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Abstract

In this thesis, we study spectral and scattering properties for generalized Schrodigner
operators. In particular, we investigate essential self-adjointness and limiting absorption
principle for some differential operators on R? and Z<.

In Chapter 3, we show the essential self-adjointness and the limiting absorption
principle for a d’Alembert operator on a Lorentzian space. Unlike the elliptic case, its
proof is non-trivial. Moreover, we need geometric conditions even for operators on the
Euclidean space with asymptotically constant coefficients.

In Chapter 4, we study the spectral properties of a repulsive Schrodinger operator.
We give a micolocal proof for the classical result on its essential self-adjointness. A
spectral property of its self-adjoint extensions is also studied.

In Chapter 5, we study the uniform bound of a Birman-Schwinger operator on a
square lattice. For uniformly decaying potentials, we obtain the same bound as in
the continuous setting. However, for non-uniformly decaying potential, our results are
weaker than in the continuous setting.

In Chapter 6, we investigate LP-mapping properties and the Carleman estimate of
a Fourier multiplier operator and its resolvent. As an application, we prove existence
and completeness of wave operators for a Dirac operator and a fractional Laplacian.

In Chapter 7, we address the precise asymptotic expansions and non-existence of
resonant states for a discrete Schrodinger operator near its threshold energy.
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Chapter 1

Introduction

In this thesis, we study spectral properties of generalized Schrodinger operators. In
particular, we study

e The essential self-adjointness for Schrodinger operators,
e The limiting absorption principle and an application to scattering theory,

e An asymptotic behavior of threshold states at elliptic thresholds and non-existence
of thresholds states at hyperbolic thresholds for discrete Schrodinger operators.

The above topics and the method of these proofs are closely related to the scattering
theory. Main technical tools are harmonic analysis and microlocal analysis.

In Chapter 3 and Chapter 4, we study the essential self-adjointness and spectral
properties of Schrodinger operators. The notion of essential self-adjointness for a
Schrodinger operator P is important since it is equivalent to existence and uniqueness
of solutions to the following time-dependent Schrodinger equation:

i0u(t, x) — Pu(t,x) = 0, u(0,2) = up(x) € L*(R"). (1.0.1)

When the operator P has a form —A + V(x), the essential self-adjointness has beed
widely studied since Kato proved the essential self-adjointness for Schrodinger operator
with the Coulomb potential —A — ﬁ [45]. It is believed that the completeness of
the Hamilton vector field generated by the corrsponding symbol p is closely related
to the essential self-adjointness of P, since they means well-posedness of fundamental
equations in the classical mechanics and the quantum mechanics respectively. A natural
question is whether for a differential operator P and its symbol p

Question 1. Is the completeness of H, equivalent to the essential self-adjointness for
P?.

It is known that the Laplace-Beltrami operator A, is essentially self-adjoint on
C>®(M) if a Riemannian manifold (M, g) is geodesically complete. The converse is
not true, in fact, a Riemmanian manifold M = R™\ {0} with the Euclidean metric is
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not geodesically complete, but the Laplacian is essential self-adjoint on C'°(M) with
n > 4, which means that Question 1 is not always true. In addition, there exists
examples of one dimensional Schrodinger operators for which Question 1 is not hold [61].
Thus a next natural question is to find a sufficient condition for a class of Schrodinger
operators for which Question 1 is true. We expect that microanalysis is very effective for
attacking Question 1, since our approach reveals the connection between the classical
and quantum mechanics.

In Chapter 3, we prove the essential self-adjointness of real-principal type operators
on R™ under a non-trapping condition on the characteristic set. Moreover, we prove the
limiting absorption principle (a resolvent bound) of its self-adjoint extension. A typical
example of our operators is the d’Alembert operator on the asymptotically Minkowski
spacetime. In the quantum field theory, it is important to consider a special solution
to the wave equation, say, the Feynman propagator. In the exact Minkowski space-
time, the Feynman propagator coincides with the outgoing resolvent of the d’Alembert
operator. A natural question is whether this correspondence holds even on curved
spacetimes. In this chapter, we prove the essential self-adjointness (which is needed for
defining its resolvent) and existence of the outgoing resolvent in spacetimes where the
structure near infinity is similar to the exact Minkowski spacetime. It remains still an
open question that our outgoing resolvent coincides with the original definition of the
Feynman propagator.

In Chapter 4, we consider the repulsive Schrodinger operators

P=-A—-(1+]z)*a>1

and show that P is not essential self-adjoint on C2°(R™). This result is classically
known, however, we give another proof of it via the microlocal or scattering technique.
In addition, as byproducts of our analysis, we can prove the following:

e The repulsive Schrodinger operators P has many L? eigenfunctions associated
with almost all spectral parameter z € C in the distributional sense.

e Every self-adjoint extension of P has the discrete spectrum when the space di-
mension is one.

These results show that the repulsive Schrodinger operator with o > 1 has spectral
properties similar to the Laplacian in a bounded domain 2 C R"™.

In Chapters 5, 6 and 7, we mainly study the spectral properties of the discrete
Schrodinger operator. The discrete Schrodinger operator is a natural discretization of
the Laplacian on the Euclidean space. Moreover, the discrete Schrodinger operator
appears in the model of an electron under the tight-binding approximation in the con-
densed matter physics and in the Anderson model of the random Schrodinger operators.
Some mathematical structure of the discrete Schrodinger operator is different from that
of the Schrodinger operator on the Euclidean space. For example,

e The discrete Schrodinger operator has thresholds strictly inside its spectrum.



e The discrete space Z? has less symmetry than the continuous space R

We study the above apply this with the spectral theory and the scattering theory for
the discrete Schrodinger operator.

In Chapter 5, we study a kind of limiting absorption principle for discrete Schrédinger
operators:

1 _ 1
sup [[[V]2(Ho — 2) V|2 | a2y < o0, (1.0.2)
zeC\R

where the above operator is also called the Birman-Schwinger operator. A question
which we consider is the following:

Question 2. What is the conditions on V' for which (1.0.2) hold?
In the case of Hy = —A on R?, similar results are known as
e (1.0.2) hold if d > 3 and V() = ()72, d > 3 and V € L2>=(R) ([50], [47]),

e (1.0.2) does not always hold if d = 1,2; d > 3 and V(z) = (z)7* with k < 2;
d>3and V € LP>(R?) with p # 4,

where LP"(R?) denotes the Lorentz space. For discrete Schrodinger operators, we show
the following:

e (1.02) hold if d > 3 and V() = ()72, d > 4 and V € 15°(Z%),

e (1.0.2) does not always hold if d = 1,2; d > 3 and V(z) = (z)7* with k < 2;
d>5and V € P(Z4) with p = £,

Compared with the results on R%, if V has the form (z)~*, our results are same as that
on R?. However, in the case of a general class V' € [P, our results are very different from
that on R%. This seems to reflect a lack of symmetry of the discrete space Z?¢. Moreover,
as a byproduct of our analysis, we show existence of the Feynman propagator on the
exact Minkowski spacetime and its mapping property.

In Chapter 6, we study the LP — L%-mapping properties of resolvents of Fourier
multipliers. We extend the results by [11] to (p, ¢) which is not Hélder exponent. More-
over, using the same method, we show the Holder continuity and a Calreman type
estimate which are quite useful for scattering theory. As an application, we show exis-
tence and completeness of the wave operators for the Dirac operators and the fractional
Schrédinger operators.

In Chapter 7, we study thresholds properties for discrete Schrodinger operators.
More precisely, we prove

e Threshold resonances (or eigenfunctions) at the elliptic thresholds have the same
properties as threshold resonances for continuous Schrodinger operators

e There is no threshold resonances (or eigenfunctions) at the hyperbolic thresholds.
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Due to the celebrated work by Jensen and Kato [42], it is known that properties and
existence of threshold resonances (or eigenfunctions) are closely related to time decay
properties of the time propagators. From our results, in the discrete setting, we expect

e Near the elliptic thresholds, time decay properties are the same as that of the
continuous time propagators

e The hyperbolic thresholds are harmless for time decay properties of the time
propagator.

We would like to leave these justification in future work.

A part of the results in Chapter 3 are from joint work with Shu Nakamura [58], the
results in Chapter 5 are from joint work with Yukihide Tadano [68] and the results in
Chapter 7 are from joint work with Yuji Nomura [59].



Chapter 2

Microlocal analysis

2.1 Definition of pseudodifferential operators

First of all, we recall the standard theory of microlocal analysis: the definition of the
pseudodifferential operators, some basic calculus, symbol classes, and the Garding type
inequalities. The symbol classes which we mainly use in this paper, are not the standard
Kohn-Nirenberg classes S*, but so-called scattering symbol classes S*!. Symbols of
the scattering classes have many better properties than the Kohn-Nirenberg symbols
and play important roles for our analysis on the real principal type operators and the
repulsive Schrodinger operators.
For a € 8'(R"), we define the Weyl quantization of a by

Op(a)uli) = s [ D4l uln)dude, e SR

which maps 8(R") to 8'(R") continuously. This definition of quantization is a bit
different from one of the standard quantization:

1

a(x, D)u(x) = @n)

[ et ulwdyds, we s
R2n

2.2 Symbol class, symbol calculus
Let k,l € R. For a € C*(R*"), we call a € S®! if

1050¢ al, €)| < Capla)~1(g)*V
where C,5 is independent of (z,&) € R**. Moreover, we denote

Sk,foo _ msk,l’ Sfoo,l _ ﬂ Sk’l, §—o0 =0 m Sk’l.

IR keR k,l€R



For a € SH(R") with k,l € R, the range of Op(a) in §(R") is contained in §(R™) and
hence

Op(a) : 8(R™) — §(R")

is continous. Moreover, if a € S7°7>°  then Op(a) can be uniquely extended to a
continuous linear map

Op(a) : 8'(R") — S(R").
We define the Poisson product of a and b by
{a,b} == H,b = 0ca - 0,b — Oya - Ocb.

It is known that the Weyl quantization has the following symmetric property: Let
a € S*! be a real-valued symbol with some k,I € R. Then it follows that Op(a) is
formally self-adjoint on L?*(R™), that is,

(u, Op(a)w) 2mny = (Op(a)u, w) r2@ny for u,w € S(R"). (2.2.1)

Lemma 2.2.1.

(i) (L?-boundedness) Let k,1 < 0 and a € S®. Then a continuous linear map Op(a) :
S8(R") — 8(R™) can be uniquely extended to a bounded linear operator on L*(R™).
Moreover, there exists C, M > 0 which depend only on the dimension n such that for
a € S*°, we have

10p(@)llpw < C Y sup [92a(z)].

|a|<M ZER*"

(ii) (Compactness) If k,1 < 0 and a € S®', then Op(a) is a compact operator on L*(R™).

(iii) (Composition ) Let kj,l; € R for j = 1,2, a € S*h and b € S*'2. Then there
exists ¢ € Sk ka2 gych that

Op(c) = Op(a)Op(b), we denote a#b = c.
In addition, we have

a#b(x,§) —i@D) (a(z,§)b(Y,m))le=y.c=n

:in e~ 20 wrw2) o (o 4wy )b(z + we ) dw duws,
™ R4n
where z = (z,§) and
o (5,6, y ) =€ -y~ n, QD) = 5o(D)
Q- (3 ‘OJ) € GL(An,R), J — (_OI é) € GL(2n,R).



Moreover, we have
[Op(a), iOp(b)] = Op(H,b) 4+ OpSkithe—2htz=2
where we note
H,b € OpSkithe=Lita=1

(iv) (Disjoint support property) Let ki, l; € R for j = 1,2, a € S*! and b € Skt
Suppose

dist(supp a, supp b) > 0.

Then we have a#b € S™°7°,

(v) (Sharp Gdrding ineqality) Let a € S™ with k,1 € R. Suppose a(x,£) > 0 for
(z,€) € R?™. Then there exists C > 0 such that for u € §(R™)

(U,OP(G)U/)LQ(Rn) > —CHUHkal,l—l(Rn).

In chapter 3, we will use more general symbol S(m,g). See [30, §18.4, §18.5] for
more detail.

2.3 Auxiliary lemmas

The following lemma implies that the microlocal wavefront set is characterized by the
semiclassical wavefront set.

Lemma 2.3.1. Let (z9,&) € R* with & # 0 and uw € L*(R™). Suppose that there
exists ag € S such that ay(xo, &) > 0 and ||Op(agpn)ullLz = O(h¥€) for some & > 0,
where ap(z,€) = a(x, h€). Then it follows that u € H* microlocally at (xq,&).

Proof. First, we prove that there exists a neighborhood U of (zg, &) such that for any
a € S supported in U, we have ||Op(an)u| 2z = O(h**¢). Take a relatively compact
open set U such that infy; ag > 0 and UN{¢ = 0} = 0. Let a € S satisfying supp a C U.
By the standard parametrix construction, we can find b € S such that

ap, = bpFagn + Og(h™).
Thus we have
10p(an)ullL2 < |0p(br)ll2) |Op(aos)ull 2 + O(h®|ul|L2) = O(K**e).

We may assume that u is supported around zg. Let x € C*°(R™;[0,1]) such that
X(x,&) = 1 near a conic neighborhood of &, and is supported in a conic neighborhood
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of &. It suffices to prove (D)*x(D)u € L?. We note
(DY x(D)ullz2 = )" x(&)allZ2(1<1) + Z €Y X (€)itl| T2 2 <[ <o)
j=1

< C|’X(f)a“%2(|g\§1) + Z 22jk”X(f)aH%?(zjgangl)

j=1
Thus we only need to prove

||X(€)a||%2(2]g|f‘§23+1) = 0(2_2J(k+8))

This follows from the scaling and the first half part of the proof. O
The following lemma is useful for justifying the regularizing argument.

Lemma 2.3.2. Let k,l € R, a; € S* be a unifornly bounded sequence in S** and
a € S Suppose a; — a in SFTOH for some § > 0. Then, for each s,t € R and
u € H'(R™), we have

1(Op(a;) — Op(a))ul

Proof. Let u € L?*(R™) and € > 0. Set

He—kt-¢wny — 0 as j — oo.

C = ||Op((l>||B(Hs,t7Hsfk,t—é) -+ Sup ||Op(aj)||B(Hs,t’Hsfk,tfé).
J

Take w € 8§(R™) such that ||u — w| gt < e/C.

Op(a;)u — Opl(a)ul
<[0p(a;)u — Oplaz)uwl st + | Oplazhw — Op(a)ul

+ [|Op(a)w — Op(a)u|

<C|lu — w|| gs+ + ||Op(a;)w — Op(a)w|| gs—r.c—e

<& + | Op(az)w — Op(a)ul

Hs—k,t—¢

Hs—k,t—¢

Hs—k,t—¢

Hs—k,t—¢.

Taking j — co, we obtain the desired result. O
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Chapter 3

Essential self-adjointness of
real-principal type operators

3.1 Introduction

In this chapter, we consider formally self-adjoint real principal type operator P = Op(p)
on the Euclidean space R™ with n > 1, where Op(-) denotes the Weyl quantization.
A typical example is the Klein-Gordon operator with variable coefficients (see Re-
mark 3.1.2), and the propagation of singularities plays an essential role in the proof of
the essential self-adjointness.

We suppose the symbol p(z, &) is real principal type with asymptotically constant
coefficients in the following sense:

Assumption A. Let m > 2, p,p,, € C®(R?*) and py € C°(R") be real-valued
functions of the form

p(x,) = > aa(®)E%, pnlr,) = Y aa(®)€, po(&) = D bal®

la|<m |a|l=m la|=m
where b, € R and a, € C*(R") such that for any multi-index a € Z7,
|a£(aa(x) —ba)| < Cﬁ<x>_“_‘6|7 r e R"

with some > 0, where we set b, = 0 for |a| < m — 1. Moreover, there exists C' > 0
such that

CTHE™ T < Oepo(§)] < CLEI™, CTHE™ T < |Oepm(@, €)] < ClE™
for (z,¢&) € R?™.

Let (y(t),n(t)) = (y(t, o, &), n(t, 0,&)) € CHR x R*;R?*") be the solution to the
Hamilton equation:

U0 = TEO00), G0l = = FEOm0), e R



with the initial condition: (y(0),7(0)) = (x¢,&) € R**. We suppose the following null
non-trapping condition:

Assumption B. For any (x¢,&) € p;,}(0) with & # 0, |y(t, z0,&)| — oo as [t] — oo.
Our main theorem is the following:

Theorem 3.1.1. Suppose Assumption A and B. Then P = Op(p) is essentially self-
adjoint on C°(R™).

Remark 3.1.2. (Klein-Gordon operators on asymptotically Minkowski spaces) Let go
be the Minkowski metric on R™: gy = dz} — daj — ... — dx? and g;' = (g¢)7,—, be
its dual metric. A Lorentzian metric g on R” is called asymptotically Minkowski if
g H(x) = (9" (x))} ;= satisfies, for any a € Z% there is C, > 0 such that

|05(g7 () — g¢')| < Cafx) ™7,z eR",
with some g > 0. Suppose V(z), A;(z) € C*(R™;R), j =1,...,n, such that
02V ()] < Cala) ™7, |07 A4;(2)] < Cofz) ™1,z e R™,

for any a € Z% . Then the symbol

pla,&) = Y g* (@) (& — Aj(2))(& — Ar(x)) + V()

7,k=1

satisfies Assumption A. The essential self-adjointness for this model is studied by

Vasy [75].

Remark 3.1.3. In this paper, we only deal with operators with order greater than 1. The
essential self-adjointness of first order operators on C'2°(R™) can be proved by Nelson’s
commutator theorem with its conjugate operator N = —A + |z[*> + 1 ([61, Theorem
X.36]). We also note that if P commutes with the complex conjugation: Pu = Pu,
then, it is enough to assume the forward null non-trapping condition only instead of
null non-trapping condition (cf. [61, Theorem X.3]).

The study of essential self-adjointness has a long history but mostly on operators of
elliptic type (see [61] Chapter X and reference therein). For the construction of solutions
to evolution equation with real principal type operators, we refer the classical paper
[13] by Duistermaat and Hormander, and the textbook by Hoérmander [30]. Chihara
[9] studies the well-posedness and the local smoothing effects of the Schrodinger-type
equations : Qu(t,z) = —iPu(t,z) under the globally non-trapping condition. The
well-posedness implies essential self-adjointness of P if the operator P is symmetric.
We assume the non-trapping condition only for null trajectories, since the microlocally
elliptic region should not be relevant.

Recently, the scattering theory for Klein-Gordon operators on Lorenzian manifolds
has been studied by several authors (see, e.g., [3, 20, 75] and references therein). We
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also mention related work on Strichartz estimates for Lorenzian manifolds ([23, 55, 69]),
nonlinear Schrédinger-type equations with Minkowski metric ([22, 66, 77]), and quan-
tum field theory on Minkowski spaces ([76, 21]). In order to study spectral properties
of such equations or operators, self-adjointness is fundamental. We note a sufficient
condition for the essential self-adjointness is discussed in Taira [69]. The essential self-
adjointness for Klein-Gordon operators on scattering Lorentzian manifolds is proved by
Vasy [75] under the same null non-trapping condition. We had independently found a
proof of the essential self-adjointness using different method for compactly supported
perturbations (we discuss the basic idea in Section 3.5). Inspired by discussions with
Vasy during 2017, we generalized the model to include long-range perturbations, and
also to higher order real principal type operators. Our proof is considerably different
from [75], relatively self-contained, and hopefully simpler even though our result is more
general than [75] for the R™ case.

This chapter is constructed as follows: Our main result is proved in Section 3.2. In
Subsection 3.2.1 we show that (P — i)u = 0 implies u is smooth. The basic idea of
the proof is analogous to Nakamura [57] on microlocal smoothing estimates, and relies
on the construction of time-global escaping functions (see also Ito, Nakamura [41] for
related results for scattering manifolds). The technical detail is given in Section 3.4.
In Subsection 3.2.2, we show the local smoothness implies an weighted Sobolev esti-
mate, which is sufficient for the proof of the essential self-adjointness. The idea is
analogous to the radial point estimates of Melrose [53], and also related to the posi-
tive commutators method of Mourre. Here we construct weight functions explicitly to
show necessary operator inequalities. The proof relies on the standard pseudodifferen-
tial operator calculus. In Section 3.3, we prove non-trapping estimates for the classical
trajectories generated by p,,(z, ), which are necessary in Section 3.4. The main lemma
(Lemma 3.3.2) is a generalization of a result by Kenig, Ponce, Rolvung and Vega [49],
though the proof is significantly simplified. In Section 3.5, we give a simplified proof
of the essential self-adjintness for the compactly supported perturbation case. In this
case the relatively involved argument of Subsection 3.2.2 is not necessarily.

3.2 Proof of Theorem 3.1.1

By the basic criterion for the essential self-adjointness ([61, Theorem VIL.3]), it is
sufficient to show
Ker (P* +1i) ={0}

to prove Theorem 3.1.1. Since D(P) = C°(R"™), we have D(P*) = {u € L*(R") | Pu €
L*(R™)} where P acts on u in the distribution sense. We hence show:

(P +i)u =0 in D'(R") for u € L*(R") implies u = 0.

“_m

We only consider case. The “+” case is similarly handled. Moreover, we note if u
m—1 1
satisfies (P—i)u =0and u € H 2z "~ 2(R"), then u = 0 follows from a simple argument
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in [75]. Namely, we take a real-valued function ¢ € C*({t € R|t < 2}) such that
Y(t) =1 for t <1 and set Yg(z,&) = ¥({x)/R)¥((£)/R). Then we have

—2i|’UH%2 = (PU,U)H - (U; PU)L? = ]%ET;O([OPWR),P]U,U)L?‘

We note that [Op(¢g), P] is uniformly bounded in OpS™~!~! and converges to 0 in
OpS™m~149=140 a5 R — oo for any 6 > 0. We obtain u = 0 by using Lemma 2.3.2.
Thus, in order to prove Theorem 3.1.1, it suffices to prove
Proposition 3.2.1. If u € L2(R") satisfies (P —i)u =0, then u € H™s 2.

The proof of Proposition 3.2.1 is divided into two parts. In Subsection 3.2.1, we
prove the local smoothness of u. In Subsection 3.2.2, using the local smoothness of u,
we prove weighted Sobolev properties of w.

3.2.1 Local regularity

The main result of this subsection is the following proposition. We note that we need
the null non-trapping condition only for this proposition.

Proposition 3.2.2. If u € L*(R"™) satisfies (P —i)u = 0, then u € C*(R").

Proof. 1t suffices to prove u € HJ (R") for any k¥ > 0. We use the contradiction
argument. Suppose u ¢ HF _(R") with some k. By Lemma 2.3.1, there exist (z, &) €
R™ x R™ with & # 0, C' > 0, and a sequence {hy} C (0, 1] such that for any a € C§°(R")

with G,(.To,fo) = 1,
|
hy = 0 as £ — oo, and ||Op(ap,m)ul| > Ch;/"

where ap . (z,&) = a(z, hﬁﬁ). We may assume (z9,&) € p,,,}(0) since u is smooth
microlocally in R*" \ p1({0}). Now we use the following proposition.

Proposition 3.2.3. There exists a family of bounded operators {F(h,t)}o<h<i >0 on
L*(R™) such that

(i) F(h,0) = Op(¥n)* = Op(vn)*Op(vn), where iy, satisfies Yy (x0,8) > 1 and for

any o, f € 7,

0002 (2, €)] < Coghint ()71,

(i) There exists C' > 0 such that for 0 < h <1,

|F(h,t)|| perzy < C{typTm T2/ m=0 "¢ > 0,
(iii) There exists R(h,t) € B(L*(R™)) such that
iF(h,t) + [P, F(h,t)] > —R(h,t), t>0,

dt
igg)(t>_1||R(h,t)||B(L2) =O0O(h™) ash—0.
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Proposition 3.2.3 can be proved similarly as [57, Lemma 9]. For the completeness,
we give a proof of Proposition 3.2.3 in Section 3.4. Now we set u(t, z) := e 'u(x). Then
u(t, z) satisfies

iOpu(t,z) — Pu(t,z) =0, ||u(t)|| 2@ < e “|ullp2@n,

where the first equality is in the distributional sense. We set Fy(t) = F'(hs,t). Then,
we have

ChE T <|Op(tn,Jull? = (u, Fi(0)u)
~(u(0) Fit)u) = [ 4 (us). Fls)ute) s

= (u(t), Fy(t)u(t)) — /O t (u(s), (%(s) +ilP, F[(s)]>u<s)) ds

a2 t
<Oh T (e ull? + O(h) - lull / e (s)ds,
0

where all the inner products and norms here are in L*(R"), and O(h{°) is uniformly in ¢.
Now, we take t = h; ' then we conclude a contradiction. Thus, we obtain u € Hf_(R")

for any k > 0. This completes the proof of Proposition 3.2.2 m

3.2.2 Uniform regularity outside a compact set

In this subsection, we prove a priori sub-elliptic estimates near infinity. The following
estimates are based on the radial points estimates in [53], where the radial points esti-
mates are used for scattering theory on scattering manifolds. By the classical propaga-
tion of singularities, the singularities of a solution to Pu = 0 (provided P is real-valued
real principal type) propagate along the Hamilton flow associated with p. At points
where the Hamilton vector filed vanishes, we may use the so-called radial points, which
implies u is rapidly decaying at a radial source if v has a threshold regularity at the
radial source.

In our case, the radial points estimates are analogous to the Mourre estimate mi-
crolocally near outgoing or incoming regions, which is used commonly in scattering
theory. We give a self-contained proof of the radial point estimate based on an explicit
construction of escaping functions. We note the operator theoretical framework of the
Mourre theory is not applicable here since we do not have the self-adjointness of P at
this point.

We set

P:PO_I'Qa POZPO(Dx)v Q:OP<Q),

where

0(,€) = p(a,€) — olE) € 5™, V(,6) = pl,€) — pnl,€) € S
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We use the following smooth cut-off functions: Let X € C*°(R) be such that

1 ift<1
X(1) = PP=T o 0<x) <1, X()<0 forteR,
0 ift>2,

and supp X’ € (1,2). We write X(t) = 1 — X(t), and
Xu(z) = X(|z[/M), Xum(x) =X(|z[/M), zeR",
with M > 0. A main result of this subsection is the following theorem.

Theorem 3.2.4. Let v > 0 and z € C\ R. There is M > 0 such that if ¢ € L*(R"),
(P —2)p € 8(R™) and Xy (z)p € C°(R™), then ¢ € HF1=m/2=7 0 gr+1/2=7=1/2 for
any k € R.

Now we show Proposition 3.2.1 follows from Theorem 3.2.4.

Proof of Proposition 3.2.1. Suppose that u € L?(R™) satisfies (P —i)u = 0. By Propo-
sition 3.2.2, we have u € C*°(R"). In particular, we have X/ (z)p € C*(R") for any
M > 1. Taking v = 1/2 and k = m — 1, we obtain p € H™/?~Y/2 c Hm=1/2=1/2 This
completes the proof of Proposition 3.2.1. n

Thus it remains to prove Theorem 3.2.4. In the following, we assume Im z > 0
without loss of generality. We may also assume 0 < v < min(1/4, u1/2).

Weight functions
We choose p(t) € C*°(R) such that

0 ift<o0
t) = - 0<pt)<1, p{t)>0 forteR.
p(t) {1 > 18, <pt) <1, p(t) =0 for

For § € (1/2,7/8), we set
Pt)y=pt—20), P t)=1-pt+1-=05), ph(t)=1-7p"@)—p (),

for t € R. We use the following notation:

p= T w© = a6 =S e =2 i),

|

Then we set
0 (2,€) = (P2 ()" + po () + p% ()| )e ™",
which is defined for z,£ € R™ \ {0}. We introduce cut-off functions and set

D (2,6) = B (2, )X ()X, (), w,€ €R™
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with M, v > 0. We also write
(M, v) = {(2,€) | M < |a| <2M, |¢] = v},
Q(M,v)={(z,9) | |z| > M,v < |¢] < 2v}.

The next lemma is a key of the proof of Theorem 3.2.4.

Lemma 3.2.5. Let 1/2 <6 < 6 < 7/8, keR,0< M < M,0<v<v, and write

B =O0p(t,). B=O0p(t,)

If M is sufficiently large, then: There are pseudodifferential operators S = Op(fy),
T = Op(fa) such that fi, fo € S(1,9) and supp [f1] C Q1 (M, v), supp [f2] C Qa(M,v);
]fSD c 8/ B(,O c Hk 1+m/2, 1/2 B(P— Z)(p c HF (m— 1/21/2 SQD c HEtm=1)/2 401
Ty € L? then

BQO c Hk: N Hk+(m—1)/2,—1/2.
Moreover, For any N > 0 and k > 0 there is C' > 0 such that
HBSOHEH(m—l)/z 12+ (Im Z)”BSDH?#

< C(||B(P = 2)@l|3itm-nj2asz + [Pz =
+ 1Sl Ferim—nye + 1 Tol 72 + @l 3-v-n)- (3.2.1)

Remark 3.2.6. The constant C' in the lemma is independent of ¢ and z € C\ R. We
note we assume By € H kt(m=1)/2=1/2 for technical reasons, though only the norm of
By in H®=1 appears in the RHS of (3.2.1).

Theorem 3.2.4 follows from Lemma 3.2.5.

Proof of Theorem 3.2.4. For j =0,1,2,..., we choose v; and 7; so that
O<l;0<V0:ﬁl<V12172<V2:"'<50<OO

with an arbitrarily fixed o > 0. We then choose M; and M so that the claim of Lemma
3.2.5 holds with k = j/2, M = M;, M = M, and

0< My< My= M, <My =M, < My =

We also set §; = (1 +277)/4 andﬁj =061 =(1+2-277)/4for j =0,1,2,.... We
write B] = Op(b?\gj,uj‘% B] = Op(bf\% D~) = ijl-
Suppose ¢ € L? and (P — 2)¢ € §(R™). Then we note
B;(P — z)p € §(R").

At first, we have By € H*™7 ¢ H>~'/2. By Lemma 3.2.5 with k = 1 — m/2, we learn
Byp = Byp € H'"™20HY2-1/2 provided Sp € H'/? and Ty € L2, which are satisfied

18



under the assumptions of Theorem 3.2.4 (with My < M). Then we use Lemma 3.2.5
again with k = (3 —m)/2 to learn Byp = Byp € HG=™/2 0 {112 Tterating this
procedure 2k-times, we arrive at

BQkSO c Hk—l—l—m/Q N Hk+1/2’_1/2.

Note that conditions S¢ € H*?**1/2 and Ty € L? are satisfied since yr(x)p € C=(R").
Now we use the first inclusion Bogp € HFt1=™/2 We recall, by the assumption, X €
H¥*1=m/2 and this implies
nggO + XM(J,’)QO S Hk+1_m/2.
Since
bary +Xu(z) > cofx)™7,  [§] > 20,

by the elliptic estimates (or the sharp Garding inequality), we have ¢ € HFH1=m/2=7,
@ € H¥1/27771/2 follows from Byyp € H*1/271/2 by the same argument. O

For the proof of Lemma 3.2.5, we compute the commutator of B and P, and then
use a commutator inequality. We write b = b?\/f,w b= b5 59 P} = p, and p, = p°, where
x = +,—, or 0. The following lower bound for the P01sson bracket is crucial in the
proof of Lemma 3.2.5.

Lemma 3.2.7. Let k, M and v be as in Lemma 3.2. 5. If M is sufficiently large, there
ore symbols f1,fy € S(1,g) such that supp (] C 01(M,), swpp (] © 02(M,),
fi, fa >0, fo < Clx)~OH=20/2p and 64 > 0 such that

0. (€} 2 au ey — (e - g2

e
Proof. We first note

8 E zez\. |v| 5
= — =
v O = "< (|a:| e )> 2T

where F denotes the identlty matrix. We also note

po=—ry =0 Ol =2, v (Oefx]) = [v]0- 2 = |vln.
Using these, we compute:
{po,b} =v-0,b
= (v~ ) {p_lx|" + po + Pl ™ =y (p-lx[" + po + pi|2|T7) } x
X Xpr ()X, (§)e™"
+ (v Dulal) (vp-la ™ = 7o l2] ) Rs ()X, ()
+ (0 Bl ) (p- |2 + po + pala| ) MTIX (] /M), (€)™

= M(1 — ) {p (=] = 1)+ (l2]77 = 1) = v(p-|z|" + po + po|z| ") } x

|
X Xar (€)X, (€)™ + V% (o2 = mpa |27 X ()X, (€)e ™ + 1,
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where
1~ -
ro(x,€) = [0(&)|n(z, )Y (x, )M X (|| /M)X, (€),
which is supported in € (M, v). We may suppose M > 1, and then
Pz =1) <0, p(lz[77=1) <0
on the support of b. We also note

np—(n) < (=7/8+8)p-_(n), —np+(n) < —dpi(n),

and
(1=n*)po(n) > min(1 — (6§ — 1)1 — (6 4+ 1/8)%)po(n).

We set
J3 = min(7/8 —6,6,1 — (6 —1)%,1 — (6 +1/8)) > 0.

We substitute these inequality to the above formula on {pg, b} to learn
v N~ - _
(.t} < =202/ -+ polal? el P Ras (@K€ 7

< —5 b, &) + ro(a ©).

2|
Then we have
—{po, b} = —2b{py, b} > 2537%62 + 2bry.
T
This also implies
v
—{po, (£)*b*} = —2b{py, b} (€)% > 2537%'(@2’%2 + 2(6)%brrg. (3.2.2)

On the other hand, we have {q, (€)%*?} € S((z)=#+t=1(£)Z+m=1 g). We consider
this function in more detail. We note, for any «, 8 € Z1,

0206 (2,€)] < Capla ™[, 2, # 0, (3.2.3)
with some C,s > 0. We also note

{Q7 b} = {Qa bg}yM<m)
= {Qa bé}YM(x)

(€) + 0 {g, X ()X, (€)}

X,
X, (&) + 71+ 1o,

where

1 =0 (0¢q) - (0Xan) X (€), 72 = —0"Xas(2)(00q) - (9Xo).
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We observe that r; is supported in Q; (M, v), and r; € S((£)™71, g); ro is supported in
Qo(M,v) and ry € S((z)~17# g). Using (3.2.3), we have

[{a, b YXas ()X, (§)] < Car) 7 7HE ™ X ()X, (€)

< C'M —(p— 2fy)|v(£)|b(x é—)
|

with some C,C" > 0. Hence we learn

{q’< >2kb2} > 90" M~ 2v) |U( )|<§>2kb2+2<§>2kb7“1—|—2<§>2ka2,

|z]

uniformly in M > 1. Combining this with (3.2.2), we learn

{1 (9) 2 (2007 — 20D 02 4 2000+ 1 + 7).

We recall v < /2. We now choose M so large that 20" M ~(#=27) < §3v, and we obtain

{%@WV}Z%%%@WV+2@%Wb+h+W)

|
|
We note supp [ro + 1] € Q1(M,v) and ro +r; € S(()™ 1, g), hence we can find
f1€8(1,9), f1 >0, supp [f1] € Q1(M,v) such that

2(6)%b(ro +11) > —(€)* L

Similarly, since supp [r2] @ Qo(M,v), r2 € S({x)7#71 g), we can find fo € S(1,9),
fa >0, supp [f2] C Q2(M,v) such that

2 bry > —f2 and 0 < fy < Oaz)~HHr=20/2p,

By setting d4 = 037, we arrive at the conclusion of the lemma. O

We write ) .
B=0p(b), B=0p(b), A= (D,)m D212

Lemma 3.2.8. Under the above assumptions, there are pseudodifferential operators
S, T,U,V and a constant 64 > 0 such that

—i[P, B(D,)*B] > 64B(D,)*|A|*(D,)*B — S*(D,)**™™1S —T*T —U -V,
where
(i) S € OpS(1,g) and the symbol is supported in (M, v);

(i) T € OpS(1,g) and the symbol is supported in Qa(M,v);
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(i) U = Op(u) with u € S({x)*~2(&)**™=2 g) and or any a, 8 € "},
0507 u(w, &) < C(x) 2ol (g)#m=2Plp(z, £)*;
(i) V€ OpS({z)™>(6) ™, ).
In the proof of Lemma 3.2.8, we use the following estimate:

Lemma 3.2.9. Suppose a be a symbol such that supp a] C ', where Q' = {(z,€) |
lx| > M’ €| > V'} with M' > M, V' > 1, and for any o, 8 € YAS

|00 alx,€)] < Capla)* 11> b(x, €)%,
where s, € R. Then for any N, there is C,Cyn > 0 such that

(¢, Op(a)p)| < C||By|

Proof. We note, for any o, 8 € Z7,

e T Onllplli-n-n, o € S(R").

10207 b(x, €)| < Clgla) o2 WtB (N olp(2, €),  (2,6) € .

We write g = (x) 2T dx? + (2)17(€)2d€?. Using the above estimate and the assump-
tion on a, and following the construction of parametrices for elliptic operators, we can
construct a symbol h(z,&) € S(1, g) such that

Op(a) = B{x)(D,)*Op(h)(D,)*(x)'B + R,

where R € S({(x)°°(¢)~>°,g). The assertion follows from this since Op(h) is bounded
in L2(R"). O

Proof of Lemma 3.2.8. By the standard pseudodifferential operator calculus, we can
find fi, fo such that f; € S(1,¢), supp [f;] C Q;(M,v), 7 =1,2, and

Op((&)* ™1 f7) < Op(f1)* (Do) ™' Op(f1) + Ru,
Op({(z)* 7 £3) < Op(f2)*Op(f2) + Ra,

where R; are smoothing operators. We set .S = Op(f1) and T = Op(fs). If we write

() = (o, (%) — 54%@21%2 Ll 2 s,

We note, by the construction, ¢(z, &)V (z,£)72 € S((x)~1(£)* ™1, g), where b’ = by,
with M < M’ < M, v <V < v. Hence by the sharp Garding inequality, we have

Op(C(H)72) = —C(D,) =12 () =2(D, k= tm/2
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with some C' > 0. Then by the asymptotic expansion, we learn
OP(C) > —CB’(DI>k_1+m/2<$>_2<Dx>k_l+m/28/ o RB,

where Ry € S({z)73(£)%+tm=3 ¢), and the symbol is supported in supp [b'] modulo
§(R??). Using Lemma 3.2.7, we can estimate R3 and other error terms from below by
—CB(D,)—1+m/2(2)=2(D,)*"1*™/2 B modulo smoothing operators, and these will be
included in U to complete the proof. Il

Lemma 3.2.10. For ¢ € 8$(R"), the inequality (3.2.1) holds, where S = Op(f1),
T = Op(f2)7 f17f2 € S(l7g>7 and supp [fl] - QI(M7 V); supp [f?] - QQ<M7 V)'

Proof. We compute the commutator to obtain quadratic inequalities. For ¢ € §(R™),
we have

< —i[P, B{D,)*Blp) = (¢, —i[(P — 2), B<D )**Blp)
—i(({Dx)*B(P = 2), (Dx)* Bo) — ({Dx)* B, (D2)* B(P — 2)¢))
—i(((A) (D) B(P — 2), A(D) ng>
< Dm>kBg0, )*(ny“B(P — z)gp>) —2(Im = || kB(pH
<2[(A") (DY B(P — 2)|| - | A(D2)*Beo|| — 2(Im 2)||{D,)* Be||.

Combining this with Lemma 3.2.8, we have

31| MDY Be||” +2(Im 2)[[(D.)* B
— (. (S*(D,)#+m= 1S+T*T+U+v)so>
< 2 (A7) (Do) B(P — )| - | A(D:)* B

< DA Bl + S| (DB - 2o
Thus we have
2 MDY Bl + 2(1m )] (D) B
< §4H<A1>*<Dx>kB<P -4l
+ (o, (S*(D) 1S+ T T + U + V) ).
Now we note, by Lemma 3.2.9,

(9, Up) < ClIBolfgurimsz + Clllfy-n-n

with any N. These imply (3.2.1) for ¢ € §(R"). O
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We now extend Lemma 3.2.10 to more general ¢ to prove Lemma 3.2.5. We choose
M and v/ sothat M < M' < M, v <V <v,§<d§ <9, and set

V(x, &) = by, (2,8, B =O0pd).

We write ) 3
A.={(eD,)'B, A.=(eD,)'B, Al ={(eD,)'B

and we denote their symbols by a., a. and a., respectively.
By the same computation as in the proof of Lemma 3.2.7, we have

[0l

{p (&) acl”} > dar— (&)™ Jac|* — ()71 — ()73,

||

modulo §(R™)-terms, where constants are independent of ¢, and f; and f, are indepen-
dent of €. Then, as well as Lemma 3.2.8, we have

— [P, AX(D.) A
> 04 A% (D) A* (D) A, — S*(D ) +tm=tS — T*T — U, — V.,
where the symbol of U, has the property:
U (2, €)] < Cla) ()2 al (a, )1, (3.2.4)
and symbols of U, and V. are bounded in the respective symbol classes. It follows that
{0, Uep)| < CllALoN Fnsmzs + Cllglli-nns @ € S(R™),

where the constant is independent of €. Thus we have, as well as Lemma 3.2.10, for
p € S(R"),

[Acp it m-yr2-12 + (Im 2) || Acip|7
< C(A:(P = )@l he-m-vy2as2 + [ ALl 14m/2
+ 1Sl Enrm-nsz + 1 Tel72) + COnllolr-nn, (3.2.5)
with any N, where C' and C)y are independent of € € (0, 1].
Lemma 3.2.11. Suppose that p € 8'(R") satisfies By € HF1+m/2-1/2,
A (P — 2)p € HF-m=D/21/2 g, ¢ gh+m=D/2 4nq Ty € [2.
Then A.p € HFHM=D/2-1/2 0 g™ qnd (3.2.5) holds.

Proof. We set, for L > 0,
XL = XL(I)XL(Dm)

We first note || X1 — || gs.c — 0 as L — oo, provided 1 € H*¢. We also note 1) € H**
if and only if im0 [| Xp0|| ot < 00.

24



We observe that the symbol of [X7, A.] is bounded by C(z)~*{¢)"ta.(x, ), modulo
8(R??)-terms, uniformly in L, and also it converges to 0 locally uniformly as L — oo.
These imply

i [ Xp Ao L (JAX g8 e+ X, A )
—o0 L—o0

L—oo

Hst
with any N, provided By € H*~1~1 In particular, since we assume By € HF-1+m/2-1/2,

(||XLAg(pH?{k+(m—l)/2,—l/2 + ”XLAESOH?'{’C)
< lim (| A Xp@l| Fpron-v/2 172 + A X1l 700)-

L—oo

lim
L—oo

By the same argument, using ng € HF1Hm/2=1/2 e learn
L@ [A(P = 2) Xl Birim-vs2n/2 < AP = 2@l Hp-im-1/2.1/2-

We have similar estimates for [|S¢|| ye+m-1)/2 and || T¢| 2. Concerning the estimate for
A’ k_14ms2._1, we use the fact that By € HF14m/2-1/2 4 ghtain
|| cPllH ) ¥

Lh—>_nolo ||A/5XL(PH§{1%1+77L/2,71 < HA/ESOszfum/z,fl-
Combining these with (3.2.5) for X ¢, we learn
i (XA reinnrnoe + [ XoAl)

< L@(C(HAE(P - Z)XLSOH?{k—(m—U/z,lm + HA:’;‘XLSOHiIk_IJ"m/Qa—l
+ 1S X Lol tesim—nse + 1T Xol72) + Cn | XLl 3~ )
< C(IA(P = 2)li-tm-y20/2 + 1 Acpl 31 mszia
+ 1901k + 1T0ll72) + Crlllf-nv,
and this implies the assertion. Il
Proof of Lemma 3.2.5. 1t remains to take the limit ¢ — 0 in (3.2.5). We note

1Azl gre.e = (Do) (@) (e Do)~ Beoll 2
= [{eDs)™(Dy)*(2) By + (D2)*[(2)", (Dx) "' Bl e,

and hence
1{eD2) ™ (Dy)* (@) Bl 2 < || Al

e+ C|| By

Hs—1,¢-1.

Thus we have
st + C||BSD|

| B

Hs—1,6—-1.

g < lim [[Acp]
e—0
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We note this holds without assuming By € H**, and if the right hand side is finite, we
obtain By € H**.
By the same argument, we also have

m ||A5(P — Z)SOHHIC—(m—l)/Q,l/Z
e—0

< HB(P — Z)(pHHk_(m—1)/2,1/2 —+ CHB(P — Z)g0||Hk—(m—3)/2,—1/2
S (1 + C)HB(P — Z)QOHka(mq)/zl/z

and similarly, o
HH(I) ||A/5<,0||Hk—1+m/2,—1 S C,||B,(,D||Hk—1+m/2,—1.
e—

Substituting these to (3.2.5), we have
B[k mryj2, 12 + (Im 2) | Bl 3
< ]-i_ntl)(”AgSDH?{lH—(m—l)/l—l/Q + O||BSO||1211k+(m—3)/27—3/2
E—r
+ (Im 2) (|| Al + ClIBoll7p-1.-1))
< l_l_f)% C(HAE(P - Z)@”i]k—(m—l)/Q,l/Q + ”AESOH?{kA + ||BS0||?{1€—1/2,—1)
+ O(1Sel k-2 + 1 Tell72) + Cnllellz-v-n
< C'(IB(P = 2)¢llgn-m-ns2ns2 + | Bollz—
+ 1Sl Ems ez +11T@l72) + Onlllr-non,
and this completes the proof of Lemma 3.2.5. Il

3.3 Estimates for the classical trajectories

In this section, we prove estimates on the classical trajectories which are used in the
proof of Proposition 3.2.3. First, we show a classical Mourre estimate which implies
the peudo-convexity of R™ with respect to P. We note

since p,, is homogeneous of degree m.
Lemma 3.3.1. There exist M > 0 and Ry > 1 such that
2
H,,(

for any (z,€) € {(y,n) € T"R" | |y| > Ro, [n| # 0}.
Proof. We have

Hy (|2*) = 2H,,, (v - O¢pm)

z[?) > Mlg[HmY

n

= 2’85pm|2 +2 Z Lj (awkafjpm>8£kpm —2 Z xj(aﬁja’fkpm)a'ﬂkpm'

jk=1 jk=1
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On the other hand, by Assumption A, there exists C' > 0 such that

n

2 Z xj(amkaﬁjpm)agkpm -2 Z xj(8§j8§kpm)axkpm S C<RO>*M|£|2(m—1)'

J:k=1 j.k=1

Combining this with the non-degeneracy condition of Oepo(§) in Assumption A, we
conclude the assertion. O

Next, we observe that an energy bound on classical trajectories holds, even if p is
not elliptic. We note an analogous result is proved in [49], though our proof is simpler.

Lemma 3.3.2. Fiz (x¢,&) € T*R™ with & # 0 and suppose that (xq, &) is forward
non-trapping in the sense that |y(t, zg,&)| — 00 ast — oo. Then, there exist Cp,Cy > 0
such that

Cy < |n(t, xo, &)™ < o,

fort > 0.
Proof. Let Ry be as in Lemma 3.3.1, and we let R; > Ry which is determined later.

We first note that by the forward non-trapping condition and Lemma 3.3.1, there exits
to > 0 such that for t > ty, we have

%|y(t,x0,§0)|2 > 0. (3.3.1)
By Lemma 3.3.1 and the non-trapping condition, it is easy to observe that there is
to > 0 such that dt2|y(t 0, &0)[> > 0 for t > so, and L |y(to, 2o, &)|* > 0. Then for all
t > to, the condition (3.3.1) is satisfied.

Let Cy > 0 be a constant such that

|0 (2, &) < Cola| " #|€™,

|y(ta Zo, £0>| Z R17

and we write 79 = |n(to, zo,&)| > 0. We set
T =sup{s > to | no/2 < |n(t, 20, &0)| for t € [to, s]} € (to, 0]

By Lemma 3.3.1, we have

[y(t 20, &0)* = B + —pr—(t —t)*, to<t<T

Now we note J
e, 20, 80| < Gyt . 0 )

and hence

—(m-1)

M 2(m—1) —(14p)/2
< (m—1)C <R§ + %(zﬁ — t0)2>

'_|77 t xO)éO
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for tg <t <T. Thus we have
‘770_(m_1) - ’n(Tv Zo, §0)|—(m—1)

T 2(m—1) —(1+p)/2
M
g/ (m —1)Cy (R%%(t—tof) dt

to

002(2m—1)/2R1*N777(m71).
(L+mvM

We now choose R; > 0 so large that

002(2m—1)/2R1*N
(1+p)vM

002(2m+1)/2 ) 1/p

<1/2, ie, R;> <m

then
(T, 2, &)™V < (3/2)my ™Y,

ie., |n(T,xo,&)| > (2/3)YmVng > (1/2)ny. If T < oo, this is a contradiction, and
hence T = oco. Thus we also learn

2_1770 S |77(t>1‘07§0)| S 21/(m_1)7707 t Z tO'
]

Corollary 3.3.3. Suppose the same assumptions as in Lemma 3.3.2 hold. Moreover,
suppose |&y| = 1. Then, we have

Cl)\ S |7](t,5(70, )‘50)| S 6'2A
forany A >0 and t > 0.

Corollary 3.3.4. Under the same assumptions as in Lemma 3.3.2 with || = 1, there
exist O, C', K, K" > 0 such that

CM — K < |y(t,z0,&)| < C'Xt+ K’
for A\>0 andt > 0.
Combining with the estimate |9,p,(x, &) < C{x)~17#|€[™ !, we obtain:
Corollary 3.3.5. Suppose that (zo,&5) € R™ x R" \ {0} is non-trapping. Then,
Ny = lim 77(75, xO?&]) 7& 07
t—o00
V4 = }i}g} afpm(y(ta Xo, 50)7 77(t> X, 50)) = tliglo 8§p0(n(ta Xo, 50)) # 0

exist.
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3.4 Construction of the conjugate operator

Let (z9,&) € p;,}(0)\ {¢ # 0}. By Assumption B, (g, &) is forward non-trapping. We
denote y(t) = y(tv L0, 50)’ n(t) = n(ta Zo, 50) We note that

llm 77(t7 X, §0) =N+ 7& 07 hm a{pm(y(t)7 n(t)) = U4 7£ O)
J—00 t—o0
exist by Corollary 3.3.5. Moreover, there exist M;, My > 0 such that

ly(@)/t —vil, n(t) —ne| = O(H)™) ast— oo,

3.4.1
M, <|[n(t)| < M, t=>0. (341)

We denote B(r,s,z,() = {(x,€) € R?"||z —z| < r,|¢ — €| < s} C R?*™. In order
to prove Proposition 3.2.3, it suffices to prove the following theorem. We set an h-
dependent metric g5 by

gn = d..'['2/<ﬂf>2 + hQ/(m_l)d€2.

Theorem 3.4.1. There exist 1, € C(R*™) and ¢y € C®(Rsg, C°(R?™)) such that
F(h,t) = Op(pnt) and:

(1) F(h,0) =[0p(¥n)[* with ¥n(z0,&) > 1.
(11) on satisfies
supp ony C B(4h~'to,, 4h= Y™V, b=l h_ﬁmr)
modulo S(h*, gn) if t/h is sufficiently large.

(iii) For any o, B € N%, there exists Cop > 0 such that
1050¢ pna(w, )| < Cap(t)ypIFHD/n=D 1 () =lel,

(iv) There exists a family of bounded operator R(h,t) in L*(R™) such that

%_}; +Z[P>F] 2 _R(hat)a

where supsq (6| R(h, 1) 2z = O().

The proof of Theorem 3.4.1 is based on the fact that any classical trajectory of H,
behave as straight lines even if p is not elliptic. We follow the argument in [57].

Lemma 3.4.2. There exist constants 81,2 > 0 with |n| > 41 such that the following
holds:
There exists a smooth function 1 € C®(Rxq, C2°(R*")) such that

(i) ¥ >0, and ¥(0,z0, &) > 1.
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(i) supp ¥(t,-,-) C B(2t6y,205,tv,ny) for t > Ty, where Ty > 0 depends only on
(33'0, §0)7 Pm and 61-

(i11) For any o, B € N", there exists Coz > 0 such that
|050F (¢, @, )| < Caplz) ™1, 10500t 2, )] < Caglar) 1!
fort >0 and x, & € R™.
(iv) ¥ satisfies
oY
fort >0, x,& € R".

Proof. Let\IIECOO(R)suchthatogllfgl,\lf'gO,\Ileforrgé,\ll:()forrzl,
U(r) > 0if £ <r < 1. We define

s (5

where we set y(t) = 6o — C1(t) " and let C; > 0 be determined later. We set

L(t,x,€) = Ogpm(x,€) = epm(y(t), n(t)),

1 ) _ tlr—ylt)
A““"”’Q‘W(L“’x’@ |x— TGIRCE )
(

For t > 0, we have

(G + (oot} )00, =atr v (EZ M) o (K00 30

+Aﬂun®WCx&fﬂ)w<K7$ >

Using |Oep(z, &) — Oep(y(t),n(t))| < Colé — n(t)| with a constant C' > 0, we have

5yt 5it iy
(B Ao(t,,€) < =35 + Conl) < =g + Cot = CoCilt) (3.4.3)

for (z,€) € supp V'(|lz — y(t)|/01 () ¥(|§ — n(t)|/~(t)). By Assumption A and (3.4.1),
there exists C, Ty > 0 such that for (x, &) € supp ¥o(t, z,€), we have

0um (y(0):1(1)) = Do, )] < CLO)
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for t > Tyy. Here, we can choose C, Ty > independently of C;. We note that and
~(t)/2 < |€ —n(t)| holds on the support of W' (| —n(t)|/v(t)). Using these observations,
we learn

(3.4.4)

1/ Gt _|§—77t)] C 1 Cit C
_V(t)( {@y>re (1) +<15>1+‘”)S 7(?5)(2@2*“ <t>l+“)

for (2, ) € supp W[z — y(£)|/5: ()W (I€ — (1) /1(8)) with ¢ > Tog. By (3.4.2), (3.4.3)
and (3.4.4) with ¥ < 0 and §; >> dy, we can select Ty > 0 and C; > 0 such that for
t > Too,

(G2 + o ) (2.9 2 0. (3.4
Now we define ¥(¢, z,£) by the solution to
(aa—lf + {pm,¢}> (t,2,€) =p(t) <% + {pm,wo}> (t.2,6), 0<t<To+1, (3.46)

U(Too +1,2,8) =to(Too + 1, 2,§),

where p € C*(R, [0, 1]) such that p(t) = 1 for t > Tyo + 1, p(t) = 0 for t < Tyo. Then
we can extend 1 smoothly to t > Too + 1 by (¢, x,&) = ¥o(t, z, &) for t > Too + 1. For
(z,€) € R?", by using p(t) < 1, we obtain

d d
Wyt 2.0 (t,2,6)) < D00, y(t,2,€) (e, 2,€)).

Let 0 < s < Ty + 1. Integrating this inequality over [s, Too + 1] with (z,€) = (x0, &)
and USng 1/1@7 €, §) = ¢0<t7 €, f) with (t7 €, f) = (TUO + 17 y(TOO + 1)7 77(T00 + 1))7 we have

W&y(s)»n(s)) Z ¢0(37y(5)7n(3)) Z 0.

Substituting this inequality with s = 0, we have ¥(0, z¢, &) > 1¥0(0,x,&) = 1. This
implies that v satisfies (i). We set Ty = Tpo + 1. Now (ii) follows from (3.4.1) and
the relation (¢, x,&) = ¢o(t,z,§) for t > Tp. (iv) follows from (3.4.5) and (3.4.6).
Furthermore, (iii) follows from (3.4.1), (3.4.6), the relation ¥(t,z,&) = o(t, z,§) for
t > Ty and the definition of 1)y. O

We set

Ui (@,€) = Y(t/h, @, K1), oni(w,€) = bnFion(x,€), (3.4.7)

and Fy(h,t) = Op(po(h,t,-,-)) = |Op(¥n,)|?, where # denotes the composition of the
Weyl quantization ([79, (4.3.6)] with A = 1) and |A|*> = A*A for an operator A.

Lemma 3.4.3. (Z) F()(O) = |Op(¢h,0>|2 with wh’o(xo,&)) 2 1.
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(ii) We have
Supp ops C B(2h7 1161, 20716y, B oy 7Ty,
modulo S(h*>, gp,) if t/h > Ty.

(iii) For any o, B € N%, there exists Cop > 0 such that

LBl \ o
‘85?85300,h,t($7£)| < Coghm=1(z) o,

1Bl _q

‘a?afatwo,h,t($,§)| < Caﬁhm—l <x>f\a|—1.
(iv) There exists ro(t, z,€) € C®(Rsq x R2™) such that

0 .
§F0<ha t) + Z[Pv FO(h7 t)] Z _Op(ro,h,t)u

and supp rops C SUPP Qone modulo S(hoo(xfoo,gh). Moreover, for any o, €
N, there exists Cop > 0 such that

1020, o pt(, €)| < Ca@hw () lol=1-n

Proof. Propeties (i)—(iii) follow from (3.4.1) and Lemma 3.4.2. We prove (iv). Since
|z| ~ t/h holds on supp ¥, we learn Oupgpi(-,-) € S(h™ {x)™' gn). Moreover, we
have [P, Fy(h,t)] € OpS((z) &)™ 1, g,). By its support property, [P, Fy(h,t)] €
OpS(h~Y(z)~!, g) follows. We obtain

0
E‘wh,t(ha t,l‘, 6)‘2 + {pma ‘wh,t('a )‘2}(3375) 2 0
by Lemma 3.4.2 (iv). We note p = p,, + V with V € S™~17# and

[V, Fo(h,t)] € OpS (h™w=t (z) 77", gi).

—(m—2)
By the sharp Garding inequality, there exists rop, € S(h™-1 (z)7'7# g;) such that

(iv) holds. O
Proof of Theorem 3.4.1. We choose A\g, A1, g, ... € [1,2) such that

I=X <A <A< <2,

and take Yy (2, &) as Yp(x, ) and T, as Ty with J; replaced by Axd; in Lemma 3.4.2
and (3.4.7). By the choice of ¥, we note

Vryrne(z,€) > Ly, (3.4.8)

on supp Vg p (-, -) for some Ly > 0. For k > 1, set

k—m+1 k

Ornt(z,8) = h m 1 tCpthpnHVrnt € S(h :”ﬁltgh)
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where Cj, > 0 is determined later. By Lemma 3.4.3 (iv), we can write ron: = ro1nt +
T02,h,t, Where

(m=2)

Tol,ht € S(h “n—1

(@)™ 7", gn) (3.4.9)

satisfies supp ro1 p¢(t, -, ) C supp @o(t,-,-) and roaps € S(h>®(x)~>°, g5). By (3.4.8), we
can find C > 0 such that

—m+42
rorna(2,€) < Crh ™= [y (2, €))7,
This inequality with Lemma 3.4.2 (iv) implies

7n+2

O (a0l + o P} ) (2,6 (3.410)

—m+42

a —m+2
= C1h ™1 t(at’¢1,h,t’2 + {Pm. |1/11,h,t|2}> (x,€) + Cih = W1,h,t($;§>|2

> o1, €).

Taking M, = max(Ty, ||vi]| — 2A.01]) > 0, we have
t < Mih{z), for (t,x,&) € supp Vg n+ (3.4.11)
by Lemma 3.4.3 (ii). Lemma 3.4.3 (iii) with (3.4.11) implies

Sy o
hom-1 ( W((l%h ° + {Pms [V1,1.4] }) ( m—1 ’gh))‘ (3.4.12)

By (3.4.9), (3.4.10) and (3.4.12), it follows that the both sides in (3.4.10) belong to
S(h=r | dz?/{z)2+h2/ =D d¢?). The sharp Garding inequality implies that there exists

m—+3

Tiht € S(h -1

<ZE>_1, gh)

which is supported in supp ¢ 5+ modulo S(h*>(z)~>, g) such that

0
6)15013(901 nt) + [P, Op(@1ne)] = Op(ront) — OP(r1ne)-
We set Fy(h,t) = Fy(h,t) + Op(p14,.), then we have

0 .
&Fl(ha t) + Z[P7 Fl(h'v t)] > _Op<r17t,h)'

Iterating the above argument, we can construct Cy > 0, Fj(¢) and

k—m-+2

Tkht € S(h m—1 (x)‘l,gh)
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such that supp 744t C SUppP @rpe(-, ) modulo S(h>(x)~>, g5) and

%Fk(h, t) +i[P, Fy(h,t)] > —Op(r(h,t,-,-)),

Fis1(h,t) = Fi(h,t) + Op(@int),
k—m+

Pt (2, €) < Cth 78 Ppppa(2,€)  modulo S(h*(x) ™, gy).
By the Borel’s Theorem (see [79] Theorem 4.15), we can define

(Ph,t(l‘, 6) ~ Z (ipj,h,t(wv 5)
n=0

and F'(h,t) = Op(gnt). Then, F'(h,t) satisfies the properties in Theorem 3.4.1. This
completes the proof of Theorem 3.4.1. O

3.5 Compactly supported perturbation

The proof is considerably simpler if the perturbation is compactly supported, since we
do not need the argument of Subsection 3.2.2. Here we discuss the simpler argument
for this case. We assume that there exists R > 0 such that supp ¢ C Bg(0) x R",
where Br(0) = {x € R" | |x|] < R}. We note still the local regularity argument
(Subsection 3.2.1 and Appendices 5.5, 3.4). Let ¢» € C*°(R") be a real-valued function
such that ¢y =1 on R" \ Br41(0) and ¢ = 0 on Bg(0).

Proposition 3.5.1. Let k > 0 and v € L*(R*) N HFT™ Y (R") be a distributional

loc

solution to (P — i)u = 0. Then we have 1u € H*. In particular, uw € H* follows.

Proof. Set N =1 — A and N. = (I — A)(I —eA)™! and define L = po(D) where A
denotes the standard Laplacian on R". By virtue of the support property of ¢, we
compute

L(ypu) = P(pu) = Y Pu+ [P, Y|u = ivvu + Ku,

where K := [P, ] is compactly supported coefficients differential operator with order
m — 1. We note Ku € H' since u € H™ (R™). Hence, we have

loc
2ilm (N2 (ypu), L(yhu)) g2 =2iIm (N2*(spu), iy + Ku)p»
=2i|| NZ(u)||7> + 2iIm (NZ*(Yu), Ku) .
On the other hand, by the Plancherel theorem, we have
2ilm (N2" (), L(vu)) 2 = (N2 (), L(Yw)) g2 — (L(Yu), N2 (Yu)) 2 = 0.
Thus, we have
INZ ()| < [Tm (N2 (yu), Ku)| < [[NZ(du)l] 2| NEKul 2

Consequently, take ¢ — 0 and we obtain || N*(yu)| 2 < ||N¥Kul||z2 < oo, by using the
monotone convergence theorem and Ku € H*. This implies vu € H*. O

34



Proof of Proposition 3.2.1. Suppose that v € L*(R") satisfies (P —¢)u = 0. By Propo-
sition 3.2.2, we have u € C*(R") C Hf:’)(:lfl)/z(R"). By Proposition 3.5.1, we conclude

uw e Hm=1/2 - fim=1)/2,-1/2 O

3.6 Dynamical property, completeness of the Hamil-
ton flow

In this short section, we show that the null non-trapping condition (Assumption B)
implies the completeness of the flow. We mention that we do not this fact in the other
part of this paper. We note that every non-trapped integral curve is complete by the
estimate of classical trajectory (essentially due to the classical Mourre estimate), see
the proof of Lemma 3.3.2.

Proposition 3.6.1. Let p,,(z,&) be a homogeneous of degree m > 1. Under the null
non-trapping condition, it follows that every trapped integral curve of H, on {p, # 0}
1s complete.

Proof. Suppose that there exists a maximal trapped integral curve (z(t),((t)), t € [0,T)
of H, such that p,,(2(t),((t)) # 0. We note

t)] < li t)| =
t:;&g)lZ()l o0, tim |¢(t)] = oo

since this trajectory is trapped. Since p,, is homogeneous of degree m, we have
C(t,x,&) # 0. Since z(t) is trapped, it follows that a set

¢()

{(2(t), =) |0<t<T} CR*™ (3.6.1)
()]
is compact. Hence there exist a sequence {t;}32, and (z,&) € R™ x 7! such that
¢(t))
t; =T, (2(t)), ) = ()
! 71C(E)]
as j — oQ.
Next, we show
Pm(,€) 7 0.

To see this, we use a contradiction argument. Suppose p,,(z,() = 0. By the null non-
trapping assumption, we have |z(t, z,§)| — oo as |t| = co. Since p,, is homogeneous of
degree m, we have

NSyt
Z(tJ’Z(tJ)? |C(t])‘) - (|C(tj)|m_17 (%),C(Q)) (362)
:Z(tﬂr%)
[Cts) |
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for t; +t/|C(¢;)|™* < T. Since |((t;)] — oo, the right hand side of (3.6.2) (and hence
also the left hand side) is well-defined for large ¢t. Now we take 77 > 0 such that

inf |z2(¢,2,&)| > 2 sup |z(1)] (3.6.3)

Ty <t<oo 0<t<T

and take j large enough such that Ty < [((¢;)[™'T. Then we can substitute ¢ = T}
into (3.6.2) and obtain

<X inf o |o(t2,0)|

A T,
|2(T1, 2(t5) <) )= l2(t; + | 1 2 Ti<t<os

H1¢(E5)] ¢(t) ™=
by (3.6.3). Taking j — oo, we have a contradiction. Thus p,,(x, &) # 0 follows.
Since p,, is homogeneous of degree m, we obtain

0% pm(z,8) = lim pu(2(t;), M) _ i P, C5))

[CE)" amee [C) ™

where recall p(z(t;),((t;)) is conserved along the flow and |((¢;)| — oo as j — co. This
is a contradiction. O

=0,

3.7 Limiting absorption principle for the wave op-
erator
The results of this section is expected to be true for the real principal type operators

considered in the above sections. However, for simplicity, we restrict our attention to
the case of the wave operator on an asymptotically Minkowski space.

Let go be a Minkowski metric on R™: gy = dz? — da? — ... — dz? and g, ' = 9?2, —
92, — ... — 07 = (9¢)ij=1 be its dual metric. A Lorentzian metric g on R is called

asymptotically Minkowski if the inverse matrix ¢g~'(z) = (¢7"(x))?,_, of g(x) satisfies

105 (" (x) = 33| < Cala) ™71 > 0.

We set
P=>"0,(4"(2)0s,), p(z.£) = > ¢*(@)&&, po(&) = Y A"k
grk=1 Jik=1 k=1

Moreover, we write

~ 1
§= 585190(5)-
Let (2(t,x,&),((t,x,€)) denote the solution to the Hamilton equation:

Gat0,6) = L0 e(0,0,0), 0., T =~ e1,2,8),C(1,2,0)), 1R
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with 2(0,z,€) = z, ((0,x,&) = £. Moreover, we introduce the conjugate operator A:

x- €

= T|§|2 S Sil’l, A= Op(a)

a(z,§)

In this section, we always assume the null non-trapping condition (Assumption B). By
using Nelson’s commutator theorem and the result of the above section, it follows that
Alcoomny and P |CSO(Rn) are essentially self-adjoint. We denote their unique self-adjoint
extensions by the same symbols A and P respectively. We write the domain of the
self-adjoint extension P by D(P), then we have

D(P) = {u € L*(R") | Pu € L*(R")} (3.7.1)

by essential self-adjointness of P|ceo(rny. We note that the essential self-adjointness of
P|cgo(rny implies

C>*(R™) is dense in D(P) equipped with the graph norm of P. (3.7.2)

In this section, we prove the limiting absorption principle for P away from the zero
energy. Our main theorem of this section is the following.

Theorem 3.7.1. Assume the null non-trapping condition. Let s > 1/2 and I € R\ {0}
be an open interval. Then it follows that #1No,,(P) is finite and that for I' € 1\o,,(P),
we have

sup [|(z)~*(P — 2)"H{z) || p2) < oo,
z€I

where
I'' ={2€C|Rezel, £Im z > 0}.

In particular, P has absolutely continuous spectrum on I'.  Moreover, z € I —
(x)=5(P — 2)~Yx)~* is Holder continuous in B(L?*(R™)) and the limits

() 5(P = AFi0) Ya) = lim (2)5(P— XFie) Hx)*

e—0,e>0
exist in B(L*(R™)).

Remark 3.7.2. In this theorem, we can replace P by P + V', where V is a real-valued
long-range potential since

e our conjugate operator A belongs to OpS—"! and hence [V, A] is a compact op-
erator,

e D(P)=D(P+V)duetoV e B(L*R")),
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e a difference p(P + V') — ¢(P) is a compact operator for ¢ € C°(R) by Corollary
3.7.9 below.

Remark 3.7.3. The above theorem for the interval [ is proved by Vasy [75] under the
non-trapping assumption on energy level I. We remove this additional assumption by
using the local compactness of P (Proposition 3.7.9).

Remark 3.7.4. When p = pg, then the limiting absorption principle holds even near the
0-energy with an additional weight, see Proposition 5.2.5 and Proposition 5.2.8.

To prove this theorem, we need some results of a pseudodifferential calculus of spec-
tral cut-off functions for P (Proposition 3.7.7) and local compactness for P (Corollary
3.7.9). We prove these results in the subsections later and deduce Theorem 3.7.1 here.

Proof. We may assume 0 < p < 1. Moreover, using a standard argument explained in
subsection 3.7.1 (however, it is non-trivial in our case), we only have to prove the above
statement replacing (z) by (A). We note P € C?(A) which will be proved also in the
subsection 3.7.1. Since p — py € S** and a € S™1!, we have

AP o
= SOk,
{pJCL} 1+|§|2+

This implies
[PiA] = 4(1 — A)"V2(=A)I — A" V2 4+ R,

where R € OpS%™* (we note 0 < u < 1). Let J € I be an open interval. Let
@ € C*(R\ {0};]0,1]) which is supported in I and is equal to 1 on J. Moreover, take
Yy € C°(R™; [0, 1]) which support is close to 0 such that

supp @ o p N supp ¥ = 0.
We observe

(I = A) V()T = A) 2 > ¢+ 4(D),

where

0, w(e) = EEAE) — i) € o).

e
gesupp (1-¢1) 1 + |€]?

CcC =

Thus we have
p(P)[P,iAlp(P) > 4cp(P)? + 4p(P)Y(D)p(P) + ¢(P)Rp(P) (3.7.3)

Lemma 3.7.7 with a support propety supp ¢ o p N supp ¢ = () implies that the second
term of the right hand side is a compact operator on L?(R"). Moreover, it follows that
the third term ¢(P)Ry(P) is also compact by using the Helffer-Sjostrand formula and
the local compactness for P (Corollary 3.7.9). From the Mourre theory [53], we obtain
the desired results.

]
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3.7.1 A-regularity of P, (A)-weight to (r)-weight

In this subsection, we prove P € C?(A) which is needed to apply the Mourre theory.
First, we recall the definition of C*(A) and C?*(A).

Definition 1. Let A be a self-adjoint operator and B be a bounded operator on a
Hilbert space H. We call B € C'(A) if a quadratic form [A, B] on D(A) x D(A) can
be extended to a bounded operator on H. We call B € C*(A) if B € C'(A) and
[A, B] € C'(A).

Let P be a self-adjoint operator. For k = 1,2, we call P € C*(A) if (P —i)™! €
C?(A).
Proposition 3.7.5. We have P € C*(A) and

[A,(P—i) ] =(P—i)" '[P AP —i)"" (3.7.4)

as a bounded operator on L*(R™).

Proof. First, we show P € C'(A). Setting A. = (ex)"Y2Aex)~1/2 € OpS*® for
0 <e <1, we have

(A, (P = 0)7") = (P — i) [P, AP — i), (3.7.5)
as a bounded operator on L*(R"). For u,w € §(R"), we have

lim (u, [Ae, (P — i) Hw)ze = (Au, (P —4) " w) g2 — (P +4)  u, Aw) gz, (3.7.6)

e—0

for u,w € §(R™). On the other hands, since [P, A.] — [P, A] in the strong operator
topology in B(L*(R")) which follows from Lemma 2.3.2, we have

im(P —4) '[P, A)(P—i) ' = (P—i) '[P AP —i)! (3.7.7)

e—0

in the strong operator topology of B(L*(R")). From (3.7.5), (3.7.6) and (3.7.7), we
obtain

(Au, (P — i) )2 — (P +4)"Yu, Aw) gz = (u, (P — i) [P, A(P — i) 'w)z  (3.7.8)

for u,w € §(R™). Since Alsmgn) is essentially self-adjoint, the equation (3.7.8) holds for
u,w € D(A). This implies P € C'(A) and (3.7.4).

Next, we show P € C?(A). Tt suffices to show [A, [A, (P —4)7!]] can be extended to
a bounded operator on L*(R"). Since (P — i)™ and [P, A] are bounded in L*(R"™), w
observe

[Ae, (P — i) [P A|(P — i) ] =[As, (P — i) '[P AJ(P —4) ] (3.7.9)
+ (P =) A, [PA(P =)~
+ (P —i) [P AJ[A, (P —4) 7).

39



Moreover, from Lemma 2.3.2, we have
[Ac, [P, A]] = [A, [P, A]] in the strong operator topology. (3.7.10)

It follows from the equation (3.7.5), (3.7.7) and (3.7.10) that the right hand side of
(3.7.9) converges to a bounded operator in the strong operator topology on B(L?(R™)).
On the other hand, we have

(u, [Ac, (P — i) [P, A)(P — i) w2 —(Au, (P — i) [P, A](P — ) ‘w2 (3.7.11)
—((P =) '[P, A(P — ) 'u, Aw) 12

for u,w € §(R™). This implies P € C?(A). O

The next Corollary is standard for experts of scattering theory, however, we give
these proofs for the completeness of this thesis. We remark that the key point in the
proof below is the equation (3.7.13) which follows from Proposition 3.7.5. We also note
that the resolvent equation implies

(P-2)'=P-))"+G-0)P—-i)"+(=—-0)*P—-i)"(P-2)""(P-i)"

From this, in order to prove Theorem 3.7.1 from the same statement where (x) replaced
(A), it suffices to prove the following lemma.

Corollary 3.7.6. For 0 < s <1, we have
(A)*(P —4)~(x)* € B(L*(R")).

Proof. The case of s = 0 follows from (P —i)~' € B(L*(R")). Next, we consider the
case of s = 1. By the spectral theorem for A, we observe

(AP — i) (&) Mlaee) < NP = ) Ha) o + 1AP = i) (@) s
Thus it suffices to prove
AP — i) x) " B2y < oc. (3.7.12)
From Proposition 3.7.5, we have
AP —i) Ha)y ' = (P —i) T Alx)  + (P — i) P AP — i) Nyt (3.7.13)
Since A{x)~! € OpS~10 and [P, A] € OpS®°, we obtain (3.7.12).

Next, we prove the lemma in the cases of 0 < s < 1. To do this, we use the standard
interpolation argument. For ¢, € C2°(R™), we consider the function

F(2) = (0, (A (P — )" (2) ") e
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We note that f is a holomorphic function inside the region
S={2€C|0<Rez<1}.

Moreover, it follows that f is continuous and bounded on S. In addition, from the
above argument, there exists C' > 0 such that

|f(2)] < Cll¢l|z]|1]| 2 for Re z =0, 1. (3.7.14)

By the Hadamard three line theorem [61, Appendix to IX.4 Lemma after Proposition 1],
we obtain (3.7.14) for z € S. By the density argument, we conclude (A)*(P—i)~ (z)~* €
B(L*(R™)).

m

3.7.2 Pseudodifferential calculus of spectral cut-off functions

In this subsection, we prove that ¢(D)p(P) is a pseudodifferential operator plus a neg-
ligible term although ¢(P) itself cannot be written by such a form (even in the constant
coefficient case g = gg). The following proposition is stimulated by the construction in
[44] for the Stark Hamiltonian (although the argument itself is standard). It is expected
that Op(¢ - p o p) is actually a pseudodifferential operator of class OpS~> (by using
Beal’s theorem), however, we only show a weaker result which is needed for the Mourre
estimate.

Proposition 3.7.7. Let ¢, € C°(R). Then we can write
W(D)p(P) =Op(¢-pop) + K,
where K is a compact operator on L*(R™).

Proof. First, we construct a parametrix of (D)(P — z)~! for Im z # 0. We note that
for any integer N > 0, we have

07207 (V(E)(plar. ) = 2)7') | < Crvasllm 2|17 ) el ()=

with a constant Cyas > 0 independent of z and (z,&) € R?". This implies

Y
¢(£) - p— Z#(p - Z)(l',f) + TZ(.T,f),
where 79 € ST 7! satisfying
050¢72(,€)| < Cragllm 2|~V () 11l (g) =N (3.7.15)

with a constant Ciyos > 0 and N,z > 0 independent of z and (z,£) € R*". Weyl
quantizing this equation and multiplying (P — 2)~! from left, we have

BD)(P =) = Op(=) + Op(r) (P )
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as a bounded operator on L?(R™).
Now we denote the almost analytic extension [79, Theorem 3.6] of ¢ by ¢. By the
Helffer-Sjostrand formula [79, Theorem 14.8], we have

VDYRAP) = Opli - pop) + = [ 0.5(:)0p(r.)(P = 2)

Lemma 2.2.1 (i), (3.7.15), (P — 2) Y| 52 < |Im 2|7" and 9.4(2) = O(|Im 2|>) as
Im z — 0 imply that the second term of the right hand side is a bounded operator from
L*(R™) to H"'. Since the natural injection H"! < L?*(R") is compact, we obtain the

desired result.
]

3.7.3 Local compactness

In this subsection, we prove the local compactness for P. The main result of this
subsection is the following proposition.

Proposition 3.7.8. Let 6 > 0. Then there exists C' > 0 such that
HUHH%_L? < C||Pul|zz + Cl|ul| g2, (3.7.16)

for uw € D(P), where we recall that D(P) is as in (3.7.1). In particular, we have a
continuous inclusion

D(P) s H3 "%
where we regard D(P) as a Banach space equipped with the graph norm of P.

Corollary 3.7.9. Let V € C(R") satisfying |V (z)| — 0 as |z| — 0. Then it follows
that V(P — i)~ is a compact operator on L*(R").

Proof of Corollary 3.7.9. Let V' € C(R") satistying |V (z)] — 0 as || — 0. Then
there exists Vi, € C°(R") such that ||V, — V|[fe@n) — 0 as & — oo. Since the

multiplication operator V} is continuous from H 2~'%" to H#! and the natural inclusion
H2' < L2(R") is compact, then Proposition 3.7.8 implies that Vj,(P — i)' is also
compact in L*(R™). Since a limit of compact operators is also compact, then we conclude
the compactness of V(P —i)~L. O

In the following, we show Proposition 3.7.8. Now Proposition 3.7.8 follows from
existence of the following escape function.

Lemma 3.7.10 (Escape function under null non-trapping condition). Let 0 < 2§ < p.
There exist Ay > 0, C; > 0 and a € S*° such that

Hya(z,€) > Ci{z) ™ 7(&) — r(x,€),

where r € SV 71 satisfies
A
supp 1 C {(2,€) € R*" | [¢] < 2} U {(2,€) e R*" | p(§)| = 70\512}-
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Proof of Proposition 3.7.8 assuming Lemma 3.7.10. We may assume 0 < 20 < p. By
(3.7.2), it suffices to prove (3.7.16) for u € 8(R™). By using the sharp Garding inequality
(Lemma 2.2.1 (v)) and using A € OpS®?, for u € §(R"), we have

lull® ) —15s < CllPullzz + Cllullz: + Cl(w, Op(r)u) 2| (3.7.17)
with a constant C' > 0. Now we write
r=r+ry 1 €57 ry e SBTL
supp 11 C {(2,§) € R*" | [¢] <43, supp 12 C {(2,€) € R*" | [¢] > 3, [p(¢)[ > %512}-
By the standard elliptic parametrix construction, we have

[(w, Op(r)u)re| < Cllullfz, |(u, Op(ra)u) 2| < C|Pullzz + Cllull7: (3.7.18)
for u € §(R™). Combining (3.7.17) with (3.7.18), we obtain (3.7.16) for v € S(R"). O

To prove Lemma 3.7.10, we need some preliminary lemmas.

Lemma 3.7.11 (Convexity at infinity 1). There exists Ry > 0 such that for (z,§) €
T*R™ with |x| > Ry, we have

21,12 2
Hylz|* = CIEJ°.
Proof. This lemma follows from an easy calculation. O]

Lemma 3.7.12 (Convexity at infinity 2). Let R > Ry, where Ry be same as that of
Lemma 3.7.11. If tg < t; and (x,&) € T*R™ satisfy

|2(t, 2, 8) < R.
for j =1,2. Then fort € [ty,ts], we have
2(t,2,8)| < R.

Proof. This lemma immediately follows from Lemma 3.7.11, where we note

dt

oGRS O = (Hplz|?)[o=z(t0.6), e=¢(t,0,6) -

We denote

Dp={x e R" ||z <R}, 5"Dp ={(2,£) € T'R" [ 2] < R, [§] = 1}.
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Lemma 3.7.13 (Stability of non-trapping orbit). We assume that for (z,&) € p~1({0})\
{& = 0}, we have |z(t,x,£)| — oo as |t| — oco. Let R > Ry, where Ry be same as that
of Lemma 3.7.11. Then there exists \g > 0 and T > 1 such that we have

|2(t,2,6)] > R for [t| > T (x,€) € p~"([=Xo, o) N S*Dr(0).

Proof. By the assumption and Lemma 3.7.12, for any (z,£) € p~*({0}) N S*Dpg there
exist T'(z, &) > 0 and a neighborhood U(x,&) C T*R™ of (x,&) such that

|2(t,y,m)| > R for [t| = T(z,£), (y,n) € U(x,§). (3.7.19)
We prove this for t > 0. By the non-trapping assumption there exists T'(x, £) such that
|2(T(x,€),2,8)] > R+ 1.

Since {(y,n) € T*R" \ {n = 0} | (|2(T(x,€),y,n)| > R+ 1} is open, there exists a
neighborhood U(x, &) C T*Dgyy of (z,€) such that

|2(To(x, €),y,m)| > R+ 1 for (y,n) € U(x,$).
This implies
[2(t,y,m)| > R+ 1for ¢t 2 T(z,§), (y,n) € Uz, ).

This proves (3.7.19).
Since p~!({0}) N S*Dg is compact, there are finite many point {(xj,gj)};V:l C
p~1({0}) N S*Dp such that

N
p ' {0} NS D c | JU(), &) = U. (3.7.20)
j=1
We set T = max;<j<n T'(x;,&;). Then we have
|z(t,x,&)| > R for |t| > T, (x,§) € U.
Thus it suffices to prove that there is Ay > 0 such that
P ([0, Ao]) N S*Dr C U.

To prove this, we suppose that for any &k € N, there exists p, € p~'([~1/k, 1/k])NS*Dr
such that p, € U°. Since p~'([—1,1]) N S*Dy is compact, there exist a subsequence
pr, and p € p~Y([—1,1]) N S*Dg such that py, — p. However, this concludes p €
p 1({0}) N S*Dr N U since U¢ is closed. This contradicts to (3.7.20). O
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Lemma 3.7.14 (Escape function on a compact set). Let Ao > 0 be as in Lemma 3.7.13.
Let x € C*(R;R) and set

ol = [ (b I

Let R > Ry, where Ry be same as that of Lemma 3.7.11. Then aq is well defined smooth
function on the set

Chy = {(2,6) € T'R" | || < R, €] > 1, |p(&)] < Mol€[*}
and ag satisfies
0507 ao(x, €)| < Capl&) ™! for (z,€) € Ch,. (3.7.21)
Proof. We take T > 0 same as that of Lemma 3.7.13. We note (2(t, z,€),((t, z,£)) =
(=(l€lt, =, &), €lC (€]t =, &) and

aol, €) =[€] / (€l =, |§|>>|<<\§|t,, S\t

=/0 x(a(t, mma ,ﬂndt

for (z,€) € C),. Thus it follows that ag is a well-defined smooth function. We note

€]

0207 k(t, 2, €)| < Cag, k € {2,C}

uniformly in [¢| < T, |z| < R and |£| = 1, and
§ _
06 7g7] < Cate) ™7 lel 2 1.

These inequalities give (3.7.21).

Now we prove Lemma 3.7.10.

Proof of Lemma 3.7.10. Let A\g > 0 be as in Lemma 3.7.13. We fix some notations
which works only in this subsection. For Ag > 0, let ¢y, € C(R; [0, 1]) such that

Ao Ao

supp ,IL)\() C (_)\Oa)\O)a Qyzz\o( ) =1forte ( 2 5

—). (3.7.22)
Moreover, we take x € C°(R, [0, 1]) such that

t<1

X(t) = {0’ -, X@<=o

t>2,
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We set xgr(t) = x(t/R) and xgr(t) = 1 — xg(t) for R > 0.

p(z,8)

Un(2,€) = X(|§|)¢AO(W

).
We define

Cro(P) = {(z,8) € R™ [ [¢] > 1, [p(§)] < Aolé]*},

then we note supp 1, C Cy,(P) and ¥, € S*°.
It suffices to construct a smooth real-valued function ¢ such that for (z,&) € Cy,(P),
we have

0202 q(2,€)| < Cusla)™*1€)P, Hyqa,€) > Cla)(6). (3.7.23)

In fact, setting a(,£) = ¥ (2,€)%q(x, &) and r(z, ) = C(z)7 () (L — ¢ (2,6)*) +
qH,¥3 (x,€), then a and 7 satisfy the desired property.
For R, My, M5, L > 0 which are large enough and determined later, we set

x- € i 0
Q1(x7§) :m . ﬁdSXM(MDv CI2($,§):X4M(|$|)/OOX2M(Z(t,$,§))|C(t,$,§)|dt,

q(z,&) =Lqi(x,§) + qa(z, ),

where ¢ is well-defined for (z,&) € C),(P) by Lemma 3.7.14. We claim

2|3¢\

|:c||s| / - >C{) ™), el = M, €] > 1,

where C' > 0 is independent of M > 1. In fact, we have

i _lalle - 5 ; (@8
d _
Hro |x||§|/ e |§| / s+ M g

This gives the above inequalities. We write

p(z,€) = po(&) + V(2,€), V e S>7~.
Since § < p, there is C' > 0 independent of M such that

[Hyqi(x,€)] < CQM)~ = (a)172(¢) for (z,€) € Cry(P).

Then there exist C3, Cy > 0 such that for |£| > 1 and M > 1, we have

Hyqi(,€) >C3(€) () xar(Ja]) — Co(M)~ =00 (z) 71 72(¢).
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where we use (z - €)Hp,x(|z]) > 0. Moreover, there exist Cs,Cs > 0 such that for
(x,8) € C\,(P) and M > 1, we have

Hyga(w,6) >Cs(E)xan(|2]) — Co ()™ €)xar (|2 xsnr (|2])
>Cs(€)xanr () — Co(M)* ()™ ~*(€) xar (|])

Thus we have

Hyq(w,€) 2(C3L — Co(M)°){€)(x) ™~ Xar (J2]) + C5(€) xanr ()
— C4L(M)~ =2 (z)~1=(¢).

Using 0 < 20 < u, we can take L, M > 0 large enough such that
M? << L << M"™°,

and we obtain (3.7.23).
0

Remark 3.7.15. When we assume the globally non-trapping assumption, a more stronger
equality holds: There exist C;,Cy > 0 and a € S%° such that

Hya(z,£) > Ci{z) ™' 72(&) — Ca.

In fact, in the proof above, we only have to replace 1, by Y(|£|). For a bit different
proof, see [9, Lemma 7.1].

3.8 Mapping properties

Let P be as in the last section. In this section, we prove a good mapping property of
the resolvent (P —4)~!, which does not use in the other part of this thesis. We note
that the operator (P —4)~! maps from §(R") to L?(R"). Next proposition claims that
the range of this operator is contained in $(R").

Proposition 3.8.1. Let z € C\R. Then the resolvent (P —2)~! is a linear continuous
operator on 8§(R™). In particular, (P — 2)™1 can be extended to a linear continuous
operator on 8'(R™).

As in [44, Appendix] (for the Stark Schrodinger operator), we have the following
commutator relation which is a generalization of the equation (3.7.4).

Corollary 3.8.2. Let T : 8'(R") — 8'(R™) be a continuous linear operator, then we
have

(P =)™, T] = (P — )7 '[T, P}(P —i)~".
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In the following, we only deal with the case of Im z > 0. In order to prove Proposi-
tion 3.8.1, we need some preliminary lemmas. We frequently use the following symbol:

~ o Z - Ggp(x,f)
@8 = Llaep(z, )

Moreover, for symbols a, b, we denote a € b if we have

inf  |b(z,&)] >0,

(x,§)€supp a

and we denote Op(a) =: A € B := Op(b) if a € b.

3.8.1 Radial source estimate

Proposition 3.8.3. Let A € OpS®° be supported in
{(z,6) e R*™ | |x| > R, [£] > 7, ij(x,&) < —1+¢}. (3.8.1)
with R > 0 large enough, r >0 and 0 < e < 1. Let
ze€{zeC|Imz>0}UR\ {0}. (3.8.2)

Let u € §(R") satisfying Aju € HF—210 0 HRZ1H0 0 A (P — 2)u € HF 23 with
some k € R, I > 0 and Ay = Op(a;) € OpS®® such that A € A,. Then we have

1

Ay € HF 23,

Corollary 3.8.4. Let k € R and z as in (3.8.2). Let Aju € HF—3t0 satisfying (P —
2)u € 8(R™), where A, Ay are as in Proposition 3.8.3. Then we have Au € S(R™).

Corollary 3.8.4 immediately follows from Proposition 3.8.3 and the standard boot-
strap argument.

In the proof of Proposition 3.8.3, the following commutator calculus has an impor-
tant role: For pseudodifferential operators A, A, where A is formally self-adjoint and
Im z > 0, we have

Im ((P — 2)u, AN*AAu) 2 = — (u, [P, iAN*AAJu) 2 + Im z||AAul|3. (3.8.3)

for u € §(R™). Moreover, the equation (3.8.3) with the Cauchy-Schwartz inequality
implies that for any small £; > 0, there exists C' > 0 such that

—(u, [P, iAN*Alu) 2 < C||AA(P — z)u||2 + 51||AAu||Z% (3.8.4)

11 1
2°2 2

First, we construct the escape function near the incoming region.
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Lemma 3.8.5 (Escape function near the incoming region). Let 0 < ¢ < 1/8 and
p, x € C®(R;[0,1]) such that

J 1 fort <1, , B
x(t)—{O fort > 9, X' (1) <0, p(t) = x( .

Moreover, we set Xr(x) =1— x(|z|/R) for R>1. For k€ 0,1>0and 0 < <1, we
set

Aot = ()" (@) Ao = (€)F(6€) ™M1 (@) (5ar) =0
bg(l‘,f) = Ak,l,éa('x7£>7 CL(Q?,f) = p(ﬁ(x>§>>XR(x>Xr<§)

For R > 1 large enough and any r > 0, we have
Hybj(x,€) < =Clx) " (€)bs(2, )" + A 171, (3.8.5)

where ry € S35 which support has close to supp a.

Proof. Take R > 1 such that

_|=P’19¢p(z, §)” — (2 - Oep(x,€))°
|%[*|0¢p(x, )]

N {c<x>—1<f>, for [z] = R, €] = 7, i(@,€) € (—1+ 5,1 +¢),

Hyii(z,€) + ghtm

—C{x)717(g), for |z| > R, [¢] = 7.

This implies H,(p(77)) < 0. Since 7(x,&) < 0 for (z,£) € supp a, we have H,(xr(x)) <
0. Thus we have

Hya <713, 19 € Cats
Moreover, we have
Hy(€)*(06)™ M1 < Ca) 7)1 (86) MY Hy ) (62) ™ < —C(€) ()~ (b))

for (x,&) € supp a, where the constant C' > 0 is independent of §. Thus, we obtain
(3.8.5).
[

Set Agis = Op(Aris), Ay = Op(Aky), A = Op(a). Moreover, we set

N

A=Ays, ©=(z)"3(D)3.

Now we show Proposition 3.8.3. We take r > 0 small enough such that (3.8.6) below
holds. Note that » > 0 depends only on z.
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Proof of Proposition 3.8.3. By the standard elliptic estimate, it suffices to replace A in
Proposition 3.8.3 by A = Op(a), where a is as in Lemma 3.8.5.

Let N > 0. Take A; = Op(a1), Ay = Op(as) € OpS®? such that a € ay € a;. Set
A = Op(a). We observe that from (3.8.2), there exists r > 0 such that

P — z s elliptic in the region {(z,£) € R*™ | [¢] < 2r}. (3.8.6)
Then the standard elliptic parametrix construction implies

[AAP = 2)ull?,_, 4 + [AOp(ry)ull}s < ClIAAS(P — 2)ul>

11 11t Cllullfr-n-n,

00,—1/2

where we use the support property of r; € S~ . The sharp Garding inequality

with (3.8.3) and (3.8.4) implies that we have
A2,y < CIAA(P = 2l , + CllAniAsulo 10+ Cllullyxn (387

for u € $(R"). Now we suppose u € H NN Ay € Hb=210 ) gRI-140 with A (P —
2)u € H*=31+5 . Since Op(Ax,s) and Ay belong to OpS®°, by the standard limiting
procedure, we substitute u into (3.8.7). This implies Au € HE+ 313 by taking 6 — 0,

where we recall A = Ay 5.
H

3.8.2 Propagation to the radial source in the past infinity

To use the standard propagation of singularity, we need the following dynamical lemma.

Lemma 3.8.6. Let (29,&) € T*R™ with & # 0 and p(z,£) = 0. We denote z(t) =

2(t, o, &), C(t) = C(t,20,&) and n(t) = n(z(t),((t)). Then for any 0 < e < 1 and
R > 1, there exists T > 0 such that |z(=T)| > R

n(=T) <(-1+e). (3.8.8)

Proof. Let 0 < e < 1 and R > 1. Take Ry > R such that H}|z|* > C|¢|* for [z| > Ry
and

Hyi(2.€) > Cfa) . (35.9)
for |x| > Ry with (=1 +¢) < n(z,£) < 0. By the null non-trapping condition, we can
choose Ty > 0 such that

d
|2(=To)| = 2Ry, E\Z(t)ﬂt}% <0.

This with the convexity of H, implies |z(—t)| > Ry and n(—t) < 0 for ¢t > Ty. Now
suppose that (3.8.8) fails. Then, by Lemma 3.3.2, Corollary 3.3.4 and the inequality
(3.8.9), we obtain

n(=To) = n(-1) +/

—t

—To —To

n'(s)ds > C/ (s)'ds =00 as t— o0

—t

which is a contradiction.
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This corollary implies that for any (zg,&) € R™ \ 0, large enough R > 1, and
0 < & < 1, there exists (x1,&) € T*R™\ 0 such that (x1,&;) lies in the same integral
curve of H, and

|$1| > Rv 77](1231,51) < —l+e.

Then the standard propagation of singularities theorem implies that « is smooth mi-
crolocally near (zg,&) if and only if u is smooth microlocally near (zq,&;), for u €
D'(R") satisfying (P —i)u € C*°(R™). On the other hand, Corollary 3.8.4 implies that
for R >> 1 large enough and 0 < ¢ < 1, we have u € C*°(R™) microlocally on the
region (3.8.1) if u € H* 20(R") (for some k € R) satisfying (P — z)u € S(R"), where
z satisfies (3.8.2). Thus we obtain

Corollary 3.8.7. Letk € R and z € C satisfying (3.8.2). Suppose that u € Hk’*%“)(R")
satisfies (P — z)u € §(R™). Then we have u € C*°(R").

This corollary is a generalization of Proposition 3.2.2.

3.8.3 Subellipticity on the spectral parameter

The proof of Lemma 3.8.8 below looks the standard positive commutator argument at a
first glance, however, it is very different from the usual positive commutator argument.
In fact, in the proof below, we do not use the dynamical property for H,. We only need
to use the symbol calculus and the symbol class p € S2°.

Lemma 3.8.8. Let k.l € R, z € C\ R. Ifu € HFY2I=1/2 satisfies (P — z)u € H",
then we have u € H™!.

Remark 3.8.9. In this lemma, the assumption z ¢ R is necessary.

Proof. Take y € C2°(R;R) such that x(¢) = 1 on |t| < 1 and set

ar(r,§) = x(KL}f)’L Ar = (£)Y(D)*Op(ag) € OpS =~

for R > 1. We note Ag is uniformly bounded in OpS*!. Since Ar € OpS=>~>  we
have

(P — 2)u, Aju) 2 — (Au, (P — 2)u) 2 = 2ilm z||Agul|72 + (u, [P, AR]u) 2
for u € 8'(R™). Now we let u € H*Y/2171/2 gatisfying (P — z)u € H®!. Then we have
[(u, [P ARJu) 2] < Cllullfpsjza-ae

with a constant C' > 0 independent of R > 1. Moreover, by the Cauchy-Schwartz
inequality, we have
C

— 2 2 — 2 — 2| <
|((P — 2)u, Aju)p, (Aju, (P —2)u)r2| < Tm 2|

(P = 2)ullFes + Tm 2| [[Agul|Z.
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with a constant C' > 0 independent of R > 1. Thus we have

C

[Im z[[|Agul72 < mll

(P — Z)““?{kl + CHU||§{I€+1/2,171/2-

Using Im 2z # 0 and a limiting procedure, we obtain v € H*!.

3.8.4 Proof of Proposition 3.8.1

Now we prove Proposition 3.8.1.

Lemma 3.8.10. Let u € L*(R™) and z € C satisfying Im z > 0 and (P — z)u € §(R™).
Then there is 0 < € < % such that for any k € R, we have u € H"=.

Proof. Corollary 3.8.7 implies u € C*°(R™). By virtue of Theorem 3.2.4, we have
U € UperH" ¢ with some € > 0. O

Remark 3.8.11. When z € R\ {0}, the same conclusion holds with € > 1/2. To see this,
we only need to prove the same conclusion of Theorem (3.2.4) holds for z € R\ {0} when
we replace the conclusion ¢ € H=7 N H¥ 272 by » € H* 2773, To prove this, it
suffices to remove the assumption ¢ € L?(R™) in Theorem 3.2.4 in view of its proof (we
also observe the conclusion ¢ € H 37773 comes from the first term of the left hand
side of (3.2.1)). We note that v > 0 in the statement of Lemma (3.2.5) can be chosen
as P — z is elliptic on {|¢| < 2v}. This implies that Ty € L?(R") if (P —2)p € L*(R").
Thus we can remove the assumption v € L*(R™). Now we may take ¢ = v+ 1/2 where
v > 0.

Proof of Proposition 3.8.1. Suppose z € C satisfying Im z > 0. By duality, we only
need to prove P — i : §(R") — §(R™) is a homeomorphism. Since the operator P — i
maps between §(R") continuously and is injective in §(R™) (this follows from its essential
self-adjointness on §(R™)), it suffices to prove that P — i is surjective in S(R™) by the

open mapping theorem.
Let f € 8(R"). Setting u = (P —4)~'f € L*R"), we have (P —i)u = f. By
Lemmas 3.8.8 and 3.8.10, we have u € §(R™). This means P — i is surjective in S(R").
O]
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Chapter 4

Repulsive Schrodinger operators

4.1 Introduction
In this chapter, we consider the following repulsive Schrodinger operator on R™:
P=P,=—-A—(2)>*+0p(V), a>1, (4.1.1)

where (z) = (1+|z]?)/? and Op(V) is the Weyl quantization of a symbol V : R?" — R.
We set

By = POQZ—A—<IL'>2a, a>1.

Let po(x, &) = [£]> — (x)?* and p(z,&) = po(z, &) + V(z,€). In this chapter, we always
assume the following assumptions.

Assumption C. We set Suppose that V is of the form
V(z,§) =) apl(z @mZb )& + oz
k=1
where a;, = ag;, b; and c are real-valued smooth functions on R™ and satisfy

07 aji(x)] < Ca(1 + ), (076 (x)] < Cp(1 + x>,
|07 c(x)] < Cp(1 + ]V,

with some 0 < p < 1/2 and Cjs > 0.

In particular, Op(V') is a symmetric differential operator and

2
V(2,8 =Y Vj(z,8), V;egheeimn

J=0
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Assumption D. For any M > 0
p(,€)] > C(€)%, o] < M, [¢] > Ro
with some C' > 0 and Ry > 0.

We study stationary scattering theory of P and give an application to limit circle
problem. The usual scattering theory is based on the limiting absorption principle: the
resolvent bound

sup [[(z) VPO =A+V = 2) T Ha) VA0 e < 00 (4.1.2)
Re zel,Im z#0

and existence of the boundary values of the resolvent

lim (z) Y20 (A 4V — 2) Ha) 720, (4.1.3)
+Im z—0
(4.1.2) is used in order to prove existence and completeness of the wave operators.
Existence of the boundary values (4.1.3) is used for a construction of generalized eigen-
functions of the stationary Schrodinger equation:

(—A+V —2)u=0.

The difficulty in the case of P with a > 1 lies in the lack of essential self-adjointness of
P on §(R™). Since P may have many self-adjoint extensions, ”the boundary value of
the resolvent” seems meaningless. The recent progress in the microlocal analysis gives
another definition of the outgoing/incoming resolvents of pseudodifferential operators
under some dynamical conditions. See [16] for the Anosov vector fields, [3] and [75]
for the d’Alembertians in the scattering Lorentzian spaces. We apply this technique
to the repulsive Schrodinger operator P even for @ > 1 and prove existence of the
outgoing/incoming resolvents. Moreover, we show that P has many eigenfunctions
associated with the eigenvalues A € C except for a discrete set. As a corollary, we give
another proof of that P is not essentially self-adjoint for @ > 1 in view of scattering
and microlocal theory. This is a classical result which is known as a typical limit circle
case (for example, see [61]) when Op(V') is a multiplication operator. It seems to be
new result when Op(V) is not a multiplication operator.

The repulsive Schrodinger operator is studied by several authors when Op(V) is
a multiplication operator. Time-dependent scattering theory of the operator (4.1.1)
for 0 < a < 1 is studied in [4] in the short-range case. The authors prove the exis-
tence and completeness of the wave operator and existence of the asymptotic velocity.
They also study that existence of the outgoing/incoming resolvent and the absence of
L*-eigenvalues. The recent works in [38] and [39] extend some results in [4] for the
long-range case. Moreover, in [38], the author of these papers proves the absence of
eigenvalues in Besov spaces, where the order of Besov space is O‘T_l This result is an
extension of well-known results for the usual Schrédinger operators (v = 0) to the
repulsive Schrodinger operators (0 < o < 1).

From the usual stationary scattering theory of —A, we know that:
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e Eigenfunctions of —A associated with positive eigenvalues do not exist in the
. 1
threshold weighted L2-space: L% 2.

e There are many eigenfunctions right above L2 3

—Au=Mu, uc€ ﬂ L*73

s>1/2
for each A > 0.

The result in [38] and [39] suggests that the above results hold for the repulsive
Schrodinger operator with 0 < o < 1 with threshold weight QT’l It is expected that
these results also hold for a > 1. In this chapter, we almost justify these and we prove
the existence of non-trivial L?-solution to

(P—2)u=0

for z € C except for a discrete subset of C.

We introduce the variable order weighted L?-space L*F (=) where k,t € R and
m is a real-valued function on the phase space R*". Though we give a precise definition
of L2#+tm(@8) in Section 4.6, we state properties of L>*F+m(®:8) here: If u € L2FHtm(@8)
then

u € L**~" microlocally near{|z|, [¢| > R, [£] ~ |z|*, z - & ~ |x||¢]} (4.1.4)
w € L** microlocally near{|z|, |¢| > R, |¢| ~ |2|%, 2z - & ~ —|z||€|} (4.1.5)

for large R > 0. The following theorem is an analog of [16, Theorem 1.4].
Theorem 4.1.1.
(i) Lett#0 and z € C. We define

Dy = {u € L¥*5+mE@8) | (P — 2)u € [25+Hm@0Y),
Then
P — z: Dy — L2 Hm(@d) (4.1.6)

is a Fredholm operator and coincides with the closure of (P — z) with domain
S(R™) with respect to its graph norm.

(17) There exists a discrete subset T,y C C such that (4.1.6) is invertible for C\ Ty;.

Remark 4.1.2. By the standard radial point estimates and the propagation of sin-
gularities, it follows that T, = Ty sen: is independent of |t| and T, C C_gny =
{—(sgn t)Im z > 0}. Moreover, this theorem is true for 0 < aw < 1 if we replace z € C
above by z € Cggn ¢ (though Dy, depends on z). We leave these proofs to future work.
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This theorem also gives the bijectivity of P — z in the usual weighted L2-spaces:
Suppose z € C\ T, ;. For any f € L=®)/24¢ with £ > 0, there exists a unique solution
u € L>(@=D/27¢ to the equation

(P — z)u = f, in the distributional sense,
u is outgoing if the signature of ¢ is + and incoming if the signature of ¢ is —,

where "u is outgoing” says that (4.1.5) holds with k = (o — 1)/2 and ¢t = € and "u is
incoming” says that (4.1.4) holds with k = (o — 1)/2 and t = —e¢.
Moreover, we construct non-trivial L? solutions to Pu = zu.

Theorem 4.1.3. Let a > 1 and t # 0. For z € C\ Ty, there exists u € L*\ {0} such
that Pu = zu.

Remark 4.1.4. As is proved in Proposition 4.4.9, it follows that there are many eigen-
functions associated with z € C\ T,.

From Theorem 4.1.3 and the standard criterion for essential self-adjointness [61,
Corollary after Theorem VIIIL.3|, we conclude that P is not essentially self-adjoint if
a> 1.

Corollary 4.1.5. Suppose o > 1. Then P = P, s not essentially self-adjoint both on
C>®(R™) and §(R™).

The repulsive Schrodinger operator P = P, for large « is expected to have the same
structure as the Laplace operator on a bounded open set in R”. For a bounded open set
Q, it is well-known that the inclusion HZ(2) < L?*(€2) is compact. Here we note that
HE(9) is the minimum domain of —A|cse(q). For the repulsive Schrédinger operator,
we prove a similar result.

Theorem 4.1.6. Define the Banach space
D = {ue€ L*(R") | Pue L*(R"), u, € C°(R") ugx — u, Pu, — Puin L*(R")}

«
min

with its graph norm. Then the inclusion D®. < L* is compact.

Remark 4.1.7. Dg;, coincides with the minimal domain of P|¢e(gn), that is the domain

min

of the closure of P|ceogn).

Remark 4.1.8. Note that D%, = {u € L? | Pu € L*} for 0 < a < 1 since P is essentially

self-adjoint on 8(R") for a@ < 1. However, it follows that D%, # {u € L? | Pu € L?}
for a > 1.

Corollary 4.1.9. Let n = 1 and Py be a self-adjoint extension of P. Then there exists
{652, C R such that o(Py) = 04(Py) = {\e}32, and | M| — o0 as k — oo, where
o(Py) is the spectrum of Py and oq4(Py) is the discrete spectrum of Py .
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Remark 4.1.10. For a relatively bounded open interval I C R, it is proved that each
self-adjoint extension of —Alge(s) has a discrete spectrum by mimicking the proof of
Corollary 4.1.9. However, in the case of n > 2, the situation is dramatically different.
In fact, we consider the Klein Laplacian (—A with domain {u € L*(Q) | Au = 0} +
HZ(2)) for the bounded domain with smooth boundary 9f2. The Klein Laplacian has
a nonempty essential spectrum for n > 2. In fact, we note that any L? harmonic
functions on {2 lies in the domain of the Klein Laplacian. Since restrictions of harmonic
functions on R™ to Q are L? harmonic functions on €2 and since the dimension of the set
of all harmonic functions for n > 2 is infinite, we conclude that 0 is the eigenvalue with
infinite multiplicity. In this way, it follows that the essential spectrum is not empty.

Remark 4.1.11. As an analogy to —A on 2, we naturally propose the following problems:

e Does there exist a distinguish self-adjoint extension of P (such as the Friedrichs
extension of —A|cs(q) in the case of —A on )?

e How is the structure of the self-adjoint extension of P? (More concretely, does
there exist a self-adjoint extension of P which has a discrete spectrum?)

We fix some notations. $(R") denotes the set of all rapidly decreasing functions on
R™ and 8'(R™) denotes the set of all tempered distributions on R”. We use the weighted
Sobolev space: L*! = (z)"'L?(R"), H* = (D) *L*(R") and H*! = (z)~Y(D)"*L*([R")
for k,1 € R. For Banach spaces X,Y, B(X,Y) denotes the set of all linear bounded

operators form X to Y. For a Banach space X, we denote the norm of X by || - |/ x.
If X is a Hilbert space, we write the inner metric of X by (-,-)x, where (-, )x is
linear with respect to the right variable. We also denote || - ||;2 = || - ||z2n) and

(v)2 = (-, ")r2@n). We denote the distribution pairing by < -,- >. For I C R, we
denote I = {z € C|Re z € I,4+Im z > 0}. We denote (z) = (1 + |2|*)¥/2 for z € R™.
Set

Ci={2z€C|+£Im=z>0}.

4.2 Notations, cut-off functions and elliptic estimates

In this subsection, we fix some notations and define cut-off functions which are used in

this chapter many times.
Let x € C°(R, [0, 1]) such that

1, |t <1,

x(t) = {o: 1t > 2.

For RRL>1and 0<7r<1,set y=1—x and

ar (2, &) =x(Jx|/R)X(IEl/R)x (€17 — |**) /r(€]* + |=[**)),
CLR(Z',§> :aRfl,R(xagx bL(xvg) - X(|$|/L)X<|§|/L)
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We often use the symbol

_ &
|z]l€]

We state the elliptic estimate of the repulsive Schrodinger operator P.

n(z,§)

Proposition 4.2.1 (Elliptic estimate). Let z € C, k,l € R, N > 0 and ky,l; > 0 with
ki +1 <2 For RM >1 and~y > 1, set

Do ={(2,6) € R*" | |2 < M} U {(z,€) € R*" | [¢] < M},
Qpqa ={(2,€) € R™ | 2| > R, €] > R, [¢] > 7]z|*},
Qrqp ={(2,§) €R™ | 2| > R, [¢] > R, |2]* > 9[¢[}-

Let v > 1. There exists Ry > 0 such that if R > Ry and a,a; € S*° are supported
i Qoe U Qr~1 U Qpyo and infy, o ar| > 0, then there exists C' > 0 such that for
u € H NN with Op(ay)Pu € H®!, we have Op(a)u € H¥Ft+alt gnd

||Op(a)U||Hk+k1,l+al1 S C’||Op(a1)(P - z)u||sz + OHU”HfN,fN.
Here the constant C' > 0 is locally uniformly in Re z € R.

This elliptic estimate follows from a standard parametrix construction.

Lemma 4.2.2. Let by, as in above and Q € S*! for some k,1 € R. Then the symbol of
[Q, Op(byr)] is uniformly bounded in S*~Y=1 with respect to L > 1 and converges to 0
in SF-1Fel=1ve g5 [ — oo for any € > 0.

4.3 Proof of Theorem 4.1.1 (i)

For k € R, we set

kE_ lk—al
Sh=[J sl
leR

4.3.1 Construction of an escape function

Take p € C*(R, [0, 1]) such that

—1ift < —1/2, =1/

p'(t) < Cs < Culp(t)], if [t] = 1/4, p'(t) 2 0, p'(t) = Cr = Colp(t)], if [¢] < 1/4.
(4.3.2)

mw:{LﬁtZVZ inf |p(t)] > 0, tp(t) >0, (4.3.1)
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We define

m(w, &) = mr(z,§) = —p(n(z,§))ar(z, €)%,

where we recall n(z,€) = x - £/|z||¢| and ag is as in (4.2.2). Moreover, we set

617 = Jz** _ 1

. 2n _ LS S —
QR - {<x7§) R | |ZL’| > R |§| > R < |€|2 + |l‘|2O‘ < R}

Lemma 4.3.1. There exists Ry > 1 such that if R > Ry, then
H,(m1og(#))(z,€) < —C{x)*an(s, £)* — e(x,£),

where e(x,€) = p(n(x, €)) (H,ak) (x,€) log(x) € Sa-1+0.

Proof. We learn

Hy(p(n) log(x)) >2(np(n))|2||&]{x)~* + (Hy,n)p' (n) log(z)
= Clp(n)|{x)*~ = Clp'(m)[{a)* " log(x).

Note that the first line of the right hand side is positive for (z,&) € Qg. Moreover, we
observe that |£] ~ |z|* on Qg if R is large enough. For |n(z,&)| > 1/4, it follows

Hy(p(n)log(z)) >2(np(n))|x||€|(x) = = Clp(n)|{z)*~ 1+
— Clp' ()| ()~ " log(x)
>C(x)*p(n)| — Clx)* " log(a)|p(n)| = Clx)*!

by (4.3.1) and (4.3.2). For |n(z,£)| < 1/4, we have
H,(p(n)log(x)) =(Hy,n)p' (1) log(x) — Clp(n)|{x)* ="

= Clp' ()~ log(x)
>Cp/ (n){x)*~ log(w) — C|p'(n)|(x)*~" " log(z) > C(z)*~"

Thus we complete the proof. O

4.3.2 Fredholm properties

Let m = mpg, be as in subsection 4.3.1, where Ry is as in Lemma 4.3.1. Moreover,
we set ko = (a —1)/2. Let S&(=O+ he as in Definition 2 and let Gy, (2, &) =
()kattm(@8) 4 G=00= guch that Op(Gi,.m) @ S(R™) — S(R") is invertible. Existence
of such Gy, 4m is proved in Lemma 4.6.2 (see also (4.6.1)). Moreover, the variable order
weighted L?-space L>Fattm(=£) ig defined by

L2 ka+tm(z,£) Op(Gka tm) 1L2.
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By Lemma 4.6.3 (7i), we have
L2,kza+tm(ac,§) _ Op(éﬂ tm)_lLZka'
For t # 0 and z € Cy, we set
Pin(2) = Op(Gom) (P — 2)Op(Gom) L. (4.3.3)

We note that the operator P on L*Fettm(=£) ig unitary equivalent to P,, on L*Fe.
This is why we study the Fredholm property of P, (z) instead of P in order to prove
Theorem 4.1.1. By the asymptotic expansion, we have

Pin(2) = P — 2+ itOp(H,(mlog(z))) + OpS» 210
since |¢] ~ |z|® on supp m and G gy = (z)#8 4 50—,
Lemma 4.3.2. We have
—(u, Op(Hy(mlog(z)))u)r2 > ClOp(ar)ull®, ars = Cllulliz-1s0 + (1, Op(e)u)r2
for u € $(R™).
Proof. By the construction, m is supported in supp agz. Hence we have
—Hy(mlog(z)) — C{z)* tap(z,£)* — e(x,&) € S0,
By Lemma 4.3.1 and the sharp Garding inequality (Lemma 2.2.1 (v)), we obtain the
above inequality. O

Lemma 4.3.3. Set Dim(2) = {u € L>@V/2 | P, (2)u € L>(1-0)/2}, We consider
Dy (2) as a Banach space with its graph norm. Then S(R™) is dense in Dy, (2).

Proof. Let u € Dyn(z). We recall that by(z,€) = x(|z|/L)x(|€|/L) is as in (4.2.2).
Since Op(bg)u — u in L>©@ /2 and Op(br) Pyn(2)u — Pyy(2)u in L>(=2)/2 it suffices
to prove that [P, Op(bz)Ju — 0 in L>(1=%)/2 We learn

[[Pim(2), Op(br)]ull r2.0-crr2 <[[[Pan(2), Op(br)]OP(ar)ul| 2,002
+ [I[Pem(2), Op(br)|(1 — Op(ar))ul| 2.0-a)/2.

Since |£| ~ |z|* on ag, it follows that [Py, (2), Op(br)]Op(ag) is uniformly bounded in
S%e=1 and converges to 0 in S%(@~1/24+0 Lemma 4.2.2 and u € L*>©@~D/2 imply

lim sup ||[Pyn(2), Op(b1)]Op(ar)ul| f2.0-a)y2 = 0.

L—oo

Moreover, since u € L@ /2 with P,,(2)u € L>17%/2  then the elliptic estimates
(Proposition 4.2.1) implies (1—Op(ag))u € HFO=/2 b for k) 1} > 0 with ky+1; < 2.
In particular,

2
(1 —Opl(ag))u € ﬂ HI 5+ Da

J=1
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Since [Py (z), Op(by)] is uniformly bounded in $°2_, S'74=1 and converges to 0 in
7=0
Z?‘:o Sl=iteje=1+e for any € > 0, then Lemma 4.2.2 gives

limsup ||[Pim(2), Op(br)](1 — Op(agr))ul| f2.0-a/2 = 0.

L—oo

This completes the proof. n

Proposition 4.3.4. Let I C R be a relativity compact interval. Then there exists C' > 0
such that for z € Iy we have

||u||L2,(a—1)/2 S C||Ptm(z)u||L2,(1_a)/2 + CHUHHfN,fN, u € f)tm(z),

HUHL2,<D¢71)/2 S CHPtm<Z)*u”L2,(17a)/2 + CHUHH—N,—N, u e Dtm(Z).

Moreover, (4.3.4) and (4.3.5) hold for z € I_syy though the constant C' > 0 depends on
Im 2.

Proof. First, we assume z € Iy, ;. We prove (4.3.4) only. Since Py, (2)" = (P — 2)* —
itOp(Hy(mlog(z)))+ OpS» 270 holds, (4.3.5) is similarly proved. By Lemma 4.3.3, we
may assume u € $(R™). By Lemma 4.3.2 and ¢tIm z > 0, then

—(sgn t)Im (u, Py (2)u) 2 2C)|Op(ar)ulfa -1/ — Cllulfz 140 + (u, Op(e)u)r:
for u € S(R™). Since tIm z > 0, then we have

1Op(ar)ullZ2 o2 SCI1Pum(2)ull c2.a-avzllufl vz + Cllullzz 150 (4.3.6)
+ |(u, Op(e)u)L2|.

By the elliptic estimate (Proposition 4.2.1) and the interpolation estimate, we have

(1 = Op(ar))ulle a2 + lJull72 110 + |(u, Op(e)u) 2] (4.3.7)
< C||Op(ar)ul|7s-1+0 + C||Rfm(2)u||2m,<1—a>/2 + Cl|ul|F—n.-~

1
< 510p(ar)ullz vz + CllPum(2)ullf2.0-0172 + Cllullg-ov-

By using (4.3.6), (4.3.7) and the Cauchy-Schwarz inequality, we obtain (4.3.4) for u €
S(R™).

Next, we prove that (4.3.4) and (4.3.5) hold for z € I_g, though the constant
C' > 0 depends on Im z. In fact, since (« —1)/2 > (1 — «)/2, then the elliptic estimate
and the interpolation inequality implies that for any €; > 0,

[Im Z|||U||iz,(1—a>/2 Sgl”“”%x(a—lw + Cllull72-~-va
<er|lull?z a2 + ClPim(2) 7 2.0-ay2 + Cllullz-n.-v-

Taking £, > 0 small enough and use (4.3.4) and (4.3.5) for z, we obtain (4.3.4) for
z € I—Sgn t- D
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Remark 4.3.5. Suppose t > 0. If Im z is large enough, then
[ull p2.0-0/2 < CllBan(2)ull2.a-n/2- (4.3.8)
In fact, in (4.3.6), we have a stronger bound:
|OP(@r)ullZs e vy + Im zljulZe < (RHS of (4.3.6)).
Hence the argument after (4.3.6) implies
(4 )l ulaa s+ T 2 ullZe < Cl P2l v+ Cllull—wn.

We use the trivial bounds ||u||g-~-~ < ||u||zz ||u||g-~-~ < ||u]|f2.a-1)/2 and we obtain
(4.3.8). Similarly, for ¢t <0, (4.3.8) holds if —Im z is large enough.

Corollary 4.3.6. The map
Pon(2) : Dy (2) — L>(17/2 (4.3.9)

is a Fredholm operator. Moreover, if tlm z > 0 holds and |Im z| is large enough, then
P — z is invertible. Furthermore, (4.3.9) is an analytic family of Fredholm operators
with index zero. Moreover, there exists a discrete set T,y C C such that (4.3.9) is
invertible for z € C\ Ty .

Remark 4.3.7. Remark 4.3.5 implies that P;,,(z) is invertible for ¢ > 0 and for large
Im z > 0. In fact, the injectivity of P, (z) follows from (4.3.8) and the surjectivity
follows from the injectivity of Py, (z)*.

Proof. First, we prove that dim Ker P, (z) < oo is of finite dimension and Ran Py, (z)
is closed. Let a bounded sequence u; € ﬁtm(z) such that P, (z)uy is convergent in
L>(1=2)/2 " Due to [30, Proposition 19.1.3], it suffices to prove that u; has a conver-
gent subsequence in Dy, (z). It easily follows from (4.3.4) and the compactness of the
inclusion L>(@~1/2 ¢ gF=N-=N,

Next, we prove that the cokernel of P, (z) is of finite dimension. To do this, it
suffices to prove that the kernel of Py, (2)* : L*>(~1/2 — D,,.(2)* is of finite dimension.
By definition, we have

Ker P, (2)* ={u € L*@ V2| (4, Py (2)w) 2 = 0, Yw € Dy (2)}
={u € L* V2| (u, Py (2)w) 2 = 0, Vw € S§(R™)},

where we use Lemma 4.3.3 in the second line. If u € L*(@~1/2 gatisfies P,,,(2)*u = 0,
then this equality holds in the distributional sense. The claim follows same as in the
first half part of this proof.

The invertibility of (4.3.9) when ¢Im z > 0 and when |Im z| is large follows from
Remark 4.3.5 and its dual statement. The analytic Fredholm theorem [79, Theorem
D.4] imply existence of T, ; as above.

O

Proof of Theorem 4.1.1. Theorem 4.1.1 follows from (4.3.3) and Corollary 4.3.6.
O
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4.4 Proof of Theorem 4.1.3

4.4.1 Outgoing/incoming parametrices

In this subsection, we construct outgoing/incoming parametrices of a solution to Pu =
zu. Set

SHR") = {a € CX(R"\ {0}) | [8]a(z)| < Cp(a)*, for |z] > 1}.
Moreover, we frequently use the following notation:
The main result of this subsection is the following theorem.

Theorem 4.4.1. Fiz a signature = and a € C>®(S"™'). Then there exists o1 €
SI(R™) such that

0+ F i Tz [ € S'eTH(R™), Im (pr F 2—|x|1_a ) € S°(R™)
1+« 2(1 — ) ’ 2(1 — ) ’
e (—A — |22 + Op(V) — 2)(e'b) € S~ 5 7H(R"),

n—14a«

where b(z) = ||~ x(|z|/R)a(d) € S~ = (R") and & = z/|x|.

Theorem 4.4.1 is proved by Propositions 4.4.2 and 4.4.5 below.

Proposition 4.4.2. Fiz a signature +, z € C and a € C®(S"'). Set b(z) =
n—14+a n—1l4+a

lz|72 x(|z|/R)a(z) € S~ =2 (R™). Let o1, € S™*(R") be satisfying

pae F I 2 I g, Tin (o, 7 2510 ) € SURY)
A 2(1—a) ’ ’ 2(1 — )
Then we have
e85 (—A — [2]* + Op(V) — 2)(€'¥+D)
— (V) — & + V (2, Vo () — 2)b(x) + S~ 75 H(R").

Proposition 4.4.2 directly follows from Lemmas 4.4.3 and 4.4.4 below.
Lemma 4.4.3. Fiz a signature £ and z € C. Let ¢y, and b be as in the above
proposition. Then

n+l—a

e (= A = |z = 2)(e¥57b) = ((Vipw)? — [ — 2)b + 872 ~H(R").
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Proof. Set k = —"=1*% then we note k + o — p — 1 = —"E=2 — ;. We write ¢ = ¢4
and pg = o+ = £|z|**/(1 + ). By a simple calculation, we have

e (=D = [z]** = 2)(e") =((Ve)* — [2[** — 2)b —i(2Vp - Vb + (Ap)b) — (Ab).
Due to b € S¥ and ¢ — ¢y € ST 7#, we observe
Ab, 2V (¢ — o) - Vb + A(p — @o)b € ST+~ H(R™),
Thus, it suffices to prove
2V - Vb + (Agg)b € SFHa—r=1(R™).
Since Vo = £|z|* 'z, Apg = +(n — 1+ a)|z|*!, we obtain
2V g - Vb + (Apg)b = £ (2|2]0.b(x) + (n — 1 + a)|z|"~1Tb)
=+ %Iﬂ?l“aa(i)(i)'(lxl/m € C°(R") C SMo#71(R").

]

Lemma 4.4.4. Let k € R, ¢ € ST(R") and b € S*(R"). Set (z,y) = fol Vo(tr +
(1 —t)y)dt. Then

e~ DOp(V)eb(x) = V(x, Vip())b(x) + L(x),
where L € S¥Te=r=1(R") is defined by

Tty

L(z) = Dy(0¢V (z,9 (2, ))b(2)) |lomy + (Dy(O£V ( »0)0(y)) lo=y-

Proof. By a simple calculation, we have

6_i“0(x)0p(V) (e°b)(z) = (271r)" /}R2n ei(ﬂf—y)'ﬁ—i(@(m)—w(y))v(x ;_ y,f)b(y)dyd§
- (Qi)n /]RQ" ei(m—y)uﬁv(m g y7§ + I/J(I, y))b(y)dyd§
=V(z,Ve(z))b(z) + L(z),
where
L) = s [ @ bla) = VI o) o)

Thus it suffices to compute L. Since V' is a polynomial of degree 2 with respect to
&-varibble, we have

VL vt y) =V py) + € 0V b))
45 V(LY w(ay) €
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Note that 9FV (554, 4(x,y)) = 0V (552, 0) since V is a second order differential opera-
tor. By integrating by parts, L(z) is written as

[ e
gy [ e 0 (g
— Dy 06V (1, 0, y))b() ey + (DE(EV(EY

Tty

Y (e, y) +€- RV (—=,v(z,y)) - E)bly)dyde

L 0)b(y)) ey € SETLRY).

This completes the proof.

Now we find approximate solutions to the eikonal equations:
(Vo(z))? — |z]** + V(z,Veo(z)) — 2 = 0. (4.4.1)

In [19], solutions to eikonal equations is used for constructing eigenfunctions of a usual
Schrodinger operator —A + V' with a long range perturbation. Isozaki [33] proved
the existence of solutions to eikonal equations for —A + V' by using the estimates for
the classical trajectories. In our case, we cannot directly apply this strategy since the
classical trajectories may blow up at finite time. Instead, we use iteration and construct
the approximate solutions to (4.4.1) even for z ¢ R.

L= ol Let R > 1 be
large enough. Then for any integer N > 0, there exists py+ € S'T*(R™) such that
ONt—pn-1,+ € STTONE(R™Y), Tm (on+ —@ox) € SUR™), N+ — On—1,+ is supported
in x| > R and

Proposition 4.4.5. Set ¢y (v) = woi(z,2) = £

(Vons(@)? = [z* + V(z, Vons(z) — z € S>NTUHRY). (4.4.2)

Remark 4.4.6. Such construction of ¢y succeeds for 0 < a < 1 and z € R. For a =1
2
and z € R, we have to replace g 1 (z,2) = :l:‘%| + % log |z|.

Proof. We find oy + € ST (R™) of the form

PN (7)) = pox(z) + Zej:t , € € ST,
By a simple calculation, we have
(Veonz(@)® =z + V(z, Voye(z) — 2

9 N N
Z —2c
:Z|x| 2o 4 22 Veor Ve + Z Vejx-Vep s +V(z, Von ().

j=1 jk=1
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We set

] 2
e1+(z) = :F/ —(V(s2, Vo +(s2)) — Zzs_za)dS)ZR(x) = S"“‘“(R”)

R 25
e1,+(2) =po+(z) + e1,4(2).
Note Tm e, + € ST #(R"). Then (Vo1 +(z))* — |z|**+ V(z, V1 +(x)) — 2 is equal to
(Im Vo +) - Ver+ + (Ve 1)+ V(z, Vi +) — V(x, Vo 1)

1
= (Im vwoji) . Vel,i + (Vel,i)z + / Velyi . (85‘/)(93, Vg007:|: + tVeLi)dt,
0

and this term belongs to S**~#(R"). In fact, Vo + +tVe; +(z) = |z|* tz 4+ O(Jx]**)
and hence 0,V (z, Vg + +tVey 1) = O(|z|*#) uniformly in 0 <¢ < 1.
For N > 1, we define oy € S and ey € S =V# inductively as follows:

| B (si
ons1s (@) =pna(®) + enara(®), exsrs(@) = F / Enia(5) v (1),

R 25%
Ensis= Y. Vejs-Vers +V(2,Vons) — Vi, Voy_14)

j+k=N+1,
1<j k<N

— 2(1111 Vgo(),i) : VeNd:.

We note Im ey + € S'7N(R™). For |z| > 2R, we have

N+1

(Voni1a)? — |o)** — =(Vpo+(z) + Z Ve;j+) — |z[** — 2
N+1 N+1
_22Vg00i Ve]i + Z Z Veji Veki
m=2 j+k=m
=— V(;c, Von+(z))
modulo S2¢~(V+2)u Hence

[Voniiel® = [2** + V(z, Voni(2) =V (2, Vonia(z)) = Ve, Von(@))

=0
modulo S2*~ (V421 Moreover, we have Im (py+ F zﬂl::)) € SY(R") since Im ey 4 €
St=a=Nu(R") and o > 1. This completes the proof. O
Proof of Theorem 4.4.1. Fix a signature . Let N > 0 be an integer such that
2a—(N+1)u<—mT_a—u.
We take ¢ = ¢4 = ¢4+ y as in Proposition 4.4.5. Then Proposition 4.4.2 gives Theorem
4.4.1. O
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4.4.2 Construction of the L?-solutions, proof of Theorem 4.1.3

Now we construct the L?-solutions to
(P —z)u=0,
where u is of the form
u(x) = up(z) + ur(x), up(x) = %~ @b(z), uy € L>*2 g Hmg) (4.4.3)

Proof of Theorem 4.1.3. Set V(z,€) = V(x, &) —((z)2* —|z|**)¥(2|z|/R) for R > 0. Let
o € S and b = |z|7"= " x(|lz|/R)a(#) be as in Theorem 4.4.1 with V, where a €

C(8"1)\ {0} Since X(2el/RIX(el/R) = x(ll/R) and 5= 71(R) € L25

(P—2)(e¥b) e L> = (4.4.4)

Now we take 0 < t < min(p/2, (& — 1)/2) and m = mpg, be as in subsection 4.3.1,
where Ry is as in Lemma 4.3.1. Since

Llﬂ—av2+mﬂaﬂ C‘LZ

l—atp
2

, % - (j\ T&Jy
then there exists u; € L2~ D/2+tm(@.8) gych that
(P —2)u; = —(P — 2)(e"¥b).

by Theorem 4.1.1. We set u = uy + ¢°~b € L? then u satisfies (P — z)u = 0 since
t < (o —1)/2. Finally, we prove u # 0. In order to prove this, we use the wavefront
condition of u; and e*-b.

Lemma 4.4.7. Setug = ¢-b, where b(z) = |z|~" 2 x(|z|/R)a(z) and a € C*>(S*1)\
{0}. Let b, s(x,&) = x((n(z,&) +1)/)ar,(z,£) and Ag, s = Op(br,s) for 0 < § < 1
small enough and Ry > 1 large enough. Then Ag, suo ¢ L%

Proof. By (4.4.4), Proposition 4.2.1 implies that (1—Op(ag))ue € L*>©@1/2. Moreover,
by a simple calculation, we have

2| Dy — x - Bpp_(@))up € [ L* T HTE C L2 (4.4.5)

e>0

Note that if r;,d are small and R, is large, for (z,&) € supp (ar, — br, s)
@& — 2 Oup—(x)] > Cla .

Since ugy ¢ L2172 and ug € NesoL?@ /272 we have

aR, —b 1
Op(ar, — bg, s)uo :Op(x £ ﬁ T - 3R90’6 (x)

~|x|_1_a(x-Dz—x-8$g0_( ))u0—|—L Tt e 2%

%)

by a symbol calculus and (4.4.5). Thus if we suppose A R1 sio € L>*7  then uy € L>“7
follows. However, this is a contradiction since uy ¢ L2(®~Y/2 by a snnple calculation.
m
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Lemma 4.4.8. For(0 < 6 < 1 small enough and Ry > 1 large enough, Ag, su1 € 125

Proof. Note that u; € L>@=D/2=tm@8) = Op(Go_1yjatm) L% 0 < t < (a —1)/2

and G(o_1)/2,—tm = ()@~ D/27tm@8 hy (4.6.1). Moreover, we note m(z,£) = —1 on
supp bgr, s if 0 < § < 1 is small enough and R; > 1 is large enough. Thus Ag, su €
[2(a=1)/2 UJ

By the above two lemmas, we obtain u = ug + u; # 0. This completes the proof of
Theorem 4.1.3.
O

Finally, we prove that there are many eigenfunctions associated with A € C\ 7.

Proposition 4.4.9. Suppose that a,a’ € C>*(S"™1) are linearly independent. Let u,u’ €
L\ {0} be corresponding eigenfunctions as in (4.4.3). Then u,u’ are also linearly
independent.

Proof. By (4.4.3) and Lemma 4.4.8, we write
u(w) =@~y (o] / R)a(@) + w (),

n—14+a

() =e Dl (el /R)d (2) + g (),

where uy,u) € L? satisfy Ag, su1, Ag, su} € Lz’%, where Apg, 5 is defined in Lemma
4.4.7. Suppose that L, L’ € C satisfy

Lu(z) + L'v'(z) =0, x € R™. (4.4.6)

It suffices to prove that La(z)+ L'a’(2) = 0 for & € S"~!. Suppose La(Z) + L'a' (%) # 0
for some 2 € S"71. By Lemma 4.4.7, we have

n—14a«

A, (€|~ x(|Jal /R)(La(#) + L''(&))) ¢ L**7 . (4.4.7)

(4.4.6) and (4.4.7) imply
Ap, o(Lu+ L'W/) ¢ L>“7 .

This is a contradiction. O

4.5 Proof of Theorem 4.1.6 and Corollary 4.1.9

4.5.1 Proof of Theorem 4.1.6
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Lemma 4.5.1. Let a > 1. For d > 0, there exists C' > 0 such that

10p(azr)ull 5 aj=s < C[[Pullz2 + Cllul > (4.5.1)

for u € DS, where we recall that asg is as in (4.2.2).

Proof. First, we prove (4.5.1) for u € §(R™). We may assume 0 < 6 < p. Set
z- & [lR/ER

We note that |z| > 2R, |£§|] > 2R and |z|* ~ [£| hold for (x,§) € supp bgr. For
(x,€) € supp bg, we have

br(x,€) = asp(z,£)”

||

|z|/R 21 ¢12 2 20—2 1zl
o s ~1-6g :2|$| §° = (z-§)* 1 |z] LR
wiGel ) oW 2l el TP ) [
2R(5 (x5)2
L
20<x>a—1—6

with C' > 0 if R > 0 is large enough. Since Hybgr € S“*7# and 0 < § < u, we see
Hybr > C(x)* ai, + er,

where ep € S%*~1 is supported away from the elliptic set of P. By the sharp Garding
inequality (Lemma 2.2.1 (v)), we have

(u, [P,iOp(br)]u)z> = Cl|Op(azr)ull®, asyos + (u, Op(er)u)rz — Cllull} _y 5, (4.5.2)

22

for any v € §(R™). Take Ry > 1 such that asrar, = asgr. Substituting Op(ag,) into
(4.5.2) and using the disjoint support property and a support property of ar,, then we
have

(u, [P,iOp(br)u)r2 > C||Op(azr)ull®, ayos + (u, Op(er)u)rz — Cllullz:

for u € S(R™) with some C' > 0. Using the elliptic estimate Proposition 4.2.1 in order
to estimate the term (u, Op(eg)u)rz2, we have

1Op(azr)ull 5 o= < C[[Pullr2 + Cllul >

for u € §(R™) with some C' > 0. Thus we obtain (4.5.1) for u € §(R").
In order to prove (4.5.1) for u € D2, , it remains to use a standard density argument.

Let u € DS;,. By definition of D¢, there exists ux € C°(R") such that uy — uw and

min* min?

Puy, — Pu in L*(R™). Substituting uy into (4.5.1), we have

Sgp ||OP(G2R)Uk||L27a;41;6 < 00.
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. a—1-9§ . .
Hence Op(asr)uy has a weak*-convergence subsequence in L*>~ 2 and its accumulation
a—1-§6

point is Op(asg)u. Thus we obtain Op(asg)u € L*" 2 and

10p(azr)ull o epme < liminf [|Op(asr)ul| 5 ezp=s < Cl[Pullr2 + Cllul| 2.

]

Combining this lemma with the elliptic estimate Proposition 4.2.1, we have the
following proposition:

Proposition 4.5.2. Let a« > 1 and 0 < By, By < 4 with 5y + B = 1. For § > 0, there
exists C' > 0 such that

lull yosios s, a=g=ss, < ClIPullz2 + Cllullre (4.5.3)

2a

for w € D%, . In particular, the natural embedding D%, — L*(R") is compact, where

min * min

we regard D as a Banach space equipped with its graph norm.

min

This proposition gives the proof of Theorem 4.1.6.

4.5.2 Proof of Corollary 4.1.9
Note that D¢,

o in is the domain of the closure of P|ce(r). Set
D* = {u € L*(R") | Pu e L*(R™)}.

We easily see that D® is the domain of (P|cer))*. Moreover, it follows that the action
of (Plceo(ry)* on D® is in the distributional sense. In particular, we have

Ker ((P’CSO(R))* F Z) = Ker LQ(P + Z)
We use the following von-Neumann theorem.

Lemma 4.5.3. [61, Theorem X.2 and Corollary after Theorem X.2] Set Hy = Ker r2(PF
i). Then there is a one-to-one correspondence between self-adjoint extensions of P|cee ()
and unitary operators from Hy to H_. Moreover, for U € B(H,,H_) be a unitary
operator , we define

Dy={v+w+Uw|veDS, weIH,}

Then P 1is self-adjoint on Dy .

Now suppose n = 1. We prove that each self-adjoint extension of P|ce(r) has a
discrete spectrum.

Lemma 4.5.4. dimH, =dimH_ = 2.
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Proof. By [61, Theorem X.1], it suffices to prove that
dim Ker r2(P —ip) = dim Ker 2(P +iu) = 2

for some > 0. We note dim Ker 2(P £ iu) < 2 by uniqueness of solutions to ODE.
Hence it suffices to prove dimKer r2(P + iu) > 2. We observe S™1 = §° = {+1}
and dim C*({£1}) = 2. By Proposition 4.4.9, the discreteness of T, imply that for
some pu € C\ RUT,; there exists linearly independent functions such that uy,u/, €
Ker ;2(P £ ip). This gives dim Ker p2(P +iu) > 2. O

The following proposition is a variant of [61, Theorem XIII.64]. We do not know
whether a self-adjoint extension of P|ce(gn) is bounded from below. Hence we cannot
apply [61, Theorem XIII1.64] with our case directly in order to prove Corollary 4.1.9.

Proposition 4.5.5. Let H be a separable Hilbert space and A be a self-adjoint operator
on H. Suppose that (A+i)~" is a compact operator on H. Then there exists {\; J2LCR
such that |\y| — 00 ask — 0o and 0(A) = 04(A) = {\;}32,, where 0(A) is the spectrum
of A and o4(A) is the discrete spectrum of A.

Proof. First, we prove existence of A € R\ (A). To prove this, we use a contradiction
argument. Suppose o(A) = R. Set B = (A —1i)Y(A+1i)"! = f(A), where f(t) =
1/(t* + 1). By the spectrum mapping theorem, we have o(B) = [0,1]. On the other
hand, by the assumption of the lemma, it follows that B is a compact self-adjoint
operator on H. This contradicts to o(B) = [0, 1].

We let A € R\ o(A) and set T = (A — \)~'. Since (A +:)~! is compact and
since A € R, it easily follows that 7" is a compact self-adjoint operator. By the Hilbert-
Schmidt theorem [61, Theorem VI.16], there exist a complete orthonormal basis ¢, € H
and a sequence u; € R such that

Tor = uper, ur — 0 as k — oo. (4.5.4)

We note that ¢, belongs to the domain of A since ¢, € Ran T and since Ran T is
contained in the domain of A. Moreover, we observe u; # 0. In fact, suppose u, = 0
holds. Multiplying (4.5.4) by A — A, we have ¢ = 0, which is a contradiction. By
(4.5.4), we have

A = Mo, A = A+ 1/

Note |A\g| — o0 as k — oo. Since Ay has no accumulation point in R, it suffices to
prove o(A) = {\:}72,. To see this, we prove that A — z has a bounded inverse for
ze R\ { M}, We set

1_ (o )pr, b € H (4.5.5)

z

Rz =3 5
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and ¢ = infy>1 |\ — z|. Since Ay has no accumulation point in R, we have ¢ > 0. Thus
we have

[o.¢] 1 [o.¢]
> mmpk, PP <Y (or )]
k=1 =1

Hence R(z) is a bounded operator on H. Moreover, (A —z)R(z)y = 1 holds by (4.5.5).
These imply 2z ¢ R\ o(A). Thus we have o(A) = {A;}32,. Moreover, it follows that
04(A) = o(A) holds since dim Ker (A — ) = dim Ker (T — py) < oc. O

By virtue of Lemma 4.5.4 and [61, Corollary after Theorem X.2], it follows that
P|coor) has a self-adjoint extension.

Proof of Corollary 4.1.9. Fix U € be a unitary operator and let Dy be as in Lemma
4.5.3. By virtue of Proposition 4.5.5, it suffices to prove that the inclusion Dy C L? is
compact, where we regard Dy as a Hilbert space equipped with the graph norm of P.
Let ¢; € Dy be a bounded sequence in Dy:

sup([lesll 2 + [[Pg;lz2) < oo
J

We only need to prove that ¢; has a convergent subsequence in L?. We write ¢; =
u;j +v; + Uvj, where u; € DS and v; € H . By [61, Lemma before Theorem X.2|, we
see that

0 = (uj,v;)r2 + (Puy, Pvj) 2 =(vj, Uvj) 2 + (Pvj, PUv;) 2
:(Uj,UUj)LQ + (PU,]‘,PU’U]')L2.

Therefore, u; and v; are bounded in Dy. Since w; € D, it follows that u; has a

convergent subsequence {u;, } in L?. Moreover, we see that v;, € H, has a convergent
subsequence in L? due to the finiteness of the dimension of H . Thus we conclude that
¢, has a convergent subsequence in L?. O]

4.6 Variable order spaces

In this section, we give a construction of variable order weighted L?-spaces. Here, we
follow the argument in [15]. See [3, Appendix A] for other ways of constructions.

Let m € S% be real-valued and k,t € R. Suppose |m(z,€)| < 1 for (z,£) € R*™.
Set Grim(z,&) = (x)HHm@O  Set [(x) = (log(z)).

Definition 2. For a € C*°(R?"), we say that for a € S®k+tm(@£) if
00 3F%a(2,)] < (@) 1 st g

for 1,7, € N™.
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Note that Gy g, € SOF+HML),

Lemma 4.6.1. An unbounded operator Op(Gp ) on L*(R™) with domain 8(R™) admits
a self-adjoint extension.

Proof. By virtue of [61, Theorem X.23], it suffices to prove that Op(G. sn) is bounded
below in §(R"™). We note Gyt (2, &) = Grjo,m/2(x,€)?. By the standard construction
(see [15, Lemma 13]), there exists R; € S~/#/273+0+tm@8)/2 qych that

N
(Gry2,tmy2(, §) +ZR (Grj2,amy2(z, ¢)? ZRj)

j=1 j=1
ES (N+1),k—(N+1)+0+tm(x,&)

where (-)* denotes the adjoint symbol. By the Borel summation theorem, we have
Gram(2,) = b"b+ e, be SH2HM@AR e ¢ gmoomoo,
Thus we obtain
(4, Op(Gem)u) = (u, Op(e)u) = —Cllullfz, u € S(R).
O

We denote a self-adjoint extension of Op(Gj ) in L*(R™) by G(t) and its domain
by Dg(t).

Lemma 4.6.2. There exists Ri(t) € OpS—>~> such that Op(Grim) + Ri(t) is in-
vertible in S(R™) — 8(R™). Moreover, its inverse is a pseudodifferential operator

with its symbol in SO~F=t=E  Moreover, the symbol of its inverse is G_j—tm +
G—1,—k—1—tm(z,€)+0

Proof. We follow the argument as in [15, Appendix Lemma 12]. We decompose L* =
Ran ;2G(t) @ Ker ;2G(t). We denote the orthogonal projection into Ker ;2G(t) by
m(t) : L?* — Ker ;2G(t). By the standard parametrix construction of G(t), we see
that Ker 2G(t) C §(R™) and Ker ;2G(t) is of finite dimension. This implies 7 (t) €
OpS—>~%. We define G(t) = G(t)(I — 7(t)) + m(t) € OpSOF+tm=£) We observe that
G(t) : Doy — L? is invertible. We set R;(t) = (I — G())7(t) € OpS~>~>, then
G(t) = G(t) + Ri(b).

We show that G(t) is invertible in §(R") — 8(R"). This map is injective since G(t)
is injective in D) — L?. Next, we prove that G(t) : S(R™) — 8(R") is surjective. To
see this, let f € S(R™). Since G(t) : D¢y — L? is invertible, there exists u € Dy such
that G(t)u = f. By using existence of the parametrix of G(t), we obtain u € §(R™).

Finally, we show that the inverse of G(¢ (t) belongs to OpS0 —k=tm(@.8) and its symbol is
G+ S™H7F1tm@O40 Tt Q(t) is the parametrix of G(t): Q(t)G(t) = I + Ry(t),
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where Ry(t) € OpS™>~>. Then the symbol of Q(t) is G_j s, + S™HF-17Im@OF0,
Moreover, we observe

Q) = QMGHGH) ™ = G(t) + Ra(t)G(1) ™!
in §(R") — 8(R™). By the open mapping theorem, G(t)~! is continuous in §(R™) —

8(R™). Thus we have Ry(t)G(t)~" € OpS—>>~>. We conclude that G(t) = Q(t) —
Ry(t)G(t) € OpS®~F=tm@8) and its symbol is G _pm(zg) + S~ 17m@O+0,

O
Let Gy € SOFH™@8) such that
Op(ék,tm) = Op(Grm) + Ra(2). (4.6.1)
By Lemma 4.6.2 and duality, Op(Gj.4m) : 8'(R") — 8'(R") is also invertible.
Now we define the variable order weighted L? space by
L2EHm@O) — £ € 8'(R™) | Op(Grym)u € L*(R™)} (4.6.2)

for £ € R and its inner metric by
(u, U)L2,k+t7n(z,§) - (Op(ék7tm)u, Op(ék7tm)U)L2

Then L*F+tm(@£) ig a Hilbert space.
We state some properties of L*+tm(@),

Lemma 4.6.3. (i) (L>FHm@0) = [2-k-tm@g)

(i) For u € 8'(R"), u € L2**™@8 4f and only if (x)*u € L**™®8) Moreover, there
exists C > 0 such that u € L2*ttm(z£)

C_1||<$>ku||L2¢m(w7£) < Jull gz btimee < C||<$>ku||L2,tm<x,£)-

Proof. (i) This follows from the fact that the symbol of the inverse of Op(Gy ) belongs
to SO,—k—tm(x,E)'
(i7) Note that Op(Gi m ) {(2)*Op(Grim) " and Op(G.im){(x) #Op(Gom) " is bounded
in L? by Lemma 4.6.2. We are done.
[
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Chapter 5

Discrete Schrodinger operators

5.1 Introduction

We consider the discrete Schrodinger operators:
H=Hy+V(z) on H=I*2Z,
where Hj is the negative discrete Laplacian
Hou() == Y (uly) - u(z),
lz—yl=1

and V is a real-valued function on Z?. In this note, we study uniform bounds of the
Birman-Schwinger operators:

< 0. (5.1.1)

V|z(Hy — 2) V]2
sup [[VI3(Hy —2) VI

ze€C\R

As an application, we give sufficient conditions for V' that Hy and H are unitarily
equivalent. We also give examples of potentials for which (5.1.1) does not hold. Though
this subject is studied in a recent preprint [1], their assumptions are stronger than ours
and some proofs seem incomplete. One of the purposes of this note is to generalize
their results and give an alternative proof.

We denote the Fourier expansion by Jy:

iW(€) = Fqu(€) = Y _ e Cu(r), £eT!=RYz"

x€Z4

Then it follows that
FaHou(§) = ho(§)Fau(§),

where hy(§) = 42?:1 sin*(7¢;), and hence o(Hy) = [0,4d]. We denote the set of the
critical points of hg by I':

D ={¢€T!|Vho(¢) =0} = {€ € T"|§ € {0,1/2}, j = 1,....d}.
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We call ¢ € T an elliptic threshold if £ attains maximum or minimum of hy and a
hyperbolic threshold otherwise.

For a measure space (X, pu), LP"(X, ) denotes the Lorentz space for 1 < p < oo
and 1 <r < oo:

ey, - (PO (G € X150 > oot 1 <o,
Sup,so ap({z € X [[f(x)] > a})r, r= oo,
LP"(X,p) ={f : X = C| f : measurable, || f||rr~x) < 00}

Moreover, we denote LP"(R?) = LP"(RY, uz) and P7(Z%) = LP7(Z% u.), where py, is
the Lebesgue measure on R? and p, is the counting measure on Z¢. For a detail, see
[25].

First, we state our positive results:

Theorem 5.1.1. (i) Let d > 4. If V € 15°°(Z%), then (5.1.1) holds.

(it) Let d > 3. If |V(x)| < C(1 + |z|)~2 for some C > 0, then (5.1.1) holds.

Corollary 5.1.2. Under the condition of Theorem 5.1.1 (i) or (ii), H = Hy + AV is
unitarily equivalent to Hy for small A € R.

Remark 5.1.3. For Theorem 5.1.1 (iz), we show stronger results in Proposition 5.3.4.
For Theorem 5.1.1 (i), we also obtain stronger results: Uniform resolvent estimates in
Lorentz spaces as in Proposition 5.3.3.

Remark 5.1.4. In [34] and [67], the authors prove the absence of eigenvalues of Hy+ AV
for small A € R if [V (z)| < C(1 + |z|)~27¢ for some C' > 0 and € > 0 with d = 3 and
V € 15(Z%) with d > 4 respectively. In [1], (5.1.1) is proved under stronger assumptions:
|V (z)| < C(x)~243) with d > 3. Moreover, in [52], (5.1.1) is established for V € (?(Z?)
with 1 <p<6/5ifd=3and 1 <p < 3d/(2d+ 1) if d > 4. The authors in [52] also
study the scattering theory of Hy + V.

Remark 5.1.5. Theorem 5.1.1 (i7) holds if Hy is replaced by a Fourier multiplier F'eF,
where e is a Morse function on T¢. In fact, any Morse function can be deformed into
ultrahyperbolic operators near its critical points. Thus we can apply the arguments in
Section 3 directly. On the other hand, the authors are not confident whether we may
replace Hy by F;'eF, in Theorem 5.1.1 (i) due to the difficulty of multidimensional
versions of the van der Corput lemma.

Remark 5.1.6. Theorem 5.1.1 (i¢) is optimal as is shown in Theorem 5.1.11 below.
However, the authors expect that Theorem 5.1.1 (4) is far from optimal.

Corollary 5.1.2 follows from Theorem 5.1.1 and the following classical result due to
T. Kato:

Lemma 5.1.7 ([61, Theorem XII1.26]). Let Hy be a positive self-adjoint operator on a
Hilbert space H and let V' be a bounded self-adjoint operator on . If

sup ||[V]2(Hy —2) 7YV

zeC\R

< 00,

B(H)
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then Hy and Hy + AV are unitarily equivalent for small \ € R.

Moreover, we state the existence of the boundary values of the free resolvent near
I

Theorem 5.1.8. Suppose s > 1. Then, (x) *(Hy — 2)"z)~* is Holder continuous
in B(JH) with respect to z € Cz = {z € C| FIm z > 0}. In particular, the incom-
ing/outgoing resolvents

(@)™ (Ho — p£i0)" )~
exist in the operator norm topology of B(H) for u € [0, 4d).

As a corollary, we have upper bounds of the number of discrete eigenvalues of
Hy+ AV + W when W is finitely supported.

Corollary 5.1.9. Let H = Hy+ AV, where V' satisfies the condition of Theorem 5.1.1
(i) or (it) and A € R is small. Let W be a real-valued finitely supported potential. Then

dimKer (H+ W —p) < # {z € Z|W(z) # 0}
for any p € R and

dim Ran EP?, y;, ((—00,0]) < # {z € Z*|W(z) < 0},
dim Ran EV?, y, ([4d, 00)) < # {x € Z*| W (z) > 0},

where dim EY}, ,, (I) denotes the projection onto the eigenspace of H+W corresponding
to the eigenvalues contained in I C R.

Remark 5.1.10. This corollary appears in [1, Corollary 2.4] under different assumptions
in a stronger form. However, their argument seems to be incomplete. Indeed, their
proof of the positivity of the quadratic form (i, [V, 7A]p)s on the eigenspace of Hy+ V
does not work when Hjy 4+ V has at least two eigenvalues, where V' is a real-valued
function with finite support and A is the conjugate operator associated to Hj.

Next, we state our negative results:
Theorem 5.1.11. (i) Suppose d =1 or 2. For a non positive potential V € 1°°(Z4)

which is not identically zero and vanishes at infinity, (5.1.1) does not hold. More-
over, Hy + AV has at least one eigenvalue for all A > 0.

(i1) Suppose d = 2. Let x € C(T?) be a non-negative function which is equal to
1 near {&,& € {1/4,3/4}} and is supported near {&,& € {1/4,3/4}}. Then,
there exists w € [>°°(Z%) such that

sup [Jwx(D)(Ho — 2)""w||pey = oo. (5.1.2)
z€C\R

Moreover, x(D)(Hy — z)~* is not uniformly bounded in B(IP(Z%),19(Z%)) for 1 <
p <00 and q < 0.
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(iii) Let d > 3 and q > 42, Then, there exists V € 19°°(Z%) such that (5.1.1) does

not hold. In particular, if d > 5 then there exists V € 15°°(Z%) such that (5.1.1)
does not hold.

(iv) Let d >3 and V(z) = (1 + |z|)~® for 0 < a < 2. Then (5.1.1) does not hold.

Remark 5.1.12. Theorem 5.1.11 (¢) for d = 2 was conjectured in [67].

Remark 5.1.13. Theorem 5.1.11 (i) and (iv) hold even when Hy is a Fourier multiplier
9’;169’(1 with a Morse function e. We expect that (izi) also holds for such operators,
however we have no proof for the moment.

Remark 5.1.14. The left hand side of (5.1.2) is finite for the continuous Schrédinger
operator Hy = —A on L*(R?), w € L**(R?) (2 < ¢ < 3), and y € C>°(R?) which is
supported away from the threshold 0. For a proof, we use [64, Theorem 5.8] (uniform
resolvent estimates for the two dimensional case), a real interpolation argument, and
Holder’s inequality as in the proof of [54, Corollary 2.3].

There are various works concerning bounds of Birman-Schwinger operators for the
continuous Schrédinger operators (see [47], [50], [61]). For Hy = —A on L?*(R?) with
d > 3, it is known that (5.1.1) holds for V € L2°°(R?) (see [50]). Morcover, this result

is sharp in the sense that (5.1.1) does not hold for V(z) = |.T|_% € Lo>=(RY) if ¢ # £.
In fact, by scaling

_d
q

_d _ _d _d _ _d
el ™20 (= A = 2) 7ol 2 llpeg =€ ol 72 (A = e%2) 7 2|7 |l peo

holds and we consider the limits as ¢ — 0 and € — co. Cuenin’s examples in [11, Remark
1.9] which are based on the examples by Frank and Simon ([18], see also [32]) show that
there exists a sequence of real-valued potentials V,, which satisfy |V, (x)| < C(n+ |z])~*
and induce an embedded eigenvalue of Hy + V/,.

We compare our results with the continuous case. For uniformly decaying potentials
V(z) = (1 4 |z|)~“, the range of a where (5.1.1) holds is the same as in the case of
continuous Schrédinger operators. However, for non-uniformly decaying potentials,
for example V € [P>°(Z%), the classes of potentials where (5.1.1) holds differ between
the discrete case and the continuous case. It seems that this is a consequence of the
anisotropy of the discrete Laplacian.

Our paper is organized as follows. In section 5.2, in order to study properties of the
resolvent of Hy near I', we investigate properties of the ultrahyperbolic operators. In
section 5.3, we prove our positive results Theorems 5.1.1, 5.1.8 and Corollary 5.1.9. In
section 5.4, we give the proofs of our negative results Theorem 5.1.11.

We use the following notations throughout this chapter. For Banach spaces X and
Y, B(X,Y) denotes a set of all bounded linear operators from X to Y. We denote the
norm of a Banach space X by || - ||x. We also denote (-, -)x by the inner product of a
Hilbert space X. Moreover, we write B(X) = B(X, X). We denote (z) = (1 + |z|?)2
and D, = (2mi)~'V, for z € R%. A symbol F denotes the Fourier transform on R%:

Fu(§) = /Rd e 2wy (x)de, & € R

78



For x € C®(T?%) or x € C®(R%), we denote x(D) = F,;'xF4 or x(D) = T \F
respectively. For h € C®(T¢) or h € C*(R%), a € R and a compactly supported
smooth function f, if VA # 0 on {h(§) = a} Nsupp f, set

£ do(§)

o(h(D) —a)f(x) = /{h_ }f (e IVR(E)]

where do is the induced surface measure.
We give a useful formula. Let N C T¢ or N C R¢ be a submanifold which has the
following graph representation:

N ={¢]& = f(&)}

where we write £ = (£1,¢’) and f is a d — 1-variable smooth function. Then we have

= 1+ |VF(E)Pde. (5.1.3)

5.2 Ultrahyperbolic operators
Let d > 2,0 <k <d and let

p&) =p(&) =&+ + &~ G — - — &
for £ € R4,

Definition 3. A differential operator P is called an ultrahyperbolic operator with index
0 <k < d if P has the following form:

k d k d
1
_ 2 : 2 Z 2 _ Z 2 Z 2
j=1 j=k+1 j=1 j=k+1
Note that P = F~1p7.

In this section, we study resolvent bounds of the ultrahyperbolic operators. Since
ho is a Morse function on T¢, near each critical value g € T, hy can be expanded to as
the following:

ho(§) = (2m)? Zm Z )+ O(nl®),

where n = £—¢q. Thus we study the ultrahyperbolic operators for analyzing the resolvent
of the discrete Schrodinger operator near the thresholds.
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5.2.1 Limiting absorption principle for ultrahyperbolic opera-
tors

In this subsection, we state a limiting absorption principle for the ultrahyperbolic op-
erators. Let P be the ultrahyperbolic operator with index k. We define

A=7-D,(I—(27)2A) '+ (I - (2n)?A)"'D, - 7

on C*(RY), where ¥ = (21, ..., Tk, —Tp11, ..., —Tq). Then, it follows that P and A are
essentially self-adjoint on C%°(R%) and we also denote the unique self-adjoint extensions
by P and A respectively. In fact, for the essential self-adjointness of P it is enough to
prove the essential self-adjointness of the multiplication operator p(¢) on L?(R?) by the
Fourier transform. However, this is shown since (p(¢) & i)u = 0 and u € L*(R?) imply
u = 0. For the essential self-adjointness of A, we employ Nelson’s commutator theorem
(see [61, Theorem X.36]) with a conjugate operator —A + |x|? + 1.
By a simple calculation, we have

[Pid] = —72A(I — (27)2A) ! = 5! (1ﬂ§||£|23"> .

In the following, we see that [P, 1A] satisfy the Mourre estimate except at 0. Note that
Er(P) = F71x; 0 pF, where E;(P) is the spectral projection of P to I and x; is the
characteristic function of I C R. Fix I € R\ {0} and set a = inf{|A\|| XA € I} > 0.
Then for £ € supp (xs(p(+))), we learn

k d
e =Dl + > gl za

j=k+1
Thus we have

41¢? 4
) = 1

x1(p(€)) x1(p(€))

and hence
4a
+a

E(P)[P,iAlE(P) = 1 E((P).

Moreover since [P,iA] and [[P,iA],iA] are bounded operators, it follows that P €
C?(A). Thus by the standard Mourre theory ([53]), we have the following proposition.

Proposition 5.2.1. Let I € R\ {0} be a bounded interval and s > 1/2. Then
sup [[(A) (P — 2)"H(A) || pramay) < o0, (5.2.1)

zely

where I = {z € C|Re z € I, £Im z > 0}. Moreover, the limits
(A)7*(P = A£i0)7H(A4)™ = lim (A)~*(P — A ie)(4)~° (5.2.2)
e—

exist uniformly in X € I.
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Remark 5.2.2. Since (A)*(P —i)~'(x)~* is a bounded operator, we can replace (A)~*
in (5.2.1) and (5.2.2) by (x)~*.

Remark 5.2.3. The Proposition 5.2.1 is possibly well-known. However, we cannot find
a suitable reference and we give a self-contained proof.

Remark 5.2.4. By using a scaling argument and Proposition 5.2.1, we have a uniform
estimate of the high energy limit

sup 217 12) (P = )7 o)y < o0

1
for s > 7

5.2.2 Uniform resolvent estimates for ultrahyperbolic opera-
tors

In this subsection, we assume d > 3.

Proposition 5.2.5. Let P be an ultrahyperbolic operator. For o, > 5 + @D with

a+>2,

dl)

sup [|(z) (P — 2)" 1) || praay < oo

z€C\R
Proof. This follows from LP-L? resolvent estimates (see [43, Theorem 1.1]) and a real
interpolation argument:

sup [[(P — 2) 7| p(rer@n),Lon@ny) < 00
zeC\R

for

11 2 2dd-1) 2(d — 1)
o= o <P < T

1 <7r<o0.
p q d d>+2d—4 ==

By using Holder’s inequality, we can obtain the following: For w; € Lgvoo(Rd) and

w2€L2< *(R?) with 3 +( )<s<%§‘11)

S P — : 5.2.3
o P =2 el < Ol ]t 529
In particular, for o, 8 > 2(d 0 with oo + 5 > 2,
sup [[(z)*(P — 2)"H{x) "|| prz(ge)) < Cap < 00 (5.2.4)
z€C\R
m
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Remark 5.2.6. In section 5.5, we give a self-contained proof of Proposition 5.2.5 with
a=p=1.

Remark 5.2.7. Note that if P is elliptic (that is & = 0 or & = d), (5.2.3) holds for
3 < s <32 and (5.2.4) holds for a, f > § with v+ 8 > 2 (see [54, Corollary 2.3]).

Proposition 5.2.8. For e > 0, (x)"'75(P — 2)"Yx)™'7¢ is locally Holder continuous
on B(L*(R%)) in Cx. In particular, {x)~1=¢(P — X\ 440) "1 (x)~1= exist in the operator
norm topology of B(L?*(R%)) for A € R.

Proof. The proof is based on the argument in [62, Lemma 4.7]. Set LZ(R?) = (x) % L*(R?)
for k € R. Note that there are two continuous embeddings L%H(Rd) C L*, _(R%)

and L, (R%) C L#279(R4) for small § > 0. By using (5.5.1) in section 5.5, there exists
as > 0 such that

[(P—z)""=(P- /)_1||L2 L(RY-L2,__(RY)
<CI(P-z)""'=(P=2)"

— ‘ / (eitz o eitz )e—itht
0

1
<C/ min (2, |z — ]t)tH_a dt

/‘1

|z—z |Z Z| oo 1
:c/o e dt+c/_ o

zZ—Zz
< Clz = 2|%.

B(Ld+2 ’(RY), = 2+5(Rd))

2d

B () LT (m))

The existence of the boundary values (z)~'=¢(P —A=440)~(z) =17 directly follows from
the Holder continuity. O

Next, we state the optimality of the estimate. For a preparation, we need the
following lemma.

Lemma 5.2.9. Letd > 3, r > 0 and p(z) = X(x)|x|_%, where x € C°(R?) with
x=1on|z|<r. Then, o € H*(RY) for 0 < s <1 and ¢ ¢ H*(R?).

Proof. Note that ¢ € L?(R?). We learn

d—2
2

d+2
Lj Edln

By, 0(x) = (D, x(2))]x|~ 7 —
and hence
Vo(z)| > Cla| 2

near z = 0. Thus, |Vip| ¢ L*(R?) and hence ¢ ¢ H!(R?).
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Next, we show that ¢ € H*(R?) for 0 < s < 1. It suffices to prove that (£)*¢(¢) €

L2(RY) where (€) = Fip(€). Note that ¢ € C(R?\ {0}) and |z|=%" (¢) = cal¢| 27,
where ¢4 is a constant depending only on d. We learn

G6) = ca [ Kle ol H

Since
R _d_ N _d_
‘/‘ Mmk—n|2ﬂnég/ ~ X(IE—nl72dn
lE—nl<%1¢] $1EI<InI< 3¢l
_ _d_
<clo™ [ € — 4y
Ligl<inl<3el
<C(g) N1z,
and

N _d__
/‘ X(m)|& —nl~2 " dn
l—nl> L€l

<Cle4 / L)
[€—nl>1¢l

<Cle|-5

for any [¢] > 1 and any N > 0, we have (£)*¢ € L*({|¢] > 1}). This and ¢ € L*(R?)
imply (£)*p € L*(R?). O

Using the above lemma, we obtain:

Proposition 5.2.10. For 0 < s < 1, we have

sup [[(2) (P — 2)"Hx) *|| 2 may) = oo
z€C\o(P)

Proof. For simplicity, we deal with k£ = 1 only. We may assume s > 1/2. Note that by
Proposition 5.2.1 and Remark 5.2.2, (z)7*(P + ¢ £40) "' (z)~* exist in B(L*(R?)) for
e # 0. Moreover, it follows that

() (P +¢e—140)"Ha) ™ — (2) (P + ¢ +140) *{z)~*
= (x)"%0(P +¢)(x)~°

due to Stone’s theorem. Thus it suffices to prove that

e [(x) ~*0(P + &){(x) ~°|| p(r2(ray) = 0.
>

By using the Fourier transform, it is sufficient to find ¢ € H*(R?) such that

wy@ﬁ@+d@mwﬁ=w-
>
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Note that

edw©) +ee)= [ lOFge = [ e

p(€)=—e Vepl 2¢]

and
d
p@)=-—cef=) &te
j=2

Using the formula (5.1.3), we learn

2
dg’
21¢|

é‘/

_ . e
—Z/ PO e

(. 006) +2)e) =3 [ Io(OPy| 1+
— JRri-1

where & = (&,...,&) and § = (£4/|{']? +¢,&) for £ € {p(§) = ¢}. Thus we now
take p(€) = Wx(g), where y € C>°(R?) such that y = 1 on [¢] < 1. Note that

¢ € H*(R"™) due to Lemma 5.2.9. Since

1
d¢' = oo,
/é’eRd—1,§/|<1 |£/]4-1

¢ has the desired property. O]

Remark 5.2.11. This proposition also follows from a scaling argument. In fact, for
a, > % we have

I+ [al)™ (P = 2)7 (1 + |2) ™l ey
=20 (™! + |z) (P — %) " (e + [2]) 8| By
<O (1 4 |z)"(P — £22) 711 + |2) P sy

for 0 < e < 1. If we take supremum of z € C\ R and take ¢ — 0, then we obtain a
contradiction unless o + 3 > 2. For the Laplace operators, see [6]. However we give a
more direct proof for a special case since the above argument can be applicable to the
discrete Schrodinger operators near the hyperbolic thresholds. See Remark 5.4.4.

5.3 Proofs of positive results

In this section, we prove Theorems 5.1.1, 5.1.8 and Corollary 5.1.9.
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5.3.1 Proof of Theorem 5.1.1 (i)

It is known that there is a deep connection between the time decay of the Schrodinger
propagator e and the threshold property of the resolvent of P. We refer [61, §XIII-A].
Here we employ a bit technical, but very strong tool due to Duyckaerts. His method
allows us to deduce LP-L? uniform resolvent estimates from Strichartz estimates.

First, we state the dispersive estimates and the Strichartz estimates for the discrete
Schrodinger operators.

Proposition 5.3.1 ([67]). Letd > 1. Then, there exists C > 0 such that for any t € R
— _d
H€ tHo ’|l1(Zd)4)l°°(Zd) S C<t> 3.

Corollary 5.3.2. Letd > 4. Set 3* = % and 3, = %. Then, we have the following

Strichartz estimates: Suppose that u € C(R,1%(Z%)) and F € L*(R, >*(Z%)) satisfy
i0wu(t) — Hou(t) = F,  ulmg = f € I*(Z%). (5.3.1)
Then there exists C' > 0 such that for 0 <T < oo we have
|l 27y 2 zay < Cllfllizzay + CllF L2 —rmys- 2 zay-

Proof. We apply Theorem 10.1 in [48] with H = By = [*(Z%), By = I(Z%), 0 = ¢ and

The next argument is due to T. Duyckaerts (see [5, Proposition 5.1]).

Proposition 5.3.3. Let d > 4. Then, there exists C > 0 such that for z € C\ o(Hy)

I(Ho — 2) " u|

13%.2(24) < CHU‘ Bx2(zd), UE ZQ(Zd) N l3*’2<Zd).
Moreover, for w € l%"”(Rd),

)t < 2 .
zi%I\DRHMHO z) " w| e _CHle%d,DO(Zd)

In particular, if V € 15°°(Z4), (5.1.1) holds.

Proof. Suppose that f is a finitely supported function on Z¢. Let z € C\ o(Hy). We
substitute u(t) = € f into (5.3.1) and then we have

Yz, T flliz= 222y < Cllfllezay + Cyv(z, T)(Ho — 2) f |3 2(29),
where v(z,T) = ||¢”"||p2—r,r). Since v(z,T) > VT, by letting T — oo,
| £l 2y < Cl(Ho = 2) Fllssazay
It remains to justify a density argument. O]
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5.3.2 Proof of Theorem 5.1.1 (i)

In this subsection, we assume d > 3.

Proposition 5.3.4. For o, > = + (d 0 with o+ 3 > 2, there exists C' > 0 such that

sup [(z)™*(Ho — 2) () || pwo < C.
z€C\R

Proof. By using a partition of unity, it suffices to prove for each y € C*(T9) with a
small support, f € H*(T?) and g € H?(T?)

|(f, X (ho = 2) 7' 9) r2rey] < CIf | recrayll gl mre ray, (5.3.2)

where C' > 0 is independent of f, g and z. We may suppose x has one of the following
properties: Vhg # 0 on supp x or supp x contains just one element of I". Since (5.3.2)
follows from Proposition 5.6.5 in the former case, we may only deal with the latter case.
We take a unique element & € I' N supp x. Then there exists a diffeomorphism & from
a neighborhood of supp x onto its image such that

ho(K71 (1)) =ho(&) + 7 + oo + 1k — Mgy — . — M3, 1 € K(supp x) C R

for some 0 < k < d. Set J(n) = |detds ' (n)| and f.(n) = f(x*(n)). By using the
change of variables and Proposition 5.2.5, we have

[ _—)g i
-\ plffn) e W”'

<ONxwfioll ey 1X gl 20 may
SCHfHH“(’W)HgHHﬁ('ﬂ'd)a

[(f; X (ho — 2) ' 9) 12010y =

where we used Lemma 5.6.3 in the last inequality. Thus we obtain (5.3.2).

5.3.3 Proof of Theorem 5.1.8

Let s > 1 and as > 0 as in the proof of Proposition 5.2.8. Similarly to Subsection 5.3.2,
it is enough to prove that

(£ x*((ho = 2)7" = (ho — &) N)g)| < Clz — 2| f]

Hs(Td) HQHHS(Td)

for x € C°°(T%) which is as in subsection 5.3.2. However, it is proved by changing
variables, Proposition 5.2.8, Lemma 5.6.2 and Proposition 5.6.5.
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5.3.4 Proof of Corollary 5.1.9

Corollary 5.1.9 follows from Lemma 5.3.5. The argument in the proof is due to [27,
Lemma 2.1].

Lemma 5.3.5. Let H be a bounded self-adjoint operator on a Hilbert space H which
has no eigenvalues and W be a finite rank self-adjoint operator on H. Then:

(i) For any p € R, dimKer (H + W — p) < dimRan W.

(ii) Suppose that o(H) = |a,b], —oo < a < b < oo and W = W, — W_, where Wy
are positive operators. Then

dim(Ran Ei7 ,((—00,a])) < dimRanW_,
dim(Ran Ef7 ; ([b,00))) < dim Ran W,

Proof. (i) Suppose that the inequality fails. Let P be the projection onto Ran W =
(Ker W)*. Then P |ker (r+w—p: Ker (H + W — p) — Ran W has a non-trivial kernel,
i.e. we can choose u € Ker (H + W — ) such that Wu = 0 and ||u||sc = 1. Therefore

0=(H+W—pu=(H-pu,

which contradicts the assumption that H has no eigenvalues.

(i) Suppose that the first inequality fails. Then the same argument as in (i) implies
that there exists u € Ran Ei7, ;,((—00, a]) such that W_u = 0 and ||u||sc = 1. Therefore
we have

a > (u,(H +W)u)s = (u, (H+Wy)u)s > (u, Hu)g,

where the last inequality follows from the positivity of W, . On the other hand, the as-
sumption on H implies (u, Hu)s € (a,b), which is a contradiction. The other inequality
is similarly proved. O]

5.4 Proofs of negative results

5.4.1 Proof of Theorem 5.1.11 (i)

The following argument is similar to [61, Theorem XIII.11]. Note that hg(£) ~ 4m2|¢|?
near £ = 0 and the operator Hy is positive.

Set K, = |V|Y2(Hy + p2)7Y|V|Y2 for u € R. First, we note that Hy + AV has a
negative eigenvalue if and only if there exists > 0 such that 1/\ is an eigenvalue of
K,. In fact, a direct calculus implies

Hou + \Vu = —pu S\ Hy + pi*) 'Vu = —u
=K, =1,
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where ¢ = \V\%u. Conversely, if there exists ¢ € H such that AK,,¢» = 1), then
MNViu=[V['2¢ = (H + pP)u,

where u = (Hy + p?) "V [/,
Since V' vanishes at infinity, K, is a positive compact operator. Then it suffices to
prove that

lim || K = 0.
M;gloll ull B = 00

In fact, the spectral radius of K, is equal to || K,| p@, 0(Ku) = opp(K,) and o(K),)
has no accumulation point except at 0. Thus we need only find n € H such that

lim (|V['2n, (Ho + ) V|V?n),, = oo.

u2—0

We choose a non negative finitely supported function n € H which satisfies n(z) > 0
for some x € supp V and set ¢ = [V[/2n. Then ¢(0) = 3", |V (2)[**n(z) > 0. Since
¢ is finitely supported, then ¢ € L*(T%) N C(T9). Thus, ¢ # 0 near zero. Note that
ho(€) ~ 4m?|€|* near € = 0. Consequently,

50V [2
V12, (o ) V), = [ 20

diverges as u?> — 0if d =1 or 2.

5.4.2 Proof of Theorem 5.1.11 (7)

1

We consider near §; = & = 3

only, the other cases being similar.
Lemma 5.4.1. In a neighborhood of (3, %1) € T?, ho(§) = 4 is equivalent to & +& = 3.

Proof. Note that ho(¢) = 4sin® & + 4sin? & = 4 — 2cos2mé; — 2cos2méy. Thus,
ho(§) = 4 is equivalent to

cos 2m&y + cos 2wy = cos(m(& + &2)) cos(m(& — &) = 0.
Near & = & = }1, this is equivalent to & + & = % n

Proposition 5.4.2. Let x € C*®(T?) be a non-negative function which is equal to 1
near & = & = 1/4 and is supported near & = & = 1/4. If ¢ # oo,

(Ho — 4 £i0)"'F;(x) ¢ 1(22).
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Proof. Let us denote H, = (x)*H. If we take the support of x small near {; = & = 4,
then x(D)(Hy — 4 £i0)~" exists in B(H,, H_,) for s > 1 since Vho(§) # 0 on supp .
Here we used Lemma 5.6.5. Then, it suffices to prove that

((Ho—4—1i0)"" = (Hy — 4 +i0)"") F;'x & 1(Z%)
for ¢ # co. Stone’s theorem implies

1 - 1
27TZ<<HO_4_ZO) '— (Hy —4+140)" )T x

— 2mix1€1+2mixale dO’(f)
fro MOl

By using Lemma 5.4.1 and the formula (5.1.3),

e samimes o do()
I(l’ T ) ::/ 627rm:1§1+27rm'2§2X<§)
VU o= Vho(©)]
: oo (L 1 d&;
_ 2mixy £142miwa (5 —E1) - st
/Re X(&s 2 §1)47r sin(2m&;)

is rapidly decreasing with respect to |x; —z5| since x(1/4,1/4) = 1. However, we cannot
obtain any decay with respect to |x; + z3|. We write

1 d&,

I(z1,29) = €™ J (11 — x2), J(t) = /Rewit&X(&’ 9 51)4% sin(27&;)

We employ the change of variables: s = x; + x5 and t = x1 — x5 and write [;(s,t) =
I(x1,25). Since |I1(s,t)| = |J(t)| is independent of s, |I1(s,t)| - 0 as |s| — oo unless
t € {J(t) = 0}. By the assumption of x, we have |I1(s,0)| = |J(0)| # 0. Thus |I| does
not decay with respect to s = z; + z5. As a consequence, ((Hy —4 —i0)™' — (Hy — 4+
i0)~1)F;(x) does not belong to 19(Z?) unless ¢ = oo. O

The above proposition shows that if d = 2, x(D)(Hy — 2)~! is not bounded from
IP(Z?) to 1%(Z?) unless ¢ = oco. Thus, the proof of the second part of Theorem 5.1.11
(ii) is completed.

In the rest of the subsection, we prove the first part of Theorem 5.1.11 (ii). Let
w(wy, v3) = (21 + 22) Y2 {w) — 25) 7! € 1>°°(Z?) and 1) be a non zero finitely supported

x1+.702

function such that ¢» > 0. Let u(x) = e~ (w™')(x). Note that
T (wu)(1/4,1/4) = Y T e T g (2) = Y g(a) > 0
T€Z? €72

Thus |w(z)x(D)§(Hy — 4)wu(z)| ~ C(1+ |z + 22])"2(1 + |21 — 22]) ™ as in the proof
of Proposition 5.4.2 and the right hand side does not belong to J.
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5.4.3 Proof of Theorem 5.1.11 (7i7)

In Proposition 5.3.3 and Theorem 5.3.4, we have seen uniform bounds of Birman-
Schwinger operator for V' € (¥/3°(Z%) or V(z) = (x)72. Since (x)~% € 19/2°°(Z%), it is
natural to ask whether it is true for general potentials V' € [%/2°°(Z%). However, the
next proposition says that it is false at least if d > 5.

Proposition 5.4.3. Let d > 3 and

d—1
w(z) = wy(x) = (xd>_1/pH(a:j —xg) VP e P24, p>0.
j=1
Suppose that
sup  |lw,(Ho — A) " wy|| Baey < oc. (5.4.1)

AER\o(Hp)
Then, p < 2(d+ 2)/3 holds. In particular, if d > 5 then wy does not satisfy (5.4.1).

Proof. We construct a variant of the Knapp counter example near the energy surface
ho(§) = 2d. We denote the d-dimensional Fourier expansion F; of u by @ and the one
dimensional Fourier transform by F'. We take a real valued function x € C2° ((—1, 1))
such that y = 1 near 0. We can regard x as a function on S*. Let

() =TS B D ae 2 () (5) ) (acwa)

3| (CARNIETE)

for 0 < e <1,a>0and z € Z% Then,

(€)= (Zg—m)

where ¢ € [0,1)¢ and we regard the function wg, on [0,1)¢ as a function on T? by
virtue of the support property of x. Note that we,. is rapidly decreasing and we, has
a small support near {{; = 1/4, j = 1, ...,d} which does not contain critical points of

ho(§) =4 2?21 sin?(7€;). Thus (p., wS(Hy — 2d)wep. )33 exists by Proposition 5.6.5.
We observe that if & = (&1, ...,&4-1) € supp (HJ 1 x(& 1/4)> and ¢ € hy'({2d}), then

ITx (51_8—1/4) € C™(T7),

7j=1

—1/4) = O(*). (5.4.2)

Mg

J=1
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In fact, by using the Taylor expansion near {§; = 1/4, j =1,...,d}, we have
d
0 = ho(€) — 2d 42 —1/4)4+0 <Z(§j - 1/4)3)
j=1

_42 = 1/4) + O(*) + O((&4 — 1/4)%).

This implies (5.4.2). Therefore, if we take a > 0 large enough (which remains to be
independent of ¢), it follows that

d—1 d
supp (Hlx (@;_1/4)) N hyt({2d}) C supp x < 3 ;5:1/4> :

=1

By using this, we obtain

(pe, w(Ho — 2d)wpe)sc =(wepz, 6(ho — Qd)@)m(rd)

___ do (&)
= o ()=
/ho({m})n(—isﬂf)d | ) |Vho(§)]

chdfl

for some C' > 0 which is independent of ¢.
On the other hand, we observe that for s > 2

> (= )P (F) 7 X) (el — za)) P

CB]'EZ

<C Y (wy —za)P(e(e; — xa)) >

z; €L
=C| D+ > | (@) Plex)y ™ < Ce
lzjl<l/e  |z;]>1/e
Then, we obtain
pe||2, < C2d+2) . ((d+2)(=1-2/p) — (o(d+2)(1=2/p),
By using (5.4.1), we have ¢! < Celd+2(1-2/p)  Since this holds for small ¢ > 0, we

conclude p < 2(d 4 2)/3.
[l
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5.4.4 Proof of Theorem 5.1.11 (iv)

For 0 < s < 1, we prove

sup  |[{z)"*(Ho — 2)"(2) || o) = o0
2€C\o(Hp)

It suffices to prove that there exists ¢ € H*(T?) such that

lim | (g, (ho(£) 4+ €)~"¢) r2(ra)| = 0.

e—0,e>0

Fix & € hy'({0}). Then there exists a diffeomorphism f from a small neighborhood of
& to a small open ball in R? such that ho(f~1(n)) = |n|2. We take

2(€) = X(©)f <#> ().
In| =

where Y € C°°(T?) has a small support near &. Note that ¢ € H*(T?) for 0 < s < 1
due to Lemma 5.2.9. Thus, we obtain
1

neR?,|n|:near 0 |77|d_2(’77|2 + 8)

(¢, (ho(§) +e) ') = C

dn — oo

as € — 0.

Remark 5.4.4. In the above proof, we have constructed a function supported near an
elliptic threshold. However, this argument is applicable to near a hyperbolic threshold.
See the proof of Proposition 5.2.10.

5.5 Self-contained proof of Proposition 5.2.5 in a
particular case

We can apply the argument in Subsection 5.3.1 to the ultrahyperbolic operators P:
Note that

An2itP

e (l’ y) —ztA ZtAyu(J}

?J
1 lz—2"12 _ Jy—y'1?
p / / e e aru(a,y)dy'dy,
( —4mit)? 4mt Rk, JREH

where € R¥ and y € R?*. Thus, we obtain the following dispersive estimates:

||647r2itP||L1

(R4)— Loo (RY) < a5 teR \ {0}
2

1
(4]t])



Using a complex interpolation, we have
1

———————EZI:TES (5‘5.1)
(dmrt])="»

2 .
et ZtP”LP(Rd)—wP'(Rd) <

for 1 <p <2andp = (p—1)/p. By using the unitarity of e itP and [48, Theorem
10.1], we have the following:
Let d > 3 and P be an ultrahyperbolic operator. Let 2* = dQTd and 2, = 24

Suppose that u € C(R, L*(R%)) and F € L*>L*? satisfy : .
i0wu(t) — Pu(t) = F, wuli—o = f € L*(RY). (5.5.2)
Then there exists C' > 0 such that for 0 < T < oo we have
lull L2rryr2e2may < Cllfll2@ey + ClF || 2271y L20 2 (RS-

Replacing 3., 3* in the arguments in Subsection 5.3.1 by 2,, 2* respectively, we have
the following statements: Let Ry(z) = (P — 2)~! for 2 € C\ o(P). Then there exists
C > 0 such that for z € C\ o(P) and f € L*(RY) N L*?(RY)

[Ro(2) fll 2= 2may < CllfIp2-2(ra). (5.5.3)
Moreover, for w € L»*(R?) we have

sup HWRo(Z)wHB(m(Rd)) < CHWH%W(W)-
z€C\R

In particular, |[(z) ' Ro(2)(z) || p(r2ra)) is bounded in z € C\ R.

5.6 Resolvent near regular points

In this section, we study properties of the cut-off resolvent of Hy near regular points of
ho.

Lemma 5.6.1. Let d > 1 and ¢ > 0. Then,

_1_ _ _1_
SEERH@M 27%(Dy, — 2) " Hm) 728 pramey) < oo (5.6.1)
zE

If0 < e <1, there exists 0 < o <1 such that (771)_%_8(Dm —2)" Y "2 s a-Holder
continuous in the operator norm topology of B(L*(R?)).

Proof. Suppose Im z > 0. We denote n = (n1,7) for n € R% 1 € R and 7/ € R,
Using the Cauchy-Schwarz inequality, we have

(D — 2)~ ()2 5u(n))| =

<Cllul-,n)lr2m)

m .
27Ti/ 62mz(?71*$)<5>*%75u(5, n/)dS

—0o0
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for u € L*(R?), where C > 0 is independent of z, n and u. Thus, we have

L/m!nl T (D, = 2) 7 () 72 u(m)Pdim < Cllul ) ey

with some C' > 0 which is independent of z and u. Integrating the above inequality
with respect to ’ € R4, we obtain (5.6.1).

Suppose Im z,Im 2’ > 0. Set w(n) = (n)~2 =u(n) for ¢ > 0. Using the Taylor
theorem and the Cauchy-Schwarz inequality, we have

[(m) ™2 5((Dy, — 2)7 = (Dy, — 2) Hw(n)|

m ) »
= |t} e [ (@ s, o

—0o0

m

<2l = i) 1 [ o = Spuls.n)lds

_1_
< Clz = 2(m) "2l 1)l 2wy

Integrating the square of the above inequality, we obtain

[m) ™25 ((Dyy = 2) ™" = (Dyy = 2) ")) "2 | ey < Clz — 2| (5.6.2)
Moreover, by (5.6.1), we have
1) "2 75((Dyy — 2) ™t = (Dyy — 2) ")) "2 5| per2any) < C. (5.6.3)

By using a complex interpolation between (5.6.2) and (5.6.3), we obtain the Holder
continuity of ()2 ¢(D,, — z)" () "27¢ in B(L*(R?)) for ¢ > 0. The case Im z < 0
is similarly proved.

[l

For a proof of our main result in this section, we need the following two lemmas.

Lemma 5.6.2. Let x,v € C®(R?) satisfy supp x C {1 = 1}. Then, for a € R there
exits C' > 0 such that

11 = ) (D)*xull 2y < Cllull 2y, € L*(RY).

Proof. This lemma follows from the disjoint support property of pseudodifferential op-
erators. For the sake of the completeness of this paper, we give a self-contained proof.
Considering the support property of x and 1, we observe that c|z| < |z —y| < C|z|
on supp (1 — ¥ (x))x(y). Set L = (1 + |z —y/*)"'(1 — (z — y) - D¢), then note that
Le?mi@=y)¢ = 2mi(z=y)€ Integrating by parts, we have

(1 - () (D) yulx)
\(1—@0( D [P ) )y

) / Wl x()u(y)ldy

§<$> B Hu||L2(Rd)
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for any integer N > « + d + 1. Integrating the square of the above inequality with
respect to x € R?, we obtain the desired result. O

Lemma 5.6.3. Let U C T? be an open set and r be a diffeomorphism from U onto an
open set in RY. Set u.(n) = u(k=1(n)). Then, for x € C=(U) and o > 0, we have

HX/{UKHHQ(Rd) S CHUHHa(Td), u e Ha(Td)
for some C' > 0.

Proof. We take ¢, € C(U) satisfying supp x C {¢ = 1} and supp ¢ C {¢ = 1}.
Then we have

HXHUKHHO‘(RCI) < Hwﬁ<D>aXnunHL2(Rd) + H(l - ¢K)<D>Q¢HXHUKHL2(Rd)'

Using Lemma 5.6.2, we learn

(1 = ) (D)*puxntinll 2@y < Cllxwtinllr2@ay < Cllul|p2crey.

Due to the coordinate invariance of the Sobolev spaces and the support property of ¥,
we obtain

[96(D) Xt || 12may < Cllull ga(ray-
This completes the proof. n

Remark 5.6.4. The above lemma is trivial if 2« is an integer. The difficulty is due to
the lack of the local property of the pseudodifferental operator (D)?* if 2 is not an
integer.

We now state the main result of this section.

Proposition 5.6.5. Suppose d > 1. Let x € C°°(T?) be a real-valued function satisfying
supp x C {Vho # 0}. Then,

1, _ _1_,
SEI\DRH@} 27X (D)(Ho — 2z)'x(D){z) "2~ ) < o0.
zEe

Moreover, (x)~2~x(D)(Ho— 2)"x(D){z)~27¢ is a.-Hélder continuous in the operator
norm topology of B(H), where a. is the constant in Lemma 5.6.1.

Proof. By using a partition of unity, we may suppose that supp x is small enough.
Thus, we may suppose O ho(§) # 0 on supp x without loss of generality. Set n =
k(&) = (ho(§),&'). Then the inverse function theorem implies that & is a diffeomorphism
from a neighborhood of supp x onto its image. We denote k= 1(n) = (&(n),n') for
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n € k(supp x). We also denote f,.(n) = f(k7*(n)). Using Lemma 5.6.1 and Lemma
5.6.3, we have

Wf@n@fmama@—zrws

1 dT]
fn( )Xk (1) g (n)(m — 2)~ (9, ho) (E1(n), )I'

< CHXﬂfNHH%JrE(Rd)HXKgNHH%+E(Rd)
< C| £l

H%+5(’H‘d) ”gHH%+€(Td) .

Similarly, we have

&)((ho(€) — >1—ma®—zrw&\
SO UL

H§+E(Td) ||g||H%+E(Td) .

By using the Fourier transform, these imply the desired results. O]
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Chapter 6

L P-resolvent estimates

6.1 Introduction

In this chapter, we study LP-estimates for resolvents of the Fourier multipliers and
the scattering theory of the discrete Schrodinger operator, the fractional Schrodinger
operators and the Dirac operators.

One of the interest in the scattering theory of the Schrodinger operator is to prove
the asymptotic completeness of the wave operators:

W:t —s— lim eit(fA+V)efit(fA)

t—+oo ’
i.e. that W are surjections onto the absolutely continuous subspace of L?(R?). Through
the Kato’s smooth perturbation theory, the asymptotic completeness of the wave oper-

ators is closely related to the limit absorption principle:

1 1yt
sup [[[V[2(—=A = 2) V|2 pa(ray <oo, (6.1.1)
z€l+\I
1 1yt
sup [[[V]2(=A +V = 2)7 V]2 pamey <00, (6.1.2)
z€I4\I

where I C (0,00) is an interval and Iy = {z € C | £Im z > 0} and V is a real-valued
function. A strong tool for proving (6.1.1) and (6.1.2) is the Mourre theory [53], which
gives sufficient conditions that (6.1.1) and (6.1.2) hold.

On the other hands, Kenig, Ruiz and Sogge [50] establish the LP-type limiting
absorption principle for the free Schrodinger operator:

411y
(=4 = 2) Ml pr@aLomey < Cpgl225 707, 2€C\[0,00), d >3 (6.1.3)
where C,, > 0 is independent of z € C \ [0,00) and (1/p,1/q) € (0,1) x (0,1) satisfies
2/(d+1)<1/p—1/qg<2/d, (d+1)/2d < 1/p and 1/q < (d —1)/(2d). (6.1.3) is also

proved by Kato and Yajima [47] independently when 1/p + 1/¢ = 1, and applied to
the scattering theory of the Schrodinger operator —A + V| where V € LP(RY), d/2 <
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p < (d+1)/2 is real-valued. Note that (6.1.1) for V € LP(RY) for d/2 < p < (d+1)/2
follow from (6.1.3) and Holder’s inequality. Goldberg and Schlag [24] proved the LP-
type limiting absorption principle for Schrédinger operator —A + V' with a real-valued
potential V € L"(R?) N L3/2(R%), r > 3/2:

sup I(=A+V = 2) " pr®e),Lamey < C(Re Z)%(%fé)fl,
Re 2>MA0,0<£Im 2<1

where \g > 0, d = 3, p =4/3 and g = 4. The strategy of the proof in [24] is to replace
the L%-trace theorem in the proof of the classical Agmon-Kato-Kuroda theorem [61,
Theorem XIII. 33] by Stein-Tomas LP-restriction theorem for the sphere [73]. Ionescu
and Schlag [37] extends the result of [24] to a large class of potentials V', which contains
LP(RY), d/2 < p < (d+1)/2, the global Kato class potentials and some perturbations of
first order operators. See also the recent works by Huang, Yao, Zheng [31] and Mizutani
[53]. Moreover, in [37], it is also proved that existence and asymptotic completeness of
the wave operators. We note that there are no positive eigenvalues of —A + V' when
VelLP(RY), d/2 <p<(d+1)/2 and it is false if p > (d + 1)/2 ([32] and [51]).

In this paper, for a large class of operators T'(D) on X% we study uniform resolvent
estimates, Holder continuity of the resolvent and Carleman type inequalities for Fourier
multipliers on X%, where X = R or X = Z. The uniform resolvent estimates for a
Fourier multipliers are investigated in [11] and [12] in the duality line when X = R in
order to study the Lieb-Thirring type bounds for fractional Schrodinger operators and
Dirac operators. One of the purpose is to prove the uniform resolvent estimates away
form the duality line and to extend to the case of X = Z. To prove this, we follow
the argument in [26, Appendix| for the Laplacian on the Euclidean space, however, the
argument in [26] does not cover the general case since in the proof of [26, Theorem
6], the spherical symmetry and the Stein-Tomas theorem for the sphere are crucial.
Moreover, we study the scattering theory of the discrete Schrodinger operator, the
fractional Schrodinger operators and the Dirac operators. We note that the limiting
absorption principle for free discrete Schrodinger operators is studied in [34], [52] and
[68]. In [52], the scattering theory of the discrete Schrodinger operators perturbed by
LP-potentials are studied for a range of p. In [68], it is proved that the range of (p, q)
which the uniform resolvent estimate holds for the discrete Schrodinger operators differs
from the one for the continuous Schrodinger operators when d > 5.

We remark that almost all results in this paper can be extended to the Lorentz
space LP" by real interpolation. For simplicity we do not mention this below.

Throughout this paper, we denote X% = Z¢ or R? for an integer d > 2. We denote
i by the L/el)esgue measure if X = Rdfby the counting measure if X? = Z%. Moreover,
we write X4 = R? if X¢ = R? and X = T? = (R/Z)? if X4 = Z¢. We often use
[—1/2,1/2)¢ C R? as a fundamental domain of T¢.

Let T € C"O()/(\d, R). Moreover, we assume T € 8'(R?) if X = R. We denote the set

of all critical values of T by A.(T) and set My = {€ € X4 | T(€) = A} for A € R. We
denote the induced surface measure by ) away from the critical points of 7. Moreover,
for I C R, we write I, = {z € C|Re z € I, £Im z > 0}.
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Set
1 1+k

1 k
<-, =<

1
< il
- E+1" 1+2k p q 1+2k

Se = {(%, %) €101 x [0,1] | L (6.14)

| =
D=

Assumption E. Let U C X be a relativity compact open set and I C R be an
compact interval. Suppose 9:T'(&§) # 0 for £ € U. The Fourier transform of the induced

surface measure satisfies the following estimate: For any xy € C°(X9) supported in U,
there exists C' > 0 such that

[ e @@l < CO+la) ™ v e X AeT (615
My

Remark 6.1.1. If 0., T # 0 on supp x and supp x is small enough, (6.1.5) is rewritten
as

27Ti(x’.£/+$dh)\(£/))x<£/’h}\(é-/))dé-/| < Cl(l 4 ’$|)fk, e de)\ el

|| e

Xd—-1

where £ = (¢,£,) and My = {(¢,£,) € X4 | & = ha(¢')}. Moreover, if (6.1.5) holds,
then there exits N > 0 such that

| [ @ @peag| < ¢S sup [986(E)]

d—
X 1 |a|§N§/€Xd_1

where b € Cfo()ﬁ) which is supported in {¢ | (£,hr(£')) € supp x} and C is
independent of b.

Example 1. Suppose that M,Nsupp x has at least m nonvanishing principal curvature
curvature at every point, then (6.1.5) holds for & = m/2 by the stationary phase
theorem.

Set RT(z) = (T(D) — 2)~! for z € {z € C | £Im z > 0}. Moreover, for a signature
+, we define y(D)R3 (X +i0) if 9T # 0 on supp x by the Fourier multiplier with its
symbol x(&)(T(€) — A+ i0)~L. For 1 < p < oo, LP(X?) denotes the Lebesgue space
with the Lebesgue measure if X = R and with the counting measure if X = Z.

Our first result is the following:

Theorem 6.1.2. Let T € C’OO()/(\d,R) and let I be a compact interval of R. Suppose
that T=Y(I) is compact. Fix a signature £+ and let U C X? be an open set. Suppose
that (6.1.5) holds for A € I and x € C*(X?) with supp x C U.

(1) There exists such that

sup ||X(D>R(j)t(2)||B(Lp(Xd),LQ(Xd)) < 00,

zely
for (1/p,1/q) € Sk.
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(17) Set ks =k —0 for0<é <1 and Bs = (2/p—1)0. Then

sup |z — w (D) (B (2) — B (w)) | s(uo .o oy < 00,

z,wely |z—w|<1

for (1/p,1/p*) € Sy,, where p* =p/(p —1).
(ii1) Suppose X =R. Under Assumption E, for (1/p,1/q) € S, there exists Ciypq > 0
such that

[nv o (@)X (D)ul Laaynss < Onpglliny (2)(T(D) = A)x(D)ull o(ra)+s
for u € §(RY).

6.1.1 Applications to the fractional Schrodinger operators and
the Dirac operators

Let n = 242 if d is even and n = 2(41/2 if d is odd. We define the Dirac operators on
R¢:

d d
@0 = Z(l/ij, ‘Dl = ZO{]‘DJ‘ + g1,
7j=1

j=1

where o are n x n Hermitian matrix and satisfy the Clifford relations:
OéjOék + Oszéj == _26jk]n><n

and D; = 0,,/(2mi). Note that if we define Dy = ml,x,, then

d
(D(Q) - _(Z Inan]Q) =-A- Inxm D% = (_A + 1) ’ I”X”’

j=1

where we denote A = (3%, 92 )/(4n?). In this subsection, we suppose that T(D) is

j=1"x;
the one of the following operatojrs:

T(D) = (~A)"%, T(D) = (A + 1) — 1, T(D) = Dy, T(D) = D,

where 0 < s < d. We use the convention that s = 1 when T'(D) = Dy or T(D) = D;.
Moreover, we denote the product space Z" for a function space Z by simply Z when
T(D)=Dg or T(D) = D;. Asis noted in [11, §2],

{0} ifs>1,

_ 5/2 _ 1) =
b mer MEATDE 1= (0}

Ac((_A)S/2) - {

and

AC(QO) - {0}7 Ac(‘Dl) = {_17 1}
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Moreover, T'(D) is self-adjoint on its domain H*(R?) by the elliptic regularity.
Let Y7, Y5 be Banach spaces such that

Vv e |J  {ZP®RY} < {L4®RY}, (6.1.6)
(a)€Suzs

if 2d/(d+1) < s < dand

V,Y2)e | {P®RY+ L2(RY)} x {L2(RY) N L= (R}, (6.1.7)
(ﬁvﬁ)esdgl,

11 <s
P2 g2 —d

if 0 <s< 24
A part of the following estimate is a generalization of [11, Theorem3.1].

Theorem 6.1.3. Let I C R\ A(T(D)) be a compact interval. We define RE()\) for
A € I by the Fourier multiplier of the distribution (T'(§) — (XA £40))™!, where this
distribution is well-defined since T'(E) has no critical points in T—(I).

(1) We have

sup ||R0i(z)”B(Y1,Y2) < 0.
zelq
(17) Let (Y1,Y2) be satisfying p = q in (6.1.6) if2d/(d+1) < s < d and p, = q1 in (6.1.7)
if0<s<2d/(d+1). Let 0 < d <1 and s = (2/p — 1)6. Then

sup e = wl R () = R @)l < o
z,w€l,|z—w|<1
(i3i) Let V € LUYWTD/2(RY) N L®°(RY R). Set Hy = T(D) and H = Hy +V denotes the
unique self-adjoint extensions of T(D)|ceemay and T(D) + V|coo(ray respectively. Then
the wave operators

Wy =s— lim e it
t—+oo

exist and are complete, i.e. the ranges of Wi are the absolutely continuous subspace
Hae(H) of H.
(iv) Let V € LUTD/2(RY) N L*(RY R). Assume s > 1/2 only when T(D) = (—A)*/?
with 2s ¢ N. Then the set of nonzero eigenvalues o,,(H) \ {0} is discrete in R\ {0}.
Moreover, each eigenvalue in o,,(H) \ {0} has finite multiplicity.

Remark 6.1.4. (i) is proved in [11] if 1/p +1/q = 1. In [31], (i) is proved when
T(D) = (=A)*/? for 2d/(d + 1) < s < d.

Remark 6.1.5. In (iii) and (iv), the condition V € L>®(R?) is expected to be relaxed if
we consider the appropriate selj-adjoint extension of T'(D) + V. However, in order to
avoid the technical difficulty, we assume V € L*(R?).
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Remark 6.1.6. When T(D) = Dg or T(D) = (—A)*/?, by a scaling argument as in [11,
Remark 4.2], we have the uniform bound of Ry (z) with z € C... Even when T(D) = D,
or T(D) = (=A +1)*/? — 1, the author expects to obtain the uniform bound of R¥(2)
with z € C. by further analysis.

Remark 6.1.7. When T(D) = (=A)*? or T(D) = (—=A+1)*?2—1, under the assumption
of part (iv), we can prove

sup [[(H )71”B(X,X*) < o0 (6.1.8)

zel4

for any compact set I C R\ (0,,U{0}). In particular, the singular continuous spectrum
of T(D) is empty. For its proof, we may mimic the argument in [37, Section 4]. However,
when T'(D) = Dy or T(D) = D, the author do not know whether (6.1.8) holds or not
since the difference of the outgoing resolvent and incoming resolvent is not always
positive definite:

Ry (A) = Ry (A) =(Do + N)(R5 (A) = Rg (V)), if T(D) = Dy,
Ry (A) = Ry (A) =(D1 + N)(R{(A) = Ry (V)), if T(D) = Dy,
where RE(\) = (A — (A £40)?)~! and RF(A (—A+1—(A+i0)*)"!. See the

) =
arguments in [37, Proof of Theorem 1.3 (d) and (e)] or [61, Lemma 8 in the proof of
Theorem XIII.33].

Remark 6.1.8. Under the assumption of (iv), we can prove that each eigenfunction u
of H associated with eigenvalue A € R\ {0} satisfies

(1+ |z))"u € HY(RY), N >0

and N < s —1/2 only when T(D) = (—A)*? with s ¢ 2N. The restriction N < s —1/2
when T(D) = (—A)*? with s ¢ 2N is needed due to the singularity of the symbol

T(§) = |¢]* at £ =0.

6.1.2 Scattering theory for the discrete Schrodinger oeprators

The scattering theory of the discrete Schrodinger operators is studied in [52] for the
potential V € LP(Z?), with 1 < p < 6/5if d =3 and 1 < p < 3d/(2d + 1) if d > 4.
In this subsection, we extend their results to when V € LP(Z9) for 1 < p < d/3 at the
cost of the restriction of the dimension: d > 4.

We define the discrete Schrodinger operator:

Hou(x)=— > (u(x) —uly), =€Z’

|I—y‘:1,yEZd

Note that Hy is a bounded self-adjoint operator on L?(Z%). We write

d
ho(§) =4 sin®x¢; for £ € T, Hy = ho(D)

J=1
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and hence the spectrum o(Hy) of Hy is equal to [0,4d]. Moreover, o,.(Hy) = [0, 4d],
where o4.(Hp) is the absolutely continuous spectrum of Hy. Set RF (z) = (Hy—z)~" for
+Im 2z > 0. Note that A.(ho(D)) = {4k}¢_,, where we recall that A.(ho(D)) is the set of
all critical values of ho(€). Moreover, if V € LP(Z? R) for some 1 < p < oo, H = Hy+V
is a bounded self-adjoint operator and o..(H) = [0,4d] since V € LP(Z%) C L>(Z4)
and V(z) — oo as |x| — oo. Here o.5(H) denotes the essential spectrum of H.

We define RE(\) for A € I by the Fourier multiplier of the distribution (ho(&) —
(A£10))~!, where this distribution is well-defined by virtue of [68, Theoerem 1.8]. Note
that we may take A as a critical value. We recall that

sup ||R(j)E(Z)||B(Lp(zd),Lp*(Zd)) < 09,
zeC\R

holds for 1 < p < d/3 ([68, Proposition 3.3]).
Theorem 6.1.9. Fix a signature = and let d > 4.

(i) Let 1 <p<d/3. Then

sup HR(j):(Z)HB(LP(Zd),LP* (zd)) < OO.
zeCy

(i7) Let 1 <p<d/3. Take 0 < <1 such that p <2/(30/d+ (d+ 3)/d). Then

sup |z — w| ™| (RE(2) — Roi(w))llB(Lp(ZdLLq(Zd)) < 0.
z,weCq,|z—w|<L1

(iii) Let V € LP(Z%) for 1 < p < d/3 and set VV/? = sgn V|V|Y/2. Then, a map z € Iy —
\VI'2RE(2)|V|Y/? is Hélder continuous. Moreover, for V. € L¥3(Z%), it follows
that a map z € I = |V|[Y2RE(2)|V|V? is continuous.

(iv) Let V € L¥3(Z% R) and set H = Hy+ V. Then the wave operators

Wy =s— lim e iHo
t—+oo

exist and are complete, i.e. the ranges of Wy are the absolutely continuous sub-
space Hyo(H) of H.

Remark 6.1.10. In Proposition 6.4.10, we prove that the range of p can be extended in
the low energy or the high energy.

We fix some notations. For an integer k > 1, C>°(X*) denotes C>°(R*) if X = R
and the set of all finitely supported functions if X = Z. For 1 < p < oo, we write
p*=p/(p—1). We denote t; = max (¢,0) for t € R. We define the Bezov space B and
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B* by

(o]
lulls = llull 2gai<ry + Y 277 ull 2221 <ol <2,
j=1

[ull s = [lullz2(z1<1) +9{ng 2772 |ull 221 < af <2,
-

B = {u € Lin(X) | [lulls < oo}, B" = {u € Lio(X) | [|ul

loc loc

pr < OO},

1
By ={u € B* | limsup — |u(z)|*dx = 0}.
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6.2 Abstract theorem

In this section, we state abstract theorems which give estimates for some integral op-
erators. Let K € L>®(X? x X4). For z,y € X¢, we denote

K(:c, y) = K(xlvylyxda yd) = de,yd(aj/ay/)a T = (-Tla xd)a Yy = (y/>yd)7

where 2,y € X% ! and x4, yq € X. Moreover, we denote

K1@) = [ K@) Topole) = [ | Ko o)1)

Xd

for f € C*(X4) and g € C(X1).

6.2.1 Estimates for integral operators on duality line

We consider the following assumptions:

Assumption F. There exists Cy,C; > 0 such that for any z4,y; € X and g €
(X

HTxdvydgHLQ(Xd”) < CO’lgHL2(Xd*1)>
| Taa9ll oo (xa-1) < CL(L+ |20 = yal) T l|gll o2 (xa-1)- (6.2.2)
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Remark 6.2.1. Suppose that we can write K (z,y) = Ki(2' — ¢, z4,yq) for some K; €
L>®(X4*1), Then Assumption F directly follows from the following estimates:

[ Ky (2!, x4, yd)e’%ixl{/d:c’H — < C,,

i Lee(xg ) =
sup | K1 (2, 2, ya)| < C1(1 + |2a — yal) 7"
z/eXxd-1

Remark 6.2.2. By the Riesz-Thorin interpolation theorem, (6.2.1) and (6.2.2) imply

2_2 2_1 _ 2
1Te a0l (xay < Co 7O (1 |2 = yal) ™" Vlgll ooy, (6.2.3)
for 1 <p<2.
Proposition 6.2.3. Suppose Assumption F. Then there exists a universal constant

My >0 and M, > 0 such that

1 1
( sup — K f(2)*dx)z < MyCol|f||s, f € B, (6.2.4)
R>0,z9cR4 |lt—x0|<R

2-2 2
1K fll o (xay < MypaCo "CF N fllacxay, f € LP(XY) (6.2.5)
for 1 <p<2k+1)/(k+2).

Remark 6.2.4. (6.2.5) follows from Proposition 6.2.8 below under the assumption of
Proposition 6.2.8. However, the proof below is simpler than the proof of Proposition
6.2.8.

Proof. By a density argument, we may assume f € C°(X%). We observe

1
o [ KSR < s |K e, (626
R>0,z0€X4 |z—z0|<R zg€R
[ VS lscxisydva <MK S (6.2.7)
R

with some universal constant M, > 0. Using the Minkowski inequality and (6.2.1), we
obtain (6.2.4).

Next, we prove (6.2.5). We set L, = 057015 - By the Minkowski inequality and
(6.2.3), we have

Pl cxoy = | To gl sl

k(22—
<Ll [ (@t foa =)l g il v
S]WLDJCL:D||f||LP(Xd)a

where we use the fractional integration theorem in the last line. This gives (6.2.5). O
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6.2.2 Estimates for integral operators away from duality line
For x4 € X, we define T,, and T, by

Tp f(2') = Kf(a' za) = | K(z,9)f(y)dy, Ty,9(y) = K (z,y)g(z")da'.

Xxd Xd—1

We define
Suultins z0)9(t) = / R, )K (2, 2)g(<)d2'da’.
del del
Note that

T T,/ (y) = / (St 20 F - 2)) ()2

X

Next, we consider the following assumption.
Assumption G. There exists Cy, C'3 > 0 such that for any x4, y4, 29 € X
1Sea(g0s 2l 201y < C gl iy, (6.2.8)
1S4 (Yas 2a) gl oo (xa) < CF A+ [ya = zal) *llgllr xary.- (6.2.9)

Remark 6.2.5. Suppose that we can write K(z,y) = Ki(2' — v/, z4,yq) for some K; €
L>(X41), Then Assumption G directly follows from the following estimates:

| /xw /Xdl eV E K (2 2a, ya) Ko (2 — ', 24, Zd)da:'dy/||Loo(;?i?1) < C3,

sup | Ki(2" =y, 2, ya) K1 (2" — 2, w4, 20)da’] < C§<1 + |ya — Zd|)7k~
y’,z’Gdel Xd-1

Remark 6.2.6. By the Riesz-Thorin interpolation theorem, (6.2.8) and (6.2.9) imply

2-2 2.3 k(2
192, (Yas z) 9| 1o (xa-1y < (C5 "C3 V(1 + |ya — zdl) *G l)HgHLP(Xd—l)> (6.2.10)
for 1 <p<2.

Proposition 6.2.7. Suppose that K satisfies Assumption G. Then there exists a uni-
versal constant M), > 0 such that
1 9, \1 . —
( sup = — |Kf(x)| dx)z < Mp,kOZ Cs Hf”LP(Xd)a JeLrL (X )7
R>0,z9€R4 |z—z0|<R

(6.2.11)

for 1 <p<2(k+1)/(k+2). Moreover, if K*(x,y) = K(y, ) satisfies Assumption G,
then it follows that

* % 1_3
K" fllzoxay € Mgyq1),C5 Cs “Iflls, f € B, (6.2.12)
for2(k+1)/k < q < 0.
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Proof. By a density argument, we may assume f € C°(X?). First, we prove (6.2.11).
Due to (6.2.6), it suffices to prove

2

2-2 2.3
| Ty fll2xia1y € MyyCa "Cf || fllovxay, | € C2(XY). (6.2.13)
By the standard 77" argument, this estimate is equivalent to
* / 27% %71 2
||dedef||LP*(Xd) < (Mp,k02 03 ) ||f||LP(Xd)-

2 o2
We set L, = (C’; rCy 1)2. Using the Minkowski inequality and (6.2.10), we have

1T, T f | o (x) =|H|/X(Sxd(ymzd)f(wZd))(y’)ddeLp*(xj,1>HLP*<XW>

k(21
SLp||/X(1+|yd—zd|) G )||f('7?Jd)||Lp*(xg71)dyd||m*(xyd)
<M )" Ll £l o xey,

where we use the fractional integration theorem (the Hardy-Littlewood-Sobolev theo-
rem) in the last line. This proves (6.2.11).
Next, we prove (6.2.12). Replacing K in (6.2.13) by K*, we have

|| / K () J )iyl sy < MGy O [ fllumin. [ € O(X.
By duality, we have
|| K(y7 ) ( )dflf ||L4(Xd) < M kc C ||g||L2(Xd—1)7 Tq € X7

Xd—1

where ¢ = p*. By (6.2.7) and the Minkowski inequality, we obtain

K s < [ [ Klen )iy s du
<]\/‘I(,/(q 1) kC C / N fCsya)ll 2 (x4 dyd

<M1 k:C C q“fHB

We impose the additional assumption.

Assumption H. There exists Cy > 0 such that

[K(z.y)| < Ca(l+ o —y))™", » € X°
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Under Assumption G and H, we obtain the estimates similar to (6.2.5) away from
the Holder exponent.

Proposition 6.2.8. Suppose that K and K*(z,y) = K(y, ) satisfy Assumption G and
H. Then there exists a universal constant L;, ., > 0 such that

1K fllacxay < Loy g kCoakall fllLoxay, f€ LP(X?),
where 1/p—1/q =1/l and

2 2 4 1,2
2 . (k+1)(2k+1) 1+2k k 1
(jp (7p qa Qfl fép‘< k24+3k+1 q > k E;E
2(k+1)(1 2(k+1)—1 1+2k
Cpat = | GV O PN O G <1< k41, g < L < B2
-1 _1-—
» 142k (2k+1)(k+1) Kl o 1
Czqc?:l C4p72f1§p< e e = o

We prove this proposition by a series of lemmas.

Lemma 6.2.9. Suppose that K satisfies Assumption G. Let ¢ € C*(R?). Define
K (x,y) = ((2zg — 24) /2, (2yq — 24) /27T K(x — ) for j and z4 € X. Then for
1<p<2k+1)/(k+2)

. 22 2_41 |
1K fll ey < DMy, Co 7 CF 22| oo ey £l o
with L' > 0 independent of z4 € X and j.

Proof. We take L > 0 such that supp v C By, where B;, C X? is an open ball with
radius L and with center 0. We observe

I Py = [ Sy
|lxg—zq/2|<L27
Replacing K in (6.2.13) with K7, we have

; 2-2 2.4
IEK7f (s wa)l|2xa1y < My Coy P CF {9l oo 2y | f | Loy

We note that there exists L' > 0 independent of z; and j such that

(/ drg)t/? < L2912,
|Ta—za/2|<L2

Combining the above three inequality, we obtain the desired result. O]

We need the following technical lemma in order to prove Lemma 6.2.11 below.

Lemma 6.2.10. Let F € C>*(R). Then there exists ¥ € C°(R?) such that

_ Qs — Qg —
F(xd yd /¢ T4 Zd Yd Zd)dzd, Ta,yq € R,

27 2i 27
where L; =277 if X =R and 2792 < L; <279 if X = 7.
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Proof. We define ¢ € C2°(R?) as follows: Take x2 € C2°(R, [0, 1]) such that [, xa(z)dz =

2 and supp x2 C (—1/2,1/2) if X = R and such that y2(t) = 1 on |t] < 1 and

x(t) = 0 on \t| > 2if X = Z. We define ¢(z,2") = F(z — 2')x2(2z + #/), Then
= [y (za+ 2, Z)dz if X =R and

— 24 2Yq — — 24 2Ya— 24
[ o e s = Y (P
Z4E€EL
Tg — Yd Zd
9 )ZXz(g)
24 €L

if X =7Z. We note
2 <y XQ ) < 2F2,

Z4€EL

Weset Ly =1if X =Rand L; =}, ,x2(3¢) if X =Z and we are done. O

27

The following lemma is a consequence of Lemma 6.2.9, however its proof is a bit
technical due to the convolution type cut-off. The conclusion of the following lemma
is same as [26, Lemma 1|, where the uniform resolvent estimate of the Laplacian is
studied. However, since their proof strongly depends on the spherical symmetry of the
Laplacian and the Stein-Tomas theorem for the sphere, we cannot directly apply their
argument to our cases. In order to overcome this difficulty, we borrow an idea from the
proof of the Carleson-Sj6lin theorem [29, Theorem 2.1].

Lemma 6.2.11. Suppose that K satisfies Assumption G. Let F € C>®(R). Define
K7™ (z y) = F((zqg — yq)/2)K(x,y) for non-negative integer j. Then for 1 < p <
2(k +1)/(k +2), there exists a universal constant M, such that

. 9—2 2_ .
[ K7 f ()] L2 (xay < My Co pc':f 2§]HfHLP(Xd) (6.2.14)
Proof. By Lemma 6.2.10, we have

Ko f(q)] < 2] / K924z, y)dzal,
X

where we set K7%(x,y) = K(x,y)0((224— 24) /27, (2yg — 24) /27T1). Take ¢ € C=(R)
such that ¥(z4,ya) = ¥(24, ya)p(ya). We take L > 0 such that supp ¢» C Bp, where
By, C X? is an open ball with radius L and with center 0. We note

2 _
{ra € X [ p(2Re— 2 2Wa— 2

2J+1 b9+t ) # 03[ < L27*,

_2 2
Set M = (M;;,kCQQ rCy 1)2. Using the Cauchy-Schwarz inequality and Lemma 6.2.9,

we have
/ | / K9 f(2)dzg2dn <271 / / K9 f(2) [2dd g
X X

<2LL M22j/ e W)f”m xaydza.
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Since p < 2, by using the Minkowski inequality, we have

2- —Zd 2- —Zd
J 1o ) Bacadza <t Mol Mo

SLH?”WH%Z(X)||f||%p(xd)
with L” depends only on . Thus we obtain

j,conv 2_% %_1 j
[ e @) < (4T CLT P2

where (leolk)Q — 2LL’L”(MI’)’,€)2||g0||%2(x). O
Corollary 6.2.12. Suppose that K satisfies Assumption H. Then there exists a con-
stant L1 > 0 which depends only on F, d and k such that

53 ety < a2 ) Loy (6:215)

In addition, we suppose that K and K*(x,y) = K(y,z) satisfy Assumption G. Set
1/p1 =1—q/2p* and Ly, , = (M;,’l’k)Q/qLi_wq. Then

j.conw pl* %—1 1—% PRESI
[ K7 fllpacxay < LopaCy C5 Cy *27 a7 fl o xay (6.2.16)
ifqg>2and (k+1)(1—1/p)/k <1/q and
j,conv 2 el j<1+2k> —jk
[ K7 fllpaxay < LagprC3 O Cyp 727777 1l Lo xay (6.2.17)

ifp<2and (k+1)/(kq) <1—1/p.
Proof. (6.2.15) follows from
R f | ooy SNEC/27) K || oy | 1] 22y
<L Cy27%|| fll pr (x0)
with some constant L; > 0 by Assumption H. By complex interpolating (6.2.14) and
(6.2.15), we obtain (6.2.16). Since K* also satisfies Assumption G and H, by duality,

(6.2.17) holds.
O

Proof of Proposition 6.2.8. Take n € C°(R, [0, 1]) such that n(t) =1 on 0 <t <1 and
n=0ont>2 Set F(x)=n(z|) —n(|z|/2). By Corollary 6.2.12, for (k+ 1)(1 —
1/p)/k <1/q, q > (1 + 2k)/k, we have

1K Fll gy =10 KP™ fllpaceay <0 IEP™ fll agxa
=0 j=0

2 2.9 g 222 B
<Lyp C3 Cy Cy 0y 2P )] vy
j=0

2 2 7 1-2
<Ly, 03 C3 Cy | fllLexay,

2,p,q
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where Ly, = Lapgd 0, 27/2+34(1/a=1/2)  Gimilarly, for (k + 1)/(kq) < 1 —1/p, p <
(1+ Zk)/( —|— k), we have

21 1-%
K Fllpacxay € Loge e O3 CF Oy 7 [ fllzogxe)-

2,q*,p*

In order to prove the end point estimates, we use Bourgain’s interpolation trick ([7],
8, §6.2], [43, Lemma 3.3]). This trick is also used in [2] for the Stein-Tomas theorem
for a large class of measures in Euclidean space. See also [17] and [26]. We denote the
Lorentz space for index 1 < p < oo and 1 < r < oo by LP"(X49):

| fll o (xay = fo ({z e XI]|f(2)] >Oé})”0/ Yda)r,
(X4 pa>00z,u({m€Xd||f( )|>a}) , r = o0,
IPN(XY = {f: X* - C| f : measurable, £l o (xay < 00}

1
T

Bourgain’s interpolation trick with (6.2.16) and (6.2.17) implies that for 1 < p <
(k+1)2k +1)/(k* + 3k +1),q = (1 + 2k)/k, it follows that

-1 1 2
VK Fllzaomxoy <Lbyp O3 3 £ 1|z ey

2,p,9

with a universal constant L
we have

Similarly, for p = (1+2k)/(1+k), ¢ > (2k+1)(k+1)/k?,

2,p,q9°

2 2.1 1-Z%
HKfHLq oo(Xd) < L/ CQqCéZ 04 P

2,q*,p*

).

By real interpolating above estimates, we complete the proof.

6.3 Uniform resolvent estimates

6.3.1 Proof of Theorem 7.1.1 (i) and ()

Proof of Theorem 7.1.1 (i) and (ii). We follows the argument as in [11, Lemma 3.3].
By using a partition of unity and a linear coordinate change, we may assume that
O¢, T # 0 on supp x. Moreover, by the implicit function theorem, we may assume that
for A € I, M) has the following graph representation:

M, Nsupp x C {(€,ha(€)) € X | € € U}

for some relativity compact open set U C X! and h) which is smooth with respect
to & € U and X € I and

T(§) = A =e(& M) (& — hal(£)), (6.3.1)
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where e(§,\) = fol(ang)(é”,tﬁd + (1 — t)hy(£'))dt. Furthermore, we may assume
MiNgesupp yaed €(€, A) > 0 if necessary, we take supp x small. Set

_ [ e
Kz,:l:(l’) —/)/(E md&,

Kz,w,:l:(x) :Kz,:l:(x) - Kw;l:(x)y

where A = Re z,u = Rew € [ and +Im z,£Im w > 0. In order to prove Theorem
7.1.1, it suffices to show that K, ; satisfies Assumptions G and H, and that K, +
satisfies Assumption F.

Lemma 6.3.1. Fiz a signature £. For any 0 < § < 1, there exists Cy,Cy,Cy5 > 0
such that for x = (2, z4) € X%, 2z,w € I with |z — w| < 1, we have

sup | K. 4y wa)e”>™ ¢ dy| < Co, |K.u(2)| < Cr(1+ J2]) 7

{’E)ﬁ: Xd-1

sup Kz,w,i(y/>md)e_Qﬂiy/{/dy,| S 2007

—

gexd-1 Xd-1
Ko (2)] < Clz = w|*(1 4 [a]) 75+

Proof. Note that [y, , K. (Y, zq)e 2V E dy = I3 %dfd. If necessary we take

supp x is small, it suffices to replace the integration region by R. Thus by (6.3.1), we

have
e2miztay () 2oy ()
— e, = -~
/y T . /RT@—Z G

_/ 627rixd(§d+h/\(€/))x(§”§d + ha(€))
Jr (€, €4+ ha(€),€9)€Eq — ilm 2

27T7:$dh)\ (.E/

d&q

=:e (€ 2a)-

By using [11, (3.10)] for £Im 2z > 0 and [12, (A.6)] for £Im z = 0, we have
0672+ 2a)| < Ca (6.3.2)

for & € N1, We will prove (6.3.2) in Lemma 6.5.3. Thus the first inequality holds.
Moreover, we note that

K. (z) = / Vo, (€)M RN g

Xd—1

Since 7.+ is compactly supported in &’-variable, then (6.1.5) and (6.3.2) imply the
second inequality. The estimates for K, , 4 (z) follow from the estimates

106724 (€, 24)| < CLlz — w]’ (14 |za])°,

which is also proved after Lemma 6.5.3: (6.5.6). O
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Lemma 6.3.2. There exists C3 > 0 such that

|/d /d VR, (2 wg — ya) Koa (2 — ' 2q — 2a)da’dy'| < CF
xd-1 J xd—1

! Rz,i(xl - y', Tq — yd)Kz,i<x/ - 2/> Tq — Zd)d$l| < C§(1 + |yd - Zd’)fk
del

where Cy > 0 is as in the proof of Lemma 6.3.1.
Proof. Note that

/ / 62”?/'5/KZ¢(1:’, g — ya) K, = (' — ¢, xg — zq4)da' dy’
del del

— 2milya—za)ha(¢

)’Yz,i(fla Tqg — Zd)’)’z,i(§/7 Tg — yd);

where 7, + is as in the proof of Lemma 6.3.1. Moreover, we have

[ R
Xd—1

= Vet (&, Ta — 2a) V2 (€, Ta — ya)dE'.

_ / e?wi(y/7Z/)-§/+27Ti(yd*2d)h>\ ()
Xd-1

Thus (6.1.5) and (6.3.2) imply the conclusion.
[l

Lemma 6.3.1 and 6.3.2 imply that K, 1 satisfies Assumptions G and H and K, ,, +
satisfies Assumption F. This completes the proof of Theorem 7.1.1.
O

Remark 6.3.3. In order to prove (i), it is sufficient to prove (i) for £Im z = 0 by
using the Phragmén-Lindel6f principle as in [64, Section 5.3]. See also [11, Appendix
A] for the estimates of the Shatten norm of the resolvent. Here we avoid using the
Phragmén-Lindelof principle.

Corollary 6.3.4. Let ry,ry € (1,4k + 2] satisfying 1/r1 +1/ro > 1/(k+1). Then

sup [|[Wix(D) Ry (2)Wal| g2 (xayy < ClIWa |l ri (xay [Wall s (x4) (6.3.3)

zely

for Wy € L™ (X?) and Wy € L™(X?). Moreover, let Wy € L™ (X?) and W, € L™(X1?).
Then it follows that Wyx(D)RZ (2)Wy belongs to Boo(L*(XY)) and a map z € Iy +
Wix(D)RE (2)Wy € Boo(L*(X %)) is continuous in z € I.. In addition, for r = r| =
ro € (1,4ks 4+ 2), we have

IWix(D)(RG (2) — Ry (w)Wellpra(xayy < Cle = w]® Wil [Wellrxay  (6.3.4)

for zyw € Iy, |z —w| < 1.
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Proof. (6.3.3) and (6.3.4) follow from Theorem 7.1.1 and the Hélder inequality. For
proving the other statements, we may assume Wy, W, € C®(X9) by ¢/3-argument
and (6.3.3). Since W; and W, are compactly supported and since the integral kernel
of X(D)RF is in L*® by Lemma 6.3.1, then the integral kernel of Wy x(D)R¥(2)W, is
square integrable and hence Hilbert-Schmidt. Thus it follows that W, x(D)Rz (2)W, is
compact. Moreover, by (6.3.4), we see that W, x(D)Rs(2)W, is continuous in z € I..
The case of Wi € L™ (X4) and W, € L"™2(X?) follows from the £/3-argument as in the
proof of Lemma 6.4.9. O

6.3.2 Supersmoothing, Proof of Theorem 7.1.1 (i)

In this subsection, we assume X = R. The author expect that the following proposition
with X = Z holds. However, we prove this with with X = R for possibly technical
reason. We recall . (x) = (1 + |2*)V (1 + v]x[*). We restate Theorem 7.1.1 (7i4):

Proposition 6.3.5. Let [ C R be a compact interval. Suppose T~1(I) is compact. Let
X € C2(RY) be supported in T~(I). Under Assumption E, for (1/p,1/q) € S, there
exists Cnpq > 0 such that

v (@)X (D)ul| La@aynss < Onpgllpiny (2)(T(D) = A)x(D)ull o(ray+s (6.3.5)
for u € $(RY).
Lemma 6.3.6. Suppose that m € C*(R?) satisfies

[0gm(€)] < Ca(l +[¢7)1V2

for a € N%. Let 1 < p < oo. We set fin(za) = (1 + |xg/H)N (1 + y|z[*)™N. Then we
have

l(z)m(D) () " pero@ayy < Onmps [l1(@)m(D) (@) " | pes@ey < Chm,

l(@)m(D)p(x) | pes+rayy < Cnvm

if u(z) € {,uNﬂ(w),u]_\,;(:r;),ﬁNﬁ(xd),ﬂj_\,g(xd)}, where Cn mp and Cy ., are independent
of 0 < v <1 and depends only on d, N and finite number of Cyy.

Proof. The proof is same as in the proof of [37, (3.7)]. In fact, though the range of p is
restricted in [37], the proof succeeds even when 1 < p < 0. Il

Lemma 6.3.7.
(i) For a € N we have
95 1wy () =ba(2)pin ()
g i ()™ =0, () v ()
for some functions by, b, € C°°(RY) such that for 3 € N¢,
(1 + [a) D200, (2)| < Capnvy (14 |22) D200, ()] < Capn

-1

with some constant Co g n which is independent of 0 < v < 1.
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(i1) There exists Cy > 0 independent of 0 < v <1 such that

18 (D) i () i (Wi () < On(L+ o — yP)N, 2,y € RE

Proof. (i) We prove (6.3.6) only. The proof of (6.3.7) is similar. We prove (6.3.6) by
induction in |af. If & = 0, then (6.3.6) is trivial. Let M > 0 be an integer. Suppose
that (6.3.6) holds for |a| < M. If |a| = M, by the induction hypothesis, we have

0, 0y 11,0 () =(0i;00 () pin o (¥) + Do () O, pinv e (2)
:((aija)<x) + ba<x)bej (flf))ﬂzvn(w),
where (eq,...,e4) is a standard basis in R? Thus, if we set bate; () = (Or;b0)(T) +

ba(2)be, (), then |(1 4 |z|?)1«F8D298p,,(2)| < Cyp,n follows. This proves (6.3.6) for
la] = M + 1. (di) is easily proved. O

Corollary 6.3.8. For k € R we define A, = (I — A)*/2. Then

e Al peroray + e Log|| pey + lpAepn ™ Log| ey <Cpps
AR A ™ o ey + Ak gp ™ ) + 1AepA kp ™ B3y <ONkps

with some Cn ., > 0 independent of 0 <y <1 for p € {,MNW,/L;V?,Y} and 1 < p < 0.
Proof. The proof is same as in [37, Lemma 3.2| by virtue of Lemma 6.3.6 and 6.3.7. [J

Proof of Proposition 6.3.5. Let Y, € {LP(R?), B} and Y, € {L4(R?), B*}. If necessary,
we may assume supp x is small enough. In fact, by using a partition of unity {x;}}Z,

such that Z;\il x; = 1 on supp x, we have

a5 (2)x (D)ully, < Z 13 (2) Ocix) (D)l

Z 184 (@) (T (D) = M) ) (D)ullyy SCnmpllin (@) (T(D) = A)x(D)ully,

where we use the triangle inequality in the first line and Lemma 6.3.6 in the second
line. Thus we may replace x(D) by (x;x)(D) in (6.3.5).

We may suppose 4 and f are supported in supp x and we may suppose ¢, T # 0
on supp x by rotating the coordinate and by taking supp x small enough. We set
5;’ =epej++/1 —c2egfor j =1,...,d—1and & = &, where gy > 0 is a small constant

and (ey, ..., eq) is the standard basis of R?. Since (£, ...,&]) is the basis of R?, then

d

d
c Z[J’Nﬁ(‘r : 5;_) < pny() < OZ/]N,“V("T : 5;_)
j=1

j=1
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with some constant C' > 0 independent of ~, where
i (t) = (1 + 2V (1 4 722) ™

Thus it suffices to prove that

vy (2 - Eullyv, < Cnlliny (2 - ENT(D) = Mullyy
for each j = 1,...,d. If £ > 0 is small, then 0, T # 0 implies & - VT'(§) = €00¢, T +
V1 —¢20¢, T # 0 on supp x. Thus by rotating the coordinate, we may reduce to prove

1 (za)ully, < COnlliana(za)(T(D) = Aully;.-

We remark that this reduction is the only part to miss proving this Proposition when
X = 7. In fact, there are no basis containing the normal vector of x - 5;-“-direction when
X =7.

Set f = (T(D) — A)u. By the implicit function theorem, we have T(§) — A =
e(§,N)(€q — ha(€')) as in (6.3.1). Then we have e(§,\) 7' f(&) = (& — ha(€))u(€) on
supp x. We denote f({',x4) is the Fourier transform of f with respect to &, ..., {4-1-
variables and set g(&) = e(&, \) 71 f(€). Here e(&,\)! is well-defined on supp f since
supp f C supp x. Then

(Dzy — ha(§))u(€, a) = §(&, a),
Since © and g are smooth, by using variation of parameters, we can write

zq
u(¢', q) = / v G(¢ ) dy,

—00

= - / ezﬂl(itd yd hk 5) (5 yd)dyd
T4

Note that we use the first line of the above representation if x4 < 0 and the second line
if 24 > 0. Taking the inverse Fourier transform and multiplying fin ~(z4), we have

fnq(zq)u(z) :/ Ky~ =y, 24, ya) v 4 (Ya) 9(v)dy' dya

R JRA-1
where
UNA~\Td
KN,’y( y XTd, yd) L(Xxd<0Xdeyd — Xxd>0XId§yd)
r“Nv(yd)
X //{i\1 e27ri(zl—y/)'5’+27ri(zd_yd)h)\(§I)¢<§/)d§/'
Ri—

Note that “N”((;Z; (Xarg<0Xay<yy — Xay>0Xzy<ys) < 1. Let R be the linear operator on R?

with the integral kernel Ky . We recall supp f Csupp x and § = e(€, \)"1f(€). Hence
we can write

/jLN,v(xd)u<x) = KN,W(:LJ - y/) * (ﬂN,”/(yd>Q0(D)6<D7 /\)_I/EJ_V,IW(yd)ﬂN,W(yd)f)(‘r)
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where ¢ € C%°(R?) such that ¢ = 1 on supp x. By virtue of Lemma 6.3.6, it follows
that the operator norms of iy~ (ya)x(D)e(D,N) in(ya) ™! on LP(R?) (1 < p < o0),
B and B* are uniformly bounded in A € I.
By virtue of Propositions 6.2.7 and 6.2.8, it suffices to Ky, and Ky (z,y) =
Kn,(y,x) satisfies Assumptions G and H. To see this, we may mimic the proof of
Lemma 6.3.2. We omit the detail.

O

6.4 Applications

6.4.1 Fractional Schrodinger operators and Dirac operators

In this subsection, we suppose that 7'(D) is the one of the following operators:
T(D) = (=A)*2, T(D) = (=A + 1)*? =1, T(D) = Dy, T(D) = Dy,
where 0 < s < d.

Proof of Theorem 6.1.3. We consider the case when T(D) = (—A)*/? or T(D) = (1 —
A)*/? only. The case when T'(D) = Dy or T(D) = D, is similarly proved if we notice

as in the proof of [11, Theorem 3.1]. We take a real-valued function x € C°(R¢%, [0, 1])
such that y =1 on T7Y(I) and supp x C R\ A.(T(D)). Note that M, = {T'(£) = A}
is sphere and hence has non vanishing Gaussian curvature. if A € o(T'(D)) \ A(T'(D)).
Then we apply Theorem 7.1.1 with k = (d — 1)/2 (see [66, Theorem 1.2.1]) and obtain

Sup \|X(D)R§(Z)HB(Lv(Rd),Lq(Rd)) <00 (6.4.1)

z€lt

for (p,q) € S%. On the other hand, by the support property of y and the Hardy-
Littlewood-Sobolev inequality, we have

sup [|(1 = x(D))Ro(2) || p(Lr(ra), Lagray < 00 (6.4.2)

zelt
if 1/p—1/q < s/d. In fact, if 2a = —d/2 4+ d/p and 23 = —d/q + d/2, then
[(1 = x(D))Ro(2)l| B(rr(re), La(ra))

< = A) || pr@ay 2@y | (1 — X(D)(I — A)*P Ro(2) || 2 may
X (1 = D)) pereqray,pamay)-

Thus (6.4.2) follows from the the Hardy-Littlewood-Sobolev inequality. Combining
(6.4.1) with (6.4.2), we obtain (7). (i¢) is similarly proved.
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Lemma 6.4.1.

(1) Suppose 2d/(d+1) < s <d. Let 0 < § <1, r € (2d/s,2(d + 1) — 46] and r1,ry €
(1,2(d 4 1)] satisfying
RIS
d+ 1~ 1 Ty

Ul ®

Then

sup [|W1R5 (2)Wa| p2ay) < ClIWill o ey [Wall 1ra ey

zelt

IWs(RG (2) — Ry (w) Wil pereqrayy < Clz — w|™ | Wal| 1 ey | Wa | 1r ey

for z,w € Iy with |z —w| < 1 and Wy € L™ (RY), Wy € L™2(R%), W3, W, € L"(R?).
Moreover, if Wy € L™(R?) and Wy € L™*(R?), then Wi RZ (2)W, € By (L*(R?))
follows for z € I and a map z € I+ — W RE(2)Ws is continuous.

(17) Suppose 0 < s < 2d/(d+1). Let0 <6 < 1,7 € (1,2(d+1)—46] , r1,79, € (1,2(d+1)]
and 1, rh, " € [2d/s,00) satisfying

2 <1+1 1+1
d+1_T1 7“27 Ti 7“/2

<

Ul ®w

The all results in Lemma 6.4.1 part (i) hold if we replace L™ (R%), L™(R?) and L"(R?)
by L' (RY) N L1 (RY), L2 (RY) N L"2(RY) and L' (RY) N L (RY) respectively.

Proof. Note that for Wy, Wy € C2(R%), it follows that Wi (1 — x(D))RE (2)W; is com-
pact and smooth in z € I by using dRy(2)/dz = Ry(z)? and the Rellich-Kondrachov
theorem. The other parts of the proof are same as in the proof of Corollary 6.3.4. [

Part (7i7): Existence and completeness of the wave operators are similarly proved
as in the proof of Theorem 6.1.9 (iv) in subsection 6.4.3 by using Lemma 6.4.1.
Proof of Part (iv) is proved in subsection 6.4.2.

6.4.2 Carleman estimate, Proof of Theorem 6.1.3 (iv)

First, we give the Carleman estimate for 7'(D). We recall uy(z) = (1 + |z[*)V(1 +
y|z|?)™N and Ay = (I — A)2. For 1 < p < oo and [ € R, we introduce the standard
Sobolev spaces

W = {u e 8'(RY) | Au € PR}, [Jullwir = | Asul| po(ga)-
We set pg =2(d+1)/(d+3),p;=2(d+1)/(d—1),la=s/2—d/(d+ 1),
Wlara 4 A, B i 2d)(d+ 1) < s < d,
T (L (RY) N LAY (RY)) - Ay o B, if 0 < s < 2d/(d + 1),
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and

s

. {Wldvpfz NA_ynB*, if 2d/(d+1) < s < d,
(LPa(RY) 4 L2/ @=)(RE)) N A_gj9B*, if 0 < s < 2d/(d +1).
By the Sobolev embedding theorem, we have
X, W3/22 W22y X7, (6.4.3)
Proposition 6.4.2. Let N > 0 be a real number satisfying
N < s/2, if T(D) = (—A)*/? with s ¢ 2N. (6.4.4)
Then there ezists Cn 4 > 0 independent of 0 <y <1 such that

x; < Onallpn o (@)(T(D) = Mullx,

o3 (@)l
foru € Bf and |\| € I.

Remark 6.4.3. The condition (6.4.4) is needed due to the singularity of the symbol
T(&) = [¢]° at £ =0.

Proof. First, we assume u € $(R?). Let xo, X1, X2 € C®(R?) be smooth functions such
that xo, x1 € C°(R?) and

Xo+Xx1+x2 =1, xo(§) = 1 near £ =0, x1(§) = 1 on supp T~ ().
By Lemma 6.3.6, it suffices to prove
v q (@) (D)ulx: < Cnallpn (@) (D) (T (D) — Aul

for ¥ € {x0, x1, x2}. The case when ¢ = y; directly follows from Proposition 6.3.5 and
Corollary 6.3.8. The case when 1) = x5 follows from Corollary 6.3.8 and (6.4.3):

x (6.4.5)

x: <O pnq(2)x2(D)ullyys/22
=ClAspapiny (@)ul| p2ra),

Agjapin :(AS/QMNKYA*SQ'MJ_V}’Y)

X (v Asj2xs (D) (T(D) = N) iyl Asyo)

X A_gpopinyX2(D)(T (D) — A),

where x3 € C(R?) satisfies y3 = 1 on supp x» and supp x3NT (1) = (). Moreover, the
L?-boundedness of A4 J2lN A s /g,u;,}7 follows from Corollary 6.3.8 and L?-boundedness

148 (2)x2(D)ul

of punAsp2x3(D)(T (D) — )\)71[1]_\[717]\5/2 is proved by mimicking the proof of Corollary
6.3.8.

Finally, we deal with the case of ¢ = yo. (6.4.5) with T(D) # (=A)*/? or T(D) =
(—A)*/% for s € 2N is similarly proved as in the proof of (6.4.5) with ¢ = 5. Thus we
may assume T(D) = (—A)*? with s ¢ 2N. For its proof, we need some lemmas.
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Lemma 6.4.4. Let s > 0 and m € C°(R?\ {0}) N C.(RY) satisfying
0, ifa=0
o¢ < Ca Ma’ Ma - ’ 7
ogm(©)| < Cule {s—MiﬂMZL
Then m(D)(x) = [ga €™ m(§)dE satisfies
m(D)(w)| < C(1+ Jaf)=

Proof. Since m is compactly supported, we may assume |z| > 1. Let x € C>®(R)
satisfying x(t) = 1 on |[t| < 1 and x(t) =0 on |t| > 2. Set y = 1 — x. For § > 0, by
integrating by parts, we have

We simply obtain

ma(e)| < Clal [ g < Claf o,

1€1<24
For M > s+ d + 2, by integrating by parts, we have

[ma(a)| <Cla M0 ) / | Dg (x(I€1/0) Dem(€))[d€

la|<M
SC‘LT|7M 15d+s 1— M.

We set § = |z|7! and conclude |m(D)(z)| < Clx|~475. O

Lemma 6.4.5. Let m be as in Lemma 6.4.4 and 1 < p < oo. Moreover, let 0 < N <
s/2. Then we have

[p(z)m(D)p(z) " peromay < Cnmp

for p e {pn, “I_V}v}” where On mp and Cn pn, are independent of 0 < v <1 and depends
only on d, N and C in Lemma 6.4.4.

Proof. We note that the integral kernel of pu(z)m(D)u(z)~" is p(x)m(D)(x — y)u(y) ™!
and satisfies

lu(@x)m(D)(x — y)u(y) "' < C(1+ o —y[)?V 4

with C' > 0 independent of v > 0. Here we use Lemma 6.3.7 (i) and Lemma 6.4.4. We
note 2N — s < 0 by the condition (6.4.4). Thus we have (1 + |z])?V~4=5 € L1(R%). By
the Young inequality, we obtain the desired result. O]
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Remark 6.4.6. Replacing the Young inequality by the O’neil theorem (the Young in-
equality in the Lorentz spaces), we can relax the condition (6.4.4) as 2N < s.

We return to the proof of (6.4.5) with ¢ = xo. We take xy € C*®(R?) such that
X = 1 on supp xo. We learn

AS/Z,UN,'y :<As/2,UN,'yAfs/2,U]_Vil»y) X (MN,'YAS/2X<D)(T(D) - A)_lAS/QM]_V,l'y)
X (N Asjatin s Asja) X A_gapin 4 Xo(D)(T (D) = A).

We set m(D) = punyAs2x(D)(T(D) — /\)*1/\5/2;1;,717, then m satisfies the assumption
of Lemma 6.4.4. Thus the inclusions (6.4.3), Corollary 6.3.8 and Lemma 6.4.4 imply
(6.4.5) with 9 = xo. This complete the proof of Proposition 6.4.2 with u € S(R").

In order to remove the condition u € §(R™), we may use the Friedrichs modifier and
a cut-off function as in [37, Proof of Theorem 1.2]. We omit the detail. O

The next lemma implies that the potential is ”admissible”.

Lemma 6.4.7. Suppose V € LP(R?) with d/s <p < (d+1)/2 for 2d/(d+1) < s < d
and V € LV/2(RY) N LY (RY) for 0 < s < 2d/(d+1). Then we have V € B(X*, X,).
Moreover, for each e >0 and N > 0 there exists Ax., Ry > 1 such that for v € (0,1],
we have

v, Vullx, <ellpnyullx: + Anvellull2(e<ry.)- (6.4.6)

Proof. First, we prove

Vul

x. <V

Y

where Y, € {LP(RY)}a/s<p<arn)y2 for 2d/(d +1) < s < d and Y, = LU+HD/2(R?) N
LY3(R%). By the Sobolev embedding theorem, we have

WhPi — L9(R?), LY(RY) e W lara

for 2d/(d +s) < q < pg. For 2d/(d+ 1) < s < dand d/s < p < (d+1)/2, we set
¢ =2p/(p+1). We note 2d/(d + s) < g, < ps. By the Hélder inequality, we have

||Vu||L‘1p(Rd) < ||V||LP(Rd)||U||L4§(Rd)'

We use X7 < Wlra and WlePd — X and conclude V € B(X?, X,) and (6.4.7) for
2d/(d+ 1) < s < d. In order to prove (6.4.7) with 0 < s < 2d/(d + 1), it suffices to
prove

IVl powey < [[V]]y,

uHL‘r‘(Rd)’

where g € {pg,2d/(d+ s)} and r € {p},2d/(d — s)}. This inequality follows from the
fact V € Y, = LU+D/2(RY) N LY*(R?) and the complex interpolation.
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Take y € C*°(R%) such that x =1 on |z| <1/2 and x = 0 on |z| > 1. For R > 1,
we set Vg = Vx(z/R). Then we use the inclusion B — X and have

x, <||V—-Vg
<[V —-Vg

x: + [lpun o Vel x,
xz + ||y Veul|s.

:U’N,'yul

[N U]

lpen Vol Y,

Ys

For each € > 0, we take R > 0 large enough such ||V — Vg

y, < € and we obtain (6.4.6).
[l

Proof of Theorem 6.1.3 (iv). We recall H = T(D) + V. Suppose that o,,(H) \ {0} is
not discrete in R\ {0}. Then there exist an orthonormal system {u;}52, C L*(R?),
6 > land {N\}2, C {A € R|d < |\ <07} such that Hu; = Aju;. We note
u; € L*(R?) C Bj. Let N > 0 satisfying (6.4.4). Applying Proposition 6.4.2 with wu;
and Lemma 6.4.7 with small € > 0, we have

v yuillx: < Onellugllzo e

with Cy. independent of v € (0,1]. The inclusion A_g/o(1+ |z])V/*F51 L2(RY) — X for
g1 > 0 implies

11+ |2)) 727 Ay jopv ] 22 ey < Onvel|us |l 2y
Taking v — 0, we have
||(1 + |ZL’|)_1/2_81A5/2(1 + |ZE|2)NUj||L2(Rd) S CN,6||uj||L2(Rd) = CN,e- (648)

We take £; small enough and N > 0 satisfying (6.4.4) and 2N > 1/2 + &; when
T(D) = (=A)*? with 2s ¢ N. Then (6.4.8) implies that u; is bounded in (1 +
|z|)/2+e2N A L2(RY). Since the inclusion (1 + |z|)Y/2+5172NA_ s L3(RY) — L?(RY)
is compact, there exists a subsequence {u;, }5 such that u;, — w in L?*(R?) for some
u € L?(RY). On the other hand, since u; converges to 0 in the weak topology of L*(R?),
then we have v = 0. This contradicts to ||u;|| 2ge) = 1.
The same argument implies that the each eigenspace associated with eigenvalue
A € R\ {0} is finite dimensional.
[

6.4.3 Discrete Schrodinger operator

In this subsection, we consider the case of X = Z and consider the discrete Schrodinger
operators.

Proof of Theorem 6.1.9. Part (ii) directly follows from the following lemma.

Lemma 6.4.8. Let d > 4 and a signature =. Then maps z € C+ \ R +— RI(2) are
Hoélder continuous in B(LP(Z%), LP" (Z%)) for 1 < p < 3., where 3, = 2d/(d + 3).
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Proof. We follow the argument in [62, Lemma 4.7]. We prove the lemma in the case of
+ only. The case of — is similarly proved. For 1 < p < 3,, there exists 0 < ¢ < 1 such
that 1 < p < 3,5, where

2
3r8 = 35/d+ (3+d)/d

We use the following dispersive estimate ([67]):
. _d2_
HeltAd||B(LP(Zd),LP*(Zd)) S Cp<t> 3(p 1)’ 1 S P S 2. (6.4.9)
Moreover,
’eitz _ eitz" < 21*5|t‘5|z _ Z"‘S (6410)

holds for t > 0 and z, 2’ € C, since |¢* — ¢®*'| < 2 and |e* — €| < |t]|z — 2/|. By
(6.4.9) and (6.4.10), we have

HR[{(z) - Ra_(zl)||B(LP(Rd),LP* (R4))
/ (eitz . eitz’)eitAd dt
0

< CR270z — z’|5/ t2¢t) 3G Vdt < oo
0

B(LP(R4),LP" (R4))

for 1 <p < 3,s. This completes the proof. O

Now we prove part (7). The above lemma implies that

lim [|Ry (A +ie) — Ry (A +i0) || po(zay o zay = 0, A€ER, 1 <p<3,, (6.4.11)

e—0,e>0

where we recall RE (A£40) are Fourier multipliers of the distributions (hg(&)—(A=i0))~".
We also use the uniform bounds ([68, Proposition 3.3]):

sup ||RE)|:(Z)HB(L3*(ZFI),L3* (zd)) < OO, (6412)
z€C4+\R

where 3* = 2d/(d — 3). By (6.4.11) and (6.4.12), taking a limiting argument, we have

sup ||R§(Z)||B(L3* (zd),L3* (zd)) < OC.
2eCy

This proves part (7).
Note that part (i4i) with V € LP(Z?) for 1 < p < d/3 follows from part (ii) and the
Holder inequality. Part (iii) with V € LY3(Z%) follows from the following lemma.

Lemma 6.4.9. Let d > 4 and a signature . For Wi, W, € L*¥3(Z%), a map z €
Co = WiRE(2)Wy € Boo(L*(Z%)) is continuous.
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Proof. Take sequences of finitely supported potentials W ,,, Wy ,, such that W, ,, — W;
in L2¥3(Z%) as n — oo for j = 1,2. For z, 2’ € Cy, the Hélder inequality implies

Wi(Rg (2) — Ry (2)Wal| g2z
<2[|W; — WI,HHL2‘1/3(Z‘1)HW2||L2d/3(Zd) SI}CP ||R(j):(Z)HB(L3* (Z4),L3* (Z%))
zeC4

+2[|Wy — W?,n||L2d/3(zd) SUP(HWLnHLWS(Zd)) sup ||Rf)t(z)“B(L3* (Z4),L3* (Z))

zeCy
W1 (R (2) — Ry (2)Waull 52y
:le + [2 —|— [3.

Now we let ¢ > 0. We fix a large n such that I; + I, is smaller than 2¢/3. Since Wi ,, and
W, are finitely supported, the previous lemma implies that Wy ,(RZ (2) — RE (2'))Wan
is Holder continuous in B(L?*(Z%)). Thus there exists § > 0 such that |z — 2/| < §
implies

Iy = |Win(B5 (2) = B5 () Wanll ez < €/3.
Thus we conclude that maps z € Cy + W, R (2)W, are continuous. ]

It remains to prove (iv). We follow the argument as in [47] and [52]. Let V €
LY3(Z%) be a real-valued function. Set W, = (sgn V)|V|/2 € L¥/3(74), W, = |V|V/? €
L?/3(74), H = Hy+V and R(z) = (H—z)~! for z € C\R. We note that for +Im z > 0

L@a]%g(Z)L@E —-L®H]%<Z)LLE :3L@H}%(Z)LpELLH]%§<Z)L®E. (6.4.13)

By part (ii7), it follows that Wy R (2)Ws, is continuous in z € I and hence is a compact
operator . In addition, I 4+ W, RF (2)W, is invertible in B(L?(Z%)) for z € C\ R due to
the Birman-Schwinger principle. In fact, if I+W; R (2)Wy is not invertible at z € C\R,
then the compactness of W Rs (z)W, implies that I + W, Ry (2)W, has a non-trivial
kernel. Then it follows that R(z) has a non-trivial kernel by the Birman-Schwinger
principle. However, this contradicts to the self-adjointness of Hy + V. Moreover, if we
set

ops(H) = opg(H) = {\ € R| Ker 1220)(1 + WiR§ (2)Wa) # 0},

we see that opg(H) is a closed set with Lebesgue measure zero by Proposition 6.6.3.
Since Wi R (2)Wy € Boo(L?(29)) for z € I, I + W RE(2)W, is a Fredholm operator
with index 0. Thus (6.4.13) gives

WoR(2)Wy = WoRs (2)Wo(I + Wi RE (2)Wa) ™Y, 2z € I\ ops(Ho).

Let [a,b] C I\ops(Hy) with a < b. Since (I+W;RE (2)W,)~! is continuous in z € [a, b],
then

sup ||(I + WiRg (2)W2) | prz@ay < oc.

z€[a,bl+
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Combining this with the part (i) and Holder’s inequality, we obtain

sup [|[WoR(2)Wa| pr2(za)) < 0o

z€[a,bl+
Since |Wy| = |Wa, then

sup HWMR(Z)M/ZQ“B(L?(Zd)) < Q.

z€[a,b]+
for iy,io = 1,2. By [61, Theorem XIII. 30, 31], the local wave operators

s— lim e™e 0By, ((a,b))

exist and are complete, where Fy,(.J) is the spectral projection to the interval J C R
associated with Hy. Since [0, 4d]\ A.(Hy)Uops(H) is a countable union of such interval

(a,b), the wave operators Wi = s — lim;_, 1o, e e~ exist and are complete.
O

As an application of Theorem 7.1.1, we prove the further estimates of the uniform
resolvent estimates for the discrete Schrodinger operators.

Proposition 6.4.10. Suppose I C (0,4) N (4(d—1),4d) ifd =2 and I C (0,2) N (4d —
2,4d) if d > 3. If supp x C hy'(I), then

sup [|x(D) Ry (2)| p(ro@za), pa(zay < 00

z€lt

holds for (1/p,1,q) € S(-1)2-

Proof. Let A € I. As is proved in [35, Lemma 4.3], all principal curvatures of M, =
{h = A} are non-vanishing. By Example 1, we obtain the desired result. O

6.5 Some estimates for v,

In this section, we give proofs of the estimates for v, + which is needed for the proof of
Theorem 7.1.1.

If necessary we take supp x small, we may assume X = R. We recall the situation
of the proof of Theorem 7.1.1. Set

~ (¢l _ X2(§,7§d + hk(gl))
X(g 7£d7)‘) - 6(5’,&1 + h,\(£/>>

Note that b is real-valued and ming ¢,)esupp v Nxrer 0§, €a, A) > 0. Recall that

Bl

) 6(5/7 €d7 )‘> = 6(5/7 gd + hA(én/)))il-

e27riacd§d>~(<€/ fd )\)
(€ 1a) = : = dég, Rez =\, £Im 2 > 0.
el €] /R&d—zam b Ea 0)
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Here if £Im 2 = 0, we interpret 7, 1 as

e gk (@)
Vet (&5 ) _/ (&, + ha(€'))a F i0
:/ e*mraSa (€' €q, M)

R &a F1i0

d&q

dfd?

where (§; F40)~! denote the distributions lim.sq.0(&s F i€)~'. In order to estimate
V2,4, we need some lemmas.

Lemma 6.5.1. Let ¢, € C(R) and py, pe € R\ {0}. Then

27rzyd§d " 627”yd§d
| / (i) dyal < Tl s, | / byl =
R

2miyq€a

e N ~
| / (s () Dv- e dyal < 7Dl ey

Proof. We leran

1 ; 0
]/p.v.—w(yd)emydgddyd\ = / sgn (§a — )Y (—na)dnal
R Yd R
<7 |l )

By scaling, we obtain the first inequality. The second equality follows from F (p.v.y—ld) (&q) =
—imsgn (£;). The third inequality follows from the first inequality and the Young in-
equality:

[0 || 1y =11 * ¥n | £ ry
<Yl @l |l w)
]

Lemma 6.5.2. Let € R\ {0} and ¢,a,a; € C°(R) such that a,a, are real-valued
and a,a; > 0 on supp ¢.

(1) There exists C > 0 independent of xq4 € R, v,a and p # 0 such that

e?miratip(g,) ©(€a)
— 27 C
/R &a — ta(péq) bl < (sdeR a(&q)

|+ @l ) - sup p(Ea)al&a)l)- (6.5.1)

(i) Let 1l > 2 be an integer. Then there exists C' > 0 independent of x4 € R, ¢, a, [
and p1 # 0 such that

27rzacdfd ,ué.d / |90<£d)‘
|| e < C (s |EE < ellme). (652)
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(1ii) Letly,ly > 1 be an integer. Then there exists C" > 0 independent of x4 € R, ¢, a,
[ and pn # 0 such that

ep(uta) o 126D
T g < O e lelleco). (05

Proof. (i) Take 1» € C°(R,[0,1]) such that ¢» = 1 on [t| < 1 and ¢ = 0 on [¢t| > 2.
Since a is real-valued, then

e?™wabd o (1&g ) (Ea) \90 péa)r
| déq| <
§4 —ia ,de ]a Mfd

©(€4)
S?;%’a(§d> 4|21 my

We note that

[ S )y, [ STt~ b))
: §a = d&q
R §a — 1a(péq) R &d
[ e (ulg)a(péa) (1 — 1 (€a))
* Z/IR §a(&q —ia(péa))

d&a
= ]1 + Ig.

By Lemma 6.5.1, we have

_ et (ugy) X i (1)1 (€a)
|14 | —]/p.v. £, déq /Rp.v. 3 d&y|

<l @l ey (1 + 911 my)-

Moreover, since a is real-valued, we have

15| < Sup lp(&a)a I/ d&q.
fd

Thus we set

1 —(&a)
&

€ = max(l s, (1 + 1l [ i)
R

and obtain (6.5.1).
(1) follows from (ii).
(7it) Let ¢ be as above. Then
|p(&a)]

% o (1€a)h(€a)
G e s e < S T Rl

127



Moreover, since a, a; is real-valued and [y + [5 > 2, then

e*mratd () (1 — 1(€a)) 1— (&)
’/ £d —a lué‘d ll(fd _ Z(l (,Uf )) 2d€d‘ SHSDHLOO(R)/R; |€d|l—1+l2 dfd

<Jlell e /R L= va) g,

|€al?

Thus we set C” = max(||¢|| 11wy, [z 1_\$(I§d)d£d> and obtain (6.5.3).

The main result of this section is the following proposition.
Proposition 6.5.3. Fiz a signature =+.
(i) For o € N1 there exists C,, > 0 such that
106722 (& za)| < Cy
for z € I, 14 € R and & € R4 1.
(ii) For a € N1 there exists C!, > 0 such that
108 (12.£(€' 2a) = Yo (€, 2a))| < Co(L + |2a])|z — w]
for z,w € I with |z —w| <1, 2 € R and £ € RL.
Remark 6.5.4. Let 0 < § < 1. Combining (6.5.4) with (6.5.5), we have

108 (12, (€', 2a) = Yt (€, 2a))] < Ca7*(Co)* (1 + |zal)’l2 = wl’.

(6.5.4)

(6.5.5)

(6.5.6)

Proof. (i) We follow the argument of the proof of [11, (3.10)]. We may assume 0 <
+Im z < 1. First, we consider the case of £Im z = 0. In this case, the claim follows

from the fact that

627ri$d£d

r §a F 10

ddeLoo(]de) < 0

and that Y is smooth with respect to (£,&4,A) € R? x I and has a compact support

with respect to (£, &;)-variable which is bounded in A € I.
We take ¢ € C(R, [0, 1]) such that (&) = 1 on |§4] < 1. We learn

. B 6271"£(Im z)xdgdi(é-/’ (Im Z)gd, )\)
sl€00 = | e gy

We note that 9gv(¢', z4) is a linear combination of the form

/ e2riltm rata (a0 7) (¢, (Im 2)éq, A) [T, (957 B)(€', (Im 2)€q, )
R (€4 — ib(&’, (Tm 2)€q, A))!

d&q,

128



where [ > 1is an integer and a; € N1 for j = 0, ..., . Applying Lemma 6.5.2 (i) ifl =1

and (i) if [ > 1 with (&) = (9a°X)(£', &a, )H 10 D)(€, 60, A), a(€a) = D(E' €a, M)
and p = Im z, we obtain (6.5.4) with |a| > 1.
(77) We set A = Re z and 0 = Re w. We take 0 < ¢ such that

min o€ &a,0)| > 0.

(¢/,€a)€supp Xx(+,,A),|z—w|<

Then we may assume |z —w| < €. In fact, in order to prove (ii), we use (i) if |z —w| > e.
Note that

Ve (€, 04) = Y, (€, 24) =T1(2a) + Ja(2a) + J3(2a),

where we set

_ 2mizg€q X(Sla €d> /\) . X(gla gd? )‘)
*“”Q@G &~ i(lm DE €0 ) &= i(tm W)’ £ )
_ 27rixd§d>~<(£/7 &, )‘) - 5((5,7 &a; U)
J2{wa) /Re € — i(m w)b(e, e, N)
:/ e2m(Im w :pdé‘d (5/ (Im w)§d7 ) X(ﬁla (Im w)&b J) df
R Ea — (&', (Im w)&q, A) I
— 2mixg€q < 1 . 1
i) = [ ERE o N T )b En V) & — il w)b(E o))
_ / 2eitim sy U (M )G, ) (B¢, (Im w)Ea, N) — b{E', (Im w)éa, 0))
v (€4 — b(€, (Im w)eg, V) (&4 — (€, (Im w)Eg,0))

First, we estimate .J,. Similarly to the proof of (i), 9gJ2(¢') is a finite sum of the form
/62“ (rwlzata((9g°x)(€, (Im w)éa, A) — (Fg°X)(€, (Im w)éa, 0))
R
!

(&a — (¢, (Im w)&a, A))!
x [[@5b)(€, (Im w)éa, A)déa,

Jj=1

where [ > 1 is an integer and a; € N*7! for j = 0,...,l. We apply Lemma 6.5.2 (4) if
[ =1 and (i) | > 2 and obtain

98 R(€)] < Cllz — w (6.5.7)

with €7, > 0 independent of 74 € R, §; € R and 2,w € I with |z —w| < 6.
Next, we estimate Js. 8?, J3 1s a linear combination of the form

/62’”(1“1 WIrata(9g0x) (€, (Tm w) g, )G (b(E', (Tm w)€g, A) — b(E', (Im w)g, o))
R (€a — ib(¢', (Im w)&a, A))" (Ea — ib(E', (Im w)&q, o))"
l1+l2+1

X H ajb " (Tm w)&q, N)dég,
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where 1,1 > 1 are integers and o; € N?7! for j = 0,....1; + I + 1. We apply Lemma
6.5.2 (i7i) and obtain

106 J3(8)] < Clz — wl (6.5.8)

with €7, > 0 independent of 74 € R, §; € R4 and 2,w € I+ with |z —w| < e.
Finally, we estimate J;. Note that |0g.Ji(z4)| < 2Cp by (i). Thus it suffices to prove
that |0g Ji(z4)| < Cf[lm 2 — Tm w|. We learn

Ji(za) :/ 2t Eax(&',€a, A) B Eax (&', €a, N)
2mi R §o—i(Im 2)b(&,&a, A)  &a — i(Im w)b(E', Ea, A)
:/ Q2mizaa i(Im 2z — Im w)&ax (&, §a, A)D(E', Eay A) de,
R (€a — 1(Im 2)b(&’, €, A)) (€a — i(Im w)b(E', Ea, A))
:/ 2l w)zat i(Im 2z — Im w)&x (&, (Im w)&q, A)b(E', (Im w)&y, A)
R (&a — i22b(¢, (Im w)&q, N))(Eq — (€', (Im w)&q, N))

Thus 9g Ji(r1)/(—27|Im 2 — Im w]) is a linear combination of the form

)d&a

dé,.

(

Im 2 )i /627ri(1m w)zaty £a0, X (€, (Im w)&q, )‘)a?'Qb(g/’ (Im w)&a, A)
fmw” Jg (€a — iqm2b(&’, (Tm w)€q, N))1 (Ea — (€, (Tm w)Eq, A))"2

l1+l2+1

x ] 000 € N déa,
=2
where [1,l > 1 are integers, o; € N~ for j = 1,...,1; + I + 1. Applying Lemma 6.5.2
(1) and (77) with
I gda?’oi(glv (IIII w)éda )‘)ag’Zb(é,? (Im w)£d7 )‘>
(§a — i(Im 2)b(&', €, A))1 ’

a(a) = b(&', €4, A), I = Iy and p = Im w, we have [9g J{(z4)| < C},[Im z — Tm w|. This
completes the proof.

(&) = (Im 2)

]

6.6 Complex analysis
We define log™ ¢t = logt if 1 <t, log"t=0if 0 <t <1 andlog ¢t =logt —log™ t.

Lemma 6.6.1. Let f : {z € C | |z|] < 1} — C be a continuous function which is
holomorphic on {|z| < 1} and has no zero on {|z| < 1}. Then f(e?) # 0 for almost
everywhere 0 € [—m, ).
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Proof. We follow the argument of [63, Theorem 17.17]. By the mean value properties
of the harmonic function, we have

log |(0) =5 | 1o f(re")las (6.6.1)

s

1 [7 , 1 .
=5 /_ﬂ log™ | f(re)|do — o log™ | f(re')|do
for 0 < r < 1. On the other hand, by using x < e” for x € R and Jensen’s inequality,
we have

1 [7 4 1 (7 -
_ loo™ i0 < el log™ i0
5 | o 150 <explz- [ log" 707 a0
1 (7 ,
§% 3 |f(re”)|db.
By Fatou’s lemma and (6.6.1), we obtain log|f(e??)| € L'([-m,7)). In particular,
log |f(e?)] < oo for almost everywhere § € [—m, 7). Thus f(e?) # 0 for almost
everywhere 0 € [—m, 7).
0

Corollary 6.6.2. Let J = (a,b) be an open interval and r = (b—a)/2. Let f : {z € C|
|z—(a+b)/2] <7, £Im z > 0} — C be a continuous function which is holomorphic and
has no zero on {|z — (a+b)/2| < r,Im z > 0}. Then f(\) # 0 for almost everywhere
AeJ.

Proof. For simplicity, we assume a = —1 and b = 1. Define x; : D = {|]z] < 1,Im z >
0} = {Im 2 > 0} and ko : {Im 2 > 0} — {|z| < 1} by x1(2) = (1 + 2)?/(1 — 2)? and
Ko(z) = (2 —1i)/(2 +1i). Then kK = Ky o Ky is biholomorphic from {|z] < 1,Im z > 0} to
{|z| < 1} and homeomorphic from {|z| < 1,Im z > 0} to {|z| < 1}. Moreover, since

R
K (w) =

- 14+w

I+ 1

where we take a branch such that Im v/z > 0, then x7|,= : {|z| = 1} = D\ D
is Holder continuous. Thus ! =; maps sets of Lebesgue measure zero to sets of
Lebesgue measure zero. By Lemma 6.6.1, we obtain the desired result. [

Next proposition is a variant of [46, Lemma 4.20]. See also [52, Proposition 4.6].

Proposition 6.6.3. Let Z be a Banach space and fix a sgnature. For J C R be an
open set, we denote Jo = {z € C| Rez € Jy£Im z > 0}. Let K : Jo — B(Z) be
continuous and holomorphic on {£Ilm z > 0}. If I + K(z) has a inverse in B(Z) for
each z € {£Im z > 0}, then I'o = {\ € R | I + K()) is not invertible} is a closed set
with Lebesque measure zero.
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Proof. Since the set of all invertible operators in B(Z) is open and since K is continuous,
then T’y is closed. Thus it suffices to prove that the Lebesgue measure of 'y is zero.
Note that I + K(\) is not invertible if and only if —1 is in the spectrum of K()\) for
A €Ty Fix A € Ty. Since K(\) is compact, there exists a circle C'\ enclosing —1 such
that C) is contained in the resolvent set of K(\). Since K is continuous, there exists
rx > 0 such that C) is contained in the resolvent set of K(z) for z € B (A\) where
B:(A\)={2€C|£Imz >0, |z— A <ry}. We define

1
P = _ -1
S . (w— K(z)) dw,

then z € B (\) — P, € B(Z) is analytic in B (A\) \ R and continuous in B (A). Note
that ng = dimRan P, < oo is independent of z € BE ()). Set Z, = Ran P, and fix a
linear isomorphism IIy : C"™ — Z,. We choose ry smaller such that I + P\(P, — Py)
has an inverse in B(Z,). Then ©, = P,|z, : Zx — Z, is a linear isomorphism with its

inverse
(I—i‘P)\(Pz—P)\))_lP)\IZZ—)Z)\.
Now we set

X(z) = ;10741 + K(2))6.1I,

for z € BE(\). Then X is continuous on B (A) and analytic in B ()). Moreover,

det X (z) is also continuous on B (\) and analytic in B; (A). We note that det X (z) = 0
if and only if —1 is in the spectrum of K(z). By Corollary 6.6.2 and the compactness
argument, we conclude that the Lebesgue measure of Ty is zero.

]
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Chapter 7

Some properties of threshold
eigenstates and resonant states of
discrete Schrodinger operators

7.1 Main results

We consider the discrete Schrodinger operators:
H=Hy+V(z) on H=I*2Z,
where Hj is the negative discrete Laplacian

Hou(z) == ) (uly) — u(2)),

|z—y|=1

and V is a real-valued function on Z?. We denote the Fourier expansion by Fy:

iW(€) = Fau(€) = Y _ e u(r), £eT!=RY2"

xeZd

Then it follows that
FaHou(§) = ho(§)Fau(§) for u € | J1>°(27) (7.1.1)

seR

in the distributional sense, where hy(§) = 42?:1 sin?(7¢;), and hence o(Hy) = [0, 4d).
In this note, we often use [—1, 1] as a fundamental domain of T¢. Moreover, we identify
the integral over T¢ with the integral over this fundamental domain [—3, ]%. We denote
(z) = (1 +|2]?)Y? and 12%(Z%) = (x)~*I1*(Z%). Tt is known that [?>*(Z?) is isometric to
the Sobolev space H*(T?) through the Fourier expansion Fy.

Critical values of hg are called thresholds of Hy. We denote the set of all thresholds

by I
I'={\€[0,4d] | X is a critical value of hy} = {4k}i_,.
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Note that any critical points of hy is non-degenerate, that is, hg is a Morse function.
We say that 0 and 4d are elliptic thresholds and A € {4k}¢_! are hyperbolic thresholds.
Near each critical point of hgy, we have the following Taylor expansion:

k d
ho(§) = A ~ 4 (= Y (6x( + Y G — 1om)?),
Jj=1 j=k+1

where € hy'({\}), A € T, k = k(n) is the Morse index at 7 and o : {1,....,d} —
{1, ...,d} is a bijection. Moreover, it easily follows that k(n) = 0,d if h(n) € {0,4d} and
k(n) # 0,d if h(n) € T\ {0,4d}. This implies that hy behaves like the symbol =4|¢|?
of the elliptic operator FA near critical points with the elliptic thresholds and behaves
like the symbol —|¢|? + |€7]? (€ = (£,€")) of the ultrahyperbolic operator A, — Ayr
near critical points with the hyperbolic thresholds.

It is known that the behavior of the resolvent at thresholds is closely related to
a time decay of the propagator and that existence of eigenstates and resonant states
disturbs a decay property of the propagator [42]. Ito and Jensen obtain an analytic
continuation near thresholds of the integral kernels for discrete Schrodinger operators
[32]. The purpose of this note is to study some properties of resonant states: Resonant
states at elliptic thresholds have same properties as continuous one’s and resonances at
hyperbolic thresholds are absent. From this, we expect that the hyperbolic thresholds
is harmless for the decay property of the propagator.

First, we give a definition of resonances at elliptic thresholds.

Definition 4. Let d > 3 and A = 0 or 4d. Suppose that a real-valued function V'
satisfies |V| < C{x)~27% with § > 0. We say that u € [>7%/2(Z%) \ [*(Z¢) is a resonant
state of H = Hy + V if u satisfies

Hu = \u.
If such u exists, we say that A is a resonance of H.

From now on, we concentrate to the case of A = 0. Now we state our first theorem,
which is an analogy of the continuous model (for example, see [78, Lemma 2.4]).

Theorem 7.1.1. Letd > 3. Suppose that V' is a real-valued function satisfying |V (z)| <
c(z)727 for an 0 < ¢ < 1 and u € [>73/%(Z9) satisfies (Hy + V)u = 0. Then there
exists C' > 0 such that
Ju(z)| < C(z)~**,
():—C|£L’| d+22vu +O|ZE| —d+2— s)
y€Z4
as |x| — oo, where
INCE!
=1 (712)
4mz

In particular, if Y, 50 Vu(z) # 0 holds, then |u(z)| > Clz|~*2 follows as |z| — oo.
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Remark 7.1.2. This theorem implies that
(i) Set Ny = {u € I*>7%(Z%) | (Ho + V)u = 0} for 1/2 < s < 3/2. Then N, = N, for
s,s" € (1/2,3/2].

(77) Suppose that d = 3 with € > 1/2 or d = 4 with € > 0. Then it follows that the
function u in Theorem 7.1.1 is an [>-eigenfunction of Hy+V if and only if > yeza Vul(y) =
0.

(¢49) There are no resonances at zero energy for d > 5.

Let d > 3. We recall some results from [68, Theorem 1.1, Theorem 1.8 and Propo-
sition 3.4]. We have the following limiting absorption principle with the thresholds
weight:

sup |[(a) " (Ho — 2)"H2) " ey < o0 (7.1.3)
zeC\R

if |§] > 0 is small enough. Moreover, the following limits exist in B(I%%(Z),1*>7%(Z%))
for s > 1:

(Hy — AFi0)':= lim (Hy— AFie)™', A€ 0,4d). (7.1.4)

e—0,e>0

We note that (7.1.3) and (7.1.4) away from I' directly follow from the Mourre theory
or [68, Proposition B.5]. The novelty of (7.1.3) and (7.1.4) lie in the estimates near
z, A € I'. Furthermore, we have the following lemma which immediately follows from
(7.1.3) and (7.1.4) by the density argument.

Lemma 7.1.3. Let d > 3. The operators (Hy — X Fi0)~t € B(1>%(Z%),1>7%(Z%))
for s > 1 and \ € [0,4d] uniquely extend to bounded linear operators from 1*1(Z%) to
1>71(Z%). Moreover, we have

iuﬂg [{(z) " (Ho — A F40) " (z) || puz(zey) < oo (7.1.5)
€

Remark 7.1.4. This lemma does not assert

(Hy — AFi0) ' = lim (Ho—A+¥ ie)~tin B(I*Y(Z%),1271(ZY)).

e—0,e>0
Now we give a definition of resonance at hyperbolic thresholds.

Definition 5. Let d > 3. Suppose that a real-valued function V satisfies |V| <
C(z)™27% with 6 > 0. Let A € I\ {0, 4d}, that is, A is a hyperbolic threshold. We call
u € 127174 \ 1*(Z?) a resonant state of H = Hy + V if u satisfies

u+ (Hy — XFi0)"'Vu = 0.

If such u exists, we say that \ is a resonance of H.
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Remark 7.1.5. The validity of this definition lies in Proposition 7.4.4: If X is not an
eigenvalue and not a resonance of H, then the outgoing/ incoming resolvent (H — \ F
i0)~! exist.
Remark 7.1.6. As is shown in Lemma 7.4.3, we can replace u € [>71(Z%) by 127179(Z%).
The following theorem implies that resonances of H at hyperbolic thresholds do not
exist under a stronger assumption of V' even when d = 3 or 4.
Theorem 7.1.7. Let d > 3, A € '\ {0,4d} and V be a real-valued function satisfying
|V(z)] < C{x)™° with § > d/2+2 . Ifu € [>7Y(Z%) satisfies u+ (Hy— A £i0)"1Vu = 0,
then u € I*(Z").
We recall from [35] that for a finitely supported real-valued potential V', H has

no eigenvalues in (0,4d). Combining this result with Theorem 7.1.7, we obtain the
following corollary.

Corollary 7.1.8. Let d > 3 and V' be a finitely supported real-valued potential. Then
Hy +V has no resonances and no eigenvalues in (0,4d).

This corollary implies the limiting absorption principle for H = Hy+ V' near hyper-
bolic thresholds.

Theorem 7.1.9. Let d > 3 and V be a finitely supported real-valued potential. Set
Qox={2€C|£tImz>0, |2| >¢e, |z—4d] > &1}

for 0 <e; <1 and a signature +.
(1) We have

sup ||(z)~H(H — 2)71<1’>71|\B(z2(zd)) < 0. (7.1.6)

ZGQsl,i

(i) For each s > 1, the operators z € Q.+ +— (H — 2)~' € B(I**(Z%),1>7%(Z%)) s
Holder continuous. In particular, limits

. -1 . . . S N—1
(H—XFi0)"": E_}l(lfrego(H A Fig)
exist in the norm operator topology of B(1%*(Z%),1>75(Z%)) for e < A < 4d — &;.
(1i1) Let s > 1 and &1 < A < 4d — €. The outgoing/incoming resolvents (H — X\ F
i0)~t € B(1?%(Z4),1>7%(Z%)) uniquely extend to bounded linear operators from 1*'(Z<)
to >~1(Z%). Moreover, we have

sup [l{2) N (H — AF i0) " (2) e < oo (7.L.7)

e1<A<4d—e;

Remark 7.1.10. Suppose that there are no resonances and no eigenvalues at {0,4d}.
Then the all results in the above theorem still hold if we replace €2, + by Cy = {z €
C | £Im z > 0}. See Proposition 7.4.4.
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As mentioned above, for the case of finitely supported potentials it is known that
there are no eigenvalues in open interval (0,4d) (see [3]). However it is possible that
the threshold 0 or 4d is an embedded eigenvalue. The persistent set (variety) Ps of
embedded eigenvalue 0 is defined as the set of all potentials V' supported on S such
that H = Hy + V has the eigenvalue 0, that is

Ps={V € R® | suppV C S and 0 is an eigenvalue of Hy+ V'}.

Here S is a fixed finite subset of Z<. In [28], some geometrical structure and properties
of Pg are considered. Moreover the notion of the threshold resonances is defined and
non-existence of them for d > 5 and the persistent set of them for d = 2, 3, 4 are studied.
The proof for many statements in [28], however, depends on the finiteness of potential
support. So in our article we attempt to give an appropriate definition of threshold
resonant states of more general potentials and investigate some properties of them by
using a method of harmonic analysis. Furthermore we study the limiting absorption
principle and resonances at hyperbolic thresholds.

We fix some notations. For Banach spaces X,Y, we denote the set of all bounded
linear operators from X to Y by B(X,Y) and set B(X) := B(X, X).

We need the following useful representation. We assume Vhy # 0 on {ho(§) = A\}NU
for a A € R and and an open set U. Moreover, we assume {ho({) = A} N U has the
following graph representation:

{ho(§) = A NU ={ | &= g(£)}, €= (£, &)

Then the induced surface measure do on {ho(§) = A} N U is written as

!/ !
_ Age — (Veho) (€ g(@))] 0 1
110 = VI VIR = 1o hoe g ™ 19
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7.2 Pointwise estimates, Proof of Theorem 7.1.1

7.2.1 Upper bounds
Let d > 3. We consider the solution to
(Hy+ V)u=0. (7.2.1)

First, we reduce the equation (7.2.1) to the integral equation, which is useful for esti-
mating u:

u+ Hy'Vu =0, (7.2.2)
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where
Kafo) = [ i) e, Hytule) = 3 Kale — y)uly)
yezs

for w € [>Y/2+2(Z%) with ¢ > 0. Here H,' is the bounded operator from (*>%(Z?) to
1278(74) for o, 8 > 1/2 with a + 8 > 2 (see section B, Corollary 7.6.3). Moreover, it
also follows that the multiplication operator

ho' [V H(TY) — | HY(T?)

s>0 seR

can be uniquely extended to the operator
ho' s HY(T?) — HP(TY), o, B > % a+p>2 (7.2.3)
and that
ho' = I Hy 'Fy - HY(TY) — HA(TY), o, B > % a+pB>2.
Lemma 7.2.1. We assume |V (z)| < C{z)~27¢ for some ¢ > 0. For u € 1>73/2(Z%),
(7.2.1) implies (7.2.2).

Proof. The relations (7.1.1) and (7.2.1) implies
hol€)i(€) = ~Vu(e), a € H™*(T). (7.24)

First, we note 4(§) = —ho(f)*lﬁ(f) in D'(T¢\ {0}). We note halﬁ € D'(T?) by

—~

(7.2.3). These imply that @ + hy'Vu is supported in {0} as an element of D’'(T?) and
can be written as a linear combination of the derivatives of the Dirac measure. Since
96 ¢ H~=%2(T%) for any multi-index =, it suffices to prove @ + hy'Vu € H~%%(T?)
in order to deduce @ = —hy'Vu. Since @ € H-32(T%) ¢ H~%¥2(T?), we only need to
prove hgl\//a € H~42(T%). Using Vu e H'Y2+2(T?) and (7.2.3) with a = 1/2 + ¢ and
B = 3/2, we obtain hy'Vu € H=3/2(T%) ¢ H~%2(T%). This completes the proof. [

The main result of this subsection is the following proposition.

Proposition 7.2.2. Let u € [>7%/%(Z%) be a solution to (7.2.2). Then we have
Ju(z)] < Cla) =2,
The following lemma is useful.

Lemma 7.2.3. Letd > 1.
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(i) Let k,l <d with k+1>d. Then we have

I=) (z—y) )" <Oy

yezZ

(i) Let0 <k < d andl=d. For anyd > 0, there exists Cs > 0 such that I < Cs(x)°~*
(i13) Let 0 < k <d < 1. Then we have

I <Clz)™"
(iv) Let k =d and > d. Then we have
I<Clz)™

Proof. (i) We decompose I = I + I + I3 such that

L= > (@-yp ™y L= > (e-yFuy

eyl <lz]/2 le—g)>ol/2,
ly|<2|x|
L= Y (z—yFuy™
le—yl>lel/2,
lyl>2le]

We note that |z — y| < |z|/2 implies |z|/2 < |y| < 3|x|/2. Using this and k < d, we
have

L<C@)™ Y (e—y*t=C@™ Y Gr<o@
|lz—y|<|z|/2 ly|<1/2|z|
Moreover, using | < d, we learn

L<C@™ > (' <@t

lz—y|>|z|/2,
ly|<2|z|

To estimate I3, we observe that |x — y| > |y|/2 holds in {|y| > 2|z|}. Using this and
k + 1 > d, we obtain

|y|>2lz|

Thus we conclude I < C'(z)4*L,
(77) As in the proof of (i), using k < d and k + [ > d with [ = d, we have I} + I3 <
C(z)~*. We observe

I, < O Z >5—k'

ly|<2|z|
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This proves (i7).
(ii7) As in the proof of (i), using k < d, we have I; < C{x)?*~!. The inequality
[ > d implies I; < C{x)~*. On the other hand, using [ > d, we observe

L+ I3 < Cl)™> (y) -k,

yeZa

We conclude I < C{x)~*
(iv) As in the proof of (4ii), using [ > d, we have I, + I3 < C(z)~% Since |z —y| <
|z| /2 holds on {|z|/2 < |y| < 3|z|/2}, we have

L<C)™ Y (< Csa)!
ly|<|z|/2

for any § > 0. We take 6 = — d > 0 and obtain I3 < C(z)~@

Proof of Proposition 7.2.2. We may assume 0 < £ < 1. Using u € [>73/2(Z%), |V (z)| <
C{x)727¢ and Corollary 7.6.2 with [ = 2, we have

[u)] = |Hy V()] <C Y (y)™ " Vu(z —y)|

y€eZ

<O ()7 e — )72 2 2) P Vo).

y€eZd

Applying Lemma 7.2.3 with £ = 1+ 2¢ and | = 2d — 4, we have |u(x)| < C(z)~® <
C(z)=¢/? for d = 3, |u(x)| < C{x)~/?27/% for d > 4.

The argument below is based on the standard bootstrap technique (for example, see
[61, Lemma 8 in the proof of Theorem XIII.33]). Set ay = 0 for d = 3 and oy = 1/2
for d > 4. Let N be a real number such that 2 + agz + (N + 1)e < d. Suppose
|u(z)| < C(z)~*N¢ holds. Then it follows that

| < C Z d+2 2—Oéd—(N+1)€

yeZd

Applying Lemma 7.2.3 with £ = 2+ ag + (N + 1)e and | = d — 2, we have |u(z)| <
C(z)~*~ N+ By an induction argument, we obtain |u(z)| < C{x)~%*2.

7.2.2 Lower bounds, Proof of Theorem 7.1.1
We need some elementary lemmas.

Lemma 7.2.4. [25, Theorem?2.4.6] Let cq > 0 be as in (7.1.2). Then we have

- 1
2mix-€ _ —d+2
e d€ = ¢4lx .
/Rd T =l
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We omit the proof of this lemma.
Lemma 7.2.5. There exists C' > 0 such that
[l = y|=% — |2 72| < Cla| =y
for z,y € R with |x]/2 > |y].
Proof. We note (d/df)(|z—0y|) < |y| and |x—60y| > |z|/2 for 0 < 0 < 1 and |z|/2 > |y|.

Then we have

1
[l =y~ — Ja =] S/ [(d/df) |z — Oy|~+*|de

Y(d/df)|x — yl|
—(d—2) db
|z — Oyl
<297 |:c|‘d“|y|

Proof of Theorem 7.1.1. Note that |Vu(z)| < C(z)~9¢ and

- = 2mi(z—y)-£ 1
yGXZjdG@,yWu(y), Gz, y) /T e

For small 7 > 0, take y € C*°(T<,[0,1]) such that y = 1 on |¢| < r and y = 0 outside
|€] < 2r. Then

— €T u €T —d—e T — 627”'@_9)‘5&
yeZZ:dGl( V() + 0((2)"9), Gi(x,y) / Mg

We use the following lemmas.
Lemma 7.2.6. We have
u(z) ==Y Ga(w,y)Vuly) + O((z)™),

yeZe

where Ga(2,y) = [z e2mi(z—y) 547§2|£‘2d§

Proof. 1f |£] < 2r for small r > 0, then we expand ho(£)™! = 1/(4n|&[*) + R(E), where
10gR(E)| < Culé]™ lel, Thus we have
u(z Z Go(z,y)Vu(y Z Gs(z,y)Vu(y) + O((x)~49),
y€eZ4 yeZd

where
Galay) = [ ORI

By Lemmas 7.6.1 and 7.2.3 (iv) with k = d and | = d + ¢, the second term is O(|z|~9).
This completes the proof. Il
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Lemma 7.2.7. For |x| > 1, we have

[ 2 e = a2+ 00

Proof. We have in the distribution sense
2miz-€ X(€) de — 2miz-€ 1 d / 2m‘x-5X(§) - 1d
R e M= e

_ —d+2 omiz-€ x(§) — 1d
calx| +/Rde R £.

The second term decays rapidly at infinity as can be shown by integration by parts.
[

Lemma 7.2.8.

> Gala,y)Vuly) = O((z)~+27).

ly|>lz|/2

Proof. By Lemma 7.2.7, we have Go(x,y) = O({z — y)~%"2). Since V(z) = O({z)27°)
holds, by Proposition 7.2.2, we have Vu = O({x)~%7¢). Now the lemma is proved by

an easy calculation using the condition {|y| > |z|/2}. .
Lemma 7.2.9.
Z Ga(x, y)Vuly) = cqlx|~™ Z Vuly) + O({z) 4279,
ly|<1/2|z| —

Proof. By Lemma 7.2.7 and Vu = O({(z)~¢7¢), we have

Z Gao(z,y)Vu(y) =cq Z |z —y|" 2V u(y)

lyl<lal/2 lyl<lal/2
+ Y Oz —y) ()"
lyl<lal/2
=ca Y |r—y""Vuly) + O((z)~),
lyl<lel/2
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By Lemma 7.2.5, we have

ca > lr =yl Vuly) =cdz|"? ) Vu(y)

ly|<|z|/2 lyl<|z|/2
+ Z O(<x>—d+1<y>—d+1—a)
lyl<l|z|/2
=calz[7* Y Vau(y) + O((x)~)
lyl<|z|/2
=calz[~*? ) Vuly) + calz| Y Vu(y)
yezd ly|>|z|/2

+O({z)2)
—cala 3 Vay) + O((a) 42,

y€Z4
where we use Vu = O({z)~97¢). This completes the proof. O

We return to the proof of Theorem 7.1.1. By virtue of Lemmas 7.2.6 and 7.2.8, we
write

u(e) =— Y Gaz,y)Vuly) + Oz =),
lyi<lal/2

Note that |z —y| is large if |z| is large and |y| < |z|/2. Using Lemma 7.2.9, we complete
the proof of Theorem 7.1.1.
[

7.3 Absence of embedded resonances, Proof of The-
orem 7.1.7

7.3.1 Preliminary lemmas
Let d > 3 and A\ € {4k}9Z1. Set My = {¢€ € T? | ho(€) = A} and
Yy ={e M\ |Vho(§) =0} ={¢ € M, |sin2n§; =0, forall j =1,...,d}
—{ce M, | € {0, %}, for all j — 1,.... d)}.
We note My, \ ¥, is an embedded submanifold of T¢ with codimension 1 and M) is a

Lipschitz submanifold in the sense that M), has a graph representation by a Lipschitz
function. We denote the induced surface measure of My by do(&). Set

1

du(§) = WOZU(S)
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We note that |Vho(&)[™' ~ [€ — &|™! near & € X implies that du is singular at any
points of ¥ for A € T', though |Vhy(£)|™! is harmless on M, with a regular value M.
Moreover, we denote Ro(A & i0) = (Hy — A Fi0)~! € B(1>Y(Z4),1>~1(Z%)). First, we
show Xy is of measure zero with respect to do and dp, which essentially follows from
the fact that do and dp are finite sums of the absolutely continuous measures with
respect to d — 1-dimensional Lebesgue measure.

Lemma 7.3.1. do(X,) =0 and du(X,) = 0.

Proof. First, we note that the measure p is absolutely continuous with respect to do.
To see this, it suffices to show that 1/|Vho(£)] is integrable with respect to the measure
o. We note that for n € ¥y and £ = (£,&) € M), we have |Vho(§)| ~ 2r|& —n| ~
Cl¢ — 1| near £ = n and £(§; — ng) > |§ — n'|/2d. The integrability of 1/[¢" — 7|
over {¢ € R¥™ | |¢ — 1| : small} which follows from the assumption d > 3 implies
1/|Vho(§)] is integrable over {£(&; —nq) > |£' —1/|}. By using a partition of unity, the
integrability of 1/|Vhy(§)| over M) follows.

Thus a proof of du(X,) = 0 reduces to a proof of do(X,) = 0. Let n € 3. Since
Y, is a finite set, it suffices to prove that {n} has zero measure with respect to xdo,
where y € C*°(T?) is any function supported close to 7. Set

Ajx = A{& € supp x | £(&§ —n;) = |€ —nl/2d}.

Then we have

X©Qdo(©) = > xa (Ox©do() = > doja(9),

j=1l...,d,a==% j=1l...d,a==%

where x4 is the characteristic function of A C T?. Thus it suffices to prove that {n} is
zero measure with respect to doj, for any j =1,..,d and a = +.

By rotating and reflecting the coordinate, we may assume j = d and a = +. If
supp Y is small enough, we have the following graph representation:

My Nsupp x N {*(&a —ma) = |€ —nl/2d} = {(£',9(¢))}

where ¢ is a Lipschitz function. On this coordinate, we write

004.+(6) = X, (OX(©/1 + [Verg(€) e

by (7.1.8). This implies that dog is absolutely continuous with respect to the d — 1-
dimensional Lebesgue measure d§’. This completes the proof.
O

We recall the standard L2-restriction theorem: For f € [**(Z%) with s > 1/2, then
f|MA < LZQOC(M)UdO-)‘

For f € I21(Z%), we have sharper integrability of f|;, near X, with respect to d.
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Lemma 7.3.2. For f € [>Y(Z%), a restriction f|y, € L2 (My,do) satisfies f|u, €

loc

L*(M,, du). Moreover, we have

Hf|’L2(M>\,du) < C”fHﬂ,l(zd).

(7.3.1)

Proof. Let z € ¥ and xy € C®(T¢) with a sufficiently small support around z. For

proving f|a, € L*(Mj, dp), it suffices to show

(XF)|ar, € LA(My, dp).

goos

2]

supp ;0 C {o € 8*1 C R | £y > ).

We set 4,4(6) = ¥sa((€ = 2)/1€ — 2).
First, for j = 1,...d and a = £, we shall prove

(W5, F)(E, 9(€))]

Rd-1 ’5/ - Zl|

N 2
/M G @ < € i’

We may assume j = d and a = +. We define a real-valued function g by

A d—1
sinmg(¢) = J (5 = D_sin 7). g(¢) > 0.
j=1

Then ¢ satisfies

ho(¢', 9(€")) = A for £ = (£, 9(£')) € supp (Ya4+x) \ L.

Since Og,ho(2', z4) = 0 and h is a Morse function, it follows that

Beho(€, 9] > Clg(€) = = = Cle — .
L eho)(€0(€) o
P9 = 1= (g o) (@, 9()) €)=

on supp (Ya+x) \ Xx. These inequalities with (7.1.8) implies

(X F)E gD
)

| <O | < C.
g

[ Pl @Faute) = [ S liGIE

co [ 1o g
Rd-1

& = 2|
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Summing (7.3.3) over j = 1,...,d and a = £, we obtain

/M ) s (€ Pi(E) <C / ()€ g(€)]

Rd-1 & — 2|
<CI(De) (X ) 9EMN gy
<ClIxS 31 zey-

de' (7.3.5)

where we use the Hardy inequality in the second line and use Proposition 7.7.2 in the
third line. We recall that supp x is small enough and we identify the integral over T¢
Witl} the integral over this fundamental d9main [—3, 3] This implies ||x £l HIRY) =
XS\l 1 (ray. Since f € I**(Z?), we have xf € H'(T?). Thus we conclude (7.3.2). The
estimate (7.3.1) follows from (7.3.5) by using a partition of unity and the standard L?
restriction theorem.

]

Remark 7.3.3. The assumption d > 3 is needed once more for using the Hardy inequal-
ity.

Now we prove a similar formula as [61, Lemma 7 in the proof of Theorem XIII.33]
around the hyperbolic threshold.

Lemma 7.3.4. For f € I>Y(Z%), we have

S (L RO £ 0)1) = [ IF(©)Pdu(e) (7.3.6)

My

Proof. For f € C>(T%), (7.3.6) follows from a simple calculation. Let f e [21(Z9).
Take a sequence f, € C°°(T?) such that f,, — f in H*(T?). Then (7.3.6) follows from
(7.1.3) and (7.3.1). O

Lemma 7.3.5. Let V be a real-valued function satisfying |V| < C{x)~2. Ifu € I>71(Z%)
satisfies uw + Ro(A £i0)Vu = 0, then Vuly, = 0.

Proof. We note ﬂ\ wm, and (Vu,u) are both well-defined, which follow from u €
1274(Z%) and Vu € [>1(Z%). Then we have

0= —Im (Viu, u) = Im (V, Ro(A + i0) V) = 27 / V(&) Pdue).

My

Thus we obtain m\ w, = 0. O
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7.3.2 No resonance in the interior of the spectrum

For 0 < k < d, we define

k d
o) ==Y i+ > .
j=1

j=k+1
The next lemma is a weaker version of [61, Theorem IX.41] (which theorem is for
sphere) near the hyperbolic thresholds.
Lemma 7.3.6. Suppose d > 3. Let f € C'(T?) such that f|a, = 0. Then we have
(ho — N7 f € L*(TY).
Remark 7.3.7. We regard (hg — A\)~'f as a principal value:

oy f(©)e(€)
((ho = A) 7" f,) = lim IhofA|>sh0(§)_>\d§'

However, since f|y, =0, (hg — A £i0)~1f coincides with (hg — A) 7 f.

Proof. Take & € T such that ho(&) = A and dho(&) = 0. By the Morse lemma,
there exist an open neighborhood U C T? and a diffeomorphism x from U to its image
such that ho(k71(n)) — A = pr(n) for some 0 < k < d. Set J(n) = |detds™(n)|.
Take a cut-off function y € C>(T<,[0,1]) such that supp x C U. We only show that
x(ho — N\)71f € L2(T?). Apart from the hyperbolic threshold, the proof is easier and
omitted since f vanishes at the submanifold hg = A.

We may assume that x(U) C R? is convex. We write f.(n) = f(k~1(n)) for n €
supp £(U). Since f|y, = 0 holds, we have f.(|n"|o1,|n"|02) = 0, where we write
n = (|1'|or, [1n"]02) with o1 € S, 95 € ST*71, hence pi(n) = [1'|> — |n"|*. Set

1
a(n) = / o1 - (O f) (L = ) n"] + t]n'[)o1, [n"]02)dt.
0
By Taylor’s formula, we see

fe) =101, [n"|22)
=fe(In"101, [n"|02) + (7| = In"]) - a(n)
=[] = n"]) - a(n).

Thus we have |f..(n)| < Cy,|17'| — [n"]| on n € k(U). Hence we obtain

[ om0y cop [y <o
In—nol<1 pr(n) In—no|<1 ([’ + "))

This implies x(ho(§) — A\)~1f € L*(TY).

]

Proof of Theorem 7.1.7. By the assumption, we note Vu € CY(R™) by the Sobolev
embedding theorem. By Lemma 7.3.5 and Lemma 7.3.6, we have u € [*(Z"). ]
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7.4 Limiting absorption principle, Proof of Theo-
rem 7.1.9

Suppose d > 3 and |V (z)| < C(z)727% with § > 0. Fix a signature 4. Set
Ci={2€C|+Imz>0}, C. ={z€C|£Imz >0}

We define Ry .(z) € B(1*'(249),1>~4(Z%)) for z € C+ by

Ros() = (Ho— 2)~! for +Tm 2 > 0,
0 (Ho — 2 F140)~! for 2 € R,

We recall from [68, Theorem 1.8] that
z € Ci = Rox(2) € B(I**(2%),1>7%(Z%)) is Holder continuous (7.4.1)
for s > 1.

Lemma 7.4.1. Let 1 < s <1+0. Then it follows t]m_tRo7i(z)V s a compact operator
in B(1>=*(Z%)) for z € Cy. Moreover, a map z € Cy + Ry +(2)V € B(I>7%(Z%)) is
continuous.

Proof. Tn order to prove that Ry +(z)V is compact in B(I>7%(Z%)), it suffices to prove
that (z) 'Ry +(2)V () is compact in B(I*(Z?)). We write

(@) Rox(2)V{w)* = () " Roa(2)(2) ™" x V{z)'**

From (7.1.3), we have (z)"*Ry+(2)(x)~! € B(I*(Z%)). Moreover, |V (z)| < C(x)~27°
with 6 > 0 implies that V{x)!* is a compact operator since each multiplication operator
which vanishes at infinity is a compact operator on [?(Z?). Thus the compactness of
Ry +(2)V follows.

Next, we prove that a map z € Cy +— (2)*Ro+(2){x)"'7° € B(1>(Z%)) is continu-
ous, which implies the continuity of Ry (2)V € B(I*>7%(Z%)). We may assume § > 0 is
small enough. By (7.1.3) and a density argument, we have

sup [[(z) " Ro +(2) () | z(ze) < oo (7.4.2)

zeCy

for 6 > 0 small enough. From (7.4.2), we see that there exists M > 0 such that

sup [[{(z) "*Ro .+ (2)(@) " || Bz zay s2(ejzary) < (7.4.3)

2eCy

Wl ™

On the other hand, (7.4.1) implies that a map

2 € Ci = X<y () *Rox(2){z)"'7° € B(I*(Z%))
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is continuous, where x4 is the characteristic function of A C R?. Thus there exists
91 > 0 such that |z — 2/| < §; with z, 2’ € C implies
X i<y (@) Ro+(2)(2) ™% = Xga<an ()~ Ro+(2')(2) [l 2 (za)) < %
This inequality with (7.4.3) gives
[{2) = Ro(2')(x) ™% — () Ro«(2')(2) " peczey < &
for |z — 2’| < §. This completes the proof. O

Lemma 7.4.2. Let z € C\ R and let s € R. Then Hy, H, (Hy —2)"! and (H — z)™*
preserve 1%%(Z%). In particular, Hy — z and H — z are invertible on 1**(Z%).

Proof. By using relations [V, (x)*] = 0 and
(P —2)7" (2)") = (P = 2)"'[(2)", PI(P — 2)™", P e {HyH}

2)”
it suffices to prove [Hy, (z)°](z)~* € B(I*(Z%)). This is easily proved since its Fourier
conjugate [hg, (D¢)®](Dg)~* of [Hy, (x)°](x)~* is a pseudodifferential operator of order
—1 on T?. This completes the proof.
[

Lemma 7.4.3. Let z € C.. Suppose that u € [>~17°(Z%) satisfies (I+ Ry +(2)V)u =0
Then we have u € 1>71(Z%).

Proof. This lemma immediately follows from |V| < C{x)~27° and (7.1.3). O
Proposition 7.4.4. Let U C CL be a bounded open set satisfying
{ue 2% | (I + Ro+(2)V)u=0}={0}, for any z € U. (7.4.4)

(i) Let 1< s<1+46. Then an inverse (I + Ry+(2)V)~! € B(1>7%(2%)) exists for = € U
and

sup [[(7 + Ro+(2)V) || ge.—s(zay) < oo
zeU

(i4) For z € U, we set
Ry(z) = (I+ Rox(2)V) 'Ros(2) € B> (2),1>71(Z7)).
Then we have Ry(z) = (H — 2)~" for z € U\ R and

SUB HR:IZ(Z>‘|B(l2v1(Zd),12v*1(Zd)) < Q.
zeU

(i4i) Let1<s<1+6/2. Then a map z € U — Ry(2) € B(I**(Z%),1>%(2%)) is Hélder

continuous.

149



Proof. Lemma 7.4.1 implies that {1+ Ry +(2)V } . is a continuous family of Fredholm
operators with index 0 on B(I>7%(Z%)). Thus the assumption (7.4.4) implies that I +
Ro+(2)V is invertible for z € U and that a map z — (I + Ro+(2)V)~! € B(I>~*(Z%))
is continuous. This with the compactness of U gives the proof of (7).

The part (ii) follows from the part (i), (7.1.3) and the resolvent equation:

(I+ (Hy—2)'V)(H -2 = (Hy—2)"", 2€ C\R.

To prove part (iii), we observe that z € U — (I + Ro+(2)V)"" € B(I>*(Z%)) is
Holder continuous. In fact, for z, 2’ € U, we have

(I 4+ Ros(2)V) ™" = (I 4+ Ro(z)V) !
= (I + Roe(2)V) H(Rox(2)) — Ro(2))V(I + Roe(2)V) .
Part (i), (7.4.1), and V € B(1>75(Z%),1**(Z%)) imply the Holder continuity of (I +
Ro+(2)V)~'. This, (7.4.1) and the following representation:
Ry (2) = Re(2) =(I + Rox(2)V) " (Rox(2) — Rox ()
+ (I + Ros(2)V) ™ = (I + Ro(2)V) ™) Ro. (2),

finish the proof of part (iii).
[l

Proof of Theorem 7.1.9. From now on, we assume that V' is a finitely supported poten-
tial. We take R > 0 such that o(H) C {|z] < R}. Then (7.4.4) holds for

U={z€C|£lmz>0, |2| <2R, |z| > ¢y, |z —4d| > e1}.

Moreover, we note o(H) N, + \ U = (. Now Theorem 7.1.9 follows from Corollary
7.1.8 and Proposition 7.4.4.
[

7.5 Lorentz space

For a measure space (X, u), LP"(X, 1) denotes the Lorentz space for 1 < p < oo and
1 <r<oc:

1
T

pr(fo" n{w € X || f ()] > a})gafld&) , T <o
sUDso vp({z € X | |f(2)] > a})r, r= oo,
LP"(X,pu) ={f: X = C| f : measurable, || f||Lrr(x) < 00}

1 fllzorx) =

Moreover, we denote LP"(RY) = LP"(R?, pup) and [P(Z4) = LP"(Z4, i), where pup, is the
Lebesgue measure on R? and . is the counting measure on Z%. For a detail, see [25].
In this section, we state some fundamental properties of the Lorentz spaces. Note that
LPP (X, p) = LP(X).
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Lemma 7.5.1 (The Young inequalities in the Lorentz spaces). Let 1 < p; < oo,

1<g<oowithi=14+L1_1>0ands>1with:t+L>1 Then we have
T p1 b2 q1 q2 S

1f*g

Lemma 7.5.2 (The Hoélder inequalities in the Lorentz spaces). If 1 < py, pa, 1, G2 < 00
and 1 < r < oo satisfy

irza) < Ol zallgllzz za)-

1 1 1
—F —=-<1,
P1 D2 (

then

1/l
For these proofs, see [60].

I oy @0 S 1 iz zay 91l iz ey -

min(

7.6 Harmonic analysis

Proposition 7.6.1. Let m € C*(R?\ {0}) be a function on R? which is compactly
supported, C'* for & # 0 and satisfies for a 0 < k < d that

0gm(€)] < Cale| 7,z e R (7.6.1)
for|a| <d—k+1. Then if we set
I= / e Em(E)dE,
Rd

then |I| < C(z)~4*.

Proof. Since m is compactly supported, we may assume |z| > 1. Take y € C°(R?)
such that y =1on [{| <1and y =0on |{] > 2. Set x =1— x. For § > 0, we have

I= [ (x(€/8) + X(&/D)e ™ m(e)dg = I + I
R
Since m is integrable on R, we have
nl< [ el < oot
[€]<26
By integrating by parts, for N > d — k we have
Bl <Clal™ 301 [ e enpiaie/amie)i

la|=N
<Clal ™ 313 [ e rmengiae/sner P mid
la|=N B<a’/R?
<Cla| ™™ Y Z/ 57181 0) (¢ /8 |+~ V19D ge.
la|<N f<a /R?
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For 5 =0,

/ (E/8) e+ Nae < ost+N
Rd

follows and for 8 # 0,
/ 518158 (¢ /5) e |- 19D g SC/ 5181 g ~-N+l g
R4

5<lg|<2s

<C§+N
These imply |I| < Clz|™ 6+ N, We set § = |z|~! and obtain |I| < C|z|~*** for
7| > 1. 0

Corollary 7.6.2. Letd > 1, 0 <l < d and K; be defined by

Kife) = [ e de

Then we have a pointwise bound |K;(x)| < C{x)~d+,

Proof. By the Morse lemma, we have |92ho(€)7"%| < Cul€|771*! near € = 0 for any

multi-index .. Moreover, it follows that ho(&)~"/? is smooth away from ¢ = 0. Applying

Proposition 7.6.1, we obtain |K;(x)| < C(z)~*H. O

Now we define operators HJW for 0 <l < dby

HyPu(z) =Y Ki(w —y)uly), ue ()2(Z9).

yeZ? s>0

It is easily seen that H, "2 is a continuous linear operator:

Hy'? (22t — | 12 (z9).
s>0 s€R

The next corollary implies that H; ' can be uniquely extended to the continuous
linear operator from [2%(Z%) to I>7#(Z4) for o, B > 1/2 with a + 3 > 2.
Corollary 7.6.3 (Discrete version of the HLS inequality). Let d > 1 and 0 < k < d.
Then Hgl/z is bounded from IP(Z9) to 19(Z%) if 1 < p < q < oo satisfies

1 1 1

== 7.6.2
> e d (7.6.2)
and 1 <r < oo.

Moreover, if Wy € I"\(Z%) and Wy € 1"2(Z%) with 1/ry + 1/ry = 1/d with r1,75 > 2.
Then we have

Wi H, *W, € B(IX(Z%)
In particular, (x)~*Hy Y (x)~" € B(I*(Z%)) ifa+ > 2 and o, > 0 if d > 4 and
a+p>2anda,f>1/2 ifd=3.
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Remark 7.6.4. This corollary gives Hy /*(z)~! € B(I2(Z%)) for 0 < | < d. In fact,

—1/2 —1/2
| Hg ()™ Fllecany < ClLH ™| 1)l g 1 ey

l+2d Zd) l2(Zd

These are exactly the discrete Hardy inequalities.

7.7 Restriction theorem for a Lipschitz manifold

In this section, we prove the L?-restriction theorem for a Lipschitz manifold. Its proof
is standard, however, we give its proof for readers’ convenience.

Lemma 7.7.1. Let f € HYRY) and g be a real-valued Lipschitz function on R4L.
Then it follows that k(§) = f(&, &+ g(&')) belongs to H*(RY) and there exists C > 0
which depends only on the dimension d and ||O¢g|| Lo (ray such that

1kl 1 way < ClLf N 11 ray- (7.7.1)
Proof. 1t is evident that ||k p2ra) = || f|| 2(ra). For j =1,...d — 1, we have

Og, (k€' €a+ 9(£))) =0, k)(§', & + 9(&7)) + (0, 9)(§)(0e, k) (', €a + 9(£7)),
Og, (k(€', €4+ 9(£))) =(0¢,k)(€' + &a + 9(£)).

Using this computation, we obtain (7.7.1). O

Proposition 7.7.2. Under the assumption of Lemma 7.7.1, we have
D) 2(f (€ g€ z2@a-ry < Cllf [l ay-

Proof. In the following, we denote the Fourier transform of f by f. By using Fourier
inversion formula and by using Schwarz’s inequality, we have

[ A aene g = [ ka)da
_</< ) 2o >1/2</r< i) )
<Ca)( /| x)|*dzg)' .

Thus we have

(D) 2 (F (€, g€ 2gay =|[(z) 2 F(€, (& 9(€)) (@)1 72ma1)
<C?| <I>k’||L2(Rd)
=C?||k|| 51 ray-

This computation with Lemma 7.7.1 completes the proof.

153



Bibliography

1]

2]

[10]

[11]

[12]

V. Bach, W. de Siqueira Pedra, S. N. Lakaev, Bounds on the Pure Point Spectrum
of Lattice Schrédinger Operators. preprint. https://arxiv.org/pdf/1709.09200.pdf.

J.G. Bak, A. Seeger, Extensions of the Stein-Tomas theorem. Math. Res. Lett. 18
(2011), no. 4, 767-781.

D. Baskin, A. Vasy, J. Wunsch, Asymptotics of scalar waves on long-range asymp-
totically Minkowski spaces. Adv. Math. 328 (2018), 160-216.

J. F. Bony, R. Carles, D. Hafner, L.. Michel, Scattering theory for the Schrédinger
equation with repulsive potential. J. Math. Pures Appl. (9) 84 (2005), no. 5, 509—
579.

J.-M. Bouclet, H. Mizutani, Uniform resolvent and Strichartz estimates for
Schrodinger equations with critical singularities. Trans. Amer. Math. Soc. 370
(2018), no. 10, 7293-7333.

J.-M. Bouclet, J. Royer, Sharp low frequency resolvent estimates on asymptotically
conical manifolds. Comm. Math. Phys. 335 (2015), no. 2, 809-850.

J. Bourgain, Estimations de certaines fonctions maximales. (French) [Estimates of
some maximal operators] C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10,
499-502.

A. Carbery, A. Seeger, S. Wainger, J. Wright, Classes of singular integral operators
along variable lines. J. Geom. Anal. 9 (1999), no. 4, 583-605.

H. Chihara, Smoothing effects of dispersive pseudodifferential equations. Comm.
Partial Differential Equations, Vol. 27, No. 9-10, pp. 1953-2005, 2002.

J.-C. Cuenin, Embedded eigenvalues of generalized Schrodinger operators, to ap-
pear in J. Spectral Theory.

J.C. Cuenin, FEigenvalue bounds for Dirac and fractional Schrodinger operators
with complex potentials. J. Funct. Anal. 272 (2017), no. 7, 2987-3018.

J.C. Cuenin, Eigenvalue Estimates for Bilayer Graphene. Ann. Henri Poincaré 13
(2019), 1-16.

154



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Duistermaat, L. Hormander, Fourier integral operators. II. Acta Math. 128
(1972), no. 3-4, 183-269.

S. Dyatlov, M. Zworski, Mathematical theory of scattering resonances, to appear
in the AMS Graduate Studies in Mathematics series, (http://math.mit.edu/ dyat-
lov/res/).

F. Faure, N. Roy, J. Sjostrand, Semi-classical approach for Anosov diffeomorphisms
and Ruelle resonances. Open Math. J. 1 (2008), 35-81.

F. Faure, J. Sjostrand, Upper bound on the density of Ruelle resonances for Anosov
flows. Comm. Math. Phys. 308 (2011), no. 2, 325-364.

R. L. Frank, L. Schimmer, Endpoint resolvent estimates for compact Riemannian
manifolds. J. Funct. Anal. 272 (2017), no. 9, 3904-3918.

R. L. Frank, B. Simon, Eigenvalue bounds for Schrédinger operators with complex
potentials. II. J. Spectr. Theory 7 (2017), no. 3, 633-658.

Y. Gatel, D. Yafaev, On solutions of the Schrodinger equation with radiation
conditions at infinity: the long-range case. Ann. Inst. Fourier (Grenoble) 49 (1999),
no. 5, 1581-1602.

J. Gell-Redman, N. Haber, A. Vasy: The Feynman propagator on perturbations
of Minkowski space. Comm. Math. Phys., Vol. 342, No. 1, 333-384 (2016).

C. Gérard and M. Wrochna: The massive Feynman propagator on asymptotically
Minkowski spacetimes. to appear in American J. Math.

J. Ghidaglia, J. C. Saut: Nonelliptic Schrodinger equations. J. Nonlinear Sci., Vol.
3, No. 2, pp. 169-195 (1993).

N. Godet, N. Tzvetkov: Strichartz estimates for the periodic non-elliptic
Schrodinger equation. C. R. Math. Acad. Sci. Paris Vol. 350, no. 21-22, 955-958
(2012).

M. Goldberg, W. Schlag, A limiting absorption principle for the three-dimensional
Schrodinger equation with LP potentials. Int. Math. Res. Not. (2004), no. 75, 4049—
4071.

L. Grafakos, Classical Fourier analysis. Second edition. Graduate Texts in Mathe-
matics, 249. Springer, New York, (2008).

Gutiérrez, Susana Non trivial L? solutions to the Ginzburg-Landau equation. Math.
Ann. 328 (2004), no. 1-2, 1-25.

155



[27]

[28]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Y. Higuchi, T. Matsumoto, O. Ogurisu, On the spectrum of a discrete Laplacian
on Z with finitely supported potential. Linear and Multilinear Algebra. 59 (2011),
no. 8, 917-927.

Y. Higuchi, Y. Nomura and O. Ogurisu, Persistent set of the threshold embedded
eigenvalue for discrete Schrodinger operators with finite supported potentials, in
preparation.

L. Hormander, Oscillatory integrals and multipliers on FLp. Ark. Mat. 11, 1-11.
(1973).

L. Hormander, Analysis of Linear Partial Differential Operators, Vol. I-IV.
Springer Verlag, 1983-1985.

S. Huang, X. Yao, Q. Zheng, Remarks on LP-limiting absorption principle of
Schrodinger operators and applications to spectral multiplier theorems. Forum
Math. 30 (2018), no. 1, 43-55.

A. D. Tonescu, D. Jerison, On the absence of positive eigenvalues of Schrodinger
operators with rough potentials. Geom. Funct. Anal. 13 (2003), no. 5, 1029-1081.

H. Isozaki, Eikonal equations and spectral representations for long range
Schrodinger Hmiltonians, J. Math. Kyoto Univ. 20 (1980), 243-261.

H. Isozaki, E. Korotyaev, Inverse problems, trace formulae for discrete Schrodinger
operators. Ann. Henri Poincaré 13 (2012), no. 4, 751-788.

H. Isozaki, H. Morioka, Inverse scattering at a fixed energy for discrete Schrodinger
operators on the square lattice. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 3,
1153-1200.

H. Isozaki, H. Morioka A Rellich type theorem for discrete Schrodinger operators,
Inverse Problems and Imaging 8 (2014), 475-489.

A. D. Ionescu, W. Schlag, Agmon-Kato-Kuroda theorems for a large class of per-
turbations. Duke Math. J. 131 (2006), no. 3, 397-440.

K. Ttakura, Rellich’s theorem for spherically symmetric repulsive Hamiltonians,
Math.Z. 291 (2019), no. 3, 1435-1449.

K. Itakura. K, Limiting absorption principle and radiation condition for repulsive
Hamiltonians, to appear in Funkcial. Ekvac.

K. Ito, A. Jensen, Branching form of the resolvent at threshold for ultra-hyperbolic
operators and discrete Laplacians, J. Funct. Anal. 277 (2019), no. 4, 965-993.

K. Ito, S. Nakamura: Singularities of solutions to Schrédinger equation on scatter-
ing manifold. American J. Math. Vol. 131, No. 6, 1835-1865 (2009).

156



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A. Jensen, T. Kato, Spectral properties of Schrodinger operators and time-decay
of wave functions. Duke Math J 46, 583-611 (1979).

E. Jeong, Y. Kwon, S. Lee, Uniform Sobolev inequalities for second order non-
elliptic differential operators. Adv. Math. 302 (2016), 323-350.

K. Kameoka, Semiclassical study of shape resonances in the Stark effect. Preprint.
https://arxiv.org/abs/1901.08315. (2019).

T. Kato, Fundamental properties of Hamiltonian operators of Schrodinger type,
Trans. Amer. Math. Soc. 70 (1951), 195-211.

T. Kato, S. Kuroda, The abstract theory of scattering. Rocky Mountain J. Math.
1 (1971), no. 1, 127-171.

T. Kato, K. Yajima, Some examples of smooth operators and the associated
smoothing effect. Rev. Math. Phys. 1 (1989), no. 4, 481-496.

M. Keel, T. Tao, Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), no.
9, 955-980.

C. Kenig, G. Ponce, C. Rolvung, L. Vega, Variable coefficient Schrodinger flows
for ultrahyperbolic operators. Adv. Math. (2005) Vol. 196, No. 2, pp. 373-486.

C. E. Kenig, A. Ruiz, C. D. Sogge, Uniform Sobolev inequalities and unique con-
tinuation for second order constant coefficient differential operators. Duke Math.
J. 55 (1987), no. 2, 329-347.

H. Koch, D. Tataru, Carleman estimates and absence of embedded eigenvalues.
Comm. Math. Phys. 267 (2006), no. 2, 419-449.

E. Korotyaev, J. Mgller Weighted estimates for the discrete Laplacian on the cubic
lattice. Preprint. https://arxiv.org/abs/1701.03605. (2017).

R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically
Euclidian spaces. Marcel Dekker, (1994), pp. 85-130.

H. Mizutani, Uniform Sobolev estimates for Schrodinger operators with scaling-
critical potentials and applications, to appear in Analysis and PDE.

H. Mizutani, N. Tzvetkov: Strichartz estimates for non-elliptic Schrédinger equa-
tions on compact manifolds. Comm. Partial Differential Equations, Vo. 40, no. 6,
1182-1195 (2015).

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint opera-
tors. Comm. Math. Phys. 78 (1980/81), no. 3, 391-408.

157



[57]

[58]

[59]

[68]

[69]

[70]

[71]

S. Nakamura, Propagation of the homogeneous wave front set for Schrédinger
equations. Duke Math. J. vol. 126 (2005), 349-367.

S. Nakamura, K. Taira, Essential self-adjointness of real principal type operators,
Preprint, (2019), (https://arxiv.org/abs/1912.05711).

Y. Nomura, K. Taira, Some properties of threshold eigenstates and
resonant states of discrete Schrodinger operators. Preprint, (2019),
(https://arxiv.org/abs/1909.10014).

R. O’Neil, Convolution operators and L(p, q) spaces. Duke Math. J. 30 1963 129-
142.

Reed, M., Simon, B, The Methods of Modern Mathematical Physics, Vol. I-1V.
Academic Press, 1972-1980.

[. Rodnianski, W. Schlag, Time decay for solutions of Schrodinger equations with
rough and time-dependent potentials. Invent. Math. 155 (2004), no. 3, 451-513.

W. Rudin, Real and complex analysis. Third edition, McGraw-Hill Book Co., New
York, (1987).

A. Ruiz, Harmonic analysis and inverse problem. Lecture notes, (2002).
https://www.uam.es/gruposinv/inversos/publicaciones/Inverseproblems.pdf.

D. Salort: The Schrodinger equation type with a nonelliptic operator. Comm.
Partial Differential Equations. Vol. 32 , no. 1-3, 209-228 (2007).

C. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics,
105. Cambridge University Press, Cambridge, (1993).

A. Stefanov, P. G. Kevrekidis, Asymptotic behaviour of small solutions for the dis-
crete nonlinear Schrédinger and Klein-Gordon equations. Nonlinearity 18 (2005),
no. 4, 1841-1857.

Y. Tadano, K. Taira, Uniform bounds of discrete Birman-Schwinger operators.
Trans. Amer. Math. Soc. 372 (2019), 5243-5262.

K. Taira: Strichartz estimates for non-degenerate Schrodinger equations. Preprint,
(2017), (https://arxiv.org/abs/1708.01989).

K. Taira, Limiting absorption principle on LP-spaces and scattering theory.
Preprint, (2019), (https://arxiv.org/abs/1904.00505).

K. Taira, Scattering theory for repulsive Schrodinger operators and applications to
limit circle problem, Preprint, (2019), (https://arxiv.org/abs/1904.04212).

158



[72]

[73]

[74]

[75]

[76]

M. E. Taylor, Partial differential equations. II. Qualitative studies of linear equa-
tions. Applied Mathematical Sciences, 116. Springer-Verlag, New York, (1996).

P.A. Tomas, A restriction theorem for the Fourier transform. Bull. Amer. Math.
Soc. 81 (1975), 477-478.

A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces
(with an appendix by Semyon Dyatlov). Invent. Math. 194 (2013), no. 2, 381-513.

A. Vasy, Essential self-adjointness of the wave operator and the limit-
ing absorption principle on Lorentzian scattering spaces. Preprint, (2017),
(https://arxiv.org/abs/1712.09650).

A. Vasy, M. Wrochna: Quantum fields from global propagators on asymptotically
Minkowski and extended de Sitter spacetime. Ann. Henri Poincaré 19 (2018), no.
5, 1529-1586.

Y. Wang: Periodic cubic hyperbolic Schrodinger equation on T. J. Funct. Anal.
Vol. 265, no. 3, 424-434 (2013).

K. Yajima, The Lp boundedness of wave operators for Schrédinger operators with
threshold singularities I, Odd dimensional case, J. Math. Sci. Univ. Tokyo 7 (2006),
43-93.

M. Zworski, Semiclassical analysis. Graduate Studies in Mathematics, 138. Amer-
ican Mathematical Society, Providence, RI, (2012).

M. Zworski, Resonances for asymptotically hyperbolic manifolds: Vasy’s method
revisited. J. Spectr. Theory 6 (2016), no. 4, 1087-1114.

159



