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Abstract. We elucidate the intermediate of the macroscopic fluid model and the

microscopic kinetic model by studying the Poisson algebraic structure of the one-dimensional

Vlasov–Poisson system. The water-bag model helps to formulate the hierarchy of sub-

algebras that interpolate the gap between the fluid and kinetic models. By analyzing

how the sub-manifold of an intermediate hierarchy is embedded in a more microscopic

hierarchy, we characterize the microscopic effect as the symmetry breaking pertinent to

a macroscopic invariant. Additionally, we will construct a numerical scheme of the two-

dimensional Waterbag model for the application of the research results in the one-dimensional

case.
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1. Introduction

The purpose herein is to elucidate the hierarchical structure interpolating the macroscopic

fluid model and the microscopic Vlasov model of collisionless plasmas, and we describe

kinetic effects as a symmetry breaking that reduces a larger-scale hierarchy to a smaller-scale

one. The central idea is to formulate a series of self-consistent subsystems (sub-algebras) of

the Vlasov Lie–Poisson algebra, and to characterize each subsystem by Casimir invariants;

conservation of a Casimir invariant is then the reflection of a particular symmetry in the

distribution function, and hence the kinetic effect breaking such a symmetry manifests as

non-conservation of the corresponding Casimir invariant.

Conventionally, the relation between the fluid and kinetic models is discussed by invoking

the velocity-space moments of the distribution function f (with non-negative exponents s1,

s2, and s3)

Ps1s2s3 =

∫
vs11 v

s2
2 v

s3
3 f(x,v, t)d

3v,

and imposing a closure relation. The lower-order moments constitute the fluid-mechanical

variables (density, fluid velocity, pressure tensor), while the higher-order moments measure

some deviation of f from Gaussian, so the moment hierarchy is useful for quantifying the

probability distribution caused by collisions. A modern approach considers the Hamiltonian

closure.[1, 2, 3]

However, herein we consider the problem from the perspective of the Poisson algebra

that governs the collisionless dynamics of plasmas. Instead of the moment hierarchy, we
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construct a hierarchy of sub-algebras of the Poisson algebra, with the lowest-dimension system

corresponding to the fluid model. Concretely, we consider the reduction of the Vlasov Lie–

Poisson system by restricting the distribution function f to be a sum of step functions in

the velocity space (to be denoted by V ). Thanks to Liouville’s theorem, the height of each

flat top of f remains constant (while the area of the plateau in the V -space may change).

Hence, such a system of distribution functions defines a sub-algebra (closed subsystem) of

the Vlasov system[4, 5] (see Refs. [6, 7, 8] for the general idea of reduction of a Hamiltonian

system). Interestingly, a single-plateau system corresponds to the fluid model; in fact, the

fluid model allows only one velocity at each point of the configuration space (to be denoted

by X). Increasing the number of plateaus, we formulate a hierarchy of sub-algebras; the

limit of an infinite number of plateaus recovers the full Vlasov system. Each subsystem is a

leaf of the Vlasov system, which is characterized by Casimir invariants. Generally, a Casimir

invariant is a generator of some gauge symmetry pertinent to reduction[9, 10, 11]; when

used as a Hamiltonian in a higher-order system, the corresponding Hamiltonian flow keeps

the reduced variables constant. In other words, the breaking of the gauge symmetry and

the variance of the Casimir imply the higher-order effect that violates the closedness of the

lower-order (macroscopic) subsystem.

As a simple and analytically tractable example, we study the water-bag model of a one-

dimensional charged-beam system.[12, 13, 14, 15] A series of water-bag models with different

numbers of water bags defines the hierarchical Vlasov sub-algebra. In addition to this,

preparing to application of the one-dimensional study, a numerical scheme for 2D water-bag
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model will be developed to extend it to 2D water-bag.

2. Preliminary details

2.1. Hamiltonian mechanics and Poisson manifold

In Hamiltonian mechanics, the equation of motion is written as

ż = J∂zH(z), (1)

where z ∈M is the state vector (its totalityM is the phase space), J is the Poisson operator,

H is the Hamiltonian, and ∂zH is the gradient of H. We define the Poisson bracket by

[G,H] = 〈∂zG, J∂zH〉, (2)

and the Poisson operator J must be defined appropriately for this bracket to define a Poisson

algebra (Lie algebra with Leibniz property). Endowing the function space C∞(M) (a member

G(z) ∈ C∞(M) represents a physical quantity and is called an observable) with the Poisson

bracket, we call M the Poisson manifold.

In the canonical Hamiltonian system, z is given as a conjugate z = (q,p)T, and

J =




0 I

−I 0


 . (3)

However, there are many possible non-canonical Hamiltonian systems (or degenerate Poisson

algebras) that are defined by more-complicated J ; in general, J may depend on z and may

have nontrivial kernels (i.e., rank J < dimM). As we will show by an example (Sec. 2.2),

such a degeneracy is often brought about by some reduction from a higher-dimensional
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canonical system; here, the reduction means that we admit observables with only a restricted

dependence on z, hence the effective degree of freedom (dimension of the actual phase space)

is reduced. Physically, such reduction can be argued in the context of macro-hierarchy, which

is the suppression of some microscopic degree of freedom.

The nullity of J implies that the vector ż has codimensions. If z0 ∈ Ker J can be

integrated as

z0 = ∂zC, (4)

then we call C ∈ C∞(M) a Casimir. Then, the level sets of C(z) foliate M so that z(t) is

restricted to move on only a leaf C(z) = constant. In fact,

Ċ = {C,H} = −{H,C} = −〈∂zH, J∂zC〉 = 0. (5)

Notice that the invariance of a Casimir C is independent of any specific choice of the

Hamiltonian H. By interpreting the degeneracy of J as the suppression of some microscopic

degree of freedom, the leaf of C is the mathematical identification of a macro-hierarchy.

2.2. Reduction: an example

Because the Casimir plays the central role in this work, we explain how it is “created” by

a reduction invoking a simple example. We start with the canonical Hamiltonian system of

point mass moving in R
n. The phase space is M = R

2n, and the state vector is z = (q,p)T

with position q and momentum p. On C∞(M), we define the canonical Poisson bracket

[G,H] =
n∑

j=1

(∂qjG) (∂p(j)H)− (∂qjH) (∂p(j)G). (6)
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Here, the canonical Poisson bracket is denoted by [ , ], which will be used later in defining

the Poisson bracket of the Vlasov system.

We set n = 2 and denote the corresponding Poisson manifold byM4 (= R
4). As a trivial

example of reduction, we assume that all observables are independent to q2 and p2, then the

Poisson bracket evaluates as

[G,H] = (∂q1G) (∂p1H)− (∂q1H) (∂p1G), (7)

which defines a canonical Poisson algebra on the submanifold M2 = {z2 = (q1, p1)
T} = R

2,

which is embedded inM4 as a leaf {z ∈M4; q
2 = c, p2 = c′} (c and c′ are arbitrary constants).

An interesting reduction occurs if we suppress only q2 in observables. The reduced phase

space is the three-dimensional submanifold M3 = {z3 = (q1, p1, p2)
T}. For G and H such

that ∂q2G = ∂q2H = 0, the Poisson bracket evaluates the same as (7). The Poisson operator

J may be written as

J =




0 1 0

−1 0 0

0 0 0




,

whose rank is two. Therefore, M3 is a degenerate Poisson manifold. The kernel of this J

includes the vector (0, 0, 1)T, which can be integrated to define a Casimir C = p2. Therefore,

the effective degree of freedom is reduced further to two; the state vector z can move only

on the two-dimensional leaf M2. Evidently, the “freezing” of C = p2 is due to the absence of

its conjugate variable q2.

When we observe M3 from M4, the reduction (i.e., the suppression of the parameter q2
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in the observables) means the symmetry ∂q2 = 0. As the usual manifestation of the integral

of motion, p2 in M4 becomes invariant if the Hamiltonian has the symmetry ∂q2H = 0.

The conjugate variable q2 corresponding to the Casimir C = p2 can be regarded as

the gauge parameter. The gauge group (denoted by AdC)—which does not change the

submanifold M3 embedded in M4—is generated by the adjoint action

adC = [◦, C] = ∂q2 ,

implying that the gauge symmetry is written as ∂q2 = 0. This is evident because the state

vector z3 = (q1, p1, p2)
T ∈ M3 is “independent” of q2. In the next subsection, we invoke

another example to see a more nontrivial relation between the Casimir and gauge symmetry.

2.3. Gauge symmetry generated by Casimir

Here, we assume n = 3 and consider the six-dimensional phase space M6. We define the

angular momentum as

ω = q × p. (8)

We consider a system where every observable is a function of ω; the Euler top is such an

example (the Hamiltonian is H(ω) =
∑

j ω
2
j/(2Ij), where I1, I2, I3 are the three moments of

inertia). For such a system, the effective phase space is reduced to

Mω = {ω = q × p; (q,p)T ∈M} ∼= R
3.

Let us evaluate [ , ] of (7) for the reduced class of observables ∈ C∞(Mωa). The gradient of
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a functional G ∈ C∞(Mω) is given by (denoting by(x,y) the R
3 Euclidean inner product)

δG = (∂qG, δq) + (∂pG, δp) = (∂ωG, δω).

Inserting δω = (δq)× p+ q × (δp), we find

∂qG = p× ∂ωG, ∂pG = −q × ∂ωG.

Therefore,

[G,H] = (∂ωG, ∂ωH × ω) =: [G,H]ω.

We may rewrite

[G,H]ω = (∂ωG, J(ω)∂ωH),

J(ω) := −ω × ◦ =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0




. (9)

We find rank J(ω) = 2 (at ω = 0, rank J(ω) = 0). Evidently,

C = |ω|2

is the Casimir (J(ω)∂ωC = 0). The reduction from z = (q,p)T ∈ R
6 to ω = q × p ∈ R

3

yields another reduction of degree of freedom due to the Casimir C; the effective degree of

freedom given to ω ∈Mω is only two.

The Hamiltonian flow (the adjoint action) given by C generates the gauge transformation

in M6:

adC = [◦, C] =

(
3∑

j=1

∂pjC∂qj − ∂qjC∂pj

)

= ω × q · ∂q + ω × p · ∂p. (10)
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By direct calculation, we can show [ωj, C] = 0 (j = 1, 2, 3). This gauge transformation has

the following geometrical meaning: by (10), the transformation z 7→ z + ϵz̃ (z̃j = [zj, C])

gives a co-rotation of q and p around the axis ω (note that this rotation is in the space M6,

not in the space Mω), hence ω = q × p does not change. The rotation angle can be written

as

θ =
1

2|ω|
tan−1

(
(ω × q)j
qj|ω|

)

(we choose the coordinate qj 6= 0). We find [θ, C] = 1. Let us embed Mω into a four-

dimensional space M̃ω = {(ω, θ); ω ∈Mω, θ ∈ [0, 2π)}. For G(ω, θ) ∈ C∞(M̃ω), we obtain

[G,C] =
3∑

j=1

∂ωj
G[ωj, C] + ∂θG[θ, C] = ∂θG.

Therefore, the gauge symmetry [◦, C] can be rewritten as ∂θ = 0. Reversing the perspective,

for every Hamiltonian H(ω, θ) ∈ C∞(M̃ω) that has the gauge symmetry ∂θH = 0, C is

invariant:

Ċ = [C,H] = −∂θG = 0.

3. Comparison of hierarchical structure using one-dimensional Water-bag model

3.1. Water-bag model of one-dimensional beam propagation

The aim of this section is elucidate the hierarchical structure encompassing the microscopic

(kinetic) Vlasov model and the macroscopic fluid model. We use the water-bag model

of one-dimensional charged-particle beam propagation (applicable for a nonlinear electron
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plasma[12] or the drift-kinetic model of plasma[13]). We start by reviewing the Hamiltonian

formalism of the Vlasov system.

3.1.1. Vlasov system as an infinite-dimensional Poisson manifold Let z = (x,v) =

(x1, · · · , xn, v1, · · · , vn) denote the coordinates of M = X × V = T
n × R

n, the phase space

of a particle. Assuming the non-relativistic limit, the particle mass is normalized to 1, so

the velocity v parallels the momentum. We call a real-valued function ψ(z) ∈ C∞(M) an

observable. We endow the space C∞(M) with the canonical Poisson bracket

[ψ, φ] =
n∑

j=1

(∂xjψ) (∂vjφ)− (∂vjψ) (∂xjφ) (11)

and denote g = C∞(M); cf. (6). The dual space g∗ is the set of distribution functions ; for an

observable ψ ∈ g and a distribution function f ∈ g∗,

〈ψ, f〉 =

∫

M

ψ(z)f(z) dz (12)

evaluates the mean value of ψ over the distribution function f .

On the space V = C∞(g∗) of functionals, we define

{G,H} = 〈[∂fG, ∂fH], f〉, (13)

where ∂fH ∈ T ∗V = g is the gradient of H ∈ V. The bracket { , } satisfies the conditions

required for a Poisson bracket, hence g∗ is a Poisson manifold (infinite dimension). Integrating

by parts, we may rewrite (13) as

{G,H} = 〈∂fG, [∂fH, f ]
∗〉 = 〈∂fG, J(f)∂fH〉, (14)

where [ , ]∗ : g× g∗ → g∗ evaluates formally as [a, b]∗ = [a, b].
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For G(f) = 〈δ(z − ζ), f(z)〉, Ġ = {G,H} reads as the Vlasov equation

ḟ = [∂fH, f ]
∗ (15)

evaluated at every z = ζ ∈M , which describes the reaction of the distribution function f(z)

to the motion of particles dictated by the mean-field Hamiltonian h = ∂fH.

Evidently, every C(f) =
∫
M
g(f)dz (g is a smooth function: R → R) is a Casimir.

Inserting ∂fC = g′(f), we find, for every H,

{C,H} = −〈∂fH, [∂fC, f ]
∗〉 = −〈∂fH, [g

′(f), f ]∗〉 = 0.

3.1.2. One-dimensional Vlasov–Poisson system We have to incorporate a dynamical

electromagnetic field coupled with the dynamics of charged particles. Neglecting the magnetic

field, we consider a simple one-dimensional system in which the longitudinal electric field E

accelerates particles in the direction x ∈ X = T = R/Z. By ∇ · E = ρ/ϵ0 (where ρ is the

charge density and ϵ0 is the vacuum permittivity), we can relate E(x, t) and f(x, v, t):

∂xE =
q

ϵ0

∫

V

f(x, v, t)dv, (16)

where q is the charge of the particle. Putting E = −∂xϕ with the scalar potential ϕ(x, t), we

obtain the Poisson equation

−∂2xϕ =
q

ϵ0

∫

V

f(x, v, t)dv. (17)

With the periodic boundary conditions ϕ(0) = ϕ(1) and ϕ′(0) = ϕ′(1) (here, ′ denotes ∂x),

we can solve (17) as

ϕ(x, t) =
q

ϵ0
Kf(x, v, t) (18)
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with the integral operator

K = (−∆)−1

∫

V

◦ dv, (19)

where (−∆)−1 : L2(X) → H2(X)/{c} is the self-adjoint operator ({c} is the one dimensional

space of constant functions in X) such that

−∂2x(−∆)−1ρ = ρ (ρ ∈ L2(X)). (20)

We define the quadratic form

Φ(f) =
q2

2ϵ0
〈Kf, f〉.

Using (17) and (18), we may rewrite

Φ(f) =
1

2

∫

X

ϕ

(
q

∫

V

f dv

)
dx =

∫
ϵ0E

2

2
dx.

By the symmetry 〈Kf, g〉 = 〈f,Kg〉, we obtain

∂fΦ(f) =
q2

ϵ0
Kf = qϕ.

With the Hamiltonian

H(f) =

∫

M

v2

2
f dz + Φ(f), (21)

the Vlasov equation (15) reads

ḟ + v∂xf + qE∂vf = 0. (22)

Remark 1 (Vlasov–Ampère system) As an alternative formulation, we may include the

electric field E as an independent variable spanning the Poisson manifold. The dynamics of

E are determined by Ampère’s law, which—neglecting the magnetic field—reads as

Ė = −
1

ϵ0
j, (23)
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where j is the current density, which is related to the distribution function f(x, v, t) by

j = q

∫

V

vf(x, v, t)dv. (24)

For E = −∂xϕ with the electric potential ϕ in the periodic domain X, we have

E ∈ E = {E ∈ L2(X);

∫

X

E(x) dx = 0}. (25)

The Poisson manifold of the Vlasov–Ampère system is the direct product

GV A = g∗ × E,

on which we define

{G,H}V A =

〈



∂fG

∂EG


 ,




[◦, f ]∗ − q

ϵ0
∂v(◦f)

− q

ϵ0
(∂v◦)f 0







∂fH

∂EH




〉
. (26)

With the Hamiltonian

H(f, E) =

∫

M

v2

2
f(x, v, t) dz +

∫

X

ϵ0E
2

2
dx,

for G = f(z, t) =
∫
M
δ(z − ζ)f(ζ, t) dζ we obtain

ḟ(z, t) = [v2/2, f ]∗ − qE∂vf = −v∂xf − qE∂vf,

and for G = E(x, t) =
∫
X
δ(x− ξ)E(ξ, t) dξ we obtain

Ė(x, t) = −
q

ϵ0

∫

V

vf dv = −
1

ϵ0
j(x, t).

3.1.3. Water-bag distribution function In the water-bag model (see Fig. 1), we consider

distribution functions that are linear combinations of V -space indicator functions:

f(x, v, t) =
N∑

j=1

Ajgj(x.v.t), (27)
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gj(x.v.t) =





0 v < Vj(x, t),

1 Vj(x, t) ≤ v ≤ Vj+1(x, t),

0 VN+1(x, t) < v,

(28)

where N is the number of water bags, and Aj ∈ R (j = 1, · · · , N) are constants (being

amenable to Liouville’s theorem). For the convenience of later calculations, we put A0 =

AN+1 = 0 and define

Figure 1. Graph of f(x, v) on a cross section of x = constant. The degree of freedom of

the distribution function is given by {Vk(x)}.

ak = Ak−1 − Ak (k = 1, · · · , N + 1). (29)

Each water bag is bounded by the velocities Vj(x, t) and Vj+1(x, t) (j = 1, · · · , N +1), which



CONTENTS 17

are assumed to be smooth functions of x and t. Using the step function, we may write

gj(x, v, t) = Y (v − Vj)− Y (v − Vj+1).

For the convenience of later discussion, we fill the gap of the graph of the step function, i.e.,

we put Y (0) = [0, 1], allowing it to be multivalued.

The function space

g∗N = {Vk(x, t); k = 1, · · · , N + 1}

is the phase space (Poisson manifold) of the N -bag system. We endow g∗N with the L2 inner

product

(u, v) =

∫

X

u(x) · v(x) dx.

We use the index “j” to address each water bag, and “k” for the boundaries; the latter runs

over 1 to N + 1.

Let us derive the reduction of the Poisson bracket (14) for observables ∈ C∞(g∗N). We

may evaluate the perturbation of f ∈ g∗N as

δf =
N∑

j=1

Ajδgj =
N∑

j=1

Aj[−δ(v − Vj)δVj + δ(v − Vj+1)δVj+1]

=
N+1∑

k=1

akδ(v − Vk)δVk.

For G(V1, · · · , VN+1) ∈ C∞(g∗N), the chain rule reads

δG = 〈∂fG, δf〉 = 〈∂fG,

N+1∑

k=1

akδ(v − Vk)δVk〉

=
N+1∑

k=1

(∂Vk
G, δVk).
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Therefore, denoting ∂Vk
G = Gk, we may write

∂fG|v=Vk
=

1

ak
Gk (k = 1, · · · , N + 1). (30)

Inserting

∂vf =
N∑

j=1

Aj[δ(v − Vj)− δ(v − Vj+1)],

∂xf = −

N∑

j=1

Aj[δ(v − Vj)∂xVj − δ(v − Vj+1)∂xVj+1],

for G,H ∈ C∞(g∗N) we obtain

{G,H}N = 〈∂fG, [∂fH, f ]
∗〉

=
N∑

j=1

Aj

∫

X

(∂fG)∂x(∂fH) + (∂fG)Vj∂v(∂fH)|v=Vj
dx

− Aj

∫

X

(∂fG)∂x(∂fH) + (∂fG)Vj+1∂v(∂fH)|v=Vj+1
dx

=
N∑

j=1

Aj

∫

X

1

a2j

(
Gj∂xHj −

1

a2j+1

Gj+1∂xHj+1

)
dx

=
N+1∑

k=1

−

∫

X

1

ak
Gk∂xHk dx,

where we have used ∂v(∂fG)|v=Vk
= ∂v

1
ak
Gk = 0. In a more illuminating form, we may write

{G,H}N = (∇VG, JN∇VH), (31)

where ∇V = (∂V1
, · · · , ∂VN+1

)T and

JN =




−1
a1
∂x 0

. . .

0 −1
aN+1

∂x




. (32)
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3.1.4. Hamiltonian The Hamiltonian of this system is represented as

H(V1, · · · , VN+1) =

−
1

6

∫

M

aj V
3
j dz + Φ(V1, · · · , V N + 1), (33)

which is the Vlasov–Poisson Hamiltonian (21) whose distribution function is applied to the

distribution function of the water-bag model.

3.2. Casimirs

Evidently,

Ker JN = {c = (c1, · · · , cN+1)
T; ck ∈ R (k = 1, · · · , N + 1)}.

This is easily integrated to derive N + 1 independent Casimirs

V k(V1, · · · , VN+1) = (1, Vk) =

∫

X

Vk(x, t)dx (k = 1, · · · , N + 1). (34)

Physically, each V k means the average velocity (momentum) of the particles aligned along the

contour (in the phase space M) of the distribution function f(x, v, t). Because the periodic

E yields no net acceleration for each particle, the average velocity V k remains constant.

Any smooth function G(V 1, · · · , V N+1) is a Casimir of the N -bag system. The density

of water-bag j is
∫ Vj+1

Vj
f dv, which evaluates as

ρj = Aj(Vj+1 − Vj) (j = 1, · · · , N), (35)

which gives a more convenient representation of N independent Casimirs (representing the

total particle number in water-bag j), i.e.,

ρj =

∫

X

ρj dx = Aj(V j+1 − V j) (j = 1, · · · , N). (36)
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However, for the purpose of our analysis, these Casimirs ρj (j = 1, · · · , N) are not useful

because they all remain constant in any higher-N system (that is a sub-algebra of the Vlasov

system V). In the next subsection, we formulate the remaining one Casimir of the N -bag

system, which ceases to be constant when we increase N .

3.3. Fragile Casimir characterizing hierarchy of sub-algebras

This subsection introduces an observable that is not Casimir invariant as the degree of

freedom N of the water-bag model increases. Uj can be written as

Uj ≡

∫

X

ujdx, (37)

where

uj ≡

∫ Vj+1

Vj
vfdv

∫ Vj+1

Vj
fdv

,

and in the N-bag model, Uj becomes

Uj =

∫

X

1

2

−Aj(V
2
j − V 2

j+1)

Aj(Vj+1 − Vj)
dx =

∫

X

1

2
(Vj + Vj+1)dx. (38)

Physically, Uj represents the fluid velocity of the particles contained in water-bag j. Now,

we consider the case in which this observable Uj is obtained in the N + 1-bag model in

which the new function Vj+ 1

2
(x, t) is introduced into the function space gN as shown in Fig. 2

(new constants A′
j, A

′
j+ 1

2

are also introduced, and the height of water-bag j is A′
j, where

{A′
j} = {A1, · · · , Aj−1, A

′
j, A

′
j+ 1

2

, Aj+1, · · · , AN+1}). Although its physical meaning has not

changed,

Uj =

∫

X

1

2

−AjV
2
j + aj+ 1

2
V 2
j+ 1

2

+ Aj+1V
2
j+1

−AjVj + aj+ 1

2
Vj+ 1

2
+ Aj+1Vj+1

dx (39)
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is no longer invariant for the outbreak of cross terms. The fluid velocity of water-bag j is

given by the reference [14].

The symmetry of the distribution function preserved by such a fragile invariant Uj that

depends on the macroscopic hierarchy can be written as {◦, Uj}N+1 = 0 in the (N + 1)-bag

model. Using Eq. (31) and

∂Vk
U2(i)

=





1
2

−Ai(−AiV
2
i +ai+1V

2
i+1

+Ai+1V
2
i+2

)

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))2
+ 1

2
−2AiVi

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))
(k = i)

1
2

ai+1(−AiV
2
i +ai+1V

2
i+1

+Ai+1V
2
i+2

)

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))2
+ 1

2
2ai+1Vi+1

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))
(k = i+ 1)

1
2

Ai+1(−AiV
2
i +ai+1V

2
i+1

+Ai+1V
2
i+2

)

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))2
+ 1

2
2Ai+1Vi+2

(Ai(Vi+1−Vi)+Ai+1(Vi+2−Vi+1))
(k = i+ 2)

0 (otherwise)

=





−Ai

(
− u2(i)

ρi+ρi+1
+ Vi

ρi+ρi+1

)
(k = i)

ai+1

(
− u2(i)

ρi+ρi+1
+ Vi+1

ρi+ρi+1

)
(k = i+ 1)

Ai+1

(
− u2(i)

ρi+ρi+1
+ Vi+2

ρi+ρi+1

)
(k = i+ 2)

0 (otherwise)

, (40)

{◦, Uj} can be calculated as

{◦, Uj}N+1
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Figure 2. Upper: distribution function f of N -bag model with gN as the

topological space. Lower: distribution function f of N + 1-bag model with gN+1 =

{V1, · · · , Vj , Vj+ 1

2

, Vj+1, · · · , VN+1} as the phase space. In both the upper and lower figures,

the light-blue region is the integration range of Uj . Although Uj has the same physical

meaning in both the N -bag and N +1-bag case, Uj is a Casimir invariant in the former but

not in the latter.
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=




∇V ◦, ∂x




0

...

0

Aj

aj

(
−

uj

ρj+ρ
j+1

2

+
Vj

ρj+ρ
j+1

2

)

( jth element)

−
a
j+1

2

a
j+1

2

(
−

uj

ρj+ρ
j+1

2

+
V
j+1

2

ρj+ρ
j+1

2

)

( j + 1
2
th element)

−
A

j+1
2

aj+1

(
−

uj

ρj+ρ
j+1

2

+
Vj+1

ρj+ρ
j+1

2

)

( j + 1th element)

0

...

0







. (41)

Because transformation of (41) is a variable transformation of the distribution function

conserving U2, {f, Uj}N+1 = 0 is a condition on f that conserves U2. From (41), the condition

on f (or that on {Vk} in the N + 1-bag model) is

∂x
uj′

ρj + ρj+1

= ∂x
Vj′

ρj + ρj+1

(j′ = j, j +
1

2
, j + 1), (42)

which can be simplified by calculating (let j′′ = j, j + 1
2
, j + 1, j′ 6= j′′)

∂x

(
uj

ρj + ρj+1

−
Vj′

ρj + ρj+1

)
− ∂x

(
uj

ρj + ρj+1

−
Vj′′

ρj + ρj+1

)

= − (Vj′ − Vj′′)
∂x (ρj + ρj+1)

(ρj + ρj+1)
2 −

∂x(Vj − Vj′)

(ρj + ρj+1)
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= −
1

ρj + ρj+1

(
∂x(Aj(Vj+1 − Vj) + Aj+1(Vj+2 − Vj+1))

Aj(Vj+1 − Vj) + Aj+1(Vj+2 − Vj+1)

−
∂x(Vj′ − Vj)

Vj′ − Vj

)
. (43)

The symmetry condition {◦, Uj}N = 0 holds if

∂x(Aj(Vj+ 1

2
− Vj) + Aj+ 1

2
(Vj+1 − Vj+ 1

2
))

Aj(Vj+ 1

2
− Vj) + Aj+ 1

2
(Vj+1 − Vj+ 1

2
)

=
∂x(Vj′ − Vj)

Vj′ − Vj
,

which demands

Aj(Vj+ 1

2
− Vj) + Aj+ 1

2
(Vj+1 − Vj+ 1

2
)

= (Vj′ − Vj)exp(Cjj′). (44)

The symmetry condition reads

Vj+ 1

2
= αVj + (1− α)Vj+1 (α = const., 0 < α < 1), (45)

implying that the new contour Vj+ 1

2
included in the inflated N + 1 system must be an

internally dividing point of the original contours with an (arbitrary) homogeneous ratio α.

Every deformation of the contour Vj+1 from this symmetry violates the conservation of Uj.

3.4. Numerical experiment

Now we show simple examples that support condition (45) in the case of N = 6. Unlike in

the previous discussion, we set a specific Hamiltonian

HN = −

∫

X

(
1

3
ΣN+1

j=1

1

2
ajV

3
j + Φ(f)

)
dx, (46)

constants Aj as

{Aj} = {1, 4.5, 3.5, 1.5, 0.5, 2}, (47)
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and the initial conditions of the distribution function as

Vk|t=0,k=1,4(x) =
3

14
k2 +

100.86

175cosh2(4.1x)
,

Vk|t=0,k=2(x) = −
6

7
−

100.86

175cosh2(4.1x)
+ 2.69,

Vk|t=0,k=3(x) = 2.62,

Vk|t=0,k=5,6,7(x) =
3

14
k2 +

100.86

175cosh2(4.1(x+ 0.5))
(48)

(Fig. 3) so that (45) is not satisfied only when j = 3. Because the shape of the distribution

function ({Aj}, {Vk|t=0}) is arbitrary when deriving (45), the verification of (45) in this

subsection does not require any statistical-mechanics justification for ({Aj}, {Vk|t=0}). To

simulate this system, we have to set some normalized parameters as

q̂ = 1, (49)

ε̂0 = 368.32. (50)

To demonstrate a practicality of condition (45), we show the time variation of U2 (Fig. 4).

Because condition (45) is not satisfied only for j = 3, the time variation of U at t = 0 is

expected to be small for j = 1, 2, 4, 5, 6, and indeed the results in Fig. 4 meet that expectation.

4. Two-dimensionally extended Waterbag model(“mesa”-model)

To apply the conclusions drawn in the previous section, this section creates a numerical

scheme for the two-dimensionally extended Waterbag model (“ mesa”-model). Here, the

formulation of the 2DWaterbag model is based on the literature [16]. In this section, following

subsections will be used to introduce the content of the relevant document.
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Figure 3. Initial conditions of simulation. The vertical axis represents the position x, and

the horizontal axis represents the velocity v. The color bar shows the value of f(x, v, t), and

the white regions correspond to f(x, v, t) = 0. Relationship (45) is not satisfied only for

k = 3.

4.1. Reduced kinetic system —mesas in the velocity space

We formulate a reduced kinetic system by restricting the distribution functions to be flat

functions supported in simplexes (and chains) in the v-space V ; cartoon image of such a

distribution function is mesas. We start by considering a single “mesa” in the v-space.

Formally, we consider a subset g∗∆ ⊂ g∗ of distributions such that

g∗∆ = f∆(x,v) = I∆(V 0(x), · · · , V n(x)), (51)
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Figure 4. Horizontal axis represents time, vertical axis represents rate of change of Uj from

its initial value. Uj changes significantly at t = 0 only for j = 3, for which condition (45) is

not satisfied.

where I∆ is the indentificator function of a domain ∆ ⊂ V , and I∆(V 0(x), · · · , V n(x)) is

a “linear simplex” in the n-dimensional v-space with vertexes V 0(x), · · · , V n(x); by “linear

simplex” we mean an affine map of the standard n-simplex (hence, faces of ∆ are flat). Note

that a general simplex is an image of any differentiable map, but here we restrict to affine

maps. Hereafter we will abbreviate it as “simplex”. For a distribution function f∆(x,v) with

a simplex support to be persistent in a Hamiltonian flow, the Hamiltonian must be restricted

to some subset OL ⊂ O = C∞(g∗). In fact, we will find that the Hamiltonian flow must

be “linear” with respect to v (or an affine map in v-space); otherwise the faces of ∆ would
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be deformed to curved surfaces, and then, the vertexes fall short of characterizing f . The

following fact may be well-known, but will play an essential role in the following discussions.

Lemma 1 (subalgebra)

Let us consider a subset of observables such that

gL =

{
n∑

k=0

αk(x)v
k;αk(x) ∈ C∞(X)

}

. where v1, · · · , vn are the coordinates of the v-space, and v0 = 1. This gL is a subalgebra of

g, i.e.

[ψ, ϕ] ∈ gL (∀ψ, ϕ ∈ gL).

(proof) By direct calculation, we obtain, for ψ =
∑

k αk(x)v
k and ϕ =

∑
k βk(x)v

k,

[ψ, ϕ] =
∑

k

(
∑

j

βj∂xjαk − αj∂xjβk

)
vk.

Notice that ψ ∈ gL must be a linear function of vj , while it may be an arbitrary (smooth)

function of xj.

For the convenience of latter calculations, we extend the idea of including “0” component for

other expressions:




v0 = 1, ∂v0 = projection to v−independent terms,

V 0
k = 1(k = 0, · · · , n),

x0 = 1, ∂x0 = 0.

(52)

Both indexes for the coordinates and the vertexes range from 0 to n.
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Remark 2 (higher moments)If we include higher-order terms in vj, such subsets are not

closed. For example, let us consider a second-order class. For

ψ =
∑

kl

= αkl(x)v
kvl, ϕ =

∑

kl

βkl(x)v
kvl,

(where αkl and βkl are symmetric tensors), we observe

[ψ, ϕ] = 2
∑

klm

(
∑

j

βjm∂xjαkl − αjm∂xjβkl

)
vkvlvm,

which becomes a third-order function of vj.

The Vlasov system O = C∞
{,}(g

∗) will be reduced to a closed subsystem OL such that

T ∗OL = gL. The aim of the following study is to construct a consistent relation between gL

and g∗∆ so that OL = C∞
{,}L

(g∗∆) with a reduced bracket {, }L. {, }L, we will find that it is

equivalent to the fluid bracket {, }F .

4.2. Closedness of g∗∆ in Hamiltonian flows of gL

We may write

{G,H} = 〈[∂fG, ∂fH], f〉 = 〈∂fG, [∂fH, f ]
∗〉

where [, ]∗ : g × g∗ → g∗, which evaluates just as [ , ] for functions ∈ C∞(M). Denoting

∂fG = gand ∂fH = h, we write

{G,H} = 〈g, [h, f ]∗〉,

and

ad∗
h = [h, ◦]∗,
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which is the co-adjoint action generated by a Hamiltonian h ∈ g. Explicitly, we may evaluate

ad∗
hf = [h, f ]∗ =

n∑

j=1

(∂xjh)(∂vjf)− (∂vjh)(∂xjf). (53)

Theorem 1 (Closedness)

The system g∗∆ of mesa distribution functions is closed with respect to the action of ad∗
h with

h ∈ gL. (proof) First we note that g∗ = (∧nT ∗X) ∧ (∧nT ∗V ), i.e., the distribution function

f∆ is a 2n-form (n is the configuration space dimension). Therefore, ∂vf∆ is defined as δxf∆,

where δv = ∗dv∗ is the co-differential in v-space (dv is the exterior differential in v-space,

and ∗ is the Hodge star operator with respect to the v-space volume volnv = dv1 ∧ · · · ∧ dvn).

Similarly, ∂xf∆ is defined as δxf∆ with the x-space co-differential. By the Liouville theorem,

the Hamiltonian flow ad∗
h is incompressible in the phase space M = X × V . Hence, the

hight of the mesa f∆ is constant even when the v- space volume |∆| =
∫
∆
volnv changes,

i.e. ∗f∆ = 1 in ∆. Therefore, what we have to prove is that the faces of ∆ remain flat

when transported by the Hamiltonian flow ad∗
h. Notice that the distribution function f∆ can

be totally characterized by its vertexes Vl(l = 0, · · · , n) only when the faces are straight;

otherwise we need additional information about the structure of distribution function.

The co-adjoint action (53) consists of two terms, which respectively defines a vector in

v-space and x-space. We look into the action of the first term
∑

j(∂xjh)∂vj , which transports

the domain ∆ in v-space. Let us write the boundary as

∂∆ =
n⋃

l=0

σl,
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where each σl is the segment facing Vl. We denote by i∂∆ the inclusion map of ∂∆ into V ,

and its dual by i∗∂∆ that is the restriction map. We may write

∗d ∗ f∆ = i∗∂∆ = 1.

On each segment, i∗σl
1 is the unit tangential (n−1)-form. We may regard it as the δ-measure

placed on the surface σl (to be written as δσl
). We denote by σl the unit normal vector

(inward) to ∆. Given a 1-form u, the inner-product u ∧ i∗σl
1 evaluates (at each point on σl)

the normal component of u with respect to the surface σl. Identifying u as a co-vector u, we

may calculate u ∧ i∗σl
1 = i∗σl

(u · σl), which is the restriction of the n-form (u · σl) onto the

surface σl. For a Hamiltonian co-vector u =
∑

j(∂xjh)dvj, we obtain

∑

j

(∂xjh)(∂vjf∆) =
∑

l

i∗σl
(∇xh · σl), (54)

which evaluates the normal velocity of the surface σl driven by the Hamiltonian flow ad∗
h. If

h ∈ gL, ∇xh is a linear function of vj. On the other hand σl is a constant vector on each

σl‡. Therefore, the normal velocity is a linear function of vj , i.e. ad∗
h gives an affine map in

v-space; hence, the surface σl remains flat.

4.3. The Poisson bracket of the mesa system

We formulate a reduced Lie-Poisson bracket such that

{G,H}L = 〈[g, h], f∆〉〉, ∂fG = g, ∂fH = h ∈ gL. (55)

‡ We may include in h a purely velocity term like |v|2, which does not appear in the v-space transport

term ∂xj ∗h∂vjf∆. However, the corresponding x-space transport term is affected, by which the Lie- Poisson

algebra may not be closed.
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Before showing how {G,H}L works as a “reduction” of the Vlasov bracket {G,H}, we start

by examining how the right-hand side of (55) evaluates.

4.4. Separation of v-space:

For g, h,∈ gL, we may write

g =
n∑

k=0

αk(x)v
k, h =

n∑

k=0

βk(x)v
k. (56)

Remember the notation (55); with ∂x0 = 0, we observe

〈[g, h], f∆〉 =
n∑

j,k=0

〈[(∂xjαk)βj − (∂xjβk)αj]vk, f∆〉

=
n∑

j,k=0

∫

X

[(∂xjαk)βj − (∂xjβk)αj]

(∫

V

vkf∆d
nv

)
dnx. (57)

Notice that, due to the closedness of gL (Lemma 1), only vk appears in the integrand.

Performing the v-space integral, we obtain

pk :=

∫

V

vkf∆d
nv = |∆|

1

n + 1

n∑

k=0

Vk
l , (58)

with the volume

|∆| =

∫

∆

1dnv =
1

n!
det(V̇ j

k ), (V̇
j
k = V j

k − V j
0 , j, k = 1, · · · , n).

Notice that p0 = |∆| (because we put V k
0 = 1). Using these parameters, we may write

〈[g, h], f∆〉 =
n∑

j,k=0

∫

X

(∂xjαk)(p
kβj)− (∂xjβk)(p

kαj)d
nx (59)

4.4.1. Parameterization of OL: In order to restrict O to OL, the parameters characterizing

a functional H ∈ OL are limited to p0, p1, · · · , pn. For H(p0, · · · , pn), the chain rule reads

δH =

∫

M

∂fHδfd
nvdnx =

∫

X

n∑

k=0

∂pkHδpkd
nx.
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By δpk =
∫
V
vkδfd

nv, we obtain

∂fH =
n∑

k=0

(∂pkH)vk(k = 0, · · · , n). (60)

Comparing this with (56), we may put αk = ∂pkG, βk = ∂pkH in (59), to obtain

{G,H}L =
n∑

j,k=0

∫

X

(∂xj∂pkG)(p
k∂pjH)− (pk∂pjG)(∂xj∂pkH)dnx. (61)

To rewrite (61) in a more transparent form, let us denote P = (p0, p1, · · · , pn)T , p =

(p1, · · · , pn)T , ∂P = (∂p0 , ∂p1 , · · · , ∂pn)
T ,and∂p = (∂p1 , · · · , ∂pn)

T . In (61), the terms including

k = 0 are summarized as

∫

X

−(∂p0G)∇ · (p0∂pH)− (∂pG) · p
0∇(∂p0H)dnx, (62)

and from k = 1, · · · , n (here we assume n = 3 for the convenience of vector notation)

∫

X

−(∂pG) · [(∇× p)× (∂pH) + p∇ · (∂pH) +∇(p · (∂pH))]d3x. (63)

The bracket {G,H}L is the sum of (62) and (63):

{G,H}L = (∂PG, JL∂PH),

JL =




0 −∇ · (p0◦)

−p0∇ −(∇× p)× ◦ − p(∇ · ◦)−∇(p · ◦)


 (64)

4.5. Vertex dynamics

4.5.1. Co-adjoint orbit of vertexes Since f∆ is totally characterized by the vertexes

Vl(x)(l = 0, · · · , n), we can parameterize H(f∆) as H(V0, · · · ,Vn). Rewriting the

Hamiltonian in terms of V j
l , we obtain the system of equations that dictates the co-adjoint
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orbits of vertexes. However, the totality of possible functionals G(V0, · · · ,Vn) is larger than

OL (if n ≥ 2) .

4.5.2. Poisson operator In response to the motion of the vertexes, the simplex ∆ moves

to modify the distribution function f∆; its action, caused by a Hamiltonian h = ∂fH, is

represented by a Poisson operator given bellow. In (64) , we have already derived the Poisson

operator (JL ) acting on the “fluid observables” based on the configurations space X. Here

we write down the Poisson operator in a more näıve form (i.e. for kinetic observables) to see

how it operates in the phase space M ; in rewriting

{G,H} = 〈g, [h, f∆]
∗〉, ∂fG = g, ∂fH = h, (65)

the Poisson operator is

J = [◦, f∆]
∗ =

n∑

j=1

(∂vjf∆)∂xj − (∂xjf∆)∂vj . (66)

For the first term of J , we have already derived an explicit representation (54), which now

reads

(∂vjf∆)∂xj =
∑

l

i∗σl
σl · ∂xj =

∑

l

δσl
σl · ∂xj . (67)

The second term requires a more involved analysis, because we have to evaluate the reaction

of f∆ against the perturbation of the vertex points Vl(x) that have x dependences. In what

follows, we will derive the following representation for n = 2:

(∂xjf∆)∂vj = −
∑

l

δσl
[(σl · ∂xjWl−1)τ̄l−1 + (σl · ∂xjVl+1)]∂vj , (68)

where Wl = Vl − Vl−1, and τ̄l is the coordinate (normalized) interpolating Vl−1 and Vl.
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4.5.3. Preparation of symbols for 2D system: In 2D v-space, a simplex (triangle) has 3

vertexes V0, V1, V2 (we give the indexes in anti-clockwise order, and indexes are mod 2). We

denote

Wl = Vl − Vl−1, Ll = |Wl|.

The vector Wl spans the side σl+1 (remember that σl+1 faces Vl+1). The inward unit normal

vector on σl+1 is

σl+1 =
1

Ll




−W 2
l

W 1
l


 . (69)

The tangential coordinate on σl+1 is

τl =
1

Ll

(
W 1

l v
1 +W 2

l v
2
)
, (70)

which starts from Vl−1 and ends at Vl when τl = Ll. A point on σl+1 is given by the

interpolation formula:

v = τ̄lVl + (1− τ̄l)Vl−1 = Vl−1 + τ̄lWl, τ̄l =
τl
Ll

. (71)

This normalized coordinate τ̄l will be used to identify points on σl+1.

4.5.4. x-space vector: To calculate ∂xf∆, we have to evaluate the reaction of f∆ to the

displacement of the vertexes Vl(x). When a function f(t) is shifted by δt on the t-coordinate,

the local value of f(t) will be changed by δf (t) = −(∂tf)δt. Applying this relation to the

deformation of f∆ by the shifts of vertexes Vl, we obtain

δf∆ = −
∑

l

[
δσl+1

(σl+1 · δVl
)τ̄l + δσl−1

(σl−1 · δVl
)(1− τ̄l+1)

]
.



CONTENTS 36

Hence,

∂xjf∆ = −
∑

l

[
δσl+1

(σl+1 · ∂xjVl)τ̄l + δσl−1
(σl+1 − ∂xjVl)(1− τ̄l + 1)

]

= −
∑

l

δσl
[(σl · ∂xjWl−1)τ̄l−1 + (σl · ∂xjVl+1)]. (72)

4.5.5. Lie-Poisson bracket (in terms of vertexes) Here we construct the Lie-Poisson bracket

from the Poisson operator [◦, f∆]
∗:

〈g, [h, f∆]
∗〉 =

n∑

j=1

〈g, (∂vjf∆)(∂xjh)− (∂xjf∆)(∂vjh)〉

=
n∑

j=1,k=0,m=0

〈αkv
k, (∂vjf∆)(∂xjβmv

m)〉 − 〈αkv
k, (∂xjf∆)(∂vjβmv

m)〉.

The first term under the summation on the right-hand side may be written as

〈αkv
k, (∂vjf∆)(∂xjβmv

m)〉 =

∫
αk(

∫
vkvm∂vjf∆d

nv)∂xjβmdnx =: (αk,Kjkm∂xjβm)X,

where (a, b)X =
∫
Xa(x)b(x)dnx. On the other hand, the second term defines

〈αkv
k, (∂xjf∆)(∂vjβmv

m)〉 =

∫
αk(

∫
vk∂xjf∆d

nv)δjmβmdnx =: (αk,Ljkmδjmβm)X.

Combining these two, we define the Poisson operator

Jjkm = Kjkm∂xj − Ljkmδjm, (73)

by which (55) reads

{G,H} =
n∑
j = 1, k = 0,m = 0(∂vkg,J jkm∂vmh). (74)

Using (68), we obtain

Kjkm =

∫
vkvm∂vjf∆d

2v =
∑

l

σj
l+1

∫ Ll

0

vkvmdτl.
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We evaluate, (71),

χkm
l :=

1

Ll

∫ Ll

0

vkvmdτl =
1

3
(V k

l + V k
l−1)(V

m
l + V m

l−1)−
1

6
(V k

l V
m
l−1 + V k

l−1V
m
l ).

By our notation (52), we have put V 0
l = 1(∀l). Using this coefficient and (69), we now have

Kjkm = (−1)j
∑

l

(V j′

l − V j′

l−1)χ
km
l ,

where j′ = 2(1) for j = 1(2). On the other hand, by (72) we evaluate
∫
vk∂xjf∆d

2v:

Ljkm = −δjm
∑

l

Ll−1

[
σl · ∂xjVl−1

(
1

3
V k
l−1 +

1

6
V k
l+1

)
+ σl · ∂xjVl+1

(
1

3
V k
l+1 +

1

6
V k
l−1

)]
.

Combining there expressions, the Poisson operator is now given as

J jkm = (−1)j
∑

l

(
V j′

l − V j′

l−1

)
χkm
l ∂xj

+ δjm
∑

l

Ll

[
σl · ∂xjVl−1

(
1

3
V k
l−1 +

1

6
V k
l+1

)

+ σl · ∂xjVl+1

(
1

3
V k
l+1 +

1

6
V k
l−1

)]
. (75)

5. Building simulation code for the two-dimensionally expanded Water-bag

model

5.1. two-dimensional Vlasov-Ampére system

In the previous section, we introduced the formulation of “mesa” model based on the

literature[16]. In this section, we will actually build a numerical calculation scheme based on

the contents. The Vlasov-Amp ére Hamiltonian is expressed as follows [17].

H =
1

2

∫

M

|v|2fdz +H(E,B). (76)
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What is important here is that the Hamiltonian is represented by the sum of the momentum

term and the energy term of the electromagnetic field in the absence of the electromagnetic

field. Therefore, it is possible to calculate the effect when the electromagnetic field does not

exist and the effect of the electromagnetic field individually, and then superimpose them to

calculate the time change of the correct velocity contour line Vl.

5.2. The Hamiltonian without an electromagnetic field

The Hamiltonian of the two-dimensional Water-bag model in the absence of an

electromagnetic field can be written as follows.

HK(Vl) = H(f)|v=Vl
= −

1

6
|Vl|

3 (77)

∂fHK = −∂Vl
HK(Vl) = −

1

2
|Vl|

2

Therefore, the time change of the velocity contour line can be written as follows.

∂tV
j
l = −|Vl|∂xV

j
l (78)

5.3. Contribution of electromagnetic field

Next, we consider the Hamiltonian electromagnetic field term. In this case, the calculation

can be facilitated by changing the degree of freedom of f from the contour line Vl of the

distribution function to p of Eq.(58). The electric and magnetic fields in this case are

Ej = ∇A0 + ∂tA
j

B = ∇× (A1 · · ·An)T
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with the potential



A0 = −(−□)−1 q

ϵ0
p0

Aj = −(−□)−1qµ0p
j (j = 1 · · ·n)

where (−□)−1 is the operator such that

−□(−□)−1p′ = p′.

where −□ = −∆+ 1
c2
∂2t and p′ is the vector such that





p′0 = 1
ϵ0
p0

p′j = µ0p
j (j = 1 · · ·n).

We define the quadratic form

HEMF (Vl, t) = q2
∫ ∞

−∞

〈−(−□)−1p′,p′〉δ(t− t′)dt′ =

∫

X

ϵ0|E|2 + |B|2

µ0

2
dnx.

For Eq.(60), ∂fH can be represented by following ∂pHEMF :

∂pjHEMF =





1
ϵ0
∂p′jHEMF (j = 0)

µ0∂p′jHEMF (j > 0)

∂p′jHEMF = lim
ε→0

∫ ∞

−∞

q2〈−(−□)−1(p′j + εδ), p′j + εδ〉 − q2〈−(−□)−1p′j, p′j〉

εδ
δtdt

= lim
ε→0

∫ ∞

−∞

q2
∫
M
(Aj + εG)(p′j + εδ)dz − q2

∫
M
Ajp′jdz

εδ
dt

= 2q2〈p′j, G〉, (79)

where δt = δ(t− t′) and G is the Green function of −□ such that −□G = δδt. With Eq.(60),

the time change of Vl due to the effect of HEMF is,

∂tV
k
l (x

′k) =

∫

X

δ(x− x′)q2
(
〈p′k, G(x− x′′)〉+ 〈Ak, δ(x− x′′)〉

)
V k
l dx

′′k

=

∫

X

δ(x− x′)q2
(
〈p′k, G(x− x′′)〉+ 〈p′kG(x− x′′), δ(x− x′′)〉

)
V k
l dx

′′k
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= 2

∫

X

δ(x− x′)q2〈p′k, G(x− x′′)〉V k
l dx

′′k (80)

6. Verification of simulation code for two-dimensionally extended Water-bag

model

Time plots are made for the two Casimirs (ρ̄ =
∫
X
ρd2x, which is the total number of

particles, and C =
∫
X
ω2/ρd2x, which is the enstrophy when ρ is a consistant (the flow is

incompressible).) to verify the validity of the simulation code, showing that the changes are

small enough. From Eq.(77), Hamiltonian can be divided into a component that depends

on the electromagnetic field and a component that does not depend on the electromagnetic

field. In this section, the simulation is created and verified under the condition that the

Hamiltonian does not include the electric field term§.

6.1. Initial conditions of the distribution function

The initial conditions of the distribution function as

Vl = Rθ(x1,x2,l)




5 + 0.1sin(2πx1x2)

0


 (81)

θ(x, y, l) =
πl

n+ 1
(x2 + 3)(

1

3)(x1 + 3)(
1

2) (82)

where Rθ is the rotation matrix with the angle of rotation θ. Simple demonstration of the

distribution function in this initial condition is shown in Fig. 5.

§ In this simulation, I gave up electromagnetic field calculation because the calculation of Green’s function

G(x1, x2, x′′1, x′′2, t, t′′) requires a large storage area when sufficient calculation accuracy is guaranteed.
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Figure 5. Initial conditions of two-dimensional simulation. The vertical axis represents the

velocity v1, and the horizontal axis represents the velocity v2. The color bar shows the value

of f(x,v, t)|
x=(0,0)T and the white regions correspond to f(x,v, t) = 0.

6.2. Result

To verification, we show the time variation of C, ρ̄, which are expected to be small, and

indeed the results in Fig. 6 meet that expectation.

7. Conclusion

Caused by the limit of the state that the model can express, kinetic effects are usually

discussed as physical phenomenon. However, they can be separated clearly into (i) the
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geometrical effect of (the degree of freedom of) the model and (ii) the effect of physical

phenomena by expressing the former with the effect of the Poisson bracket {, } and the

latter with the effect of the Hamiltonian H. From the perspective of the degree of freedom,

some observables can become Casimir invariants determined by the Poisson bracket of the

model, which give us an index of model evaluation in another model that has more degrees

of freedom.

Finally, we clarified the relationship between different levels of the hierarchy of the water-

bag model—containing both the kinetic model and the fluid model—in terms of the degree

of freedom. Uj is a Casimir invariant in the N -bag model but is not in the N +1-bag model,

and the symmetry can be represented as whether one contour line can be expressed as a

linear combination of the remaining contour lines in k = i, i+ 1
2
, i+1 (when focusing on Uj).

This means that such degeneracy of the degree of freedom in the N + 1-bag model caused

by the Hamiltonian constructs a leaf Uj = constant, which corresponds to the space of the

N -bag model.

Additionally, for the two-dimensionally extended Waterbag model, we were able to build

a Casimir-preserving simulation of the fluid model (neglecting electromagnetic field) for 1-

bag model (that is, with the same degree of freedom as the fluid model). Even when there

are a plurality of waterbags, they can be similarly associated by the formulation shown in

the reference [16].
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Figure 6. Horizontal axis represents time, vertical axis represents rate of change of C (upper

figure) and ρ̄ (upper figure) from its initial value. The conditions of this simulation do not

include the effects of electromagnetic fields. The time variation of both variables is small

enough.


