assuming Bϕ ∈ Hs,ℓ, and if the right hand side is finite, we
obtain Bϕ ∈ Hs,ℓ.

By the same argument, we also have

lim
ε→0

‖Aε(P − z)ϕ‖Hk−(m−1)/2,1/2

≤ ‖B(P − z)ϕ‖Hk−(m−1)/2,1/2 + C‖B(P − z)ϕ‖Hk−(m−3)/2,−1/2

≤ (1 + C)‖B(P − z)ϕ‖Hk−(m−1)/2,1/2

and similarly,
lim
ε→0

‖A′
εϕ‖Hk−1+m/2,−1 ≤ C ′‖B′ϕ‖Hk−1+m/2,−1 .

Substituting these to (3.2.5), we have

‖Bϕ‖2Hk+(m−1)/2,−1/2 + (Im z)‖Bϕ‖2Hk

≤ lim
ε→0

(
‖Aεϕ‖2Hk+(m−1)/2,−1/2 + C‖Bϕ‖2Hk+(m−3)/2,−3/2

+ (Im z)(‖Aεϕ‖2Hk + C‖Bϕ‖2Hk−1,−1)
)

≤ lim
ε→0

C
(
‖Aε(P − z)ϕ‖2Hk−(m−1)/2,1/2 + ‖Ãεϕ‖2Hk,−1 + ‖Bϕ‖2Hk−1/2,−1

)
+ C(‖Sϕ‖2Hk+(m−1)/2 + ‖Tϕ‖2L2) + CN‖ϕ‖2H−N,−N

≤ C ′(‖B(P − z)ϕ‖2Hk−(m−1)/2,1/2 + ‖B̃ϕ‖2Hk,−1

+ ‖Sϕ‖2Hk+(m−1)/2 + ‖Tϕ‖2L2

)
+ CN‖ϕ‖2H−N,−N ,

and this completes the proof of Lemma 3.2.5.

3.3 Estimates for the classical trajectories

In this section, we prove estimates on the classical trajectories which are used in the
proof of Proposition 3.2.3. First, we show a classical Mourre estimate which implies
the peudo-convexity of Rn with respect to P . We note

(y(t, x, λξ), η(t, x, λξ)) = (y(λm−1t, x, ξ), λη(λm−1t, x, ξ)) for λ > 0,

since pm is homogeneous of degree m.

Lemma 3.3.1. There exist M > 0 and R0 > 1 such that

H2
pm(|x|

2) ≥M |ξ|2(m−1)

for any (x, ξ) ∈ {(y, η) ∈ T ∗Rn | |y| > R0, |η| 6= 0}.

Proof. We have

H2
pm(|x|

2) = 2Hpm(x · ∂ξpm)

= 2|∂ξpm|2 + 2
n∑

j,k=1

xj(∂xk∂ξjpm)∂ξkpm − 2
n∑

j,k=1

xj(∂ξj∂ξkpm)∂xkpm.
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On the other hand, by Assumption A, there exists C > 0 such that∣∣∣∣2 n∑
j,k=1

xj(∂xk∂ξjpm)∂ξkpm − 2
n∑

j,k=1

xj(∂ξj∂ξkpm)∂xkpm

∣∣∣∣ ≤ C〈R0〉−µ|ξ|2(m−1).

Combining this with the non-degeneracy condition of ∂ξp0(ξ) in Assumption A, we
conclude the assertion.

Next, we observe that an energy bound on classical trajectories holds, even if p is
not elliptic. We note an analogous result is proved in [49], though our proof is simpler.

Lemma 3.3.2. Fix (x0, ξ0) ∈ T ∗Rn with ξ0 6= 0 and suppose that (x0, ξ0) is forward
non-trapping in the sense that |y(t, x0, ξ0)| → ∞ as t→ ∞. Then, there exist C1, C2 > 0
such that

C1 ≤ |η(t, x0, ξ0)|m−1 ≤ C2,

for t ≥ 0.

Proof. Let R0 be as in Lemma 3.3.1, and we let R1 ≥ R0 which is determined later.
We first note that by the forward non-trapping condition and Lemma 3.3.1, there exits
t0 ≥ 0 such that for t ≥ t0, we have

|y(t, x0, ξ0)| ≥ R1,
d

dt
|y(t, x0, ξ0)|2 ≥ 0. (3.3.1)

By Lemma 3.3.1 and the non-trapping condition, it is easy to observe that there is
t0 > 0 such that d2

dt2
|y(t, x0, ξ0)|2 > 0 for t ≥ s0, and

d
dt
|y(t0, x0, ξ0)|2 > 0. Then for all

t ≥ t0, the condition (3.3.1) is satisfied.
Let C0 > 0 be a constant such that

|∂xpm(x, ξ)| ≤ C0|x|−1−µ|ξ|m,

and we write η0 = |η(t0, x0, ξ0)| > 0. We set

T = sup
{
s ≥ t0

∣∣ η0/2 ≤ |η(t, x0, ξ0)| for t ∈ [t0, s]
}
∈ (t0,∞].

By Lemma 3.3.1, we have

|y(t, x0, ξ0)|2 ≥ R2
1 +

Mη
2(m−1)
0

22m−1
(t− t0)

2, t0 ≤ t ≤ T.

Now we note ∣∣∣∣ ddt |η(t, x0, ξ0)|
∣∣∣∣ ≤ C0|y(t, x0, ξ0)|−1−µ|η(t, x0, ξ0)|m

and hence∣∣∣∣ ddt |η(t, x0, ξ0)|−(m−1)

∣∣∣∣ ≤ (m− 1)C0

(
R2

1 +
Mη

2(m−1)
0

22m−1
(t− t0)

2

)−(1+µ)/2
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for t0 ≤ t ≤ T . Thus we have∣∣∣η−(m−1)
0 − |η(T, x0, ξ0)|−(m−1)

∣∣∣
≤
∫ T

t0

(m− 1)C0

(
R2

1 +
Mη

2(m−1)
0

22m−1
(t− t0)

2

)−(1+µ)/2

dt

≤ C02
(2m−1)/2R−µ

1

(1 + µ)
√
M

η
−(m−1)
0 .

We now choose R1 > 0 so large that

C02
(2m−1)/2R−µ

1

(1 + µ)
√
M

< 1/2, i.e., R1 >

(
C02

(2m+1)/2

(1 + µ)
√
M

)1/µ

,

then
|η(T, x0, ξ0)|−(m−1) < (3/2)η

−(m−1)
0 ,

i.e., |η(T, x0, ξ0)| > (2/3)1/(m−1)η0 > (1/2)η0. If T < ∞, this is a contradiction, and
hence T = ∞. Thus we also learn

2−1η0 ≤ |η(t, x0, ξ0)| ≤ 21/(m−1)η0, t ≥ t0.

Corollary 3.3.3. Suppose the same assumptions as in Lemma 3.3.2 hold. Moreover,
suppose |ξ0| = 1. Then, we have

C1λ ≤ |η(t, x0, λξ0)| ≤ C2λ

for any λ > 0 and t ≥ 0.

Corollary 3.3.4. Under the same assumptions as in Lemma 3.3.2 with |ξ0| = 1, there
exist C,C ′, K,K ′ > 0 such that

Cλt−K ≤ |y(t, x0, ξ0)| ≤ C ′λt+K ′

for λ > 0 and t ≥ 0.

Combining with the estimate |∂xpm(x, ξ)| ≤ C〈x〉−1−µ|ξ|m−1, we obtain:

Corollary 3.3.5. Suppose that (x0, ξ0) ∈ Rn × Rn \ {0} is non-trapping. Then,

η+ = lim
t→∞

η(t, x0, ξ0) 6= 0,

v+ = lim
t→∞

∂ξpm(y(t, x0, ξ0), η(t, x0, ξ0)) = lim
t→∞

∂ξp0(η(t, x0, ξ0)) 6= 0

exist.

28



3.4 Construction of the conjugate operator

Let (x0, ξ0) ∈ p−1
m (0) \ {ξ 6= 0}. By Assumption B, (x0, ξ0) is forward non-trapping. We

denote y(t) = y(t, x0, ξ0), η(t) = η(t, x0, ξ0). We note that

lim
j→∞

η(t, x0, ξ0) = η+ 6= 0, lim
t→∞

∂ξpm(y(t), η(t)) = v+ 6= 0,

exist by Corollary 3.3.5. Moreover, there exist M1,M2 > 0 such that

|y(t)/t− v+|, |η(t)− η+| = O(〈t〉−µ) as t→ ∞,

M1 ≤ |η(t)| ≤M2, t ≥ 0.
(3.4.1)

We denote B(r, s, z, ζ) = {(x, ξ) ∈ R2n||z − x| < r, |ζ − ξ| < s} ⊂ R2n. In order
to prove Proposition 3.2.3, it suffices to prove the following theorem. We set an h-
dependent metric gh by

gh = dx2/〈x〉2 + h2/(m−1)dξ2.

Theorem 3.4.1. There exist ψh ∈ C∞
c (R2n) and ϕh,t ∈ C∞(R≥0, C

∞
c (R2n)) such that

F (h, t) = Op(ϕh,t) and:

(i) F (h, 0) = |Op(ψh)|2 with ψh(x0, ξ0) ≥ 1.

(ii) ϕh,t satisfies

supp ϕh,t ⊂ B(4h−1tδ1, 4h
−1/(m−1)δ2, h

−1tv+, h
− 1

m−1η+)

modulo S(h∞, gh) if t/h is sufficiently large.

(iii) For any α, β ∈ Nn
≥0, there exists Cαβ > 0 such that

|∂αx∂
β
ξ ϕh,t(x, ξ)| ≤ Cαβ〈t〉h(|β|+1)/(m−1)−1〈x〉−|α|.

(iv) There exists a family of bounded operator R(h, t) in L2(Rn) such that

∂F

∂t
+ i[P, F ] ≥ −R(h, t),

where sup≥0〈t〉−1‖R(h, t)‖L2→L2 = O(h∞).

The proof of Theorem 3.4.1 is based on the fact that any classical trajectory of Hp

behave as straight lines even if p is not elliptic. We follow the argument in [57].

Lemma 3.4.2. There exist constants δ1, δ2 > 0 with |η+| > 4δ1 such that the following
holds:

There exists a smooth function ψ ∈ C∞(R≥0, C
∞
c (R2n)) such that

(i) ψ ≥ 0, and ψ(0, x0, ξ0) ≥ 1.
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(ii) supp ψ(t, ·, ·) ⊂ B(2tδ1, 2δ2, tv+, η+) for t ≥ T0, where T0 > 0 depends only on
(x0, ξ0), pm and δ1.

(iii) For any α, β ∈ Nn, there exists Cαβ > 0 such that

|∂αx∂
β
ξ ψ(t, x, ξ)| ≤ Cαβ〈x〉−|α|, |∂αx∂

β
ξ ∂tψ(t, x, ξ)| ≤ Cαβ〈x〉−1−|α|

for t ≥ 0 and x, ξ ∈ Rn.

(iv) ψ satisfies (
∂ψ

∂t
+ {pm, ψ}

)
(t, x, ξ) ≥ 0

for t ≥ 0, x, ξ ∈ Rn.

Proof. Let Ψ ∈ C∞(R) such that 0 ≤ Ψ ≤ 1, Ψ′ ≤ 0, Ψ = 1 for r ≤ 1
2
, Ψ = 0 for r ≥ 1,

Ψ(r) > 0 if 1
2
< r < 1. We define

ψ0(t, x, ξ) := Ψ

(
|x− y(t)|
δ1〈t〉

)
Ψ

(
|ξ − η(t)|
γ(t)

)
where we set γ(t) = δ2 − C1〈t〉−µ and let C1 > 0 be determined later. We set

L(t, x, ξ) = ∂ξpm(x, ξ)− ∂ξpm(y(t), η(t)),

A0(t, x, ξ) =
1

δ1〈t〉

(
L(t, x, ξ) · x− y(t)

|x− y(t)|
− t|x− y(t)|

〈t〉2

)
,

A1(t, x, ξ) =
1

γ(t)

(
−γ

′(t)|ξ − η(t)|
γ(t)

+
(
∂xp(y(t), η(t))− ∂xp(x, ξ)

)
· ξ − η(t)

|ξ − η(t)|

)
.

For t > 0, we have(
∂ψ0

∂t
+ {pm, ψ0}

)
(t, x, ξ) =A0(t, x, ξ)Ψ

′
(
|x− y(t)|

δ1t

)
Ψ

(
|ξ − η(t)|
γ(t)

)
(3.4.2)

+ A1(t, x, ξ)Ψ

(
|x− y(t)|

δ1t

)
Ψ′
(
|ξ − η(t)|
γ(t)

)
.

Using |∂ξp(x, ξ)− ∂ξp(y(t), η(t))| ≤ C0|ξ − η(t)| with a constant C > 0, we have

δ1〈t〉A0(t, x, ξ) ≤ − δ1t

2〈t〉
+ C0γ(t) ≤ − δ1t

2〈t〉
+ C0δ2 − C0C1〈t〉−µ (3.4.3)

for (x, ξ) ∈ supp Ψ′(|x − y(t)|/δ1〈t〉)Ψ(|ξ − η(t)|/γ(t)). By Assumption A and (3.4.1),
there exists C, T00 > 0 such that for (x, ξ) ∈ supp ψ0(t, x, ξ), we have

|∂xpm(y(t), η(t))− ∂xpm(x, ξ)| ≤ C〈t〉−1−µ
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for t ≥ T00. Here, we can choose C, T00 > independently of C1. We note that and
γ(t)/2 ≤ |ξ−η(t)| holds on the support of Ψ′(|ξ−η(t)|/γ(t)). Using these observations,
we learn

A1(t, x, ξ) ≤ − γ′(t)

γ(t)2
|ξ − η(t)|+ C〈t〉−1−µ

γ(t)
(3.4.4)

=
1

γ(t)

(
− C1µt

〈t〉2+µ
· |ξ − η(t)|

γ(t)
+

C

〈t〉1+µ

)
≤ − 1

γ(t)

(
C1µt

2〈t〉2+µ
− C

〈t〉1+µ

)
for (x, ξ) ∈ supp Ψ(|x− y(t)|/δ1〈t〉)Ψ′(|ξ − η(t)|/γ(t)) with t ≥ T00. By (3.4.2), (3.4.3)
and (3.4.4) with Ψ′ ≤ 0 and δ1 >> δ2, we can select T00 > 0 and C1 > 0 such that for
t ≥ T00, (

∂ψ0

∂t
+ {pm, ψ0}

)
(t, x, ξ) ≥ 0. (3.4.5)

Now we define ψ(t, x, ξ) by the solution to(
∂ψ

∂t
+ {pm, ψ}

)
(t, x, ξ) =ρ(t)

(
∂ψ0

∂t
+ {pm, ψ0}

)
(t, x, ξ), 0 ≤ t ≤ T00 + 1, (3.4.6)

ψ(T00 + 1, x, ξ) =ψ0(T00 + 1, x, ξ),

where ρ ∈ C∞(R, [0, 1]) such that ρ(t) = 1 for t ≥ T00 + 1, ρ(t) = 0 for t ≤ T00. Then
we can extend ψ smoothly to t ≥ T00 + 1 by ψ(t, x, ξ) = ψ0(t, x, ξ) for t ≥ T00 + 1. For
(x, ξ) ∈ R2n, by using ρ(t) ≤ 1, we obtain

dψ

dt
(t, y(t, x, ξ), η(t, x, ξ)) ≤ dψ0

dt
(t, y(t, x, ξ), η(t, x, ξ)).

Let 0 ≤ s ≤ T00 + 1. Integrating this inequality over [s, T00 + 1] with (x, ξ) = (x0, ξ0)
and using ψ(t, x, ξ) = ψ0(t, x, ξ) with (t, x, ξ) = (T00+1, y(T00+1), η(T00+1)), we have

ψ(s, y(s), η(s)) ≥ ψ0(s, y(s), η(s)) ≥ 0.

Substituting this inequality with s = 0, we have ψ(0, x0, ξ0) ≥ ψ0(0, x0, ξ0) = 1. This
implies that ψ satisfies (i). We set T0 = T00 + 1. Now (ii) follows from (3.4.1) and
the relation ψ(t, x, ξ) = ψ0(t, x, ξ) for t ≥ T0. (iv) follows from (3.4.5) and (3.4.6).
Furthermore, (iii) follows from (3.4.1), (3.4.6), the relation ψ(t, x, ξ) = ψ0(t, x, ξ) for
t ≥ T0 and the definition of ψ0.

We set

ψh,t(x, ξ) = ψ(t/h, x, h
1

m−1 ξ), ϕ0,h,t(x, ξ) = ψh,t#ψh,t(x, ξ), (3.4.7)

and F0(h, t) = Op(ϕ0(h, t, ·, ·)) = |Op(ψh,t)|2, where # denotes the composition of the
Weyl quantization ([79, (4.3.6)] with h = 1) and |A|2 = A∗A for an operator A.

Lemma 3.4.3. (i) F0(0) = |Op(ψh,0)|2 with ψh,0(x0, ξ0) ≥ 1.
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(ii) We have

supp ϕ0,h,t ⊂ B
(
2h−1tδ1, 2h

− 1
m−1 δ2, h

−1tv+, h
− 1

m−1η+
)

modulo S(h∞, gh) if t/h ≥ T1.

(iii) For any α, β ∈ Nn
≥0, there exists Cαβ > 0 such that

|∂αx∂
β
ξ ϕ0,h,t(x, ξ)| ≤ Cαβh

|β|
m−1 〈x〉−|α|,

|∂αx∂
β
ξ ∂tϕ0,h,t(x, ξ)| ≤ Cαβh

|β|
m−1

−1〈x〉−|α|−1.

(iv) There exists r0(t, x, ξ) ∈ C∞(R≥0 × R2n) such that

∂

∂t
F0(h, t) + i[P, F0(h, t)] ≥ −Op(r0,h,t),

and supp r0,h,t ⊂ supp ϕ0,h,t modulo S
(
h∞〈x〉−∞, gh

)
. Moreover, for any α, β ∈

Nn
≥0, there exists Cαβ > 0 such that

|∂αx∂
β
ξ r0,h,t(x, ξ)| ≤ Cαβh

|β|−(m−2)
m−1 〈x〉−|α|−1−µ.

Proof. Propeties (i)–(iii) follow from (3.4.1) and Lemma 3.4.2. We prove (iv). Since
|x| ∼ t/h holds on supp ψh,t, we learn ∂tϕ0,h,t(·, ·) ∈ S(h−1〈x〉−1, gh). Moreover, we
have [P, F0(h, t)] ∈ OpS(〈x〉−1〈ξ〉m−1, gh). By its support property, [P, F0(h, t)] ∈
OpS(h−1〈x〉−1, gh) follows. We obtain

∂

∂t
|ψh,t(h, t, x, ξ)|2 + {pm, |ψh,t(·, ·)|2}(x, ξ) ≥ 0

by Lemma 3.4.2 (iv). We note p = pm + V with V ∈ Sm−1,−µ and

[V, F0(h, t)] ∈ OpS
(
h−

m−2
m−1 〈x〉−1−µ, gh

)
.

By the sharp G̊arding inequality, there exists r0,h,t ∈ S
(
h

−(m−2)
m−1 〈x〉−1−µ, gh

)
such that

(iv) holds.

Proof of Theorem 3.4.1. We choose λ0, λ1, λ2, ... ∈ [1, 2) such that

1 = λ0 < λ1 < λ2 < · · · < 2,

and take ψk,h,t(x, ξ) as ψh,t(x, ξ) and Tk as T0 with δj replaced by λkδj in Lemma 3.4.2
and (3.4.7). By the choice of Ψ, we note

ψk+1,h,t(x, ξ) ≥ Lk (3.4.8)

on supp ψk,h,t(·, ·) for some Lk > 0. For k ≥ 1, set

ϕk,h,t(x, ξ) = h
k−m+1
m−1 tCkψk,h,t#ψk,h,t ∈ S(h

k−m+1
m−1 t, gh)
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where Ck > 0 is determined later. By Lemma 3.4.3 (iv), we can write r0,h,t = r01,h,t +
r02,h,t, where

r01,h,t ∈ S
(
h

−(m−2)
m−1 〈x〉−1−µ, gh

)
(3.4.9)

satisfies supp r01,h,t(t, ·, ·) ⊂ supp ϕ0(t, ·, ·) and r02,h,t ∈ S(h∞〈x〉−∞, gh). By (3.4.8), we
can find C1 > 0 such that

r01,h,t(x, ξ) ≤ C1h
−m+2
m−1 |ψ1,h,t(x, ξ)|2.

This inequality with Lemma 3.4.2 (iv) implies

C1h
−m+2
m−1

(
∂

∂t
(t|ψ1,h,t|2) + t{pm, |ψ1,h,t|2}

)
(x, ξ) (3.4.10)

= C1h
−m+2
m−1 t

(
∂

∂t
|ψ1,h,t|2 + {pm, |ψ1,h,t|2}

)
(x, ξ) + C1h

−m+2
m−1 |ψ1,h,t(x, ξ)|2

≥ r01,h,t(x, ξ).

Taking Mk = max(Tk, ||v+| − 2λkδ1|) > 0, we have

t ≤Mkh〈x〉, for (t, x, ξ) ∈ supp ψk,h,t (3.4.11)

by Lemma 3.4.3 (ii). Lemma 3.4.3 (iii) with (3.4.11) implies

h
−m+2
m−1 t

(
∂|ψ1,h,t|2

∂t
+ {pm, |ψ1,h,t|2}

)
∈ S

(
h

−m+2
m−1 , gh)

)
. (3.4.12)

By (3.4.9), (3.4.10) and (3.4.12), it follows that the both sides in (3.4.10) belong to

S(h
−m+2
m−1 , dx2/〈x〉2+h2/(m−1)dξ2). The sharp G̊arding inequality implies that there exists

r1,h,t ∈ S(h
−m+3
m−1 〈x〉−1, gh)

which is supported in supp ϕ1,h,t modulo S(h∞〈x〉−∞, gh) such that

∂

∂t
Op(ϕ1,h,t) + i[P,Op(ϕ1,h,t)] ≥ Op(r0,h,t)−Op(r1,h,t).

We set F1(h, t) = F0(h, t) + Op(ϕ1,h,t), then we have

∂

∂t
F1(h, t) + i[P, F1(h, t)] ≥ −Op(r1,t,h).

Iterating the above argument, we can construct Ck > 0, Fk(t) and

rk,h,t ∈ S
(
h

k−m+2
m−1 〈x〉−1, gh

)
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such that supp rk,h,t ⊂ supp ϕk,h,t(·, ·) modulo S(h∞〈x〉−∞, gh) and

∂

∂t
Fk(h, t) + i[P, Fk(h, t)] ≥ −Op(rk(h, t, ·, ·)),

Fk+1(h, t) = Fk(h, t) + Op(ϕk,h,t),

rk,h,t(x, ξ) ≤ Ck+1h
k−m+2
m−1 ψk+1,h,t(x, ξ) modulo S(h∞〈x〉−∞, gh).

By the Borel’s Theorem (see [79] Theorem 4.15), we can define

ϕh,t(x, ξ) ∼
∞∑
n=0

ϕj,h,t(x, ξ)

and F (h, t) = Op(ϕh,t). Then, F (h, t) satisfies the properties in Theorem 3.4.1. This
completes the proof of Theorem 3.4.1.

3.5 Compactly supported perturbation

The proof is considerably simpler if the perturbation is compactly supported, since we
do not need the argument of Subsection 3.2.2. Here we discuss the simpler argument
for this case. We assume that there exists R > 0 such that supp q ⊂ BR(0) × Rn,
where BR(0) = {x ∈ Rn | |x| < R}. We note still the local regularity argument
(Subsection 3.2.1 and Appendices 5.5, 3.4). Let ψ ∈ C∞(Rn) be a real-valued function
such that ψ = 1 on Rn \BR+1(0) and ψ = 0 on BR(0).

Proposition 3.5.1. Let k ≥ 0 and u ∈ L2(Rn) ∩ Hk+m−1
loc (Rn) be a distributional

solution to (P − i)u = 0. Then we have ψu ∈ Hk. In particular, u ∈ Hk follows.

Proof. Set N = I − ∆ and Nε = (I − ∆)(I − ε∆)−1 and define L = p0(D) where ∆
denotes the standard Laplacian on Rn. By virtue of the support property of ψ, we
compute

L(ψu) = P (ψu) = ψPu+ [P, ψ]u = iψu+Ku,

where K := [P, ψ] is compactly supported coefficients differential operator with order
m− 1. We note Ku ∈ H1 since u ∈ Hm

loc(Rn). Hence, we have

2iIm (N2k
ε (ψu), L(ψu))L2 =2iIm (N2k

ε (ψu), iψu+Ku)L2

=2i‖Nk
ε (ψu)‖2L2 + 2iIm (N2k

ε (ψu), Ku)L2 .

On the other hand, by the Plancherel theorem, we have

2iIm (N2k
ε (ψu), L(ψu))L2 = (N2k

ε (ψu), L(ψu))L2 − (L(ψu), N2k
ε (ψu))L2 = 0.

Thus, we have

‖Nk
ε (ψu)‖2L2 ≤ |Im (N2k

ε (ψu), Ku)| ≤ ‖Nk
ε (ψu)‖L2‖Nk

εKu‖L2

Consequently, take ε→ 0 and we obtain ‖Nk(ψu)‖L2 ≤ ‖NkKu‖L2 <∞, by using the
monotone convergence theorem and Ku ∈ Hk. This implies ψu ∈ Hk.
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Proof of Proposition 3.2.1. Suppose that u ∈ L2(Rn) satisfies (P − i)u = 0. By Propo-

sition 3.2.2, we have u ∈ C∞(Rn) ⊂ H
3(m−1)/2
loc (Rn). By Proposition 3.5.1, we conclude

u ∈ H(m−1)/2 ⊂ H(m−1)/2,−1/2.

3.6 Dynamical property, completeness of the Hamil-

ton flow

In this short section, we show that the null non-trapping condition (Assumption B)
implies the completeness of the flow. We mention that we do not this fact in the other
part of this paper. We note that every non-trapped integral curve is complete by the
estimate of classical trajectory (essentially due to the classical Mourre estimate), see
the proof of Lemma 3.3.2.

Proposition 3.6.1. Let pm(x, ξ) be a homogeneous of degree m ≥ 1. Under the null
non-trapping condition, it follows that every trapped integral curve of Hp on {pm 6= 0}
is complete.

Proof. Suppose that there exists a maximal trapped integral curve (z(t), ζ(t)), t ∈ [0, T )
of Hp such that pm(z(t), ζ(t)) 6= 0. We note

sup
t∈[0,T )

|z(t)| <∞, lim
t→T, t<T

|ζ(t)| = ∞

since this trajectory is trapped. Since pm is homogeneous of degree m, we have
ζ(t, x, ξ) 6= 0. Since z(t) is trapped, it follows that a set

{(z(t), ζ(t)
|ζ(t)|

) | 0 ≤ t < T} ⊂ R2n (3.6.1)

is compact. Hence there exist a sequence {tj}∞j=1 and (x, ξ) ∈ Rn × Sn−1 such that

tj → T, (z(tj),
ζ(tj)

|ζ(tj)|
) → (x, ξ)

as j → ∞.
Next, we show

pm(x, ξ) 6= 0.

To see this, we use a contradiction argument. Suppose pm(z, ζ) = 0. By the null non-
trapping assumption, we have |z(t, x, ξ)| → ∞ as |t| → ∞. Since pm is homogeneous of
degree m, we have

z(t, z(tj),
ζ(tj)

|ζ(tj)|
) =z(

t

|ζ(tj)|m−1
, z(tj), ζ(tj)) (3.6.2)

=z(tj +
t

|ζ(tj)|m−1
)
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for tj + t/|ζ(tj)|m−1 < T . Since |ζ(tj)| → ∞, the right hand side of (3.6.2) (and hence
also the left hand side) is well-defined for large t. Now we take T1 > 0 such that

inf
T1≤t<∞

|z(t, x, ξ)| > 2 sup
0≤t<T

|z(t)| (3.6.3)

and take j large enough such that T1 < |ζ(tj)|m−1T . Then we can substitute t = T1
into (3.6.2) and obtain

|z(T1, z(tj),
ζ(tj)

|ζ(tj)|
)| = |z(tj +

T1
|ζ(tj)|m−1

)| < 1

2
inf

T1≤t<∞
|z(t, x, ξ)|

by (3.6.3). Taking j → ∞, we have a contradiction. Thus pm(x, ξ) 6= 0 follows.
Since pm is homogeneous of degree m, we obtain

0 6= pm(x, ξ) = lim
j→∞

pm(z(tj),
ζ(tj)

|ζ(tj)|
) = lim

j→∞

p(z(tj), ζ(tj))

|ζ(tj)|m
= 0,

where recall p(z(tj), ζ(tj)) is conserved along the flow and |ζ(tj)| → ∞ as j → ∞. This
is a contradiction.

3.7 Limiting absorption principle for the wave op-

erator

The results of this section is expected to be true for the real principal type operators
considered in the above sections. However, for simplicity, we restrict our attention to
the case of the wave operator on an asymptotically Minkowski space.

Let g0 be a Minkowski metric on Rn: g0 = dx21 − dx22 − ... − dx2n and g−1
0 = ∂2x1 −

∂2x2 − ... − ∂2xn = (gij0 )
n
i,j=1 be its dual metric. A Lorentzian metric g on Rn is called

asymptotically Minkowski if the inverse matrix g−1(x) = (gjk(x))nj,k=1 of g(x) satisfies

|∂αx (gjk(x)− gjk0 )| ≤ Cα〈x〉−µ−|α|, µ > 0.

We set

P =
n∑

j,k=1

∂xj(g
jk(x)∂xk), p(x, ξ) =

n∑
j,k=1

gjk(x)ξjξk, p0(ξ) =
n∑

j,k=1

gjk0 ξjξk.

Moreover, we write

ξ̃ =
1

2
∂ξp0(ξ).

Let (z(t, x, ξ), ζ(t, x, ξ)) denote the solution to the Hamilton equation:

d

dt
z(t, x, ξ) =

∂pm
∂ξ

(z(t, x, ξ), ζ(t, x, ξ)),
d

dt
ζ(t) = −∂pm

∂x
(z(t, x, ξ), ζ(t, x, ξ)), t ∈ R
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with z(0, x, ξ) = x, ζ(0, x, ξ) = ξ. Moreover, we introduce the conjugate operator A:

a(x, ξ) =
x · ξ̃

1 + |ξ|2
∈ S−1,1, A = Op(a).

In this section, we always assume the null non-trapping condition (Assumption B). By
using Nelson’s commutator theorem and the result of the above section, it follows that
A|C∞

c (Rn) and P |C∞
c (Rn) are essentially self-adjoint. We denote their unique self-adjoint

extensions by the same symbols A and P respectively. We write the domain of the
self-adjoint extension P by D(P ), then we have

D(P ) = {u ∈ L2(Rn) | Pu ∈ L2(Rn)} (3.7.1)

by essential self-adjointness of P |C∞
c (Rn). We note that the essential self-adjointness of

P |C∞
c (Rn) implies

C∞
c (Rn) is dense in D(P ) equipped with the graph norm of P. (3.7.2)

In this section, we prove the limiting absorption principle for P away from the zero
energy. Our main theorem of this section is the following.

Theorem 3.7.1. Assume the null non-trapping condition. Let s > 1/2 and I ⋐ R\{0}
be an open interval. Then it follows that #I∩σpp(P ) is finite and that for I ′ ⋐ I\σpp(P ),
we have

sup
z∈I′±

‖〈x〉−s(P − z)−1〈x〉−s‖B(L2) <∞,

where

I ′± = {z ∈ C | Re z ∈ I, ±Im z > 0}.

In particular, P has absolutely continuous spectrum on I ′. Moreover, z ∈ I ′± 7→
〈x〉−s(P − z)−1〈x〉−s is Hölder continuous in B(L2(Rn)) and the limits

〈x〉−s(P − λ∓ i0)−1〈x〉−s := lim
ε→0, ε>0

〈x〉−s(P − λ∓ iε)−1〈x〉−s

exist in B(L2(Rn)).

Remark 3.7.2. In this theorem, we can replace P by P + V , where V is a real-valued
long-range potential since

• our conjugate operator A belongs to OpS−1,1 and hence [V,A] is a compact op-
erator,

• D(P ) = D(P + V ) due to V ∈ B(L2(Rn)),

37



• a difference ϕ(P + V )−ϕ(P ) is a compact operator for ϕ ∈ C∞
c (R) by Corollary

3.7.9 below.

Remark 3.7.3. The above theorem for the interval I is proved by Vasy [75] under the
non-trapping assumption on energy level I. We remove this additional assumption by
using the local compactness of P (Proposition 3.7.9).

Remark 3.7.4. When p = p0, then the limiting absorption principle holds even near the
0-energy with an additional weight, see Proposition 5.2.5 and Proposition 5.2.8.

To prove this theorem, we need some results of a pseudodifferential calculus of spec-
tral cut-off functions for P (Proposition 3.7.7) and local compactness for P (Corollary
3.7.9). We prove these results in the subsections later and deduce Theorem 3.7.1 here.

Proof. We may assume 0 < µ ≤ 1. Moreover, using a standard argument explained in
subsection 3.7.1 (however, it is non-trivial in our case), we only have to prove the above
statement replacing 〈x〉 by 〈A〉. We note P ∈ C2(A) which will be proved also in the
subsection 3.7.1. Since p− p0 ∈ S2,−µ and a ∈ S−1,1, we have

{p, a} =
4|ξ|2

1 + |ξ|2
+ S0,−µ.

This implies

[P, iA] = 4(I −∆)−1/2(−∆)(I −∆)−1/2 +R,

where R ∈ OpS0,−µ (we note 0 < µ ≤ 1). Let J ⋐ I be an open interval. Let
ϕ ∈ C∞

c (R \ {0}; [0, 1]) which is supported in I and is equal to 1 on J . Moreover, take
ψ1 ∈ C∞

c (Rn; [0, 1]) which support is close to 0 such that

supp ϕ ◦ p ∩ supp ψ1 = ∅.

We observe

(I −∆)−1/2(−∆)(I −∆)−1/2 ≥ c+ ψ(D),

where

c = inf
ξ∈supp (1−ψ1)

|ξ|2

1 + |ξ|2
> 0, ψ(ξ) =

|ξ|2ψ1(ξ)

1 + |ξ|2
− cψ1(ξ) ∈ C∞

c (Rn).

Thus we have

ϕ(P )[P, iA]ϕ(P ) ≥ 4cϕ(P )2 + 4ϕ(P )ψ(D)ϕ(P ) + ϕ(P )Rϕ(P ) (3.7.3)

Lemma 3.7.7 with a support propety supp ϕ ◦ p ∩ supp ψ = ∅ implies that the second
term of the right hand side is a compact operator on L2(Rn). Moreover, it follows that
the third term ϕ(P )Rϕ(P ) is also compact by using the Helffer-Sjöstrand formula and
the local compactness for P (Corollary 3.7.9). From the Mourre theory [53], we obtain
the desired results.

38



3.7.1 A-regularity of P , 〈A〉-weight to 〈x〉-weight

In this subsection, we prove P ∈ C2(A) which is needed to apply the Mourre theory.
First, we recall the definition of C1(A) and C2(A).

Definition 1. Let A be a self-adjoint operator and B be a bounded operator on a
Hilbert space H. We call B ∈ C1(A) if a quadratic form [A,B] on D(A) ×D(A) can
be extended to a bounded operator on H. We call B ∈ C2(A) if B ∈ C1(A) and
[A,B] ∈ C1(A).

Let P be a self-adjoint operator. For k = 1, 2, we call P ∈ Ck(A) if (P − i)−1 ∈
C2(A).

Proposition 3.7.5. We have P ∈ C2(A) and

[A, (P − i)−1] = (P − i)−1[P,A](P − i)−1 (3.7.4)

as a bounded operator on L2(Rn).

Proof. First, we show P ∈ C1(A). Setting Aε = 〈εx〉−1/2A〈εx〉−1/2 ∈ OpS0,0 for
0 < ε ≤ 1, we have

[Aε, (P − i)−1] = (P − i)−1[P,Aε](P − i)−1. (3.7.5)

as a bounded operator on L2(Rn). For u,w ∈ S(Rn), we have

lim
ε→0

(u, [Aε, (P − i)−1]w)L2 = (Au, (P − i)−1w)L2 − ((P + i)−1u,Aw)L2 , (3.7.6)

for u,w ∈ S(Rn). On the other hands, since [P,Aε] → [P,A] in the strong operator
topology in B(L2(Rn)) which follows from Lemma 2.3.2, we have

lim
ε→0

(P − i)−1[P,Aε](P − i)−1 = (P − i)−1[P,A](P − i)−1 (3.7.7)

in the strong operator topology of B(L2(Rn)). From (3.7.5), (3.7.6) and (3.7.7), we
obtain

(Au, (P − i)−1w)L2 − ((P + i)−1u,Aw)L2 = (u, (P − i)−1[P,A](P − i)−1w)L2 (3.7.8)

for u,w ∈ S(Rn). Since A|S(Rn) is essentially self-adjoint, the equation (3.7.8) holds for
u,w ∈ D(A). This implies P ∈ C1(A) and (3.7.4).

Next, we show P ∈ C2(A). It suffices to show [A, [A, (P − i)−1]] can be extended to
a bounded operator on L2(Rn). Since (P − i)−1 and [P,A] are bounded in L2(Rn), we
observe

[Aε, (P − i)−1[P,A](P − i)−1] =[Aε, (P − i)−1][P,A](P − i)−1] (3.7.9)

+ (P − i)−1[Aε, [P,A]](P − i)−1

+ (P − i)−1[P,A][Aε, (P − i)−1].
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Moreover, from Lemma 2.3.2, we have

[Aε, [P,A]] → [A, [P,A]] in the strong operator topology. (3.7.10)

It follows from the equation (3.7.5), (3.7.7) and (3.7.10) that the right hand side of
(3.7.9) converges to a bounded operator in the strong operator topology on B(L2(Rn)).
On the other hand, we have

(u, [Aε, (P − i)−1[P,A](P − i)−1]w)L2 →(Au, (P − i)−1[P,A](P − i)−1w)L2 (3.7.11)

− ((P − i)−1[P,A](P − i)−1u,Aw)L2

for u,w ∈ S(Rn). This implies P ∈ C2(A).

The next Corollary is standard for experts of scattering theory, however, we give
these proofs for the completeness of this thesis. We remark that the key point in the
proof below is the equation (3.7.13) which follows from Proposition 3.7.5. We also note
that the resolvent equation implies

(P − z)−1 = (P − i)−1 + (z − i)(P − i)−1 + (z − i)2(P − i)−1(P − z)−1(P − i)−1.

From this, in order to prove Theorem 3.7.1 from the same statement where 〈x〉 replaced
〈A〉, it suffices to prove the following lemma.

Corollary 3.7.6. For 0 ≤ s ≤ 1, we have

〈A〉s(P − i)−1〈x〉−s ∈ B(L2(Rn)).

Proof. The case of s = 0 follows from (P − i)−1 ∈ B(L2(Rn)). Next, we consider the
case of s = 1. By the spectral theorem for A, we observe

‖〈A〉(P − i)−1〈x〉−1‖B(L2) ≤ ‖(P − i)−1〈x〉−1‖B(L2) + ‖A(P − i)−1〈x〉−1‖B(L2).

Thus it suffices to prove

‖A(P − i)−1〈x〉−1‖B(L2) <∞. (3.7.12)

From Proposition 3.7.5, we have

A(P − i)−1〈x〉−1 = (P − i)−1A〈x〉−1 + (P − i)−1[P,A](P − i)−1〈x〉−1. (3.7.13)

Since A〈x〉−1 ∈ OpS−1,0 and [P,A] ∈ OpS0,0, we obtain (3.7.12).
Next, we prove the lemma in the cases of 0 < s < 1. To do this, we use the standard

interpolation argument. For ϕ, ψ ∈ C∞
c (Rn), we consider the function

f(z) = (ϕ, 〈A〉z(P − i)−1〈x〉−zψ)L2 .
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We note that f is a holomorphic function inside the region

S = {z ∈ C | 0 ≤ Re z ≤ 1}.

Moreover, it follows that f is continuous and bounded on S. In addition, from the
above argument, there exists C > 0 such that

|f(z)| ≤ C‖ϕ‖L2‖ψ‖L2 for Re z = 0, 1. (3.7.14)

By the Hadamard three line theorem [61, Appendix to IX.4 Lemma after Proposition 1],
we obtain (3.7.14) for z ∈ S. By the density argument, we conclude 〈A〉s(P−i)−1〈x〉−s ∈
B(L2(Rn)).

3.7.2 Pseudodifferential calculus of spectral cut-off functions

In this subsection, we prove that ϕ(D)ϕ(P ) is a pseudodifferential operator plus a neg-
ligible term although ϕ(P ) itself cannot be written by such a form (even in the constant
coefficient case g = g0). The following proposition is stimulated by the construction in
[44] for the Stark Hamiltonian (although the argument itself is standard). It is expected
that Op(ψ · ϕ ◦ p) is actually a pseudodifferential operator of class OpS−∞,0 (by using
Beal’s theorem), however, we only show a weaker result which is needed for the Mourre
estimate.

Proposition 3.7.7. Let ϕ, ψ ∈ C∞
c (R). Then we can write

ψ(D)ϕ(P ) = Op(ψ · ϕ ◦ p) +K,

where K is a compact operator on L2(Rn).

Proof. First, we construct a parametrix of ψ(D)(P − z)−1 for Im z 6= 0. We note that
for any integer N ≥ 0, we have

|∂αx∂
β
ξ

(
ψ(ξ)(p(x, ξ)− z)−1

)
| ≤ CNαβ|Im z|−|α|−|β|−1〈x〉−|α|〈ξ〉−N

with a constant CNαβ > 0 independent of z and (x, ξ) ∈ R2n. This implies

ψ(ξ) =
ψ

p− z
#(p− z)(x, ξ) + rz(x, ξ),

where r0 ∈ S−∞,−1 satisfying

|∂αx∂
β
ξ rz(x, ξ)| ≤ CNαβ|Im z|−Nαβ〈x〉−1−|α|〈ξ〉−N (3.7.15)

with a constant CNαβ > 0 and Nαβ ≥ 0 independent of z and (x, ξ) ∈ R2n. Weyl
quantizing this equation and multiplying (P − z)−1 from left, we have

ψ(D)(P − z)−1 = Op(
ψ

p− z
) + Op(rz)(P − z)−1
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as a bounded operator on L2(Rn).
Now we denote the almost analytic extension [79, Theorem 3.6] of ϕ by ϕ̃. By the

Helffer-Sjöstrand formula [79, Theorem 14.8], we have

ψ(D)ϕ(P ) = Op(ψ · ϕ ◦ p) + 1

πi

∫
C
∂̄zϕ̃(z)Op(rz)(P − z)−1dz.

Lemma 2.2.1 (i), (3.7.15), ‖(P − z)−1‖B(L2) ≤ |Im z|−1 and ∂̄zϕ̃(z) = O(|Im z|∞) as
Im z → 0 imply that the second term of the right hand side is a bounded operator from
L2(Rn) to H1,1. Since the natural injection H1,1 ↪→ L2(Rn) is compact, we obtain the
desired result.

3.7.3 Local compactness

In this subsection, we prove the local compactness for P . The main result of this
subsection is the following proposition.

Proposition 3.7.8. Let δ > 0. Then there exists C > 0 such that

‖u‖
H

1
2 ,− 1+δ

2
≤ C‖Pu‖L2 + C‖u‖L2 , (3.7.16)

for u ∈ D(P ), where we recall that D(P ) is as in (3.7.1). In particular, we have a
continuous inclusion

D(P ) ↪→ H
1
2
,− 1+δ

2 .

where we regard D(P ) as a Banach space equipped with the graph norm of P .

Corollary 3.7.9. Let V ∈ C(Rn) satisfying |V (x)| → 0 as |x| → 0. Then it follows
that V (P − i)−1 is a compact operator on L2(Rn).

Proof of Corollary 3.7.9. Let V ∈ C(Rn) satisfying |V (x)| → 0 as |x| → 0. Then
there exists Vk ∈ C∞

c (Rn) such that ‖Vk − V ‖L∞(Rn) → 0 as k → ∞. Since the

multiplication operator Vk is continuous from H
1
2
,− 1+δ

2 to H
1
2
,1 and the natural inclusion

H
1
2
,1 ↪→ L2(Rn) is compact, then Proposition 3.7.8 implies that Vk(P − i)−1 is also

compact in L2(Rn). Since a limit of compact operators is also compact, then we conclude
the compactness of V (P − i)−1.

In the following, we show Proposition 3.7.8. Now Proposition 3.7.8 follows from
existence of the following escape function.

Lemma 3.7.10 (Escape function under null non-trapping condition). Let 0 < 2δ < µ.
There exist λ0 > 0, C1 > 0 and a ∈ S0,0 such that

Hpa(x, ξ) ≥ C1〈x〉−1−δ〈ξ〉 − r(x, ξ),

where r ∈ S1,−1 satisfies

supp r ⊂ {(x, ξ) ∈ R2n | |ξ| ≤ 2} ∪ {(x, ξ) ∈ R2n | |p(ξ)| ≥ λ0
2
|ξ|2}.
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Proof of Proposition 3.7.8 assuming Lemma 3.7.10. We may assume 0 < 2δ < µ. By
(3.7.2), it suffices to prove (3.7.16) for u ∈ S(Rn). By using the sharp G̊arding inequality
(Lemma 2.2.1 (v)) and using A ∈ OpS0,0, for u ∈ S(Rn), we have

‖u‖2
H

1
2 ,− 1+δ

2
≤ C‖Pu‖2L2 + C‖u‖2L2 + C|(u,Op(r)u)L2| (3.7.17)

with a constant C > 0. Now we write

r = r1 + r2, r1 ∈ S−∞,−1, r2 ∈ S1,−1,

supp r1 ⊂ {(x, ξ) ∈ R2n | |ξ| ≤ 4}, supp r2 ⊂ {(x, ξ) ∈ R2n | |ξ| ≥ 3, |p(ξ)| ≥ λ0
4
|ξ|2}.

By the standard elliptic parametrix construction, we have

|(u,Op(r1)u)L2 | ≤ C‖u‖2L2 , |(u,Op(r2)u)L2| ≤ C‖Pu‖2L2 + C‖u‖2L2 (3.7.18)

for u ∈ S(Rn). Combining (3.7.17) with (3.7.18), we obtain (3.7.16) for u ∈ S(Rn).

To prove Lemma 3.7.10, we need some preliminary lemmas.

Lemma 3.7.11 (Convexity at infinity 1). There exists R0 > 0 such that for (x, ξ) ∈
T ∗Rn with |x| ≥ R0, we have

H2
p |x|2 ≥ C|ξ|2.

Proof. This lemma follows from an easy calculation.

Lemma 3.7.12 (Convexity at infinity 2). Let R ≥ R0, where R0 be same as that of
Lemma 3.7.11. If t0 < t1 and (x, ξ) ∈ T ∗Rn satisfy

|z(tj, x, ξ)| ≤ R.

for j = 1, 2. Then for t ∈ [t1, t2], we have

|z(t, x, ξ)| ≤ R.

Proof. This lemma immediately follows from Lemma 3.7.11, where we note

dt

dt2
|z(t, x, ξ)|2 = (Hp|x|2)|x=z(t,x,ξ), ξ=ζ(t,x,ξ).

We denote

DR = {x ∈ Rn | |x| ≤ R}, S∗DR = {(x, ξ) ∈ T ∗Rn | |x| ≤ R, |ξ| = 1}.
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Lemma 3.7.13 (Stability of non-trapping orbit). We assume that for (x, ξ) ∈ p−1({0})\
{ξ = 0}, we have |z(t, x, ξ)| → ∞ as |t| → ∞. Let R ≥ R0, where R0 be same as that
of Lemma 3.7.11. Then there exists λ0 > 0 and T > 1 such that we have

|z(t, x, ξ)| > R for |t| ≥ T, (x, ξ) ∈ p−1([−λ0, λ0]) ∩ S∗DR(0).

Proof. By the assumption and Lemma 3.7.12, for any (x, ξ) ∈ p−1({0}) ∩ S∗DR there
exist T (x, ξ) > 0 and a neighborhood U(x, ξ) ⊂ T ∗Rn of (x, ξ) such that

|z(t, y, η)| > R for |t| ≥ T (x, ξ), (y, η) ∈ U(x, ξ). (3.7.19)

We prove this for t ≥ 0. By the non-trapping assumption there exists T (x, ξ) such that

|z(T (x, ξ), x, ξ)| > R + 1.

Since {(y, η) ∈ T ∗Rn \ {η = 0} | (|z(T (x, ξ), y, η)| > R + 1} is open, there exists a
neighborhood U(x, ξ) ⊂ T ∗DR+1 of (x, ξ) such that

|z(T0(x, ξ), y, η)| > R + 1 for (y, η) ∈ U(x, ξ).

This implies

|z(t, y, η)| > R + 1 for t ≥ T (x, ξ), (y, η) ∈ U(x, ξ).

This proves (3.7.19).
Since p−1({0}) ∩ S∗DR is compact, there are finite many point {(xj, ξj)}Nj=1 ⊂

p−1({0}) ∩ S∗DR such that

p−1({0}) ∩ S∗DR ⊂
N⋃
j=1

U(xj, ξj) =: U. (3.7.20)

We set T = max1≤j≤N T (xj, ξj). Then we have

|z(t, x, ξ)| > R for |t| ≥ T, (x, ξ) ∈ U.

Thus it suffices to prove that there is λ0 > 0 such that

p−1([−λ0, λ0]) ∩ S∗DR ⊂ U.

To prove this, we suppose that for any k ∈ N, there exists ρk ∈ p−1([−1/k, 1/k])∩S∗DR

such that ρk ∈ U c. Since p−1([−1, 1]) ∩ S∗DR is compact, there exist a subsequence
ρkl and ρ ∈ p−1([−1, 1]) ∩ S∗DR such that ρkl → ρ. However, this concludes ρ ∈
p−1({0}) ∩ S∗DR ∩ U c since U c is closed. This contradicts to (3.7.20).
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Lemma 3.7.14 (Escape function on a compact set). Let λ0 > 0 be as in Lemma 3.7.13.
Let χ ∈ C∞

c (R;R) and set

a0(x, ξ) =

∫ ∞

0

χ(z(t, x, ξ))|ζ(t, x, ξ)|dt.

Let R ≥ R0, where R0 be same as that of Lemma 3.7.11. Then a0 is well defined smooth
function on the set

Cλ0 := {(x, ξ) ∈ T ∗Rn | |x| ≤ R, |ξ| ≥ 1, |p(ξ)| < λ0|ξ|2}

and a0 satisfies

|∂αx∂
β
ξ a0(x, ξ)| ≤ Cαβ〈ξ〉−|β| for (x, ξ) ∈ Cλ0 . (3.7.21)

Proof. We take T > 0 same as that of Lemma 3.7.13. We note (z(t, x, ξ), ζ(t, x, ξ)) =
(z(|ξ|t, x, ξ|ξ|), |ξ|ζ(|ξ|t, x,

ξ
|ξ|)) and

a0(x, ξ) =|ξ|
∫ ∞

0

χ(z(|ξ|t, x, ξ
|ξ|

))|ζ(|ξ|t, x, ξ
|ξ|

)|dt

=

∫ T

0

χ(z(t, x,
ξ

|ξ|
))|ζ(t, x, ξ

|ξ|
)|dt

for (x, ξ) ∈ Cλ0 . Thus it follows that a0 is a well-defined smooth function. We note

|∂αx∂
β
ξ k(t, x, ξ)| ≤ Cαβ, k ∈ {z, ζ}

uniformly in |t| ≤ T , |x| ≤ R and |ξ| = 1, and

|∂βξ
ξ

|ξ|
| ≤ Cβ〈ξ〉−β, |ξ| ≥ 1.

These inequalities give (3.7.21).

Now we prove Lemma 3.7.10.

Proof of Lemma 3.7.10. Let λ0 > 0 be as in Lemma 3.7.13. We fix some notations
which works only in this subsection. For λ0 > 0, let ψλ0 ∈ C∞

c (R; [0, 1]) such that

supp ψ̃λ0 ⊂ (−λ0, λ0), ψ̃λ0(t) = 1 for t ∈ (−λ0
2
,
λ0
2
). (3.7.22)

Moreover, we take χ ∈ C∞
c (R, [0, 1]) such that

χ(t) =

{
1, t ≤ 1,

0, t ≥ 2,
χ′(t) ≤ 0.
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We set χR(t) = χ(t/R) and χ̄R(t) = 1− χR(t) for R > 0.

ψλ0(x, ξ) = χ̄(|ξ|)ψ̃λ0(
p(x, ξ)

|ξ|2
).

We define

Cλ0(P ) = {(x, ξ) ∈ R2n | |ξ| ≥ 1, |p(ξ)| < λ0|ξ|2},

then we note supp ψλ0 ⊂ Cλ0(P ) and ψλ0 ∈ S0.0.
It suffices to construct a smooth real-valued function q such that for (x, ξ) ∈ Cλ0(P ),

we have

|∂αx∂
β
ξ q(x, ξ)| ≤ Cαβ〈x〉−|α|〈ξ〉−|β|, Hpq(x, ξ) ≥ C〈x〉−1−δ〈ξ〉. (3.7.23)

In fact, setting a(x, ξ) = ψλ0(x, ξ)
2q(x, ξ) and r(x, ξ) = C〈x〉−1−δ〈ξ〉(1 − ψλ0(x, ξ)

2) +
qHpψ

2
λ0
(x, ξ), then a and r satisfy the desired property.

For R,M1,M2, L > 0 which are large enough and determined later, we set

q1(x, ξ) =
x · ξ̃
|x||ξ|

∫ 2|x|
M

1

1

s1+δ
dsχ̄M(|x|), q2(x, ξ) = χ4M(|x|)

∫ 0

∞
χ2M(z(t, x, ξ))|ζ(t, x, ξ)|dt,

q(x, ξ) =Lq1(x, ξ) + q2(x, ξ),

where q2 is well-defined for (x, ξ) ∈ Cλ0(P ) by Lemma 3.7.14. We claim

Hp0(
x · ξ̃
|x||ξ|

∫ 2|x|
M

1

1

s1+δ
ds) ≥C〈x〉−1−δ〈ξ〉, |x| ≥M, |ξ| ≥ 1,

where C > 0 is independent of M ≥ 1. In fact, we have

Hp0(
x · ξ̃
|x||ξ|

∫ 2|x|
M

1

1

s1+δ
ds) =2

|x|2|ξ|2 − (x · ξ̃)2

|x|3|ξ|

∫ 2|x|
M

1

1

s1+δ
ds+M δ (x · ξ̃)2

2δ−1|x|3+δ|ξ|
.

This gives the above inequalities. We write

p(x, ξ) = p0(ξ) + V (x, ξ), V ∈ S2,−µ.

Since δ < µ, there is C > 0 independent of M such that

|HV q1(x, ξ)| ≤ C〈M〉−(µ−δ)〈x〉−1−δ〈ξ〉 for (x, ξ) ∈ Cλ0(P ).

Then there exist C3, C4 > 0 such that for |ξ| ≥ 1 and M ≥ 1, we have

Hpq1(x, ξ) ≥C3〈ξ〉〈x〉−1−δχ̄M(|x|)− C4〈M〉−(µ−δ)〈x〉−1−δ〈ξ〉.
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where we use (x · ξ̃)Hp0χ(|x|) ≥ 0. Moreover, there exist C5, C6 > 0 such that for
(x, ξ) ∈ Cλ0(P ) and M ≥ 1, we have

Hpq2(x, ξ) ≥C5〈ξ〉χ2M(|x|)− C6〈x〉−1〈ξ〉χ̄M(|x|)χ8M(|x|)
≥C5〈ξ〉χ2M(|x|)− C6〈M〉δ〈x〉−1−δ〈ξ〉χ̄M(|x|)

Thus we have

Hpq(x, ξ) ≥(C3L− C6〈M〉δ)〈ξ〉〈x〉−1−δχ̄M(|x|) + C5〈ξ〉χ2M(|x|)
− C4L〈M〉−(µ−δ)〈x〉−1−δ〈ξ〉.

Using 0 < 2δ < µ, we can take L,M > 0 large enough such that

M δ << L << Mµ−δ.

and we obtain (3.7.23).

Remark 3.7.15. When we assume the globally non-trapping assumption, a more stronger
equality holds: There exist C1, C2 > 0 and a ∈ S0,0 such that

Hpa(x, ξ) ≥ C1〈x〉−1−δ〈ξ〉 − C2.

In fact, in the proof above, we only have to replace ψλ0 by χ̄(|ξ|). For a bit different
proof, see [9, Lemma 7.1].

3.8 Mapping properties

Let P be as in the last section. In this section, we prove a good mapping property of
the resolvent (P − i)−1, which does not use in the other part of this thesis. We note
that the operator (P − i)−1 maps from S(Rn) to L2(Rn). Next proposition claims that
the range of this operator is contained in S(Rn).

Proposition 3.8.1. Let z ∈ C\R. Then the resolvent (P −z)−1 is a linear continuous
operator on S(Rn). In particular, (P − z)−1 can be extended to a linear continuous
operator on S′(Rn).

As in [44, Appendix] (for the Stark Schrödinger operator), we have the following
commutator relation which is a generalization of the equation (3.7.4).

Corollary 3.8.2. Let T : S′(Rn) → S′(Rn) be a continuous linear operator, then we
have

[(P − i)−1, T ] = (P − i)−1[T, P ](P − i)−1.
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In the following, we only deal with the case of Im z > 0. In order to prove Proposi-
tion 3.8.1, we need some preliminary lemmas. We frequently use the following symbol:

η̃(x, ξ) =
x · ∂ξp(x, ξ)
|x||∂ξp(x, ξ)|

.

Moreover, for symbols a, b, we denote a ⋐ b if we have

inf
(x,ξ)∈supp a

|b(x, ξ)| > 0,

and we denote Op(a) =: A ⋐ B := Op(b) if a ⋐ b.

3.8.1 Radial source estimate

Proposition 3.8.3. Let A ∈ OpS0,0 be supported in

{(x, ξ) ∈ R2n | |x| > R, |ξ| > r, η̃(x, ξ) ≤ −1 + ε}. (3.8.1)

with R > 0 large enough, r > 0 and 0 < ε < 1. Let

z ∈ {z ∈ C | Im z > 0} ∪ R \ {0}. (3.8.2)

Let u ∈ S′(Rn) satisfying A1u ∈ Hk,− 1
2
+0 ∩ Hk,l−1+0, A1(P − z)u ∈ Hk− 1

2
,l+ 1

2 with
some k ∈ R, l > 0 and A1 = Op(a1) ∈ OpS0,0 such that A ⋐ A1. Then we have

Au ∈ Hk+ 1
2
,l− 1

2 .

Corollary 3.8.4. Let k ∈ R and z as in (3.8.2). Let A1u ∈ Hk,− 1
2
+0 satisfying (P −

z)u ∈ S(Rn), where A,A1 are as in Proposition 3.8.3. Then we have Au ∈ S(Rn).

Corollary 3.8.4 immediately follows from Proposition 3.8.3 and the standard boot-
strap argument.

In the proof of Proposition 3.8.3, the following commutator calculus has an impor-
tant role: For pseudodifferential operators A,Λ, where A is formally self-adjoint and
Im z ≥ 0, we have

Im ((P − z)u,AΛ∗ΛAu)L2 =− (u, [P, iAΛ∗ΛA]u)L2 + Im z‖ΛAu‖2L2 (3.8.3)

for u ∈ S(Rn). Moreover, the equation (3.8.3) with the Cauchy-Schwartz inequality
implies that for any small ε1 > 0, there exists C > 0 such that

−(u, [P, iAΛ2A]u)L2 ≤ C‖ΛA(P − z)u‖2
H− 1

2 , 12
+ ε1‖ΛAu‖2

H
1
2 ,− 1

2
. (3.8.4)

First, we construct the escape function near the incoming region.
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Lemma 3.8.5 (Escape function near the incoming region). Let 0 < ε < 1/8 and
ρ, χ ∈ C∞(R; [0, 1]) such that

χ(t) =

{
1 for t ≤ 1,

0 for t ≥ 2,
χ′(t) ≤ 0, ρ(t) = χ(

2(t+ 1)

ε
)

Moreover, we set χ̄R(x) = 1− χ(|x|/R) for R ≥ 1. For k ∈ 0, l > 0 and 0 < δ ≤ 1, we
set

λk,l = 〈ξ〉k〈x〉l λk,l,δ = 〈ξ〉k〈δξ〉−|k|−1〈x〉l〈δx〉−l+0

bδ(x, ξ) = λk,l,δa(x, ξ), a(x, ξ) = ρ(η̃(x, ξ))χR(x)χr(ξ).

For R ≥ 1 large enough and any r > 0, we have

Hpb
2
δ(x, ξ) ≤ −C〈x〉−1〈ξ〉bδ(x, ξ)2 + λ2k,l,δr1, (3.8.5)

where r0 ∈ S−∞,− 1
2 which support has close to supp a.

Proof. Take R ≥ 1 such that

Hpη̃(x, ξ) =
|x|2|∂ξp(x, ξ)|2 − (x · ∂ξp(x, ξ))2

|x|3|∂ξp(x, ξ)|
+ S1,−1−µ

≥

{
C〈x〉−1〈ξ〉, for |x| ≥ R, |ξ| ≥ r, η̃(x, ξ) ∈ (−1 + ε

2
,−1 + ε),

−C〈x〉−1−µ〈ξ〉, for |x| > R, |ξ| ≥ r.

This implies Hp(ρ(η̃)) ≤ 0. Since η̃(x, ξ) ≤ 0 for (x, ξ) ∈ supp a, we have Hp(χ̄R(x)) ≤
0. Thus we have

Hpa ≤ r20, r0 ∈ S−∞,− 1
2 .

Moreover, we have

Hp〈ξ〉k〈δξ〉−|k|−1 ≤ C〈x〉−1−µ〈ξ〉k+1〈δξ〉−|k|−1, Hp〈x〉l〈δx〉−l ≤ −C〈ξ〉〈x〉l−1〈δx〉−l

for (x, ξ) ∈ supp a, where the constant C > 0 is independent of δ. Thus, we obtain
(3.8.5).

Set Λk,l,δ = Op(λk,l,δ), Λk,l = Op(λk,l), A = Op(a). Moreover, we set

Λ = Λk,l,δ, Θ = 〈x〉−
1
2 〈D〉

1
2 .

Now we show Proposition 3.8.3. We take r > 0 small enough such that (3.8.6) below
holds. Note that r > 0 depends only on z.
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Proof of Proposition 3.8.3. By the standard elliptic estimate, it suffices to replace A in
Proposition 3.8.3 by A = Op(a), where a is as in Lemma 3.8.5.

Let N > 0. Take A1 = Op(a1), A2 = Op(a2) ∈ OpS0,0 such that a ⋐ a2 ⋐ a1. Set
A = Op(a). We observe that from (3.8.2), there exists r > 0 such that

P − z is elliptic in the region {(x, ξ) ∈ R2n | |ξ| ≤ 2r}. (3.8.6)

Then the standard elliptic parametrix construction implies

‖ΛA(P − z)u‖2
H− 1

2 , 12
+ ‖ΛOp(r1)u‖2L2 ≤ C‖ΛA2(P − z)u‖2

H− 1
2 , 12

+ C‖u‖2H−N,−N ,

where we use the support property of r1 ∈ S−∞,−1/2. The sharp G̊arding inequality
with (3.8.3) and (3.8.4) implies that we have

‖ΛAu‖2
H

1
2 ,− 1

2
≤ C‖ΛA2(P − z)u‖2

H− 1
2 , 12

+ C‖Λk,lA2u‖2H0,−1+0 + C‖u‖2H−N,−N (3.8.7)

for u ∈ S(Rn). Now we suppose u ∈ H−N,−N , A1u ∈ Hk,− 1
2
+0 ∩Hk,l−1+0 with A1(P −

z)u ∈ Hk− 1
2
,l+ 1

2 . Since Op(Λk,l,δ) and A2 belong to OpS0,0, by the standard limiting

procedure, we substitute u into (3.8.7). This implies Au ∈ Hk+ 1
2
,l− 1

2 by taking δ → 0,
where we recall Λ = Λk,l,δ.

3.8.2 Propagation to the radial source in the past infinity

To use the standard propagation of singularity, we need the following dynamical lemma.

Lemma 3.8.6. Let (x0, ξ0) ∈ T ∗Rn with ξ 6= 0 and p(x, ξ) = 0. We denote z(t) =
z(t, x0, ξ0), ζ(t) = ζ(t, x0, ξ0) and η(t) = η̃(z(t), ζ(t)). Then for any 0 < ε < 1 and
R ≥ 1, there exists T > 0 such that |z(−T )| > R

η(−T ) < (−1 + ε). (3.8.8)

Proof. Let 0 < ε < 1 and R ≥ 1. Take R0 ≥ R such that H2
p |x|2 ≥ C|ξ|2 for |x| ≥ R0

and

Hpη̃(x, ξ) ≥ C〈x〉−1|ξ|. (3.8.9)

for |x| ≥ R0 with (−1 + ε) ≤ η(x, ξ) ≤ 0. By the null non-trapping condition, we can
choose T0 > 0 such that

|z(−T0)| ≥ 2R0,
d

dt
|z(t)|2|t=−T0 ≤ 0.

This with the convexity of Hp implies |z(−t)| ≥ R0 and η(−t) ≤ 0 for t ≥ T0. Now
suppose that (3.8.8) fails. Then, by Lemma 3.3.2, Corollary 3.3.4 and the inequality
(3.8.9), we obtain

η(−T0) = η(−t) +
∫ −T0

−t
η′(s)ds ≥ C

∫ −T0

−t
〈s〉−1ds = ∞ as t→ ∞

which is a contradiction.
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This corollary implies that for any (x0, ξ0) ∈ Rn \ 0, large enough R ≥ 1, and
0 < ε < 1, there exists (x1, ξ1) ∈ T ∗Rn \ 0 such that (x1, ξ1) lies in the same integral
curve of Hp and

|x1| > R, η̃(x1, ξ1) < −1 + ε.

Then the standard propagation of singularities theorem implies that u is smooth mi-
crolocally near (x0, ξ0) if and only if u is smooth microlocally near (x1, ξ1), for u ∈
D′(Rn) satisfying (P − i)u ∈ C∞(Rn). On the other hand, Corollary 3.8.4 implies that
for R >> 1 large enough and 0 < ε < 1, we have u ∈ C∞(Rn) microlocally on the

region (3.8.1) if u ∈ Hk,− 1
2
+0(Rn) (for some k ∈ R) satisfying (P − z)u ∈ S(Rn), where

z satisfies (3.8.2). Thus we obtain

Corollary 3.8.7. Let k ∈ R and z ∈ C satisfying (3.8.2). Suppose that u ∈ Hk,− 1
2
+0(Rn)

satisfies (P − z)u ∈ S(Rn). Then we have u ∈ C∞(Rn).

This corollary is a generalization of Proposition 3.2.2.

3.8.3 Subellipticity on the spectral parameter

The proof of Lemma 3.8.8 below looks the standard positive commutator argument at a
first glance, however, it is very different from the usual positive commutator argument.
In fact, in the proof below, we do not use the dynamical property for Hp. We only need
to use the symbol calculus and the symbol class p ∈ S2,0.

Lemma 3.8.8. Let k, l ∈ R, z ∈ C \ R. If u ∈ Hk+1/2,l−1/2 satisfies (P − z)u ∈ Hk,l,
then we have u ∈ Hk,l.

Remark 3.8.9. In this lemma, the assumption z /∈ R is necessary.

Proof. Take χ ∈ C∞
c (R;R) such that χ(t) = 1 on |t| ≤ 1 and set

aR(x, ξ) = χ(
|(x, ξ)|
R

), ΛR = 〈x〉l〈D〉kOp(aR) ∈ OpS−∞,−∞

for R ≥ 1. We note ΛR is uniformly bounded in OpSk,l. Since ΛR ∈ OpS−∞,−∞, we
have

((P − z)u,Λ2
Ru)L2 − (Λ2

Ru, (P − z)u)L2 = 2iIm z‖ΛRu‖2L2 + (u, [P,Λ2
R]u)L2

for u ∈ S′(Rn). Now we let u ∈ Hk+1/2,l−1/2 satisfying (P − z)u ∈ Hk,l. Then we have

|(u, [P,Λ2
R]u)L2| ≤ C‖u‖2Hk+1/2,l−1/2

with a constant C > 0 independent of R ≥ 1. Moreover, by the Cauchy-Schwartz
inequality, we have

|((P − z)u,Λ2
Ru)L2 − (Λ2

Ru, (P − z)u)L2| ≤ C

|Im z|
‖(P − z)u‖2Hk,l + |Im z|‖ΛRu‖2L2
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with a constant C > 0 independent of R ≥ 1. Thus we have

|Im z|‖ΛRu‖2L2 ≤
C

|Im z|
‖(P − z)u‖2Hk,l + C‖u‖2Hk+1/2,l−1/2 .

Using Im z 6= 0 and a limiting procedure, we obtain u ∈ Hk,l.

3.8.4 Proof of Proposition 3.8.1

Now we prove Proposition 3.8.1.

Lemma 3.8.10. Let u ∈ L2(Rn) and z ∈ C satisfying Im z > 0 and (P − z)u ∈ S(Rn).
Then there is 0 < ε < 1

2
such that for any k ∈ R, we have u ∈ Hk,−ε.

Proof. Corollary 3.8.7 implies u ∈ C∞(Rn). By virtue of Theorem 3.2.4, we have
u ∈ ∪k∈RHk,−ε with some ε > 0.

Remark 3.8.11. When z ∈ R\{0}, the same conclusion holds with ε > 1/2. To see this,
we only need to prove the same conclusion of Theorem (3.2.4) holds for z ∈ R\{0} when
we replace the conclusion ϕ ∈ Hk,−γ ∩Hk+ 1

2
,−γ− 1

2 by ϕ ∈ Hk+ 1
2
,−γ− 1

2 . To prove this, it
suffices to remove the assumption ϕ ∈ L2(Rn) in Theorem 3.2.4 in view of its proof (we

also observe the conclusion ϕ ∈ Hk+ 1
2
,−γ− 1

2 comes from the first term of the left hand
side of (3.2.1)). We note that ν > 0 in the statement of Lemma (3.2.5) can be chosen
as P − z is elliptic on {|ξ| ≤ 2ν}. This implies that Tϕ ∈ L2(Rn) if (P − z)ϕ ∈ L2(Rn).
Thus we can remove the assumption u ∈ L2(Rn). Now we may take ε = γ + 1/2 where
γ > 0.

Proof of Proposition 3.8.1. Suppose z ∈ C satisfying Im z > 0. By duality, we only
need to prove P − i : S(Rn) → S(Rn) is a homeomorphism. Since the operator P − i
maps between S(Rn) continuously and is injective in S(Rn) (this follows from its essential
self-adjointness on S(Rn)), it suffices to prove that P − i is surjective in S(Rn) by the
open mapping theorem.

Let f ∈ S(Rn). Setting u = (P − i)−1f ∈ L2(Rn), we have (P − i)u = f . By
Lemmas 3.8.8 and 3.8.10, we have u ∈ S(Rn). This means P − i is surjective in S(Rn).
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Chapter 4

Repulsive Schrödinger operators

4.1 Introduction

In this chapter, we consider the following repulsive Schrödinger operator on Rn:

P = Pα = −∆− 〈x〉2α +Op(V ), α > 1, (4.1.1)

where 〈x〉 = (1+ |x|2)1/2 and Op(V ) is the Weyl quantization of a symbol V : R2n → R.
We set

P0 = P0,α = −∆− 〈x〉2α, α > 1.

Let p0(x, ξ) = |ξ|2 − 〈x〉2α and p(x, ξ) = p0(x, ξ) + V (x, ξ). In this chapter, we always
assume the following assumptions.

Assumption C. We set Suppose that V is of the form

V (x, ξ) =
n∑

j,k=1

ajk(x)ξjξk +
n∑
j=1

bj(x)ξj + c(x),

where ajk = akj, bj and c are real-valued smooth functions on Rn and satisfy

|∂βxajk(x)| ≤ Cβ(1 + |x|)−µ−|β|, |∂βx bj(x)| ≤ Cβ(1 + |x|)α−µ−|β|,

|∂βx c(x)| ≤ Cβ(1 + |x|)2α−µ−|β|.

with some 0 < µ < 1/2 and Cβ > 0.

In particular, Op(V ) is a symmetric differential operator and

V (x, ξ) =
2∑
j=0

Vj(x, ξ), Vj ∈ Sj,α(2−j)−µ.
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Assumption D. For any M > 0

|p(x, ξ)| ≥ C〈ξ〉2, |x| ≤M, |ξ| ≥ R0

with some C > 0 and R0 > 0.

We study stationary scattering theory of P and give an application to limit circle
problem. The usual scattering theory is based on the limiting absorption principle: the
resolvent bound

sup
Re z∈I, Im z ̸=0

‖〈x〉−1/2−0(−∆+ V − z)−1〈x〉−1/2−0‖L2→L2 <∞ (4.1.2)

and existence of the boundary values of the resolvent

lim
±Im z→0

〈x〉−1/2−0(−∆+ V − z)−1〈x〉−1/2−0. (4.1.3)

(4.1.2) is used in order to prove existence and completeness of the wave operators.
Existence of the boundary values (4.1.3) is used for a construction of generalized eigen-
functions of the stationary Schrödinger equation:

(−∆+ V − z)u = 0.

The difficulty in the case of P with α > 1 lies in the lack of essential self-adjointness of
P on S(Rn). Since P may have many self-adjoint extensions, ”the boundary value of
the resolvent” seems meaningless. The recent progress in the microlocal analysis gives
another definition of the outgoing/incoming resolvents of pseudodifferential operators
under some dynamical conditions. See [16] for the Anosov vector fields, [3] and [75]
for the d’Alembertians in the scattering Lorentzian spaces. We apply this technique
to the repulsive Schrödinger operator P even for α > 1 and prove existence of the
outgoing/incoming resolvents. Moreover, we show that P has many eigenfunctions
associated with the eigenvalues λ ∈ C except for a discrete set. As a corollary, we give
another proof of that P is not essentially self-adjoint for α > 1 in view of scattering
and microlocal theory. This is a classical result which is known as a typical limit circle
case (for example, see [61]) when Op(V ) is a multiplication operator. It seems to be
new result when Op(V ) is not a multiplication operator.

The repulsive Schrödinger operator is studied by several authors when Op(V ) is
a multiplication operator. Time-dependent scattering theory of the operator (4.1.1)
for 0 < α ≤ 1 is studied in [4] in the short-range case. The authors prove the exis-
tence and completeness of the wave operator and existence of the asymptotic velocity.
They also study that existence of the outgoing/incoming resolvent and the absence of
L2-eigenvalues. The recent works in [38] and [39] extend some results in [4] for the
long-range case. Moreover, in [38], the author of these papers proves the absence of
eigenvalues in Besov spaces, where the order of Besov space is α−1

2
. This result is an

extension of well-known results for the usual Schrödinger operators (α = 0) to the
repulsive Schrödinger operators (0 < α ≤ 1).

From the usual stationary scattering theory of −∆, we know that:
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• Eigenfunctions of −∆ associated with positive eigenvalues do not exist in the
threshold weighted L2-space: L2,− 1

2 .

• There are many eigenfunctions right above L2,− 1
2 :

−∆u = λu, u ∈
⋂
s>1/2

L2,−s

for each λ > 0.

The result in [38] and [39] suggests that the above results hold for the repulsive
Schrödinger operator with 0 < α ≤ 1 with threshold weight α−1

2
. It is expected that

these results also hold for α > 1. In this chapter, we almost justify these and we prove
the existence of non-trivial L2-solution to

(P − z)u = 0

for z ∈ C except for a discrete subset of C.
We introduce the variable order weighted L2-space L2,k+tm(x,ξ), where k, t ∈ R and

m is a real-valued function on the phase space R2n. Though we give a precise definition
of L2,k+tm(x,ξ) in Section 4.6, we state properties of L2,k+tm(x,ξ) here: If u ∈ L2,k+tm(x,ξ),
then

u ∈L2,k−t,microlocally near{|x|, |ξ| > R, |ξ| ∼ |x|α, x · ξ ∼ |x||ξ|} (4.1.4)

u ∈L2,k+t,microlocally near{|x|, |ξ| > R, |ξ| ∼ |x|α, x · ξ ∼ −|x||ξ|} (4.1.5)

for large R > 0. The following theorem is an analog of [16, Theorem 1.4].

Theorem 4.1.1.

(i) Let t 6= 0 and z ∈ C. We define

Dtm = {u ∈ L2,α−1
2

+tm(x,ξ) | (P − z)u ∈ L2, 1−α
2

+tm(x,ξ)}.

Then

P − z : Dtm → L2, 1−α
2

+tm(x,ξ) (4.1.6)

is a Fredholm operator and coincides with the closure of (P − z) with domain
S(Rn) with respect to its graph norm.

(ii) There exists a discrete subset Tα,t ⊂ C such that (4.1.6) is invertible for C \ Tα,t.

Remark 4.1.2. By the standard radial point estimates and the propagation of sin-
gularities, it follows that Tα,t = Tα,sgn t is independent of |t| and Tα,t ⊂ C−sgn t =
{−(sgn t)Im z ≥ 0}. Moreover, this theorem is true for 0 < α ≤ 1 if we replace z ∈ C
above by z ∈ Csgn t (though Dtm depends on z). We leave these proofs to future work.
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This theorem also gives the bijectivity of P − z in the usual weighted L2-spaces:
Suppose z ∈ C \ Tα,t. For any f ∈ L(1−α)/2+ε with ε > 0, there exists a unique solution
u ∈ L2,(α−1)/2−ε to the equation{

(P − z)u = f, in the distributional sense,

u is outgoing if the signature of t is + and incoming if the signature of t is −,

where ”u is outgoing” says that (4.1.5) holds with k = (α − 1)/2 and t = ε and ”u is
incoming” says that (4.1.4) holds with k = (α− 1)/2 and t = −ε.

Moreover, we construct non-trivial L2 solutions to Pu = zu.

Theorem 4.1.3. Let α > 1 and t 6= 0. For z ∈ C \ Tα,t, there exists u ∈ L2 \ {0} such
that Pu = zu.

Remark 4.1.4. As is proved in Proposition 4.4.9, it follows that there are many eigen-
functions associated with z ∈ C \ Tα,t.

From Theorem 4.1.3 and the standard criterion for essential self-adjointness [61,
Corollary after Theorem VIII.3], we conclude that P is not essentially self-adjoint if
α > 1.

Corollary 4.1.5. Suppose α > 1. Then P = Pα is not essentially self-adjoint both on
C∞
c (Rn) and S(Rn).

The repulsive Schrödinger operator P = Pα for large α is expected to have the same
structure as the Laplace operator on a bounded open set in Rn. For a bounded open set
Ω, it is well-known that the inclusion H2

0 (Ω) ↪→ L2(Ω) is compact. Here we note that
H2

0 (Ω) is the minimum domain of −∆|C∞
c (Ω). For the repulsive Schrödinger operator,

we prove a similar result.

Theorem 4.1.6. Define the Banach space

Dα
min = {u ∈ L2(Rn) | Pu ∈ L2(Rn), ∃uk ∈ C∞

c (Rn) uk → u, Puk → Pu inL2(Rn)}

with its graph norm. Then the inclusion Dα
min ↪→ L2 is compact.

Remark 4.1.7. Dα
min coincides with the minimal domain of P |C∞

c (Rn), that is the domain
of the closure of P |C∞

c (Rn).

Remark 4.1.8. Note thatDα
min = {u ∈ L2 | Pu ∈ L2} for 0 < α ≤ 1 since P is essentially

self-adjoint on S(Rn) for α ≤ 1. However, it follows that Dα
min 6= {u ∈ L2 | Pu ∈ L2}

for α > 1.

Corollary 4.1.9. Let n = 1 and PU be a self-adjoint extension of P . Then there exists
{λk}∞k=1 ⊂ R such that σ(PU) = σd(PU) = {λk}∞k=1 and |λk| → ∞ as k → ∞, where
σ(PU) is the spectrum of PU and σd(PU) is the discrete spectrum of PU .
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Remark 4.1.10. For a relatively bounded open interval I ⊂ R, it is proved that each
self-adjoint extension of −∆|C∞

c (I) has a discrete spectrum by mimicking the proof of
Corollary 4.1.9. However, in the case of n ≥ 2, the situation is dramatically different.
In fact, we consider the Klein Laplacian (−∆ with domain {u ∈ L2(Ω) | ∆u = 0} +
H2

0 (Ω)) for the bounded domain with smooth boundary ∂Ω. The Klein Laplacian has
a nonempty essential spectrum for n ≥ 2. In fact, we note that any L2 harmonic
functions on Ω lies in the domain of the Klein Laplacian. Since restrictions of harmonic
functions on Rn to Ω are L2 harmonic functions on Ω and since the dimension of the set
of all harmonic functions for n ≥ 2 is infinite, we conclude that 0 is the eigenvalue with
infinite multiplicity. In this way, it follows that the essential spectrum is not empty.

Remark 4.1.11. As an analogy to−∆ on Ω, we naturally propose the following problems:

• Does there exist a distinguish self-adjoint extension of P (such as the Friedrichs
extension of −∆|C∞

c (Ω) in the case of −∆ on Ω)?

• How is the structure of the self-adjoint extension of P? (More concretely, does
there exist a self-adjoint extension of P which has a discrete spectrum?)

We fix some notations. S(Rn) denotes the set of all rapidly decreasing functions on
Rn and S′(Rn) denotes the set of all tempered distributions on Rn. We use the weighted
Sobolev space: L2,l = 〈x〉−lL2(Rn), Hk = 〈D〉−kL2(Rn) and Hk,l = 〈x〉−l〈D〉−kL2(Rn)
for k, l ∈ R. For Banach spaces X,Y , B(X,Y ) denotes the set of all linear bounded
operators form X to Y . For a Banach space X, we denote the norm of X by ‖ · ‖X .
If X is a Hilbert space, we write the inner metric of X by (·, ·)X , where (·, ·)X is
linear with respect to the right variable. We also denote ‖ · ‖L2 = ‖ · ‖L2(Rn) and
(·, ·)L2 = (·, ·)L2(Rn). We denote the distribution pairing by < ·, · >. For I ⊂ R, we
denote I± = {z ∈ C | Re z ∈ I,±Im z ≥ 0}. We denote 〈x〉 = (1 + |x|2)1/2 for x ∈ Rn.
Set

C± = {z ∈ C | ±Im z ≥ 0}.

4.2 Notations, cut-off functions and elliptic estimates

In this subsection, we fix some notations and define cut-off functions which are used in
this chapter many times.

Let χ ∈ C∞
c (R, [0, 1]) such that

χ(t) =

{
1, |t| ≤ 1,

0, |t| ≥ 2.

For R,L ≥ 1 and 0 < r ≤ 1, set χ̄ = 1− χ and

ar,R(x, ξ) =χ̄(|x|/R)χ̄(|ξ|/R)χ(|ξ|2 − |x|2α)/r(|ξ|2 + |x|2α)), (4.2.1)

aR(x, ξ) =aR−1,R(x, ξ), bL(x, ξ) = χ(|x|/L)χ(|ξ|/L). (4.2.2)
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We often use the symbol

η(x, ξ) =
x · ξ
|x||ξ|

.

We state the elliptic estimate of the repulsive Schrödinger operator P .

Proposition 4.2.1 (Elliptic estimate). Let z ∈ C, k, l ∈ R, N > 0 and k1, l1 ≥ 0 with
k1 + l1 ≤ 2. For R,M ≥ 1 and γ > 1, set

Ωloc ={(x, ξ) ∈ R2n | |x| < M} ∪ {(x, ξ) ∈ R2n | |ξ| < M},
ΩR,γ,1 ={(x, ξ) ∈ R2n | |x| > R, |ξ| > R, |ξ| > γ|x|α},
ΩR,γ,2 ={(x, ξ) ∈ R2n | |x| > R, |ξ| > R, |x|α > γ|ξ|}.

Let γ > 1. There exists R1 > 0 such that if R ≥ R1 and a, a1 ∈ S0,0 are supported
in Ωloc ∪ ΩR,γ,1 ∪ ΩR,γ,2 and infsupp a |a1| > 0, then there exists C > 0 such that for
u ∈ H−N,−N with Op(a1)Pu ∈ Hk,l, we have Op(a)u ∈ Hk+k1,l+αl1 and

‖Op(a)u‖Hk+k1,l+αl1 ≤ C‖Op(a1)(P − z)u‖Hk,l + C‖u‖H−N,−N .

Here the constant C > 0 is locally uniformly in Re z ∈ R.

This elliptic estimate follows from a standard parametrix construction.

Lemma 4.2.2. Let bL as in above and Q ∈ Sk,l for some k, l ∈ R. Then the symbol of
[Q,Op(bL)] is uniformly bounded in Sk−1,l−1 with respect to L ≥ 1 and converges to 0
in Sk−1+ε,l−1+ε as L→ ∞ for any ε > 0.

4.3 Proof of Theorem 4.1.1 (i)

For k ∈ R, we set

Skα =
⋃
l∈R

Sl,k−αl.

4.3.1 Construction of an escape function

Take ρ ∈ C∞(R, [0, 1]) such that

ρ(t) =

{
1, if t ≥ 1/2,

−1 if t ≤ −1/2,
inf

|t|≥1/4
|ρ(t)| > 0, tρ(t) ≥ 0, (4.3.1)

ρ′(t) ≤ C3 ≤ C4|ρ(t)|, if |t| ≥ 1/4, ρ′(t) ≥ 0, ρ′(t) ≥ C1 ≥ C2|ρ(t)|, if |t| ≤ 1/4.
(4.3.2)
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We define

m(x, ξ) = mR(x, ξ) = −ρ(η(x, ξ))aR(x, ξ)2,

where we recall η(x, ξ) = x · ξ/|x||ξ| and aR is as in (4.2.2). Moreover, we set

ΩR = {(x, ξ) ∈ R2n | |x| > R, |ξ| > R, − 1

2R
<

|ξ|2 − |x|2α

|ξ|2 + |x|2α
<

1

2R
}.

Lemma 4.3.1. There exists R0 ≥ 1 such that if R ≥ R0, then

Hp(m log〈x〉)(x, ξ) ≤ −C〈x〉α−1aR(x, ξ)
2 − e(x, ξ),

where e(x, ξ) = ρ(η(x, ξ))(Hpa
2
R)(x, ξ) log〈x〉 ∈ Sα−1+0

α .

Proof. We learn

Hp(ρ(η) log〈x〉) ≥2(ηρ(η))|x||ξ|〈x〉−2 + (Hp0η)ρ
′(η) log〈x〉

− C|ρ(η)|〈x〉α−1−µ − C|ρ′(η)|〈x〉α−1−µ log〈x〉.

Note that the first line of the right hand side is positive for (x, ξ) ∈ ΩR. Moreover, we
observe that |ξ| ∼ |x|α on ΩR if R is large enough. For |η(x, ξ)| ≥ 1/4, it follows

Hp(ρ(η) log〈x〉) ≥2(ηρ(η))|x||ξ|〈x〉−2 − C|ρ(η)|〈x〉α−1−µ

− C|ρ′(η)|〈x〉α−1−µ log〈x〉
≥C〈x〉α−1|ρ(η)| − C〈x〉α−1−µ log〈x〉|ρ(η)| ≥ C〈x〉α−1.

by (4.3.1) and (4.3.2). For |η(x, ξ)| ≤ 1/4, we have

Hp(ρ(η) log〈x〉) ≥(Hp0η)ρ
′(η) log〈x〉 − C|ρ(η)|〈x〉α−1−µ

− C|ρ′(η)|〈x〉α−1−µ log〈x〉
≥Cρ′(η)〈x〉α−1 log〈x〉 − C|ρ′(η)|〈x〉α−1−µ log〈x〉 ≥ C〈x〉α−1.

Thus we complete the proof.

4.3.2 Fredholm properties

Let m = mR0 be as in subsection 4.3.1, where R0 is as in Lemma 4.3.1. Moreover,
we set kα = (α − 1)/2. Let Sk,tm(x,ξ)+l be as in Definition 2 and let G̃kα,tm(x, ξ) =
〈x〉kα+tm(x,ξ) + S−∞,−∞ such that Op(G̃kα,tm) : S(Rn) → S(Rn) is invertible. Existence
of such G̃kα,tm is proved in Lemma 4.6.2 (see also (4.6.1)). Moreover, the variable order
weighted L2-space L2,kα+tm(x,ξ) is defined by

L2,kα+tm(x,ξ) = Op(G̃kα,tm)
−1L2.
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By Lemma 4.6.3 (ii), we have

L2,kα+tm(x,ξ) = Op(G̃0,tm)
−1L2,kα .

For t 6= 0 and z ∈ C±, we set

Ptm(z) = Op(G̃0,tm)(P − z)Op(G̃0,tm)
−1. (4.3.3)

We note that the operator P on L2,kα+tm(x,ξ) is unitary equivalent to Ptm on L2,kα .
This is why we study the Fredholm property of Ptm(z) instead of P in order to prove
Theorem 4.1.1. By the asymptotic expansion, we have

Ptm(z) = P − z + itOp(Hp(m log〈x〉)) + OpS0,−2+0

since |ξ| ∼ |x|α on supp m and G̃0,tm = 〈x〉tm(x,ξ) + S−∞,−∞.

Lemma 4.3.2. We have

−(u,Op(Hp(m log〈x〉))u)L2 ≥ C‖Op(aR)u‖2
L2, α−1

2
− C‖u‖2L2,−1+0 + (u,Op(e)u)L2

for u ∈ S(Rn).

Proof. By the construction, m is supported in supp aR. Hence we have

−Hp(m log〈x〉)− C〈x〉α−1aR(x, ξ)
2 − e(x, ξ) ∈ S1,−1+0.

By Lemma 4.3.1 and the sharp G̊arding inequality (Lemma 2.2.1 (v)), we obtain the
above inequality.

Lemma 4.3.3. Set D̃tm(z) = {u ∈ L2,(α−1)/2 | Ptm(z)u ∈ L2,(1−α)/2}. We consider
D̃tm(z) as a Banach space with its graph norm. Then S(Rn) is dense in D̃tm(z).

Proof. Let u ∈ D̃tm(z). We recall that bL(x, ξ) = χ(|x|/L)χ(|ξ|/L) is as in (4.2.2).
Since Op(bL)u→ u in L2,(α−1)/2 and Op(bL)Ptm(z)u→ Ptm(z)u in L2,(1−α)/2, it suffices
to prove that [Ptm,Op(bL)]u→ 0 in L2,(1−α)/2. We learn

‖[Ptm(z),Op(bL)]u‖L2,(1−α)/2 ≤‖[Ptm(z),Op(bL)]Op(aR)u‖L2,(1−α)/2

+ ‖[Ptm(z),Op(bL)](1−Op(aR))u‖L2,(1−α)/2 .

Since |ξ| ∼ |x|α on aR, it follows that [Ptm(z),Op(bL)]Op(aR) is uniformly bounded in
S0,α−1 and converges to 0 in S0,(α−1)/2+0. Lemma 4.2.2 and u ∈ L2,(α−1)/2 imply

lim sup
L→∞

‖[Ptm(z),Op(bL)]Op(aR)u‖L2,(1−α)/2 = 0.

Moreover, since u ∈ L2,(α−1)/2 with Ptm(z)u ∈ L2,(1−α)/2, then the elliptic estimates
(Proposition 4.2.1) implies (1−Op(aR))u ∈ Hk1,(1−α)/2+αl1 for k1, l1 ≥ 0 with k1+l1 ≤ 2.
In particular,

(1−Op(aR))u ∈
2⋂
j=1

Hj,α+1
2

+(j−1)α.
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Since [Ptm(z),Op(bL)] is uniformly bounded in
∑2

j=0 S
1−j,jα−1 and converges to 0 in∑2

j=0 S
1−j+ε,jα−1+ε for any ε > 0, then Lemma 4.2.2 gives

lim sup
L→∞

‖[Ptm(z),Op(bL)](1−Op(aR))u‖L2,(1−α)/2 = 0.

This completes the proof.

Proposition 4.3.4. Let I ⊂ R be a relativity compact interval. Then there exists C > 0
such that for z ∈ Isgn t we have

‖u‖L2,(α−1)/2 ≤ C‖Ptm(z)u‖L2,(1−α)/2 + C‖u‖H−N,−N , u ∈ D̃tm(z), (4.3.4)

‖u‖L2,(α−1)/2 ≤ C‖Ptm(z)∗u‖L2,(1−α)/2 + C‖u‖H−N,−N , u ∈ D̃tm(z̄). (4.3.5)

Moreover, (4.3.4) and (4.3.5) hold for z ∈ I−sgn t though the constant C > 0 depends on
Im z.

Proof. First, we assume z ∈ Isgn t. We prove (4.3.4) only. Since Ptm(z)
∗ = (P − z)∗ −

itOp(Hp(m log〈x〉))+OpS0,−2+0 holds, (4.3.5) is similarly proved. By Lemma 4.3.3, we
may assume u ∈ S(Rn). By Lemma 4.3.2 and tIm z ≥ 0, then

−(sgn t)Im (u, Ptm(z)u)L2 ≥C‖Op(aR)u‖2L2,(α−1)/2 − C‖u‖2L2,−1+0 + (u,Op(e)u)L2

for u ∈ S(Rn). Since tIm z ≥ 0, then we have

‖Op(aR)u‖2L2,(α−1)/2 ≤C‖Ptm(z)u‖L2,(1−α)/2‖u‖L2,(α−1)/2 + C‖u‖2L2,−1+0 (4.3.6)

+ |(u,Op(e)u)L2|.

By the elliptic estimate (Proposition 4.2.1) and the interpolation estimate, we have

‖(1−Op(aR))u‖2L2,(α−1)/2 + ‖u‖2L2,−1+0 + |(u,Op(e)u)L2| (4.3.7)

≤ C‖Op(aR)u‖2L2,−1+0 + C‖Ptm(z)u‖2L2,(1−α)/2 + C‖u‖2H−N,−N

≤ 1

2
‖Op(aR)u‖2L2,(α−1)/2 + C‖Ptm(z)u‖2L2,(1−α)/2 + C‖u‖2H−N,−N .

By using (4.3.6), (4.3.7) and the Cauchy-Schwarz inequality, we obtain (4.3.4) for u ∈
S(Rn).

Next, we prove that (4.3.4) and (4.3.5) hold for z ∈ I−sgn t though the constant
C > 0 depends on Im z. In fact, since (α− 1)/2 > (1−α)/2, then the elliptic estimate
and the interpolation inequality implies that for any ε1 > 0,

|Im z|‖u‖2L2,(1−α)/2 ≤ε1‖u‖2L2,(α−1)/2 + C‖u‖2L2,−N−Nα

≤ε1‖u‖2L2,(α−1)/2 + C‖Ptm(z)‖2L2,(1−α)/2 + C‖u‖2H−N,−N .

Taking ε1 > 0 small enough and use (4.3.4) and (4.3.5) for z̄, we obtain (4.3.4) for
z ∈ I−sgn t.
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Remark 4.3.5. Suppose t ≥ 0. If Im z is large enough, then

‖u‖L2,(α−1)/2 ≤ C‖Ptm(z)u‖L2,(α−1)/2 . (4.3.8)

In fact, in (4.3.6), we have a stronger bound:

‖Op(aR)u‖2L2,(α−1)/2 + Im z‖u‖2L2 ≤ (RHS of (4.3.6)).

Hence the argument after (4.3.6) implies

(1 + ε)‖u‖2L2,(α−1)/2 + Im z‖u‖2L2 ≤ C‖Ptm(z)u‖2L2,(α−1)/2 + C‖u‖2H−N,−N .

We use the trivial bounds ‖u‖H−N,−N ≤ ‖u‖L2 ‖u‖H−N,−N ≤ ‖u‖L2,(α−1)/2 and we obtain
(4.3.8). Similarly, for t ≤ 0, (4.3.8) holds if −Im z is large enough.

Corollary 4.3.6. The map

Ptm(z) : D̃tm(z) → L2,(1−α)/2 (4.3.9)

is a Fredholm operator. Moreover, if tIm z ≥ 0 holds and |Im z| is large enough, then
P − z is invertible. Furthermore, (4.3.9) is an analytic family of Fredholm operators
with index zero. Moreover, there exists a discrete set Tα,t ⊂ C such that (4.3.9) is
invertible for z ∈ C \ Tα,t.
Remark 4.3.7. Remark 4.3.5 implies that Ptm(z) is invertible for t ≥ 0 and for large
Im z > 0. In fact, the injectivity of Ptm(z) follows from (4.3.8) and the surjectivity
follows from the injectivity of Ptm(z)

∗.

Proof. First, we prove that dimKer Ptm(z) <∞ is of finite dimension and Ran Ptm(z)
is closed. Let a bounded sequence uk ∈ D̃tm(z) such that Ptm(z)uk is convergent in
L2,(1−α)/2. Due to [30, Proposition 19.1.3], it suffices to prove that uk has a conver-
gent subsequence in D̃tm(z). It easily follows from (4.3.4) and the compactness of the
inclusion L2,(α−1)/2 ⊂ H−N,−N .

Next, we prove that the cokernel of Ptm(z) is of finite dimension. To do this, it
suffices to prove that the kernel of Ptm(z)

∗ : L2,(α−1)/2 → D̃tm(z)
∗ is of finite dimension.

By definition, we have

Ker Ptm(z)
∗ ={u ∈ L2,(α−1)/2 | (u, Ptm(z)w)L2 = 0, ∀w ∈ D̃tm(z)}
={u ∈ L2,(α−1)/2 | (u, Ptm(z)w)L2 = 0, ∀w ∈ S(Rn)},

where we use Lemma 4.3.3 in the second line. If u ∈ L2,(α−1)/2 satisfies Ptm(z)
∗u = 0,

then this equality holds in the distributional sense. The claim follows same as in the
first half part of this proof.

The invertibility of (4.3.9) when tIm z ≥ 0 and when |Im z| is large follows from
Remark 4.3.5 and its dual statement. The analytic Fredholm theorem [79, Theorem
D.4] imply existence of Tα,t as above.

Proof of Theorem 4.1.1. Theorem 4.1.1 follows from (4.3.3) and Corollary 4.3.6.
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4.4 Proof of Theorem 4.1.3

4.4.1 Outgoing/incoming parametrices

In this subsection, we construct outgoing/incoming parametrices of a solution to Pu =
zu. Set

Sk(Rn) = {a ∈ C∞(Rn \ {0}) | |∂βxa(x)| ≤ Cβ〈x〉k−|β|, for |x| > 1}.

Moreover, we frequently use the following notation:

x̂ = x/|x|.

The main result of this subsection is the following theorem.

Theorem 4.4.1. Fix a signature ± and a ∈ C∞(Sn−1). Then there exists ϕ± ∈
S1+α(Rn) such that

ϕ± ∓ |x|1+α

1 + α
∓ z

|x|1−α

2(1− α)
∈ S1+α−µ(Rn), Im (ϕ± ∓ z

|x|1−α

2(1− α)
) ∈ S0(Rn),

e−iφ(−∆− |x|2α +Op(V )− z)(eiφb) ∈ S−n+1−α
2

−µ(Rn),

where b(x) = |x|−n−1+α
2 χ̄(|x|/R)a(x̂) ∈ S−n−1+α

2 (Rn) and x̂ = x/|x|.

Theorem 4.4.1 is proved by Propositions 4.4.2 and 4.4.5 below.

Proposition 4.4.2. Fix a signature ±, z ∈ C and a ∈ C∞(Sn−1). Set b(x) =

|x|−n−1+α
2 χ̄(|x|/R)a(x̂) ∈ S−n−1+α

2 (Rn). Let ϕ±,z ∈ S1+α(Rn) be satisfying

ϕ±,z ∓
|x|1+α

1 + α
∓ z

|x|1−α

2(1− α)
∈ S1+α−µ(Rn), Im (ϕ±,z ∓ z

|x|1−α

2(1− α)
) ∈ S0(Rn).

Then we have

e−iφ±,z(−∆− |x|2α +Op(V )− z)(eiφ±,zb)

= ((∇ϕ)2 − |x|2α + V (x,∇ϕ±.z(x))− z)b(x) + S−n+1−α
2

−µ(Rn).

Proposition 4.4.2 directly follows from Lemmas 4.4.3 and 4.4.4 below.

Lemma 4.4.3. Fix a signature ± and z ∈ C. Let ϕ±,z and b be as in the above
proposition. Then

e−iφ±,z(−∆− |x|2α − z)(eiφ±,zb) = ((∇ϕ±,z)
2 − |x|2α − z)b+ S−n+1−α

2
−µ(Rn).
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Proof. Set k = −n−1+α
2

, then we note k + α− µ− 1 = −n+1−α
2

− µ. We write ϕ = ϕ±
and ϕ0 = ϕ0,± = ±|x|1+α/(1 + α). By a simple calculation, we have

e−iφ(−∆− |x|2α − z)(eiφb) =((∇ϕ)2 − |x|2α − z)b− i(2∇ϕ · ∇b+ (∆ϕ)b)− (∆b).

Due to b ∈ Sk and ϕ− ϕ0 ∈ S1+α−µ, we observe

∆b, 2∇(ϕ− ϕ0) · ∇b+∆(ϕ− ϕ0)b ∈ Sk+α−µ−1(Rn).

Thus, it suffices to prove

2∇ϕ0 · ∇b+ (∆ϕ0)b ∈ Sk+α−µ−1(Rn).

Since ∇ϕ0 = ±|x|α−1x, ∆ϕ0 = ±(n− 1 + α)|x|α−1, we obtain

2∇ϕ0 · ∇b+ (∆ϕ0)b =± (2|x|α∂rb(x) + (n− 1 + α)|x|n−1+αb)

=± 2

R
|x|k+αa(x̂)(χ̄)′(|x|/R) ∈ C∞

c (Rn) ⊂ Sk+α−µ−1(Rn).

Lemma 4.4.4. Let k ∈ R, ϕ ∈ S1+α(Rn) and b ∈ Sk(Rn). Set ψ(x, y) =
∫ 1

0
∇ϕ(tx +

(1− t)y)dt. Then

e−iφ(x)Op(V )eiφb(x) = V (x,∇ϕ(x))b(x) + L(x),

where L ∈ Sk+α−µ−1(Rn) is defined by

L(x) = Dy(∂ξV (x, ψ(x, y))b(x))|x=y + (D2
y(∂

2
ξV (

x+ y

2
, 0)b(y))|x=y.

Proof. By a simple calculation, we have

e−iφ(x)Op(V )(eiφb)(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξ−i(φ(x)−φ(y))V (
x+ y

2
, ξ)b(y)dydξ

=
1

(2π)n

∫
R2n

ei(x−y)·ξV (
x+ y

2
, ξ + ψ(x, y))b(y)dydξ

=V (x,∇ϕ(x))b(x) + L(x),

where

L(x) =
1

(2π)n

∫
R2n

ei(x−y)·ξ(V (
x+ y

2
, ξ + ψ(x, y))− V (

x+ y

2
, ψ(x, y)))b(y)dydξ.

Thus it suffices to compute L. Since V is a polynomial of degree 2 with respect to
ξ-varibble, we have

V (
x+ y

2
, ξ + ψ(x, y)) =V (

x+ y

2
, ψ(x, y)) + ξ · ∂ξV (

x+ y

2
, ψ(x, y))

+
1

2
ξ · ∂2ξV (

x+ y

2
, ψ(x, y)) · ξ.
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Note that ∂2ξV (x+y
2
, ψ(x, y)) = ∂2ξV (x+y

2
, 0) since V is a second order differential opera-

tor. By integrating by parts, L(x) is written as

1

(2π)n

∫
R2n

ei(x−y)·ξ(ξ · ∂ξV (
x+ y

2
, ψ(x, y)) + ξ · ∂2ξV (

x+ y

2
, ψ(x, y)) · ξ)b(y)dydξ

= Dy(∂ξV (x, ψ(x, y))b(x))|x=y + (D2
y(∂

2
ξV (

x+ y

2
, 0)b(y))|x=y ∈ Sk+α−µ−1(Rn).

This completes the proof.

Now we find approximate solutions to the eikonal equations:

(∇ϕ(x))2 − |x|2α + V (x,∇ϕ(x))− z = 0. (4.4.1)

In [19], solutions to eikonal equations is used for constructing eigenfunctions of a usual
Schrödinger operator −∆ + V with a long range perturbation. Isozaki [33] proved
the existence of solutions to eikonal equations for −∆ + V by using the estimates for
the classical trajectories. In our case, we cannot directly apply this strategy since the
classical trajectories may blow up at finite time. Instead, we use iteration and construct
the approximate solutions to (4.4.1) even for z /∈ R.

Proposition 4.4.5. Set ϕ0,±(x) = ϕ0,±(x, z) = ± |x|α+1

1+α
± z |x|1−α

2(1−α) . Let R ≥ 1 be

large enough. Then for any integer N > 0, there exists ϕN,± ∈ S1+α(Rn) such that
ϕN,±−ϕN−1,± ∈ S1+α−Nµ(Rn), Im (ϕN,±−ϕ0,±) ∈ S0(Rn), ϕN,±−ϕN−1,± is supported
in |x| ≥ R and

(∇ϕN,±(x))2 − |x|2α + V (x,∇ϕN,±(x))− z ∈ S2α−(N+1)µ(Rn). (4.4.2)

Remark 4.4.6. Such construction of ϕN succeeds for 0 < α < 1 and z ∈ R. For α = 1

and z ∈ R, we have to replace ϕ0,±(x, z) = ± |x|2
2

± z
2
log |x|.

Proof. We find ϕN,± ∈ S1+α(Rn) of the form

ϕN,±(x) = ϕ0,±(x) +
N∑
j=1

ej,±(x), ej,± ∈ S1+α−jµ.

By a simple calculation, we have

(∇ϕN,±(x))2 − |x|2α + V (x,∇ϕN,±(x))− z

=
z2

4
|x|−2α + 2

N∑
j=1

∇ϕ0,± · ∇ej,± +
N∑

j,k=1

∇ej,± · ∇ek,± + V (x,∇ϕN,±(x)).
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We set

e1,±(x) =∓
∫ |x|

R
2

1

2sα
(V (sx̂,∇ϕ0,±(sx̂))−

z2

4
s−2α)dsχ̄R(x) ∈ Sα+1−µ(Rn)

ϕ1,±(x) =ϕ0,±(x) + e1,±(x).

Note Im e1,± ∈ S1−α−µ(Rn). Then (∇ϕ1,±(x))
2 − |x|2α+ V (x,∇ϕ1,±(x))− z is equal to

(Im ∇ϕ0,±) · ∇e1,± + (∇e1,±)2 + V (x,∇ϕ1,±)− V (x,∇ϕ0,±)

= (Im ∇ϕ0,±) · ∇e1,± + (∇e1,±)2 +
∫ 1

0

∇e1,± · (∂ξV )(x,∇ϕ0,± + t∇e1,±)dt,

and this term belongs to S2α−2µ(Rn). In fact, ∇ϕ0,±+ t∇e1,±(x) = |x|α−1x+O(|x|α−µ)
and hence ∂ξV (x,∇ϕ0,± + t∇e1,±) = O(|x|α−µ) uniformly in 0 ≤ t ≤ 1.

For N ≥ 1, we define ϕN ∈ Sα+1 and eN ∈ Sα+1−Nµ inductively as follows:

ϕN+1,±(x) =ϕN,±(x) + eN+1,±(x), eN+1,±(x) = ∓
∫ |x|

R
2

EN+1(sx̂)

2sα
dsχ̄R(|x|),

EN+1,± =
∑

j+k=N+1,
1≤j,k≤N

∇ej,± · ∇ek,± + V (x,∇ϕN,±)− V (x,∇ϕN−1,±)

− 2(Im ∇ϕ0,±) · ∇eN,±.

We note Im eN,± ∈ S1−α−Nµ(Rn). For |x| ≥ 2R, we have

(∇ϕN+1,±)
2 − |x|2α − z =(∇ϕ0,±(x) +

N+1∑
j=1

∇ej,±)2 − |x|2α − z

≡2
N+1∑
j=1

∇ϕ0,± · ∇ej,± +
N+1∑
m=2

∑
j+k=m

∇ej,± · ∇ek,±

=− V (x,∇ϕN,±(x))

modulo S2α−(N+2)µ. Hence

|∇ϕN+1,±|2 − |x|2α + V (x,∇ϕN+1(x)) ≡V (x,∇ϕN+1(x))− V (x,∇ϕN(x))
≡0

modulo S2α−(N+2)µ. Moreover, we have Im (ϕN,± ∓ z |x|1−α

2(1−α)) ∈ S0(Rn) since Im eN,± ∈
S1−α−Nµ(Rn) and α > 1. This completes the proof.

Proof of Theorem 4.4.1. Fix a signature ±. Let N > 0 be an integer such that

2α− (N + 1)µ < −n+ 1− α

2
− µ.

We take ϕ = ϕ± = ϕ±,N as in Proposition 4.4.5. Then Proposition 4.4.2 gives Theorem
4.4.1.
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4.4.2 Construction of the L2-solutions, proof of Theorem 4.1.3

Now we construct the L2-solutions to

(P − z)u = 0,

where u is of the form

u(x) = u0(x) + u1(x), u0(x) = eiφ−(x)b(x), u1 ∈ L2,α−1
2

+tm(x,ξ). (4.4.3)

Proof of Theorem 4.1.3. Set Ṽ (x, ξ) = V (x, ξ)−(〈x〉2α−|x|2α)χ̄(2|x|/R) for R > 0. Let

ϕ− ∈ S1+α and b = |x|−n−1+α
2 χ̄(|x|/R)a(x̂) be as in Theorem 4.4.1 with Ṽ , where a ∈

C∞(Sn−1) \ {0}. Since χ̄(2|x|/R)χ̄(|x|/R) = χ̄(|x|/R) and S−n+1−α
2

−µ(Rn) ⊂ L2, 1−α+µ
2 ,

we have

(P − z)(eiφ−b) ∈ L2, 1−α+µ
2 . (4.4.4)

Now we take 0 < t < min(µ/2, (α − 1)/2) and m = mR0 be as in subsection 4.3.1,
where R0 is as in Lemma 4.3.1. Since

L2,(1−α)/2+tm(x,ξ) ⊂ L2, 1−α+µ
2 , z ∈ C \ Tα,t,

then there exists u1 ∈ L2,(α−1)/2+tm(x,ξ) such that

(P − z)u1 = −(P − z)(eiφ−b).

by Theorem 4.1.1. We set u = u1 + eiφ−b ∈ L2, then u satisfies (P − z)u = 0 since
t < (α − 1)/2. Finally, we prove u 6= 0. In order to prove this, we use the wavefront
condition of u1 and eiφ−b.

Lemma 4.4.7. Set u0 = eiφ−b, where b(x) = |x|−n−1+α
2 χ̄(|x|/R)a(x̂) and a ∈ C∞(Sn−1)\

{0}. Let bR1,δ(x, ξ) = χ((η(x, ξ) + 1)/δ)aR1(x, ξ) and AR1,δ = Op(bR1,δ) for 0 < δ < 1

small enough and R1 ≥ 1 large enough. Then AR1,δu0 /∈ L2,α−1
2 .

Proof. By (4.4.4), Proposition 4.2.1 implies that (1−Op(aR))u0 ∈ L2,(α−1)/2. Moreover,
by a simple calculation, we have

|x|−α−1(x ·Dx − x · ∂xϕ−(x))u0 ∈
⋂
ε>0

L2,α−1
2

+1−ε ⊂ L2,α−1
2 . (4.4.5)

Note that if r1, δ are small and R1 is large, for (x, ξ) ∈ supp (aR1 − bR1,δ)

|x · ξ − x · ∂xϕ−(x)| ≥ C|x|1+α.

Since u0 /∈ L2,(α−1)/2 and u0 ∈ ∩ε>0L
2,(α−1)/2−ε, we have

Op(aR1 − bR1,δ)u0 =Op(
aR1 − bR1,δ

x · ξ − x · ∂xϕ−(x)
|x|1+α)

· |x|−1−α(x ·Dx − x · ∂xϕ−(x))u0 + L2,α−1
2 ∈ L2,α−1

2 .

by a symbol calculus and (4.4.5). Thus if we suppose AR1,δu0 ∈ L2,α−1
2 , then u0 ∈ L2,α−1

2

follows. However, this is a contradiction since u0 /∈ L2,(α−1)/2 by a simple calculation.
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Lemma 4.4.8. For 0 < δ < 1 small enough and R1 ≥ 1 large enough, AR1,δu1 ∈ L2,α−1
2 .

Proof. Note that u1 ∈ L2,(α−1)/2−tm(x,ξ) = Op(G̃(α−1)/2,−tm)
−1L2, 0 < t < (α − 1)/2

and G̃(α−1)/2,−tm = 〈x〉(α−1)/2−tm(x,ξ) by (4.6.1). Moreover, we note m(x, ξ) = −1 on
supp bR1,δ if 0 < δ < 1 is small enough and R1 ≥ 1 is large enough. Thus AR1,δu ∈
L2,(α−1)/2.

By the above two lemmas, we obtain u = u0 + u1 6= 0. This completes the proof of
Theorem 4.1.3.

Finally, we prove that there are many eigenfunctions associated with λ ∈ C \ Tα,t.

Proposition 4.4.9. Suppose that a, a′ ∈ C∞(Sn−1) are linearly independent. Let u, u′ ∈
L2 \ {0} be corresponding eigenfunctions as in (4.4.3). Then u, u′ are also linearly
independent.

Proof. By (4.4.3) and Lemma 4.4.8, we write

u(x) =eiφ−(x)|x|−
n−1+α

2 χ̄(|x|/R)a(x̂) + u1(x),

u′(x) =eiφ−(x)|x|−
n−1+α

2 χ̄(|x|/R)a′(x̂) + u′1(x),

where u1, u
′
1 ∈ L2 satisfy AR1,δu1, AR1,δu

′
1 ∈ L2,α−1

2 , where AR1,δ is defined in Lemma
4.4.7. Suppose that L,L′ ∈ C satisfy

Lu(x) + L′u′(x) = 0, x ∈ Rn. (4.4.6)

It suffices to prove that La(x̂)+L′a′(x̂) = 0 for x̂ ∈ Sn−1. Suppose La(x̂)+L′a′(x̂) 6= 0
for some x̂ ∈ Sn−1. By Lemma 4.4.7, we have

AR1,δ(e
iφ−(x)|x|−

n−1+α
2 χ̄(|x|/R)(La(x̂) + L′a′(x̂))) /∈ L2,α−1

2 . (4.4.7)

(4.4.6) and (4.4.7) imply

AR1,δ(Lu+ L′u′) /∈ L2,α−1
2 .

This is a contradiction.

4.5 Proof of Theorem 4.1.6 and Corollary 4.1.9

4.5.1 Proof of Theorem 4.1.6

.

68



Lemma 4.5.1. Let α > 1. For δ > 0, there exists C > 0 such that

‖Op(a2R)u‖
L2, α−1−δ

2
≤ C‖Pu‖L2 + C‖u‖L2 (4.5.1)

for u ∈ Dα
min, where we recall that a2R is as in (4.2.2).

Proof. First, we prove (4.5.1) for u ∈ S(Rn). We may assume 0 < δ < µ. Set

bR(x, ξ) = a2R(x, ξ)
2 x · ξ
|x||ξ|

∫ |x|/R

1

s−1−δds ∈ S0,0.

We note that |x| > 2R, |ξ| ≥ 2R and |x|α ∼ |ξ| hold for (x, ξ) ∈ supp bR. For
(x, ξ) ∈ supp bR, we have

Hp0(
x · ξ
|x||ξ|

∫ |x|/R

1

s−1−δds) =2
|x|2|ξ|2 − (x · ξ)2

|x||ξ|
(
1

|x|2
+ α

|x|2α−2

|ξ|2
)

∫ |x|
R

1

1

s1+δ
ds

+ 2Rδ (x · ξ)2

|x|3+δ|ξ|
≥C〈x〉α−1−δ

with C > 0 if R > 0 is large enough. Since HV bR ∈ S0,α−1−µ and 0 < δ < µ, we see

HpbR ≥ C〈x〉α−1−δa22R + eR,

where eR ∈ S0,α−1 is supported away from the elliptic set of P . By the sharp G̊arding
inequality (Lemma 2.2.1 (v)), we have

(u, [P, iOp(bR)]u)L2 ≥ C‖Op(a2R)u‖2
L2, α−1−δ

2
+ (u,Op(eR)u)L2 − C‖u‖2

H− 1
2 , α2 −1

(4.5.2)

for any u ∈ S(Rn). Take R1 ≥ 1 such that a2RaR1 = a2R. Substituting Op(aR1) into
(4.5.2) and using the disjoint support property and a support property of aR1 , then we
have

(u, [P, iOp(bR)]u)L2 ≥ C‖Op(a2R)u‖2
L2, α−1−δ

2
+ (u,Op(eR)u)L2 − C‖u‖2L2

for u ∈ S(Rn) with some C > 0. Using the elliptic estimate Proposition 4.2.1 in order
to estimate the term (u,Op(eR)u)L2 , we have

‖Op(a2R)u‖
L2, α−1−δ

2
≤ C‖Pu‖L2 + C‖u‖L2

for u ∈ S(Rn) with some C > 0. Thus we obtain (4.5.1) for u ∈ S(Rn).
In order to prove (4.5.1) for u ∈ Dα

min, it remains to use a standard density argument.
Let u ∈ Dα

min. By definition of Dα
min, there exists uk ∈ C∞

c (Rn) such that uk → u and
Puk → Pu in L2(Rn). Substituting uk into (4.5.1), we have

sup
k

‖Op(a2R)uk‖
L2, α−1−δ

2
<∞.
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Hence Op(a2R)uk has a weak*-convergence subsequence in L
2,α−1−δ

2 and its accumulation

point is Op(a2R)u. Thus we obtain Op(a2R)u ∈ L2,α−1−δ
2 and

‖Op(a2R)u‖
L2, α−1−δ

2
≤ lim inf

k→∞
‖Op(a2R)uk‖

L2, α−1−δ
2

≤ C‖Pu‖L2 + C‖u‖L2 .

Combining this lemma with the elliptic estimate Proposition 4.2.1, we have the
following proposition:

Proposition 4.5.2. Let α > 1 and 0 ≤ β1, β2 ≤ 4 with β1 + β2 = 1. For δ > 0, there
exists C > 0 such that

‖u‖
H

α−1−δ
2α β1,

α−1−δ
2 β2

≤ C‖Pu‖L2 + C‖u‖L2 (4.5.3)

for u ∈ Dα
min. In particular, the natural embedding Dα

min ↪→ L2(Rn) is compact, where
we regard Dα

min as a Banach space equipped with its graph norm.

This proposition gives the proof of Theorem 4.1.6.

4.5.2 Proof of Corollary 4.1.9

Note that Dα
min is the domain of the closure of P |C∞

c (R). Set

Dα = {u ∈ L2(Rn) | Pu ∈ L2(Rn)}.

We easily see that Dα is the domain of (P |C∞
c (R))

∗. Moreover, it follows that the action
of (P |C∞

c (R))
∗ on Dα is in the distributional sense. In particular, we have

Ker ((P |C∞
c (R))

∗ ∓ i) = Ker L2(P ∓ i).

We use the following von-Neumann theorem.

Lemma 4.5.3. [61, Theorem X.2 and Corollary after Theorem X.2] Set H± = Ker L2(P∓
i). Then there is a one-to-one correspondence between self-adjoint extensions of P |C∞

c (R)
and unitary operators from H+ to H−. Moreover, for U ∈ B(H+,H−) be a unitary
operator , we define

DU = {v + w + Uw | v ∈ Dα
min, w ∈ H+}.

Then P is self-adjoint on DU .

Now suppose n = 1. We prove that each self-adjoint extension of P |C∞
c (R) has a

discrete spectrum.

Lemma 4.5.4. dimH+ = dimH− = 2.
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Proof. By [61, Theorem X.1], it suffices to prove that

dimKer L2(P − iµ) = dimKer L2(P + iµ) = 2

for some µ > 0. We note dimKer L2(P ± iµ) ≤ 2 by uniqueness of solutions to ODE.
Hence it suffices to prove dimKer L2(P ± iµ) ≥ 2. We observe Sn−1 = S0 = {±1}
and dimC∞({±1}) = 2. By Proposition 4.4.9, the discreteness of Tα,t imply that for
some µ ∈ C \ R ∪ Tα,t there exists linearly independent functions such that u±, u

′
± ∈

Ker L2(P ± iµ). This gives dimKer L2(P ± iµ) ≥ 2.

The following proposition is a variant of [61, Theorem XIII.64]. We do not know
whether a self-adjoint extension of P |C∞

c (Rn) is bounded from below. Hence we cannot
apply [61, Theorem XIII.64] with our case directly in order to prove Corollary 4.1.9.

Proposition 4.5.5. Let H be a separable Hilbert space and A be a self-adjoint operator
on H. Suppose that (A+i)−1 is a compact operator on H. Then there exists {λj}∞j=1 ⊂ R
such that |λk| → ∞ as k → ∞ and σ(A) = σd(A) = {λj}∞j=1, where σ(A) is the spectrum
of A and σd(A) is the discrete spectrum of A.

Proof. First, we prove existence of λ ∈ R \ σ(A). To prove this, we use a contradiction
argument. Suppose σ(A) = R. Set B = (A − i)−1(A + i)−1 = f(A), where f(t) =
1/(t2 + 1). By the spectrum mapping theorem, we have σ(B) = [0, 1]. On the other
hand, by the assumption of the lemma, it follows that B is a compact self-adjoint
operator on H. This contradicts to σ(B) = [0, 1].

We let λ ∈ R \ σ(A) and set T = (A − λ)−1. Since (A + i)−1 is compact and
since λ ∈ R, it easily follows that T is a compact self-adjoint operator. By the Hilbert-
Schmidt theorem [61, Theorem VI.16], there exist a complete orthonormal basis ϕk ∈ H

and a sequence µk ∈ R such that

Tϕk = µkϕk, µk → 0 as k → ∞. (4.5.4)

We note that ϕk belongs to the domain of A since ϕk ∈ Ran T and since Ran T is
contained in the domain of A. Moreover, we observe µk 6= 0. In fact, suppose µk = 0
holds. Multiplying (4.5.4) by A − λ, we have ϕk = 0, which is a contradiction. By
(4.5.4), we have

Aϕk = λkϕk, λk = λ+ 1/µk.

Note |λk| → ∞ as k → ∞. Since λk has no accumulation point in R, it suffices to
prove σ(A) = {λk}∞k=1. To see this, we prove that A − z has a bounded inverse for
z ∈ R \ {λk}∞k=1. We set

R(z)ψ =
∞∑
k=1

1

λk − z
(ϕk, ψ)ϕk, ψ ∈ H (4.5.5)
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and c = infk≥1 |λk − z|. Since λk has no accumulation point in R, we have c > 0. Thus
we have

∞∑
k=1

1

|λk − z|2
|(ϕk, ψ)|2 ≤ c−2

∞∑
k=1

|(ϕk, ψ)|2.

Hence R(z) is a bounded operator on H. Moreover, (A−z)R(z)ψ = ψ holds by (4.5.5).
These imply z /∈ R \ σ(A). Thus we have σ(A) = {λj}∞j=1. Moreover, it follows that
σd(A) = σ(A) holds since dimKer (A− λk) = dimKer (T − µk) <∞.

By virtue of Lemma 4.5.4 and [61, Corollary after Theorem X.2], it follows that
P |C∞

c (R) has a self-adjoint extension.

Proof of Corollary 4.1.9. Fix U ∈ be a unitary operator and let DU be as in Lemma
4.5.3. By virtue of Proposition 4.5.5, it suffices to prove that the inclusion DU ⊂ L2 is
compact, where we regard DU as a Hilbert space equipped with the graph norm of P .
Let ϕj ∈ DU be a bounded sequence in DU :

sup
j
(‖ϕj‖L2 + ‖Pϕj‖L2) <∞.

We only need to prove that ϕj has a convergent subsequence in L2. We write ϕj =
uj + vj +Uvj, where uj ∈ Dα

min and vj ∈ H+. By [61, Lemma before Theorem X.2], we
see that

0 = (uj, vj)L2 + (Puj, Pvj)L2 =(vj, Uvj)L2 + (Pvj, PUvj)L2

=(uj, Uvj)L2 + (Puj, PUvj)L2 .

Therefore, uj and vj are bounded in DU . Since uj ∈ Dα
min, it follows that uj has a

convergent subsequence {ujk} in L2. Moreover, we see that vjk ∈ H+ has a convergent
subsequence in L2 due to the finiteness of the dimension of H+. Thus we conclude that
ϕj has a convergent subsequence in L2.

4.6 Variable order spaces

In this section, we give a construction of variable order weighted L2-spaces. Here, we
follow the argument in [15]. See [3, Appendix A] for other ways of constructions.

Let m ∈ S0,0 be real-valued and k, t ∈ R. Suppose |m(x, ξ)| ≤ 1 for (x, ξ) ∈ R2n.
Set Gk,tm(x, ξ) = 〈x〉k+tm(x,ξ). Set l(x) = 〈log〈x〉〉.

Definition 2. For a ∈ C∞(R2n), we say that for a ∈ Ss,k+tm(x,ξ) if

|∂γ1x ∂
γ2
ξ a(x, ξ)| ≤ Cγ1γ2l(x)

|γ1|+|γ2|〈x〉k+tm(x,ξ)−|γ1|〈ξ〉s−|γ2|

for γ1, γ2 ∈ Nn.
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Note that Gk,tm ∈ S0,k+tm(x,ξ).

Lemma 4.6.1. An unbounded operator Op(Gk,tm) on L
2(Rn) with domain S(Rn) admits

a self-adjoint extension.

Proof. By virtue of [61, Theorem X.23], it suffices to prove that Op(Gk,tm) is bounded
below in S(Rn). We note Gk,tm(x, ξ) = Gk/2,tm/2(x, ξ)

2. By the standard construction
(see [15, Lemma 13]), there exists Rj ∈ S−j,k/2−j+0+tm(x,ξ)/2 such that

(Gk/2,tm/2(x, ξ)
2 +

N∑
j=1

Rj)
∗(Gk/2,tm/2(x, ξ)

2 +
N∑
j=1

Rj)

∈ S−(N+1),k−(N+1)+0+tm(x,ξ),

where (·)∗ denotes the adjoint symbol. By the Borel summation theorem, we have

Gk,tm(x, ξ) = b∗b+ e, b ∈ Sk/2+tm(x,ξ)/2, e ∈ S−∞,−∞.

Thus we obtain

(u,Op(Gk,tm)u) ≥ (u,Op(e)u) ≥ −C‖u‖2L2 , u ∈ S(Rn).

We denote a self-adjoint extension of Op(Gk,tm) in L
2(Rn) by G(t) and its domain

by DG(t).

Lemma 4.6.2. There exists R1(t) ∈ OpS−∞,−∞ such that Op(Gk,tm) + R1(t) is in-
vertible in S(Rn) → S(Rn). Moreover, its inverse is a pseudodifferential operator
with its symbol in S0,−k−tm(x,ξ). Moreover, the symbol of its inverse is G−k,−tm +
S−1,−k−1−tm(x,ξ)+0.

Proof. We follow the argument as in [15, Appendix Lemma 12]. We decompose L2 =
Ran L2G(t) ⊕ Ker L2G(t). We denote the orthogonal projection into Ker L2G(t) by
π(t) : L2 → Ker L2G(t). By the standard parametrix construction of G(t), we see
that Ker L2G(t) ⊂ S(Rn) and Ker L2G(t) is of finite dimension. This implies π(t) ∈
OpS−∞,−∞. We define G̃(t) = G(t)(I − π(t)) + π(t) ∈ OpS0,k+tm(x,ξ). We observe that
G̃(t) : DG(t) → L2 is invertible. We set R1(t) = (I − G(t))π(t) ∈ OpS−∞,−∞, then

G̃(t) = G(t) +R1(t).
We show that G̃(t) is invertible in S(Rn) → S(Rn). This map is injective since G̃(t)

is injective in DG(t) → L2. Next, we prove that G̃(t) : S(Rn) → S(Rn) is surjective. To

see this, let f ∈ S(Rn). Since G̃(t) : DG(t) → L2 is invertible, there exists u ∈ DG(t) such

that G(t)u = f . By using existence of the parametrix of G̃(t), we obtain u ∈ S(Rn).
Finally, we show that the inverse of G̃(t) belongs to OpS0,−k−tm(x,ξ) and its symbol is

G−k,−tm+S−1,−k−1−tm(x,ξ)+0. Let Q(t) is the parametrix of G̃(t): Q(t)G̃(t) = I +R2(t),
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where R2(t) ∈ OpS−∞,−∞. Then the symbol of Q(t) is G−k,−tm + S−1,−k−1−tm(x,ξ)+0.
Moreover, we observe

Q(t) = Q(t)G̃(t)G̃(t)−1 = G̃(t)−1 +R2(t)G̃(t)
−1

in S(Rn) → S(Rn). By the open mapping theorem, G̃(t)−1 is continuous in S(Rn) →
S(Rn). Thus we have R2(t)G̃(t)

−1 ∈ OpS−∞,−∞. We conclude that G̃(t) = Q(t) −
R2(t)G̃(t) ∈ OpS0,−k−tm(x,ξ) and its symbol is G−k,−tm(x,ξ) + S−1,−k−1−tm(x,ξ)+0.

Let G̃k,tm ∈ S0,k+tm(x,ξ) such that

Op(G̃k,tm) = Op(Gk,tm) +R1(t). (4.6.1)

By Lemma 4.6.2 and duality, Op(G̃k,tm) : S
′(Rn) → S′(Rn) is also invertible.

Now we define the variable order weighted L2 space by

L2,k+tm(x,ξ) = {u ∈ S′(Rn) | Op(G̃k,tm)u ∈ L2(Rn)} (4.6.2)

for k ∈ R and its inner metric by

(u, v)L2,k+tm(x,ξ) = (Op(G̃k,tm)u,Op(G̃k,tm)v)L2 .

Then L2,k+tm(x,ξ) is a Hilbert space.
We state some properties of L2,k+tm(x,ξ).

Lemma 4.6.3. (i) (L2,k+tm(x,ξ))∗ = L2,−k−tm(x,ξ).

(ii) For u ∈ S′(Rn), u ∈ L2,k+tm(x,ξ) if and only if 〈x〉ku ∈ L2,tm(x,ξ). Moreover, there
exists C > 0 such that u ∈ L2,k+tm(x,ξ)

C−1‖〈x〉ku‖L2,tm(x,ξ) ≤ ‖u‖L2,k+tm(x,ξ) ≤ C‖〈x〉ku‖L2,tm(x,ξ) .

Proof. (i) This follows from the fact that the symbol of the inverse of Op(G̃k,tm) belongs
to S0,−k−tm(x,ξ).

(ii) Note that Op(G̃0,tm)〈x〉kOp(G̃k,tm)
−1 and Op(G̃k,tm)〈x〉−kOp(G̃0,tm)

−1 is bounded
in L2 by Lemma 4.6.2. We are done.
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Chapter 5

Discrete Schrödinger operators

5.1 Introduction

We consider the discrete Schrödinger operators:

H = H0 + V (x) on H = l2(Zd),

where H0 is the negative discrete Laplacian

H0u(x) = −
∑

|x−y|=1

(u(y)− u(x)),

and V is a real-valued function on Zd. In this note, we study uniform bounds of the
Birman-Schwinger operators:

sup
z∈C\R

∥∥∥|V |
1
2 (H0 − z)−1|V |

1
2

∥∥∥
B(H)

<∞. (5.1.1)

As an application, we give sufficient conditions for V that H0 and H are unitarily
equivalent. We also give examples of potentials for which (5.1.1) does not hold. Though
this subject is studied in a recent preprint [1], their assumptions are stronger than ours
and some proofs seem incomplete. One of the purposes of this note is to generalize
their results and give an alternative proof.

We denote the Fourier expansion by Fd:

û(ξ) = Fdu(ξ) =
∑
x∈Zd

e−2πix·ξu(x), ξ ∈ Td = Rd/Zd.

Then it follows that

FdH0u(ξ) = h0(ξ)Fdu(ξ),

where h0(ξ) = 4
∑d

j=1 sin
2(πξj), and hence σ(H0) = [0, 4d]. We denote the set of the

critical points of h0 by Γ:

Γ = {ξ ∈ Td |∇h0(ξ) = 0} = {ξ ∈ Td | ξj ∈ {0, 1/2}, j = 1, ..., d}.
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We call ξ ∈ Γ an elliptic threshold if ξ attains maximum or minimum of h0 and a
hyperbolic threshold otherwise.

For a measure space (X,µ), Lp,r(X,µ) denotes the Lorentz space for 1 ≤ p ≤ ∞
and 1 ≤ r ≤ ∞:

‖f‖Lp,r(X) =

{
p

1
r (
∫∞
0
µ({x ∈ X | |f(x)| > α})

r
pαr−1dα)

1
r , r <∞,

supα>0 αµ({x ∈ X | |f(x)| > α})
1
p , r = ∞,

Lp,r(X,µ) = {f : X → C | f : measurable, ‖f‖Lp,r(X) <∞}.

Moreover, we denote Lp,r(Rd) = Lp,r(Rd, µL) and lp,r(Zd) = Lp,r(Zd, µc), where µL is
the Lebesgue measure on Rd and µc is the counting measure on Zd. For a detail, see
[25].

First, we state our positive results:

Theorem 5.1.1. (i) Let d ≥ 4. If V ∈ l
d
3
,∞(Zd), then (5.1.1) holds.

(ii) Let d ≥ 3. If |V (x)| ≤ C(1 + |x|)−2 for some C > 0, then (5.1.1) holds.

Corollary 5.1.2. Under the condition of Theorem 5.1.1 (i) or (ii), H = H0 + λV is
unitarily equivalent to H0 for small λ ∈ R.

Remark 5.1.3. For Theorem 5.1.1 (ii), we show stronger results in Proposition 5.3.4.
For Theorem 5.1.1 (i), we also obtain stronger results: Uniform resolvent estimates in
Lorentz spaces as in Proposition 5.3.3.

Remark 5.1.4. In [34] and [67], the authors prove the absence of eigenvalues of H0+λV
for small λ ∈ R if |V (x)| ≤ C(1 + |x|)−2−ε for some C > 0 and ε > 0 with d = 3 and

V ∈ l
d
3 (Zd) with d ≥ 4 respectively. In [1], (5.1.1) is proved under stronger assumptions:

|V (x)| ≤ C〈x〉−2(d+3) with d ≥ 3. Moreover, in [52], (5.1.1) is established for V ∈ lp(Zd)
with 1 ≤ p < 6/5 if d = 3 and 1 ≤ p < 3d/(2d + 1) if d ≥ 4. The authors in [52] also
study the scattering theory of H0 + V .

Remark 5.1.5. Theorem 5.1.1 (ii) holds if H0 is replaced by a Fourier multiplier F−1
d eFd,

where e is a Morse function on Td. In fact, any Morse function can be deformed into
ultrahyperbolic operators near its critical points. Thus we can apply the arguments in
Section 3 directly. On the other hand, the authors are not confident whether we may
replace H0 by F−1

d eFd in Theorem 5.1.1 (i) due to the difficulty of multidimensional
versions of the van der Corput lemma.

Remark 5.1.6. Theorem 5.1.1 (ii) is optimal as is shown in Theorem 5.1.11 below.
However, the authors expect that Theorem 5.1.1 (i) is far from optimal.

Corollary 5.1.2 follows from Theorem 5.1.1 and the following classical result due to
T. Kato:

Lemma 5.1.7 ([61, Theorem XIII.26]). Let H0 be a positive self-adjoint operator on a
Hilbert space H and let V be a bounded self-adjoint operator on H. If

sup
z∈C\R

∥∥∥|V |
1
2 (H0 − z)−1|V |

1
2

∥∥∥
B(H)

<∞,

76



then H0 and H0 + λV are unitarily equivalent for small λ ∈ R.

Moreover, we state the existence of the boundary values of the free resolvent near
Γ:

Theorem 5.1.8. Suppose s > 1. Then, 〈x〉−s(H0 − z)−1〈x〉−s is Hölder continuous
in B(H) with respect to z ∈ C∓ = {z ∈ C | ∓ Im z > 0}. In particular, the incom-
ing/outgoing resolvents

〈x〉−s(H0 − µ± i0)−1〈x〉−s

exist in the operator norm topology of B(H) for µ ∈ [0, 4d].

As a corollary, we have upper bounds of the number of discrete eigenvalues of
H0 + λV +W when W is finitely supported.

Corollary 5.1.9. Let H = H0 + λV , where V satisfies the condition of Theorem 5.1.1
(i) or (ii) and λ ∈ R is small. Let W be a real-valued finitely supported potential. Then

dimKer (H +W − µ) ≤ #
{
x ∈ Zd |W (x) 6= 0

}
for any µ ∈ R and

dimRan Epp
H+W ((−∞, 0]) ≤ #

{
x ∈ Zd |W (x) < 0

}
,

dimRan Epp
H+W ([4d,∞)) ≤ #

{
x ∈ Zd |W (x) > 0

}
,

where dimEpp
H+W (I) denotes the projection onto the eigenspace of H+W corresponding

to the eigenvalues contained in I ⊂ R.

Remark 5.1.10. This corollary appears in [1, Corollary 2.4] under different assumptions
in a stronger form. However, their argument seems to be incomplete. Indeed, their
proof of the positivity of the quadratic form (ϕ, [V, iA]ϕ)H on the eigenspace of H0+V
does not work when H0 + V has at least two eigenvalues, where V is a real-valued
function with finite support and A is the conjugate operator associated to H0.

Next, we state our negative results:

Theorem 5.1.11. (i) Suppose d = 1 or 2. For a non positive potential V ∈ l∞(Zd)
which is not identically zero and vanishes at infinity, (5.1.1) does not hold. More-
over, H0 + λV has at least one eigenvalue for all λ > 0.

(ii) Suppose d = 2. Let χ ∈ C∞(Td) be a non-negative function which is equal to
1 near {ξ1, ξ2 ∈ {1/4, 3/4}} and is supported near {ξ1, ξ2 ∈ {1/4, 3/4}}. Then,
there exists w ∈ l2,∞(Zd) such that

sup
z∈C\R

‖wχ(D)(H0 − z)−1w‖B(H) = ∞. (5.1.2)

Moreover, χ(D)(H0 − z)−1 is not uniformly bounded in B(lp(Zd), lq(Zd)) for 1 ≤
p ≤ ∞ and q <∞.
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(iii) Let d ≥ 3 and q > d+2
3
. Then, there exists V ∈ lq,∞(Zd) such that (5.1.1) does

not hold. In particular, if d ≥ 5 then there exists V ∈ l
d
2
,∞(Zd) such that (5.1.1)

does not hold.

(iv) Let d ≥ 3 and V (x) = (1 + |x|)−α for 0 ≤ α < 2. Then (5.1.1) does not hold.

Remark 5.1.12. Theorem 5.1.11 (i) for d = 2 was conjectured in [67].

Remark 5.1.13. Theorem 5.1.11 (i) and (iv) hold even when H0 is a Fourier multiplier
F−1
d eFd with a Morse function e. We expect that (iii) also holds for such operators,

however we have no proof for the moment.

Remark 5.1.14. The left hand side of (5.1.2) is finite for the continuous Schrödinger
operator H0 = −∆ on L2(R2), w ∈ Lq,∞(R2) (2 < q ≤ 3), and χ ∈ C∞

c (Rd) which is
supported away from the threshold 0. For a proof, we use [64, Theorem 5.8] (uniform
resolvent estimates for the two dimensional case), a real interpolation argument, and
Hölder’s inequality as in the proof of [54, Corollary 2.3].

There are various works concerning bounds of Birman-Schwinger operators for the
continuous Schrödinger operators (see [47], [50], [61]). For H0 = −∆ on L2(Rd) with

d ≥ 3, it is known that (5.1.1) holds for V ∈ L
d
2
,∞(Rd) (see [50]). Moreover, this result

is sharp in the sense that (5.1.1) does not hold for V (x) = |x|−
d
q ∈ Lq,∞(Rd) if q 6= d

2
.

In fact, by scaling

‖|x|−
d
2q (−∆− z)−1|x|−

d
2q ‖B(H) = ε2−

d
q ‖|x|−

d
2q (−∆− ε2z)−1|x|−

d
2q ‖B(H)

holds and we consider the limits as ε→ 0 and ε→ ∞. Cuenin’s examples in [11, Remark
1.9] which are based on the examples by Frank and Simon ([18], see also [32]) show that
there exists a sequence of real-valued potentials Vn which satisfy |Vn(x)| ≤ C(n+ |x|)−1

and induce an embedded eigenvalue of H0 + Vn.
We compare our results with the continuous case. For uniformly decaying potentials

V (x) = (1 + |x|)−α, the range of α where (5.1.1) holds is the same as in the case of
continuous Schrödinger operators. However, for non-uniformly decaying potentials,
for example V ∈ lp,∞(Zd), the classes of potentials where (5.1.1) holds differ between
the discrete case and the continuous case. It seems that this is a consequence of the
anisotropy of the discrete Laplacian.

Our paper is organized as follows. In section 5.2, in order to study properties of the
resolvent of H0 near Γ, we investigate properties of the ultrahyperbolic operators. In
section 5.3, we prove our positive results Theorems 5.1.1, 5.1.8 and Corollary 5.1.9. In
section 5.4, we give the proofs of our negative results Theorem 5.1.11.

We use the following notations throughout this chapter. For Banach spaces X and
Y , B(X,Y ) denotes a set of all bounded linear operators from X to Y . We denote the
norm of a Banach space X by ‖ · ‖X . We also denote (·, ·)X by the inner product of a

Hilbert space X. Moreover, we write B(X) = B(X,X). We denote 〈x〉 = (1 + |x|2) 1
2

and Dx = (2πi)−1∇x for x ∈ Rd. A symbol F denotes the Fourier transform on Rd:

Fu(ξ) =

∫
Rd

e−2πix·ξu(x)dx, ξ ∈ Rd.
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For χ ∈ C∞(Td) or χ ∈ C∞
c (Rd), we denote χ(D) = F−1

d χFd or χ(D) = F−1χF
respectively. For h ∈ C∞(Td) or h ∈ C∞(Rd), a ∈ R and a compactly supported
smooth function f , if ∇h 6= 0 on {h(ξ) = a} ∩ supp f , set

δ(h(D)− a)f(x) =

∫
{h=a}

f̂(ξ)e2πix·ξ
dσ(ξ)

|∇h(ξ)|
,

where dσ is the induced surface measure.
We give a useful formula. Let N ⊂ Td or N ⊂ Rd be a submanifold which has the

following graph representation:

N = {ξ | ξ1 = f(ξ′)}

where we write ξ = (ξ1, ξ
′) and f is a d− 1-variable smooth function. Then we have

dσ(ξ) =
√
1 + |∇f(ξ′)|2dξ′. (5.1.3)

5.2 Ultrahyperbolic operators

Let d ≥ 2, 0 ≤ k ≤ d and let

p(ξ) = pk(ξ) = ξ21 + ...+ ξ2k − ξ2k+1 − ...− ξ2d

for ξ ∈ Rd.

Definition 3. A differential operator P is called an ultrahyperbolic operator with index
0 ≤ k ≤ d if P has the following form:

P =
k∑
j=1

D2
xj
−

d∑
j=k+1

D2
xj

= − 1

(2π)2
(
k∑
j=1

∂2xj −
d∑

j=k+1

∂2xj).

Note that P = F−1pF.

In this section, we study resolvent bounds of the ultrahyperbolic operators. Since
h0 is a Morse function on Td, near each critical value q ∈ Γ, h0 can be expanded to as
the following:

h0(ξ) = h0(q) + (2π)2(
k∑
j=1

η2j −
d∑

j=k+1

η2j ) +O(|η|3),

where η = ξ−q. Thus we study the ultrahyperbolic operators for analyzing the resolvent
of the discrete Schrödinger operator near the thresholds.
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5.2.1 Limiting absorption principle for ultrahyperbolic opera-
tors

In this subsection, we state a limiting absorption principle for the ultrahyperbolic op-
erators. Let P be the ultrahyperbolic operator with index k. We define

A = x̃ ·Dx(I − (2π)−2∆)−1 + (I − (2π)−2∆)−1Dx · x̃

on C∞
c (Rd), where x̃ = (x1, ..., xk,−xk+1, ...,−xd). Then, it follows that P and A are

essentially self-adjoint on C∞
c (Rd) and we also denote the unique self-adjoint extensions

by P and A respectively. In fact, for the essential self-adjointness of P it is enough to
prove the essential self-adjointness of the multiplication operator p(ξ) on L2(Rd) by the
Fourier transform. However, this is shown since (p(ξ)± i)u = 0 and u ∈ L2(Rd) imply
u = 0. For the essential self-adjointness of A, we employ Nelson’s commutator theorem
(see [61, Theorem X.36]) with a conjugate operator −∆+ |x|2 + 1.

By a simple calculation, we have

[P, iA] = −π−2∆(I − (2π)−2∆)−1 = F−1

(
4|ξ|2

1 + |ξ|2
F

)
.

In the following, we see that [P, iA] satisfy the Mourre estimate except at 0. Note that
EI(P ) = F−1χI ◦ pF, where EI(P ) is the spectral projection of P to I and χI is the
characteristic function of I ⊂ R. Fix I ⋐ R \ {0} and set a = inf{|λ| |λ ∈ I} > 0.
Then for ξ ∈ supp (χI(p(·))), we learn

|ξ|2 =
k∑
j=1

|ξj|2 +
d∑

j=k+1

|ξj|2 ≥ a.

Thus we have

χI(p(ξ))
4|ξ|2

1 + |ξ|2
χI(p(ξ)) ≥

4a

1 + a
χI(p(ξ))

and hence

EI(P )[P, iA]EI(P ) ≥
4a

1 + a
EI(P ).

Moreover since [P, iA] and [[P, iA], iA] are bounded operators, it follows that P ∈
C2(A). Thus by the standard Mourre theory ([53]), we have the following proposition.

Proposition 5.2.1. Let I ⋐ R \ {0} be a bounded interval and s > 1/2. Then

sup
z∈I±

‖〈A〉−s(P − z)−1〈A〉−s‖B(L2(Rd)) <∞, (5.2.1)

where I± = {z ∈ C |Re z ∈ I, ±Im z > 0}. Moreover, the limits

〈A〉−s(P − λ± i0)−1〈A〉−s = lim
ε→+0

〈A〉−s(P − λ± iε)−1〈A〉−s (5.2.2)

exist uniformly in λ ∈ I.
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Remark 5.2.2. Since 〈A〉s(P − i)−1〈x〉−s is a bounded operator, we can replace 〈A〉−s
in (5.2.1) and (5.2.2) by 〈x〉−s.
Remark 5.2.3. The Proposition 5.2.1 is possibly well-known. However, we cannot find
a suitable reference and we give a self-contained proof.

Remark 5.2.4. By using a scaling argument and Proposition 5.2.1, we have a uniform
estimate of the high energy limit

sup
|z|≥1

|z|1−s‖〈x〉−s(P − z)−1〈x〉−s‖B(L2(Rd)) <∞

for s > 1
2
.

5.2.2 Uniform resolvent estimates for ultrahyperbolic opera-
tors

In this subsection, we assume d ≥ 3.

Proposition 5.2.5. Let P be an ultrahyperbolic operator. For α, β > 1
2
+ 1

2(d−1)
with

α + β ≥ 2,

sup
z∈C\R

‖〈x〉−α(P − z)−1〈x〉−β‖B(L2(Rd)) <∞.

Proof. This follows from Lp-Lq resolvent estimates (see [43, Theorem 1.1]) and a real
interpolation argument:

sup
z∈C\R

‖(P − z)−1‖B(Lp,r(Rn),Lq,r(Rn)) <∞

for

1

p
− 1

q
=

2

d
,

2d(d− 1)

d2 + 2d− 4
< p <

2(d− 1)

d
, 1 ≤ r ≤ ∞.

By using Hölder’s inequality, we can obtain the following: For w1 ∈ L
d
s
,∞(Rd) and

w2 ∈ L
d

2−s
,∞(Rd) with 1

2
+ 1

2(d−1)
< s < 3d−4

2(d−1)
,

sup
z∈C\R

‖w1(P − z)−1w2‖B(L2(Rd)) ≤ C‖w1‖
L

d
s ,∞(Rd)

‖w2‖
L

d
2−s ,∞

(Rd)
. (5.2.3)

In particular, for α, β > d
2(d−1)

with α + β ≥ 2,

sup
z∈C\R

‖〈x〉−α(P − z)−1〈x〉−β‖B(L2(Rd)) ≤ Cαβ <∞. (5.2.4)
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Remark 5.2.6. In section 5.5, we give a self-contained proof of Proposition 5.2.5 with
α = β = 1.

Remark 5.2.7. Note that if P is elliptic (that is k = 0 or k = d), (5.2.3) holds for
1
2
< s < 3

2
and (5.2.4) holds for α, β > 1

2
with α + β ≥ 2 (see [54, Corollary 2.3]).

Proposition 5.2.8. For ε > 0, 〈x〉−1−ε(P − z)−1〈x〉−1−ε is locally Hölder continuous
on B(L2(Rd)) in C∓. In particular, 〈x〉−1−ε(P − λ± i0)−1〈x〉−1−ε exist in the operator
norm topology of B(L2(Rd)) for λ ∈ R.

Proof. The proof is based on the argument in [62, Lemma 4.7]. Set L2
k(Rd) = 〈x〉−kL2(Rd)

for k ∈ R. Note that there are two continuous embeddings L
2d
d−2

+δ(Rd) ⊂ L2
−1−ε(Rd)

and L2
1+ε(Rd) ⊂ L

2d
d+2

−δ(Rd) for small δ > 0. By using (5.5.1) in section 5.5, there exists
αδ > 0 such that

‖(P − z)−1 − (P − z′)−1‖L2
1+ε(Rd)→L2

−1−ε(Rd)

≤ C‖(P − z)−1 − (P − z′)−1‖
B(L

2d
d+2

−δ
(Rd),L

2d
d−2

+δ
(Rd))

= C

∥∥∥∥∫ ∞

0

(eitz − eitz
′
)e−itPdt

∥∥∥∥
B(L

2d
d+2

−δ
(Rd),L

2d
d−2

+δ
(Rd))

≤ C

∫ ∞

0

min (2, |z − z′|t) 1

t1+αδ
dt

= C

∫ |z−z′|−1

0

|z − z′|
t1+αδ

dt+ C

∫ ∞

|z−z′|−1

1

t1+αδ
dt

≤ C|z − z′|αδ .

The existence of the boundary values 〈x〉−1−ε(P−λ±i0)−1〈x〉−1−ε directly follows from
the Hölder continuity.

Next, we state the optimality of the estimate. For a preparation, we need the
following lemma.

Lemma 5.2.9. Let d ≥ 3, r > 0 and ϕ(x) = χ(x)|x|− d−2
2 , where χ ∈ C∞

c (Rd) with
χ = 1 on |x| ≤ r. Then, ϕ ∈ Hs(Rd) for 0 ≤ s < 1 and ϕ /∈ H1(Rd).

Proof. Note that ϕ ∈ L2(Rd). We learn

∂xjϕ(x) = (∂xjχ(x))|x|−
d−2
2 − d− 2

2
xj|x|−

d+2
2 ,

and hence

|∇ϕ(x)| ≥ C|x|−
d
2

near x = 0. Thus, |∇ϕ| /∈ L2(Rd) and hence ϕ /∈ H1(Rd).
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Next, we show that ϕ ∈ Hs(Rd) for 0 ≤ s < 1. It suffices to prove that 〈ξ〉sϕ̂(ξ) ∈
L2(Rd) where ϕ̂(ξ) = Fϕ(ξ). Note that ϕ ∈ C∞(Rd \ {0}) and ̂|x|− d−2

2 (ξ) = cd|ξ|−
d
2
−1,

where cd is a constant depending only on d. We learn

ϕ̂(ξ) = cd

∫
Rd

χ̂(η)|ξ − η|−
d
2
−1dη.

Since ∣∣∣∣∣
∫
|ξ−η|≤ 1

2
|ξ|
χ̂(η)|ξ − η|−

d
2
−1dη

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

1
2
|ξ|≤|η|≤ 3

2
|ξ|
χ̂(η)|ξ − η|−

d
2
−1dη

∣∣∣∣∣
≤C〈ξ〉−N

∫
1
2
|ξ|≤|η|≤ 3

2
|ξ|
|ξ − η|−

d
2
−1dη

≤C〈ξ〉−N−1+ d
2 ,

and ∣∣∣∣∣
∫
|ξ−η|> 1

2
|ξ|
χ̂(η)|ξ − η|−

d
2
−1dη

∣∣∣∣∣ ≤C|ξ|− d
2
−1

∫
|ξ−η|> 1

2
|ξ|
χ̂(η)dη

≤C|ξ|−
d
2
−1

for any |ξ| ≥ 1 and any N > 0, we have 〈ξ〉sϕ̂ ∈ L2({|ξ| ≥ 1}). This and ϕ ∈ L2(Rd)
imply 〈ξ〉sϕ̂ ∈ L2(Rd).

Using the above lemma, we obtain:

Proposition 5.2.10. For 0 ≤ s < 1, we have

sup
z∈C\σ(P )

‖〈x〉−s(P − z)−1〈x〉−s‖B(L2(Rd)) = ∞.

Proof. For simplicity, we deal with k = 1 only. We may assume s > 1/2. Note that by
Proposition 5.2.1 and Remark 5.2.2, 〈x〉−s(P + ε ± i0)−1〈x〉−s exist in B(L2(Rd)) for
ε 6= 0. Moreover, it follows that

〈x〉−s(P + ε− i0)−1〈x〉−s − 〈x〉−s(P + ε+ i0)−1〈x〉−s

= 〈x〉−sδ(P + ε)〈x〉−s

due to Stone’s theorem. Thus it suffices to prove that

sup
ε>0

‖〈x〉−sδ(P + ε)〈x〉−s‖B(L2(Rd)) = ∞.

By using the Fourier transform, it is sufficient to find ϕ ∈ Hs(Rd) such that

sup
ε>0

∣∣(ϕ, δ(p+ ε)ϕ)L2(Rd)

∣∣ = ∞.
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Note that

(ϕ, δ(p(ξ) + ε)ϕ) =

∫
p(ξ)=−ε

|ϕ(ξ)|2dσ(ξ)
|∇ξp|

=

∫
p(ξ)=−ε

|ϕ(ξ)|2dσ(ξ)
2|ξ|

,

and

p(ξ) = −ε⇔ ξ21 =
d∑
j=2

ξ2j + ε.

Using the formula (5.1.3), we learn

(ϕ, δ(p(ξ) + ε)ϕ) =
∑
±

∫
Rd−1

|ϕ(ξ)|2

√√√√1 +

∣∣∣∣∣ ξ′√
|ξ′|2 + ε

∣∣∣∣∣
2
dξ′

2|ξ|

=
∑
±

∫
Rd−1

|ϕ(ξ)|2 dξ′

2
√
|ξ′|2 + ε

,

where ξ′ = (ξ2, ..., ξd) and ξ = (±
√
|ξ′|2 + ε, ξ′) for ξ ∈ {p(ξ) = ε}. Thus we now

take ϕ(ξ) = 1
|ξ|(d−2)/2χ(ξ), where χ ∈ C∞

c (Rd) such that χ = 1 on |ξ| ≤ 1. Note that

ϕ ∈ Hs(Rn) due to Lemma 5.2.9. Since∫
ξ′∈Rd−1,|ξ′|≤1

1

|ξ′|d−1
dξ′ = ∞,

ϕ has the desired property.

Remark 5.2.11. This proposition also follows from a scaling argument. In fact, for
α, β > 1

2
we have

‖(1 + |x|)−α(P − z)−1(1 + |x|)−β‖B(L2(Rd))

=ε2−(α+β)‖(ε−1 + |x|)−α(P − ε2z)−1(ε−1 + |x|)−β‖B(L2(Rd))

≤ε2−(α+β)‖(1 + |x|)−α(P − ε2z)−1(1 + |x|)−β‖B(L2(Rd)).

for 0 < ε < 1. If we take supremum of z ∈ C \ R and take ε → 0, then we obtain a
contradiction unless α + β ≥ 2. For the Laplace operators, see [6]. However we give a
more direct proof for a special case since the above argument can be applicable to the
discrete Schrödinger operators near the hyperbolic thresholds. See Remark 5.4.4.

5.3 Proofs of positive results

In this section, we prove Theorems 5.1.1, 5.1.8 and Corollary 5.1.9.
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5.3.1 Proof of Theorem 5.1.1 (i)

It is known that there is a deep connection between the time decay of the Schrödinger
propagator eitP and the threshold property of the resolvent of P . We refer [61, §XIII-A].
Here we employ a bit technical, but very strong tool due to Duyckaerts. His method
allows us to deduce Lp-Lq uniform resolvent estimates from Strichartz estimates.

First, we state the dispersive estimates and the Strichartz estimates for the discrete
Schrödinger operators.

Proposition 5.3.1 ([67]). Let d ≥ 1. Then, there exists C > 0 such that for any t ∈ R

‖e−itH0‖l1(Zd)→l∞(Zd) ≤ C〈t〉−
d
3 .

Corollary 5.3.2. Let d ≥ 4. Set 3∗ = 2d
d−3

and 3∗ =
2d
d+3

. Then, we have the following

Strichartz estimates: Suppose that u ∈ C(R, l2(Zd)) and F ∈ L2(R, l3∗,2(Zd)) satisfy

i∂tu(t)−H0u(t) = F, u|t=0 = f ∈ l2(Zd). (5.3.1)

Then there exists C > 0 such that for 0 < T ≤ ∞ we have

‖u‖L2(−T,T )l3∗,2(Zd) ≤ C‖f‖l2(Zd) + C‖F‖L2(−T,T )l3∗,2(Zd).

Proof. We apply Theorem 10.1 in [48] with H = B0 = l2(Zd), B1 = l1(Zd), σ = d
3
and

q = 2.

The next argument is due to T. Duyckaerts (see [5, Proposition 5.1]).

Proposition 5.3.3. Let d ≥ 4. Then, there exists C > 0 such that for z ∈ C \ σ(H0)

‖(H0 − z)−1u‖l3∗,2(Zd) ≤ C‖u‖l3∗,2(Zd), u ∈ l2(Zd) ∩ l3∗,2(Zd).

Moreover, for w ∈ l
2d
3
,∞(Rd),

sup
z∈C\R

‖w(H0 − z)−1w‖B(H) ≤ C‖w‖2
l
2d
3 ,∞(Zd)

.

In particular, if V ∈ l
d
3
,∞(Zd), (5.1.1) holds.

Proof. Suppose that f is a finitely supported function on Zd. Let z ∈ C \ σ(H0). We
substitute u(t) = eitzf into (5.3.1) and then we have

γ(z, T )‖f‖l3∗,2(Zd) ≤ C‖f‖l2(Zd) + Cγ(z, T )‖(H0 − z)f‖l3∗,2(Zd),

where γ(z, T ) = ‖eizt‖L2(−T,T ). Since γ(z, T ) ≥
√
T , by letting T → ∞,

‖f‖l3∗,2(Zd) ≤ C‖(H0 − z)f‖l3∗,2(Zd).

It remains to justify a density argument.
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5.3.2 Proof of Theorem 5.1.1 (ii)

In this subsection, we assume d ≥ 3.

Proposition 5.3.4. For α, β > 1
2
+ 1

2(d−1)
with α+ β ≥ 2, there exists C > 0 such that

sup
z∈C\R

‖〈x〉−α(H0 − z)−1〈x〉−β‖B(H) ≤ C.

Proof. By using a partition of unity, it suffices to prove for each χ ∈ C∞(Td) with a
small support, f ∈ Hα(Td) and g ∈ Hβ(Td)

|(f, χ2(h0 − z)−1g)L2(Td)| ≤ C‖f‖Hα(Td)‖g‖Hβ(Td), (5.3.2)

where C > 0 is independent of f , g and z. We may suppose χ has one of the following
properties: ∇h0 6= 0 on supp χ or supp χ contains just one element of Γ. Since (5.3.2)
follows from Proposition 5.6.5 in the former case, we may only deal with the latter case.
We take a unique element ξ0 ∈ Γ∩ supp χ. Then there exists a diffeomorphism κ from
a neighborhood of supp χ onto its image such that

h0(κ
−1(η)) =h0(ξ0) + η21 + ...+ ηk − η2k+1 − ...− η2d, η ∈ κ(supp χ) ⊂ Rd

for some 0 ≤ k ≤ d. Set J(η) = | det dκ−1(η)| and fκ(η) = f(κ−1(η)). By using the
change of variables and Proposition 5.2.5, we have

|(f, χ2(h0 − z)−1g)L2(Td)| =
∣∣∣∣∫

Td

χ(ξ)2f̄(ξ)g(ξ)

h0(ξ)− z
dξ

∣∣∣∣
=

∣∣∣∣∫
Rd

χκ(η)
2f̄κ(η)gκ(η)

pk(η) + h0(ξ0)− z
J(η)dη

∣∣∣∣
≤C‖χκfκ‖Hα(Rd)‖χκgκ‖Hβ(Rd)

≤C‖f‖Hα(Td)‖g‖Hβ(Td),

where we used Lemma 5.6.3 in the last inequality. Thus we obtain (5.3.2).

5.3.3 Proof of Theorem 5.1.8

Let s > 1 and αδ > 0 as in the proof of Proposition 5.2.8. Similarly to Subsection 5.3.2,
it is enough to prove that

|(f, χ2((h0 − z)−1 − (h0 − z′)−1)g)| ≤ C|z − z′|αδ‖f‖Hs(Td)‖g‖Hs(Td)

for χ ∈ C∞(Td) which is as in subsection 5.3.2. However, it is proved by changing
variables, Proposition 5.2.8, Lemma 5.6.2 and Proposition 5.6.5.
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5.3.4 Proof of Corollary 5.1.9

Corollary 5.1.9 follows from Lemma 5.3.5. The argument in the proof is due to [27,
Lemma 2.1].

Lemma 5.3.5. Let H be a bounded self-adjoint operator on a Hilbert space H which
has no eigenvalues and W be a finite rank self-adjoint operator on H. Then:

(i) For any µ ∈ R, dimKer (H +W − µ) ≤ dimRan W .

(ii) Suppose that σ(H) = [a, b], −∞ < a < b < ∞ and W = W+ −W−, where W±
are positive operators.Then

dim(Ran Epp
H+W ((−∞, a])) ≤ dimRanW−,

dim(Ran Epp
H+W ([b,∞))) ≤ dimRanW+.

Proof. (i) Suppose that the inequality fails. Let P be the projection onto RanW =
(KerW )⊥. Then P |Ker (H+W−µ): Ker (H +W − µ) → RanW has a non-trivial kernel,
i.e. we can choose u ∈ Ker (H +W − µ) such that Wu = 0 and ‖u‖H = 1. Therefore

0 = (H +W − µ)u = (H − µ)u,

which contradicts the assumption that H has no eigenvalues.
(ii) Suppose that the first inequality fails. Then the same argument as in (i) implies

that there exists u ∈ Ran Epp
H+W ((−∞, a]) such thatW−u = 0 and ‖u‖H = 1. Therefore

we have

a ≥ (u, (H +W )u)H = (u, (H +W+)u)H ≥ (u,Hu)H,

where the last inequality follows from the positivity of W+. On the other hand, the as-
sumption on H implies (u,Hu)H ∈ (a, b), which is a contradiction. The other inequality
is similarly proved.

5.4 Proofs of negative results

5.4.1 Proof of Theorem 5.1.11 (i)

The following argument is similar to [61, Theorem XIII.11]. Note that h0(ξ) ∼ 4π2|ξ|2
near ξ = 0 and the operator H0 is positive.

Set Kµ = |V |1/2(H0 + µ2)−1|V |1/2 for µ ∈ R. First, we note that H0 + λV has a
negative eigenvalue if and only if there exists µ > 0 such that 1/λ is an eigenvalue of
Kµ. In fact, a direct calculus implies

H0u+ λV u = −µ2u⇔λ(H0 + µ2)−1V u = −u
⇒λKµψ = ψ,
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where ψ = |V | 12u. Conversely, if there exists ψ ∈ H such that λKµψ = ψ, then

λ|V |u = |V |1/2ψ = (H0 + µ2)u,

where u = (H0 + µ2)−1|V |1/2ψ.
Since V vanishes at infinity, Kµ is a positive compact operator. Then it suffices to

prove that

lim
µ2→0

‖Kµ‖B(H) = ∞.

In fact, the spectral radius of Kµ is equal to ‖Kµ‖B(H), σ(Kµ) = σpp(Kµ) and σ(Kµ)
has no accumulation point except at 0. Thus we need only find η ∈ H such that

lim
µ2→0

(
|V |1/2η, (H0 + µ2)−1|V |1/2η

)
H
= ∞.

We choose a non negative finitely supported function η ∈ H which satisfies η(x) > 0
for some x ∈ supp V and set ϕ = |V |1/2η. Then ϕ̂(0) =

∑
x∈Zd |V (x)|1/2η(x) > 0. Since

ϕ is finitely supported, then ϕ̂ ∈ L2(Td) ∩ C(Td). Thus, ϕ̂ 6= 0 near zero. Note that
h0(ξ) ∼ 4π2|ξ|2 near ξ = 0. Consequently,

(
|V |1/2η, (H0 + µ2)−1|V |1/2η

)
H
=

∫
Td

|ϕ̂(ξ)|2

h0(ξ) + µ2
dξ

diverges as µ2 → 0 if d = 1 or 2.

5.4.2 Proof of Theorem 5.1.11 (ii)

We consider near ξ1 = ξ2 =
1
4
only, the other cases being similar.

Lemma 5.4.1. In a neighborhood of (1
4
, 1
4
) ∈ T2, h0(ξ) = 4 is equivalent to ξ1+ ξ2 =

1
2
.

Proof. Note that h0(ξ) = 4 sin2 πξ1 + 4 sin2 πξ2 = 4 − 2 cos 2πξ1 − 2 cos 2πξ2. Thus,
h0(ξ) = 4 is equivalent to

cos 2πξ1 + cos 2πξ2 = cos(π(ξ1 + ξ2)) cos(π(ξ1 − ξ2)) = 0.

Near ξ1 = ξ2 =
1
4
, this is equivalent to ξ1 + ξ2 =

1
2
.

Proposition 5.4.2. Let χ ∈ C∞(T2) be a non-negative function which is equal to 1
near ξ1 = ξ2 = 1/4 and is supported near ξ1 = ξ2 = 1/4. If q 6= ∞,

(H0 − 4± i0)−1F−1
d (χ) /∈ lq(Z2).
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Proof. Let us denote Hs = 〈x〉−sH. If we take the support of χ small near ξ1 = ξ2 =
1
4
,

then χ(D)(H0 − 4± i0)−1 exists in B(Hs,H−s) for s >
1
2
since ∇h0(ξ) 6= 0 on supp χ.

Here we used Lemma 5.6.5. Then, it suffices to prove that(
(H0 − 4− i0)−1 − (H0 − 4 + i0)−1

)
F−1
d χ /∈ lq(Z2)

for q 6= ∞. Stone’s theorem implies

1

2πi
((H0 − 4− i0)−1 − (H0 − 4 + i0)−1)F−1

d χ

= δ(H0 − 4)F−1
d χ

=

∫
h0(ξ)=4

e2πix1ξ1+2πix2ξ2χ(ξ)
dσ(ξ)

|∇h0(ξ)|
.

By using Lemma 5.4.1 and the formula (5.1.3),

I(x1, x2) :=

∫
h0(ξ)=4

e2πix1ξ1+2πix2ξ2χ(ξ)
dσ(ξ)

|∇h0(ξ)|

=

∫
R
e2πix1ξ1+2πix2(

1
2
−ξ1)χ(ξ1,

1

2
− ξ1)

dξ1
4π sin(2πξ1)

is rapidly decreasing with respect to |x1−x2| since χ(1/4, 1/4) = 1. However, we cannot
obtain any decay with respect to |x1 + x2|. We write

I(x1, x2) = eπix2J(x1 − x2), J(t) =

∫
R
e2πitξ1χ(ξ1,

1

2
− ξ1)

dξ1
4π sin(2πξ1)

.

We employ the change of variables: s = x1 + x2 and t = x1 − x2 and write I1(s, t) =
I(x1, x2). Since |I1(s, t)| = |J(t)| is independent of s, |I1(s, t)| 9 0 as |s| → ∞ unless
t ∈ {J(t) = 0}. By the assumption of χ, we have |I1(s, 0)| = |J(0)| 6= 0. Thus |I| does
not decay with respect to s = x1 + x2. As a consequence, ((H0 − 4− i0)−1 − (H0 − 4 +
i0)−1)F−1

d (χ) does not belong to lq(Z2) unless q = ∞.

The above proposition shows that if d = 2, χ(D)(H0 − z)−1 is not bounded from
lp(Z2) to lq(Z2) unless q = ∞. Thus, the proof of the second part of Theorem 5.1.11
(ii) is completed.

In the rest of the subsection, we prove the first part of Theorem 5.1.11 (ii). Let
w(x1, x2) = 〈x1 + x2〉−1/2〈x1 − x2〉−1 ∈ l2,∞(Z2) and ψ be a non zero finitely supported

function such that ψ ≥ 0. Let u(x) = e−πi
x1+x2

2 (w−1ψ)(x). Note that

F−1
d (wu)(1/4, 1/4) =

∑
x∈Z2

e2πi×
x1+x2

4 e−πi
x1+x2

2 ψ(x) =
∑
x∈Z2

ψ(x) > 0.

Thus |w(x)χ(D)δ(H0−4)wu(x)| ∼ C(1+ |x1+x2|)−1/2(1+ |x1−x2|)−∞ as in the proof
of Proposition 5.4.2 and the right hand side does not belong to H.
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5.4.3 Proof of Theorem 5.1.11 (iii)

In Proposition 5.3.3 and Theorem 5.3.4, we have seen uniform bounds of Birman-
Schwinger operator for V ∈ ld/3,∞(Zd) or V (x) = 〈x〉−2. Since 〈x〉−2 ∈ ld/2,∞(Zd), it is
natural to ask whether it is true for general potentials V ∈ ld/2,∞(Zd). However, the
next proposition says that it is false at least if d ≥ 5.

Proposition 5.4.3. Let d ≥ 3 and

w(x) = wp(x) = 〈xd〉−1/p

d−1∏
j=1

〈xj − xd〉−1/p ∈ lp,∞(Zd), p > 0.

Suppose that

sup
λ∈R\σ(H0)

‖wp(H0 − λ)−1wp‖B(H) <∞. (5.4.1)

Then, p ≤ 2(d+ 2)/3 holds. In particular, if d ≥ 5 then wd does not satisfy (5.4.1).

Proof. We construct a variant of the Knapp counter example near the energy surface
h0(ξ) = 2d. We denote the d-dimensional Fourier expansion Fd of u by û and the one
dimensional Fourier transform by F1. We take a real valued function χ ∈ C∞

c

(
(−1

4
, 1
4
)
)

such that χ = 1 near 0. We can regard χ as a function on S1. Let

ϕε(x) =e
2πi(dxd/4+

∑d−1
j=1 xj/4)aεd+2w−1

p (x)((F1)−1χ)(aε3xd)

×
d−1∏
j=1

((F1)−1χ)(ε(xj − xd))

for 0 < ε ≤ 1, a > 0 and x ∈ Zd. Then,

ŵϕε(ξ) = χ

(
d∑
j=1

ξj − 1/4

aε3

)
d−1∏
j=1

χ

(
ξj − 1/4

ε

)
∈ C∞(Td),

where ξ ∈ [0, 1)d and we regard the function ŵϕε on [0, 1)d as a function on Td by
virtue of the support property of χ. Note that wϕε is rapidly decreasing and ŵϕε has
a small support near {ξj = 1/4, j = 1, ..., d} which does not contain critical points of

h0(ξ) = 4
∑d

j=1 sin
2(πξj). Thus (ϕε, wδ(H0 − 2d)wϕε)H→H exists by Proposition 5.6.5.

We observe that if ξ′ = (ξ1, ..., ξd−1) ∈ supp
(∏d−1

j=1 χ(
ξj−1/4

ε
)
)
and ξ ∈ h−1

0 ({2d}), then

d∑
j=1

(ξj − 1/4) = O(ε3). (5.4.2)

90



In fact, by using the Taylor expansion near {ξj = 1/4, j = 1, ..., d}, we have

0 = h0(ξ)− 2d =4
d∑
j=1

(ξj − 1/4) +O

(
d∑
j=1

(ξj − 1/4)3

)

=4
d∑
j=1

(ξj − 1/4) +O(ε3) +O((ξd − 1/4)3).

This implies (5.4.2). Therefore, if we take a > 0 large enough (which remains to be
independent of ε), it follows that

supp

(
d−1∏
j=1

χ

(
ξj − 1/4

ε

))
∩ h−1

0 ({2d}) ⊂ supp χ

(
d∑
j=1

ξj − 1/4

aε3

)
.

By using this, we obtain

(ϕε, wδ(H0 − 2d)wϕε)H =(ŵϕε, δ(h0 − 2d)ŵϕε)L2(Td)

=

∫
h0({2d})∩(− 1−ε

4
, 1+ε

4
)d
|ŵϕε(ξ)|2

dσ(ξ)

|∇h0(ξ)|
≥Cεd−1

for some C > 0 which is independent of ε.
On the other hand, we observe that for s > 2∑

xj∈Z

〈xj − xd〉2/p|((F1
d)

−1χ)(ε(xj − xd))|2

≤C
∑
xj∈Z

〈xj − xd〉2/p〈ε(xj − xd)〉−2s

=C

 ∑
|xj |<1/ε

+
∑

|xj |≥1/ε

 〈xj〉2/p〈εxj〉−2s ≤ Cε−1−2/p.

Then, we obtain

‖ϕε‖2H ≤ Cε2(d+2) · ε(d+2)(−1−2/p) = Cε(d+2)(1−2/p).

By using (5.4.1), we have εd−1 ≤ Cε(d+2)(1−2/p). Since this holds for small ε > 0, we
conclude p ≤ 2(d+ 2)/3.
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5.4.4 Proof of Theorem 5.1.11 (iv)

For 0 ≤ s < 1, we prove

sup
z∈C\σ(H0)

‖〈x〉−s(H0 − z)−1〈x〉−s‖B(H) = ∞.

It suffices to prove that there exists ϕ ∈ Hs(Td) such that

lim
ε→0,ε>0

|(ϕ, (h0(ξ) + ε)−1ϕ)L2(Td)| = ∞.

Fix ξ0 ∈ h−1
0 ({0}). Then there exists a diffeomorphism f from a small neighborhood of

ξ0 to a small open ball in Rd such that h0(f
−1(η)) = |η|2. We take

ϕ(ξ) = χ(ξ)f ∗

(
1

|η| d−2
2

)
(ξ),

where χ ∈ C∞(Td) has a small support near ξ0. Note that ϕ ∈ Hs(Td) for 0 ≤ s < 1
due to Lemma 5.2.9. Thus, we obtain

|(ϕ, (h0(ξ) + ε)−1ϕ)l2 | ≥ C

∫
η∈Rd,|η|:near 0

1

|η|d−2(|η|2 + ε)
dη → ∞

as ε→ 0.

Remark 5.4.4. In the above proof, we have constructed a function supported near an
elliptic threshold. However, this argument is applicable to near a hyperbolic threshold.
See the proof of Proposition 5.2.10.

5.5 Self-contained proof of Proposition 5.2.5 in a

particular case

We can apply the argument in Subsection 5.3.1 to the ultrahyperbolic operators P :
Note that

e4π
2itPu(x, y) =e−it∆xeit∆yu(x, y)

=
1

(−4πit)
k
2

1

(4πit)
d−k
2

∫
Rk
x′

∫
Rd−k
y′

e
|x−x′|2

4it e−
|y−y′|2

4it u(x′, y′)dy′dy′,

where x ∈ Rk and y ∈ Rd−k. Thus, we obtain the following dispersive estimates:

‖e4π2itP‖L1(Rd)→L∞(Rd) ≤
1

(4π|t|) d
2

, t ∈ R \ {0}.
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Using a complex interpolation, we have

‖e4π2itP‖Lp(Rd)→Lp′ (Rd) ≤
1

(4π|t|)
d
2
( 1
p
− 1

p′ )
(5.5.1)

for 1 ≤ p ≤ 2 and p′ = (p − 1)/p. By using the unitarity of e4π
2itP and [48, Theorem

10.1], we have the following:
Let d ≥ 3 and P be an ultrahyperbolic operator. Let 2∗ = 2d

d−2
and 2∗ = 2d

d+2
.

Suppose that u ∈ C(R, L2(Rd)) and F ∈ L2L2∗,2 satisfy

i∂tu(t)− Pu(t) = F, u|t=0 = f ∈ L2(Rd). (5.5.2)

Then there exists C > 0 such that for 0 < T ≤ ∞ we have

‖u‖L2(−T,T )L2∗,2(Rd) ≤ C‖f‖L2(Rd) + C‖F‖L2(−T,T )L2∗,2(Rd).

Replacing 3∗, 3
∗ in the arguments in Subsection 5.3.1 by 2∗, 2

∗ respectively, we have
the following statements: Let R0(z) = (P − z)−1 for z ∈ C \ σ(P ). Then there exists
C > 0 such that for z ∈ C \ σ(P ) and f ∈ L2(Rd) ∩ L2∗,2(Rd)

‖R0(z)f‖L2∗,2(Rd) ≤ C‖f‖L2∗,2(Rd). (5.5.3)

Moreover, for w ∈ Ld,∞(Rd) we have

sup
z∈C\R

‖wR0(z)w‖B(L2(Rd)) ≤ C‖w‖2Ld,∞(Rd).

In particular, ‖〈x〉−1R0(z)〈x〉−1‖B(L2(Rd)) is bounded in z ∈ C \ R.

5.6 Resolvent near regular points

In this section, we study properties of the cut-off resolvent of H0 near regular points of
h0.

Lemma 5.6.1. Let d ≥ 1 and ε > 0. Then,

sup
z∈C\R

‖〈η1〉−
1
2
−ε(Dη1 − z)−1〈η1〉−

1
2
−ε‖B(L2(Rd)) <∞. (5.6.1)

If 0 < ε ≤ 1, there exists 0 < αε ≤ 1 such that 〈η1〉−
1
2
−ε(Dη1−z)−1〈η1〉−

1
2
−ε is αε-Hölder

continuous in the operator norm topology of B(L2(Rd)).

Proof. Suppose Im z > 0. We denote η = (η1, η
′) for η ∈ Rd, η1 ∈ R and η′ ∈ Rd−1.

Using the Cauchy-Schwarz inequality, we have

|(Dη1 − z)−1(〈η〉−
1
2
−εu(η))| =

∣∣∣∣2πi ∫ η1

−∞
e2πiz(η1−s)〈s〉−

1
2
−εu(s, η′)ds

∣∣∣∣
≤C‖u(·, η′)‖L2(R)
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for u ∈ L2(Rd), where C > 0 is independent of z, η and u. Thus, we have∫
R
|〈η1〉−

1
2
−ε(Dη1 − z)−1(〈η1〉−

1
2
−εu(η))|2dη1 ≤ C‖u(·, η′)‖2L2(R)

with some C > 0 which is independent of z and u. Integrating the above inequality
with respect to η′ ∈ Rd−1, we obtain (5.6.1).

Suppose Im z, Im z′ > 0. Set w(η) = 〈η1〉−
3
2
−εu(η) for ε > 0. Using the Taylor

theorem and the Cauchy-Schwarz inequality, we have

|〈η1〉−
3
2
−ε((Dη1 − z)−1 − (Dη1 − z′)−1)w(η)|

=

∣∣∣∣2πi〈η1〉− 3
2
−ε
∫ η1

−∞
(e2πiz(η1−s) − e2πiz

′(η1−s))w(s, η′)ds

∣∣∣∣
≤ 2π|z − z′|〈η1〉−

3
2
−ε
∫ η1

−∞
|(η1 − s)w(s, η′)|ds

≤ C|z − z′|〈η1〉−
1
2
−ε‖u(·, η′)‖L2(R).

Integrating the square of the above inequality, we obtain

‖〈η1〉−
3
2
−ε((Dη1 − z)−1 − (Dη1 − z′)−1)〈η1〉−

3
2
−ε‖B(L2(Rd)) ≤ C|z − z′|. (5.6.2)

Moreover, by (5.6.1), we have

‖〈η1〉−
1
2
−ε((Dη1 − z)−1 − (Dη1 − z′)−1)〈η1〉−

1
2
−ε‖B(L2(Rn)) ≤ C. (5.6.3)

By using a complex interpolation between (5.6.2) and (5.6.3), we obtain the Hölder

continuity of 〈η1〉−
1
2
−ε(Dη1 − z)−1〈η1〉−

1
2
−ε in B(L2(Rd)) for ε > 0. The case Im z < 0

is similarly proved.

For a proof of our main result in this section, we need the following two lemmas.

Lemma 5.6.2. Let χ, ψ ∈ C∞
c (Rd) satisfy supp χ ⊂ {ψ = 1}. Then, for α ∈ R there

exits C > 0 such that

‖(1− ψ)〈D〉αχu‖L2(Rd) ≤ C‖u‖L2(Rd), u ∈ L2(Rd).

Proof. This lemma follows from the disjoint support property of pseudodifferential op-
erators. For the sake of the completeness of this paper, we give a self-contained proof.
Considering the support property of χ and ψ, we observe that c|x| ≤ |x − y| ≤ C|x|
on supp (1 − ψ(x))χ(y). Set L = (1 + |x − y|2)−1(1 − (x − y) · Dξ), then note that
Le2πi(x−y)·ξ = e2πi(x−y)·ξ. Integrating by parts, we have

|(1− ψ(x))〈D〉αχu(x)|

=

∣∣∣∣(1− ψ(x))

∫
R2d

(L∗)N(〈ξ〉α)e2πi(x−y)·ξ(χu)(y)dydξ
∣∣∣∣

≤|1− ψ(x)|
∫
Rd

1

|x− y|d+1
|χ(y)u(y)|dy

≤〈x〉−2−2d‖u‖L2(Rd)
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for any integer N > α + d + 1. Integrating the square of the above inequality with
respect to x ∈ Rd, we obtain the desired result.

Lemma 5.6.3. Let U ⊂ Td be an open set and κ be a diffeomorphism from U onto an
open set in Rd. Set uκ(η) = u(κ−1(η)). Then, for χ ∈ C∞

c (U) and α ≥ 0, we have

‖χκuκ‖Hα(Rd) ≤ C‖u‖Hα(Td), u ∈ Hα(Td)

for some C > 0.

Proof. We take ϕ, ψ ∈ C∞
c (U) satisfying supp χ ⊂ {ϕ = 1} and supp ϕ ⊂ {ψ = 1}.

Then we have

‖χκuκ‖Hα(Rd) ≤ ‖ψκ〈D〉αχκuκ‖L2(Rd) + ‖(1− ψκ)〈D〉αϕκχκuκ‖L2(Rd).

Using Lemma 5.6.2, we learn

‖(1− ψκ)〈D〉αϕκχκuκ‖L2(Rd) ≤ C‖χκuκ‖L2(Rd) ≤ C‖u‖L2(Td).

Due to the coordinate invariance of the Sobolev spaces and the support property of ψκ,
we obtain

‖ψκ〈D〉αχκuκ‖L2(Rd) ≤ C‖u‖Hα(Td).

This completes the proof.

Remark 5.6.4. The above lemma is trivial if 2α is an integer. The difficulty is due to
the lack of the local property of the pseudodifferental operator 〈D〉2α if 2α is not an
integer.

We now state the main result of this section.

Proposition 5.6.5. Suppose d ≥ 1. Let χ ∈ C∞(Td) be a real-valued function satisfying
supp χ ⊂ {∇h0 6= 0}. Then,

sup
z∈C\R

‖〈x〉−
1
2
−εχ(D)(H0 − z)−1χ(D)〈x〉−

1
2
−ε‖B(H) <∞.

Moreover, 〈x〉− 1
2
−εχ(D)(H0−z)−1χ(D)〈x〉− 1

2
−ε is αε-Hölder continuous in the operator

norm topology of B(H), where αε is the constant in Lemma 5.6.1.

Proof. By using a partition of unity, we may suppose that supp χ is small enough.
Thus, we may suppose ∂ξ1h0(ξ) 6= 0 on supp χ without loss of generality. Set η =
κ(ξ) = (h0(ξ), ξ

′). Then the inverse function theorem implies that κ is a diffeomorphism
from a neighborhood of supp χ onto its image. We denote κ−1(η) = (ξ1(η), η

′) for
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η ∈ κ(supp χ). We also denote fκ(η) = f(κ−1(η)). Using Lemma 5.6.1 and Lemma
5.6.3, we have ∣∣∣∣∫

Td

f̄(ξ)χ(ξ)2g(ξ)(h0(ξ)− z)−1dξ

∣∣∣∣
=

∣∣∣∣∫
Rd

f̄κ(η)χκ(η)
2gκ(η)(η1 − z)−1 dη

|(∂ξ1h0)(ξ1(η), η′)|

∣∣∣∣
≤ C‖χκfκ‖H 1

2+ε(Rd)
‖χκgκ‖H 1

2+ε(Rd)

≤ C‖f‖
H

1
2+ε(Td)

‖g‖
H

1
2+ε(Td)

.

Similarly, we have∣∣∣∣∫
Td

f̄(ξ)χ(ξ)2g(ξ)((h0(ξ)− z)−1 − (h0(ξ)− z′)−1)dξ

∣∣∣∣
≤ C|z − z′|αε‖f‖

H
1
2+ε(Td)

‖g‖
H

1
2+ε(Td)

.

By using the Fourier transform, these imply the desired results.
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Chapter 6

Lp-resolvent estimates

6.1 Introduction

In this chapter, we study Lp-estimates for resolvents of the Fourier multipliers and
the scattering theory of the discrete Schrödinger operator, the fractional Schrödinger
operators and the Dirac operators.

One of the interest in the scattering theory of the Schrödinger operator is to prove
the asymptotic completeness of the wave operators:

W± = s− lim
t→±∞

eit(−∆+V )e−it(−∆),

i.e. thatW± are surjections onto the absolutely continuous subspace of L2(Rd). Through
the Kato’s smooth perturbation theory, the asymptotic completeness of the wave oper-
ators is closely related to the limit absorption principle:

sup
z∈I±\I

‖|V |
1
2 (−∆− z)−1|V |

1
2‖B(L2(Rd)) <∞, (6.1.1)

sup
z∈I±\I

‖|V |
1
2 (−∆+ V − z)−1|V |

1
2‖B(L2(Rd)) <∞, (6.1.2)

where I ⊂ (0,∞) is an interval and I± = {z ∈ C | ±Im z ≥ 0} and V is a real-valued
function. A strong tool for proving (6.1.1) and (6.1.2) is the Mourre theory [53], which
gives sufficient conditions that (6.1.1) and (6.1.2) hold.

On the other hands, Kenig, Ruiz and Sogge [50] establish the Lp-type limiting
absorption principle for the free Schrödinger operator:

‖(−∆− z)−1‖B(Lp(Rd),Lq(Rd)) ≤ Cp,q|z|
d
2
( 1
p
− 1

q
)−1, z ∈ C \ [0,∞), d ≥ 3 (6.1.3)

where Cp,q > 0 is independent of z ∈ C \ [0,∞) and (1/p, 1/q) ∈ (0, 1)× (0, 1) satisfies
2/(d+ 1) ≤ 1/p− 1/q ≤ 2/d, (d+ 1)/2d < 1/p and 1/q < (d− 1)/(2d). (6.1.3) is also
proved by Kato and Yajima [47] independently when 1/p + 1/q = 1, and applied to
the scattering theory of the Schrödinger operator −∆ + V , where V ∈ Lp(Rd), d/2 ≤
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p < (d+ 1)/2 is real-valued. Note that (6.1.1) for V ∈ Lp(Rd) for d/2 ≤ p ≤ (d+ 1)/2
follow from (6.1.3) and Hölder’s inequality. Goldberg and Schlag [24] proved the Lp-
type limiting absorption principle for Schrödinger operator −∆+ V with a real-valued
potential V ∈ Lr(Rd) ∩ L3/2(Rd), r > 3/2:

sup
Re z≥λ0,0<±Im z≤1

‖(−∆+ V − z)−1‖B(Lp(Rd),Lq(Rd)) ≤ C(Re z)
d
2
( 1
p
− 1

q
)−1,

where λ0 > 0, d = 3, p = 4/3 and q = 4. The strategy of the proof in [24] is to replace
the L2-trace theorem in the proof of the classical Agmon-Kato-Kuroda theorem [61,
Theorem XIII. 33] by Stein-Tomas Lp-restriction theorem for the sphere [73]. Ionescu
and Schlag [37] extends the result of [24] to a large class of potentials V , which contains
Lp(Rd), d/2 ≤ p ≤ (d+1)/2, the global Kato class potentials and some perturbations of
first order operators. See also the recent works by Huang, Yao, Zheng [31] and Mizutani
[53]. Moreover, in [37], it is also proved that existence and asymptotic completeness of
the wave operators. We note that there are no positive eigenvalues of −∆ + V when
V ∈ Lp(Rd), d/2 ≤ p ≤ (d+ 1)/2 and it is false if p > (d+ 1)/2 ([32] and [51]).

In this paper, for a large class of operators T (D) on Xd, we study uniform resolvent
estimates, Hölder continuity of the resolvent and Carleman type inequalities for Fourier
multipliers on Xd, where X = R or X = Z. The uniform resolvent estimates for a
Fourier multipliers are investigated in [11] and [12] in the duality line when X = R in
order to study the Lieb-Thirring type bounds for fractional Schrödinger operators and
Dirac operators. One of the purpose is to prove the uniform resolvent estimates away
form the duality line and to extend to the case of X = Z. To prove this, we follow
the argument in [26, Appendix] for the Laplacian on the Euclidean space, however, the
argument in [26] does not cover the general case since in the proof of [26, Theorem
6], the spherical symmetry and the Stein-Tomas theorem for the sphere are crucial.
Moreover, we study the scattering theory of the discrete Schrödinger operator, the
fractional Schrödinger operators and the Dirac operators. We note that the limiting
absorption principle for free discrete Schrödinger operators is studied in [34], [52] and
[68]. In [52], the scattering theory of the discrete Schrödinger operators perturbed by
Lp-potentials are studied for a range of p. In [68], it is proved that the range of (p, q)
which the uniform resolvent estimate holds for the discrete Schrödinger operators differs
from the one for the continuous Schrödinger operators when d ≥ 5.

We remark that almost all results in this paper can be extended to the Lorentz
space Lp,r by real interpolation. For simplicity we do not mention this below.

Throughout this paper, we denote Xd = Zd or Rd for an integer d ≥ 2. We denote
µ by the Lebesgue measure if Xd = Rd by the counting measure if Xd = Zd. Moreover,

we write X̂d = Rd if Xd = Rd and X̂d = Td = (R/Z)d if Xd = Zd. We often use
[−1/2, 1/2)d ⊂ Rd as a fundamental domain of Td.

Let T ∈ C∞(X̂d,R). Moreover, we assume T ∈ S′(Rd) if X = R. We denote the set

of all critical values of T by Λc(T ) and set Mλ = {ξ ∈ X̂d | T (ξ) = λ} for λ ∈ R. We
denote the induced surface measure by µλ away from the critical points of T . Moreover,
for I ⊂ R, we write I± = {z ∈ C | Re z ∈ I, ±Im z ≥ 0}.
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Set

Sk = {(1
p
,
1

q
) ∈ [0, 1]× [0, 1] | 1

q
≤ 1

p
− 1

k + 1
,
1 + k

1 + 2k
<

1

p
,
1

q
<

k

1 + 2k
}. (6.1.4)

Assumption E. Let U ⊂ X̂d be a relativity compact open set and I ⊂ R be an
compact interval. Suppose ∂ξT (ξ) 6= 0 for ξ ∈ Ū . The Fourier transform of the induced

surface measure satisfies the following estimate: For any χ ∈ C∞
c (X̂d) supported in U ,

there exists C > 0 such that

|
∫
Mλ

e2πix·ξχ(ξ)dµλ(ξ)| ≤ C(1 + |x|)−k, x ∈ Xd, λ ∈ I. (6.1.5)

Remark 6.1.1. If ∂ξdT 6= 0 on supp χ and supp χ is small enough, (6.1.5) is rewritten
as

|
∫
X̂d−1

e2πi(x
′·ξ′+xdhλ(ξ′))χ(ξ′, hλ(ξ

′))dξ′| ≤ C ′(1 + |x|)−k, x ∈ Xd, λ ∈ I

where ξ = (ξ′, ξd) and Mλ = {(ξ′, ξd) ∈ X̂d | ξd = hλ(ξ
′)}. Moreover, if (6.1.5) holds,

then there exits N ≥ 0 such that

|
∫
X̂d−1

e2πi(x
′·ξ′+xdhλ(ξ′))b(ξ′)dξ′| ≤ C

∑
|α|≤N

sup
ξ′∈X̂d−1

|∂αξ′b(ξ′)|

where b ∈ C∞
c (X̂d−1) which is supported in {ξ′ | (ξ′, hλ(ξ

′)) ∈ supp χ} and C is
independent of b.

Example 1. Suppose thatMλ∩supp χ has at leastm nonvanishing principal curvature
curvature at every point, then (6.1.5) holds for k = m/2 by the stationary phase
theorem.

Set R±
0 (z) = (T (D)− z)−1 for z ∈ {z ∈ C | ±Im z > 0}. Moreover, for a signature

±, we define χ(D)R±
0 (λ ± i0) if ∂ξT 6= 0 on supp χ by the Fourier multiplier with its

symbol χ(ξ)(T (ξ) − λ ± i0)−1. For 1 ≤ p ≤ ∞, Lp(Xd) denotes the Lebesgue space
with the Lebesgue measure if X = R and with the counting measure if X = Z.

Our first result is the following:

Theorem 6.1.2. Let T ∈ C∞(X̂d,R) and let I be a compact interval of R. Suppose

that T−1(I) is compact. Fix a signature ± and let U ⊂ X̂d be an open set. Suppose

that (6.1.5) holds for λ ∈ I and χ ∈ C∞
c (X̂d) with supp χ ⊂ U .

(i) There exists such that

sup
z∈I±

‖χ(D)R±
0 (z)‖B(Lp(Xd),Lq(Xd)) <∞,

for (1/p, 1/q) ∈ Sk.
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(ii) Set kδ = k − δ for 0 < δ ≤ 1 and βδ = (2/p− 1)δ. Then

sup
z,w∈I±,|z−w|≤1

|z − w|−βδ‖χ(D)(R±
0 (z)−R±

0 (w))‖B(Lp(Xd),Lp∗ (Xd)) <∞,

for (1/p, 1/p∗) ∈ Skδ , where p
∗ = p/(p− 1).

(iii) Suppose X = R. Under Assumption E, for (1/p, 1/q) ∈ Sk, there exists CN,p,q > 0
such that

‖µN,γ(x)χ(D)u‖Lq(Rd)∩B∗ ≤ CN,p,q‖µN,γ(x)(T (D)− λ)χ(D)u‖Lp(Rd)+B

for u ∈ S(Rd).

6.1.1 Applications to the fractional Schrödinger operators and
the Dirac operators

Let n = 2d/2 if d is even and n = 2(d+1)/2 if d is odd. We define the Dirac operators on
Rd:

D0 =
d∑
j=1

αjDj, D1 =
d∑
j=1

αjDj + αd+1,

where αj are n× n Hermitian matrix and satisfy the Clifford relations:

αjαk + αkαj = −2δjkIn×n

and Dj = ∂xj/(2πi). Note that if we define Dd+1 = mIn×n, then

D2
0 = −(

d∑
j=1

In×nD
2
j ) = −∆ · In×n, D2

1 = (−∆+ 1) · In×n,

where we denote ∆ = (
∑d

j=1 ∂
2
xj
)/(4π2). In this subsection, we suppose that T (D) is

the one of the following operators:

T (D) = (−∆)s/2, T (D) = (−∆+ 1)s/2 − 1, T (D) = D0, T (D) = D1,

where 0 < s < d. We use the convention that s = 1 when T (D) = D0 or T (D) = D1.
Moreover, we denote the product space Zn for a function space Z by simply Z when
T (D) = D0 or T (D) = D1. As is noted in [11, §2],

Λc((−∆)s/2) =

{
{0} if s > 1,

∅ if s ≤ 1,
Λc((−∆+ 1)s/2 − 1) = {0},

and

Λc(D0) = {0}, Λc(D1) = {−1, 1}.
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Moreover, T (D) is self-adjoint on its domain Hs(Rd) by the elliptic regularity.
Let Y1, Y2 be Banach spaces such that

(Y1, Y2) ∈
⋃

( 1
p
, 1
q
)∈S d−1

2

{Lp(Rd)} × {Lq(Rd)}, (6.1.6)

if 2d/(d+ 1) ≤ s < d and

(Y1, Y2) ∈
⋃

( 1
p1
, 1
q1

)∈S d−1
2
,

1
p2

− 1
q2

≤ s
d

{Lp1(Rd) + Lp2(Rd)} × {Lq1(Rd) ∩ Lq2(Rd)}, (6.1.7)

if 0 < s < 2d
d+1

.
A part of the following estimate is a generalization of [11, Theorem3.1].

Theorem 6.1.3. Let I ⊂ R \ Λc(T (D)) be a compact interval. We define R±
0 (λ) for

λ ∈ I by the Fourier multiplier of the distribution (T (ξ) − (λ ± i0))−1, where this
distribution is well-defined since T (ξ) has no critical points in T−1(I).

(i) We have

sup
z∈I±

‖R±
0 (z)‖B(Y1,Y2) <∞.

(ii) Let (Y1, Y2) be satisfying p = q in (6.1.6) if 2d/(d+1) ≤ s < d and p1 = q1 in (6.1.7)
if 0 < s < 2d/(d+ 1). Let 0 < δ ≤ 1 and βδ = (2/p− 1)δ. Then

sup
z,w∈I±,|z−w|≤1

|z − w|−βδ‖(R±
0 (z)−R±

0 (w))‖B(Y1,Y2) <∞.

(iii) Let V ∈ L(d+1)/2(Rd) ∩ L∞(Rd,R). Set H0 = T (D) and H = H0 + V denotes the
unique self-adjoint extensions of T (D)|C∞

c (Rd) and T (D) + V |C∞
c (Rd) respectively. Then

the wave operators

W± = s− lim
t→±∞

eitHe−itH0

exist and are complete, i.e. the ranges of W± are the absolutely continuous subspace
Hac(H) of H.

(iv) Let V ∈ L(d+1)/2(Rd) ∩ L∞(Rd,R). Assume s > 1/2 only when T (D) = (−∆)s/2

with 2s /∈ N. Then the set of nonzero eigenvalues σpp(H) \ {0} is discrete in R \ {0}.
Moreover, each eigenvalue in σpp(H) \ {0} has finite multiplicity.

Remark 6.1.4. (i) is proved in [11] if 1/p + 1/q = 1. In [31], (i) is proved when
T (D) = (−∆)s/2 for 2d/(d+ 1) ≤ s < d.

Remark 6.1.5. In (iii) and (iv), the condition V ∈ L∞(Rd) is expected to be relaxed if
we consider the appropriate selj-adjoint extension of T (D) + V . However, in order to
avoid the technical difficulty, we assume V ∈ L∞(Rd).
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Remark 6.1.6. When T (D) = D0 or T (D) = (−∆)s/2, by a scaling argument as in [11,
Remark 4.2], we have the uniform bound of R±

0 (z) with z ∈ C±. Even when T (D) = D1

or T (D) = (−∆+ 1)s/2 − 1, the author expects to obtain the uniform bound of R±
0 (z)

with z ∈ C± by further analysis.

Remark 6.1.7. When T (D) = (−∆)s/2 or T (D) = (−∆+1)s/2−1, under the assumption
of part (iv), we can prove

sup
z∈I±

‖(H − z)−1‖B(X,X∗) <∞ (6.1.8)

for any compact set I ⊂ R\(σpp∪{0}). In particular, the singular continuous spectrum
of T (D) is empty. For its proof, we may mimic the argument in [37, Section 4]. However,
when T (D) = D0 or T (D) = D1, the author do not know whether (6.1.8) holds or not
since the difference of the outgoing resolvent and incoming resolvent is not always
positive definite:

R+
0 (λ)−R−

0 (λ) =(D0 + λ)(R+
0 (λ)− R−

0 (λ)), if T (D) = D0,

R+
0 (λ)−R−

0 (λ) =(D1 + λ)(R+
1 (λ)− R−

1 (λ)), if T (D) = D1,

where R±
0 (λ) = (−∆ − (λ ± i0)2)−1 and R±

1 (λ) = (−∆ + 1 − (λ ± i0)2)−1. See the
arguments in [37, Proof of Theorem 1.3 (d) and (e)] or [61, Lemma 8 in the proof of
Theorem XIII.33].

Remark 6.1.8. Under the assumption of (iv), we can prove that each eigenfunction u
of H associated with eigenvalue λ ∈ R \ {0} satisfies

(1 + |x|)Nu ∈ H1(Rd), N ≥ 0

and N < s− 1/2 only when T (D) = (−∆)s/2 with s /∈ 2N. The restriction N < s− 1/2
when T (D) = (−∆)s/2 with s /∈ 2N is needed due to the singularity of the symbol
T (ξ) = |ξ|s at ξ = 0.

6.1.2 Scattering theory for the discrete Schrödinger oeprators

The scattering theory of the discrete Schrödinger operators is studied in [52] for the
potential V ∈ Lp(Zd), with 1 ≤ p < 6/5 if d = 3 and 1 ≤ p < 3d/(2d + 1) if d ≥ 4.
In this subsection, we extend their results to when V ∈ Lp(Zd) for 1 ≤ p ≤ d/3 at the
cost of the restriction of the dimension: d ≥ 4.

We define the discrete Schrödinger operator:

H0u(x) = −
∑

|x−y|=1,y∈Zd

(u(x)− u(y)), x ∈ Zd.

Note that H0 is a bounded self-adjoint operator on L2(Zd). We write

h0(ξ) = 4
d∑
j=1

sin2 πξj for ξ ∈ Td, H0 = h0(D)
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and hence the spectrum σ(H0) of H0 is equal to [0, 4d]. Moreover, σac(H0) = [0, 4d],
where σac(H0) is the absolutely continuous spectrum of H0. Set R

±
0 (z) = (H0−z)−1 for

±Im z > 0. Note that Λc(h0(D)) = {4k}dk=0, where we recall that Λc(h0(D)) is the set of
all critical values of h0(ξ). Moreover, if V ∈ Lp(Zd,R) for some 1 ≤ p <∞, H = H0+V
is a bounded self-adjoint operator and σess(H) = [0, 4d] since V ∈ Lp(Zd) ⊂ L∞(Zd)
and V (x) → ∞ as |x| → ∞. Here σess(H) denotes the essential spectrum of H.

We define R±
0 (λ) for λ ∈ I by the Fourier multiplier of the distribution (h0(ξ) −

(λ± i0))−1, where this distribution is well-defined by virtue of [68, Theoerem 1.8]. Note
that we may take λ as a critical value. We recall that

sup
z∈C\R

‖R±
0 (z)‖B(Lp(Zd),Lp∗ (Zd)) <∞,

holds for 1 ≤ p ≤ d/3 ([68, Proposition 3.3]).

Theorem 6.1.9. Fix a signature ± and let d ≥ 4.

(i) Let 1 ≤ p ≤ d/3. Then

sup
z∈C±

‖R±
0 (z)‖B(Lp(Zd),Lp∗ (Zd)) <∞.

(ii) Let 1 ≤ p < d/3. Take 0 < δ ≤ 1 such that p < 2/(3δ/d+ (d+ 3)/d). Then

sup
z,w∈C±,|z−w|≤1

|z − w|−βδ‖(R±
0 (z)−R±

0 (w))‖B(Lp(Zd),Lq(Zd)) <∞.

(iii) Let V ∈ Lp(Zd) for 1 ≤ p < d/3 and set V 1/2 = sgn V |V |1/2. Then, a map z ∈ I± 7→
|V |1/2R±

0 (z)|V |1/2 is Hölder continuous. Moreover, for V ∈ Ld/3(Zd), it follows
that a map z ∈ I± 7→ |V |1/2R±

0 (z)|V |1/2 is continuous.

(iv) Let V ∈ Ld/3(Zd,R) and set H = H0 + V . Then the wave operators

W± = s− lim
t→±∞

eitHe−itH0

exist and are complete, i.e. the ranges of W± are the absolutely continuous sub-
space Hac(H) of H.

Remark 6.1.10. In Proposition 6.4.10, we prove that the range of p can be extended in
the low energy or the high energy.

We fix some notations. For an integer k ≥ 1, C∞
c (Xk) denotes C∞

c (Rk) if X = R
and the set of all finitely supported functions if X = Z. For 1 ≤ p ≤ ∞, we write
p∗ = p/(p− 1). We denote t+ = max (t, 0) for t ∈ R. We define the Bezov space B and
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B∗ by

‖u‖B = ‖u‖L2(|x|≤1) +
∞∑
j=1

2j/2‖u‖L2(2j−1≤|x|<2j),

‖u‖B∗ = ‖u‖L2(|x|≤1) + sup
j≥1

2−j/2‖u‖L2(2j−1≤|x|<2j),

B = {u ∈ L2
loc(X

d) | ‖u‖B <∞}, B∗ = {u ∈ L2
loc(X

d) | ‖u‖B∗ <∞},

B∗
0 = {u ∈ B∗ | lim sup

R→∞

1

R

∫
|x|≤R

|u(x)|2dx = 0}.
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6.2 Abstract theorem

In this section, we state abstract theorems which give estimates for some integral op-
erators. Let K ∈ L∞(Xd ×Xd). For x, y ∈ Xd, we denote

K(x, y) = K(x′, y′, xd, yd) = Kxd,yd(x
′, y′), x = (x′, xd), y = (y′, yd),

where x′, y′ ∈ Xd−1 and xd, yd ∈ X. Moreover, we denote

Kf(x) =

∫
Xd

K(x, y)f(y)dy, Txd,ydg(x
′) =

∫
Xd−1

Kxd,yd(x
′, y′)f(y′)dy′

for f ∈ C∞
c (Xd) and g ∈ C∞

c (Xd−1).

6.2.1 Estimates for integral operators on duality line

We consider the following assumptions:

Assumption F. There exists C0, C1 > 0 such that for any xd, yd ∈ X and g ∈
C∞
c (Xd−1)

‖Txd,ydg‖L2(Xd−1) ≤ C0‖g‖L2(Xd−1), (6.2.1)

‖Txd,ydg‖L∞(Xd−1) ≤ C1(1 + |xd − yd|)−k‖g‖L1(Xd−1). (6.2.2)
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Remark 6.2.1. Suppose that we can write K(x, y) = K1(x
′ − y′, xd, yd) for some K1 ∈

L∞(Xd+1). Then Assumption F directly follows from the following estimates:

‖
∫
Xd−1

K1(x
′, xd, yd)e

−2πix′·ξ′dx′‖
L∞(X̂d−1

ξ′ )
≤ C0,

sup
x′∈Xd−1

|K1(x
′, xd, yd)| ≤ C1(1 + |xd − yd|)−k.

Remark 6.2.2. By the Riesz-Thorin interpolation theorem, (6.2.1) and (6.2.2) imply

‖Txd,ydg‖Lp∗ (Xd−1) ≤ C
2− 2

p

0 C
2
p
−1

1 (1 + |xd − yd|)−k(
2
p
−1)‖g‖Lp(Xd−1), (6.2.3)

for 1 ≤ p ≤ 2.

Proposition 6.2.3. Suppose Assumption F . Then there exists a universal constant
Md > 0 and Mp,k > 0 such that

( sup
R>0,x0∈Rd

1

R

∫
|x−x0|≤R

|Kf(x)|2dx)
1
2 ≤MdC0‖f‖B, f ∈ B, (6.2.4)

‖Kf‖Lp∗ (Xd) ≤Mp,kC
2− 2

p

0 C
2
p
−1

1 ‖f‖Lp(Xd), f ∈ Lp(Xd) (6.2.5)

for 1 ≤ p ≤ 2(k + 1)/(k + 2).

Remark 6.2.4. (6.2.5) follows from Proposition 6.2.8 below under the assumption of
Proposition 6.2.8. However, the proof below is simpler than the proof of Proposition
6.2.8.

Proof. By a density argument, we may assume f ∈ C∞
c (Xd). We observe

sup
R>0,x0∈Xd

1

R

∫
|x−x0|<R

|Kf(x)|2dx ≤ sup
xd∈R

‖Kf(·, xd)‖2L2(Xd−1), (6.2.6)∫
R
‖Kf(·, yd)‖L2(Xd−1)dyd ≤Md‖Kf‖B, (6.2.7)

with some universal constant Md > 0. Using the Minkowski inequality and (6.2.1), we
obtain (6.2.4).

Next, we prove (6.2.5). We set Lp = C
2− 2

p

0 C
2
p
−1

1 . By the Minkowski inequality and
(6.2.3), we have

‖Kf‖Lp∗ (Xd) =‖‖
∫
X

Txd,yd(f(·, yd))dyd‖Lp∗ (Xd−1
x′ )‖Lp∗ (Xxd

)

≤Lp‖
∫
X

(1 + |xd − yd|)−k(
2
p
−1)‖f(·, yd)‖Lp∗ (Xd−1

y′ )dyd‖Lp∗ (Xxd
)

≤Mp,kLp‖f‖Lp(Xd),

where we use the fractional integration theorem in the last line. This gives (6.2.5).
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6.2.2 Estimates for integral operators away from duality line

For xd ∈ X, we define Txd and T ∗
xd

by

Txdf(x
′) = Kf(x′, xd) =

∫
Xd

K(x, y)f(y)dy, T ∗
xd
g(y) =

∫
Xd−1

K̄(x, y)g(x′)dx′.

We define

Sxd(yd, zd)g(y
′) =

∫
Xd−1

∫
Xd−1

K̄(x, y)K(x, z)g(z′)dz′dx′.

Note that

T ∗
xd
Txdf(y) =

∫
X

(Sxd(yd, zd)f(·, zd))(y′)dzd.

Next, we consider the following assumption.

Assumption G. There exists C2, C3 > 0 such that for any xd, yd, zd ∈ X

‖Sxd(yd, zd)g‖L2(Xd−1) ≤ C2
2‖g‖L2(Xd−1), (6.2.8)

‖Sxd(yd, zd)g‖L∞(Xd) ≤ C2
3(1 + |yd − zd|)−k‖g‖L1(Xd−1). (6.2.9)

Remark 6.2.5. Suppose that we can write K(x, y) = K1(x
′ − y′, xd, yd) for some K1 ∈

L∞(Xd+1). Then Assumption G directly follows from the following estimates:

‖
∫
Xd−1

∫
Xd−1

e2πiy
′·ξ′K̄1(x

′, xd, yd)K1(x
′ − y′, xd, zd)dx

′dy′‖
L∞(X̂d−1)

≤ C2
2 ,

sup
y′,z′∈Xd−1

|
∫
Xd−1

K̄1(x
′ − y′, xd, yd)K1(x

′ − z′, xd, zd)dx
′| ≤ C2

3(1 + |yd − zd|)−k.

Remark 6.2.6. By the Riesz-Thorin interpolation theorem, (6.2.8) and (6.2.9) imply

‖Sxd(yd, zd)g‖Lp∗ (Xd−1) ≤ (C
2− 2

p

2 C
2
p
−1

3 )2(1 + |yd − zd|)−k(
2
p
−1)‖g‖Lp(Xd−1), (6.2.10)

for 1 ≤ p ≤ 2.

Proposition 6.2.7. Suppose that K satisfies Assumption G. Then there exists a uni-
versal constant M ′

p,k > 0 such that

( sup
R>0,x0∈Rd

1

R

∫
|x−x0|≤R

|Kf(x)|2dx)
1
2 ≤M ′

p,kC
2− 2

p

2 C
2
p
−1

3 ‖f‖Lp(Xd), f ∈ Lp(Xd),

(6.2.11)

for 1 ≤ p ≤ 2(k + 1)/(k + 2). Moreover, if K∗(x, y) = K̄(y, x) satisfies Assumption G,
then it follows that

‖K∗f‖Lq(Xd) ≤M ′
q/(q−1),kC

2
q

2 C
1− 2

q

3 ‖f‖B, f ∈ B, (6.2.12)

for 2(k + 1)/k ≤ q ≤ ∞.
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Proof. By a density argument, we may assume f ∈ C∞
c (Xd). First, we prove (6.2.11).

Due to (6.2.6), it suffices to prove

‖Txdf‖L2(Xd−1) ≤M ′
p,kC

2− 2
p

2 C
2
p
−1

3 ‖f‖Lp(Xd), f ∈ C∞
c (Xd). (6.2.13)

By the standard T ∗T argument, this estimate is equivalent to

‖T ∗
xd
Txdf‖Lp∗ (Xd) ≤ (M ′

p,kC
2− 2

p

2 C
2
p
−1

3 )2‖f‖Lp(Xd).

We set Lp = (C
2− 2

p

2 C
2
p
−1

3 )2. Using the Minkowski inequality and (6.2.10), we have

‖T ∗
xd
Txdf‖Lp∗ (Xd) =‖‖

∫
X

(Sxd(yd, zd)f(·, zd))(y′)dzd‖Lp∗ (Xd−1
y′ )‖Lp∗ (Xyd

)

≤Lp‖
∫
X

(1 + |yd − zd|)−k(
2
p
−1)‖f(·, yd)‖Lp∗ (Xd−1

y′ )dyd‖Lp∗ (Xyd
)

≤(M ′
p,k)

2Lp‖f‖Lp(Xd),

where we use the fractional integration theorem (the Hardy-Littlewood-Sobolev theo-
rem) in the last line. This proves (6.2.11).

Next, we prove (6.2.12). Replacing K in (6.2.13) by K∗, we have

‖
∫
Xd

K̄(y, x)f(y)dy‖L2(Xd−1
x′ ) ≤M ′

p,kC
2− 2

p

2 C
2
p
−1

3 ‖f‖Lp(Xd), f ∈ C∞
c (Xd).

By duality, we have

‖
∫
Xd−1

K(y, x)g(x′)dx′‖Lq(Xd
y )

≤M ′
q/(q−1),kC

2
q

2 C
1− 2

q

3 ‖g‖L2(Xd−1), xd ∈ X,

where q = p∗. By (6.2.7) and the Minkowski inequality, we obtain

‖Kf‖Lq(Xd) ≤
∫
X

‖
∫
Xd−1

K(x, y)f(y)dy′‖Lq(Xd
x)
dyd

≤M ′
q/(q−1),kC

2
q

2 C
1− 2

q

3

∫
X

‖f(·, yd)‖L2(Xd−1
y′ )dyd

≤M ′
q/(q−1),kC

2
q

2 C
1− 2

q

3 ‖f‖B.

We impose the additional assumption.

Assumption H. There exists C4 > 0 such that

|K(x, y)| ≤ C4(1 + |x− y|)−k, x ∈ Xd.
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Under Assumption G and H, we obtain the estimates similar to (6.2.5) away from
the Hölder exponent.

Proposition 6.2.8. Suppose that K and K∗(x, y) = K̄(y, x) satisfy Assumption G and
H. Then there exists a universal constant L′

p,,q,k > 0 such that

‖Kf‖Lq(Xd) ≤ L′
p,q,kCp,q,k,l‖f‖Lp(Xd), f ∈ Lp(Xd),

where 1/p− 1/q = 1/l and

Cp,q,k,l =


C

2
p∗
2 C

2
p
−1

3 C
1− 2

q

4 , if 1 ≤ p ≤ (k+1)(2k+1)
k2+3k+1

, q > 1+2k
k
, k+1
p∗k

≤ 1
q
,

C
2(k+1)
2k+1

(1− 1
l
)

2 C
2(k+1)−l
(2k+1)l

3 C
l+2k

(2k+1)l

4 , if 1 ≤ l ≤ k + 1, k
(k+1)q

< 1
p∗
< k+1

kq
,

C
2
q

2 C
2
q∗−1

3 C
1− 2

p∗
4 , if 1 ≤ p < 1+2k

1+k
, q ≥ (2k+1)(k+1)

k2
, k+1
kq

≤ 1
p∗
.

We prove this proposition by a series of lemmas.

Lemma 6.2.9. Suppose that K satisfies Assumption G. Let ψ ∈ C∞
c (R2). Define

Kj(x, y) = ψ((2xd − zd)/2
j+1, (2yd − zd)/2

j+1)K(x − y) for j and zd ∈ X. Then for
1 ≤ p ≤ 2(k + 1)/(k + 2)

‖Kjf‖L2(Xd) ≤ L′M ′
p,kC

2− 2
p

2 C
2
p
−1

3 2j/2‖ψ‖L∞(X2)‖f‖Lp(Xd)

with L′ > 0 independent of zd ∈ X and j.

Proof. We take L > 0 such that supp ψ ⊂ BL, where BL ⊂ X2 is an open ball with
radius L and with center 0. We observe

‖Kjf‖2L2(Xd) =

∫
|xd−zd/2|≤L2j

‖Kjf(·, xd)‖2L2(Xd−1)dxd

Replacing K in (6.2.13) with Kj, we have

‖Kjf(·, xd)‖L2(Xd−1) ≤M ′
p,kC

2− 2
p

2 C
2
p
−1

3 ‖ψ‖L∞(X2)‖f‖Lp(Xd).

We note that there exists L′ > 0 independent of zd and j such that

(

∫
|xd−zd/2|≤L2j

dxd)
1/2 ≤ L′2j/2.

Combining the above three inequality, we obtain the desired result.

We need the following technical lemma in order to prove Lemma 6.2.11 below.

Lemma 6.2.10. Let F ∈ C∞
c (R). Then there exists ψ ∈ C∞

c (R2) such that

F (
xd − yd

2j
) =Lj

∫
X

ψ(
2xd − zd

2j
,
2yd − zd

2j
)dzd, xd, yd ∈ R,

where Lj = 2−j if X = R and 2−j−2 ≤ Lj ≤ 2−j if X = Z.
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Proof. We define ψ ∈ C∞
c (R2) as follows: Take χ2 ∈ C∞

c (R, [0, 1]) such that
∫
R χ2(x)dx =

2 and supp χ2 ⊂ (−1/2, 1/2) if X = R and such that χ2(t) = 1 on |t| ≤ 1 and
χ(t) = 0 on |t| ≥ 2 if X = Z. We define ψ(z, z′) = F (z − z′)χ2(z + z′), Then
F (xd) =

∫
X
ψ(xd + z, z)dz if X = R and∫

X

ψ(
2xd − zd
2j+1

,
2yd − zd
2j+1

)dzd =
∑
zd∈Z

ψ(
2xd − zd
2j+1

,
2yd − zd
2j+1

)

=F (
xd − yd

2j
)
∑
zd∈Z

χ2(
zd
2j
).

if X = Z. We note

2j ≤
∑
zd∈Z

χ2(
zd
2j
) ≤ 2j+2.

We set Lj = 1 if X = R and Lj =
∑

zd∈Z χ2(
zd
2j
) if X = Z and we are done.

The following lemma is a consequence of Lemma 6.2.9, however its proof is a bit
technical due to the convolution type cut-off. The conclusion of the following lemma
is same as [26, Lemma 1], where the uniform resolvent estimate of the Laplacian is
studied. However, since their proof strongly depends on the spherical symmetry of the
Laplacian and the Stein-Tomas theorem for the sphere, we cannot directly apply their
argument to our cases. In order to overcome this difficulty, we borrow an idea from the
proof of the Carleson-Sjölin theorem [29, Theorem 2.1].

Lemma 6.2.11. Suppose that K satisfies Assumption G. Let F ∈ C∞
c (R). Define

Kj,conv(x, y) = F ((xd − yd)/2
j)K(x, y) for non-negative integer j. Then for 1 ≤ p ≤

2(k + 1)/(k + 2), there exists a universal constant M ′′
p,k such that

‖Kj,convf(x)‖L2(Xd) ≤M ′′
p,kC

2− 2
p

2 C
2
p
−1

3 2
1
2
j‖f‖Lp(Xd) (6.2.14)

Proof. By Lemma 6.2.10, we have

|Kj,convf(x)| ≤ 2−2j|
∫
X

Kj,zd(x, y)dzd|,

where we set Kj,zd(x, y) = K(x, y)ψ((2xd−zd)/2j+1, (2yd−zd)/2j+1). Take ϕ ∈ C∞
c (R)

such that ψ(xd, yd) = ψ(xd, yd)ϕ(yd). We take L > 0 such that supp ψ ⊂ BL, where
BL ⊂ X2 is an open ball with radius L and with center 0. We note

|{zd ∈ X | ψ(2xd − zd
2j+1

,
2yd − zd
2j+1

) 6= 0}| ≤ L2j+1.

Set M = (M ′
p,kC

2− 2
p

2 C
2
p
−1

3 )2. Using the Cauchy-Schwarz inequality and Lemma 6.2.9,
we have ∫

Xd

|
∫
X

Kj,zdf(x)dzd|2dx ≤L2j+1

∫
X

∫
Xd

|Kj,zdf(x)|2dxdzd

≤2LL′M22j
∫
X

‖ϕ(2 · −zd
2j+1

)f‖2Lp(Xd)dzd.
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Since p ≤ 2, by using the Minkowski inequality, we have∫
X

‖ϕ(2 · −zd
2j+1

)f‖2Lp(Xd)dzd ≤‖ϕ(2 · −zd
2j+1

)‖2L2(X)‖f‖2Lp(Xd)

≤L′′2j‖ϕ‖2L2(X)‖f‖2Lp(Xd)

with L′′ depends only on ϕ. Thus we obtain∫
Xd

|Kj,convf(x)|2dx ≤ (M ′′
p,kC

2− 2
p

2 C
2
p
−1

3 )22j‖f‖2Lp(Xd),

where (M ′′
p,k)

2 = 2LL′L′′(M ′
p,k)

2‖ϕ‖2L2(X).

Corollary 6.2.12. Suppose that K satisfies Assumption H. Then there exists a con-
stant L1 > 0 which depends only on F , d and k such that

‖Kj,convf‖L∞(Xd) ≤ L1C42
−jk‖f‖L1(Xd). (6.2.15)

In addition, we suppose that K and K∗(x, y) = K̄(y, x) satisfy Assumption G. Set

1/p1 = 1− q/2p∗ and L2,p,q = (M ′′
p1,k

)2/qL
1−2/q
1 . Then

‖Kj,convf‖Lq(Xd) ≤ L2,p,qC
2
p∗
2 C

2
p
−1

3 C
1− 2

q

4 2j
1+2k

q
−jk‖f‖Lp(Xd) (6.2.16)

if q ≥ 2 and (k + 1)(1− 1/p)/k ≤ 1/q and

‖Kj,convf‖Lq(Xd) ≤ L2,q∗,p∗C
2
q

2 C
2
q∗−1

3 C
1− 2

p∗
4 2j

(1+2k)
p∗ −jk‖f‖Lp(Xd) (6.2.17)

if p ≤ 2 and (k + 1)/(kq) ≤ 1− 1/p.

Proof. (6.2.15) follows from

‖Kj,convf‖L∞(Xd) ≤‖F (·/2j)K‖L∞(Xd)‖f‖L1(Xd)

≤L1C42
−jk‖f‖L1(Xd)

with some constant L1 > 0 by Assumption H. By complex interpolating (6.2.14) and
(6.2.15), we obtain (6.2.16). Since K∗ also satisfies Assumption G and H, by duality,
(6.2.17) holds.

Proof of Proposition 6.2.8. Take η ∈ C∞
c (R, [0, 1]) such that η(t) = 1 on 0 ≤ t ≤ 1 and

η = 0 on t ≥ 2. Set F (x) = η(|x|) − η(|x|/2). By Corollary 6.2.12, for (k + 1)(1 −
1/p)/k ≤ 1/q, q > (1 + 2k)/k, we have

‖Kf‖Lq(Xd) =‖
∞∑
j=0

Kj,convf‖Lq(Xd) ≤
∞∑
j=0

‖Kj,convf‖Lq(Xd)

≤L2,p,qC
2
p∗
2 C

2
p
−1

3 C
1− 2

q

4

∞∑
j=0

2j/2+jd(1/q−1/2)‖f‖Lp(Xd)

≤L′
2,p,qC

2
p∗
2 C

2
p
−1

3 C
1− 2

q

4 ‖f‖Lp(Xd),
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where L′
2,p,q = L2,p,q

∑∞
j=0 2

j/2+jd(1/q−1/2). Similarly, for (k + 1)/(kq) ≤ 1 − 1/p, p <
(1 + 2k)/(1 + k), we have

‖Kf‖Lq(Xd) ≤ L′
2,q∗,p∗C

2
p∗
2 C

2
p
−1

3 C
1− 2

p∗
4 ‖f‖Lp(Xd).

In order to prove the end point estimates, we use Bourgain’s interpolation trick ([7],
[8, §6.2], [43, Lemma 3.3]). This trick is also used in [2] for the Stein-Tomas theorem
for a large class of measures in Euclidean space. See also [17] and [26]. We denote the
Lorentz space for index 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞ by Lp,r(Xd):

‖f‖Lp,r(Xd) =

{
p

1
r (
∫∞
0
µ({x ∈ Xd | |f(x)| > α})

r
pαr−1dα)

1
r , r <∞,

supα>0 αµ({x ∈ Xd | |f(x)| > α})
1
p , r = ∞,

Lp,r(Xd) = {f : Xd → C | f : measurable, ‖f‖Lp,r(Xd) <∞}.

Bourgain’s interpolation trick with (6.2.16) and (6.2.17) implies that for 1 ≤ p ≤
(k + 1)(2k + 1)/(k2 + 3k + 1), q = (1 + 2k)/k, it follows that

‖Kf‖Lq,∞(Xd) ≤L′
2,p,qC

2
p∗
2 C

2
p
−1

3 C
1− 2

q

4 ‖f‖Lp,1(Xd)

with a universal constant L′
2,p,q. Similarly, for p = (1+2k)/(1+k), q ≥ (2k+1)(k+1)/k2,

we have

‖Kf‖Lq,∞(Xd) ≤ L′
2,q∗,p∗C

2
q

2 C
2
q∗−1

3 C
1− 2

p∗
4 ‖f‖Lp,1(Xd).

By real interpolating above estimates, we complete the proof.

6.3 Uniform resolvent estimates

6.3.1 Proof of Theorem 7.1.1 (i) and (ii)

Proof of Theorem 7.1.1 (i) and (ii). We follows the argument as in [11, Lemma 3.3].
By using a partition of unity and a linear coordinate change, we may assume that
∂ξdT 6= 0 on supp χ. Moreover, by the implicit function theorem, we may assume that
for λ ∈ I, Mλ has the following graph representation:

Mλ ∩ supp χ ⊂ {(ξ′, hλ(ξ′)) ∈ X̂d | ξ′ ∈ U}

for some relativity compact open set U ⊂ X̂d−1 and hλ which is smooth with respect
to ξ′ ∈ U and λ ∈ I and

T (ξ)− λ = e(ξ, λ)(ξd − hλ(ξ
′)), (6.3.1)
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where e(ξ, λ) =
∫ 1

0
(∂ξdT )(ξ

′, tξd + (1 − t)hλ(ξ
′))dt. Furthermore, we may assume

minξ∈supp χ,λ∈A e(ξ, λ) > 0 if necessary, we take supp χ small. Set

Kz,±(x) =

∫
X̂d

e2πix·ξχ(ξ)

T (ξ)− z
dξ,

Kz,w,±(x) =Kz,±(x)−Kw,±(x),

where λ = Re z, µ = Re w ∈ I and ±Im z,±Im w ≥ 0. In order to prove Theorem
7.1.1, it suffices to show that Kz,± satisfies Assumptions G and H, and that Kz,w,±
satisfies Assumption F.

Lemma 6.3.1. Fix a signature ±. For any 0 ≤ δ ≤ 1, there exists C0, C1, C1,δ > 0
such that for x = (x′, xd) ∈ Xd, z, w ∈ I± with |z − w| ≤ 1, we have

sup
ξ′∈X̂d−1

|
∫
Xd−1

Kz,±(y
′, xd)e

−2πiy′·ξ′dy′| ≤ C0, |Kz,±(x)| ≤ C1(1 + |x|)−k

sup
ξ′∈X̂d−1

|
∫
Xd−1

Kz,w,±(y
′, xd)e

−2πiy′·ξ′dy′| ≤ 2C0,

|Kz,w,±(x)| ≤ C ′
1|z − w|δ(1 + |x|)−k+δ

Proof. Note that
∫
Xd−1 Kz,±(y

′, xd)e
−2πiy′·ξ′dy′ =

∫
X̂

e2πixdξdχ(ξ)
T (ξ)−z dξd. If necessary we take

supp χ is small, it suffices to replace the integration region by R. Thus by (6.3.1), we
have ∫

X̂

e2πixdξdχ(ξ)

T (ξ)− z
dξd =

∫
R

e2πixdξdχ(ξ)

T (ξ)− z
dξd

=

∫
R

e2πixd(ξd+hλ(ξ
′))χ(ξ′, ξd + hλ(ξ

′))

e(ξ′, ξd + hλ(ξ′), ξd)ξd − iIm z
dξd

= : e2πixdhλ(ξ
′)γz,±(ξ

′, xd).

By using [11, (3.10)] for ±Im z > 0 and [12, (A.6)] for ±Im z = 0, we have

|∂αξ′γz,±(ξ′, xd)| ≤ Cα (6.3.2)

for α ∈ Nd−1. We will prove (6.3.2) in Lemma 6.5.3. Thus the first inequality holds.
Moreover, we note that

Kz,±(x) =

∫
X̂d−1

γz,±(ξ
′)e2πi(x

′·ξ′+xdhλ(ξ′))dξ′.

Since γz,± is compactly supported in ξ′-variable, then (6.1.5) and (6.3.2) imply the
second inequality. The estimates for Kz,w,±(x) follow from the estimates

|∂αξ′γz,±(ξ′, xd)| ≤ C ′
α|z − w|δ(1 + |xd|)δ,

which is also proved after Lemma 6.5.3: (6.5.6).

112



Lemma 6.3.2. There exists C3 > 0 such that

|
∫
Xd−1

∫
Xd−1

e2πiy
′·ξ′K̄z,±(x

′, xd − yd)Kz,±(x
′ − y′, xd − zd)dx

′dy′| ≤ C2
0

|
∫
Xd−1

K̄z,±(x
′ − y′, xd − yd)Kz,±(x

′ − z′, xd − zd)dx
′| ≤ C2

3(1 + |yd − zd|)−k

where C0 > 0 is as in the proof of Lemma 6.3.1.

Proof. Note that∫
Xd−1

∫
Xd−1

e2πiy
′·ξ′K̄z,±(x

′, xd − yd)Kz,±(x
′ − y′, xd − zd)dx

′dy′

= e2πi(yd−zd)hλ(ξ
′)γz,±(ξ

′, xd − zd)γz,±(ξ′, xd − yd),

where γz,± is as in the proof of Lemma 6.3.1. Moreover, we have∫
Xd−1

K̄z,±(x
′ − y′, xd − yd)Kz,±(x

′ − z′, xd − zd)dx
′

=

∫
X̂d−1

e2πi(y
′−z′)·ξ′+2πi(yd−zd)hλ(ξ′)γz,±(ξ

′, xd − zd)γz,±(ξ′, xd − yd)dξ
′.

Thus (6.1.5) and (6.3.2) imply the conclusion.

Lemma 6.3.1 and 6.3.2 imply that Kz,± satisfies Assumptions G and H and Kz,w,±
satisfies Assumption F. This completes the proof of Theorem 7.1.1.

Remark 6.3.3. In order to prove (i), it is sufficient to prove (i) for ±Im z = 0 by
using the Phragmén-Lindelöf principle as in [64, Section 5.3]. See also [11, Appendix
A] for the estimates of the Shatten norm of the resolvent. Here we avoid using the
Phragmén-Lindelöf principle.

Corollary 6.3.4. Let r1, r2 ∈ (1, 4k + 2] satisfying 1/r1 + 1/r2 ≥ 1/(k + 1). Then

sup
z∈I±

‖W1χ(D)R±
0 (z)W2‖B(L2(Xd)) ≤ C‖W1‖Lr1 (Xd)‖W2‖Lr2 (Xd) (6.3.3)

for W1 ∈ Lr1(Xd) and W2 ∈ Lr2(Xd). Moreover, let W1 ∈ Lr1(Xd) and W2 ∈ Lr2(Xd).
Then it follows that W1χ(D)R±

0 (z)W2 belongs to B∞(L2(Xd)) and a map z ∈ I± 7→
W1χ(D)R±

0 (z)W2 ∈ B∞(L2(Xd)) is continuous in z ∈ I±. In addition, for r = r1 =
r2 ∈ (1, 4kδ + 2), we have

‖W1χ(D)(R±
0 (z)−R±

0 (w))W2‖B(L2(Xd)) ≤ C|z − w|βδ‖W1‖Lr(Xd)‖W2‖Lr(Xd) (6.3.4)

for z, w ∈ I±, |z − w| ≤ 1.
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Proof. (6.3.3) and (6.3.4) follow from Theorem 7.1.1 and the Hölder inequality. For
proving the other statements, we may assume W1,W2 ∈ C∞

c (Xd) by ε/3-argument
and (6.3.3). Since W1 and W2 are compactly supported and since the integral kernel
of χ(D)R±

0 is in L∞ by Lemma 6.3.1, then the integral kernel of W1χ(D)R±
0 (z)W2 is

square integrable and hence Hilbert-Schmidt. Thus it follows that W1χ(D)R±
0 (z)W2 is

compact. Moreover, by (6.3.4), we see that W1χ(D)R±
0 (z)W2 is continuous in z ∈ I±.

The case of W1 ∈ Lr1(Xd) and W2 ∈ Lr2(Xd) follows from the ε/3-argument as in the
proof of Lemma 6.4.9.

6.3.2 Supersmoothing, Proof of Theorem 7.1.1 (iii)

In this subsection, we assume X = R. The author expect that the following proposition
with X = Z holds. However, we prove this with with X = R for possibly technical
reason. We recall µN,γ(x) = (1 + |x|2)N(1 + γ|x|2)−N . We restate Theorem 7.1.1 (iii):

Proposition 6.3.5. Let I ⊂ R be a compact interval. Suppose T−1(I) is compact. Let
χ ∈ C∞

c (Rd) be supported in T−1(I). Under Assumption E, for (1/p, 1/q) ∈ Sk, there
exists CN,p,q > 0 such that

‖µN,γ(x)χ(D)u‖Lq(Rd)∩B∗ ≤ CN,p,q‖µN,γ(x)(T (D)− λ)χ(D)u‖Lp(Rd)+B (6.3.5)

for u ∈ S(Rd).

Lemma 6.3.6. Suppose that m ∈ C∞(Rd) satisfies

|∂αξm(ξ)| ≤ Cα(1 + |ξ|2)−|α|/2

for α ∈ Nd. Let 1 < p < ∞. We set µ̃N,γ(xd) = (1 + |xd|2)N(1 + γ|x|2)−N . Then we
have

‖µ(x)m(D)µ(x)−1‖B(Lp(Rd)) ≤ CN,m,p, ‖µ(x)m(D)µ(x)−1‖B(B(Rd)) ≤ CN,m,

‖µ(x)m(D)µ(x)−1‖B(B∗(Rd)) ≤ CN,m

if µ(x) ∈ {µN,γ(x), µ−1
N,γ(x), µ̃N,γ(xd), µ̃

−1
N,γ(xd)}, where CN,m,p and CN,m are independent

of 0 < γ ≤ 1 and depends only on d, N and finite number of CM .

Proof. The proof is same as in the proof of [37, (3.7)]. In fact, though the range of p is
restricted in [37], the proof succeeds even when 1 < p <∞.

Lemma 6.3.7.

(i) For α ∈ Nd, we have

∂αxµN,γ(x) =bα(x)µN,γ(x) (6.3.6)

∂αxµN,γ(x)
−1 =b′α(x)µN,γ(x)

−1 (6.3.7)

for some functions bα, b
′
α ∈ C∞(Rd) such that for β ∈ Nd,

|(1 + |x|2)(|α|+|β|)/2∂βx bα(x)| ≤ Cα,β,N , |(1 + |x|2)(|α|+|β|)/2∂βx b
′
α(x)| ≤ Cα,β,N

with some constant Cα,β,N which is independent of 0 < γ ≤ 1.
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(ii) There exists CN > 0 independent of 0 < γ ≤ 1 such that

µN,γ(x)µN,γ(y)
−1 + µN,γ(y)µN,γ(x)

−1 ≤ CN(1 + |x− y|2)N , x, y ∈ Rd.

Proof. (i) We prove (6.3.6) only. The proof of (6.3.7) is similar. We prove (6.3.6) by
induction in |α|. If α = 0, then (6.3.6) is trivial. Let M > 0 be an integer. Suppose
that (6.3.6) holds for |α| ≤M . If |α| =M , by the induction hypothesis, we have

∂xj∂
α
xµN,α(x) =(∂xjbα(x))µN,γ(x) + bα(x)∂xjµN,c(x)

=((∂xjbα)(x) + bα(x)bej(x))µN,γ(x),

where (e1, ..., ed) is a standard basis in Rd. Thus, if we set bα+ej(x) = (∂xjbα)(x) +

bα(x)bej(x), then |(1 + |x|2)(|α|+|β|)/2∂βx bα(x)| ≤ Cα,β,N follows. This proves (6.3.6) for
|α| =M + 1. (ii) is easily proved.

Corollary 6.3.8. For k ∈ R we define Λk = (I −∆)k/2. Then

‖µΛkµ−1Λ−k‖B(Lp(Rd)) + ‖µΛkµ−1L−k‖B(B) + ‖µΛkµ−1L−k‖B(B∗) ≤CN,k,p,
‖ΛkµΛ−kµ

−1‖B(Lp(Rd)) + ‖ΛkµΛ−kµ
−1‖B(B) + ‖ΛkµΛ−kµ

−1‖B(B∗) ≤CN,k,p,

with some CN,k,p > 0 independent of 0 < γ ≤ 1 for µ ∈ {µN,γ, µ−1
N,γ} and 1 < p <∞.

Proof. The proof is same as in [37, Lemma 3.2] by virtue of Lemma 6.3.6 and 6.3.7.

Proof of Proposition 6.3.5. Let Y1 ∈ {Lp(Rd),B} and Y2 ∈ {Lq(Rd),B∗}. If necessary,
we may assume supp χ is small enough. In fact, by using a partition of unity {χj}Mj=1

such that
∑M

j=1 χj = 1 on supp χ, we have

‖µN,γ(x)χ(D)u‖Y2 ≤
M∑
j=1

‖µN,γ(x)(χjχ)(D)u‖Y2 ,

M∑
j=1

‖µN,γ(x)(T (D)− λ)(χjχ)(D)u‖Y1 ≤CN,m,p‖µN,γ(x)(T (D)− λ)χ(D)u‖Y1 ,

where we use the triangle inequality in the first line and Lemma 6.3.6 in the second
line. Thus we may replace χ(D) by (χjχ)(D) in (6.3.5).

We may suppose û and f̂ are supported in supp χ and we may suppose ∂ξdT 6= 0
on supp χ by rotating the coordinate and by taking supp χ small enough. We set
ξ+j = ε0ej +

√
1− ε20ed for j = 1, ..., d− 1 and ξ+d = ξd, where ε0 > 0 is a small constant

and (e1, ..., ed) is the standard basis of Rd. Since (ξ+1 , ..., ξ
+
d ) is the basis of Rd, then

C−1

d∑
j=1

µ̃N,γ(x · ξ+j ) ≤ µN,γ(x) ≤ C

d∑
j=1

µ̃N,γ(x · ξ+j )
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with some constant C > 0 independent of γ, where

µ̃N,γ(t) = (1 + t2)N(1 + γt2)−N .

Thus it suffices to prove that

‖µ̃N,γ(x · ξ+j )u‖Y2 ≤ CN‖µ̃N,γ(x · ξ+j )(T (D)− λ)u‖Y1
for each j = 1, ..., d. If ε0 > 0 is small, then ∂ξdT 6= 0 implies ξ+j · ∇T (ξ) = ε0∂ξ1T +√

1− ε20∂ξdT 6= 0 on supp χ. Thus by rotating the coordinate, we may reduce to prove

‖µ̃N,γ(xd)u‖Y2 ≤ CN‖µ̃N,γ(xd)(T (D)− λ)u‖Y1 .

We remark that this reduction is the only part to miss proving this Proposition when
X = Z. In fact, there are no basis containing the normal vector of x · ξ+j -direction when
X = Z.

Set f = (T (D) − λ)u. By the implicit function theorem, we have T (ξ) − λ =
e(ξ, λ)(ξd − hλ(ξ

′)) as in (6.3.1). Then we have e(ξ, λ)−1f̂(ξ) = (ξd − hλ(ξ
′))û(ξ) on

supp χ. We denote f̃(ξ′, xd) is the Fourier transform of f with respect to ξ1, ..., ξd−1-
variables and set ĝ(ξ) = e(ξ, λ)−1f̂(ξ). Here e(ξ, λ)−1 is well-defined on supp f̂ since
supp f ⊂ supp χ. Then

(Dxd − hλ(ξ
′))ũ(ξ′, xd) = g̃(ξ′, xd),

Since ũ and g̃ are smooth, by using variation of parameters, we can write

ũ(ξ′, xd) =

∫ xd

−∞
e2πi(xd−yd)hλ(ξ

′)g̃(ξ′, yd)dyd

=−
∫ ∞

xd

e2πi(xd−yd)hλ(ξ
′)g̃(ξ′, yd)dyd.

Note that we use the first line of the above representation if xd ≤ 0 and the second line
if xd ≥ 0. Taking the inverse Fourier transform and multiplying µ̃N,γ(xd), we have

µ̃N,γ(xd)u(x) =

∫
R

∫
Rd−1

KN,γ(x
′ − y′, xd, yd)µ̃N,γ(yd)g(y)dy

′dyd

where

KN,γ(x
′ − y′, xd, yd) =

µ̃N,γ(xd)

µ̃N,γ(yd)
(χxd<0χxd≤yd − χxd>0χxd≤yd)

×
∫
R̂d−1

e2πi(x
′−y′)·ξ′+2πi(xd−yd)hλ(ξ′)ψ(ξ′)dξ′.

Note that
µ̃N,γ(xd)

µ̃N,γ(yd)
(χxd<0χxd≤yd − χxd>0χxd≤yd) ≤ 1. Let R be the linear operator on Rd

with the integral kernel KN,γ. We recall supp f̂ ⊂ supp χ and ĝ = e(ξ, λ)−1f̂(ξ). Hence
we can write

µ̃N,γ(xd)u(x) = KN,γ(x
′ − y′) ∗ (µ̃N,γ(yd)ϕ(D)e(D,λ)−1µ̃−1

N,γ(yd)µ̃N,γ(yd)f)(x)
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where ϕ ∈ C∞
c (Rd) such that ϕ = 1 on supp χ. By virtue of Lemma 6.3.6, it follows

that the operator norms of µ̃N,γ(yd)χ(D)e(D,λ)−1µ̃N,γ(yd)
−1 on Lp(Rd) (1 < p < ∞),

B and B∗ are uniformly bounded in λ ∈ I.
By virtue of Propositions 6.2.7 and 6.2.8, it suffices to KN,γ and K∗

N,γ(x, y) =
K̄N,γ(y, x) satisfies Assumptions G and H. To see this, we may mimic the proof of
Lemma 6.3.2. We omit the detail.

6.4 Applications

6.4.1 Fractional Schrödinger operators and Dirac operators

In this subsection, we suppose that T (D) is the one of the following operators:

T (D) = (−∆)s/2, T (D) = (−∆+ 1)s/2 − 1, T (D) = D0, T (D) = D1,

where 0 < s ≤ d.

Proof of Theorem 6.1.3. We consider the case when T (D) = (−∆)s/2 or T (D) = (1 −
∆)s/2 only. The case when T (D) = D0 or T (D) = D1 is similarly proved if we notice

D2
0 = −∆In×n, D

2
0 = (−∆+ 1)In×n

as in the proof of [11, Theorem 3.1]. We take a real-valued function χ ∈ C∞
c (Rd, [0, 1])

such that χ = 1 on T−1(I) and supp χ ⊂ R \ Λc(T (D)). Note that Mλ = {T (ξ) = λ}
is sphere and hence has non vanishing Gaussian curvature. if λ ∈ σ(T (D)) \Λc(T (D)).
Then we apply Theorem 7.1.1 with k = (d− 1)/2 (see [66, Theorem 1.2.1]) and obtain

sup
z∈I±

‖χ(D)R±
0 (z)‖B(Lp(Rd),Lq(Rd)) <∞ (6.4.1)

for (p, q) ∈ S d−1
2
. On the other hand, by the support property of χ and the Hardy-

Littlewood-Sobolev inequality, we have

sup
z∈I±

‖(1− χ(D))R0(z)‖B(Lp(Rd),Lq(Rd)) <∞ (6.4.2)

if 1/p− 1/q ≤ s/d. In fact, if 2α = −d/2 + d/p and 2β = −d/q + d/2, then

‖(1− χ(D))R0(z)‖B(Lp(Rd),Lq(Rd))

≤‖(I −∆)−α‖B(Lp(Rd),L2(Rd))‖(1− χ(D))(I −∆)α+βR0(z)‖B(L2(Rd))

× ‖(I −∆)−β‖B(L2(Rd),Lq(Rd)).

Thus (6.4.2) follows from the the Hardy-Littlewood-Sobolev inequality. Combining
(6.4.1) with (6.4.2), we obtain (i). (ii) is similarly proved.
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Lemma 6.4.1.

(i) Suppose 2d/(d + 1) ≤ s < d. Let 0 < δ ≤ 1, r ∈ (2d/s, 2(d + 1) − 4δ] and r1, r2 ∈
(1, 2(d+ 1)] satisfying

2

d+ 1
≤ 1

r1
+

1

r2
≤ s

d
.

Then

sup
z∈I±

‖W1R
±
0 (z)W2‖B(L2(Rd)) ≤ C‖W1‖Lr1 (Rd)‖W2‖Lr2 (Rd)

‖W3(R
±
0 (z)−R±

0 (w))W4‖B(L2(Rd)) ≤ C|z − w|βδ‖W3‖Lr(Rd)‖W4‖Lr(Rd)

for z, w ∈ I± with |z − w| ≤ 1 and W1 ∈ Lr1(Rd), W2 ∈ Lr2(Rd), W3,W4 ∈ Lr(Rd).
Moreover, if W1 ∈ Lr1(Rd) and W2 ∈ Lr2(Rd), then W1R

±
0 (z)W2 ∈ B∞(L2(Rd))

follows for z ∈ I± and a map z ∈ I± 7→ W1R
±
0 (z)W2 is continuous.

(ii) Suppose 0 < s < 2d/(d+1). Let 0 < δ ≤ 1, r ∈ (1, 2(d+1)−4δ] , r1, r2,∈ (1, 2(d+1)]
and r′1, r

′
2, r

′ ∈ [2d/s,∞) satisfying

2

d+ 1
≤ 1

r1
+

1

r2
,

1

r′1
+

1

r′2
≤ s

d
.

The all results in Lemma 6.4.1 part (i) hold if we replace Lr1(Rd), Lr2(Rd) and Lr(Rd)
by Lr1(Rd) ∩ Lr′1(Rd), Lr2(Rd) ∩ Lr′2(Rd) and Lr(Rd) ∩ Lr′(Rd) respectively.

Proof. Note that for W1,W2 ∈ C∞
c (Rd), it follows that W1(1− χ(D))R±

0 (z)W2 is com-
pact and smooth in z ∈ I± by using dR0(z)/dz = R0(z)

2 and the Rellich-Kondrachov
theorem. The other parts of the proof are same as in the proof of Corollary 6.3.4.

Part (iii): Existence and completeness of the wave operators are similarly proved
as in the proof of Theorem 6.1.9 (iv) in subsection 6.4.3 by using Lemma 6.4.1.

Proof of Part (iv) is proved in subsection 6.4.2.

6.4.2 Carleman estimate, Proof of Theorem 6.1.3 (iv)

First, we give the Carleman estimate for T (D). We recall µN,γ(x) = (1 + |x|2)N(1 +
γ|x|2)−N and Λl = (I − ∆)l/2. For 1 < p < ∞ and l ∈ R, we introduce the standard
Sobolev spaces

W l,p = {u ∈ S′(Rd) | Λlu ∈ Lp(Rd)}, ‖u‖W l,p = ‖Λlu‖Lp(Rd).

We set pd = 2(d+ 1)/(d+ 3), p∗d = 2(d+ 1)/(d− 1), ld = s/2− d/(d+ 1),

Xs =

{
W−ld,pd + Λs/2B, if 2d/(d+ 1) ≤ s < d,

(Lpd(Rd) ∩ L2d/(d+s)(Rd)) + Λs/2B, if 0 < s < 2d/(d+ 1),
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and

X∗
s =

{
W ld,p

∗
d ∩ Λ−s/2B

∗, if 2d/(d+ 1) ≤ s < d,

(Lp
∗
d(Rd) + L2d/(d−s)(Rd)) ∩ Λ−s/2B

∗, if 0 < s < 2d/(d+ 1).

By the Sobolev embedding theorem, we have

Xs ↪→ W−s/2,2, W s/2,2 ↪→ X∗
s . (6.4.3)

Proposition 6.4.2. Let N ≥ 0 be a real number satisfying

N < s/2, if T (D) = (−∆)s/2 with s /∈ 2N. (6.4.4)

Then there exists CN,d > 0 independent of 0 < γ ≤ 1 such that

‖µN,γ(x)u‖X∗
s
≤ CN,d‖µN,γ(x)(T (D)− λ)u‖Xs

for u ∈ B∗
0 and |λ| ∈ I.

Remark 6.4.3. The condition (6.4.4) is needed due to the singularity of the symbol
T (ξ) = |ξ|s at ξ = 0.

Proof. First, we assume u ∈ S(Rd). Let χ0, χ1, χ2 ∈ C∞(Rd) be smooth functions such
that χ0, χ1 ∈ C∞

c (Rd) and

χ0 + χ1 + χ2 = 1, χ0(ξ) = 1 near ξ = 0, χ1(ξ) = 1 on supp T−1(I).

By Lemma 6.3.6, it suffices to prove

‖µN,γ(x)ψ(D)u‖X∗
s
≤ CN,d‖µN,γ(x)ψ(D)(T (D)− λ)u‖Xs (6.4.5)

for ψ ∈ {χ0, χ1, χ2}. The case when ψ = χ1 directly follows from Proposition 6.3.5 and
Corollary 6.3.8. The case when ψ = χ2 follows from Corollary 6.3.8 and (6.4.3):

‖µN,γ(x)χ2(D)u‖X∗
s
≤C‖µN,γ(x)χ2(D)u‖W s/2,2

=C‖Λs/2µN,γ(x)u‖L2(Rd),

Λs/2µN,γ =(Λs/2µN,γΛ−s/2µ
−1
N,γ)

× (µN,γΛs/2χ3(D)(T (D)− λ)−1µ−1
N,γΛs/2)

× Λ−s/2µN,γχ2(D)(T (D)− λ),

where χ3 ∈ C∞(Rd) satisfies χ3 = 1 on supp χ2 and supp χ3∩T−1(I) = ∅. Moreover, the
L2-boundedness of Λs/2µN,γΛ−s/2µ

−1
N,γ follows from Corollary 6.3.8 and L2-boundedness

of µN,γΛs/2χ3(D)(T (D) − λ)−1µ−1
N,γΛs/2 is proved by mimicking the proof of Corollary

6.3.8.
Finally, we deal with the case of ψ = χ0. (6.4.5) with T (D) 6= (−∆)s/2 or T (D) =

(−∆)s/2 for s ∈ 2N is similarly proved as in the proof of (6.4.5) with ψ = χ2. Thus we
may assume T (D) = (−∆)s/2 with s /∈ 2N. For its proof, we need some lemmas.
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Lemma 6.4.4. Let s > 0 and m ∈ C∞(Rd \ {0}) ∩ Cc(Rd) satisfying

|∂αξm(ξ)| ≤ Cα|ξ|Mα , Mα =

{
0, if α = 0,

s−N, if |α| ≥ 1.

Then m(D)(x) =
∫
Rd e

2πix·ξm(ξ)dξ satisfies

|m(D)(x)| ≤ C(1 + |x|)−s−d.

Proof. Since m is compactly supported, we may assume |x| ≥ 1. Let χ ∈ C∞
c (R)

satisfying χ(t) = 1 on |t| ≤ 1 and χ(t) = 0 on |t| ≥ 2. Set χ̄ = 1 − χ. For δ > 0, by
integrating by parts, we have

m(D)(x) =
x

|x|2
·
∫
Rd

e2πix·ξ(−Dξm(ξ))dξ

=
x

|x|2
·
∫
Rd

e2πix·ξ(χ(|ξ|/δ) + χ̄(|ξ|/δ))(−Dξm(ξ))dξ

=:m1(x) +m2(x).

We simply obtain

|m1(x)| ≤ C|x|−1

∫
|ξ|≤2δ

|ξ|s−1dξ ≤ C|x|−1δd+s−1.

For M ≥ s+ d+ 2, by integrating by parts, we have

|m2(x)| ≤C|x|−M−1
∑

|α|≤M

∫
Rd

|Dα
ξ (χ̄(|ξ|/δ)Dξm(ξ))|dξ

≤C|x|−M−1δd+s−1−M .

We set δ = |x|−1 and conclude |m(D)(x)| ≤ C|x|−d−s.

Lemma 6.4.5. Let m be as in Lemma 6.4.4 and 1 < p < ∞. Moreover, let 0 ≤ N <
s/2. Then we have

‖µ(x)m(D)µ(x)−1‖B(Lp(Rd)) ≤ CN,m,p

for µ ∈ {µN,γ, µ−1
N,γ}, where CN,m,p and CN,m are independent of 0 < γ ≤ 1 and depends

only on d, N and C in Lemma 6.4.4.

Proof. We note that the integral kernel of µ(x)m(D)µ(x)−1 is µ(x)m(D)(x− y)µ(y)−1

and satisfies

|µ(x)m(D)(x− y)µ(y)−1| ≤ C(1 + |x− y|)2N−d−s

with C > 0 independent of γ > 0. Here we use Lemma 6.3.7 (ii) and Lemma 6.4.4. We
note 2N − s < 0 by the condition (6.4.4). Thus we have (1 + |x|)2N−d−s ∈ L1(Rd). By
the Young inequality, we obtain the desired result.
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Remark 6.4.6. Replacing the Young inequality by the O’neil theorem (the Young in-
equality in the Lorentz spaces), we can relax the condition (6.4.4) as 2N ≤ s.

We return to the proof of (6.4.5) with ψ = χ0. We take χ ∈ C∞(Rd) such that
χ = 1 on supp χ0. We learn

Λs/2µN,γ =(Λs/2µN,γΛ−s/2µ
−1
N,γ)× (µN,γΛs/2χ(D)(T (D)− λ)−1Λs/2µ

−1
N,γ)

× (µN,γΛ−s/2µ
−1
N,γΛs/2)× Λ−s/2µN,γχ0(D)(T (D)− λ).

We set m(D) = µN,γΛs/2χ(D)(T (D) − λ)−1Λs/2µ
−1
N,γ, then m satisfies the assumption

of Lemma 6.4.4. Thus the inclusions (6.4.3), Corollary 6.3.8 and Lemma 6.4.4 imply
(6.4.5) with ψ = χ0. This complete the proof of Proposition 6.4.2 with u ∈ S(Rn).

In order to remove the condition u ∈ S(Rn), we may use the Friedrichs modifier and
a cut-off function as in [37, Proof of Theorem 1.2]. We omit the detail.

The next lemma implies that the potential is ”admissible”.

Lemma 6.4.7. Suppose V ∈ Lp(Rd) with d/s ≤ p ≤ (d+ 1)/2 for 2d/(d+ 1) ≤ s < d
and V ∈ L(d+1)/2(Rd)∩Ld/s(Rd) for 0 < s < 2d/(d+1). Then we have V ∈ B(X∗

s , Xs).
Moreover, for each ε > 0 and N ≥ 0 there exists AN,ε, RN,ε ≥ 1 such that for γ ∈ (0, 1],
we have

‖µN,γV u‖Xs ≤ ε‖µN,γu‖X∗
s
+ AN,ε‖u‖L2(|x|≤RN,ε). (6.4.6)

Proof. First, we prove

‖V u‖Xs ≤ ‖V ‖Ys‖u‖X∗
s
, (6.4.7)

where Ys ∈ {Lp(Rd)}d/s≤p≤(d+1)/2 for 2d/(d + 1) ≤ s < d and Ys = L(d+1)/2(Rd) ∩
Ld/s(Rd). By the Sobolev embedding theorem, we have

W ld,p
∗
d ↪→ Lq

∗
(Rd), Lq(Rd) ↪→ W−ld,pd

for 2d/(d + s) ≤ q ≤ pd. For 2d/(d + 1) ≤ s < d and d/s ≤ p ≤ (d + 1)/2, we set
qp = 2p/(p+ 1). We note 2d/(d+ s) ≤ qp ≤ pd. By the Hölder inequality, we have

‖V u‖Lqp (Rd) ≤ ‖V ‖Lp(Rd)‖u‖Lq∗p (Rd)
.

We use X∗
s ↪→ W ld,p

∗
d and W−ld,pd ↪→ Xs and conclude V ∈ B(X∗

s , Xs) and (6.4.7) for
2d/(d + 1) ≤ s < d. In order to prove (6.4.7) with 0 < s < 2d/(d + 1), it suffices to
prove

‖V u‖Lq(Rd) ≤ ‖V ‖Ys‖u‖Lr(Rd),

where q ∈ {pd, 2d/(d + s)} and r ∈ {p∗d, 2d/(d − s)}. This inequality follows from the
fact V ∈ Ys = L(d+1)/2(Rd) ∩ Ld/s(Rd) and the complex interpolation.
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Take χ ∈ C∞
c (Rd) such that χ = 1 on |x| ≤ 1/2 and χ = 0 on |x| ≥ 1. For R ≥ 1,

we set VR = V χ(x/R). Then we use the inclusion B ↪→ Xs and have

‖µN,γV u‖Xs ≤ ‖V − VR‖Ys‖µN,γu‖X∗
s
+ ‖µN,γVRu‖Xs

≤ ‖V − VR‖Ys‖µN,γu‖X∗
s
+ ‖µN,γVRu‖B.

For each ε > 0, we take R > 0 large enough such ‖V −VR‖Ys < ε and we obtain (6.4.6).

Proof of Theorem 6.1.3 (iv). We recall H = T (D) + V . Suppose that σpp(H) \ {0} is
not discrete in R \ {0}. Then there exist an orthonormal system {uj}∞j=1 ⊂ L2(Rd),
δ ≥ 1 and {λj}∞j=1 ⊂ {λ ∈ R | δ ≤ |λ| ≤ δ−1} such that Huj = λjuj. We note
uj ∈ L2(Rd) ⊂ B∗

0. Let N ≥ 0 satisfying (6.4.4). Applying Proposition 6.4.2 with uj
and Lemma 6.4.7 with small ε > 0, we have

‖µN,γuj‖X∗
s
≤ CN,ε‖uj‖L2(Rd)

with CN,ε independent of γ ∈ (0, 1]. The inclusion Λ−s/2(1+ |x|)1/2+ε1L2(Rd) ↪→ X∗
s for

ε1 > 0 implies

‖(1 + |x|)−1/2−ε1Λs/2µN,γuj‖L2(Rd) ≤ CN,ε‖uj‖L2(Rd).

Taking γ → 0, we have

‖(1 + |x|)−1/2−ε1Λs/2(1 + |x|2)Nuj‖L2(Rd) ≤ CN,ε‖uj‖L2(Rd) = CN,ε. (6.4.8)

We take ε1 small enough and N ≥ 0 satisfying (6.4.4) and 2N > 1/2 + ε1 when
T (D) = (−∆)s/2 with 2s /∈ N. Then (6.4.8) implies that uj is bounded in (1 +
|x|)1/2+ε1−2NΛ−s/2L

2(Rd). Since the inclusion (1 + |x|)1/2+ε1−2NΛ−s/2L
2(Rd) ↪→ L2(Rd)

is compact, there exists a subsequence {ujk}k such that ujk → u in L2(Rd) for some
u ∈ L2(Rd). On the other hand, since uj converges to 0 in the weak topology of L2(Rd),
then we have u = 0. This contradicts to ‖uj‖L2(Rd) = 1.

The same argument implies that the each eigenspace associated with eigenvalue
λ ∈ R \ {0} is finite dimensional.

6.4.3 Discrete Schrödinger operator

In this subsection, we consider the case of X = Z and consider the discrete Schrödinger
operators.

Proof of Theorem 6.1.9. Part (ii) directly follows from the following lemma.

Lemma 6.4.8. Let d ≥ 4 and a signature ±. Then maps z ∈ C± \ R 7→ R±
0 (z) are

Hölder continuous in B(Lp(Zd), Lp∗(Zd)) for 1 ≤ p < 3∗, where 3∗ = 2d/(d+ 3).
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Proof. We follow the argument in [62, Lemma 4.7]. We prove the lemma in the case of
+ only. The case of − is similarly proved. For 1 ≤ p < 3∗, there exists 0 < δ ≤ 1 such
that 1 ≤ p < 3∗,δ, where

3∗,δ =
2

3δ/d+ (3 + d)/d
.

We use the following dispersive estimate ([67]):

‖eit∆d‖B(Lp(Zd),Lp∗ (Zd)) ≤ Cp〈t〉−
d
3
( 2
p
−1), 1 ≤ p ≤ 2. (6.4.9)

Moreover,

|eitz − eitz
′ | ≤ 21−δ|t|δ|z − z′|δ (6.4.10)

holds for t ≥ 0 and z, z′ ∈ C+ since |eitz − eitz
′| ≤ 2 and |eitz − eitz

′| ≤ |t||z − z′|. By
(6.4.9) and (6.4.10), we have

‖R+
0 (z)−R+

0 (z
′)‖B(Lp(Rd),Lp∗ (Rd))

=

∥∥∥∥∫ ∞

0

(eitz − eitz
′
)eit∆ddt

∥∥∥∥
B(Lp(Rd),Lp∗ (Rd))

≤ Cp2
1−δ|z − z′|δ

∫ ∞

0

|t|δ〈t〉−
d
3
( 2
p
−1)dt <∞

for 1 ≤ p < 3∗,δ. This completes the proof.

Now we prove part (i). The above lemma implies that

lim
ε→0,ε>0

‖R±
0 (λ± iε)−R±

0 (λ± i0)‖B(Lp(Zd),Lp∗ (Zd)) = 0, λ ∈ R, 1 ≤ p < 3∗, (6.4.11)

where we recall R±
0 (λ±i0) are Fourier multipliers of the distributions (h0(ξ)−(λ±i0))−1.

We also use the uniform bounds ([68, Proposition 3.3]):

sup
z∈C±\R

‖R±
0 (z)‖B(L3∗ (Zd),L3∗ (Zd)) <∞, (6.4.12)

where 3∗ = 2d/(d− 3). By (6.4.11) and (6.4.12), taking a limiting argument, we have

sup
z∈C±

‖R±
0 (z)‖B(L3∗ (Zd),L3∗ (Zd)) <∞.

This proves part (i).
Note that part (iii) with V ∈ Lp(Zd) for 1 ≤ p < d/3 follows from part (ii) and the

Hölder inequality. Part (iii) with V ∈ Ld/3(Zd) follows from the following lemma.

Lemma 6.4.9. Let d ≥ 4 and a signature ±. For W1,W2 ∈ L2d/3(Zd), a map z ∈
C± 7→ W1R

±
0 (z)W2 ∈ B∞(L2(Zd)) is continuous.
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Proof. Take sequences of finitely supported potentials W1,n,W2,n such that Wj,n → Wj

in L2d/3(Zd) as n→ ∞ for j = 1, 2. For z, z′ ∈ C±, the Hölder inequality implies

‖W1(R
±
0 (z)−R±

0 (z
′))W2‖B(L2(Zd))

≤2‖W1 −W1,n‖L2d/3(Zd)‖W2‖L2d/3(Zd) sup
z∈C±

‖R±
0 (z)‖B(L3∗ (Zd),L3∗ (Zd))

+2‖W2 −W2,n‖L2d/3(Zd) sup
n
(‖W1,n‖L2d/3(Zd)) sup

z∈C±

‖R±
0 (z)‖B(L3∗ (Zd),L3∗ (Zd))

+‖W1,n(R
±
0 (z)−R±

0 (z
′))W2,n‖B(L2(Zd))

=:I1 + I2 + I3.

Now we let ε > 0. We fix a large n such that I1+I2 is smaller than 2ε/3. SinceW1,n and
W2,n are finitely supported, the previous lemma implies that W1,n(R

±
0 (z)−R±

0 (z
′))W2,n

is Hölder continuous in B(L2(Zd)). Thus there exists δ > 0 such that |z − z′| < δ
implies

I3 = ‖W1,n(R
±
0 (z)−R±

0 (z
′))W2,n‖B(L2(Zd)) < ε/3.

Thus we conclude that maps z ∈ C± 7→ W1R
±
0 (z)W2 are continuous.

It remains to prove (iv). We follow the argument as in [47] and [52]. Let V ∈
Ld/3(Zd) be a real-valued function. Set W1 = (sgn V )|V |1/2 ∈ L2d/3(Zd), W2 = |V |1/2 ∈
L2d/3(Zd), H = H0+V and R(z) = (H−z)−1 for z ∈ C\R. We note that for ±Im z > 0

W1R
±
0 (z)W2 −W1R(z)W2 = W1R(z)W2W1R

±
0 (z)W2. (6.4.13)

By part (iii), it follows thatW1R
±
0 (z)W2 is continuous in z ∈ I± and hence is a compact

operator . In addition, I +W1R
±
0 (z)W2 is invertible in B(L2(Zd)) for z ∈ C \R due to

the Birman-Schwinger principle. In fact, if I+W1R
±
0 (z)W2 is not invertible at z ∈ C\R,

then the compactness of W1R
±
0 (z)W2 implies that I +W1R

±
0 (z)W2 has a non-trivial

kernel. Then it follows that R(z) has a non-trivial kernel by the Birman-Schwinger
principle. However, this contradicts to the self-adjointness of H0 + V . Moreover, if we
set

σBS(H) = σ±
BS(H) = {λ ∈ R | Ker L2(Zd)(I +W1R

±
0 (z)W2) 6= 0},

we see that σBS(H) is a closed set with Lebesgue measure zero by Proposition 6.6.3.
Since W1R

±
0 (z)W2 ∈ B∞(L2(Zd)) for z ∈ I±, I +W1R

±
0 (z)W2 is a Fredholm operator

with index 0. Thus (6.4.13) gives

W2R(z)W2 = W2R
±
0 (z)W2(I +W1R

±
0 (z)W2)

−1, z ∈ I± \ σBS(H0).

Let [a, b] ⊂ I\σBS(H0) with a < b. Since (I+W1R
±
0 (z)W2)

−1 is continuous in z ∈ [a, b]±,
then

sup
z∈[a,b]±

‖(I +W1R
±
0 (z)W2)

−1‖B(L2(Zd)) <∞.
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Combining this with the part (i) and Hölder’s inequality, we obtain

sup
z∈[a,b]±

‖W2R(z)W2‖B(L2(Zd)) <∞.

Since |W1| = |W2|, then

sup
z∈[a,b]±

‖Wi1R(z)Wi2‖B(L2(Zd)) <∞.

for i1, i2 = 1, 2. By [61, Theorem XIII. 30, 31], the local wave operators

s− lim
t→±∞

eitHe−itH0EH0((a, b))

exist and are complete, where EH0(J) is the spectral projection to the interval J ⊂ R
associated with H0. Since [0, 4d]\Λc(H0)∪σBS(H) is a countable union of such interval
(a, b), the wave operators W± = s− limt→±∞ eitHe−itH0 exist and are complete.

As an application of Theorem 7.1.1, we prove the further estimates of the uniform
resolvent estimates for the discrete Schrödinger operators.

Proposition 6.4.10. Suppose I ⊂ (0, 4)∩ (4(d− 1), 4d) if d = 2 and I ⊂ (0, 2)∩ (4d−
2, 4d) if d ≥ 3. If supp χ ⊂ h−1

0 (I), then

sup
z∈I±

‖χ(D)R±
0 (z)‖B(Lp(Zd),Lq(Zd)) <∞.

holds for (1/p, 1, q) ∈ S(d−1)/2.

Proof. Let λ ∈ I. As is proved in [35, Lemma 4.3], all principal curvatures of Mλ =
{h = λ} are non-vanishing. By Example 1, we obtain the desired result.

6.5 Some estimates for γz,±

In this section, we give proofs of the estimates for γz,± which is needed for the proof of
Theorem 7.1.1.

If necessary we take supp χ small, we may assume X = R. We recall the situation
of the proof of Theorem 7.1.1. Set

χ̃(ξ′, ξd, λ) =
χ2(ξ′, ξd + hλ(ξ

′))

e(ξ′, ξd + hλ(ξ′))
, b(ξ′, ξd, λ) = e(ξ′, ξd + hλ(ξ

′)))−1.

Note that b is real-valued and min(ξ′,ξd)∈supp χ(·,·,λ)χ̃,λ∈I b(ξ
′, ξd, λ) > 0. Recall that

γz,±(ξ
′, xd) =

∫
R

e2πixdξdχ̃(ξ′, ξd, λ)

ξd − i(Im z)b(ξ′, ξd, λ)
dξd, Re z = λ, ±Im z ≥ 0.
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Here if ±Im z = 0, we interpret γz,± as

γz,±(ξ
′, xd) =

∫
R

e2πixdξdχ2(ξ′, ξd + hλ(ξ
′))

e(ξ′, ξd + hλ(ξ′))ξd ∓ i0
dξd

=

∫
R

e2πixdξdχ̃(ξ′, ξd, λ))

ξd ∓ i0
dξd,

where (ξd ∓ i0)−1 denote the distributions limε>0,ε→0(ξd ∓ iε)−1. In order to estimate
γz,±, we need some lemmas.

Lemma 6.5.1. Let ψ, ψ1 ∈ C∞
c (R) and µ1, µ2 ∈ R \ {0}. Then

|
∫
R
ψ(µ1yd)p.v.

e2πiydξd

yd
dyd| ≤ π‖ψ̂‖L1(R), |

∫
R
p.v.

e2πiydξd

yd
dyd| = π

|
∫
R
ψ(µ1yd)ψ1(µ2yd)p.v.

e2πiydξd

yd
dyd| ≤ π‖ψ̂‖L1(R)‖ψ̂1‖L1(R),

Proof. We leran

|
∫
R
p.v.

1

yd
ψ(yd)e

2πiydξddyd| =π|
∫
R
sgn (ξd − ηd)ψ̂(−ηd)dηd|

≤π‖ψ̂‖L1(R).

By scaling, we obtain the first inequality. The second equality follows from F(p.v. 1
yd
)(ξd) =

−iπsgn (ξd). The third inequality follows from the first inequality and the Young in-
equality:

‖ψ̂ψ̂1‖L1(R) =‖ψ̂ ∗ ψ̂1‖L1(R)

≤‖ψ̂‖L1(R)‖ψ̂1‖L1(R).

Lemma 6.5.2. Let µ ∈ R \ {0} and ϕ, a, a1 ∈ C∞
c (R) such that a, a1 are real-valued

and a, a1 > 0 on supp ϕ.

(i) There exists C > 0 independent of xd ∈ R, ϕ, a and µ 6= 0 such that

|
∫
R

e2πixdξdϕ(µξd)

ξd − ia(µξd)
dξd| ≤ C(sup

ξd∈R
|ϕ(ξd)
a(ξd)

|+ ‖ϕ̂‖L1(R) + sup
ξd∈R

|ϕ(ξd)a(ξd)|). (6.5.1)

(ii) Let l ≥ 2 be an integer. Then there exists C ′ > 0 independent of xd ∈ R, ϕ, a, l
and µ 6= 0 such that

|
∫
R

e2πixdξdϕ(µξd)

(ξd − ia(µξd))l
dξd| ≤ C ′(sup

ξd∈R
| |ϕ(ξd)|
|a(ξd)|l

+ ‖ϕ‖L∞(R)). (6.5.2)
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(iii) Let l1, l2 ≥ 1 be an integer. Then there exists C ′′ > 0 independent of xd ∈ R, ϕ, a,
l and µ 6= 0 such that

|
∫
R

e2πixdξdϕ(µξd)

(ξd − ia(µξd))l1(ξd − ia1(µξd))l2
dξd| ≤ C ′′(sup

ξd∈R
| |ϕ(ξd)|
|a(ξd)|l

+ ‖ϕ‖L∞(R)). (6.5.3)

Proof. (i) Take ψ ∈ C∞
c (R, [0, 1]) such that ψ = 1 on |t| ≤ 1 and ψ = 0 on |t| ≥ 2.

Since a is real-valued, then

|
∫
R

e2πixdξdϕ(µξd)ψ(ξd)

ξd − ia(µξd)
dξd| ≤

∫
R

|ϕ(µξd)ψ(ξd)|
|a(µξd)|

dξd

≤ sup
ξd∈R

|ϕ(ξd)
a(ξd)

|‖ψ‖L1(R).

We note that∫
R

e2πixdξdϕ(µξd)(1− ψ(ξd))

ξd − ia(µξd)
dξd =

∫
R

e2πixdξdϕ(µξd)(1− ψ(ξd))

ξd
dξd

+ i

∫
R

e2πixdξdϕ(µξd)a(µξd)(1− ψ(ξd))

ξd(ξd − ia(µξd))
dξd

= : I1 + I2.

By Lemma 6.5.1, we have

|I1| =|
∫
R
p.v.

e2πixdξdϕ(µξd)

ξd
dξd −

∫
R
p.v.

e2πixdξdϕ(µξd)ψ(ξd)

ξd
dξd|

≤π‖ϕ̂‖L1(R)(1 + ‖ψ̂‖L1(R)).

Moreover, since a is real-valued, we have

|I2| ≤ sup
ξd∈R

|ϕ(ξd)a(ξd)|
∫
R

1− ψ(ξd)

ξ2d
dξd.

Thus we set

C = max(‖ψ‖L1(R), π(1 + ‖ψ̂‖L1(R)),

∫
R

1− ψ(ξd)

ξ2d
dξd),

and obtain (6.5.1).
(ii) follows from (iii).
(iii) Let ψ be as above. Then

|
∫
R

e2πixdξdϕ(µξd)ψ(ξd)

(ξd − ia(µξd))l1(ξd − ia1(µξd))l2
dξd| ≤ sup

ξd∈R
| |ϕ(ξd)|
|a(ξd)|l1 |a1(ξd)|l2

‖ψ‖L1(R).

127



Moreover, since a, a1 is real-valued and l1 + l2 ≥ 2, then

|
∫
R

e2πixdξdϕ(µξd)(1− ψ(ξd))

(ξd − ia(µξd))l1(ξd − ia1(µξd))l2
dξd| ≤‖ϕ‖L∞(R)

∫
R

1− ψ(ξd)

|ξd|l1+l2
dξd

≤‖ϕ‖L∞(R)

∫
R

1− ψ(ξd)

|ξd|2
dξd.

Thus we set C ′′ = max(‖ψ‖L1(R),
∫
R

1−ψ(ξd)
|ξd|2

dξd) and obtain (6.5.3).

The main result of this section is the following proposition.

Proposition 6.5.3. Fix a signature ±.

(i) For α ∈ Nd−1, there exists Cα > 0 such that

|∂αξ′γz,±(ξ′, xd)| ≤ Cα (6.5.4)

for z ∈ I±, xd ∈ R and ξ′ ∈ Rd−1.

(ii) For α ∈ Nd−1, there exists C ′
α > 0 such that

|∂αξ′(γz,±(ξ′, xd)− γw,±(ξ
′, xd))| ≤ C ′

α(1 + |xd|)|z − w| (6.5.5)

for z, w ∈ I± with |z − w| ≤ 1, xd ∈ R and ξ′ ∈ Rd−1.

Remark 6.5.4. Let 0 ≤ δ ≤ 1. Combining (6.5.4) with (6.5.5), we have

|∂αξ′(γz,±(ξ′, xd)− γw,±(ξ
′, xd))| ≤ C1−s

α (C ′
α)
s(1 + |xd|)δ|z − w|δ. (6.5.6)

Proof. (i) We follow the argument of the proof of [11, (3.10)]. We may assume 0 ≤
±Im z ≤ 1. First, we consider the case of ±Im z = 0. In this case, the claim follows
from the fact that

‖
∫
R

e2πixdξd

ξd ∓ i0
dξd‖L∞(Rxd

) <∞

and that χ̃ is smooth with respect to (ξ, ξd, λ) ∈ Rd × I and has a compact support
with respect to (ξ′, ξd)-variable which is bounded in λ ∈ I.

We take ψ ∈ C∞
c (R, [0, 1]) such that ψ(ξd) = 1 on |ξd| ≤ 1. We learn

γz,±(ξ
′, xd) =

∫
R

e2πi(Im z)xdξdχ̃(ξ′, (Im z)ξd, λ)

ξd − ib(ξ′, (Im z)ξd, λ)
dξd.

We note that ∂αξ′γ(ξ
′, xd) is a linear combination of the form∫

R

e2πi(Im z)xdξd(∂α0

ξ′ χ̃)(ξ
′, (Im z)ξd, λ)

∏l
j=1(∂

αj

ξ′ b)(ξ
′, (Im z)ξd, λ)

(ξd − ib(ξ′, (Im z)ξd, λ))l
dξd,

128



where l ≥ 1 is an integer and αj ∈ Nd−1 for j = 0, ..., l. Applying Lemma 6.5.2 (i) if l = 1

and (ii) if l > 1 with ϕ(ξd) = (∂α0

ξ′ χ̃)(ξ
′, ξd, λ)

∏l
j=1(∂

αj

ξ′ b)(ξ
′, ξd, λ), a(ξd) = b(ξ′, ξd, λ)

and µ = Im z, we obtain (6.5.4) with |α| ≥ 1.
(ii) We set λ = Re z and σ = Re w. We take 0 < ε such that

min
(ξ′,ξd)∈supp χ(·,·,λ),|z−w|≤δ

|b(ξ′, ξd, σ)| > 0.

Then we may assume |z−w| < ε. In fact, in order to prove (ii), we use (i) if |z−w| ≥ ε.
Note that

γz,±(ξ
′, xd)− γw,±(ξ

′, xd) =J1(xd) + J2(xd) + J3(xd),

where we set

J1(xd) =

∫
R
e2πixdξd(

χ̃(ξ′, ξd, λ)

ξd − i(Im z)b(ξ′, ξd, λ)
− χ̃(ξ′, ξd, λ)

ξd − i(Im w)b(ξ′, ξd, λ)
)dξd

J2(xd) =

∫
R
e2πixdξd

χ̃(ξ′, ξd, λ)− χ̃(ξ′, ξd, σ)

ξd − i(Im w)b(ξ′, ξd, λ)
dξd

=

∫
R
e2πi(Im w)xdξd

χ̃(ξ′, (Im w)ξd, λ)− χ̃(ξ′, (Im w)ξd, σ)

ξd − ib(ξ′, (Im w)ξd, λ)
dξd

J3(xd) =

∫
R
e2πixdξdχ̃(ξ′, ξd, σ)(

1

ξd − i(Im w)b(ξ′, ξd, λ)
− 1

ξd − i(Im w)b(ξ′, ξd, σ)
)dξd

=

∫
R
e2πi(Im w)xdξd

iχ̃(ξ′, (Im w)ξd, σ)(b(ξ
′, (Im w)ξd, λ)− b(ξ′, (Im w)ξd, σ))

(ξd − ib(ξ′, (Im w)ξd, λ))(ξd − ib(ξ′, (Im w)ξd, σ))
dξd.

First, we estimate J2. Similarly to the proof of (i), ∂αξ′J2(ξ
′) is a finite sum of the form∫

R

e2πi(Im w)xdξd((∂α0

ξ′ χ̃)(ξ
′, (Im w)ξd, λ)− (∂α0

ξ′ χ̃)(ξ
′, (Im w)ξd, σ))

(ξd − ib(ξ′, (Im w)ξd, λ))l

×
l∏

j=1

(∂
αj

ξ′ b)(ξ
′, (Im w)ξd, λ)dξd,

where l ≥ 1 is an integer and αj ∈ Nd−1 for j = 0, ..., l. We apply Lemma 6.5.2 (i) if
l = 1 and (ii) l ≥ 2 and obtain

|∂αξ′J2(ξ′)| ≤ C ′
α|z − w| (6.5.7)

with C ′
α > 0 independent of xd ∈ R, ξd ∈ Rd−1 and z, w ∈ I± with |z − w| ≤ δ.

Next, we estimate J3. ∂
α
ξ′J3 is a linear combination of the form∫

R

e2πi(Im w)xdξd(∂α0

ξ′ χ̃)(ξ
′, (Im w)ξd, σ)∂

α2

ξ′ (b(ξ
′, (Im w)ξd, λ)− b(ξ′, (Im w)ξd, σ))

(ξd − ib(ξ′, (Im w)ξd, λ))l1(ξd − ib(ξ′, (Im w)ξd, σ))l2

×
l1+l2+1∏
j=2

(∂
αj

ξ′ b)(ξ
′, (Im w)ξd, λ)dξd,
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where l1, l2 ≥ 1 are integers and αj ∈ Nd−1 for j = 0, ..., l1 + l2 + 1. We apply Lemma
6.5.2 (iii) and obtain

|∂αξ′J3(ξ′)| ≤ C ′
α|z − w| (6.5.8)

with C ′
α > 0 independent of xd ∈ R, ξd ∈ Rd−1 and z, w ∈ I± with |z − w| ≤ ε.

Finally, we estimate J1. Note that |∂αξ′J1(xd)| ≤ 2C0 by (i). Thus it suffices to prove
that |∂αξ′J ′

1(xd)| ≤ C ′
α|Im z − Im w|. We learn

J ′
1(xd)

2πi
=

∫
R
e2πixdξd(

ξdχ̃(ξ
′, ξd, λ)

ξd − i(Im z)b(ξ′, ξd, λ)
− ξdχ̃(ξ

′, ξd, λ)

ξd − i(Im w)b(ξ′, ξd, λ)
)dξd

=

∫
R
e2πixdξd

i(Im z − Im w)ξdχ̃(ξ
′, ξd, λ)b(ξ

′, ξd, λ)

(ξd − i(Im z)b(ξ′, ξd, λ))(ξd − i(Im w)b(ξ′, ξd, λ))
dξd

=

∫
R
e2πi(Im w)xdξd

i(Im z − Im w)ξdχ̃(ξ
′, (Im w)ξd, λ)b(ξ

′, (Im w)ξd, λ)

(ξd − i Im z
Im w

b(ξ′, (Im w)ξd, λ))(ξd − ib(ξ′, (Im w)ξd, λ))
dξd.

Thus ∂αξ′J
′
1(x1)/(−2π|Im z − Im w|) is a linear combination of the form

(
Im z

Im w
)l1
∫
R
e2πi(Im w)xdξd

ξd∂
α0

x′ χ̃(ξ
′, (Im w)ξd, λ)∂

α2

ξ′ b(ξ
′, (Im w)ξd, λ)

(ξd − i Im z
Im w

b(ξ′, (Im w)ξd, λ))l1(ξd − ib(ξ′, (Im w)ξd, λ))l2

×
l1+l2+1∏
j=2

∂
αj

ξ′ b(ξ
′, ξd, λ)dξd,

where l1, l2 ≥ 1 are integers, αj ∈ Nd−1 for j = 1, ..., l1 + l2 + 1. Applying Lemma 6.5.2
(i) and (ii) with

ϕ(ξd) = (Im z)l1
ξd∂

α0

x′ χ̃(ξ
′, (Im w)ξd, λ)∂

α2

ξ′ b(ξ
′, (Im w)ξd, λ)

(ξd − i(Im z)b(ξ′, ξd, λ))l1
,

a(ξd) = b(ξ′, ξd, λ), l = l2 and µ = Im w, we have |∂αξ′J ′
1(xd)| ≤ C ′

α|Im z − Im w|. This
completes the proof.

6.6 Complex analysis

We define log+ t = log t if 1 ≤ t, log+ t = 0 if 0 < t ≤ 1 and log− t = log t− log+ t.

Lemma 6.6.1. Let f : {z ∈ C | |z| ≤ 1} → C be a continuous function which is
holomorphic on {|z| < 1} and has no zero on {|z| < 1}. Then f(eiθ) 6= 0 for almost
everywhere θ ∈ [−π, π).
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Proof. We follow the argument of [63, Theorem 17.17]. By the mean value properties
of the harmonic function, we have

log |f(0)| = 1

2π

∫ π

−π
log |f(reiθ)|dθ (6.6.1)

=
1

2π

∫ π

−π
log+ |f(reiθ)|dθ − 1

2π

∫ π

−π
log− |f(reiθ)|dθ

for 0 < r < 1. On the other hand, by using x ≤ ex for x ∈ R and Jensen’s inequality,
we have

1

2π

∫ π

−π
log+ |f(reiθ)|dθ ≤ exp(

1

2π

∫ π

−π
log+ |f(reiθ)|dθ)

≤ 1

2π

∫ π

−π
|f(reiθ)|dθ.

By Fatou’s lemma and (6.6.1), we obtain log |f(eiθ)| ∈ L1([−π, π)). In particular,
log |f(eiθ)| < ∞ for almost everywhere θ ∈ [−π, π). Thus f(eiθ) 6= 0 for almost
everywhere θ ∈ [−π, π).

Corollary 6.6.2. Let J = (a, b) be an open interval and r = (b−a)/2. Let f : {z ∈ C |
|z−(a+b)/2| ≤ r, ±Im z ≥ 0} → C be a continuous function which is holomorphic and
has no zero on {|z − (a + b)/2| < r, Im z > 0}. Then f(λ) 6= 0 for almost everywhere
λ ∈ J .

Proof. For simplicity, we assume a = −1 and b = 1. Define κ1 : D = {|z| < 1, Im z >
0} → {Im z > 0} and κ2 : {Im z > 0} → {|z| < 1} by κ1(z) = (1 + z)2/(1 − z)2 and
κ2(z) = (z − i)/(z + i). Then κ = κ2 ◦ κ1 is biholomorphic from {|z| < 1, Im z > 0} to
{|z| < 1} and homeomorphic from {|z| ≤ 1, Im z ≥ 0} to {|z| ≤ 1}. Moreover, since

κ−1(w) =

√
i1+w
1−w − 1√
i1+w
1−w + 1

where we take a branch such that Im
√
z > 0, then κ−1||z|=1 : {|z| = 1} → D̄ \ D

is Hölder continuous. Thus κ−1||z|=1 maps sets of Lebesgue measure zero to sets of
Lebesgue measure zero. By Lemma 6.6.1, we obtain the desired result.

Next proposition is a variant of [46, Lemma 4.20]. See also [52, Proposition 4.6].

Proposition 6.6.3. Let Z be a Banach space and fix a sgnature. For J ⊂ R be an
open set, we denote J± = {z ∈ C | Re z ∈ J,±Im z ≥ 0}. Let K : J± → B∞(Z) be
continuous and holomorphic on {±Im z > 0}. If I +K(z) has a inverse in B(Z) for
each z ∈ {±Im z > 0}, then Γ0 = {λ ∈ R | I +K(λ) is not invertible} is a closed set
with Lebesgue measure zero.
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Proof. Since the set of all invertible operators in B(Z) is open and sinceK is continuous,
then Γ0 is closed. Thus it suffices to prove that the Lebesgue measure of Γ0 is zero.
Note that I + K(λ) is not invertible if and only if −1 is in the spectrum of K(λ) for
λ ∈ Γ0. Fix λ ∈ Γ0. Since K(λ) is compact, there exists a circle Cλ enclosing −1 such
that Cλ is contained in the resolvent set of K(λ). Since K is continuous, there exists
rλ > 0 such that Cλ is contained in the resolvent set of K(z) for z ∈ B±

rλ
(λ) where

B±
rλ
(λ) = {z ∈ C | ±Im z ≥ 0, |z − λ| < rλ}. We define

Pz =
1

2πi

∫
Cλ

(w −K(z))−1dw,

then z ∈ B±
rλ
(λ) 7→ Pz ∈ B(Z) is analytic in B±

rλ
(λ)\R and continuous in B±

rλ
(λ). Note

that n0 = dimRan Pz < ∞ is independent of z ∈ B±
rλ
(λ). Set Zz = Ran Pz and fix a

linear isomorphism Πλ : Cn0 → Zλ. We choose rλ smaller such that I + Pλ(Pz − Pλ)
has an inverse in B(Zλ). Then Θz = Pz|Zλ

: Zλ → Zz is a linear isomorphism with its
inverse

(I + Pλ(Pz − Pλ))
−1Pλ : Zz → Zλ.

Now we set

X(z) = Π−1
λ Θ−1

z (I +K(z))ΘzΠλ

for z ∈ B±
rλ
(λ). Then X is continuous on B±

rλ
(λ) and analytic in B±

rλ
(λ). Moreover,

detX(z) is also continuous on B±
rλ
(λ) and analytic in B±

rλ
(λ). We note that detX(z) = 0

if and only if −1 is in the spectrum of K(z). By Corollary 6.6.2 and the compactness
argument, we conclude that the Lebesgue measure of Γ0 is zero.
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Chapter 7

Some properties of threshold
eigenstates and resonant states of
discrete Schrödinger operators

7.1 Main results

We consider the discrete Schrödinger operators:

H = H0 + V (x) on H = l2(Zd),

where H0 is the negative discrete Laplacian

H0u(x) = −
∑

|x−y|=1

(u(y)− u(x)),

and V is a real-valued function on Zd. We denote the Fourier expansion by Fd:

û(ξ) = Fdu(ξ) =
∑
x∈Zd

e−2πix·ξu(x), ξ ∈ Td = Rd/Zd.

Then it follows that

FdH0u(ξ) = h0(ξ)Fdu(ξ) for u ∈
⋃
s∈R

l2,s(Zd) (7.1.1)

in the distributional sense, where h0(ξ) = 4
∑d

j=1 sin
2(πξj), and hence σ(H0) = [0, 4d].

In this note, we often use [−1
2
, 1
2
]d as a fundamental domain of Td. Moreover, we identify

the integral over Td with the integral over this fundamental domain [−1
2
, 1
2
]d. We denote

〈x〉 = (1 + |x|2)1/2 and l2,s(Zd) = 〈x〉−sl2(Zd). It is known that l2,s(Zd) is isometric to
the Sobolev space Hs(Td) through the Fourier expansion Fd.

Critical values of h0 are called thresholds of H0. We denote the set of all thresholds
by Γ:

Γ = {λ ∈ [0, 4d] | λ is a critical value of h0} = {4k}dk=0.
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Note that any critical points of h0 is non-degenerate, that is, h0 is a Morse function.
We say that 0 and 4d are elliptic thresholds and λ ∈ {4k}d−1

k=1 are hyperbolic thresholds.
Near each critical point of h0, we have the following Taylor expansion:

h0(ξ)− λ ∼ 4π2(−
k∑
j=1

(ξσ(j) − ησ(j))
2 +

d∑
j=k+1

(ξσ(j) − ησ(j))
2),

where η ∈ h−1
0 ({λ}), λ ∈ Γ, k = k(η) is the Morse index at η and σ : {1, ..., d} →

{1, ..., d} is a bijection. Moreover, it easily follows that k(η) = 0, d if h(η) ∈ {0, 4d} and
k(η) 6= 0, d if h(η) ∈ Γ \ {0, 4d}. This implies that h0 behaves like the symbol ±|ξ|2
of the elliptic operator ∓∆ near critical points with the elliptic thresholds and behaves
like the symbol −|ξ′|2 + |ξ′′|2 (ξ = (ξ′, ξ′′)) of the ultrahyperbolic operator ∆x′ − ∆x′′

near critical points with the hyperbolic thresholds.
It is known that the behavior of the resolvent at thresholds is closely related to

a time decay of the propagator and that existence of eigenstates and resonant states
disturbs a decay property of the propagator [42]. Ito and Jensen obtain an analytic
continuation near thresholds of the integral kernels for discrete Schrödinger operators
[32]. The purpose of this note is to study some properties of resonant states: Resonant
states at elliptic thresholds have same properties as continuous one’s and resonances at
hyperbolic thresholds are absent. From this, we expect that the hyperbolic thresholds
is harmless for the decay property of the propagator.

First, we give a definition of resonances at elliptic thresholds.

Definition 4. Let d ≥ 3 and λ = 0 or 4d. Suppose that a real-valued function V
satisfies |V | ≤ C〈x〉−2−δ with δ > 0. We say that u ∈ l2,−3/2(Zd) \ l2(Zd) is a resonant
state of H = H0 + V if u satisfies

Hu = λu.

If such u exists, we say that λ is a resonance of H.

From now on, we concentrate to the case of λ = 0. Now we state our first theorem,
which is an analogy of the continuous model (for example, see [78, Lemma 2.4]).

Theorem 7.1.1. Let d ≥ 3. Suppose that V is a real-valued function satisfying |V (x)| ≤
c〈x〉−2−ε for an 0 < ε ≤ 1 and u ∈ l2,−3/2(Zd) satisfies (H0 + V )u = 0. Then there
exists C > 0 such that

|u(x)| ≤ C〈x〉−d+2,

u(x) = −cd|x|−d+2
∑
y∈Zd

V u(y) +O(|x|−d+2−ε)

as |x| → ∞, where

cd =
Γ(d

2
− 1)

4π
d
2

. (7.1.2)

In particular, if
∑

x∈Zd V u(x) 6= 0 holds, then |u(x)| ≥ C|x|−d+2 follows as |x| → ∞.
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Remark 7.1.2. This theorem implies that

(i) Set Ns = {u ∈ l2,−s(Zd) | (H0 + V )u = 0} for 1/2 < s ≤ 3/2. Then Ns = Ns′ for
s, s′ ∈ (1/2, 3/2].

(ii) Suppose that d = 3 with ε > 1/2 or d = 4 with ε > 0. Then it follows that the
function u in Theorem 7.1.1 is an l2-eigenfunction ofH0+V if and only if

∑
y∈Zd V u(y) =

0.

(iii) There are no resonances at zero energy for d ≥ 5.

Let d ≥ 3. We recall some results from [68, Theorem 1.1, Theorem 1.8 and Propo-
sition 3.4]. We have the following limiting absorption principle with the thresholds
weight:

sup
z∈C\R

‖〈x〉−1+δ(H0 − z)−1〈x〉−1−δ‖B(l2(Zd)) <∞ (7.1.3)

if |δ| ≥ 0 is small enough. Moreover, the following limits exist in B(l2,s(Zd), l2,−s(Zd))
for s > 1:

(H0 − λ∓ i0)−1 := lim
ε→0, ε>0

(H0 − λ∓ iε)−1, λ ∈ [0, 4d]. (7.1.4)

We note that (7.1.3) and (7.1.4) away from Γ directly follow from the Mourre theory
or [68, Proposition B.5]. The novelty of (7.1.3) and (7.1.4) lie in the estimates near
z, λ ∈ Γ. Furthermore, we have the following lemma which immediately follows from
(7.1.3) and (7.1.4) by the density argument.

Lemma 7.1.3. Let d ≥ 3. The operators (H0 − λ ∓ i0)−1 ∈ B(l2,s(Zd), l2,−s(Zd))
for s > 1 and λ ∈ [0, 4d] uniquely extend to bounded linear operators from l2,1(Zd) to
l2,−1(Zd). Moreover, we have

sup
λ∈R

‖〈x〉−1(H0 − λ∓ i0)−1〈x〉−1‖B(l2(Zd)) <∞. (7.1.5)

Remark 7.1.4. This lemma does not assert

(H0 − λ∓ i0)−1 = lim
ε→0,ε>0

(H0 − λ∓ iε)−1 in B(l2,1(Zd), l2,−1(Zd)).

Now we give a definition of resonance at hyperbolic thresholds.

Definition 5. Let d ≥ 3. Suppose that a real-valued function V satisfies |V | ≤
C〈x〉−2−δ with δ > 0. Let λ ∈ Γ \ {0, 4d}, that is, λ is a hyperbolic threshold. We call
u ∈ l2,−1(Zd) \ l2(Zd) a resonant state of H = H0 + V if u satisfies

u+ (H0 − λ∓ i0)−1V u = 0.

If such u exists, we say that λ is a resonance of H.

135



Remark 7.1.5. The validity of this definition lies in Proposition 7.4.4: If λ is not an
eigenvalue and not a resonance of H, then the outgoing/ incoming resolvent (H − λ∓
i0)−1 exist.

Remark 7.1.6. As is shown in Lemma 7.4.3, we can replace u ∈ l2,−1(Zd) by l2,−1−δ(Zd).
The following theorem implies that resonances of H at hyperbolic thresholds do not

exist under a stronger assumption of V even when d = 3 or 4.

Theorem 7.1.7. Let d ≥ 3, λ ∈ Γ \ {0, 4d} and V be a real-valued function satisfying
|V (x)| ≤ C〈x〉−δ with δ > d/2+2 . If u ∈ l2,−1(Zd) satisfies u+(H0−λ± i0)−1V u = 0,
then u ∈ l2(Zn).

We recall from [35] that for a finitely supported real-valued potential V , H has
no eigenvalues in (0, 4d). Combining this result with Theorem 7.1.7, we obtain the
following corollary.

Corollary 7.1.8. Let d ≥ 3 and V be a finitely supported real-valued potential. Then
H0 + V has no resonances and no eigenvalues in (0, 4d).

This corollary implies the limiting absorption principle for H = H0+V near hyper-
bolic thresholds.

Theorem 7.1.9. Let d ≥ 3 and V be a finitely supported real-valued potential. Set

Ωε1,± = {z ∈ C | ±Im z > 0, |z| > ε1, |z − 4d| > ε1}

for 0 < ε1 < 1 and a signature ±.

(i) We have

sup
z∈Ωε1,±

‖〈x〉−1(H − z)−1〈x〉−1‖B(l2(Zd)) <∞. (7.1.6)

(ii) For each s > 1, the operators z ∈ Ωε1,± 7→ (H − z)−1 ∈ B(l2,s(Zd), l2,−s(Zd)) is
Hölder continuous. In particular, limits

(H − λ∓ i0)−1 := lim
ε→0, ε>0

(H − λ∓ iε)−1

exist in the norm operator topology of B(l2,s(Zd), l2,−s(Zd)) for ε1 < λ < 4d− ε1.

(iii) Let s > 1 and ε1 < λ < 4d − ε1. The outgoing/incoming resolvents (H − λ ∓
i0)−1 ∈ B(l2,s(Zd), l2,−s(Zd)) uniquely extend to bounded linear operators from l2,1(Zd)
to l2,−1(Zd). Moreover, we have

sup
ε1<λ<4d−ε1

‖〈x〉−1(H − λ∓ i0)−1〈x〉−1‖B(l2(Zd)) <∞. (7.1.7)

Remark 7.1.10. Suppose that there are no resonances and no eigenvalues at {0, 4d}.
Then the all results in the above theorem still hold if we replace Ωε1,± by C± = {z ∈
C | ±Im z > 0}. See Proposition 7.4.4.
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As mentioned above, for the case of finitely supported potentials it is known that
there are no eigenvalues in open interval (0, 4d) (see [3]). However it is possible that
the threshold 0 or 4d is an embedded eigenvalue. The persistent set (variety) PS of
embedded eigenvalue 0 is defined as the set of all potentials V supported on S such
that H = H0 + V has the eigenvalue 0, that is

PS = {V ∈ RS | suppV ⊂ S and 0 is an eigenvalue of H0 + V }.

Here S is a fixed finite subset of Zd. In [28], some geometrical structure and properties
of PS are considered. Moreover the notion of the threshold resonances is defined and
non-existence of them for d ≥ 5 and the persistent set of them for d = 2, 3, 4 are studied.
The proof for many statements in [28], however, depends on the finiteness of potential
support. So in our article we attempt to give an appropriate definition of threshold
resonant states of more general potentials and investigate some properties of them by
using a method of harmonic analysis. Furthermore we study the limiting absorption
principle and resonances at hyperbolic thresholds.

We fix some notations. For Banach spaces X,Y , we denote the set of all bounded
linear operators from X to Y by B(X,Y ) and set B(X) := B(X,X).

We need the following useful representation. We assume∇h0 6= 0 on {h0(ξ) = λ}∩U
for a λ ∈ R and and an open set U . Moreover, we assume {h0(ξ) = λ} ∩ U has the
following graph representation:

{h0(ξ) = λ} ∩ U = {ξ | ξd = g(ξ′)}, ξ = (ξ′, ξd).

Then the induced surface measure dσ on {h0(ξ) = λ} ∩ U is written as

dσ(ξ) =
√
1 + |∇g(ξ′)|2dξ′ = |(∇ξh0)(ξ

′, g(ξ′))|
|(∂ξdh0)(ξ′, g(ξ′))|

dξ′. (7.1.8)
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7.2 Pointwise estimates, Proof of Theorem 7.1.1

7.2.1 Upper bounds

Let d ≥ 3. We consider the solution to

(H0 + V )u = 0. (7.2.1)

First, we reduce the equation (7.2.1) to the integral equation, which is useful for esti-
mating u:

u+H−1
0 V u = 0, (7.2.2)
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where

K2(x) =

∫
Td

e2πix·ξh0(ξ)
−1dξ, H−1

0 w(x) =
∑
y∈Zd

K2(x− y)w(y),

for w ∈ l2,1/2+ε(Zd) with ε > 0. Here H−1
0 is the bounded operator from l2,α(Zd) to

l2,−β(Zd) for α, β > 1/2 with α + β ≥ 2 (see section B, Corollary 7.6.3). Moreover, it
also follows that the multiplication operator

h−1
0 :

⋂
s>0

Hs(Td) →
⋃
s∈R

Hs(Td)

can be uniquely extended to the operator

h−1
0 : Hα(Td) → H−β(Td), α, β >

1

2
, α + β ≥ 2 (7.2.3)

and that

h−1
0 = F−1

d H−1
0 Fd : H

α(Td) → H−β(Td), α, β >
1

2
, α + β ≥ 2.

Lemma 7.2.1. We assume |V (x)| ≤ C〈x〉−2−ε for some ε > 0. For u ∈ l2,−3/2(Zd),
(7.2.1) implies (7.2.2).

Proof. The relations (7.1.1) and (7.2.1) implies

h0(ξ)û(ξ) = −V̂ u(ξ), û ∈ H− 3
2 (Td). (7.2.4)

First, we note û(ξ) = −h0(ξ)−1V̂ u(ξ) in D′(Td \ {0}). We note h−1
0 V̂ u ∈ D′(Td) by

(7.2.3). These imply that û + h−1
0 V̂ u is supported in {0} as an element of D′(Td) and

can be written as a linear combination of the derivatives of the Dirac measure. Since
∂γξ δ /∈ H−d/2(Td) for any multi-index γ, it suffices to prove û + h−1

0 V̂ u ∈ H−d/2(Td)
in order to deduce û = −h−1

0 V̂ u. Since û ∈ H−3/2(Td) ⊂ H−d/2(Td), we only need to

prove h−1
0 V̂ u ∈ H−d/2(Td). Using V̂ u ∈ H1/2+ε(Td) and (7.2.3) with α = 1/2 + ε and

β = 3/2, we obtain h−1
0 V̂ u ∈ H−3/2(Td) ⊂ H−d/2(Td). This completes the proof.

The main result of this subsection is the following proposition.

Proposition 7.2.2. Let u ∈ l2,−3/2(Zd) be a solution to (7.2.2). Then we have

|u(x)| ≤ C〈x〉−d+2.

The following lemma is useful.

Lemma 7.2.3. Let d ≥ 1.
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(i) Let k, l < d with k + l > d. Then we have

I =
∑
y∈Zd

〈x− y〉−k〈y〉−l ≤ C〈x〉d−k−l.

(ii) Let 0 < k < d and l = d. For any δ > 0, there exists Cδ > 0 such that I ≤ Cδ〈x〉δ−k.
(iii) Let 0 < k < d < l. Then we have

I ≤ C〈x〉−k.

(iv) Let k = d and l > d. Then we have

I ≤ C〈x〉−d.

Proof. (i) We decompose I = I1 + I2 + I3 such that

I1 =
∑

|x−y|≤|x|/2

〈x− y〉−k〈y〉−l, I2 =
∑

|x−y|≥|x|/2,
|y|≤2|x|

〈x− y〉−k〈y〉−l,

I3 =
∑

|x−y|≥|x|/2,
|y|>2|x|

〈x− y〉−k〈y〉−l.

We note that |x − y| ≤ |x|/2 implies |x|/2 ≤ |y| ≤ 3|x|/2. Using this and k < d, we
have

I1 ≤C〈x〉−l
∑

|x−y|≤|x|/2

〈x− y〉−k = C〈x〉−l
∑

|y|≤1/2|x|

〈y〉−k ≤ C〈x〉d−k−l.

Moreover, using l < d, we learn

I2 ≤ C〈x〉−k
∑

|x−y|≥|x|/2,
|y|≤2|x|

〈y〉−l ≤ C〈x〉d−k−l.

To estimate I3, we observe that |x − y| ≥ |y|/2 holds in {|y| > 2|x|}. Using this and
k + l > d, we obtain

I3 ≤ C
∑

|y|>2|x|

〈y〉−k−l ≤ C〈x〉d−k−l.

Thus we conclude I ≤ C〈x〉d−k−l.
(ii) As in the proof of (i), using k < d and k + l > d with l = d, we have I1 + I3 ≤

C〈x〉−k. We observe

I2 ≤ C〈x〉−k
∑

|y|≤2|x|

〈y〉−d ≤ Cδ〈x〉δ−k.
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This proves (ii).
(iii) As in the proof of (i), using k < d, we have I1 ≤ C〈x〉d−k−l. The inequality

l > d implies I1 ≤ C〈x〉−k. On the other hand, using l > d, we observe

I2 + I3 ≤ C〈x〉−k
∑
y∈Zd

〈y〉−l ≤ C〈x〉−k.

We conclude I ≤ C〈x〉−k.
(iv) As in the proof of (iii), using l > d, we have I2 + I3 ≤ C〈x〉−d. Since |x− y| ≤

|x|/2 holds on {|x|/2 ≤ |y| ≤ 3|x|/2}, we have

I1 ≤ C〈x〉−l
∑

|y|≤|x|/2

〈y〉−d ≤ Cδ〈x〉δ−l

for any δ > 0. We take δ = l − d > 0 and obtain I3 ≤ C〈x〉−d.

Proof of Proposition 7.2.2. We may assume 0 < ε < 1. Using u ∈ l2,−3/2(Zd), |V (x)| ≤
C〈x〉−2−ε and Corollary 7.6.2 with l = 2, we have

|u(x)| = |H−1
0 V u(x)| ≤C

∑
y∈Zd

〈y〉−d+2|V u(x− y)|

≤C(
∑
y∈Zd

〈y〉−2d+4〈x− y〉−1−2ε)1/2‖〈x〉1/2+εV u‖l2(Zd).

Applying Lemma 7.2.3 with k = 1 + 2ε and l = 2d − 4, we have |u(x)| ≤ C〈x〉−ε ≤
C〈x〉−ε/2 for d = 3, |u(x)| ≤ C〈x〉−1/2−ε/2 for d ≥ 4.

The argument below is based on the standard bootstrap technique (for example, see
[61, Lemma 8 in the proof of Theorem XIII.33]). Set αd = 0 for d = 3 and αd = 1/2
for d ≥ 4. Let N be a real number such that 2 + αd + (N + 1)ε < d. Suppose
|u(x)| ≤ C〈x〉−αd−Nε holds. Then it follows that

|u(x)| ≤ C
∑
y∈Zd

〈y〉−d+2〈x− y〉−2−αd−(N+1)ε

Applying Lemma 7.2.3 with k = 2 + αd + (N + 1)ε and l = d − 2, we have |u(x)| ≤
C〈x〉−αd−(N+1)ε. By an induction argument, we obtain |u(x)| ≤ C〈x〉−d+2.

7.2.2 Lower bounds, Proof of Theorem 7.1.1

We need some elementary lemmas.

Lemma 7.2.4. [25, Theorem2.4.6] Let cd > 0 be as in (7.1.2). Then we have∫
Rd

e2πix·ξ
1

4π2|ξ|2
dξ = cd|x|−d+2.
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We omit the proof of this lemma.

Lemma 7.2.5. There exists C > 0 such that

||x− y|−d+2 − |x|−d+2| ≤ C|x|−d+1|y|

for x, y ∈ Rd with |x|/2 > |y|.
Proof. We note (d/dθ)(|x−θy|) ≤ |y| and |x−θy| ≥ |x|/2 for 0 ≤ θ ≤ 1 and |x|/2 > |y|.
Then we have

||x− y|−d+2 − |x|−d+2| ≤
∫ 1

0

|(d/dθ)|x− θy|−d+2|dθ

=(d− 2)

∫ 1

0

|(d/dθ)|x− θy||
|x− θy|d−1

dθ

≤2d−1(d− 2)|x|−d+1|y|.

Proof of Theorem 7.1.1. Note that |V u(x)| ≤ C〈x〉−d−ε and

u(x) = −
∑
y∈Zd

G(x, y)V u(y), G(x, y) =

∫
Td

e2πi(x−y)·ξ
1

h0(ξ)
dξ.

For small r > 0, take χ ∈ C∞(Td, [0, 1]) such that χ = 1 on |ξ| ≤ r and χ = 0 outside
|ξ| ≤ 2r. Then

u(x) = −
∑
y∈Zd

G1(x, y)V u(y) +O(〈x〉−d−ε), G1(x, y) =

∫
Td

e2πi(x−y)·ξ
χ(ξ)

h0(ξ)
dξ.

We use the following lemmas.

Lemma 7.2.6. We have

u(x) = −
∑
y∈Zd

G2(x, y)V u(y) +O(〈x〉−d),

where G2(x, y) =
∫
Rd e

2πi(x−y)·ξ χ(ξ)
4π2|ξ|2dξ.

Proof. If |ξ| ≤ 2r for small r > 0, then we expand h0(ξ)
−1 = 1/(4π|ξ|2) + R(ξ), where

|∂αξ R(ξ)| ≤ Cα|ξ|−|α|. Thus we have

u(x) = −
∑
y∈Zd

G2(x, y)V u(y)−
∑
y∈Zd

G3(x, y)V u(y) +O(〈x〉−d−ε),

where

G3(x, y) =

∫
Rd

e2πi(x−y)·ξχ(ξ)R(ξ)dξ.

By Lemmas 7.6.1 and 7.2.3 (iv) with k = d and l = d+ ε, the second term is O(|x|−d).
This completes the proof.
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Lemma 7.2.7. For |x| ≥ 1, we have∫
Rd

e2πix·ξ
χ(ξ)

4π2|ξ|2
dξ = cd|x|−d+2 +O(〈x〉−∞).

Proof. We have in the distribution sense∫
Rd

e2πix·ξ
χ(ξ)

4π2|ξ|2
dξ =

∫
Rd

e2πix·ξ
1

4π2|ξ|2
dξ +

∫
Rd

e2πix·ξ
χ(ξ)− 1

4π2|ξ|2
dξ

=cd|x|−d+2 +

∫
Rd

e2πix·ξ
χ(ξ)− 1

4π2|ξ|2
dξ.

The second term decays rapidly at infinity as can be shown by integration by parts.

Lemma 7.2.8. ∑
|y|≥|x|/2

G2(x, y)V u(y) = O(〈x〉−d+2−ε).

Proof. By Lemma 7.2.7, we have G2(x, y) = O(〈x− y〉−d+2). Since V (x) = O(〈x〉−2−ε)
holds, by Proposition 7.2.2, we have V u = O(〈x〉−d−ε). Now the lemma is proved by
an easy calculation using the condition {|y| ≥ |x|/2}.

Lemma 7.2.9.∑
|y|<1/2|x|

G2(x, y)V u(y) = cd|x|−d+2
∑
y∈Zd

V u(y) +O(〈x〉−d+2−ε).

Proof. By Lemma 7.2.7 and V u = O(〈x〉−d−ε), we have∑
|y|<|x|/2

G2(x, y)V u(y) =cd
∑

|y|<|x|/2

|x− y|−d+2V u(y)

+
∑

|y|<|x|/2

O(〈x− y〉−∞〈y〉−d−ε)

=cd
∑

|y|<|x|/2

|x− y|−d+2V u(y) +O(〈x〉−∞),
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By Lemma 7.2.5, we have

cd
∑

|y|<|x|/2

|x− y|−d+2V u(y) =cd|x|−d+2
∑

|y|<|x|/2

V u(y)

+
∑

|y|<|x|/2

O(〈x〉−d+1〈y〉−d+1−ε)

=cd|x|−d+2
∑

|y|<|x|/2

V u(y) +O(〈x〉−d+2−ε)

=cd|x|−d+2
∑
y∈Zd

V u(y) + cd|x|−d+2
∑

|y|≥|x|/2

V u(y)

+O(〈x〉−d+2−ε)

=cd|x|−d+2
∑
y∈Zd

V u(y) +O(〈x〉−d+2−ε),

where we use V u = O(〈x〉−d−ε). This completes the proof.

We return to the proof of Theorem 7.1.1. By virtue of Lemmas 7.2.6 and 7.2.8, we
write

u(x) = −
∑

|y|<|x|/2

G2(x, y)V u(y) +O(|x|−d+2−ε).

Note that |x−y| is large if |x| is large and |y| < |x|/2. Using Lemma 7.2.9, we complete
the proof of Theorem 7.1.1.

7.3 Absence of embedded resonances, Proof of The-

orem 7.1.7

7.3.1 Preliminary lemmas

Let d ≥ 3 and λ ∈ {4k}d−1
k=1. Set Mλ = {ξ ∈ Td | h0(ξ) = λ} and

Σλ ={ξ ∈Mλ | ∇h0(ξ) = 0} = {ξ ∈Mλ | sin 2πξj = 0, for all j = 1, ..., d}

={ξ ∈Mλ | ξj ∈ {0, 1
2
}, for all j = 1, ..., d}.

We note Mλ \ Σλ is an embedded submanifold of Td with codimension 1 and Mλ is a
Lipschitz submanifold in the sense that Mλ has a graph representation by a Lipschitz
function. We denote the induced surface measure of Mλ by dσ(ξ). Set

dµ(ξ) =
1

|∇h0(ξ)|
dσ(ξ)
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We note that |∇h0(ξ)|−1 ∼ |ξ − ξ0|−1 near ξ0 ∈ Σλ implies that dµ is singular at any
points of Σλ for λ ∈ Γ, though |∇h0(ξ)|−1 is harmless on Mλ with a regular value λ.
Moreover, we denote R0(λ ± i0) = (H0 − λ ∓ i0)−1 ∈ B(l2,1(Zd), l2,−1(Zd)). First, we
show Σλ is of measure zero with respect to dσ and dµ, which essentially follows from
the fact that dσ and dµ are finite sums of the absolutely continuous measures with
respect to d− 1-dimensional Lebesgue measure.

Lemma 7.3.1. dσ(Σλ) = 0 and dµ(Σλ) = 0.

Proof. First, we note that the measure µ is absolutely continuous with respect to dσ.
To see this, it suffices to show that 1/|∇h0(ξ)| is integrable with respect to the measure
σ. We note that for η ∈ Σλ and ξ = (ξ′, ξd) ∈ Mλ, we have |∇h0(ξ)| ∼ 2π|ξ − η| ∼
C|ξ′ − η′| near ξ = η and ±(ξd − ηd) ≥ |ξ′ − η′|/2d. The integrability of 1/|ξ′ − η′|
over {ξ′ ∈ Rd−1 | |ξ′ − η′| : small} which follows from the assumption d ≥ 3 implies
1/|∇h0(ξ)| is integrable over {±(ξd− ηd) ≥ |ξ′− η′|}. By using a partition of unity, the
integrability of 1/|∇h0(ξ)| over Mλ follows.

Thus a proof of dµ(Σλ) = 0 reduces to a proof of dσ(Σλ) = 0. Let η ∈ Σλ. Since
Σλ is a finite set, it suffices to prove that {η} has zero measure with respect to χdσ,
where χ ∈ C∞(Td) is any function supported close to η. Set

Aj,± = {ξ ∈ supp χ | ±(ξj − ηj) ≥ |ξ − η|/2d}.

Then we have

χ(ξ)dσ(ξ) =
∑

j=1...,d, a=±

χAj,a
(ξ)χ(ξ)dσ(ξ) =:

∑
j=1...,d, a=±

dσj,a(ξ),

where χA is the characteristic function of A ⊂ Td. Thus it suffices to prove that {η} is
zero measure with respect to dσj,a for any j = 1, .., d and a = ±.

By rotating and reflecting the coordinate, we may assume j = d and a = +. If
supp χ is small enough, we have the following graph representation:

Mλ ∩ supp χ ∩ {±(ξd − ηd) ≥ |ξ − η|/2d} = {(ξ′, g(ξ′))}

where g is a Lipschitz function. On this coordinate, we write

dσd,+(ξ) = χAj,a
(ξ)χ(ξ)

√
1 + |∇ξ′g(ξ′)|2dξ′

by (7.1.8). This implies that dσd,+ is absolutely continuous with respect to the d − 1-
dimensional Lebesgue measure dξ′. This completes the proof.

We recall the standard L2-restriction theorem: For f ∈ l2,s(Zd) with s > 1/2, then

f̂ |Mλ
∈ L2

loc(Mλ, dσ).

For f ∈ l2,1(Zd), we have sharper integrability of f̂ |Mλ
near Σλ with respect to dµ.
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Lemma 7.3.2. For f ∈ l2,1(Zd), a restriction f̂ |Mλ
∈ L2

loc(Mλ, dσ) satisfies f̂ |Mλ
∈

L2(Mλ, dµ). Moreover, we have

‖f̂‖L2(Mλ,dµ) ≤ C‖f‖l2,1(Zd). (7.3.1)

Proof. Let z ∈ Σλ and χ ∈ C∞(Td) with a sufficiently small support around z. For
proving f̂ |Mλ

∈ L2(Mλ, dµ), it suffices to show

(χf̂)|Mλ
∈ L2(Mλ, dµ). (7.3.2)

Moreover, we take a partition of unity {(ψ̃j,a)2}j=1,...d,a=± of Sd−1 such that

supp ψ̃j,a ⊂ {x ∈ Sd−1 ⊂ Rd | ±xd ≥
|x|
2d

}.

We set ψj,a(ξ) = ψ̃j,a((ξ − z)/|ξ − z|).
First, for j = 1, ...d and a = ±, we shall prove∫

Mλ\Σλ

|(ψj,aχf̂)|Mλ
(ξ)|2dµ(ξ) ≤ C

∫
Rd−1

|(ψj,aχf̂)(ξ′, g(ξ′))|2

|ξ′ − z′|
dξ′. (7.3.3)

We may assume j = d and a = +. We define a real-valued function g by

sin πg(ξ′) =

√√√√(
λ

4
−

d−1∑
j=1

sin2 πξj), g(ξ
′) > 0.

Then g satisfies

h0(ξ
′, g(ξ′)) = λ for ξ = (ξ′, g(ξ′)) ∈ supp (ψd,+χ) \ Σλ.

Since ∂ξdh0(z
′, zd) = 0 and h is a Morse function, it follows that

|∂ξdh0(ξ′, g(ξ′))| ≥ C|g(ξ′)− zd| ≥ C|ξ′ − z′|,

|∂ξ′g(ξ′)| = | − (∂ξ′h0)(ξ
′, g(ξ′))

(∂ξdh0)(ξ
′, g(ξ′))

| ≤ C| ξ′ − z′

|g(ξ′)− zd|
| ≤ C. (7.3.4)

on supp (ψd,+χ) \ Σλ. These inequalities with (7.1.8) implies∫
Mλ

|(ψj,aχf̂)|Mλ\Σλ
(ξ)|2dµ(ξ) =

∫
Rd−1

|(ψj,aχf̂)(ξ′, g(ξ′))|2

|(∂ξdh0)(ξ′, g(ξ′))|
dξ′

≤C
∫
Rd−1

|(ψj,aχf̂)(ξ′, g(ξ′))|2

|ξ′ − z′|
dξ′.
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Summing (7.3.3) over j = 1, ..., d and a = ±, we obtain∫
Mλ

|(χf̂)|Mλ\Σλ
(ξ)|2dµ(ξ) ≤C

∫
Rd−1

|(χf̂)(ξ′, g(ξ′))|2

|ξ′ − z′|
dξ′ (7.3.5)

≤C‖〈Dξ′〉1/2((χf̂)(ξ′, g(ξ′)))‖2L2(Rd−1)

≤C‖χf̂‖2H1(Rd).

where we use the Hardy inequality in the second line and use Proposition 7.7.2 in the
third line. We recall that supp χ is small enough and we identify the integral over Td
with the integral over this fundamental domain [−1

2
, 1
2
]d. This implies ‖χf̂‖H1(Rd) =

‖χf̂‖H1(Td). Since f ∈ l2,1(Zd), we have χf̂ ∈ H1(Td). Thus we conclude (7.3.2). The
estimate (7.3.1) follows from (7.3.5) by using a partition of unity and the standard L2

restriction theorem.

Remark 7.3.3. The assumption d ≥ 3 is needed once more for using the Hardy inequal-
ity.

Now we prove a similar formula as [61, Lemma 7 in the proof of Theorem XIII.33]
around the hyperbolic threshold.

Lemma 7.3.4. For f ∈ l2,1(Zd), we have

1

2π
Im (f,R0(λ± i0)f) =

∫
Mλ

|f̂(ξ)|2dµ(ξ). (7.3.6)

Proof. For f̂ ∈ C∞(Td), (7.3.6) follows from a simple calculation. Let f ∈ l2,1(Zd).
Take a sequence f̂k ∈ C∞(Td) such that f̂k → f̂ in H1(Td). Then (7.3.6) follows from
(7.1.3) and (7.3.1).

Lemma 7.3.5. Let V be a real-valued function satisfying |V | ≤ C〈x〉−2. If u ∈ l2,−1(Zd)
satisfies u+R0(λ± i0)V u = 0, then V̂ u|Mλ

= 0.

Proof. We note V̂ u|Mλ
and (V u, u) are both well-defined, which follow from u ∈

l2,−1(Zd) and V u ∈ l2,1(Zd). Then we have

0 = −Im (V u, u) = Im (V u,R0(λ± i0)V u) = 2π

∫
Mλ

|V̂ u(ξ)|2dµ(ξ).

Thus we obtain V̂ u|Mλ
= 0.
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7.3.2 No resonance in the interior of the spectrum

For 0 ≤ k ≤ d, we define

pk(η) = −
k∑
j=1

η2j +
d∑

j=k+1

η2j .

The next lemma is a weaker version of [61, Theorem IX.41] (which theorem is for
sphere) near the hyperbolic thresholds.

Lemma 7.3.6. Suppose d ≥ 3. Let f ∈ C1(Td) such that f |Mλ
= 0. Then we have

(h0 − λ)−1f ∈ L2(Td).

Remark 7.3.7. We regard (h0 − λ)−1f as a principal value:

((h0 − λ)−1f, ϕ) = lim
ε→0

∫
|h0−λ|>ε

f(ξ)ϕ(ξ)

h0(ξ)− λ
dξ.

However, since f |Mλ
= 0, (h0 − λ± i0)−1f coincides with (h0 − λ)−1f .

Proof. Take ξ0 ∈ Td such that h0(ξ0) = λ and dh0(ξ0) = 0. By the Morse lemma,
there exist an open neighborhood U ⊂ Td and a diffeomorphism κ from U to its image
such that h0(κ

−1(η)) − λ = pk(η) for some 0 ≤ k ≤ d. Set J(η) = | det dκ−1(η)|.
Take a cut-off function χ ∈ C∞(Td, [0, 1]) such that supp χ ⊂ U . We only show that
χ(h0 − λ)−1f ∈ L2(Td). Apart from the hyperbolic threshold, the proof is easier and
omitted since f vanishes at the submanifold h0 = λ.

We may assume that κ(U) ⊂ Rd is convex. We write fκ(η) = f(κ−1(η)) for η ∈
supp κ(U). Since f |Mλ

= 0 holds, we have fκ(|η′′|ø1, |η′′|ø2) = 0, where we write
η = (|η′|ø1, |η′′|ø2) with ø1 ∈ Sk−1, ø2 ∈ Sd−k−1, hence pk(η) = |η′|2 − |η′′|2. Set

a(η) =

∫ 1

0

ø1 · (∂η′fκ)(((1− t)|η′′|+ t|η′|)ø1, |η′′|ø2)dt.

By Taylor’s formula, we see

fκ(η) =fκ(|η′|ø1, |η′′|ø2)
=fκ(|η′′|ø1, |η′′|ø2) + (|η′| − |η′′|) · a(η)
=(|η′| − |η′′|) · a(η).

Thus we have |fκ(η)| ≤ Cη0||η′| − |η′′|| on η ∈ κ(U). Hence we obtain∫
|η−η0|≤1

χκ(η)J(η)
|fκ(η)|2

pk(η)2
dη ≤ C2

η0

∫
|η−η0|≤1

1

(|η′|+ |η′′|)2
dη <∞.

This implies χ(h0(ξ)− λ)−1f ∈ L2(Td).

Proof of Theorem 7.1.7. By the assumption, we note V̂ u ∈ C1(Rn) by the Sobolev
embedding theorem. By Lemma 7.3.5 and Lemma 7.3.6, we have u ∈ l2(Zn).
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7.4 Limiting absorption principle, Proof of Theo-

rem 7.1.9

Suppose d ≥ 3 and |V (x)| ≤ C〈x〉−2−δ with δ > 0. Fix a signature ±. Set

C± = {z ∈ C | ±Im z > 0}, C± = {z ∈ C | ±Im z ≥ 0}.

We define R0,±(z) ∈ B(l2,1(Zd), l2,−1(Zd)) for z ∈ C± by

R0,±(z) =

{
(H0 − z)−1 for ± Im z > 0,

(H0 − z ∓ i0)−1 for z ∈ R.

We recall from [68, Theorem 1.8] that

z ∈ C± 7→ R0,±(z) ∈ B(l2,s(Zd), l2,−s(Zd)) is Hölder continuous (7.4.1)

for s > 1.

Lemma 7.4.1. Let 1 ≤ s < 1+ δ. Then it follows that R0,±(z)V is a compact operator
in B(l2,−s(Zd)) for z ∈ C±. Moreover, a map z ∈ C± 7→ R0,±(z)V ∈ B(l2,−s(Zd)) is
continuous.

Proof. In order to prove that R0,±(z)V is compact in B(l2,−s(Zd)), it suffices to prove
that 〈x〉−1R0,±(z)V 〈x〉 is compact in B(l2(Zd)). We write

〈x〉−sR0,±(z)V 〈x〉s = 〈x〉−sR0,±(z)〈x〉−1 × V 〈x〉1+s

From (7.1.3), we have 〈x〉−sR0,±(z)〈x〉−1 ∈ B(l2(Zd)). Moreover, |V (x)| ≤ C〈x〉−2−δ

with δ > 0 implies that V 〈x〉1+s is a compact operator since each multiplication operator
which vanishes at infinity is a compact operator on l2(Zd). Thus the compactness of
R0,±(z)V follows.

Next, we prove that a map z ∈ C± 7→ 〈x〉−sR0,±(z)〈x〉−1−δ ∈ B(l2(Zd)) is continu-
ous, which implies the continuity of R0,±(z)V ∈ B(l2,−s(Zd)). We may assume δ > 0 is
small enough. By (7.1.3) and a density argument, we have

sup
z∈C±

‖〈x〉−1+δR0,±(z)〈x〉−1−δ‖B(l2(Zd)) <∞. (7.4.2)

for δ > 0 small enough. From (7.4.2), we see that there exists M > 0 such that

sup
z∈C±

‖〈x〉−sR0,±(z)〈x〉−1−δ‖B(l2(Zd),l2(|x|≥M)) <
ε

3
. (7.4.3)

On the other hand, (7.4.1) implies that a map

z ∈ C± 7→ χ{|x|<M}〈x〉−sR0,±(z)〈x〉−1−δ ∈ B(l2(Zd))
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is continuous, where χA is the characteristic function of A ⊂ Rd. Thus there exists
δ1 > 0 such that |z − z′| < δ1 with z, z′ ∈ C± implies

‖χ{|x|<M}〈x〉−sR0,±(z
′)〈x〉−1−δ − χ{|x|<M}〈x〉−sR0,±(z

′)〈x〉−1−δ‖B(l2(Zd)) <
ε

3
.

This inequality with (7.4.3) gives

‖〈x〉−sR0,±(z
′)〈x〉−1−δ − 〈x〉−sR0,±(z

′)〈x〉−1−δ‖B(l2(Zd)) < ε

for |z − z′| < δ. This completes the proof.

Lemma 7.4.2. Let z ∈ C \ R and let s ∈ R. Then H0, H, (H0 − z)−1 and (H − z)−1

preserve l2,s(Zd). In particular, H0 − z and H − z are invertible on l2,s(Zd).

Proof. By using relations [V, 〈x〉s] = 0 and

[(P − z)−1, 〈x〉s] = (P − z)−1[〈x〉s, P ](P − z)−1, P ∈ {H0, H},

it suffices to prove [H0, 〈x〉s]〈x〉−s ∈ B(l2(Zd)). This is easily proved since its Fourier
conjugate [h0, 〈Dξ〉s]〈Dξ〉−s of [H0, 〈x〉s]〈x〉−s is a pseudodifferential operator of order
−1 on Td. This completes the proof.

Lemma 7.4.3. Let z ∈ C±. Suppose that u ∈ l2,−1−δ(Zd) satisfies (I+R0,±(z)V )u = 0.
Then we have u ∈ l2,−1(Zd).

Proof. This lemma immediately follows from |V | ≤ C〈x〉−2−δ and (7.1.3).

Proposition 7.4.4. Let U ⊂ C± be a bounded open set satisfying

{u ∈ l2,−1(Zd) | (I +R0,±(z)V )u = 0} = {0}, for any z ∈ U. (7.4.4)

(i) Let 1 ≤ s < 1+ δ. Then an inverse (I +R0,±(z)V )−1 ∈ B(l2,−s(Zd)) exists for z ∈ U
and

sup
z∈U

‖(I +R0,±(z)V )−1‖B(l2,−s(Zd)) <∞.

(ii) For z ∈ U , we set

R±(z) = (I +R0,±(z)V )−1R0,±(z) ∈ B(l2,1(Zd), l2,−1(Zd)).

Then we have R±(z) = (H − z)−1 for z ∈ U \ R and

sup
z∈U

‖R±(z)‖B(l2,1(Zd),l2,−1(Zd)) <∞.

(iii) Let 1 < s ≤ 1+ δ/2. Then a map z ∈ U 7→ R±(z) ∈ B(l2,s(Zd), l2,−s(Zd)) is Hölder
continuous.
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Proof. Lemma 7.4.1 implies that {I+R0,±(z)V }z∈U is a continuous family of Fredholm
operators with index 0 on B(l2,−s(Zd)). Thus the assumption (7.4.4) implies that I +
R0,±(z)V is invertible for z ∈ U and that a map z 7→ (I + R0,±(z)V )−1 ∈ B(l2,−s(Zd))
is continuous. This with the compactness of U gives the proof of (i).

The part (ii) follows from the part (i), (7.1.3) and the resolvent equation:

(I + (H0 − z)−1V )(H − z)−1 = (H0 − z)−1, z ∈ C \ R.

To prove part (iii), we observe that z ∈ U 7→ (I + R0,±(z)V )−1 ∈ B(l2,−s(Zd)) is
Hölder continuous. In fact, for z, z′ ∈ U , we have

(I +R0,±(z)V )−1 − (I +R0,±(z
′)V )−1

= (I +R0,±(z)V )−1(R0,±(z
′)−R0,±(z))V (I +R0,±(z

′)V )−1.

Part (i), (7.4.1), and V ∈ B(l2,−s(Zd), l2,s(Zd)) imply the Hölder continuity of (I +
R0,±(z)V )−1. This, (7.4.1) and the following representation:

R±(z)−R±(z
′) =(I +R0,±(z)V )−1(R0,±(z)−R0,±(z

′))

+ ((I +R0,±(z)V )−1 − (I +R0,±(z
′)V )−1)R0,±(z

′),

finish the proof of part (iii).

Proof of Theorem 7.1.9. From now on, we assume that V is a finitely supported poten-
tial. We take R > 0 such that σ(H) ⊂ {|z| < R}. Then (7.4.4) holds for

U = {z ∈ C | ±Im z ≥ 0, |z| < 2R, |z| > ε1, |z − 4d| > ε1}.

Moreover, we note σ(H) ∩ Ωε1,± \ U = ∅. Now Theorem 7.1.9 follows from Corollary
7.1.8 and Proposition 7.4.4.

7.5 Lorentz space

For a measure space (X,µ), Lp,r(X,µ) denotes the Lorentz space for 1 ≤ p ≤ ∞ and
1 ≤ r ≤ ∞:

‖f‖Lp,r(X) =

{
p

1
r (
∫∞
0
µ({x ∈ X | |f(x)| > α})

r
pαr−1dα)

1
r , r <∞,

supα>0 αµ({x ∈ X | |f(x)| > α})
1
p , r = ∞,

Lp,r(X,µ) = {f : X → C | f : measurable, ‖f‖Lp,r(X) <∞}.

Moreover, we denote Lp,r(Rd) = Lp,r(Rd, µL) and l
p
r(Zd) = Lp,r(Zd, µc), where µL is the

Lebesgue measure on Rd and µc is the counting measure on Zd. For a detail, see [25].
In this section, we state some fundamental properties of the Lorentz spaces. Note that
Lp,p(X,µ) = Lp(X).
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Lemma 7.5.1 (The Young inequalities in the Lorentz spaces). Let 1 < pi < ∞,
1 ≤ qi ≤ ∞ with 1

r
= 1

p1
+ 1

p2
− 1 > 0 and s ≥ 1 with 1

q1
+ 1

q2
≥ 1

s
. Then we have

‖f ∗ g‖lrs(Zd) ≤ C‖f‖lp1q1 (Zd)‖g‖lp2q2 (Zd).

Lemma 7.5.2 (The Hölder inequalities in the Lorentz spaces). If 1 ≤ p1, p2, q1, q2 ≤ ∞
and 1 ≤ r ≤ ∞ satisfy

1

p1
+

1

p2
=

1

r
< 1,

then

‖fg‖lr
min(q1,q2)

(Zd) ≤ ‖f‖lp1q1 (Zd)‖g‖lp2q2 (Zd).

For these proofs, see [60].

7.6 Harmonic analysis

Proposition 7.6.1. Let m ∈ C∞(Rd \ {0}) be a function on Rd which is compactly
supported, C∞ for ξ 6= 0 and satisfies for a 0 ≤ k < d that

|∂αξm(ξ)| ≤ Cα|ξ|−k−|α|, x ∈ Rd (7.6.1)

for |α| ≤ d− k + 1. Then if we set

I =

∫
Rd

e−2πix·ξm(ξ)dξ,

then |I| ≤ C〈x〉−d+k.
Proof. Since m is compactly supported, we may assume |x| ≥ 1. Take χ ∈ C∞

c (Rd)
such that χ = 1 on |ξ| ≤ 1 and χ = 0 on |ξ| ≥ 2. Set χ̄ = 1− χ. For δ > 0, we have

I =

∫
Rd

(χ(ξ/δ) + χ̄(ξ/δ))e−2πix·ξm(ξ)dξ =: I1 + I2.

Since m is integrable on Rd, we have

|I1| ≤
∫
|ξ|≤2δ

|χ(ξ/δ)||ξ|−kdξ ≤ Cδd−k.

By integrating by parts, for N > d− k we have

|I2| ≤ C|x|−N
∑
|α|=N

|
∫
Rd

e−2πix·ξDα
ξ (χ̄(ξ/δ)m(ξ))dξ|

≤C|x|−N
∑
|α|=N

|
∑
β≤α

∫
Rd

e−2πix·ξDβ
ξ (χ̄(ξ/δ))∂

α−β
ξ m(ξ)dξ|

≤C|x|−N
∑
|α|≤N

∑
β≤α

∫
Rd

δ−|β|χ̄(β)(ξ/δ)|ξ|−k−(N−|β|)dξ.

151



For β = 0, ∫
Rd

χ̄(ξ/δ)|ξ|−k−Ndξ ≤ Cδd−k−N

follows and for β 6= 0,∫
Rd

δ−|β|χ̄(β)(ξ/δ)|ξ|−k−(N−|β|)dξ ≤C
∫
δ≤|ξ|≤2δ

δ−|β||ξ|−k−N+|β|dξ

≤Cδd−k−N .

These imply |I2| ≤ C|x|−Nδd−k−N . We set δ = |x|−1 and obtain |I| ≤ C|x|−d+k for
|x| ≥ 1.

Corollary 7.6.2. Let d ≥ 1, 0 < l < d and Kl be defined by

Kl(x) =

∫
Td

e2πixξ̇h0(ξ)
−l/2dξ.

Then we have a pointwise bound |Kl(x)| ≤ C〈x〉−d+l.

Proof. By the Morse lemma, we have |∂αξ h0(ξ)−l/2| ≤ Cα|ξ|−l−|α| near ξ = 0 for any

multi-index α. Moreover, it follows that h0(ξ)
−l/2 is smooth away from ξ = 0. Applying

Proposition 7.6.1, we obtain |Kl(x)| ≤ C〈x〉−d+l.

Now we define operators H
−l/2
0 for 0 < l < d by

H
−l/2
0 u(x) =

∑
y∈Zd

Kl(x− y)u(y), u ∈
⋂
s>0

l2,s(Zd).

It is easily seen that H
−l/2
0 is a continuous linear operator:

H
−l/2
0 :

⋂
s>0

l2,s(Zd) →
⋃
s∈R

l2,s(Zd).

The next corollary implies that H−1
0 can be uniquely extended to the continuous

linear operator from l2,α(Zd) to l2,−β(Zd) for α, β > 1/2 with α + β ≥ 2.

Corollary 7.6.3 (Discrete version of the HLS inequality). Let d ≥ 1 and 0 < k < d.

Then H
−l/2
0 is bounded from lpr(Zd) to lqr(Zd) if 1 < p < q <∞ satisfies

1

p
− 1

q
=
l

d
(7.6.2)

and 1 ≤ r ≤ ∞.
Moreover, if W1 ∈ lr1∞(Zd) and W2 ∈ lr2∞(Zd) with 1/r1 + 1/r2 = l/d with r1, r2 > 2.

Then we have

W1H
−l/2
0 W2 ∈ B(l2(Zd))

In particular, 〈x〉−αH−1
0 〈x〉−β ∈ B(l2(Zd)) if α + β ≥ 2 and α, β > 0 if d ≥ 4 and

α + β ≥ 2 and α, β > 1/2 if d = 3.
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Remark 7.6.4. This corollary gives H
−l/2
0 〈x〉−l ∈ B(l2(Zd)) for 0 < l < d. In fact,

‖H−l/2
0 〈x〉−lf‖l2(Zd) ≤ C‖H−l/2

0 ‖
B(l

2l
l+2d
∞ (Zd),l2(Zd))

‖〈x〉−l‖
l
d
l∞(Zd)

‖f‖l2(Zd).

These are exactly the discrete Hardy inequalities.

7.7 Restriction theorem for a Lipschitz manifold

In this section, we prove the L2-restriction theorem for a Lipschitz manifold. Its proof
is standard, however, we give its proof for readers’ convenience.

Lemma 7.7.1. Let f ∈ H1(Rd) and g be a real-valued Lipschitz function on Rd−1.
Then it follows that k(ξ) = f(ξ′, ξd + g(ξ′)) belongs to H1(Rd) and there exists C > 0
which depends only on the dimension d and ‖∂ξg‖L∞(Rd) such that

‖k‖H1(Rd) ≤ C‖f‖H1(Rd). (7.7.1)

Proof. It is evident that ‖k‖L2(Rd) = ‖f‖L2(Rd). For j = 1, ...d− 1, we have

∂ξj(k(ξ
′, ξd + g(ξ′))) =(∂ξjk)(ξ

′, ξd + g(ξ′)) + (∂ξjg)(ξ
′)(∂ξdk)(ξ

′, ξd + g(ξ′)),

∂ξd(k(ξ
′, ξd + g(ξ′))) =(∂ξdk)(ξ

′ + ξd + g(ξ′)).

Using this computation, we obtain (7.7.1).

Proposition 7.7.2. Under the assumption of Lemma 7.7.1, we have

‖〈Dξ′〉1/2(f(ξ′, g(ξ′)))‖L2(Rd−1) ≤ C‖f‖H1(Rd).

Proof. In the following, we denote the Fourier transform of f by f̂ . By using Fourier
inversion formula and by using Schwarz’s inequality, we have

|
∫
Rd−1

f(ξ′, g(ξ′))e−2πix′·ξ′dξ′| =|
∫
Rd

k̂(x)dxd|

≤(

∫
R
〈x〉−2dxd)

1/2(

∫
R
|〈x〉k̂(x)|2dxd)1/2

≤C〈x′〉−1/2(

∫
R
|〈x〉k̂(x)|2dxd)1/2.

Thus we have

‖〈Dξ′〉1/2(f(ξ′, g(ξ′)))‖2L2(Rd−1) =‖〈x′〉1/2 ̂f(ξ′, g(ξ′))(x)‖2L2(Rd−1)

≤C2‖〈x〉k̂‖2L2(Rd)

=C2‖k‖2H1(Rd).

This computation with Lemma 7.7.1 completes the proof.
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