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Rubber elasticity is the archetype of the entropic force emerging from the second law of thermody-
namics; numerous experimental and theoretical studies on natural and synthetic rubbers have shown that
the elasticity originates mostly from entropy change with deformation. Similarly, in polymer gels
containing a large amount of solvent, it has also been postulated that the shear modulus (the modulus
of rigidity) G, which is a kind of modulus of elasticity, is approximately equivalent to the entropy
contribution GS, but this has yet to be verified experimentally. In this study, we measure the temperature
dependence of the shear modulus G in a rubberlike (hyperelastic) polymer gel whose polymer volume
fraction is at most 0.1. As a result, we find that the energy contribution GE ¼ G − GS can be a significant
negative value, reaching up to double the shear modulusG (i.e., jGEj ≃ 2G), although the shear modulus of
stable materials is generally bound to be positive. We further argue that the energy contribution GE is
governed by a vanishing temperature that is a universal function of the normalized polymer concentration,
and GE vanishes when the solvent is removed. Our findings highlight the essential difference between
rubber elasticity and gel elasticity (which were previously thought to be the same) and push the established
field of gel elasticity into a new direction.
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I. INTRODUCTION

Rubbers and rubberlike polymer gels are composed of
three-dimensional networks of cross-linked polymer chains
and have very different elastic properties compared to hard
solids such as metals and ceramics: softness, high elonga-
tion, and an evident Gough-Joule effect. This difference
stems from the difference in the origin of elasticity. The
elastic properties of hard solids are explained by energy
elasticity, which originates from internal energy changes
resulting mainly from changes in bond angles and bond
lengths. On the other hand, the anomalous elastic properties
of rubbers and rubberlike polymer gels are explained by
entropy elasticity, which originates from entropy changes
resulting mainly from changes in the conformation of
polymer chains [1–3].
We can experimentally determine the entropy contribu-

tion σS and the energy contributions σE by measuring the

(shear) stress σ as a function of temperature T under a
constant-volume condition [1,3] (the van ’t Hoff isochore
[4]). We consider an incompressible elastomer and apply a
(shear) strain γ. In an isothermal process, the corresponding
stress σ ¼ σðT; γÞ is related to the Helmholtz free energy
density f ¼ fðT; γÞ as σ ¼ ∂f=∂γ. On the basis of f ¼
e − Ts, where e is the internal energy density and s is the
entropy density, we can separate the entropy contribution
σS and the energy contribution σE to the stress σ ¼ σS þ σE
as σS ≡ −T∂s=∂γ and σE ≡ ∂e=∂γ. According to the
Maxwell relation ∂s=∂γ ¼ −∂σ=∂T, we have

σSðT; γÞ ¼ T
∂σ
∂T ðT; γÞ: ð1Þ

Using Eq. (1), we can determine σS by measuring the T
dependence of σ when γ is fixed. Then, we can obtain σE
as σE ¼ σ − σS. We note that σS and σE are defined under a
constant-volume condition.
Similarly, we can experimentally determine the entropy

contribution GS and the energy contributions GE by
measuring the shear modulus (the modulus of rigidity)
G as a function of temperature T under a constant-volume
condition. Here, the shear modulus is defined by

GðTÞ≡ ∂σ
∂γ ðT; γÞ

����
γ¼0

¼ ∂2f
∂γ2 ðT; γÞ

����
γ¼0

: ð2Þ
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The entropy and energy contributions to the shear modulus
are defined by

GSðTÞ≡ ∂σS
∂γ ðT; γÞ

����
γ¼0

¼ −T
∂2s
∂γ2 ðT; γÞ

����
γ¼0

ð3Þ

and

GEðTÞ≡ ∂σE
∂γ ðT; γÞ

����
γ¼0

¼ ∂2e
∂γ2 ðT; γÞ

����
γ¼0

; ð4Þ

respectively. In the same manner as in Eq. (1), we can
determine the entropy and energy contributions as

GSðTÞ ¼ T
dG
dT

ðTÞ; ð5Þ

GEðTÞ ¼ GðTÞ − GSðTÞ; ð6Þ

by measuring the T dependence of G at a constant volume.
Because G is a material constant, it is better to use G rather
than σ to discuss entropy and energy elasticities. However,
many studies on rubber elasticity have used σ because of
the difficulty in accurately measuring G.
Figure 1 demonstrates how to determine σS and σE from

experimental data [σðTÞ] for natural rubber [Fig. 1(a)] and
rubberlike polymer gel [Fig. 1(b)]. Both are highly stretch-
able as a result of network structures formed by chemically
cross-linked polymer chains. As shown in Fig. 1(a), it is
confirmed that σ ≃ σS, in the case of natural and synthetic
rubbers, by numerous experimental [5–10] and theoretical
[11,12] studies; jσEj is less than a quarter of σ. Thus, the
elasticity of rubberlike (i.e., hyperelastic) polymer materi-
als has been widely considered to be described primarily
as entropy elasticity [1,3]. For example, in polymer gels
containing a large amount of solvent, σ ≃ σS has also been
postulated [13–16]; nevertheless, no experimental verifi-
cation has been reported.
In this study, to examine this conventional postulation

(σ ≃ σS), we measure the temperature dependence of the
shear stress and the shear modulus in a rubberlike polymer
gel in the as-prepared state. Here, the gel is a chemical gel
(i.e., a covalently bonded gel), and thus the cross-linked
structure does not change. Remarkably, we find that σE can
have a magnitude as large as σ but is negative; i.e., jσEj ∼ σ
[Fig. 1(b)]. This means thatGE can have a negative value as
large asG, although the shear modulus of stable materials is
generally bound to be positive. We further argue that GE is
governed by a vanishing temperature, which is a universal
function of the normalized polymer concentration, and GE
vanishes when the solvent is removed. Our findings would
stimulate a reexamination of a vast amount of research on
gel elasticity.
This paper is organized as follows. In Sec. II, we explain

the materials and methods. In Sec. III, we present the basic
properties of gel elasticity. In Sec. IV, we analyze our

experimental results and validate the existence of a uni-
versal function that governs the energy contribution of gel
elasticity. In Secs. I–IV, we analyze the experimental results
based on the general formulas of thermodynamics of
deformation under the constant-volume condition, without
considering unnecessary microscopic (molecular) assump-
tions. In Sec. V, we propose a possible microscopic
interpretation of the negative energy elasticity. In
Sec. VI, we summarize the main results of this paper.
Several details are described in the Appendixes to avoid
digressing from the main subject.

II. MATERIALS AND METHODS

A. Fabrication of tetra-PEG gels

For a model rubberlike polymer gel, we used a tetra-arm
poly(ethylene glycol) (tetra-PEG) gel [17], which is highly
stretchable and has a homogeneous network structure [18].
As shown in Fig. 2, tetra-PEG gel was synthesized by AB-
type cross-end coupling of two kinds of precursors: tetra-
arm polymer-chain units of equal size. For the precursors,
we used tetra-maleimide-terminated PEG (tetra-PEG-MA)
and tetra-thiol-terminated PEG (tetra-PEG-SH) with
molar masses of M ¼ 10, 20 (NOF Co., Japan), and 40

(a) (b)

FIG. 1. Irrelevant energy elasticity in natural rubber and
relevant negative energy elasticity in a rubberlike polymer gel.
(a) Temperature (T) dependence of the tensile stress σ (black
symbols) of vulcanized rubber through stretching measurements
under 60% strain. The data are taken from Ref. [5]. The gray solid
line is obtained from a least-squares fit and extrapolated to
T ¼ 0 K. According to Eq. (1), we have the entropy contribution
σS (blue dashed line) and the energy contribution σE (red dashed
line), which corresponds to the intercept of the gray solid line.
In the measured temperature range (black symbols), the ratio of
σE to σ is less than 15%. Similarly, small energy contributions to
elasticity are observed in many rubber materials [6–10]. (b) Typ-
ical result of the T dependence of the shear stress σ (black
symbols) of a polymer gel through rheological measurements
under 60% shear strain γ. The gel sample is synthesized by equal-
weight mixing of the two kinds of precursors whose molar mass
M and concentration c are 20 kg=mol and 60 g=L, respectively.
The gray solid, blue dashed, and red dashed lines are obtained in
the same way as in (a). Notably, we find that σE is a significant
negative value.
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(XIAMEN SINOPEG BIOTECH Co., Ltd., China) kg/mol.
We dissolved each precursor (tetra-PEG-MA and tetra-
PEG-SH) in phosphate-citrate buffer with pH 3.8 and a
molar concentration of 200 mM. Here, the experimental
results of the shear modulus G did not depend on the molar
concentration and pH. We obtained gel samples by mixing
these precursor solutions (tetra-PEG-MA and tetra-PEG-
SH solutions) with equal molar mass M and precursor
concentration c. To control the connectivity p after
the completion of the chemical reaction, we nonstoichio-
metrically tuned the mixing fraction qw defined by the
weight fraction of tetra-PEG-MA to all precursors (see
Appendix A). We set c ¼ 30, 60, 90, 120 g=L and
qw ¼ 0.50, 0.55, 0.60, 0.65. Here, we define the concen-
tration c as the precursor weight divided by the solvent
volume, rather than by the solution volume. (The reason for
adopting this definition is described in Sec. S1 in the
Supplemental Material of Ref. [19]). All gel samples used
in this study have a homogeneous network structure (thus,
the polymer and solvent are completely miscible), as shown
in scattering experiments [18].

B. Measurement of shear modulus

We measured the shear modulus G using a dynamic
shear rheometer (MCR301 and MCR302, Anton Paar,
Austria), as shown in Fig. 3(a). Immediately after mixing
the two kinds of precursor solutions, we poured the
resulting solution into the gap within the double cylinder
of the dynamic shear rheometer. Then, we measured the
time courses of the storage modulus G0 and loss modulus
G00 at 298 K with the applied strain (γ) of 1%. After G0
reached equilibrium, indicating the completion of the
chemical reaction between maleimide and thiol, we mea-
sured the temperature (T) dependence of G0 from T ¼ 298

to 278 K and then from 278 to 298 K. There was almost no
hysteresis for the mentioned temperature range. In all
samples, the obtained G0 is independent of the frequency
(ω=2π) below 10 Hz, and the loss tangent tan δ ¼ G00=G0 is
at most 10−2 at 1 Hz, as shown in Fig. 3(b). Thus, we regard
G0 at 1 Hz as the (equilibrium) shear modulus G given
by G ¼ limω→0G0ðωÞ.
The aforementioned rheological measurement allows us

to satisfy the constant-volume condition necessary to
determine the entropy and energy contributions (σS, σE,
GS, and GE). The factors that contribute to volume changes
are shear deformation and temperature change. The shear
deformation can suppress the volume change caused by
the decrease in internal pressure [1,7]. Setting 278 K ≤
T ≤ 298 K guarantees a negligible volume change for the
following three reasons: (i) If T < 273 K, the water freezes;
(ii) if T considerably exceeds 298 K, the gel shrinks owing
to the large elastic contribution to the osmotic pressure
[20]; (iii) the gel hardly thermally expands because it
contains a large amount of water as a solvent. A detailed
quantitative analysis is given in Appendix B. The relative
volume change due to temperature change within 278 K ≤
T ≤ 298 K is of the order of 10−3, and the relative volume
change due to shear deformation is negligible in comparison.

III. BASIC PROPERTIES OF GEL ELASTICITY

Figure 4(a) shows the T dependence of σ under fixed
strain γ for a polymer gel and demonstrates the following
two facts. First, σ is a nearly linear function of T within the
measured range. Thus, we regard the slope of the linear
fitting of the σ-T relation as ∂σ=∂T in Eq. (1). Second, all
linear extrapolations of σ ¼ σðTÞ for γ ≤ 140% (gray solid
lines) pass through a common point (T0) on the T axis.

Stretch ReleaseRelease

A B

FIG. 2. Highly stretchable rubberlike hydrogel with a homo-
geneous model network (tetra-PEG gel). This gel is synthesized
by AB-type cross-end coupling of two kinds of precursors of the
same size. These precursors are tetra-armed poly(ethylene glycol)
(PEG) chains whose terminal functional groups (A and B) are
mutually reactive.

(a) (b)

FIG. 3. Measurement of shear modulus. (a) Schematic illus-
tration of the double-cylinder dynamic shear rheometer. Inside
the rheometer, a solution of the precursors reacts to form a
polymer gel. After the completion of the chemical reaction, the
polymer gel is sheared cyclically in the gap between the inner
cylindrical jig and the outer cup. (b) Frequency (ω=2π) depend-
ence of the storage modulus G0 and loss modulus G00. The molar
massM and concentration c of the precursors are 20 kg=mol and
60 g=L, respectively. The greater the connectivity p is, the lower
tan δ is (p is defined in the main text). For example, when p ≃
0.95 (a nearly perfect network structure), G00 is underdetected.
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We call this proper temperature T0 the “vanishing temper-
ature.” We emphasize that the “actual” stress σ does not
follow the extrapolation lines (gray solid lines) at low
temperatures away from the measured temperature
(<278 K), and it certainly does not vanish at T0. We
extrapolate the σ-T relation only to calculate the energy and
entropy contributions of σ.
The polymer gel (tetra-PEG gel) is an ideal rubberlike

(i.e., hyperelastic) material in the sense that the stress-strain
relation [the black symbols in Fig. 4(b)] exhibits a wide
range of linear elasticity (γ ≲ 140%). Thus, over a wide
range, the shear modulus G [defined in Eq. (2)] describes
the elasticity of the polymer gel. This ideal linear elasticity
of the polymer gel implies that the volume is indeed
constant under shear deformation and is advantageous
for investigating elasticity compared to natural and syn-
thetic rubbers (the relative volume change is evaluated in
Appendix B).

Figure 4(b) demonstrates that the polymer gel exhibits
negative energy elasticity; the energy contribution σE of a
polymer gel can be a significant negative value, whose
absolute value is comparable to σ. Here, σS (blue symbols)
and σE (red symbols) are calculated from σðTÞ in Fig. 4(a)
using Eq. (1). Figure 4(b) also demonstrates that σS and σE
are linear with respect to γ for a wide range of the strain
(γ ≲ 140%). Thus, over a wide range, the entropy and
energy contributions to the shear modulus [GS and GE
defined in Eqs. (3) and (4), respectively] describe the
entropy and energy elasticities, respectively. We note that
the negative energy elasticity is observed in the gel with a
homogeneous network structure, but not under special
circumstances such as phase separation (see Sec. II A).

IV. UNIVERSAL FUNCTION GOVERNING
ENERGY ELASTICITY

A. Vanishing temperature

To investigate the relationship between the negative
energy elasticity of the polymer gel and the microscopic
structure of the polymer network, we independently and
systematically control three parameters of the precursors:
the molar massM, the concentration c, and the connectivity
p (see Sec. II A). Here, we define p (0 ≤ p ≤ 1) as the
fraction of the reacted terminal functional groups to all the
terminal functional groups and control p by nonstoichio-
metrically mixing two mutually reactive precursor solu-
tions (see Appendix A). In the polymer network after the
completion of the chemical reaction, c andM correspond to
the polymer (network) concentration and double the
molecular weight between cross-links, respectively.
From the experimental results shown in Fig. 5(a), we find

two features: (i) G is a nearly linear function of T in the
measured range, and (ii) the vanishing temperature T0 is
independent of p. These features indicate that

GðT;M; c; pÞ ¼ aðM; c; pÞ½T − T0ðM; cÞ�; ð7Þ

where we introduce a prefactor a ¼ aðM; c; pÞ. According
to Eq. (7), in the measured range, the entropy contribution

GSðT;M; c; pÞ ¼ aðM; c; pÞT ð8Þ

is a linear function of T, and the energy contribution

GEðT;M; c; pÞ ¼ −aðM; c; pÞT0ðM; cÞ ð9Þ

is independent of T and governed by T0.
By analyzing the systematic results shown in Fig. 5(a),

we reveal a law governing T0. Figure 5(b) demonstrates
that all the results at different values of M and c collapse
onto a single master curve, indicating

(a)

(b)

FIG. 4. Polymer gel exhibiting a wide range of linear elasticity
under shear deformation. (a) Temperature (T) dependence of
(shear) stress σ under fixed (shear) strain γ (1%, 20%, 40%, 60%,
80%, 100%, 120%, 140%, 160%, and 180%) within 278 K ≤
T ≤ 298 K. The data for γ ¼ 60% correspond to Fig. 1(b). The
straight lines are obtained from the least-squares fit and extrapo-
lated to T ¼ 0 K. Within the measured range, σ is a nearly linear
function of T at each γ (inset). The gray solid extrapolation lines
(γ ≤ 140%) pass through the vanishing temperature T0 on the T
axis. (b) Stress (σ)–strain (γ) curve (black symbols) with σS (blue
symbols) and σE (red symbols). The data are extracted from (a) at
T ¼ 288 K. The σ, σS, and σE show linear elasticity over a wide
range up to γ ¼ 140%. The linearity of σS and σE to γ
corresponds to the γ independence of T0.
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(a)

(b) (c) (d)

FIG. 5. The existence of a universal function that governs the energy contribution of gel elasticity. (a) Temperature (T) dependence
of shear modulus G. We obtain each gray line from a least-squares fit of each sample, which is characterized by the three parameters
of the precursors: the molar mass M, the concentration c, and the connectivity p. All gray lines that have the same M and c pass
through a vanishing temperature T0 on the T axis, which leads to Eq. (7). The value of T0 in each graph is the average of the four
samples with different values of p, and the values in parentheses represent the standard deviation. (b,c) Normalized concentration
(c=c�) dependence of T0. We set c� ¼ 80, 60, 40, and 30 g=L forM ¼ 5, 10, 20, and 40 kg=mol, respectively, to construct the master
curve. The orange triangles, blue diamonds, red circles, and black squares represent M ¼ 5, 10, 20, and 40 kg=mol, respectively.
Each filled symbol represents the average of four samples taken from (a). Additionally, each open symbol represents the value
of one equal-weight mixing sample (p ≃ 1). (b) Log-log (main panel) and linear (inset) plots of c=c� vs T0, which demonstrate the
scaling law T0 ∼ ðc=c�Þ−1=3 in the dilute regime (c=c� < 1). (c) A linear plot of the inverse normalized concentration ðc=c�Þ−1 vs T0,
which demonstrates that T0 becomes nearly zero in the dense limit [ðc=c�Þ−1 → 0]. This result agrees with jGEj ≪ GS for rubber
elasticity as given in previous studies [5–8,10]. (d) Connectivity p and c=c� dependence of g. We obtain the contour plot from data
points (white circles) that represent samples shown in (a). The sol-gel transition line (gray thick line) is the interpolation of data
(black crosses) taken from Ref. [21].
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T0ðM; cÞ ¼ T0

�
c
c�

�
: ð10Þ

Here, c� ¼ c�ðMÞ is the normalization factor chosen to
construct the master curve. It is notable that c�ðMÞ is in
close agreement with the overlap concentration of the
precursors c�visðMÞ obtained by the viscosity measurement
]15 ]. Here, the overlap parameter c=c�vis determines the

dilute (c=c�vis < 1) and semidilute (c=c�vis > 1) regimes of
polymer concentration [3]. This agreement and Eq. (10)
invoke the osmotic pressure in the polymer solution, which
is represented by a universal function of c=c�vis in the dilute
(c=c�vis < 1) and semidilute (c=c�vis > 1) regimes [22].
We note that the maximum polymer volume fraction in
this study is approximately 0.1, and it is unclear whether
Eq. (10) holds at higher polymer concentrations
(c=c�vis ≫ 1).
We consider the dilute and dense regimes. In the dilute

regime (c=c� < 1), we find a scaling law

T0 ∼
�
c
c�

�
−1=3

; ð11Þ

as shown in Fig. 5(b). Because c−1=3 seems to be propor-
tional to the linear distance between cross-links l, we have
T0 ∼ l. This fact is important in conjecturing the micro-
scopic (molecular) interpretation of the negative energy
elasticity (see Sec. V). If T0 follows the scaling law in
Eq. (11) below the measured c=c� range, T0 reaches the
measured temperature (T ≳ 280 K) at c=c� ≃ 0.12. Thus, if
c < 0.12c�, tetra-PEG gels are expected to be mechanically
unstable becauseG < 0. This expectation is consistent with
a previous study that reported that tetra-PEG gels cannot be
formed below c=c� ≃ 0.1 around 300 K [21].
In the dense regime (c=c� ≫ 1), Fig. 5(c) shows that as

ðc=c�Þ−1 → 0, which means that the solvent is removed,
T0 decreases, approaching nearly zero. This result is in
agreement with previous studies on natural and synthetic
rubbers without solvent; the absolute value of the energy
contribution (aT0) is much smaller than the value of the
entropy contribution (aT) [5–10]. In other words, this
result suggests that the presence of solvent is the origin
of energy elasticity in the polymer gels, as discussed
in Sec. V.

B. Prefactor of shear modulus

Using dimensional analysis, we determine the functional
form of a ¼ aðp;M; cÞ. Since a has the same dimension as
cR=M, the dimensionless combination is g≡ aM=ðcRÞ,
where R is the gas constant. Then, g depends on the
dimensionless parameters composed of p, M, and c; that
is, g ¼ gðp; c=c�Þ. Figure 5(d) validates this dimensional
analysis. Substituting g ¼ gðp; c=c�Þ and Eq. (10) into
Eq. (7), we have

GðT;M; c; pÞ ¼ cR
M

g

�
p;

c
c�

��
T − T0

�
c
c�

��
: ð12Þ

Although gðp; c=c�Þ and T0ðc=c�Þ depend on the kinds of
polymer chains and solvents that constitute the polymer
gels, Eq. (12) generally represents G in homogeneous
polymer gels. For example, Fig. 5(c) gives T0ðc=c�Þ for the
tetra-PEG gel. We note that Eq. (12) holds for the narrow
temperature range (such as 278 K ≤ T ≤ 298 K), where
the polymer gels are in a rubbery state and the relative
volume change due to temperature change is negligible (see
Appendix B).
The behavior of the contour lines of gðp; c=c�Þ in

Fig. 5(d) is consistent with recent experiments on the
polymer gels for the dilute (c=c� < 1) and semidilute
(c=c� > 1) regimes. In the dilute regime (c=c� < 1),
Fig. 5(d) shows that the contour lines of gðp; c=c�Þ are
nearly parallel to the sol-gel transition line [21] corre-
sponding to gðp; c=c�Þ ¼ 0. Thus, the contour lines are
consistent with previous experiments [21,23]. There seems
to be no theory (e.g., percolation and mean-field theories)
that quantitatively explains the dependence of g on c=c�
[23]. The behavior of gðp; c=c�Þ is qualitatively considered
to be caused by elastically ineffective connections such as
intramolecular bonds and loops [16,23,24].
In the semidilute regime (c=c� > 1), Fig. 5(d) shows

that g is almost independent of c=c�, and we find that
gðp; c=c�Þ ≃ 2.4ξðpÞ from the experimental data (see
Appendix D). Here, the number per precursor of elastically
effective cycles ξðpÞ satisfies 0 ≤ ξðpÞ ≤ 1 and is calcu-
lated using the Bethe approximation [25,26]. Equation (12)
with gðp; c=c�Þ ≃ 2.4ξðpÞ leads to GðpÞ ∼ ξðpÞ, which is
consistent with the previous experiments [24,27]. We
remark that the entropy contribution obtained in our study,
GS ¼ cRgðpÞT=M, is 2.4 times as large as Gphan

S ¼
cRξðpÞT=M, which is predicted by the phantom network
model [3,28].

V. MICROSCOPIC ORIGIN OF NEGATIVE
ENERGY ELASTICITY

In this section, we discuss the microscopic (molecular)
origin of negative energy elasticity. A remarkable feature of
negative energy elasticity in polymer gels, discovered in
this study, is its strong concentration (c) dependence of the
energy contribution (σE=σ ¼ GE=G), as shown in Fig. 6.
This concentration dependence is expected to be more
difficult to observe in gels with large polymer volume
fractions. In fact, although some studies [9,29] measured
the energy elasticity in swollen rubbers with a polymer
volume fraction of at least 0.2, they did not observe the
concentration dependence of the energy contribution. On
the other hand, in this study, we measure the energy
elasticity in the polymer gels with a volume fraction of
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less than or around 0.1, and we find a strong concentration
dependence.
Figure 6 reveals that the conformational energy change,

which is considered to be the origin of the energy elasticity
in rubber, cannot explain the microscopic origin of negative
energy elasticity in a rubberlike gel. The complete evapo-
ration of water from the tetra-PEG gel (used in this study)
corresponds to PEG rubber, which has a small, positive
energy contribution (σE=σ ¼ 0.07� 0.01, green line) [8].
This energy contribution is interpreted to be due to the
conformational energy change around the C─C bond
[Fig. 7(a)] [8,10,29] through the rotational isomeric state
(RIS) model [30] (further details are given in Appendix E).
However, the small and positive energy contribution is
considerably different from our results, as shown in Fig. 6;
σE=σ for the tetra-PEG gel is large and negative
(σE=σ ¼ GE=G ¼ −1.81� 0.04 at the maximum) and
has a strong dependence on c. Thus, we suggest that the
internal energy change with deformation originates mainly
from some kind of intermolecular (that is, polymer-
polymer, solvent-polymer, and solvent-solvent) interaction.
In addition, since the volume is constant (the components
remain constant), the Flory-Huggins theory (and the χ
parameter) [1–3] cannot explain the interaction energy
change with deformation (see Appendix F). Therefore,
we need a new microscopic interpretation of negative
energy elasticity.
We propose a possible microscopic interpretation of the

negative energy elasticity in a rubberlike gel [Fig. 7(b)]; the

negative GE=G value in the gel and the scaling law in
Eq. (11) originate from the fact that the stretching of a
polymer chain increases the number of solvent molecules
that interact attractively with polymer chains. The top of
Fig. 7(b) shows a single polymer chain (blue curve)
between cross-links (red points) in the dilute regime
(c=c� < 1), where most of the chains are isolated. We
define the “territory” of a polymer chain as the region
containing solvent molecules that interact with the chain
and assume that the territory is roughly described as
cylindrical in shape (light blue region) with radius r and
height l. As shown at the bottom of Fig. 7(b), when the
polymer chain is mechanically stretched at a stretch ratio λ,
the territory increases; that is, the number of solvent
molecules interacting with the chain increases. Here, the
solvent molecules come from outside the original (i.e.,
undeformed) territory. Under a small deformation,
the radius r remains nearly constant because the length
of a chain in the direction perpendicular to the stretching
direction does not change [2,3]. Assuming that the total
energy of the solvent-polymer interaction per chain is
proportional to the volume of the territory, the solvent-
polymer interaction energies in the undeformed and

(a) (b)

FIG. 7. Possible scenarios for the microscopic origin of
negative energy elasticity. (a) Energy change accompanying
the conformational change with deformation of a PEG chain,
which has been considered to be the origin of “positive” energy
elasticity for PEG rubber [the green line in (a)] [8]. When the
PEG chain is stretched, the trans-gauche-trans (tgt) conformation
around successive O─C─C─O bonds is transformed to the trans-
trans-trans (ttt) conformation. Because the conformational energy
of trans around the C─C bond is higher than that of gauche
originating from the dispersion interaction between the adjoining
oxygen atoms [8], the energy elasticity is positive. (b) Energy
change accompanying the attractive solvent-polymer interaction
with deformation of a polymer (PEG) chain between cross-links,
causing “negative” energy elasticity in the polymer gel. In the
dilute regime (c=c� < 1), the “territory” of a chain (blue curves)
between cross-links (red points) can be roughly described as
cylindrical in shape (light blue region) with radius r and height l.
When the chain is mechanically stretched at a stretch ratio λ, the
number of solvent molecules interacting with the chain increases,
decreasing the total energy of the solvent-polymer interaction.

FIG. 6. Strong dependence of the energy contribution for
polymer gel elasticity (σE=σ ¼ GE=G) on the normalized
polymer concentration c=c�. The data are taken from Fig. 5(a),
and the symbols are the same as those in Figs. 5(b) and 5(c).
The energy contribution (σE=σ) of the polymer gel is consid-
erably different from that of PEG rubber (σE=σ ¼ 0.07� 0.01
[8], green line). This discrepancy suggests that the explanation
of energy contribution in previous studies of rubber elasticity
[e.g., the RIS model [30] as shown in Fig. 7(a)] is not applicable
to that in this study of gel elasticity. On the other hand, σE=σ
tends to approach that of PEG rubber in the dense limit
(c=c� → ∞).
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deformed chains are proportional to r2l and r2lλ, respec-
tively. Thus, when a single polymer chain is stretched, the
change in the total energy of the solvent-polymer inter-
action is proportional to r2lðλ − 1Þ. Therefore, the energy
elasticity of the gel (GE ∼ T0) is proportional to the linear
distance between the cross-links l, i.e., T0 ∼ l. Supposing
l ∼ c−1=3, we have T0 ∼ c−1=3, which is consistent with the
scaling law in Eq. (11) for a fixed M [and a fixed c�ðMÞ].
The proposed microscopic interpretation is also consis-

tent with the experimental results in semidilute and dense
regimes. In the semidilute regime (c=c� > 1), the territories
[light blue regions in Fig. 7(b)] overlap with each other.
Thus, the dependence of T0 on c falls below the scaling law
(T0 ∼ c−1=3) as shown in Fig. 5(b). In the dense regime
(c=c� ≫ 1), the solvent diminishes, and the effect of the
solvent-polymer interaction on energy elasticity becomes
negligible compared to that of the conformational energy
change [Fig. 7(a)], which is consistent with the results
shown in Figs. 5(c) and 6.
Although the proposed microscopic interpretation

appears to explain the experimental results well, further
investigations are needed, as we only performed macro-
scopic measurements in this study. For example, molecular-
scale experiments (such as light scattering and single-chain
experiments) and numerical simulations (such as molecular
dynamics simulations) will better reveal the microscopic
origin of the negative energy elasticity.

VI. CONCLUDING REMARKS

In conclusion, we have discovered that the energy con-
tribution to shear modulus (GE), which is negligible in
rubbers, can be a significant negative value in rubberlike
polymer gels containing a large amount of solvents (with the
polymer volume fraction of less than or around 0.1) in the as-
prepared state. Further systematic experiments with various
network structures have revealed that the shear modulusG is
simply described by Eq. (12), and GE is governed by a
vanishing temperature T0, which is a universal function of
the normalized polymer concentration c=c�. The vanishing
temperature T0 exhibits a scaling law of T0 ∼ ðc=c�Þ−1=3 in
the dilute regime (c=c� < 1). Based on this scaling law, we
have suggested the microscopic origin of negative energy
elasticity: It emerges from the interaction between the
polymer chain and the solvent, as shown in Fig. 7(b). To
establish this origin from a microscopic (molecular) descrip-
tion and to verify whether our findings are universal in other
polymer gels, further studies are needed.
Our findings have essential implications for past research

on gel elasticity, which was previously thought to be the
same as the rubber elasticity. For example, in the previous
paper using tetra-PEG gels [15], G ≃GS, i.e., GE ≃ 0, was
assumed, and the dependence of the shear modulus G on
the polymer concentration c was interpreted as the cross-
over between the phantom [3,28] and affine [1] network

models. However, our results [Figs. 5(b) and 5(c)
and Eq. (12)] point out that the above assumption is
invalid, and “the crossover” does not mean the phantom-
affine crossover but originates from the dependence of T0

on c. As this example shows, our study provides a new
perspective on gel elasticity and urges reexaminations of a
vast amount of previous research on gel elasticity.
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APPENDIX A: CONTROL OF THE
CONNECTIVITY

To obtain tetra-PEG gels with different values of con-
nectivity p after the completion of the chemical reaction,
we nonstoichiometrically mix the two kinds of precursor
solutions in weight fractions of tetra-PEG-MA to all
precursors qw. Here, p (0 ≤ p ≤ 1) is the fraction of
reacted maleimide and thiol groups to all functional groups.
Assuming that almost all the minor terminal groups react,
we have [24]

p ¼
� 2qpMA for 0 ≤ q ≤ pSH

pMAþpMA

2ð1 − qÞpSH for pSH
pMAþpMA

≤ q ≤ 1;
ðA1Þ

where pMA and pSH are the terminal functionalization
fractions of tetra-PEG-MA and tetra-PEG-SH, respectively.
Here, q is the molar fraction of tetra-PEG-MA to all
precursors, and it is determined from qw by considering
the molecular-weight distributions and functionalities of
the precursors. Further details of this method are described
in Ref. [24].

APPENDIX B: VOLUME CHANGE DUE TO
TEMPERATURE CHANGE AND SHEAR

DEFORMATION

To demonstrate that the experiment in this study was
conducted with a negligible volume change, we evaluate
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the relative volume change (i.e., the volume strain) due to
temperature change and shear deformation. First, we
evaluate the relative volume change of tetra-PEG gels with
a change in temperature during free thermal expansion at
1 atm. The densities of the tetra-PEG gels are considered to
be equal to the densities of the aqueous PEG solution with
the same polymer concentration c. According to Ref. [31],
the densities of aqueous PEG solutions at a temperature
T ¼ 277 K [ρð277 KÞ] and at a temperature T ¼ 298 K
[ρð298 KÞ] can be calculated from the following formulas,
respectively:

ρð277 KÞ=ðg=cm3Þ ¼ 1.0000þ 0.19820w;

ρð298 KÞ=ðg=cm3Þ ¼ 0.99707þ 0.17441w: ðB1Þ
Here, w ¼ c=(cþ 997.07ðg=LÞ) is the mass fraction of
PEG. In this study, experiments were conducted in the
temperature range of 278 K to 298 K. However, to make
use of literature values, we compare densities in a slightly
wider temperature range (277 K and 298 K). In addition,
in this study, w at each sample is independent of T because
all the samples are prepared at T ¼ 298 K. The relative
volume change caused by a decrease in temperature from
298 K to 278 K at 1 atm is given as

ΔV
V

≡ Vð298 KÞ − Vð277 KÞ
Vð298 KÞ ¼ 1 −

ρð298 KÞ
ρð277 KÞ ; ðB2Þ

where Vð277 KÞ and Vð298 KÞ are the volumes at 277 K
and 298 K, respectively. By using Eqs. (B1) and (B2), we
obtain ΔV=V ∼ 10−3, as summarized in Table I. Here,
m ∼ n means that the quantities m and n have the same
order of magnitude.
Second, we show that the relative volume change caused

by the Poynting effect (i.e., the normal stress difference
N1 ≃Gγ2 under shear deformation) is negligible. The
relative volume change is written as

ΔVPoy

V
¼ N1

K
≃
Gγ2

K
< 2 × 10−10; ðB3Þ

where the applied strain is γ ¼ 0.01, and the shear and
bulk moduli are G < 40 kPa and K > 2 GPa, respectively.
Thus, the volume change due to the Poynting effect is

negligible compared to the volume change due to the
free thermal expansion (ΔV=V ∼ 10−3). Similarly, other
volume changes associated with internal pressure changes
during shear deformation are negligible because of a
sufficiently large bulk modulus (K > 2 GPa).
In conclusion, the free thermal expansion is dominant,

and the relative volume change is negligibly small
(ΔV=V ∼ 10−3). Thus, we conclude that the experimental
condition can be regarded as a constant-volume condition.
We provide a detailed estimation of the contribution
to entropy elasticity by the small volume change in
Appendix C.

APPENDIX C: CONTRIBUTION TO ENTROPY
ELASTICITY BY SMALL VOLUME CHANGES

In this Appendix, we demonstrate that the small volume
change due to temperature change (i.e., ΔV=V ∼ 10−3

calculated in Appendix B) has a negligible effect on the
analysis of entropy elasticity. We consider a compressible
elastic body with an applied shear strain γ at temperature T
and external pressure P. The derivative of the Helmholtz
free energy F is given by [32]

dF ¼ −SdT − PdV þ Vσdγ; ðC1Þ

where S, V, and σ are the entropy, volume, and shear stress,
respectively. We assume that the control parameters are T
and γ (with constant P). The infinitesimal volume change is

dV ¼ VðT; γÞαðT; γÞdT þ ∂VðT; γÞ
∂γ dγ; ðC2Þ

where

αðT; γÞ≡ 1

VðT; γÞ
∂VðT; γÞ

∂T ðC3Þ

is the thermal expansion coefficient [32]. Substituting
Eq. (C2) into Eq. (C1), we have

dF ¼ −ðSþ PVαÞdT þ
�
Vσ − P

∂V
∂γ

�
dγ: ðC4Þ

Hereafter, we omit the variables ðT; γÞ because all physical
quantities are bivariate functions of ðT; γÞ. By considering
∂2F=ð∂T∂γÞ, we have the Maxwell relation:

−
∂
∂γ ðSþ PVαÞ ¼ ∂

∂T
�
Vσ − P

∂V
∂γ

�
: ðC5Þ

By using ∂V=∂T ¼ Vα and ∂P=∂γ ¼ 0 (because P is a
constant), we rewrite Eq. (C5) as

TABLE I. Relative volume change (ΔV=V) with change of
temperature in free thermal expansion at atmospheric pressure
(1 atm), based on Ref. [31].

c ðg=LÞ w (−)
ρð277 KÞ
ðg=cm3Þ

ρð298 KÞ
ðg=cm3Þ

ΔV=V
(−)

30 0.0292 1.0058 1.0022 0.0036
60 0.0568 1.0113 1.0070 0.0042
90 0.0828 1.0164 1.0115 0.0048
120 0.1074 1.0213 1.0158 0.0054
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−
∂S
∂γ ¼ ∂

∂T
�
Vσ − P

∂V
∂γ

�
þ ∂
∂γ ðPVαÞ

¼ V
∂σ
∂T þ Vασ − P

∂2V
∂T∂γ þ P

∂
∂γ ðVαÞ

¼ V
∂σ
∂T þ Vασ: ðC6Þ

Therefore, the entropy contribution to the stress is

σSðT; γÞ≡ −
T
V
∂S
∂γ ðT; γÞ ¼ T

∂σ
∂T ðT; γÞ þ Tασ: ðC7Þ

In Eq. (C7), an additional term Tασ is added to Eq. (1), as a
result of taking into account the volume change.
We compare Tασ with T∂σ=∂T in Eq. (C7). The ratio is

Tασ

Tð∂σ∂TÞ
∼ αΔT

σ

Δσ
∼ 10−2; ðC8Þ

where αΔT ∼ ΔV=V ∼ 10−3 (see Appendix B) and σ=Δσ ∼
10 [see Fig. 4(a)]. Here, m ∼ n means that the quantities
m and n have the same order of magnitude. Equation (C8)
shows that the additional term Tασ caused by the volume
change only affects the entropy elasticity insignificantly
(by a few percent).
We note that the negligible effect of volume change on

the temperature dependence of the shear stress (and shear
modulus) of the gel is consistent with the absence of
thermoelastic inversion, as shown in Fig. 4(a). Here, the
thermoelastic inversion is an inversion of the temperature
dependence of stress in the low-strain region caused by
thermal expansion, and it is observed in various synthetic
and natural rubbers [1,5].

APPENDIX D: BETHE APPROXIMATION TO
CALCULATE THE STRUCTURAL PARAMETERS

The dimensionless structural parameters ν, μ, and ξ
cannot be experimentally observed but can be theoretically
estimated as a function of connectivity p by using the Bethe
approximation [25,26] (also called the tree approximation
[2] and the mean-field approximation [3]). The number per
precursor of the elastically effective cycles ξ is obtained by
ξ ¼ ν − μ, where ν and μ are the numbers per precursor of
elastically effective chains and cross-links, respectively.
Here, the elastically effective chain is defined as a chain
whose ends both connect to cross-links.
In the network structure formed by two kinds of tetra-

functional precursors (A4 or B4), the Bethe approximation
assumes that the probability that one arm of A4 or B4

does not connect to an infinite-sized network [PðFout
A Þ or

PðFout
B Þ, respectively] as [24–26]

PðFout
A Þ ¼ pAPðFout

B Þ3 þ 1 − pA;

PðFout
B Þ ¼ pBPðFout

A Þ3 þ 1 − pB: ðD1Þ

Here, pA and pB are the fractions of the reacted A and B
groups to all functional groups, respectively. By using
PðFout

A Þ and PðFout
B Þ, we can calculate the probabilities that

A4 or B4 will become an f-functional cross-link for f ¼ 3
or 4 [PðXAfÞ or PðXBfÞ, respectively] as

PðXA3Þ ¼ 4PðFout
A Þ½1 − PðFout

A Þ�3;
PðXB3Þ ¼ 4PðFout

B Þ½1 − PðFout
B Þ�3;

PðXA4Þ ¼ ½1 − PðFout
A Þ�4;

PðXB4Þ ¼ ½1 − PðFout
B Þ�4: ðD2Þ

Note that A4 and B4 cannot be a cross-link for f ¼ 1 and 2.
If the molar ratio of A and B groups is [A]: ½B� ¼ q∶1 − q
(0 < q < 1), we have

ν ¼ q

�
3

2
PðXA3Þ þ 2PðXA4Þ

�

þ ð1 − qÞ
�
3

2
PðXB3Þ þ 2PðXB4Þ

�
; ðD3Þ

FIG. 8. Comparison between the experimentally obtained
g ¼ gðp; c=c�Þ [defined in Eq. (12)] and the dimensionless
structure parameter ξ ¼ ν − μ. Here, ν and μ are the numbers
per precursor of elastically effective chains and cross-links,
respectively. We calculate ν, μ, and ξ using the Bethe approxi-
mation with p estimated from Eq. (A1). We determine g from the
data in Fig. 5(a) with Eq. (12). Each symbol represents one
sample that is characterized by the molar mass M, concentration
c, and connectivity p. The blue diamonds, red circles, and black
squares represent M ¼ 10, 20, and 40 kg=mol, respectively. The
green line represents g ¼ 2.4ξ. The four blue diamonds enclosed
by the gray curve represent the samples with the lowest
normalized polymer concentrations (c=c� ≃ 0.5) in this experi-
ment. They deviate from the green line because they have many
elastically ineffective connections such as the intramolecular
bonds and loops [16,23,24], causing the overestimation of ξ.
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μ ¼ q½PðXA3Þ þ PðXA4Þ� þ ð1 − qÞ½PðXB3Þ þ PðXB4Þ�:
ðD4Þ

In this study, we calculate ν and μ as a function of
connectivity p ¼ qpA þ ð1 − qÞpB [24].
We compare ξðpÞ ¼ νðpÞ − μðpÞ with g ¼ gðp; c=c�Þ

defined in Eq. (12). Figure 8 shows gðp; c=c�Þ ≃ 2.4ξðpÞ.
In the semidilute regime (c=c� > 1), it was reported [24,27]
that the p dependence of G is well reproduced by
GðpÞ ∼ ξðpÞ. Equation (12) with gðp; c=c�Þ ≃ 2.4ξðpÞ
leads to GðpÞ ∼ ξðpÞ [24,27], which is consistent with
the previous experiments [24,27]. However, the entropy
contribution obtained in this study, GS ¼ cRgðpÞT=M, is
2.4 times as large as Gphantom

S ¼ cRξðpÞT=M, predicted by
the phantom network model [3,28].

APPENDIX E: FAILURE TO EXPLAIN
NEGATIVE ENERGY ELASTICITY OF GELS

BY RUBBER ELASTICITY THEORY

We briefly show that the standard rubber elasticity theory
of Flory and co-workers [8–10,29,30] cannot explain the
microscopic (molecular) origin of negative energy elasticity
in a rubberlike gel. This theory considers that the slight
energy elasticity in rubber originates from conformational
energy change as follows. We consider the uniaxial tensile
deformation of a rubber with an applied stretch ratio λ and
assume the constant-volume condition. Following the
procedure to derive Eq. (1), we have the energy contribu-
tion to the tensile stress as

σEðT; λÞ ¼ σðT; λÞ − T
∂σ
∂T ðT; λÞ: ðE1Þ

[Here, we use the symbols σ and σE for tensile deforma-
tions, as shown in Fig. 1(a), while we use the same symbol
for shear deformations in the main text.] On the other hand,
the molecular theory of rubber elasticity [1,28] describes
the equation of state for rubber elasticity as

σðT; λÞ ¼ nRT
hr2i
hr2i0

�
λ −

1

λ2

�
; ðE2Þ

where R is the gas constant and n is the molar density of
the elastically effective chains (or cycles) for the affine (or
phantom) network model. Here, hr2i≡ l2 and hr2i0 are the
mean-square linear distance between the cross-links in the
network and the corresponding value for the unperturbed
polymer chain, respectively. If the volume of the rubber
is constant, hr2i does not depend on temperature T.
Substituting Eq. (E2) into Eq. (E1), we have the formula
that describes the energy elasticity of rubbers [8–10,29]:

σE
σ

¼ T
hr2i0

dhr2i0
dT

: ðE3Þ

Equation (E3) is validated in various polymer species
including PEG; the value on the left-hand side of
Eq. (E3) determined from the thermo-elasticity measure-
ment of unswollen rubbers is consistent with the value
on the right-hand side of Eq. (E3) determined from the
intrinsic viscosity measurement [29,33]. Here, in the
intrinsic viscosity measurement, the effect of polymer-
solvent interaction is eliminated [29,33]. The T dependence
of hr2i0 in Eq. (E3) is microscopically interpreted to be due
to the conformational energy change [8,10,29] based on the
rotational isomeric state (RIS) model [30]. For example,
small and positive energy elasticity σE=σ ¼ 0.07� 0.01
(green line in Fig. 6) observed in the PEG rubber [8] is
explained by the conformational change around the C─C
bond [Fig. 7(a)].
On the other hand, in polymer gel elasticity, most

previous studies [13–16] implicitly postulated hr2i0 ¼
hr2i in Eq. (E3) and neglected energy elasticity. Even if
we do not make such a postulation, the classical rubber
elasticity theory of Flory and co-workers [8–10,29,30] fails
to explain the energy elasticity in polymer gels. The energy
elasticity in the PEG rubber (σE=σ ¼ 0.07� 0.01) is
considerably different from that in the PEG gel: large,
negative (σE=σ ¼ GE=G ¼ −1.81� 0.04 at the maxi-
mum), and strongly concentration-dependent, as shown
in Fig. 6.

APPENDIX F: MIXING AND ELASTIC FREE
ENERGIES AT CONSTANT VOLUME

We show that the Helmholtz free energy of mixing (Fmix)
is irrelevant to the origin of the negative energy elasticity.
To define the energy elasticity (σS and GE), it is necessary
that the volume of the system V does not change with
shear deformation. (This condition is satisfied in this study.
See Appendix B.) The Helmholtz free energy F of an
incompressible polymer gel consists of two separate con-
tributions as [1]

FðT; γÞ ¼ FmixðTÞ þ FelðT; γÞ; ðF1Þ

where Fmix and Fel are the mixing and elastic free energies,
respectively. Here, Fmix is independent of the applied shear
strain γ because the volume V does not change with
deformation. In an isothermal process, the shear stress
and modulus are related to the free energy as

σðT; γÞ≡ 1

V
∂FðT; γÞ

∂γ ¼ 1

V
∂FelðT; γÞ

∂γ ðF2Þ

and
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GðTÞ≡ 1

V
∂2F
∂γ2 ðT; γÞ

����
γ¼0

¼ 1

V
∂2Fel

∂γ2 ðT; γÞ
����
γ¼0

: ðF3Þ

Equations (F2) and (F3) show that Fmix does not contribute
to the stress and modulus. Thus, the models focusing on
Fmix of swollen rubbers and gels (such as the Flory-
Huggins theory [1–3]) cannot explain the microscopic
origin of the negative energy elasticity.
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