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Abstract

Nowadays, video data are increasing explosively on the Internet. Processing video

data is a challenging task. Video summarization can summarize the long orig-

inal video into a short and concise summary to help us with processing video

data. Deep learning based methods regard video as a sequence of frame features.

Deep conventional neural networks (CNN) are used to extract the feature vec-

tors for each frame of the video. Then summarization networks are designed to

process the temporal information between frame features, like long short-term

memory (LSTM). In this thesis, to solve this video summarization task, I apply

reinforcement learning methods with a hierarchical structure to video summariza-

tion. Besides, I design a sub-reward and a subgoal for the hierarchical structure to

enhance the ability of processing long temporal dependence and avoid the sparse

reward problem. Task-level labels are used to train my model. Compared with

supervised learning methods, my model requires a much smaller number of labels.

The amount of required annotations have been reduce to 1/20 with our methods.

Experiments on two benchmark datasets by two different metrics show that my

proposal has improve the performance effectively.
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Chapter 1

Introduction

1.1. Video Summarization

Nowadays, there are a lot of videos being uploaded into the Internet. Analyz-

ing video data becomes very important to our daily life, such as action recognition,

video surveillance and so on. Image processing has developed a lot in the past.

Therefore, a video is usually regarded as a sequence of image frames. However,

compared to image data, video data are extremely larger. A 5-minute video can

contain over 5 thousands of frames with 30 fps. To solve this problem, researchers

pay attention to video summarization. Video summarization is aimed to repre-

sents an original long video with a concise short summary. Processing a concise

summary can be much more efficient than processing an original video.

There are some tasks similar to video summarization, such as movie trailer [2]

and key frame selection [3]. However, these tasks focus on predicting a single score

for frames without considering the temporal dependence between different frames.

Thus, some important information could be lost in their results and the com-

pleteness of the original video could not be promised. Video summarization task

considers the temporal dependence between frames and is expected to generate a

short summary, which can cover all the important information and the complete

story of the original video. As Figure 1.1, video summarization can be divided into

three parts, pre-processing, summarization and post-processing. During the pre-

processing, a pre-trained deep CNN is used to extract the vector features for each

frame. A pre-trained deep CNN is trained on a very large scale of image dataset,

such as ImageNet [4]. The features extracted by the deep CNNs [5][6][7] have been

1



Chapter 1. Introduction 2

Figure 1.1 – Overview of video summarization

applied into several fields of computer vision and achieved a great performance.

Then the sequence of frame features are inputted into the summarization network.

The summarization network could be composed of different kinds of models, such

as recurrent neural network (RNN) and CNN. Then importance scores for each

frame are predicted by the summarization network we build. Finally, according to

the importance scores and frame features, the video summary is generated after

post-processing.

Recent years, researchers have applied deep learning techniques into video

summarization. [1] utilizes long short-term memory (LSTM) as summarization

network. LSTM can catch up the temporal dependence and predict the importance

score for each frame. They also propose a model enhanced by Determinantal Point

Process module to improve diversity of result. Temporal segmentation is usually

used in the pre-processing as a determinate algorithm. [8] proposes a hierarchical

structure, which can predict the temporal segmentation by the neural network.

Their model first predicts the temporal segmentation and then the importance

score. These kinds of supervised methods require a large number of frame-level

annotations. It costs a lot to build a large scale of dataset with annotations

for each frame of each video. Besides, annotations tend to be subjectivity when

various people are asked to annotate each small temporal interval for the same



Chapter 1. Introduction 3

video.

Some researchers explore methods requiring no annotations such as in [9][10].

[9] utilizes generative adversarial network with a well designed encoder and de-

coder. They hold the view that the distance of the distributions of a good sum-

mary and the original video should be small. Then they can use a discriminator

to distinguish the generated summary and the original video. [10] proposes a rein-

forcement learning method. They define a diversity-representativeness reward to

train the summarization network by policy gradient. However, their reward can

only be obtained when the whole summary is generated. This kind of reward is

sparse to evaluate a long sequence of actions.

The existing weakly supervised methods require only category labels for each

video, such as in [11][12]. However, the existing methods require much more web

videos to train the target dataset. Prior knowledge is obtained from the web

videos. For example, [12] train a variational autoencoder on the web videos to

get a prior distribution. Then their model is trained on the target dataset using

the prior distribution as the prior knowledge. This kinds of methods require too

many web videos other than the target dataset.

1.2. Reinforcement Learning

Reinforcement learning focuses on how an agent interacts with an environment.

As shown in Figure 1.2, the agent takes action at according to its current state

st and receives a reward rt from the environment. Each action will change its

state from st to st+1 and lead to positive reward or negative reward. The data

< st, at, rt, st+1 > required for training are sampled by agent’s interacting with

environment. Aimed at achieving a good result, the agent adjusts the policy π

of action according to the received rewards. In this way, researchers have no

need to annotate and collect the data. And it can be widely applied into various

complicated tasks. With deep learning technique developing, deep reinforcement

learning attracts a lot of attentions from researchers.
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Figure 1.2 – Explanation of Reinforcement Learning.

At present, there are two most popular kinds of reinforcement learning meth-

ods, Q learning and policy gradients. Q learning method is aimed at approximating

the Q function. The Q function is defined as the expected return if we take actions

following the current policy.

Qπ(st, at) = E[Rt]. (1.1)

The return is a weighted summing up of successive rewards. It is defined as

following:

Rt = rt + λrt+1 + λ2rt+2 + ... (1.2)

If the Q function can be well evaluated, the optimized policy can be represented

as π∗ = argmaxaQ(s, a). The Q function is approximated by < st, at, rt, st+1 >

following the Bellman equation:

Qπ∗
(st, at) = rt + maxat+1Q(st+1, at+1). (1.3)
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A deep neural network can be used to model the Q function. Thus, this neural

network can be trained by gradient descent with the objective function L. This

kinds of Q leaning is Deep Q Network (DQN).

L =
1

2
[r + λmaxat+1Q(st+1, at+1)−Q(st, at)]. (1.4)

On the other hand, policy gradients method directly optimizes in the action

space. In Q learning, Q function is to evaluate total expected rewards (return) Rt

for the current state st and action at. If we want to know which action to take,

we need to compare the returns of all actions available, namely argmaxatQ(st, at).

Differently, policy gradient usually utilizes a neural network to predict the proba-

bility of action. The best action to take in a specific state should have the highest

probability. And when we sample the data < st, at, rt, st+1 >, all the actions are

sampled according to the probability. In policy gradient, the network πθ (θ is

the parameter of network) is also trained to maximize the total expected rewards.

According to REINFORCE [13] algorithm, the derivative of the objective function

is as follows:

▽θJ(θ) = E[▽θlogP (at)Rt], (1.5)

where P (at) is the probability of action at.

These two kinds of methods have their own strength and weakness. The Q

function of Q learning can be too complex to learn in some problems. Policy

gradient usually converge faster than DQN but it tends to be local optimal. Q

learning usually requires a discrete action space, while policy gradient can be easily

applied into continuous action space. As for sampling the data, Q learning show a

much better efficiency to sample data and thus it is much more stable than policy

gradient.

There are also some methods combining this two kinds of methods together.

Actor-critic method use an actor to take action and a critic to evaluate the state-

action pair. The actor is trained by policy gradient and the critic is trained to

approximate the Q function.

Applying the reinforcement learning into different fields is usually let the agent
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take a series of actions. In some cases, the reward is hard to define and we can

only receive a global reward when all the actions are taken. This kind of reward

is too sparse to evaluate all the actions. As shown in Figure 1.3, four actions are

taken and one global reward is received. The black numerical value is the actual

reward for each action. But we can’t receive it from the environment. The global

reward is averaged to evaluate each action. In this way, it can be seen that the

second negative action is evaluated as a positive action.

Figure 1.3 – Illustration of sparse reward problem.

Hierarchical reinforcement learning is aimed to solve this sparse reward prob-

lem. [14] proposes a practical framework to implement the idea of hierarchical

reinforcement learning. Their agent consists of a Manager and a Worker. The

Manager deals with subtask and learn the information of subtask to help the

Worker take action.

1.3. Proposal and Contributions

In this thesis, I aim to improve the reinforcement learning methods for video

summarization task. I propose a hierarchical reinforcement learning based video

summarization method, which only requires a small number of annotations. The

main idea of my proposal is to divide a whole task into several subtasks, where

each subtask is assigned a subgoal to achieve. I also define a task-level annotation

to enhance the performance. The number of task-level annotations is much smaller

and it can also reduce the subjective differences between different annotators who

are only required to annotate each subtask. More importantly, my proposal can

solve the existing long dependence problem and sparse reward problem. The

work [15] published has shown the improvement of this proposal.
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There are the main contributions as follows:

I propose a divide-and-conquer method to divide the whole task into several

subtask. In this way, it is possible to solve the long dependence problem.

A hierarchical structure is proposed based on the divide-and-conquer idea.

My agent network consists of two networks, a Manager and a Worker. The

Manager is trained evaluate the subtask while the Worker is trained to eval-

uate each frame within the subtask. The Manager also share the information

to the Worker. In this way, the performance could be improved.

A subgoal and sub-reward are well designed. The subgoal is set by the

Manager and is used to guide the Worker to achieve the subgoal for the

subtask. The sub-reward gives a reward signal to the agent and it is used

with the global reward. With help of them, we can avoid the sparse reward

problem.

A weakly supervised method is proposed. Subtask labels are designed to

train the Manager. Compared to the supervised methods requiring frame

labels, a much smaller number of annotations is needed. This can reduce the

cost of time and labor to build a large scale of video summarization dataset.

I compare my method with supervised and unsupervised methods. Two

kinds of metrics are used to evaluate the performances. Experiments on two

benchmark dataset shows the improvement of my proposal.

1.4. Organization of This Thesis

In this thesis, I begin to introduce the related works of video summarization

and reinforcement learning in Chapter 2. Then I will introduce my proposal of

using hierarchical reinforcement learning for video summarization in Chapter 3.

Chapter 4 shows the experiments to evaluate the performance on two benchmark

datasets. Finally, I will draw the conclusion and talk about my future work.



Chapter 2

Related Works

2.1. Video Summarization

Video summarization is the task to generate a short summary for a given long

original video. Recently, researches on video summarization have been explored

extensively and achieved great advances. Summarization networks are designed to

process the temporal dependence and predict the importance scores of each frame.

Then frames with higher importance scores are included into the generated sum-

mary. The existing methods can be roughly divided into three kinds: supervised

methods, unsupervised methods and weakly supervised methods.

2.1.1. Supervised Methods

Supervised methods utilize the frame-level annotations to train the summariza-

tion network to predict the importance scores [1][8]. The video data is a sequence

of frames. Therefore, recurrent neural networks (RNN) are applied to capture the

Figure 2.1 – The repeating module in an LSTM contains four
interacting layers

8
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Figure 2.2 – The model vsLSTM [1] is implemented by bidirec-
tional LSTM layers.

temporal information of the sequence. There are some variants of RNN and the

most popular is long short-term memory (LSTM) [16]. LSTM is designed to deal

with vanishing gradient problem and gradient exploding that are the common

problems in traditional RNN. Compared to RNN, LSTM can process the long

temporal information better by the gate mechanism. As shown in Figure 2.1, a

common LSTM unit consists of a cell, an input gate, an output gate and a forget

gate. The cell is the values over arbitrary time intervals and the three gates con-

trol the information into and out of the cell. In this way, LSTM can enhance the

ability of processing temporal sequence data.

[1] began to utilized LSTM as the summarization network to predict the

importance scores. They define two kinds of models: vsLSTM and dppLSTM. As

show in Figure 2.2, vsLSTM is implemented by bidirectional LSTM layers, which

could consider temporal information together in the past and in the future. The

hidden outputs {hforward
t , hbackward

t } of bidirectional LSTM and the frame feature

xt are concatenated to be input into a MLP layer to predict the importance score

yt for each frame.

yt = fθ([h
forward
t , hbackward

t , xt]), (2.1)
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Figure 2.3 – The model dppLSTM [1] is an extension of vsLSTM
with DPP.

where fθ(·) represents the MLP layer and θ is the parameters.

As show in Figure 2.3, dppLSTM is an extension of vsLSTM, which is enhanced

by modeling pairwise repulsiveness. Determinantal point process (DPP) is utilized

to reduce the redundant frames and increase the diversity of the selected frames.

They noted that the diversity of a summary can only be measured when the

generation procedure is finished. LSTM has no capability to measure the diversity

on the whole summary. It is also at the risk of causing higher recall but lower

precision. But with help of DPP, the extensive LSTM can solve these problems.

For a ground set Z of N items (in their case, all frames of a video), an N ×

N kernel matrix L stores the pairwise frame-level similarity. DPP encodes the

probability to sample any subset from the ground set [17][18]. The probability of

a subset z is proportional to the determinant of the corresponding principal minor

of the matrix Lz:

P (z ∈ Z;L) =
det(Lz)

det(L+ I)
, (2.2)
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where I is the N ×N identity matrix. If there are two identical items, the deter-

minant of the subset matrix equals zero.

To implement the L matrix, they use the output of LSTM:

Ltt′ = ytyt′ϕ
T
t ϕt′ , (2.3)

where the similarity between frame xt and xt′ are modeled with the inner product

of ϕt and ϕt′ :

ϕt = fS(h
forward
t , hbackward

t , xt), (2.4)

ϕt′ = fS(h
forward

t′
, hbackward

t′
, xt′ ). (2.5)

These kinds of supervised methods require labels for each frame to train a

LSTM-based model. Consequently, it is hard to build a large scale of dataset for

video summarization, which cost a lot of time and labour. Besides, the annotations

from different users tend to be subjective.

2.1.2. Unsupervised Methods

Collecting annotations for each frame of each video is very tedious. Unsuper-

vised methods with well-designed criteria [19][10] require no annotation. There-

fore, a much larger number of videos can be utilized to train the model. Some

researches have focused on video summarization by clustering [19][20]. The sim-

ilar frames are aggregated in the same cluster and the center of each cluster was

selected into the final summary. It is also popular to use the generative adversar-

ial network (GAN) [21]. In GAN, there are two networks, one generator and one

discriminator. The generator is trained to generate fake data to fool the discrim-

inator. The discriminator is trained to distinguish the ground truth data and the

fake data.
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Figure 2.4 – The structure of SUM-GAN.

SUM-GAN [9] uses GAN with a defined summarizer. As shown in Figure 2.4,

summarizer consists of a selector (sLSTM), a encoder (eLSTM) and a genera-

tor (dLSTM). cLSTM is the discriminator. For a sequence of frame features

{x1, x2, ..., xt, ..., xM}, the sLSTM predicts importance scores {s1, s2, ..., st, ..., sM}

for each frame. Each frame is weighted by the importance scores and then for-

warded into the eLSTM. The eLSTM encodes it to a code e. And the dLSTM

generates a sequence of frame features {x̂1, x̂2, ..., x̂t, ..., x̂M}. They hold the view

that the distance between the distribution of original videos {x1, x2, ..., xt, ..., xM}

and their summaries {x̂1, x̂2, ..., x̂t, ..., x̂M} is supposed to be small. Therefore,

the cLSTM is trained to distinguish original videos {x1, x2, ..., xt, ..., xM} and gen-

erated summaries {x̂1, x̂2, ..., x̂t, ..., x̂M}. Their eLSTM and dLSTM can also be

considered as an autoencoder (AE) [22].
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Figure 2.5 – The structure of DR-DSN.

DR-DSN [10] uses the reinforcement learning method with well-designed diver-

sity and representativeness rewards. As shown in Figure 2.5, the main difference

of DR-DSN from the supervised methods is that the predicted importance scores

are regarded as the parameters of action distributions. Their model is also im-

plemented by bidirectional LSTM to predict the importance score for each frame.

Each importance score is regarded as a probability pt of a binary distribution. The

action is sampled from the distribution:

at ∼ Bernoulli(pt), (2.6)

where at ∈ {0, 1} represents whether to select the i-th frame into summary or not.

The summary is generated by a series of actions. Then the reward is computed

using the generated summary. The whole summarization network is trained by

policy gradient.

In DR-DSN, they defines a global reward, which consists of the diversity reward

and representativeness reward. Diversity reward is defined to measure the degree

of diversity of one generated summary. It is computed through measuring the

dissimilarity among all the selected frames in the feature space. Given a generated

summary Y = {yi|ayi = 1, i = 1, ..., |Y |}, the Rdiv is computed as the mean of the
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pairwise dissimilarities among all the selected frames {x1, x2, ..., xt}:

Rdiv =
1

|Y |(|Y | − 1)

∑
t∈T

∑
t′∈Y,t′ ̸=t

d(xt, xt′), (2.7)

where d(·, ·) is the dissimilarity function:

d(xt, xt′) = 1− xt
txt′

||xt||2||xt′ ||2
. (2.8)

The Rdiv is aimed to make the generated summary much more diverse. However,

this definition doesn’t consider the temporal information. And when two frames

are far away from each other temporally, they are absolutely diverse from each

other. So they set d(xt, xt′) = 1 if |t− t′| > λ.

Representativeness reward is defined to measure how well the generated sum-

mary can represent the original video. To achieve this, they define the represen-

tativeness as the k-medoids problem [23]. Particularly, they expect the DS-DSN

can choose a set of medoids to minimize the mean of squared errors between video

frames and their nearest medoids. Therefore, the Rrep is defined as the following:

Rrep = exp(− 1

T

T∑
t=1

mint′∈Y ||xt − xt′ ||2). (2.9)

The Rrep encourages the DR-DSN to select frames that are close to the cluster

centers in the feature space. These two rewards are combined to be the diversity-

representativeness reward:

Rdr =
1

2
Rdiv +

1

2
Rrep. (2.10)

Note that the Rdr is a kind of global reward, which is computed when the whole

summary is generated. It is an evaluation for the whole generation. Then the

summarization network is trained by policy gradient using this global reward.
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Figure 2.6 – Explanation of web prior.

2.1.3. Weakly Supervised Methods

Weakly supervised methods use a smaller number of labels than supervised

methods. The existing weakly supervised methods utilize the prior knowledge to

train the summarization network. While supervised methods require the ground

truth score for each frame of one video, weakly supervised methods require only

the category label of one video. Annotating the category of one video costs much

less time and labour than annotating the importance for each frame. Nowadays,

there are a lot of edited web videos with category labels on web repositories (like

YouTube). Therefore, researchers are motivated to utilize the large collection of

web videos.

[12] proposes to get a web prior by a large collection of web videos. Their

model is variational encoder-decoder. But different from the standard variational

autoencoder (VAE) which assumes the latent variable z to be drawn from latent

Gaussian (e.g., p(z) = N(0, I)), their prior distribution is learned from the web

videos with category labels. As show in Figure 2.6, web prior z is gotten by

training a VAE with web videos and this web prior is used to help train the other

VAE with the targeted video datasets. With data augmentation, the performance

of video summarization can be improved.
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[11] also proposes to utilize a large collection of web videos. They use videos

with category labels to pretrain a classification network. The weights of the pre-

trained classification network is freezed. Their summarization network is trained

by deep Q-learning. The action is to remove redundant frames from the whole se-

quence of frames. The generated summary is input into the classification network.

They define two rewards to utilize the prior knowledge. The global recognisability

reward is to use the classification results of video summaries:

rgt = δ(ŷ == y)− 5(1− δ(ŷ == y)) s.t. t = T, (2.11)

where ŷ = y means that the generated summary can be classified as the expected

category. Therefore, this reward will be 1 for the good summary and −5 for the

bad summary.

The local relative importance reward is computed when action at is taken

to remove frame causing the change from st to st+1. The classification network

classifies st and st+1, resulting in ξt and ξt+1, which represent the rank of the true

category.

rlt = 0.05(1− at) + h(ξt, ξt+1)

s.t. h(ξt, ξt+1) = tanh(
ξt − ξt+1

η
), t < T,

(2.12)

where η is a scaling factor, h(ξt, ξt+1) measures the importance of the removed

frame. Therefore, if the classification result of the left frame sequence becomes

better, a higher reward can be received.

In a word, the existing weakly supervised methods require only category label

for each video. However, a large scale of web videos are required to obtain the

prior knowledge.
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2.2. Reinforcement Learning

Reinforcement learning has been explored a lot in recent years. It focuses on

how the agent interacts with an environment. The environment get a reward feed-

back to the agent. The agent is learned by experience data sampled by interacting

with the environment. The way in which reinforcement learning method trains the

agent is much more similar with the learning procedure of human beings. It can

be applied into various kinds of task. Therefore, reinforcement learning becomes

very popular and attracts the attention from researchers.

2.2.1. Deep Q Network

[24] utilized a deep neural network to approximate the Q function and achieved

great performance on many Atari games. They use a deep neural network to

approximate the Q value function. The input of the Q network is state (image

frame in their case). The output of the Q network is the evaluated return value

of each possible action. As shown in Section 1.2, DQN is trained by optimizing

the objective function L.

L(θ) = Eθ[(y −Q(s, a; θ))2], (2.13)

where y = r + λmaxaQ(s, a; θ). Reward r is received from the environment.

In other word, experiences of the agent at each time-step can be noted as <

st, at, rt, st+1 >. These experiences are sampled to train the DQN. They pro-

pose the experience replay mechanism to store these experiences in a memory.

Then they apply the minibatch updates to data samples in the replay memory.

Compared with updating the network at each step of experience, this replay mech-

anism can utilize data more efficiently and avoid the inefficient problems caused

by the strong correlation between the consecutive experiences. More importantly,

training online could be stuck in a local optima, or even diverge extremely.

[25] proposes to use two same neural networks, double DQN. One is just trained

similarly as DQN. The other one is copied from the first model, which is updated at
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last episode. Let us note the parameters of the first model as θ and the parameters

of the second model as θ
′ . They have:

y = r + λQ(s, argmax(Q(s, a; θ); θ
′
). (2.14)

Namely, the first model is used to select the action and the second model is used to

evaluate the value. In this way, they can avoid the overoptimistic value estimates

caused by using the same network to select and evaluate an action.

[26] proposes dueling DQN, which divides the Q function into state function

and advantage function. They notice that in some states, rewards for all actions

are similar. They let the state function focus on the state only and the advantage

function focus on the action.

Q(s, a) = V (s) + A(s, a). (2.15)

However, directly using the equation 2.15 has the unidentifiable problem. Al-

though the form is different, it works similarly to the traditional Q function.

Therefore, in practical, the following equation is used.

Q(s, a) = V (s) + A(s, a)− 1

||a||
∑
a

A(s, a). (2.16)

DQN techniques have developed a lot these years. In [27], researchers verify

the existing techniques and combine most of improvements together to achieve

great performance including DQN, DDQN, Prioritized DDQN, Dueling DDQN,

A3C, Distributional DQN and Noisy DQN.

2.2.2. Policy Gradient

Policy gradient is directly optimized in the action space. As shown in Sec-

tion 1.2, the derivative of the object function is

▽θJ(θ) = E[▽θlogP (at)Rt], (2.17)
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[28] proposes a deterministic policy gradient (DPG) algorithm with continuous

action spaces. Rather than predict the probability of action, the agent generates

the action a = πθ(s) deterministically. They also introduce the deterministic

actor-critic algorithms, which combine the Q learning and policy gradient. There

are an actor and a critic. The critic is also trained to evaluate the action for each

state. And the actor is trained by gradient but the return is evaluated by the

critic.

▽θJ(θ) = E[▽θlogP (at)Q(st, at)], (2.18)

Actor-critic method combines the strength of DQN and DPG. It also uses the

experience replay to improve the data efficiency. Actor-critic method shows a

good performance and becomes popular for many fields.

2.2.3. Hierarchical Reinforcement Learning

The sparse reward problem will occur if the reward is only received after a

series of actions. Practically, if we apply reinforcement learning in many fields,

such as text generation, natural language processing [29][30][31] and object track-

ing [32][33], our agent usually needs to take a series of actions to finally obtain

a reward. However, in such a situation, the sparse reward makes it difficult and

inefficient to train a model [34].

Hierarchical reinforcement learning is a promising technology to solve this prob-

lem. The basic idea is to define the agent as multi-layer structures dealing with

different subtasks to learn several sub policies. The macro policy is learned to

choose different sub policies for subtasks. This kind of method can achieve a great

performance effectively with the help of domain knowledge to divide the task

and define the subtasks well. [14] proposed a flexible and end-to-end framework

for hierarchical reinforcement learning. As shown in Figure 2.7, they propose a

schematic of FeUdal networks. They divided an agent into the Manager, which

learns what the subtask is and the Worker, which learns to finish the subtask as

well as possible. For the Manager, it learns a latent state representation st and

outputs a goal gt. For the Worker, it predicts the probability of action according
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Figure 2.7 – Illustration of FeUdal networks

to the state, the environment and the goal from the Manager. The observation xt

from the environment is input into a shared perceptual module layer. The percep-

tual module layer output a shared intermediate feature zt, of which dimension is

usually smaller than one of xt. Although the goal vector is input from the Man-

ager to the Worker, there is no gradient between the Manager and the Worker. In

other word, the goal vector is detached and input to the Worker.

Recently, many researchers have applied reinforcement learning to their own

fields. However, in fields including game, image editing and so on, there are always

a series of actions to take. Sparse reward problems occur because in most cases

only a sparse global reward can be received after all actions have been taken. [35]

utilized hierarchical representations and made the agent learn an internal reward

signal to complement the sparse reward. They achieved a great performance in

a popular 3D multiplayer first-person video game. [36] applied hierarchical rein-

forcement learning to text generation. Their method was based on GANs, where

the generator consisted of the Manager and the Worker. The Manager received

the Leak information from the Discriminator to learn a subgoal for the Worker.

[37] focused on the visual storytelling task where a text sequence was generated
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according to an ordered image sequence. The Manager took features as input of

images and then generated a topic distribution as a subgoal. The Worker gener-

ated the text conditioned on the subgoal.



Chapter 3

Approaches

Our proposed method regards the whole video summarization task as the com-

bination of subtasks. In this way, we could define a sub-reward for each subtask

to avoid the sparse reward problem. The hierarchical architecture consists of a

Manager and a Worker. The Manager sets a subgoal for each subtask. The Worker

takes its action following the subgoal. In the following discussion, we define that

the whole task is separated into N subtasks. Each subtask processes n frames.

The whole task includes N ×n frames. For each step, the input of the Manager is

a sequence of frames in one subtask with size n, represented as [xi,1, xi,2, ..., xi,n].

The Manager sets a subgoal gi (i ∈ [1, N ]). Conditioned on the subgoal gi, the

Worker predicts the importance score p̂i,t (t ∈ [1, n]) for each frame within i-th

subtask. The whole task can be achieved better when the subtasks are achieved

well. Our work follows the most common procedures of video summarization

task. Therefore, we will introduce the basic procedures first and then focus on the

proposal.

22
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3.1. Basic Procedures

Figure 3.1 – Basic procedures of deep video summarization

Video summarization converts an original long video into a short and con-

cise summary. As shown in Figure 3.1, the whole framework consists of several

procedures including pre-processing, summarization, and post-processing.

A sequence of video frames is input into a pre-trained deep CNN network.

The CNN network is trained for image classification on a large scale of image

dataset. It is proved that features extracted by the pre-trained CNN network can

be applied to solve many computer vision tasks. Then the features of each frame

will be extracted. The former work [1] provides a dataset that uses GoogLeNet to

extract the features of each frame. For a fair comparing, I follow them to obtain

the sequence of features.

Then the sequence of frame features is subsampled by 2 fps. The summariza-

tion network takes the frame sequence as input and predicts the importance scores

for each frame. The summary is generated by selecting frames conditioned on the

importance score. However, it tends to be unnatural and flashed if we generate

summary directly by selecting frame by frame.

In order to promise the generated summary to be natural, temporal segmen-

tation is usually used to divide the sequence of frames into different groups as

shots. The most common temporal segmentation method is a kernel temporal
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segmentation (KTS) algorithm. KTS algorithm partitions the sequence of frames

into shots considering the similarity among frame features [38]. The importance

score of each shot is calculated as the average score of the frames included within

the shot.

pi =
1

|si|
∑

(p̂j; j ∈ si) (3.1)

We select the shot with higher importance score under a given limit of the

video duration. Considering that each shot includes a variable number of frames,

this kind of selection is of the knapsack problem and I follow the work in [10] to

use a near-optimal solution by dynamic programming [23] as the post-processing.

Then the summary is generated by combining the selected shots.

3.2. Hierarchical Structure

Figure 3.2 – Hierarchical structure of proposal

As shown in Figure 3.2, the proposed summarization network uses reinforce-

ment learning with a hierarchical architecture. Note that the hierarchical reinforce-

ment learning is already proposed in [14], but this is the first work to apply hierar-

chical reinforcement learning to video summarization to the best of my knowledge.

Besides, how to divide the whole task into a hierarchical manner requires careful

design, which is also my technical contribution. My proposal pays attention not

only to the quality of the whole generated summary, but also to the quality of
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subtasks. For the quality of the whole summary, I apply a widely used global

reward defined as diversity-representativeness reward proposed by [10]. Then, I

regard the total summarization task as several subtasks and design an agent with

the hierarchical structure using a kind of sub-reward representing the quality of

the subtask.

The agent consists of two recurrent neural networks: one is called Manager

and the other is called Worker. The Manager predicts a task evaluation for each

subtask. And in the meanwhile, the intermediate latent vector of the Manager is

detached and input into the Worker. The intermediate latent vector is used as

the subgoal for each subtask. In order to achieve the corresponding subgoal, the

Worker deals with the frames within the subtask. Both Manager and Worker are

implemented by LSTM. I train the Manager with a smaller number of ground-

truth annotations compared to supervised methods, and the Worker with the

REINFORCE algorithm [13], which belongs to a family of reinforcement learning

methods.

In the following section, I are going to introduce the Manager network, the

Worker network, and two kinds of rewards used to train the agent in detail.

3.3. Manager Network

Task-level labels can be annotated directly by human beings. Considering that

my experiments are conducted on the existing datasets, we can directly derive the

task-level labels from the existing frame-level labels of the datasets.

As shown in Figure 3.3, I define the task-level label yi as 1 if there exists one

key frame in a sub sequences and 0 otherwise.

yi =

1 if pi,t = 1,∃t ∈ [1, n]

0 otherwise
, (3.2)

where pi,t is the ground-truth label for each frame.
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Task-level labels are utilized to train the Manager. It is obvious to see that

the number of task-level labels is much smaller than the frame-level labels. And if

the size of task becomes bigger, the number of task-level labels becomes smaller.

Figure 3.3 – Illustration of task-level label

The Manager consists of an LSTM and multilayer perceptron (MLP). As men-

tioned above, for each step the Manager takes the sub sequence of [xi,1, xi,2, ..., xi,n]

(n is set empirically) as input. And then we take the last hidden state as the sub-

goal gi of the i-th subtask.

hi,t = fβm (xi,t, hi,t−1) , xi,t ∈ [xi,1, xi,2, ..., xi,n] , (3.3)

gi = hi,n, (3.4)

ŷi = sigmoid (wm · gi + bm) , (3.5)

where fβm represents the LSTM of the Manager with parameter βm, wm and bm

are parameters of MLP, ŷi is the predicted probability of whether the i-th sub
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sequence of frames includes a key frame and hi,t is the hidden state (hi,0 = hi−1,n

and h0,0 is zero-initialized).

3.4. Worker Network

The Worker is also composed of an LSTM and MLP. The whole sequence of

frames is input into the Worker subtask by subtask. For each subtask, the Worker

outputs the importance score for each frame conditioned on the subgoal given by

the Manager. Dealing with each subtask, our Worker takes a sub sequence of

frames [xi,1, xi,2, ..., xi,n] (n is set empirically) as input and a subgoal gi given by

the Manager. The Worker predicts the importance scores for each frame.

hi,t = fβw (xi,t, hi,t−1) , xi,t ∈ [xi,1, xi,2, ..., xi,n] , (3.6)

h
′

i,t = w1 [gi, hi,t] + b1, t ∈ [1, n] , (3.7)

p̂i,t = sigmoid
(
ww · h′

i,t + bw

)
, (3.8)

where fβw represents the LSTM with parameter βw, hi,t is the hidden state (hi,0 =

hi−1,n and h0,0 is zero-initialized), w1 and b1 are parameters of a linear layer that

combines the subgoal and the hidden state, ww and bw are parameters of MLP,

[gi, hi,t] is to concatenate two vectors and p̂i,t is the predicted importance score for

frame xi,t.

After predicting the importance score of each frame, we regard the importance

score as the probability parameter of a Bernoulli distribution. This determines

the probability of a frame being selected for the summary.

ai,t ∼ Bernoulli (p̂i,t) , ai,t = 0 or 1, (3.9)

where ai,t = 1 is the action and means that xi,t is selected in the summary.
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To evaluate the policy of our agent, we sample actions from N × n Bernoulli

distributions. Following these actions, we can get the generated summary. Then

we can use the reward defined by us to evaluate the generated summary.

3.5. Reward Function

[10] defines the diversity-representativeness reward Rdr. This reward can only

be computed using the whole generated summary. Thus, it could be regarded as

a kind of global reward. This reward is combined by two parts: diversity reward

Rdiv and representativeness reward Rrep.

Rdiv is used to measure the diversity of the generated summary and it is com-

puted by summing up the dissimilarity of frame feature within the selected subset.

It is defined as following:

Rdiv =
1

|Y |(|Y | − 1)

∑
t∈Y

∑
t′∈Y,t′ ̸=t

d (xt, xt′) , (3.10)

d (xt, xt′) = 1− xt
Tx′

t

||xt||2||xt′||2
, (3.11)

where d (·, ·) is the dissimilarity function and t ∈ Y means that frame xt is selected

into the summary.

Rrep is to measure how well the generated summary can represent the original

video and it can be obtained by considering the minimal distance between each

frame feature with others within the selected subset.

Rrep = exp

(
− 1

n×N

n×N∑
t=1

mint′∈Y ||xt − xt′ ||2

)
, (3.12)

where t ∈ Y means that frame xt is selected into the summary.

Then the diversity-representativeness reward Rdr is obtained by summing up

these two rewards:

Rdr =
1

2
Rdiv +

1

2
Rrep. (3.13)
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This diversity-representativeness reward is given for a generated summary.

However, as mentioned before, it is too sparse to evaluate a series of actions.

Therefore, we also define a sub-reward Rsub to evaluate how well our Worker

achieves the subgoal. We compute the average of the outputs of our Worker and

compare it with the importance scores of the subtask predicted by our Manager.

The sub-reward Rsub is defined as follows:

p̂i =
1

n

n∑
t=1

p̂i,t, (3.14)

Rsub = exp

(
− 1

N

N∑
i=1

||p̂i − ŷi||2

)
, (3.15)

where p̂i is the average of the probabilities within a subtask, and we use an expo-

nential function to rescale it to get the Rsub as our sub-reward.

Finally, the whole reward for our agent is obtained by combining the global

reward Rdr and the sub-reward Rsub:

R = αRdr + (1− α)Rsub, (3.16)

where α is the hyperparameter.

3.6. Optimization

As shown in Figure 3.4, the Manager is trained by computing the cross en-

tropy loss using task evaluation ŷi and task-level label yi, which is defined at

Equation 3.2. The loss function of the Manager is as follows:

Lm = − 1

N

N∑
i=1

yilog (ŷi) + (1− yi) log (1− ŷi) , (3.17)

where N is the number of subtasks which a video is divided into, and yi and ŷi

are defined in Eq. 3.2 and Eq. 3.5, respectively.
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Figure 3.4 – Explanation of training the Manager.

Figure 3.5 – Explanation of training the Worker.

As shown in Figure 3.5, the Worker predicts the importance scores first. The

importance scores for each frame are regarded as the parameter of the Bernoulli

distribution. Actions are sampled from each Bernoulli distribution to select or

not the frame into summary. Reward as defined in Equation 3.16 is obtained to

evaluate the generated summary. Then the Worker is trained by REINFORCE

algorithm [13] with the received reward. It is aimed to learn a policy πθW (θW is

parameter of Worker in our case) through maximizing the expected rewards.

J (θW ) = EpθW (a1:n×N ) [R] , (3.18)
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where pθW (a1:n×N) is the sequence of actions for the whole task. Following the

REINFORCE algorithm, we can compute the derivative of the objective function

J (θW ) in terms of θW as follows:

∇θW J (θW ) = EpθW (a1:n×N )

[
R

n×N∑
t=1

∇θW logπθW (xt)

]
. (3.19)

We approximate R by letting the agent take action c times. To avoid the high

variance, we subtract a constant b from the reward.

∇θW J (θW ) ≈ 1

c

c∑
i=1

[
n×N∑
t=1

(Ri − b)∇θW logπθW (xt)

]
. (3.20)



Chapter 4

Experiments

In this section, I will introduce the experiments I have done and analyze the

results. The content includes dataset, evaluation metrics, training setting and

evaluation.

In the dataset section, I am going to introduce two benchmark datasets,

SumMe and TVSum. Both of them offer videos with multi-user annotations.

I will show the detail information of datasets.

In the evaluation metrics section, I will illustrate two metrics to evaluate the

performance, F score and rank correlation coefficient. F score is computed by

the intersection between two sets of frames while rank correlation coefficient is

computed by two ranking sequences.

In the training setting section, I will introduce the setting for training and

comparing the performance. And finally in the evaluation section, I will first

present the results evaluated on F score metrics and then results evaluated on

rank correlation coefficient. Visualized results are also given. Then I will analyze

and discuss the performance for different methods.

32
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Table 4.1 – Information of datasets

Dataset Number of video Information
SumMe 25 a variety of events
TVSum 50 YouTube videos (10 categories)
OVP 50 Documentary videos

YouTube 39 YouTube videos (Sports, News, etc)

4.1. Dataset

Our proposal is evaluated on two benchmark datasets: SumMe [39] and TV-

Sum [40]. SumMe includes 25 videos ranging from 1 to 6 minutes and for each

video there are annotations from 15 to 18 users. TVSum includes 50 videos ranging

from 2 to 10 minutes, and for each video there are annotations from 20 users.

Besides, we also consider OVP1 and YouTube [41], which are annotated with

keyframe-based summarization. We follow [1] to process them and get the ground-

truth set of keyframes. These two datasets are used as augmentation during the

training phrase.

The existing datasets for video summarization offers different ground-truth

annotations. There are three kinds of annotations in the four datasets we use:

1) selected keyframes, 2) interval-based keyshots, and 3) frame-level importance

scores. For selected keyframes, the annotation is like gt = [0, 1, 0, ..., 0, 0, 1], where

gti = 1 means the i-th frame is annotated into summary. For interval-based

keyshots, the annotation is like gt = [1, 1, 1, 0, 0, 0, ..., 1, 1, 1], where there are a

lot of successive frames are annotated simultaneously. For frame-level importance

score, the annotation is like gt = [0.5, 0.9, 0.1, ..., 0.2, 0.7], where every frame has

a importance score. Following [1], we can convert the different annotations into

the same format.

From keyframes to keyshots and frame-level scores: Temporally seg-

mentation is first applied to the video. For each segments, which contains at least

one keyframe, it is annotated as a keyshot. The importance scores of all frames

in a keyshot is 1; otherwise, 0.

1Open video project: https://open-video.org/
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From keyshots to keyframes and frame-level scores: Keyframes can be

selected from each keyshot randomly or by the middle. And the importance scores

of frames in keyshots are annotated as 1.

From frame-level scores to keyframes and keyshots: Shots are gotten

by temporal segmentation. Then shot-level scores are the average of the frame

scores within each shot. Select several shots to achieve the highest sum of scores

as keyshots with the total duration under a threshold. The frame with the highest

importance score in each keyshot is selected as the keyframe.

As [1] does, a single ground-truth set of keyframes is created for training from

multiple user-annotated ones of each video. And our task-level labels are gotten

from the single ground-truth keyframes. During the test, multiple user annotations

are used to compute the metrics. It is noted that SumMe dataset only offers

the importance scores for keyframes. Namely, the scores for most frames are

indiscriminately remarked as 0 in SumMe dataset. Therefore, we don’t compute

the rank correlation coefficient for SumMe dataset.

4.2. Evaluation Metrics

4.2.1. F score

In many deep learning tasks, precision and recall are widely utilized to evaluate

the performance. As shown in Figure 4.1, precision measures how many selected

items are relevant and recall measures how many relevant items are selected. Take

binary classification for example. Predictions can be divided into four kinds: 1)

true positives, 2) false positives, 3) false negatives and 4) true negatives. When

the ground truth of one sample is 1, this sample is true positives if it is predicted

as 1; otherwise, this sample is false negatives. When the ground truth of one

sample is 0, this sample is false positives if it is predicted as 1; otherwise, this

sample is true negatives. Precision is the ratio of true positives to the sum of true

positives and false positives. Recall is the ratio of true positives to the sum of true

positives and false negatives. Precision can be regarded as a measure of quality,

while recall can be regarded as a measure of quantity.
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Figure 4.1 – Definition of precision and recall
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Different tasks have different requirements for precision and recall. To consider

a balance between precision and recall, F score is used to evaluate the performance.

F score is a harmonic mean of precision and recall. It is defined as follows:

F =
2× Precision×Recall

Precision+Recall
. (4.1)

F score is widely used to evaluate the performance of video summarization.

However, the generated summary and the ground-truth are a set of frame sequence.

Therefore, we need to define the precision and recall for video summarization.

Considering the intersection of two videos, the precision and recall could be defined

as follows:

Precision =
A
∩
B

A
, (4.2)

Recall =
A
∩
B

B
, (4.3)

where A is the generated summary and B is the ground-truth summary. Then the

F score is computed following Equation 4.1

4.2.2. Rank correlation coefficient

In statistics, rank correlation coefficient is a metric to measure the similarity

between two rankings. Rank correlation coefficient is between −1 and 1. The

higher coefficient means that the agreement between two rankings is higher. There

are some popular rank correlation coefficients to measure the agreement including

Kendall’s τ , Spearman’s ρ, Goodman and Kruskal’s γ, Somers’D and so on.

[42] proposed to use rank order statistics to evaluate video summarization. As

introduced in Chapter 3, summarization network predicts importance scores first.

And then the summary is generated according to the importance scores. F score

metric is computed using the generated summary. For summarization methods

based on importance scores, [42] claimed that the random methods can achieve

comparable performance on F score metric because of well-designed pre-processing

and post-processing. Therefore, they reported that considering the importance
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score rank order between the prediction and the human annotation is a much

better metric without the effect of post-processing. They use Kendall’s τ [43] and

Spearman’s ρ [44] correlation coefficients.

Kendall’s τ and Spearman’s ρ are both non-parametric rank correlation coeffi-

cients. Kendall’s τ are computed on concordant and discordant paris. Compared

to other coefficients, the distribution of Kendall’s τ has a better statistics prop-

erties. Spearman’s ρ are computed on deviations. The numerical value of it is

usually much more bigger than Kendall’s τ .

SumMe dataset only offers the importance score for keyframe. Namely, impor-

tance scores for most of frames are annotated as 0 indiscriminately. Therefore, we

only compute the rank correlation coefficients on TVSum dataset.

4.3. Training Setting

Following [1], the experiments are conducted on three settings.

Canonical: we train our model by 5-fold cross validation (5FCV).

Augmented: for a target dataset, we randomly divide the target dataset into

5 folds. One fold is used for testing. Others are augmented with OVP and

Youtube datasets for training. It is assumed that augmentation can improve

the performance by using more data for training.

Transfer: for our target dataset (SumMe or TVSum), the other three datasets

are used as training data. It is interesting to see whether the training model

can be used to new datasets.

We train the Manager and the Worker iteratively. We approximate the ex-

pected rewards with c = 10 and set α = 0.5. The size of a subtask is set as

n = 20. The pseudocode is shown in Algorithm 1.
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Algorithm 1 Iteratively Training for Manager and Worker
1: agent: GθM ,θW , initialize the θM and θW
2: for epoch < max epoch do
3: for each video in training data do
4: train the manager GθM

5: get the subgoal gi from manager
6: p̂t = GθW (xt, gi)
7: importance score p̂ = [p̂1, p̂2, ..., p̂n]
8: Worker takes action a ∼ Bernoulli(p̂)
9: for c do

10: get Reward R+ = αRdr(a) + (1− α)Rsub

11: end for
12: R = R/c
13: update θW by REINFORCE as Eqt. (17)
14: end for
15: end for

4.4. Evaluation

4.4.1. Quantitative Evaluation

To show that our subtasks help to improve the performance, we compare our

model with the different sizes of subtask. Our model shows the best performance

when the size of subtask is set as n = 20. It can be seen in Figure 4.2 that

when the size of subtask is 1, the performance is better than that of size 5. It is

reasonable because we define the sub-reward using the average of the outputs of

the Worker. Therefore, if the size of subtask is not large enough, the bias of the

sub-reward could be large.
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Figure 4.2 – Experiments are conducted with different sizes of
subtask on TVSum dataset. When n = 20, it shows the best per-

formance.

Table 4.2 – Evaluation by F score on SumMe dataset

Methods canonical augmented transfer labels

supervised

vsLSTM [1] 37.6 41.6 40.7 293

dppLSTM [1] 38.6 42.9 41.8 293

SUM-GANsup [9] 41.7 43.6 - 293

DR-DSNsup [10] 42.1 43.9 42.6 293

unsupervised
SUM-GAN [9] 39.1 43.4 - -

DR-DSN [10] 41.4 42.8 42.4 -

weakly supervised Our Proposal 43.6 44.5 42.4 15
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Table 4.3 – Evaluation by F score on TVSum dataset

Methods canonical augmented transfer labels

supervised

vsLSTM [1] 54.2 57.9 56.9 470

dppLSTM [1] 54.7 59.6 58.7 470

SUM-GANsup [9] 56.3 61.2 - 470

DR-DSNsup [10] 58.1 59.8 58.9 470

unsupervised
SUM-GAN [9] 51.7 59.5 - -

DR-DSN [10] 57.6 58.4 57.8 -

weakly supervised Our Proposal 58.4 58.5 58.3 24

We compare our proposal with previous supervised and unsupervised methods.

vsLSTM and dppLSTM [1] are supervised methods. SUM-GAN [9] and DR-

DSN [10] are unsupervised methods. SUM-GAN is based on GANs. DR-DSN is

based on reinforcement learning and the most related to our work. The existing

weakly supervised methods only require category labels for one video, such as

in [12]. However, they use a large number of web videos with category labels to

learn more accurate and informative video representations. For a fair comparison,

we don’t include it here. Table 4.2 and Table 4.3 shows the F score performance

and the average number of labels for a video, which is required by each method.

Our hierarchical reinforcement learning based model achieves improvement on two

benchmark datasets and requires much smaller number of task-level annotations

than supervised methods.

On the canonical setting, our proposal outperformed the baseline dppLSTM

by 5% and 3.7% points on two benchmark datasets. And compared with the

state-of-the-art DR-DSN, our proposal improves by 2.2% and 0.8% points. Our

hierarchical structure requires a much smaller number of annotations (about 1/20

in both cases) to train the Manager. The whole task is divided into several sub-

tasks. Compared to frame-level annotations, our proposal only requires task-level

annotations to train the Manager. Therefore it is weakly supervised.

Then, we compared the performance with the supervised version of SUM-GAN

and DR-DSN. On the canonical setting, our proposal outperformed SUM-GANsup
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by 1.9% and 2.1% points on the two benchmark datasets. Compared with DR-

DSNsup, the performance of our proposed method was improved by 1.5% and 0.3%

points. Our result was improved by 0.9% and 0.1% points with augmented data

respectively on SumMe and TVSum. In particular, our proposal outperformed all

the other methods on SumMe with augmented data. However, our proposal was

not capable of the transfer task because subgoals between different domains may

vary a lot.

Then, we evaluate the performance using the rank order statistics proposed

in [42] introduced in Section 4.2, which is claimed to be a better evaluation metric

without the effect of post-processing. Note that SumMe dataset only offers the

importance score for keyframe. Namely, importance scores for most of frames are

annotated as 0 indiscriminately. Therefore, we only compute the rank correla-

tion coefficients on TVSum dataset. Compared to supervised and unsupervised

methods in Table 4.4, our proposal achieved higher correlation coefficients on both

Kendall’s τ and Spearman’s ρ. Compared to supervised methods [1], unsupervised

methods [10] improves the diversity by reinforcement learning but achieves lower

correlation coefficients. With help of task-level labels, our proposal can promise

the diversity and achieve higher correlation coefficients in the meantime.

Table 4.4 – Kendall’s τ and Spearman’s ρ correlation coefficients
computed between different importance scores and human anno-

tated scores.

TVSum
Methods τ ρ

dppLSTM [1] 0.042 0.055
DR-DSN [10] 0.020 0.026

Proposal 0.078 0.116

Human 0.177 0.204

4.4.2. Qualitative Evaluation

Figure 4.3 shows examples of our generated summaries. The gray bar of his-

togram is the ground-truth importance score of each frame. The red bar means the
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corresponding frame is selected in the summary. In (a), the original video sequence

is about keeping a dog’s ears clean. The summary results of our proposal included

the detail of cleaning the dog’s ears (with higher importance scores) and skipped

the beginning where there are some unrelated captions (with lower importance

scores). However, DR-DSN included more repeated parts and the unrelated be-

ginning parts. In (b) and (c), our proposal also outperforms the DR-DSN method.

However, the performance of (c) is not good as (a) or (b). This video is a piece

of news about cars. It can be considered that the summary of this kind of video

depends on the audio information more than visual information. Therefore, our

proposal only utilizing the visual information achieved limited performance in this

case. More examples can be found in Figure 4.4.
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Proposal ( F = 61.8% ) DR-DSN ( F = 51.9% )

Original video

Original video

Proposal ( F = 48.2% ) DR-DSN ( F = 39.1% )

Original video

Proposal ( F = 61.7% ) DR-DSN ( F = 59.6% )

(a)

(b)

(c)

Figure 4.3 – Examples of summary videos of proposed method
comparing with the state-of-the-art.
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Figure 4.4 – Examples of summary videos of proposed method
comparing with the state-of-the-art.
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Conclusions and Future Works

5.1. Conclusions

In my thesis, I share my study about video summarization technology. Video

summarization is to process a long original video and generate a short but concise

summary for it. This task can be regarded as a subset selection with considering

the temporal dependence and the completeness of a story.

At the beginning, I first introduce the existing video summarization methods

and reinforcement learning methods. Depending on annotations, these methods

can be divided into supervised, unsupervised and weakly supervised methods. I

introduce the detail of the related works. And I also explain the related reinforce-

ment learning technique, which is used in my approach. Before I start to introduce

my approach, I compare these different methods for video summarization. Super-

vised methods require a large number of frame-level labels but it is very hard to

collect a large scale of dataset. Reinforcement learning based unsupervised meth-

ods require no annotations but it has sparse reward problem. The existing weakly

supervised methods require a large number of web video to train for the target

dataset. And all these methods need to deal with the long temporal dependence

problem.

Then most importantly, I introduce my approach, which is based on hierarchi-

cal reinforcement learning. I design a hierarchical structure for the agent. And a

sub-reward is well defined to avoid the sparse reward problem. My approach is

based on the idea that the whole task can be divided into several subtasks. In this

way, it is expected to process the long temporal dependence subtask by subtask.

45
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Besides, I also define a task-level label to train the Manager of the agent. Com-

pared to labels required by supervised methods, the number of label required by

my approach becomes much smaller. Experiments are conducted on two bench-

mark datasets, SumMe and TVSum. I compare my approach with the existing

methods including vsLSTM, dppLSTM, SUM-GAN and DR-DSN. The agent pre-

dicts the importance scores for each frame first. Then frames are selected to be

combined into the summary according to these importance scores under a given

limit. It is implemented by knapsack algorithm.

Therefore, the performance could be evaluated on the generated summary

and on the importance scores. I use the F score and rank correlation coefficient

to evaluate the performance. The former metric is based on the selected frame

set. Precision and recall are defined to be computed on the intersection between

two sets for video summarization task. On the other hand, the latter metric is

based on the importance score. Kendall’s τ and Spearman’s ρ coefficients are

used to measure the rank correlation. The results on these two metrics show the

superiority of my approach.

5.2. Future Works

Some recent works apply other techniques into video summarization like at-

tention mechanism and graph CNN [45][46][47]. These recent works explore a lot

of new fields. They are also good directions for us to explore.

Besides, there are two good directions I am going to introduce, 3D convolu-

tional neural network (C3D) and multi-modal. Recent years, C3D has been ex-

plored a lot [48][49][50][51]. Video processing task attracts tremendous attention

from researchers [52][53][54]. There are a large number of videos being uploaded

into the website (YouTube) everyday. 2D convolutional neural networks have

achieved a great performance on image processing. Applying 2D CNN into video

task can not process the temporal dependence in a convolutional way, in which

the temporal information is regarded as an additional dimension. The differences

between 2D CNN and 3D CNN are shown in Figure 5.2. Applying 2D convolution
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Figure 5.1 – Illustration of multi-model of video

into frame sequence results in a 2D output without temporal information. But

through applying 3D convolution, we can get a 3D output.

In my future work, I would like to apply the C3D into video summarization.

Rather than depend on the RNN to process the temporal information, I am going

to use C3D to process the temporal and spatial information together in a convo-

lutional way. This can first allow us to design a compact model without requiring

a CNN to extract the frame feature first in a way of the current method. In the

current method, we first get vectors as the frame features and regard them as a

sequence of frames. Therefore, some spatial information is lost. For example, one

video is about a dog running from the left to the right. A pre-trained 2D CNN

extracts the vector for a dog but without the information of the movement because

the CNN is usually pre-trained on the image classification dataset. Through 3D

CNN, there may be no need for a RNN to process the temporal information and

it can be more faster to process the data with the total convolutional operations.

Embedding multi-model is also my future work. In my approach, I only process

the image information of video. However, the image information is not enough

for some kinds of video like news. It is expected to enhance the performance by

extracting the feature of audio.

As shown in Figure 5.1, audio and visual data are processed by two separated

CNNs. And then these two features are fused together.

[55] collects Audio-Visual Event datasets for audio-visual event localization.

There are five modules in their network: feature extraction, audio-guided visual
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attention, temporal modeling, multi-modal fusion and temporal labeling. In ad-

dition to fusing two modal features from separated branches, they use an audio-

guided visual attention mechanism. A visual attention map is generated condi-

tioned on audio and visual features. [56] applies multi-modal technique to video

captioning. They define a multi-model CNN and modality-aware aggregation. In

a word, multi-modal technique is a good direction to explore for video task. It is

promising to apply the multi-model technique into video summarization. And it

is also challenging to consider an effective way of fusion.



Chapter 5. Conclusions and Future Works 49

Figure 5.2 – Comparison between 2D convolution and 3D convo-
lution
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